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Preface

This book is a theoretical introduction to the optics of charged par-
ticle beams. The purpose is to identify the most important ideas
and derive them mathematically from first principles of physics.
It is a teaching document, intended for an audience of students in
the broad sense. As a science book, it focuses on basic principles in
a connected way. It is intended for the intelligent non-expert who
is comfortable with calculus at an advanced undergraduate level.
Experts, including experimentalists, instrument designers, and in-
strument users, will also find it to be a convenient reference for
understanding the theoretical origins of the subject.

Enormous experimental progress has been made in recent years,
culminating in commercial availability of aberration-corrected
transmission electron microscopes with resolution below 0.1 nm,
energy analyzers with resolution in the meV range, and gas field
ion microscopes with resolution below 1.0 nm, to name a few ex-
amples. These innovations are built upon the ongoing efforts of
pioneers over the past decades. These advances enable an ever-
growing array of applications at the atomic scale of dimensions.
Unfortunately, the underlying theory can appear arcane and baf-
fling to someone who is new to the field. One cannot possibly un-
derstand aberration correction without first having a firm grasp
on optics in the paraxial approximation, and the origin of the pri-
mary aberrations, for example.

This book is intended to convey an intuitive understanding of the
basics, as opposed to presenting a comprehensive compendium of
the detailed subject. It is meant to be logical, with each step fol-

ix
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x Preface

lowing directly from the preceding step, insofar as this is possible.
For this reason, it is highly recommended that the reader adhere
to the logical sequence, and make the effort to follow the mathe-
matical steps along the way. Problems are included to amplify and
fill in the theoretical details, and to provide practical examples.

Many excellent books have been written over the years on this
general topic. Indeed we have attempted to include these in the
references. As the subject has matured, the various topics have
been treated in increasing detail and precision in the literature. In
order to present an up-to-date review of the subject, it is common
practice for authors to present the main results only, referring the
reader to a list of earlier references for detailed derivations and
justifications. The methodology here is quite different. All of the
ideas presented are derived from first principles of physics. In some
instances this excludes the most recent detailed and precise results
of others. The idea is to convey an intuitive scientific feel for the
subject.

It is standard practice in physics research that, if a particular prob-
lem cannot be solved, a related problem is identified which can be
solved. This inevitably involves approximation. This approach is
used here in several instances, most notably in the descriptions of
particle scattering and electron emission from solids.

We begin with a general introduction in Chapter 1, consisting
of a non-mathematical survey of the optical nature of a charged
particle beam. A number of practical systems are described that
highlight the enormous breadth and depth of present-day applica-
tions.

Next, Chapter 2 describes geometrical optics. This begins with a
review of relativistic classical mechanics for the motion of a single
particle with general charge q and rest mass m. Based on this, the
principles underlying geometrical optics are then derived, includ-
ing a prescription for solving for the ray path, which is the physical
path taken by a single particle. This chapter is completely accurate
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with respect to the special theory of relativity. Interestingly, this
adds no significant complexity over the historical non-relativistic
treatments, but does lead to a more accurate mathematical de-
scription. We therefore keep everything relativistically correct to
the extent possible.

Chapter 3 describes wave optics. We begin with a review of quan-
tum mechanics, limited to only those ideas that impact the motion
of a single charged particle. We begin with the non-relativistic ap-
proximation and Schrödinger’s equation. Relativity is introduced
later in the form of the Klein–Gordon equation. This skirts a
rigorous treatment of spin, but keeps things from becoming too
abstract, while producing a practical result. The discussion culmi-
nates with the quantum mechanical solution for the propagation of
the single-particle wave function in a general electromagnetic po-
tential. The correspondence between wave optics and geometrical
optics in the classical limit emerges naturally from this discussion.

We then discuss diffraction and interference, starting with Huy-
gens’ principle, and proceeding through the scalar Helmholtz equa-
tion, the Huygens–Fresnel relation, the Fresnel approximation, and
the Fraunhofer approximation. Next we discuss a number of useful
examples, including formation of an image and a diffraction pat-
tern, the general optical transformation from object to image, and
the fundamental relationship between diffraction and Heisenberg’s
uncertainty principle.

Chapter 4 describes the two-body scattering problem, which is ba-
sic to the interaction of a fast charged particle with matter. Most
of the relevant information about the scattering process is con-
tained in the scattering cross section, which is derived first in the
classical approximation, and then in the quantum mechanically.
Chapter 5 describes electron emission as a practical consequence
of quantum mechanics. Finally, the appendices contain two essen-
tial mathematical topics, which are repeatedly referred to in the
main text.
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All useful information about the motion of a single charged parti-
cle is contained in the integral of the classical Lagrangian function
between two arbitrary points in time. This integral is known his-
torically as Hamilton’s principal function, and alternatively as the
eikonal function. The actual path taken by the particle, chosen
among a multiplicity of mathematically possible paths, is the path
for which this integral has an extremum. In the important special
case where the general electromagnetic potential has no explicit
time dependence, the action integral reduces to a line integral of
the canonical momentum component along the ray path. This is
a considerable simplification in problems where one is only inter-
ested in the spatial coordinates of a ray, without the need to know
the arrival time at any given point. The extremum condition is
generally known as the principle of least action, which is express-
ible in concise and precise mathematical terms.

In quantum mechanics all relevant information about the motion
of a single particle is contained in the wave function, for which
the same action integral in units of Planck’s constant h̄ is the
phase. It follows that all possible paths in the immediate vicinity
of the classical path interfere constructively. The classical path is
thus the path that maximizes the probability. This clarifies the
particle–wave duality in concise and elegant mathematical terms.
A close analogy exists between Fermat’s principle of light optics
and the principle of least action for a charged particle. The anal-
ogy between light optics and charged particle optics is deep, and
is manifested in quite practical ways, including diffraction and in-
terference. These ideas are derived mathematically from first prin-
ciples.

The literature of this mature field is extensive. Several books are
of particular interest. The three-volume set by Hawkes and Kasper
[43, 44, 45] describes the main principles in precise and compre-
hensive detail, with reference to the work of many authors over the
decades. There is arguably no better review of the enormous body
of work that brought the field to its present state. Geometrical
Charged-Particle Optics by Rose [75] is both general and compre-



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page xiii — #9 i
i

i
i

i
i

Preface xiii

hensive in its mathematical description of systems with general
curvilinear axes. This includes the straight optic axis and axial
symmetry as special cases, and also includes the theory of cor-
rection of geometrical aberrations. Correction of spherical aberra-
tion in electron microscopes is described in a detailed, up-to-date
way. This book also derives the main ideas from first principles
of physics. The book Handbook of Charged Particle Optics, edited
by Orloff [67], describes a variety of experimental and theoretical
topics in a way that is accessible to readers with a range of expe-
rience. It also describes correction of spherical aberration.

The present book complements these in several important ways.
It is an introductory textbook that prepares the student to tackle
the detailed and comprehensive literature. It proceeds from first
principles of physics in a structured way, including geometrical op-
tics (classical mechanics), wave optics (quantum mechnics), and
the correspondence between them. Finally, it includes several top-
ics not normally included in other books on charged particle op-
tics, but that are essential to practical systems. These include a
first-principles theory of Coulomb interaction in charged particle
beams, particle scattering by materials, and electron emission from
materials.
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Chapter 1

Introduction: The optical
nature of a charged
particle beam

Modern physics teaches that all matter is made of particles which
interact with one another. Every particle is characterized by its
intrinsic charge, mass, and spin. These quantities govern all inter-
actions which a particle can have. For example, an atom consists
of a cloud of negatively charged electrons orbiting a compact, pos-
itively charged nucleus. The establishment of this fact in quanti-
tative terms has a fascinating history. It originates with the early
hypothesis of Democritas, proceeds through the origins of quanti-
tative chemistry in the seventeenth century, and culminates with
the elucidation of quantum mechanics in the twentieth century.
Only during the last few decades has it become possible to cap-
ture an actual image of a single atom.

Atoms are charge-neutral in their normal state, with the positive
charge of the nucleus precisely offset by negative charge of the or-
biting electrons. By bombarding an atom with a beam of light or
charged particles, it is possible to remove one or more electrons
from an atom or molecule. This forms a positively charged ion.
Under special circumstances it is also possible to add electrons to
form a negatively charged ion. Electric and magnetic fields act on

1
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2 Introduction: The optical nature of a charged particle beam

the intrinsic charge of electrons and ions through the force known
as the Lorentz force, after the physicist who first identified it in
the nineteenth century. By bombarding with a very high energy
beam, the atomic nucleus can dissociate into its constituent ele-
mentary particles. This is the mechanism by which a high energy
particle accelerator is used to probe the fundamental makeup of
matter.

Many examples of free charged particles exist in nature. Ener-
getic ions appear as cosmic rays which pervade interstellar space,
and bombard the earth’s atmosphere in large numbers. A large va-
riety of subnuclear particles are produced in high energy particle
accelerators. Many of these also appear as cosmic rays. The beam
inside an electron microscope or a cathode ray tube consists of
free, energetic electrons in a vacuum. Indeed, it is not difficult to
form a beam of charged particles in a vacuum by making use of the
intrinsic properties of matter, together with electric and magnetic
fields to focus and steer the beam.

According to the laws of classical physics, a single charged par-
ticle traces out a path of motion under the influence of electric
and magnetic fields. A collection of many particles emitted from
a source, each with its own trajectory, form a beam.

Two common sources are shown schematically in Figure 1.1. In
(a) a hot tungsten wire at the top of the figure, with a tem-
perature of about 2000 degrees Kelvin is placed opposite a pla-
nar electrode called the anode. The anode is typically electrically
grounded. Electrons are spontaneously emitted from the hot wire
by the process of thermionic emission. By means of an external
power supply, the tungsten wire is elevated to a negative voltage
which can be anywhere between a few volts to a few millions of
volts relative to the anode. This voltage is called the accelerating
voltage, because the resulting electric field accelerates the parti-
cles. This forms a beam, which is analogous in several fundamental
ways to a beam of light. Each trajectory in the figure corresponds
to the path of a single charged particle.
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Introduction: The optical nature of a charged particle beam 3

Figure 1.1: (a) electron source, and (b) positive ion source.

In (b) a tungsten wire is formed into a very sharp tip. The tip
is elevated to a positive voltage, typically a few thousand to a few
tens of thousands of volts, relative to the planar electrode. A small
amount of helium gas is admitted into the system. Helium atoms
diffuse toward the vicinity of the tip, where they are ionized in
the very high electric field. This is known as a gas field ionization
source. Ion sources of other chemical species exist as well. Prac-
tically any material which can be ionized can be used to form an
ion beam. This enables a rich variety of species of ion beams to be
formed.

In all cases, an electric field accelerates the charged particles. Each
particle acquires an energy equal to its charge times the acceler-
ating voltage. A natural unit of energy is the electron-Volt, abbre-
viated as eV. It is the energy which a particle with one electronic
charge acquires when accelerated through one volt. The beam en-
ergy is thus easily tuned to almost any desired value by simply
controlling the accelerating voltage. This turns out to have con-
siderable practical utility. Practical charged particle beams range
in energy from a few eV to about fourteen trillion eV. This is the
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4 Introduction: The optical nature of a charged particle beam

design energy of the Large Hadron Collider (LHC) at CERN, the
world’s most energetic particle accelerator, located on the France-
Switzerland border. Incidentally, the beam must be in a vacuum
chamber in all useful particle beam instruments, since the parti-
cles would immediately be absorbed in air at normal atmospheric
pressure, regardless of their energy.

A charged particle beam is conceptually similar in many respects
to a beam of light. It is therefore interesting to think about charged
particle optics in an analogous way to light optics. This forms a
central theme in the present study. For example, electric and mag-
netic fields can be configured to form a lens, which focuses the
charged particle beam. An example of a magnetic lens is shown
schematically in Figure 1.2. A current-carrying solenoid is depicted
in the figure by the two rectangles, which represent the cross sec-

Figure 1.2: Magnetic focusing of a beam of electrons.
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Introduction: The optical nature of a charged particle beam 5

tion. The solenoid is surrounded by a shroud of soft iron, which
concentrates the magnetic field. The magnetic field lines bulge into
the region of the electron beam, which is incident from the top of
the figure. The beam is focused to a small probe at the target
plane, shown at the bottom of the figure. Such an arrangement is
used in a scanning electron microscope. The magnetic field lines
and the electron trajectories are generated in a computer simula-
tion by MEBS, Ltd. [63]. The beam path is 100 mm long in the
figure, the beam energy is 10 KeV, and the solenoid carries 550
ampere-turns. In reality, the electrons spiral around the central
optic axis. The figure is plotted in a coordinate system which ro-
tates about the axis with the beam, so that the trajectories appear
not to rotate. This is for clarity.

An example of an electrostatic lens is shown schematically in Fig-
ure 1.3. Electrons are emitted from a heated flat surface at zero

Figure 1.3: Electrostatic acceleration and focusing of a beam of
electrons.

volts relative potential on the left of the figure, and are acceler-
ated to the right. An aperture at –10 volts forms a grid to control
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6 Introduction: The optical nature of a charged particle beam

the total beam current. A second aperture at +600 volts forms
an extraction field for emission. Finally, a high voltage electrode
at +18,000 volts is located far to the right, out of the figure. The
apertures both have diameter 0.6 mm, and the other dimensions
in the figure scale proportionally. The curved equipotentials pen-
etrate the space occupied by the beam, and are separated by 100
volts in the figure. These equipotentials can be regarded as form-
ing a lens, which focuses the beam to a crossover at the right of
the figure. Such an arrangement is used in a cathode ray tube.
The electrostatic equipotential surfaces and the electron trajecto-
ries are generated in a computer simulation by MEBS, Ltd. [63].

In addition to focusing a beam to a pointlike spot, a lens can
also be used to form a magnified image of an extended object.
This is shown schematically in Figure 1.4. Every object point in

Figure 1.4: Imaging an off-axis point by a lens.

the plane located at zO emits a cone of rays into the lens at plane
zL. A particular object point is located a vertical distance rO from
the central axis in the figure. A ray which is emitted in a direction
parallel with the central axis is deflected by the lens, and intersects
the central axis at the focal point located an axial distance f from
the lens. A second ray passes through the center of the lens, and
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Introduction: The optical nature of a charged particle beam 7

is undeflected. These two rays are depicted as bold lines in the
figure. They intersect in a distant plane located at zI , at a point
which is located at a distance rI from the central axis. In fact, all
rays emitted from this object point, regardless of their angle of
emission, are focused by the lens to the same image point. Since
all rays converge to a single point, it is apparent that a one-to-one
mapping of the object point into an image point exists. In order
for this to happen, each ray must experience a change in slope
which is proportional to the distance from the central axis. This
is the remarkable focusing action of an ideal lens.

Since this works for any point in the object plane zO, we deduce
that all object points are imaged simultaneously, each to a unique
point in the image plane. This is the mechanism by which a mag-
nified image of an extended object is formed. The negative of the
ratio of rI to rO is called the magnification of the image relative
to the object. By convention, the magnification is negative in this
case, because the image is inverted relative to the object. By per-
forming the construction in Figure 1.4 for multiple object points
rO, it is easy to convince oneself that this magnification is the
same for all object points. The magnification depends only on the
relative positions of the object plane zO and the lens plane zL, and
on the focal length f . The smaller the focal length f , the more the
rays are deflected, and the stronger is the lens. The focal length
is the same for all object points rO. For a charged particle beam,
the focal length also depends on the particle energy. The higher
the particle energy, the longer is the focal length. This is a direct
result of the fact that a faster particle spends less time in the lens
field, and is therefore deflected less than a slower particle.

The construction in Figure 1.4 works for both charged particles
and light. Many striking similarities exist between light optics and
charged particle optics. In both cases, no optical system is capable
of forming a perfect image. Blur and distortion are always present
to some degree. These imperfections are called aberrations. An
important example is the so-called spherical aberration, in which
the outermost rays are focused more strongly than the innermost
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8 Introduction: The optical nature of a charged particle beam

rays. As a result, the beam is not focused to a point, but rather
is blurred. This is readily apparent in Figure 1.3. Spherical aber-
ration occurs in light optical lenses as well as charged particle
lenses. In light optics, it arises from the fact that ordinary lenses
have spherical surfaces, hence the name spherical aberration. It is
substantially corrected in light optics by grinding the lens surfaces
to a particular aspherical shape. It is not possible to shape the elec-
tric and magnetic fields of a charged particle lens in an analogous
way, because the fields always obey Maxwell’s equations. Signifi-
cant progress has been made over the last two decades in correcting
the aberrations of charged particle lenses. The details are beyond
the scope of this study. The reader is referred to two excellent
references by Rose [75] and by Krivanek, et. al. [54] for precise
details. Indeed, it is hoped that the present study will provide the
background needed to approach this advanced topic expeditiously.

It is apparent from Figure 1.3 that the innermost rays close to
the central axis are less aberrated than the outermost rays. Se-
lecting the inner rays and blocking the outer rays would improve
the quality of the focusing. This suggests a simple way of mitigat-
ing the effect of the spherical aberration for a given optical system,
namely, by using an aperture to admit the inner rays, while block-
ing the outer rays. Conceptually, one could add an aperture in the
lens plane of Figure 1.4, thus limiting the cone of rays. A conve-
nient measure of the constriction is given by the index of refraction
times the sine of the angle which the extreme ray makes with the
central axis at an object point on the axis. This product is known
as the numerical aperture. The larger the aberration, the smaller
the numerical aperture must be to obtain the desired image qual-
ity. In fact, the size of the numerical aperture can be used as a
useful estimate of the quality of the optical system. In practice,
the numerical aperture is typically in the range of 0.3 to 1.3 for
light optical lenses, and 0.001 to 0.1 for charged particle lenses,
in order to achieve optimal imaging conditions. This expresses the
fact that charged particle lenses have significantly worse aberra-
tion than light optical lenses.
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Introduction: The optical nature of a charged particle beam 9

Classical mechanics regards a single particle as a hypothetical
point, with the position and velocity known in principle at any
given instant in time. In reality, a single particle also behaves like
a wave. The wavelength is is equal to Planck’s constant h divided
by the particle momentum, where h = 6.6261×10−34Joule ·sec. A
faster particle thus has a shorter wavelength than a slower parti-
cle. This so-called wave-particle duality is a hallmark of quantum
mechanics, which is a more accurate description of nature than
classical mechanics on the atomic and subatomic scale of dimen-
sions. Classical mechanics is sufficiently accurate for many pur-
poses, however, so it is worth retaining. Quantum mechanics has a
very specific correspondence with classical mechanics for a charged
particle in the limit of high energy. This will prove to be a central
theme in the present study.

Quantum mechanics teaches that the absolute square of the wave
amplitude is equal to the probability that a single measurement
finds the particle at a given position at any given instant in time.
Because this probability is described by a propagating wave, it is
not possible to know the position and momentum simultaneously
with perfect precision. This is known as the Heisenberg uncer-
tainty principle, after the physicist who first elucidated it in the
1920s. A remarkable consequence of quantum mechanics, and one
which may appear counterintuitive at first, is that a single particle
can be described by two or more waves which interfere construc-
tively or destructively with one another. Each wave corresponds to
a particular alternative path of motion of the particle, where the
actual path of motion is fundamentally unknowable. For example,
it is impossible to know which path in Figure 1.4 is the actual path
taken by the charged particle. Each possible path can be described
by a separate wave, where all of the waves corresponding to the
different paths propagate coherently, with a particular phase rela-
tionship to one another. They all interfere at the image plane to
cause a blurred spot (not depicted in the figure).

This interference is intimately related to diffraction, which re-
sults from the propagation, spreading, and interference of waves.
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10 Introduction: The optical nature of a charged particle beam

Diffraction is familiar in light optics. For example, it imposes a
fundamental limit on the resolution of a microscope. Because of
diffraction, it is not possible in a conventional microscope to re-
solve any object which is appreciably smaller than the wavelength.
This turns out to be true for both a light microscope and an elec-
tron microscope. It is another example of the close analogy that
exists between charged particle optics and light optics. Since the
wavelength of a fast charged particle is much smaller than that of
visible light, it is expected that the resolving power of a charged
particle microscope should be much better than a light microscope.
This is indeed verified in practice. A modern electron microscope
can resolve a single atom, a feat which is in no way possible with
visible light.

Charged particles interact strongly with matter. This forms the
basis of many useful instruments. For example, a fast electron can
be scattered by an atomic nucleus of the target material, with
little energy transferred to the material. This is known as elastic
scattering, and forms the basis of contrast in a transmission elec-
tron microscope. Alternatively, the incident particle can transfer
energy to the sample material, giving rise to secondary processes.
For example, a secondary electron or ion can be ejected. By mea-
suring the charge and mass of the ejected particle, useful chemical
and physical information about the sample is obtained.

Three generic types of electron microscopes exist. These are shown
schematically in Figure 1.5. A conventional transmission electron
microscope (TEM) is shown in (a). A transparent specimen S is
illuminated from above, where the illumination is omitted for sim-
plicity. Some electrons are elastically scattered at the object point,
and some remain unscattered. The unscattered current passes
through an aperture A, and is imaged by a lens L onto the record-
ing plane P, where P typically consists of an array of charged
coupled devices. Some fraction of the scattered current is stopped
by the aperture A. Areas of the specimen which scatter strongly
thus appear dark in the image, and areas which scatter weakly
appear bright. The object point is depicted as being off the cen-
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Introduction: The optical nature of a charged particle beam 11

Figure 1.5: Types of electron microscopes, schematic.

tral axis. Actually, all object points in the specimen S are imaged
simultaneously.

A scanning transmission electron microscope (STEM) is shown
in (b). An aperture A is illuminated from above. The transmitted
current is focused by a lens L onto a transparent specimen S, and is
scanned sequentially over the specimen in a raster pattern. Again,
some electrons are elastically scattered by the specimen, and some
remain unscattered. Some fraction of the scattered current is mea-
sured on the annular dark field detector D, and the resulting signal
sent to a display which is scanned synchronously with the beam of
the microscope. Areas of the specimen which scatter strongly thus
appear bright on the display, and areas which scatter weakly ap-
pear dark. This is not an image in the sense of Figure 1.4, because
the intensity of each pixel is determined sequentially. However,
it does produce an intensity map of the specimen which is just
as useful as an optically formed image. The current which passes
through the annular dark field detector D is measured on a bright
field detector B. This signal can alternatively be displayed, with
strongly scattering regions appearing dark, and weakly scatter-
ing regions appearing bright. The ultimate resolution of the TEM
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12 Introduction: The optical nature of a charged particle beam

and STEM is the same, but the contrast differs in the two cases,
depending on the accelerating voltage and numerical aperture cho-
sen. In both cases, the numerical aperture is equal to the beam
semi-angle subtended by the aperture A at the specimen S.

A scanning electron microscope (SEM) is shown in (c). An aper-
ture A is illuminated from above. The transmitted current is fo-
cused by a lens L onto an opaque bulk specimen S, and is scanned
sequentially over the specimen in a raster pattern. Low energy sec-
ondary electrons are excited by the beam in the interaction volume
depicted by the darker area of the specimen S. These secondary
electrons are accelerated to a collector C, and the current thus
detected is used to form a signal which is sent to the display.

The ultimate resolution of the SEM is roughly equal to the size
of the interaction volume, which is typically on the order of a few
nanometers. One nanometer is one-billionth of a meter, and will
be abbreviated 1nm throughout the text. This is a very good res-
olution, compared with a typical light microscope, for which the
resolution is typically a few hundred nm. In addition, an SEM
has superior depth of focus. This means that one need not focus
precisely, in order to obtain a sharp image, allowing a seemingly
three-dimensional depiction of a bulk sample. This is shown in Fig-
ure 1.6, courtesy of L.T. Varghese and L. Fan, Purdue University
[90].

The schematic depiction in Figure 1.5(c) applies equally well to
a scanning ion microscope (SIM), where the beam consists of ions
rather than electrons. A bright source of helium ions can be formed
using a sharp tip in a low pressure helium gas. The tip is elevated
to a potential of a few tens of kilovolts relative to the surrounding
chamber, causing a high electric field around the tip. Helium gas
atoms are polarized in the field gradient, and attracted to the tip,
where they dissociate to form positive helium ions. The ions are
accelerated away from the tip by the electric field to form the ion
beam.
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Introduction: The optical nature of a charged particle beam 13

10 m

Figure 1.6: SEM picture of self-assembled silica spheres, showing
high depth of focus.

A scanning helium ion micrograph is shown in Figure 1.7, obtained
using an Orion SIM available commercially from Carl Zeiss SMT.
A scannng electron micrograph of the same specimen is shown
for comparison, obtained using a Leo SEM also available com-
mercially from Carl Zeiss SMT. The full-scale vertical dimension
is 6µm, and the beam energy is 20 KeV in both cases. The he-
lium ion micrograph shows striking surface detail. This is due to
the fact that the helium ions are stopped within a few tens of
nanometers of the surface, while the electrons penetrate several
microns into the material. As a result, the material appears more
transparent to electrons than to helium ions. The electron micro-
graph shows more contrast due to the different materials present.
This is due to the fact that materials with high atomic number and
high mass density preferentially scatter the electrons much more
strongly than low atomic number and low mass density materials.
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14 Introduction: The optical nature of a charged particle beam

Figure 1.7: (Top) Scanning helium ion micrograph, (bottom) scan-
ning electron micrograph.

This gives rise to high material contrast in the scanning electron
microscope.
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Introduction: The optical nature of a charged particle beam 15

The ultimate resolution of the TEM and STEM is limited by
spherical aberration and diffraction. The spherical aberration can
be substantially corrected in a modern TEM and STEM, making
both instruments capable of resolution in the range of 0.05 nm.
This is more than sufficient to form an image of a single atom.
An example of a corrected STEM image is shown in Figure 1.8.
The specimen is graphene, which consists of one or more atomic

Figure 1.8: Aberration-corrected STEM images of graphene.

layers of graphite. A single layer of graphene is one atomic layer
of carbon in its hexagonal crystalline form. The image on the left
is a single scan recorded at 60 KV accelerating voltage in a Nion
aberration-corrected STEM. The bright spots are single carbon
atoms with nearest-neighbor spacing of 0.14 nm. The image on
the right is derived by digitally superimposing 350 different areas
of the larger image, with each area consisting of 128 × 128 pix-
els. This averages out the noise in the individual scans, without
having to resort to smoothing algorithms. (The individual pixels
are visible in the two images). This annular dark field image is
remarkable in several respects. First, single atoms of carbon are
clearly resolved with resolution better than 0.1 nm. Second, the
atomic number of carbon is six, which is low relative to most solid
materials. The specimen is therefore weakly scattering everywhere,
thus limiting the available contrast. The fact that the contrast is
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16 Introduction: The optical nature of a charged particle beam

adequate is remarkable. Third, the fragile graphene structure is
undamaged by the beam. It would not be possible to obtain such
an image without spherical aberration correction.

Figure 1.9: SIMS images of chromosomes.

Alternatively, a beam of ions can be used to perform chemical
analysis of a material. The ion beam is focused and scanned over
the surface of the material to be analyzed. Atoms are removed from
the surface and ionized. These secondary ions then pass through a
spectrometer which separates the various ionic species according to
their masses. An image is formed synchronously, consisting of any
chosen individual chemical species. This is called Secondary Ion
Mass Spectrometry or SIMS. An example is shown in Figure 1.9
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Introduction: The optical nature of a charged particle beam 17

[58]. The sample consists of chromosomes of the fruit fly Drosophila
melanogaster. Four different chemical species are shown, giving
detailed spatially resolved chemical information about the chro-
mosomes. These images were obtained using the SIMS tool at the
University of Chicago, which uses a focused primary ion beam con-
sisting of gallium ions from a liquid metal ion source. This method
can be used to analyze an enormous variety of samples at the mi-
croscopic level.

Alternatively, an electron or ion beam can physically or chemically
alter the target material locally. The writing substrate is coated
with a thin film of organic material. Bombarding the film with a
focused electron or ion beam renders the film either more soluble
(positive-tone process) or less soluble (negative-tone process) in
the developer. The organic film is thus patterned, and forms a bi-
nary mask for subsequent process steps. Creating fine patterns on
a substrate is commonly referred to as lithography. An enormous
variety of useful devices can be fabricated with high areal density
and very small feature sizes.

Two patterns written by electron beam lithography are shown in
Figure 1.10. The top pattern shows the negative-tone resist which
is left behind after the development step. It is an electronic circuit
pattern with 30 nm features, courtesy of Vistec Lithography. The
bottom pattern shows pillars of silicon which are 0.5 µm in diame-
ter and 1.5 µm high. They were written using a Vistec SB352 HR
electron beam system, courtesy of IMS CHIPS, Stuttgart, Ger-
many.

A focused electron beam is the smallest, finest practical writing
pencil known. An arbitrary pattern can be created and stored
using standardized computer-aided design software, and subse-
quently transmitted to the electron beam writer for one or more
exposures. This flexibility, together with the high resolution, make
electron beam lithography the method of choice for creating pat-
terns on the nanometer scale of dimensions in low volume.
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18 Introduction: The optical nature of a charged particle beam

0.2 m

Figure 1.10: Electron beam lithography patterns.

In summary, the inherent high resolution, together with the unique
interactivity with matter thus constitute two fundamental ad-
vantages of charged particle beams. They make charged particle
beams indispensible to science and technology on the nanometer
scale of dimensions. With this introduction, we are now in a posi-
tion to begin our analytical study in detail.
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Chapter 2

Geometrical optics

Geometrical optics of charged particle beams begins with rela-
tivistic classical mechanics, specifically, the motion of a charged
particle in the presence of external electric and magnetic fields.
The fields exert an instantaneous resultant force on the particle,
which determines the path of motion. Mathematically, the solution
consists of finding the three-vectors for position x and velocity v
at any time t, given initial values at time zero, taking account of
the influence of the fields.

Having found a prescription for solving a general particle trajec-
tory, we can then apply this to families of trajectories. This permits
us to delineate the geometrical optical properties of a beam of par-
ticles. We begin with a review of relativistic classical mechanics,
focusing only on those specific topics which will lead directly to
geometrical optics.

19



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 20 — #30 i
i

i
i

i
i

20 Chapter 2. Geometrical optics

2.1 Relativistic classical mechanics

In classical mechanics, a system is described by one or more gen-
eralized coordinates Qj, where

{Qj} = Q1, Q2, . . . , Qn, (2.1)

and n is the number of degrees of freedom needed to completely
specify the system. For example, a three-dimensional Cartesian
coordinate system can be used to completely specify position in
ordinary space, and has three degrees of freedom.

The Qj evolve under the influence of forces, and therefore depend
implicitly on the time t. There exist velocities Q̇j given by

{Q̇j} = Q̇1, Q̇2, . . . , Q̇n, (2.2)

where the dot denotes differentiation with respect to time, i.e.,

Q̇j ≡
d

dt
Qj. (2.3)

This is quite general, since n can take on any positive integral
value. For example, a system of N interacting particles has n = 3N
degrees of freedom.

The central problem of classical mechanics can be stated as fol-
lows: given a set of coordinates Qj and velocities Q̇j at an initial
time t0, calculate the Qj and Q̇j at any time t. The result of this
calculation represents a complete specification of the system. In
the present study, we will confine our attention to a single par-
ticle of rest mass m and charge q under the influence of electric
and magnetic forces. We therefore define generalized coordinates
xj = (x1, x2, x3) with corresponding velocities vj = (v1, v2, v3),
where the six-vector components are functions of time t. In this
case the central problem is to calculate these quantities. The pre-
scription is general with respect to the choice of coordinate sys-
tems. For example, one could use Cartesian, cylindrical, spherical,
or other coordinates with three degrees of freedom to specify the
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2.1. Relativistic classical mechanics 21

position. The reader is referred to the book by Goldstein [35] for
a thorough and detailed discussion of classical mechanics.

2.1.1 Hamilton’s principle of least action

We seek a general condition governing the motion of a particle
with charge q and rest mass m in external electric and magnetic
fields. We require that this condition be covariant with respect
to the Lorentz transformation of special relativity. This ensures
that the equations of motion have the same form in all frames of
reference in uniform motion with respect to one another. To this
end, following Goldstein, et. al. [35], we define a function L, called
the invariant Lagrangian, as

L =
4∑

µ=1

(mUµ Uµ + q Aµ Uµ). (2.4)

Here Uµ and Aµ are the four-vector velocity and electromagnetic
potential, respectively, given by

Uµ = (γ v, iγc)

Aµ = (A, iφ/c), (2.5)

where v is the three-vector particle velocity, A is the magnetic
three-vector potential, and φ is the electrostatic scalar potential.
We have defined a quantity γ as

γ =
1√

1− v2/c2
. (2.6)

We notice from the form of (2.4) that the invariant Lagrangian L is
a sum of inner products of two four-vectors. It is straightforward to
show that the inner product of two four-vectors is invariant under
a Lorentz transformation. It follows that L is Lorentz invariant,
and has the same value in every uniformly moving reference frame.
The proof of this is left to the reader in the problems.
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22 Chapter 2. Geometrical optics

All relevant information about the magnetic and electric fields
is contained in the magnetic vector potential A(x, t) and elec-
trostatic scalar potential φ(x, t), respectively. In general they are
functions of position x and time t, measured in the particular ref-
erence frame of interest. The potentials arise from source currents
and charges which are distributed in proximity to the charged par-
ticle of interest. They also include the effects of magnetic materials
and dielectrics. We assume in the following analysis that the po-
tentials A(x, t) and φ(x, t) are known. The reader is referred to a
definitive text by Jackson [48], which describes how to calculate
these potentials, given a known distribution of charges, currents,
conductors, dielectrics, and magnetic materials.

At this point we form a key postulate, namely, for physically allow-
able motion of the particle, the integral of L over time is stationary
with respect to first-order variation as follows:

δ
∫ τb

τa
L dτ = 0, (2.7)

where τ is the time measured in the rest frame of the particle, com-
monly known as the proper time. We assume that the end times τa
and τb remain fixed with respect to the variation. This expression
is also Lorentz invariant, because it is constructed wholly from
Lorentz-invariant quantities.

It is possible to construct a general covariant theory which de-
scribes the motion in every reference frame. However, for our pur-
pose here we are interested in the particle motion in a single ref-
erence frame which is at rest relative to the laboratory, commonly
known as the lab frame. It greatly simplifies the discussion if we
confine our attention to this single frame. In the lab frame we can
express (2.7) in the equivalent form

δ
∫ tb

ta
Ldt = 0, (2.8)

where we have defined L = L/γ and t = γτ as the Lagrangian
and time, respectively, expressed in the lab frame. The time t is
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2.1. Relativistic classical mechanics 23

related to the proper time τ by a Lorentz transformation, where
we assume the particle coordinate is zero in the particle rest frame.
Substituting (2.5) into (2.4), it follows that

L(x,v; t) = −mc2
√

1− v2/c2 + q v ·A(x, t)− q φ(x, t) (2.9)

in the lab frame. We have made use of the vector notation v ·A
to express the inner product of the two three-vectors v and A. In
Cartesian coordinates this is v ·A = vxAx + vyAy + vzAz.

The Lagrangian L is a scalar function of the position x, and the
velocity v. The time t is regarded as a parameter which uniquely
specifies a point along the particle trajectory. The position and
velocity depend implicitly on the time. Indeed, the central prob-
lem is to solve for this dependence. In the case where the electric
and magnetic fields vary with time, the electromagnetic potentials
have explicit time dependence. For static fields, these potentials
have no explicit time dependence. The Lagrangian therefore has
no explicit time dependence in this case.

The integral in (2.8) can be abbreviated as

Sab =
∫ tb

ta
L(x,v; t) dt. (2.10)

It is a scalar quantity with units of energy times time, or action.
The integral Sab is therefore known as the action integral. The ex-
pression (2.8) says that the action integral has an extremum for
the physically allowable trajectory. This trajectory exists among
many hypothetical trajectories, each displaced infinitesimally from
the physical trajectory. The expression (2.8) is known as Hamil-
ton’s principle of least action.

Forming a Taylor expansion of the variation (2.7) in the lab frame,
and retaining only terms to first order in δxi and δvi, we find

δ
∫ tb

ta
Ldt =

∫ tb

ta

3∑
i=1

(
∂L

∂xi
δxi +

∂L

∂vi
δvi

)
dt. (2.11)
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24 Chapter 2. Geometrical optics

Making use of the chain rule for partial derivatives, we have

d

dt

(
∂L

∂vi
δxi

)
= δxi

d

dt

(
∂L

∂vi

)
+
∂L

∂vi
δvi, (2.12)

where δvi = (d/dt)δxi. It follows (2.11, 2.12) that

δ
∫ tb

ta
Ldt =

3∑
i=1

[
∂L

∂vi
δxi

]tb
ta

+
3∑
i=1

∫ tb

ta
δxi

(
∂L

∂xi
− d

dt

∂L

∂vi

)
dt = 0.

(2.13)
Now δta = δtb = 0, because the end times ta and tb are assumed to
be fixed. This in turn demands δxi = vi δt = 0 at the end times ta
and tb. Consequently, the first term on the right of (2.13) is zero.
Since δxi inside the integral is arbitrary, it is a necessary condition
that

∂L

∂xi
− d

dt

∂L

∂vi
= 0, (2.14)

where i = 1, . . . , 3. This is a set of three coupled equations, known
as the Euler-Lagrange equations of motion. Given the Lagrangian
(2.9) and the initial conditions for position xi and velocity vi at
time zero, these equations can be solved in principle for the com-
ponents xi and vi as functions of time. This represents a solution
to the central dynamical problem for a single particle. We will in-
vestigate the solution in more detail in the coming sections.

It is straightforward to show (2.9, 2.14) that

d

dt
(γ mv) = q (E + v ×B) (2.15)

where we have defined the three-vector electric and magnetic fields,
respectively, as

E = −∇φ− ∂A

∂t
,

B = ∇×A, (2.16)

and we have made use of the total time derivative

d

dt
=

∂

∂t
+ v · ∇. (2.17)
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2.1. Relativistic classical mechanics 25

The proof of (2.15) is left to the reader in the problems.

We define the three-vector kinetic momentum p as

p = γ mv. (2.18)

Equation (2.15) is an expression of Newton’s law of motion for a
charged particle, where the left side is the time rate of change of
the kinetic momentum, and the right side is known as the Lorentz
force.

In principle it is possible to calculate all of particle optics by solv-
ing (2.15), for the position x and the velocity v as functions of
time t, but further considerations will lead to a more detailed un-
derstanding, and to greater computational efficiency.

Problems

1. An arbitrary four-vector Aµ = (A1, A2, A3, A4) is defined in
terms of its four components. For two reference frames in relative
uniform motion with velocity v along the z-direction, the compo-
nents of Aµ are related in the two frames by

A′1 = A1

A′2 = A2

A′3 = γ (A3 + iβA4)

A′4 = γ (−iβA3 + A4),

where γ is given by (2.9) and β = v/c. This is known as a Lorentz
transformation. Show that the inner product of any two four-
vectors Aµ and Bµ satisfies

4∑
µ=1

A′µB
′
µ =

4∑
µ=1

AµBµ.

An inner product of two four-vectors is thus said to be invariant
under a Lorentz transformation.
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26 Chapter 2. Geometrical optics

2. Derive the Lorentz force law (2.15) from the Euler-Lagrange
equations of motion (2.14).

2.1.2 The Hamiltonian function and energy
conservation

We define a new function H by

H(x,P; t) =
3∑
i=1

Pi vi − L(x,v; t), (2.19)

where P is an arbitrary three-vector, whose meaning will become
clear in the following. The scalar function H is derived from the
Lagrangian L by a specific transformation called a Legendre trans-
formation [72]. We form the total time derivative of H by invoking
the chain rule,

dH

dt
=

3∑
i=1

(
∂H

∂xi

dxi
dt

+
∂H

∂Pi

dPi
dt

)
+
∂H

∂t
, (2.20)

recalling that vi = dxi/dt. From the definition (2.19) we obtain
the identities

∂H

∂xi
= − ∂L

∂xi
,

∂H

∂Pi
= vi,

∂L

∂vi
= Pi,

∂H

∂t
= −∂L

∂t
.

(2.21)
The third of these, together with (2.14) leads to

∂L

∂xi
=
dPi
dt
. (2.22)

It follows that the large parenthesis in (2.20) vanishes identically,
and

dH

dt
= −∂L

∂t
. (2.23)

The function H is called the Hamiltonian functon, and the three-
vector P is called the canonical momentum. From (2.9) and the
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third identity (2.21), the canonical momentum components can be
written as

Pi = γmvi + qAi, i = 1, . . . , 3. (2.24)

Equivalently, from (2.18), this is

Pi = pi + q Ai. (2.25)

The canonical momentum is thus the sum of the kinetic momen-
tum plus the charge times the magnetic vector potential. Obvi-
ously, the canonical momentum and kinetic momentum are iden-
tical in the case where the magnetic vector potential is zero.

Next we consider the special case where the potentials A and φ
have no explicit time dependence; i.e., the fields are static. From
(2.9) it follows that the right side of (2.23) vanishes, and

dH

dt
= 0. (2.26)

This means that H is a conserved quantity in this case. From (2.9,
2.19, 2.24, 2.26) it follows that

H = γmc2 + qφ = const, (2.27)

and H is a constant of the motion. We will see in the following
that H can be identified with the total energy.

The energy H does not depend on the magnetic vector potential
A, because the magnetic Lorentz force in (2.15) acts in a direction
perpendicular to the particle velocity v. As a result, the magnetic
force alters the direction of the velocity v, but not the magnitude.
Consequently, the magnetic force cannot cause a change in energy.

We now proceed to define two quantities which will prove very
useful later. We define a quantity E by

E = γmc2, (2.28)

where mc2 is the rest energy. We further define the kinetic energy
T by

E = T +mc2. (2.29)
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28 Chapter 2. Geometrical optics

By this definition, the energy E is the sum of the kinetic energy
plus the rest energy. The Hamiltonian H is then

H = T +mc2 + qφ. (2.30)

The Hamiltonian is the sum of the kinetic energy plus the rest en-
ergy plus the potential energy. The Hamiltonian H thus represents
the total energy. It is conserved in the case where the potentials φ
and A have no explicit time dependence. Any force which acts in
such a way that the total energy is constant is called a conserva-
tive force.

Problems

1. Show from the above analysis that

E2 = p2c2 +m2c4, (2.31)

where p2 ≡ p · p.

2. Prove the identity
pc = βE, (2.32)

where β = v/c.

2.1.3 Mechanical analog of Fermat’s principle

We now concentrate on the important special case where the elec-
tric and magnetic fields are constant in time. Mathematically, this
is equivalent to the potentials A(x, t) ≡ A(x) and φ(x, t) ≡ φ(x)
having no explicit time dependence. We showed in the preceding
section that the Hamiltonian represents the conserved total energy
in this case (2.27). We now define a quantity Wab as the compo-
nent of the canonical momentum P along the trajectory path,
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integrated over the path between the two endpoints xa and xb. It
is given by

Wab =
∫ xb

xa
P · ds, (2.33)

where the integration path is assumed to be the path of physically
allowable particle motion, satisfying (2.14, 2.27). Equivalently,

Wab =
∫ tb

ta

(
3∑
i=1

Pi vi

)
dt. (2.34)

The function Wab is the integral of the action along the path. It
is also known as the eikonal function. From (2.19),

Wab =
∫ tb

ta
(L+H) dt =

∫ tb

ta
Ldt+H (tb − ta), (2.35)

where, in the rightmost equality, we only consider possible motion
for which H = const. The variation is

δWab = δ
∫ tb

ta
Ldt+H (δtb − δta). (2.36)

This variation is shown schematically in Figure 2.1, where the solid
curve represents the physically allowable path, and the broken
curve represents an infinitesimally displaced path, which is not
physically allowable. The endpoints are held fixed by assumption
in the variation. In order that H = const, it is necessary to allow
the end times ta and tb to vary. This is different from Hamilton’s
principle (2.7), where the end times ta and tb are assumed to be
fixed. Consequently, in the present case,

δ
∫ tb

ta
Ldt =

(
δta

∂

∂ta
+ δtb

∂

∂tb

) ∫ tb

ta
Ldt

+
∫ tb

ta

3∑
i=1

(
∂L

∂xi
δxi +

∂L

∂vi
δvi

)
dt (2.37)

where the first term on the right accounts for the variation of the
end times ta and tb, and the second term accounts for the variation
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Figure 2.1: Variation of the particle trajectory for fixed endpoints

of the integrand. The integrand of the second term on the right
can be rewritten (2.14) as

∂L

∂xi
δxi +

∂L

∂vi
δvi = δxi

d

dt

(
∂L

∂vi

)
+
∂L

∂vi

d

dt
(δxi) =

d

dt

(
∂L

∂vi
δxi

)
.

(2.38)
From the third identity of (2.21) together with (2.37, 2.38),

δ
∫ tb

ta
Ldt =

[
L δt

]tb
ta

+
3∑
i=1

[
Pi δxi

]tb
ta

. (2.39)

We now impose the condition that the endpoints xa and xb remain
fixed. To ensure this, we require that δxi = −vi δt at the end times
ta and tb, to compensate for what would otherwise be an offset of
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the endpoints. From (2.36, 2.39)

δWab =

[(
−

3∑
i=1

Pi vi + L+H

)
δt

]tb
ta

≡ 0, (2.40)

where the large parenthesis vanishes identically from (2.19). This
is the principle of least action for the special case where the po-
tentials A(x) and φ(x) contain no explicit time dependence. This
can also be written (2.33) as

δ
∫ xb

xa
P · ds,= 0 (2.41)

where the endpoints xa and xb are assumed to be fixed. The in-
tegral has units of action. The equation (2.41) can be regarded
as the principle of least action for the case where the potentials
have no explicit time dependence. We have shown that this is a
necessary condition for physically allowable motion.

We define a scalar quantity n as the component of canonical mo-
mentum along the path of motion (2.25):

n = P · ŝ = p+ qA · ŝ, (2.42)

where ŝ is the unit vector along the direction of motion, locally
tangent to the trajectory, and p is the scalar kinetic momentum.
From (2.41, 2.42), the principle of least action can also be written
as

δ
∫ xb

xa
n ds = 0. (2.43)

A close analogy exists with light optics. Fermat’s principle states
that light propagates along that path which minimizes the transit
time between two points. This can be written as a variational
principle as follows:

δ
∫ tb

ta
dt = 0. (2.44)

The speed of light is path length traversed per unit time, or ds/dt,
where ds is the element of path length. From the Maxwell theory,
an electromagnetic wave travels with phase velocity v given by

v =
c

n′
, (2.45)
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where n′ is the index of refraction of the medium, and n′ = 1 in
vacuum. Substituting,

δ
∫ xb

xa
n′ ds = 0. (2.46)

The physical path taken by the light is that path for which in-
tegral in (2.46) is a minimum. The equations (2.43) and (2.46)
are formally identical, expressing a close analogy between light
propagation and particle propagation. The index of refraction n′

for light varies in general with position within the medium. The
quantity n in (2.42) is identified with an index of refraction for a
particle. It depends on the electrostatic potential φ(x) through the
momentum p, and depends on the magnetic vector potential A(x)
explicitly. The electromagnetic potential varies slowly in space, as
governed by Maxwell’s equations.

Formulation of the dynamical problem in this way has the ad-
vantage that it does not rely on time as an explicit parameter, as
long as the potentials are time independent. This greatly simpli-
fies the discussion of geometrical optics for this important class of
problems. For example, in many particle beam instruments we are
only interested in where the ray ends, but not in the time at which
the particle arrives.

In the following sections, we will make use of the variational prin-
ciple (2.43) to solve for the detailed physical trajectory.

2.2 Exact trajectory equation for a sin-

gle particle

We now make use of the preceding analysis to find an explicit dif-
ferential equation governing particle motion for time independent
potentials. The following analysis closely follows that of Sturrock
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[86]. We seek a condition, based on the principle of least action
for time independent potentials, which will allow a solution for the
position x at all points along a physical trajectory. Expanding the
variation (2.43) we have

δWab = δ
∫ xb

xa
n ds =

∫ xb

xa

[
δn+ n

d

ds
(δs)

]
ds, (2.47)

where we assume the endpoints xa and xb remain fixed. The first
term in the square bracket is the variation of the refractive index,
and the second term is the variation of the path of integration. We
assume for now that this applies to an arbitrary path, not neces-
sarily a physically allowable trajectory.

Expanding the differential path length ds in terms of the posi-
tion dx, we find

(ds)2 = dx · dx. (2.48)

Taking the differential of both sides

(ds) δ(ds) = dx · δ(dx). (2.49)

The unit vector ŝ along the path can be written as

ŝ =
dx

ds
. (2.50)

Interchanging the order of differentials in (2.49), it follows (2.50)
that

d

ds
(δs) = ŝ · d

ds
(δx), (2.51)

from which

δŝ = δ

(
dx

ds

)
=

d

ds
(δx)− ŝ

[
ŝ · d
ds

(δx)

]
. (2.52)

Expanding the variation δn,

δn = ∇xn · δx +∇ŝn · δŝ, (2.53)

where (2.42)
∇ŝn = qA. (2.54)
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We obtain an expression (2.42, 2.52, 2.53, 2.54) for the integrand
in (2.48) as

δn+ n
d

ds
(δs) = (∇xn) · δx + P · d

ds
(δx). (2.55)

The chain rule gives

d

ds
(P · δx) = P · d

ds
(δx) +

dP

ds
· (δx), (2.56)

from which it follows (2.47, 2.55, 2.56)

δWab =
[
P · δx

]xb
xa

+
∫ xb

xa
δx ·

(
∇xn−

dP

ds

)
ds. (2.57)

We now invoke the principle of least action (2.43), namely, δWab =
0. The first term on the right is zero, as the endpoints are assumed
to be fixed, i.e., δxa = δxb = 0. As δx under the integral on the
right is arbitrary, it becomes a necessary condition that the large
parenthesis in (2.57) must vanish, i.e.,

∇xn−
dP

ds
= 0. (2.58)

This represents the exact trajectory equation, relativistically cor-
rect in the lab frame, where we recall (2.18, 2.25, 2.42). For spec-
ified endpoints xa and xb, this equation can be solved in principle
to find the position x everywhere along a single trajectory of a
single particle.

2.3 Conservation laws

We showed previously that, in the case where the potentials A(x)
and φ(x) have no explicit time dependence, the total energy H is
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a constant of the motion. In this section, we show that other in-
variant quantities exist, as a direct consequence of the least action
principle. As in the preceding section, the reader is referred to the
book by Sturrock [86] for a detailed discussion.

2.3.1 The Lagrange invariant

In the preceding sections, we derived the necessary conditions for a
single trajectory to represent physically allowable motion. Hence-
forth we refer to a physically allowable trajectory satisfying (2.43,
2.58) as a ray. In this section, we consider the behavior of rays
which are infinitesimally displaced from one another. This is shown
schematically in Figure 2.2. From (2.57) the variation in optical
path length between two neighboring rays is given by

δWab = Pb · δxb −Pa · δxa. (2.59)

This infinitesimal quantity is nonzero in general, since the end-
points xa and xb of the two rays are assumed in general to be
displaced from one another. It can be shown that δWab is an
exact differential [72], in which case

Pb = ∇xbWab, Pa = −∇xaWab. (2.60)

Geometrically, this means that the canonical momentum P is nor-
mal to surfaces of constant optical path length, Wab = const at
the endpoints, where we note that the endpoints can be chosen to
be anywhere along the ray path.

We now consider a second perturbation, independent from the
first. It follows that (2.59):

d(δWab) = dPb · δxb + Pb · d(δxb)− dPa · δxa−Pa · d(δxa). (2.61)

Interchanging the order of perturbations and subtracting, we ob-
tain

dPa · δxa − δPa · dxa = dPb · δxb − δPb · dxb. (2.62)
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Figure 2.2: Two rays, infinitesimally displaced from one another.

Since xa and xb can be any two points connected by a ray, it follows
that

dP · δx− δP · dx = const, (2.63)

where the δ- and d-variations refer to two separate rays, each de-
rived by an independent perturbation from the original ray. This
quantity is known as the Lagrange invariant. To appreciate the
meaning of the Lagrange invariant, we consider a special case for
which dxa = δxb = 0. In this case (2.62) reduces to

−δPa · dxa = dPb · δxb. (2.64)

This is shown schematically in Figure 2.3 , where the unperturbed
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Figure 2.3: Perturbed rays for case dxa = δxb = 0.

ray is represented by a straight line connecting the beginning point
a and the endpoint b. We now choose local z-axes codirectional
with Pa and Pb at the respective endpoints xa and xb. We further
choose δxa colinear (either codirectional or antidirectional) with
dPa and dxb colinear with δPb, in the respective transverse end
planes. Since dPa is perpendicular to Pa, this represents a change
in direction, but not magnitude of Pa. A similar statement holds
for Pb. The Lagrange invariant (2.62) reduces to

−δPa dxa = dPb δxb. (2.65)

We notice (2.25) that δPa = pa δθa and dPb = pb dθb, since the
magnetic vector potential A is assumed to be unchanged in the
perturbation. Recalling that p is the scalar kinetic momentum, it
follows that

−pa δθa dxa = pb dθb δxb, (2.66)

where dxb is proportional to dθa, and δθb is proportional to δxa.
Repeating this variation process in the orthogonal transverse axis,
and multiplying,

p2
a δΩa dAa = p2

b dΩb δAb, (2.67)

where dΩ = dθx dθy is the solid angle element, and dA = dx dy is
the transverse area element.
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38 Chapter 2. Geometrical optics

Figure 2.4: Perturbed rays for case δxa = δxb = 0.

Next we consider the special case where δxa = δxb = 0. This is
shown schematically in Figure 2.4, where, again, the unperturbed
ray is represented by a straight line connecting the beginning point
a and the endpoint b. The two neighboring rays emanating from a
single point, with infinitesimally differing directions intersect the
same endpoint. In this case the endpoints xa and xb are said to
be optically conjugate. Because δxa = δxb = 0, it follows directly
from (2.59) that δWab = 0. This means that the two rays have
identical optical path length Wab. This is equivalent to the state-
ment that δWab is a perfect differential, since the line integral of
Wab around the closed path of the two rays is zero.

The Lagrange invariant (2.62) reduces in this case to

dPa · δxa = dPb · δxb. (2.68)

Applying the preceding method,

pa dθa δxa = pb dθb δxb. (2.69)

This is known as the law of Helmholtz–Lagrange [86]. We define
the magnification M = δxb/δxa, in which case the angular mag-
nification is given by dθb/dθa = pa/(Mpb). Repeating this in the
orthogonal axis as before, it follows that

p2
a dΩa δAa = p2

b dΩb δAb. (2.70)

The product of transverse area element times solid angle element
is called the emittance. Equation (2.70) shows that the product
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of the emittance times the square of the momentum is conserved.
For a ray bundle, the current divided by the emittance is called
the brightness. It follows from (2.67, 2.70) that the ratio of the
brightness β divided by the square of the momentum is conserved,
assuming constant current. This can be written as

β

p2
= const, (2.71)

where p is the relativistic scalar kinetic momentum. It does not re-
quire that the two end planes be optically conjugate, as it applies
to both of the above special cases. It follows that it is impossible
to focus any beam to a spot which is brighter than the source.
These arguments apply strictly only over infinitesimal regions. It
is common practice to apply brightness conservation to a finite
region, such as a whole beam. This is only approximate, however,
and becomes less accurate as the whole beam becomes larger.

Next it is interesting to consider the special case where Pa is in-
clined by an angle θ to local z-axis. The above case becomes

pa cos θa dθa = M pb cos θb dθb. (2.72)

To this point, we have considered only infinitesimal perturbations
of first order. It is interesting to consider the case in which rays
inclined at finite angle θ intersect the same image point xb for all
θ. This corresponds to perfect imaging, without aberration. We
integrate as follows:

pa

∫ θa

0
cos θa dθa = M pb

∫ θb

0
cos θb dθb,

pa sin θa = M pb sin θb, (2.73)

for all θa and θb. This is presumed true independent of δxa, in
which case it represents perfect imaging with regard to all aber-
rations which are linear in xa; i.e., coma. This is known as the
Abbe–Helmholtz sine condition for coma-free imaging [86].
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An analogous case exists where we assume δxa to be parallel with
the axis, and Pa inclined at angle θa. We find that

pa sin θa dθa = ML pb sin θb dθb, (2.74)

where ML = δzb/δza is defined as the longitudinal magnification.
Assuming perfect imaging as before, it follows that

pa

∫ θa

0
sin θa dθa = ML pb

∫ θb

0
sin θb dθb,

pa sin2 (θa/2) = ML pb sin2 (θb/2), (2.75)

for all θa and θb. This is known as Herschel’s condition for vanishing
spherical aberration [86]. It follows from the preceding that the
longitudinal and transverse magnifications are related by

ML = M2 pb/pa. (2.76)

By successive applications of the Legendre transformation, it
is possible to construct other characteristic functions from
W (xa,xb). For example, let

V (xa,Pb) = Pb · xb −W (xa,xb). (2.77)

It follows that
δV = Pa · δxa + xb · δPb. (2.78)

Continuing this procedure, we define

X(Pa,xb) = Pa · xa + V (xa,xb). (2.79)

It follows that
δX = xa · δPa + Pb · δxb. (2.80)

Similarly we define

Y (Pa,Pb) = −Pa · xa + V (xa,Pb). (2.81)

It follows that
δY = −xa · δPa + xb · δPb. (2.82)
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The functions V,W,X, and Y represent a way to describe the op-
tical coupling between the space (xa,Pa) and the space (xb,Pb)
in an infinitesimal region surrounding a ray.

Problem

Show that the functions V,W,X, and Y all lead to the same La-
grange invariant.

2.3.2 Liouville’s theorem and brightness con-
servation

The motion of a particle can be considered to trace out a trajectory
in a six-dimensional space, for which the coordinates are labeled
by the three position components of x and the three canonical mo-
mentum components of P. This is called phase space. The reader
is referred to Goldstein et. al. [35] for background and further
details.

To introduce this description, we notice (2.14, 2.19) that

∂H

∂xj
= − ∂L

∂xj
= − d

dt

(
∂L

∂vj

)
= −dPj

dt
, (2.83)

and (2.19) that
∂H

∂Pj
= vj =

dxj
dt
, (2.84)

for j = 1, . . . , 3. Summarizing, this yields a coupled set of six
first-order equations as follows:

∂H

∂xj
= −dPj

dt
,

∂H

∂Pj
=
dxj
dt
, (2.85)
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where j = 1, . . . , 3. These are known as Hamilton’s equations of
motion. Given the Hamiltonian function (2.9, 2.19) together with
an initial condition (x0,P0) at any single phase space point along
the trajectory, Hamilton’s equations can be solved in principle to
find the entire phase space trajectory of a single particle.

We imagine a family of trajectories, all infinitesimally displaced
from one another, with each corresponding to a slightly differ-
ent initial condition. These trajectories cannot intersect in phase
space, as to do so would imply that a single initial condition would
give rise to multiple end conditions. As such, an analogy exists with
fluid flow, where the trajectories can be described by a flux j and
a density ρ of points in phase space. As trajectories are conserved,
these quantities obey a continuity equation

∇ · j +
∂ρ

∂t
= 0, (2.86)

where
j = ρv, (2.87)

and v is the six-dimensional velocity. Expanding the six-
divergence,

∇ · j =
3∑
j=1

[
∂

∂xj
(ρ ẋj) +

∂

∂Pj
(ρ Ṗj)

]

=
3∑
j=1

[
ρ

(
∂ẋj
∂xj

+
∂Ṗj
∂Pj

)
+

(
∂ρ

∂xj

dxj
dt

+
∂ρ

∂Pj

dPj
dt

)]
,

(2.88)

where the dot signifies total time derivative. The first term on the
right vanishes by Hamilton’s equations (2.85). It follows that

∇ · j +
∂ρ

∂t
=

3∑
j=1

(
∂ρ

∂xj

dxj
dt

+
∂ρ

∂Pj

dPj
dt

)
+
∂ρ

∂t
, (2.89)

where we recognize the right side as the total time derivative dρ/dt.
From (2.86, 2.89) it follows that

dρ

dt
= 0. (2.90)
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This is called Liouville’s theorem. It means that ρ = const, and
the density of trajectory points in phase space is conserved.

Applying this to a beam, the geometry is shown schematically
in Figure 2.5. We imagine particles emitted from an infinitesimal

Figure 2.5: Geometry for brightness conservation.

area element dA into an infinitesimal solid angle element dΩ cen-
tered around the kinetic momentum vector p. The phase space
density is given locally by

ρ (x,P) =
d 6N

d 3x d 3P
= const, (2.91)

where
d3x = v cos θ dt dA, d3P = p2 dp dΩ, (2.92)

and the scalar kinetic momentum p is related to the velocity v
by (2.18). Passing to the limit of an infinitesimally thin volume
element in the z-axis, the density ρ is a delta function in z. Inte-
grating over all z, the result is unity, by the property of the delta
function. It follows that

1

p2

dN

dp dAdΩ
= const. (2.93)
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We consider the special case of a monoenergetic beam with single
value p. In this case the density is a delta function in p. Integrating
over all p, we obtain

1

p2

dN

dAdΩ
= const. (2.94)

We define the brightness β as the density of trajectories per unit
transverse area per unit solid angle,

β

p2
= const. (2.95)

The ratio of brightness to square of the relativistic kinetic momen-
tum is conserved. This reproduces the result (2.71) found above.

Solving (2.29) for the scalar kinetic momentum p in terms of the
kinetic energy T ,

p2 = 2m

(
T +

T 2

2mc2

)
= 2meV ∗, (2.96)

where we have defined a quantity V ∗, referred to by many authors
as the relativistic beam voltage, in which case

β

V ∗
= const. (2.97)

As a result of this, it follows that a beam can never be focused
to a spot which is brighter than the source. This has the practical
consequence that the source brightness represents a fundamentally
important property of any optical system.
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2.4 General curvilinear axis

For many systems, it is convenient to formulate the optics in terms
of transverse coordinates in a plane which is locally perpendicular
to a central optic axis. As this axis need not be a straight line,
we designate it a general curvilinear axis. We designate an axial
coordinate z, and transverse Cartesian coordinates xj = (x, y) for
j = (1, 2) in a plane locally perpendicular to the axis. We further
designate ray slope components x′j = (x′, y′) = dxj/dz. A ray is
completely specified at any plane z by its two-vector transverse
position x and its two-vector slope x′.

The central problem in this formulation may be stated as fol-
lows: given the transverse position xa and slope x′a at an arbitrary
starting axial coordinate za, find the transverse position xb and
slope x′b at an arbitrary ending axial coordinate zb. This is shown
schematically in Figure 2.6. It is implicit here and in the following

Figure 2.6: General curvilinear axis.

that the slope x′b be finite. This excludes the case of a particle
mirror, for which the slope is infinite where the ray turns around.
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In fact, both the position and slope are considered small in the
following. Equivalently, we will only investigate rays that remain
close to the central axis.

Our purpose here is to identify the equations of motion, and de-
scribe a general methodology for solving them. This solution can
later be applied to a large variety of specific cases, describing a
similar variety of phenomena observed in practice. The reader is
referred to the references by Sturrock [86], Rose [75], Hawkes and
Kasper [43, 44, 45], and Wollnik [93] for further detail and elabo-
ration. The present analysis is based on the earlier works of Glaser
[33] and Sturrock [86].

2.4.1 Equation of motion in terms of trans-
verse coordinates and slopes

We found previously that the optical path length along a ray join-
ing two endpoints xa and xb is given by the action integral (2.33)
as

Wab =
∫ xb

xa
n ds =

∫ zb

za
mdz, (2.98)

where we have defined a modified refractive index m as

m(x,x′; z) = n
ds

dz
= n

√
1 + x′2 + y′2, (2.99)

where x and x′ are the two-dimensional vector position and slope
components in the transverse plane, respectively, and where the
prime represents differentiation with respect to z. The variation of
optical path length is given by

δWab = δ
∫ zb

za
mdz =

∫ zb

za
(δm) dz = 0. (2.100)
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We have purposely excluded the second term in square brackets
of (2.47). This is equivalent to assuming the variation of the path
length along the optic axis is zero. In order for this to be mean-
ingful, the optic axis must itself be a physical ray in the sense of
satisfying (2.58).

Expanding the variation δm,

δm =
2∑
j=1

(
∂m

∂xj
δxj +

∂m

∂x′j
δx′j

)
. (2.101)

Using the chain rule, we find that

d

dz

(
∂m

∂x′j
δxj

)
= δxj

d

dz

(
∂m

∂x′j

)
+
∂m

∂x′j
δx′j. (2.102)

This leads to

δWab =

 2∑
j=1

∂m

∂x′j
δxj

zb
za

+
∫ zb

za

2∑
j=1

δxj

(
∂m

∂xj
− d

dz

∂m

∂x′j

)
dz = 0.

(2.103)
Assuming the endpoints are fixed, δxj = 0 at za and zb, the square
bracket vanishes. Furthermore, since δxj under the integral is ar-
bitrary, the large parenthesis must vanish, and

∂m

∂xj
− d

dz

(
∂m

∂x′j

)
= 0 (2.104)

for j = 1, 2. This represents a coupled pair of Euler–Lagrange
equations. They are the exact ray equations for a single particle in
the case of a general curvilinear axis. They can be solved in prin-
ciple for the transverse position x and the transverse component
of the ray slope x′ in terms of the axial coordinate z. This is a
necessary condition for a path of physically allowable motion; i.e.,
for the path to be a ray.

The choice of coordinates xj and slopes x′j remains arbitrary.
For example, one could choose Cartesian coordinates x(z) and
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y(z) in the local transverse plane. Alternatively, one could treat
the local transverse plane as the complex plane with coordinates
u(z) = x(z) + iy(z) and ū(z) = x(z) − iy(z). Alternatively, one
could choose polar coordinates r(z) and θ(z) in the local trans-
verse plane. The best choice is the one which allows one to express
the problem in the simplest possible way.

We can write

n = P · ŝ = P · dx
ds

= Px
dx

ds
+ Py

dy

ds
+ Pz

dz

ds

= (Px x
′ + Py y

′ + Pz)
dz

ds

m = n
ds

dz
= Px x

′ + Py y
′ + Pz, (2.105)

from which it follows
∂m

∂x′j
= Pj (2.106)

for j = 1, 2, where Px and Py are the transverse components of
canonical momentum. The Euler-Lagrange equations can therefore
be written as

∂m

∂xj
− dPj

dt
= 0 (2.107)

in analogy with (2.58). Considering two rays which are infinitesi-
mally displaced from one another, the differential in optical path
between the rays is (2.103, 2.106)

δWab =
2∑
j=1

(Pbj δxbj − Paj δxaj). (2.108)

In general δWab is non-zero, since the endpoints xaj and xbj can be
independently displaced between the two rays by δxaj and δxbj,
respectively.

Since δWab is an exact differential, it follows that

Pbj =
∂Wab

∂xbj
, Paj = −∂Wab

∂xaj
. (2.109)
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Physically, this means that the transverse component of canoni-
cal momentum is perpendicular to the contour lines of constant
optical path Wab in any transverse plane. Again, the coordinates
xj(z) and slopes x′j(z) in (2.104) should be regarded as completely
general. In the following sections it will prove expedient to move
freely between alternative coordinate systems.

2.4.2 Natural units

The discussion in the following few sections will be somewhat sim-
plified by expressing the variables in alternative units, which are
derived from SI units. The scalar kinetic momentum p can be writ-
ten as

p̃ =
p

mc
≥ 0. (2.110)

Since the total energy needs only to be expressed to within an arbi-
trary, additive constant, we are free to define the zero of potential
energy. Let

T + q φ = 0, (2.111)

where T is the kinetic energy, and where q = −e for the electron
charge. This is consistent with energy conservation in the case
where the electromagnetic potentials have no explicit time depen-
dence. Physically, the zero of potential energy is here defined at a
position where the particle has zero kinetic energy, i.e., is at rest.
This position might coincide with the emission surface, but this
need not necessarily be the case. The quantity φ thus represents
both the electrostatic potential, and the kinetic energy of the par-
ticle, only for this particular choice of the zero of potential energy.
Many workers call φ the beam voltage at any given position in the
optical system. We define a dimensionless quantity

φ̃ = − q φ

mc2
=

T

mc2
≥ 0. (2.112)
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The magnetic vector potential can be written in dimensionless
form as

Ã = −qA

mc
. (2.113)

The velocity, space charge density, and space current density can
be written as

ṽ =
v

c
, ρ̃ = − q

mc2

ρ

ε0
, j̃ = − q

mc
µ0 j, j̃ = ρ̃ ṽ,

(2.114)
respectively, where ρ̃ ≤ 0, regardless of sign of charge q.

The rest energy plus the kinetic energy is given in dimensionless
units by

γ = 1 + φ =
√

1 + p2, (2.115)

where the rest energy mc2 is unity in these units. Solving this for
the scalar kinetic momentum p, we obtain (2.115)

p =
√

2φ+ φ2, (2.116)

where φ and p can be regarded as functions of the coordinates
xj only. This is due to the fact that the zero of potential energy
is fixed (2.111). In the nonrelativistic limit, the kinetic energy is
small relative to the rest mass, as follows:

φ� 1. (2.117)

In the following discussion, we will not make this approximation,
but rather retain the full relativistic form throughout.

All quantities are dimensionless except coordinates and time,
which retain their SI units of meters and seconds, respectively.
One can easily return to SI units at any point in a calculation by
inverting the above transformations. Many calculations seek posi-
tion, such as the path of a ray, or the deviation of the path from its
paraxial or Gaussian approximation. In such cases, it is not neces-
sary to convert back to SI units for the result to be practical. We
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therefore refer to these units as natural units. Unless specifically
noted, we will use these units throughout the following section de-
scribing the special case with axial symmetry, and drop the tilde.

2.5 Axial symmetry

Systems with a straight optic axis, where the potentials A and
φ are axially symmetric, represent an important special case of
the general curvilinear axis. This includes a large class of useful
instruments, including electron and ion microscopes. It excludes
curved-axis energy analyzers. The reader is referred to Rose [75],
Hawkes and Kasper [43, 44], and Wollnik [93] for further detail
and elaboration, both of axially symmetric and nonsymmetric sys-
tems.

2.5.1 Exact equations of motion for axially
symmetric fields

In the absence of space charge, the electrostatic potential φ satis-
fies Laplace’s equation,

∇2φ = 0. (2.118)

In cylindrical coordinates this becomes(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
φ = 0. (2.119)

We propose a series solution by the method of undetermined co-
efficients [74]. We assume that φ can be expanded in a series rep-
resentation given by

φ(r, z) = a0(z) + a2(z) r2 + a4(z) r4 + . . . , (2.120)
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where we will now proceed to solve for the coefficients aj. The
kinetic energy of a particle on axis is

a0(z) = φ(0, z) ≡ Φ(z). (2.121)

From (2.119, 2.120, 2.121) it follows that

φ(r, z) = Φ− 1
4

Φ′′ r2 + 1
64

ΦIV r4 + . . . , (2.122)

where primes indicate differentiation with respect to z. Expanding
the scalar kinetic momentum p we obtain (2.116, 2.122):

p(r, z) =
√

2φ+ φ2

= p− 1
4
p−1 Φ′′ (1 + Φ) r2

+
[

1
64
p−1 ΦIV (1 + Φ)− 1

32
p−3 Φ′′ 2

]
r4 + . . . ,

(2.123)

where we have defined a quantity p(z) as the scalar kinetic mo-
mentum on axis as follows (2.121, 2.122):

p(z) ≡ p(0, z) =
√

2Φ + Φ2. (2.124)

Separately, the magnetic field B is given in terms of the magnetic
vector potential A as

B = ∇×A = −r̂
∂Aθ
∂z

+ ẑ

(
∂Aθ
∂r

+
Aθ
r

)
. (2.125)

In the absence of space current, Maxwell’s equation is

∇×B = 0, (2.126)

from which it follows that (2.125, 2.126)

−θ̂
(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2

)
Aθ = 0. (2.127)

We assume a series representation for Aθ as follows:

Aθ(r, z) = b1(z) r + b3(z) r3 + b5(z) r5 + . . . , (2.128)
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where we now proceed to solve for the coefficients bj. We define a
function B(z) as the magnetic field on axis,

B(z) ≡ Bz(0, z) = 2b1 (2.129)

leading to

Aθ(r, z) = 1
2
Br − 1

16
B′′ r3 + 1

384
BIV r5 + . . . . (2.130)

The modified refractive index m is written as

m = n
ds

dz

= (p−A · ŝ)
ds

dz

= p
√

1 + r ′ 2 + r2θ ′ 2 − vθAθ
ds/dt

ds

dz

= p
√

1 + r ′ 2 + r2θ ′ 2 − rθ ′Aθ. (2.131)

Euler-Lagrange equation for angular coordinate is (2.104, 2.131)

∂m

∂θ
− d

dz

∂m

∂θ ′
= 0, (2.132)

where, because of axial symmetry,

∂m

∂θ
= 0. (2.133)

From (2.131) we obtain

∂m

∂θ ′
=

pr2θ ′√
1 + r ′ 2 + r2θ ′ 2

− rAθ = C = const, (2.134)

where C is identified (2.106, 2.134) as the conserved canonical an-
gular momentum. In the case where C = 0, the ray intersects the
optic axis at some point. Such a ray has no angular momentum,
and is called a meridional ray. In the case where C 6= 0, the ray
has angular momentum, and does not intersect the optic axis. Such
a ray is called a skew ray, with C as a measure of skewness.
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The Euler-Lagrange equation for the radial coordinate is (2.104)

∂m

∂r
− d

dz

∂m

∂r ′
= 0. (2.135)

This leads (2.131, 2.135) to the exact ray equation for the radial
coordinate in the case of axial symmetry as follows:

d

dz

 r ′
√
p2 − (C/r + Aθ)2

1 + r ′ 2

 =

[
1 + r ′ 2

p2 − (C/r + Aθ)2

]1/2

·
[

(C/r + Aθ)
2

r
+ p

∂p

∂r
−
(
C

r
+ Aθ

)(
Aθ
r

+
∂Aθ
∂r

)]
.

(2.136)

recalling that p is the scalar kinetic momentum (2.123), and Aθ is
the magnitude of the magnetic vector potential (2.130). Both p
and Aθ are assumed to be known functions of the coordinates.

The differential equations (2.134, 2.136) are a coupled pair, for
which the desired solutions r(z) and θ(z) are exact in principle.
These equations were derived by Sturrock [86]. Because the equa-
tions are nonlinear, the solutions r(z) and θ(z) cannot be expressed
in a simple, closed form. Consequently, an analytical solution must
rely on finding a suitable approximation. Alternatively, these equa-
tions are amenable to exact numerical solution.

2.5.2 Paraxial approximation, Gaussian optics

Assuming
r ′ 2 � 1, C = 0 (2.137)
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in (2.136), and retaining only terms through order r, one obtains
(2.123, 2.130, 2.136, 2.137) the approximation

2 + Φ

1 + Φ
Φ r′′ + Φ′r′ + 1

2
Φ′′r +

B2

4 (1 + Φ)
r = 0. (2.138)

This is a linear second order equation for the radial position r(z)
of a meridional ray. It is only accurate for rays close to the optic
axis, and this approximation is therefore known as the paraxial ap-
proximation. A purely electrostatic field has B = 0, and a purely
magnetic field has Φ = const.

This equation can be integrated in principle by first seeking an
integrating factor. To this end we define a reduced ray [33, 71]

R(z) = [ Φ(z) ]1/4 r(z). (2.139)

Substituting this into (2.138), we obtain a reduced equation

R ′′(z) +Q(z)R(z) = 0, (2.140)

where we have defined a function Q(z) as

Q(z) =
3

16

(
Φ′

Φ

)2
1 + Φ

1 + Φ/2
+

B2

8 Φ (1 + Φ/2)
. (2.141)

The region where Q is non-zero constitutes a lens, completely anal-
ogous to a lens in light optics, with the difference that the bound-
aries for the focusing region are not sharply delineated.

Since Q(z) is positive-definite, it follows that R ′′(z) ≤ 0. The re-
duced ray R(z) therefore always bends toward the optic axis. This
is not necessarily true for the actual ray r(z), which can curve
away from the axis within a region with electric field.

We can define a forward focal length f+ for the lens, where rays
enter parallel to the optic axis at radius r−∞, and exit with slope
r ′∞

1

f+

= − r ′∞
r−∞

, where r ′−∞ = 0. (2.142)
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For many systems it is the case that the radial position of the
ray is roughly constant within the lens field, i.e., R(z) ≈ const.
Such a lens is called a thin lens. It is also often the case that the
electrostatic component of the focusing is weak or nonexistent;
i.e., r′ ≈ Φ−1/4R ′. Such a lens is called a weak lens. Using these
approximations, we obtain (2.139)

1

f+

≈ −
(

Φ−∞
Φ∞

)1/4 R ′∞
R−∞

. (2.143)

From (2.140) we obtain

R′∞ =
∫ ∞
−∞

R ′′ dz = −
∫ ∞
−∞

QRdz ≈ −R−∞
∫ ∞
−∞

Qdz. (2.144)

From (2.141, 2.144, 2.145) we obtain

1

f+

≈
(

Φ−∞
Φ∞

)1/4 ∫ ∞
−∞

 3

16

(
Φ′

Φ

)2
1 + Φ

1 + Φ/2
+

B2

8 Φ (1 + Φ/2)

 dz,
(2.145)

where the first term on the right represents the electrostatic focus-
ing, and the second term represents the magnetic focusing. Simi-
larly, we define a reverse focal length f−, where rays enter parallel
to the optic axis at radius r∞, and exit with slope r ′−∞:

1

f−
=
r ′−∞
r∞

, where r ′∞ = 0. (2.146)

The axial positions of principal planes follow directly from f+ and
f−.

The quantity 1/f represents the focal strength of a lens. In the
purely electrostatic case where B = 0, the focal strength is pro-
portional to the charge q, and independent of the mass m, taking
account of the dimensionless units. In the purely magnetic case
where Φ′ = 0, the focal strength is proportional to the ratio of
q/m. Consequently, it is more efficient to use electrostatic lenses
for heavier particles, such as ions, and magnetic lenses for lighter
particles, such as electrons.
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2.5.3 Series solution for the general ray equa-
tion

We now seek a general solution to the exact ray equation (2.104).
This must include all rays, including meridional and skew rays.
Because the exact trajectory equations (2.134, 2.136) are nonlin-
ear, they cannot be solved in closed form. Consequently, we seek
an approximate solution by series expansion [33].

Recalling the modified refractive index for the general curvilinear
axis,

m = p
√

1 + r ′ 2 + r2θ ′ 2 − rθ ′Aθ, (2.147)

where the scalar kinetic momentum p(r, z) is given by (2.123) and
the magnetic vector potential Aθ is given by (2.130).

We define a complex transverse coordinate

u = X + i Y = r eiθ, ū = X − i Y = r e−iθ, (2.148)

where X(z) and Y (z) are Cartesian coordinates in a transverse
plane at axial coordinate z. It follows that

i (ū′ u− ūu′) = 2(X Y ′ −X ′ Y ) = 2 r2θ′, (2.149)

and

√
1 + r ′ 2 + r2θ ′ 2 =

√
1 + ū′ u′ = 1 + 1

2
ū′u′ − 1

8
ū′ 2u′ 2 + . . . .

(2.150)
We can write a power series expansion for the refractive index,
making use of the axial symmetry of the scalar kinetic momentum
p(r, z) and the magnetic vector potential Aθ(r, z) in (2.123, 2.130)
as follows:

m = m0 +m2 +m4 + . . .

= p

+
[
−1

4
p−1Φ′′(1 + Φ)

]
ūu

+
[

1
2
p
]
ū′u′



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 58 — #68 i
i

i
i

i
i

58 Chapter 2. Geometrical optics

+
[
−1

4
B
]
i (ū′u− ūu′)

+
[
−1

8
p
]
ū′ 2u′ 2

+
[
−1

8
p−1 Φ′′ (1 + Φ)

]
ūuū′u′

+
[

1
64
p−1 Φ IV (1 + Φ)− 1

32
p−3 Φ′′ 2

]
ū2u2

+
[

1
32
B′′
]
i (ū′u− ūu′) ūu

+ . . . , (2.151)

where the various orders of m are defined by the power of the co-
ordinates and slope components. The quantities in square brackets
depend only on the fields on axis, embodied in Φ(z) and B(z).

The paraxial term is given by (2.151)

m2 = −1
4
p−1 Φ′′ (1 + Φ) ūu+ 1

2
p ū′u′ − 1

4
B i (ū′u− ūu′). (2.152)

We now define the paraxial approximation by retaining only terms
through order m2 in (2.104, 2.151). The paraxial ray equation is
then given by

∂m2

∂ū
− d

dz

∂m2

∂ū ′
= 0. (2.153)

Substituting (2.152) into (2.153) we obtain

d

dz
(pu ′)− iBu ′ + 1

2

[
p−1 Φ′′ (1 + Φ)− iB ′

]
u = 0. (2.154)

The imaginary terms correspond physically to a rotation of the
bundle of rays about the optic axis as a function of the axial co-
ordinate z. Physically, this arises from the Lorentz force (2.15),
where the axial component of the magnetic field acts on the trans-
verse component of the particle velocity.

It is possible to rotate the coordinate system to compensate for
this. We define a rotated complex coordinate v(z) = x(z) + i y(z)
as follows:

u(z) = v(z) eiχ(z), (2.155)

where, by definition,
dχ

dz
= 1

2
p−1 B. (2.156)
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The rotation angle is then given by

χab = 1
2

∫ zb

za
p−1 B dz. (2.157)

This gives rise to the following useful transformations:

ū u = v̄ v

ū ′ u ′ = v̄ ′ v ′ + 1
2
p−1 B i (v̄ ′ v − v̄ v ′) + 1

4
p−2 B2 v̄ v

i (ū ′ u− ū u ′) = i (v̄ ′ v − v̄ v ′) + p−1 B v̄ v. (2.158)

Substituting these into (2.151) we obtain the modified refractive
index in the rotated coordinates as

m = m0 +m2 +m4 + . . .

= p

+
[

1
2
p
]
v̄ ′ v ′

+
[
−1

4
p−1Φ ′′(1 + Φ)− 1

8
p−1B2

]
v̄ v

+ [ 1
64
p−1ΦIV (1 + Φ)− 1

32
p−3Φ ′′ 2 + 1

32
p−1BB ′′

− 1
128

p−3B4 − 1
32
p−3Φ ′′(1 + Φ)B2 ] v̄2 v2

+
[
−1

8
p−1 Φ ′′(1 + Φ)− 1

16
p−1B2

]
v̄ v v̄ ′ v ′

+
[
−1

8
p
]
v̄ ′ 2 v ′ 2

+
[
− 1

32
p−2B3 − 1

16
p−2Φ ′′ (1 + Φ)B + 1

32
B ′′

]
· i (v̄ ′ v − v̄ v ′) v̄ v

+
[
−1

8
B
]
i (v̄ ′ v − v̄ v ′) v̄ ′ v ′

+
[
− 1

32
p−1B 2

]
[ i ( v̄ ′ v − v̄ v ′) ]

2

+ . . . . (2.159)

The paraxial term is given in the rotated system by

m2 = 1
2
p v̄′v′ +

[
−1

4
p−1 Φ′′ (1 + Φ)− 1

8
p−1 B2

]
v̄v. (2.160)

The paraxial approximation to (2.104) is then

∂m2

∂v̄
− d

dz

∂m2

∂v̄′
= 0. (2.161)
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Substituting (2.160) into (2.161) we obtain the paraxial ray equa-
tion in the rotated system as follows:

d

dz
(p v′) +

[
1
2
p−1 Φ′′ (1 + Φ) + 1

4
p−1 B2

]
v = 0. (2.162)

The absence of imaginary terms shows that the rotation has been
removed. It is simpler to work in the rotated system than the un-
rotated system, as the image has the same rotation as the object
in the rotated coordinates.

As a second-order linear differential equation, (2.162) has two lin-
early independent solutions, which we denote g(z) and h(z). By
substituting these in turn into (2.162) for v(z) and subtracting the
two equations, it is straightforward to show that

h
d

dz
(p g ′)− g d

dz
(ph ′) = 0, (2.163)

from which it follows that

d

dz
[ p (g h ′ − g ′ h) ] = 0. (2.164)

The quantity in square brackets is, therefore, conserved. We denote
this quantity as k, defined as

k = p(z) [ g(z)h ′(z)− g ′(z)h(z) ] = const. (2.165)

The conserved quantity k is called the Wronskian. A more general
expression for the Wronskian exists for a general curvilinear axis.
The reader is referred to Rose [75] for details. It is closely related
to the Lagrange invariant discussed earlier.

In order to fully determine the solutions g(z) and h(z), it is neces-
sary to specify boundary conditions. We choose these arbitrarily
as

g(zO) = 1, g(zA) = 0,

h(zO) = 0, h(zA) = 1, (2.166)
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where zO and zA are the axial coordinates of the object and aper-
ture planes, respectively. Given this, a general solution for the
paraxial ray v(z) can be written as

v(z) = vO g(z) + vA h(z)

v′(z) = vO g
′(z) + vA h

′(z). (2.167)

Remembering v = x+ i y in the rotated system, it follows that

xj(z) = xOj g(z) + xAj h(z)

x′j(z) = xOj g
′(z) + xAj h

′(z), (2.168)

where xj = (x, y) for j = (1, 2).

The choice of aperture plane zA is arbitrary. Often one chooses
the aperture plane to coincide with a physical aperture, but this
need not be the case. The aperture plane cannot coincide with the
object or image planes, as the solutions g and h would no longer
be independent.

Since the Wronskian is conserved, it retains the same value
throughout the system, and

k = pO h
′
O = −pA g′A = pI Mh′I , (2.169)

where the subscripts O, A, and I denote the object plane, aper-
ture plane, and Gaussian image plane, respectively, and M is the
magnification.

In practice one usually determines the solutions g(z) and h(z) by
solving (2.162) numerically. This requires knowing Φ ′′(z) to high
accuracy. Unfortunately this is not always possible, even if one
knows Φ(z) to high accuracy at discrete points along the axis, be-
cause numerical differentiation introduces error. The dependence
on the second-order derivative can be eliminated by defining a
reduced ray w(z) as follows:

v(z) = [ p(z) ]−1/2w(z). (2.170)
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From (2.160, 2.170) we obtain

m2 = 1
2
w̄′w′

+
[
−1

4
p−2 Φ′′ (1 + Φ) + 1

8
p−4 Φ′ 2 (1 + Φ)2 − 1

8
p−2B2

]
w̄w

−1
4
p−2 Φ′ (1 + Φ) (w̄′w + w̄w′). (2.171)

From (2.104) we have

∂m2

∂w̄
− d

dz

∂m2

∂w̄′
= 0. (2.172)

This yields the paraxial ray equation in reduced coordinates as
follows:

d2w

dz2
+
[

3
4
p−4 Φ′ 2 (1 + Φ)2 − 1

2
p−2 Φ′ 2 + 1

4
p−2 B2

]
w = 0, (2.173)

where the second-order derivative Φ ′′ has been successfully elim-
inated. Although the reduced ray w(z) offers a practical simplifi-
cation for obtaining the paraxial ray solution numerically, it offers
no advantage for obtaining the aberrations.

Axial symmetry permits only terms (2.151, 2.159) in m of the
form

X2 + Y 2 X ′2 + Y ′2 2 (XY ′ −X ′Y ) 2 (XX ′ + Y Y ′)
ū u ū′ u′ i(ū′u− ūu′) ū′u+ ūu′

x2 + y2 x′2 + y′2 2 (xy′ − x′y) 2 (xx′ + yy′)
v̄ v v̄′ v′ i(v̄′v − v̄v′) v̄′v + v̄v′

w̄ w w̄′w′ i(w̄′w − w̄w′) w̄′w + w̄w′.

This is shown by replacing x → y and y → −x, for example,
corresponding to a rotation of the coordinate system by +90 de-
grees in the transverse plane. The reader can easily verify that
all of the above products are invariant under all such 90 degree
rotations. Exactly four independent degrees of freedom exist, cor-
responding to two transverse coordinates and two transverse slope
components. As a result, four independent products exist for each
line of the above table. These facts represent the necessary and
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sufficient conditions for axial symmetry.

We have derived a prescription for obtaining the general solution
in the paraxial approximation. The linearity of the paraxial ray
equation ensures perfect imaging in this approximation. Departure
from perfect imaging represents aberration. This will be treated
in a later section using a perturbation approach. First, however,
it is instructive to extend the preceding arguments to include the
effects of space charge. This is the subject of the next section.

2.5.4 Space charge

In the classical limit, particles in the beam can be regarded as dis-
crete, point charges. The particles propagate together, each with
its own velocity. If the beam is sufficiently dense, the particles
interact with one another via the Lorentz force (2.15). Every par-
ticle produces an electrostatic field E by virtue of its charge, and
a magnetic field B by virtue of its current. These fields, in turn,
act on the other particles in the beam.

A proper analysis in the classical limit treats the particles as dis-
crete, and randomly distributed within the beam. This will be done
in the later section on the stochastic interaction. A great deal of
understanding can be gained by regarding the beam as a contin-
uum of charge and current, however. We consider the effect of the
fields generated on a test particle which moves with the beam.
We imagine an axially symmetric, monoenergetic beam character-
ized by space charge density ρ(r) and current density j(r). The
geometry in the lab frame is shown schematically in Figure 2.7.
Initially the beam is assumed to be parallel, in that the direction
of the local current density vector throughout the beam cross sec-
tion points everywhere along the z-axis at the left of the figure.
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Figure 2.7: Space charge, quasi-parallel beam.

Considering a cylinder of radius r, the electric field vector E points
radially outward for a positively charged beam, and radially inward
for a negatively charged beam. Gauss’s law can be written in SI
units as ∫

S
E · dS =

1

ε0

∫
V
ρ(r) dV, (2.174)

where the volume integral on the right is the total charge enclosed
withn the cylinder. Expressing the elements of surface area and
volume in cylindrical coordinates, this becomes

Er(r) =
1

ε0r

∫ r

0
ρ(r1) r1 dr1. (2.175)

The ends of the cylinder do not contribute, because the electric
field vector is coplanar with the end faces. Any axially symmetric
charge outside of the radius r does not contribute to the electric
field. Separately, Ampere’s law can be written in SI units as∫

B · dl = µ0

∫
j dA, (2.176)

where the integral on the left is the line integral around a circular
path of radius r, and the integral on the right is the area integral
over a circular disk, which is oriented in the transverse plane. The
integral on the right side is the total current enclosed within the
cylinder. Expressing the elements of path length and transverse
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area in polar coordinates, this becomes

Bθ(r) =
µ0

r

∫ r

0
j(r1) r1 dr1. (2.177)

We now consider the Lorentz force (2.15) acting on a test particle
of charge q at radius r which moves with the beam. This particle
is depicted schematically by the small circle in Figure 2.7. The
radial component of the Lorentz force can be written as

γ m
d2r

dt2
=

q

ε0v r

(
1− v2

c2

)∫ r

0
j(r1) r1 dr1, (2.178)

where γ is defined by (2.9), and we have made use of

j(r) = ρ(r) v, (2.179)

and
µ0 ε0 = 1/c2. (2.180)

The first term in large parentheses represents the outwardly di-
rected electrostatic force arising from the space charge ρ, while
the second term represents the inwardly directed magnetic force
arising from the space current j. The relative strength of these two
forces approaches equality in the extreme relativistic limit where
v2/c2 → 1. Physically, this occurs because the interaction time
approaches zero in the lab frame. The presence of opposing elec-
trostatic and magnetic forces can therefore be regarded as a purely
relativistic effect. We now write

dr

dt
=
dr

dz

dz

dt
= v r′,

d2r

dt2
= v2 r′′, (2.181)

where primes denote differentiation with respect to the axial co-
ordinate z. This leads immediately to

r′′(z) =
q m2

ε0 p3 r

∫ r

0
j(r1) r1 dr1, (2.182)

where p is the relativistic scalar kinetic momentum obeying (2.28,
2.20).

p = β γ mc. (2.183)
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The momentum p is constant to first order in this approximation.
The momentum p is related to the kinetic energy T and relativistic
beam voltage V ∗ by (2.96). The equation (2.182) can be regarded
as a general differential-integral equation for the trajectory r(z)
for a quasi-parallel beam in the first-order (paraxial) continuum
approximation. It is possible in principle to solve this equation for
the trajectory r(z) of the test particle. This trajectory is shown
schematically as the bold curve in Figure 2.7. This curve traces
out the envelope of the expanding beam.

In order to gain a further appreciation of the physical significance
of this, we consider the special case where the current density j is
constant within the volume of the beam. We can write j(r) = j0,
independent of radius r. We further assume that the effect is weak,
such that the expansion of the beam is small relative to the beam
radius. In this case the equation (2.182) reduces to

r′′(z) =

(
q m2 j0

2 ε0p3

)
r(z). (2.184)

The leading factor in large parentheses on the right side can be
regarded as constant in this approximation. Physically, the left
side represents the bending of the ray. This is proportional to the
distance r off axis. This is precisely the condition for a perfect
lens, with the result that defocusing occurs, but no blurring. This
defocus can be corrected in principle, and has no net effect on the
quality of the image.

With this intuitive picture in mind, we now proceed to apply the
methods of the preceding sections, taking the average space charge
and space current into account. We return to dimensionless units
(2.110 to 2.117) at this point. The electrostatic potential in the
presence of space charge obeys Poisson’s equation,

∇2φ = −ρ. (2.185)

We assume the space charge ρ = ρ(z) to be uniform in the trans-
verse plane while varying in the axial direction. From (2.120, 2.121,
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2.185),

φ(r, z) = Φ− 1
4

(Φ′′ + ρ) r2 + 1
64

(ΦIV + ρ′′) r4 + . . . . (2.186)

The scalar kinetic momentum is (2.116, 2.186)

p = p− 1
4
p−1 (Φ′′ + ρ) (1 + Φ) r2

+ 1
64
p−1 (ΦIV + ρ′′) (1 + Φ) r4 − 1

32
p−3 (Φ′′ + ρ) 2 r4 + . . . .

(2.187)

In addition to the space charge, a beam in general has a global
(averaged) space current j. Maxwell’s equation is

∇×B = ∇× (∇×A) = j. (2.188)

In the lab frame, the beam current is primarily along the beam
axis, with the transverse component relatively small. We there-
fore neglect the transverse components of j and A. It follows that
(2.188):

jz = −∂
2Az
∂r 2

− 1

r

∂Az
∂ r

. (2.189)

The solution for the axial component of the magnetic vector po-
tential Az arising from the space current is

Az = −1
4
jz r

2 = −1
4

p

1 + Φ
ρ r2, (2.190)

where the space current and space charge are related by

jz = ρ vz =
p

1 + Φ
ρ. (2.191)

Using the earlier approach, we obtain the modified refractive index
(2.147) as follows:

m = p
√

1 + r ′ 2 + r2θ ′ 2 − rθ ′Aθ − Az. (2.192)

The expression of (2.159) with space charge terms added to (2.192)
gives the result

m = m0 +m2 +m4 + . . .
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= p

+
[

1
2
p
]
v̄ ′ v ′

+

[
−1

4
p−1

(
Φ ′′ +

ρ

(1 + Φ)2

)
(1 + Φ)− 1

8
p−1B2

]
v̄ v

+[ 1
64
p−1 (ΦIV + ρ ′′) (1 + Φ)− 1

32
p−3 (Φ ′′ + ρ)2

+ 1
32
p−1BB ′′ − 1

128
p−3B4

− 1
32
p−3(Φ ′′ + ρ) (1 + Φ)B2 ] v̄2 v2

+
[
−1

8
p−1 (Φ ′′ + ρ) (1 + Φ)− 1

16
p−1B2

]
v̄ v v̄ ′ v ′

+
[
−1

8
p
]
v̄ ′ 2 v ′ 2

+
[
− 1

32
p−2B3 − 1

16
p−2(Φ ′′ + ρ) (1 + Φ)B + 1

32
B ′′

]
· i (v̄ ′ v − v̄ v ′) v̄ v

+
[
−1

8
B
]
i (v̄ ′ v − v̄ v ′) v̄ ′ v ′

+
[
− 1

32
p−1B 2

]
[ i ( v̄ ′ v − v̄ v ′) ]

2

+ . . . . (2.193)

We note that the paraxial space charge term (large parentheses)
tends to zero in the extreme relativistic limit Φ � 1. Physically,
this occurs because the space current causes magnetic compression
of the beam, due to parallel current elements. This purely rela-
tivistic effect offsets the Coulomb repulsion of the space charge.
Equivalently, the interaction time approaches zero in the lab frame,
causing the space charge interaction to approach zero as well.

2.5.5 The primary geometrical aberrations

We showed previously that the exact ray equation for the case
of axial symmetry cannot be solved analytically in closed form.
Consequently, we adopted a series solution. The paraxial approxi-
mation leads to a linear, second order differential equation for the
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ray, which can be solved in principle, but is only accurate for rays
near the optic axis. The next step is to solve for the aberrations.
This requires the next approximation beyond the paraxial approx-
imation. The following analysis closely follows that of Glaser [33],
and in addition properly includes the effects of special relativity.
This is also treated in detail by Rose [75].

We begin by defining the action integral (mechanical analog of
the light-optical path length) W2 between any two planes za and
zb in the paraxial approximation,

W2 =
∫ zb

za
m2 dz, (2.194)

where m2 is assumed to be known from the preceding analysis
(2.159). The paraxial ray equation is

∂m2

∂xj
− d

dz

∂m2

∂x′j
= 0. (2.195)

The solution for the transverse Cartesian coordinates xj(z) and
canonical momentum components Pj(z) in the paraxial approxi-
mation is (2.168)

xj(z) = xOj g(z) + xAj h(z)

Pj(z) = p(z) [xOj g
′(z) + xAj h

′(z) ]. (2.196)

where we have made use of (2.106, 2.159) and v(z) = x(z) + i y(z)
to obtain

Pj(z) = p(z)x′j(z) (2.197)

in the paraxial approximation.

To obtain the aberration, we form the first order perturbation
on the paraxial ray (2.108),

δW2 =
∫ zb

za
(δm2) dz =

2∑
j=1

(Pbj δxbj − Paj δxaj), (2.198)
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where the start plane za and the end plane zb are assumed to be
fixed. From this it follows that

δxbj =
∂

∂Pbj
(δW2), δxaj = − ∂

∂Paj
(δW2), (2.199)

where we designate δxaj and δxbj as the primary aberration at the
start plane za and end plane zb respectively. We invert the paraxial
solution (2.196) to solve for (xOj, xAj) in terms of (xj, Pj):

xOj = k−1 ( ph′ xj − hPj )

xAj = k−1 ( g Pj − p g′ xj ), (2.200)

where k is the conserved Wronskian (2.165). From the chain rule
for partial derivatives,

∂

∂Pj
(δW2) =

(
∂xOj
∂Pj

∂

∂xOj
+
∂xAj
∂Pj

∂

∂xAj

)
(δW2)

=

(
−h
k

∂

∂xOj
+
g

k

∂

∂xAj

)
(δW2). (2.201)

We now identify the start plane with the object plane, za = zO,
and we identify the end plane with the Gaussian image plane,
zb = zI . From the paraxial solution we have, by definition

h(zI) = 0, g(zI) = M, (2.202)

where M is the magnification. The primary aberration at the Gaus-
sian image plane is then (2.199, 2.201)

δxIj =
M

k

∂

∂xAj

∫ zI

zO
m4 dz, (2.203)

where we have identified the perturbation δm2 = m4. From (2.159)
we can express the perturbation m4 in the compact series form as

m4 = L (x2 + y2)2 +M (x2 + y2) (x′
2

+ y′
2
) +N (x′

2
+ y′

2
)2

+P · 2 (xy′ − x′y) (x2 + y2) + Q · 2 (xy′ − x′y) (x′
2

+ y′
2
)

+K [ 2 (xy′ − x′y) ]2, (2.204)
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where we have substituted

v̄ v = x2 + y2

v̄′ v′ = x′
2

+ y′
2

i (v̄′ v − v̄ v′) = 2 (x y′ + x′ y) (2.205)

in (2.159). We have defined field coefficients (2.159, 2.204) in nat-
ural units as

L = 1
64
p−1ΦIV (1 + Φ)− 1

32
p−3Φ ′′ 2 + 1

32
p−1BB ′′ − 1

128
p−3B4

− 1
32
p−3Φ ′′(1 + Φ)B2

M = −1
8
p−1 Φ ′′(1 + Φ)− 1

16
p−1B2

N = −1
8
p

P = − 1
32
p−2B3 − 1

16
p−2Φ ′′ (1 + Φ)B + 1

32
B ′′

Q = −1
8
B

K = − 1
32
p−1 B2, (2.206)

remembering the definition (2.124) for the scalar kinetic momen-
tum on axis p. The effects of uniform space charge density ρ(z)
can be included (2.193) by substituting

Φ ′′ → Φ ′′ + ρ

Φ IV → Φ IV + ρ ′′ (2.207)

in the field coefficients L,M, and P above (2.206). The solution
(2.168) for the paraxial ray xj(z) is

x(z) = xO g(z) + xA h(z)

y(z) = yO g(z) + yA h(z)

x′(z) = xO g
′(z) + xA h

′(z)

y′(z) = xO g
′(z) + xA h

′(z). (2.208)

Following Glaser, we define a new variable set

R = xO
2 + yO

2

ρ = xA
2 + yA

2

χ = xO xA + yO yA

σ = xO yA − yO xA. (2.209)
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It follows (2.208, 2.209) that

x2 + y2 = Rg2 + ρ h2 + 2χ g h

x′
2

+ y′
2

= Rg′
2

+ ρ h′
2

+ 2χ g′ h′

2 (x y′ − x′ y) = 2 (g h′ − g′ h)σ = 2 p−1 k σ. (2.210)

From (2.204, 2.210) we express the perturbation m4 in terms of
the new variable set as

m4 = L (Rg2 + ρ h2 + 2χ g h)2

+ M (Rg2 + ρ h2 + 2χ g h) (Rg′
2

+ ρ h′
2

+ 2χ g′ h′)

+ N (Rg′
2

+ ρ h′
2

+ 2χ g′ h′)2

+ P (2σ k p−1) (Rg2 + ρ h2 + 2χ g h)

+ Q (2σ k p−1) (Rg′
2

+ ρ h′
2

+ 2χ g′ h′)

+ K [ 4σ2 k2 p−2 (ρR− χ2) ], (2.211)

where we have made use in the K-term of the readily verifiable
fact that (2.209)

σ2 = ρR− χ2. (2.212)

Expanding (2.211) and collecting terms, we now form∫ zI

zO
m4 dz = AR2 +B ρ2 + C χ2 +DRρ+ E Rχ

+F ρχ+ eR σ + f ρ σ + c χ σ, (2.213)

where we have defined new coefficients A, . . . , c. Collecting terms
in (2.213) according to the definition (2.206), the new coefficients
are

A =
∫ zI

zO
(Lg4 +M g2 g′

2
+N g′

4
) dz

B =
∫ zI

zO
(Lh4 +M h2 h′

2
+N h′

4
) dz

C =
∫ zI

zO
(4Lg2h2 + 4M g h g′ h′ + 4N g′

2
h′

2 − 4K k2 p−2) dz

D =
∫ zI

zO
[ 2Lg2 h2 +M (g2 h′

2
+ h2 g′

2
) + 2N g′

2
h′

2

+4K k2 p−2 ] dz
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E =
∫ zI

zO
[ 4Lg3 h+ 2M g g′ (g h′ + g′ h) + 4N g′

3
h′ ] dz

F =
∫ zI

zO
[ 4Lg h3 + 2M hh′ (g h′ + g′ h) + 4N g′ h′

3
] dz

e = 2 k
∫ zI

zO
p−1 (P g2 +Qg′

2
) dz

c = 4 k
∫ zI

zO
p−1 (P g h+Qg′ h′) dz

f = 2 k
∫ zI

zO
p−1 (P h2 +Qh′

2
) dz, (2.214)

remembering that g(z) and h(z) are the two linearly independent
solutions to the paraxial ray equation (2.162) satisfying boundary
conditions (2.166). From (2.213) we have

∂

∂xAj

∫ zI

zO
m4 dz = A

∂

∂xAj
(R2)+B

∂

∂xAj
(ρ2)+C

∂

∂xAj
(χ2)+ . . . .

(2.215)
The primary aberration δxI in the Gaussian image plane is thus
given in the rotated coordinate system by (2.203, 2.215)

kM−1 δxI = B [ 4xA (x2
A + y2

A) ]

+ C [ 2xO (xOxA + yOyA) ]

+ D [ 2xA (x2
O + y2

O) ]

+ E [xO (x2
O + y2

O) ]

+ F [xO (x2
A + y2

A) + 2 xA (xOxA + yOyA) ]

+ e [−yO (x2
O + y2

O) ]

+ c [ yA (x2
O − y2

O)− 2xO yO xA ]

+ f [−yO (x2
A + y2

A) + 2 xA (xOyA − yOxA) ],

(2.216)

remembering the definition (2.165) of the constant k, and where
M is the magnification. Making use of the axial symmetry, the
y-coordinate of the aberration is obtained by making the substi-
tutions x→ y, and y → −x for all occurrences in (2.216).
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This gives

kM−1 δyI = B [ 4 yA (x2
A + y2

A) ]

+ C [ 2 yO (xOxA + yOyA) ]

+ D [ 2 yA (x2
O + y2

O) ]

+ E [ yO (x2
O + y2

O) ]

+ F [ yO (x2
A + y2

A) + 2 yA (xOxA + yOyA) ]

+ e [xO (x2
O + y2

O) ]

+ c [−xA (x2
O − y2

O) + 2 xO yO yA ]

+ f [xO (x2
A + y2

A) + 2 yA (xOyA − yOxA) ].

(2.217)

We notice that
δxOj = M−1 δxIj (2.218)

is the aberration, demagnified to the object plane zO. We call δxOj
the aberration referred to the object plane. This is of interest for
a transmission electron microscope, for example, where the object
coordinates form the natural reference for the expression of image
quality. Similarly, one has the option of substituting xO = M−1 xI
and yO = M−1 yI on the right sides of (2.216, 2.217), thus refer-
ring the aberrations to the image plane zI . This is of interest for
a probe forming system, like a scanning electron microscope or
focused ion beam system, where one typically forms a demagni-
fied image of a source. In this case, the image coordinates form
the natural reference. Either object or image coordinates correctly
express the aberrations.

A significant simplification is possible by choosing the rotation
of coordinate axes so that yO = 0; i.e., the off-axis object position
is located along the x-axis. There is no loss of generality, owing to
the axial symmetry, as the coordinates for any single object point
can always be chosen in this way.
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In this case the primary aberration (δxI , δyI) simplifies (2.216,
2.217) to

kM−1 δxI = 4B xA (x2
A + y2

A) + 2 (C +D)x2
O xA + E x3

O

+F xO ( 3x2
A + y2

A ) + c x2
O yA + 2 f xO xA yA

kM−1 δyI = 4B yA (x2
A + y2

A) + 2Dx2
O yA + 2F xO xA yA

+e x3
O + c x2

O xA + f xO (x2
A + 3 y2

A).

(2.219)

The various series representations of the aberration are known as a
Seidel series. The individual terms in (B,C,D,E, F, e, c, f) repre-
sent, respectively, spherical aberration, isotropic astigmatism, field
curvature, isotropic distortion, isotropic coma, anisotropic distor-
tion, anisotropic astigmatism, and anisotropic coma. They are re-
ferred to as third order aberrations, because each term is third or-
der in various products including (xO, yO, xA, yA). This represents
the solution for the primary aberrations. All quantities represent-
ing length have the same values in natural units and SI units. This
includes the aberrations δxI and δyI . However, the axial potential
Φ(z) and axial magnetic field B(z), which form the basis of the
field coefficients (2.206), do depend on the choice of units.

The preceding results give the aberration for a single ray. In prac-
tice, a beam is comprised of a bundle of rays, each having a dif-
ferent aberration δxIj in the Gaussian image plane. Even in the
limit of an ideal point object, these aberrations cause blurring of
the image. The amount of blurring varies with defocus. It is there-
fore of interest to study the aberration in a plane which is slightly
displaced from the Gaussian image plane. Designating the axial
displacement by δz, we seek an expression for the aberration δxj
in the plane zI + δz. This is given to first order in δz by

xIj + δxj = xIj + δxIj + x′Ij δz

δxj = δxIj + x′Ij δz, (2.220)

where xIj is the paraxial ray coordinate in the Gaussian image
plane, δxIj is the primary aberration in the Gaussian image plane,
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and x′Ij is the paraxial ray slope in the Gaussian image plane.
Evaluating (2.168) in the Gaussian image plane, this gives

x′Ij = xOj g
′
I + xAj h

′
I . (2.221)

The aberration δxj with defocus δz is thus given by

δxj = δxIj + (xOj g
′
I + xAj h

′
I) δz. (2.222)

For a fixed value of δz, this is computed separately for every ray
in the bundle, which in principle enables the blur to be found as
a function of defocus δz.

We define a quantity

W4 =
∫ zI

zO
m4 dz. (2.223)

We recognize W4 = δW2 as the first order perturbation on the
action integral (2.194) which gives rise to the primary aberration.
All rays emanating from any single object point have the same
value of W2, corresponding to the paraxial approximation. Each
of these rays has a unique value of W4 which in general differs
from the other rays, corresponding to the aberration. The above
analysis shows that all relevant information about the primary
aberration is contained in W4.

One can derive higher order aberrations by considering the terms
m6,m8, . . . in (2.159). These aberrations are referred to as fifth
order, seventh order, . . ., respectively. They have corresponding
perturbations W6,W8, . . . in the action integral. This procedure is
straightforward, but tedious, since each increasing order contains
more terms than the preceding one. The number of terms needed
to obtain an accurate representation depends on the size of the ray
coordinates xj(z) and slopes x′j(z). This in turn depends on the
lateral extent of the beam, as determined by the physical aperture.
A narrow beam requires fewer terms than a wide beam. The exact
value of the action integral between the object and image planes
is given by

WOI =
∫ zI

zO
m(z) dz, (2.224)
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where m(z) is the sum of all terms in the infinite series (2.159).
In principle, all relevant information about the optical system is
contained in W in the limit of geometrical optics. This fact will
prove to be highly useful in the analysis to come.

2.5.6 Spherical aberration

In the case where the object is on the optic axis, we have xOj = 0.
In this case, the primary aberration in the Gaussian image plane
reduces to (2.216, 2.217)

δxIj =
4BM

k
(x2

A + y2
A)xAj. (2.225)

All of the aberrations vanish on axis except spherical aberration,
represented by the B-term. Spherical aberration is the same ev-
erywhere in the field, as it is independent of object coordinate
xOj. It only depends on the coordinate xAj in the aperture plane.
Spherical aberration is shown schematically in Figure 2.8. The axis
of symmetry is the central ray in the bundle. Rays close to this axis

Figure 2.8: Spherical aberration.
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come to a focus at the Gaussian image plane, which is shown by
the rightmost vertical line in the figure. Rays at the edge are more
strongly focused, and intersect the axis in front of the Gaussian
image plane. This plane is shown by the leftmost vertical line in
the figure. A disk of least confusion is formed by the entire bundle
at an intermediate plane. This represents the optimum focus.

Spherical aberration is easily expressed as a function of the ray
slope x′Ij in the Gaussian image plane. This slope is directly mea-
surable by defocusing, whereas the aperture coordinate xAj is
not easily measured. This necessitates transforming from the set
(xOj, xAj) to the set (xOj, x

′
Ij). Evaluating (2.168) in the Gaussian

image plane, and setting xOj = 0, we find

xAj =
x′Ij
h′I
. (2.226)

From (2.169) we have
1

h′I
=

pI M

k
, (2.227)

in which case

xAj =
pI M

k
x′Ij. (2.228)

We now define radial quantities rA, r
′
I , δrI as

r2
A = x2

A + y2
A

r′ 2I = x′ 2I + y′ 2I
δr2
I = δx2

I + δy2
I , (2.229)

from which, due to the axial symmetry, it follows that

δrI =
4BM

k
r3
A =

4BM4 p3
I

k4
r′ 3I . (2.230)

We define αI as the angle in radians which the ray makes with the
optic axis at the Gaussian image plane. Assuming α� 1,

r′I = tan αI ≈ αI . (2.231)
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This enables us to write, in this small angle approximation,

δrI = CSI α
3
I , (2.232)

where we have defined a constant CSI , called the coefficient of
spherical aberration, referred to the image, as

CSI =
4BM4 p3

I

k4
, (2.233)

where CSI depends on the axial electrostatic potential Φ(z) and
axial magnetic field B(z) through the coefficient B in (2.214).

Alternatively, spherical aberration can be referred to the object
plane by making use of

δrI = M δrO, (2.234)

where δrO is the aberration in the object plane zO. Applying the
law of Helmholtz-Lagrange (2.69), we have

pO αO (δrO) = pI αI (δrI), (2.235)

relating the object and image planes. It follows that the angles in
the object and image planes are related by

αI =

(
pO
pI M

)
αO, (2.236)

where the parenthesis on the right is the angular magnification.
The spherical aberration in the object plane is then

δrO = CSO α
3
O, (2.237)

where we have defined the spherical aberration coefficient CSO,
referred to the object, as

CSO =

(
pO
pI

)3
CSI
M4 . (2.238)

It is natural to refer the spherical aberration to the object plane
in a transmission electron microscope, and to the image plane in
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probe-forming systems such as a scanning electron microscope.

It was first shown by Scherzer [77] that spherical aberration cannot
be eliminated in static systems with axial symmetry in the absence
of space charge, and excluding particle mirrors. This is equivalent
to the coefficient B defined in (2.214) always being positive defi-
nite. This fact can be proven by successive partial integrations of
the expression for B, in which the integrand can be expressed by a
sum of positive definite terms. The reader is referred to Rose [75]
for details.

Spherical aberration imposes a fundamental limit on the resolu-
tion of electron microscopes. Substantial correction of spherical
aberration has been successfully demonstrated using multipole el-
ements [67, 75]. Corrected electron microscopes are now commer-
cially available which achieve resolution better than 0.1 nm. This
is sufficient to view single atoms.

2.5.7 Field aberrations

The aberrations represented by the terms proportional to C, D, E,
F, e, c, f in (2.216, 2.217) represent isotropic astigmatism, field
curvature, isotropic distortion, isotropic coma, anisotropic distor-
tion, anisotropic astigmatism, and anisotropic coma, respectively.
Unlike spherical aberration, all of these aberrations depend on
field position, as represented by the object coordinates (xO, yO).
We therefore call them field aberrations. Isotropic aberrations
are characterized by having no dependence on azimuthal coordi-
nate, while anisotropic aberrations have an azimuthal dependence.
The isotropic aberrations arise in both electrostatic and magnetic
lenses, while anisotropic aberrations only occur in magnetic lenses.
The field aberrations can be best appreciated by simply plotting
the geometric figure, which in general is a function of the object
coordinates (xO, yO) and the aperture coordinates (xA, yA). In this
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section we discuss the field aberrations individually.

The aberrations represented by the terms proportional to C and
c in (2.216, 2.217) represent isotropic astigmatism and anisotropic
astigmatism, respectively. The aberration figure for astigmatism is
plotted in Figure 2.9. The beam forms two line foci, separated by

Figure 2.9: Astigmatism.

an axial distance, and oriented at 90 degrees relative to each other.
The axial separation of the line foci is proportional to the square
of the radial distance off axis of the object point. The primary
astigmatism aberration vanishes for an object point on axis. The
line foci are oriented along the x- and y-axes for isotropic astigma-
tism, and at 45 degrees to these axes for anisotropic astigmatism.
The beam cross section is axially symmetric at an axial point mid-
way between the two line foci. By adjusting the focus, one is able
to locate this plane, which is characterized by an image which is
axially symmetric, though blurred. Alternatively, astigmatism can
arise from misalignment of the optical elements, or departure from
axial symmetry. Although the manifestation appears similar, the
mechanism by which the astigmatism arises is quite different from
the primary aberration discussed here.
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The aberration represented by the term proportional to D in
(2.216, 2.217) represents curvature of field. This aberration results
in an axial displacement of the plane of best focus which is propor-
tional to the square of the radial distance off axis. The aberration
figure for curvature of field is plotted in Figure 2.10. The figure

Figure 2.10: Curvature of field.

schematically depicts a longitudinal section through the optical
system. The solid curved rays represent an object point on axis,
for which the image plane zI coincides with the Gaussian image
plane. The broken curved rays represent the aberrated rays for an
object point off axis, for which the plane of best focus lies on the
curve S. The focal surface for off-axis object points can be gen-
erated in three dimensions by rotating the curve labeled S about
the central optic axis. This surface therefore has axial symmetry.

The aberrations represented by the terms proportional to E and e
in (2.216, 2.217) represent isotropic distortion and anisotropic dis-
tortion, respectively. The aberration figures for positive and neg-
ative isotropic distortion are plotted in Figure 2.11. Isotropic dis-
tortion results in a radial displacement of the image point by an
amount which is proportional to the cube of the radial distance off
axis. The aberration figures for positive and negative anisotropic
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Figure 2.11: Isotropic distortion, (a) pincushion, (b) barrel.

Figure 2.12: Anisotropic distortion, (a) positive, (b) negative.

distortion are plotted in Figure 2.12. Anisotropic distortion results
in an azimuthal displacement of the image point by an amount
which is proportional to the cube of the radial distance off axis.

The aberrations represented by the terms proportional to F and f
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in (2.216, 2.217) represent isotropic coma and anisotropic coma, re-
spectively. The aberration figure for coma is plotted in Figure 2.13.
Each circle represents the aberrated transverse position in the

Figure 2.13: Coma.

Gaussian image plane for a given radial coordinate in the aper-
ture plane. The smallest circle corresponds to the zone nearest
to the center of the aperture, while the largest circle corresponds
to the zone nearest to the rim of the aperture. The figure with
all of the circles is plotted for a single point in the object plane.
Physically, coma arises because the transverse magnification varies
with radial coordinate in the aperture plane. Isotropic coma has
a figure which is aligned with the radial direction in the Gaussian
image plane, while anisotropic coma has a figure which is oriented
in the azimuthal direction. The intensity represnts a blur which
resembles a comet, hence the name coma. One can show that the
angle between the two lines which form the envelope for all of the
circles is always 60 degrees.
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2.5.8 Chromatic aberration

We now turn our attention to the aberration which arises when an
individual particle has a kinetic energy which differs infinitesimally
by δΦ from the nominal kinetic energy on axis Φ(z). This arises
quite commonly, as every practical particle source emits with a
range or spread of kinetic energies at the emission surface. As the
focussing action of electric and magnetic fields depends on the par-
ticle energy, we expect an aberration, called the chromatic aber-
ration to occur. This name originates from the analogy between
particle optics and light optics, where the color or chromaticity of
the light is directly related to the photon energy. The following
analysis is based on that of Zworykin, et. al. [94].

The problem can be stated mathematically as follows: given the
solution v(z) to the paraxial ray equation for energy Φ(z) on axis,
find the aberration δvI in the Gaussian image plane, arising from
a constant perturbation δΦ in the energy. We begin by recalling
that v(z) is the general solution (2.167) to the paraxial ray equa-
tion (2.162) in the rotated system. Expanding the first derivative
in (2.162), we obtain the equivalent paraxial ray equation

v′′(z) +
[
p−2 Φ′ (1 + Φ)

]
v′(z)

+
[

1
2
p−2 Φ′′ (1 + Φ) + 1

4
p−2 B2

]
v(z) = 0. (2.239)

We define the perturbed ray and energy as

v1(z) = v(z) + δv1(z)

Φ1(z) = Φ(z) + δΦ, (2.240)

respectively. We assume δΦ = const.

We know a priori that v1(z) must be a solution to the paraxial
ray equation (2.239) with energy Φ1(z). Substituting (2.240) into
(2.239), and canceling the unperturbed terms, it is tedious, but
straightforward to show that δv1(z) satisfies



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 86 — #96 i
i

i
i

i
i

86 Chapter 2. Geometrical optics

(δv1)′′ +
[
p−2 Φ′ (1 + Φ)

]
(δv1)′

+
[

1
2
p−2 Φ′′ (1 + Φ) + 1

4
p−2 B2

]
(δv1)

= (δΦ) p−2 { (2 p−2 + 1) Φ′ v′

+ 1
2

[ (2 p−2 + 1) Φ′′ + p−2(1 + Φ)B2 ] v }, (2.241)

retaining only terms to first order in δv1 and δΦ. This is an in-
homogeneous second order differential equation in δv1, due to the
nonzero right-hand side.

The general solution to such an inhomogeneous equation can al-
ways be expressed as the sum of the solution to the homogeneous
equation, plus any particular solution to the inhomogeneous equa-
tion. The left side is identical with the left side of the paraxial
ray equation (2.239), with v(z) replaced by δv1(z). The homoge-
neous solution is therefore (2.167), with v(z) replaced by δv1(z).
The independent solutions g(z) and h(z) are replaced by perturbed
solutions, designated by g+δg and h+δh, respectively. The pertur-
bations δg and δh do not appear in the first order approximation
(2.241), however, and can be ignored.

The general solution for δv1(zI), evaluated in the Gaussian im-
age plane of the unperturbed ray v(z) is

δv1(zI) = −M

k

∫ zI

zO
p(z)S(z)h(z) dz, (2.242)

where M is the magnification, k is the conserved Wronskian (2.165,
2.169), and S(z) is the right-hand side of (2.241), namely,

S(z) = (δΦ) p−2 { (2 p−2 + 1) Φ′ v′

+1
2

[ (2 p−2 + 1) Φ′′ + p−2(1 + Φ)B2 ] v }. (2.243)

The solution (2.242) is derived in Appendix B, along with the gen-
eral method of solving an inhomogeneous second order differential
equation.

Having solved for the perturbation δv1(zI), we must now express
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this in the unperturbed coordinate system v(z). Because the ray
v1(z) has energy Φ1 which differs infinitesimally from Φ, it follows
that the rotation χ(z) differs by an infinitesimal amount δχ be-
tween the v- and v1-systems. Applying this rotation, we define the
perturbation δv(zI) in the unperturbed coordinates v(z) according
to

v + δv = v1 e
−i δχ

≈ (v + δv1) (1− i v δχ). (2.244)

Expanding this, the aberration expressed in the Gaussian image
plane zI of the unperturbed system is

δv(zI) = δv1(zI)− i v(zI) δχOI , (2.245)

retaining only terms to first order in small quantities. From
(2.157), the perturbation δχ is found to be

δχOI = 1
2

∫ zI

zO
δ(p−1)B dz = −(δΦ) · 1

2

∫ zI

zO
p−3(1+Φ)B dz, (2.246)

where we have made use of (2.124), the definition of the on-axis
kinetic momentum p. The minus sign expresses the fact that the
rotation χ is smaller for higher particle energy, δΦ > 0. Substi-
tuting (2.242, 2.243, 2.246) into (2.245), and making use of the
solution (2.167), we find, after collecting terms,

δvI = (δΦ) [ (C1 + iC2) vO + C3 vA ], (2.247)

where we have defined the chromatic aberration coefficients C1, C2,
and C3 in natural units as

C1 = −M

k

∫ zI

zO
p−1 { (2 p−2 + 1) Φ′ g′ h

+ 1
2

[ (2 p−2 + 1) Φ′′ + p−2(1 + Φ)B2 ] g h } dz

C2 =
M

2

∫ zI

zO
p−3 (1 + Φ)B dz

C3 = −M

k

∫ zI

zO
p−1 { (2 p−2 + 1) Φ′ hh′

+ 1
2

[ (2 p−2 + 1) Φ′′ + p−2(1 + Φ)B2 ]h2 } dz.
(2.248)
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By inspection, the three terms in (2.247) represent, in order, field
magnification, field rotation, and defocus. This last is independent
of field position. The chromatic aberration (2.247) is referred to
the object by substituting δvO = M−1 δvI . In the non-relativistic
limit we substitute in (2.248) to obtain

1 + Φ ≈ 1, p ≈
√

2 Φ, 2 p−2 + 1 ≈ 1

Φ
. (2.249)

The chromatic aberration δvI can be expressed in Cartesian coor-
dinates in the rotated system by substituting v = x + i y. Upon
separating the real and imaginary terms, this gives (2.247)

δxI = (δΦ) (C1 xO − C2 yO + C3 xA)

δyI = (δΦ) (C1 yO + C2 xO + C3 yA). (2.250)

This represents the solution for the chromatic aberration in the
rotated coordinate system. The reader is reminded that δxI and
δyI are quantitatively identical in natural units and in SI units,
since the dimension of length is the same in both sets of units.

2.5.9 Intensity point spread function

The net effect of geometrical aberrations and defocus is that, even
in the limit of a hypothetical ideal point object, the image is not
a point, but is blurred. The amount of blurring gives a direct esti-
mate of the quality of the image. In classical geometrical optics, all
relevant information about the image is contained in the intensity
as a function of position in the transverse plane. The physical im-
age intensity can be regarded as a two-dimensional convolution of
the ideal image intensity with an intensity point spread function.
The intensity point spread function is the image of a hypothetical
ideal point object, in the presence of aberrations and defocus. A
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method for calculating the intensity point spread function is de-
rived by Gallatin [32]. In this section, we give an alternative deriva-
tion which is consistent with the foregoing analysis, and leads to
the same result obtained by Gallatin.

In mathematical terms, we define the intensity point spread func-
tion I(xI), as the two-dimensional intensity distribution in the
Gaussian image plane for an ideal point object, in the classical
limit of geometrical optics. We wish to obtain an analytic expres-
sion for I(xI), given the aberrations and defocus. We can write

I(xI) =
∫
d2PI ρI(xI ,PI), (2.251)

where xI = (xI , yI) is the transverse position, in the rotated sys-
tem, PI = (PIx, PIy) is the transverse canonical momentum, and
ρI(xI ,PI) is the phase space density, all defined in the Gaussian
image plane. We have integrated over all momentum components,
to obtain the intensity as a function of transverse position only.

Any optical system, however complicated, can be analyzed in
terms of an equivalent system consisting of two lenses. This is
shown schematically in Figure 2.14. In the equivalent system the
object plane coincides with the front focal plane of the first lens.

Figure 2.14: Equivalent confocal system.
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A physical aperture is located at the back focal plane of the first
lens, which coincides with the front focal plane of the second lens.
It is easy to verify from the figure that the Gaussian image plane
coincides with the back focal plane of the second lens. Both lenses
are assumed to be ideal in the equivalent system. Each ray emanat-
ing from a point object intersects the aperture plane at a unique
transverse position xA = (xA, yA). Because the lenses are assumed
to be perfect, every ray has the same optical path length between
object and image. In the real system, the various rays have differ-
ing optical path length, owing to the aberrations.

The optical path difference for the primary aberration is given
by (2.223, 2.159)

W4 =
∫ zI

zO
m4 dz (2.252)

for the real system. We assume this to be known for each ray from
the preceding analysis. We now assume that all aberration of the
real system for a particular ray is concentrated in the aperture
plane of the equivalent system, manifest as an optical path differ-
ence W4 from ideal.

In mathematical terms, we wish to find the intensity point spread
function (2.251) in the Gaussian image plane, given the optical
path difference (2.252) for each ray in the real system. For the
equivalent system we can express the momentum element in the
Gaussian image plane in terms of a unique area element in the
aperture plane as

d2PI =

(
∂PIx
∂xA

∂PIy
∂yA

− ∂PIx
∂yA

∂PIy
∂xA

)
d2xA =

(
pI
f

)2

d2xA, (2.253)

where the large parenthesis is the Jacobian determinant, and where
we have made use of (2.196)

P(z) = p(z) [xO g
′(z) + xA h

′(z)]

PI = pI (xO g
′
I + xA h

′
I) (2.254)

in the paraxial approximation, where p(z) is the scalar kinetic mo-
mentum on axis. Also, h′I = 1/f where f is focal length of the final
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lens in the ideal system.

From Liouville’s theorem we can relate the phase space density
in the aperture and image planes of the equivalent system as fol-
lows:

ρI (xI ,PI) = ρA (xA,PA). (2.255)

It follows that the intensity in the image plane can be written as
(2.251, 2.253, 2.255)

I(xI) =

(
pI
f

)2 ∫
d2xA ρA(xA,PA). (2.256)

This expresses the intensity in the Gaussian image plane entirely in
terms of quantities in the aperture plane of the equivalent system.
The reason for choosing the equivalent system becomes clear from
this. We can assume a simple form for ρA as follows:

ρA (xA,PA) = T (xA) δ(PA −∇WA), (2.257)

where T (xA) is assumed to be uniform over the aperture, corre-
sponding to uniform illumination. Normalizing the area integral
to unity, we set

T (xA) = 1/A (2.258)

inside the aperture, where we define A as the area of the aperture
in the equivalent system.

The momentum distribution in (2.257) is a Dirac delta function,
where ∇WA is the two-dimensional gradient in the aperture plane
(2.60). From (2.109) this is the transverse canonical momentum
in the aperture plane. In the limit of perfect imaging, the sur-
faces of constant optical path are planar in the space between the
two lenses of the equivalent system. This corresponds to a parallel
beam of rays originating from a single object point. The intersec-
tion of these surfaces with the aperture plane form straight lines
(for a general off-axis object point), which represent the contours of
WA = const. In the general case with aberrations, these contours
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are curved, owing to the gradient of the optical path difference
across the aperture plane of the equivalent system. From (2.196)

PA = pA (xO g
′
A + xA h

′
A) = pA xI/f, (2.259)

where we have made use of

xO =
xI
M
, g′A =

M

f
, h′A = 0. (2.260)

We also assume the equivalent system to be monoenergetic in the
space between the aprture plane zA and the image plane zI . It
follows that pA = pI ≡ p. From (2.256, 2.257, 2.258, 2.259)

I(xI) =
1

A

∫
dxA

∫
dyA δ

(
f

p

∂WA

∂xA
− xI

)
δ

(
f

p

∂WA

∂yA
− yI

)
,

(2.261)
where we have made use of the properties of the delta function:

δ(−x) = δ(x), δ(ax) =
1

a
δ(x). (2.262)

Applying the property of delta function, we first define a function

f(a, b) =
∫
dx

∫
dy δ[u(x, y)− a ] δ[ v(x, y)− b ]. (2.263)

In order to evaluate this, we must transform from the set (x, y) to
the set (u, v). This involves the Jacobian determinant,

du dv =

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
dx dy ≡ D(u, v) dx dy. (2.264)

With the coordinate transformation complete, the integral is eval-
uated using the property of the delta function,

f(a, b) =
∫
du

∫
dv

1

D(u, v)
δ(u− a) δ(v− b) =

1

D(a, b)
. (2.265)

Applying this mathematical formalism to the present problem, we
define (2.261)

u(xA, yA) =
f

p

∂

∂xA
WA(xA, yA)

v(xA, yA) =
f

p

∂

∂yA
WA(xA, yA). (2.266)
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We assume u(xA, yA) and v(xA, yA) to be known functions, as
WA(xA, yA) is known a priori. Substituting, we find

D(u, v) =

(
∂u

∂xA

∂v

∂yA
− ∂u

∂yA

∂v

∂xA

)

=

(
f

p

)2 (
∂2WA

∂x2
A

∂2WA

∂y2
A

− ∂2WA

∂yA ∂xA

∂2WA

∂xA ∂yA

)
.

(2.267)

Consistent with the delta function (2.261), we set

u(xA, yA) = xI , v(xA, yA) = yI , (2.268)

and invert this pair to solve for (xA, yA) in terms of (xI , yI). Since
WA(xA, yA) is typically represented as a polynomial with terms
xmA ·ynA, this inversion amounts to finding the roots of a polynomial.

Using this new solution for (x̃A, ỹA), we form

D[u(x̃A, ỹA), v(x̃A, ỹA) ] ≡ D(xI , yI). (2.269)

The final result for intensity point spread function is then

I(xI , yI) =
1

A ·D(xI , yI)
. (2.270)

Applying this procedure for any point in an extended object, one
constructs the intensity point spread function about correspond-
ing image point in the limit of geometrical optics. This is the main
result of this section.
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2.6 Stochastic Coulomb scattering

In an earlier section, we discussed the effect of space charge on
a hypothetical test particle in the beam. The space charge was
regarded as a continuum. Approximating the current density as
uniform within the beam volume, we showed that the space charge
acts as a negative lens. In the paraxial approximation, the net re-
sult of the space charge is defocusing. The space charge lens also
has aberrations, which can be calculated in principle.

This approximation does not precisely agree with experiment,
however. The first indication of this was seen by Boersch [7], who
measured significant energy broadening in an electron beam, which
grew monotonically with current. This could not be explained
by any continuum approximation. This took on practical signif-
icance with the advent of electron beam lithography, for which
the Coulomb interaction places a limit on the useful writing cur-
rent for a given resolution. This in turn limits the throughput to
values which are slow compared with optical lithography.

A beam of particles can be regarded more realistically as a col-
lection of discrete, moving point charges, distributed randomly in
space within the beam volume. Every particle exerts a Lorentz
force (2.15) on every other particle, resulting in a random dis-
placement of each particle. The effect becomes more pronounced
as the beam current is increased, owing to the closer proximity of
beam particles. It also becomes stronger as the interaction time is
increased, as the particles have more time to interact. The inter-
action time increases as the length of the beam path increases, or
the beam energy decreases.

A rough estimate of the relative strength of the interaction is ob-
tained from the average axial spacing between particles, given by
the charge times the velocity divided by the current. In a typical
electron microscope, no more than one electron is in the column at
any given instant on average. Coulomb scattering is unimportant
in this case. In a typical electron or ion beam lithography system,
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one uses the highest possible current, without unacceptably de-
grading the resolution. Consequently, the axial distance between
particles can be on the order of micrometers. In this case the inter-
action is important enough, that it imposes a limit on the useful
writing current for a given resolution.

2.6.1 Monte Carlo simulation

Stochastic Coulomb scattering is a many-body interaction involv-
ing a large number of particles. As such, the detailed motion of
every particle cannot be solved in closed form, even if the initial
position and velocity of every particle were known. Fortunately, a
great deal of understanding can be gained by treating the inter-
action statistically. Numerical Monte Carlo simulation [26, 39, 76]
provides a tool for accurately predicting the relevant performance
parameters for a given system configuration. A pseudo-random
number generator is used to initialize the positions and veloci-
ties of many particles in the vicinity of the source, with the beam
voltage and source current taken into account. The motion of ev-
ery particle is then traced numerically through the optical system,
with the Lorentz force due to every other particle taken into ac-
count at every step.

The Lorentz force is the vector sum of an electrostatic force and a
magnetic force (2.15). This is shown schematically in Figure 2.15.
A particle labeled a with charge qa and mass ma is at position
ra with velocity va in the lab frame. This particle experiences a
Lorentz force due to a second particle labeled b with charge qb
and mass mb at position rb with velocity vb. The Lorentz force on
particle a due to particle b is given in the lab frame by (2.15)

d

dt
(γamava) = qa(Eab + va ×Bab), (2.271)
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Figure 2.15: Lorentz force on a particle due to a second particle.

where Eab is the electric field at particle a due to particle b, and
Bab is the magnetic field at particle a due to particle b. We can
assume without loss of generality that the vectors vb and ra − rb
determine a plane, and this plane coincides with the plane of the
page in Figure 2.15. The electric field at the position of particle a
due to particle b is given by

Eab =
qb

4πε0

ra − rb
|ra − rb|3

. (2.272)

The magnetic field is given by

Bab =
µ0qb
4π

vb × (ra − rb)

|ra − rb|3
. (2.273)

This field points into the plane of the page for positive charge qb.
The Lorentz force on particle a is then

d

dt
(γamava) =

qaqb
4πε0|ra − rb|3

·
{

(ra − rb) +
1

c2
va × [vb × (ra − rb)]

}
,

(2.274)
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where we have made use of µ0ε0 = 1/c2. Expanding the double
cross product, and summing over all particles b, the total vector
Lorentz force on particle a due to all other particles is

d

dt
(γamava) =

qa
4πε0

∑
b6=a

qb
|ra − rb|3

·
{

(ra − rb)
(

1− va · vb
c2

)
+

1

c2
vb[va · (ra − rb)]

}
.

(2.275)

To this point we have made no approximations.

We now approximate that dγa/dt ≈ 0. The resultant acceleration
aa of particle a is then given by

dva
dt

=
qa

4πε0γama

∑
b6=a

qb
|ra − rb|3

·
{

(ra − rb)
(

1− va · vb
c2

)
+

1

c2
vb[va · (ra − rb)]

}
.

(2.276)

We are now in a position to numerically compute the trajectory of
particle a. Dropping the subscript a, we can write a Taylor series
for the trajectory point i+ 1 in terms of the point i as

ri+1 = ri + vi(∆t) + 1
2
ai(∆t)

2 + 1
6
ȧi(∆t)

3 + . . .

vi+1 = vi + ai(∆t) + 1
2
ȧi(∆t)

2 + . . .

ai+1 = ai + ȧi(∆t) + . . . , (2.277)

where the time increment is ∆t = ti+1 − ti. The quantity ȧi is the
time rate of change of the acceleration ai. This can be calculated
analytically by time differentiation of the expression for the accel-
eration. This is left as an exercise for the reader. This procedure
is repeated for all of the particles in the sample.

The physical significance of the interaction can be better appreci-
ated by noticing that va ≈ vb. Ignoring the last term on the right
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of the expression (2.276) for the acceleration, we obtain

dva
dt
≈ qaqb

4πε0maγ3

ra − rb
|ra − rb|3

. (2.278)

This closely resembles the acceleration due to a pure Coulomb
force, but is reduced by a factor of 1/γ3. This reflects the rela-
tivistic mass γma, and a factor of 1/γ2 expressing the canceling
nature of the electrostatic and magnetic forces at relativistic beam
energies.

As the time step ∆t is decreased, the particle displacement ap-
proaches a stable value. The number of computation steps is in-
versely proportional to ∆t, so one naturally chooses the largest
∆t for which the displacement adequately approximates the stable
end value. Including more terms in the Taylor expansion improves
the convergence in a nonlinear way [88]. It can be shown that the
truncation error for a given ∆t is inversely proportional to nm,
where n is the number of integration steps, and m is the order of
the highest order term in the Taylor series.

One increases the particle sample size N until a stable limiting
value of the displacement is obtained. The number of computa-
tions for each time step is N(N − 1)/2. Since this is quadratic in
N , it has a large impact on the overall computation time for large
N . The length of the simulated beam segment is proportional to
N . The force on particles near the ends of the sample is improp-
erly represented. To assess the importance of this, we imagine a
half-space filled with charge of some uniform average density. A
test particle on the boundary plane between the regions with and
without charge experiences a repulsive force due to the charge.
Considering the influence of a hemispherical shell of charge on the
test particle, the strength of the force is inversely proportional to
the square of the radius, and proportional to the total charge in
the shell. This latter is proportional to the square of the radius.
The net force is thus independent of the radius of the shell, and
all shells have the same influence on the test particle, regardless of
their radii. The range of the average Coulomb interaction is there-
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fore effectively infinite. It follows from these considerations that
the sample length must be much greater than the diameter of the
beam for accurate simulation. This can lead to a very large num-
ber of particles, and correspondingly long computation time. The
stochastic contribution to the displacement is expected to have
relatively short range, however, since the fluctuations average out
over long distances. A technique exists to take advantage of this by
separating the effects of the average and stochastic contributions
[40]. The reader is referred to this reference for details.

The above procedure applies to a drift length, with no external
fields present. In principle, one can add these fields into the ex-
pression for the Lorentz force. For many applications, a thin lens
approximation suffices, in which the direction of the velocity is
shifted toward the optic axis by an amount proportional to the ra-
dial distance off axis. The magnitude of the velocity is unchanged.
In this way, complex systems can be analyzed by Monte Carlo sim-
ulation of a series of drift lengths separated by thin lenses. Such
simulations have shown close agreement with experiment [51, 70].
Monte Carlo simulation thus offers a powerful predictive tool in
the design of practical systems.

Problem

Calculate an analytic expression for the time rate of change ȧi
in terms of the position ri, velocity vi, and acceleration ai.

2.6.2 Analytical approximation by Markov’s
method of random flights

Monte Carlo simulation is inherently accurate, due to the minimal
assumptions needed to describe the physical process. However, it
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suffers from two disadvantages. First, it is computationally inten-
sive. For a given system configuration, a new simulation must be
performed for every distinct operating point, and this can be very
time-consuming. Second, it is difficult to achieve an intuitive un-
derstanding of the physical process, such as the understanding one
might obtain from an analytical theory.

Given that the N-body problem cannot be solved analytically in
closed form, it is of great interest to inquire whether a suitable ana-
lytical approximation can be found. There is a history of attempts
to express beam broadening due to stochastic Coulomb scattering
by analytic approximations. Typically these approximations yield
a simple algebraic dependence on experimental parameters such as
beam energy, system length, beam current, and numerical aper-
ture. The reader is referred to two excellent reviews by Kruit and
Jansen [55] and by Jansen [49] for details.

This approach has the advantage that the optical properties of
a system can be estimated quickly and simply with some degree of
accuracy. This facilitates an intuitive understanding of the depen-
dency on experimental parameters. It has the disadvantage that
the formulas depend on the specific system configuration and on
the operating point.

No simple, general formulation appears to exist. Also, it becomes
necessary to independently evaluate the accuracy of the formula
before relying on it for a detailed design of a system. Assuming the
system has yet to be built, this evaluaton relies on Monte Carlo
simulation. In practice, one uses a judicious combination of ana-
lytic approximation and Monte Carlo simulation.

In this study, we attempt an analytical analysis which does not
result in such simple formulas, but strikes at the basic underly-
ing statistical mechanics. The remainder of this section closely
follows the earlier analysis by Groves [41]. We aim to derive a for-
malism which lends itself well to numerical analysis, where this
analysis is less computationally intensive than Monte Carlo sim-
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ulation. To this end, we first discuss of the problem of random
flights, originally formulated and solved by Markov, and reviewed
by Chandrasekhar [17]. We imagine a general physical process con-
sisting of a number of independent steps of varying size. For ex-
ample, the process might be the motion of a gas molecule, where
the molecule is multiply scattered. Between scattering events, the
molecule travels a random distance, which represents the length
of a step. We wish to determine the probability that the molecule
travels a given net distance after N scattering events. There are
many other examples of this general process. A key assumption is
that the probability of a single event is independent of past his-
tory. Such a succession of events is known as a Markov chain.

In mathematical terms, the problem can be stated as follows. We
assume the size of the jth step is governed by a probability den-
sity τj(xj) that the step length will be xj. Given this, we wish to
find the probability density WN(X) for net displacement X after
N steps with displacements xj, where j = 1, . . . , N . This is com-
pletely general, in that the vector quantities x and X can have
any dimensionality. The probability WN(X) is found by integrat-
ing over all possible step lengths xj, subject to the constraint that
the individual steps must add up to give the desired displacement
X. This is

WN(X) =
∫
· · ·

∫
δ

 N∑
j=1

xj −X

 τ1(x1) · · · τN(xN) · dx1 · · · dxN ,

(2.279)
where δ is the Dirac delta function, which ensures that only that
space is included in the integration, for which the constraint is
met. The delta function has an integral representation given by

δ

 N∑
j=1

xj −X

 =
1

(2π)n

∫
dnk exp

−ik ·
 N∑
j=1

xj −X

 ,
(2.280)

where the integral is performed over the entire n-dimensional space
of the n-vector k.
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Substituting (2.280) into (2.279), and interchanging order of in-
tegrations, we find

WN(X) =
1

(2π)n

∫
dnk exp(ik ·X)

·
N∏
j=1

[∫
dnxj exp (−ik · xj) τj(xj)

]
. (2.281)

We identify the square bracket as the Fourier transform of τj(xj)
defined by

τ̃j(k) =
∫
dnxj exp (−ik · xj) τj(xj). (2.282)

At this point we assume that the same probability τ(x) governs
all individual steps xj. It is, therefore, permissible to drop the
subscript j, yielding

WN(X) =
1

(2π)n

∫
dnk exp(ik ·X) [τ̃(k)]N . (2.283)

We identify this as an inverse Fourier transform. This can be ab-
breviated using a shorthand expression

W̃N(k) = [τ̃(k)]N . (2.284)

This represents the general solution to the problem of random
flights. It can be understood by applying the convolution theorem
of Fourier transforms. This says that the transform of a convo-
lution of two functions is equal to the product of the individual
transforms of the functions. In this case, the overall probability is
an N -fold convolution of the single-step distribution function with
itself, as one would naturally expect. It is evident that the problem
is quite naturally expressed in terms of Fourier transforms.

We now seek to apply this general mathematical approach to the
specific problem of stochastic Coulomb scattering. We imagine a
single particle, chosen at random, intersecting the target plane at
some transverse position. This position is determined by the action
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of the optical system, together with the Coulomb scattering with
every other particle. If one could remove the effect of the Coulomb
scattering, the particle of interest would intersect the target plane
at a different position. We call the vector difference between these
two positions the trajectory displacement. It is governed by a prob-
ability distribution. In mathematical terms, we wish to find this
probability distribution function.

Because the N -body problem cannot be solved in closed form,
we are led to seek a suitable approximation. To this end, we imag-
ine a second particle, also chosen at random. The second particle
scatters with the first particle, producing a smaller random tra-
jectory displacement. Now we imagine a third particle, chosen at
random, producing a small random trajectory displacement of the
first particle. Similarly, each of the N − 1 particles produces a
random displacement of the first particle. Each of these scatter-
ing events is a two-body interaction. As such, each event can be
solved analytically in principle. We now form the vector sum of all
of the N − 1 trajectory displacements of the first particle, making
a resultant trajectory displacement. This is shown schematically
in Figure 2.16. This is essentially the same approximation used as
a starting point by Van Leeuwen and Jansen [89], although the
details of their analysis are quite different from what is presented
here. The vector sum of the two-body displacements is given by
XS, while the N -body displacement is denoted by XN . In general,
these two displacements differ, as they were arrived at by different
means.

At this point we form a key hypothesis, namely, the sum of the
two-body displacements approximates the N -body displacement
to within an error which is small, compared with the displacement.
Mathematically, this is expressed as |XN − XS|/|XN | � 1. This
hypothesis can be tested using Monte Carlo simulation. Two sep-
arate Monte Carlo simulations are required, one using the N-body
algorithm described in the previous section, and another using the
vector superposition of two-body interactions described here [4].
The two simulations are run with identical initial conditions for
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Figure 2.16: N-body interaction and superposition of two-body
interactions.

each particle in the sample. The resulting trajectory displacement
is compared for each particle individually, with the difference be-
tween the two simulations recorded. Statistics are then performed
on the differences. It was shown in reference [41] that the two
methods agree within about one percent for a particular severe
case. The reader is referred to this reference for details. Our hy-
pothesis can safely be considered to be vindicated for a wide range
of operating conditions.

The vector superposition of two-body interactions thus represents
a useful basis to proceed. This superposition can be formally rep-
resented as a Markov chain. This is intuitively evident from Fig-
ure 2.16, in which the vector displacements visually appear like a
succession of random flights. In fact, the mathematical assump-
tions are the same, and the above analysis applies. We propose to
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use the most general possible approach, namely, calculating the
trajectory displacement in six-dimensional phase space. The fol-
lowing analysis closely follows [41], with a few minor changes in
notation. We define the following quantities:

χ0 = initial coordinate of an individual particle at time zero

s0 = initial separation of two particles at time zero

s = separation of two particles at time t, interaction present

s′ = separation of two particles at time t, interaction absent,

(2.285)

where all quantities are six-vectors in phase space. The first three
components are position, and last three components are momen-
tum. All quantities are random variables, described by probability
density functions.

We define an individual particle trajectory displacement as the
difference of two-particle separations s with and s′ without inter-
action as follows:

ε = 1
2

(s− s′), (2.286)

where the factor of 1
2

appears, because the individual particle dis-
placement is half the change in particle-particle separation for par-
ticles of equal mass. Consistent with the above hypothesis, we ap-
ply the Markov formalism, identifying ε with a single Markovian
step (2.282). The required Fourier transform for the distribution
of trajectory displacements ε is

τ̃(k) =
∫
d6ε exp(−ik · ε) τ(ε). (2.287)

We define a probability density σ0(χ0) of an initial single-particle
six-coordinate χ0. For example, the beam might be of uniform
spatial density, and monoenergetic. In this case the initial distri-
bution σ0(χ0) is a constant spatially, multiplied by a delta function
in momentum, within the beam volume, and zero outside the beam
volume.
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Given this, the probability density P0 of an initial two-particle
separation s0 is

P0(s0) =
∫
d6χ0 σ0(χ0)σ0(s0 − χ0), (2.288)

where the integral is performed for χ0 over the initial phase space
volume occupied by the beam. The integrand represents the joint
probability of finding one particle initially at χ0, and the second
particle displaced by s0 relative to the first particle. Integrating
over all χ0 ensures that P0 represents all possible pairs with initial
separation s0.

Alternatively, one could define

P0(χ0, s0) = σ0(χ0)σ0(s0 − χ0). (2.289)

This would retain the correlation with absolute single-particle six-
coordinate χ0. The first case, in which we integrate over χ0 leads
by definiton to just the stochastic interaction arising from local
fluctuations in the charge density. The second case without inte-
gration leads to the full result. This includes both the stochas-
tic interaction and the systematic effects arising from the global
charge distribution within the beam. For brevity in the following,
we consider the first case only.

We now make use of the fact that trajectories are conserved in
phase space. In any small volume of phase space, this is expressed
as

d6N = P0(s0) d6s0 = P (s) d6s = P ′(s′) d6s′ = τ(ε) d6ε. (2.290)

It follows that (2.287, 2.290):

τ̃(k) =
∫
d6s0 P0(s0) exp(−ik · ε), (2.291)

where the integral is performed over the space of initial two-
particle separations, determined by (2.288). The two-body scat-
tering has an analytic solution for the separation s in terms of the
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initial condition s0. Separately, the separation s′ in the absence of
interaction is also determined analytically from s0. From (2.286)
the trajectory displacement ε is thus found in terms of s0. This
permits us to perform the integral (2.291). Substituting this into
(2.283), we obtain the general solution for the stochastic Coulomb
interaction, in the vector superposition of two-body interactions.

We are often interested in only the transverse coordinates in some
target plane, or alternatively, the broadening of kinetic energy, for
example. In these cases, the other degrees of freedom, such as the
displacement in the axial coordinate, are superfluous. We need
to integrate over all of the superfluous degrees of freedom. For-
tunately, the form of (2.287) makes this particularly simple. Due
to a theorem of Fourier transforms, setting the frequency k equal
to zero is equivalent to integrating over the entire range of the
variable in direct space. By setting the superfluous components of
k equal to zero, we automatically integrate over these degrees of
freedom in the direct space of ε. This leaves only those degrees of
freedom we are interested in. In particular, this applies to (2.291),
where the superfluous degrees of freedom integrate to unity.

The general solution for the trajectory displacement is given by
(2.283, 2.291). In general, the integral in (2.291) must be per-
formed numerically. A special case exists for which a closed-form
analytic solution exists, however. This is the case in which all par-
ticles are initially at rest in the rest frame of the beam particles.
This is equivalent to an initially monoenergetic beam with zero en-
ergy in the rest frame. It follows that the beam is monoenergetic
in the lab frame as well. It is simpler to perform the calculation
in the rest frame, as the magnetic Lorentz force is zero, and the
choice of reference frame does not affect the transverse position.
The initial condition for the particle separation in six dimensions
is

P0(s0) = ψ(r0) · δ(p0), (2.292)

where r0 is the initial particle spatial separation, and p0 is initial
momentum difference. The spatial separation distribution ψ(r0)
will be determined later. Integrating over all momenta by setting
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the momentum components of k to zero, we find (2.291)

τ̃(kr; 0) =
∫ ∞

0
dρ0 ρ0

∫ ∞
−∞

dz0 ψ(ρ0, z0)
∫ 2π

0
dφ0 exp (−ikr · εr),

(2.293)
where kr is the three-vector spatial part of the six-vector k. We
have set the three-vector momentum part kp to zero. This is equiv-
alent to integrating over all momentum values in direct space.

Next we must find the spatial trajectory displacement εr at time
t. For the case in which the two particles are initially at rest, the
scattering reduces to the Kepler problem for zero angular momen-
tum, where the particles fly apart along a line joining them. In
this case the solution to the Kepler problem reduces to

t

√
e2

πε0mr3
0

=
r

r0

√
1− r0

r
+ tanh−1

√
1− r0

r
, (2.294)

where t is transit time, r0 is initial separation, and r is separation
at time t. Substituting this into (2.293) we obtain

τ̃(kρ, 0; 0) = 2π
∫ ∞

0
dρ0 ρ0

∫ ∞
−∞

dz0 ψ(ρ0, z0) J0

[
1
2
kρ ρ0

(
r

r0

− 1
)]
,

(2.295)
where kρ is the two-vector spatial part in the transverse (ρ, φ)
plane. We have made use of assumed axial symmetry and the
integral representation of the Bessel function J0(x) as

J0(x) =
1

2π

∫ 2π

0
dφ e−i x cos φ. (2.296)

We assume the particles are initially uniformly distributed over
a cylindrical volume with radius a and length L. It follows that
ψ0(r0) is convolution of a cylindrical volume with itself, as follows:

ψ0(r0) =
1

πa2L
· 2

π

cos−1
(
ρ0

2a

)
− ρ0

2a

√
1−

(
ρ0

2a

)2
 · (1− |z0|

L

)
,

(2.297)
where ψ0 is nonzero for

0 ≤ ρ0 ≤ 2a, −L ≤ z0 ≤ L, (2.298)
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and zero outside this region. This yields the probability density
for N − 1 scattering particles:

WN(εNρ) =
1

2π

∫ ∞
0

dkρ kρ [τ̃ (kρ, 0; 0)]N−1 J0 (kρ εNρ), (2.299)

where εNρ is magnitude of transverse component of resultant (net)
trajectory displacement, and we have made use of axial symmetry.
Equations (2.295, 2.297, 2.299) represent the solution. It is shown
in [41] that this solution agrees quantitatively with Monte Carlo
simulation for a particular severe case.

The main result of this section is contained in equations (2.283,
2.291) for the six-vector trajectory displacement in phase space.
In general, the integral in (2.291) must be performed numeri-
cally, given an assumed form for the initial distribution coordi-
nates σ0(χ0). We have further shown that the dimensionality can
be reduced in a straightforward manner by framing the problem
in terms of Fourier transforms. This has enormous practical sig-
nificance for extracting quantitative values for the components of
trajectory displacement.

2.7 Hamilton–Jacobi theory

The solution to the general dynamical problem in classical me-
chanics follows directly from Hamilton’s principle of least action
(2.8). An alternative, but completely equivalent formulation ex-
ists, in the theory due to Hamilton and Jacobi. This formulation
will prove useful in the following chapter, where we will explore
the correspondence between the classical and quantum mechanical
descriptions of single-particle motion in the presence of a general
electromagnetic potential. This section closely follows the analysis
of Goldstein, et. al. [35].
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2.7.1 Canonical transformations

We begin with Hamilton’s equations of motion (2.85), which are
given in their most general form as

∂H

∂Pi
= Q̇i,

∂H

∂Qi

= −Ṗi, i = 1, . . . , n, (2.300)

where the Qi are the n generalized coordinates, and Pi are the n
conjugate canonical momenta. The Hamiltonian is a function of
all coordinates and momenta, where

H = H(Q1, . . . , Qn; P1, . . . , Pn; t). (2.301)

In general, H can have explicit dependence on the time t, which
we regard as a parameter which uniquely specifies a given point
along the trajectory. For brevity, we adopt a vector notation where
H = H(Q, P; t), and

Q = (Q1, . . . , Qn)

P = (P1, . . . , Pn). (2.302)

In principle, Hamilton’s equations can be integrated to find the
coordinates Qi(t) and canonical momenta Pi(t) as functions of the
time t. This would constitute a formal solution to the general dy-
namical problem.

It is always possible to transform to a new system of coordinates
and momenta. As a simple example, one could transform from
Cartesian to spherical coordinates. This would simplify a prob-
lem with spherical symmetry, such as scattering by a spherically
symmetric Coulomb potential. The components of canonical mo-
mentum would also transform to a spherical system.

In this context, we imagine a transformation to a system where all
coordinates and momenta are constants of the motion. If such a
transformation were possible, this would represent an immediate
formal solution to the general dynamical problem, since the coor-
dinates and momenta would simply be equal to their initial values
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at time zero. Assuming for the moment that such a transformation
can be found, we express the new set

qi = qi (Q,P), pi = pi (Q,P), i = 1, . . . , n, (2.303)

where the new coordinates qi and canonical momenta pi are as
yet unspecified functions of the old Qi and Pi. Here we adopt a
different notation from the earlier sections, for reasons which will
become clear in the following. The pi are not to be confused with
the components of kinetic momentum described earlier. In order
for the motion to be physically possible, we require that the new
qi, pi also obey Hamilton’s equations

∂K

∂pi
= q̇i,

∂K

∂qi
= −ṗi, i = 1, . . . , n, (2.304)

where K(q, p; t) is the Hamiltonian in the new system. Any trans-
formation for which Hamilton’s equations of motion (2.300, 2.304)
are satisfied in both the old and new systems is called a canonical
transformation.

Hamilton’s principle (2.8) can be written separately in the two
systems (2.19) as

δ
∫ t2

t1

[∑
i

Pi Q̇i −H(Q,P; t)

]
dt = 0

δ
∫ t2

t1

[∑
i

pi q̇i −K(q,p; t)

]
dt = 0. (2.305)

In order for both equations to hold, the integrands can differ at
most by the total time derivative of an arbitrary function F as
follows:

∑
i

Pi Q̇i −H =
∑
i

pi q̇i −K +
d

dt
F (Q, q; t), (2.306)

where this represents a necessary condition relating the Hamil-
tonians H and K in the two systems. The function F is called a
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generating function. Expanding dF/dt by the chain rule for partial
derivatives, we find

dF

dt
=

n∑
i=1

[
∂F

∂Qi

Q̇i +
∂F

∂qi
q̇i

]
+
∂F

∂t
. (2.307)

Equating coefficients of Q̇ and q̇ respectively, we obtain

Pi =
∂F

∂Qi

, pi = −∂F
∂qi

, K = H +
∂F

∂t
. (2.308)

Other generating functions can be constructed. For example, we
can define a new function S by

S(Q,p; t) = F (Q,q; t) +
∑
i

pi qi. (2.309)

This is an example of a Legendre transformation. Substituting, it
follows that

Pi =
∂S

∂Qi

, qi =
∂S

∂pi
, K = H +

∂S

∂t
. (2.310)

At this point we make a key assumption: we imagine a transforma-
tion for which K ≡ 0, i.e., the Hamiltonian K in the new system
is identically zero. Assuming such a transformation can be found,
it would follow from Hamilton’s equations of motion in the new
system that

∂K

∂pi
= q̇i = 0,

∂K

∂qi
= −ṗi = 0, i = 1, . . . , n. (2.311)

From this we would immediately find that

pi = αi = const, qi = βi = const, i = 1, . . . , n, (2.312)

consistent with our original intent. The αi and βi constitute 2n
integration constants. Substituting above, we find

H

(
Q1, . . . , Qn,

∂S

∂Q1

, . . . ,
∂S

∂Qn

; t

)
+
∂S

∂t
= 0. (2.313)
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This equation is called the Hamilton-Jacobi equation, and S is
called Hamilton’s principal function. We notice the significant fact
that this equation only contains the variables Qi and t.

This immediately leads to a formal procedure to solve the dy-
namical problem in principle: we substitute ∂S/∂Qi for Pi in H,
then integrate to solve for S(Q, α; t). With S known, we then
invert the equation

βi =
∂

∂αi
S(Q, α; t) (2.314)

to solve for the Qi(t); i.e., find Qi = Qi(α, β; t). The αi and βi
are determined by the initial conditions. This represents a formal
solution to the general dynamical problem.

It is of particular interest to consider the important special case
where the original Hamiltonian H has no explicit time dependence.
The above procedure in (2.305) to (2.308) applies, with the differ-
ence that the time t does not appear explicitly in H(Q, P) and
K(q, p). It follows from this that the generating function F (Q, q)
has no explicit time dependence, and

∂F

∂t
= 0. (2.315)

We now define a new generating function W (Q,p) as

W (Q,p) = F (Q,q) +
n∑
i=1

pi qi. (2.316)

From (2.307, 2.315, 2.316) it follows that

Pi =
∂W

∂Qi

, qi =
∂W

∂pi
, K = H. (2.317)

Hamilton’s equations in the transformed system are

∂K

∂pi
= q̇i,

∂K

∂qi
= −ṗi, i = 1, . . . , n. (2.318)
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We now make the key assumption that

H = K = α1 = p1 = const, (2.319)

where H is the conserved total energy, which we thus identify with
the first conserved component of the new canonical momentum p1.
It follows immediately that

∂K

∂qi
= −ṗi = 0, pi = αi = const, (2.320)

where the αi form n integration constants. Also, from (2.318,
2.319),

∂K

∂pi
= qi =

{
1 when i = 1,
0 when i = 2, . . . , n.

(2.321)

This leads to

qi =

{
t+ β1 when i = 1,
βi when i = 2, . . . , n,

(2.322)

where the βi form n integration constants. From (2.319) it follows
that

H

(
Q1, . . . , Qn,

∂W

∂Q1

, . . . ,
∂W

∂Qn

)
= α1. (2.323)

This is the Hamilton-Jacobi equation for the special case where
the Hamiltonian H has no explicit time dependence. The function
W is called Hamilton’s characteristic function. Also, it follows that

βi =
∂

∂αi
W (Q, α)− t, i = 1

∂

∂αi
W (Q, α), i = 2, . . . , n. (2.324)

As before, this immediately leads to a formal procedure to solve
the dynamical problem in principle: we substitute ∂W/∂Qi for Pi
in H, then integrate to solve for W (Q, α). With W known, we
then invert the equation

βi =
∂

∂αi
W (Q, α) (2.325)
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to solve for the Qi(t); i.e., find Qi = Qi(α, β). The αi and βi are
determined by the initial conditions. This represents the solution.

The transformations generated by W and S have quite different
properties. From the third of equations (2.310) and from equation
(2.319), the two generating functions are related by

S(Q,p; t) = W (Q,p)− α1 t (2.326)

for the case where H has no explicit time dependence. This com-
pletes the formal solution to the dynamical problem by Hamilton-
Jacobi theory.

It is interesting to explore the relationship between the generating
functions S and W , and Hamilton’s principle of least action (2.8).
We begin by making a working hypothesis, namely, Hamilton’s
principle function S can be written as an indefinite integral

S(Q, α; t) =
∫ t

L(Q, Q̇, t′) dt′, (2.327)

where L is the Lagrangian. We now proceed to test the validity of
this hypothesis. From the definition of the Hamiltonian (2.19) we
rewrite this as

S(Q, α; t) =
∫ t
[

n∑
i=1

Pi Q̇i −H(Q, P; t′)

]
dt′. (2.328)

Taking the partial derivative with respect to Qi, we find

∂S

∂Qi

=
∫ t

dt′
∂

∂Qi

(
n∑
i=1

Pi Q̇i

)
−
∫ t

dt′
∂H

∂Qi

. (2.329)

The first term on the right is identically zero, since the quantity
in large parentheses has no dependence on Qi. From the second
of Hamilton’s equations (2.300), the second term on the right is
equal to Pi, giving

∂S

∂Qi

= Pi, (2.330)
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identical with the first equation (2.310). Taking the partial deriva-
tive with respect to time, we obtain

∂S

∂t
=

∂

∂t

∫ (
n∑
i=1

Pi dQi

)
− ∂

∂t

∫ t

H(Q, P; t′) dt′. (2.331)

The first term on the right is identically zero, since the integral
has no explicit time dependence. The second term on the right is
H(Q, P; t). This leads to

H +
∂S

∂t
= 0, (2.332)

identical with (2.313). We assumed in (2.327) that S is an indef-
inite integral, and is therefore defined only to within an additive
constant. This integration constant can always be chosen in prin-
ciple so that (2.314) is satisfied, remembering that the αi and βi
are constants of the motion. This completes the justification of
our postulate (2.327) for the form of S. We have thus identified
Hamilton’s principal function S with the indefinite integral cor-
responding to the action integral in Hamilton’s principle of least
action (2.8).

Next we consider the case where the Hamiltonian H(Q, P) has
no explicit time dependence. We rewrite (2.328) as

S(Q, α; t) =
∫

p · dQ−H t, (2.333)

remembering that H = α1 is the constant total energy. From
(2.326), it follows that

W (Q, α) =
∫

P · ds, (2.334)

where the right side is the indefinite path integral along the phys-
ical trajectory. We have thus identified Hamilton’s characteristic
function W with the indefinite integral corresponding to the action
integral in the mechanical equivalent of Fermat’s principle (2.41).
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2.7.2 Applications of Hamilton–Jacobi theory

To convey a feeling for how to use of the theory, and to show that
it actually works, we now apply it to two well-known examples [35].

The first example is the one-dimensional harmonic oscillator. The
Hamiltonian is

H =
P 2

2m
+
kQ2

2
, (2.335)

where k is the spring constant, and Q = is the coordinate for
the displacement. Obviously, the Hamiltonian H has no explicit
time dependence. According to our prescription, we now substitute
for the momentum P = ∂W/∂Q. The resulting Hamilton-Jacobi
equation is

1

2m

(
∂W

∂Q

)2

+
kQ2

2
= α1, (2.336)

where α1 is the conserved total energy. Hamilton’s characteristic
function W is expressed as the integral

W (Q,α1) =
∫
dQ

√
2mα1 −mkQ2. (2.337)

Also,

β1 =
∂W

∂α1

− t. (2.338)

Substituting, we obtain

t+ β1 =

√
m

2α1

∫ dQ√
1− k Q2/(2α1)

= −
√
m

k
arc cos

√ k

2α1

Q

 .
(2.339)

We invert this to solve for Q as follows:

Q(α1, β1) =

√
2α1

k
cos

√ k

m
(t+ β1)

 . (2.340)

We now assume an initial condition that the displacement Q is at
its maximum Q0 at t = 0. From this it fillows

β1 = 0, α1 = 1
2
k Q2

0, (2.341)
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where α1 is the total conserved energy. This is equal to the poten-
tial energy at maximum displacement Q0, where the kinetic energy
is zero. Also,

Q = Q0 cos

√ k

m
t

 . (2.342)

This represents the solution, expressing the familiar cosinusoidal

motion, where
√
k/m is the angular frequency.

As a second example, we study the Kepler problem. This will have
additional significance in classical Rutherford scattering, which
will be explored in Chapter 4. The Hamiltonian is

H =
1

2m

(
P 2
r +

P 2
θ

r2

)
+ U(r), (2.343)

where U is the potential energy. Hamilton’s equation for the an-
gular momentum is

∂H

∂θ
= −Ṗθ = 0, Pθ = α2 = const. (2.344)

We write the radial and angular momenta as

Pr =
∂W

∂r
, Pθ =

∂W

∂θ
= α2. (2.345)

This leads to a separable form for W as follows:

W (r, θ, α1, α2) = Wr(r, α1, α2) + α2θ. (2.346)

The Hamilton-Jacobi equation is

1

2m

(∂W
∂r

)2

+
α2

2

r2

+ U(r) = α1. (2.347)

Rearranging terms and taking the square root of both sides, we
find

∂Wr

∂r
=

√
2m(α1 − U)− α2

2

r2
. (2.348)
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Hamilton’s characteristic function W is thus expressed as the in-
tegral

W =
∫
dr

√
2m(α1 − U)− α2

2

r2
+ α2θ. (2.349)

Also,

β1 =
∂W

∂α1

− t. (2.350)

This is equivalent to

t+ β1 = m
∫ dr√

2m(α1 − U)− α2
2/r

2
. (2.351)

Furthermore,

β2 =
∂W

∂α2

, (2.352)

and

θ − β2 = −α2

∫ dr

r2
√

2m(α1 − U)− α2
2/r

2
. (2.353)

To this point we have not yet specified a precise form for the ra-
dially symmetric potential U(r), and the analysis remains general
in this regard.

At this point we assume an inverse law for U , namely

U(r) =
κ

r
, (2.354)

where κ is a real constant. The Coulomb force between two charges
q1 and q2 has

κ =
q1q2

4πε0
, (2.355)

for example. For charges of like sign, κ > 0, and the force is repul-
sive. For charges of opposite sign, κ < 0, and the force is attractive.
Making a change of variables u = 1/r, the equation for θ is imme-
diately integrated to give

θ − β2 = − cos−1

 α2
2u+mκ√

m2κ2 + 2mα1α2
2

 . (2.356)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 120 — #130 i
i

i
i

i
i

120 Chapter 2. Geometrical optics

We invert this to solve for u = 1/r as a function of θ as follows:

1

r
= −mκ

P 2
θ

 1 +

√
1 +

2HP 2
θ

mκ2
cos (θ − θ0)

 . (2.357)

We have identified

α1 = H, α2 = Pθ, β2 = θ0, (2.358)

where H is the conserved total energy, and Pθ is the conserved
angular momentum. We define a quantity called the eccentricity
as

ε =

√
1 +

2HP 2
θ

mκ2
. (2.359)

For 0 < ε < 1 the orbit is an ellipse, for ε = 1 it is a parabola,
and for ε > 1 it is a hyperbola. The integral (2.351) for t cannot
be expressed in closed form, but we assume an initial condition
β1 = −t0.

The main result is the orbit equation (2.357). This will apply di-
rectly to classical Rutherford scattering in Chapter 4.

2.7.3 Hamilton–Jacobi theory and geometrical
optics

Adopting the notation of earlier sections, the non-relativistic form
of the conserved Hamiltonian H is

H =
p2

2m
+ U(x) = const, (2.360)

where U(x) = qφ(x) is the time independent potential energy, and
q is the charge of the particle. The canonical momentum P is given
by

P = p + qA, (2.361)
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where p is the kinetic momentum and A is the magnetic vector
potential. According to the preceding analysis, Hamiton’s charac-
teristic function W is related to the canonical momentum P by

Pi =
∂W

∂xi
. (2.362)

The Hamilton-Jacobi equation is

∑
i

(
∂W

∂xi
− q Ai

)2

= 2m (α1 − q φ), (2.363)

where α1 = H is the conserved total energy, and the right side is
the square of the scalar kinetic momentum. In principle, this can
be solved for the trajectory by the above procedure, but no simple,
closed-form solution exists.

This is related to the action integral Wab by∫ xb

xa
P · ds =

∫ xb

xa
∇W · ds =

∫ xb

xa

∂W

∂s
ds =

[
W (x)

]xb
xa

≡ Wab,

(2.364)
where the integration path corresponds to a physical ray if and
only if W satisfies the Hamilton-Jacobi equation. The optical path
length Wab is identical with Hamilton’s characteristic function
evaluated between the two end points xa and xb. We have made
use of

P = ∇W, (2.365)

which means that the canonical momentum P is normal to the
surfaces W = const along the ray path. In the case where A = 0
(no magnetic field), the kinetic momentum p is normal to the sur-
faces W = const.

A relativistic generalization for a hypothetical spin-zero particle
can be formed from

H =
√
p2c2 +m2c4 + q φ = const, (2.366)

which leads to the Hamilton–Jacobi equation√
(∇W − qA)2 c2 +m2c4 + qφ = α1. (2.367)
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The equations (2.363) and (2.367) represent the main results of
this section. They are not amenable to closed-form analytical so-
lution, but will have far-reaching consequences in the correspon-
dence between the classical and quantum mechanical analyses to
come in Chapter 3.
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Chapter 3

Wave optics

To this point we have discussed the geometrical optics of charged
particles in electric and magnetic fields, based on relativistic clas-
sical mechanics. This fails to explain the important class of phe-
nomena arising from diffraction and interference of matter waves.
A proper description begins with quantum mechanics.

This is perhaps best appreciated by considering the analogy with
light optics. Einstein’s original hypothesis in 1905 holds that the
electromagnetic field is quantized. As such, light propagates in
discrete energy packets called photons. Furthermore, acording to
a later hypothesis by Einstein, a single photon is endowed with
momentum p which satisfies

p =
h

λ
, (3.1)

where h is Planck’s constant, given by h = 6.6261 × 10−34 Joule-
sec, and λ is the wavelength.

A later hypothesis of de Broglie states that this same relation-
ship between momentum and wavelength holds for a particle with
mass and charge. This indicates a close analogy between the dy-
namical motion of a charged particle and a photon. Both exhibit
particle- and wave-like behavior.

123
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Interference involves a single particle or photon propagating over
alternative paths, with an associated uncertainty in the path
taken. Position and momentum are described by a complex am-
plitude or wave function, with the amplitudes for alternative
paths adding to form a resultant complex amplitude. The abso-
lute square of this amplitude gives the probability or intensity. We
will explore the wave function in detail in the following sections.
The spatial part of the wave equation governing the propagation
of this amplitude is the same for a free particle and a free photon.
Consequently, the formalism of scalar diffraction, interference, and
image formation for light can be directly applied to particles.

The path taken by a ray of light can be found from Fermat’s prin-
ciple, which states that the physical path represents the shortest
possible transit time through a medium. The path taken by a par-
ticle can be found from the principle of least action, which states
that the physical path represents the minimum of the action inte-
gral. These two principles are strikingly similar. They arose from
a classical description, but as we shall see in the following, each
has a wave-optical analog as well. No classical analog exists for
the quantum mechanical description. However, quantum mechan-
ical motion of particles and photons approaches classical behavior
in the high-energy limit. The analogy between particle optics and
light optics is deep and pervasive.

The central problem in this chapter is to solve for the wave func-
tion for a particle of charge q and rest mass m propagating in a
general electromagnetic potential. With this foundation, we then
explore a few of the important implications for wave optics. We
begin with a review of basic quantum mechanics governing parti-
cle motion. We confine the discussion to only those topics which
are relevant to the motion of a fast (unbound) charged particle
in a general electromagnetic potential. This is the subject of the
following section.
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3.1 Quantum mechanical description

of particle motion

We seek a dynamical equation to describe the motion of a single
particle of charge q and rest mass m in the presence of a general
electromagnetic potential. To this end, we begin with a review of
basic quantum mechanics. For clarity, we will do this deductively,
beginning with the fundamental postulates of quantum mechanics,
and proceeding to the motion of a single charged particle in a
general electromagnetic potential. The reader can refer to any of a
number of excellent textbooks on basic quantum mechanics. [59],
[79].

3.1.1 The postulates of quantum mechanics

We begin with a fundamental postulate as follows:

Every measurable dynamical variable C has a corresponding op-
erator Ĉ, which satisfies a linear operator equation

Ĉ ϕ = c ϕ. (3.2)

The dynamical variable C can be any measurable physical quan-
tity. Examples include position, momentum, and energy, to name
a few. The operator Ĉ acts on the function ϕ, which is called an
eigenfunction. The multiplicative constant c is called an eigen-
value. In the following we will always denote an operator by a
hat over the letter, to distinguish it from an ordinary variable or
function. The definiton of a linear operator is explored further in
Problem 1.

The eigenfunction and eigenvalue are not necessarily unique, but
can take on various values. The number and character of possi-
ble values depends on the physical situation being described. For
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clarity, we therefore rewrite the operator equation (3.2) as

Ĉ ϕj = cj ϕj, (3.3)

where the subscript j labels the particular eigenfunction ϕj and
its corresponding eigenvalue cj.

At this point we state a second postulate as follows:

A single precise measurement of the dynamical variable C yields
one and only one of the eigenvalues cj.

This postulate establishes the physical significance of the eigen-
values cj, namely, each eigenvalue is a possible result of a mea-
surement of the corresponding dynamical variable. The physical
significance of the eigenfunctions ϕj will be made clear later.

We now proceed to apply this formalism to the motion of a charged
particle. We begin by defining the operators which correspond to
the dynamical variables of interest. The operators corresponding
to the three Cartesian coordinates of position x are defined as

x̂ = x

ŷ = y

ẑ = z, (3.4)

where the operation is multiplication. In words, the operators cor-
responding to the Cartesian coordinates are the coordinates them-
selves.

The operators corresponding to the three Cartesian components
of the magnetic vector potential A(x), and to the electrostatic
potential φ(x) are defined, respectively, as

Âx = Ax(x)

Ây = Ay(x)

Âz = Az(x)

φ̂ = φ(x), (3.5)
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where the operation is again multiplication. We assume for now
that the electromagnetic potentials have no explicit time depen-
dence. We will generalize this to the time-dependent case in a later
section.

The operators corresponding to the three Cartesian components
of the classical canonical momentum are defined as

P̂x = −ih̄ ∂
∂x

P̂y = −ih̄ ∂
∂y

P̂z = −ih̄ ∂
∂z
, (3.6)

where the operation is partial differentiation. The operators cor-
responding to the three Cartesian components of the kinetic mo-
mentum are defined as

p̂x = P̂x − q Âx
p̂x = P̂x − q Âx
p̂x = P̂x − q Âx

(3.7)

by analogy with the classical definition (2.25), where q is the charge
of the particle.

Finally, the operator corresponding to the classical Hamiltonian
function H is defined as

Ĥ = ih̄
∂

∂t
, (3.8)

where t is the time, and the operation is partial differentiation.

Although we discuss Cartesian coordinates, this description can
be made to apply to different types of coordinate systems. The
discussion is quite general in this respect. We will continue to use
Cartesian coordinates here, because an intuitive picture emerges



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 128 — #138 i
i

i
i

i
i

128 Chapter 3. Wave optics

which does not depend strictly on the choice of coordinates.

We now seek an operator equation which describes the evolution
of the particle motion in quantum mechanical terms. The classical
conserved Hamiltonian is given in the nonrelativistic limit by

H =
1

2m

(
p2
x + p2

y + p2
z

)
+ qφ(x). (3.9)

At this point we make a fundamental assumption, namely,

A valid operator equation can be constructed by substituting the
operator expressions for every classical quantity in the dynamical
equation.

Refering to (3.9), This gives

Ĥ ψ(x, t) =
[

1

2m

(
p̂2
x + p̂2

y + p̂2
z

)
+ qφ̂(x)

]
ψ(x, t). (3.10)

Adhering to our description, ψ(x, t) is an eigenfunction, whose
physical meaning will become clear later.

The operation p̂2
i is obtained by applying p̂i twice in succession:

p̂2
x = p̂x p̂x. We assume for now that the magnetic vector potential

A is zero. The more general case with nonzero A will be consid-
ered later.

Equating the two expressions (3.8) and (3.10) for the Hamilto-
nian operator, we can write down the resulting operator equation
as

ih̄
∂

∂t
ψ(x, t) =

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ q φ(x)

]
ψ(x, t).

(3.11)
The eigenfunction ψ(x, t) depends on the three spatial coordinates
x = (x, y, z) and the time t. In the following we will make use of
the ∇ notation, where, by definition

∇2ψ(x, t) = ∇ · ∇ψ(x, t) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(x, t). (3.12)
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We therefore write (3.12) as

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∇2ψ(x, t) + q φ(x)ψ(x, t). (3.13)

This is known as the time-dependent Schrödinger equation. It is a
linear partial differential equation of second order in x, and first
order in t. It applies to general curvilinear coordinates as well as
Cartesian coordinates, where one substitutes the appropriate form
for the Laplacian operator ∇2. It can be solved in principle for the
eigenfunction ψ(x, t), given the explicit form for φ and appropriate
boundary conditions.

We now investigate the physical meaning of the eigenfunction
ψ(x, t). We assume that ψ can be written in the separable form

ψ(x, t) = u(x) τ(t), (3.14)

where u is a function only of x and τ is a function only of t.
The function u is not to be confused with the complex transverse
particle position in the earlier description of classical geometrical
optics. Substituting above, and dividing through by uτ , we obtain

ih̄
1

τ(t)

d

dt
τ(t) =

1

u(x)

[
− h̄2

2m
∇2u(x) + q φ(x)

]
= H. (3.15)

We notice that the left side depends only on t, while the middle
depends only on x. This is only true in the case where φ is inde-
pendent of time, which we assume for now to be the case. This
separation of variables can only hold for all x and t if both sides
are equal to an arbitrary constant, which we call H. The physi-
cal meaning of H will become apparent in the following, but for
now it is just an arbitrary constant. Substituting, we obtain two
separate, decoupled equations given by

d

dt
τ(t) +

iH

h̄
τ(t) = 0

∇2u(x) +
2m

h̄2 [H − qφ(x) ] u(x) = 0. (3.16)
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The first equation is integrated immediately to give

τ(t) = τ(0) e−iHt/h̄, (3.17)

which the reader can verify by direct substitution. Without loss of
generality, we can assume an initial condition τ(0) = 1. The solu-
tion for u(x) depends on the particular form for the electrostatic
potential φ(x), which we leave unspecified and general for now. It
follows from (3.14) and (3.17) that

ψ(x, t) = u(x) e−iHt/h̄. (3.18)

The physical significance of the constant H becomes apparent if
we apply the Hamiltonian operator (3.46) to this form for the
eigenfunction ψ(x, t). This is

Ĥψ(x, t) = ih̄
∂

∂t
ψ(x, t) = Hψ(x, t). (3.19)

It is immediately apparent from the first postulate above that the
constant H is the eigenvalue corresponding to the Hamiltonian op-
erator Ĥ. In the present case, where we assume the potential φ(x)
has no explicit time dependence, the constant H is the eigenvalue
representing the conserved total energy.

Depending on the specific boundary conditions, yet to be spec-
ified for the particular problem at hand, the Schrödinger equation
(3.13) is satisfied only for certain specific values of u(x) and H. We
label these uj(x) and Hj, respectively, where the subscript j is only
a label, with integral values assigned for bookkeeping purposes.
According to the second postulate above, a single measurement of
the total energy H must yield one and only one of the possible
values of Hj. The presence of the subscript helps to remind one
that the eigenvalues Hj and the dynamical variable corresponding
to the classical Hamiltonian function H are two distinct quantities
which are related to one another by the formalism just described.
Based on this, we can define a set of eigenfunctions which describe
the complete behavior of the particle in space and time. This is

ψj(x, t) = uj(x) eiHjt/h̄, (3.20)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 131 — #141 i
i

i
i

i
i

3.1. Quantum mechanical description of particle motion 131

which satisfies the time-dependent Schrödinger equation (3.13).
The eigenfunction ψj oscillates with an angular frequency ωj de-
fined by

Hj = h̄ωj. (3.21)

The angular frequency is constant for a given constant energy
eigenvalue Hj, regardless of the form of the electrostatic potential
φ(x), assuming the potential has no explicit time dependence.

We will now proceed to derive two general mathematical prop-
erties of uj and Hj, which will greatly simplify the discussion to
follow. From (3.15) we can write

− h̄2

2m
∇2ui(x) + q φ(x)ui(x) = Hi ui(x)

− h̄2

2m
∇2ūj(x) + q φ(x) ūj(x) = H̄j ūj(x) (3.22)

for two different values of the indices i and j, where we have taken
the complex conjugate of both sides in the second equation. Mul-
tiplying the first equation by ūj, multiplying the second equation
by ui, and subtracting the second equation from the first, we find

− h̄2

2m

[
ūj(x)∇2ui(x)− ui (x)∇2ūj(x)

]
= (Hi − H̄j) ūj(x)ui(x),

(3.23)
where the potential energy term vanishes, assuming φ(x) is real.

At this point we specify boundary conditions on ui(x). We assume
that (3.15) is valid only within a cubic volume of side L, where L
is arbitrary. Recalling that x = (x, y, z) in Cartesian coordinates,
we further assume that ui(x, y, z) satisfies the boundary condition

ui(x+ L, y + L, z + L) = ui(x, y, z). (3.24)

Mathematically, this represents the periodic extension of the wave
function over all of space. This is therefore called a periodic bound-
ary condition. There is no loss of generality in this assumption,
because of the arbitrariness of L. Next, we integrate (3.23) over
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the cubic volume. This leads to

− h̄2

2m

∫
V
d3x

[
ūj(x)∇2ui(x)− ui (x)∇2ūj(x)

]
= (Hi − H̄j)

∫
V
d3x ūj(x)ui(x), (3.25)

where V = L3 is the cubic volume. Rearranging the left-hand side
and applying the divergence theorem, we obtain

− h̄2

2m

∫
V
d3x∇ · [ ūj(x)∇ui(x)− ui (x)∇ūj(x) ]

= − h̄2

2m

∫
S
d2S

[
ūj(x)

∂

∂n
ui(x)− ui(x)

∂

∂n
ūj(x)

]
= 0, (3.26)

where S is the surface of the cube. The integral vanishes because
of the periodic boundary condition, together with the fact that
the normal derivative is equal and opposite on opposite sides of
the cube. We therefore have

(Hi − H̄j)
∫
V
d3x ūj(x)ui(x) = 0. (3.27)

In the case i = j, we assume that the eigenfunction ui(x) is nor-
malized so that ∫

V
d3x ūi(x)ui(x) = 1. (3.28)

It follows that
Hi = H̄i. (3.29)

Equivalently, all energy eigenvalues Hi must be real-valued. In the
case i 6= j, and assuming Hi 6= Hj, the integral in (3.27) must
vanish. We therefore have the general property∫

V
d3x ūj(x)ui(x) = δij, (3.30)

where δij = 0 for i 6= j, and δij = 1 for i = j. The integral
is performed over the cubic volume. This property is known as
orthonormality of the eigenfunctions ui(x). Equations (3.29) and
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(3.30) represent two very useful mathematical properties in the
discussion to follow.

According to the second postulate above, a single precise mea-
surement of the dynamical variable H must yield one and only
one of the eigenvalues Hj. It is logical to enquire what determines
which of the eigenvalues it must be, or is likely to be, given a
specified experimental condition. We now turn our attention to
this question. We define a function

Ψ(x, t) =
∑
j

aj ψj(x, t), (3.31)

where all eigenfunctions ψj(x, t) are assumed to satisfy the time-
dependent Schrödinger equation (3.13), and where the {aj} rep-
resent a set of complex constants, whose values have yet to be
determined. It is straightforward to show by direct substitution
that Ψ(x, t) satisfies the Schrödinger equation as well, namely,

− h̄2

2m
∇2Ψ(x, t) + q φ(x) Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t). (3.32)

The proof of this is left as a problem at the end of this section.

We now enquire into the physical interpretation of the func-
tion Ψ(x, t). Writing out the explicit form of the time-dependent
Schrödinger equation, together with its complex conjugate equa-
tion, we find

ih̄
∂

∂t
Ψ(x, t) = − h̄2

2m
∇2Ψ(x, t) + q φ(x) Ψ(x, t)

−ih̄ ∂

∂t
Ψ̄(x, t) = − h̄2

2m
∇2Ψ̄(x, t) + q φ(x) Ψ̄(x, t). (3.33)

Multiplying the first of these by Ψ̄, multiplying the second by Ψ,
and subtracting the second equation from the first, we find

ih̄

(
Ψ
∂

∂t
Ψ̄ + Ψ

∂

∂t
Ψ̄

)
= − h̄2

2m

(
Ψ̄∇2Ψ−Ψ∇2Ψ̄

)
. (3.34)
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We can rewrite this as

∇ ·
[
ih̄

2m

(
Ψ∇Ψ̄− Ψ̄∇Ψ

) ]
+
∂

∂t

(
Ψ̄Ψ

)
= 0. (3.35)

This has a clear physical interpretation. We define a three-vector
quantity J(x, t) as

J(x, t) =
ih̄

2m

(
Ψ∇Ψ̄− Ψ̄∇Ψ

)
, (3.36)

and a function P (x, t) as

P (x, t) = Ψ̄(x, t) ·Ψ(x, t) = |Ψ(x, t)|2, (3.37)

which is positive-definite. The above equation can be rewritten as

∇ · J +
∂

∂t
P = 0. (3.38)

We immediately recognize this as a conservation equation, in anal-
ogy with fluid flow, where P (x, t) represents a density, and J(x, t)
represents a flux.

Based on these mathematical arguments, we identify the quantity
P (x, t) d3x as the probability that a single precise measurement
of the particle position will find the particle in a volume element
d3x about the position x at time t. We therefore call the quantity
P (x, t) a probability density. As a consistency check, we form the
integral over the cubic volume V ,∫

V
d3x∇ · J +

∂

∂t

∫
V
d3xP (x, t) = 0. (3.39)

Using the divergence theorem, the leftmost term can be rewritten
as ∫

V
d3x∇ · J =

∫
S

J · dS, (3.40)

where the surface S surrounds the volume V . The integral over the
surface S vanishes, owing to the periodic boundary condition, and
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the fact that the normal derivative is equal and opposite on oppo-
site sides of the cubic volume. It follows that the time derivative
in (3.39) vanishes. We can therefore write∫

V
d3xP (x, t) =

∫
V
d3x |Ψ(x, t)|2 = 1, (3.41)

where we have made use of the fact that Ψ(x, t) can be multi-
plied by an arbitrary constant, and still satisfy the time-dependent
Schrödinger equation. According to the probability hypothesis,
this is physically equivalent to the fact that the particle is cer-
tain to be found somewhere within the volume V .

Substituting,∫
V
d3x |Ψ(x, t)|2 =

∫
V
d3x

[∑
i

āi ψ̄i(x, t)

] ∑
j

aj ψj(x, t)


=

∑
i,j

āi aj e
−i(Hj−Hi)t/h̄

∫
V
d3x ūi(x)uj(x).

(3.42)

Equivalently, ∫
V
d3x |Ψ(x, t)|2 =

∑
j

|aj|2 = 1. (3.43)

At this point, we invoke a third key postulate, due originally to
Born [9], [10]:

The quantity |aj|2 represents the probability that any single precise
measurement of the total energy will yield the energy eigenvalue
Hj.

From (3.43) the individual probabilities sum to unity as required.
The set of {aj} are referred to as the state vector, and the function
Ψ(x, t) is called the state function.

Based on this probability interpretation, we now define the ex-
pectation value 〈H〉 of the total energy at time t as

〈H〉 =
∫
V
d3x Ψ̄(x, t)

[
Ĥ Ψ(x, t)

]
. (3.44)
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Substituting the definition (3.31) for the state function Ψ(x, t), it
is straightforward to show that

〈H〉 =
∑
j

| aj |2Hj (3.45)

as expected.

The state function Ψ(x, t) can be written in terms of the set {aj}
as

Ψ(x, t) =
∑
j

aj uj(x) e−iHjt/h̄. (3.46)

Multiplying both sides from the left by ūi and integrating over the
volume V , we find∫

V
d3x ūi(x) Ψ(x, t) =

∑
j

aj e
−iHjt/h̄

∫
V
d3x ūi(x)uj(x). (3.47)

Making use of the orthonormality of the uj, this is just

ai = eiHit/h̄
∫
V
d3x ūi(x) Ψ(x, t). (3.48)

Given the state function Ψ(x, t), we have thus calculated the coef-
ficients ai of the state vector. The equations (3.48) and (3.46) are
therefore the inverse of one another.

We now turn our attention to the relationship between theory
and measurement. We will do this in the context of a beam of
charged particles, although the thought process applies to other
quantum mechanical systems as well. The foregoing analysis ap-
plies to a single particle. All relevant information is contained in
the state function Ψ(x, t) and the state vector {aj}. The absolute
square of the state function is the probability density that a single
precise measurement will find the particle at position x at time t.
The absolute square of any coefficient aj is the probability that a
single precise measurement of the energy will yield the eigenvalue
Hj. We can consider the particle to exist in a particular state, as
completely specified by these quantities.
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One would naturally ask how the particle comes to exist in one
particular state, out of a multiplicity of possible states. The an-
swer is determined by the initial experimental condition by which
the state of the particle is prepared.

For example, we might have a case where the particle has passed
through an energy filter, so that the magnitude of the momentum
is selected to have one particular known value. Downstream from
this, the particle might be normally incident on a pair of slits
in an otherwise opaque screen, such that it must pass through
one of the slits. However it is not known which slit the particle
passes through. This initial condition defines the state function on
the front side of the screen as a constant which is independent of
transverse position. Furthermore, the state vector roughly has one
particular coefficient aj equal to one, with all other coefficients
equal to zero. We will see in the following sections that this is
a monoenergetic plane wave, and the experiment is the familiar
two-slit experiment. This represents a particular preparation of
the state, with this preparation being achieved in a controllable
manner experimentally. With this as an initial condition, the state
function and state vector then propagate through space and time,
consistent with the dynamical equation of motion (3.32).

In this example, one might allow the particle to impinge on a
phosphor screen placed further downstream. A flash of light is
emitted at the landing position of the particle. The transverse po-
sition of the particle is thus measured with high precision. The
position of a single particle at a single time does not represent a
great deal of useful information, however. It is much more use-
ful to measure the macroscopic properties of a beam of particles.
These properties include the current, the distribution of intensity
as a function of transverse position, the distribution of intensity
as a function of angle, and the distribution of kinetic energies. In
the present example the first two properties are measured. One
can envision an alternative measurement in which the phosphor
screen is replaced by a movable detector or a spectrometer. These
would allow measurement of the intensity as a function of angle
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or the distribution of energies. Measurement of these macroscopic
beam properties is conceptually equivalent to repeating the single-
particle experiment many times, once for each particle in the beam.
The preparation of the single-particle state is assumed to be the
same for each particle. This is the conceptual connection between
theory and measurement.

In order to better appreciate the physical significance of the the-
ory, we now explore an important and useful special case, namely,
a particle moving in a field-free space. This is the subject of the
next section.

Problems

1. Construct explicit expressions for the operators representing
the three Cartesian components of angular momentum.

2. By definition, a linear operator Ĉ satisfies

Ĉ (c1 ϕ1 + c2 ϕ2) = c1Ĉ ϕ1 + c2Ĉ ϕ2, (3.49)

where c1 and c2 are any two complex constants. Examples of linear
operations include multiplication by a constant and differentiation,
to name just two. Prove that all of the operators discussed in this
section are linear.

3. Prove that the operator Ĉ Ĉ is linear if Ĉ is linear.

4. The commutator of two operators Ĉ1 and Ĉ2 is defined as

[Ĉ1, Ĉ2] ≡ Ĉ1 Ĉ2 − Ĉ2 Ĉ1. (3.50)

(a) Write down an explicit expression for [x̂, P̂x], where x̂ is the
operator for the x-coordinate, and P̂x is the operator for the x-
component of the canonical momentum.

(b) Write down an explicit expression for [x̂, P̂y], where x̂ is the

operator for the x-coordinate, and P̂y is the operator for the y-
component of the canonical momentum.
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3.1. Quantum mechanical description of particle motion 139

5. Prove that the state function Ψ(x, t) defined by (3.31) satis-
fies the time-dependent Schrödinger equation (3.32).

3.1.2 Particle motion in a field-free space

The special case of a particle in field-free space is represented by
φ(x, t) = 0 and A(x, t) = 0, where φ and A represent the elec-
trostatic scalar potential, and the magnetic vector potential, re-
spectively. The spatial part of the Schrödinger equation in (3.16)
reduces to

∇2u(x) +
2mH

h̄2 u(x) = 0, (3.51)

where H is the conserved total energy. Equivalently,

∇2 u(x) + k2 u(x) = 0, (3.52)

where we have defined a constant k by

k2 =
2mH

h̄2 . (3.53)

We propose to integrate this using separation of variables, similar
to the previous section. We assume that the eigenfunction u(x)
can be expressed in Cartesian coordinates in separable form as

u(x, y, z) = X(x)Y (y)Z(z). (3.54)

Substituting, and dividing through by XY Z, this leads to

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)

Z(z)
+ k2 = 0. (3.55)
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This, in turn, leads to three independent equations

X ′′(x) + k2
xX(x) = 0

Y ′′(y) + k2
y Y (y) = 0

Z ′′(z) + k2
z Z(z) = 0, (3.56)

where we have defined three separate constants kx, ky, and kz
which obey

k2 = k2
x + k2

y + k2
z . (3.57)

Taking the first equation in (3.56), this has two independent solu-
tions given by

X(x) = e±ikxx, (3.58)

which the reader can verify by direct substitution. We immedi-
ately recognize a problem, in that the integral of |X(x)|2 over the
range of x from −∞ to∞ is infinite. This is inconsistent with the
probabilistic interpretation of eigenfunctions.

Our analysis is incomplete to this point, however, because we have
yet to specify the boundary conditions. To resolve this, we first
impose the arbitrary condition that X(x) is defined only over the
range −L/2 ≤ x ≤ L/2. We further impose the periodic boundary
condition by assuming

X(x+ L) = X(x), (3.59)

which we are completely at liberty to do, without loss of generality.
Substituting, this yields

e±ikxL = 1. (3.60)

This, in turn, requires that the constant kx take on discrete values

kx =
2πnx
L

, nx = 0,±1,±2, . . . . (3.61)

In addition, the solution can be multiplied by an arbitrary con-
stant, without affecting its validity. This gives

X(x) =
1√
L
eikxx. (3.62)
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It follows that ∫ L/2

−L/2
dx |X(x)|2 = 1, (3.63)

thus satisfying the normalization condition, required for probabil-
ity.

Repeating this for the y- and z-equations, we obtain

uk(x) = X(x)Y (y)Z(z)

=
1√
L3

ei (kx x+ky y+kz z)

=
1√
V
eik·x, (3.64)

where V = L3 is the volume of the cube. We have adopted the
vector notation k = (kx, ky, kz). The components kx, ky, and kz
take on the discrete values

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (3.65)

where nj = 0,±1,±2, . . . . The vector k is called the wave vector.
It is straightforward to show that∫

V
d3x ūk(x)uk′(x) = δkk′ , (3.66)

where the integral is performed over the cubic volume V . The
eigenfunctions uk(x) are plane waves, each with a unique wave
vector k.

Each set of nx, ny, and nz represents a distinct state with energy
given by

Hk =
h̄2

2m

(
k2
x + k2

y + k2
z

)
=

h2

2mL2

(
n2
x + n2

y + n2
z

)
. (3.67)

The interval L can be chosen to be arbitrarily large. As L is in-
creased, the energy values become more closely spaced. In the limit
L→∞, the energy levels approach a continuum. It does not fol-
low that the energy eigenvales become small, since the integers nx,
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ny, and nz can take on arbitrarily large values.

The eigenvalues (kx, ky, kz) form an infinite cubic lattice of equally
spaced points in k-space. Each lattice point can be regarded as oc-
cupying a cubic volume element of (2π/L)3 around the lattice point
in k-space. Based on this, the number of states per unit volume in
k-space is given by

dN

dVk
=

V

(2π)3
, (3.68)

where, again, V = L3. A unique wave vector k exists for each
lattice point with components given by

k = (kx, ky, kz). (3.69)

From (3.67), the discrete energy eigenvalue associated with each
lattice point is

Hk =
h̄2k2

2m
, (3.70)

where k is the magnitude of the wave vector k. It follows that
the surfaces of constant energy in k-space are spheres of radius k
about the origin k = (0, 0, 0). A small energy interval is therefore
represented by a spherical shell of volume dVk and thickness dk
where

dVk = 4π k2dk. (3.71)

We can calculate the number of states per unit energy interval.
This is given using the chain rule for derivatives as

dN

dHk

=
dN

dVk

dVk
dk

dk

dHk

. (3.72)

It is straightforward to show from (3.68, 3.70, 3.71, 3.72) that

dN

dHk

=
4πV

h3

√
2m3Hk. (3.73)

This quantity will turn out to be very useful later on. In words,
the density of energy states is proportional to the square root of
the energy. This calculation shows the simplification which results
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from regarding the states in k−space.

Separately, it is interesting to see what happens when we apply
the operator for the canonical momentum to the energy eigenfunc-
tions. This gives

−ih̄∇uk(x) = h̄kuk(x). (3.74)

Evidently, the energy eigenfunctions uk(x) are also the eigenfunc-
tions of the canonical mometum operator, with eigenvalues h̄k.
Having assumed that the magnetic vector potential A is zero, we
therefore identify h̄k with the kinetic momentum. This momentum
is proportional to the gradient of uk(x). It follows that the vector
k is perpendicular to the surfaces u = const, and therefore points
in the direction of wave propagation, as expected. The wavelength
is given by

λ =
2π

k
. (3.75)

This is the de Broglie wavelength, given by λ = h/p, where p is
the momentum.

Including the time dependence (3.18), we have

ψk(x, t) = uk(x) e−iHkt/h̄ =
1√
V
ei(k·x−ωkt), (3.76)

where Hk = h̄ωk. This is a traveling plane wave, propagating in
the direction k. From (3.57) the wave vector k and the angular
frequency ωk are related by the energy-momentum equation as

ωk =
h̄k2

2m
, (3.77)

where k2 = |k|2 = k ·k. This is called the dispersion relation. The
wave propagates with phase velocity vp given by

vp =
ωk
k

=
h̄k

2m
. (3.78)

Evidently, states with higher k (shorter wavelength) propagate
faster than states with lower k.
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Following the analysis of the preceding section, we define a state
function

Ψ(x, t) =
∑
k

ak ψk(x, t)

=
∑
k

ak uk(x) e−iHkt/h̄

=
1√
V

∑
k

ak e
i(k·x−ωkt), (3.79)

where the summation over k represents a summation over all pos-
sible values of (nx, ny, nz). As previously, the probability that a
single precise measurement of the total energy yields a specific
value Hk is given by |ak|2. Following the procedure of the earlier
analysis, we find

ak = eiωkt
1√
V

∫
V
d3x Ψ(x, t) e−ik·x, (3.80)

where the integral is over the cubic volume V .

Next we define a function Φ(k, t) which satisfies

ak√
V

=
1

(2π)3/2

dVk
dN

Φ(k, t). (3.81)

The reason for this precise definition will become clear shortly.
Substituting this into (3.79) and making use of (3.68), the state
function is

Ψ(x, t) =
1

(2π)3/2

∑
k

dVk
dN

Φ(k, t) ei(k·x−iωkt). (3.82)

We now consider the limiting case where the cubic volume V is
taken to be very large. According to the preceding arguments, the
lattice of eigenstates in k-space becomes very dense. In this case
the sum can be represented by the integral

Ψ(x, t) =
1

(2π)3/2

∫
d3k Φ(k, t) ei(k·x−ωkt), (3.83)
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where d3k is the volume element in k-space corresponding to one
state (dN = 1). Separately from (3.68, 3.81),

ak√
V

=
(2π)3/2

V
Φ(k, t) = eiωkt

1

V

∫
V
d3x Ψ(x, t) e−ik·x, (3.84)

where the integral is over the cubic volume V . Again taking the
limit of V very large, this becomes equivalent to

Φ(k, t) =
1

(2π)3/2

∫
d3x Ψ(x, t) e−i(k·x−ωkt), (3.85)

where the integral is now over all space. In order for this integral
to converge, it is necessary that the state function falls to zero
for very large x. This is equivalent to saying that the particle is
localized over some finite region of space.

The physical significance of Φ(k, t) can be appreciated by forming
the integral

∫
d3k |Φ(k, t)|2 =

∫
d3k

[
1

(2π)3/2
eiωkt

∫
d3x Ψ(x, t) e−ik·x

]

·
[

1

(2π)3/2
e−iωkt

∫
d3x′ Ψ̄(x′, t) eik·x

′
]
.

(3.86)

Rearranging the order of integrations, this is equivalent to∫
d3k |Φ(k, t)|2 =

∫
d3x Ψ(x, t)

∫
d3x′ Ψ̄(x′, t)

·
[

1

(2π)3

∫
d3k e−ik·(x−x

′)

]
. (3.87)

We recognize the quantity in square brackets as the Dirac delta
function, namely,

δ(x− x′) =
1

(2π)3

∫
d3k e−ik·(x−x

′). (3.88)
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Making use of the property of the delta function, this leads imme-
diately to ∫

d3k |Φ(k, t)|2 =
∫
d3x |Ψ(x, t)|2 = 1. (3.89)

From this we interpret |Φ(k, t)|2 as the probability density in k-
space, and Φ(k, t) as the state function in k-space. Recalling that
the momentum is p = h̄k, it follows that Φ(k, t) describes the
state in momentum space. From (3.83) and (3.85) we see that the
state functions Ψ(x, t) and Φ(k, t) are related by a Fourier trans-
form with respect to the spatial variables, but not with respect to
time. The result (3.89) is a general property of Fourier transforms
known as Parseval’s theorem.

As a further example of free-particle propagation, we consider
two sources at x = ±∞, which radiate in phase with each other.
By the earlier analysis, this gives rise to two individual free-particle
eigenstates, with normalized eigenfunctions given respectively by

ψ+(x, t) =
1√
L

exp[ i(+kx− ωt) ]

ψ−(x, t) =
1√
L

exp[ i(−kx− ωt) ], (3.90)

where h̄k is the momentum and h̄ω is the energy. The problem is
defined on the interval −L/2 ≤ x ≤ +L/2. Consistent with the
earlier analysis, we assume periodic boundary conditions, where k
takes on discrete values kn = 2πn/L, which approach a continuum
as L approaches infinity. These two plane waves propagate in op-
posite directions. The combination of these waves is represented
by the superposition state

Ψ(x, t) =
1√
2

(ψ+ + ψ−). (3.91)

Substituting, this is

Ψ(x, t) =

√
2

L
cos(knx) e−iωnt, n = 0,±1,±2, . . . .

(3.92)
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The resulting intensity is

|Ψ(x, t)|2 =
2

L
cos2(knx). (3.93)

We notice immediately that the time has dropped out, thus form-
ing a standing wave. This satisfies the normalization condition∫ L/2

−L/2
dx |Ψ(x, t)|2 = 1 (3.94)

for all wave numbers kn = 2πn/L. The intensity is plotted in
Figure 3.1 for the case n = 2. The intensity exhibits bright and

–

Figure 3.1: Standing-wave fringe pattern for counterpropagating
plane waves.

dark fringes, indicating constructive and destructive interference,
respectively. The spatial period of the fringes is inversely propor-
tional to kn, which can take on a multiplicity of values.
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Experimentally the intensity distribution is a property of the two
sources, i.e., the way in which the system is prepared. The two
sources are said to radiate coherently, because they have a def-
inite, constant phase relationship to one another. This situation
can be realized experimentally by impinging a parallel beam on a
positively charged fiber in otherwise field-free space. The beam is
bent toward the fiber on both sides, thus creating a region where
the beams from the two sides interact coherently with each other.
Such an arrangement is called a biprism, and has been demon-
strated. We have seen from this example that a single-particle
state with just two individual eigenstates populated shows strik-
ing and distinctive interference behavior.

Problems

1. Write down explicit expressions for the normalized eigenfunc-
tions, eigenvalues, and dispersion relations for a free particle in
one Cartesian dimension, assuming periodic boundary conditions
on a spatial interval of length L.

2. Estimate the quantum number nx for a free electron with energy
1 keV moving in a drift length L = 1 m. The correspondence prin-
ciple states that quantum mechanical particle motion approaches
classical behavior in the limit of large quantum numbers.

3. The state function Ψ(x, t) is said to describe single-particle
motion in the energy representation, since the eigenvalues of the
Hamiltonian operator Ĥ represent conserved energy. The state
function Φ(k, t) is said to describe the momentum representation.
Write down explicit expressions for the eigenfunctions and eigen-
values for a free particle in the momentum representation.
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3.1.3 Wave packet propagation and the Heisen-
berg uncertainty principle

From (3.79) the state function Ψ(x, t) represents a superposition
of indivudual plane waves propagating in space and time. Each
plane wave is described by a single eigenfunction ψk(x, t) with well-
defined wave vector eigenvalue k and angular frequency eigenvalue
ωk. All of the individual plane waves interfere with one another to
form a wave packet. This describes the propagation of a single
particle. We can gain an intuitive feel for this by considering one
spatial dimension. The eigenfunction for a single state k is

ψk(x, t) =
1√
L
ei(kx−ωkt). (3.95)

Assuming the wave packet consists of individual eigenstates which
are close together in energy, there is some central (k0, ω0) for which
the waves interfere constructively. This is represented by an ex-
tremum condition [

d

dω
(kx− ωt)

]
k0, ω0

= 0, (3.96)

where the derivative is evaluated at (k0, ω0). Performing the dif-
ferentiation, we find

x

t
=

[
dω

dk

]
k0, ω0

, (3.97)

where the left side is the velocity of propagation. We thus define
the group velocity as

vg =

[
dω

dk

]
k0, ω0

. (3.98)

Generalizing this to three dimensions, this is

vg = [∇k ω(k) ]k0, ω0
. (3.99)

We see from the dispersion relation that

vg =
h̄k0

m
. (3.100)
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Since the numerator is the momentum, we identify the group ve-
locity with the classical particle velocity. In this sense, the motion
of the group corresponds to the classical particle motion.

To further illustrate the significance of the state function, we con-
sider a particular example. We assume that the system can be
prepared experimentally, so that Ψ(x, 0) takes the form

Ψ(x, 0) =

[
1√

2πσ2
exp

(
− x2

2σ2

)]1/2

(3.101)

in one dimension. This is intentionally constructed so that
|Ψ(x, 0)|2 is a Gaussian distribution, and the integral over −∞ <
x < ∞ is unity, as required for a probability distribution. This
is often referred to as a Gaussian wave packet. The quantity σ is
known as the standard deviation, and is a measure of the width of
|Ψ(x, 0)|2. We therefore define the uncertainty in the x-coordinate
as

∆x = σ. (3.102)

Next, we form Φ(k) in one dimension. This is

Φ(k) =
1

2π

∫ ∞
−∞

dxΨ(x, 0) e−ikx. (3.103)

Substituting for Ψ(x, t), we find

Φ(k) =
1

2π

1

(2πσ2)1/4

∫ ∞
−∞

e−a
2x2e−ikx, (3.104)

where we have defined

a2 =
1

4σ2
. (3.105)

From tables,

1√
2π

∫ ∞
−∞

e−a
2x2e−ikx =

1

a
√

2
exp

(
− k2

4a2

)
. (3.106)

This gives

|Φ(k)|2 =
1

σa2
√

32π3
exp

(
− k2

2a2

)
. (3.107)
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The standard deviation is immediately recognizable as

∆k = a =
1

2σ
=

1

2∆x
. (3.108)

Equivalently,
∆x∆k = 1

2
. (3.109)

Recalling the momentum p = h̄k, it follows that

∆x∆p = 1
2
h̄. (3.110)

This is an example of the Heisenberg uncertainty principle, which
states that one can never know the position and momentum si-
multaneously to a precision better than this.

Given that the state function Ψ(x, t) depends on the experimental
conditions, we now return to the question of how one goes about
preparing a system experimentally. We described a practical ap-
proach to preparing a state consisting of a monochromatic plane
wave. As a further example, we now discuss the preparation of a
state consisting of a wave packet. We consider an electron beam
emitted from a thermionic (hot) source, and accelerated through
a potential difference φ0. The electrons in the beam have a spread
of energies of the order ∆H = kT , where k is Boltzmann’s con-
stant, and T is the absolute temperature of the electron source.
The energies are distributed about a central value H0 = eφ0. From
the energy-momentum relation, we have

h̄k =
√

2mH. (3.111)

Taking the differential of both sides, we find a spread of momentum

∆p = h̄∆k =

√
m

2H
∆H =

√
m

2 e φ0

k T. (3.112)

Regarding the wave packet as Gaussian, and invoking the uncer-
tainty principle, this leads to an uncertainty in the position of the
particle along the beam axis given by

∆x =
h̄

2 ∆p
=

h̄

kT

√
eφ0

2m
, (3.113)
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where we can regard ∆x as the extent of the wave packet.

In summary, the absolute square |Ψ(x, t)|2 of the state function
is the probability density that any single measurement will find
a single particle at position x at time t. As such, this quantity
has primary physical significance. The state function, in turn, is
a linear superposition of individual eigenfunctions ψj(x, t), with
the coefficients aj determined by the way in which the system is
prepared experimentally. The eigenfunctions ψj with associated
energy eigenvalues εj represent solutions to the Hamiltonian op-
erator equation, which, in turn governs the dynamical behavior
of the particle. Any single measurement of a single particle must
find the particle in one, and only one eigenstate. In particular, a
single measurement of the particle energy yields one, and only one
eigenvalue Hj. The probability of finding the particle in the jth
eigenstate is |aj|2.

Problems

1. An electron beam is accelerated to an energy of 1.0 KeV. The
beam is then made to pass through an energy filter which trans-
mits only electrons with a spread of energies ∆E = 0.025 eV
about the mean energy. Estimate the uncertainty in arrival time
of a single electron at a point just at the exit from the energy filter.

2. Electrons are emitted from a cathode and accelerated to form a
beam. Describe in words the conceptual relationship between the
macroscopic beam properties (current, energy, energy spread, path
length, and transit time) and the quantum mechanical motion of
a single beam electron. Assume the beam electrons do not interact
significantly with one another.
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3.1.4 The quantum mechanical analog of Fer-
mat’s principle for matter waves

Fermat’s principle describes the propagation of light, or more gen-
erally electromagnetic radiation. It states that light propagates
along a path which minimizes the transit time. Mathematically
this is equivalent to the statement that every physically allowable
ray satisfies the condition that the line integral of the index of
refraction n is stationary with respect to infinitesimal variations.
This is

δ
∫ xb

xa
n ds = 0. (3.114)

The index of refraction n is a property of the medium through
which the light propagates. It is defined as

n =
c

vp
, (3.115)

where c is the speed of light in vacuum, and vp is the phase velocity
of propagation in the particular medium. In general n can vary
from point to point in the medium, and is therefore a function
of position. In vacuum vp = c and n = 1. Since c is a constant,
Fermat’s principle can be written in the alternative form

δ
∫ ds

vp
= 0. (3.116)

Taking vp = ds/dt, this says physically that the path chosen by
the light ray is the one for which the propagation time is an ex-
tremum. In fact, the propagation time is a minimum.

According to an analysis by Fermi [27], a quantum mechanical
analogy with Fermat’s principle exists, which describes propaga-
tion of a single particle. A general property of propagating waves
says that the phase velocity can be written as vp = νλ, where ν
is the temporal frequency, and λ is the wavelength. In the case
where the electromagnetic potentials have no explicit time depen-
dence, the total energy is conserved. The conserved total energy
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is H = hν, from which it follows that ν is a constant. In this case
Fermat’s principle is equivalent to

δ
∫ ds

λ
= 0. (3.117)

Physically, all hypothetical rays in an infinitesimal neighborhood
surrounding the physical ray interfere constructively. In this con-
text, Fermat’s principle is fundamentally wave-mechanical.

Separately, the physical trajectory of a classical point particle with
mass m obeys the principle of least action,

δ
∫
p ds = 0, (3.118)

where we have assumed that the magnetic vector potential A is
zero, and the electrostatic potential φ(x) has no explicit time de-
pendence. Substituting for the kinetic momentum p, this is equiv-
alent in one dimension to

δ
∫ √

2m[H − U(x)] ds = 0, (3.119)

where U(x) = q φ(x) is the potential energy, and H is the con-
served total energy. The integrand can be regarded as an index of
refraction in the mechanical analog of Fermat’s principle in clas-
sical mechanics. Thus we have two alternative expressions for the
index of refraction. They are not equivalent, since one is wave-
mechanical, and the other is derived from classical mechanics.

Following Fermi, equations (3.116) and (3.119) guide us to form a
working assumption, namely, the phase velocity vp can be written
in the analogous functional form

1

vp
= f(ω)

√
H(ω)− U(x), (3.120)

where f(ω) and H(ω) are arbitrary functions of the angular fre-
quency ω, yet to be determined. We will investigate the validity
of this assumption in the following.
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The phase velocity vp is given quite generally by

vp =
ω

k
, (3.121)

where k is the wave number given by k = 2π/λ, and ω is the
angular frequency given by ω = 2πν. Substituting above, this
gives

k = ω f(ω)
√
H(ω)− U(x). (3.122)

This represents a dispersion formula, relating the wave number k
and the angular frequency ω.

To this point we have regarded k and ω to be fixed, with each tak-
ing on a single value. In practice, the quantum mechanical state
consists of a superposition of multiple eigenstates, with each state
characterized by a unique value of k and a unique value of ω. This
superposition represents a wave packet, which propagates with a
group velocity vg, given (3.98) in one dimension by

vg =
dω

dk
. (3.123)

The derivative is evaluated at central values of k and ω, for which
all partial waves associated with the individual eigenstates inter-
fere constructively. From (3.122) and (3.123) this gives

1

vg
=

dk

dω

=
√
H(ω)− U(x)

d

dω
[ω f(ω) ] + ω f(ω)

1

2
√
H(ω)− U(x)

dH

dω
.

(3.124)

At this point we make a further working assumption, namely

d

dω
[ω f(ω) ] = 0, (3.125)

which we will proceed to vindicate later. It follows from this that

ω f(ω) = const. (3.126)
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According to the correspondence principle, the group velocity vg
tends to the classical particle velocity in the limit of high quantum
numbers. The classical kinetic momentum p above is then replaced
by mvg in the limit. Following Fermi, this prompts us to further
assume independently that

1

vg
=

1√
(2/m) [H(ω)− U(x) ]

, (3.127)

where we have replaced the classical conserved total energy H with
the undetermined function H(ω). Equating the two expressions
(3.124) and (3.127) for 1/vg with the condition (3.125), we find
that

dH

dω
=

√
2m

ω f(ω)
= const. (3.128)

It can be shown experimentally, by electron diffraction by crystals,
for example, that the constant on the far right must be h̄. This
leads to

H = h̄ω, ω f(ω) =

√
2m

h̄
. (3.129)

The total energy eigenvalue H is determined to within an arbitrary
additive integration constant. The equation on the right vindicates
our assumption (3.126) that ω f(ω) = const. Substituting above,
this leads to

k =

√
2m [ h̄ ω − U(x) ]

h̄
. (3.130)

Equivalently,

h̄ ω =
h̄2k2

2m
+ U(x). (3.131)

We recognize this as the dispersion relation resulting from conser-
vation of total energy, where h̄ω is the total energy eigenvalue, and
h̄k is the momentum eigenvalue. Both ω and k are evaluated at the
central values which characterize the wave packet or superposition
state.

This analysis shows that the quantum mechanics of single-particle
propagation can be described in terms of a variational principle
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and the resulting dispersion relation. This is completely equiva-
lent to the postulate-based approach described earlier. Physically,
a close analogy exists with the wave optics of light propagation.

3.2 Particle motion in a general elec-

tromagnetic potential

In the preceding sections we have reviewed the conceptual basis of
quantum mechanics, as it relates to the motion of a single particle.
We are now in a position to include electric and magnetic effects.
For the present purpose, we confine our attention to fields which
vary slowly in space and time. This permits a more traditional
approach, based on Schrödinger theory. To this end, we consider
all relevant information about the electric and magnetic effects
to be contained in the electrostatic scalar potential φ(x, t) and
the magnetic vector potential A(x, t), respectively, where these
potentials are functions of position x and time t. Together, these
potentials form the components of a Lorentz-covariant four-vector
(2.5), which we refer to as a general electromagnetic potential.
The central problem is to solve for the wave function ψ(x, t) in the
presence of a general electromagnetic potential, where the absolute
square of this function is the probability density for finding the
particle at position x and time t.

3.2.1 Path integral approach for the time-
dependent wave function

A great deal of physical insight can be gained from the path inte-
gral description of quantum mechanics, originally due to Feynman
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[28]. The reader is referred to an emended version by Styer of the
original text by Feynman and Hibbs [29] for a detailed, compre-
hensive, and highly readable description. Our present goal is to
summarize the highlights of the text, with particular application
to the motion of a single charged particle moving in a general elec-
tromagnetic potential.

We begin by studying the motion of a particle in one dimension,
where the position x is a function of time t. Classically, the motion
from an initial time ta to a later time tb is along that path which
represents an extremum of the action integral Sba given by

Sba =
∫ tb

ta
L(x, v; t) dt, (3.132)

where L is the Lagrangian given by (2.9). The beginning point
charcterized by position and time (xa, ta), and the end point char-
acterized by position and time (xb, tb) are assumed to be fixed.

In a quantum-mechanical description we seek a probability am-
plitude ϕba for the particle to propagate from an initial position
and time (xa, ta) to a final position and time (xb, tb). Again we
assume that the end points (xa, ta) and (xb, tb) are fixed.

At this point we form a key hypothesis, namely, the amplitude
ϕba can be written for a given path of motion as

ϕba = const × exp
[
i

h̄
Sba

]
, (3.133)

where Sba is the action integral. An infinite number of possible
paths exist, each path having a distinct value of Sba. This is illus-
trated for a hypothetical system in Figure 3.2. The general rule
in quantum mechanics is that the amplitudes for all alternative
paths must be added to form the resultant amplitude. The abso-
lute square of this resultant amplitude then represents the proba-
bility density for finding the system at a given coordinate x. The
amplitudes ϕba for all possible paths must therefore be summed to
form the overall probability amplitude K(xb, tb;xa, ta). Following
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Figure 3.2: Possible paths between two fixed points in one spatial
dimension.

Feynman and Hibbs, we will refer to this overall amplitude as a
kernel, and the summation over all possible paths as a path integral.

The absolute square of the kernel represents the probability den-
sity Pba for finding the particle at position xb at time tb, having
started at position xa at an earlier time ta. Equivalently,

Pba = |K(xb, tb;xa, ta) |2. (3.134)

For a charged particle optics system of macroscopic dimensions,
the action integral Sba is very large compared to h̄. A small vari-
ation in path therefore results in a large variation in the action
integral divided by h̄, or equivalently in the phase of ϕba. The
classical path of motion is labeled 1 in the figure, with the path
shown as bold. According to Hamilton’s principle of least action
(2.8), the action integral Sba is stationary with respect to first-
order variations about this classical path. Consequently, all paths
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2 in the immediate vicinity of path 1 have approximately the same
phase for ϕba. The waves for these paths therefore interfere con-
structively.

For paths which are remote from the classical path, a small varia-
tion in path leads to a large variation in phase. This is represented
by paths 3 and 4 in Figure 3.2. The phase factor in the expres-
sion for ϕba oscillates rapidly for these paths. The sum over these
paths therefore is very close to zero on average. Only paths in the
immediate vicinity of the classical path contribute significantly to
the overall amplitude K(xb, tb;xa, ta). Quantitatively, the action
integrals Sba for the two nearby paths 1 and 2 can at most differ
by a reasonably small fraction of h̄ for constructive interference to
occur.

Further physical insight can be gained by noticing that, for any
single path

ϕba = ϕbc · ϕca, (3.135)

where (xc, tc) is any intermediate space-time point along the par-
ticular path. This arises from (3.132), which leads directly to

Sba = Sbc + Sca. (3.136)

This is depicted for a hypothetical system in Figure 3.3. The mo-
tion can be decomposed into a path from (xa, ta) to an intermedi-
ate point (xc, tc), followed by a path from (xc, tc) to the end point
at (xb, tb). Since the kernel K(xb, tb;xa, ta) is the integral over all
possible paths, it follows that

K(xb, tb;xa, ta) =
∫ ∞
−∞

K(xb, tb;xc, tc)K(xc, tc;xa, ta) dxc.

(3.137)
This represents the motion between a specific starting point
(xa, ta) and a specific end point (xb, tb).

For many purposes it is sufficient to know the state of the system
at a given end point (xb, tb), without regard for the prior history of
how the system got there. To this end we define the wave function
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Figure 3.3: Evolution of possible paths through an intermediate
point.

ψ(xb, tb) as
ψ(xb, tb) = K(xb, tb;xa, ta), (3.138)

that is, we simply ignore the fact that the motion started at a
particular point (xa, ta). Taking this assumption into account, it
follows that

ψ(xb, tb) =
∫ ∞
−∞

K(xb, tb;xa, ta)ψ(xa, ta) dxa, (3.139)

where we have relabeled the indices.

Incidentally, this concept can be extended to any number of in-
termediate points, including a large number of points spaced in-
finitesimally close to one another. This leads to a method of more
rigorously evaluating the path integral. The reader is referred to
[29] for the mathematical details.
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In words, (3.139) states that the wave function at any given point
in space-time represents the summation over all possible prior his-
tories. In addition, it follows from (3.134) that the probability
density P (xb, tb) for finding the particle at position xb at time tb
is given by

P (xb, tb) = |ψ(xb, tb) |2. (3.140)

Given this, it is of great interest to explore the evolution of the
wave function in a differential sense, where the end time tb differs
from the initial time ta by a differential time interval ε. By this
method we set out to derive a differential equation which describes
the evolution of the wave function ψ(x, t) in space-time. Applying
(3.139) it follows that

ψ(x, t+ ε) =
∫ ∞
−∞

K(x, t+ ε;xa, t)ψ(xa, t) dxa. (3.141)

Because this represents an infinitesimal increment in space-time, it
follows that virtually all of the contribution is due to paths in the
immediate vicinity of (x, t). We therefore make the substitution
xa = x+ η, where η is a small increment in position relative to x.
Substituting into (3.141) we obtain

ψ(x, t+ ε) =
∫ ∞
−∞

K(x, t+ ε;x+ η, t)ψ(x+ η, t) dη. (3.142)

The kernel K is given to good approximation by

K(x, t+ ε;x+ η, t) =
1

A
exp

[
i

h̄

∫ t+ε

t
L(x, v; t′) dt′

]
, (3.143)

where A is a normalization constant, yet to be determined. For
the infinitesimal integration interval this in turn reduces to

K(x, t+ ε, x+ η, t) ≈ 1

A
exp

[
i

h̄
ε L

(
x+

η

2
,
η

ε

) ]
, (3.144)

where the first argument of L is the position and the second argu-
ment is the velocity, both averaged over the infinitesimal integra-
tion interval. The nonrelativistic approximation for the Lagrangian
(2.7) is

L(x, v; t) = 1
2
mv2 + qv ·A(x, t)− qφ(x, t). (3.145)
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We assume for now that A = 0 for the magnetic vector potential.
Substituting, the wave function becomes

ψ(x, t+ ε) =
1

A

∫ ∞
−∞

exp

[
imη2

2h̄ε

]

· exp
[
− i
h̄
ε q φ

(
x+

η

2
, t
) ]

ψ(x+ η, t) dη,

(3.146)

where most of the contribution to the integral is for small values
of η. Next we expand ψ(x, t) in a power series to first order in ε
and second order in η. This gives

ψ(x, t) + ε
∂ψ

∂t
=

1

A

∫ ∞
−∞

exp

[
imη2

2h̄ε

]
·
[

1− i

h̄
ε V (x, t)

]

·
[
ψ(x, t) + η

∂ψ

∂x
+
η2

2

∂2ψ

∂x2

]
dη. (3.147)

Equating the leading terms on both sides, we must have, to zero
order in ε

ψ(x, t) = ψ(x, t) · 1

A

∫ ∞
−∞

exp

[
imη2

2h̄ε

]
dη

= ψ(x, t) · 1

A

(
2πih̄ε

m

)1/2

. (3.148)

Consequently, the normalization constant A is given by

A =

(
2πih̄ε

m

)1/2

. (3.149)

Continuing to evaluate the right-hand side of (3.148), we make use
of the two integrals

1

A

∫ ∞
−∞

η exp

[
imη2

2h̄ε

]
dη = 0

1

A

∫ ∞
−∞

η2 exp

[
imη2

2h̄ε

]
dη =

ih̄ε

m
. (3.150)
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Substituting, we obtain

ψ(x, t)+ε
∂

∂t
ψ(x, t) = ψ(x, t)− i

h̄
ε q φ(x, t)ψ(x, t)+

ih̄ε

2m

∂2

∂x2
ψ(x, t).

(3.151)
Equivalently,[

− h̄2

2m

∂2

∂x2
+ q φ(x, t)

]
ψ(x, t) = ih̄

∂

∂t
ψ(x, t). (3.152)

We recognize this as the time-dependent Schrödinger equation
(3.13) for one spatial dimension. Since the wave function ψ(x, t)
is itself a kernel, it follows that the kernel K(xb, tb;xa, ta) satisfies
Schrödinger’s equation as well. It is straightforward to generalize
the above arguments to three spatial dimensions, in which case
one obtains the full time-dependent Schrödinger equation (3.13)
in three spatial dimensions.

This shows the connection between the path integral approach
and the more traditional approach. It also vindicates our initial
choice for the form (3.133) of the amplitude ϕba. For a charged
particle optics system of macroscopic dimensions, only paths in-
finitesimally close to the classical path of motion, including the
classical path itself, contribute significantly to the wave function.

It should be added in this context that the path integral approach
is quite general, and applies to systems of atomic dimensions as
well as systems of macroscopic dimensions. In an atomic system,
the path integral is of the order of h̄ for all paths. Consequently,
all paths must be included in the path integral. This highlights
the simplification which is possible for a charged particle system
of macroscopic dimensions.

In most cases it is simpler to solve a differential equation than
to perform the path integral. In the next section we investigate
solutions to the Schrödinger equation for a single charged particle
in a general electromagnetic potential.
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Problems

1. Show that, for a free particle in one spatial dimension, the clas-
sical action integral Sba given by (2.10) can be evaluated in closed
form in the non-relativistic approximation as

Sba =
m

2

(xb − xa)2

tb − ta
. (3.153)

2. For a free particle, the kernel K0(xb, tb;xa, ta) can be evalu-
ated in principle by subdividing the interval (xb, tb;xa, ta) into N
subintervals of equal time step ε. Summing over all possible paths,
this leads to

K0(xb, tb;xa, ta) = lim
ε→0

1

A

∫ ∫
. . .

∫
exp

(
iSba
h̄

)
· dx1

A

dx2

A
. . .

dxN−1

A
, (3.154)

where A is given by (3.149), and Sba is the free-particle action
integral from the preceding problem. Show by repeated integration
that the free-particle kernel K0 can be expressed in closed form as

K0(xb, tb;xa, ta) =

[
m

2πih̄(tb − ta)

]1/2

exp

[
im(xb − xa)2

2h̄(tb − ta)

]
.

(3.155)
Note that the probability density Pba that the particle arrives at
(xb, tb) is proportional to the absolute square of the kernel K0.
This is

Pba(xb, tb;xa, ta) =
m

2πh̄(tb − ta)
. (3.156)

(Hint: the integral of a Gaussian function is also a Gaussian func-
tion. See [29, page 42] for detailed discussion.)

3. Show that, in three Cartesian dimensions, the wave func-
tion ψ(xb, tb) satisfies the three-dimensional time-dependent
Schrödinger equation (3.13). (Hint: this is a straightforward gen-
eralization of the derivation for one dimension.)
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3.2.2 Series solution for a particle in a general
electromagnetic potential

The central problem in this section is to solve for the single-particle
wave function ψ(x, t) in three spatial dimensions, in the presence of
a general electromagnetic potential with components A(x, t) and
φ(x, t). All relevant electromagnetic effects are contained in these
potentials. All relevant quantum-mechanical information about
the particle is contained in the wave function ψ(x, t).

Applying (3.4–3.13) we write the generalized time-dependent (non-
relativistic) Schrödinger equation as

ih̄
∂

∂t
ψ(x, t) =

1

2m
[−ih̄∇− qA(x, t) ]2 ψ(x, t) + q φ(x, t)ψ(x, t).

(3.157)
Applying the square bracket twice in succession, we obtain

[−ih̄∇− qA(x, t) ]2 ψ(x, t)

=
[
−h̄2∇2 + 2ih̄qA · ∇+ ih̄q (∇ ·A) + q2A2

]
ψ(x, t).

(3.158)

This leads to the wave equation

ih̄
∂

∂t
ψ(x, t)

=
1

2m

[
−h̄2∇2 + 2ih̄qA · ∇+ ih̄q (∇ ·A) + q2A2

]
ψ(x, t)

+q φψ(x, t),

(3.159)

which immediately reduces to the time-dependent Schrödinger
equation (3.11) in the limit A = 0 where no magnetic effects are
present.

We seek a form for the wave function ψ(x, t) which approximates
a free particle in the case where the electromagnetic potentials
A(x, t) and φ(x, t) are slowly varying in space-time. To this end
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we assume that the solution ψ(x, t) can be expressed in the form

ψ(x, t) = exp
[
i

h̄
S(x, t)

]
, (3.160)

where S(x, t) has yet to be determined. There is no loss of gener-
ality, assuming S(x, t) is complex, and remembering that ψ(x, t)
can be multiplied by an arbitrary normalization constant without
affecting the validity of the solution. We can write down a few
useful identities as follows:

∇ψ =
i

h̄
(∇S)ψ

∇2 ψ =
[
− 1

h̄2 (∇S)2 +
i

h̄
∇2S

]
ψ

∂

∂t
ψ =

(
i

h̄

∂S

∂t

)
ψ. (3.161)

Substituting these into (3.135), it is straightforward to show that
S(x, t) satisfies

(∇S − qA)2 − ih̄∇ · (∇S − qA) + 2m

(
∂S

∂t
+ qφ

)
= 0. (3.162)

The second term on the left is obviously proportional to h̄. For
a single particle in an unbound state, we can regard this term as
small relative to the other terms. (This will be justified later.) In
this case we can approximate

(∇S − qA)2 + 2m

(
∂S

∂t
+ qφ

)
≈ 0. (3.163)

We immediately notice the striking fact that this is precisely the
classical Hamiltonian–Jacobi equation of motion (2.313). We con-
clude from this that the function S(x, t) is approximately identified
with Hamilton’s principal function.

Equation (3.162) is nonlinear, and as such cannot be solved in
closed form. We therefore seek a suitable approximation. To this
end, we write S(x, t) as an infinite series,

S(x, t) = S0(x, t) + h̄ S1(x, t) + h̄2 S2(x, t) + . . . . (3.164)
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Substituting, and collecting terms in the various powers of h̄, we
obtain

0 =

[
(∇S0 − qA)2 + 2m

(
∂S0

∂t
+ qφ

)]

+ h̄

[
2∇S1 · (∇S0 − qA)− i∇ · (∇S0 − qA) + 2m

∂S1

∂t

]

+ h̄2

[
2∇S2 · (∇S0 − qA)− i∇2S1 + (∇S1)2 + 2m

∂S2

∂t

]
+ O

(
h̄3
)
. (3.165)

In order for this series to converge to a sensible result, the individ-
ual terms must become successively smaller. Physically, we expect
that the motion must approach the classical motion if we regard
h̄ to approach zero. Anticipating passage to the classical limit, we
therefore regard h̄ to be small, but variable. This requires that
each of the quantities in square brackets must vanish separately,
thus leading to a set of coupled equations for S0, S1, S2, . . ..

Taking the first equation in the series, we write

(∇S0 − qA)2 + 2m

(
∂S0

∂t
+ qφ

)
= 0, (3.166)

recalling that we regard the potentials φ(x, t) and A(x, t) to be
functions of position x and time t.

Next we seek the solution for S0(x, t). Rearranging terms, we can
write this as

∂S0

∂t
= − 1

2m
(∇S0 − qA)2 − qφ. (3.167)

The right-hand side is recognizable as the negative of the classical
Hamiltonian H, where we make the identification

∇S0 = P, (3.168)

and P is the canonical momentum. In this approximation, (3.166)
is precisely the classical Hamiltonian-Jacobi equation of motion
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(2.313). We conclude from this that the function S0(x, t) is iden-
tified with Hamilton’s principal function. Based on the expression
(2.327) for Hamilton’s principal function, we are prompted to pro-
pose a solution for S0 as follows:

S0(x, t; xa, ta) =
∫ t

ta
L(x,v; t′) dt′, (3.169)

where the right-hand side is the action integral in Hamilton’s prin-
ciple of least action. Substituting this solution into (3.166) and
making use of (3.168), it is straightforward to verify that this
is indeed the correct solution. Furthermore, substituting S0 into
(3.160) we recover (3.133) from the path integral approach de-
scribed earlier.

Forming the second equation for S1 from (3.165) we have

2∇S1 · (∇S0 − qA)− i∇ · (∇S0 − qA) + 2m
∂S1

∂t
= 0. (3.170)

Making use of (3.168) this reduces to

2∇S1 · p− i∇ · p + 2m
∂S1

∂t
, (3.171)

where p is the kinetic momentum given by p = P − qA. Assum-
ing the potentials A(x, t) and φ(x, t) are slowly varying, we can
approximate this as

2p
∂S1

∂s
− i ∂p

∂s
+ 2m

∂S1

∂t
= 0, (3.172)

where s is the coordinate along the path of motion, to which the
kinetic momentum p is locally tangent. This reduces to(

∂

∂s
+
m

p

∂

∂t

)
S1 =

i

2

∂

∂s
(ln p). (3.173)

This equation can be solved in principle for S1. We assume that
the further terms in the series (3.165) for S become progressively
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smaller for an unbound particle. This will be discussed in more de-
tail later. In principle, we substitute the terms S0, S1, S2, . . . into
(3.160) to form the wave function ψ(x, t).

We now turn our attention to the important special case where
the potentials A and φ have no explicit time dependence. In this
case the potentials can be written as A(x) and φ(x), respectively.
The earlier analysis showed that the Hamiltonian has no explicit
time dependence in this case, from which it follows that the total
energy H is conserved. According to Hamilton–Jacobi theory, the
function S0 can be expressed as

S0(x, t) = W0(x)−H t, (3.174)

where W0 is Hamilton’s characteristic function. Noting that
∇W0 = ∇S0, we obtain

(∇W0 − qA)2 = 2m (H − qφ) . (3.175)

We recognize the right side as the square of the kinetic momentum
[ p(x) ]2, where

[ p(x) ]2 = 2m [H − qφ(x) ]. (3.176)

This is satisfied by

∇W0 − qA = ±p(x), (3.177)

Retaining only the positive (right-propagating) root, and ignoring
the negative (left-propagating) root, we obtain

∇W0 = P(x), (3.178)

recalling that P = p + qA is the canonical momentum. Integrat-
ing, we obtain

W0(xb, tb)−W0(xa, ta) =
∫ xb

xa
P · dx, (3.179)
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where the integral is a line integral along a path joining the points
xa and xb. Substituting, this leads to

S0(xb, tb) = S0(xa, ta) +
∫ xb

xa
P · dx−H (tb − ta). (3.180)

The second term in (3.165) leads to

2 (∇S0 − qA) · ∇S1 − i∇ · (∇S0 − qA) = 0. (3.181)

Substituting the solution for S0(x, t), this becomes

p · ∇S1 =
i

2
∇ · p. (3.182)

We now assume that the potentials A(x) and φ(x) do not vary
significantly over distances comparable with the deBroglie wave-
length λ = h/p. This allows the approximation

p
∂

∂s
S1 =

i

2

∂

∂s
p, (3.183)

where s represents the coordinate along the path of motion, to
which the kinetic momentum vector p is locally tangent. This is
equivalent to

∂

∂s
S1 =

i

2

∂

∂s
(ln p). (3.184)

We immediately perform the line integral to obtain

S1(xb)− S1(xa) =
i

2
[ ln p(xb)− ln p(xa) ] = i ln

[
p(xb)

p(xa)

]1/2

.

(3.185)
Recalling the definition (3.164) for S, and substituting the results
for S0 and S1, we obtain the solution for the wave function for
time-independent potentials φ(x) and A(x) as

ψ(xb, tb) = ψ(xa, ta)

[
p(xa)

p(xb)

]1/2

exp
[
i

h̄

∫ xb

xa
P · dx − iH

h̄
(tb − ta)

]
(3.186)

recalling that H is the conserved total energy. We have ignored
terms of order h̄2 in the expansion for S, since these are expected
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to be relatively small for a single particle in an unbound state.

This solution is known as the WKB approximation [59, 79]. It
has an important, and still very relevant history in quantum me-
chanics, in explaining the classical limit of large quantum num-
bers. For a bound system the approximation breaks down at
the classical turning points where the kinetic momentum p(x) =√

2m(H − qφ) = 0. Physically, the WKB approximation applies
in the case where the fractional change in the electrostatic poten-
tial φ(x) is small over a distance comparable with the deBroglie
wavelength. For an unbound system at relatively high energy, the
approximation is excellent. In the free-particle case where the po-
tentials are zero everywhere, this solution reverts to the familiar
plane wave solution as required.

It is important to remember that this solution applies to a multi-
plicity of paths, of which the classical trajectory is just one. These
must be summed to obtain the overall wave function. This involves
a procedure similar to (3.139), adapted to three dimensions. In
most charged particle optical systems, the action integrals in the
solutions (3.169, 3.186) are very large relative to h̄. We showed
in the preceding section that only trajectories infinitesimally sep-
arated from the classical trajectory, together with the classical
trajectory itself, contribute appreciably to the overall wave func-
tion. In this case it is a very good approximation to assume that
the action integrals are applied only along the classical trajectory.

This can be further understood by applying the operator for the
canonical momentum P to the wave function (3.186). This gives

−ih̄∇ψ(x, t) = Pψ(x, t). (3.187)

Geometrically, this means that the canonical momentum vector P
is perpendicular to the surfaces of constant phase. The kinetic mo-
mentum vector p is everywhere tangent to the classical trajectory.
In the presence of a magnetic vector potential A, this gives rise to
a geometrical interpretation as shown in Figure 3.4.
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Figure 3.4: Particle momentum and the surfaces of constant phase.

The probability current j(x, t) is given by

j(x) =
ih̄

2m
(ψ∇ψ̄ − ψ̄∇ψ), (3.188)

where the time drops out, as required in the case where the poten-
tials have no explicit time dependence. Substituting (3.187) the
reader can immediately deduce that

j(x, t) =
P

m
ψ̄ ψ. (3.189)

This is equivalent to the continuity equation of probability, for
which the current density equals the velocity (momentum divided
by mass) times the probability density. In the WKB approxima-
tion, we see immediately that

p(x) ψ̄ ψ = const. (3.190)

This interpretation suggests a practical approach to computing
the wave function ψ. First, we compute the classical trajectory,
given a prespecified initial position x, velocity v. Next, we com-
pute the classical action integral between the point (xa) and any
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other point (xb). Finally, we divide by h̄ to give the phase, thus
obtaining the wave function (3.186). Incidentally, this approach is
accurate in the sense that it implicitly includes all orders af aber-
rations.

3.2.3 Quantum interference effects in electro-
magnetic potentials

In the preceding sections we investigated wave-optical interference
which occurs when single free-particle amplitudes corresponding
to alternative paths of motion add coherently. We now extend
this discussion to the case where electromagnetic potentials are
present. We consider a hypothetical monochromatic point source
of electrons at axial coordinate za, which coincides with the front
focal plane of a lens at axial coordinate zL1. This is shown schemat-
ically in Figure 3.5. A screen with two slits is located directly be-
hind the lens. The slits are illuminated by a monochromatic plane
wave in the paraxial approximation. A second lens at axial coordi-
nate zL2 produces a diffraction pattern on a viewing screen located
at axial coordinate zb, which is assumed to coincide with the back
focal plane of the second lens. The solid lines correspond to the
classical rays for the two alternative paths. Bright fringes appear
where the amplitudes corresponding to two alternative paths add
constructively. This occurs where the optical path lengths differ
by an integral number of wavelengths.

Next we assume a magnetic flux which is entirely confined to the
cross-hatched circle, where the lines of flux are oriented perpen-
dicular to the plane of the figure. Such a flux can be produced
in principle by a very long solenoid with very fine, closely spaced
windings, where the axis of the solenoid is also oriented perpendic-
ular to the plane of the figure. We assume that the magnetic field
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Figure 3.5: Two-slit interference in presence of a magnetic vector
potential.

is zero outside the cross-hatched region, and that the flux region
lies entirely within the geometric shadow of the two slits. It follows
that the electron experiences no magnetic Lorentz force, since the
magnetic field is zero wherever significant likelihood of finding the
electron exists. Strictly speaking, these assumptions can only be
approximately realized, since the flux lines must follow a return
path outside the solenoid. The magnetic field can be made arbi-
trarily small by judicious design of the experimental configuration,
however.

The amplitude ψ(xb, tb) is given in terms of the initial amplitude
ψ(xa, ta) by (3.186)

ψ(xb, tb) = ψ(xa, ta)

[
p(xa)

p(xb)

]1/2

· exp
{
i

h̄

[∫ xb

xa
P · ds −H (tb − ta)

] }
(3.191)

for the special case where the potentials A(x) and φ(x) have no
explicit time dependence. We assume in the following that p(xa) =
p(xb); i.e., the kinetic momentum is the same at the start and
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end points. This is equivalent to the assumption that φ(xa) =
φ(xb); i.e., the electrostatic potential is the same at the start and
end points. The resultant amplitude ψ(xb, tb) is the sum of the
amplitudes for the two paths, namely,

ψ(xb, tb) = ψI(xb, tb) + ψII(xb, tb), (3.192)

where ψI(xb, tb) and ψII(xb, tb) are the amplitudes corresponding
to the upper and lower paths in Figure 3.5, respectively. We can
write this equivalently as

ψ(xb, tb) = ψ(xa, ta)
(
eiθI + eiθII

)
, (3.193)

where we have defined the phases

θI =
1

h̄

∫ xb

xa
PI · dsI −

1

h̄
H (tb − ta),

θII =
1

h̄

∫ xb

xa
PII · dsII −

1

h̄
H (tb − ta). (3.194)

The intensity in the plane of the screen zb is given by

I(xb) = |ψ(xb, tb)|2. (3.195)

It is straightforward to show that this is equivalent to

I(xb) = 4 I(xa) cos2

(
θII − θI

2

)
. (3.196)

The time dependence in (3.194) subtracts to zero, corresponding
to a standing wave. Constructive interference occurs for θII−θI =
2nπ, and destructive interference occurs for θII − θI = (2n+ 1)π,
where the integer n represents the order. The phase difference is
given by

θII − θI =
1

h̄

∮
P · ds

=
1

h̄

∮
p · ds +

q

h̄

∮
A · ds, (3.197)

where the integral is around the closed path. Next we define a
phase shift ∆θ corresponding to the difference in phase between
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the solenoid being excited to a specific value and the solenoid
current turned off. This is

∆θ =
q

h̄

∮
A · ds. (3.198)

Applying Stokes’s theorem we write

∆θ =
q

h̄

∫
S
(∇×A) · dS

=
∫
S

B · dS, (3.199)

where S is any surface bounded by the closed ray paths. Equiva-
lently,

∆θ =
qΦ

h̄
, (3.200)

where Φ is the total magnetic flux enclosed by the ray paths. The
magnetic vector potential is nonzero in the vicinity of the classi-
cal trajectories, but the magnetic field is zero there. Therefore, no
magnetic Lorentz force acts on the electron. This result was first
predicted by Ehrenberg and Siday [25], and later expanded upon
by Aharonov and Bohm [2].

An electrostatic analog was first predicted by Aharonov and Bohm
[2]. This is shown schematically in Figure 3.6. An electron travers-
ing the upper path passes through a conducting tube. When the
electron is inside the tube, near its center, an electrostatic poten-
tial V (t) is momentarily applied to the tube by an external source.
Assuming the length of the tube is much larger than its diameter,
the electron experiences no electric field during the time interval in
which V (t) is switched on. Consequently, no electrostatic Lorentz
force is exerted on the electron.

This is only possible in principle if the electron is represented by a
wave packet, rather than a monochromatic plane wave. The wave
packet must be sufficiently localized for the above condition to
be met, whereas a monochromatic plane wave has infinite extent.
This inevitably requires a spread in momentum as well, consistent
with the Heisenberg uncertainty principle. Measurable intensity at
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Figure 3.6: Two-slit interference in presence of an electrostatic
potential.

zb only occurs when the path difference is less than the coherence
length of the wave packet.

Since the electrostatic potential φ(x, t) depends explicitly on time,
we must use the time-dependent formulation. The wave function
ψ(xb, tb) is given (3.132, 3.145) by

ψ(xb, tb) = ψ(xa, ta) exp
[
i

h̄

∫ tb

ta
L(x,v; t) dt

]
, (3.201)

where L(x,v; t) is the classical Lagrangian given by (2.9) as

L(x,v; t) = −mc2
√

1− v2/c2 + q v ·A(x, t)− q φ(x, t). (3.202)

The magnetic vector potential A is assumed to be zero in this
case. The amplitude ψ(xb, tb) is again the sum of the amplitudes
for the two alternative paths (3.192, 3.193), with the respective
phases given by

θI =
1

h̄

∫ tb

ta
LI dtI

θII =
1

h̄

∫ tb

ta
LII dtII . (3.203)
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The intensity measured in the plane at zb again depends on the
difference between these two phases. The phase shift between the
cases with the potential V (t) switched on and off is

∆θ =
q

h̄

∫
V (t) dt. (3.204)

This is independent of the electron energy, and is therefore the
same for all constituent energies in the wave packet.

The phase shifts (3.198, 3.204) result in a measurable lateral shift
in the fringe pattern on the screen at zb in principle. The solutions
(3.191, 3.201) for the wave function have the striking property
that they depend only on the magnetic vector potential A(x, t),
and the electrostatic scalar potential φ(x, t). Nowhere do the mag-
netic field B or the electric field E appear. This is distinctly dif-
ferent from the classical description, in which these fields appear
explicitly in the Lorentz force law (2.15). Indeed no Lorentz force
is present in this quantum mechanical description. The reader is
referred to [3, 87] for further elaboration, including a description
of experimental results.

3.2.4 The Klein–Gordon equation and the co-
variant wave function

The effects of special relativity become important when the ki-
netic energy of the particle is comparable to, or greater than mc2,
where m is the rest mass. A correct treatment must also include
the effects of spin. The reader is referred to the book by Bjorken
and Drell [6].

In many practical instruments, spin does not play an important
role in the optics, however. A useful approximation is available in
the Klein–Gordon equation which ignores spin, but retains Lorentz
covariance. As before, we confine our attention to the lab frame
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only.

Following the arguments of the preceding sections, we assume that

ψ(x, t) = ψ(xa, ta) exp
[
i

h̄

∫ t

ta
L(x,v; t′) dt′

]
, (3.205)

where L(x,v; t) is the relativistic classical Lagrangian given in the
lab frame by (2.9) as

L(x,v; t) = −mc2
√

1− v2/c2 + q v ·A(x, t)− q φ(x, t). (3.206)

From (2.25, 2.30, 2.31) the classical energy-momentum relation-
ship is given by

[H − q φ(x, t) ]2 = [ P− qA(x, t) ]2c2 +m2c4. (3.207)

This equation is Lorentz-invariant, since it contains the square of
the difference of two four vectors (P, iH/c) and (qA, iqφ/c). As
such, it has the same form in every uniformly moving reference
frame. Again invoking the fundamental postulate that classical
quantities are replaced by their quantum mechanical operators,
this becomes(
ih̄
∂

∂t
− q φ

)2

ψ(x, t) = (−ih̄∇− qA)2 c2 ψ(x, t) +m2c4ψ(x, t).

(3.208)
Applying the operator in large parentheses twice in succession, the
left side is (

ih̄
∂

∂t
− q φ

)2

ψ(x, t)

= −h̄2 ∂
2ψ

∂t2
− 2ih̄q φ

∂ψ

∂t
− ih̄q ∂φ

∂t
ψ + q2φ2ψ. (3.209)

Similarly, the first term on the right is

(−ih̄∇− qA)2 c2 ψ(x, t)

= −h̄2c2∇2ψ + 2ih̄qc2 A · ∇ψ + ih̄qc2 (∇ ·A)ψ + q2c2 A2 ψ.

(3.210)
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Substituting, we obtain the relativistic time-dependent wave equa-
tion as follows:

−h̄2 ∂
2ψ

∂t2
− 2ih̄q φ

∂ψ

∂t
− ih̄q ∂φ

∂t
ψ + q2φ2ψ

= −h̄2c2∇2ψ + 2ih̄qc2 A · ∇ψ + ih̄qc2 (∇ ·A)ψ

+q2c2 A2 ψ +m2c4.

(3.211)

Grouping terms and dividing through by c2, we obtain

−h̄2

(
∇2ψ − 1

c2

∂2ψ

∂t2

)
+ 2ih̄q

(
A · ∇ψ +

φ

c2

∂ψ

∂t

)

+ ih̄q

(
∇ ·A +

1

c2

∂φ

∂t

)
ψ + q2

(
A2 − 1

c2
φ2
)
ψ

+m2c2ψ = 0. (3.212)

Again, we assume that ψ(x, t) can be written as

ψ(x, t) = exp
[
i

h̄
S(x, t)

]
. (3.213)

Substituting this into the relativistic wave equation, it is tedious
but straightforward to show that

(∇S − qA)2 − ih̄∇ · (∇S − qA)

− 1

c2

(
∂S

∂t
+ q φ

)2

+
ih̄

c2

∂

∂t

(
∂S

∂t
+ q φ

)
+m2c2 = 0.

(3.214)

Again we expand S(x, t) in powers of h̄, in which we define

S(x, t) = S0(x, t) + h̄ S1(x, t) + h̄2 S2(x, t) + . . . . (3.215)
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Substituting and grouping terms according to powers of h̄, this
leads after some algebra to

0 =

 (∇S0 − qA)2 − 1

c2

(
∂S0

∂t
+ q φ

)2

+m2c2


+ h̄ [ (2∇S1 − i∇) · (∇S0 − qA) ]

− h̄

[
1

c2

(
2
∂S1

∂t
+ i

∂

∂t

)(
∂S0

∂t
+ q φ

)]

+ O
(
h̄2
)
. (3.216)

Again anticipating the classical limit where h̄→ 0, we set each of
the coefficients of the powers of h̄ equal to zero. This leads to the
coupled set of equations as before. Taking the first equation in the
series, we have

(∇S0 − qA)2 − 1

c2

(
∂S0

∂t
+ q φ

)2

+m2c2 = 0. (3.217)

We now consider the special case that the potentials are time-
independent. Again defining a new function W0(x) given by

S0(x, t) = W0(x)−H t, (3.218)

where H is the constant, conserved total energy eigenvalue. Sub-
stituting, this gives

(∇W0 − qA)2 =
1

c2
(−H + q φ)2 −m2c2, (3.219)

where we note that ∇W0 = ∇S0. We now make use of the rela-
tivistic energy-momentum relation

(H − q φ)2 = p2c2 +m2c4 (3.220)

to obtain
(∇W0 − qA)2 = [ p(x) ]2, (3.221)

where p is now the relativistic scalar kinetic momentum. This is
satisfied by

∇W0 = P(x), (3.222)
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which we immediately recognize from the relationship (2.25) be-
tween the canonical momentum P and the kinetic momentum p.
We have neglected the negative root. This means that we only
consider motion in the forward direction for the present purpose.
Integrating, we obtain

S0(xb, tb) = S0(xa, ta) +
∫ xb

xa
P · dx−H (tb − ta). (3.223)

We immediately recognize this set as being identical with the non-
relativistic approximation, except that the relativistic quantities
p,P, and H here replace their non-relativistic counterparts used
previously. Noting that

∂S1

∂t
=
∂S2

∂t
= . . . = 0, (3.224)

the preceding analysis applies, and we obtain the solution for the
wave function ψ(x, t) for the case of time-independent potentials
as

ψ(xb, tb) = ψ(xa, ta)

[
p(xa)

p(xb)

]1/2

· exp
{
i

h̄

[ ∫ xb

xa
P · dx −H(tb − ta)

] }
. (3.225)

Given an initial condition ψ(xa, ta) this describes the propagation
of ψ(xb, tb) to any end point in the presence of static fields, where
H is the conserved total energy. This represents a single eigenstate
corresponding to the energy H. As before, individual eigenstates
are linearly superimposed to build up the state function Ψ(x, t),
which reflects the experimental preparation of the beam. The mea-
surable intensity is given by |Ψ(x, t)|2.

In the free-particle case where φ = 0 and A = 0, the equation
(3.212) reduces to(

∇2 − 1

c2

∂2

∂t2
− m2c2

h̄2

)
ψ(x, t) = 0. (3.226)
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This is known as the Klein–Gordon equation. This has non-
normalized plane wave solutions given by

ψ(x, t) = exp
[
i

h̄
(±p · x−H t)

]
. (3.227)

The reader can verify that this is the correct solution direct sub-
stitution into the Klein–Gordon equation. One can also verify that
H2 = p2c2 +m2c4 for the free-particle case with φ = 0 and A = 0.
The interpretation of |ψ(x, t)|2 in terms of probability density is
more subtle than in the nonrelativistic approximation. At modest
energies, |ψ|2 remains a very good approximation to the relativis-
tic probability density, however. The reader is referred to Bjorken
and Drell [6] for a detailed discussion.

In summary, all relevant information about quantum mechanical
particle motion in general, time-independent potentials A(x) and
φ(x) is contained in the relativistic wave function (3.225).

3.2.5 Physical interpretation of the wave func-
tion and its practical application

The central problem in optics is to understand the intensity distri-
bution in a given transverse plane of an optical system. This might
be the image plane of an electron microscope, the Fourier plane
of a diffractometer, or the dispersion plane of an energy-dispersive
charged particle spectrometer, to name a few examples. The inten-
sity distribution is proportional to the probability distribution for
finding a single particle at a given position. This in turn is given
by the absolute square of the wave function, which we have called
ψ(x, t). In the preceding analysis we have focused on calculating
the wave function for a single charged particle moving in a general
electromagnetic potential. The aim of the present section is to un-
derstand how to translate this into an areal intensity distribution,
such as one would measure in a practical instrument.
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In classical geometrical optics, the beam can be regarded as a
family of closely spaced trajectories. Each individual trajectory
is calculated by solving the Euler–Lagrange equations of motion,
which are in turn derived from Hamilton’s principle of least action.
The collective properties of these trajectories immediately lead to
conservation of phase space volume, which in turn leads to the law
of Helmholtz–Lagrange and brightness conservation, as derived in
Chapter 2.

In quantum mechanical wave optics, one starts with a surface of
constant phase called a wave front. This forms an initial condi-
tion, from which the wave propagates through space-time. This
is shown schematically in Figure 3.7. At time t the wave front is

Figure 3.7: Huygens’ principle.

depicted by the upper curve. At a later time t+ ∆t the wave front
has propagated, forming a new curve. The wave fronts are actu-
ally surfaces in three-dimensional coordinate space. In the figure
we depict a planar slice through the wave front, which is a curve
on the page.

We imagine a collection of point sources distributed over the ini-
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tial wave front, with each point source radiating a spherical wave.
The point sources are assumed to be infinite in number, and in-
finitesimally separated along the initial wave front. They are also
assumed to radiate in phase, or coherently relative to one another.
At the time t + ∆t the spherical waves have propagated to form
the envelope of the new wave front. This equivalent picture of
wave propagation is known as Huygens’ principle. It will prove
to be indispensible to formulating a mathematical description of
diffraction, which is derived in later sections.

Next, we consider each point source to form the initial point of
a wave function ψ(xa, ta). From the preceding analysis, the fi-
nal state wave function ψ(xb, tb) is calculated from the solutions
(3.169, 3.186), depending on whether the electromagnetic poten-
tials have explicit time dependence or not. The wave functions cor-
responding to the separate point sources add coherently to form
the composite wave front. The fact that the composite wave front
has a specific curvature says that the point sources have a cor-
responding relative position in space-time, as well as a specific
phase relationship to one another. This phase advances monoton-
ically through space-time, as given by the action integral divided
by h̄. Each point source has an associated classical trajectory, as
depicted schemaically in Figure 3.4.

The mathematical description is exact in principle, and accounts
for all aberrations. In geometrical optics, the aberrations are man-
ifest as a displacement of the classical particle trajectory from the
paraxial approximation. This displacement can be calculated in
principle to an arbitrary degree of accuracy. In wave optics, the
aberrations are manifest as displacements in the surfaces of con-
stant phase.

The intensity is proportional to the probability density, which in
turn is related to the wave function as |ψ(x, t) |2. Obviously the
phase does not appear explicitly here. It is the relative phases of
neighboring trajectories that govern the shape of the wave fronts.
As a probability, the wave function for each point source must
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satisfy ∫
|ψ(x, t)|2 d3x = 1. (3.228)

This implies a normalization constant multiplying the wave func-
tion. As Feynman and Hibbs point out [29], there seems to be no
simple general procedure for calculating this constant. Even for
the simple case of a free-particle plane wave, we had to resort to
the device of periodic boundary conditions. Fortunately, the ab-
solute probability is unimportant here. What is important is the
relative probability for the various point sources. This determines
the relative intensity across the beam. This becomes part of spec-
ifying the initial condition for each point source.

The fact that each point source radiates a spherical wave is equiv-
alent to the initial momentum direction being completely unspec-
ified. From the Heisenberg uncertainty principle, this is consistent
with the initial point (xa, ta) being precisely specified for each
point source. The initial longitudinal momentum is precisely spec-
ified for each classical trajectory. However, the Heisenberg prin-
ciple has no classical analog. We must also remember that both
the classical trajectory and the quantum mechanical wave func-
tion both apply to a single particle.

This completes the physical picture which connects the wave func-
tion to the intensity distribution of a practical system. We are now
in a position to discuss the intensity distribution for a given practi-
cal system in a more general way, through the theory of diffraction.
This forms the topic of the following sections.

3.3 Diffraction

Diffraction is the phenomenon which results from the propaga-
tion, spreading, and interference of waves. In experimental optics,
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interference is manifest as alternating bright and dark intensity
bands called fringes. This is a purely wave-optical phenomenon
with no analog in classical mechanics. Its origin dates back sev-
eral hundred years to the pioneering work of da Vinci, Grimaldi,
and Huygens.

In modern terms, the motion of a single charged particle in an
electromagnetic potential is described quantum mechanically by
a wave function, for which the absolute square is the probability
density that a single measurement will find the particle at pre-
cise space-time coordinates. A state which is a superposition of
two or more eigenstates with identical energy, but differing direc-
tions of momentum exhibits interference. Diffraction and interfer-
ence are fundamental to a complete description of charged particle
optics.

The purpose of this section is to place the concept of diffraction
on a firm conceptual and mathematical basis, and then, based
on this, to describe several useful examples. Before embarking on
this, it is worthwhile to convey an intuitive feel for the subject by
considering a simple thought experiment, which was described by
Feynman, et. al. [30, Chapter 1, Volume 3]. This is shown schemat-
ically in Figure 3.8. We imagine a single charged particle with pre-
cisely known momentum and energy, incident perpendicularly on
an opaque screen S with two parallel slits. We assume that the
transverse position of the particle is completely unknown. Conse-
quently, the particle could be stopped by the screen, or it could
pass through one of the two slits. Assuming it passes through one
of the slits, it is impossible to know which slit the particle passed
through. Having passed through one of the slits, the particle drifts
to a phosphor screen P at the bottom of the figure, where a flash of
light is emitted on impact. This represents a measurement of the
transverse position of the single particle on the phosphor screen.
By itself, this measurement does not reveal much information,
since the particle could land practically anywhere. This is cor-
roborated by the fact that a second particle generally lands at a
different place from the first particle.
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Figure 3.8: Two-slit thought experiment.

Next, we repeat this measurement for many, many individual par-
ticles. This is easily accomplished by forming a beam of particles.
For sufficiently low beam current, the individual beam particles
are far enough apart on average that they do not interact with one
another. One by one, particles arrive at the screen and produce
a flash of light. This is conceptually equivalent to repeating the
measurement many times, once for each particle, with identical
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preparation of the quantum mechanical state for each measure-
ment. The remarkable result is that bright and dark fringes are
observed on the phosphor screen. This is represented by the in-
tensity distribution as a function of transverse position x plotted
at the bottom of the figure. This result has been observed directly
for a variety of particle species, indicating that this is more than
just a thought experiment [91, Page 1068, Chapter 38].

Analysis reveals that the bright bands occur where the path length
difference d sin θ between the two possible paths equals an inte-
gral number of wavelengths λ. Dark bands occur where the path
length difference equals a half-odd number of wavelengths. The
wavelength is related to the particle momentum p by the deBroglie
relation

p =
h

λ
, (3.229)

where h is Planck’s constant. According to Einstein’s hypothe-
sis, light propagates in the form of discrete energy packets called
photons, where each photon obeys this same relationship between
momentum and wavelength. Indeed, the same two-slit interference
was observed much earlier for light by Young. This experiment
and many related topics are authoritatively described by Born
and Wolf [11]. This is one of many illustrations of the close corre-
spondence between light optics and particle optics.

As a related intuitive concept, we next consider the propagation
of a wave front through space and time, as described by Huy-
gens’ principle. This will prove to be indispensible to formulating
a mathematical description of diffraction, which is derived in the
following sections. It will not be necessary to specifically invoke
the discreteness of particles. Rather we will take a more traditional
approach, regarding the wave function as continuous in space and
time. We will develop a scalar theory, where the optical distur-
bance is adequately described by the scalar wave function. This is
permissible, because we consider only particle motion in a vacuum,
which is inherently isotropic. We will ignore the intrinsic spin, since
it is not needed for this discussion. The reader is referred in the
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following to two definitive texts by Born and Wolf [11], and by
Goodman [36] for detailed and comprehensive discussion.

3.3.1 The Fresnel–Kirchhoff relation

In mathematical terms, the central problem in diffraction theory is
to calculate the amplitude u(x), given specified, known boundary
conditions. For a free particle this is a solution to the Helmholtz
equation, given by

(∇2 + k2)u(x) = 0, (3.230)

where k is a constant, and u(x) is the spatial part of the wave
function. This is precisely the scalar wave equation applicable to
light, in which case k = ω/c, and c is the speed of light. Allowing
for this, we therefore anticipate that the results to follow are oth-
erwise equally valid for a photon and a charged particle. In this
section, we describe a Green’s function approach originally derived
by Sommerfeld [85] for light optics to achieve this. This method-
ology is known as the Rayleigh–Sommerfeld solution. The reader
is referred to the text by Goodman [36] for a comprehensive dis-
cussion, including the interesting historical attempts to correctly
understand this problem.

For the present purpose, we assume the particle propagates freely,
in the absence of electric and magnetic fields. We begin by stating
a very general result, which will prove to be useful. We assume two
arbitrary, complex functions U(x) and V (x), where these functions
are finite and differentiable over an arbitrary, closed volume τ . We
form the quantity U ∇2V − V ∇2U , and integrate this over the
volume τ . It follows that∫

τ

[
U ∇2V − V ∇2U

]
dτ =

∫
τ
∇ · [U ∇V − V ∇U ] dτ. (3.231)
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We now make use of the fact that, for any vector field C(x)∫
τ
∇ ·C dτ =

∫
S

C · dS. (3.232)

This expresses the fact that the volume integral of the divergence
of C is equivalent to the integral of the outward normal component
of C over the surface S enclosing the volume τ . This general re-
sult is called the divergence theorem. Applying this to the present
problem, we find∫

τ

[
U(x)∇2V (x)− V (x)∇2U(x)

]
dτ

=
∫
S

[
U(x)

∂

∂n
V (x)− V (x)

∂

∂n
U(x)

]
dS, (3.233)

where the right side is the surface integral over the surface S en-
closing the volume τ . The quantity n represents the coordinate
along a direction locally perpendicular to the surface S, oriented
outward from the volume τ . The partial derivative with respect to
n is thus the normal gradient of the function.

The relationship (3.233) between the volume and surface integrals
is called Green’s theorem. As the functions U and V are arbitrary,
this result is quite general. We will now proceed to apply it to the
present problem.

First we consider the special case where u(x) depends only on
the magnitude r = |x|. In spherical coordinates, the Helmholtz
equation is

1

r

d2

dr2
[ r u(r) ] + k2u(r) = 0. (3.234)

This is integrated immediately to give

r u(r) = exp (± ikr), u(r) =
1

r
exp (± ikr), (3.235)

which represents a spherical wave about the origin r = 0. Multi-
plying this by exp(−iωt), it is evident that the positive exponent
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represents an outgoing spherical wave, while the negative exponent
represents an incoming spherical wave. The positive and negative
exponentials represent two linearly independent solutions to the
Helmholtz equation, as required for any second order, ordinary
differential equation.

We assume an opaque, planar screen of infinite extent, with one
or more apertures or openings of arbitrary shape and position in
the screen. This is shown schematically in Figure 3.9. The screen

Figure 3.9: Geometry for Sommerfeld’s solution by Green’s func-
tion.

is assumed to be illuminated by an arbitrary collection of sources
(not shown), such that the amplitude at position x0 in the plane
of the screen is u(x0). This amplitude is assumed to be known.
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Given this information, we wish to evaluate the amplitude u(x) at
a remote observation point at position x. This point is designated
by the point P in the figure. This represents the statement of our
problem in mathematical terms.

Following Sommerfeld [85], we postulate two point sources at P
and Q, on opposite sides of the screen, and equidistant from it. We
imagine a spherical wave emanating separately from each of the
two points P and Q, where the two waves are assumed to radiate
exactly 180 degrees out of phase relative to one another. The re-
sultant amplitude G is found by algebraically adding the complex
amplitudes corresponding to the two spherical waves (3.235). This
yields

G =
1

R
exp(ikR)− 1

R1

exp(ikR1), (3.236)

where the radii R and R1 are shown in the figure. In the plane of
the screen, R = R1, and consequently, G = 0. This will be cru-
cially important in the following.

Because G is a superposition of two spherical waves, it is immedi-
ately evident that G satisfies the homogeneous Helmholtz equation

∇2G+ k2G = 0 (3.237)

everywhere, except at the source points P and Q, where G has
singularities (3.236). We assume here that the differentiation is
with respect to the components of x, shown in Figure 3.9.

We can now write∫
τ

[
u(x)∇2G(x,x0)−G(x,x0)∇2u(x)

]
dτ

=
∫
S

[
u(x)

∂

∂n
G(x,x0)−G(x,x0)

∂

∂n
u(x)

]
dS, (3.238)

where the left side is an integral over an enclosed volume τ , and
the right side is an integral over the surface S enclosing the volume
τ . We have made direct use of Green’s theorem (3.233), where we
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have substituted u for U , and G for V . The volume τ is depicted
by the shaded area in the figure. A small sphere about the point
P is specifically excluded from τ , as G has a singularity at P .
The closed surface S includes the infinite planar screen, the small
sphere about P , and is closed by a hemispherical surface at infinity
in the lower half-space of the figure.

The function G defined in (3.236) is called the Green’s function
for this problem. The actual specification of G in (3.236) is not
unique, as any well-behaved function G would satisfy Green’s the-
orem (3.233). In practice, the choice of G, together with its bound-
ary conditions, is intentionally made in a way which leads to a
simplification of the problem at hand, as the following will show.

Because both u and G satisfy the Helmholtz equation, it follows
immediately that the integrand on the left side of (3.238), and
hence the left side itself, is identically zero. It should also be added
that the sources at P and Q are not physical sources. Rather, they
are merely a mathematical construct to aid in solving for u.

The task remains to evaluate the surface integral over S on the
right side of (3.238). This is equal to the sum of three individ-
ual surface integrals over the hemispherical surface at infinity, the
small spherical surface of radius ε, and the planar screen, respec-
tively. Considering first the hemispherical surface S1 at infinity, it
is straightforward to show that

∫
S1

[
u(x)

∂

∂n
G(x,x0)−G(x,x0)

∂

∂n
u(x)

]
dS

→
∫
S1

(
iku− ∂u

∂n

)
GR2 dΩ, (3.239)

where dΩ is the solid angle element. As GR is bounded as R→∞,
it follows that the right side vanishes, as long as

R

(
iku− ∂u

∂n

)
→ 0 (3.240)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 196 — #206 i
i

i
i

i
i

196 Chapter 3. Wave optics

as R → ∞. This is, in fact, the case for a purely outgoing spher-
ical wave. This is known as the Sommerfeld radiation condition.
The surface integral over the hemispherical surface S1 at infinity is
zero. Thus, it makes no contribution to the overall surface integral
over S, which is the right side of (3.238).

Next, we consider the small spherical surface S2 of radius ε about
P . As ε → 0, the integrand on the right side of (3.238) be-
comes dominated by the first term in the expression (3.236) for
the Green’s function G. It is straightforward to show that

∫
S2

[
u(x)

∂

∂n
G(x,x0)−G(x,x0)

∂

∂n
u(x)

]
dS → −4πu(x)

(3.241)
in the limit ε→ 0.

Finally, we consider the surface S0 of the planar screen. We as-
sume u = 0 on the interior of the opaque portion of the screen,
i.e., the screen is perfectly opaque. We further notice by symme-
try that R = R1 everywhere in the plane of the screen. It follows
(3.236) that G = 0 over the entire plane of the screen. In fact,
this is the reason for Sommerfeld’s choice of the two equidistant
point sources at P and Q, radiating directly out of phase. The two
spherical waves from the point sources at P and Q thus interfere
destructively at the plane of the screen. This leads to a consider-
able simplification in the evaluation of the right side of (3.238), by
eliminating the second term in the integrand. Considering the sur-
faces S0 (the screen) and S2 (the small sphere) together, it follows
(3.241) that

4πu(x) = −
∫
S0

dS0 u(x0)
∂

∂n
G(x,x0), (3.242)

where

∂G

∂n
=

∂G

∂R

∂R

∂n
+
∂G

∂R1

∂R1

∂n

= 2 cos(n,R)
ikR− 1

R2
exp(ikR) (3.243)
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remembering that R = R1. In the limit of short wavelength we
have kR� 1, in which case we can approximate

u(r, z) =
1

iλ

∫
d2r0 u0(r0, z0)

exp ( ik |x− x0 | )
|x− x0 |

cos (n̂,x− x0),

(3.244)
where we have substituted R = |x− x0|. Also, k = 2π/λ, where λ
is the particle wavelength, given by λ = h/p. The integral (3.244)
need only be calculated over the open areas in the screen, where
u0(r0, z0) is nonzero. Here we have expressed the three-vector po-
sition x as a two-vector position r in the transverse plane, and
an axial position z; i.e., x = (r, z). We will continue to use this
notation throughout.

The relation (3.244) is known as the Fresnel–Kirchhoff relation
for historical reasons. It is a general solution of the Helmholtz
equation, expressed in integral form. It represents an approxima-
tion, which is only valid in the limit where the wavelength λ� R,
that is, the wavelength is small compared with the viewing dis-
tance. Within this approximation, the specification of u(r0, z0) is
quite general. In practice, it depends on the distribution of physi-
cal sources behind the screen. In the special case where the screen
is uniformly illuminated at normal incidence from behind by a
monochromatic plane wave, u(r0, z0) is independent of r0, and
comes outside the integral as a leading factor.

The integrand in (3.244) includes an outgoing spherical wave ema-
nating from the point x0. The integral represents a coherent sum-
mation of all spherical waves emanating from within the aperture.
Physically, this is an expression of Huygens’ principle. This in turn
determines the downstream amplitude u(r, z), given a known am-
plitude u0(r0, z0) in the plane of the screen z0. The intensity in
the plane z is then given by |u(r, z)|2. We will see in the following
sections that the Fresnel–Kirchhoff equation (3.244) can be used
in a very practical way to understand the intensity distribution for
a rich variety of configurations.
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Problem

Show by direct substitution that the solution (3.244) satisfies the
time-independent wave equation (3.230).

3.3.2 The Fresnel and Fraunhofer approxima-
tions

The Fresnel–Kirchhoff relation (3.244), is amenable to numeri-
cal integration to obtain an exact expression for the amplitude
u(r, z). In this section we make several approximations which will
permit straightforward analytical evaluation of the integral. This
approach allows a more direct physical insight for a large variety
of interesting cases. Assuming small angles, the ray slope is much
less than unity, in which case

cos (n̂,x− x0) ≈ 1. (3.245)

We further adopt the simplifying approximation

|x−x0 | =
√

(r− r0)2 + Z2 ≈ Z +
1

2Z
(r2 + r2

0− 2r · r0), (3.246)

where Z = z − z0 is the drift length. This is often referred to
as the parabolic approximation, as the spherical wavefront is ap-
proximated by a parabolic surface for small angles. With these
approximations, (3.244) reduces to

u(r, z) =
1

iλZ
exp

[
ik

(
Z +

r2

2Z

)]

·
∫
d2r0 u0(r0, z0) exp

[
ik

Z

(
r2

0

2
− r · r0

)]
.

(3.247)
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This is known as the Fresnel approximation.

Next we investigate the special case where

kr2
0

2Z
� 2π (3.248)

at all positions r0. Mathematically, the phase shift due to the first
term in the exponent is negligible.

Recalling that k = 2π/λ, this is equivalent to

r2
0

2Z
� λ, (3.249)

where r0/Z is the tangent of the angle subtended on the central
axis at the end plane. It follows that the first term in the exponent
can be ignored. In this case (3.247) reduces to

u(r, z) =
1

iλZ
exp

[
ik

(
Z +

r2

2Z

)]

·
∫
d2r0 u0(r0, z0) exp

(
−ik r · r0

Z

)
. (3.250)

This is referred to as the Fraunhofer approximation. This approx-
imation is valid for Z sufficiently large, that is, the observation
plane is sufficiently far removed from the plane of the screen. We
see from (3.250) that the amplitude u(r, z) is proportional to the
Fourier transform of u0(r0, z0) with the transform variable kr/Z,
where r/Z is the tangent of the viewing angle in the observation
plane.

The intensity is given by the absolute square of u(r, z). The leading
phase factor in (3.247, 3.250) drops out in the expression for the
intensity, and can therefore be ignored. The intensity is directly
measurable, whereas the amplitude u(r, z) is not. The amplitude
can only be deduced by measuring the intensity in an interference
experiment, where the relative phase of the interfering waves is
precisely known. We therefore ascribe direct physical significance
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to the intensity, but not the amplitude.

We have derived a transformation of the wave function u(r, z)
between successive planes in the drift length of an optical sys-
tem. To this point we have not assumed any particular symmetry,
Cartesian, axial, or otherwise. In the following, we will assume ax-
ial symmetry. This simplifying assumption is applicable to many
practical systems.

Next, we wish to incorporate the focusing effects of a lens. This is
depicted in Figure 3.10, where a thin lens is located at the plane

Figure 3.10: Path length shift for a thin lens.

zL. Ideally, rays at all radii r focus to a common point in the plane
zI . This ideal focusing only occurs for rays close to the optic axis.
We therefore refer to this ideal focusing as the paraxial approxi-
mation. Considering the extreme ray, we see by striking a circular
arc that its path length is longer than the axial ray by a distance
d. The circular arc coincides with a surface of constant phase for
a wave converging to the image point. From the Pythagorean the-
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orem,
r2 + f 2 = (f + d)2 ≈ f 2 + 2fd, (3.251)

where we assume d� 2f . In this approximation we have

d =
r2

2f
. (3.252)

This gives rise to a phase shift −kd at the plane of the thin lens
zL. Equivalently, the wave function is multiplied by a phase factor
given by

Lf (r) = exp

(
−ikr2

2f

)
(3.253)

for the paraxial approximation (no aberration).

Using these transformations, we can build up a simple optical
system. We apply successive transformations, first for the object
space, followed by the lens, and finally followed by the image space.
We define

z0 = object plane

z1 = lens plane

z = recording plane

Z1 = z1 − z0 = object distance

Z2 = z − z1 = image distance. (3.254)

We further denote r0, r1, and r as the two-dimensional position
vectors in the object, lens, and recording planes, respectively.

We assume a pupil located at the lens plane z1. By successive trans-
formations, interchanging the order of integrations, it is straight-
forward to show that

u(r, z) =
−1

λ2Z1Z2

exp

[
ik

(
Z1 + Z2 +

r2

2Z2

)]

·
∫
d2r0 u0(r0, z0) exp

(
ikr2

0

2Z1

)
h(r0, r), (3.255)
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where we have defined a kernel h given by

h(r0, r) =
∫
d2r1 P (r1) exp

[
ik

r2
1

2

(
1

Z1

+
1

Z2

− 1

f

)]

· exp
[
−ikr1 ·

(
r0

Z1

+
r

Z2

)]
,

(3.256)

where P (r1) is the pupil transmission function, equal to unity in
the transmitting area, and zero otherwise.

In the special case where P represents a round aperture cen-
tered on the optic axis, it is advantageous to use polar coordinates
r = (ρ, φ). We perform the azimuthal integral first, where J0 is the
zero-order Bessel function with integral representation given by

J0(x) =
1

2π

∫ 2π

0
e−ix cos φ dφ. (3.257)

From this it follows immediately that

h(r0, r) = 2π
∫ ∞

0
dρ1 ρ1 P (ρ1) exp

[
ik
ρ2

1

2

(
1

Z1

+
1

Z2

− 1

f

)]

· J0

(
kρ1

∣∣∣∣ r0

Z1

+
r

Z2

∣∣∣∣) . (3.258)

This gives a general expression for the optical transformation, in-
dependent of the location of the start and end planes relative to
the focal plane of the lens. In the following sections, we apply this
to several important special cases.

Problems

1. Show that for an ideal point object, a transformation (3.250)
from z0 to z followed by a second transformation from z to z2 is
equivalent to a single transformation from z0 to z2.
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2. An electron with kinetic energy 100 keV is normally incident on
a circular object of radius 100 nm. Estimate the shortest distance
Z for which the Fraunhofer approximation is a valid estimate of
the downstream amplitude.

3.3.3 Amplitude in the Gaussian image plane

We assume an object plane at axial coordinate zO, a thin lens
of focal length f at zL, and a Gaussian image plane at zI . This
geometry is shown in Figure 3.11. The relationship between the

Figure 3.11: Image formation for a point object at rO.
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object distance Z1, the image distance Z2, and the lens focal length
f is given for ideal imaging as

1

Z1

+
1

Z2

− 1

f
= 0, M = −Z2

Z1

, (3.259)

where M is the lateral magnification. An outgoing spherical wave
emanates from the object point at lateral position rO. In the limit
of perfect imaging (paraxial approximation), an incoming spheri-
cal wave converges on the conjugate image point rI = MrO. We
assume a round aperture of radius a coplanar with the lens at
zL. The pupil function P (r1) is unity for 0 ≤ r1 ≤ a, and zero
for r1 > a. Inserting 3.259 directly into the kernel h in 3.258, we
obtain

h(rO, rI) = 2π
∫ a

0
dr1 r1 J0

(
kr1 |rI −MrO|

Z2

)
. (3.260)

This is recognizable as the Bessel transform of the pupil function.
From this it follows immediately that

h(rO, rI) = 2πa2

(
ka|rI −MrO|

Z2

)−1

J1

(
ka|rI −MrO|

Z2

)
,

(3.261)
where we have made use of the integral∫

J0(x)x dx = x J1(x). (3.262)

Substituting in 3.255, we obtain the amplitude in the Gaussian
image plane z = zI as

uI(rI) =
k2a2

2πZ1Z2

∫
d2rO uO(rO, zO) exp

(
ikr2

O

2Z2

)

·
(
ka|rI −MrO|

Z2

)−1

J1

(
ka|rI −MrO|

Z2

)
,(3.263)

where we have ignored leading phase factors outside the integral,
as such factors do not affect the intensity |uI(rI)|2. The complex
amplitude uO represents an extended object. Every object point
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rO can be considered to be the source of a spherical outgoing wave.
The waves emanating from neighboring object points are assumed
to radiate coherently with respect to one another. This can only
happen if all object points radiate monochromatically with a con-
stant phase relationship. It therefore represents an approximation.

The waves from all object points propagate coherently through the
optical system. The integral over rO represents a superposition of
amplitudes over the entire object plane. The complex amplitude
uO in the object plane is convolved with the function h to form
the amplitude uI in the Gaussian image plane. This physical sig-
nificance of this can be appreciated by considering the important
special case of a point object on axis. In this case the amplitude
in the object plane is given by

uO(rO) = δ(rO), (3.264)

where the right-hand side is the Dirac delta function. From the
property of the delta function, it follows immediately that

uI(rI) ∼
(
karI
Z2

)−1

J1

(
karI
Z2

)
, (3.265)

where the ratio a/Z2 is the tangent of the semiangle of the cone
of rays at the image plane zI . The square of this functional form,
which represents the intensity, is known as an Airy disk. Physi-
cally, this is precisely the diffraction pattern of the aperture. The
kernel h is called the point spread function, since it represents the
blurring of every image point relative to an ideal image.

To this point we have assumed imaging without aberrations. We
now inquire into the effect of spherical aberration. This is depicted
in Figure 3.12, where the spherical aberration gives rise to an ad-
ditional path length increment dS. The spherical aberration in the
Gaussian image plane was found earlier to be

δrS = CS α
3, (3.266)
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Figure 3.12: Path length shift for a thin lens with spherical aber-
ration.

where α is the semiangle made by the extreme ray with the optic
axis. Applying the Pythagorean theorem,

(r + δrS)2 + f 2 = (f + d+ dS)2 , (3.267)

where we wish to solve for the path length increment dS. For small
angles, this is approximated by

dS ≈ CS

(
r

f

)4

. (3.268)

In this approximation, the resulting phase shift is −kdS.

We next investigate the behavior of the wave function in a plane
which is slightly displaced from the Gaussian image plane by a de-
focus distance δf . Recalling the earlier expression for the change
of path length d for a thin lens of focal length f , we replace f by
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f + δf . Retaining only terms through first order in δf , this leads
to a path length increment due to defocus given by

df =
r2 (δf)

2 f 2
, (3.269)

where this in turn leads to a phase shift −kdf . Taking spherical
aberration and defocus into account, the expression 3.253 for a
thin lens is modified as a multiplicative phase factor given by

Lf (r) = exp

[
−ikr2

2f

(
1 +

δf

f
+

2CSr
2

f 3

)]
. (3.270)

Substituting this phase factor into the kernel h(rO, rI), we obtain
the modified expression for the case with spherical aberration and
defocus present,

h(rO, rI) = 2π
∫ a

0
dr1 r1 exp

[
−ikr2

1

2f

(
δf

f
+

2CSr
2
1

f 3

)]

· J0

(
kr1 |rI −MrO|

Z2

)
.

(3.271)

The resulting complex wave function in the Gaussian image plane
is

uI(rI) =
−1

λ2Z1Z2

exp [ ik (Z1 + Z2) ]

·
∫
d2rO uO(rO) exp

(
ikr2

O

2Z1

)
h(rO, rI), (3.272)

recalling that λ = 2π/k. The leading phase factor can be ignored,
since it does not appear in the intensity |uI |2. The phase factor
under the integral approaches unity for kr2

O/(2Z1) � 2π. How-
ever, one must exercise caution before making this approximation
for an energetic charged particle, since the wave number k is often
quite large.
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3.3.4 Amplitude in the diffraction plane

We now consider the special case where

Z1 = Z2 = f. (3.273)

This is shown schematically in Figure 3.13. We see that a given
ray slope in the object plane zO is mapped to a specific, single
transverse position in the diffraction plane zD, regardless of trans-
verse position in the object plane. The diffraction plane zD is the
plane where a diffraction pattern of a periodic object comes into
sharp focus.

Figure 3.13: Formation of a diffraction pattern.

Evaluating the kernel h in (3.258) between the object plane z = zO
and the diffraction plane z = zD, we find

h(rO, rD) = 2π
∫ ∞

0
dr1 r1 exp

(
ikr2

1

2f

)
J0

(
kr1

f
|rO + rD|

)
.

(3.274)
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We have assumed no aperture, in which case P (r1) = 1 for all r1.
It follows that

h(rO, rD) = iλf exp

[
− ik

2f
(rO + rD)2

]
, (3.275)

where we have made use of the integral

∫ ∞
0

exp (iαx2) J0(βx)x dx =
i

2α
exp

(
−iβ

2

4α

)
, (α 6= 0).

(3.276)
The amplitude uD(zD) in the diffraction plane is given by

uD(rD) =
1

iλf
exp

[
ik

(
2f +

r2
D

2f

)]
·
∫
d2rO uO(rO)

· exp

(
ikr2

O

2f

)
exp

[
− ik

2f
(rO + rD)2

]
. (3.277)

Expanding,

(rO + rD)2 = rO
2 + rD

2 + 2 rO · rD. (3.278)

Substituting into 3.277, it follows that the amplitude in the diffrac-
tion plane is given by

uD(rD) =
1

iλf

∫
d2rO uO(rO) exp

(
−ikrO · rD

f

)
, (3.279)

ignoring the leading exponential phase factor, as this does not in-
fluence the intensity |uD|2. This is recognizable as a Fourier trans-
form of the object, with the transform variable krD/f . For this
reason, the diffraction plane zD is often referred to as the Fourier
plane.

Geometrically, each specific value of the ray slope in the object
plane is mapped into a unique position in the Fourier plane. This
enables one to directly obtain an intensity map of a diffraction
pattern. We notice that rD/f is the ray slope at the object. Equiv-
alently, this is the tangent of the diffraction angle.
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Constructive interference occurs when the path difference between
neighboring rays is an integral number of wavelengths. This can
be seen in the figure, where the surfaces of constant phase form
concentric spheres centered on each object point. All object points
are assumed to radiate coherently with respect to each other.

3.3.5 Optical transformation for a general
imaging system with coherent illumina-
tion

In the preceding analysis, we obtained the optical transformation
for a simple system in two specific configurations, each employing
of a single lens with focal length f . This was done for the formation
of an image, and separately, formation of a diffraction pattern. We
assumed perfectly coherent illumination, where a constant phase
relationship exists between all points of the object, and the illu-
mination is monochromatic. The basic optical elements are a drift
length, a thin lens, and a pupil. In principle, these can be applied
in any order, and to any degree of complexity, to build up an arbi-
trary optical system. Given these mathematical tools, we are now
in a position to consider a general imaging system, consisting of
an arbitrary configuration of optical elements. In this section and
the next, we closely follow the analysis of Goodman [36].

We require only that an image be formed. Here the object is rep-
resented by a complex amplitude uO(rO), and the image is rep-
resented by a complex amplitude uI(rI). The relevant qantity of
physical interest is |uI(rI)|2, which is the intensity measured in
the image plane zI . We seek an optical transformation which ex-
presses uI in terms of uO. Such a transformation would contain
all of the physically relevant information about the quality of the
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image; i.e., how closely the image approximates an ideal replica
of the object. In order to be useful, this procedure must account
for aberrations, defocus, and diffraction with a finite pupil, all of
which tend to degrade the image.

We begin our analysis by considering a specific hypothetical opti-
cal configuration, consisting of two ideal lenses of focal lengths f1

and f2, respectively. This is shown schematically in Figure 3.17.
By assumption, a physical aperture is located in the Fourier plane
zA of the first lens. Furthermore, the image plane is assumed to
lie in the Fourier plane of the second lens. The back focal plane
of the first lens thus coincides with the front focal plane of the
second lens. By inspection, it is easy to see that a real image of
the original object in the plane zO is formed in the plane zI . The
magnification is given by

M = −f2

f1

, (3.280)

where the minus sign indicates that the image is inverted with
respect to the object. From (3.250) the amplitude uA(rA) is ex-
pressed in terms of the object uO(rO) in the Fraunhofer approxi-
mation by

uA(rA) =
1

i λ f1

∫
d2rO uO(rO) exp

(
−ik rO · rA

f1

)
. (3.281)

Similarly, the amplitude uI(rI) is expressed in terms of uA(rA) by

uI(rI) =
1

i λ f2

∫
d2rA uA(rA)P (rA) exp

(
−ik rA · rI

f2

)
, (3.282)

where P (rA) is the pupil function. Substituting the first of these
equations into the second, and interchanging the order of integra-
tions, we obtain

uI(rI) =
−1

λ2 f1 f2

∫
d2rO uO(rO)

∫
d2rA P (rA)

· exp

[
− ik
f2

rA · (rI −M rO)

]
, (3.283)
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where we have made use of the expression for the magnification M
above.

We now define a two-vector position rG in the image plane zI
as

rG = M rO. (3.284)

The position rG represents the position rO in the object plane zO
transferred to the Gaussian image plane zI by ideal imaging in the
limit of geometrical optics. Furthermore, we define an amplitude
uG(rG) in the Gaussian image plane as

uG(rG) =
1

M
uO(rO) =

1

M
uO

(
rG
M

)
, (3.285)

where the object function uO(rO) is assumed to be known. Thus
uG(rG) represents the ideal image. By inspection, this preserves
the normalization, namely,∫

d2rG |uG(rG) |2 =
∫
d2rO |uO(rO) |2, (3.286)

where d2rG = M2 d2rO. This allows us to write

uI(rI) =
∫
d2rG uG(rG)H(rI − rG), (3.287)

where we have defined a new kernel H from (3.283, 3.284, 3.285)
by

H(rI − rG) =
1

λ2 f 2
2

∫
d2rA P (rA) exp

[
− ik
f2

rA · (rI − rG)

]
.

(3.288)
We see from the form of (3.287) that H is a point spread func-
tion, and from (3.288) that H is the Fourier transform of the pupil
function P .

It is informative to study this in the Fourier space of spatial fre-
quencies. We define the two-dimensional Fourier transforms
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ũI(K) =
∫
d2ξ uI(ξ) e

−iK·ξ

ũG(K) =
∫
d2ξ uG(ξ) e−iK·ξ

H̃(K) =
∫
d2ξ H(ξ) e−iK·ξ, (3.289)

where K is the two-vector transform variable, and the integration
variable ξ is a two-vector position having mathematical signifi-
cance, but no particular physical significance. The physical signif-
icance of K can be understood by considering a sinusoidal object,
with spatial period ΛI in the image plane. In this case,

K =
2π

ΛI

(3.290)

in one Cartesian axis. Thus K is 2π times the spatial frequency
1/ΛI . Applying the convolution theorem (see Appendix A) to
(3.287) it follows immediately that

ũI(K) = ũG(K) H̃(K). (3.291)

Thus, the spatial frequency spectrum of the ideal image is modu-
lated by H̃ to yield the spatial frequency spectrum of the actual
image. For this reason, H̃ is called the amplitude transfer function
or ATF.

To understand the physical significance of this, we substitute in
the expression for the kernel H. This gives

H̃(K) =
∫
d2ξ e−iK·ξ

[
1

λ2 f 2
2

∫
d2rA P (rA) exp

(
− ik
f2

rA · ξ
)]

.

(3.292)
Interchanging the order of integrations, this gives

H̃(K) =
∫
d2rA P (rA) ·

{
1

λ2f 2
2

∫
d2ξ exp

[
−iξ ·

(
K +

krA
f2

)]}
.

(3.293)
We define a new integration variable η by the substitution

ξ =
f2

k
η, d2ξ =

(
f2

k

)2

d2η. (3.294)
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Substituting, this yields

H̃(K) =
∫
d2rA P (rA)

{
1

(2π)2

∫
d2η exp

[
−iη ·

(
rA +

f2

k
K

)]}
,

(3.295)
remembering that k = 2π/λ. We recognize the expression in curly
brackets as a Dirac delta function in two dimensions, where

δ

(
rA +

f2

k
K

)
=

1

(2π)2

∫
d2η exp

[
−iη ·

(
rA +

f2

k
K

)]
.

(3.296)
By the property of the delta function, we immediately perform the
integration over rA, yielding

H̃(K) = P

(
−f2

k
K

)
. (3.297)

Mathematically, the amplitude transfer function H̃ is the scaled
pupil function. This result is quite general, in that it applies to
any aperture, which can be represented by a pupil function P . In
the special case of a round aperture of radius a, we have P = 0 for
K > k a/f2. This value of K represents 2π times a cutoff spatial
frequency, above which no information is transmitted. The am-
plitude transfer function is plotted in Figure 3.14. Physically, the
pupil cuts off all diffracted orders with spatial frequency larger
than the cutoff frequency. The aperture thus acts as a low-pass fil-
ter for spatial frequencies. The absence of high spatial frequencies
in the image translates to blur.

With this preparation, we are now in a position to address the
response of an arbitrary optical system. To this end we state a key
hypothesis, namely, every optical system, however complicated,
can be represented for analytical purposes by an equivalent two-
lens confocal system shown schematically in Figure 3.17. The con-
focal system represents the optical transfer of object to image in
the paraxial approximation, since both lenses of the confocal sys-
tem are assumed to be ideal. This system also properly represents
the effect of diffraction at the exit pupil. We assume the beam ki-
netic energy to be constant in the equivalent confocal system, and
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Figure 3.14: Amplitude transfer function, round aperture, paraxial
approximation.

equal to the landing energy in the image plane of the real system.

In order for the confocal system to properly represent the real
system, we must account for aberrations and defocus. The geo-
metrical aberrations of the real system depend on the coordinates
(xO, yO) in the object plane, and the coordinates (xA, yA) in the
aperture plane of the real system. For now, we assume the object
coordinates to be fixed, and the aperture coordinates to be vari-
able. It follows that the coordinates (xG, yG) of the ideal image
are fixed as well. We regard the coordinates (xI , yI) in the image
plane to be variable. A cone of rays impinges on the image point,
where each ray in the cone intersects a unique point (xA, yA) in the
aperture plane. This is true both in the real system and the equiva-
lent confocal system. Each ray has a unique amount of aberration,
which is expressed as an incremental shift δVOI in optical path
length of the real system. The primary aberration is represented
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in the special case of axial symmetry by

δVOI = δ
∫ zI

zO
mdz =

∫ zI

zO
m4 dz. (3.298)

An explicit expression for this was given earlier in (2.213). At
this point we make a key assumption, namely, the shift δVOI is
applied discontinuously and entirely in the aperture plane zA for
the equivalent confocal system. This is conceptually equivalent to
inserting a phase plate in the aperture plane, where the phase shift
varies with coordinates (xA, yA) in the equivalent confocal system.
Mathematically, we multiply P (rA) in (3.282) by a phase factor.
This amounts to making the substitution

P (rA)→ P (rA) exp
[
i

h̄
δVOI(rA)

]
(3.299)

in the expression (3.288) for H(rI − rG). The phase shift locally
distorts the wave front in the aperture plane of the confocal sys-
tem. This, in turn deflects the classical ray by a small amount,
since the canonical momentum vector is locally normal to the wave
front. This results in a lateral displacement of the ray in the image
plane, as depicted schematically by the broken lines in Figure 3.17.

Next we inquire into the effect of defocus. We represent this as
a small shift of δf in the focal length f2. We thus make the re-
placement

f2 → f2 + δf = f2

(
1 +

δf

f2

)
. (3.300)

Retaining only terms to first order in δf , this leads to the replace-
ment

exp

[
− ik
f2

rA · (rI − rG)

]
→

exp

[
− ik
f2

rA · (rI − rG)

]
· exp

[
ik(δf)

f 2
2

rA · (rI − rG)

]
(3.301)
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in (3.288). The complete expression for the kernel H is thus given
in the presence of aberrations and defocus as

H(rI − rG) =
1

λ2 f 2
2

∫
d2rA P (rA) exp

[
− ik
f2

rA · (rI − rG)

]

· exp

[
i

h̄
δVOI(rA) +

ik(δf)

f 2
2

rA · (rI − rG)

]
,

(3.302)

where the integral is performed over the aperture plane of the
equivalent confocal system. The aberrations and defocus are con-
tained in the final phase factor on the right side. The amplitude
uI(rI) is given by (3.287) with the point spread function H given
by (3.302). This provides a quantitative assessment of image fi-
delity for a general optical system with arbitrary configuration. It
thus represents the main result of this section.

3.3.6 Optical transformation for a general
imaging system with incoherent illumi-
nation

In the preceding section, the illumination was assumed to be co-
herent. Ideally, this means that the illumination of the object plane
is perfectly monochromatic, corresponding to a single eigenstate
of definite energy and momentum. It also means that all points in
the object plane to radiate with a constant phase relationship to
one another. According to the postulates of quantum mechanics,
the amplitudes for alternative paths are added in the measurement
plane, with the absolute square of the resultant amplitude giving
the intensity.

In this section, we consider the case of incoherent illumination.
By definition, this implies that neighboring object points radi-
ate independently, with relative phase completely uncorrelated. In
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this case the resulting intensity at the image plane is calculated by
adding intensities from alternative paths. We define the intensity
in the object and image planes respectively as

IO(rO) = |uO(rO) |2

II(rI) = |uI(rI) |2. (3.303)

The ideal intensity in the image plane is a perfect magnified replica
of the object intensity in the limit of geometrical optics. We define
this as

IG(rG) =
1

M2 IO(rO) =
1

M2 IO

(
rG
M

)
. (3.304)

From (3.287), and the fact that II(rI) = |uI(rI)|2 we obtain

II(rI) =
[ ∫

d2rG uG(rG)H(rI − rG)
]

·
[ ∫

d2r′G u
∗
G(r′G)H∗(rI − r′G)

]
, (3.305)

where rG = M rO is the object point transferred to the Gaussian
image plane by ideal imaging. At this point we make a key as-
sumption, namely, that total incoherence implies that only points
where rG = r′G contribute to the result. Mathematically, this is
equivalent to inserting a delta function δ(r′G − rG) inside the in-
tegral over r′G. This leads to the intensity in the Gaussian image
plane zI as

II(rI) =
∫
d2rG IG(rG) |H(rI − rG) |2. (3.306)

We define a new function

J(rI − rG) = |H(rI − rG) |2. (3.307)

This leads to

II(rI) =
∫
d2rG IG(rG) J(rI − rG). (3.308)

Evidently, J(rI − rG) represents the intensity point spread func-
tion for the special case of incoherent illumination.
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It is useful to study this in the Fourier space of spatial frequencies.
We define the Fourier transforms

ĨI(K) =
∫
d2ξ II(ξ) e

−iK·ξ

ĨG(K) =
∫
d2ξ IG(ξ) e−iK·ξ

J̃(K) =
∫
d2ξ J(ξ) e−iK·ξ, (3.309)

where K again represents 2π times the spatial frequency. Applying
the convolution theorem (see Appendix A) to (3.308), we obtain

ĨI(K) = ĨG(K) J̃(K). (3.310)

In words, the transform of the image intensity is the transform of
the ideal geometric image intensity, modulated by the transform
of the point spread function. We now form the ratio

O(K) =
J̃(K)

J̃(0)
, (3.311)

called the optical transfer function or OTF. Physically, it rep-
resents the normalized spatial frequency response of the optical
system with respect to intensity. Its modulus |O(K) | is called the
modulation transfer function or MTF. We can gain an appre-
ciation of the physical significance by relating J̃(K) back to the
amplitude transfer function (ATF) derived in the previous section.
This was denoted H̃(K). From (3.307, 3.309), we write

J̃(K) =
∫
d2r |H(r) |2 e−iK·r. (3.312)

The amplitude transfer function H(r) can be expressed in terms
of its inverse Fourier transform as

H(r) =
1

(2π)2

∫
d2K H̃(K) eiK·r. (3.313)

Substituting this into (3.312) and interchanging the order of inte-
grations, we obtain

J̃(K) =
1

(2π)2

∫
d2K′ H̃(K′)

∫
d2K′′ H̃∗(K′′)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 220 — #230 i
i

i
i

i
i

220 Chapter 3. Wave optics

Figure 3.15: Modulation transfer function, round aperture, parax-
ial approximation.

·
[

1

(2π)2

∫
d2r e−i(K

′′−K′+K)

]
. (3.314)

We recognize the expression in square brackets as a Dirac delta
function δ(K′′ −K′ + K), in which case

J̃(K) =
1

(2π)2

∫
d2K′ H̃(K′) H̃∗(K′ −K). (3.315)

Mathematically, J̃(K) is proportional to the autocorrelation func-
tion of H̃(K) in K-space. Substituting (3.297), we obtain

J̃(K) =
1

(2π)2

∫
d2K′ P

[
−f2

k
K′
]
P

[
−f2

k
(K′ −K)

]
, (3.316)

recalling that M is the magnification, P is the pupil function, f2 is
the focal length of the final lens of the equivalent confocal system,
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and k = 2π/λ is the wave number of the particle. We define a
two-vector position r by

r = −f2

k
K, d2K =

(
k

f2

)2

d2r. (3.317)

It follows that

J̃(K) =

(
k

2πf2

)2 ∫
d2r′ P (r′ ) P (r′ − r). (3.318)

Geometrically, the integral on the right is the common area of the
pupil with itself displaced by r.

An important special case is a round aperture, for which the pupil
function is

P (r) = 1 (3.319)

for 0 ≤ r ≤ a, and zero for r > a. It follows that

J̃(K) =

(
k

2πf2

)2

· 2a2

 cos−1
(
r

2a

)
− r

2a

√
1−

(
r

2a

)2
 .
(3.320)

This depends only on the magnitude r = |r|, because of the radial
symmetry of the pupil function P (r). Substituting r = f2K/k, we
obtain

J̃(K) = 2

(
ka

2πf2

)2

·

 cos−1

(
f2K

2ka

)
− f2K

2ka

√√√√ 1−
(
f2K

2ka

)2
 ,

(3.321)
where this is a function of the magnitude K. The optical transfer
function is

O(K) =
2

π

 cos−1

(
f2K

2ka

)
− f2K

2ka

√√√√ 1−
(
f2K

2ka

)2
 . (3.322)

This is unity at K = 0 as required, and zero for

Kc =
2ka

f2

, (3.323)
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where Kc represents the cutoff value of K. No spatial frequencies
above this value are transmitted by the optical system. We notice
that a/f2 is the tangent of the semiangle subtended by the pupil
at the Gaussian image plane. The modulation transfer function
(MTF) is plotted in Figure 3.15.

3.3.7 The wave front aberration function

An image point in the paraxial approximation is formed by a spher-
ical wave converging on an ideal point in the Gaussian image plane.
With aberrations present, the image is blurred and displaced from
its ideal position. The aberrated image is formed by a wave which
is distorted from an ideal spherical wave.

This is shown schematically in Figure 3.16. An ideal spherical
wave front Si fills the angular acceptance cone of the aperture.
A ray emanates from every point along the wave front in a direc-
tion locally perpendicular to the wave front. These rays converge
to an ideal point in the Gaussian image plane, as shown by the
broken lines in the figure. The aberrated wave front Sa is locally
displaced from the ideal wave front by a distance χ, which we des-
ignate the wave front aberration function. The rays emanting from
the aberrated wave front converge to a region which is blurred and
displaced from the ideal image point in general. These rays are de-
picted by the solid lines in the figure.

As discussed earlier, every optical system, however complicated,
can be analyzed in terms of an equivalent system consisting of two
ideal lenses. This is shown schematically in Figure 3.17. A point
object is located in an object plane at O. The object plane co-
incides with the front focal plane of the first lens L1. A physical
aperture is located at the back focal plane of the first lens L1,
which coincides with the front focal plane of the second lens L2.
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Figure 3.16: Wave front aberration.

The aperture plane is labeled A in the figure. In the absence of
aberrations and in the limit of geometrical optics, an ideal point
image I is formed from a point object O. The magnification M is
defined as the ratio of the respective image and object heights.
It is easy to verify by similar triangles in the figure that this is
identical with the ratio −f2/f1 of the respective lens focal lengths,
where the minus sign accounts for the inversion of the image.

Each ray emanating from the object O intersects the aperture
plane A at a unique transverse position (xA, yA). Each point
(xA, yA) in turn maps to a unique ray slope (x′I , y

′
I) where the ray

intersects the Gaussian image plane. The wave front aberration
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Figure 3.17: Equivalent confocal system.

function χ can be regarded as a function of transverse coordinates
(xA, yA) in the aperture plane A.

The product kχ is the phase shift associated with the aberration,
where k is the wave number given by k = 2π/λ. For a well-designed
optical system χ is a small fraction of the wavelength λ. Equiva-
lently, the phase shift due to aberrations is much less than 2π. All
information about the aberrations is contained in the wave front
aberration function χ. This is discussed in many books [11], [16],
[67].

In the equivalent confocal system we consider the aberration to
be entirely introduced in the aperture plane as an abrupt phase
shift. This is conceptually equivalent to introducing a thin phase
plate in the aperture plane, which shifts the phase by an amount
kχ. This is depicted in Figure 3.17.

The wave front aberration χ(xA, yA) is a scalar function defined
in a plane. Assuming a round aperture, the function χ can in
principle be expanded in a series of Zernike polynomials. Zernike
polynomials are orthonormal functions defined on the unit disk
0 ≤ ρ ≤ 1, where (ρ, φ) are polar coordinates in a plane. Here ρ is
defined as the radial ray position in the aperture plane divided by
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the aperture radius in the equivalent confocal system. Any arbi-
trary function F (ρ, φ) which is defined on the unit disk 0 ≤ ρ ≤ 1
and 0 ≤ φ ≤ 2π can in principle be expanded as a linear combi-
nation of Zernike polynomials. The method is discussed below.

The Zernike polynomials Zm
n (ρ, φ) are defined [1] by

Zm
n (ρ, φ) = Rm

n (ρ) cos(mφ)

Z−mn (ρ, φ) = Rm
n (ρ) sin(mφ), (3.324)

where n and m are non-negative integers with n ≥ m. The radial
functions Rm

n (ρ) are defined as

Rm
n (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)! ρn−2k

k! [(n+m)/2− k]! [(n−m)/2− k]!
(3.325)

for (n−m) even, and Rm
n = 0 for (n−m) odd. It is easy to show

that Rm
n (1) = 1, and therefore, −1 ≤ Zm

n (ρ, φ) ≤ 1.

The following orthogonality relations can be shown:∫ 1

0
Rm
n (ρ)Rm

n′(ρ) ρ dρ =
1√

(2n+ 2)(2n′ + 2)
δn, n′

∫ 2π

0
cos(mφ) cos(m′φ) dφ = εm π δ|m|,|m′|∫ 2π

0
sin(mφ) sin(m′φ) dφ = (−1)m+m′

π δ|m|,|m′|, (m 6= 0)∫ 2π

0
cos(mφ) sin(m′φ) dφ = 0, (3.326)

where δi,j is the Kronecker delta, and εm = 2 if m = 0, and εm = 1
if m 6= 0. It follows that∫ 1

0
dρ ρ

∫ 2π

0
dφZm

n (ρ, φ)Zm′

n′ (ρ, φ) =
εm π

2n+ 2
δn,n′ δm,m′ , (3.327)

where (n−m) and (n′ −m′) must both be even.
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We define an arbitrary functon F (ρ, φ) as the linear combination
of Zernike polynomials as follows:

F (ρ, φ) =
∞∑
n=0

∞∑
m=0

[ amn Z
m
n (ρ, φ) + bmn Z

−m
n (ρ, φ) ], (3.328)

where the coefficients amn and bmn are considered arbitrary to this
point. This defines a Zernike transform. Using the above orthogo-
nality relations it is possible to invert these equations as follows:

amn =
2n+ 2

εm π

∫ 1

0
dρ ρ

∫ 2π

0
dφF (ρ, φ)Zm

n (ρ, φ)

bmn =
2n+ 2

εm π

∫ 1

0
dρ ρ

∫ 2π

0
dφF (ρ, φ)Z−mn (ρ, φ). (3.329)

These two equations define the inverse Zernike transform.

The radial functions Rm
n (ρ) are easily obtained by direct substitu-

tion of the various integer values n and m. The first nine are

R0
0 = 1

R1
1 = ρ

R0
2 = 2 ρ2 − 1

R2
2 = ρ2

R1
3 = 3 ρ3 − 2 ρ

R3
3 = ρ3

R0
4 = 6 ρ4 − 6 ρ2 + 1

R2
4 = 4 ρ4 − 3 ρ2

R4
4 = ρ4. (3.330)

Substituting, the first fifteen Zernike polynomials with correspond-
ing optical aberrations are as follows:

Z0
0 = 1 piston

Z−1
1 = ρ sinφ y-tilt

Z1
1 = ρ cosφ x-tilt

Z−2
2 = ρ2 sin (2φ) astigmatism
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Z0
2 = 2 ρ2 − 1 defocus

Z2
2 = ρ2 cos (2φ) astigmatism

Z−3
3 = ρ3 sin (3φ) trefoil

Z−1
3 = ρ (3 ρ2 − 2) sinφ coma

Z1
3 = ρ (3 ρ2 − 2) cosφ coma

Z3
3 = ρ3 cos (3φ) trefoil

Z−4
4 = ρ4 sin (4φ)

Z−2
4 = ρ2 (4 ρ2 − 3) sin (2φ)

Z0
4 = 6 ρ4 − 6 ρ2 + 1 spherical

Z2
4 = ρ2 (4 ρ2 − 3) cos (2φ)

Z4
4 = ρ4 cos (4φ), (3.331)

where we recall that 0 ≤ ρ ≤ 1 and 0 ≤ φ ≤ 2π.

It is useful in some cases to express these in Cartesian coordi-
nates, again confined to the unit disk. To do this we first expand
the trigonometric functions according to the well-known relations
as follows:

sin (2φ) = 2 sinφ cosφ

cos (2φ) = cos2 φ− sin2 φ

sin (3φ) = sinφ (3 cos2 φ− sin2 φ)

cos (3φ) = cosφ (cos2 φ− 3 sin2 φ)

sin (4φ) = 4 sinφ cosφ (cos2 φ− sin2 φ)

cos (4φ) = cos4 φ− 6 sin2 φ cos2 φ+ sin4 φ. (3.332)

Substituting the Cartesian coordinates x = ρ cosφ and y = ρ sinφ
we immediately obtain

Z0
0 = 1

Z−1
1 = y

Z1
1 = x

Z−2
2 = 2 x y

Z0
2 = 2 (x2 + y2)− 1
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Z2
2 = x2 − y2

Z−3
3 = y (3x2 − y2)

Z−1
3 = y [ 3 (x2 + y2)− 2 ]

Z1
3 = x [ 3 (x2 + y2)− 2 ]

Z3
3 = x (x2 − 3 y2)

Z−4
4 = 4 x y (x2 + y2)

Z−2
4 = 2 x y [ 4 (x2 + y2)− 3 ]

Z0
4 = 6 (x2 + y2)2 − 6 (x2 + y2) + 1

Z2
4 = (x2 − y2) [ 4 (x2 + y2)− 3 ]

Z4
4 = x4 − 6x2y2 + y4. (3.333)

Our goal is to express an arbitrary phase shift kχ(xA, yA) in terms
of a corresponding set of Zernike coefficients (amn, bmn), where
k = 2π/λ is the wave number. To this end we define a set of
coordinate transformations as follows:

x = ρ cosφ = xA/RA

y = ρ sinφ = yA/RA

ρ =
√
x2 + y2, (3.334)

where RA is the radius of the aperture in the equivalent confocal
system. Based on this, we define the formal functional substitu-
tions

G(x, y) = F (ρ, φ)

kχ(xA, yA) = G(x, y). (3.335)

Finally, we define the correspondence between the physical system
and the equivalent confocal system according to

x′I = xA/f2

y′I = yA/f2

M = −f2/f1, (3.336)
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where we assume the final ray slopes (x′I , y
′
I) and the magnification

M are identical for the physical system and the equivalent confocal
system.

This completes the correspondence between the aberrations of
the physical system and the Zernike coefficients (amn, bmn). The
Zernike coefficients uniquely specify the aberrations. Strictly
speaking, these coefficients are a function of object position O. In
a well-designed system, the coefficients do not vary greatly across
the object plane.

3.3.8 Relationship between diffraction and the
Heisenberg uncertainty principle

We have seen in the foregoing sections that diffraction and interfer-
ence follow naturally from the Fresnel–Kirchhoff relation (3.244).
In turn, this relation represents a stationary-state solution of the
spatial part of Schrödinger’s equation (3.230) for a free particle
wave function. It is of great interest to consider diffraction and
interference from a closely related point of view, namely, Heisen-
berg’s uncertainty principle. This is the subject of the present
section.

We begin with diffraction from two parallel slits. This is shown
schematically in Figure 3.18. A plane wave is incident from the
top of the figure, with propagation direction normally incident on
a screen S. The screen has two infinitely long parallel slits, oriented
out of the page. A diffracted ray I emanates from the left slit, and
a diffracted ray II emanates from the right slit. The two rays are
assumed to be parallel to one another, and propagate at an angle
θ relative to the central axis. A thin lens L causes the two rays to
converge at a viewing plane P. The axial spacing between S and L
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– –

Figure 3.18: Two-slit diffraction with destructive interference.

is assumed to be equal to the axial spacing between L and P, and
both are equal to the focal length of the lens. The plane P thus
represents the diffraction or Fourier plane of the lens. In this con-
figuration every viewing angle θ is mapped to a unique transverse
coordinate x in the plane P.

Scanning the viewing angle θ gives rise to an intensity distribution
I(x) in the plane P. The functional form for I(x) follows directly
from (3.279). It is left as an exercise to solve for I(x). The peaks
represent constructive interference of the two waves, and the val-
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leys represent destructive interference. It is evident from the figure
that the two rays have a path length difference given by d sin θ,
where d is the separation distance of the two slits. Constructive
interference occurs when this path length difference is equal to an
integral number of wavelengths λ. Equivalently,

d sin θ = nλ, n = 0,±1,±2,±3, . . . . (3.337)

Destructive interference occurs when the path length difference is
equal to a half-odd number of wavelengths. Equivalently,

d sin θ =
(
n+ 1

2

)
λ, n = 0,±1,±2,±3, . . . . (3.338)

Next we consider the specific viewing angle θ for which the inten-
sity distribution I(x) has its first minimum. This is shown in the
figure, where the path length difference between the two rays is
λ/2, and n = +1 in (3.338). We assume the particle has momen-
tum p, which is related to its de Broglie wavelength λ by

p =
h

λ
, (3.339)

where h is Planck’s constant. This momentum has a transverse
component ∆p, which satisfies

∆p

p
= sin θ. (3.340)

Since ∆p represents the half-width of the first interference fringe
with n = 0, we ascribe an uncertainty ∆p to the transverse mo-
mentum of the particle.

Separately, one has no knowledge about which of the two slits
the particle passed through. Following Feynman [30, Chapter 1,
Volume 3], any attempt to measure which slit the particle passed
through would perturb the wave function, thereby irreparably de-
stroying the interference. Consequently, we ascribe an uncertainty
∆x = d/2 to the transverse position of the particle. It is left as a
brief exercise to show (3.338, 3.339, 3.340) that

∆x∆p =
h

4
. (3.341)
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This represents a statement of Heisenberg’s uncertainty principle.

The assignments of ∆x and ∆p are somewhat arbitrary. For ex-
ample, one might assign the full-widths, instead of the half-widths
for ∆x and ∆p, in which case the right-hand side in (3.340) would
be multiplied by a factor of four. The uncertainty relation (3.341)
is therefore properly regarded as an approximation.

The relation (3.339) applies to a photon, and equivalently to a
massive particle. It follows that the uncertainty relation (3.341)
applies to both a photon and a massive particle. Alternatively, the
momentum can be expressed as

p = h̄k (3.342)

for a photon and massive particle, where k is the wave number
given as k = 2π/λ. The uncertainty relation (3.341) becomes

∆x∆k ≈ π

2
, (3.343)

given the above assumptions. This can be regarded as a general
property of waves, not just a photon or particle. It applies to many
wavelike phenomena, including water waves and sound waves, as
examples. The usual coherent superposition of waves with differ-
ent values of k to form a wave packet, applies to these different
types of waves as well.
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Particle scattering

The interaction of fast charged particles with matter provides the
basic physical mechanism underlying most applications of charged
particle beam instruments. In this interaction, an incident particle
strikes a target, transfering momentum and energy. The incident
particle is completely characterized by its rest mass, charge, mo-
mentum, and spin polarization. The target can consist of bulk
material (solid, liquid, or vapor), a single atom, a molecule, or a
second particle (composite or pointlike). The interaction can be
governed by the strong, weak, Coulomb, or gravitational forces.
The gravitational force is too weak to be important for charged
particles on the laboratory scale of dimensions. However the clas-
sical Kepler problem is formally identical to Coulomb scattering
between two individual charged particles via the inverse square
dependence of the instantaneous force on the separation. In all
cases, the interaction can be used to probe the physical or chemi-
cal properties of the target.

In some cases where the rest mass of the incident particle is much
smaller than the target particle, the incident particle transfers neg-
ligible energy to the target. Such an event is known as elastic
scattering. An example is the angular deflection of a fast electron
by the screened Coulomb potential of an atomic nucleus. This
provides the basic contrast mechanism of a transmission electron
microscope. In elastic scattering, the phase relationship of the in-

233



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 234 — #244 i
i

i
i

i
i

234 Chapter 4. Particle scattering

cident particle before and after the scattering event is preserved.
This phase coherence enables the study of a crystalline target
through electron diffraction.

A separate example of nearly elastic scattering is the Coulomb
scattering of an energetic alpha particle by a heavy nucleus. This
is the mechanism originally used by Rutherford [59] to characterize
an atomic nucleus as a compact, massive, multiply charged body.
In elastic scattering, the magnitude of the momentum of the inci-
dent particle is unchanged by the scattering, but the direction can
be significantly changed. Consequently, significant momentum can
be transferred.

Alternatively, the incident particle can transfer significant energy
to the target. Such an event is known as inelastic scattering. This
is much more complex than elastic scattering, because a rich va-
riety of secondary processes can result. For example, an incident
fast electron can excite the electronic states of a target material,
giving rise to an excited-state atom, secondary photon, free elec-
tron, electron-hole pair (exciton), or plasmon. Performing electron
energy loss spectroscopy on the scattered electron yields informa-
tion on the chemical and physical nature of the target material.

Separately, the resulting secondary electron current forms the ba-
sic contrast mechanism in the scanning electron microscope, or
a scanning helium ion microscope. Alternatively, bombarding a
material with an ion beam causes secondary ions of the target
material to be ejected. Performing secondary ion mass spectrom-
etry gives direct information about the atomic composition of the
target material.

Separately still, an incident electron or ion beam can be used to
chemically alter a target polymer film in a useful way. The pat-
terned film is then used as a binary mask in the process known as
lithography. A focused electron beam or a focused helium ion beam
can form a very fine, sharp writing pencil. Lithographic structures
down to a few nanometers in size have been produced by this
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method. Ultimate lithographic resolution is limited by the interac-
tion of the incident particle with the recording medium. Improving
this resolution remains a topic of current research.

Alternatively, a focused ion beam can selectively remove material
from a bulk sample, enabling fabrication of useful structures. A
focused electron beam can be used to simultaneously in the same
(dual beam) instrument to produce an SEM image, thus enabling
in situ observation and endpoint detection of this removal process.

Yet another important example of inelastic scattering is the pro-
duction of a host of particle species in a high energy particle accel-
erator. This process takes place by the conversion of kinetic energy
of the incident particle to mass of the products. This has been used
in ongoing research to deduce the most fundamental properties of
elementary particles and their interactions.

An enormous literature exists describing the interaction of charged
particles with matter. Rather than attempt a comprehensive sum-
mary, we will confine our attention to two-particle scattering. This
is the most basic of all scattering processes, and is derived from
first principles of physics in a straightforward way. Two-particle
scattering forms the basis of many of the interactions of charged
particle beams with matter in practical instruments.

The central problem in the following sections is to calculate the
momentum and energy transfer resulting from two-particle scatter-
ing. Closely related to this is the intensity as a function of scatter-
ing angle measured relative to the direction of the incident particle,
where this represents the relevant measurable quantity. Although
the process is fundamentally quantum mechanical, a great deal of
intuitive understanding can be gained by first studying the classi-
cal description, and then proceeding to the quantum mechanical
description.
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4.1 Classical particle kinematics

The generic two-particle scattering problem assumes a single parti-
cle with vector kinetic momentum p, incident on a second particle
which is initially at rest in the lab frame. The first particle transfers
momentum and energy to the second particle, and both particles
exit to a final state. The final state is governed by conservation of
total momentum and energy, as well as the details of the interac-
tion. The first particle is assumed to come from a distance which
is large compared with the dimensions of the interaction volume
of the two particles. Similarly, both particles exit to a large dis-
tance in the final state. At large distances the potential energy of
the interaction can be ignored. In this section we investigate the
constraints imposed by momentum and energy conservation. This
general topic is referred to as kinematics.

We assume the incident particle has rest mass m1, vector kinetic
momentum p1, and total energy E1. We assume the stationary
particle has rest mass m2, vector kinetic momentum p2, and total
energy E2. These quantities are related by

E2
1 = p2

1 c
2 +m2

1 c
4

E2
2 = p2

2 c
2 +m2

2 c
4, (4.1)

consistent with special relativity. We assign the value p1 = p for
the incident particle, where p is assumed to be known a priori,
along with the rest masses m1 and m2. We assign the value p2 = 0
for the stationary target particle. We assume that neither parti-
cle has internal degrees of freedom. By implication, we ignore the
effects of spin in the following analysis. We further assume that
each particle retains its original rest mass through the collision.

Since the only force is that which acts between the two parti-
cles, it follows that the center of mass moves at constant veloc-
ity. The motion of the center of mass is therefore uninteresting.
We seek a frame of reference such that the total momentum of
the two-particle system is zero. We call this system the center-of-
momentum or CM frame. The scattering is most simply analyzed



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 237 — #247 i
i

i
i

i
i

4.1. Classical particle kinematics 237

in the CM frame, since the superfluous motion of the center of
mass does not appear. This is shown in Figure 4.1, where the top
diagram represents the lab frame, and the middle diagram repre-
sents the CM frame. We denote the CM frame by primed quan-

–

Figure 4.1: Reference frames for scattering.

tities, and the lab frame by unprimed quantities. We assign the
value v to the vector velocity of the CM measured in the lab frame.

The incident momentum and energy are measured in the lab frame,
the scattering probability is calculated in the CM frame, and the
scattered intensity is measured as a function of scattering angle in
the lab frame. Our procedure must therefore consist of transform-
ing from the lab to the CM frame, then calculating the scattering
probability as a function of scattering angle in the CM frame, then
finally transforming back to the lab frame. We adopt the notation

β = v/c

γ =
1√

1− v2/c2
=

1√
1− β2

.

For brevity of notation, we further make the following substitu-
tions for the mass and momentum, respectively:

mc2 → m

p c → p. (4.2)

This is equivalent to a system of units where the speed of light is
c = 1. The reader can transform back to the original quantities at
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any point in the calculation.

Lorentz transformation from lab (unprimed) to CM (primed)
frame gives

p′1 = γ (p1 − β E1)

E ′1 = γ (E1 − β p1)

p′2 = γ (p2 − β E2)

E ′2 = γ (E2 − β p2) (4.3)

for the initial state. This makes use of the fact that momentum
and energy form a four-vector pµ = (p, iE/c). Substituting the
assumed values p1 = p, p2 = 0, E2 = m2, p′1 = p′, and p′2 = −p′,
we obtain

p′ = γ (p− β E1)

E ′1 = γ (E1 − β p)
−p′ = γ (−β m2)

E ′2 = γ m2. (4.4)

Solving the first and third equations for β, we obtain

β =
p

E1 +m2

=

√
E2

1 −m2
1

E1 +m2

(4.5)

and

γ =
E1 +m2√

m2
1 +m2

2 + 2E1m2

. (4.6)

Substituting these into the second and fourth equations of (4.4)
yields the energies of the two individual particles in the CM frame,
given respectively by

E ′1 =
m2

1 + E1m2√
m2

1 +m2
2 + 2E1m2

E ′2 =
m2

2 + E1m2√
m2

1 +m2
2 + 2E1m2

. (4.7)
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The sum E ′ of the energies of the two particles in the CM frame
is thus given by

E ′ = E ′1 + E ′2 =
√
m2

1 +m2
2 + 2E1m2. (4.8)

We thus obtain several identities which will prove useful later:

E ′1E
′ = m2

1 + E1m2

E ′2E
′ = m2

2 + E1m2

p′E ′ = m2 p, (4.9)

where

E ′2 = (E1 +m2)2 − p2 = m2
1 +m2

2 + 2E1m2. (4.10)

We have thus succeeded in calculating all relevant initial quanti-
ties p′, E ′1, and E ′2 in the CM frame from known quantities p, m1,
m2, E1 in the lab frame.

We notice that in the CM frame, the total kinetic energy T ′ is
given in terms of the total energy E ′ by

T ′ = E ′ − (m1 +m2) =
(
m2

1 +m2
2 + 2E1m2

)1/2
− (m1 +m2).

(4.11)
In words, the kinetic energy is the total energy minus the energy
of the rest masses. Separately, the total energy E1 of the incident
particle in the lab frame can be written as

E1 = γ1m1, (4.12)

where γ1 = 1/
√

1− β2
1 applies to the initial velocity β1 = v1/c of

the incident particle measured in the lab frame. This velocity v1

is not to be confused with the velocity v of the CM measured in
the lab frame. Substituting,

T ′ =
[

(m1 +m2)2 + 2 (γ1 − 1)m1m2

]1/2
− (m1 +m2)

= (m1 +m2)

[
1 + 2 (γ1 − 1)

m1m2

(m1 +m2)2

]1/2

− (m1 +m2).

(4.13)
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In the low energy limit, β1 � 1. Keeping only the lowest order
terms in the Taylor series, this reduces to

T ′ = 1
2

(
m1m2

m1 +m2

)
β2

1 . (4.14)

We now define a quantity called the reduced mass M , given by

M =
m1m2

m1 +m2

, (4.15)

from which we write
T ′ = 1

2
M β2

1 . (4.16)

We conclude from this that the two-body scattering problem in
the CM frame is mathematically equivalent to a single particle of
mass M scattering about a fixed point, which coincides with the
center of momentum. This reduction of the scattering problem is
called the equivalent one-body problem.

We are now in a position to consider the final state after scat-
tering. This is shown in the CM frame in Figure 4.2, where the
particle with rest mass m1 has final momentum q′1, and the par-
ticle with rest mass m2 has final momentum q′2. We assume total
energies ε′1 and ε′2 for the two particles after scattering, where

ε′1
2

= q′1
2

+m2
1

ε′2
2

= q′2
2

+m2
2. (4.17)

The scattering angle in the CM frame is defined as θ′. In later
sections, we will address the central scattering problem, namely,
calculation of the scattered intensity as a function of θ′. Conse-
quently, we assume θ′ to be known for now from the calculation
to come.

Since measurement is always performed in the lab frame, we must
express the relevant quantities there. This is shown in Figure 4.3,
where the incident particle with mass m1 is assumed to scatter
through angle θ1, and the incident particle with mass m2 is as-
sumed to scatter through angle θ2. We wish to calculate the scat-
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4.1. Classical particle kinematics 241

Figure 4.2: Initial and final states, CM frame.

Figure 4.3: Initial and final states, lab frame.

tering angles θ1 and θ2 in the lab frame in terms of the scattering
angle θ′ in the CM frame. This is accomplished in principle by
Lorentz transformation from the CM to lab frame as follows:

q1z = γ (q′1z + β ε′1)
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242 Chapter 4. Particle scattering

ε1 = γ (ε′1 + β q′1z)

q2z = γ (q′2z + β ε′2)

ε2 = γ (ε′2 + β q′2z), (4.18)

where we have replaced β by −β, and interchanged primed and un-
primed quantities in the earlier Lorentz transformation. We have
assumed that the relative velocity of the two reference frames is
along the z-axis. Thus only the z-components of the momenta are
altered by the Lorentz transformation, while the transverse com-
ponents remain unaltered.

We assume that, in the CM frame, the scattering can be described
by

q′1 = p′1, ε′1 = E ′1 (4.19)

for the particle with rest mass m1, and

q′2 = p′2, ε′2 = E ′2 (4.20)

for the particle with rest mass m2. These conditions express con-
servation of the magnitude of momentum for each particle individ-
ually. By implication, total energy is conserved for each particle
individually. This is valid in the CM frame, but not in the lab
frame. Substituting above, we obtain

q1z = γ [ p′ cos θ′ + β E ′1 ]

ε1 = γ [E ′1 + β p′ cos θ′ ]

q2z = γ [ p′ cos(π − θ′) + β E ′2 ]

ε2 = γ [E ′2 + β p′ cos(π − θ′) ]. (4.21)

The transverse x-components of the final momentum are trans-
formed as follows:

q1x = q′1x = p′ sin θ′

q2x = q′2x = −p′ sin θ′. (4.22)

From this we obtain

tan θ1 =
q1x

q1z

=
p′ sin θ′

γ (p′ cos θ′ + β E ′1)

tan θ2 =
q2x

q2z

=
−p′ sin θ′

γ (−p′ cos θ′ + β E ′2)
. (4.23)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 243 — #253 i
i

i
i

i
i

4.1. Classical particle kinematics 243

We now make use of

β E ′1
p′

=
m2

1 + E1m2

m2
2 + E1m2

≡ α

β E ′2
p′

=
m2

2 + E1m2

m2
2 + E1m2

= 1. (4.24)

We have defined a new dimensionless quantity α in terms of quan-
tities which are all known. Substituting, we express the final scat-
tering angles θ1 and θ2 in the lab frame, in terms of the known
CM scattering angle θ′ as

tan θ1 =
(m2

1 +m2
2 + 2E1m2)1/2 sin θ′

(E1 +m2) (cos θ′ + α)

tan θ2 =
(m2

1 +m2
2 + 2E1m2)1/2 sin θ′

(E1 +m2) (cos θ′ − 1)
. (4.25)

These two equations express the scattering angles in the lab frame
in terms of quantities which are all known. This represents the
main result to this point.

It is of great interest to investigate the momentum and energy
transferred in the lab frame. These are found by subtracting the
initial state values from the final state values. This is embodied in
the equations

∆p1 = q1 − p1

∆p2 = q2 − p2

∆E1 = ε1 − E1

∆E2 = ε2 − E2, (4.26)

where the subscripts 1 and 2 refer to the incident and target par-
ticles, respectively, and where ∆pi is the transferred vector ki-
netic momentum and ∆E is the transferred total energy. Since
the scattering takes place in a single plane, the momentum p is a
two-vector. In the following, we label the direction of the incident
particle momentum as the z-axis, and the orthogonal axis as the
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x-axis. It is straightforward, but quite tedious to calculate the mo-
mentum and energy transfer. It is left as an exercise to the reader
to set up the algebra, based on the above analysis. Indeed, an am-
bitious reader could carry this through to a closed-form solution.

The problem becomes greatly simpler in the nonrelativistic ap-
proximation. This approximation is relevant to a large variety of
charged particle instruments, which operate at low energy, where
the kinetic energy is small relative to the particle rest-mass energy.
This approximation also provides significant intuitive insight into
the scattering process.

We continue to use the same notation for the initial state in the lab
frame, namely, we assume that particle 1 (the incident particle)
has rest mass m1, vector kinetic momentum p1, and total energy
E1. We assume that particle 2 (the target particle) has rest mass
m2, vector kinetic momentum p2, and total energy E2.

We also continue to use the same notation for the final state after
scattering, namely, we assume that particle 1 has rest mass m1,
vector kinetic momentum q1, and total energy ε1. We assume that
particle 2 has rest mass m2, vector kinetic momentum q2, and to-
tal energy ε2.

In the nonrelativistic limit these quantities are related by

E1 =
p2

1

2m1

E2 =
p2

2

2m2

ε1 =
q2

1

2m1

ε2 =
q2

2

2m2

. (4.27)

We assume the initial condition in the lab (unprimed) frame that
p1 = p and p2 = 0, where p is oriented along the +z axis, and is
known a priori.
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With these assumptions, we now proceed to find q1 and q2, making
use of conservation of momentum and energy. As before, we trans-
form from the lab to the CM frame, then calculate the scattering
probability as a function of scattering angle in the CM frame, then
finally transform back to the lab frame. By definition p′2 = −p′1 in
the (primed) CM frame, since by definition the total momentum is
zero in this frame. Separately, the individual particle velocities in
the CM frame are given in terms of the velocities in the lab frame
by

v′1 = v1 − v
v′2 = v2 − v, (4.28)

where v is the velocity of the CM, measured in the lab frame.
From the above assumptions, it is left as an exercise to the reader
to show that the relative velocity of the two frames is given by

v =
p

m1 +m2

. (4.29)

Further, it follows that

p′1 = p
m2

m1 +m2

p′2 = −p m2

m1 +m2

, (4.30)

which satisfies the condition that p′2 = −p′1 as required for the CM
frame.

Next we invoke the condition that the scalar kinetic momentum
is preserved in the scattering for each particle individually in the
CM frame, that is,

q′1 = p′1
q′2 = p′2. (4.31)

This is consistent with the fact that the vector momenta q′1 and
q′2 after the collision are equal and opposite in the CM frame.
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Taking account of these, we resolve the momenta q′1 and q′2 for
the respective particles into transverse x-components, and longi-
tudinal z-components:

q′1x = p′1 sin θ′

q′1z = p′1 cos θ′

q′2x = −p′1 sin θ′

q′2z = −p′1 cos θ′, (4.32)

where 0 ≤ θ′ ≤ π. Next, we transform to the lab frame. By velocity
addition of the longitudinal components only,

q1x = q′1x
q1z = q′1z +m1v

q2x = q′2x
q2z = q′2z +m2v. (4.33)

Substituting, it follows that

q1x =
pm2

m1 +m2

sin θ′

q1z =
pm2

m1 +m2

(
cos θ′ +

m1

m2

)
q2x = − pm2

m1 +m2

sin θ′

q2z = − pm2

m1 +m2

(
cos θ′ − 1

)
. (4.34)

This represents the solution for the final momenta, where the right-
hand sides consist of all known quantities.

It is straightforward to calculate the momentum transferred to
the two particles in the lab frame, ∆pi ≡ qi − pi. This is

∆p1x =
pm2

m1 +m2

sin θ′

∆p1z =
pm2

m1 +m2

(cos θ′ − 1)
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∆p1x = − pm2

m1 +m2

sin θ′

∆p1z = − pm2

m1 +m2

(cos θ′ − 1). (4.35)

The energy transferred between the two particles in the lab frame,
∆Ei ≡ εi − Ei follows immediately as

∆E1 =
p2m2

(m1 +m2)2 (cos θ′ − 1)

∆E2 = − p2m2

(m1 +m2)2 (cos θ′ − 1). (4.36)

The scattering angles θ1 and θ2 in the lab frame are easily found
to obey

tan θ1 =
sin θ′

( cos θ′ +m1/m2 )

tan θ2 =
sin θ′

( cos θ′ − 1 )
. (4.37)

This agrees with the earlier relativistic result in the limit where the
kinetic energy is negligible compared with the rest mass. Mathe-
matically, this is equivalent to Ei ≈ mi. The reader is encouraged
to verify these results.

We have thus succeeded in calculating the momentum and energy
transfer in closed form, in the nonrelativistic limit. We have also
calculated the scattering angles θ1 and θ2 in the lab frame, in the
relativistic case, and the nonrelativistic approximation. This rep-
resents the complete solution to the two-particle scattering kine-
matics. This will prove very useful in the following sections.
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4.2 Scattering cross section and classi-

cal scattering

Having obtained the reduction to the equivalent one-body prob-
lem, we are now in a position to address our central problem,
namely, calculation of the scattered intensity as a function of scat-
tering angle. For simplicity of notation in the following, we make
the substitution

ϑ ≡ θ′ (4.38)

for the scattering angle in the CM frame. From the preceding
analysis, this is equivalent to the scattering angle of the reduced
mass M from the fixed scattering center in the CM frame.

It is instructive to first study elastic scattering in the context of
classical mechanics. The geometry is shown schematically in Fig-
ure 4.4 for a repulsive scattering force. The particle of mass M

Figure 4.4: Classical elastic scattering geometry.

in the equivalent one-body problem is incident from the left, and
initially travels along the +z direction. The fixed scattering cen-
ter at O causes the particle to trace out a curved trajectory given
by r(θ). The particle passes to a very large distance, where the
scattering force becomes negligible. The resulting scattering angle
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is ϑ, not to be confused with the instantaneous anglar coordinate θ.

We assume a uniformly dense beam of many particles incident
on the scattering center from the left. We expect that the number
of scattered particles dN detected at angle ϑ in a time interval dt
must be proportional to the product of the incident intensity S0

times the scattered solid angle element dΩ times the time interval
dt, i.e.,

dN = σ(ϑ)S0 dΩ dt, (4.39)

where σ(ϑ) is a proportionality factor which depends on the scat-
tering angle ϑ. This factor contains all relevant information about
the details of the scattering process. It is called the differential
cross section. Rearranging factors, this is

σ(ϑ) =
1

S0

dN

dΩ dt
. (4.40)

The differential cross section is the number of scattered particles
per unit solid angle, per unit time, per unit incident intensity. It
has units of area. Mathematically, the central problem is to find
the differential cross section σ(ϑ).

The strength of the scattering and resulting ϑ vary inversely with
the distance b, called the impact parameter. The problem is axi-
ally symmetric about the z-axis. Considering the range of possible
values of b, we therefore write

S0 =
dN

dA0 dt
=

1

2πb db

dN

dt
, (4.41)

where the cross-sectional area element dA0 is an annulus centered
on the z-axis. The final solid angle element dΩ is given by

dΩ =
dA

r2
= 2π sinϑ dϑ, (4.42)

where the area element dA is an annulus on a sphere of very large
radius centered about the scattering center at O. Substituting
(4.41, 4.42) into (4.40), the differential cross section is then

σ(ϑ) =
b

sinϑ

db

dϑ
. (4.43)
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This applies to any case with axial symmetry, regardless of the
detailed dependence of the scattering force on the separation r.

We assume that all relevant information about the scattering
forces is contained in the potential energy U(x) between the two
particles, where x is the three-vector spatial separation between
the particles. We assume U to be known. For the present analysis
we now consider the special case for which the potential energy
can be written as

U(r) =
q1q2

4πε0r
≡ κ

r
, (4.44)

where r = |x|. The potential energy is inversely proportional to
the magnitude of the separation r between the two particles, and
is spherically symmetric. This is the electrostatic potential energy
arising from the Coulomb interaction between two charges q1 and
q2 separated by a distance r. With charges of opposite sign, κ <
0, giving rise to an attractive force. With charges of like sign,
κ > 0, giving rise to a repulsive force. This is just the classical
Kepler problem. An equation for the trajectory is expressed in
polar coordinates as the radius r as a function of the scattering
angle θ. This was derived previously in the section on applications
of Hamilton–Jacobi theory. It is

1

r
= −Mκ

L2

 1 +

√
1 +

2HL2

Mκ2
cos (θ − θ0)

 , (4.45)

where H is the Hamiltonian, which represents the conserved total
energy, and L is the conserved angular momentum about the scat-
tering center at O. The trajectory is symmetric about a line going
outward from the scattering center at angle θ0, because the cosine
is an even function. The square root is called the eccentricity of
the orbit ε. In the case where ε > 1 the trajectory is a hyperbola,
with asymptotes shown in Figure 4.4. In the case of an attractive
force, this requires that the total energy H be sufficiently high
that the particle is not bound.
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Letting r →∞ after the scattering has taken place, we obtain

0 = 1 +

√
1 +

2HL2

Mκ2
cos (ϑ− θ0). (4.46)

It is evident from the figure that

2(θ0 − ϑ) + ϑ = π, (4.47)

from which it follows that

cos(ϑ− θ0) = cos

(
ϑ

2
− π

2

)
= sin(ϑ/2). (4.48)

The conserved angular momentum L is given at any given point
along the trajectory by

L = r× p. (4.49)

Considering the incident particle far from the scattering center,
we write

L = lim
r→∞

r p0 ·
b

r
= b
√

2MH, (4.50)

where p0 =
√

2MH is the initial momentum. Substituting this
into (4.46), we find

sin(ϑ/2) = −
(

1 +
4H2b2

κ2

)−1/2

. (4.51)

Solving for the impact parameter b, this leads to

b =
κ

2H
cot(ϑ/2). (4.52)

Differentiating, we obtain

db

dϑ
= − κ

4H
csc2(ϑ/2). (4.53)

Substituting (4.52, 4.53) into (4.43), we obtain the result for the
differential cross section as

σ(ϑ) =
κ2

16H2 sin4(ϑ/2)
. (4.54)
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This is the dependence seen by Rutherford in the scattering of
alpha particles by a gold foil, from which the nuclear model of the
atom was originally deduced. It is therefore called the Rutherford
scattering cross section. It is the same for both signs of κ, and is
therefore independent of whether the scattering force is attractive
or repulsive. It approaches infinity at zero scattering angle, and
has a finite value for backscattering at ϑ = π. Integrating over all
solid angle, we form the total cross section. This is

σtot = 2π
∫ π

0
σ(ϑ) sinϑ dϑ. (4.55)

This is infinite for the case of Rutherford scattering. Physically,
this means that the Coulomb potential effectively has infinite
range.

We are now in a good position to consider quantum mechanical
elastic scattering. This is the subject of the next three sections.

4.3 Integral expression of Schrödinger’s

equation

All relevant information about quantum mechanical scattering is
contained in the differential cross section, which was defined in
the preceding section. The cross section in turn depends on the
wave function ψ(x, t), which is a solution of the time-dependent
Schödinger equation (3.13) with appropriate boundary conditions.
In this section we cast Schrödinger’s equation in a form which will
prove to be directly applicable to the scattering problem.

In the important special case where the electrostatic potential φ(x)
has no explicit time dependence, the wave function ψ(x, t) takes
on the separable form (3.18) where

ψ(x, t) = u(x) e−iHt/h̄, (4.56)
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and H is the eigenvalue for the conserved total energy.

We now proceed to apply this formalism to the scattering problem.
The spatial part u(x) satisfies

∇2u(x) + k2 u(x) =
2m

h̄2 U(x)u(x), (4.57)

where U(x) = qφ(x) is the potential energy associated with the
scattering center, and

k2 =
2mH

h̄2 . (4.58)

This is recognizable as the Helmholtz equation. It is inhomoge-
neous, owing to the source term on the right-hand side. The ge-

Figure 4.5: Geometry for scattering.

ometry is shown schematically in Figure 4.5. The scattering center
is located at point O. The scattering is described by the potential
energy U(x1), assumed spherically symmetric about O. We seek
the scattered wave function u(x) at the observation point P , lo-
cated a large distance x from O. The incident plane wave and the
scattered spherical wave are described by the wave vectors k0 and
k, respectively. The angle θ between them is the scattering angle.
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The difference between these outgoing and incoming wave vectors
is q = k− k0. For elastic scattering the magnitudes k0 and k are
equal.

We postulate a point source at P , radiating an outgoing spher-
ical wave, represented by the complex wave function

G(R) =
1

R
exp(ikR). (4.59)

This point source does not exist physically, but provides a mathe-
matical aid to solve the problem. The amplitude G(R) must satisfy
the Helmholtz equation,

∇2
RG(R) + k2G(R) = 0 (4.60)

everywhere except at P , where G(R) has a singularity. To verify
that this is the case, we express the Laplacian operator ∇2 in
spherical coordinates, leading to

1

R

d2

dR2
[RG(R) ] + k2G(R) = 0. (4.61)

The solution is immediately recognizable as

RG(R) = exp (± ikR), (4.62)

in agreement with (4.59) as required. We evaluate G(R) at the
field point x1 in Figure 4.5, where

R = |x− x1 |. (4.63)

For notational purposes, we denote G(R) = G(x,x1) in the fol-
lowing, where

G(x,x1) =
1

|x− x1 |
exp ( ik|x− x1 | ) (4.64)

represents the outgoing spherical wave. Multiplying (4.57) by
G(x,x1), multiplying (4.60) by u(x1), and subtracting the two
equations, we obtain

G(x,x1)∇2
1u(x1)− u(x1)∇2

1G(x,x1) =
2m

h̄2 U(x1)G(x,x1)u(x1).

(4.65)
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We now proceed to integrate this over the entire space, excepting
the small sphere about P , where G is singular. We make use of
the divergence theorem to convert the volume integral on the left
side to a surface integral over the entire surface S1 surrounding
the volume. This gives∫

S1

dS1

[
G(x,x1)

∂

∂n
u(x1)− u(x1)

∂

∂n
G(x,x1)

]

=
2m

h̄2

∫
V1
d3x1 U(x1)G(x,x1)u(x1), (4.66)

where n denotes the outward normal to the surface S1. The surface
integral over S1 consists of the sum of two contributions, namely,
the small sphere Sε of radius ε about P , and a large sphere S∞ at
infinty. Taking the small sphere first, we find∫

Sε
dS1

[
G(x,x1)

∂

∂n
u(x1)− u(x1)

∂

∂n
G(x,x1)

]
→ 4π u(x)

(4.67)
in the limit ε→ 0, where the second term on the left predominates,
and the first term becomes negligible. Considering the sphere S∞
at infinity, we find∫

S∞
dS1

[
G(x,x1)

∂

∂n
u(x1)− u(x1)

∂

∂n
G(x,x1)

]

→
∫
S∞

(
∂u

∂n
− iku

)
R2G(R) dΩ, (4.68)

where dΩ is the element of solid angle. The right side vanishes, as
long as (

∂u

∂n
− iku

)
R→ 0 (4.69)

at infinity. This is, in fact, the case, where (4.69) is known as the
Sommerfeld radiation condition [85].

We are thus left with an equation for u(x) as follows:

u(x) =
m

2πh̄2

∫
d3x1G(x; x1)U(x1)u(x1), (4.70)
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where G(x; x′) is the Green’s function (4.64). This equation rep-
resents the main result of this section. It can be regarded as com-
pletely equivalent to the differential equation for u(x) (4.57), which
is the spatial part of Schrödinger’s equation for the stationary-
state case. We recall that |u(x)|2 is the probability density that a
single, precise measurement of the scattered particle position will
find the particle at position x. This represents the connection with
experimental measurement. The equation (4.70) has the advan-
tage of being more directly applicable to the scattering problem.
We will make use of this in the following section.

4.4 Green’s function solution for elas-

tic scattering

We now turn our attention to the important special case of two-
particle scattering in which the incident particle transfers negligi-
ble energy to the target particle. This process is known as elastic
scattering. The central problem is to calculate the differential cross
section σ(ϑ), which gives the scattered intensity at angle ϑ.

In the case where the incident and target particles each retain
their same rest mass in the initial and final states, and we disre-
gard internal degrees of freedom for each particle, the total energy
is conserved for each particle individually in the CM frame. In
the nonrelativistic limit, the two-body scattering is reduced to the
equivalent one-body scattering. In this case a single particle with
reduced mass M scatters from a fixed center, where M is given by
(4.15)

M =
m1m2

m1 +m2

, (4.71)

where m1 and m2 are the rest masses of the incident and target
particles, respectively.
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In the case where m1 � m2, the CM moves slowly in the lab
frame. Also, M ≈ m1. In this limit the incident particle transfers
a small fraction of its energy to the target particle. The scattering
can therefore be regarded as elastic in the lab frame, as well as
in the CM frame. This is a fair approximation for a fast electron
incident on an atomic nucleus, for example.

In the following analysis, we will calculate the differential cross-
section σ(ϑ) for the equivalent one-body scattering in the CM
frame. The geometry of the scattering is shown for the equivalent
one-body problem in Figure 4.5. We assume a plane wave inci-
dent from the left, with wave vector k0 oriented along the positive
z-axis. A scattering center is located at O, and an observation
point at P , at position x. A spherical wave with wave vector k
emanates from the scattering center O. The polar scattering angle
between the incident and scattered wave vectors k0 and k is ϑ.

We define the normalized incident wave function u0(x) as the plane
wave

u0(x) =
1√
V
eik0·x. (4.72)

We assume the observation point P is located far from the scatter-
ing center. As such, the scattered wave u(x) can be approximated
by a spherical wave,

u(x) = f(k0,k)
1√
V

eikr

r
, (4.73)

where we define r ≡ |x|, and the factor f(k0,k) is called the scat-
tering amplitude.

Strictly, the incident plane wave has infinite extent. However, in
practice the incident beam is typically collimated, so that the inci-
dent and scattered waves do not interfere at the observation point
P . We write the incident flux S0 and the scattered flux S, respec-
tively as

S0 = |u0(x)|2 v0, S = |u(x)|2 v (4.74)
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where v0 and v are the incident and scattered velocities, respec-
tively. For the case of elastic scattering, v = v0. It follows imme-
diately that the differential cross section is (4.73, 4.74)

σ = |f(k0,k)|2. (4.75)

We define a total wave function uT (x) = u0(x) + u(x) as the sum
of the incident and scattered wave functions. This must satisfy
Schrödinger’s equation,

(∇2 + k2)uT (x) =
2m

h̄2 U(x)uT (x) (4.76)

where U(x) is the potential energy associated with the scattering
center, and

k2 =
2mH

h̄2 (4.77)

where H is the continuous total energy eigenvalue associated with
the state uT . This is recognizable as the Helmholtz equation. It is
inhomogeneous, owing to the source term on the right-hand side.

From the previous section, this equation can be expressed in inte-
gral form as

u(x) =
m

2πh̄2

∫
d3x1G(x,x1)U(x1)uT (x1) (4.78)

where G(x,x1) is the Green’s function given by

G(x,x1) =
1

|x− x1 |
exp ( ik|x− x1 | ). (4.79)

The scattering potential energy U(x1) is appreciably different from
zero over a very small region x1. As the observation point P is
very far away, we assume r � r1, where we define r ≡ |x| and
r1 ≡ |x1|. From the law of cosines,

|x− x1|2 = r2 + r2
1 − 2 x · x1

≈ r2
(

1− 2
x · x1

r2

)
. (4.80)
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Taking the square root of both sides, and retaining only the two
largest terms in the Taylor series expansion,

|x− x1| ≈ r − x · x1

r
. (4.81)

It follows that (4.78, 4.79, 4.81)

u(x) ≈ m

2πh̄2

eikr

r

∫
d3x1 exp

(
−ik x · x1

r

)
U(x1)uT (x1). (4.82)

From the definition of the scattering amplitude f , it follows (4.73)
that

f =
m
√
V

2πh̄2

∫
d3x1e

−ik·x1 U(x1)uT (x1) (4.83)

where we have defined the scattered wave vector as

k ≡ k
x

r
, (4.84)

noticing that x/r is the unit vector in the direction of the scatter-
ing. This equation cannot be solved in closed form, because of the
presence of the still unknown uT under the integral. Therefore, we
must seek a suitable approximation. To this end we replace uT un-
der the integral by the incident wave function u0. This is known as
the first Born approximation. It is justifiable when the scattering
is relatively weak. In this approximation, we write (4.72, 4.83)

f(q) =
m

2πh̄2

∫
d3x1 U(x1) e−iq·x1 , (4.85)

where we have defined the difference vector q as

q = k− k0. (4.86)

We recognize this as the Fourier transform of the scattering po-
tential energy distribution U(x1). As h̄k0 and h̄k represent the
incident and scattered momenta, respectively, it follows that h̄q
is the momentum transferred in the collision. This expression for
f(q) is quite general, as we have not yet specified the precise form
of the scattering potential energy U(x1). It applies in many cases
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of elastic scattering, including high energy particle physics, and
electron microscopy, to name just two.

We now turn to the important special case where U(x) is spheri-
cally symmetric; i.e., U(x) = U(r). In spherical coordinates,

d3x1 = r2
1 sin θ1 dr1 dθ1 dφ1. (4.87)

We assume for the present analysis that the scattering is az-
imuthally symmetric, in which case we immediately integrate over
φ1 to give (4.85, 4.87)

f(q) =
m

h̄2

∫ ∞
0

dr1 r
2
1 U(r1)

∫ π

0
dθ1 sin θ1 e

−iqr1 cos θ1 . (4.88)

Substituting cos θ1 ≡ µ, we find∫ π

0
dθ1 sin θ1 e

−iqr1 cos θ1 =
∫ 1

−1
dµ e−iqr1µ

=
2

qr1

sin(qr1) (4.89)

and (4.88, 4.89)

f(q) =
2m

h̄2q

∫ ∞
0

dr1 r1 U(r1) sin(qr1). (4.90)

This applies to any elastic scattering process for which the scat-
tering potential energy is spherically symmetric.

We now study the special case where an incident particle of charge
ze is elastically scattered by the screened Coulomb potential of a
target atomic nucleus of charge Ze. This process represents the
basic mechanism of contrast formation in a transmission electron
microscope, for example. We now assume that the spherically sym-
metric potential U(r1) is represented by the screened Coulomb
potential

U(r1) =
Zze2

4πε0 r1

exp (−αr1). (4.91)

Physically, this means that the bare charge of the scattering nu-
cleus is screened by the electron charges of the target atom. This
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limits the spatial extent of the scattering region, compared with a
bare, unscreened nuclear charge. Substituting, we find (4.90, 4.91)

f(q) =
mZze2

2πε0h̄
2

1

q

∫ ∞
0

dr1 e
−αr1 sin (qr1) (4.92)

Making the substitutions

ξ ≡ qr1, β ≡ α

q
, (4.93)

we obtain (4.92)

f(q) =
mZze2

2πε0h̄
2

1

q2

∫ ∞
0

dξ e−βξ sin ξ

=
mZze2

2πε0h̄
2

1

q2 + α2
, (4.94)

where we have made use of∫ ∞
0

dξ e−βξ sin ξ =
1

1 + β2
. (4.95)

For an incident electron with z = 1, this takes the form

f(q) =
4πZ

137λC (q2 + α2)
, (4.96)

where we have made use of

e2

4πε0h̄c
=

1

137
, (4.97)

and the Compton wavelength λC for the electron, defined by

λC =
h

mc
= 0.002435 nm. (4.98)

The differential cross section σ is then given (4.75, 4.94) by

σ(q) = |f(q)|2 =

(
mZze2

2πε0h̄
2

)2
1

(q2 + α2)2
. (4.99)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 262 — #272 i
i

i
i

i
i

262 Chapter 4. Particle scattering

Figure 4.6: Momentum transfer and scattering angle.

The quantity q is related to scattering angle ϑ by

q = 2k sin (ϑ/2), (4.100)

as is evident from Figure 4.6. Substituting, we find (4.99, 4.100)

σ(ϑ) =

(
mZze2

2πε0h̄
2

)2
1[

4k2 sin2(ϑ/2) + α2
]2 . (4.101)

In the limit α→ 0, we obtain (4.101)

σ(ϑ) =

[
Zze2

16πε0H sin2(ϑ/2)

]2

, (4.102)

whereH is the total energy eigenvalue of the incident particle. This
is equal to the kinetic energy of the particle outside of the scatter-
ing field. This is identical with the result for Rutherford scattering
(4.44, 4.54) by an unscreened nucleus, derived previously from clas-
sical mechanics. This remarkable equivalence between the classical
and quantum mechanical results only holds true for the scattering
potential energy inversely proportional to the separation r.

We now proceed to integrate the differential cross section σ over
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all solid angles dΩ, to obtain the total cross section σe for elastic
scattering as follows:

σe =
∫

4π
σ(q) dΩ, (4.103)

where dΩ = 2π sinϑ dϑ. We notice that (4.100)

dΩ

dq
=
dΩ

dϑ

dϑ

dq
= 2π sinϑ

1

k cos(ϑ/2)
=

2πq

k2
, (4.104)

where 0 ≤ q ≤ 2k. It follows that (4.99, 4.103, 4.104)

σe =
2π

k2

∫ 2k

0
σ(q) q dq

=

(
mZze2

2πε0h̄
2

)2
4π

α2 (4k2 + α2)
. (4.105)

In the limit α → 0, where the nuclear charge is unscreened, the
total cross section becomes infinite. The Coulomb force is therefore
said to have infinite range. Physically, α represents the reciprocal
of the radius of the atomic electron cloud. It is approximately

α ≈ Z1/3

a0

(4.106)

where a0 is the Bohr radius of the hydrogen atom given by

a0 =
4πε0h̄

2

e2m
=

137λC
2π

= 0.0531 nm. (4.107)

For incident energy H > 1 KeV, we have 4k2 � α2, in which case
(4.77, 4.105)

σe ≈
(
mZze2

2πε0h̄
2

)2
π

k2α2

=
2πm

H

(
mZze2

2πε0h̄
2

)2

. (4.108)

Taking

H = 1
2
mβ2c2, β = v/c, z = 1, (4.109)
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we obtain a useful approximation for the total elastic cross section
for an incident electron (4.108, 4.109) as

σe =
Z4/3

β2

λ2
C

π
= 1.9× 10−6 Z

4/3

β2
nm2. (4.110)

Knowing the total cross section, we can now estimate the mean
free path µe which an electron travels between scattering events.
This is

µe =
1

Nσe
=

A

N0 ρ σe
, (4.111)

where N = number of scattering centers per unit volume, A =
atomic number, N0 = Avagadro’s number, and ρ = mass den-
sity. For 100 KeV electrons incident on silicon (Z = 14, A = 28
gm/mole, ρ = 2.4 gm/cm3), we find µe = 93 nm for the mean free
path.

For fast electrons incident on a film of thickness of the order of
the mean free path, the average scattering angle is quite small. In
this case, we can approximate

sin
ϑ

2
≈ ϑ

2
. (4.112)

The differential cross section σ(ϑ) is then approximately given
(4.101, 4.112) by

σ(ϑ) =

(
Zze2

4πε0H

)2
1

(ϑ2 + ϑ2
W )2

(4.113)

where we have defined (4.106)

ϑW =
α

k
=
Z1/3λ

2πa0

(4.114)

where λ = h/p is the particle wavelength. The angle ϑW is called
the Wentzel screening angle. For 100 KeV electrons incident on
silicon (Z = 14, λ = 0.0037 nm), we find ϑW = 0.027 rad, consis-
tent with our assumption of small angles. The total cross section
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is (4.101, 4.103, 4.112)

σe =
∫

4π
σ dΩ =

(
Zze2

4πε0H

)2

π
∫ ∞

0

2ϑ dϑ

(ϑ2 + ϑ2
W )2

=

(
Zze2

4πε0H

)2
π

ϑ2
W

. (4.115)

For 100 KeV electrons incident on silicon, this yields σe = 1.8 ×
10−4 nm2. We can form an angular distribution which is normal-
ized to unity as σ(ϑ)/σe. This is

σ1(ϑ) =
ϑ2
W

π

1

(ϑ2 + ϑ2
W )2

(4.116)

where
2π
∫ ∞

0
σ1(ϑ)ϑ dϑ = 1. (4.117)

The normalized distribution σ1 will prove useful in the theory of
small angle plural scattering.

4.5 Perturbation theory

At this point we describe what happens when a quantum me-
chanical system experiences a small perturbation from its initial
undisturbed state. This will provide a very useful mathematical
tool to further understand scattering.

We consider a general system, which is described by a Hamiltonian
operator Ĥ0 satisfying

Ĥ0 ψ(x, t) = ih̄
∂

∂t
ψ(x, t), (4.118)

where ψ(x, t) is the eigenfunction, and the Hamiltonian Ĥ0 is as-
sumed to have no explicit time dependence. The eigenfunction for
the jth state is given by

ψj(x, t) = uj(x) e−iHjt/h̄. (4.119)
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A linear superposition of eigenfunctions ψj(x, t) yields the state
function

Ψ0(x, t) =
∑
j

aj uj(x) e−iHjt/h̄, (4.120)

where aj = const, and |aj|2 is the probability that a single, precise
measurement of the total energy will yield the eigenvalue Hj.

This description is quite general, and applies to a variety of quan-
tum mechanical systems. As examples the system might consist
of

• a free particle,

• a particle in a general electromagnetic potential,

• a particle in the presence of the screened Coulomb potential
of a target nucleus,

• a particle in the presence of an atom consisting of a nucleus
and a cloud of electrons.

We now introduce a perturbation, by assuming a Hamiltonian Ĥ
consisting of two terms,

Ĥ = Ĥ0 + Ĥ1(t). (4.121)

The first term Ĥ0 is the unperturbed Hamiltonian in the absence
of any interaction between the constituent parts of the system.
The second term Ĥ1 is a perturbation representing the interac-
tion. In general this perturbation depends on the time t.

Since the unperturbed eigenfunctions ψj(x, t) form an orthonormal
set, it is always possible to expand the perturbed state function
Ψ(x, t) as a linear combination of the unperturbed eigenfunctions.
Thus

Ψ(x, t) =
∑
j

aj(t)uj(x) e−iHjt/h̄, (4.122)

where the coefficients aj(t) are now considered to depend on the

time t, owing to the time dependence of the perturbation Ĥ1(t).
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Substituting this into

(Ĥ0 + Ĥ1) Ψ(x, t) = ih̄
∂

∂t
Ψ(x, t) (4.123)

and subtracting out the unperturbed terms, we find

∑
j

aj (Ĥ1uj) e
−iHjt/h̄ = ih̄

∑
j

daj
dt

uj(x) e−iHjt/h̄. (4.124)

Multiplying from the left by ūi(x) and integrating over the volume,

ih̄
d

dt
ai(t) =

∑
j

aj(t) e
i(Hi−Hj)t/h̄

∫
d3x ūi(x) [ Ĥ1 uj(x) ], (4.125)

where we have made use of the orthonormality of the uj, namely∫
d3x ūi(x)uj(x) = δij. (4.126)

For brevity we make use of the Dirac notation as follows:∫
d3x ūi(x) [ Ĥ1 uj(x) ] =

〈
i|Ĥ1|j

〉
. (4.127)

We further abbreviate

Hi −Hj = Hij. (4.128)

In this notation we have

ih̄
d

dt
ai(t) =

∑
j

aj(t) e
iHijt/h̄

〈
i|Ĥ1|j

〉
. (4.129)

This equation describes the time evolution of the amplitude ai(t)
in the presence of the perturbation. It is exact, since no approxi-
mation has been made to this point.

We now introduce several approximating assumptions as follows:

• Initially, only one state is populated, and all other states
are unpopulated. Mathematically, aj(0) = 1 for one specific
value of the index j, and ak(0) = 0 for all other values k 6= j.
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• The interaction begins instantaneously at time t = 0, and
remains constant thereafter. In this respect we regard Ĥ1 as
time independent after t = 0.

• The change in each aj(t) over time is small throughout the
time of interaction. This is equivalent to the perturbation
being weak over the time scale of interest. Mathematically,
aj(t) ≈ aj(0) for all j and all t.

Based on these assumptions,

d

dt
ai(t) ≈

1

ih̄

〈
i|Ĥ1|j

〉
eiHijt/h̄. (4.130)

The index i runs over a multiplicity of final states with energy Hi

close to Hj. Integrating over time,

ai(t) =
1

ih̄

〈
i|Ĥ1|j

〉 ∫ t

0
eiHijt/h̄dt

= − 1

Hij

〈
i|Ĥ1|j

〉 (
eiHijt/h̄ − 1

)
= − 1

Hij

〈
i|Ĥ1|j

〉
exp

(
iHijt

2h̄

)
· 2i sin

(
Hijt

2h̄

)
.

(4.131)

The probability |ai(t)|2 of finding the final state i at time t is then

| ai(t) |2 =

∣∣∣∣∣ 2

Hij

〈
i|Ĥ1|j

〉
sin

(
Hijt

2h̄

) ∣∣∣∣∣
2

. (4.132)

The probability of transition from the initial state j to all final
states is found by summing over the final states i,

P (t) =
∑
i

|ai(t)|2. (4.133)

In the important case of an unbound system where the final states
i approach a continuum, this becomes

P (t) =
∫ ∞
−∞

dHi ρ(Hi) |ai(t)|2, (4.134)
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where ρ(Hi) is the density of states with respect to energy. Assum-
ing all final energies Hi are close to the initial energy Hj (weak
perturbation), we can approximate

Hi ≈ Hj ≈ H. (4.135)

Additionally, we approximate the matrix element by a single con-
stant value 〈

i|Ĥ1|j
〉
≈ 〈H〉 . (4.136)

As a result, we can bring 〈H〉 and ρ(H) outside the integral. Sub-
stituting,

P (t) = 4 〈H〉2 ρ(H)
∫ ∞
−∞

dHij

H2
ij

sin2
(
Hijt

2h̄

)
. (4.137)

Making the substitution

ξ ≡ Hijt

2h̄
, (4.138)

we find

P (t) =
2π

h̄
ρ(H) 〈H〉2 t, (4.139)

where we have made use of the integral∫ ∞
−∞

dξ

ξ2
sin2 ξ = π. (4.140)

The transition rate from a single initial state to all final states is
then

dP

dt
=

2π

h̄
ρ(H) 〈H〉2 , (4.141)

where the transition rate is the probability per unit time for the
transition from a single initial state to all available final states.
This result is quite general, in that it applies to many diverse
phenomena. It is called the golden rule of perturbation theory. In
the following sections we will proceed to apply it to the scattering
problem.
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4.6 Perturbation solution for elastic

scattering

We now proceed to apply the equation (4.141) to the problem of
elastic scattering. We assume that the initial state corresponds to
an incident plane wave, where the free-particle eigenfunction u0(x)
is given by

u0(x) =
1√
V
eik0·x, (4.142)

where V is the volume, k0 is the incident wave vector, and h̄k0 is
the incident momentum. The final state at a large distance from
the scattering center is a plane wave given by

u(x) =
1√
V
eik·x, (4.143)

where k is the scattered wave vector, and h̄k is the momentum af-
ter scattering of the incident particle. In the initial and final states
the particle is assumed to be far outside the region of scattering,
hence the free-particle eigenfunctions.

The unperturbed Hamiltonian Ĥ0 is then the free particle Hamil-
tonian, and the perturbation Hamiltonian Ĥ1 is the scattering po-
tential energy

Ĥ1 = U(x). (4.144)

We take the origin of coordinates x to coincide with the scattering
center of the equivalent one-body problem. In the case of an elec-
tron incident on an atom, the origin coincides with the position of
the atomic nucleus.

The matrix element
〈
i|Ĥ1|j

〉
is then given by

〈
i|Ĥ1|j

〉
=

1

V

∫
d3xU(x) e−iq·x, (4.145)

where we have defined the difference vector q ≡ k−k0. The quan-
tity h̄q is the momentum transferred in the collision.
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The density of states with respect to energy was found earlier
(3.73) to be

ρ(H) =
4πmV

h3

√
2m3H, (4.146)

where, for a free particle,

H =
h̄2k2

2m
. (4.147)

Substituting, this is equivalent to

ρ =
2mkV

h2
. (4.148)

The transition rate from the initial state to all final states is (4.141,
4.145, 4.148)

dP

dt
=

mk

πh̄3V

∣∣∣∣ ∫ d3xU(x) e−iq·x
∣∣∣∣2 . (4.149)

This represents the probability per unit time of scattering into all
solid angles. For the differential cross section we seek the number
of particles per unit time scattered into a particular solid angle
element dΩ. This is

dN

dt
=
dP

dt

dΩ

4π
. (4.150)

The definition of the differential cross section σ was given earlier
by (4.39)

dN

dt
= σ S0 dΩ, (4.151)

where S0 is the incident flux (particles per unit time per unit
transverse area) given by

S0 = |u0(x) |2 v0 =
h̄k0

V m
. (4.152)

For elastic scattering, k0 = k. That is, the magnitude of the mo-
mentum and therefore the wave vector is unchanged by the scat-
tering. Solving for the differential cross section σ, we obtain

σ(q) =
∣∣∣∣ m

2πh̄2

∫
d3xU(x) e−iq·x

∣∣∣∣2 ≡ |f(q)|2, (4.153)
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where f(q) is the scattering amplitude derived previously (4.85).
This is the main result of this section.

As a reminder, this applies to an arbitrary scattering potential
U(x). Mathematically, the equation (4.153) teaches that the scat-
tering amplitude is the Fourier transform of the scattering poten-
tial. In practical terms, the angular distribution of the scattering
is directly measurable, and represents a sensitive probe into the
detailed form of the scattering potential.

We have succeeded in reproducing the earlier result by the in-
dependent use of perturbation theory as an alternative approach.
From this we deduce that the approximations made here coincide
with the first Born approximation.

4.7 Inelastic scattering of a particle by

a target atom

A scattering event which transfers energy from the incident parti-
cle to the target material is called inelastic scattering. The trans-
ferred energy can be manifest in a variety of secondary processes.
These include emission of a photon, Auger electron, or ionization
electron from a target atom. Alternatively they include collective
excitation of the conduction band electron gas known as a plas-
mon, or of the target lattice as a phonon. Analysis of the energy
lost by the primary particle provides important information about
the chemical and physical composition of the target. At very high
incident energy, various elementary particles can be created. In-
elastic scattering is quite complicated, and the subject of an enor-
mous literature.

In this study we confine our attention to the primary energy trans-
fer, without considering the multiplicity of secondary processes. In
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one example, a massive incident particle transfers energy to cause
excitation or ionization of the electrons of a target atom. In a sec-
ond example, the passage of a fast charged particle causes instan-
taneous polarization of a dielectric medium. The central problem
is to calculate the scattering cross section in each case.

We assume an incident particle of mass m and charge ze, where z is
an integer. The target is a single atom with atomic number Z. In a
single collision the incident particle transfers a small fraction of its
energy to the target atom, initially in its ground state. As a result,
the atom is excited to a higher energy state. In principle this can
include ionization of the atom. The scattered particle then exits
to a final free-particle state with reduced energy and momentum.
The following analysis closely follows the classic paper of Bethe
[5], which is based on the same perturbation-theoretical approach
described above. The reader is referred to Egerton [24], who places
the material in the context of the considerable body of subsequent
work by others.

According to the foregoing analysis, calculation of the differential
scattering cross section σ is reduced to finding the appropriate
matrix element

〈
i|Ĥ1|j

〉
between the initial and final states of the

system. In this case, the system consists of a scattering particle
and a single target atom. The origin of coordinates coincides with
the nucleus of the target atom. The instantaneous position of the
scattering particle we denote by x, and the instantaneous positions
of the Z atomic electrons we denote by (x1, . . . ,xZ).

The initial and final eigenfunctions, respectively, can be repre-
sented by

u0(x; x1, . . .xZ) =
1√
V
eik0·x U0(x1, . . . ,xZ)

un(x; x1, . . .xZ) =
1√
V
eik·x Un(x1, . . . ,xZ), (4.154)

where the subscripts 0 and n refer to the ground state and the nth
excited states of the atom, respectively. The quantities U0 and Un
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represent the spatial wave function of the atom before and after
the collision. The time dependence has been integrated out in the
perturbation-theoretical approach described above.

The scattering particle approaches from a large distance with in-
cident wave vector k0, and exits with scattered wave vector k. In
this inelastic scattering case, the incident and scattered wave vec-
tors differ in both magnitude and direction. The eigenfunctions u0

and un represent solutions to the Schrödinger equation, where one
must be careful to include the dependence on all 3(Z + 1) spatial
degrees of freedom, here labeled (x; x1, . . . ,xZ).

The matrix element is given by

〈
i|Ĥ1|j

〉
=
∫
. . .
∫
ūn U u0 d

3x
Z∏
j=1

d3xj, (4.155)

where U(x; x1, . . .xZ) is the potential energy arising from the
Coulomb interaction. This is

U(x; x1, . . . ,xZ) =
e2z

4πε0

 Z

|x|
−

Z∑
j=1

1

|x− xj|

 . (4.156)

The first term in large parentheses represents the interaction be-
tween the scattering particle and the bare atomic nucleus, and the
second term represents the sum of interactions between the scat-
tering particle and the atomic electrons.

The matrix element takes the form

〈
i|Ĥ1|j

〉
=

1

V

∫
. . .
∫
U e−iq·x Ūn U0 d

3x
Z∏
j=1

d3xj, (4.157)

where q = k − k0. Following Bethe [5] we perform the integral
over d3x first. This integral is of the form∫ 1

|x− xj|
e−iq·x d3x = −4π

q2
e−iq·xj . (4.158)
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The truth of this equation can easily be established by applying
the Laplacian operator ∇2

xj
to both sides, where the subscript

denotes differentiation with respect to the coordinates xj. Taking
the Laplacian inside the integral on the left side, we make use of

∇2
xj

1

|x− xj|
= −4π δ(x− xj), (4.159)

which is well-known from electrostatic potential theory [48]. Using
the property of the delta-function, both sides are equal to e−iq·xj ,
thus establishing the identity. As a special case we have∫ 1

|x|
e−iq·x d3x = −4π

q2
. (4.160)

The matrix element is reduced to〈
i|Ĥ1|j

〉
=

e2z

ε0q2V

∫
. . .
∫ −Z +

Z∑
j=1

e−iq·xj

 · Ūn U0 ·
Z∏
j=1

d3xj,

(4.161)
where the integral is now only over the coordinates of the Z
atomic electrons xj. Making use of the orthonormality of the set
Un(x1, . . . ,xZ) this further reduces to〈

i|Ĥ1|j
〉

= − e2zZ

ε0q2V
δn0

+
e2z

ε0q2V

∫
. . .
∫  Z∑

j=1

e−iq·xj

 · Ūn U0 ·
Z∏
j=1

d3xj.

(4.162)

At this point we define a dimensionless quantity εn(q) given by

εn(q) = −Z δn0 +
∫
. . .
∫  Z∑

j=1

e−iq·xj

 · Ūn U0 ·
Z∏
j=1

d3xj, (4.163)

where εn is a property of the target atom in the nth excited state.
The first term represents the elastic scattering and the remainder
represents the inelastic scattering. The matrix element is then

〈H〉 =
〈
i|Ĥ1|j

〉
=

e2z

ε0 q2V
εn. (4.164)
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The transition rate is given by

dP

dt
=

2π

h̄
ρ 〈H〉2 , (4.165)

where the density of states of the scattered particle is

ρ =
2mV k

h2
. (4.166)

The number of particles per unit time scattered into a solid angle
element dΩ is given by

dN

dt
=
dP

dt
· dΩ

4π
= σ(q)S0 dΩ, (4.167)

where S0 is the incident intensity given by

S0 =
h̄k0

mV
. (4.168)

The central problem of this section is to calculate the differential
cross section σ(q). This is

σ(q) =
ρ 〈H〉
2 h̄ S0

. (4.169)

Substituting, we obtain the result

σn(q) =

(
me2z

2πε0 h̄
2q2

)2
k

k0

| εn(q) |2, (4.170)

where the subscript n indicates that the target atom is excited to
the nth state. Energy conservation dictates that

E0 +
h̄2k2

0

2m
= En +

h̄2k2

2m
, (4.171)

where E0 and En are the ground state and nth excited state energy
levels, respectively. The final state can consist of atomic excitation
or ionization.
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Figure 4.7: Wave vectors for inelastic scattering.

We recall that k0, k, and q are related by

q = k− k0. (4.172)

This is shown in Figure 4.7, where θ is the scattering angle. The
various magnitudes are related by

q2 = k2 + k2
0 − 2 k k0 cos θ. (4.173)

Taking the differential of both sides, we have

q dq = k k0 sin θ dθ. (4.174)

The solid angle element dΩ is given by

dΩ = 2π sin θ dθ. (4.175)

Substituting, this leads to a differential form for the inelastic scat-
tering cross section as

σn(q) dΩ =

(
me2z

ε0 h̄
2

)2
1

2π k2
0

| εn(q) |2 dq
q3
. (4.176)

Integrating both sides over all possible values, we obtain the to-
tal cross section. This form shows that the total cross section for
inelastic scattering is inversely proportional to the energy of the
incident particle. Elastic scattering has the same inverse depen-
dence on incident energy. For electron scattering the ratio of the
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total cross section σi for inelastic scattering divided by the total
cross section σe for elastic scattering is given [24] by

σi
σe
≈ 20

Z
. (4.177)

Following Bethe [5], the momentum transfer q is related to the
scattering angle θ by

q2 ≈ θ2 + θ2
E, (4.178)

where θE is defined as

θE =
m∆Ē

h̄2k2
0

, (4.179)

and ∆Ē is the average energy loss per collision, and is in the range
of a few eV to a few tens of eV, depending on the target material.
Given that the scattering is from the electron cloud of the target
atom, the predominant scattering angles for a fast incident particle
are small, in the range of 1 mrad.

4.8 Slowing of a charged particle in a

dielectric medium

When a fast charged particle passes through a solid, it interacts
electromagnetically with many atoms simultaneously. In addition
conduction band electrons are delocalized, with nonzero proba-
bility density over a region many atomic diameters in size. The
incident particle interacts collectively with the electrons of the
target material. It is worthwhile to consider the interaction in a
classical approximation. This section closely follows the analysis
by Landau and Lifshitz [56]. This material is described in more
detail, and placed in the context of the earlier work of others by
Egerton [24].
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We consider a charged particle with velocity v passing through an
infinite medium with complex dielectric coefficient ε(ω). Here ω is
the temporal angular frequency of the electromagnetic field of the
particle. This presumes that the electromagnetic field is amenable
to Fourier analysis. This is shown schematically in Figure 4.8. The

Figure 4.8: Particle passing through a dielectric medium.

particle has charge q and velocity v. An electromagnetic field is
experienced at the observation point O due to the passing particle.

We adopt the nonrelativistic approximation, in which magnetic ef-
fects are negligible. The instantaneous electrostatic potential ϕ(x)
evaluated at any position x obeys Poisson’s equation,

∇2ϕ(x) = −ρ(x)

ε
. (4.180)

The charge density ρ is due to the particle, and is given by

ρ(x) = q δ(x− vt). (4.181)

The potential ϕ(x) can be expressed as a Fourier integral,

ϕ(x) =
∫
d3k ϕ̃(k) eik·x. (4.182)
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Applying the Laplacian operator to both sides, we obtain

∇2ϕ(x) = −
∫
d3k k2 ϕ̃(k) eik·x. (4.183)

Separately, the delta function has the integral representation

δ(x− vt) =
1

(2π)3

∫
d3k eik·(x−vt). (4.184)

Substituting into Poisson’s equation above, we obtain

ϕ̃(k) =
q

(2π)3 k2 ε(k · v)
ei(k·v)t. (4.185)

The electric field E(x) is given by

E(x) = −∇ϕ(x)

= −
∫
d3k ϕ̃(k)

(
ik eik·x

)
. (4.186)

Separately, the electric field E(x) can be expressed as a Fourier
integral,

E(x) =
∫
d3k Ẽ(k) eik·x. (4.187)

Substituting, we obtain

Ẽ(k) = −ik ϕ̃(k)

= − ikq

(2π)3 k2 ε(k · v)
ei(k·v)t. (4.188)

Performing the inverse Fourier transform, and evaluating the elec-
tric field at the particle position x = vt, we obtain

E(vt) = − iq

(2π)3

∫
d3k

k

k2 ε(k · v)
, (4.189)

where the exponential factors cancel. The force F on the particle
is the product of the charge q times the electric field,

F = − iq2

(2π)3

∫
d3k

k

k2 ε(k · v)
, (4.190)
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where k · v is identified as the angular temporal frequency ω. The
quantity 1/ε is complex, with the real part even and the imaginary
part odd. The real part integrates to zero, while only the imaginary
part survives. We therefore write

F = − q2

(2π)3

∫
d3k

k

k2
=
[
−1

ε(k · v)

]
. (4.191)

The direction of the force is opposite to the particle velocity indi-
cating slowing of the particle. This is evident from the axial sym-
metry of the problem. Assuming the particle moves in a straight
line, the magnitude of the force represents the energy loss per
unity path length. The integral can be evaluated in principle by
resolving the wave vector k into axial and transverse components.
In order to obtain convergence, one must subtract the vacuum
contribution with no medium present. This is described in more
detail by Landau and Lifshitz [56].

This represents the main result of this section. This approach has
the advantage that the complex dielectric constant can be mea-
sured by light-optical means.

4.9 Small angle plural scattering of

fast electrons

It is often the case where the thickness of a scattering material
film exceeds the mean free path for the incident particle. A very
thick bulk target can stop or reflect the incident beam. In this
case, the scattering is adequately described by the diffusion equa-
tion. A commonly occurring case of considerable interest is where
the scattering film is several mean free paths in thickness. This
case is referred to as plural scattering. Diffusion has not yet set
in, and it is necessary to describe the scattering in terms of a
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classical transport equation. This is permissible for an amorphous
target, as typically the phase coherence of elastic scattering has
been lost due to the random distribution of scattering centers, and
the presence of inelastic processes. This section is based on earlier
published work by Snyder and Scott [81], Keil, Zeitler, and Zinn
[50], Crewe and Groves [21], and Groves [38].

This is distinctly different from elastic electron scattering in a
crystal, where phase coherence is maintained. Here constructive
interference occurs at the Bragg angles, giving rise to the familiar
diffraction patterns. The following discussion does not apply to
the diffraction case.

The mean free path is given by

µ =
1

Nσ
, (4.192)

where N is the number of atoms per unit volume, and σ is the
total scattering cross section. For fast electrons in a typical solid,
µ for elastic scattering is proportional to the incident energy in the
first Born approximation. Consequently, µ ranges from a few tens
of nanometers at an incident energy of 10 KeV to a few hundreds
of nanometers at 1 MeV. The sections observed in a transmission
electron microscope must be thin relative to the mean free path, in
order to avoid degradation of the image due to multiple scattering
of the beam electrons. As this is not always possible, multiple scat-
tering must be considered in the image formation. In this section
we derive a method for understanding the scattering as a function
of the sample thickness, measured in units of the mean free path.

We define a dimensionless quantity n = z/µ, which we call the
reduced thickness, where z is the thickness, measured in units
of length. The probability P of an electron undergoing exactly j
scattering events in the reduced thickness n is governed by Poisson
statistics, namely

Pj(n) =
nj

j!
e−n. (4.193)
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This can be appreciated by calculating the expectation value of
the number of scattering events j for a given reduced thickness n.
It is

j̄ =
∞∑
j=0

j Pj(n) = n e−n
∞∑
j=1

nj−1

(j − 1)!
= n. (4.194)

The reduced thickness n is just the average number of scattering
events. In this study we confine the discussion to small values of
n, between zero and twenty, where diffusion has not yet set in.

Fast electrons incident on a thin film or bulk material undergo
elastic scattering by the screened Coulomb potential of a target
nucleus, and inelastic scattering by the electrons of the target ma-
terial. As the nucleus is much more massive than the incident
electron, classical kinematics dictates that the energy transfer is
negligible, hence the designation of elastic scattering. There is
appreciable momentum transfer, however. This is related to the
scattering angle ϑ by (4.100). The angular distribution for elastic
scattering is proportional to the differential cross section for small
angles. The small angle approximation is justified for small values
of n. We define a normalized angular distribution σ(θ) such that∫ 4π

0
σ(ϑ) dΩ ≈ 2π

∫ ∞
0

σ(ϑ)ϑ dϑ = 1, (4.195)

where dΩ is the element of solid angle. Equivalently, σ(ϑ) is the
differential elastic scattering cross section divided by the total elas-
tic cross section in the limit of small angles ϑ � 1. We could use
the screened Coulomb scattering result (4.116),

σ(ϑ) =
ϑ2
W

π (ϑ2 + ϑ2
W )2

, (4.196)

where ϑW is the screening angle, and σ(ϑ) is normalized to unity
with respect to solid angle. In the following analysis, we will not
restrict the form of σ(ϑ), however. In this sense the following can
be regarded as completely general with respect to the detailed
form of the single scattering, as long as the scattering angles are
small.
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We assume the elastic scattering is axially symmetric. This implies
that spin polarization is unimportant, and the scattering medium
is isotropic. We further assume that scattering angles associated
with inelastic scattering are negligible on average, and can be ig-
nored for the present purpose.

We will find it useful in the following to regard the scattering
angle as a two-dimensional vector r′ with components (x′, y′),
where x′ = dx/dz is the slope with respect to the transverse
x−coordinate, and y′ = dy/dz is the slope with respect to the
transverse y−coordinate. The magnitude of the scattering angle ϑ
is given for small angles by

ϑ ≈ |r′| =
√
x′2 + y′2. (4.197)

Given the distribution σ(r′) for single scattering, we now seek the
distribution σ2(r′) for exactly two scattering events. This is

σ2(r′) =
∫
d2r′0 σ(|r′0|)σ(|r′ − r′0|) = σ(r′) ∗ σ(r′), (4.198)

where ∗ denotes the two-dimensional convolution with respect to
slope components. Continuing this logic, the angular distribution
for exactly j scattering events is

σj(r
′) = σ(r′) ∗ . . . ∗ σ(r′), (4.199)

where the two-dimensional convolution is performed j times.

With this preparation complete, we are now in a position to state
the plural scattering problem in mathematical terms: given an an-
gular distribution σ(r′) for single scattering, normalized to unity,
and a mean free path µ, calculate the angular distribution F (r′, z)
for thickness z, in the presence of plural scattering. This is found
by summing over all numbers of scattering events j as follows:

F (r′; z) =
∞∑
j=0

Pj(z/µ) σj(r
′). (4.200)
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We now propose to eliminate the unwieldy convolution σj by tak-
ing the Fourier transform of both sides, and making use of the
convolution theorem. The two-dimensional Fourier transform of
σ(r′) is defined as

σ̃(l) =
∫
d2r′ σ(r′) exp [ i(l · r′) ], (4.201)

where l is the two-dimensional vector representing the transform
variable conjugate to r′. Making use of the radial symmetry,
σ(r′) = σ(r′), this becomes

σ̃(l) =
∫ ∞

0
dr′ r′ σ(r′)

∫ 2π

0
dφ exp (ilr′ cosφ). (4.202)

The φ− integral can be written in terms of

J0(x) =
1

2π

∫ 2π

0
dφ exp (i x cosφ), (4.203)

where J0 is the Bessel function of zero-order. This reduces to the
well-known Bessel transform,

σ̃(l) = 2π
∫ ∞

0
dr′ r′ J0(lr′)σ(r′), (4.204)

which is simply a two-dimensional Fourier transform of a radially
symmetric function. Applying the same logic to F , we obtain

F̃ (l; z) = 2π
∫ ∞

0
dr′ r′ J0(lr′)F (r′; z). (4.205)

Taking the two-dimensional Fourier transform of both sides with
respect to slope components, and making use of the convolution
theorem, we obtain

F̃ (l; z) =
∞∑
j=0

Pj(n) [ σ̃(l) ]j = e−n
∞∑
j=0

[nσ̃ ]j

j!
, (4.206)

where l is the transform variable corresponding to the scattering
angle r′, where r′ � 1. Performing the sum, we obtain

F̃ (l; z) = exp

{
− z
µ

[ 1− σ̃(l) ]

}
. (4.207)
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The solution for F (r′; z) is found by performing the inverse Bessel
transform,

F (r′; z) =
∫ ∞

0
dl l J0(lr′) F̃ (l, z). (4.208)

This integral is typically performed numerically. In doing so, one
must subtract the unscattered beam exp (−n) from F̃ , as this leads
to a delta function, which is poorly behaved. This represents the
solution for the angular distribution in the presence of small angle
plural scattering.

It is instructive to derive F (r′; z) by an alternative method, which
will turn out to have more general applicability. The rate of change
of F with path length s can be expressed as

d

ds
F (r′; z) = − 1

µ
F (r′; z) +

1

µ

∫
d2r′0 F (r′0; z)σ(|r′ − r′0|). (4.209)

The first term on the right represents scattering out of the solid an-
gle element dΩ at r′, while the second term on the right represents
scattering into the solid angle dΩ at r′ from all other solid angles
dΩ0 = d2r′0 at r′0. The quantity 1/µ represents the probability per
unit length that a scattering event will take place, remembering
that µ is the mean free path. Using the chain rule for partial dif-
ferentiation, we expand the derivative with respect to path length,
obtaining

d

ds
F (x′, y′; z) =

(
dx′

ds

∂

∂x′
+
dy′

ds

∂

∂y′
+
dz

ds

∂

∂z

)
F (x′, y′; z).

(4.210)
We note that dx′/ds = dy′/ds = 0, as the trajectories are straight
lines with constant slope between scattering events. Also, dz/ds ≈
1 for small angles. This leads to

∂

∂z
F (r′; z) = − 1

µ
F (r′; z) +

1

µ
F (r′; z) ∗ σ(r′). (4.211)

This amounts to a transport equation, which governs the evolu-
tion of the distribution function F (r′; z) as the beam propogates
through a thickness z.
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Taking the two-dimensional Fourier transform with respect to r′,
and applying the convolution theorem, we obtain

∂

∂z
F̃ (l, z) = − 1

µ
F̃ (l, z) · [ 1− σ̃(l) ], (4.212)

where we have made use of the radial symmetry of F and σ, as
before. This is immediately integrated to reproduce the previous
result.

To this point we have only considered the distribution with respect
to angle or slope. It is also of considerable interest to discuss the
distribution with respect to transverse coordinates. This governs
the lateral broadening of electron probes in thick films, as well as
the resolution in transmission electron microscopes for thick speci-
mens. In this case we must include the two-dimensional transverse
position r and the two-dimensional slope vector r′. The geometry
is shown in Figure 4.9. We define a distribution function F (r, r′; z)
as the probability per unit area per unit solid angle for the parti-
cle at depth z, in the presence of plural scattering. Applying the
preceding logic, we expect F to satisfy

d

ds
F (r, r′; z) = − 1

µ
F (r, r′; z) +

1

µ

∫
d2r′0 F (r, r′0; z)σ(|r′ − r′0|).

(4.213)
To solve this equation for F , we begin by considering only one
transverse coordinate x, and one transverse slope component x′.
This is equivalent to a projection of the plural scattering problem
onto the longitudinal xz-plane. The transport equation in this spe-
cial case reduces to

d

ds
F (x, x′; z) = − 1

µ
F (x, x′; z) +

1

µ

∫
d2r′0 F (x, x′0; z) τ(x′ − x′0).

(4.214)
The single scattering distribution τ(x′) is a projection of the two-
dimensional single scattering distribution σ(r′). For the special
case of screened Coulomb scattering, this is given by

τ(x′) =
∫ ∞
−∞

dy′ σ(x′, y′) =
r′2W
2

1

(x′2 + r′2W )3/2
. (4.215)
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Figure 4.9: Geometry for plural scattering at depth z.

We will not assume this special dependency in the following anal-
ysis, but rather a general form for small-angle scattering τ(x′).

Applying the chain rule, and expanding the total derivative as
before, we obtain

d

ds
F (x, x′; z) =

(
dx

ds

∂

∂x
+
dx′

ds

∂

∂x′
+
dz

ds

∂

∂z

)
F (x, x′; z).

(4.216)
Again dx′/ds = 0. For small angles, dx/ds ≈ x′ and dz/ds ≈ 1,
leading to(
x′

∂

∂x
+

∂

∂z

)
F (x, x′; z) = − 1

µ
F (x, x′; z) +

1

µ
F (x, x′; z) ∗ τ(x′).

(4.217)
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As before, we propose to eliminate the unwieldy convolution by
taking the Fourier transform of both sides, and applying the convo-
lution theorem. We define the one-dimensional Fourier transforms
as

τ̃(l) =
∫ ∞
−∞

dx′ τ(x′) exp (ilx′)

F̃ (k, l; z) =
∫ ∞
−∞

dx
∫ ∞
−∞

dx′ F (x, x′; z) exp [ i(kx+ lx′) ].

(4.218)

Applying the operator∫ ∞
−∞

dx
∫ ∞
−∞

dx′ exp [ i(kx+ lx′) ] (4.219)

to both sides from the left, and interchanging the order of integra-
tions, we obtain the reduced equation(
−k ∂

∂l
+

∂

∂z

)
F̃ (k, l; z) = − 1

µ
F̃ (k, l; z) · [ 1− τ̃(l) ]. (4.220)

In order to integrate this equation, we propose a transformation
of variables, defining the new variables

ξ = l + kz, η = l − kz. (4.221)

Applying the chain rule for partial derivatives, we find

∂

∂l
=

∂ξ

∂l

∂

∂ξ
+
∂η

∂l

∂

∂η
∂

∂z
=

∂ξ

∂z

∂

∂ξ
+
∂η

∂z

∂

∂η
. (4.222)

Substituting, we find

−k ∂

∂l
+

∂

∂z
= −2k

∂

∂η
, (4.223)

and, consequently,

−2k
∂

∂η
F (k, l; z) = − 1

µ
F (k, l; z) · [ 1− τ̃(l) ]. (4.224)
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We have succeeded in reducing the dimensionality to a single in-
tegration variable η. This technique in the theory of partial dif-
ferential equations is known as the method of characteristics. We
can now proceed to perform the integration as

ln F̃ (k, l; z) =
1

2kµ

∫
ξ
dη [ 1− τ̃(l) ], (4.225)

where the subscript ξ signifies that ξ must be kept constant over
the integration path. We treat the variable k as constant, as no
derivative of k appears. We also make use of

2 l = ξ + η, 2 dl = dξ + dη. (4.226)

Since ξ = const, and hence dξ = 0 for the integration, this gives

ln F̃ (k, l; z) =
1

kµ

∫ l

ξ
dl [ 1− τ̃(l) ]. (4.227)

This is immediately integrated to give

F̃ (k, l; z) = exp

{
1

kµ
[ g̃(l)− g̃(l + kz) ]

}
(4.228)

where we have defined g̃ by the indefinite integral

g̃(l) =
∫
dl [ 1− τ̃(l) ]. (4.229)

We note that
g̃(l + kz) = g̃(ξ) = const, (4.230)

since ξ = const in the integration. The reader can verify by direct
substitution that this is indeed the correct solution. It only remains
to perform the inverse Fourier transform to obtain the solution,
namely

F (x, x′; z) =
1

(2π)2

∫ ∞
−∞

dk
∫ ∞
−∞

dl F̃ (l, k; z) exp [−i(kx+ lx′) ].

(4.231)
Given the single scattering law τ(x′), projected onto the xz-
plane, we thus obtain the projected plural scattering distribution
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F (x, x′; z) in principle. Typically, this last integral is performed
numerically, after subtracting the unscattered beam exp(−z/µ) =
exp(−n) from F̃ .

It is instructive to investigate several limiting cases. In the limit
of zero thickness, z = 0, we find immediately that

F̃ (k, l; 0) = 1. (4.232)

Performing the inverse transform, this leads to

F (x, x′; 0) = δ(x) · δ(x′), (4.233)

thus recovering the incident beam, as required.

In the limit k → 0, a Taylor expansion gives us

g̃(l + kz) = g̃(l) + g̃′(l) kz, (4.234)

to first order in k. In this limit, F̃ reduces to

F̃ (0, l; z) = exp

{
− z
µ

[ 1− τ̃(l) ]

}
, (4.235)

which represents the projected angular distribution. This is ex-
pected, as k = 0 in Fourier space represents an integral over all x
in direct space.

In the limit l = 0, we obtain

F̃ (k, 0; z) = exp

{
1

kµ
[ g̃(0)− g̃(kz) ]

}
. (4.236)

Setting l = 0 in Fourier space represents an integral over all scat-
tering angles in direct space. The distribution F (x, 0; z) in direct
space is obtained from the inverse Fourier transform

F (x, 0; z) =
1

2π

∫ ∞
−∞

dk exp(−ikx) F̃ (k, 0; z). (4.237)

Physically, this represents the line spread function, corresponding
to scanning an incident probe beam along the infinite y-axis, and
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observing in the xz-plane.

With these mathematical methods established, we are now in a
position to solve for the full three-dimensional distribution func-
tion F (r, r′; z) as a function of transverse coordinate r and slope
r′ at depth z. The rate of change of F with path length in polar
coordinates (r, φ) is given by the chain rule as

d

ds
F (r, φ, r′, φ′; z) =

(
dr

ds

∂

∂r
+
dφ

ds

∂

∂φ
+
dz

ds

∂

∂z

)
F (r, φ, r′, φ′; z),

(4.238)
where dr′/ds = 0, and dφ′/ds = 0, because the trajectories form
straight lines between scattering events. Making use of the axial
symmetry, F is independent of azimuth φ, in which case the sec-
ond term on the right vanishes. We note that F depends on the
azimuthal slope component φ′, as the scattering angle r′ has a
skew component in general for two or more scattering events. For
small angle scattering, dz/ds ≈ 1, in which case we can substitute

d

ds
F (r, r′, φ′; z) =

(
r′
∂

∂r
+

∂

∂z

)
F (r, r′, φ′; z). (4.239)

Applying the logic of the preceding section, the transport equation
is(
r′
∂

∂r
+

∂

∂z

)
F (r, r′, φ′; z) = − 1

µ
F (r, r′, φ′; z)

+
1

µ

∫
d2r′0 F (r, r′0, φ

′
0; z)σ(|r′ − r′0|),

(4.240)

where σ(|r′|) is the differential cross section for elastic scattering,
normalized to unity. As before, the first term on the right repre-
sents absorption into all scattering angles from the angle of in-
terest, and the second term on the right represents emission from
all scattering angles into the angle of interest. This equation is
formally similar to the preceding case. Consequently, the preced-
ing analysis can be adopted, being mindful of the various vector
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components. The transformed equation is(
−k ∂

∂lr
+

∂

∂z

)
F̃ (k, lr, lφ; z) = − 1

µ
F̃ (k, lr, lφ; z) [ 1− σ̃(l) ],

(4.241)
where (k, lr, lφ) are the Fourier transform variables corresponding
to (r, r′, φ′), respectively, and

l = |l| =
√
l2r + l2φ. (4.242)

Applying the method of characteristics, we define the variables

ξ = lr + kz, η = lr − kz, (4.243)

in which case, the transformed equation reduces to

−2k
∂

∂η
F̃ = − 1

µ
F̃ [ 1− σ̃(l) ]. (4.244)

Integrating this with respect to η,

ln F̃ =
1

2kµ

∫
ξ
dη [ 1− σ̃(l) ]. (4.245)

Noting that

2 lr = ξ + η, 2 dlr = dξ + dη (4.246)

with ξ = const, and hence dξ = 0 for the integration. This gives

ln F̃ =
1

µk

∫ lr

lr+kz
dlr

[
1− σ̃

(√
l2r + l2φ

) ]
. (4.247)

This is immediately integrated to give

F̃ (k, l; z) = exp

{
1

kµ
[ g̃(lr, lφ)− g̃(lr + kz, lφ) ]

}
, (4.248)

where we have defined g̃(lr, lφ) by the indefinite integral

g̃(lr, lφ) =
∫
dlr

[
1− σ̃

(√
l2r + l2φ

) ]
, (4.249)
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and lφ is regarded as constant under the integral.

Investigating the limiting cases, we see that, for z = 0,

F̃ (k, lr, lφ; 0) = 1. (4.250)

Performing the inverse transform,

F (r, r′, φ′; 0) = δ(r) δ(r′), (4.251)

thus recovering the incident beam, as required.

In the limit k → 0, we can write the Taylor expansion for
g̃(lr + kz, lφ) to first order as

g̃(lr + kz, lφ) = g̃(lr, lφ) + kz · ∂
∂lr

g̃(lr, lφ), (4.252)

in which case,

F̃ (k, lr, lφ; z) = F̃ (0, lr, lφ; z) = exp

{
− z
µ

[ 1− σ̃(l) ]

}
, (4.253)

remembering that l = |l| =
√
l2r + l2φ. This is immediately recog-

nizable as the angular distribution. This is expected, as k = 0 in
Fourier space represents an integral over the entire range of radial
coordinate, 0 ≤ r <∞ in direct space. This result is superfluous,
as it was derived previously by simpler methods.

Finally, setting l = 0, we find

F̃ (k, lr, lφ; z) = F̃ (k, 0, 0; z) = exp

{
1

kµ
[ g̃(0, 0)− g̃(kz, 0) ]

}
,

(4.254)
where this represents the integral over all slopes |l| in direct space.
The distribution in the transverse radial coordinate r is found by
performing the inverse Bessel transform,

F (r; z) =
∫ ∞

0
dk k J0(kr) F̃ (k, 0, 0; z). (4.255)
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This represents the radial point spread function at depth z, in the
presence of plural scattering. This being the case, it follows that
F̃ (k, 0, 0; z) represents the modulation transfer function, as this is
the Fourier transform of the point spread function. This completes
the general solution to the plural scattering problem.
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Chapter 5

Electron emission from
solids

Every practical electron beam instrument relies on a stable, long-
lived electron source. The most commonly used sources extract
electrons from a bulk metal or semiconductor, and accelerate the
particles across a vacuum gap using the electric field of an elec-
trode at a positive potential relative to the source. The beam thus
appears to originate from an apparent source, real or virtual, seen
looking back from the electron optical system.

For practical purposes this apparent source is characterized by
its measurable macroscopic properties. These include beam en-
ergy, current, lateral intensity distribution, angular intensity dis-
tribution, and energy spread. These quantities are a function of
the physical source properties, including geometry and material.
They also depend on the temperature and applied electric field
as controllable operating parameters. Because of brightness con-
servation, the macroscopic source properties govern the optical
properties of the entire optical system.

Electron emission is a fundamentally quantum mechanical pro-
cess. A great deal of insight can be gained by regarding the bulk
emitter material in terms of a relatively simple model originally
proposed by Sommerfeld [82]. In this model, the conduction elec-

297
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trons are approximately free to diffuse throughout the bulk mate-
rial. Electrons in the conduction band occupy energy states. The
Pauli exclusion principle dictates that no more than one electron
can occupy any given state. The average occupation number for a
state obeys Fermi–Dirac statistics, and is between zero and one.
In the limit where the absolute temperature T approaches zero,
all states with energy ε in the range 0 ≤ ε ≤ ζ are occupied by
one electron, where ζ is called the Fermi energy. In this limit all
states with energy higher than the Fermi energy are unoccupied.

In the following we assume that the emission surface is planar,
and infinite in lateral extent. In this approximation the problem
can be regarded as spatially one-dimensional, with the x-axis per-
pendicular to the emission surface. Some fraction of the conduction
electrons drift to the surface, where they can be emitted into the
vacuum to form a beam. Once emitted, an electron experiences a
Coulomb force which tends to attract it back toward the emission
surface. This is called an image force, and is described in detail
in the following section. It gives rise to a potential energy barrier
which must be overcome in order for the electron to be emitted
into the vacuum.

In this one-dimensional model we consider the potential energy of
an electron to be zero everywhere inside the bulk material. Elec-
trons are free to drift throughout the bulk material, with a net
flux incident on the emission surface from within the material. For
electrons with a specific total energy W within the bulk material,
we assume a current density J(W ) incident on the emission sur-
face from within. Here J(W ) has dimensions of charge per unit
transverse area per unit time per unit energy W . We further as-
sume a single electron with energy W has a probability D(W ) of
overcoming the potential barrier, to be emitted into the vacuum.
The total emission current density j is then given by

j =
∫ ∞

0
dW J(W )D(W ), (5.1)

where we have integrated over all possible values of the energy W .
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In practice many sources are not planar. Furthermore, the energy
bands of the solid emitter material tend to bend at the interface
with the vacuum. This band-bending can be enhanced by prepar-
ing the emitter surface with an additional surface layer. These
factors affect the actual emission, and the resulting macroscopic
source properties. We define the electron affinity as the energy
needed in practice to remove a single electron from the emitter.
Because of these factors, the following analysis must be regarded
as approximate. As is often the case, one replaces an intractable
problem by a related problem which can be solved, producing an
approximate result.

To summarize, the emission current density depends on the tem-
perature and the applied electric field. In the limit of zero applied
electric field F and elevated temperature T , the current is called
thermionic emission. In the limit of zero temperature T and el-
evated electric field F , the current is called field emission. The
central problem of this chapter is to determine the emitted cur-
rent density j as a general function of temperature T and applied
electric field F .

5.1 The image force

An electron which has been emitted into the vacuum experiences
an electrostatic force which attracts it back toward the emission
surface. This can be understood by examining the Coulomb force
on an electron with charge −e located in the vacuum a distance x
from a planar conductive surface at ground potential. This situa-
tion is completely equivalent to a configuration where the planar
surface is replaced by a charge +e located behind the emission
surface at a distance 2x from the electron. This fictitious charge
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+e is called an image charge, and the attractive force is called
the image force. This was first understood by Nordheim [66]. The
magnitude of the force F on the electron is given by

F(x) =
−e2

16πε0 x2
, (5.2)

where the minus sign indicates that the vector Coulomb force
points in the negative x-direction, back toward the emission sur-
face.

We consider a virtual displacement of the electron from coordi-
nate +x to +∞ in the presence of the force F (x). This results in
a change in potential energy U(x) given by

U(x) =
∫ ∞
x
F(ξ) dξ =

−e2

16πε0 x
, (5.3)

where this is the work needed to remove the electron from +x to
+∞. This properly accounts for the fact that the image charge un-
dergoes a virtual displacement equal and opposite to the electron.
An individual electron must have enough energy to surmount the
potential energy barrier in order to be emitted into the vacuum.
Alternatively the electron can tunnel through the barrier in the
presence of an applied electric field. In either case, the expression
(5.1) for j applies.

5.2 The incident current density

We now turn our attention to the current density J(W ) of elec-
trons with total energy W incident on the emission surface from
within the bulk material in one spatial dimension. Within a metal
the conduction electrons are approximately free. We can therefore
choose the potential energy to be zero. We denote the total energy
of a single electron inside the metal in three spatial dimensions
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by ε. In the following we deduce the one-dimensional properties
from the three-dimensional properties, making use of the planar
symmetry.

The density of energy states for a nearly free electron within the
solid is given in three dimensions (3.73) as

dN

dε
=

8πV

h3

√
2m3ε, (5.4)

where V is the volume, h is Planck’s constant, and m is the elec-
tron mass. This is the number of available states per unit energy
interval dε. Each electron energy level has two spin states with the
same total energy ε. To properly account for this, we have mul-
tiplied the right-hand side of (3.73) by two. The Pauli exclusion
principle permits, at most, one electron occupying a given state.

The expectation value of the occupation number of a state of en-
ergy ε is governed by Fermi-Dirac statistics, and is given by

n(ε) =

[
exp

(
ε− ζ
kT

)
+ 1

]−1

, (5.5)

where k is Boltzmann’s constant, and T is the absolute temper-
ature. The energy ζ is commonly referred to as the chemical po-
tential per atom, and alternatively as the Fermi energy. It is easy
to verify that 0 ≤ n(ε) ≤ 1, consistent with the Pauli exclusion
principle. It follows that the average charge density within the
material is given as a function of total energy ε by

ρ(ε) =
e

V

(
dN

dε

)
n(ε)

=
8πe

h3

√
2m3ε n(ε), (5.6)

where ρ(ε) dε is the charge per unit volume of conduction electrons
with total energy between ε and ε + dε. Assuming the potential
energy is zero everywhere, the total energy ε is given in terms of
the electron velocity v by

ε = 1
2
mv2. (5.7)
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Since the energy ε depends only on the magnitude of the veloc-
ity and not on the direction, it follows that the electron velocities
are distributed isotropically with respect to propagation direction
within the bulk material in this approximation.

Choosing the x-axis to be perpendicular to the emission surface,
the current density component jx(ε) is given by

jx(ε) = ρ(ε) vx

= ρ(ε)

√
2ε

m
cos θ, (5.8)

where vx is the x-component of the velocity and θ is the polar
angle which the velocity vector makes with the x-axis. From (5.5,
5.6, 5.8) we obtain the x-component of the current density as

jx(ε) =
16πme

h3
ε n(ε) cos θ (5.9)

for 0 ≤ θ ≤ π. Next we define the differential

djx(ε) = jx(ε)
dΩ

4π
, (5.10)

where dΩ is the solid angle element given by dΩ = 2π sin θ dθ.
Substituting,

djx(ε) =
8πme

h3
ε n(ε) cos θ sin θ dθ. (5.11)

At this point we define the total energy W in the x-direction as

W = 1
2
mv2

x = ε cos2 θ. (5.12)

Substituting,

djx(ε) =
8πme

h3
W n(W sec2 θ) tan θ dθ. (5.13)

We define the current density J(W ) in the one-dimensional prob-
lem according to

dJ(W ) dW = djx(ε) dε, (5.14)
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where this ensures that the total current is the same for the one-
dimensional and three-dimensional problems. Substituting,

dJ(W ) =
8πme

h3
W n(W sec2 θ) sec2 θ tan θ dθ. (5.15)

We define a new variable ξ by

ξ = sec2 θ, dξ = 2 sec2 θ tan θ dθ. (5.16)

Substituting, making use of (5.5), and integrating over the range
1 ≤ ξ <∞, we find

J(W ) =
4πmeW

h3

∫ ∞
1

dξ

[
exp

(
Wξ − ζ
kT

)
+ 1

]−1

. (5.17)

Performing the integral is straightforward, and is left as an exercise
for the reader. We obtain the result

J(W ) =
4πmekT

h3
ln

[
exp

(
ζ −W
kT

)
+ 1

]
, (5.18)

where J(W ) has dimensions of current per unit transverse area
per unit energy interval. This is the main result of this section.
It is identical with the result obtained by Kemble [52], and used
later by Murphy and Good [64].

Anticipating the case of cold field emission, it is useful to explore
the limit T → 0. We obtain

J(W ) ≈ 4πme

h3
(ζ −W ), (5.19)

where we note that 0 < W ≤ ζ in this limit.

Using the general expression (5.18) for the incident current density
J(W ) as a function of the total energy W in one spatial dimension,
we next proceed to calculate the transmission probability D(W ),
and the resulting emission current density j for various combina-
tions of the temperature T and the applied field F . This is the
topic of the following sections.
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Problems

1. Perform the integral (5.17) to obtain the result (5.18).

2. Verify the result (5.19) for the limit T → 0 by repeating the
procedure of this section, making use of the fact that

n(ε) =

[
exp

(
ε− ζ
kT

)
+ 1

]−1

=

{
1, 0 ≤ ε ≤ ζ
0, ε > ζ.

(5.20)

3. Derive an analytical expression for the Fermi energy ζ of a
metal based on the number of conduction band electrons per unit
volume and the density of states with respect to total energy ε.

5.3 Thermionic emission

In the case of zero applied electric field and elevated temperature,
the energy needed for an electron to surmount the potential bar-
rier is thermal. This is called thermionic emission. The central
problem in this section is to calculate the emission current density
j for thermionic emission. We make use of (5.1, 5.18). The task
remains to calculate the probability D(W ) that an electron with
total energy W will be transmitted across the barrier.

The potential energy U(x) associated with the image force is given
by (5.3). This is plotted as a function of coordinate x in the direc-
tion normal to the emission surface in Figure 5.1. The surface of
the metal is at coordinate x = 0. The left region x < 0 represents
the interior of the bulk emitting material, and the right region
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x

U x
W

x = 

C

Figure 5.1: Energy diagram for thermionic emission.

x > 0 represents the vacuum. The solid curve is the potential en-
ergy U(x).

We consider a single electron with energy W inside the bulk emit-
ter material with x ≤ 0. We approximate the potential energy
U(x) by a square barrier. The problem of scattering of matter
waves by a square barrier in one dimension is treated in many
books on elementary quantum mechanics, see for example Liboff
[59].

Inside the bulk material with x ≤ 0 the wave function is a superpo-
sition of a right-propagating incident wave plus a left-propagating
reflected wave. This is represented by

u(x ≤ 0) = a+ e
+ik1x + a− e

−ik1x, (5.21)

where the complex constants a+ and a− have yet to be deter-
mined. The direction of propagation can be verified by forming
the complete wave function ψ(x, t) given by

ψ(x, t) = u(x) eiWt/h̄, (5.22)
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which represents two counterpropagating, travelling waves. The
wave number k1 is given by

k1 =

√
2m

h̄2 W, (5.23)

where we intentionally choose the positive root. In the vacuum
with x ≥ 0 the wave function is

u(x ≥ 0) = b+ e
+ik2x, (5.24)

where the complex constant b+ has yet to be determined. The wave
number k2 is given by

k2 =

√
2m

h̄2 (W − C), (5.25)

We assume that no left-propagating wave exists in the vacuum
region x ≥ 0. We need only consider energy W ≥ C, since there
can be no transmission for W < C.

We require that the wave function and its first derivative be con-
tinuous at x = 0. This leads to the coupled equations

a+ + a− = b+

a+ − a− =
k2

k1

b+. (5.26)

These can be immediately reduced to

b+

a+

=
2

1 + k2/k1

a−
a+

=
1

2
· 1− k2/k1

1 + k2/k1

. (5.27)

Each propagating wave has an asssociated probability current
given by

j =
ih̄

2m
[u(x) ū′(x)− ū(x)u′(x) ] . (5.28)



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 307 — #317 i
i

i
i

i
i

5.3. Thermionic emission 307

Substituting the wave functions, we have

j+(x ≤ 0) =
h̄k1

m
| a+ |2

j−(x ≤ 0) = − h̄k1

m
| a− |2

j+(x ≥ 0) =
h̄k2

m
| b+ |2 . (5.29)

These represent the incident, reflected, and transmitted currents,
respectively. The transmission probability D(W ) is the ratio of the
transmitted current divided by the incident current. This is

D(W ) =
4
√

1− C/W(
1 +

√
1− C/W

)2 , (5.30)

where we have made use of

k2

k1

=

√
W − C
W

, (5.31)

where 0 ≤ k2/k1 < 1 for C ≤ W < ∞. Also, D(W ) = 0 for
W ≤ C, since it is impossible for an electron to surmount or tun-
nel through the potential barrier in this case. Also, 0 ≤ D(W ) ≤ 1,
as required for a probability.

We are now in a position to calculate the emission current density
j, given by (5.1). Making use of (5.18, 5.30), we have

j =
4πmekT

h3

∫ ∞
C

dW ln

[
exp

(
ζ −W
kT

)
+ 1

]

·
4
√

1− C/W(
1 +

√
1− C/W

)2 . (5.32)

This integral cannot easily be evaluated as a closed-form expres-
sion, but is amenable to straightforward numerical evaluation.

Considerable physical insight can be gained by approximating
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D(W ) ≈ 1, corresponding to perfect transmission for energies
W ≥ C. We define a new variable ξ = W − C. We further de-
fine a quantity φ called the work function by

φ = C − ζ. (5.33)

Physically, φ represents the energy which must be supplied to an
electron at the Fermi level in order for emission to occur. This
quantity is a unique property of the bulk material. In practice, the
work function differs from the electron affinity defined above for
an actual emitter.

The integral for the emission current density j is approximated
as

j =
4πmekT

h3

∫ ∞
0

dξ ln

[
exp

(
−φ− ξ
kT

)
+ 1

]
. (5.34)

We further approximate

exp

(
−φ− ξ
kT

)
� 1. (5.35)

Expanding the logarithm, the integral for j becomes

j =
4πmekT

h3
exp

(
− φ

kT

)∫ ∞
0

dξ exp

(
− ξ

kT

)
. (5.36)

The integral over ξ is readily performed. The emission current
density j is given by

j =
4πme

h3
(kT )2 exp

(
− φ

kT

)
. (5.37)

This represents the main result of this section. It is known as the
Richardson–Dushman law for thermionic emission [60].
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5.4 Field emission

Electrons can be extracted from the surface of a bulk metal by
applying an electric field. This process is known as field emission
or cold emission. It relies on the quantum-mechanical process of a
single electron tunneling through a potential barrier. This process
takes place even at very low temperature. Our goal is to obtain
an explicit expression for the emission current density j in terms
of the applied field F , and the work function φ, in the limit of low
temperature T . This was first understood theoretically in 1927 by
Fowler and Nordheim [31]. This source is now widely used in a
variety of practical instruments. It is distinguished by its excep-
tionally high brightness. In the following sections we proceed to
derive the current density from first principles of quantum me-
chanics.

For the present purpose we can consider a conduction electron
to be free inside the bulk metal at x ≤ 0. The potential energy
is thus given here by U(x) = 0. Outside the metal at x ≥ 0, the
potential energy is given by

U(x) = C − Fx− e2

16πε0 x
, (5.38)

where the first term on the right is a constant, associated with the
energy in the vacuum. The second term on the right is the po-
tential energy associated with the applied electric field, where F
is given by the product of the electron charge e times the electric
field in volts per meter. In this notation F has units of force, which
is equivalent to energy per unit distance. The third term on the
right in (5.38) is the potential energy associated with the image
force. This form for the potential energy was first understood by
Nordheim [66].

For now we will ignore the third term, since it is relatively weak
in the limit of high electric field. This approximation was used by
Fowler and Nordheim [31]. The potential energy is plotted in this
approximation as a function of x in Figure 5.2. In a later section
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y = 

W

C x

U x

x = 

Figure 5.2: Approximate energy diagram for cold field emission.

we will include this image force term to improve the accuracy and
generality of the calculation.

In the limit of zero absolute temperature T , conduction electrons
within the bulk material occupy all energy states up to the max-
imum energy ζ, which is the Fermi energy. No states above this
energy are occupied. Classically no emission can occur, because
the topmost filled energy level is below the top of the potential
energy barrier. Quantum mechanically a conduction electron inci-
dent on the barrier from within the buk can tunnel through the
barrier, and be emitted into the vacuum.

We designate D(W ) as the probability that an electron with en-
ergy W inside the material will tunnel through the potential bar-
rier. Again we designate the incident current density per unit en-
ergy from within the material as J(W ). We seek the emission
current density, which is the incident current density J(W ) times
the transmission probability D(W ), integrated over all possible
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energies W , where 0 ≤ W ≤ ζ. This is

j =
∫ ζ

0
dW J(W )D(W ), (5.39)

where ζ is the Fermi energy.

To find the field emission current density j, we must first solve
for the transmission probability D(W ). All relevant information is
contained in the stationary state spatial wave function u(x). This
is found by solving Schrödinger’s equation separately inside and
outside the bulk metal for u(x), and matching the two solutions
u(x) and their first derivatives u′(x) at the emission surface x = 0.

Considering first the region interior to the bulk metal at x ≤ 0,
only the energy in the x-direction is relevant, as the transverse
component has no effect. Schrödinger’s equation is given from the
preceding analysis in Chapter 2 as(

d2

dx2
+ k2

)
u(x) = 0. (5.40)

According to the earlier analysis, the wave vector k is related to
the scalar kinetic momentum p by

p = h̄k = ±
√

2mW, (5.41)

where W is the total energy of a single electron in the x-direction.
The state function is the sum of two linearly independent solutions
u±(x) for the eigenfunction u(x),

u+(x) = a+ e
+ikx

u−(x) = a− e
−ikx, (5.42)

where a± represent two arbitrary complex constants. One can im-
mediately verify the solutions u±(x) by direct substitution into the
differential equation.
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The total energy eigenvalue W is the same for both solutions,
and is given by

W =
h̄2k2

2m

= 1
2
mv2

x. (5.43)

For now we consider a single, specific energy W with associated
wave vector k.

The probability current is

j(x) =
ih̄

2m
[u(x) ū′(x)− ū(x)u′(x) ] , (5.44)

where a bar over a quantity indicates complex conjugation. Sub-
stituting u±(x) above, we identify right- and left-propagating cur-
rents

j+(x ≤ 0) = +
h̄k

m
|a+|2

j−(x ≤ 0) = − h̄k
m
|a−|2, (5.45)

respectively, where j+ is the current incident on the potential bar-
rier from left to right inside the bulk at x ≤ 0, and j− is the
current reflected by the barrier from right to left. The algebraic
sum of these is the tunneling current transmitted through the bar-
rier.

For x ≥ 0, the vacuum, Schrödinger’s equation is[
− h̄2

2m

d2

dx2
+ U(x)

]
u(x) = W u(x), (5.46)

where the potential energy U(x) is given approximately by

U(x) ≈ C − F x. (5.47)
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The quantity F is the electron charge e times the applied electric
field, and has the dimension of force in nt. Equivalently we write
this as

d2

dx2
u(x) +

2m

h̄2 [W − C + Fx ]u(x) = 0. (5.48)

We rewrite this as

d2

dx2
u(x) + α3 (x− β) u(x) = 0, (5.49)

where we have defined the constants

α3 =
2mF

h̄2

β =
C −W
F

. (5.50)

We define a new variable y(x) as

y(x) ≡ α (β − x). (5.51)

The differential equation for u(x) is thus transformed into(
d2

dy2
− y

)
Y (y) = 0, (5.52)

where we have defined the eigenfunction Y (y) according to

Y (y) ≡ u[x(y)]. (5.53)

Two linearly independent solutions for Y (y) exist, and are desig-
nated

Y (y) =

{
Ai(y)
Bi(y).

(5.54)

The functions Ai andBi are called Airy functions. Their properties
are well-known [1]. The vacuum is represented by large positive
values of x, corresponding to large negative values of y. The Airy
functions have asymptotic forms for y � 0 given by

Ai(y) ≈ 1√
π (−y)1/4

sin
[

2
3
(−y)3/2 + π

4

]
Bi(y) ≈ 1√

π (−y)1/4
cos

[
2
3
(−y)3/2 + π

4

]
. (5.55)
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We form the linear combination

Y (y) = b+ [Bi(y) + iAi(y) ], (5.56)

defined for all y, where b+ is an arbitrary complex constant. For y
large and negative, Y (y) has the asymptotic form

Y (y) ≈ b+
1√

π (−y)1/4
exp

{
i
[

2
3
(−y)3/2 + π

4

] }
. (5.57)

This represents a wave which propagates to the right in the co-
ordinate x in the vacuum. This is a necessary condition, since we
must assume no left-propagating wave can exist in the vacuum.
We therefore adopt this form as our solution Y (y) for all y. We
further define the probability current J(y) as

J(y) = J [ y(x) ] = j(x), (5.58)

where j(x) is the current defined above. We notice from (5.44)
that the wave function must have an imaginary part in order to
have nonzero probability current. The wave function Y (y) satisfies
this requirement. Substituting, we obtain

J(y) = −ih̄α
2m

[Y (y) Ȳ ′(y)− Ȳ (y)Y ′(y) ]. (5.59)

The first derivative Y ′(y) is given by

Y ′(y) = b+ [Bi′(y) + iAi′(y) ]. (5.60)

It is straightforward to evaluate the current J(y), noticing that
Ai(y) and Bi(y) are real-valued for y real. After some algebra we
obtain

J(y) =
h̄α

2m
|b+|2 [Ai(y)Bi′(y)− Ai′(y)Bi(y) ]. (5.61)

The quantity in square brackets is the conserved Wronskian, and
has the value π−1. The current J(y) reduces to

J(y) =
h̄α

πm
|b+|2. (5.62)
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This is independent of coordinate, as required by the fact that it
is proportional to the conserved Wronskian. We identify

j+(x ≥ 0) = J [ y(x) ] =
h̄α

πm
|b+|2 (5.63)

as the tunneling current propagating from left to right for x ≥ 0.
This result will prove useful later.

Next we must match the solutions and their derivatives at x = 0,
which is the emission surface. For x ≤ 0 inside the bulk material
we form the solution and its first derivative as

u(x) = a+ e
+ikx + a− e

−ikx

u′(x) = ik [ a+ e
+ikx − a− e−ikx ]. (5.64)

For x ≥ 0 in the vacuum we form

u(x) = Y [ y(x) ]

u′(x) = −αY ′(y). (5.65)

Matching the solutions and first derivatives at x = 0, equivalently
y = αβ, we have two simultaneous equations,

a+ + a− = Y (αβ)

a+ − a− =
iα

k
Y ′(αβ). (5.66)

Solving for a+ and a− we find

a+ = 1
2
Y (αβ) +

iα

2k
Y ′(αβ)

a− = 1
2
Y (αβ)− iα

2k
Y ′(αβ). (5.67)

Substituting for Y and Y ′ above, we find

a+ = b+

{
1
2

[Bi(αβ) + iAi(αβ) ] +
iα

2k
[Bi′(αβ) + iAi′(αβ) ]

}
a− = b+

{
1
2

[Bi(αβ) + iAi(αβ) ]− iα

2k
[Bi′(αβ) + iAi′(αβ) ]

}
.

(5.68)
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The fraction of electrons incident on the barrier from within the
bulk, which tunnel through the barrier to be emitted into the
vacuum is given by

D(W ) =
j+(x ≥ 0)

j+(x ≤ 0)
, (5.69)

where this depends on the energy W . Substituting the above ex-
pressions for the two currents, this is

D(W ) =
α

πk

|b+|2

|a+|2
. (5.70)

Evaluating the absolute square of the coefficients, this becomes

D(W ) =
4α

πk
·{

Ai2(αβ) +Bi2(αβ) +
2α

πk
+
α2

k2
[Ai′2(αβ) +Bi′2(αβ) ]

}−1

(5.71)

where we have again made use of the conserved Wronskian. Sub-
stituting from above,

αβ =
(

2m

h̄2

)1/3

F−2/3 (C −W )

α

k
=

(
2m

h̄2

)−1/6

F 1/3W−1/2. (5.72)

It is left as an exercise for the reader, see Problems below, to sub-
stitute some reasonable values. This represents a formal solution
for the tunneling probability D(W ). It is possible in principle to
evaluate this numerically using the known series expansions for
the Airy functions and their derivatives [1].

Additional physical insight can be gained by approximating these
quantities. To this end we invoke the asymptotic forms for y � 0,

Ai(y) ≈ 1

2
√
π y1/4

exp
(
−2

3
y3/2

)
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Ai′(y) ≈ − y
1/4

2
√
π

exp
(
−2

3
y3/2

)
Bi(y) ≈ 1√

π y1/4
exp

(
2
3
y3/2

)
Bi′(y) ≈ y1/4

√
π

exp
(

2
3
y3/2

)
, (5.73)

where we set y = αβ at the interface between the bulk and the
vacuum. We implicitly assume that y � 0. Substituting these
asmptotic forms into the above expression for D(W ), we see that
the terms in Bi and Bi′ dominate. Retaining only these terms, we
obtain the approximation

D(W ) =
4α

k

(
1√
αβ

+
α2
√
αβ

k2

)−1

exp
[
−4

3
(αβ)3/2

]
. (5.74)

Substituting for αβ and α/k above, this leads immediately to an
expression for the tunneling probability,

D(W ) =
4
√
W (C −W )

C
exp

[
− 4

3F

(
2m

h̄2

)1/2

(C −W )3/2

]
.

(5.75)
This is the probability that an electron with energy W will tunnel
through the barrier. This represents one of the main results of this
section. We are now in a position to calculate the emission current
density j based on (5.1, 5.19, 5.75). The field emission current
density j is given from (5.1) as

j =
∫ ζ

0
dW D(W ) J(W ), (5.76)

where only states with 0 ≤ W ≤ ζ are occupied in the limit T → 0.
Substituting for D(W ) and J(W ) this becomes

j =
16πem

h3C

∫ ζ

0
dW

√
W (C −W ) (ζ −W )

exp

− 4

3F

√
2m

h̄2 (C −W )3/2

 .
(5.77)
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We define a variable ξ as

ξ = (C −W )3/2. (5.78)

The integral (5.76) now takes the form

j =
∫
dξ U(ξ) e−aξ, (5.79)

where U(ξ) is not to be confused with the potential energy above.
This integral can be performed in principle, since the integrand is
well-behaved over the range of integration [31]. A useful approxi-
mation can be obtained from the series representation∫

dξ U(ξ) e−aξ = −1

a
e−aξ

[
U(ξ) +

U ′(ξ)

a
+
U ′′(ξ)

a2
+ . . .

]
,

(5.80)
which the reader can immediately verify by differentiating both
sides with respect to ξ. The first term in the series vanishes, be-
cause the function U vanishes at the two end points. The second
and successive terms are infinite, owing to the factor

√
W in (5.76).

We therefore approximate
√
W ≈

√
ζ and take this factor outside

the integral for the second and higher terms only. Taking the sec-
ond term only, it is straightforward to show that the field emission
current density j is given approximately by

j ≈ e

2πh

ζ1/2 F 2

(ζ + φ)φ1/2
exp

−4φ3/2

3F

√
2m

h̄2

 , (5.81)

where we have made use of the definition of the work function φ
as

φ = C − ζ, (5.82)

and ζ is the Fermi energy. As a reminder, F is the electron charge
e times the electric field in volts per meter. It has units of energy
per unit length, or joules per meter in this notation. The equation
(5.76) and its approximation (5.81) represent the main results of
this section. The approximation is precisely the result given by
Fowler and Nordheim [31]. It is left as an exercise for the reader
to complete the details of this derivation.
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Problems

1. Complete the details of the derivation of (5.81).

2. The work function for tungsten is 4.5 electron-Volts. Estimate
the field F required for the onset of field emission from tungsten.
Describe the functional dependence of the current density j on F
for F higher and lower than this onset value.

5.5 Emission with elevated tempera-

ture and field

In the preceding sections we explored thermionic emission, and
separately cold field emission. In this section we generalize the
preceding concepts to calculate the emission current density as a
function of temperature and applied electric field. We follow the
general approach of Murphy and Good [64], which is based on ear-
lier work by Kemble [52].

Again we make use of (5.1) for the emission current density j,
and (5.18) for the incident current density per unit energy J(W ).
The present task is to calculate the transmission probability D(W )
that an electron with total energy W in one dimension will tunnel
through the potential barrier.

The potential energy U(x) is given by (5.38), and is plotted as
a function of x in Figure 5.3. We intentionally include the image
potential term in the following. The potential energy U(x) is as-
sumed to join smoothly on both sides of the emission surface at
x = 0. In the vacuum (x > 0), the potential energy (5.38) has a
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xx
x

U x

W

x = 

C

Figure 5.3: Energy diagram for emission with elevated temperature
and field.

maximum value Um given by

Um = C −
√
e2F

4πε0
. (5.83)

The total energy W of a single electron inside the material (x < 0)
can now take on any nonnegative value 0 ≤ W <∞ depending on
the absolute temperature T . For 0 ≤ W ≤ Um quantum mechan-
ical tunneling occurs. For W ≥ Um no tunneling occurs, but the
elevated field F and temperature T act together to enhance the
emission.

The spatial part of the wave function u(x) satisfies Schrödinger’s
equation, which can be expressed in the form

d2

dx2
u(x) +

[ p(x) ]2

h̄2 u(x) = 0, (5.84)

where p(x) is the kinetic momentum given in one dimension by

p(x) = ±
√

2m[W − U(x)]. (5.85)
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We choose the positive root without loss of generality.

All relevant information is contained in the wave function u(x).
We assume without loss of generality that the wave function can
be expressed as

u(x) = exp
[
i

h̄
S(x)

]
, (5.86)

where the function S(x) has yet to be determined. Substituting
into Schrödinger’s equation, we find after some algebra that(

dS

dx

)2

− ih̄
(
d2S

dx2

)
− p2 = 0. (5.87)

In the classical limit where the term in h̄ can be ignored, this re-
duces to the Hamilton-Jacobi equation in one spatial dimension,
where the electromagnetic potentials have no explicit time depen-
dence. We therefore identify S(x) with Hamilton’s characteristic
function.

As before we expand S(x) in a series with powers of h̄ as

S(x) = S0(x) + h̄ S1(x) + h̄2 S2(x) + . . . . (5.88)

Substituting and collecting terms in the powers of h̄, we find

(S ′
2
0 − p2 ) + h̄ (−iS ′′0 + 2S ′0S

′
1 ) + . . . = 0. (5.89)

Considering h̄ to be small but variable, the quantities within each
of the parentheses must vanish separately. The first equation re-
duces to

dS0

dx
= ±p(x), (5.90)

where p(x) is the kinetic momentum given above. Integrating be-
tween any two coordinates x0 and x we find

S0(x) = S0(x0)±
∫ x

x0
p(ξ) dξ. (5.91)

Substituting the second bracket in the series for S(x) we find

dS1

dx
=

i

2p

dp

dx
, (5.92)
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where we have made use of

S ′′0(x) = ±p′(x). (5.93)

Integrating between the limits x0 and x we find

S1(x) = S1(x0) + i ln

[
p(x)

p(x0)

]1/2

. (5.94)

Substituting above, and ignoring terms in h̄2 and higher, we find
the approximate solution for the wave function u(x) as

u(x) ≈ u(x0)

[
p(x0)

p(x)

]1/2

exp
[
± i
h̄

∫ x

x0
p(ξ) dξ

]
. (5.95)

This solution for the wave function u(x) represents the WKB ap-
proximation in one spatial dimension. This approximation was
originally due to Wentzel, Kramers, and Brioullon. It is described
in many books on quantum mechanics [79, 59]. The solution
breaks down at the classical turning points where the momen-
tum p(x) = 0, and is only a valid approximation at points remote
from the turning points.

We now consider the case where 0 ≤ W ≤ Um where tunnel-
ing occurs. The quantity p(x) is imaginary for x1 ≤ x ≤ x2, where
U(x) ≥ W , and real everywhere else. The wave function u(x) is
approximated by

u+(x < x1) =
a+

p1/2
eiw(x)

u−(x < x1) =
a−
p1/2

e−iw(x)

u+(x > x2) =
b+

p1/2
eiw(x), (5.96)

where w(x) is defined as

w(x) ≡ 1

h̄

∫ x

x0
p(ξ) dξ. (5.97)
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This integral applies for any lower limit x0. In the following we
choose x0 far to the left of the barrier. The solution u+(x <
x1) is the right-propagating incident wave, u−(x < x1) is the
left-propagating reflected wave, and u+(x > x2) is the right-
propagating transmitted wave. While this approximation breaks
down at the classical turning points x1 and x2, the function w(x)
is well-behaved everywhere.

In order to calculate the transmission probability D(W ), we must
calculate the probability current j for the incident, reflected, and
transmitted waves. In general

j =
ih̄

2m
[u(x) ū′(x)− ū(x)u′(x) ]. (5.98)

We notice in (5.96) that u+(x) = ū−(x) apart from constants. The
current j is thus proportional to the conserved Wronskian, and is
therefore conserved with respect to the coordinate x as required.

Far from the classical turning points, and apart from constants, it
is easily shown in this approximation that

u = p−1/2 eiw

ū = p̄−1/2 e−iw̄

u′ =
[
m

2
p−5/2 U ′ +

i

h̄
p1/2

]
eiw

ū′ =
[
m

2
p̄−5/2 U ′ − i

h̄
p̄ 1/2

]
e−iw̄, (5.99)

where we notice that p and w are both either pure real or pure
imaginary. After some algebra we arrive at a general expression
for the probability current j as

j =
p+ p̄

2m | p |
ei (w−w̄). (5.100)

This is identical with the result obtained by Kemble [52]. Substi-
tuting, we arrive at the probability current as follows:

j+(x < x1) =
| a+ |2

m
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j−(x < x1) = −| a− |
2

m

j+(x > x2) =
| b+ |2

m
exp

(
−2

h̄

∫ x2

x1
| p(ξ) | dξ

)
. (5.101)

In the third of these we have made use of

w(x) =
1

h̄

[ ∫ x1

x0
+
∫ x2

x1
+
∫ x

x2

]
p(ξ) dξ (5.102)

in the region x > x2, with only the second integral leading to a
nonzero contribution to j+(x > x2).

The right-propagating solution u+(x) must connect on both sides
of the barrier. To ensure this we take

| a+ |2 = | b+ |2 (5.103)

in the above. The probability that a single electron with total
energy W tunnels through the barrier is given by

D(W ) =
j+(x > x2)

j+(x < x1)
. (5.104)

This leads immediately to

D(W ) = exp
[
−2

h̄

∫ x2

x1
| p(x) | dx

]
(5.105)

in the present WKB approximation. Conservation of total current
requires that

j+(x < x1) + j−(x < x1) = j+(x < x1). (5.106)

Dividing both sides by j+(x < x1), it follows that the probability
that a single electron with total energy W is reflected by the bar-
rier is 1−D(W ).

Substituting for p(x), we write

D(W ) = exp

[
−2
√

2m

h̄

∫ x2

x1

√
C − Fx− κx−1 −W dx

]
, (5.107)
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where we have defined a constant

κ =
e2

16πε0
. (5.108)

This applies only to the tunneling case, where the total energy
W is less than Um. The limits x1 and x2 are the classical turning
points where

U(xi) = W. (5.109)

This leads to a quadratic equation with two roots

xi =
C −W

2F

 1±
(

1− 4κF

(C −W )2

)1/2
 . (5.110)

Setting κ = 0, we reproduce the tunneling probability for the
wedge-shaped barrier (5.75), with the difference that the leading
proportionality constant is set equal to unity. This is due to the
fact that the present approach relies on the WKB approximation,
whereas the earlier calculation is exact.

We now define two new quantities

ρ =
2F

C −W
x

y =
2
√
κF

C −W
. (5.111)

Substituting and performing some algebra we find

D(W ) = exp

−2i
√

2mκ3/4

h̄F 1/4y3/2

∫ 1+
√

1−y2

1−
√

1−y2

(
ρ− 2 + y2ρ−1

)1/2
dρ

 .
(5.112)

Following Murphy and Good [64] we define a function v(y) as

v(y) = − 3i

4
√

2

∫ 1+
√

1−y2

1−
√

1−y2

(
ρ− 2 + y2ρ−1

)1/2
dρ. (5.113)

This function can be expressed in terms of standard elliptic inte-
grals. The reader is referred to a recent paper by Deane et. al. [22]



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 326 — #336 i
i

i
i

i
i

326 Chapter 5. Electron emission from solids

for a detailed and current discussion. The transmission probability
D(W ) is

D(W ) = exp

[
16m1/2κ3/4

3 h̄F 1/4y3/2
v(y)

]
(5.114)

for energies 0 ≤ W ≤ Wm. The transmission probability for ener-
gies W ≥ Wm is D(W ) = 1, which the reader can easily verify by
applying the above procedure.

We are now in a position to calculate the emission current density
j for the general case of elevated temperature and field. From (5.1,
5.18, 5.105) we find

j =
4πmekT

h3

∫ Wm

0
dW ln

[
exp

(
ζ −W
kT

)
+ 1

]

· exp

[
16m1/2κ3/4

3 h̄F 1/4y3/2
v(y)

]

+
4πmekT

h3

∫ ∞
Wm

dW ln

[
exp

(
ζ −W
kT

)
+ 1

]
,

(5.115)

where the constant y is defined in (5.108, 5.111), and the function
v(y) is defined in (5.113). This represents the main result of this
section.

Problems

1. Calculate the transmission probability D(W ) for the wedge-
shaped barrier using the WKB approximation. Compare this re-
sult with (5.75).

2. Calculate the exact transmission and reflection probabilities
for a square barrier of height U0 and width 2a for the two cases
W ≥ U0 and W ≤ U0.

3. Calculate the transmission and reflection probabilities for a
square barrier of height U0 for the two cases W ≥ U0 and W ≤ U0
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using the WKB approximation.

4. The present analysis assumes two linearly independent eigen-
functions u±(x). The eigenfunction u+(x) represents a wave that
is everywhere right-propagating. The eigenfunction u−(x) repre-
sents a wave that is everywhere left-propagating. This leads to the
form (5.105) for the transmission probability D(W ). An earlier
formulation by Kemble [52] assumes a different pair of linearly in-
dependent eigenfunctions fu(x) and fv(x). The eigenfunction fu(x)
represents a wave that is left-propagating to the left of the bar-
rier (reflected wave), and right-propagating to the right of the
barrier (transmitted wave). The eigenfunction fv(x) represents a
wave that is right-propagating to the left of the barrier (incident
wave), and left-propagating to the right of the barrier (no wave).
Show that this leads to an alternative form for the transmission
probability D(W ) given by

D(W ) =
{

1 + exp
[

2

h̄

∫ x2

x1
| p(x) | dx

] }−1

. (5.116)

(Hint: Write down the analog of the connection formula (5.109)
relating the coefficients of the eigenfunctions for the reflected and
transmitted waves. This form for D(W ) was assumed by Murphy
and Good [64].)

5.6 Space charge limited emission

Emission of charged particles gives rise to a space charge cloud
in front of the emission surface. We now investigate the condition
where the space charge is sufficiently high to suppress the emission.
We imagine two parallel plates of infinite extent, separated by
a distance s. The emission surface is at zero potential, and the
accelerating anode is at potential Ua. We wish to find an expression
for the current density j in the space between the plates, as a
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function of the accelerating potential Ua and the spacing s. This
is given by

j = ρ(x) v(x), (5.117)

where ρ is the space charge density, and v is the particle speed.
Charge conservation dictates that the current density j is indepen-
dent of x. The electrostatic potential U(x) is governed by Poisson’s
equation, which is given in one dimension as

d2

dx2
U(x) = −ρ(x)

ε0
. (5.118)

The particle speed is given by energy conservation as

v =

√
2 eU(x)

m
. (5.119)

Substituting, we obtain a differential equation for the potential
U(x) as

U ′′(x) =
α√
U(x)

, (5.120)

where we have defined the constant α as

α ≡ − j
ε0

√
m

2 e
. (5.121)

We now make use of the fact that

d

dx

(
U ′

2
)

= 2U ′ U ′′,
d

dx
= U ′

d

dU
. (5.122)

This yields the differential equation

d
(
U ′

2
)

= 2α
dU√
U
. (5.123)

This is integrated immediately to yield

U ′
2

= 4α
√
U + const. (5.124)

At this point we invoke the condition that the field is zero at
the emission surface at cutoff. Mathematically, this equilibrium



i
i

“Groves˙book” — 2014/11/6 — 9:53 — page 329 — #339 i
i

i
i

i
i

5.6. Space charge limited emission 329

is expressed as U ′(0) = 0. From before we also have U(0) = 0,
in which case, the integration constant is zero. Taking the square
root of both sides, we obtain

U−1/4 dU = 2
√
α dx. (5.125)

Integrating the left side between the limits U = 0 and U = Ua,
and integrating the right side between the limits x = 0 and x = s,

4

3
U3/4
a = 2

√
α s. (5.126)

Squaring both sides, substituting for α, and rearranging factors,
we obtain the desired expression for the magnitude of the current
density j as

j =
4 ε0
9

√
2 e

m

U3/2
a

s2
. (5.127)

This is known as the Child–Langmuir equation for space charge
limited emission.
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Appendix A

The Fourier transform

As a mathematical method, the Fourier transform provides a pow-
erful, simplifying tool for a variety of physical problems. This de-
rives from the fact that a Fourier transform of a function represents
the spectral density of the function in the frequency domain. It is
a special case in the general theory of Hilbert spaces. Rather than
attempt a complete description of this theory, we will confine our
attention here only to those aspects that are directly applicable to
the present study.

We consider an arbitrary complex function f(x), defined over the
range −∞ < x < +∞. We define the Fourier transform f̃(k) as

f̃(k) =
∫ ∞
−∞

dx e−ikx f(x), (A.1)

where k is called the transform variable, and in general −∞ < k <
+∞. We assume that the function f(x) is such that the integral
is finite. This is true for most problems of physical interest, where
f is well-behaved in this sense. Operating on both sides from the
left by

1

2π

∫ ∞
−∞

dk eikx
′
, (A.2)

we obtain

1

2π

∫ ∞
−∞

dk eikx
′
f̃(k) =

∫ ∞
−∞

dx f(x)
[

1

2π

∫ ∞
−∞

dk e−ik(x−x′)
]
,

(A.3)

331
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where we have reversed the order of integrations on the right side.
We recognize the large bracket as an integral representation of the
Dirac delta function, namely

1

2π

∫ ∞
−∞

dk e−ik(x−x′) = δ(x− x′), (A.4)

where, for a certain broad class of well-behaved functions f(x),
this has the property∫ ∞

−∞
dx f(x) δ(x− x′) = f(x′). (A.5)

It follows that

f(x) =
1

2π

∫ ∞
−∞

dk f̃(k) eikx. (A.6)

Evidently, this represents the inverse Fourier transform, as it re-
produces the original function f(x). The transform (A.1) together
with its inverse (A.6) thus form an intimately related pair. Because
f̃(k) multiplies the phase factor on the right side, it represents the
spectral density of f(x) with respect to the frequency k, where k
has the dimensions x−1. Evaluating the transform at zero argu-
ment, it follows immediately that

f̃(0) =
∫ ∞
−∞

dx f(x). (A.7)

Evaluating the transform f̃ at zero argument gives the integral of
the function f over its whole range. This property will turn out to
be very useful.

We now derive several other useful properties. We define the con-
volution h(x) of two functions f(x) and g(x) as the integral

h(x) =
∫ ∞
−∞

dx′ f(x′) g(x− x′). (A.8)

This operation is often abbreviated by

h(x) = f(x) ∗ g(x). (A.9)
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Substituting the inverse transforms for f and g, we find

h(x) =
∫ ∞
−∞

dx′
[

1

2π

∫ ∞
−∞

dk′ f̃(k′) eik
′x′
]

·
[

1

2π

∫ ∞
−∞

dk g̃(k) eik(x−x′)
]
. (A.10)

Interchanging the order of integrations, this becomes

h(x) =
1

2π

∫ ∞
−∞

dk g̃(k) eikx
∫ ∞
−∞

dk′ f̃(k′) ·
[

1

2π

∫ ∞
−∞

dx′ ei(k
′−k)x′

]
.

(A.11)
We recognize the quantity in square brackets as an integral repre-
sentation of the Dirac delta function δ(k′ − k). This leads to

h(x) =
1

2π

∫ ∞
−∞

dk f̃(k) g̃(k) eikx. (A.12)

From the definition of the inverse transform h(x) this immediately
yields

h̃(k) = f̃(k) g̃(k). (A.13)

In words, the Fourier transform of a convolution of two functions
is equal to the product of the Fourier transforms of the two func-
tions. This general result is called the convolution theorem.

Next we define the autocorrelation function F (x) of a function
f(x) as the integral

F (x) =
∫ ∞
−∞

dx′ f(x′) f ∗(x′ − x), (A.14)

where f ∗ denotes the complex conjugate of f . Substituting the
inverse transforms for f and f ∗, we find

F (x) =
∫ ∞
−∞

dx′
[

1

2π

∫ ∞
−∞

dk′ f̃(k′) eik
′x′
]

·
[

1

2π

∫ ∞
−∞

dk f̃ ∗(k) e−ik(x′−x)
]
. (A.15)

Interchanging the order of integrations, this becomes

F (x) =
1

2π

∫ ∞
−∞

dk f̃ ∗(k) eikx
∫ ∞
−∞

dk′ f̃(k′)·
[

1

2π

∫ ∞
−∞

dx′ ei(k
′−k)x′

]
.

(A.16)
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We recognize the quantity in square brackets as an integral repre-
sentation of the Dirac delta function δ(k′ − k). This leads to

F (x) =
1

2π

∫ ∞
−∞

dk f̃ ∗(k) f̃(k) eikx. (A.17)

From the definition of the inverse transform F (x) this immediately
yields

F̃ (k) = | f̃(k) |2. (A.18)

In words, the Fourier transform of the autocorrelation is equal to
the absolute square of the transform of f . This general result is
called the autocorrelation theorem.

Next we investigate the integral∫ ∞
−∞

dx | f(x) |2 =
∫ ∞
−∞

dx
[

1

2π

∫ ∞
−∞

dk f̃(k) eikx
]

·
[

1

2π

∫ ∞
−∞

dk′ f̃ ∗(k′) e−ik
′x
]
, (A.19)

where we have substituted the inverse transforms of f and f ∗ on
the right side. Interchanging the order of integrations we obtain∫ ∞

−∞
dx | f(x) |2 =

1

2π

∫ ∞
−∞

dk f̃(k)
∫ ∞
−∞

dk′ f̃ ∗(k′)

·
[

1

2π

∫ ∞
−∞

dx e−i(k
′−k)x

]
. (A.20)

Again recognizing the square bracket as δ(k′−k), we immediately
obtain ∫ ∞

−∞
dx | f(x) |2 =

1

2π

∫ ∞
−∞

dk | f̃(k) |2. (A.21)

This result is known as Parseval’s theorem.

All of the preceding results for one spatial dimension can directly
be generalized to two dimensions. For a function f(x, y) defined
in two Cartesian dimensions, we define the Fourier transform as

f̃(kx, ky) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy e−i(kxx+kyy) f(x, y). (A.22)
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Operating on both sides from the left by

1

(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky e
i(kxx′+kyy′), (A.23)

we obtain, reversing the order of integrations

1

(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky e
i(kxx′+kyy′) f̃(kx, ky)

=
∫ ∞
−∞

dx
∫ ∞
−∞

dy f(x, y)
[

1

2π

∫ ∞
−∞

dkx e
−ikx(x−x′)

]
·

[
1

2π

∫ ∞
−∞

dky e
−iky(y−y′)

]

= f(x′, y′), (A.24)

where we again have made use of the Dirac delta function. We
thus obtain

f(x, y) =
1

(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky e
i(kxx+kyy) f̃(kx, ky). (A.25)

This represents the inverse Fourier transform in two Cartesian di-
mensions.

We now investigate what happens when we set one of the trans-
form variable components ky equal to zero,

f̃(kx, 0) =
∫ ∞
−∞

dx e−ikxx
∫ ∞
−∞

dy f(x, y). (A.26)

We define the projection fp(x) by integrating over one coordinate
as follows:

fp(x) =
∫ ∞
−∞

dy f(x, y), (A.27)

from which it follows that

f̃(kx, 0) = f̃p(kx). (A.28)

In words, setting one component of the transform variable to zero
is equivalent to integrating over that degree of freedom in direct
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space (x, y). This will turn out to be very useful in reducing the
number of degrees of freedom in problems of multiple variables.
In particular, it greatly simplifies the problem of the stochastic
Coulomb interaction in a charged particle beam.

Continuing this process, it is straightforward to show that

f̃(0, 0) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy f(x, y). (A.29)

As in the case of one dimension, the transform f̃(kx, ky), evaluated
at zero argument, represents the integral of the function f(x, y)
over the entire direct space (x, y).

Next, we consider the special case where f(x, y) is a function only
of r =

√
x2 + y2, and is independent of azimuthal angle φ. The

two-dimensional Fourier transform is

f̃(kx, ky) =
∫ ∞

0
dr r f(r)

∫ 2π

0
dφ e−ikr cosφ, (A.30)

where k =
√
k2
x + k2

y is the magnitude of the two-vector k. Here

we have expressed the element of area dx dy = r dr dφ in polar
coordinates. This reduces to

f̃(k) = 2π
∫ ∞

0
dr r f(r) J0(kr), (A.31)

where J0 is the zero order Bessel function, for which an integral
representation is given by

J0(x) =
1

2π

∫ 2π

0
dφ e±ix cosφ. (A.32)

The above transform is often referred to as a Bessel transform.
The transform f̃ depends only on the magnitude of k. Following
the same procedure, the inverse transform is readily found to be

f(r) =
1

2π

∫ ∞
0

dk k f̃(k) J0(kr). (A.33)

Thus, the radial symmetry of f leads to a simplification of the
Fourier transform and its inverse transform.
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As an example, we consider the radially symmetric function

f(r) =
a2

π (r2 + a2)2
. (A.34)

Integrating over area, we find that f(r) is normalized to unity,
where

2π
∫ ∞

0
dr r f(r) = 1. (A.35)

The Bessel transform is given by

f̃(k) =
ka

2π
K1(ka), (A.36)

where K1 is the modified Bessel function. Here we have made use
of the integral form∫ ∞

0

Jν(bx)xν+1 dx

(x2 + a2)µ+1
=

aν−µ bµ

2µ Γ(µ+ 1)
Kν−µ(ab) (A.37)

for the special case where ν = 0 and µ = 1, where Γ is the gamma-
function.

Projecting f(r) onto one Cartesian axis, the x-axis, we form the
function

fp(x) =
∫ ∞
−∞

dy f
(√

x2 + y2

)
=

a2

π

∫ ∞
−∞

dy

[y2 + (x2 + a2)]2

=
a2

2 (x2 + a2)3/2
, (A.38)

where we have made use of the form∫ ∞
−∞

dy

(y2 + a2)2
=

π

2 a3
. (A.39)

The one-dimensional Fourier transform is given by

f̃p(kx) =
kx a

2π
K1(kx a). (A.40)
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These seemingly esoteric relationships are very useful in the the-
ory of small angle plural scattering.

The above arguments are easily extended to n dimensions, in which
case the Fourier transform is defined as

f̃(k) =
∫
dnx f(x) e−ik·x, (A.41)

where x and k are n-vectors, and k ·x = k1 x1 + . . .+ kn xn is the
inner product. Applying the preceding logic, the inverse Fourier
transform is found to be

f(x) =
1

(2π)n

∫
dnk f̃(k) eik·x. (A.42)

The convolution theorem in n dimensions is found to be

h̃(k) = f̃(k) g̃(k), (A.43)

where the n-dimensional convolution is defined as

h(x) =
∫
dnx′ f(x′) g(x− x′), (A.44)

and the integration is performed over all of space. The autocorre-
lation theorem in n dimensions is found to be

F̃ (k) = | f̃(k) |2, (A.45)

where the n-dimensional autocorrelation function is defined as

F (x) =
∫
dnx′ f(x′) f ∗(x′ − x). (A.46)

Parseval’s theorem in n dimensions is found to be∫
dnx | f(x) |2 =

1

(2π)n

∫
dnk | f̃(k) |2. (A.47)

This gives us all of the necessary tools to apply the powerful for-
malism of Fourier analysis to practical problems of charged particle
optics.
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Linear second-order
differential equation

The paraxial ray equation (2.138, 2.162, 2.239) are examples of
a more general linear second-order differential equation. We seek
a solution for a function y(x), which satisfies an equation of the
general form

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x) y = S(x), (B.1)

where P,Q,R, and S are known functions of x. We shall see in the
following that this applies directly to the problem of the chromatic
aberration.

In the case S = 0 the equation is designated homogeneous, and in
the case S 6= 0 the equation is designated inhomogenous. The solu-
tion yh(x)of the homogenous equation can always be expressed as
a linear combination of two functions u1(x) and u2(x) as follows:

yh(x) = c1 u1(x) + c2 u2(x), (B.2)

where c1 and c2 are constants, and where u1 and u2 are not con-
stant multiples of one another. The paraxial ray equations (2.162,
2.239) for the transverse displacement v(z) = x(z) + i y(z) in the
rotated system is an example of just such a homogeneous equation.

339
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We state the problem as follows: given a solution yh(x) to the ho-
mogeneous equation, find a solution to the inhomogeneous equa-
tion. A theorem states that the solution to the inhomogeneous
equation can always be expressed as the sum of the homogeneous
solution, plus any particular solution to the inhomogeneous equa-
tion, i.e.,

y(x) = yh(x) + yp(x). (B.3)

We now proceed to find a general solution for y(x), given yh(x).

For the particular solution yp we postulate a trial function

yp(x) = C1(x)u1(x) + C2(x)u2(x), (B.4)

where C1 and C2 have yet to be specified. In the following we adopt
the notation

dy

dx
= y′(x),

d2y

dx2
= y′′(x). (B.5)

Differentiating (B.4), we find

y′p = C1 u
′
1 + C2 u

′
2 + C ′1 u1 + C ′2 u2

yp
′′ = C1 u1

′′ + C2 u2
′′ + 2C ′1 u

′
1 + 2C ′2 u

′
2 + C1

′′ u1 + C2
′′ u2.

(B.6)

We are free to select one arbitrary condition on C1 and C2. We
choose this to be

C ′1 u1 + C ′2 u2 = 0, (B.7)

thus eliminating the last two terms in y′p. Differentiating (B.7), we
find

C ′1 u
′
1 + C ′2 u

′
2 + C1

′′ u1 + C2
′′ u2 = 0. (B.8)

This reduces yp
′′ to

yp
′′ = C1 u1

′′ + C2 u2
′′ + C ′1 u

′
1 + C ′2 u

′
2. (B.9)

Substituting the reduced y′p and yp
′′ into (B.1), we find

C ′1 u
′
1 + C ′2 u

′
2 =

S

P
. (B.10)
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where we assume P is nonzero. Together with (B.7), this gives a
pair of simultaneous equations for C ′1 and C ′2. Solving this pair,
we find

C ′1(x) = − S(x)

P (x)W (x)
u2(x)

C ′2(x) =
S(x)

P (x)W (x)
u1(x), (B.11)

where W (x) is the determinant defined as

W (x) = u1(x)u′2(x)− u′1(x)u2(x). (B.12)

The pair (B.11) can be integrated in principle to give

C1(x) = −
∫ S u2

P W
dx

C2(x) =
∫ S u1

P W
dx, (B.13)

from which it follows (B.2, B.4) that

y(x) =
(
−
∫ S u2

P W
dx+ c1

)
u1(x) +

( ∫ S u1

P W
dx+ c2

)
u2(x).

(B.14)
This represents the general solution to (B.1).

We are now in a position to apply this directly to the problem
of chromatic aberration in the case of axial symmetry. The inho-
mogeneous equation for δv1(z) is (2.242). We identify the solution
(B.2) to the homogeneous equation with

δv1h(z) = δv1O g(z) + δv1A h(z), (B.15)

where δv1O = 0, as there is no aberration in the object plane. Also,
P = 1, and

W = g h′ − g′ h = k p−1(z). (B.16)

The inhomogeneous term S is given by (2.243). Substituting these
into (B.14), the chromatic aberration in the Gaussian image plane
is given by

δv1(zI) = −M

k

∫ zI

zO
p(z)S(z)h(z) dz, (B.17)
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where we have made use of g(zI) = M and h(zI) = 0. This is
identical with (2.242).
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