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Preface 

In early 2011, a small group of researchers and developers from 
three academic institutions, the Universitat¨ Dusiburg-Essen, the National 
University of Ireland in Galway and the Open University, and three 
commercial entities, ETRA I+D, EMT Madrid and Aristech, jointly decided 
to collaborate to address the challenges imposed by the impedance mismatch 
between information availability and access methods. After an initial set of 
discussions, they agreed on forming a research consortium that would extend 
the basic concepts of today’s information systems in order to support their 
automatic adaptation to the context of their users. Instead of requiring users 
to provide large amounts of inputs to find and access a particular piece of 
information, the members of the consortium envisioned information services 
that would automatically offer the right information at the right time. 

Enabling such a shift in system design required a new breed of 
information services. Instead of being driven by sequences of explicit user 
inputs, the goal was to have the services react to the behavior of their users. 
Towards this end, the services would need to access an up-to-date view of 
the users’ context in order to adapt to their behavior automatically. Without 
adequate system support, this would lead to complex application logic that 
would have to capture, process and share large amounts of potentially 
private data. The resulting complexity for application developers would often 
outweigh the potential benefits of having behavior-driven services, especially, 
when considering small and medium-sized enterprises that could not afford 
the development of a powerful software infrastructure to support services. 

To address this problem, the consortium applied for a research grant in 
the 7th Framework Programme of the European Union and acquired funding 
to design and implement GAMBAS, the Generic Adaptive Middleware 
for Behavior-Driven Autonomous Services. The hardware basis for this 
middleware was planned to be widely available personal mobile devices, such 
as smartphones and laptops, existing services on the Internet and upcoming 
Internet-connected Objects that would form the Internet of Things (IoT). Due 

ix 



x Preface 

to the composition of the consortium, which consisted of two companies in 
the public transport domain, the focus of the application areas described in 
the grant proposal were mobility and environmental monitoring applications 
in a smart city domain. 

After the positive evaluation of the research grant, the consortium started 
its work on GAMBAS in February 2012. Three years later, the consortium 
successfully completed the project and provided not only a fully functional 
middleware system that was available under a public source license, but also 
developed a significant number of services and applications that demonstrated 
the maturity of the concepts and implementation. During the middleware and 
application development, the consortium published more than 25 articles and 
papers in conferences and journals and pushed the state of the art in adaptive 
data acquisition, interoperable data processing and privacy preservation. 

Since 2011, the computing landscape has changed. IoT has made its way 
from academic conferences into mainstream and is present in the minds of 
regular people. Even small and medium-sized companies are manufacturing 
Internet-connected devices and processing personal information on a large 
scale. However, at the same time, we continuously hear new reports on data 
breaches that cause the release of large amounts of personal data from fitness 
trackers, IP-based home surveillance cameras and other inexpensive hardware 
capable of some sort of data acquisition. This shows that the concepts 
related to the dynamic and distributed processing of sensor information 
in a privacy-preserving manner realized by the GAMBAS middleware are 
not obsolete. Instead, they are more relevant today than they were seven 
years ago. 

Looking at the latest consumer trends, we see that digital assistants 
are on the rise and many people are now installing Internet-connected 
microphones in their home environments to access them at any point in 
time. At a conceptual level, the idea of digital assistants can be seen as a 
specific implementation of the idea of autonomous behavior-driven services. 
By learning about the context of the user, e.g. through the user’s phone 
book, calendar and the user’s interaction with the assistant, the service 
continuously improves its accuracy and usefulness. Thereby, the service 
provides a easy-to-use user interface-based natural language understanding. 
However, when focusing on the details of the underlying implementations, 
we find rather closed systems operated exclusively by the largest players in 
the computing industry. In addition, the systems require users to put their full 
trust into their manufacturer. 



Preface xi 

In contrast, the idea behind behavior-driven services in GAMBAS is to 
avoid such single-points-of-trust by facilitating secure sharing and distributed 
processing of data based on an interoperable data representation. As a 
consequence, we are convinced that the concepts proposed in GAMBAS have 
not lost their appeal. Instead, we think that they are an important alternative 
to the centralized architectures that are in use today. By summarizing the 
GAMBAS approach to IoT middleware in this book, we hope to inspire 
future designers and developers to consider the concepts implemented in 
the GAMBAS middleware as design choices whose applicability has been 
demonstrated in several applications. 
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1 
Introduction 

This chapter first introduces the motivation behind the developments 
described in this book. Then, it discusses the main objectives of GAMBAS 
and describes the two motivating scenarios in the domain of mobility and 
environmental monitoring. Based on these scenarios, the chapter derives 
the overall vision and identifies the innovative characteristics. Finally, the 
chapter closes with a discussion of the state of the art that is used to high-
light the primary innovations realized by the development of the GAMBAS 
middleware. 

1.1 Motivation 

With the advent of powerful personal mobile devices such as smart phones, 
digital assistants and tablet computers, an ever-increasing number of people 
has constant access to the wealth of information stored on the millions of 
servers connected via the Internet. Over the last years, the availability of such 
devices has caused a paradigm shift in the way people deal with information. 
Instead of collecting and printing potentially relevant documents in advance, 
using a personal computer that is only available at particular locations, they 
now access information on-demand and on-the-go. 

Yet, despite this significant change in behavior, the technical means to 
access information have only changed marginally. As depicted in Figure 1.1, 
in most cases, information is accessed via the web, which requires users 
to memorize long URLs, click through sequences of web pages or browse 
irrelevant search results. Alternatively, if they are frequently accessing the 
same service, they may install an app or application that provides more 
convenient access. However, such an installation requires advance planning 
and does not provide suitable support for services that are primarily useful 
in a particular environment. Moreover, even if they are using a local proxy, 

1 DOI: 10.1201/9781003336952-1
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Figure 1.1 The Challenge. 

the utilization of a more complex service, for example, to book a train ticket, 
requires users to specify numerous inputs such as destination, time, etc. using 
miniaturized and often, inadequate peripherals. As a consequence, the state 
of the art puts a natural limit on the complexity of the software and thus on 
the level of support that can be gained from existing services. 

In contrast, ubiquitous computing [Wei91] envisions services which pro-
vide seamless and distraction-free support for simple and complex everyday 
tasks of their users. In order to realize this vision, the set of services avail-
able and the services themselves must be adapted to the users situation, 
behavior and to varying user intents. Thereby, adaptation must be performed 
autonomously in order to ensure that it does not conflict with the goal of 
providing a distraction-free user experience. This, in turn, requires services 
to gather a broad range of characteristics of the user’s context at runtime. 
Examples for these characteristics include the user’s location, activity, plans 
and goals. 

Personal mobile devices such as smart mobile phones and personal dig-
ital assistants provide a promising basis for determining user context in an 
automated manner on a large scale. The reasons for this are manifold. First 
and foremost, personal mobile devices are self-contained and do not require 
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additional infrastructure support, but existing cellular and wireless local area 
networks can provide the backbone for device interaction if needed. Sec-
ondly, though these devices are resource-constrained, newer generations are 
designed to support more complex tasks such as displaying a high-resolution 
movie. As a consequence, the devices are often not utilized to their fullest 
capacity, leaving enough resources to perform context recognition. Thirdly, 
with a variety of on-board sensor, personal mobile devices have access to 
both physical and virtual data sources, which allows multi-modal context 
recognition with high precision. Lastly, since the devices are carried by and 
owned by a single user continuously, the device’s context is tightly correlated 
to the user’s context and the recognition alone does not invade privacy. 

In the past, these characteristics have contributed to the development 
of a number of context recognition systems for personal mobile devices. 
The recognition methods applied by existing systems are usually fine-tuned 
for specific requirements in order to provide reasonably accurate results 
while requiring limited resources. Although these methods are suitable for 
accurately detecting desired characteristics, they cover only a narrow set that 
can be detected by one device. Moreover, due to the resource-constrained 
nature of personal mobile devices, developers have usually concentrated on 
providing solutions for a concrete service. 

The vision of ubiquitous computing, however, extends beyond the bound-
aries of a single service as it envisions seamless support for everyday tasks. 
As a consequence, achieving the overall vision of ubiquitous computing 
raises a number of challenges which include: 

• the development of concepts to support the automated recognition of 
a broad range of context information types to support a variety of 
application scenarios in a generic fashion, 

• the development of context recognition methods that are able to cope 
with the limited resource availability and energy constraints of personal 
mobile devices, 

• the development of novel data acquisition and distribution protocols to 
share context information in order to increase the recognition accuracy 
without endangering privacy, 

• the definition of an interoperable data representation model for con-
text information and associated query models to support machine-to-
machine communication, 

• the design of a scalable data infrastructure to share and aggregate possi-
bly frequently changing context information gathered by a large number 
of devices, 
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• the development of tools to reduce the required amount of manual 
configuration of policies and the mechanisms to validate them in order 
to protect the privacy of users, 

• the design of new context-based human computer interaction techniques 
that are able to incorporate user goals and intents. 

1.2 GAMBAS Objectives 

The main objective of the GAMBAS project was to develop an innovative and 
adaptive data acquisition and processing middleware to enable the privacy-
preserving and automated use of behavior-driven services that are able to 
adapt autonomously to the context of their users. Towards this end, GAMBAS 
was set up to address the complete set of challenges listed in the previous 
section in order to provide a truly integrated solution, thus closing a signif-
icant gap between the systems that were in use at the time and the vision 
of ubiquitous computing. The primary result of the project was the design, 
implementation and validation of a Generic Adaptive Middleware, i.e. a set of 
application-independent services, to support the development and utilization 
of Behavior-driven Autonomous Services. 

As depicted in Figure 1.2, the GAMBAS middleware enables the devel-
opment of novel applications and Internet-based services that utilize context 
information in order to adapt to the behavior of the user autonomously. To 
do this, the middleware provides the means to gather context in a generic, yet 
resource-efficient manner and it supports the privacy-preserving sharing of 
the acquired data. Thereby, it applies interoperable data representations which 
support scalable processing of data gathered from a large number of devices. 
In order to make the resulting services accessible to the user, the middleware 
supports intent-aware interaction, e.g., by providing recommendations for 
services, which minimizes the need for user inputs. 

The realization of this middleware accompanied the development and 
integration of a flexible context recognition framework that is able to capture 
the context of users (e.g. location, activity, plans, intents), an interoperable 
data model to represent context information, a scalable data processing 
infrastructure to query and aggregate context information and to integrate 
context into services, a suite of security protocols to enforce the user’s 
privacy when sharing context information and last but not least, a system 
to largely automate the discovery and selection of relevant services avail-
able to the user. In addition, it encompassed the development of tools to 
simplify the configuration of privacy policies, which ensures that the user’s 
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Figure 1.2 Approach and Components. 

privacy expectations are met to improve the user experience and to increase 
user acceptance. 

As a consequence, the implementation of this middleware by the members 
of the GAMBAS consortium resulted in a number of innovations in the 
research areas of context recognition, data modeling and processing and 
privacy preservation. 

1.3 Application Scenarios 

To define the scope of the vision addressed by the GAMBAS consortium, we 
first introduce the two scenarios that motivated the project. Thereafter, we 
discuss how they fit to the overall vision. 

1.3.1 Mobility Scenario 

John has just arrived to a new city. At the airport, he receives a message on his 
mobile phone by Bluetooth broadcast welcoming him to the city and inviting 
him to download an application on his smart phone in order to make his life 
in the city easier and to make his visit more enjoyable. 

He follows the link proposed by the welcome message and downloads the 
application. When booting the application for the first time, he is requested to 



6 Introduction 

provide some data that does not affect his privacy. From that moment on, the 
application begins to capture the context related to John’s interests including 
the change of positions, used transport modes, visited shops, etc. 

The interface requests John to select which type of information he is 
interested in. John can choose from different sources of information and 
services. For this short visit to the city, John selects the mobility, events and 
shopping layers. The selection of “events” invites John to refine his selection 
and choose among different kinds of events: sports, theater, exhibitions, 
conferences, etc. John selects sports and theater. 

The interface also suggests John to connect his smart phone application 
with social networks such as FourSquare, Facebook and Twitter. John selects 
Foursquare in order to publish his “check-in” events and share them with his 
friends in the city. 

As it is the first time John visits the city, and he has just downloaded the 
application, the application is not able to predict the targeted destination of 
John. His city behavior profile has been just created and the phone’s calendar 
is empty. 

Thus, the application asks John: What do you want to do? 
John responds via voice I want to go to the hotel Astoria. The smart 

interface of the application detects and recognizes the semantics of the phrase 
go to and hotel Astoria and suggests this destination. John confirms this 
selection with a simple gesture on his smart phone. 

The application then shows John the route through public transport means 
to reach his destination. John begins his trip first by metro and then continues 
by bus. The application on his phone is able to detect at any time where John 
is and alerts John shortly before he has to leave the metro. Thereby, it notifies 
him about which bus to take next. 

If he decides to leave the recommended route, he can do so at any point 
and at any time. If he decides to go for a walk in the city, he can leave the 
route and get updated route recommendations. At any point, he can look up 
information on the bus stops and metro stations or other points of interest 
(POI) making use of speech recognition combined with semantic services. 

During the journey, the application informs John of the sport and theater 
events taking place in the next days in the city. 

When he is close to his destination and since it is already lunch time, 
his smart phone suggests three restaurants nearby his hotel. At any point 
during his visit to the city, John can identify locations with a voice tag. 
At the location of the selected restaurant, he can use the voice recognition 
system to tag the location Luigi’s restaurant or good pasta. Later on, the 
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voice recognition will be able to use this information to lead John back to 
the restaurant. 

After lunch, the application suggests buying in Cortefiel next to his hotel 
that has a two-for-one offer on spring shirts. 

Once arrived at his destination, the application detects his check-in and 
suggests John to publish the event on his enabled social networks. John 
accepts the suggestion and according to his settings, his location is published 
in Foursquare. Once the goal is achieved, i.e. arrival at the destination – the 
application returns to its initial state, What do you want to do? 

This time, John ignores his smart phone however. While John is in the 
city, the application keeps analyzing his behavior and suggesting information 
and services based on his position and preferences. 

The application can notify John about shopping deals depending on his 
position and the proximity of the shops. Thus, the interaction with the user 
becomes more efficient and the GAMBAS framework is capable of filtering 
the offers, resulting in distraction-free support for the user’s tasks. 

1.3.2 Environmental Scenario 

Paul is a regular user of the smart city application on his mobile phone. He 
uses it often to find the best options to get around in the city. For this, he is 
always subscribed to the mobility layer. 

Today, he has decided to do some sport around the city, and his friend 
Ringo has explained him how to make use of the smart city application to 
obtain a jogging route through the less polluted areas of the city (CO2 levels). 
He indicates the number of kilometers he wants to run, and for how long, and 
he also specifies that if possible he would like to run with a friend. 

As a result, the smart city application offers him a route with Ringo. Paul 
observes that in order to have a reasonable route, the mobile application is 
proposing to take first a bus to the starting point of his jogging route. 

At the same time, Ringo, who was already planning to go jogging, 
receives an alert asking him if he wants to share a route with Paul. He accepts 
and both friends receive a confirmation on the appointment in their agendas. 

Ringo is not as concerned when it comes to environmental issues as Paul, 
so he does not use the public transport. Instead its smart city application 
proposes him a route by car through an urban tolling area. He is though quite 
concerned about costs, and by default he is subscribed to the mobility layer 
offering him a car pooling services. The urban tolling in the city depends on 
a number of factors such as type of vehicle used, number of passengers in 
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the car and level of pollution in the city. Ringo receives a proposal from the 
application to share the trip with his friend George. 

When activating the environmental layer on his mobile phone – in order 
to access the levels of CO2 in the city – Paul has accepted to join the 
group of users collaborating with the municipality to study the noise levels 
in the city. Without any further intervention from his side, its mobile phone 
records and processes measurements of noise level each time Paul is outdoors 
and changes his position. At the end of the day, Paul can access the city 
pollution map application and check the noise levels in the route he has 
being following, including the jogging activity. Moreover, he obtains his 
environmental footprint due to the trip on public bus. 

1.4 Overarching Vision 

Given the advances in computer technology and the proliferation of wireless 
communication and sensing technologies, GAMBAS envisions the realiza-
tion of major parts of the ubiquitous computing vision by means of a cloud 
of intelligent services, which provides adaptive and predictive information 
to people. 

The basis for providing this information is the ability to automatically 
capture the state of the physical world by means of personal mobile devices 
as well as other sensing-enabled devices integrated in stationary or mobile 
Internet-connected objects. Given a variety of observations made by these 
sensors, the devices of a person can observe parts of its behavior which, in 
turn, can then be used to estimate and possibly predict parts of the person’s 
behavior by means of a profile. 

Upon request of the person, different views on this profile can be exposed 
(in a tightly controlled fashion) to different services such that they can adapt 
themselves not only to the person’s current situation but also to some of the 
person’s future intents. Thereby, the adaptive services might have to interact 
with other services as well as the personal mobile devices of other persons. 

This creates dynamic mashups of services that share and integrate the 
information managed by them. To allow the ad hoc creation of such mashups, 
the information managed by each services and the information available 
on personal mobile devices must be discoverable. In addition, in order to 
seamlessly combine the information provided by different sources, it must be 
possible to easily link different pieces of information. This requires the use 
of a common, extensible and interoperable data representation to allow data 
processing that extends beyond the boundaries of a single service or device. 
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Based on the data provided by these dynamic service mashups, GAMBAS 
envisions new types of user interaction paradigms that transform the reactive 
information retrieval that is commonly applied by most Internet services 
into a proactive information provisioning that emerges from this system of 
Internet-connected objects and services. 

1.4.1 Smart Cities 

By employing the overarching vision described previously to the context 
of smart cities, it is possible to further detail the vision without narrowing 
its general applicability. GAMBAS envisions a smart city as a cloud of 
intelligent digital services that provides adaptive and predictive information 
to citizens. GAMBAS foresees a variety of services that manage different 
types of information that relates to the city as depicted in Figure 1.3. 

Conceptually, these services and their data can be grouped into the 
so-called layers that cover different aspects of people’s life in the city. 
A shopping layer, for example, might encompass services that manage store 

Figure 1.3 Smart City Vision. 
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locations and special offers or recommendations on products and experience 
reports on different stores. Similarly, a mobility layer might encompass 
services that manage taxi locations, bus routes, subway stations or traffic 
information. A social layer might manage relationships between citizens, 
events that take place in the city, bar and restaurant locations, recommenda-
tions, etc. An environmental layer might manage information related to water 
or air quality in the city or it might capture the noise levels at different places. 
Clearly, some of the services found in these layers can apply to multiple layers 
as some pieces of information and some of the services might be applicable 
to multiple aspects. As a simple example, both the shopping and the mobility 
layer may rely on generic geographic information about the smart city. 

In order to enable the creation of dynamic mashups of services, the ser-
vices export (parts of) their information. The information is then represented 
using an interoperable data representation that allows automatic linking of 
different pieces of information. This makes the information accessible to 
other services which can then add additional value by providing, for example, 
a better experience for a specific group of citizens. In order to simplify the 
integration of services, a distributed query processing system enables the 
execution of queries across different information sources. 

To provide up-to-date information and adaptive information to users, 
the layers capture information from different sensors embedded in various 
Internet-connected objects. The objects may belong either to a particular 
service provider or to a citizen. The devices in the first category, may, for 
example, encompass sensors embedded in a taxi or a bus or they may be 
deployed at specific positions such as a bus stop or a metro station. The 
devices in the second category may encompass the personal mobile devices 
of the citizens such as their smart phones but they also may contain traditional 
systems such as their desktops at home, for example. 

To protect the privacy of the citizens, they can control the collection 
and sharing of data with the services in different layers. Towards this end, 
behavioral data is stored and processed on the devices that belong to the 
citizen. Optionally, in order to access additional services, they may share their 
information with specific service providers or other citizens. In order to avoid 
the expensive task of manually controlling the sharing process, automatic 
proposals for different settings can be computed based on social relationships 
that are formalized by means of existing policies that the citizens created for 
similar contexts. 

To access the information from services and to perceive their current 
context, citizens will run a special application on their personal devices. The 
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application performs predictions based on the citizens’ past behavior. Given 
these predictions, the application is able to proactively retrieve information 
from different layers that are interesting for a particular citizen. Furthermore, 
it automatically determines appropriate times to notify the citizen about 
important events. For example, when traveling in a bus, the application may 
notify the citizen shortly before the bus stops at the target destination such that 
the citizen does not miss the bus stop. In cases where the citizen is exploring 
new terrains that cannot be predicted, a natural user interface based on speech 
recognition technology allows the citizen to specify alternative goals. 

1.4.2 Characteristics 

Based on this smart city architecture, it is possible to identify two key 
characteristics that differentiate the basic idea from other approaches in this 
application domain: 

• Adaptive Acquisition and Presentation: In terms of data acquisition, 
the GAMBAS vision foresees citizens not only as consumers of digital 
services, but also as an important source of information that can provide 
feedback to different stakeholders. This feedback can then be used to 
adapt services, which results in mutual benefits for both the citizens and 
the providers of services. 

• Dynamic and Distributed Processing: In terms of data processing, the 
GAMBAS vision foresees high dynamics that depend on the individual 
behavior of citizens as well as the results of their aggregation. This 
enables novel services that go beyond the possibilities of today’s service 
infrastructures as they are typically focusing on isolated operation (often 
referred to as “data silos”) or they solely combine a few data sources that 
are determined statically. 

1.5 State of the Art 

Although it has not been realized so far, overall, the vision of ubiquitous 
computing as defined by Mark Weiser [Wei91] is not new. Ever since its 
formulation in 1991, researchers and practitioners have focused on closing 
different research gaps. With respect to middleware issues, a significant 
amount of research has been performed in the area of enabling seamless 
device interaction as well as application adaptation. Furthermore, there have 
been considerable efforts in the area of enabling context management, which 
is an important basis for context-adaptive applications. Lately, the availability 
of results in these areas has led to the development of a number of large-scale 
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sensing applications. In the following, we briefly review the state of the art 
in each of these fields, but before we do this, we quickly review the available 
hardware technologies. 

1.5.1 Hardware Technologies 

As for any other software project, the execution environment for the 
GAMBAS middleware is defined by a subset of the existing hardware plat-
forms. Due to the specific focus of GAMBAS on enabling adaptive data 
acquisition with Internet-connected objects, in the following, we briefly 
discuss the available hardware technologies with respect to devices, com-
munication and sensing. The focus is not to provide a comprehensive list 
of available technologies. Instead, we take a more high-level perspective 
that uses current technology as examples but, in principle, is independent 
of the concrete implementation. Based on the resulting discussion of device, 
communication and sensing technology, we then introduce a classification of 
device types that are the basis for GAMBAS. Thereby, it is noteworthy to 
mention that not all features of the GAMBAS middleware are realized for all 
types of devices. However, it enables their integration into a single system. 

1.5.1.1 Devices 
The devices forming the Internet of Things are heterogeneous. For exam-
ple, besides traditional personal computer systems, a significant number of 
devices are either mobile or integrated. When analyzing the different types of 
devices, we can categorize them with respect to several orthogonal axes. 

1. Specialization: Naturally, we can classify devices on the degree of spe-
cialization. This degree may range from general purpose devices such 
as PCs or laptops to special purpose devices such as micro-controllers 
that are integrated into all kinds of objects. Although, in principle, the 
concepts developed by GAMBAS are applicable to all kinds of Internet-
connected objects, the GAMBAS middleware does not focus on the 
latter. The reason for this is that highly specialized devices are often 
closed systems that cannot be programmed easily. However, given the 
rapid advances of technology, we can expect that many closed devices 
will open up in the future. 

2. Resources: Independent of the degree of specialization, we can classify 
devices on the available resources. On the one end of the spectrum, the 
set of devices forming the Internet of Things may encompass resource-
rich devices such as mainframes or clusters of workstations. On the 
other end, they may contain resource-poor devices such as simple sensor 
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nodes. In between, there are devices such as laptops or devices with less 
resources such as mobile phones or tablets. 

3. Mobility: Another important axis is the degree of mobility. Here, we can 
distinguish stationary devices and mobile devices. In contrast to station-
ary devices, mobile devices are usually equipped with batteries and thus, 
their energy is a limited resource that needs to be managed appropriately. 
This is especially true, when using mobile devices for long-running tasks 
such as the continuous monitoring of the environment. 

4. Interaction: Last but not least, the devices can also be classified based 
on their capability of supporting immediate interaction with a user. Here, 
we can distinguish devices that support user inputs, e.g., by means of 
graphical or audible interfaces, and devices that are invisibly integrated 
other objects. This axis is particularly relevant since only devices that 
support the interaction with a user can be configured manually by the 
user. Due to the invisible integration, the remaining devices can solely 
be configured indirectly through other devices. 

1.5.1.2 Communication 
Existing communication technologies can be broadly classified into wired 
and wireless. Due to the success of mobile devices, the latter ones have 
become main stream over the last couple of years. At the present time, there 
are several technologies that are widely available and frequently integrated 
into mobile devices. They cover the complete spectrum from low to high 
speeds and low to high range. At the same time, they exhibit vastly different 
energy profiles. 

• Near-Field Communication is a set of standards to enable radio 
communication between devices by bringing them in close proximity. 
NFC is based on existing standards on radio frequency identification 
(RFID). In contrast to other technologies in that family, it enables bi-
directional communication between two devices. However, it offers only 
low transmission speeds and it is only applicable to very close range 
communication (i.e. few centimeters). At the present time, it is mostly 
used for mobile payment systems or in order to bootstrap connections 
with other communication technologies (e.g., Bluetooth). 

• ZigBee is a standard for short-range communication. ZigBee is specifi-
cally designed for low-power devices with low data rate and short-range 
communication capabilities. The IEEE standard 802.15.4 defines the 
physical and the MAC layer for ZigBee. The devices in a ZigBee setup 
can be categorized into ZigBee coordinators, ZigBee routers and ZigBee 
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devices. The ZigBee coordinator is the central entity that keeps record 
of the devices in the network as well of the other ZigBee coordinators. 
The ZigBee router is responsible for routing messages and associating 
devices with each other. Devices that are not ZigBee coordinators or 
ZigBee routers are classified as ZigBee devices. 

• Bluetooth is another popular short-range communication standard. 
Bluetooth modules are commonly available for standard computers and 
various peripherals. These modules support low-bandwidth and short-
range communication. Depending on the communication range and 
energy consumption, Bluetooth devices are divided into three classes. 
Class 1 Bluetooth devices consume around 100 mW and support approx-
imately 100 m. Class 2 Bluetooth devices consumes up to 2.5 mW and 
support communication range of approximately 10 m. Class 3 consumes 
the minimal power (1 mW) but also provide the shortest communication 
range (approximately 1 m). 

• Wi-Fi is probably the most popular communication standard for con-
necting various devices such as laptops or mobile phones wirelessly. 
Wi-Fi certification is given to the devices with wireless capabilities that 
implement IEEE 802.11 standards. There exist several 802.11 standards 
that include 802.11a, 802.11b, 802.11g and 802.11n. Wi-Fi-supported 
routers cover approximately 100 m in outdoors. Since the clients in the 
Wi-Fi network do not require wire, the network can be easily extended. 
Wi-Fi-enabled devices can move in a limited area but they have rela-
tively short range. A possible shortcoming of Wi-Fi-certified devices is 
that they have comparatively higher energy requirements. 

• UMTS (Universal Mobile Telecommunications System) is the successor 
of GSM and designed to support third-generation telephone technology. 
UMTS is specifically designed to support advanced services. It is devel-
oped to support 14 Mbps data transfer rate and UMTS support is now 
commonly available in most smart phones. Compared to its predecessor 
(GSM), it consumes more power. However, in terms of speed and service 
capabilities, it is a significant improvement over GSM. 

For stationary devices, wired communication technologies are still an impor-
tant alternative to wireless technology. Many stationary general-purpose 
devices such as servers are usually connected with Ethernet. 

• Ethernet is based on IEEE 802.3 specification and is a very popular 
LAN technology. The specification defines standard for physical layer 
as well as data link layer of the OSI model. Starting with 10 Mbps, it 
has evolved to support 100 Mbps (fast Ethernet) and later 1000 Mbps 
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(Gigabit Ethernet) speed. Currently, the fastest speed standard supported 
by Ethernet is 10 Gbps, although we can assume that there will be further 
progress on connection speeds. 

1.5.1.3 Sensing 
Besides device and communication technologies, the third hardware pillar 
of GAMBAS is sensing technology. Over the last couple of years, device 
manufacturers have started to integrate various sensors into different types of 
devices. At the present time, current mobile devices such as smart phones and 
tablets commonly exhibit the following combination of sensors: 

• Accelerometer: Accelerometers are used to measure the acceleration 
that a device experiences. In most cases, they are able to differentiate 
acceleration along three axes. Usually, they are used to adapt the screen 
orientation of the device according to the way the user is holding it. 
However, researchers have also used accelerometers for various other 
tasks such as classifying the mode of locomotion or detecting potholes. 

• Gyroscope: More recently, device manufacturers have started to add 
gyroscopes to the set of standard sensors that are available on mobile 
phones. Gyroscopes are used to measure the orientation of a device. 
Advanced applications include inertial navigation systems, for example. 
However, at the present time, they are mostly used to support gaming. 

• Microphone: As a natural consequence of their function, all mobile 
phones are equipped with microphones that allow them to record and 
transmit voice during a call. However, in addition to that, most devices 
nowadays exhibit multiple microphones (e.g. to enable automatic noise 
reduction) that can also be used to capture and analyze ambient sound. 

• Proximity: In order to activate and deactivate the screen automatically 
during a call, many mobile phones are equipped with proximity sensors 
that can measure the distance between the phone and another object 
(typically in front of the screen) in a course-grained scale (e.g. far or 
close). 

• GPS: To support location-based services and to support user navigation, 
many mobile devices are equipped with GPS receivers. Although they 
cannot be used reliably in indoor environments, outdoors they provide 
reliable localization with 5 to 10 m accuracy. 

• Camera: Similar to microphones, nowadays, most mobile phones and 
tablets are equipped with cameras which can be used to record videos 
as well as still images. In addition to simply taking pictures or recording 
videos, they can also be used to recognize visual tags (e.g. QR-Tags) and 
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they can be used for different types of context recognition applications 
(e.g. to automatically detect gas station prices). 

• RF: Although they are mostly intended for communication, RF-based 
communication technologies such as Wi-Fi or GSM can also be used 
to extend the capabilities of other sensors such as GPS, for example. 
The use of these technologies as sensors usually requires special maps 
that model the signal propagation in a certain area. Using these maps, a 
course-grained but energy-efficient localization can be supported. 

Besides mobile devices, researchers have also developed a number of sensing 
platforms such as Berkeley Mica2 or UCLA iBadge, etc., mostly in the area 
of wireless sensor networks. Typically, these platforms can be extended with 
different types of sensors, but most of them contain at least the following 
combination of sensors. 

• Light: Light sensors typically measure the light level received at a 
particular point of the device. In many cases, light sensors are directly 
built into the sensor node or they can be added by attaching a sensor 
board. 

• Temperature: Temperature sensors typically measure the ambient tem-
perature of the sensor node. In many cases, the sensors are not calibrated 
and the raw values need to be converted programmatically to the usual 
Celsius or Fahrenheit scale. 

• Pressure: Pressure sensors typically measure the barometric pressure, 
and thus, they can be used to compute the altitude. 

• Humidity: Humidity sensors typically measure the humidity using 
capacitive measurements. In many cases, they are bundled with tem-
perature sensors. 

In addition to mobile devices and sensor nodes, there are numerous 
application-specific sensors. Due to their great variety, it is not possible to 
provide a comprehensive list here. To name some examples that may be 
relevant in the context of GAMBAS, using the OBD unit of a modern car, it is 
possible to capture various engine-related values. These include, for example, 
the current fuel consumption or the current state of the catalytic converter. 

1.5.1.4 Classification 
Based on the previous discussion of device, communication and sensing tech-
nologies, we can identify four broad classes of devices that are forming the 
hardware platform for services developed with the GAMBAS middleware. 
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Intuitively, based on the capabilities of the device, the support provided by 
the middleware differs. 

• Back-end computer system (BCS): Back-end systems usually consist 
of one (or more) general-purpose computer that is connected to the 
Internet via a wired and often high-speed connection. Usually, they 
exhibit high storage and processing capacities and they are shared by 
multiple users remotely, i.e. through the Internet. Consequently, to most 
of their users, they do not expose a physical interface that would enable 
interaction. Instead, they are accessed through web-browsers or via 
custom applications that are performing some form of remote call (e.g. 
RPC, RMI, etc.). The GAMBAS middleware uses these systems for data 
storage, aggregation and processing. 

• Traditional computer system (TCS): Traditional computer systems 
encompass workstations, desktops and laptops. If they are stationary, 
they are typically connected via wired connections. If they are mobile, 
like laptops, the predominant communication technology is Wi-Fi. In 
some cases, they are equipped with a few sensors (e.g. microphones, 
cameras, accelerometers for hard disk protection). Usually, they are 
accessed and used by a single user (e.g. personal desktop/laptop) or 
a small group (e.g. shared workstation). Although, they have fewer 
resources than most back-end computer systems, when considering 
that they are not shared between many users, the ratio of resources to 
number of users may be equally high. The GAMBAS middleware uses 
these systems primarily to perform similar tasks as back-end systems 
(although on a smaller scale). However, it also enables their usage as 
sensing devices. 

• Constrained computer system (CCS): Constrained computer systems 
include mobile devices such as smart phones and tablets. Further-
more, they include stationary devices such as set top boxes or indus-
trial PCs. When compared with traditional computer systems, they 
exhibit a significantly lower amount of computing resources with less 
capable processor architectures (e.g. ARM instead of X64) and less 
amount of memory (e.g. MB instead of GB). In many cases, they are 
equipped with a multitude of built-in sensors (e.g. mobile phone) or 
they can be attached to application-specific sensors (e.g. industrial PC). 
Consequently, they provide the primary basis for data acquisition in 
GAMBAS. In addition, they are also used as a personal data storage 
that can be accessed remotely. 
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• Embedded computer system (ECS): Embedded computer systems 
include highly specialized micro-controllers or ASICs that are built 
into existing products such as a dishwasher or a car. Furthermore, they 
include less specialized sensor platforms that may be programmable 
such as a SunSPOT or a Mica2 node. Usually, these systems are 
not directly connected to the Internet. Instead, they can be connected 
through some gateway device that mediates the interaction. Although 
such embedded devices outnumber the other classes, the GAMBAS 
middleware does not focus on the use of these devices as a pri-
mary processing platform. The reason for this is that usually, these 
devices cannot provide their function without additional computing 
infrastructure. Furthermore, in many cases, they are not equipped with 
easily accessible interfaces or they do not provide sufficient computing 
resources to implement additional services. However, the GAMBAS 
middleware supports their use as data sources when combined with 
a more capable device such as a constrained computer system or a 
traditional computer system. 

1.5.2 Communication Middleware 

Regarding device interaction, researchers and practitioners have developed a 
number of communication middleware systems to enable the seamless and 
trustworthy cooperation of a heterogeneous set of possibly resource-poor 
connected objects. Examples for past and present research projects in this 
area are the 3PC [3PC12], GAIA [RJH02] and AURA [GSSS02] projects or 
the PECES FP7 project [PEC12], to name a few. Traditionally, the resulting 
systems either focused on enabling the interaction of devices at a specific 
geographic location (i.e. the so-called smart spaces) or focused on enabling 
the interaction of devices that are in close proximity (i.e. the so-called smart 
peer groups). More recently, systems such as the PECES middleware have 
integrated and extended these two concepts by enabling the interaction within 
a smart space that is formed by devices in close proximity and beyond smart 
spaces by enabling device interaction across the Internet in a peer-to-peer 
fashion. Since the resulting concepts provide a higher degree of flexibility, 
the GAMBAS middleware will use PECES as its underlying communication 
middleware. 

Besides device interaction, research on communication middleware also 
addressed the development of new programming paradigms to support the 
development of adaptive applications, for example, on the basis of goals 
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as done by O2S [PPS+08] or components as done by PCOM [Han09] or 
flows as done in the ALLOW FP7 project [ALL12]. While these abstrac-
tions are interesting to support the development of adaptive applications, 
the GAMBAS project does not primarily target the development of new 
abstractions to support application adaptation. Instead, it focuses on the 
acquisition of context information as well as the processing of environmental 
information in a privacy-preserving way, which usually provides an important 
basis for adaptation that is independent of the concrete abstraction that 
performs the adaptation. Consequently, from a high-level perspective, the 
goal of GAMBAS is a more fundamental one that will enable the use of such 
abstractions at a later point in the development process. 

1.5.3 Context Management 

The importance of context information for the realization of ubiquitous 
computing has been recognized very early after the formulation of the vision 
[SAW94]. Over the course of several years, researchers have developed a 
number of middleware systems to acquire and leverage context information, 
e.g. [HKL+99], [SDA99], [Bar05]. Traditionally, these systems have either 
focused on the scalability issues that arise from providing context awareness 
in an application-independent way using a federated system [HKL+99] or 
focused on the actual distributed acquisition and usage when developing 
applications with a limited scale such as a room or a house [SDA99], [Bar05]. 
In addition to that, specialized context management systems have been inte-
grated into all kinds of middleware systems for smart environments such as 
GAIA [RJH02] and AURA [GSSS02], to name a few. Similar to [SDA99] and 
[Bar05], these systems focused on a rather restricted execution environment. 

Besides that, the active research in the area of sensor networks and 
cooperating objects has spawned a number of initiatives to acquire context 
information from a heterogeneous set of networked sensors that is deployed 
in an environment. Project at the European level include, for example, the 
PLANET FP7 project [PLA12] which works on concepts to deploy and 
operate large-scale sensor networks to capture environmental information. 
However, usually these systems focus on low-level networking aspects of 
various sensors or they solve high-level data management aspects resulting 
from a large number of sensors. Thereby, these systems do not have to 
consider the resulting privacy implications when moving from environmental 
context – such as temperature or animal population – to personal context – 
such as human location, activity and plans. 
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1.5.4 Sensing Applications 

In the recent past, the advances with respect to middleware, device and 
sensing technologies have led to the development of a number of large-
scale sensing applications that are often summarized as participatory sensing 
[BEH+06] or people-centric sensing [CEL+06] applications. Similar to 
the goals of GAMBAS, these applications leverage the personal Internet-
connected objects of users to capture relevant sensor information. The type of 
information typically depends heavily on the application area. To give some 
examples, DietSense [RSB+09] tries to collect diet-related information about 
the user through photos and sound samples. PEIR [MRS+09] provides an 
estimate of the environmental impact of a user trip by determining the mode 
of locomotion. BikeNet [EML+10] captures the biking experience by means 
of measuring the location and speed and providing an estimate over the used 
calories. Haze Watch [CYCS12] captures pollution information by attaching 
external sensors to a mobile phone. 

Usually, these and other similar types of applications capture the sensor 
information at some central application server where it is then processed 
and analyzed. Furthermore, although they are very similar, they are often 
built completely from scratch without adequate middleware support. Finally, 
in most cases, the applications merely inform the user about the collected 
data by providing some aggregated view on it. The GAMBAS middleware 
simplifies the development of such applications by providing a scalable, 
interoperable basis. In contrast to collecting all data at some trustworthy 
central server, however, the GAMBAS middleware provides configurable 
sharing that enables users to protect their privacy, if that is desired, which 
allows users to balance the potential loss of privacy with the potential gaining 
in service quality. Furthermore, instead of merely aggregating and visualiz-
ing the information, the middleware enables the behavior-driven adaptation 
of services. 

1.6 Innovations 

Building upon the existing work, the GAMBAS middleware specifically tar-
gets the acquisition of personal context information. Consequently, it shares 
similar goals with several of the existing large-scale sensing applications. 
However, in contrast to existing applications, GAMBAS also can enforce 
the user’s privacy goals. Towards this end, the acquisition is performed 
primarily with personal Internet-connected objects. This empowers the user 
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to limit the sharing of the acquired context. In order not to overwhelm 
the user, the GAMBAS middleware contains a framework to automate the 
sharing in a privacy-preserving manner. Furthermore, to directly use the 
acquired context on the connected object, the middleware provides concepts 
to implement intent-aware user interfaces, which allows the user to have full 
control over the use of the GAMBAS software via a fine granular system 
to enable and disable features as needed. Finally, in order to use the shared 
context effectively in enterprise business processes, the middleware makes 
use of an interoperable data representation with the associated processing 
infrastructure that supports a large number of sensors. This provides the basis 
for efficient object–object interactions and thus, it enables the development 
of services that can autonomously adapt to the user’s behavior. 
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2 
Architecture 

This chapter describes the high-level architecture of the GAMBAS middle-
ware. To clarify the architecture, the chapter first presents a static perspective 
that focuses on the identification and definition of entities that are operating 
different parts of the architecture (operational view), building blocks that 
constitute the architecture (component view) as well as types of information 
that are handled by the architecture (data view). After presenting the static 
perspective on the architecture, the chapter introduces a dynamic perspective 
that focuses on a description of the interaction of architectural components. 
To do this, the dynamic perspective provides details on the acquisition of 
data (acquisition view), the discovery of data and the respective processing 
of queries (processing view) and the usage of data for inferences (inference 
view). Finally, to clarify the interactions, the chapter discusses the interfaces 
between the different components. 

2.1 Static Perspective 

The static perspective introduces the entities that interact with each other 
in order to produce and consume services. Furthermore, it introduces a 
functional breakdown into a number of core building blocks. Finally, it 
discusses different characteristics of the data that shall be handled by these 
building blocks in order to facilitate the envisioned creation and usage of 
behavior-based autonomous services. The dynamic perspective, which is 
discussed later on, ties these entities and building blocks together by describ-
ing how the different types of data are exchanged among the building blocks 
in order to achieve different goals of entities. 

2.1.1 Operational View 

As basis for the further discussion of the functional building blocks, it is 
important to clarify the roles of different parties that may be involved in the 
operation of various parts of the architecture. It is worth mentioning that a 
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single entity may exhibit a number of roles simultaneously and the roles that 
it adopts may also depend on the specific type of data that might be processed 
by a service. Furthermore, it is also possible to look at the infrastructure from 
different angles. For example, we might take a data-oriented view and classify 
the entities as either data acquirers or data aggregators. In the following, 
however, we look at the operation of the infrastructure from a service-centric 
perspective, as this clarifies the entities and also highlights the innovative 
features that are targeted by the project. 

As depicted in Figure 2.1, from a high-level service-centric perspective, 
the entities involved in the GAMBAS architecture can exhibit one of more of 
the following three roles: 

• Service operators: A service operator is responsible for executing and 
maintaining a part of the software and hardware infrastructure that 
is required for a particular service or a set of services. The opera-
tor provides computing resources such as processing capabilities and 
storage capacities in such a way that they can be accessed remotely 

Figure 2.1 Roles of Entities. 
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via the network. The operator is not responsible for the actual func-
tionality provided by the service. Instead, the service operator simply 
provides the basic infrastructure, possibly with service-level agreements 
on the performance of the system. To protect the privacy of sensitive 
data, we envision that some generic services such as the distributed 
stream processing between employees of the same enterprise or between 
groups of friends might be operated by an enterprise or by one or more 
citizens. To ease the provisioning of such generic services, we envision 
that service operators might offer them as pre-installed and managed 
bundles, similar to existing website or cloud computing offerings. Alter-
natively, technically advanced users might run the necessary software 
components on their own Internet-connected home server or wireless 
home router. 

• Service providers: While a service operator is solely providing 
thetechnical basis for the execution of a particular service, the service 
provider is the actual responsible entity that offers the service to dif-
ferent users. In many cases, the service provider will be interested 
in offering a particular set of data to the consumers of the service. 
Furthermore, the service provider might also be interested in collecting 
some information from the service consumers which can then be used, 
for example, to improve the quality of the service. In this case, the ser-
vice provider actually becomes the consumer (of parts) of the provided 
service. Besides service providers that want to share a particular data 
set, we also envision service providers that simply combine existing 
data sets (possibly offered by different service providers) in order to 
add value. For example, one service provider might combine the social 
graph of a set of persons with their travel behavior in order to provide 
recommendations for trip routes. To do this, the service provider might 
have to access the social graph and the trip routes from two services that 
are controlled by another provider. To enable such service mashups, the 
GAMBAS middleware uses an interoperable data representation that is 
based on linked open data principles. 

• Service consumers: The last role foreseen by the architecture is the 
actual consumer of a service. The service consumer accesses the data 
and functionality offered by a service provider using the infrastructure 
of the service operator in order to ease their everyday tasks. In many 
cases, the consumer will be an end user that is accessing a particular 
service from a mobile Internet-connected device. Thereby, the end user 
might not have to initiate the interaction. Instead, the intent-aware user 
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interface might initiate interactions via the middleware at the right point 
in time without manual intervention. In order to improve the service 
quality available to them, the end users might be willing to opt-in to 
collect additional data that can help the service provider to improve 
the service. This mutually beneficial data collection and sharing forms 
the basis for the second group of service consumers. In addition to the 
end users, we envision that service providers can become the consumers 
of their own services. As a simple example, consider that a city might 
offer a service that enables users to share and report air quality measure-
ments. The end users, i.e., the citizens, might then use the resulting air 
quality map to avoid polluted parts of the city. In addition to this, the 
service provider, i.e. the municipality, might use the service in order to 
dynamically adjust the road toll on different streets of the city in order 
to improve the minimum air quality. 

Although these three roles are not new and are at the core of most service-
oriented infrastructures, their interpretation in the context of the GAMBAS 
project is more dynamic. The basis for this is formed by the two key 
characteristics of the overall vision, namely the adaptive data acquisition and 
presentation as well as the dynamic and distributed data processing. Due to 
the former, the service consumers may also contribute to the provisioning of 
a service by collecting and sharing some data using their Internet-connected 
mobile devices. This, in turn, can result in mutual benefits for the service 
providers and the consumers. For some services, the providers may become 
the consumers of their own services. Due to the latter, new types of service 
providers may emerge in the network. Instead of providing their own data 
sets, they may simply link the existing data sets in novel ways – possibly 
enriching them with additional data. This will allow more tailored and spe-
cialized services and it should lead to a more thorough support for various 
types of service consumers that may exhibit different behaviors. 

2.1.2 Component View 

Intuitively, as a service-oriented architecture that is supposed to be capturing 
and delivering data, we can identify three main building blocks which provide 
data acquisition, data storage and distributed data processing. On top of that, 
in order to enable the limited sharing of data, we can furthermore identify a 
building block that is responsible for managing the data access. Finally, in 
order to remotely retrieve the necessary data in an automatic fashion, we can 
identify a building block that takes care of data presentation. In the following, 
we describe these building blocks in more detail: 
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• Data Acquisition Framework (DQF): A primary capability of the 
GAMBAS middleware is its ability to automatically capture data on 
behalf of the end user or a service provider. For this, the middleware 
encompasses a data acquisition framework that is capable of running 
on different types of devices. Based on the four device classes intro-
duced in Section 1.5.1.4, the data acquisition framework primarily 
targets Constrained Computer Systems (CCS). In addition to that, the 
data acquisition framework provides support for Embedded Computer 
Systems (ECS) by means of connecting the embedded systems to a 
constrained system. The data acquisition framework provides generic 
and extensible support for virtual and physical sensors, and it optimizes 
the data acquisition with respect to energy consumption. Furthermore, 
in order to support applications, the data acquisition framework provides 
a number of example activities and intent recognition components that 
primarily deal with location information, movement modalities, bus 
routes and environmental information. The data that is captured using 
the acquisition framework can either be stored locally on the device or it 
can be forwarded automatically to a particular service that is connected 
to the Internet. The former approach can be taken in order to protect 
the user’s privacy when dealing with privacy sensitive data, whereas the 
later approach can be taken with data that does not impact the user’s 
privacy or which is explicitly shared on behalf of the user. 

• Semantic Data Storage (SDS): To store the data of the user on a local 
device or at a particular service, the architecture introduces a semantic 
data storage component. Similar to the data acquisition framework, the 
semantic data storage is primarily targeted at device classes with more 
resources, such as Constrained (CCS), Traditional (TCS) and Backend 
Computer Systems (BCS). The data that is stored in a semantic data 
storage component follows the linked open data principles and uses 
the interoperable data representations that have been developed as part 
of the GAMBAS middleware. Furthermore, the data storage is able to 
interface with different types of query processors, depending on the 
resources available on the device. This implies that there may be differ-
ent implementations of this component that are optimized for different 
device classes. 

• Legacy Data Wrapper (LDW): The semantic data storage compo-
nent is primarily targeted at the management of interoperable data that 
is following the linked open data principles. However, in the short 
term to mid-term, it is unrealistic to expect that all types of informa-
tion that are interesting for a service consumer are modeled with this 
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approach. Consequently, it is necessary to integrate with data that is 
stored in an existing “data silo” using a proprietary data representation. 
In order to smoothen the transition from proprietary to interoperable 
representations, the architecture explicitly foresees legacy data wrapper 
components that transform the data and possible functionality provided 
by legacy services into an interoperable data representation. Intuitively, 
it is not possible to provide a generic legacy data wrapper that can 
handle all possible data representations. Instead, the GAMBAS mid-
dleware encompasses basic software that eases the development of an 
application-specific data wrapper. Thereby, the basic software primarily 
targets Traditional (TCS) and Backend Computer Systems (BCS) as 
these are commonly used to manage data and to provide services. 

• Query Processors (xQP): In order to make the data stored in semantic 
data storages available to services and applications, the architecture 
introduces query processor components that are capable of executing 
queries on top of the storages. As described in detail in Chapter 4, the 
query language that is supported by the query processors is a subset of 
the SPARQL language that considers the limited resources available on 
Constrained Computer Systems (CCS). Due to the different dynamics of 
different types of data that is handled by the GAMBAS middleware and 
due to the different amounts of resources that are available on different 
classes of devices, the architecture divides the query processors into the 
following two components: 

◦ One-time Query Processor (OQP): The one-time query proces-
sor is targeted at the execution of queries that evaluate the current 
state of the data in the semantic data storages. It executes queries 
that produce a single result based on the current information and 
the specific query. Consequently, this query processor is targeted at 
static information that does not change frequently or at applications 
that only require a one-time view. From a resource perspective, 
the one-time query processor is designed to support a broad range 
of devices including Constrained (CCS), Traditional (TCS) and 
Backend Computer Systems (BCS). Due to resource constrains, 
one-time query processors in CCS are limited to process only data 
stored in semantic data storages belonging to the same system. 
OQPs in less constrained devices have access to remote seman-
tic data storages to allow the combination of data from multiple 
sources. As explained later on, the provisioning remote access 
respects the privacy constrains. 
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◦ Continuous Query Processor (CQP): In contrast to the one-time 
query processor, the continuous query processor is specifically 
targeted at dynamic data. It executes queries that can produce 
multiple results based on the changes to the underlying informa-
tion and the specific query. Consequently, this query processor 
is suitable for services and applications that require continuous 
monitoring of events that might be captured by multiple data 
sources. However, in order to handle such queries, it is necessary to 
introduce buffers that can easily exceed the resources available on 
Constrained Computer Systems (CCS). Consequently, this type of 
query processor will be targeted at Traditional Computer Systems 
(TCS) and Backend Computer Systems (BCS). Yet, in order to 
evaluate continuous queries, Constrained Computer Systems may 
make use of continuous query processors that are provided as a 
service that is operated by a third party. Towards this end, the 
continuous query processor can be considered to be a generic 
component that can be deployed by different entities, provided 
that they have access to a suitable Internet-connected computer 
system. Similar to OQPs, access to remote data is also enabled 
in continuous query processors. 

• Data Discovery Registry (DDR): To enable transparent distributed 
query processing, the query processors must be able to discover the data 
sources that are available on the network. To make the data discover-
able, a device may announce the data available in the semantic data 
storage to the data discovery registry which in turn will typically use 
a semantic data storage component to manage the announcements. In 
case of personal mobile devices, the announcement may be limited or 
modified depending on the privacy preferences of a particular end user. 
To enable this, the semantic data storage and the data discovery registry 
must interface with the privacy framework. 

• Privacy Framework (PRF): Given the above components, it is possible 
to acquire information using all types of systems. Furthermore, it is 
possible to access dynamic as well as static information using one-
time and continuous queries. In principle, this is sufficient to enable 
the acquisition and sharing of data. However, as some data such as the 
end user location or the end user travel preferences might be sensitive 
from a privacy perspective, it is necessary to limit the data acquisition 
and in particular the data sharing such that it respects the privacy 
preferences of different entities. Achieving this is the primary task of 
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the privacy framework. Conceptually, the framework interacts with the 
semantic data storage as well as the data acquisition framework that is 
deployed on each personal device. In addition, the privacy framework 
may also be used to limit the access to information that is provided by a 
particular service. For this, it is integrated into the device that is offering 
the service. 
Using a privacy policy that can be generated automatically by means 
of plug-ins that access proprietary data sources, the privacy framework 
takes care of exporting sensitive data in such a way that it can only 
be accessed by legitimate entities. Furthermore, depending on the user 
preferences, it can apply obfuscation in order to limit the data precision 
and it may anonymize the data in order to unlink the data from a par-
ticular user. Since the GAMBAS middleware targets the use of personal 
mobile devices as primary sources of data, the privacy framework not 
only supports Traditional Computer Systems (TCS) but also Constrained 
Computer Systems (CCS) as its execution platform. 

• Intent-aware User Interface (IUI): As the last building block of the 
architecture, the intent-aware user interface is responsible for leveraging 
the remaining components in such a way that the end user ideally 
receives the right information at the right time. To do this, the intent-
aware user interface executes queries against different services based on 
the behavior of the user and decides on how and when to present what 
information to the user. Since the past behavior of the user might not be 
sufficient to predict new user goals, the intent-aware user interface can 
also provide ways of allowing the user to modify the predicted behavior. 
Furthermore, as it is the primary component that is visible to the user, 
it has to support manual customization by the user. This encompasses, 
for example, the selection of layers that are interesting for a user or the 
manual tweaking of a generated privacy policy in a user-friendly way. 
Although we envision that the concepts behind the intent-aware user 
interface are applicable to different types of devices, we assume that in 
the short term and mid-term, they will be most useful for users when 
they are presented on their personal mobile devices. Consequently, the 
current implementation of the GAMBAS middleware focuses primarily 
on Constrained Computer Systems (CCS). 

2.1.3 Data View 

The GAMBAS architecture aims at supporting a broad range of ser-
vices and applications whose data exhibits vastly different characteristics. 
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Figure 2.2 Classes of Data. 

Depending on the point of view, it is possible to classify these characteristics 
along various orthogonal dimensions. As depicted in Figure 2.2, we focus on 
the level of data access, the type of data representation and the dynamics of 
the data. In the following, we take a closer look at these three dimensions 
and describe how the different classes of data are handled by the GAMBAS 
middleware architecture. 

2.1.3.1 Data Access 
Given the fact that GAMBAS aims at supporting the development of 
behavior-driven services that adapt autonomously to the user, it is clear that 
the GAMBAS architecture must be able to thoroughly support different levels 
of access to data, especially in cases where the collected data may be sensitive 
in terms of privacy. Based on the level of access, we can identify the following 
categories: 

• Public Data: Public data may belong to an individual or an organization 
which makes the data available to third parties. Thereby, the entity 
that owns the data grants free access to all data for all other entities. 
Examples of such data could be stock prices, weather information, etc. 
We can assume that many applications will require public data to provide 
relevant and useful services. Although we can assume that most public 
data will be provided by services that are executed on resource-rich 
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devices connected continuously to the Internet, the GAMBAS architec-
ture also allows the provisioning of public data by means of Constrained 
Computer Systems (CCS) such as a mobile phone. To enable seamless 
discovery of public data, however, the device responsible for the data 
must publish the metadata in the Data Discovery Registry (DDR). 

• Private Data: In most cases, private data belongs to an individual 
person and it could be the user’s personal data or data that the user 
is not willing to share with everyone. Examples of such data could 
be the user’s contact information or the user’s current location. In 
addition, private data may also reflect the internal data of an enterprise 
that is not supposed to be shared with other entities. For this type of 
data, the GAMBAS consortium made the deliberate decision to limit 
its distribution. Although it might be more practical to provide online 
access to private data, the GAMBAS architecture foresees the storage 
of private data exclusively on the devices that own it in order to prevent 
illegitimate access and processing through third parties. Consequently, 
the private data will remain on the devices that collected it unless the 
responsible entity makes a deliberate decision to share (parts of) it. 

• Shared Data: In many cases, limiting the types of data to only private 
and public can be overly constraining. Depending on the user’s pref-
erences or on the business model of an enterprise, it might be more 
beneficial to share (parts of) the private information in order to get 
better services or to increase the revenue. For both cases, the GAMBAS 
architecture foresees support for shared data. In essence, shared data 
is a particular view on the private data. This view can be accessed by 
other entities that are authorized. In order to safely support shared data, 
it is necessary to enable trustworthy authentication among the different 
entities and there needs to be a policy that details who will gain access 
to which view on the data. Managing this process and the associated 
policies is done by means of the privacy framework that is an integral 
part of the architecture. The privacy framework thereby ensures that only 
legitimate entities will be able to access a shared view. 

2.1.3.2 Data Representation 
As hinted in the component view, in the short term and mid-term, we cannot 
assume that all types of data will be represented using the models and 
approaches developed by the GAMBAS project. Instead, we must ease the 
integration of existing data that may be represented using proprietary formats 
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by means of legacy data wrappers. Consequently, based on the level of 
integration, we can identify the following two classes of data: 

• Linked Data: Linked data represents data that follows the linked open 
data principles that are the basis for the interoperable data representation 
used by the GAMBAS middleware. Using the semantic data storage 
component, it is possible to store linked data on any supported device. 
Furthermore, using the one-time and the continuous query processor, 
it is possible to query the static and dynamic data stored in one or 
more semantic data storage components. To implement interoperable 
services and to ensure that it is possible to easily create composed 
services, it is necessary that the information is represented using this 
data representation. 

• Legacy Data: Although there are good reasons for picking up the inter-
perable data representations promoted by the GAMBAS middleware, it 
is clearly unreasonable to assume that all data providers will immedi-
ately switch their data format. Consequently, the GAMBAS middleware 
provides ways to integrate legacy data that does not follow the linked 
open data principles. To do this, the GAMBAS middleware pursues a 
dual strategy. For frequently used personal data coming from different 
existing services such as Google calendar or Facebook, the GAMBAS 
middleware provides fully functional wrappers that allow the use of the 
stored information in order to compute privacy policies or to use them 
as sensor inputs. For public data coming from existing services such as 
the route information and time tables of public buses, the GAMBAS 
middleware provides support by simplifying the development of legacy 
data wrappers. Together, this allows the immediate use of frequently 
used data and it fosters extensibility with respect to more specialized 
existing services. 

2.1.3.3 Data Dynamics 
Finally, the last dimension categorizes the data on the basis of its dynamics. 
Intuitively, the dynamics of the underlying data can have a significant impact 
on the way it needs to be handled by the architecture. Clearly, there is a broad 
spectrum of possible dynamics and even data such as street names, which can 
be considered to be static, is subject to change. However, at both ends of the 
spectrum, we can identify the following categories: 

• Static Data: Static data is data that never changes or changes rather 
infrequently. Examples for static data are geographic information such 
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as a map of a city or the route information of a public bus. Clearly, both 
examples can change over time. However, considering their update rate 
of months or years, it is usually possible to query the information once 
and then cache the results of the query for a significant amount of time. 
Aside from caching intermediate results, it is also possible to replicate 
the complete set of static data that is offered by one service at another 
service in order to trade-off storage for network bandwidth and latency. 
Given this optimization potential, the handling of static data is often less 
demanding than the processing of dynamic data. 

• Dynamic Data: Dynamic data is data that changes frequently. Examples 
for dynamic data are the location of a particular user or a bus in the city. 
Although there might be periods in which updates are less frequent, like 
at night when the user is sleeping or the bus is parked at the depot, in 
many cases, it is not possible to apply similar optimizations as with static 
data. For example, the application of replication will require frequent 
synchronization and the introduction of caches for intermediate results 
may lead to significant imprecisions. Consequently, in many cases, 
dynamic data requires the execution of continuous queries, which are 
more resource-intensive to evaluate. 

2.2 Dynamic Perspective 

Given the introduction of the entities, building blocks and data types in the 
static perspective of the architecture, the dynamic perspective describes how 
they interact in order to achieve the different goals. Due to the technical 
objectives of the GAMBAS middleware, the dynamic perspective focuses on 
three main parts, namely the acquisition view, the processing view and the 
inference view. The acquisition view describes how different types of data 
are collected. The processing view describes how different types of data can 
be queried. The inference view describes how different data inferences can 
be drawn using the architecture. 

2.2.1 Acquisition View 

From the point of view of data acquisition, the GAMBAS middleware sup-
ports two different scenarios. The first scenario is targeting the personal 
acquisition of data that is used to capture the user’s behavior on behalf of 
the user. The second scenario is targeting the collaborative acquisition of data 
from a large number of users that is used to improve or provide a particular 
service upon request of a service provider. 
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For the first scenario, the identity of the user is important to ensure 
that the resulting profile can be associated with the right user. Consequently, 
the acquired data may be highly sensitive from a privacy perspective. For 
the second scenario, the identity of the user is often not important but the 
service provider is rather interested in an aggregated view of the data. Con-
sequently, by ensuring that the acquired data cannot be associated directly 
with a particular user, the resulting privacy issues of data collection can 
be minimized. 

Independent of the type of acquisition, we assume that the user must be 
able to give an explicit consent to the data acquisition at least once in order 
to ensure that only the desired data types are acquired. To do this, the user 
must interact with the privacy framework by means of the intent-aware user 
interface to set the associated preferences. In the following, we outline how 
both scenarios are handled from an architectural perspective. 

2.2.1.1 Personal Data Acquisition 
A primary objective of the GAMBAS middleware is to enable the 
development of behavior-driven services. Intuitively, the realization of a 
behavior-driven service requires knowledge about the behavior of the service 
consumers. A key feature of the GAMBAS middleware is to provide support 
for the gathering of such knowledge automatically in the background. 

In contrast to other approaches, the middleware focuses on the use of 
personal mobile Internet-connected objects such as tablets or smartphones 
as primary platforms for data acquisition. The reasons for this are manifold. 
First and foremost, many Internet-connected objects are self-contained and do 
not require additional infrastructure support. Secondly, the objects are often 
not utilized to their fullest capacity, leaving enough resources to perform 
context recognition. Thirdly, many Internet-connected objects have access 
to both physical and virtual data sources, which allows multi-modal context 
recognition with high precision. Lastly, the object’s context is usually tightly 
correlated to the user’s context and the recognition alone (i.e. without sharing) 
does not invade privacy. 

While the former points are primarily underlining the technical suitability 
of personal mobile Internet-connected objects as acquisition platforms, the 
last point highlights a key feature of the approach taken by GAMBAS that is 
the explicit decision to focus on privacy. Given the possibly privacy-sensitive 
nature of a behavior profile, the data contained in it must be considered private 
unless a user actively shares it, e.g., in order to enable service adaptation. 
Consequently, the data should not be accessible directly by other parties 
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Figure 2.3 Personal Data Acquisition. 

rather than the user. In order to achieve this, all personal data collected by 
the system is stored locally on the devices of the respective users. 

The resulting component interaction for personal data acquisition is 
depicted in Figure 2.3. To reduce the configuration effort for the user, the 
privacy framework retrieves policy-related data from third-party services 
such as Facebook or Google, for example. Using this data, it computes an 
initial privacy policy. This policy can then be refined through the intent-
aware user interface in order to enable manual control over all aspects of 
data acquisition and sharing. The resulting personal privacy policy is then 
used by the data acquisition framework, which limits the acquisition to those 
data types that are allowed by the user. In order to limit the access, the 
acquired data is stored locally in the semantic data storage of the mobile 
Internet-connected object. 

2.2.1.2 Collaborative Data Acquisition 
In addition to personal data acquisition, the GAMBAS middleware also 
supports the collaborative collection of data, for example, to enable the opti-
mization of services based on aggregated usage information. Intuitively, this 
requires an alternative to the previously described personal data acquisition, 
since the local storage of data is not suitable for aggregating remote data. 
To support this, the GAMBAS architecture introduces the ability to remotely 
store information. Intuitively, this remote storage raises additional privacy 
concerns since a service provider might be able to associate the reported data 
with a particular user. 

To mitigate this, the GAMBAS middleware enables fine-grained control 
over the collection process using the same procedure that has been introduced 
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for personal data acquisition. This enables a user to control the data that 
will be acquired on behalf of a service provider. In addition, the architecture 
also enables modifications to the data that is reported to a service. As a 
simple example, the middleware could refrain from sending unique identifiers 
or could replace them with (randomly) generated pseudonyms that change 
over time. In more complicated scenarios, the middleware might also apply 
obfuscation to reduce the data quality or it might refrain from reporting 
certain pieces of information at all. For this, the data acquisition framework 
provides a user with control over the data that is reported. This control can 
then be exercised to limit the sharing of data in such a way that it does not 
conflict with the users privacy requirements. 

The resulting component interaction for collaborative data acquisition is 
depicted in Figure 2.4. Like in the personal data acquisition case, the privacy 
framework retrieves policy-related data from third-party services, which is 
used to compute an initial privacy policy. This policy can then be refined 
through the intent-aware user interface in order to enable manual control. 
The data acquisition framework uses the resulting privacy policy to limit the 
data acquisition to those data types that are allowed by the user and to modify 
the data accordingly before transmission. As a last step, the data acquired by 
the adaptive data acquisition framework is then sent to a remote device where 
it is stored or further processed. 

2.2.2 Processing View 

To describe the processing of queries, it is necessary to consider the different 
classes of data depending on the possible level of access. Intuitively, since 
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private data is only available to the device that collected it, distributed 
processing is not possible with private data. Instead, only local queries can 
be executed on it. However, as described previously, a user may share (parts 
of) his/her private data with other users or their devices. In order to ensure 
that shared data can only be accessed by legitimate entities, an associated 
access control mechanism is required. Furthermore, it is necessary to encrypt 
the underlying communication in order to avoid the overhearing of data over 
insecure network connections. For public data, access control and encryption 
are not necessary since the data is freely shared with everyone. Due to these 
differences, the GAMBAS architecture supports two possible data discovery 
and access mechanisms that are used depending on the level of access granted 
to the data. In the following, we describe both of them individually. Intu-
itively, it is possible to create queries that involve public as well as shared data 
by combining both approaches. Similarly, local queries follow the same idea 
but since they are targeting only data that is available locally, the associated 
discovery procedures are omitted. 

2.2.2.1 Processing of Public Data 
Overall, the processing of public data relies on the following generic three-
step procedure that is frequently used in service-oriented architectures: 

• Export (Announcement, Publication): In the first step, the availability 
of the data is indicated to other devices by means of exporting meta-
data (which describes the available data) to the data discovery registry. 
Depending on the architecture, this step is often referred to as export, 
announcement or publication. If the underlying data changes in such a 
way that the metadata is no longer valid, the changes must be reflected 
by an update to the exported metadata to avoid stale references. 

• Search (Lookup, Binding): In the second step, which takes place before 
query execution, the data discovery registry is used by the query proces-
sor to find the relevant data sources. To do this, the query processor 
executes a query on the metadata that is stored in the data discovery 
registry. The query that must be executed on the metadata typically 
depends on the query that has been posted to the query processor from an 
application. Based on the result of the query against the data discovery 
registry, the query processor continues with the execution of the actual 
query against some of the retrieved data sources. 

• Execution (Usage, Invocation): In the third step, the actual query is 
executed against the data sources. Depending on the capabilities of the 



 

 

2.2 Dynamic Perspective 39 

query processor, the query execution might be decomposed in further 
phases such as query planning and query execution. In the query plan-
ning phase, the query processor will typically select one of multiple 
possible query execution strategies in order to optimize certain goals 
such as decreasing the network load or decreasing the resource usage on 
certain types of devices. 

Figure 2.5 shows an example for the execution of a query on two public data 
sources. Intuitively, steps one, two and three are decoupled in time, i.e. they 
must happen sequentially but the time period between them may vary. 

As a first step, the public data sources announce their data by exporting 
associated metadata to the data discovery registry. Typically, this is done 
once the device starts up its semantic data storage and the announcement 
might be updated in cases where the data storage holds dynamic data that 
is reflected in the metadata. Intuitively, however, the update frequency of 
the metadata should be lower than the update frequency of the actual data 
in order to avoid scalability issues with the data discovery registry. Once 
a query is issued, for example, through the intent-aware user interface, the 
query processor receives it and interprets it. Based on its contents, it will then 
create and execute queries on the data discovery registry, which results in a 
set of possible data sources. Based on the strategy taken by the query engine, 
an appropriate query plan is generated and executed. For the execution, the 
query processor executes sub-queries against the necessary set of semantic 
data storages – via their local query processors – and returns the result to the 
intent-aware user interface. 
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Figure 2.5 One-time Processing of Public Data. 
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While the approach described above is sufficient to enable the processing 
of one-time queries, the execution of continuous queries over dynamic data 
raises additional issues. Due to the associated resource requirements, the 
GAMBAS middleware does not encompass a continuous query processor for 
all types of devices. Instead, the continuous query processor is only suitable 
for Traditional Computer Systems (TCS) and Backend Computer Systems 
(BCS). Consequently, it is necessary to handle continuous queries on other 
systems by means of a third-party system. For public data, this third-party 
system can be introduced easily. As depicted in Figure 2.6, the system simply 
acts as a proxy for query processing and there is no need to change the 
remaining interaction. 

2.2.2.2 Processing of Shared Data 
As indicated before, the processing of shared data cannot be handled in the 
same manner as the processing of public data due to the additional require-
ments on access control and encryption. Consequently, we need to modify 
and extend the previous interaction by introducing additional steps that take 
care of both. For this, the architecture foresees the following general process: 

• Export (Announcement, Publication): As with public data, the first 
step is to announce the availability of data to other devices by means 
of exporting metadata. However, in contrast to public data, only the 
device identity will be exported in order to avoid privacy issues resulting 
from the export of private metadata. In cases where no privacy issues 
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result, other metadata could be exported as well in order to improve 
the performance of the query processor. Alternatively, it is possible to 
encrypt the metadata as described in Chapter 4. 

• Search (Lookup, Binding): In the second step, which takes place 
before query execution, the data discovery registry is used by the query 
processor to find the relevant data sources by means of querying their 
identities. 

• Preparation: The third step takes care of the creation of a view of the 
remote data that shall be shared with the device that executes a query. 
The view creation itself consists of a number of sub-steps. First, the 
identity and data requirements are forwarded to the privacy framework 
of the device issuing the query. Second, the privacy framework contacts 
the privacy frameworks on the devices hosting the shared data. For 
this purpose, the privacy framework performs a mutual authentication. 
Furthermore, the privacy framework executing on the devices hosting 
the shared data performs access control, which will eventually result in 
the creation of a view that represents the data that shall be visible to 
the requester. Thereby, it is noteworthy to mention that this view may 
modify the original data based on the level of access. For example, the 
device hosting the data might decide to generalize parts of the data or to 
make parts of the data inaccessible. Once the view is created, a secure 
token is generated, which can then be used to access the view. This token 
is returned back to the query processor. 

• Execution (Usage, Invocation): In the last step, the actual query is 
executed against the view provided by the devices hosting the shared 
data. In order to access the view, the query processor provides the token 
to the shared data source and it uses an encrypted channel to transmit 
both the query and the result. 

Figure 2.7 depicts this process with one device that is issuing a one-time 
query on two sources providing shared data. As described previously, the time 
between export and access of the device’s identify information in the data 
discovery registry may be high since the device providing shared data will 
usually export its identity as well as other public and optionally encrypted 
metadata that does not raise privacy issues upon startup. 

Following the general process described above, the devices hosting the 
shared data export their identity and non-privacy-critical metadata in a similar 
fashion, as public data sources will share their metadata. As depicted in 
Figure 2.7, the processing is then initiated by means of a query issued by 
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Figure 2.7 One-time Processing of Shared Data. 

the intent-aware user interface. In order to access shared data, the query will 
typically specify the identity of one or more data sources whose connectiv-
ity information must be retrieved by searching through the data discovery 
registry in step two. Once the information is retrieved, the query processor 
will request the creation of the view through the local privacy framework. 
To prepare the view, the privacy framework on the query issuer contacts the 
devices hosting the shared data. Thereby, the privacy framework components 
on the devices will jointly perform request authentication and authorization. If 
this is successfully completed, the devices hosting the shared data will create 
the view on the data that shall be exposed to the query issuer. Thereby, they 
may perform arbitrary operations on the data such as generalizing information 
or removing information from the view on a per-request basis. Once the 
view is prepared, the privacy framework on the query issuer device will 
receive an access token enabling it to access the newly created view. This 
token is then passed back to the query processor, which will then issue the 
respective sub-queries to each of the data sources (again via the local query 
processors). Thereby, the whole transaction is encrypted and authenticated 
using the token. Once the sub-queries have been executed, the views on the 
devices hosting the shared data will be disposed and the result will be returned 
to the intent-aware user interface. 

To enable stream processing on Constrained Computer Systems (CCS), 
the architecture mimics the proxy-based approach taken for public data where 
a remote processing service provides the hardware and software resources to 
perform queries. As shown in Figure 2.8, the primary difference between 
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Figure 2.8 Continuous Processing of Shared Data. 

continuous and one-time processing originates from the fact that a third 
party will be involved in data access. Consequently, this third party will 
have to be trusted by the shared data sources or they have to deny the 
request. In order to make the associated decision, the access request will 
not only have to authenticate and authorize the query issuer but it also has 
to decide upon the trust of the processing service. To do this, the request 
must identify the processing service that will be used during the processing. 
Furthermore, the remote communication between the actual query issuer 
and the continuous query processor must be secured accordingly. However, 
as described in Chapter 5, this can be done using regular cryptographic 
methods. 

2.2.3 Inference View 

Another key usage scenario of the GAMBAS middleware is the gathering of 
data from multiple sources in order to derive additional information. Based 
on the scenarios described in Section 1.3 and considering the acquisition and 
processing views described in the previous sections, we can identify two main 
classes of inferences, namely local and distributed inferences. 

Local inferences are primarily based on information that is available to a 
single device. Thereby, the term local does not exclude the use of static public 
or shared data. A device can opt for locally storing a view of the static remote 
data to simplify the processing. 
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For dynamic data, however, such an approach is usually ill-suited – at 
least for devices that cannot host a continuous query processor – since the 
remote data would have to be refreshed continuously. Consequently, from 
an architectural perspective, the GAMBAS middleware realizes (simpler 
forms of) distributed inferences by means of executing continuous queries. 
Intuitively, the degree to which such inferences are possible depends on the 
capabilities of the query language. In the following, we briefly outline the 
approach taken to support local and distributed inferences. 

2.2.3.1 Local Inferences 
As indicated previously, local inferences encompass inferences on local data 
that is held by a device as well as public or shared static data that is available 
remotely and can be accessed by the device. Given the local availability 
of data, it is then possible to derive additional data using custom software 
that is executed by the device. Based on the application scenarios described 
in Section 1.3, the GAMBAS middleware supports two types of such local 
inferences which we outline in the following. 

• Personal inferences: Personal inferences are inferences over the behav-
ior data collected using personal data acquisition. They may entail 
the derivation of aggregated information from multiple sensors or the 
prediction of future behavior based on traces of the past behavior. In 
order to enable such an aggregation or prediction, the device itself 
may require additional static information. For example, in order to 
determine the typical bus stops that are used by a user, the personal 
mobile object of the user may have to retrieve the GPS coordinates 
of the bus stops. Similarly, in order to predict future trip destinations, 
it may be necessary to retrieve the street address of previously visited 
locations. From an architectural perspective, the GAMBAS middleware 
provides support for such personal inferences mainly by means of the 
adaptive data acquisition framework, which provides extensible support 
for data aggregation, behavior tracking and prediction. In addition, it is 
also possible to support this type of inferences at the user interface level 
in cases where the required inferences are highly application-specific. 

• Service inferences: In addition to personal inferences which affect 
the data stored on the personal mobile objects, there is also a need 
to support service-specific inferences, which may be a result of the 
aggregation of data acquired collaboratively. As a simple example, it 
may be necessary to aggregate collaborative sensor readings in order to 
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derive an environmental map. Similarly, it might be necessary to assign 
the occupancy information collected by different users to different buses 
on a route in order to predict their remaining capacity. Intuitively, such 
aggregations should be handled by the service that collects the data since 
they may require the combination of data reported by multiple sources. 
However, since such aggregations are often highly application-specific, 
the GAMBAS middleware primarily supports them by providing data 
access by means of a generic query processor, which is detailed in 
Chapter 4. For aggregations that exceed the capabilities of this query 
processor, it is necessary to implement custom application logic. 

2.2.3.2 Distributed Inferences 
In contrast to local inferences which are limited to local data and static remote 
data, distributed inferences combine the dynamic data of multiple remote 
data sources. Considering the application scenarios targeted by the GAMBAS 
middleware, such inferences are necessary, for example, in order to detect the 
collocation of friends in the same public bus. Since we can assume that many 
users are not willing to publicly share their current location, such information 
is typically only shared among a specific and user-dependent set of people. 
To protect the privacy of the users, the GAMBAS middleware only stores 
this information on the personal mobile objects of the associated user. Thus, 
given that the user is willing to share this information, it must be retrieved 
from there. 

As indicated previously, however, due to the resource constraints of many 
personal mobile devices, the GAMBAS middleware does not encompass a 
continuous query processor for these types of devices. Thus, there are only 
two ways of supporting distributed inferences. The first and simplest way is 
to perform the inference by means of a continuous query that is executed 
on some third-party system that is jointly trusted by the group of users. The 
second way to realize such inferences is to implement a custom service to 
perform the inference. 

Both approaches have different benefits and limitations. The former 
approach does not require any custom implementation and thus, is easier 
to realize. However, given that the query language applied in GAMBAS 
may not support arbitrary application-specific functions, it is limited to the 
set of operators supported by the language. The latter approach does not 
suffer from this problem since arbitrary code can be used during the service 
implementation. However, in contrast to the use of an existing middleware 
component, it is much more complicated as it requires the development of 
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custom software. To realize the applications described in Chapter 6, it was 
sufficient to use a continuous query processor in order to perform the desired 
distributed inference; however, in a broader context, it may be necessary to 
provide additional custom services. 

2.3 Interface Perspective 

Given the static and dynamic perspective of the high-level architecture 
described in the previous sections, it is possible to identify the interfaces 
between the core building blocks that constitute the GAMBAS middleware. 
To do this, we take the different building blocks detailed in the component 
view of the static perspective, namely the data acquisition framework (DQF), 
the semantic data storage (SDS), the one-time and the continuous query 
processor (xQP), the data discovery registry (DDR), the privacy preservation 
framework (PRF) and the intent-aware user interface (IUI). Using these 
building blocks, we step through all interactions described in the dynamic per-
spective, namely the acquisition view, the processing view and the inference 
view. Consequently, we get the following interactions: 

• DQF–SDS: In order to store contextual information for personal as well 
as collaborative data acquisition, the data acquisition framework needs 
to interact with the semantic data storage. 

• xQP–SDS: To execute one-time as well as continuous queries over 
public or shared data, the one-time and continuous query processor 
needs to interact with the semantic data storages hosting the data. 

• xQP–xQP: To execute distributed queries, the query processor needs to 
communicate with remote instances of itself to place subqueries there 
and receive results back. 

• xQP–DDR: In order to determine the appropriate data source before 
executing a distributed query, the one-time as well as the continuous 
query processor needs to interact with the data discovery registry. 

• xQP–PRF: When executing a distributed query over shared data, the 
one-time as well as the continuous query processor needs to interact 
with the privacy framework in order to gain access to the shared data. 

• PRF–DQF: To protect the user from unwanted data collection, the 
access to the data acquisition framework is guarded by the privacy 
preservation framework. Thus, performing data acquisition requires 
interaction between these components. 

• PRF–PRF: In order to gain access to shared data, the privacy framework 
must be able to interact with other instances of the framework remotely 
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to negotiate the appropriate access levels and to prepare the necessary 
views for querying. 

• IUI–xQP: To retrieve data from the local storage or from remote 
services, the intent-aware user interface must execute distributed one-
time or continuous queries over the associated data storages using the 
one-time and the continuous query processor. 

• IUI–PRF: Although, the privacy preservation framework is supposed 
to enable the automated generation of a privacy policy, some users may 
want to control their sharing more tightly. In order to enable this, the 
intent-aware user interface enables manual configuration of the privacy 
framework. 

In the following subsections, we describe the required functionality and the 
resulting interfaces in more detail. Thereby, we try to refrain from describing 
low-level implementation details. Instead, we rather focus on an architectural 
perspective by describing the types and flows of data that is interchanged 
through the interfaces. However, where appropriate, we also give some initial 
ideas on how this flow can be realized. 

2.3.1 Storage Interfaces 

DQF–SDS Interface: As detailed in the acquisition view, there are two 
basic types of data acquisition foreseen in the GAMBAS architecture, namely 
personal data acquisition (on behalf of the user) and collaborative data acqui-
sition (voluntary, on behalf of a service). For both types of data acquisition, 
it is necessary to store the sensed data – either on the mobile device or 
on a remote device hosting the service. To perform the data acquisition, 
the GAMBAS architecture introduces the data acquisition framework (DQF) 
which is responsible for recognizing different types of context in an energy-
efficient manner. To store data following the open linked data principles that 
are forming the core of the interoperability mechanisms provided by the 
GAMBAS, the architecture foresees a semantic data storage (SDS). In order 
to enable the persistent storage and the later retrieval of recognized context, 
it is necessary to introduce an interface between these two components. 

Based on this rationale, it is necessary to support the insertion of data 
into the semantic data storage. In addition, in order to support the storage of 
transient states, it is also necessary to support the deletion of data from the 
storage. This allows, for example, the removal of stale entries. As described in 
detail in Chapter 4, the storages are using RDF as their internal data format. 
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Thus, the insertion and deletion functions or the storage use this format as 
well. As a result, the interface consists of the following two functions that 
can be called either locally (to support personal data acquisition) or remotely 
(to support collaborative data acquisition): 

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion 
of an RDF triple into the semantic data storage by placing either a local 
or remote call and indicates whether the insertion has been completed 
successfully. 

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion 
of an RDF triple from the semantic data storage by placing either a local 
or a remote call and indicates whether the deletion has been completed 
successfully. 

As indicated previously, the architecture foresees the usage of the interface 
through the data acquisition framework by means of a special storage compo-
nent that enables the application developer to define the data storage that will 
receive the insertion (or deletion) as well as the graph (i.e. the set of triples) 
that shall be generated (or updated). Once the data acquisition framework 
generates a new result and transmits it to the storage component, the storage 
component will perform a deletion of previously inserted triples (if desired) 
and execute an insertion of the newly created graph. If the insertion or 
deletion shall be executed on a remote system (to perform collaborative data 
acquisition), the same set of procedures shall be executed. To improve the 
overall performance of the interface, in particular, when executing insertions 
and deletions remotely, it is beneficial to support batch insertions and dele-
tions. This can significantly reduce the latency of updates, especially when 
multiple triples have to be removed and inserted into a remote storage over a 
low-bandwidth connection (such as a GPRS link, for example). 

2.3.2 Query Interfaces 

xQP–SDS Interface: As explained in the components view, there are two 
types of query processors. One-time query processors (OQP) aim at executing 
one-time queries, i.e. queries that are evaluated against the current state of 
the data. One-time query processors are focused on more static data. For the 
dynamic data, continuous query processors (CQP) are in place. CQPs can 
monitor the input data coming from streams, and as soon as a new data item 
is generated, the CQP will evaluate the query and if new results are produced, 
they are then forwarded to the query initiator. In both cases, the data is stored 
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in semantic data storages and the goal of the query processors is to make 
the data from an SDS available to services and applications. Therefore, an 
interface between xQP and SDS is needed. Query processors should be added 
to retrieve data from an SDS that matches a query. Additionally, an xQP also 
servers as an interface to add or delete data in an SDS, for example, the data 
generated from the user intention interface. 

For query optimization purposes, the query processor might make use 
of what we call “temporary data”. Temporary data is used only during the 
query execution and can be discarded afterwards. As an example, the query 
processor might decide to temporarily store the public data in a local SDS 
to avoid remote calls during the processing. To keep the storage costs low, 
this data would be removed after the query is executed. For this, the query 
processor need to provide functions to add, retrieve and delete temporary data 
from an SDS. 

Based on this rationale, it is necessary to support retrieving data from 
a semantic data storage that matches a query, as well as data insertions 
and deletions. This applies for both persistent data and temporary data. As 
described in detail in Chapter 4, the data retrieval is done via SPARQL 
queries. As a result, the interface consists of functions described below. Since 
the query processing supports the aggregation of data from different sources, 
the functions can be called either locally or remotely: 

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion 
of an RDF triple into the semantic data storage by placing either a local 
or remote call and indicates whether the insertion has been completed 
successfully. 

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion 
of an RDF triple from the semantic data storage by placing either a local 
or a remote call and indicates whether the deletion has been completed 
successfully. 

• Insert Temporary (RDF Triple) Success :: Local: Enables the inser-
tion of an RDF triple into a temporary graph in the local semantic 
data storage and indicates whether the insertion has been completed 
successfully. 

• Reset Temporary () Success :: Local: Deletes all entries in the 
temporary graph. 

• Retrieve (SPARQL Query) result set :: Local: Enables to query the 
local SDS for data items that match a given search pattern. To specify 
the search pattern, an SPARQL query can be used. Matching data items 
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are returned as a result set, containing all suitable bindings for each 
requested variable. 

• Retrieve Temporary (SPARQL Query) result set :: Local: Enables to 
query the temporary graph of the local SDS for data items that match a 
given search pattern. To specify the search pattern, an SPARQL query 
can be used. Matching data items are returned as a result set, containing 
all suitable bindings for each requested variable. 

The architecture foresees the usage of the interface as in most query pro-
cessing systems. Since the SDS uses a graph data structure to store the 
RDF triples, the retrieval function works by finding sub-graphs on the SDS 
that matches the input query. The query processor takes care of parsing the 
input query to generate the execution plan. The processor also contains a 
component that inserts and deletes data from a data storage. To improve the 
overall performance of the interface, as in the case of the DQF–SDS interface, 
batch insertions and deletions are a useful optimization, especially on remote 
calls. Optimizations on the query execution plan, with the use of temporary 
data are also possible. 

xQP–xQP Interface: In the GAMBAS architecture, some queries can only 
be answered by combining data from multiple sources. One solution would 
be to gather all data from the relevant sources in a single device and execute 
the query locally on that device. However, there are many problems with 
this approach. For starters, it would create a lot of data traffic, since it is not 
possible to know a priori which data is needed, therefore each source would 
ship all its data to a single device. Scalability would also be an issue, since the 
device executing the query would become a bottleneck. Finally, this approach 
does not preserve privacy and therefore becomes unsuitable for the GAMBAS 
framework. 

Our solution is to equip each device hosting data with a query processor. 
Each query processor can execute queries locally over the device’s data, 
and it can also aggregate results from multiples sources. For executing a 
distributed query among the devices, the query initiator first identifies the 
relevant sources using the DDR. It then breaks the query into subqueries. 
Each subquery is sent to the device that contains the data for it. The query 
processor on each device will then execute the subquery locally and only 
forward the relevant results to the query initiator (as opposed to all data). 
The query initiator merges the results of all subqueries and creates the final 
query result. 
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To execute distributed queries, the query processor needs to communicate 
with remote instances of itself to place subqueries there and receive results 
back. This is done by implementing an interface that allows query proces-
sors to post queries to remote query processors and retrieve the results, as 
shown below. 

• Retrieve (SPARQL Query) result set :: Remote: Enables to query a 
remote xQP for data items that match a given search pattern. To specify 
the search pattern, an SPARQL query can be used. Matching data items 
are returned as a result set, containing all suitable bindings for each 
requested variable. This is used to place subqueries that are part of a 
distributed query. 

The middleware architecture foresees the usage of the interface during the 
execution of distributed queries. Since the local execution is done over RDF 
triples, the interface between query processors is done using a language 
suitable for RDF, in our case SPARQL. 

xQP–DDR Interface: To answer queries which involve remote data, the 
query processor must be able to discover the data sources that are available 
on the network. Once a query is issued, the query processor receives and 
interprets it. This allows the processor to identify which data is needed to 
answer the query (for example, the location of friends of a user). The data 
discovery registry contains the meta information about the data sources, not 
the data itself. This is to preserve the privacy of shared data. By consulting 
the registry, the query processor can obtain the list of sources that contain the 
data in question. For instance, the registry can return the list of semantic data 
storages from the friends’ devices. 

Based on this rationale, an interface between query processors and reg-
istry is needed. The interface must allow the processor obtain a list of remote 
SDSs (or endpoints) that contains a particular type of data. This interface 
requires only one functionally, which is given below: 

• Resolve (data source specification) endpoints :: Remote: Enables the 
discovery of SDS endpoints that can be contacted for a specific kind of 
data, e.g. whom to contact to get information about a user’s location. To 
do so, a data source specification is given, e.g. specifying the user for 
which data is searched (for instance, a friend). This request is sent to the 
remote discovery server and a set of matching endpoints is returned. 

The interface functionality detailed is used during the processing of queries 
that involve remote data. The query processor identifies which data sources 
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are needed (e.g. the sources containing the location of friends), and request 
them to the registry. The registry then performs a lookup on the metadata 
it stores and returns the list of remote storages that matches the request. To 
improve the performance of the interface, and the performance of the query 
processing in general, the metadata stored in the registry can be enhanced 
in order to provide more accurate and results sets. However, storing more 
metadata might lead to privacy issues, so this needs to be handled carefully. 

2.3.3 Privacy Interfaces 

xQP–PRF Interface: During the query execution, the query processor iden-
tifies the sources needed to answer the query and then sends a request to 
the registry. The registry resolves the sources and sends the list of endpoints 
(remote storages) that contain that data in need back to the processor. For 
shared data however, before the query processor can access the data on the 
remote source, a privacy control is performed to check if the query initiator 
has the rights to access the data. A view of the data matching the privacy rules 
in place is created and shared with the query processor. This is done in the 
preparation phase explained in Section 2.2.2.2. The query processor forwards 
the identity and data requirements to the privacy framework, which in turn 
checks with the privacy framework of the device hosting the shared data. A 
view of the data is created based on the access control. The view can reflect 
the original data, or it can modify the original data according to the privacy in 
place. For example, it can aggregate or hide parts of the original data. Once 
the view is created, a secure access token is generated and sent to the query 
processor. If a remote endpoint is trying to access the shared data, the secure 
access token will allow transferring the shared data securely over the chosen 
communication channel. 

Based on this rationale, an interface between xQP and PRF is needed to 
check whether the query initiator is allowed to access the data. Additionally, 
if the xQP is executing a remote query, the communication must be properly 
secured. For this, the user and data access credentials are sent over a secure 
proxy that is part of the communication subsystem of the middleware to 
provide a secure data connection between the two endpoints. As discussed in 
Chapter 5, the secure proxy manages the secure communication transparently. 
Thus, the interface does not include a method that enables the exchange of 
security tokens or start the encryption. In contrast to that, the access to data 
must be checked through an interface. The interface consists of one function 
that checks if the query initiator (i.e. the user requesting the data) is allowed 
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to access the data. The data being requested also needs to be specified. The 
PRF looks at these two input items and decides whether the query is allowed 
or not. Each request is handled by the privacy framework of each semantic 
data storage and therefore this function is performed locally. The function 
supported by this interface is given below: 

• Check (Set of Ontology Classes, Requester) allowance :: Local: 
Enables to check with the PRF, if executing a received query is allowed 
according to the currently active privacy policies. To do so, the query 
processor hands the PRF (1) a set of classes in the GAMBAS ontology 
that specify what data types the query will access and (2) the origin of 
the query, e.g. if it was a local query or a query from a remote user. The 
PRF returns whether this query is allowed or not. 

The architecture foresees the usage of the interface described above in 
the privacy-preserving query execution mechanism, when shared data is 
involved. The query processor must first interact with the privacy framework, 
which is responsible to allow or deny data access and responsible for data 
encryption/decryption. 

PRF–DQF Interface: The Adaptive Data Acquisition Framework (DQF) 
enables the collection of data using various sensors built into the user’s mobile 
device. The collected data can then be used personally (i.e. by the device, 
in the case of personal data acquisition) or collaboratively (i.e. by a remote 
service, in the case of collaborative data acquisition) to optimize services in 
a behavior-driven manner. Clearly, the data acquired by means of sensors 
built into the device of a user may raise privacy concerns. Furthermore, 
the preferences with respect to privacy may vary drastically from user to 
user. In order to empower users to exercise control over which data can be 
collected, the access to the data acquisition framework is guarded by the 
Privacy Preservation Framework (PRF). Thereby, all accesses made to the 
data acquisition framework are checked against the user’s privacy preferences 
with respect to data collection. This allows the user to limit the data types 
that can be collected at all. In extreme cases, a user may limit the collection 
of all data through the GAMBAS middleware. In less extreme cases, the user 
may limit the collection of a particular type of context information, such as 
location-related information or audio information. 

The PRF–DQF interface enables the data acquisition framework to check 
whether the user has given consent to the acquisition of a particular type of 
contextual information. To do this, the DQF performs calls to the PRF in 
order to verify that the data types that shall be captured are permissible under 
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the user’s current preferences. Furthermore, since the user’s preferences may 
change at any point in time, it is necessary that the PRF provides functionality 
to signal a change to the DQF whenever the user’s preferences with respect to 
a particular data type change. Consequently, the interface must be composed 
of the following two functions: 

• Check (Datatype) authorize :: Local: The PRF checks the data type 
that is about to be captured against the preferences of the user and returns 
a Boolean to indicate whether the user permits the acquisition of the 
specified data type. If the access is denied, the acquisition is aborted. If 
access is granted, the acquisition task can be started. 

• Signal (Datatype) void :: Local: The PRF signals a change to the 
preferences with respect to a particular data type such that the DQF can 
check all currently executed data acquisition tasks against the updated 
set of preferences. If a data acquisition task is no longer permitted by 
the user, it must be aborted. 

In order to guarantee that all data acquisition tasks continuously conform to 
the user’s preferences, the architecture foresees the continuous and gapless 
usage of this interface for all calls to the DQF. This means that all tasks 
that are started within the DQF need to pass through the check method of 
the PRF with the associated data types. In addition, as long as the DQF 
is executing any tasks, it needs to react to changes indicated by the signal 
method. If a signaled change affects a data type that is currently acquired, 
the check for the associated (set of) task(s) needs to be reevaluated, possibly 
aborting any conflicting tasks. The check of the DQF against the policy 
managed by the PRF may entail some slight overhead, which may become 
significant if data acquisition tasks are started and stopped very frequently. In 
this case, it makes sense to cache the user’s preferences in memory to reduce 
the associated overhead. However, in most usage scenarios, the overhead 
can be neglected. 

PRF–PRF Interface: The PRF allows the transfer of data between two 
devices. The data that is transferred should be encrypted. The reason for this 
is twofold. At first, the data might contain private information that should 
not be shared with unauthorized users or devices. Additionally, the shared 
data might be transferred over an insecure communication channel (e.g. the 
Internet or an insecure WiFi network). To enable encrypted communication, 
it is necessary for both communication endpoints to use a cryptographic key. 
Using the efficient concept of symmetric encryption, the key must be identical 
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and exchanged before the secure communication can take place. During the 
exchange of a cryptographic key, the communication endpoints show that 
they are eligible to access the data that should be transferred by authorizing 
themselves. After the authorization process, both endpoints possess a shared 
cryptographic key that allows them to transfer data securely. 

The PRF–PRF interface allows the authorization of communication end-
points. The successful authorization can be performed in two different ways. 
The first way uses asymmetric cryptography and is based on certificates, 
similar to the implementation of SSL in the Internet. This allows an ad-hoc 
identification of devices that belong to a certain domain. If the domain root is 
trusted, the authorization will be successful. Also, the access rights depend on 
the trust in this root. For authentication, the device’s certificate is transferred 
together with a challenge that proves that the device is in possession of the 
certificate’s private key. Together this data forms the device’s credentials that 
are checked at the other endpoint. The alternative of using compute intense 
asymmetric cryptography is symmetric cryptography. Using symmetric cryp-
tography, a key can be attached to a connection between two endpoints. The 
first half of this shared key allows the identification of the other endpoint. 
The other half can be either directly used for the secure communication 
or used to exchange a new session key securely. For efficiency reasons, 
both of these checks (i.e. for asymmetric and symmetric cryptography) are 
performed directly during the communication. The local interface is designed 
as follows: 

• Check (credentials, user pseudonym) authorize :: Local: The PRF 
checks the security credentials of a user and returns a Boolean that shows 
if the user was authorized successfully. 

The middleware architecture foresees the usage of the interface described 
above for every secure transmission of data. The communication endpoint 
must first authorize each other at the remote privacy preservation framework, 
before a key for the secure communication is computed. Intuitively, the 
authorization that is performed by the privacy-preserving framework incurs 
some overhead during the data transfer. However, without the authorization, 
the communication partner is unknown to another device and this contradicts 
the privacy of the transferred data. While the authorization therefore is a 
crucial mechanism, it is may be possible to use more lightweight security 
mechanism, resulting in a decrease of the security level, in application 
scenarios that permit this. 



56 Architecture 

2.3.4 Control Interfaces 

IUI–xQP Interface: The Intent-Aware User Interface (IUI) is connected 
to the GAMBAS middleware through a query processing interface, which 
provides access to local and remote data sources. Local data pertains, for 
example, to personal travel information, which may include the user’s travel 
history for making predictions to adapt the IUI to his future travel behavior. 
Remote data could include transport information hosted by third-party ser-
vices such as a city’s local transport agency (e.g. estimated time of arrivals), 
time tables and information about the travel habits from the user’s friends 
in the social network as stored on their mobile devices. Since all this data 
is represented based on linked data principles using RDF triples, it can be 
queried in a uniform manner by means of a powerful graph-based query 
language irrespective of what specific kind of data is requested and where 
this data is located. 

When the IUI needs to access data, it uses an interface from xQP to 
connect to external services and read information objects. In particular, this 
interface is a facade from xQP that calls methods and translate the received 
data into an understandable format for IUI. As a result, the interface consists 
of a single power query processor, which allows us the IUI to specify generic 
queries over data stored on local and remote SDS: 

• Select (SPARQL Query) result set :: Local & Remote: Enables the 
retrieval of bindings for requested variables. To specify the variables as 
well as conditions that bindings for them must match, an SPARQL select 
query can be given. A query can be executed on a single data source or 
multiple ones, allowing to query and integrate information from multiple 
users at once. Matching data items are returned as a result set, containing 
all suitable bindings for each specified variable. 

Frequent data access may be a critical factor for the IUI, especially when the 
queries need to be forwarded to remote data storage over cellular network 
connections. The low bandwidth of these connections and high variance in 
quality of service may slow down the query process and cause significant 
delays in information delivery that can negatively affect the user’s experience. 
In order to improve upon this, the design of IUI foresees a caching strategy, 
where some static data (e.g. routing information, bus coordinates, time tables) 
is kept on the mobile device so that no repeated updates are required. This 
is especially useful for transport network data, which is not expected to 
change very often. For dynamic data (e.g. arrival time or crowd level of 
a vehicle), possible optimization strategies include primarily pre-fetching, 
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where the data is retrieved before it is requested by the user. As the data 
is already available on the device prior to the access to the information, the 
delay experienced by the user can be minimized. 

IUI–PRF Interface: The goal of the privacy preservation framework (PRF) 
is to protect the user’s privacy by providing security mechanisms that enable 
the secure and authentic interaction between different devices. Thereby, 
access to different types of data is controlled by the privacy preservation 
framework on behalf of the user. To do this, the privacy framework relies on 
a policy that defines the user’s preferences with respect to the sharing of data 
with other users. Although the privacy framework attempts to minimize the 
configuration effort for the user by deriving a suitable policy from the policies 
that a user is already applying on different social services, there might be 
cases where the user wants to exercise full control over the sharing of data. To 
do this, the privacy preservation framework exposes a configuration interface 
to the intent-aware user interface (IUI) that provides manual control over the 
sharing. 

To exercise manual control over the sharing of information, the privacy 
preservation framework enables the intent-aware user interface to (re-) con-
figure the privacy policy. Given that the main entities contained in polices are 
users and permissions on different data types that express that a particular user 
may access a particular type of data, it makes sense to expose functionality 
to manipulate these two entities. To enable the development of a visual 
representation of the user’s current privacy policy, the functionality required 
to manipulate the policy is additionally augmented with functionality to 
simply retrieve the current policy. In summary, this results in the following 
six functions that are available only locally and that are only accessible to the 
intent-aware UI in order to avoid unwanted modifications. 

• ListUsers() usernames :: Local: This function enables the intent-aware 
user interface to list the names of users that have been configured on 
a particular device. The resulting list of user names can be pruned or 
extended using the following two functions. 

• AddUser(username) void :: Local: This function enables the intent-
aware user interface to add another user to the list of users that have been 
configured for a device. If the user is already configured, the method 
simply returns. If the user does not yet exist, it will be added to the list. 

• RemoveUser(username) void :: Local: This function enables the 
intent-aware user interface to remove a previously configured user 
from the list of configured users. If the user is not configured, the 
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method simply returns. If the user was configured, the user and all its 
permissions to access data on the device will be removed. 

• ListPermissions(username) datatypes :: Local: This function enables 
the intent-aware user interface to view all the permissions that have been 
configured for a previously configured user. The list will include all data 
types to which the specified user will have access. If the user has not 
been configured, the list of data types will be empty. 

• AddPermission(username, datatype) void :: Local: This function 
enables the intent-aware user interface to add a permission for a previ-
ously configured user such that the specified user will be able to access 
data of the specified type. If the user is currently not configured or the 
user already exhibits a permission to access the data type, the method 
simply returns. Otherwise, the permission will be added for the specified 
user. 

• RemovePermission(username, datatype) void :: Local: This function 
enables the intent-aware user interface to remove a previously added 
permission on a specified data type for a specified user. If the permission 
or the user does not exist, this method simply returns. Otherwise, the 
permission will be removed and the user will no longer be able to access 
the specified data type. 

The primary intended usage of this interface is the manual manipulation of 
the privacy policy through a graphical user interface on the device of the user. 
Thereby, it is important to mention that the access to this interface is intended 
to be restricted to an intent-aware user interface component that ships together 
with the GAMAS middleware and that it cannot be accessed through other 
components in order to avoid unwanted manipulations. Consequently, we 
envision the creation of one or more list views that show which user has 
access to what type of data as well as controls that enable the injection of 
changes to these lists. 
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Data Acquisition 

This chapter describes the data acquisition framework of the GAMBAS 
middleware. The description includes discussions on the framework archi-
tecture, including the component system for developing context recognition 
applications and the activation system for enabling automatic, state-based 
activation of different configurations. The chapter also provides insight 
into the design rationale for the system. This includes a discussion of the 
motivation behind the component-based approach for context recognition, 
the chosen component model, energy-efficient techniques to perform con-
text recognition on resource-constrained mobile devices, etc. Furthermore, 
rationale behind the state machine abstraction for the activation system and 
how energy optimization techniques used in the component system are fully 
utilized by the activation system is given. Before we discuss the framework, 
however, we first outline related work and clarify the innovations and research 
gaps closed by the data acquisition framework. 

3.1 Focus and Contribution 

Data acquisition is an essential part of any context recognition system. For 
such systems, data acquisition normally involves acquiring raw data from 
different types of sensors such as accelerometers, microphones, gyroscopes, 
proximity sensors, Wi-Fi, GPS, etc. The sensors can be embedded into a 
single device or alternatively, they can be embedded in different devices that 
are distributed in the environment. The data acquisition system acquires data 
from these sensors and pre-processes it before forwarding it to more complex 
recognition logic. Existing data acquisition systems differ depending on the 
leveraged resources and on the target application requirements. An efficient 
data acquisition system should be generic enough to be executable in different 
settings (different hardware and different application requirements) with little 
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or no tuning. In the following, we briefly review the state of the art for 
data acquisition systems mainly focusing personal mobile devices like smart 
mobile phones, PDAs, etc. Thereafter, we identify the gaps in the existing 
solutions and from these gaps, we derive a list of innovations realized by the 
data acquisition framework of the GAMBAS middleware. 

3.1.1 Data Acquisition Frameworks 

There exist a number of context data acquisition systems and frameworks 
for personal mobile devices [CK00]. These frameworks vary in their char-
acteristics depending on their target applications and operating environ-
ments. Examples include [HH10], [DHH07], [BM10], [YTN05], [KZX+11], 
[LYL+10], [GJAS06], [RMM+10] and [CBSG12]. [HH10] describes a data 
acquisition framework for on-body sensor networks which runs on resource-
constrained embedded systems and is used for human activity recognition. 
[DHH07] describes a context acquisition framework which allows the col-
lection of raw sensor data from different sensing sources. The framework 
provides programming abstractions for developers to fetch data from different 
sensor implementation programs without developing the underlying commu-
nication mechanisms for the target platforms. [BM10] describes a service-
oriented architecture based data acquisition framework. It allows sensor data 
fusion with local and external sources to build and manage context-aware 
services for personal mobile devices in a transparent manner. The framework 
protects the user’s private data by using suitable privacy-preserving policies to 
handle information in P2P networks. [YTN05] describes a context acquisition 
framework based on a customized sensing platform named Muffin. Muffin 
supports a variety of sensors to help detect different types of contexts. The 
Citron framework running on Muffin uses a black box architecture for context 
processing and provides parallel processing of different sensor data streams 
(audio, accelerometer, etc.) to identify the user’s context. [KZX+11] com-
bines both on-body sensors and mobile phones for joint context recognition. 
The main contribution of this work is the provisioning of a framework 
to support the collaboration of TinyOS-based sensor modes and Android-
based smart phones. This work also makes use of online training to improve 
the accuracy of the classifiers and it can automatically turn off redundant 
sensing sources to save energy. [LYL+10] describes a continuous sensing 
engine for context recognition applications. It uses the concept of pipes for 
different sensing sources (microphone, accelerometer, GPS) to balance out 
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the application requirements and the available resources. [GJAS06] outlines 
a software architecture and a service for on-body sensors as part of the 
user’s attire. The system is realized using MicaZ motes. Challenges addressed 
in this work include storage of data, uploading of data, synchronization 
of data, power management of motes, reconstruction of activity logs, user 
interfaces, etc. The presented architecture is aimed at the future development 
of smart attire systems. [RMM+10] is a data acquisition framework for 
detecting user’s social and physiological patterns using smart mobile phones. 
The system can be programmed using a declarative language to describe 
user behavior models, action base and knowledge base. The system can 
be adapted at runtime to activate and deactivate sensors. The recognition 
is based on GMMs (Gaussian mixture models). The system is aimed at 
helping social scientist to understand the correlation of user emotions with 
the places, groups and their activities. [CBSG12] is a collaborative context 
recognition system for smart mobile phones. The system execution is a 
two-stage process consisting of stages, namely grouping stage and context 
recognition stage. In the grouping stage, devices are clustered based on their 
proximity. Once devices are clustered, they scan the environment and send 
the raw data for subsequent context recognition to a backend server. In the 
context recognition stage, the system uses coupled hidden Markov models to 
model activity and location sequences. The system is aimed at advertisement 
systems where advertisements are shown based on mutual context and interest 
of user groups. 

3.1.2 Rapid Prototyping Tools 

There also exist a number of rapid prototyping tools for expeditious 
development of context recognition applications. Commonly known tools 
include [SDA99], [BAL08] and [TRL+09]. [SDA99] is targeted at context 
recognition with pre-deployed sensors and provides a uniform abstraction 
for applications to access and use context information by hiding the actual 
context sensing and interpretation from applications. [BAL08] is targeted 
towards activity recognition for wearable systems. This toolkit provides 
functionalities to develop distributed context recognition systems as well 
as reusable components, parametrizable algorithms, filters and classifiers. 
[TRL+09] is a data gathering and processing open-source platform targeted 
towards mobile phones with varying hardware capabilities. It consists of a 
minimal core that can be extended by plug-ins. 
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3.1.3 Application-Specific Acquisition 

The systems mentioned above are generally used for dealing with 
heterogeneous sensing sources and providing flexibility for application devel-
opers to customize applications in a certain way. However, there exist a 
number of fine-tuned data acquisition and context recognition systems that 
can only be used in a narrow set of situations. Examples include [BC09], 
[MLEC07], [LLEC08], [LPL+09] and [EML+07]. These and many alike 
systems are manually fine-tuned for particular applications and therefore 
are able to detect only the fixed set of characteristics. As a result, these 
systems cannot be adapted to dynamic environments which a user might 
experience in a daily routine. They use built-in sensors in mobile phones to 
recognize the required context. For instance, [MLEC07] uses microphones 
and accelerometers to determine user context which is then injected into 
social networking websites. [LLEC08] uses accelerometers and microphones 
to detect road conditions. [TRL+09] uses location sensors to identify road 
traffic congestions. Sound Sense [LPL+09] uses a microphone to classify 
different types of sounds in the surrounding. [BC09] is a system aimed at 
video recording of social events in a distributed manner using mobile phones. 
The phones are grouped based on the social activity in which their users are 
involved. For detection of a social activity, a phone at the appropriate location 
is chosen to record events. At the end of the social activity, all recordings from 
different phones are combined into one video by a backend server to create a 
video highlighting important events of the social gathering. 

Data acquisition and retrieval of contextual information is a resource 
consuming process which can have a significant effect on overall system 
performance for resource constrained personal mobile devices. Over the 
last years, there has been some work towards devising mechanisms for 
achieving energy-efficient data acquisition and processing. Examples include 
[KLJ+08], [WLA+09], [RH10] and [RMJ+11]. [KLJ+08] detects changes 
in the context data at an early stage. For instance, rather than waiting for 
the results from the classifier, the system detects changes in sample values at 
the sensor level. Thereafter, only those samples are further processed which 
can lead in a context change, whereas [WLA+09] uses hierarchical sensor 
management strategy to detect user states and state transitions and only fires 
a transition when a particular transition probability is met. As a result, this 
reduces the unnecessary execution of unwanted sensors. [RMJ+11] is aimed 
at computing multiple contexts from multiple sensing sources. The authors 
have proposed a theoretical model that shows the inaccuracy of estimating 
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multiple contexts from multiple sensing sources. The work also presents a 
heuristic algorithm for searching the set of sensors to recognize the required 
multiple contexts. 

3.1.4 Contribution 

Designing a context data acquisition system is usually driven by the target 
applications and operating environments. Therefore, such systems are opti-
mized with considerations to their requirements. The above-mentioned 
systems are similarly aimed at optimizing a particular characteristic, which 
could be the efficient utilization of available resources or the highly accurate 
recognition of a particular context or the efficient prototyping of context 
recognition applications. Looking at the description of these systems reveals 
a need for a generic yet efficient system that in essence should be a complete 
framework, which, on the one hand, allows efficient usage of available 
resource and, on the other hand, supports rapid development of specialized 
recognition applications with high accuracy. The data acquisition framework 
in GAMBAS middleware bridges these gaps. It aims at providing a complete 
solution that meets all the aforementioned objectives. Specifically, the data 
acquisition framework of the GAMBAS middleware adopts a component-
based approach allowing multi-modal context data acquisition. The frame-
work provides an extensive component toolkit for rapid development of new 
context recognition tasks. Using a component-based solution, the data acqui-
sition framework applies resource-efficient techniques (memory, energy, etc.) 
with no or little impact on the recognition accuracy. Moreover, the data 
acquisition framework is executable in distributed settings to enhance the 
quality of desired context and helps in providing relevant services to different 
groups of users (depending on their location, interests, etc.). Finally, the 
framework provides a number of basic components that can be used to build 
applications. These components cover activity and intent recognition as well 
as sound and speech recogntion. 

The activity recognition components in the data acquisition framework 
focus on computing various user activities or user contexts. Due to the 
application scenarios targeted by the GAMBAS middleware, the primary 
focus lies on location-based activities, e.g. shopping in a supermarket, waiting 
for the bus at the stop, traveling in a bus (standing or sitting), sightseeing in 
a new city, etc. The data acquisition components rely on a variety of means 
(motion sensor, Wi-Fi, GPS, on-line calendars) to recognize these and similar 
activities. Similarly, the data acquisition framework encompasses necessary 
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components to estimate the user’s intents. By this, we mean the user’s likely 
location or activity in the future, e.g. knowing that a user is traveling on a 
bus to his destination, it might be useful or interesting to notify him about 
the possibility of meeting a friend. If he is willing to change his route, 
then prompt him of new shopping facilities near the destination. The intent 
recognition components support computing such user intents based on user’s 
activity patterns or interests. 

The sound and speech recognition components focus on interpreting 
acoustic signals in the environment of the user. A primary focus lies on the 
recognition of environmental sounds, like engine sounds, traffic noise, talking 
people, etc. to determine the means of transportation. The goal is to identify 
delays in public transportation to adjust the predictions of personal intentions. 
The so acquired data can be distributed in accordance with the privacy setting 
to optimize travel plans of other users who rely on the same means of 
transportation. The components use historic data and compare it to live data to 
identify differences in schedule or behavior patterns. The speech recognition 
components are designed to allow the integration into other applications on 
the device. This allows developers to create new applications that offer voice 
control via speech recognition. 

3.2 Data Acquisition Framework 

The data acquisition framework (DQF) is one of the fundamental building 
blocks of the GAMBAS middleware. Conceptually, the DQF is respon-
sible for context recognition on personal mobile devices including smart 
phones, PDAs and laptops. The DQF supports various platforms including 
Android, Windows and Linux. It is realized as a multi-stage system. At 
lower stages, it allows developing reusable components and component com-
positions for context recognition applications. At higher stages, it enables 
application developers to automatically activate compositions when needed. 
To do this, the DQF is split into two parts as shown in Figure 3.1, a component 
system and an activation system. 

The component system uses a component abstraction to enable the 
composition of different context recognition stacks that are executed con-
tinuously. A context recognition stack or simply a configuration refers to a 
set of sampling, preprocessing and classification components wired together 
to detect a specific context. Examples of such contexts include the physical 
activity of a person, the location of a person, etc. The configurations can be 
used to detect context for a multitude of purposes and have applications in 
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Figure 3.1 Data Acquisition Framework Overview. 

areas of smart home environments, assisted living for elderly, proactive route 
planning, shopping, etc. 

The activation system uses a state machine abstraction to determine the 
point in time when a certain configuration or a set of configurations should 
be enabled. The activation system enables the required configurations in an 
automatic manner based on the conditions associated with the state transi-
tions. An example of a simple (coarsely granular) state machine associated 
with an employee could consist of two states, “Working” and “Relaxing”. 
State “Working” may consist of configurations “Meeting”, “Cafeteria”, etc. 
and state “Relaxing” may consist of configurations “Living Room” and 
“Gardening”. Based on the transition values, the activation system will dis-
able the configurations associated with one and enable the ones associated 
with the other. In addition, the state machines can also have more fine granular 
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states representing stages specific to a single task, e.g. a state can represent 
the sampling of an accelerometer with lower or higher rate. In such a case, a 
state change may occur when the device screen turns on, for instance. In the 
following, we describe both systems in detail. 

3.2.1 Component System 

At the lower level of the data acquisition framework, context and activity 
recognition is done using a component-based approach which promotes 
reusability and rapid prototyping. In addition, this approach also enables 
the automated analysis of application structures in order to optimize their 
execution with respect to energy efficiency. 

From the perspective of the component system, each application consists 
of two parts: the part containing the recognition logic and the part containing 
the remaining application logic. The part that contains the recognition logic 
usually consists of sampling, preprocessing and classification components 
that are connected in a specific manner as shown in Figure 3.2. The part that 
contains the remaining application logic can be structured arbitrarily. Upon 
start up, a context recognition application passes the required configuration to 
the component system, which then instantiates the specified components and 
executes them. Upon closing, the configuration is removed by the component 
system which eventually releases the components that are no longer required. 
The component system is implemented in Java and supports various platforms 

Figure 3.2 Component System Overview. 
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including J2SE environments and Android. Using an Eclipse-based graphical 
editor, application developers can visually create configurations by selecting 
and parameterizing components and by wiring them as needed. In the follow-
ing, we first provide more details on the underlying component model, before 
we discuss the runtime and development support. 

3.2.1.1 Component Model 
To structure the recognition logic, the component system realizes a 
light-weight component model which introduces three abstractions. First, 
components represent different operations at a developer-defined level of 
granularity. Second, connectors are used to represent both the data and the 
control flow between individual components. Third, configurations are used 
to define a particular composition of components that recognizes one or more 
context characteristics. 

3.2.1.1.1 Components 
Components are atomic, reusable building blocks that constitute the recog-
nition logic. Similar to other systems such as J2EE or OSGi, components 
can be defined at arbitrary levels of granularity. Yet, in contrast, they can be 
instantiated multiple times and they are parameterizable to support different 
application requirements. Due to the support for parametrization, the compo-
nent model is more flexible than other models. In addition to parameters, all 
components exhibit a simple life cycle that consists of a started and a stopped 
state. To interact with other components, a component may declare a set of 
typed input and output ports that can be connected to other components using 
connectors. 

As depicted in Figure 3.3, the recognition logic of a speech detection 
application may, for example, consist of a number of components which can 
be divided into three levels. At the lowest level, the sampling components 
are used to gather raw data from an audio sensor. On top of the sampling 
components, a set of preprocessing components take care of various transfor-
mations, noise removal and feature extraction. Finally, the extracted features 
are fed into (a hierarchy of) classifier components that detect the desired 
characteristics. Depending on the purpose and extent of the application logic, 
it is usually possible to further subdivide the layers into smaller operators. 
Although the component system does not enforce a particular granularity, 
such operators should usually be implemented as individual components to 
maximize the potential for reuse. 
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Figure 3.3 Speech Detection Configuration Example. 

3.2.1.1.2 Parameters 
Parameterizations increase the reusability of a component implementation 
across different applications. The component system allows components to 
support a developer-defined set of parameters. Components expose these 
parameters to adapt their internal behavior. As shown in Figure 3.3, at the 
sampling layer, these parameters might be used to express different sampling 
rates, sampling depths, frame sizes and duty cycles. At the preprocessing 
layer, they might be used to configure different filters or the precision of 
a transformation. In the component system, the parameters are not exposed 
to other components. Instead, they can be accessed and manipulated by the 
components. 

3.2.1.1.3 Ports 
In order to support application-independent composition, each component 
may declare a number of strongly typed input and output ports. Input ports 
are used to access results from other components. Output ports are used to 
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transfer computed results to another component. Thus, ports enable compo-
nents to interact with each other in a controlled manner. The developer can 
add multiple input and output ports of different types. The component system 
takes care of the necessary memory allocation and de-allocation and performs 
efficient buffer management for each of the ports in transparent manner. 

3.2.1.1.4 Connectors 
In order to be reusable, components are isolated from each other by means 
of ports. However, the recognition of a context feature often requires the 
combination of multiple components in a specific way. Connectors express 
such combinations by determining how the typed input and output ports of 
different components are connected with each other. In order to minimize the 
overhead of the component abstraction, connectors are implemented using an 
observer pattern [GHJV95] in which the output ports are acting as subjects, 
whereas the input ports are acting as observers. This enables modeling of 1:n 
relationships between the components, which is required to avoid duplicate 
computations. To avoid strong coupling between components, input ports do 
not register themselves at the output ports, but the component system takes 
care of managing all required connections. An example of connectors can 
be seen in Figure 3.3, where the output port of the fast Fourier transform 
component is connected to the input ports of the bandwidth, the spectral roll 
off and the spectral entropy component. 

3.2.1.1.5 Configurations 
To recognize a particular piece of context, a context recognition application 
must explicitly list all required components together with their connectors in 
a so-called configuration. While this approach slightly increases the devel-
opment effort, it also increases the potential reuse of components that can 
be applied on data coming from different sources. As an example of such 
component, consider a Fast Fourier Transform (FFT) that converts a signal 
from its time domain into the frequency domain. Clearly, such a component 
can be applied to various types of signals such as acceleration measurements 
or audio signals. Thus, by explicitly modeling the wiring of components as 
part of a configuration, it is possible to reuse this component in different 
application contexts. In addition to listing components together with their 
connectors, the support for parameterizable components also requires the 
developer to explicitly specify a complete set of parameter values that shall 
be used by each component. As a result, every configuration consists of a 
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parameterization as well as associated connectors. An example of a speech 
detection configuration is shown in Figure 3.3. 

3.2.1.2 Runtime System 
The main task of the runtime system of the component system is to sup-
port the execution of configurations defined by different context recognition 
applications in an energy-efficient manner. This includes loading the config-
urations specified by the context recognition applications, instantiating the 
components with right parameterizations and connecting them in the manner 
specified by the application. In addition to that, the runtime system applies 
energy optimization techniques if more than one application is executed 
simultaneously. When the applications do not require the context information 
anymore, the runtime system stops executing the associated configurations. 
A detailed description of the component system structure and execution of 
applications is given in the following sections. 

3.2.1.2.1 System Structure 
As shown in Figure 3.4, the main elements of the runtime system of the com-
ponent system are the configuration store, the configuration folding algorithm 
[IHW+12] and the applications. The configuration store is used to cache the 
configurations associated with applications that are active. It is also used to 
store their folded configuration. The configuration folding algorithm provides 
energy-efficient execution of context recognition applications, provided that 
more than one application is executed simultaneously. The entity responsible 
for managing the runtime system is called the component manager. 

3.2.1.2.2 Configuration Execution 
The component manager controls the execution of the componentized recog-
nition logic of all running applications. To manipulate the components 
executed at any point in time, the component manager provides an API that 
enables developers to add and remove configurations at runtime. When a new 
configuration is added, the component manager first stores the configuration 
internally. Then, it initiates a reconfiguration of the running recognition logic 
that reflects the modified set of required configurations. To reduce the energy 
requirements, the component manager does not directly start the components 
contained in the configuration. Instead, it uses the set of active configurations 
as an input for our configuration folding algorithm. 

The goal of the configuration folding algorithm is to remove redundant 
components that are present in different applications and perform the same 
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sampling or compute redundant results. Using the set of configurations, the 
configuration folding algorithm computes a single, folded configuration that 
produces all results required by all running applications without duplicate 
sampling or computation. Once the configuration has been folded, the com-
ponent manager forwards it to the delta configuration activator. By comparing 
the running and the folded configuration, the activator determines and exe-
cutes the set of life cycle and connection management operations (starting, 
stopping and rewiring of components) that must be applied to the running 
configuration in order to transform it into the folded target configuration. 
When executing the different operations, the delta activator takes care of 
ensuring that their ordering adheres to the guarantees provided by the com-
ponent life cycle. To do this, it stops existing components before they are 
manipulated. This procedure is illustrated in Figure 3.4. 

3.2.1.2.3 Platform Support 
The core abstractions of the component systems as well as the component 
manager are implemented in Java 1.5. In order to support multiple platforms, 
different wrappers have been implemented that simplify the usage of the 
component system on platforms including Windows, Linux and Android. 

3.2.1.3 Tool Support 
The component system encompasses offline tools to support rapid proto-
typing. These tools include a visual editor which is used for creating and 
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Figure 3.5 Component System Tool Support. 

updating configurations for the context recognition applications. The visual 
editor provides a user-friendly interface, which allows developers to drag, 
drop, parameterize and wire existing components to create new configura-
tions or update existing ones. The visual editor is implemented as a plug-in 
for the Eclipse IDE (Version 3.7 and above). A screenshot of the visual editor 
is shown in Figure 3.5. 

In addition to the visual editor, the component system also provides a 
large set of generic sampling, preprocessing and classification components 
as part of the component toolkit. At the sampling level, the toolkit provides 
components that access sensors available on most personal mobile devices. 
This includes physical sensors such as accelerometers, microphones, mag-
netometers, GPS as well as Wi-Fi and Bluetooth scanning. In addition, the 
toolkit encompasses components that provide access to virtual sensors, for 
instance, personal calendars. 

For preprocessing, the toolkit contains various components for signal 
processing and statistical analysis. This includes simple components that 
compute averages, percentiles, variances, entropies, etc. over data frames as 
well as more complicated components such as finite impulse response filters, 
fast Fourier transformations, gates, etc. Furthermore, the toolkit also contains 
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a number of specialized feature extraction components that compute features 
for different types of sensors such as the spectral rolloff and entropy or zero 
crossing rate, which are used in audio recognition applications [LPL+09] or 
Wi-Fi fingerprints, which can be used for indoor localization. 

At the classification layer, the toolkit contains a number of trained 
classifiers, which we created as part of the audio and motion recognition 
applications. Finally, there are a number of platform-specific components 
which are used to forward context to an application which enables the 
development of platform-independent classifiers. On Android, for example, 
a developer can attach the output of a classifier to a broadcast component 
which sends results to interested applications using broadcast intents. We 
have also developed a number of components that are useful for application 
development and performance evaluation. These includes components that 
record raw data streams coming from sensors as well as pseudo sensors that 
generate readings using pre-recorded data streams. Together, these compo-
nents can greatly simplify the application development process on mobile 
devices as they enable the emulation of sensors that might not be available on 
a development machine. 

3.2.2 Activation System 

To fully understand the context of a person, it is usually necessary to recog-
nize more than one context characteristic. As an example, consider that to 
know if a person is working in his office, context characteristics such as his 
location, pattern of movement, types of meetings and classification of ambi-
ent sounds are required. As described earlier, such context characteristics 
can be detected using the component system by developing configurations 
with the appropriate components, parameterizations and connections. Fur-
thermore, in order to fully identify a particular context, more than one 
configuration would be needed at a particular time. In real life, however, the 
context of an entity does not remain static and over the period of time, it 
requires detection of different context characteristics. 

Moreover, the context of a person depends on the task that the person is 
involved in. In other words, to know the context of a person, it is essential to 
know the current task. Furthermore, these tasks often follow certain patterns, 
e.g. tasks that a working person usually has consist of waking up in the 
morning, dressing up according to the weather, traveling to the work place, 
sitting in the office, holding meetings and discussions, going for lunch and 
coffee breaks, working on a computer, going for shopping, going home, 



74 Data Acquisition 

relaxing, having dinner, sleeping, etc. Thus, the resulting routine is often 
predictable, at least partially. 

Given the presence of such regular patterns of reoccurring tasks, the goal 
of the activation system is to exploit the knowledge about their existence 
in order to minimize the amount of sampling and processing that is needed 
to detect the user’s context. To do this, the activation system enables the 
developer to model individual tasks as a set of states that occur sequentially. 
For each of the states, the developer may specify a set of configurations 
that describe the context that shall be recognized. In addition, the developer 
specifies a set of transitions between the states that define possible sequences. 
Using this model, the activation system takes care of executing the right 
configurations at the right time as shown in Figure 3.6. In the following, we 
describe this basic idea in more detail. 

3.2.2.1 Activation Model 
In the GAMBAS data acquisition framework, the modeling of the routines of 
a task is supported by the activation system, which uses a state machine as 
its primary model. Specifically, the activation system enables the automatic, 
state-based activation of different configurations associated with developer-
defined tasks. Hence, in the activation system, the entity’s context is modeled 
as a state with different configurations associated with it, irrespective of its 
granularity. The transitions between the states are modeled using context-
dependent rules. In the following, we discuss these concepts in more detail. 

Figure 3.6 Activation System Overview. 
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3.2.2.1.1 States 
A state refers to a particular decision point during the execution of a larger 
task. It entails a set of confgurations that individually detect different context 
characteristics but collectively identify one of the possible decisions taken by 
the user. 

For this purpose, states may be used to model decision points at different 
levels of granularity. An example of a coarse-grained state is shown in 
Figure 3.7(a). In this example, a high-level “working” state may encompass 
confgurations that detect whether the person is in a meeting, working in his 
offce or having lunch at the canteen. An example for a fne-grained use 
of state is shown in Figure 3.7(b). Here, the state “Fast Sampling” may be 
used in conjunction with a “Slow Sampling” state in order to control the 
precision of a certain set of confgurations such as a movement detector or 
a sound classifer. 

3.2.2.1.2 Transitions 
Transitions are defned by the conditional changes in the confgurations 
associated with a state. When the changes suggest that a certain condition 
holds, the activation systems disables the current state and its associated 
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configurations and enables the ones associated with the new state. The 
activation system uses rules to model the conditions. Internally, each rule 
is represented by an abstract syntax tree, in which expressions for each 
configuration are defined. Depending on the evaluation of the expressions, 
the activation system decides whether a state must be changed. 

Figure 3.8(a) shows two example states. State 1 has two configurations, 
Configuration A and Configuration B. State 2 also has two configurations, 
Configuration C and Configuration D. The transition from State 1 to State 2 
is labeled as Transition 1 → 2, and the transition from State 2 to State 1 is 
labeled as Transition 2 → 1. 

The abstract syntax tree of the rule for Transition 1 → 2 and Tran-
sition 2 → 1 is shown in Figure 3.8(b) and Figure 3.8(c), respectively. 
Assuming that State 1 is currently the active state, the activation system 
continuously evaluates the rules defined by the expression of Transition 
1 → 2 and when the outcome of the expression, here represented by an 
AND operator, is true, it will disable Configuration A and Configuration B 
and enable Configuration C and Configuration D. Similarly, when State 2 is 
the current state, the activation system evaluates the rules associated with 

Figure 3.8 Examples of Activation System Transitions. (a) Activation System Transition 
Example, (b) Transition from 1 to 2 and (c) Transition from 2 to 1. 
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Transition 2 → 1 and it will execute the associated state change whenever 
this is implied by the outcome. 

3.2.2.2 Runtime System 
The main task of the runtime system is to load and execute the state machines 
defined by different applications. For this, the system instantiates the con-
figurations associated with states, identifies the current state, instantiates 
rules for different transitions and evaluates the expressions associated with 
the respective transitions. Thereby, the activation system executes the state 
machines in an energy-efficient manner by applying configuration folding 
among all configurations across all the different states. The outcome of such a 
“folded” state machine is a single-folded configuration. Clearly, it is possible 
that in such a folded configuration, different configurations share the same 
graph structure, at least to a certain level. Therefore, the activation system 
provides logic for evaluating transition between the states. 

3.2.2.2.1 System Structure 
The main structural elements of the activation system are shown in Figure 3.9. 
These include a state machine store, the configuration folding algorithm, a 
rule engine and the state machine manager. The state machine store is used to 

Figure 3.9 Activation System Structure. 
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cache the state machines associated with the applications. The configuration 
folding algorithm is used to compute an energy-efficient configuration for an 
entire state machine. To do this, the activation system applies configuration 
folding on the configurations of the currently executed state machines. The 
transitions between the states are modeled as if-else conditions and are man-
aged by the rule engine. Once the folded configuration of the state machine 
and the rules for the state transitions are loaded, the state machine manager 
attaches the rules in the folded configuration, instantiates it and executes it. 
Similar to the component system, when the application logic indicates that no 
further context information is needed, the activation system stops executing 
the state machine. 

3.2.2.2.2 Configuration Mapping 
To provide a better understanding of the integration between the component 
system and the activation system, we describe how the configurations related 
to different states are folded and how the rule engine applies rules repre-
senting transitions between the states. To understand the mapping, consider 
an example of a state machine with two states as shown in Figure 3.10(a). 
Each state has two configurations attached to it. When the activation system 
loads the state machine, it applies the configuration folding algorithm on 
all configurations associated with both states, and the result is shown in 
Figure 3.10(b). 

Let us assume that the rules for the two transitions are defined as follows: 
• 1 → 2: IF  Config. A OR Config. B EQUALS false THEN State 2 
• 2 → 1: IF  Config. C OR Config. D EQUALS false THEN State 1 

The resulting mapping for the states, transitions and the folded configurations 
of State 1 and State 2 are shown in Figure 3.11(a) and Figure 3.11(b), 
respectively. If the state machine is residing in State 1 (c.f. Figure 3.11(a)), 
the configurations that must be evaluated according to the definition are Con-
figuration A and Configuration B. Since folding has already taken place for 
all configurations of the state machine, the required graph structure for Con-
figurations A and B is distributed across in two different graphs. However, 
these graph structures also share configurations from other states. Therefore, 
in order to evaluate the relevant configurations only, the activation system 
enables only the components that are required to compute Configuration A 
and Configuration B as shown in Figure 3.11(a). The remaining components 
are disabled. During the execution of the components required for State 1, 



3.2 Data Acquisition Framework 79 

Figure 3.10 Configuration Mapping Example. (a) States, Transitions and Configurations and 
(b) Resulting Folded Configurations. 

the activation system continuously evaluates the rule for the transition from 
State 1 to State 2 using the rule’s syntax tree. 

When the conditions defined by one of the active rules hold, the activation 
system initiates the state transition. Thereby, it stops the configurations of 
the previous state that are no longer needed and it starts the configurations 
required by the new state. In addition, the system stops the evaluation of the 
rules associated with the previous state and begins with the evaluation of the 
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Figure 3.11 Executed Configurations and Transitions. (a) State 1 and (b) State 2.

rules for the new state. The result after transitioning from State 1 to State 2 is
shown in Figure 3.11(b). Once State 2 becomes active, the system activates
the Configurations C and D which are associated with State 2 and it begins
the evaluation of the transition rule from State 2 to State 1.
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3.2.2.2.3 Platform Support 
Similar to the component system described previously, the core abstractions 
of the activation systems have been implemented using Java 1.5. In order to 
support multiple platforms, different wrappers have been implemented that 
simplify the usage of the activation system on platforms including Windows, 
Linux and Android. 

3.2.2.2.4 Tool Support 
Just like the component system, the activation system also provides a suite of 
offline tools to support rapid prototyping. These tools include a visual editor 
which simplifies the definition of states and transitions. The visual editor 
provides a user-friendly interface which allows developers to drag, drop, 
parameterize and wire existing configurations to create new state machines or 
to update existing ones. Similar to the visual editor of the component system, 
the visual editor for the activation system is also implemented as a plug-in for 
the widely used Eclipse IDE. 

In addition to the visual editor, the activation system provides a set of 
configurations as part of the configuration toolkit for detecting different 
context such as location, speech, motion, etc. With the availability of the 
toolkit, developers do not have to create configurations from scratch. Instead, 
they can reuse existing configurations with trained classifiers, which can 
significantly reduce the application development time. A screenshot of the 
tool support for component system is shown in Figure 3.12. 

Figure 3.12 Activation System Tool Support. 
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3.3 Data Acquisition Components 

As indicated by the previous discussions, the data acquisition framework of 
the GAMBAS middleware is highly configurable and extensible to support 
the acquisition and processing of arbitrary data from different sources. Using 
component compositions and state-machine definitions, even complex con-
text recognition tasks can be supported in a highly structured manner. In order 
to speed up the development of applications, the data acquisition framework 
contains a set of basic recognition stacks including (trained) classifiers that 
support a broad variety of low-level and high-level context acquisition tasks. 
Using these building blocks, we have realized a broad number of applications 
described in more detail in Chapter 6. However, since they are usable beyond 
the scope of these applications, we briefly describe them in the following. 

3.3.1 Context Recognition 

The context recognition components are the basic building blocks of a 
context recognition application. The component toolkit provided with the 
component system consists of a large number of sampling, preprocessing 
and classification components. These components can be used to create new 
applications. Moreover, with the help of the toolkit, developers can imple-
ment their own components with little effort. Due to the targeted application 
scenarios described in Section 1.3, the components that we developed with 
the GAMBAS middlware are primarily focusing on location recognition, trip 
recognition and sound recognition. 

3.3.1.1 Location Recognition 
In order to determine the location of the user, the location recognition 
components integrate GPS information with RF signals that are present in 
the user’s environment. Specifically, the components combine information 
from GPS, GSM and Wi-Fi sensors of the user’s phone. Each of them has its 
own advantages and limitations but their collective use can provide efficient 
and accurate location recognition. With the widespread use of Wi-Fi, a user 
can typically see multiple Wi-Fi access points in the surroundings. With the 
limited range or signal strength of a typical Wi-Fi signal, a user can see 
different set of access points as he moves from one location to another. Thus, 
capturing this information alone can provide the user with a good view of 
his location. However, in places where Wi-Fi signals are not available or are 
very weak, GSM signals can be used instead. Typically a mobile phone can 
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report up to 6 neighboring cell towers. Though the range of a GSM cell tower 
is usually large and same locations may exhibit identical cell information, 
together with Wi-Fi, GSM can provide accurate location information as well. 
Lastly, GPS signals are used to identify outdoor locations where Wi-Fi and 
GSM signals are not present or unique. Since each of these technologies 
have different energy requirements, they are used in a staged fashion that 
allows a user to run the location recognition continuously without draining 
the phone’s battery. 

3.3.1.2 Trip Recognition 
The location of a user is an important piece of information for both users 
and service providers. Similarly, having information about the mode of 
locomotion between two locations can be beneficial for service providers. 
Knowing how trip was done – i.e. whether the user went on foot, took a 
car or a bus, stood in the bus or was able to find a seat – can help public 
transit providers to offer better services. In order to determine the mode of 
locomotion, the GAMBAS middleware encompasses multistage classifiers 
which integrate different sensors including accelerometers, Wi-Fi scans and 
GSM cell-IDs. Thereby, the classifiers use accelerometer samples to identify 
the general motion of the user. This allows them to determine if the user is 
walking, running, climbing stairs, etc. If a continuous detection of walking or 
running is detected between the locations, they can derive that the user was 
traveling on foot. If the user is not walking, the trip recognition components 
are using Wi-Fi and GSM cell information to estimate the movement speed 
of the user, which can then be used to narrow down the remaining modes 
(e.g. driving in a car, riding a bus, etc.). 

Given a suitable infrastructure, such as the one deployed in the city of 
Madrid, it is even possible to identify the actual vehicle type (e.g. a specific 
public bus running on a particular bus line). However, even if this infrastruc-
ture is not available, it is still possible to derive the movement modality with 
high accuracy. In order to measure the accuracy of configuration for the trip 
recognition, we performed a number of validation tests over the data gathered 
from different modes of transportation. The final classifier with the overall of 
accuracy of 91.4% and the confusion matrix are shown in Figure 3.13 and 
Figure 3.14, respectively. 

These results have been gathered by capturing training data from 
4 persons in Duisburg and Bonn over the course of multiple days. Conse-
quently, there might be a bias regarding the fit for this particular area and 
overall the results may be worse when applied to different areas or users. 
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Figure 3.13 Trip Recognition Classifier. 

Figure 3.14 Trip Recognition Confusion Matrix. 

However, given the high accuracy of the results, it is conceivable that this 
approach is broadly applicable in general. 

3.3.1.3 Sound Recognition 
The sound recognition components make use of audio-data collected on the 
mobile device and combine it with location data. They can be used for two 
major purposes. First, they can be used to identify features of the user’s 
environment as done with noise recognition. Second, they can be used in 
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Figure 3.15 Average Frequency Vectors (Train Station, Restaurant, Rock Concert, Sport 
Arena, Subway, Train). 

order to provide a natural way of performing user inputs as done with Voice 
Tagging or Voice Control. 

3.3.1.3.1 Noise Recognition 
There are several user contexts that come along with a characteristic sound 
environment. Being on a crowded bus, for example, a person is surrounded 
by a constant bus engine sound as well as human voices and other noises 
created by a crowd of people. This can be exploited to extract information 
about the user context from audio collected on the mobile device as well as 
to gather information about the public transport traffic situation in the whole 
city. To do this, we collected data sets using mobile devices carried around 
the city by test users. The devices are used to record several distinct audio 
environments like crowded bus stations and traffic jams. The collected data 
is then used to create sound profiles of different environments, e.g. crowded, 
not crowded, rush hour, etc. To do this, we compute an average frequency 
vector from individual samples. As shown in Figure 3.15, the average fre-
quency vectors are different depending on the characteristic sounds present 
in an environment. 

In order to classify recordings, the noise recognition components compute 
the average frequency vectors of new samples and compare them with the 
known profiles using the Euclidean distance between the new and all known 
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vectors. In order to minimize the number of comparisons, we use K-Means 
clustering to reduce the candidates to one (good) representative for each 
sound profile. 

3.3.1.3.2 Voice Tagging 
Every person typically has certain locations that he attends frequently, for 
example, his home or his work place. To enable the user to enter these 
locations as destinations in a more efficient way, the voice-tagging component 
enables users to speed up repeated inputs. In a first step, it allows the user 
to add a short audio tag to his current whereabouts. For this purpose, an 
application typically offers a button saying “voice tagging”, which, when 
pressed, starts a short audio recording. Typically the audio input will contain a 
sequence of one to three words spoken by the user. This audio is then stored in 
the database in a reduced form, together with the current geo data, provided 
by the location recognition component. At any later point in time, the user 
can refer to his audio tag by speaking the words used for the tag again. 
So if he had tagged a place by saying “my favorite restaurant”, he would 
just have to phrase these words again to select the tagged location. At first 
sight, this component looks like a speech-recognition-application. However, 
the required computations to perform the matching between the stored voice 
tags and the user input are much simpler. In addition, the integration of voice 
tags into an application is also easier, since it does not require the definition 
of a grammar that defines the possible inputs. However, in contrast to voice 
control, voice tagging requires more effort on the side of the user, since the 
user has to set up tags in advance to be able to use his or her voice as an input. 

3.3.1.3.3 Voice Control 
The idea of the voice-control component is to enable the user to tell the 
application where he wants to go next by simple speech input. Typically, 
the component is activated via a voice-control button in the user interface. 
Once the button is pressed, it will start to receive audio data and return the 
recognized location. A typical speech input would be “I want to go to the main 
station.” To enable voice control, we have integrated a customized version 
of the Sphinx speech recognition engine for which we developed custom 
models to support different target languages (including German, Spanish 
and English). In addition, we have developed a custom grammar for the 
applications described in Chapter 6. Due to the specific application scenario, 
the grammar includes a general list of public transport stations in the city 
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of Madrid and it contains template sentences that are frequently used to 
specify routing targets such as “how do I get to Moncloa” or “compute a 
route to Atocha”. 

3.3.2 Intent Recognition 

The intent recognition components take the recognized locations and trips and 
provide future predictions on them. Knowing the current location and mode 
of user transport provides significant opportunities to the service providers 
to improve their business, but the added ability to predict how long the user 
will stay at a particular place and what would be his next destination could 
help service providers to offer even more useful services. Apart from the 
service providers, a user can have many personal applications that can take 
advantage of this information. For instance, there can be a device charge 
reminder application which can alert the user to charge the batteries, based on 
the predicted duration of his stay at the current location and also his intended 
next destination. With respect to intent recognition, the acquisition framework 
provides duration prediction and destination prediction components. 

3.3.2.1 Duration Prediction 
Knowing how a long a user will stay in a particular place requires storing 
user location and running an offline analysis to compute predictions for the 
duration of user’s stay in the same place in the future. There can be different 
options to store information about user’s stay in a particular location, e.g. 
this information can be stored in users’ device, in the cloud and also at third-
party trusted servers. Clearly, storing such information elsewhere than on the 
user’s device is prone to privacy issues and thus for the scope of GAMBAS, 
this information is only stored on the user’s device. During the training 
phase, whenever a user visits a new place or a place that he has visited 
before, the duration prediction component stores how long the user stayed 
there, at which day of the week and at, which time of the day. The system 
then performs offline analysis on this data in addition to previously stored 
data which includes the information about the frequency of the user’s visit to 
that location and his usual next locations. The system then runs a prediction 
algorithm to compute new predictions or update existing ones. In order to 
minimize the impact on the battery of the user’s device, the offline analysis of 
data is usually done whenever the device is plugged to a socket and charged 
for a longer time, e.g. during the night. 
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3.3.2.2 Destination Prediction 
In addition to knowing the current location and stay of a user in a particular 
location, the ability to predict the next user destination is also very useful. 
This information can be used to compute the transport routes proactively, 
for example. Similar to the duration prediction, the destination prediction is 
performed by analyzing the history of places visited by the user. This mainly 
involves identifying some sequence in the places visited by the user, the time 
of the day, the day of the week, frequency of visits, etc. For example, we 
can predict that every Saturday the user first goes shopping, then goes to a 
fitness club and afterwards meets friends and family. Similar to the duration 
prediction, this information is stored on the device and offline analysis (when 
the device is being charged) is performed to compute new predictions or 
update the existing ones. 

3.3.2.3 Prediction Algorithm 
The prediction algorithm uses three prediction techniques, namely time series 
prediction, least k history predictor and a location-dependent Markov model. 
The time series prediction works by taking into account the history of visits by 
a user to a particular location. Each visit to a particular location is saved and 
marked by the starting time and the duration of stay at that location. In order 
to predict the starting time when the user is likely to visit that location again, 
we choose latest last m values of starting times from the history of visits. We 
than identify subsets of m values of starting times in the history of visits and 
identify sets that are close to the latest last m values. The predicted value for 
next user visit to that location is obtained by averaging the next starting time 
value following the sets of m values. At the end of this exercise, we have a set 
of predicted starting time of all the locations that the user might visit. In order 
to select a unique next location, we check whether the predicted starting time 
of a location is under some time threshold T. If we can find such a starting 
time, we select the associated location to be the next possible location. If more 
than one predicted locations satisfy the criteria, we choose one randomly. A 
similar approach is also used for determining the duration of stay. In our tests 
with multiple users, the prediction techniques typically range around 20–40% 
accuracy, depending on the regularity of the movement patterns of the user. 



4 
Data Processing 

This chapter describes the data processing supported by the GAMBAS 
middleware. Towards this end, the chapter first describes the formalisms and 
ontologies for the data and query models. The formalisms and ontologies 
provide a unified view of the heterogeneous data produced by the different 
players in the targeted applications. Such a unified view, based on semantic 
descriptions of the data and the data sources, is in line with the linked data 
paradigm, and it not only facilitates data understanding, but also improves 
data discovery and integration between both objects and persons, and other 
sources of data that follows the same paradigm, such as the Web of Data. 
Based on the data and query models, the chapter introduces the general data 
discovery mechanisms that are used to make data available to others. Finally, 
the chapter describes the architecture and implementation of the distributed 
data storage and processing system that allows devices to cooperate with each 
other in a seamless and interoperable way. 

4.1 Focus and Contribution 

The data representation and the associated query processing infrastructure 
are key to allow data interoperability between the devices and services 
targeted by the GAMBAS middleware. This is particularly important given 
that behavior-driven services often base their decision on data coming from 
multiple sources. Descriptions of the data and the data sources should be 
available to all devices. Such descriptions can include the features of interest, 
accuracy, measuring condition, time point, location, etc., and they are essen-
tial for search and discovery when an Internet-connected object is confronted 
with a large number of data sources. The query processing needs to account 
for the dynamic nature of some of the generated data, and it should be done 
in a distributed fashion, whenever possible, to improve scalability and also to 
increase privacy-level of data processing. 
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4.1.1 Data Representation 

There have been a lot of efforts in employing Semantic Web technology to 
semantically enrich sensor data [WZL06], [BFL+07], [SHS08], [RMLM09], 
[PHS10]. In order to allow easy integration with other data sources avail-
able in a Linked Open Data (LOD) cloud, [Lin12] suggests that sensor 
data sources should be published following the Linked Data principles 
[BHBL09] – a concept that is known as Linked Stream Data [SC09]. The 
advantages of such an approach are manifold. Not only would it support the 
direct integration of sensor data with the large amounts of already available 
web and enterprise data, but it can also benefit from a large body of work and 
infrastructure from existing research areas such as LOD, Web and Data Base 
Management Systems (DBMS). One example scenario is the case where GPS 
locations streamed as Linked Data are combined in real time with a Cocitation 
Collection Service available in the LOD cloud. The service can then notify an 
author if there is any other author in the same location whose papers he cites. 
However, the state of the art in Semantic Web technologies is inadequate 
for sensor-generated data, due to the highly dynamic and temporal aspects 
of this data. Moreover, the data representation suggested by Semantic Web 
technologies typically are not suitable for devices with limited data storage. 

Stream elements of Linked Stream Data are usually represented as RDF 
triples with temporal annotations. A temporal annotation of an RDF triple can 
be an interval-based [LPSZ10] or point-based [GHV07] label. An interval-
based label is a pair of timestamps, which commonly are natural numbers 
representing logical time. The pair of timestamps, [start, end], is used to 
specify the interval that the RDF triple is valid. The point-based label is a 
single natural number representing the time point that the triple was recorded 
or received. Both approaches have their advantages and disadvantages. The 
point-based label looks redundant and less efficient in comparison to the 
interval-based one. Furthermore, the interval-based label is more expressive 
than the point-based label because the latter is a special case of the former, i.e. 
when start = end. However, a point-based label is more practical for streaming 
data sources where triples are generated unexpectedly and instantaneously. 

4.1.2 Query Processing 

The state of the art in query processing of Semantic Web data can also 
not be directly applied to the context of data generated by smart mobile 
devices. There has been work on extending Semantic Web technologies for 
stream data. StreamingSPARQL [BGJ08] has rules for translating continuous 
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queries, common in stream processing scenarios, to SPARQL algebra, the 
standard query processing language for Linked Data. Streaming SPARQL 
extends the SPARQL 1.1 query language for representing continuous queries 
on RDF Streams. 

CSPARQL [BBCG10] combines triple stores with data stream man-
agement systems (DSMS). When a continuous query arrives, it is first 
split into static and dynamic parts, and both parts are executed inde-
pendently and results are combined at the end. EP-SPARQL [AFRS11] 
translates the processing into logic programs. The execution mechanism 
of EP-SPARQL is based on event-driven backward chaining (EDBC) rules. 
EP-SPARQL queries are compiled into EDBC rules, which enable timely, 
event-driven and incremental detection of complex events (i.e., answers to 
EP-SPARQL queries). EDBC rules are logic rules and hence can be mixed 
with other background knowledge (i.e. domain knowledge that is used for 
reasoning). 

CQELS (Continuous Query Evaluation over Linked Streams) provides 
a native and adaptive query processor for unified query processing over 
Linked Stream Data and Linked Data [LPDTXPH11]. The query executor is 
able to switch between equivalent physical query plans during the lifetime 
of the query. The CQELS engine employs both efficient data structures 
for sliding windows and triple storages, to provide high-throughput native 
access methods on RDF datasets and RDF data streams. Similar to other 
systems, the CQELS engine extends SPARQL 1.1 for continuous queries. 
However, it also supports updates in RDF datasets as well as variables 
for stream identifiers, allowing queries that continuously discover streams 
that contain a certain property. Despite the progress in Linked Stream Data 
processing, currently none of the approaches consider a distributed solution 
for resource-constrained devices. 

4.1.3 Contribution 

Data representation and query processing of Linked Stream Data is an 
active research area with many open challenges. The GAMBAS middleware 
addresses the problem of data interoperability among dynamic heterogeneous 
data sources, where data storage is limited. It provides an infrastructure sup-
porting the discovery of dynamic linked data sources that runs on resource-
constrained devices. Thereby, it provides solutions for important aspects of 
continuous query processing over heterogeneous Internet-connected objects 
to create a scalable system that can react to changes in the network and in the 
data being produced. 
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Data interoperability is achieved by means of a unified representation 
of the heterogeneous data and their data sources, following the Linked 
Open Data principles. The unified view consists of basic vocabularies and 
ontologies that cover all aspects of the data required to realize the application 
scenarios. Special care is taken to represent dynamic and temporal aspects. 
The goal is to enable the devices themselves to store their generated data 
locally in the form of Linked Data, by using the vocabularies and ontologies 
provided as part of the middleware. Therefore, special care is taken to limit 
the amount of data that needs to be stored, since storage in connected objects 
is limited. To do this, the descriptions applied by GAMBAS are complete, 
yet compact. 

To allow data discovery, the infrastructure constructs and maintains a 
directory of descriptions, which are accessible to every device and are con-
stantly updated to incorporate changes in the network, whilst respecting the 
communication cost for each device. The directory complies with the privacy 
rules, by having the devices to publish only information they wish to make it 
public and by supporting the encryption of metadata. 

To support both data interoperability and discovery, the data processing 
framework of GAMBAS provides Linked Data storage capabilities for all 
connected objects. This improves scalability and also privacy, since each 
device can take on the responsibility of storing its own data and it can there-
fore decide which data can be disclosed to which devices. There are many 
Linked Data storage frameworks available but none of them are designed 
for resource-constrained devices. The GAMBAS middleware encompasses 
a data storage framework based on the state of the art approaches that also 
complies with limitations imposed in terms of memory, processing power, 
battery life, etc. On top of the data storages, a query processing framework is 
offered that follows the same guidelines. Even though the query processing 
capability at each device is limited, distributed query processing techniques 
are integrated in order to provide a more powerful processing framework 
among the devices. 

4.2 Data Model 

As basis for interoperable distributed data processing, this section introduces 
the data definitions and query specifications integrated into the GAMBAS 
middleware. The data definition is based on an ontology that has been devel-
oped with the goal of supporting the internal mechanisms of the middleware 
as well as the application scenarios targeted by the middleware. The ontology 
and query examples are described using free text descriptions and UML-like 
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diagrams to clarify ontological relationships among concepts and groups of 
concepts. These diagrams are used to facilitate the comprehension of onto-
logical concepts and their relationships. Along with that, example instances 
are used to illustrate how to populate ontology instances in RDF/Turtle 
[W3C12d]. For the description of the example queries, GAMBAS uses a 
subset of SPARQL query semantics and syntaxes rather than creating a 
new query language. In order to enable the processing of streams of data, 
GAMBAS leverages the CQELS query language. 

4.2.1 Data Definition 

Figure 4.1 shows the GAMBAS ontologies, its classes, the dependencies 
among the classes as well as the external ontologies from which the ontol-
ogy extends concepts and properties. The external ontologies include PIMO 
[Sem12], SPT [SPI12], GoodRelations[Goo12] , Ordered List[Ord12] and 
Vehicle Sales [Mar12]. The PIMO Ontology provides a vocabulary for 
describing calendaring data (events, tasks, meetings). The SPITFIRE Ontol-
ogy (SPT), developed within the SPITFIRE project, aligns already existing 
vocabularies – such as DOLCE [CNR12], WGS84 [W3C12f] and FOAF 
[FOA12] – to enable the semantic description of not only sensor mea-
surements and sensor metadata, but also the context surrounding them. In 
particular, the activities sensed by sensors are modeled and related with social 
domain vocabularies and complex event descriptions. The GoodRelations 
ontology is widely used to describe business and product offerings. We take 
advantage of the Ordered List Ontology to represent a sequence of steps. An 
OrderedList is a list of slots with indexes to each slot and pointers to the 
next and the previous slot. The Vehicle Sales ontology is a web vocabulary 
for describing cars, boats, bikes and other vehicles for e-commerce, and it 
is useful in the context of GAMBAS to generalize the means of transport of 
a user. 

The GAMBAS ontology consists of a number of sub-classes, the generic 
classes being User, Place and Activity. In addition, the ontology contains 
the classes Journey, TravelMode and Bus that are motivated by the mobility 
scenario as well as Jogging and Shopping that are motivated by the envi-
ronmental application scenario. In the following, we describe these classes in 
more detail. 

4.2.1.1 User Class 
The User class is used to describe users of the GAMBAS middleware. In 
GAMBAS, users play the roles of both data consumer and provider. As a 
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Figure 4.1 The GAMBAS Ontologies. 

consumer, a user is accessing services provided through some user interface 
such as suggestions of bus routes or jogging areas. As a data provider, users 
allow GAMBAS to acquire personal data such as location and activities (e.g. 
traveling in a public transport, jogging, shopping, etc). 

Figure 4.2 shows the User class in the GAMBAS ontology. The user 
class is a subclass of the spt:Agent class from the SPITFIRE ontology, which 
allows us to describe the user’s profile such as name, email and addresses. 
Privacy settings are crucial in GAMBAS. To model them, we rely on the Pri-
vacy Preference vocabulary given by the Privacy Preference Ontology (PPO) 
[DER12]. However, during the implementation of the application prototype, 
it became apparent that the PPO was not suitable to describe users’ shared 
keys and permission settings, which are needed in the privacy-preserving 
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Figure 4.2 User Class. 

data exchange mechanism of GAMBAS. Therefore, we added privacy-related 
properties to the user profile. More specifically, we extended the Profile class 
to include the sharedKeys and certificates used by the mechanisms described 
in Chapter 5. 

The user’s calendar information, which is used as input for the user’s 
intent analysis, is described by creating a PIMO (Personal Information 
Model) instance. Users are connected to other users via the “foaf:knows” 
property, which allows us to list the friends of a user. The location of a user 
is also available and can be represented with the Place class. 

Users in GAMBAS perform activities, for instance, commuting in a bus 
or shopping. The GAMBAS ontology provides a vocabulary to represent the 
user’s activities, including the past, future and current ones. Past and current 
activities are used in combination to determine which are the user’s next 
activities. This is done by the user’s intent analysis. 

Listing 4.20 shows an example of how to use the above concepts to 
describe a user within the GAMBAS scope, using the Turtle syntax. The 
example shows, among other things, how users can set access levels to other 
users. In this particular example, the user “John” is giving the user “Paul” 
access to his location. Note that the access is restricted to read-only, therefore 
Paul cannot modify or create instances of location for John. 

To preserve the user’s privacy, instances of the User class are stored in 
the mobile devices of the respective users. The user’s location, current and 
next activities are dynamic properties. All remaining properties are expected 
to change less often and are therefore considered to be mostly static. 
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Listing 4.1 User Instance Example 
ex:john a gbs:User, pimo:Agent; 
foaf:nickname ‘‘userid’’ˆˆxsd:string ; 
ex:john gbs:current ex:activity1 ; 
ex:john foaf:knows ex:paul ; 
gbs:Profile ex:johnProfile ; 
gbs:pastActs ex:archive1 ; 
gbs:settings ex:ppoJohn ; 
. 
ex:archive1 a gbs:PastActivities ; 
gbs:act ex:activity2 ; 
gbs:act ex:activityn; 
. 
ex:activity2 a :Journey ; 
prov:wasAssociatedWith ex:user ; 
prov:startedAtTime ‘‘..’’ˆˆxsd:datetime ; 
prov:endedAtTime ‘‘..’’ˆˆxsd:datetime ; 
. 
. 
ex:johnProfile a gbs:Profile; 
gbs:hasSharedKey ‘‘B8C382391061E449CE51B29C2549BB1F’’; 
. 
ex:ppoJohn a ppo:PrivacyPreference; 
ppo:hasCondition[ ppo:classAsObject gbs:Place ]; 
ppo:hasAccess acl:Read; 
ppo:hasAccessSpace[ ppo:hasAccessAgent ex:Paul>; ].  
. 
ex:activity23 a :Jogging ; 
ao:mood ex:friendly ; 
prov:wasAssociatedWith ex:john ; 
gbs:runWith ex:paul ; 
prov:startedAtTime ‘‘2012-04-03T10:00:00Z’’ˆˆxsd: 
dateTime ; 
prov:endedAtTime ‘‘2012-04-03T11:00:00Z’’ˆˆxsd:date 
Time ; 
gbs:path ex:runningLeg ; 
. 

4.2.1.2 Place Class 
The location of a user in GAMBAS can be captured by different sensors (e.g., 
GPS, WIFI, GSM). The GAMBAS Place class, shown in Figure 4.3, provides 
different properties for the different representations. The Place class is built 
upon the spt:Place class, which already provides a vocabulary that includes 



4.2 Data Model 97 

Figure 4.3 Place Class. 

concepts like, city, street and GPS coordinates. The Place class extends 
spt:Place by enabling the representation of bus stops and cell location. 

The CellReading class extends the spt:OV class, which provides the 
vocabulary to describe sensor observations. A noise level can be associated 
with every location, which can be used, in combination with the user’s 
preferences, to suggest optimal travel routes. In addition, the place class adds 
properties related to the environmental scenario, such has CO2 levels and 
pollen count. 

It is important to note that locations can be described by the set of 
locations it contains. This allows us to aggregate information from smaller 
areas, to generate a broader view. Lastly, as bus stops are a very relevant type 
of place in the mobility application scenario of GAMBAS, we introduce a 
subclass of Place, called BusStop, to specifically model them. In addition, we 
can have a property associated with a bus stop that lists all the bus lines that 
serve that stop. 

A directory of locations is made available via external servers. For 
privacy reasons, the users’ current location is dynamically stored on the 
mobile device. 
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4.2.1.3 Activity Class 
A user may perform different activities, e.g. visiting a location, shopping, 
taking the bus or train, jogging, etc. The GAMBAS Activity class, shown 
in Figure 4.4, provides the properties to describe an activity. Every activity 
can have a start/end location and start/end time. Locations are represented 
as instances of the Place class. For representing the time, we use the 
xsd:datetime description from the OWL Time ontology [W3C12e]. Different 
activities, such as traveling in a bus or jogging on a particular route, are 
modeled as subclasses. 

4.2.1.4 Journey Class 
The journey class models special activities that represent general location 
changes of the user. A journey can involve a trip by a bus or other modes of 
transportations (e.g. walk between two bus stops to switch buses). A journey 
consists of a series of segments, or steps, and these steps are described using 
the class Step, which is also part of the GAMBAS ontology. 

In each Step, we can specify a number of properties, such as arrival/de-
parture times (both scheduled and estimated), duration, distance covered and 
start/end locations. Moreover, we can specify the travel mode used in each 
instance of Step, which will be described later on. 

In some cases, we are interested in recording every segment between two 
consecutive bus stops, i.e. to check whether a user might meet a friend or not. 
By using the gbs:singleSteps property, we can model this case, and each Step 
will correspond to two consecutive points in the journey. However, we might 
also be interested in a more compact version of the journey, where steps in 

Figure 4.4 Activity Class. 
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Figure 4.5 Journey Class. 

which the travel model has not changed can be represented by one single 
step. This provides a shortcut to determine when a user entered or left a bus, 
for instance. For this, we have created a gbs:compactSteps property. Note 
that this compact version can be created at any time from the list of single 
steps. While it provides some redundant information, it greatly improves the 
performance of some queries. In addition, we also introduce a mechanism 
to keep track of the order in which the steps were performed during the 
journey. We take advantage of the Ordered List Ontology [Ord12] to represent 
a sequence of instances of the Step class. An OrderedList is a list of slots with 
indexes to each slot and pointers to the next and the previous slot. In our case, 
each slot contains an item of type Step. Figure 4.5 illustrates the Journey 
class, and an example is given in Listing 4.2. 

The instances of the Journey class can be stored in the user’s mobile 
device or a trusted external server. Information regarding the schedules 
is static, while the estimated departure/arrival times are usually updated 
dynamically. 

4.2.1.5 TravelMode Class 
As we mentioned in the previous section, a journey is composed of multiple 
steps, and each step can be performed by a different travel mode. To model 
this, we introduce an abstract class that represents the different travel modes. 
At the moment, there are two possible subclasses: BusRide and Walk, but it is 
straight forward to extend this by adding other means of transport, e.g. car or 
subway. Figure 4.6 illustrates the TravelMode class, as well as its subclasses. 

For steps where a bus ride was used, we can specify further properties, 
like the bus used and the crowd level of the vehicle. We can also attach the 
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Listing 4.2 Journey Instance Example 
ex:itinerary1 a gbs:Journey 
gbs:orderedSteps ex:list1 ; 
gbs:singleStep ex:step1 ; 
gbs:singleStep ex:step2 ; 
. 

ex:list1 a olo:OrderedList ; 
olo:slot ex:slot1 ; 
. 
ex:slot1 a :Slot 
olo:item ex:step1 ; 
olo:next ex:slot2 ; 
. 

ex:slot2 a :Slot 
olo:item ex:step2 ; 
. 

ex:step1 a gbs:Step ; 
gbs:startLocation ex:PlazaMayor ; 
gbs:endLocation ex:stop2 ; 
gbs:distance ‘‘10’’ ; #distance between the two 
stops. 
gbs:scheduleArrival ‘‘21:13:54Z’’ˆˆxsd:time ; 
gbs:scheduleDeparture ‘‘21:23:00Z’’ˆˆxsd:time ;. 
gbs:travelmode ex:walk ; 
gbs:instructions ‘‘walk from Plaza Mayor to stop2’’ ; 
. 
ex:step2 a :Step ; 
gbs:startLocation ex:stop2 ; 
gbs:endLocation ex:stop3 ; 
gbs:distance ‘‘15’’ ; #distance between the two 
stops. 
gbs:scheduleArrival ‘‘21:30:00Z’’ˆˆxsd:time ; 
gbs:scheduleDeparture ‘‘21:35:00Z’’ˆˆxsd:time ;. 
gbs:travelmodel ex:busride ; 

information about the user performing the bus ride directly to this class, which 
can be beneficial for some types of queries. 

4.2.1.6 Bus Class 
A bus ride is performed by a bus, and this is also represented in the GAMBAS 
ontology. Figure 4.7 shows the Bus class. A bus can be associated with a 
stream of crowd levels to describe the number of passengers that are traveling 
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Figure 4.6 TravelMode Class. 

Figure 4.7 Bus Class. 

on the bus. Aggregated values can be recorded and stored in instances of the 
BusRide class, to compute statistics of the crowd levels in the different bus 
routes. In addition, we can represent the route of a bus line by reusing our 
Journey class. Other properties include the bus line name, the bus status (in 
service or not) and the bus’ current location. 

The information about buses is provided by the transport layer and it is 
usually stored in an external semantic data storage. The bus location, crowd 
levels and its status are constantly updated. 

4.2.1.7 Jogging Class 
The Jogging class is a subclass of the Activity class, and it can record the path 
followed during the jog, the distance covered, the aggregated CO2 and pollen 
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Figure 4.8 Jogging Class. 

levels and the friends met during jogging. Since we do not expect changes 
regarding transportation mode during a Jogging activity, we can model the 
path taken as one single instance of the Step class, which already provides 
all the required properties (start/end location, polyline, duration). Figure 4.8 
shows the Jogging Class. 

The jogging activities are recorded in the mobile device of the user that 
performed the activity. However, in order to support coordination, they may 
be shared explicitly, e.g. with friends. 

4.2.1.8 Shopping Class 
In addition, the ontology includes a Shopping class, which is also a subclass 
of the Activity class, to describe the user’s shopping. Instead of proposing 
a new class to model stores and their products, we use the GoodRelations 
ontology [Goo12], which is well known and widely used. The Shopping class 
allows us to enlist the products bought by the user during this activity as well 
as shops visited. Figure 4.9 shows the Shopping Class that are typically stored 
on the user’s mobile device. 

4.2.2 Query Specification 

The data instantiated from the GAMBAS ontology is represented as RDF 
[W3C12a]. SPARQL [W3C12b] is the most widely used RDF query lan-
guage, and therefore it has been chosen as a query language in the GAMBAS 
context. However, some of the data in GAMBAS is available as a stream of 
RDF data, or RDF streams. This is the case for the dynamic information, 
like the location of a user. For handling RDF streams, GAMBAS relies on an 
extension of the SPARQL query language, called the CQELS query language 
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Figure 4.9 Shopping Class. 

[LPDTXPH11]. The full specification of the SPARQL query semantics and 
syntaxes are defined by the W3C and can be found in [W3C12b]. In the RDF 
data model, each instance must have a globally unique URI. An RDF instance 
has properties that have values as literals or other instances. A literal can have 
text or numeric value. 

In the context of GAMBAS, the SPARQL-SELECT and CQELS-
SELECT queries are sufficient for all realized applications. The output of 
these queries is results sets in tabular form of literal and URI. Query results 
can be easily serialized, for example, in XML [W3C12c] or JSON [W3C13a] 
format. In the following, we present a number of examples for queries against 
the data definitions contained in the GAMBAS ontology. The main purpose 
of these examples is to clarify how the ontology and the definitions can be 
accessed using SPARQL and CQELS, respectively. 

4.2.2.1 Queries on Users 
For retrieving the list of all users registered at the system, we can use the 
query shown in Listing 4.3. 

Listing 4.3 Query All Users 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT * 
WHERE ?x a :User. 

To determine the current activity of the user with a specific user identifier, 
we could use the query shown in Listing 4.4. Similarly, we could retrieve the 
user’s calendar entries or friends. 

For analyzing the users’ intent, we can access information like the activi-
ties where a bus ride on a particular bus line was involved. Especially for the 
case where we want to discover whether two users have been on the same 
bus, we can ask for activities with a particular bus line and via a certain step. 
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Listing 4.4 Query Current Activity 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?activity 
WHERE ?x foaf:nick ‘‘userid’’ . 

?activity :current ?x . 
FILTER ( ?endtime > NOW ) .  

A step, in this case, corresponds to the route between two consecutive bus 
stops given by the URIs of the start and end locations. In both cases, we can 
narrow the search to a time interval. Listing 4.5 shows an example for this. 

Listing 4.5 Query Bus Rides of a Line for a Segment within an Interval 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?busride 
WHERE ?x foaf:nick ‘‘userid’’ . 

?activity a :Journey ; 
prov:wasAssociatedWith ?x ; 

:singleStep ?step. ?step :startLocation 
<startLocURI>; 
:endLocation <endLocURI> ; 
:travelMode ?busride. 
?busride a :BusRide ; 
:serviceBus ?bus . 
?bus gbs:busLine <buslineURI> . 
?activity prov:startedAtTime ?starttime ; 
prov:endedAtTime ?endtime . 

FILTER (?endtime < ‘‘2012-04-03T00:00:00Z’’ˆˆxsd:date 
Time) . 
FILTER (?starttime > ‘‘2012-04-02T00:00:00Z’’ˆˆxsd: 
dateTime) . 

The examples show that the GAMBAS ontology is flexible whether you 
are looking for a journey specified by start and location or other properties, 
such as the bus line taken. The travelMode property allows us to filter out 
activities where a bus was not involved. 

For the user intention mining, it is important to analyze the historical 
information associated with buses. The query shown in Listing 4.6 retrieves 
all recorded bus traces of a user in a given bus. 

Note that we can use the compact representation of the journey to retrieve 
the full segment of the user in a bus, rather than the individual steps. 
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Listing 4.6 Query Ride History of a User 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?step 
WHERE ?x foaf:nick ‘‘userid’’ ; 

:pastActs ?acts. ?acts :act ?journey ; 
:compactStep ?step. ?step 
:travelMode a :BusRide . 

In the environmental domain, we can look for journeys in which some 
of the steps had a CO2 level above a given threshold. This is shown in 
Listing 4.7. 

Listing 4.7 Journeys with CO2 Level above Threshold 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?journey 
WHERE ?x foaf:nick ‘‘userid’’ . ?activity a :Journey ; 

prov:wasAssociatedWith ?x ; :singleStep ?step. 
?step :startLocation ?startLoc ; 
:endLocation ?endLoc. 
?startLoc gbs:co2Level ?startco2. 
?endLoc gbs:co2Level ?endco2 
OR{?startco2 > <threshold>. ?endco2 > 
<threshold>} . 

For the above query, we need to retrieve all the start and end locations and 
check for their CO2 levels. We iterate over every single step on the journey 
to make sure we retrieve all locations visited in that journey. 

Another interested query is to retrieve a list of users who had gone jogging 
with a particular user shown in Listing 4.8. This could be used, for instance, 
to indicate a stronger friendship level between the two users. 

Listing 4.8 Query Users Jogging with a User 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?user 
WHERE ?x foaf:nick ‘‘userid’’ . 

?activity a :Jogging ; 
prov:wasAssociatedWith ?x ; 
:runWith ?user. 
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As we mentioned earlier, GAMBAS extends the query set by supporting 
queries that involve dynamic information. For this, it uses the CQLES query 
language that resembles SPARQL. The main difference is the introduction of 
the STREAM command that allows us to specify a window of data within 
the stream. The query shown in Listing 4.9 retrieves the current location of 
a user. 

Listing 4.9 Continuously Query the Latest User Location 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?location 
WHERE ?x foaf:nick ‘‘userid’’ . 
STREAM <streamURI> [NOW] {?x :location ?location}. 

In this query example, <streamURI> refers to the URI from where the 
stream with the data in question can be accessed. The parameter [NOW] 
extracts the latest location streamed. CQELS is a very flexible language, 
allowing an easy integration of static and dynamic data. For example, 
for suggesting bus stops near the user, we can write the query shown in 
Listing 4.10. 

Listing 4.10 Continuously Query Near by Bus Stops 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX prov: http://www.w3.org/ns/prov# 
PREFIX spt: http:// spitfire-project.eu/ontology/ns/ 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?nearby 
WHERE ?x foaf:nick ‘‘userid’’ . 
STREAM <streamURI> [NOW] {?x :location ?location}. 
?nearby a :BusStop ; spt:nearby ?location. 

It is noteworthy to highlight that CQELS queries are continuous queries, 
which means they are registered in the system and whenever new data is 
generated in the stream, the query is evaluated and results are pushed to the 
output. For example, we can imagine a scenario of a user walking around and 
getting notifications of nearby bus stops as he changes location. 

4.2.2.2 Queries on Buses 
This section presents a subset of queries about buses, bus stops and bus lines. 
For instance, to get bus stops near a particular GPS location, we can query as 
shown in Listing 4.11. 
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Listing 4.11 Query Bus Stops at GPS Location 
PREFIX : http://www.gambas-ict.eu/ont/ 
PREFIX g: http://www.w3.org/2003/01/geo/wgs84_pos# 
PREFIX spt: http:// spitfire-project.eu/ontology/ 
ns/ 
SELECT ?place 
WHERE ?place a :BusStop ; spt:nearby ?location. 

?location a :Place ; g:Lat ‘‘50.0’’ ; g:long 
‘‘3.0’’. 

Similarly, we can also retrieve the bus route for a particular bus line. The 
corresponding query is shown in Listing 4.12. 

Listing 4.12 Query Bus Stops of a Bus Line 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?busroute 
WHERE ? busline a :BusLine ; :route ?busRoute 

To retrieve the list of stops covered by a bus line in the correct sequence, 
we can use the ordered list to iterate over the different steps as shown in 
Listing 4.13. Note that the query might return duplicates if start/end loca-
tions overlap. However, this can be easily fixed by a simple scan over the 
results list. 

Listing 4.13 Query Bus Stop Sequence of a Bus Line 
PREFIX : http://www.gambas-ict.eu/ont/ 
PREFIX olo: http://purl.org/ontology/olo/core# 
SELECT ?start ?stop 
WHERE { ?busline a :BusLine ; :route ?busRoute. 

?busRoute :orderedSteps ?list. 
?list olo:slot ?slot . 
?slot olo:item ?step ; olo:index ?index . 
?step :startLoc ?start ; :endLoc ?end 

}
ORDER BY ASC(?index). 

With the Place ontology, we can easily query for all bus lines that run on 
a stop. Moreover, we can also query for bus lines that run on a given date on 
that stop as shown in Listing 4.14. To do this, the query looks at the routes of 
the bus lines and filters them by the date. 

For a user waiting at a bus stop, we want to send notifications of possible 
delays. We can first retrieve all the bus lines that run on the stop and check 
their timetables against the stream of estimated times. In the query shown in 
Listing 4.15, we can specify a threshold (e.g., 5 minutes), and if the current 
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Listing 4.14 Query Bus Stop Sequence of a Bus Line 
PREFIX : http://www.gambas-ict.eu/ont/ 
PREFIX prov: http://www.w3.org/ns/prov# 
SELECT ?busline 
WHERE <busstopURI> :busLine ?busline . 

?busline :route ?route . 
?route prov:startedAtTime ?start ; prov: 
endedAtTime ?end. 

FILTER( ?start ><date>). FILTER (?end <<date>). 

Listing 4.15 Query Delayed Buses 
PREFIX foaf: http://xmlns.com/foaf/0.1/ 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?estimateddeparture 
WHERE ?x foaf:nick ‘‘userid’’ ; :location ?stop. 

?stop :busline ?line . 
?line :route ?route . 
?route :singleStep ?step . 
?step :startLocation ?stop ; 
:scheduleDeparture ?scheduleDeparture 

STREAM <streamURI> [NOW] 
{ ?step :estimatedDeparture ?estimated 
Departure }. 

FILTER (?estimateddeparture > 
?scheduleDeparturel +threshold). 

live departure time estimation is over the threshold, then the system will 
notify the user. 

The last query examples are related to the crowd-level information avail-
able for different public transit vehicles. To access the latest status and 
crowd-level information of a particular bus, we can use the query depicted 
in Listing 4.16. 

Listing 4.16 Query Latest Crowd Level of Bus 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT ?crowdLevel ?status 
WHERE ?bus a:Bus 
STREAM <streamURI> [NOW] {?bus :crowdLevel ? 
crowdLevel}. 
STREAM <streamURI> [NOW] {?bus :status ?status}. 

Using the GAMBAS ontology, we can store an aggregated value of crowd 
levels recorded for a particular step of a journey. This value can be, for 
instance, the maximum crowd level at any stage of that step or the average 
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value. In the query depicted in Listing 4.17, we show how to extract the 
maximum crowd level of a step. 

Listing 4.17 Query Latest Crowd Level of Bus 
PREFIX : http://www.gambas-ict.eu/ont/ 
SELECT MAX (?crowdLevel) 
WHERE ?step a :Step ; :estimatedDeparture ?start ; 

:estimatedArrival ?end ; :travelMode ?busride . 
?busride :serviceBus ?bus . 

STREAM <streamURI> [RANGE 30min] 
{?bus:crowdLevel ?crowdLevel[timeStamp]}. 

FILTER (?start < timeStamp < ?end). 

When processing data streams, we can extract windows of data, by 
specifying the window parameters. In the previous queries, we used [NOW] 
to extract the latest value. Here, we select all the data of the last 30 minutes. 
Note that it is not possible to specify a start/end time interval for the window 
operators. Nevertheless, we can take advantage of the fact that every stream 
data can have a timestamp associated with it. In the case of this query, we 
assume that the start time did not occur before 30 minutes ago, and we select 
the valid crowd levels during the step in the filter condition. 

4.3 Data Discovery 

To enable the distributed execution of queries across multiple data stores, 
the query processors must be able to discover the available data stores. The 
GAMBAS dynamic data discovery system is responsible for providing this 
functionality. From an architectural perspective, it is realized as a central 
registry service that offers two distinct interfaces: (1) a GAMBAS-based 
registration interface to export metadata and search for data sources and 
(2) a web-based administration interface that allows to configure the discov-
ery system, check its state and browse current registrations. The discovery 
system is developed using the Google Web Toolkit (GWT), a toolkit for the 
development of web-based client/server applications, and deployed in a Java 
servlet container such as Apache Tomcat. Figure 4.10 shows a screenshot of 
the administration interface of the discovery registry. 

Besides a central registry instance for normal system operation, applica-
tion developers can run their own private instances of the discovery system 
in their local networks. This allows using separate discovery systems for 
development work or prototyping and isolates the development systems from 
each other and the central discovery system used for normal system operation. 
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Figure 4.10 Dynamic Data Discovery Registry Administration Interface. 

4.3.1 Architecture 

The architecture of the GAMBAS dynamic data discovery is shown in 
Figure 4.11. The system is deployed as a servlet in a regular servlet container. 
It builds upon the GAMBAS communication system to realize remote com-
munication and lease management as described later. The data registration 
is co-located with a communication gateway component that is used by 
the communication system to enable multi hop routing and connectivity in 
peer-to-peer environments with firewalls or networks with native address 
translation (NAT). 

The co-location of the registry with the gateway allows to easily locate the 
registry and thus simplifies the bootstrapping of the system. The dynamic data 
registration contains all functionalities needed to publish metadata describing 
data sources, to update this information and ensure its freshness. The web-
based administration interface depicted in Figure 4.10 allows to configure 
the discovery system (as well as the communication gateway) and to browse 
current metadata as well as exchanged messages. 

4.3.2 Metadata Management 

Metadata is used to describe data sources such that clients can easily select 
semantic data stores that contain data that is relevant for their queries. 
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Figure 4.11 Dynamic Data Discovery Registry Architecture. 

The metadata published in the registry follows the linked data paradigm 
to describe the data provided by devices. Listing 4.18 and Listing 4.19 
show different examples of metadata information for a service providing 
environmental information about places and a service providing information 
about bus schedules, respectively. 

Listing 4.18 Register a Service for Environmental Information 
<place1> a gbs:Place ; 

gbs:noiseLevel ‘‘-1’’ ; 
gbs:co2level ‘‘-1’’ ; 
gbs:pollenCount ‘‘-1’’ . 

Listing 4.19 Register a Service for Bus Schedules 
<line1> a gbs:BusLine ; gbs:route <route1> ; 

dc:title ‘‘some_line’’ . 
<route1> a gbs:Journey ; gbs:singleStep <step1> . 
<step1> a gbs:Step ; gbs:startLocation <p1>; 

gbs:endLocation <p2> ; 
gbs:scheduleArrival ‘‘00:00:00Z’’ˆˆxsd:time ; 
gbs:scheduleDeparture ‘‘00:00:00Z’’ˆˆxsd:time . 

It is important to note that the registry only keeps the data structure 
(ontologies classes and properties), but not the actual instances and property 
values. As the purpose of the directory is to allow discovery, it only needs 
to store the shape of the RDF graph, which are then used to match against 
user queries. An example query looking for providers of GPS coordinates is 
shown in Listing 4.20. 
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Listing 4.20 Finding Services Providing GPS Coordinates 
SELECT distinct ?g 
WHERE { GRAPH ?g 

{ ?p geo:lat ?lat ; geo:lon ?lon . }
} 

4.3.2.1 Publishing Metadata 
To make a data source available, the discovery service offers remote methods 
using the underlying communication system to register a new data source, 
to update a registration and to remove a registration. To do so, data sources 
send their metadata description to the registry. This metadata is then stored at 
the registry and made available for clients to find suitable data sources. The 
signature of the registration method is: 

• DeviceRegistration register(DeviceDescriptor) 
The method takes a device description that specifies the metadata to 

describe a data source and returns a new registration object that can be used 
to maintain the registration. In case a description changes, data sources can 
update a registration by calling the update method: 

• Boolean update(DeviceDescriptor, DeviceRegistration) 
This method takes a new descriptor as well as an existing registration 

(obtained by an earlier call to register) and returns a Boolean specifying if the 
update was successful. If the registration cannot be found in the registry, the 
update will fail. 

4.3.2.2 Unpublishing Metadata 
At some point of time, a data source might want to stop offering data or it 
may become unavailable. To stop offering data, a data source can deregister 
itself from the registry using the remove method: 

• void remove(DeviceRegistration) 
This method takes a registration and removes it from the registry. If the 

registration cannot be found in the registry, the method fails silently, i.e. 
no error notification is given. In any case, after the method finishes, the 
registration is no longer available for clients. 

In addition to this explicit removal, the discovery service also employs a 
lease mechanism to ensure freshness of registrations in cases where a data 
source becomes unavailable without being able to deregister. To do so, the 
discovery service uses an existing component of the communication system. 



4.3 Data Discovery 113 

For every registration, it starts a lease process that checks the availability of 
registered data sources periodically. In case a data source is not available 
several times, a lease manager integrated into the communication system 
notifies the discovery service, which eventually removes the registration. 

4.3.3 Querying Data Sources 

To find suitable data sources for a specific data need, clients can issue data 
source queries at the discovery system. To do so, they can call the find-method 
of the registry: 

• DeviceResult find(DeviceQuery) 
This method takes a query (implemented as an DeviceQuery) that spec-

ifies the intended data sources and returns a query result (implemented a 
DeviceResult) possibly including a set of suitable data sources. 

4.3.4 Security and Privacy 

In addition to support for public services, a secure version of the Dynamic 
Data Registry (DDR) provides privacy guarantees for users who may wish to 
limit sharing of their data to specific users or groups of users. To do this, 
the secure version of the registry integrates an encryption scheme known 
as IPHVE. This scheme not only ensures that only users with access to a 
particular data item are able to discover the location of the item in question, 
but it also ensures that the registry itself cannot become a security or privacy 
liability, since the registry itself also cannot read the stored metadata. 

IPHVE is an attribute-based encryption scheme, which extends the 
Hidden Vector Encryption scheme [IP08]. IPHVE uses the Dual Pairing 
Vector Spaces (DPVS) framework [OT08]. Some of the main operations are: 

• Setup – Generates a Secret Key (SK) and Public Key (PK). 
• Encryption – Generates a Ciphertext (Ct) given a Message (M), PK 

and a Vector of Attributes (Vx). 
• Key Generation – A Decryption Token (DTk) is generated given SK 

and another Vector of Attributes (Vy). 
• Decryption – Given  Ct and DTk, generates a Plain Text (Pt) if the PK 

used to generate DTk corresponds to the SK used to generate Ct, if Vx 
and Vy correspond to the HVE definition. 

• Test or Verification – Returns true if, given Ct and DTk, Vx and Vy 
correspond to the HVE definition. 
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As an extension to IPHVE, a Generic Decryption Token (GDTk) can be 
generated, which allows users to set provider-defined attribute values. The 
GDTk can then be modified by the users with a Random Session Key (RSK), 
which prevents the registry to decrypt a message. 

The resulting interaction with the secure DDR is shown in Figure 4.12. 
The message exchange remains similar, i.e. data providers publish metadata 
for users to discover. The novelty lies in the addition of a message from the 
data provider to the user with a decryption token that enables discovery. This 
token needs to be included in the message to the registry in order to get 
the results. 

4.3.5 Client-side Caching 

Since discovery is a mandatory step in execution of remote queries, the 
discovery process increases the latency experienced by applications. To 
mitigate this, the GAMBAS middleware provides a client-side cache that 
enables clients to store information about remote data providers to reuse 
this information in case there is another request for the same data. This is 
a standard approach for remote directory systems that is also used by DNS, 
for example. When executing a query, the mechanism first checks if it already 
has information about the requested data provider in a local cache. If that is 
the case, then this information is returned. Otherwise, a standard discovery 
request is issued. Freshness is provided by using standard techniques, i.e. 
leases and data invalidation in case of unsuccessful communication requests. 

Figure 4.12 Secure Data Discovery Registry. 
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4.4 Data Processing 

Using the Dynamic Data Discovery Registry, it is possible to discover the 
systems that are storing data that might be relevant for the execution of a 
query. However, the Data Discovery Registry only stores metadata. In order to 
provide security and privacy guarantees, the data itself is stored in a semantic 
data storage that can be queried using a query processor. In the following, we 
discuss the details of these two remaining components. 

4.4.1 Data Storage 

The semantic data storage (SDS) component provides the ability to store 
and retrieve RDF [W3C12a] data on devices equipped with the GAMBAS 
middleware. These devices range from constrained to back-end computer 
systems. To cope with these different device classes, two different versions of 
the SDS are provided: one for Android and one for J2SE environments. Both 
versions rely on a common (i.e. platform independent) base implementation 
as far as possible. To further reduce the development effort, both versions use 
a basic triple store for actually storing data and extend this triple store with 
GAMBAS-specific functionality, e.g. a remote storage interface or handling 
of intermittent query results (used for distributed queries). 

As no established triple store exists for both J2SE and Android, we 
decided to use different triple stores for them and to provide a unified 
interface on top of them through the GAMBAS middleware. For J2SE, we use 
Apache Jena [Apa13], a well-established, efficient and powerful implementa-
tion that supports many additional functions such as full support for SPARQL 
1.1. For Android, we use rdf-on-the-go [NUI12], a triple store implementa-
tion that is derived from Jena. On top of the triple stores, GAMBAS adds 
additional support for formatting query results as JSON strings according 
to [W3C13a]. Finally, to support formatting RDF data as N-Triple strings 
[W3C04], the semantic data storage contains bindings to a custom but generic 
N-Triple parser, called YANTRIP (Yet Another N-TRIple Parser) that is 
based on the JavaCC parser generator to minimize development effort and 
to allow for easy extensibility. 

In the following, we discuss the optimization techniques applied to the 
semantic data storage components in order to increase their scalability. The 
focus of the optimizations lies on memory consumption and data indexing 
techniques of the storage on mobile devices. Consequently, the optimization 
primarily apply to the Android version of the SDS, since this version faces 
the most restricting constraints. 
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4.4.1.1 Data Storage Optimization Techniques 
Reducing the memory footprint is one of the critical key targets to improve 
performance of the SDS [Nor07], especially when running on mobile devices. 
Although random access memory on mobile devices has improved, the heap 
size of an Android application is still limited. For example, the system 
RAM of an ASUS NEXUS 7 tablet is approximated 1GB, but the default 
memory heap size for an application running on it is only 64MB. There 
are a couple of reasons for this limitation. First, Android is a multi-tasking 
operational system with many applications stored in memory concurrently. If 
an application occupies too much memory, it might impact other applications 
or bloat the whole system. Second, Android uses the mark-sweep algorithm 
to perform garbage collection. Thus, an application will be paused while 
being garbage collected and bigger heap sizes lead to longer pause times 
[MNP+10]. This reduces the performance of an application significantly. 

To reduce memory footprint, the GAMBAS SDS for Android employs 
dictionary encoding which is similar to the implementations of Jena TDB or 
Sesame. In contrast to solutions for standard computers, we use a compact 
integer format that is optimized for millions rather than billions of RDF 
nodes. We believe this is the common scale of most mobile personal infor-
mation applications. Existing RDF stores for mobile devices are restricted to 
smaller data sizes of approximately one order of magnitude less [ZS12]. Each 
RDF node is processed and mapped to a node identifier before it is loaded 
into main memory. A node identifier is 32 bits in size, where 9 bits are used 
for encoding the node type and the remaining 23 bits for encoding a string 
identifier. Most operations on nodes, e.g., matching during a query execution, 
can be performed on these node identifiers without accessing the actual string 
representation. Thus, only one integer must be kept in memory for each node, 
while string representations can be stored on flash memory. This leads to a 
memory footprint of just up to 12 bytes per triple, while memory profiling 
reported about 450 bytes per triple for the Jena memory model. Note that 
despite this large memory footprint reduction, we do not restrict our system 
to keep all triples in main memory. Instead, our RDF store can store triples in 
flash memory as discussed next. 

For efficient access, all RDF triples are indexed with a schema we already 
presented in [LPPRH10]. It consists of three triple indexes with different node 
orders with respect to subject (S), predicate (P) and object (O): SPO, POS and 
OSP. The indexes are stored in flash memory to reduce the required amount 
of main memory and to make data persistent. We also operate a triple cache 
in main memory, which contains currently used parts of the indexes. 
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Flash memory has a great impact on the design of an efficient DBMS 
for mobile platforms [LNK+07]. For example, well-known B-Tree indexing 
techniques were shown to be not suitable for flash memory [LHLY09]. There-
fore, we have built a special lightweight key-value database. This database is 
optimized for flash memory and allows us to fully control I/O blocking and 
block caching. This way we can better manage memory access and mini-
mize the impact of Android’s garbage collection due to erase-before-write 
limitations of flash devices [JS10]. 

Flash I/O is based on memory blocks. Instead of reading or writing 
individual bytes, the I/O unit always reads/writes a whole block. The size 
of a block depends on the individual devices. Thus, in order to write a single 
byte in a block, the whole block must be read, modified and written again. 
This makes random access writing very inefficient. Our aim is to reduce 
the number of read and write accesses as much as possible. To do so, we 
partition each index into individual blocks, which have the same size as 
the flash I/O blocks of the device. The individual blocks are stored in flash 
memory. A metadata structure specifies the triples contained in each block, 
given as lowest and highest node identifier in the sorted block. The triple 
cache contains a number of index blocks. If a new triple is added, it must be 
added to the indexes. To do so, the system loads the required index blocks into 
the cache. Then, the triple must be included at the right position in the index. 
This is trivial if the triple should be added at the end of an existing block that 
still has open space. Otherwise, we would need to move all triples by one 
position, resulting in a large number of writes. To reduce this overhead, we 
do not change the original block. Instead, we slice the block into two parts: an 
old, original block and a new one. The old one is not changed at all. The new 
one contains all triples starting with the newly added one. Then, the metadata 
structure is updated to specify that the new block contains all parts including 
the new triple, while the old one only contains parts before that. 

As an example, imagine that a block contains three triples for subject 
nodes with identifiers 1, 5 and 7. The metadata will specify that this block 
contains triples for subjects 1 to 7. To add a triple starting with a subject node 
with identifier 6, we read the original block if it is not already in the cache 
and create a new block containing the triples starting with identifiers 6 and 7. 
Then, we update the metadata to specify that the old node contains triples for 
subjects 1 to 5, while the new one contains triples for subjects 6 to 7. We did 
not have to modify the original block in any way. The new block is still in 
the cache and hopefully will get additional triples for the same subject before 
writing it onto flash later. This way, we will only need to perform one write 
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access to flash memory. To further reduce the number of read/write accesses, 
when we need to remove a block from the cache and write it back to flash, 
our strategy chooses a block that has a high chance of not being changed in 
the future. Together, these optimizations reduce the overhead of using flash 
memory considerably. 

4.4.1.2 Data Storage Optimization Results 
To evaluate the performance gains when applying the optimization techniques 
to a Semantic Data Storage, we have implemented them as part of the SDS for 
Android. Using this implementation, we compare the new version with the 
old version, which used Berkeley DB as underlying database (RDF-BDB). 
We also compare against the Android version of Jena TDB (TDBoid). 

Figure 4.13 shows that the throughput of the improved version of the 
SDS (RDF-OTG) is four times higher than TDBoids and is roughly seven 
times higher then the original version (RDF-BDB). Moreover, besides having 
much better update throughput, RDF-OTG also consumes considerably less 
memory than other systems (see Figure 4.14). Especially, while the previous 
version crashed at 200,000 triples due to memory overflow error (i.e. the 
application consumed more than 64MB heap size), the improved version only 
needs 20MB heap size for the same amount of triples. 

A similar trend can be seen when analyzing the response times of queries 
and the scalability of the optimized implementation. There, we can measure a 
performance increase of 20 to 200 times, depending on the query complexity. 
Similarly, while the original version of rdf-on-the-go was only able to handle 

Figure 4.13 SDS Throughput Comparison. 
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Figure 4.14 SDS Memory Comparison. 

200000 triples, using the optimization techniques, it is possible to scale up to 
4 million triples while still achieving response times in the order of seconds. 

4.4.2 Query Processor 

The query processing (QP) component enables clients to execute SPARQL 
[W3C12b] data queries on data sources, including queries on the local SDS, 
on remote SDS or on a combination of both. The GAMBAS architecture 
contains two different components for this: the one-time query processor 
(OQP) and the continuous query processor (CQP). The QP relies on the 
SDS to store RDF data and to execute local SPARQL queries and retrieve 
results for them. To enable this, the SDS provides a special interface to 
the QP. This interface allows direct access to the SDS in order to increase 
system performance. In addition to this, the interface is also used to store 
intermediate results of distributed queries. In the following, we discuss how 
the two main functional parts of the query processor, the privacy analysis and 
the distributed query support, are realized. 

4.4.2.1 Access Control 
When a query is received, the query processor has to check if this query can 
be executed within the specified privacy policies of the user. To do so, each 
query has an accompanied CallerContext to identify the sender of a query 
and to distinguish local and remote queries. Each query can be authorized or 
denied by an implementation of a so-called PrivacyManager that is described 
in more detail in Chapter 5. The authorization process is based on an analysis 
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of the received query, more specifically on the kind of data (models with data 
classes in the ontology) that the query will affect, e.g. a user or a location. 
The privacy manager can block the query, if the remote user is not allowed to 
access those classes. This allows a very fast authorization phase even on low-
end Android devices, because it requires no result filtering. The actual privacy 
authorization workflow is handled by the so-called PrivacyQueryVerifier, 
which coordinates several internal classes to: 

1. Extract the predicates for each subject in the query. 
2. Derive the most probable class for each subject in the query. 
3. Ask the privacy manager if the querying user might access the derived 

classes. 
In order to support the ontology class derivation on Android devices, the 
ontologies are preprocessed and only an index is included inside the mid-
dleware. This avoids the overhead for parsing the ontologies, reduces the 
memory requirements and speeds up the analysis. 

4.4.2.2 Distributed Queries 
Dynamic distributed queries in GAMBAS are realized via a partial implemen-
tation of the recommendation for SPARQL 1.1 federated queries [W3C13b]. 
A query may contain one or more SERVICE keywords, each one specifying 
a sub-query on a remote data source. Following the linked data principles, 
data sources are identified by URIs. In principle, SPARQL 1.1 allows SER-
VICE sub-queries with unbound data sources. The QP does not support such 
queries since they can lead to a high communication overhead and may easily 
overwhelm restricted computer systems. 

The core functionality for distributed queries consists of a generic dis-
tributed query processor and an intermediate result storage. The latter is 
implemented using semantic data storage. The distributed query processor 
receives a query and checks if it can be handled locally or contains remote 
parts. In the first case, it executes the query on the local SDS. In the second 
case, it forwards the query execution to the intermediate result storage. The 
result storage sends each SERVICE sub-query to the specified data source, 
collects intermediate results from them in the local SDS and joins them 
into an integrated result set. The question remains how the query issuer 
knows the right data sources for its query. For this, the QP uses the data 
discovery registry (DDR) described in Section 4.3. The general approach can 
be summarized as follows: 
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1. A query issuer wants to retrieve data from data sources of multiple 
remote users. 

2. To do so, the query issuer first places a local query for the URIs 
identifying these users, e.g. based on their names or pseudonyms. Thus, 
the query issuer must know these users before sending them queries. 
Due to privacy, we do not allow users to send queries to other users that 
they do not know. 

3. The query issuer then constructs a distributed query by adding one 
SERVICE sub-query for each remote user, which contains the user’s 
URI as the URI of the remote data source. 

4. This query is then placed at the QP. 
5. When the QP finds SERVICE sub-queries, it accesses the local SDS 

and retrieves the pseudonyms of all users, whose URIs are contained in 
SERVICE queries. 

6. With this information, the QP then contacts the DDR and requests con-
tact information for all data sources that are bound to these pseudonyms. 

7. After retrieving these, it uses this information to contact these data 
sources and place their SERVICE sub-query at them. 

Note that to reduce the complexity for the application developers, the QP 
contains utilities that can be used to construct a query with all necessary 
SERVICE parts from a query template, in case that the remote query is 
identical for all receivers, e.g. querying location information for a set of users. 

4.4.2.3 Continuous Queries 
In addition to one-time queries, the GAMBAS data processing system also 
supports continuous query processing over streaming data. Similar to the one-
time query processor, the continuous module also follows the Linked Data 
paradigm. This allows data integration among different data sources, being 
stream or static. Stream data is represented by Linked Data Streams [SC09], 
whereas the processing is supported by an instantiation of the CQELS 
framework for Linked Data Stream processing [LPDTXPH11]. 

The architecture of the module for stream processing is shown in 
Figure 4.15. It consists of an application client and an application server. For 
the full-duplex client–server communication, the system uses Websockets, 
which are supported by the client–server framework Netty [Net14]. In the 
client application for Android devices, the system uses the SDS as the 
Semantic Web framework, which provides an API to extract data from and 
write data to Linked Data Streams. The Client Publisher Handler manages 
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Figure 4.15 Stream Processing Module.

the upstream, which pushes RDF-triples from clients to server. To subscribe
for the stream data from a particular server, the Client Subscriber Handler reg-
isters the queries to the server and manages the results listeners. Each listener
listens to the results from the server through a downstream corresponding
to the registered query. In the server application, the Linked Data Stream
management and continuous query processor are provided by the CQELS
engine. The physical streams are handled by the Server Publisher Handler
and the Server Subscriber Handler. The Server Publisher Handler is tightly
connected to the input manager of CQELS, in order to get the data from
the clients. The Server Subscriber Handler registers the subscribed queries to
the CQELS executor and routes the results to the corresponding subscribed
channels.



5 
Privacy Preservation 

This chapter describes the automated privacy preservation framework of the 
GAMBAS middleware. The framework extends the adaptive data acquisition 
and distributed data processing frameworks to support the automated sharing 
of contextual information in a privacy-preserving manner. In the GAMBAS 
middleware, privacy preservation encompasses mechanisms and protocols 
to limit the access to contextual information to trustworthy clients, which 
also allow the user to specify which data items can be used by the system. 
Furthermore, it includes tools to automatically derive sharing policies by 
inspecting privacy settings from a configurable and extensible set of web 
services. Specific care is taken to avoid the use of central points of trust 
in order to support the policy enforcement at runtime and to maximize the 
applicability of derived policies to different types of context information. In 
the following, the chapter first clarifies the focus and contribution of privacy 
preservation in the GAMBAS middleware. Thereafter, it describes the privacy 
protocols and mechanisms and discusses the policy generation tools. Finally, 
the chapter presents details on the integration into the other systems. 

5.1 Focus and Contribution 

Context privacy is an important and very active research area in the ubiquitous 
computing domain. Therefore, we briefly review the state of the art in 
this area, before we discuss the contributions of the privacy preservation 
framework of the GAMBAS middleware with respect to security and privacy. 

5.1.1 Trusted Computing Hardware 

Hardware-based privacy approaches try to make use of current security 
technologies that enable trusted hardware design. This is usually based on the 

123 DOI: 10.1201/9781003336952-5



124 Privacy Preservation 

Intel trusted execution technology (TXT). The TXT uses the trusted platform 
module (TPM) that is already built-in in many business PCs and laptops. 
The TXT only allows trusted (and cryptographically validated) software to 
run on the device. So the software itself cannot be tampered. This implies 
that the software engineering process is monitored closely and the privacy-
preserving quality of the software can be approved [LZD08]. The drawback 
of such a design beside the costs is the inflexibility in hardware design. For 
example, simply attaching a new hardware device will tamper the security, 
so “secure” versions of all hardware components that are used for context 
processing are necessary. This includes “common” components like a USB-
controller or a storage-controller. Thus, in summary, all these approaches are 
based on special hardware and need the complex creation of trusted software. 

5.1.2 Key Exchange and Derivation 

Context privacy can be achieved in several ways. One possibility is creating 
a common symmetric key with users and devices which are allowed to 
access the produced context [Mis08]. This approach is often used in eHealth 
scenarios. An alternative is to derive keys based on the context information in 
the surroundings [HV09], [RB04]. The context information used to create 
these keys is usually based on physical characteristics like the acoustic 
“fingerprint” of a room or a similar “fingerprint” based on Wi-Fi radio signals. 
In general, common symmetric keys cannot be used in dynamic environ-
ments, because a new key must be created and redistributed if some device 
leaves the group of devices that are allowed to access context information. 
Many of the approaches that create keys from the context information that 
persists in the current environment either need servers and a central authority 
[HV09] or can only be used in a very limited physical region [RB04]. Besides 
using encryption to keep the transferred context information secret, it is 
possible to create hashes that are distributed instead of the original context 
information. Because a hash is a one-way function, the original context 
cannot be reconstructed easily. This is similar to an approach that uses hashes 
and pseudonyms to hide the context from unauthorized access [EBBS07]. 

Another centralized approach shifts the context that can be accessed to 
a central database [HM08]. Similarly, it is possible to rely on several third 
parties that store (possibly private) context information [MMG11]. Here, 
the user is supposed to control the access to this context information using 
permissions (or a user-defined policy). When a user issues requests to a 
context-based service, k-anonymity [Swe02] can help to make the accessing 
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user anonymous. However, relying on central databases always means that the 
user has to put trust in the database providers with regard to their compliance 
with the user’s policy. Additionally, each provider needs to store the data 
securely; otherwise, a data leak may make a user’s private context available. 

5.1.3 Obfuscation and Generalization 

Obfuscation and generalization of context information can be used to provide 
context privacy, usually by blurring the context. Often, these techniques 
are used for the privacy of location [XC09], [ACDCdVS08]. Although 
k-anonymity is also suggested as a solution to the privacy of location [GG03], 
[ZH09], [SHL+05], its use is also disputed [STD+10]. Other approaches for 
location privacy rely on the collaboration of users, either with [SPTH11], 
[RR98] or without user interaction [BS04]. MobiCrowd [SPTH11] allows 
users that request information from the location-based service (LBS) to share 
the information among each other. The information is signed by the LBS, so it 
can be verified by each user individually. Besides the fact that the LBS cannot 
gather information about users that share the context among each other, the 
LBS is queried less regularly, so this also has an effect on load balancing. This 
idea is roughly based on the use of crowds to anonymized requests [RR98]. 
Here, a proxy technology is used that (randomly) forwards web requests (e.g. 
http, ftp, gopher, etc.) to other computers or to the target server on the Internet 
to make the original user, who created the request, anonymous. 

An approach for location privacy which is not based on the interaction 
between different users uses the so-called “Mix Zones” [BS04]. In Mix 
Zones, users are changing their pseudonyms secretly to maintain location 
privacy. Mix Zones require specially marked zones that cannot be used 
by location-based services. Additionally, using a map, many traces through 
mixed zones might be guessed successfully due to normal human movement 
behavior. The IETF working group called “Geopriv” [IET13] is also focused 
on location privacy. The Geopriv working group uses central servers that 
apply a user-specific policy and send the data to the location-based service if 
the policy did approve it. An evaluation of the privacy risk of location-based 
services [FSH12] using traces from real users concludes that current solutions 
which use user anonymity are effectively not providing location privacy and 
this result may encourage “the use of distributed solutions in which users 
store maps and the related information directly on their mobile devices.” 

The generalization of context information can also be done with other 
context information, especially when the information encompasses numerical 
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values like age or height [PRAB08]. The quality of a service customized 
on this context information might of course be lower than if the actual 
context information would have been used; however, the user’s privacy is 
still preserved. 

Social networking sites often contain different context information. 
Additionally, they usually allow a fine-grained access control policy to be 
defined. Helping the user in creating and maintaining this policy as well 
as extracting policy information out of the social network will allow an 
in-depth analysis of privacy settings [FL10]. A similar approach is taken 
by the privacy policy tool PRiMMA [WCMS10] that allows editing privacy 
settings in social networks more fine-grained than supported by the network 
itself. The tool allows co-ownership of shared data (e.g. photos) and allows 
all owners to edit the privacy settings. Since social networks currently do not 
support a more complex privacy policy, it is necessary to store the context 
data on an additional server and use a separate viewer for policy editing. 
Often, social networks cannot be trusted with private context information, 
so a decentralized social network that stores the user’s profile on the user’s 
devices [NPA10] provides a solution. The necessary access control is directly 
enforced by the user’s devices, according to the user’s policy that must be 
specified beforehand. To have a high availability of the user’s profile, the 
profile’s context data is distributed among devices from different, trusted 
users. Another approach, comparable to our approach in GAMBAS, uses a 
server-side aggregator [JJFZ11] that crawls through different social networks 
and collaboration tools to retrieve the user’s context that should be shared 
between users and devices. The user needs to specify a common profile and 
edit her privacy settings, defining a privacy policy. All approaches which 
target the privacy policies in social networks usually involve manual user 
actions that need to be done additionally to defining the privacy settings in 
the social networks. 

5.1.4 Contribution 

Privacy-preserved sharing of context information is a very active research 
area without providing the user with a clear solution. GAMBAS provides 
concepts and mechanisms that focus on the automated privacy-preserving 
sharing of context information while still being applicable for devices in 
the ubiquitous computing scenario, which includes heterogeneous devices, 
mobility and resource constraints. Hardware-based approaches for privacy-
preservation need special hardware and a defined software development 
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process that allows security audits, which define the “trust” in software. Since 
GAMBAS is using a dynamic architecture in software and hardware, this 
approach is not feasible. 

Current approaches for context privacy often rely on (external) databases 
run by third-party providers. In contrast to that, GAMBAS does not rely 
on central databases, so no infrastructure is necessary to share context 
information in a privacy-preserving way. Key derivation for context privacy 
is usually only applicable in special environments and not a general solution 
in a pervasive scenario where devices exhibit mobility and are not bound 
to any infrastructure. Additionally, the necessary configuration conflicts with 
the goal of a distraction-free usage of devices. The context generalization in 
GAMBAS extends the existing approaches. If a generalization path is avail-
able that would make the context information privacy-preserving according 
to the used privacy policy, GAMBAS tries to use obfuscation or generaliza-
tion, so customized service access is possible while preserving privacy. This 
obfuscation can be done in an automatic way, without distracting the user. 

Approaches that extend social networks mainly focus on the privacy 
policies. The policies must be created manually by the users. This requires 
the user to learn the usually complex privacy policy language. Additionally 
some approaches require a central server that stores context and/or the 
defined policy. This requires additional server infrastructure where the user’s 
context is stored. In GAMBAS, we use a decentralized approach where 
the context is usually stored on the user’s device instead of a third-party 
server. Privacy policies can be retrieved automatically from social networks 
without user interaction. Also, these approaches must be extended to be 
applicable to not only one social networking site, but many and to other 
context providers like physical sensors. To create a privacy-preserved sharing 
of context information, GAMBAS encompasses extraction tools that gather 
and generalize privacy policies from a set of web services automatically as 
well as an associated set of mechanisms and protocols that enforce these 
policies at runtime. 

5.2 Privacy Framework 

In GAMBAS, the data acquisition and the interoperable data representation 
and processing mechanisms are developed to gather and distribute all possible 
types of data. Furthermore, it is possible to access dynamic as well as static 
information using one-time and continuous queries. To protect the privacy of 
users, the privacy framework has to limit the data acquisition and in particular 
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the data sharing such that it respects the privacy preferences (i.e. policies) 
of different entities. Enforcing the desired limits is the primary task of the 
privacy framework. 

Conceptually, the privacy preservation framework interacts with the 
semantic data storage (SDS) as well as the data acquisition framework (DQF) 
that are deployed on each personal device. In addition, the privacy framework 
may also be used to limit the access to information that is provided by a 
particular service. For this, it is also integrated into devices that are offering 
the services. Using a privacy policy, the privacy framework takes care of 
exporting sensitive data in a way that it can only be accessed by legiti-
mate entities. The necessary privacy policy can be generated automatically 
by means of plug-ins that access proprietary data sources. Furthermore, 
depending on the user preferences, the framework can apply obfuscation 
in order to limit the data precision and it can also anonymize the data in 
order to unlink the data from a particular user. Since GAMBAS aims at 
supporting the use of personal mobile devices as primary sources of data, 
the privacy framework supports not only traditional computer systems, but 
also constrained computer systems as its execution platform. 

5.2.1 Overview 

The architecture presented in Chapter 2 describes different views on data. 
Regarding privacy, there are two relevant views. One is the data acqui-
sition view in Section 2.2.1, and the other one is the processing view in 
Section 2.2.2. Here, we first concentrate on the data acquisition view, before 
we have a look at the processing view from a privacy-preserving perspective. 

The data acquisition view envisions two different scenarios. The first 
scenario is targeting the personal acquisition of data that is used to capture 
the user’s behavior on behalf of the user. The second scenario is targeting the 
collaborative acquisition of data from a large number of users that is used to 
improve or provide a particular service upon request of a service provider. In 
both scenarios, private data may be processed. Therefore, both scenarios are 
relevant regarding privacy. 

For the first scenario, the identity of the user is important to ensure that 
the resulting profile can be associated with the right user. Consequently, the 
acquired data may be highly sensitive from a privacy perspective. For the 
second scenario, the user’s identity is not that important, since often an 
aggregated view of the data will be used. Additionally, for both scenarios, 
it is necessary for the user to give an explicit consent to the data acquisition 
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at least once in order to ensure that only the desired data types are acquired.
To do this, the user can interact with the privacy framework by means of
the intent-aware user interface to define the associated preferences. In the
following, we show and describe the architectural figures from Section 2.2.1
that were extended to highlight the relevant parts for the automated privacy
preservation framework.

As can be seen in Figure 5.1, the privacy preservation framework is rele-
vant for every step of this scenario. The first two steps include the retrieval of
the policy-related data from a third party (e.g. a social network or a business
collaboration tool) and the generation of a personalized privacy policy from
this data. A Policy Generator can create this policy using the policy language
described later on in this chapter. Similarly, the third step concentrates on
the policy. Here, the integration and visualization of the policy in the user
interface is the focus of this step. It enables the user to manually modify
the automatically generated policy to suit his or her needs. The last two
steps concentrate on the data acquisition and the storing of collected data.
For privacy reasons, the user may limit the data acquisition directly at the
data acquisition framework, actively avoiding the gathering of certain data. A
second filter step includes the short-time or long-time storage of data in the
device-based registry. The user may limit or modify (e.g. obfuscate or blur)
the stored data according to his or her policy. Since this scenario is focused
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on personal data acquisition, this may affect predictions that are based on the
data’s history, but it does not affect other devices.

The second scenario is focused on collaborative data acquisition. This
includes the sharing of data with third parties, like an external SDS. The
scenario is depicted in Figure 5.2. While the first four steps are identical to the
ones presented for the first scenario on personal data acquisition, the last step
differs. In the last step, data is not stored locally on the device, but transferred
to a remote SDS where the data is stored or further processed. At this point,
the privacy preservation framework needs to secure the connection to the
remote service. This is done by means of mechanisms for device/service
authentication and by encryption. The encryption prevents eavesdroppers
from overhearing the data transmission and is necessary since the data might
be transferred over insecure networks like the Internet. The authentication
enables an access control component to identify the remote service and to
apply the necessary limitations with regard to the acquired data. Since the
data is shared with a remote service, it is often necessary to enforce a stricter
policy. The access control component of the privacy preservation framework
must therefore limit, anonymize, obfuscate or blur data, if requested by
the policy.

In addition to data acquisition, the second relevant view is the processing
view. Similar to acquisition, the processing view envisions two scenarios
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that are relevant with respect to privacy. The first scenario describes the
processing of shared data using a one-time query to the data discovery registry
(DDR), and then accessing the shared data source. In the second scenario, a
continuous query is executed at the continuous query processor (CQP) that
retrieves and sends data on behalf of the user continuously.

The one-time processing of shared data is depicted in Figure 5.3, which
shows how the privacy preservation framework integrates into the GAMBAS
architecture for the processing of shared data. As a first step, if the data
source’s owner decides to share data through GAMBAS, the data source will
be exported to the DDR. If now, as a second step, a device (i.e. the query
issuer) initiates a query regarding the data source(s), it will look up the data
sources at the DDR. After that, the query issuer will remotely access the
data, if the user gave his consent to accessing and processing remote data.
The consent is provided by means of the privacy policy. The remote data
access makes use of the authentication and key exchanging mechanisms that
are provided by the privacy preservation framework (Step 5). On access, the
shared data sources check the status of the query issuer (i.e. check, if their
policy allows data to be shared with this entity) and create a personalized
view for this query issuer. In the last step, the query issuer uses the key
that was exchanged in Step 5 to access and retrieve the data from the shared
data sources. In this step, the communication channel is encrypted to prevent
unauthorized devices from overhearing the data in transit.
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The second scenario is shown in Figure 5.4. In this scenario, a continuous
query is executed. In contrast to one-time processing, the query is not exe-
cuted by the query issuer itself. Instead, an intermediate middleware service,
the continuous query processor (CQP), is used. This changes the message
flow in comparison to Figure 5.3, since the CQP executes the query (i.e.
performs Step 7) and not the query issuer. Therefore, the query issuer needs
to trust the processing service that is running the CQP to perform queries and
aggregate data reliably. As the CQP is executing the query on behalf of the
query issuer, the query issuer is still requesting the access to the shared data
sources. The retrieved access token is then handed over to the CQP, which
uses it to execute the query. Although the message flow is more complicated,
due to the addition of the CQP, the processing load decreases for the query
issuer. From a privacy point of view, the CQP executes and analyzes the
query, i.e. processes potentially private data. Any query issuer that is using
a CQP should therefore either only request and process public data or must
exhibit trust in the CQP it is using.

5.2.2 Mechanisms

The privacy preservation framework uses several mechanisms to keep data
private, e.g. prevent eavesdroppers from overhearing private data, establish
encrypted communication channels and authenticate users and servers. Addi-
tionally, the framework uses a privacy policy to describe which data should
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be shared with whom. The mechanisms then make sure that the primitives 
that are defined by the policy (i.e. users, groups, data and access rights) are 
enforced properly at any point in time. To enforce the policy with regard to 
users or groups, authentication is necessary. For the security of data, devices 
and servers need to communicate securely (i.e. using encryption commu-
nication channels). Access to the shared data is controlled by combining 
authentication and secure communication. Additionally, access control must 
be enforced depending on the different views and scenarios that are targeted 
by the GAMBAS middleware. 

To support remote communication, the GAMBAS middleware relies on 
the BASE communication middlware depicted in Figure 5.5. Originally, this 
middleware has been developed by researchers at the Universitat¨ Stuttgart 
[BSGR03] and it has been refined over several years [HWS+10]. For exam-
ple, in the European research project PECES (PErvasive Computing in 
Embedded Systems) [PEC12], BASE has been used to enable the secure 
networking of embedded devices in smart spaces over the Internet [AHM12]. 

As hinted in Figure 5.5, the BASE middleware provides a rather tradi-
tional object-oriented interface for the application programmer, which relies 
on explicitly defined service interfaces and generated proxies and skeletons. 
Underneath, it enables spontaneous and secure device interaction and dis-
covery. To do this, BASE relies on an extensible plug-in model that can be 
used to support different communication technologies and protocols. The 
extensibility of BASE includes hooks for the integration of authentication 
and key-exchange mechanisms as well as encryption protocols. However, 
instead of describing BASE, in the following, we focus on the contributions 
of GAMBAS that are required to implement the overall system architecture. 
From a conceptual point of view, these contributions are independent of the 

Figure 5.5 BASE Middleware. 



134 Privacy Preservation 

concrete implementation and could have been implemented on top of other 
communication middleware systems as well. However, due to its flexible 
communication plug-in support, we found that implementing them with 
BASE was efficient. 

5.2.2.1 Authentication and Key Exchange 
In order to enable trustworthy and secure interaction between devices, it is 
necessary to authenticate interacting devices and the data exchanged between 
them. In particular, it is necessary to authenticate individual devices/services, 
e.g. during the establishment of a connection or during the access of 
shared data. 

In GAMBAS, authentication relies on both asymmetric and symmetric 
cryptography, which requires the availability of keys. In the case of symmetric 
approaches, the keys are available only to a particular set of devices, which 
may use this key to ensure authenticity with respect to the devices that share 
the key. In the case of asymmetric approaches, the key consists of a public 
part (the so-called public key) and a private part (the so-called private key). 
The keys may then be used to authenticate individual devices. 

Both symmetric and asymmetric approaches can be used to distribute 
further keys on the basis of existing keys. However, there needs to be at least 
one key available to bootstrap the overall process. Usually, this key needs to 
be distributed by means of a secure channel. Typically, this is done offline, 
e.g. as part of the device configuration. In GAMBAS, while still supporting 
this type of key distribution, we also offer a more convenient key exchange 
for user-to-user authentication, which is as secure as the underlying service. 

5.2.2.1.1 Server Authentication 
Server authentication enables the authentication of a server or a server-based 
service to another device. The other device can either be another server 
(for server-to-server communication) or a user device (e.g. a smartphone). 
In GAMBAS, servers are used to host services like a traffic information 
service or GAMBAS-related services like the CQP. The authenticity of these 
servers and services is important since GAMBAS applications rely on the 
data retrieved from them. 

It is noteworthy that the server infrastructure envisioned by GAMBAS is 
similar to the server infrastructure in other networks, like the Internet. Here, 
pre-deployed certificates enable the verification of the authenticity of sites for 
purposes like Internet banking or e-mail retrieval. Since these mechanisms are 
in daily usage and have been proven effective for years, GAMBAS also relies 
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on them. Each server in GAMBAS is therefore equipped with a certificate 
that is issued by the certificate authority or some trusted third party (e.g. a 
particular company). 

Since certificates rely on asymmetric cryptography, this results in a key 
pair (a public and a private key) being deployed on every server. While only 
the server knows its private key, the public key (as part of the certificate) is 
shown to devices for authentication. Using a common certificate infrastruc-
ture, the public key is signed by the authority’s key pair, which might then 
again be signed by the domain authority’s key pair, leading to a certificate 
tree. An example certificate hierarchy tree is depicted in Figure 5.6. 

As can be seen in Figure 5.6, it is not necessary for a GAMBAS appli-
cation to trust a whole company. It is sufficient to trust only the parts of the 
company that are providing GAMBAS-related servers and services. Access-
ing a GAMBAS-related server will then trigger a certificate verification. It is 
possible to verify whether a particular certificate belongs to the GAMBAS-
related sub-tree by recursively validating the certificate chain from bottom 
to top. To do this, the signatures must be verified one at a time. If the chain 
is valid and if it contains a pre-deployed GAMBAS certificate, the validated 
certificate belongs to the spanned part of the tree, i.e. it belongs to a valid 
GAMBAS server. 

Similar to other infrastructures, the GAMBAS middleware makes use of 
the X.509 certificate standard. Among other things, this standard defines a 
common format for certificates, which enables the use of existing tools to 
generate keys and certificates offline. Specifically, it is possible to use the 
implementations provided by the OpenSSL library. This avoids the need for 
implementing key generation mechanisms and thus, it eliminates the need for 
providing tools that exist already. 

For device authentication, GAMBAS uses an authentication based on 
the standard ISO authentication framework [CCI89], which can be used 
with the Diffie–Hellman (DH) key exchange in its original version (using 

Figure 5.6 Certificate Hierarchy Example. 
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Figure 5.7 Certificate-based Key Exchange. 

RSA certificates). The interaction is depicted in Figure 5.7. Additionally, 
the GAMBAS middleware supports a modified version of DH that relies 
on elliptic curve cryptography (ECC) certificates, which is more lightweight 
and therefore better suited for the use on smartphones or other devices with 
constraint resources. The exchanged keys can then be used with a key-
derivation function like PBKDF2 [Kal00] to create a common shared key 
among any set of devices. 

For pre-deployed username/password combinations, we use a hash-based 
authentication mechanism that does not reveal any user or password infor-
mation to eavesdroppers which is important, since the past successful attacks 
on protocols such as MS-CHAPv2 show the necessity of a higher security 
standard. However, due to the focus on smartphone applications, finding the 
right balance between security and user convenience is a challenge. 

Both the certificate-based and the username/password-based key 
exchanges result in the computation of a common shared key that cannot be 
computed by any attacker that might have overheard the communication. This 
key may be stored by a key store component of the middleware and used for 
further communication attempts, which speeds up the communication start 
by skipping the authorization part. This does not result in lower security, 
because the possession of a common shared key shows that each interaction 
partner was authorized properly before. Nevertheless, such a key should never 
become persistent. It should time-out or be renewed after a certain amount 
of time. 

5.2.2.1.2 User-to-User Authentication 
User-to-user authentication explicitly authenticates one user’s device to 
another user’s device, e.g. to share data between two smartphones. This can 
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be used to share data between users that trust each other, e.g. friends or 
co-workers. The authentication between users is different from the server 
authentication described previously, because the devices are not necessar-
ily part of a certificate infrastructure. Only few users set up a certificate 
infrastructure for their private devices, so we cannot reasonably rely on user 
certificates. 

Clearly, user-to-user authentication is not necessary in all scenarios, e.g. 
if a user requests information about the next bus from A to B from a service 
provided by the bus company. It is necessary, however, in scenarios that 
include the collaboration of users. This includes the sharing of data (like 
the current location) or a behavior profile that describes a possible future 
movement pattern of the user. Clearly, such private information should not 
be shared with anybody, but instead, it should be properly secured. As the 
first step to the solution, GAMBAS introduces an innovative user-to-user 
authentication mechanism that makes use of collaboration tools such as 
Google Calendar or social networks such as Facebook and that can be used 
as an alternative to the common infrastructure-based certificate architecture. 

Many users are using social networks or similar services on a regular 
basis. They define trusted users in these networks by adding them to their 
personal network (e.g. friend relationships on Facebook). This information 
can be used to exchange a shared key, piggybacked on the service. To do 
this, GAMBAS introduces the so-called PIggybacked Key-Exchange (PIKE) 
[AHIM13]. 

PIKE can be used on any service that enables the secure restricted sharing 
of resources. This means that the service authenticates its users, models rela-
tionships between different users with respect to resource usage and enables 
the specification and enforcement of access rights. From the perspective of 
the users, the service performs its access control to resources properly. This 
means that a) it protects the resources from being accessed by illegitimate 
users and b) it allows access from legitimate users. Yet, beyond proper service 
operation, we do not assume that the service is necessarily trustworthy. 
Examples for these services are Facebook or Google Calendar. To use PIKE, 
the device of the user must be able to access the service regularly through 
the network. For this, the service provides some API or it uses a mobile 
application that synchronizes the changes to the resource. 

Every time the friend relationship changes, PIKE starts to analyze the 
friends in order to detect new friends. In case a new friend is found, it will 
trigger a key exchange between the two friends, using the secure resource-
sharing capabilities of the service. To do this, PIKE performs either a local 
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modification on the triggering resource or, if this is not possible due to a 
limitation of the mobile application, it uses the API of the service. Once the 
changes have been made, PIKE simply waits for the next resource synchro-
nization at which point the new friend will have received the key through the 
secure resource. 

Once the personal interaction takes place, these keys can be used for 
authentication among the devices of the friends. To do this, PIKE simply 
extracts the keys from the secure resource and provides them during the 
interaction to the GAMBAS middleware. 

To formalize this interaction, Figure 5.8 depicts the resulting logical 
protocol flow. Conceptually, PIKE involves three entities, namely the two 
devices of the interaction partners (i.e. “Friend A” and “Friend B”) creating a 
new friend relationship and the service. To establish keys, these three entities 
interact with each other using three steps. 

• After the change in the relationship was triggered (either through an 
active notification or through a regular service synchronization interval), 
the two friends contact the service to check if there needs to be a key 
established between them. 

• If so, the two friends compute two keys (KA and KB) independent from 
each other and post them to a secure resource. 

• In the next synchronization interval, they recognize and retrieve the key 
posted by the other friend. Then, they compute the combined key KAB 
and store it on their device(s). 

After the completion of these steps, the interaction partners possess the 
exchanged key. Once a personal interaction through GAMBAS takes place, 
the key (or a derived key) can be used to enable group communication as 
well as private communication and user-level authentication between the 
two friends. 

Figure 5.8 PIKE-based Key Exchange. 
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Figure 5.9 User-level Key Posted on Facebook. 

To execute PIKE on top of the Facebook service, GAMBAS uses the 
Facebook Graph API to access and modify data from the social network. 
Each user of Facebook has a place for discussions, the so-called wall. This 
wall is used to post the keys KA and KB that is then automatically picked up 
by the friends’ devices. Since friends cannot change the visibility of posts on 
another friend’s wall, the keys are posted to the own wall. On this wall, posts 
can be created with a privacy setting that constraints the access to the other 
friend (see Figure 5.9 for an example). The friends will then retrieve their 
keys by going through their walls. 

The combination of KA and KB to KAB can use different mechanisms. 
While simple mechanisms like an XOR of the two values and the use of a 
key-derivation function to create KAB will result in the same security as the 
underlying service (i.e. Facebook, which does not leak the posts, i.e. complies 
with its security and privacy settings), a more complex mechanism like a 
Diffie–Hellman key exchange can also provide security against data loss. 

The key KAB that will be exchanged after performing PIKE enables the 
users to authenticate each other with an exchanged key, even when their 
devices are not connected with the Internet, but in physical vicinity. A key 
for every friend relationship ensures that the authenticity is on a user-to-user 
basis and even malicious users cannot tamper the authentication to another 
user. Similar to other exchanged keys in GAMBAS, this key may be stored 
by the key store component and used for further communication attempts, 
which speeds up the communication start by skipping the authorization part. 
Also this key should not become persistent, but PIKE should be re-performed 
from time to time such that the key is renewed. 

5.2.2.2 Secure Communication 
Secure communication is generally used to avoid eavesdroppers from 
overhearing private data. In GAMBAS, the communication between different 
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services, servers and mobile devices may contain private data. Imagine a user 
searching for the next bus to the mall. If this search (usually a request to a 
travel planner service) can be overheard, not only the next location of a user 
(i.e. the mall), but also the planned activity (i.e. shopping) is revealed. Similar 
problems occur, if personal data like audio recordings, GPS coordinates 
or movement patterns are shared between users. Any eavesdropper might 
receive this data if he is in the vicinity and can then later analyze this 
data, creating user profiles. To avoid this, the GAMBAS middleware relies 
exclusively on secure communication channels. 

To establish a communication channel between two devices, the BASE 
middleware uses plug-ins that abstract from the used communication tech-
nology. Due to BASE’s architecture, it is possible to extend this plug-in 
stack easily. For secure communication, we add an encryption plug-in to the 
set of existing plug-ins. The plug-in searches the key stored in the device 
local SDS for a key of the communication partner and uses this key to per-
form authenticated and encrypted (i.e. secure) communication. An example 
communication stack using the encryption plug-in is shown (for multi-hop 
communication) in Figure 5.10. 

Although not all applications in GAMBAS require secure communication, 
recent publications [AHM12] have shown that the overhead by means of com-
munication latency is small. Therefore, secure communication is activated 
by default and should only be deactivated for public announcements. The 
encryption technology used in GAMBAS is AES, a symmetric encryption 
mechanism, which is both fast and secure and available for all devices in 
the GAMBAS scenarios. AES relies on a shared key between the communi-
cation partners that must be exchanged beforehand. The authentication/key 
exchange in Section 5.2.2.1 shows how such a key can be established in 

Figure 5.10 Secure Multi-hop Communication Example. 
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GAMBAS. To establish a secure communication, authentication is a crucial 
step that must not be skipped. Without authenticity, the identity of the com-
munication partner remains unclear. If a secure communication channel does 
not establish identities, any data that is traveling to a (possibly) unauthorized 
communication partner must be regarded as public data. 

After the authentication, the exchanged shared key is stored in a key 
store together with the device or user id. To enable secure communication, 
the device or user id is then used to retrieve the key from the key store. 
To improve the performance, the shared key can be cached after the com-
munication for the next interaction, but should be changed regularly (e.g., 
by performing a re-authentication) to avoid impersonation attacks using lost 
keys for interactions. 

5.2.2.3 Access Control 
To ensure privacy, GAMBAS relies on user-specific privacy policies. Access 
control enforces these privacy policies. Using access control, data that is 
captured by the data acquisition framework (DQF) is protected from unau-
thorized access. In GAMBAS, access control must take into account the 
following three points: 

• Authentication: A user or device must be authenticated, before it may 
access any resource in GAMBAS that is using access control. Therefore, 
it must use one of the mechanisms described in Section 5.2.2.1. 

• Encryption: A user or device must use encryption while accessing data 
that is using access control. The encryption, described in Section 5.2.2.2, 
enforces the secrecy of the data while it is being transferred. 

• Policy Compliance: Before any data is transferred, the access control 
must check the policy (see Section 5.3) for the data to be sent. The policy 
contains the users or devices that may access the data (if any) and the 
access control must follow the policy. 

If these points are evaluated properly by the access control mechanisms, 
the policy is enforced securely. The general process of access control in 
GAMBAS can be seen as the execution of these six steps: 

1. Device A wants to access private data on Device B. Since the data is 
private, Device B is using access control to protect it from unauthorized 
access. 

2. Device A opens a communication channel to Device B. It sends the 
plug-in configuration for authentication/key exchange and encryption to 
signal the need for secure communication. 
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3. Using the plug-ins, the two devices authenticate to each other. Device A 
sees that Device B is owned by “Bob”, while Device B authorizes the 
user “Alice” from Device A. 

4. Device B now checks, if Device A is using encryption on the commu-
nication channel. If this is not the case, the interaction is terminated 
otherwise the interaction continues. 

5. If successful, Device B checks the policy for the data that is to be 
retrieved by Device A. It searches for the appropriate data type and the 
access rights of Alice. 

6. If the data type can be found and the access rights of this type allow Alice 
to access the data, Device B grants access and Device A can retrieve the 
requested data. 

In general, it might not be necessary to authenticate Device B in Step 3. 
Nevertheless, many of the authorization schemes presented in this document 
are using symmetric authentication, i.e. both communication partners are 
authenticated at the same time. Additionally, the general process is modified 
depending on the communication partners in GAMBAS. 

In GAMBAS, access control is used to access any private data. Since the 
scenarios in GAMBAS are manifold, the general access control process needs 
to be adapted to these scenarios. In the following, the three different access 
control mechanisms in GAMBAS are presented. At first, we show how access 
control is used in the data acquisition framework. Then, we concentrate on 
any device-based registry and at last, we describe how data access and access 
control with remote data storages is realized. 

5.2.2.3.1 Data Acquisition Framework (DQF) 
The data acquisition framework (DQF) is running directly on the user’s 
device. It is implemented as a module of the GAMBAS middleware, which is 
realized as a combination of different modules. In GAMBAS, all modules are 
running in the same process on the device. Since processes in operating sys-
tems are isolated against each other, only other GAMBAS modules (running 
in the same process) can call the internal API. The PRF provides methods 
that allow the DQF to check whether a certain data type is allowed to be 
detected. The DQF must call this method before any attempt is taken, to create 
a recognition stack for detecting any kind of data or context. The method 
then returns a value that states whether the data or context is allowed to be 
detected or not. The DQF then changes the recognition stack accordingly to 
only detect the kind of data or context that is allowed to be detected by the 
privacy preservation policy. 
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This access control mechanism does not need any authentication or 
encryption since it limits the data acquisition directly on the device. Only 
GAMBAS modules can therefore retrieve and access the policy and the 
acquired data. On every startup of a GAMBAS application that needs to 
acquire data using the DQF, the DQF will check the privacy policy for any 
data type that needs to be detected by this application. If the policy does not 
allow the gathering of this data type, the application might not be started 
successfully, but the privacy of the user is preserved. This type of access 
control enhances the privacy of the user by not capturing data. Data that 
is not captured cannot get lost or overheard by anybody, even if the user’s 
device gets stolen, the data cannot be revealed since it was not gathered at 
all. Not acquiring data is therefore a valid privacy goal that can be fulfilled in 
GAMBAS using the privacy preservation policy. It puts the user in the direct 
position of defining the data types that are allowed to be used for context or 
activity recognition. 

5.2.2.3.2 Device-based Registry 
Any device-based registry like the semantic data storage (SDS) stores data 
that was gathered by the DQF. The data is stored directly on the device itself, 
not involving remote interaction. Similar to the limitation of data gathering 
that was described in the previous subsection, this allows the access control 
to be performed without the need of encryption and authentication. 

In GAMBAS, the data stored in a device-based registry is used to predict 
possible user behavior in the future. To protect his privacy, a user can choose 
not to store specific data on the device at all, such that no history on the device 
is created. Additionally, the privacy preservation framework makes it possible 
to mark stored data as not exportable. This can be modeled using a policy 
entry for this specific data type, which does not give any access rights to 
another user. The data is then only processed on the device itself and does not 
leave the device. Of course, this might result in a limited prediction since the 
device only has limited processing power. To mitigate this, the preservation 
policy that is used to limit the access is personalized to each user and may be 
tweaked, if it is perceived as too restrictive or too liberal. 

The PRF contains a method that must be called through the API by any 
GAMBAS application, if data acquired by the DQF is stored on the device 
(e.g. using a device-based SDS). This method is similar to the one described 
in the previous section, but returns whether the data may be stored on the 
device or not. The application can then see if it is allowed to build a data 
history for this type of data. It must then comply with the result of this call. 
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Authenticate, exchange key 

Authenticate, exchange key 

Start encrypted request for data 

Device A Device B 

Compute the exchanged key 

Check for encryption 
check prior authentication 
check access rights 

Compute the exchanged key 

Send the requested data 

Figure 5.11 Data Request using Access Control. 

In contrast to the DQF, a device-based registry like an SDS also con-
tains a remote interface that may be called by other devices. If no data is 
shared, this remote interface must be inaccessible for other devices. If data 
is shared, the remote interface uses the device’s PRF to perform access control 
as described in the general process of access control above. A check for 
authenticity and access rights, as well as the use of encrypted communication 
is necessary, before any private data may be shared. A simplified message 
flow for a successful data request can be seen in Figure 5.11. 

5.2.2.3.3 Remote Data Storage and Continuous Queries 
In some scenarios envisioned by GAMBAS, data might be stored outside the 
user’s device. It could be stored in a remote SDS that provides additional 
computing capacities to give a better prediction on the future values of the 
data. Storing data remotely requires full user consent and could possibly 
breach privacy, since private data is transferred and stored on a remote device 
or server that is usually not owned by the user. This scenario is depicted in 
Figure 5.2. Here, the data is stored on a remote SDS, for example, to be 
aggregated for statistical purposes. 

Private data is only stored remotely if the privacy policy has a valid entry 
for the specific private data type and it allows the sharing of the data type at 
this remote location. Similar to the mechanisms described before, the PRF 
provides a method that shows, for given values of data type and remote ser-
vice or server, whether the data is allowed to be transferred there. In addition 
to the enforcement of the policy (which already includes the authentication 
of the remote service or server), the remote transfer needs to be encrypted, 
such that the data cannot be overheard. The access control mechanism is 
implemented similar to the ones described previously. Since storing data in a 
remote location is inconvenient for many users, the GAMBAS applications 
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try to minimize the need for this. One important exception is the remote 
storing of information that users are obligated to by contract, for example, a 
bus company that gives out chip cards, which are validated by touching chip 
card readers at the bus entry, may use the travel information in an anonymized 
fashion, if it informs its customers accurately. 

In addition to the simple one-time query that usually only needs one 
request–response message flow, GAMBAS supports continuous queries that 
may be used to notify users if the response data changes. Continuous queries 
do need a permanent Internet connection and may need more resources 
than a simple smartphone can provide (in terms of CPU power and RAM). 
Therefore, the continual query processer (CQP) is realized as a remote 
GAMBAS service. 

A query involving a remote CQP changes the authorization flow, since the 
CQP is querying other data sources on behalf of the user. As can be seen in 
Figure 5.12, the device now first authenticates the remote CQP service, which 
will then issue a request to access a certain data source. The device must now 
check with the privacy policy whether the CQP service is allowed to access 
the requested data on behalf of the user. If the policy evaluates to true, the data 
source is queried to hand out an access token that enables a remote device to 
act on behalf of Device A. The data source will again check, if the user of 
Device A is allowed to retrieve the queried data. If that is the case, the data 
will be processed by the remote CQP service. The PRF of the data source 
will consult its policy to evaluate these two questions. If they evaluate to true, 
the data source will transfer an access token to Device A. This access token 

Authenticate, give accessTokenAuthen ticate, give accessToken 

Authen ticate, request accessTokenAuthenticate, request accessToken 

Hand over accessTokenHand over accessToken 

Query Device Data Source 

Query data source with accessTokenQuery data source with accessToken 

CQP Service 

Authenticate, initiate continuous queryAuthenticate, initiate con tinuous query 

Authen ticate, request access to data source 

Authen ticate, request access to data source 
Stream result to querying device 

Return query resultReturn query resultWill be executed 
repeatedly 

Figure 5.12 Continuous Query Processing using Access Control. 



146 Privacy Preservation 

can then be used by the remote CQP service to execute the query, retrieve the 
data and stream the query result continuously to Device A. The CQP might 
execute the query repeatedly and update the continuous query result that is 
streamed to the device accordingly. If used with more than one data source, 
the CQP service needs an access token for every source and is also used to 
aggregate data remotely. This aggregation removes burden from the device 
and makes it possible to execute even complicated continual queries with 
resource-constrained devices. 

To preserve privacy whenever possible, the remote CQP service needs 
to be properly authenticated and trusted by the device using it. An ideal CQP 
would be a home server that is in possession by the user itself. In that case, the 
query result will not depend on the relationship between the data source and 
the CQP service (since it is identical to the relationship between the source 
and the user’s device). If an external CQP service is used, the data source 
could change its view on the data, since the policy on the source could have 
different constraints for the user and the external CQP service. 

In the case of a remote CQP, all interactions between devices, data sources 
and the CQP must be encrypted, because they might contain private data. 
As shown in Figure 5.12, also all devices must be authenticated, such that 
the privacy preservation framework can perform the access control properly. 
Although the access control process is more complicated since more parties 
are involved, the benefits of using a remote CQP (i.e. a resource-saving query 
execution) outweigh the drawbacks in many scenarios. 

5.3 Privacy Policy 

The privacy preservation policy is used to describe the access rights of data 
types. Additionally, it describes how data types relate to each other. The 
policy is customizable for the user and can be serialized in a policy language 
that is based on RDF. When used in the PRF, the policy can specify which data 
types should be shared with which users (or companies). Therefore, the policy 
contains the data types and the sharing permissions, individual to each user. 

The policy representation shown in Figure 5.13 displays policy permis-
sions (i.e. using triples), which model the access rights on data types. Each 

Figure 5.13 Privacy Policy Permission Example. 
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of these RDF triples contains a unique name as first argument, and then 
one of the relations “affects”, “grantedTo” or “obfuscation”, which denote 
different aspects of the policy permissions. The third argument of the triple, 
i.e. “affects”, is the data type that should be affected by this permission. The 
relation “grantedTo” denotes the user that is granted this permission. Since a 
permission could grant the same access rights to many users, the triple using 
the relation “grantedTo” can occur more than once (with different users) in 
one permission. The user name (which could include a unique identifier) links 
to the profiles that this user is using on social networks or other collaboration 
tools. The last relation “obfuscation”, optionally defines the obfuscation level 
for this permission. Depending on the data type, different obfuscation levels 
are possible. For the current location, this could be the actual GPS coordinates 
(i.e. no obfuscation), the current city or the current country the user is located 
in. Since the policy is created individually for every user, the user itself is 
implicitly part of every policy triple and is left out in the policy language. 
This means instead of creating statements like Charlie’s data type location is 
“grantedTo” Bob using the “obfuscation” level city, we simplify the policy 
triples in Charlie’s policy to the ones depicted in Figure 5.13. 

The data types are specified in the data model described in Chapter 4 and 
used by the data acquisition framework discussed in Chapter 3. Since each 
different data type might provide different obfuscation levels, the levels are 
also defined as part of the data model. While some data types like “location” 
can provide more than one obfuscation level, other data types might not 
provide any. Thus, the use of obfuscation is optional and depends heavily on 
the underlying data type. In summary, both the data type and the obfuscation 
level are based on the data model of the GAMBAS middleware. 

Another type of policy definition are triples that describe relations 
between different data types. These relations define a simple hierarchical 
relationship between data types and can be used to infer access rights for 
similar data or data that is used as a building block for a more complex data 
type. Imagine that Charlie shares his current location with Alice. If now Alice 
asks for the name of the street where Charlie is located, the PRF will search 
for the data type “street”, might fail to find a policy entry for it and will deny 
access to it. Therefore, the policy language includes the consistsOf-relation. 
Using the privacy policy Location consistsOf street,city,country, the data type 
“street” can be found and if there are no Permission policy relations for 
“street”, the “location” data type is checked. In this example, Charlie shares 
his current location with Alice, so the location data type grants access rights 
also for the “street” data type. 
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To support the different level of access control, e.g. storing data on 
the device itself, device-based registry and the sharing of data with remote 
devices, the policy introduces another relation that describes the level of 
sharing data. The sharingLevel-relation shows on which level data may 
be shared or stored. Using this relation, the privacy policy can be easily 
used to enforce the sharing level on data. GAMBAS relies on three pre-
defined keywords that describe where data may be stored. The tree keywords 
are “Remote”, which defines that data may be stored by remote devices, 
“Device”, which denotes that the data should only be stored at the device 
itself and must not be shared with others, and “DetectOnly”, which does not 
allow the data to be stored anywhere. When “Device” or “DetectOnly” are 
chosen, the Permission-relations are ignored, i.e. data may not be shared with 
anybody, when using this keyword. 

An example for the sharingLevel-relation is presented in Figure 5.14. 
Here, location data is shared with remote devices; for the access rights, 
the Permission-relations that are linked with the location data type must be 
considered. Data about the current travel path may be stored on the device and 
used for prediction that is executed on the device. This policy triple does not 
allow sending the current travel path data to remote devices. In this example, 
audio data might only be used for detection using the DQF, but not be stored 
anywhere. 

In summary, the privacy policy consists of three relation types. All of 
them can be described using privacy triples: 

• The Permission-relations that define access rights and obfuscation levels 
of data types. 

• The consistsOf -relation that defines hierarchical relationships between 
data types. 

• The sharingLevel-relation that defines the sharing level of the data type. 
Next, we describe the policy generator, which enables the automatic 

generation of the policy from social networks or other collaboration tools. 
Thereafter, we describe the integration of the privacy policy with the user 
interface to enable the user to modify the policy manually. 

Figure 5.14 Privacy Policy Sharing Level Example. 
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5.3.1 Automatic Generation 

The privacy preservation policy that is used by the PRF to constrain the access 
to data gathered by the DQF can be created automatically, by the policy 
generator. This enables the user to use GAMBAS applications without an 
extensive (manual) configuration phase, while still having a privacy policy 
that protects private data. The policy generator is therefore one of the key 
concepts to enable automation in the privacy preservation framework. 

Many users use social networks or collaboration tools like Google Calen-
dar as part of their everyday routine. They post messages to colleagues and 
friends, share photos and create shared appointments. Often, it is possible 
to constrain access to messages to a pre-defined user group. This could 
be a list of friends on Facebook or individual users for a shared event in 
Google Calendar. Similar, the access to other data in the social networks or 
collaboration tools can be constrained by the user. Figure 5.15(a) depicts 
an example. Using the APIs that are provided by the social networks or 
collaboration tools, these privacy settings can be retrieved automatically. An 
example using Facebook’s graph API is shown in Figure 5.15(b). 

A user that is using such a social network or collaboration tool is therefore 
already creating one or more privacy policies (depending on the number of 
tools that are used). The privacy policy generator can query these policies 
using the tools’ APIs. Since the policy generator operates on the user’s own 
device(s) and uses the user’s accounts to access the tools, a policy which is 
individual for each user can be generated. This generated policy is then also 
tailored to the needs of the user, because it is only an import of a user-defined 
policy into the privacy framework. To support as many social networks or 
collaboration tools as possible, the policy generator has a modular structure. 
This structure makes the policy generator extensible with regard to other 
collaboration tools. 

Usually, the user is able to define privacy settings in each social network 
or collaboration tool individually. Because the user may edit this settings 
freely and independent from each other, the settings might be inconsistent. 
The policy generator is then not able to create a consistent policy. If this is the 
case, the generator can detect and display the conflicting settings and suggest 
possible solutions to the user. After the conflicts are (manually) resolved, the 
policy generator creates a consistent policy. 

Using the consistsOf -relation, the policy generator proposes different 
generalization strategies to apply the policy to a broad set of data types that 
can be acquired by the DQF. This enables the generalization of the policy, 
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Figure 5.15 Privacy Settings in Facebook. (a) User Interface and (b) Programming Interface 
(JSON). 

which includes new data types that might be related to data types retrieved 
from the privacy settings in social networks or collaboration tools. 

In summary, the policy that is used to allow access to different data 
types is generated automatically using the policy generator. The generator 
is designed to pick up policies or privacy settings that are pre-specified by 
the user in a social network or collaboration tool and to create a policy that 
is compatible to the GAMBAS policy format. The generator includes tools to 
resolve conflicting settings and is able to generalize data types. The generated 
policy can also be fine-tuned by the user using the user interface presented 
in the next sub-section. Even without the fine-tuning, the generated privacy 
policy is consistent and tailored to the user’s needs, without putting the user’s 
privacy at risk. 
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5.3.2 Manual Fine-Tuning 

The user interface developed as part of the middleware enables the user 
to fine-tune the privacy policy. In general, the privacy policy is created 
automatically using the policy generator. The automated creation takes into 
account the settings of the user in social networks and other collaboration 
tools, like the Google Calendar. Although this automatically derived policy 
is therefore created on an individual basis, a user may want to modify the 
policy. To do this, the privacy preservation framework encompasses methods 
that allow retrieving the current policy and methods that can modify the 
existing policy. 

Using the user interface, the user can change the policy triples visually, 
without having to use the policy language. This allows also non-expert users 
to edit the policy successfully. The user interface displays the data types and 
then shows the relevant policy relations graphically. The user can modify the 
data types by clicking on them and, for example, choose users from a list of 
users for the Permission-relations. Editing the other relations is similar. Any 
change in the graphical user interface results in a change of the policy, i.e. 
causes the addition, deletion or modification of policy triples. The user might 
also use the interface to export or import the privacy policy, which enables 
expert users to modify the RDF representation of the policy directly. 

5.4 Privacy Integration 

To clarify the mechanisms and protocols of the privacy framework, we 
describe how they are integrated into data transfer, data acquisition and data 
processing defined in the previous chapters. 

5.4.1 Data Transfer 

To support data exchange and possibly the exchange of context information, 
data will be transferred between different devices. This data – for example, 
a user asking the servers of a public transit network operator for the route 
of a bus trip – can breach privacy. In this case, an eavesdropper could 
get the current and future location of the user. Therefore, the data should 
be transferred securely. In GAMBAS, the Privacy Preservation Framework 
(PRF) is responsible for all security and privacy needs and therefore is also 
responsible for securing the data transfer. For this, all data that is transferred 
should be encrypted. The reason for this is twofold. Firstly, the data might 
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contain private information that should not be shared with unauthorized users 
or devices. Secondly, the shared data might be transferred over an insecure 
communication channel (e.g. the Internet or an insecure WiFi network). 

To apply the efficient concept of symmetric encryption (AES) to secure 
communication, a shared key must be exchanged before any encrypted com-
munication can take place. During the exchange of a cryptographic key, 
the communication endpoints show that they are eligible to access the data 
that should be transferred by authorizing themselves. After the authorization 
process, both endpoints possess a shared cryptographic key that allows them 
to transfer data securely. 

In the GAMBAS PRF, authorization can be performed in two different 
ways. The first way uses asymmetric cryptography and is based on cer-
tificates, similar to the implementation of SSL in the Internet. This allows 
an ad-hoc identification of devices that belong to a certain domain. If the 
domain root is trusted, the authorization will be successful. Also, the access 
rights may depend on the trust in this root. For authentication, the device’s 
certificate is transferred together with a challenge that proves that the device 
is in possession of the certificate’s private key. Together this data forms the 
device’s credentials that are checked at the other endpoint. The alternative of 
using compute intense asymmetric cryptography is symmetric cryptography. 
Using symmetric cryptography, a key (256 Bit) can be attached to a connec-
tion between two endpoints. The first half (128 Bit) of this shared key allows 
the identification of the other endpoint. The other half (128 Bit) can either 
directly used for the secure communication or can be used to exchange a new 
session key securely. For efficiency reasons, both of these checks (i.e. for 
asymmetric and symmetric cryptography) are performed transparently by the 
communication system of the GAMBAS middleware. 

The secure data transfer is generally foreseen for every transmission 
of data. The communication endpoints must first authorize each other at 
the remote privacy preservation framework, before a key for the secure 
communication is computed. The authorization that is performed by the 
privacy-preserving framework incurs some overhead during the data transfer. 
However, without the authorization, the communication partner is unknown 
to another device and this contradicts the privacy of the transferred data. 
Therefore, while the authorization is a crucial mechanism, it is possible to use 
more lightweight security mechanisms, but this would result in a decrease of 
the security level. 

To enable encrypted data transfer, it is necessary for both communication 
endpoints to use a cryptographic key. In GAMBAS, we support devices 



5.4 Privacy Integration 153 

with different capabilities with regard to the available resources (like RAM, 
CPU and battery power). The encryption is therefore based on a hybrid 
scheme that allows an efficient and secure encryption. With respect to data 
processing, we can differentiate between three different cases. The first case 
is the communication between a user’s device (a client) and a server (e.g. 
the server is asked for a bus route by a user’s device). The second case is 
the communication between devices of two users. An example could be two 
friends who want to exchange photos with each other. The third case is the 
communication between two servers. An example could be server of a public 
transit network operator who communicates with a weather service server to 
get the current forecast (which might influence the bus planning for the day). 

The difference between a user’s device and a server in GAMBAS is that 
the server is able to authenticate itself using a cryptographic certificate. This 
ensures the identity of the server and allows for server authentication, before 
the connection is established. In contrast, the user’s device does not have a 
certificate since it is not bound to a certificate domain. Therefore, different 
methods of authentication must be used, if a user needs to be authenticated 
and/or identified. Because of these differences, the three cases mainly differ 
in the authentication phase. 

5.4.1.1 Client and Server Communication 
When a device (client) contacts a service that is provided by a server, the 
connection will be established as shown in Figure 5.16. The server will 
use its certificate to authenticate itself against the client device. The client 
application validates the certificate of the server against either a pre-deployed 
service certificate or a pre-deployed certificate root. The root certificate can 
be used for companies that support different kinds of services and eases 
the deployment without lowering the provided security. This is a one-sided 
authentication, i.e. the server authenticates itself against the client, but the 
client is not authenticated. If it is necessary to authenticate the client, the 
server may add any authentication scheme after the secure connection is 
established. A username/password authentication could, for example, use the 
secure remote password protocol (SRP 6) to authenticate the clients. 

Using the (unencrypted) authentication messages, an elliptic curve Diffie– 
Hellman (ECDH) key exchange is performed. As a result, both sides will be 
able to compute a secret key that cannot be computed by eavesdroppers. The 
signature of the message that is created by the server also prevents man-in-
the-middle attacks. After the authentication handshake and the key exchange, 
the interaction is encrypted by using the exchanged secret key. 
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Figure 5.16 Client and Server Communication. 

5.4.1.2 Device-to-Device Communication 
When two devices establish a connection, usually they cannot authenticate 
each other. The authentication cannot rely on certificates, since the devices 
do not know each other and normally do not possess a certificate. The users 
might identify their devices manually, by device id, and may then create a 
manual key on both of them. But GAMBAS also allows two other easier 
methods to establish a key for each device. 

The first method uses PIKE to exchange a key using an online social 
network such as Facebook that is used by both users. This key is exchanged 
before the interaction takes place and allows two or more devices to interact 
securely with each other. The user identification is extracted from the rela-
tionship in the online social network and can then be used at the time later 
on. This allows for a completely automatic key exchange that does not need 
any user interaction. The only necessary step a user has to take is to connect 
GAMBAS with the social network, e.g. through Facebook Connect as shown 
in Figure 5.17(a). 

The second method uses the NFC technology. Nowadays, many smart-
phones are equipped with an NFC reader system that may also be used 
for short-range one-way communication. The GAMBAS middleware imple-
mentation for Android integrates with NFC to exchange a key. For this, the 
middleware encompasses a service that is used to redirect the communication 
back to the device that initiated the one-way NFC communication. This 
backward channel is necessary to transfer the device id of the device that 
received the NFC message. Using this service, we can establish a key just by 
holding two devices together. For this, a user simply needs to press a button 
in the user interface shown in Figure 5.17(b) and then bring two phones in 
physical proximity to each other. 
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Figure 5.17 Device to Device Authentication. (a) PIKE-based Key Exchange via Facebook 
and (b) Manual Key Exchange via NFC. 

After the successful key exchange, the communication between the two 
devices can be encrypted. Additionally, the devices can identify themselves 
using the already established keys. 

5.4.1.3 Server-to-Server Communication 
The server to server communication in GAMBAS is similar to other commu-
nication on the Internet. Each server authenticates to the other server using its 
own, pre-deployed certificates. Similar to the client–server communication, 
the certificates can be verified by using the server certificates or by using 
a common root certificate. Again, the authentication includes an ECDH 
key exchange, which results in a shared key for this connection. Then, the 
communication between the two servers will be encrypted using this key. 

5.4.2 Data Acquisition 

The Adaptive Data Acquisition Framework (DQF) enables the collection of 
data using various sensors built into the user’s mobile device. The collected 
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data can then be used personally (i.e. by the device, in the case of personal 
data acquisition) or collaboratively (i.e. by a remote service, in the case of 
collaborative data acquisition) to optimize services based on the users’ behav-
ior. Clearly, the data acquired by means of sensors built into the device of a 
user may raise privacy concerns. Furthermore, the preferences with respect to 
privacy may vary drastically from user to user. In order to empower users to 
exercise control over which data can be collected, the access to the data acqui-
sition framework is guarded by the Privacy Preservation Framework (PRF). 
Thereby, all accesses made to the data acquisition framework are checked 
against the user’s privacy preferences with respect to data collection. This 
allows the user to limit the data types that can be collected at all. In extreme 
cases, a user may limit the collection of all data through the GAMBAS 
middleware. In less extreme cases, the user may limit the collection of a 
particular type of context information, such as location-related information 
or audio information. 

The PRF-DQF interface enables the data acquisition framework to check 
whether the user has given consent to the acquisition of a particular type of 
contextual information. To do this, the DQF performs calls to the PRF in 
order to verify that the data types that shall be captured are permissible under 
the user’s current preferences. Furthermore, since the user’s preferences may 
change at any point in time, it is necessary that the PRF provides functionality 
to signal a change to the DQF whenever the user’s preferences with respect 
to a particular data type change. 

The PRF therefore has two different duties. First, it checks the data type 
that is about to be captured against the preferences of the user and returns a 
Boolean to indicate whether the user permits the acquisition of the specified 
data type. If the access is denied, the acquisition is aborted. If access is 
granted, the acquisition task can be started. Additionally, a user could modify 
his privacy settings. Therefore, the PRF needs to signal a change to the 
preferences with respect to a particular data type such that the DQF can 
check all currently executed data acquisition tasks against the updated set 
of preferences. If a data acquisition task is no longer permitted by the user, it 
must be aborted by the DQF. 

In order to guarantee that all data acquisition tasks continuously conform 
to the user’s preferences, the GAMBAS middleware implements the contin-
uous and gapless usage of this interface for all calls to the DQF. This means 
that all tasks that are started within the DQF need to pass through the check 
method of the PRF with the associated data types. In addition, as long as 
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the DQF is executing any tasks, it needs to react to changes indicated by 
the signal method. If a signaled change affects a data type that is currently 
acquired, the check for the associated (set of) task(s) needs to be reevaluated, 
possibly aborting any conflicting tasks. 

As every export of user’s context information is filtered based on the 
privacy policy of the user, for every request of data by the service provider, the 
DQF checks it with the privacy framework. If the PRF allows the data to be 
sent, only then the users’ context information is exported. The PRF and DQF 
communicate this information check through control interfaces provided by 
the PRF. Specifically, PRF provides different methods that allow the DQF to 
check if a certain data type is allowed to be detected. The DQF must call 
these methods before creating a recognition stack for detecting any kind of 
data or context. Based on the results from these methods, the DQF detects the 
context data and subsequently sends it to the service providers. 

In order to allow acquisition and subsequent export of user’s context 
information, the GAMBAS middleware ensures that the context recogni-
tion applications can gather and export only the allowed context features. 
In order to achieve this, the data DQF checks for permissions with the 
privacy-preserving framework whenever a new application is started. 

When the data acquisition framework starts to acquire data, it analyzes the 
feature requirements of the application and then checks with the PRF whether 
the desired features are allowed to be gathered. The PRF will decide, based 
on the privacy policy that is set by the user and will inform the acquisition 
framework whether the requested features are allowed to be gathered or not. 
If the requested features are allowed, then the DQF starts gathering context 
information. 

When the PRF refreshes the privacy policy (either through a user that edits 
the policy or through an update issued by the Privacy Policy Generator), the 
GAMBAS core service indicates this change to the DQF, which again checks 
the permissions with the privacy framework. If an already running application 
does not adhere to the new privacy policy, then the application is shut down 
immediately. 

The list of privacy features that a user can edit in the privacy policy 
includes features related to the acquisition of sensing data such as audio sens-
ing, location sensing, motion sensing, ambient sensing and features related 
to the communication such as enabling of remote gateway communication, 
enabling of Wi-Fi and Bluetooth as communication technologies, etc. 
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5.4.3 Data Processing 

Dynamic and distributed data processing is an essential part of the GAMBAS 
middleware. Data processing in GAMBAS is performed by the Query Proces-
sors (xQP), which provides GAMBAS applications with the necessary data. 
Often, the processor executes remote queries. These queries are executed at 
remote devices and may try to access private data. The GAMBAS Privacy 
Preservation Framework therefore has to check the access to the requested 
data types and allow/deny access based on the policy of the remote user. 

During the query execution, the query processor identifies the sources 
needed to answer the query and then sends a request to the registry. The 
registry resolves the sources and sends back to the processor the list of end-
points (remote storages) that contain needed data. For shared data, however, 
before the query processor can access the data on the remote source, a privacy 
control is performed to check if the query initiator has the rights to access the 
data. A view of the data matching the privacy rules in place is created and 
shared with the query processor. The query processor forwards the identity 
and data requirements to the privacy framework, which in turn checks with 
the privacy framework of the remote device hosting the shared data. A view 
of the data is created based on the access control. The view can reflect the 
original data, or it can modify the original data according to the privacy in 
place. For example, it can aggregate or hide parts of the original data, like 
changing GPS coordinates to the name of the city or country. 

If a one-time query is issued, the access is granted based on the privileges 
of the user that is trying to access the data. The query can then be directly 
executed and will be transferred over a secure connection. If a continuous 
query is issued, a secure access token is generated and sent to the query 
processor. If a remote endpoint is trying to access the shared data, the secure 
access token will allow transferring the shared data securely over the chosen 
communication channel. 

The interface between the xQP and the PRF checks whether the query 
initiator is allowed to access the data. Additionally, if the xQP is executing 
a remote query, the communication must be properly secured. The user and 
data access credentials are sent over a secure data connection between the two 
endpoints. Since the middleware manages the secure communication trans-
parently, the interface does not include a method that enables the exchange 
of security tokens or start the encryption. Instead, this is done through the 
authentication and key exchange plug-ins that the PRF integrated into the 
GAMBAS middleware. 
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The access to data by the query processor must be checked through an 
interface at the PRF. The interface consists of one function that checks if 
the query initiator (i.e. the user requesting the data) is allowed to access the 
data. The data types that are being requested also need to be specified. The 
PRF queries the privacy policy of the device using the specified input and 
decides whether the query is allowed or not. Each request is handled by the 
privacy framework of each semantic data storage; therefore, this function is 
performed locally. 

The PRF therefore has a local PrivacyManager that implements and inter-
face that can be used by the xQP to check with the PRF if executing a received 
query is allowed according to the currently active privacy policies. To do 
so, the query processor hands the PRF (1) a set of classes in the GAMBAS 
ontology that specify what data types the query will access and (2) the origin 
of the query, e.g. if it was a local query or a query from a remote user. The 
PRF then returns whether this query is allowed or not. The PRF needs to be 
contacted for every query execution, when shared data is involved. The query 
processor must first interact with the privacy framework, which is responsible 
for allowing or denying data access, for data encryption/decryption and for 
device authentication. 

Of course, the privacy-preserving framework incurs some overhead in 
the query processing, specifically an additional method call, device authen-
tication and data encryption. However, the PRF is crucial to maintain the 
privacy of the users’ data. To minimize the performance impact, the PRF 
uses lightweight privacy rules and lightweight encryption mechanisms (e.g. 
symmetric encryption using AES) to allow a secure and privacy preserving 
execution of queries by the xQP. More lightweight encryption mechanisms 
could be applied, but this would result in a decrease of the privacy and secu-
rity level without a high speed-up compared to the used security mechanisms, 
if measured on current smartphones. 
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6 
Applications 

This chapter describes the applications that have been built using the 
GAMBAS middleware. To do this, the chapter briefly outlines the integration 
of the system components described in Chapter 3, Chapter 4 and Chapter 5. 
Based on this description, it introduces the application development support 
provided by GAMBAS for different execution environments. To clarify this, 
we present a number of simple but full-featured applications that leverage the 
different components of the middleware. Based on this, we then describe the 
two large-scale applications that have been built with the middleware. These 
applications focus on realizing significant parts of the mobility scenario and 
the environmental scenario introduced in Chapter 1 that motivated the work 
on the GAMBAS middleware. 

6.1 Application Development Support 

In the following, we describe how the GAMBAS middleware is used during 
application development. To do this, we first briefly review how the different 
middleware components described in the previous chapters are integrated into 
a single system. Thereafter, we discuss how different execution environments 
are supported through the GAMBAS SDK and middleware runtime. Finally, 
we present a number of simple applications that have been built with the SDK 
to demonstrate the different features offered by GAMBAS. 

As shown in Figure 6.1, the integrated GAMBAS system consists of 
(1) a number of networked devices executing the GAMBAS middleware
and (2) the GAMBAS Dynamic Data Registry. Each device may execute
one or more GAMBAS applications (or simply apps) using the GAMBAS
middleware. An example for such an app is an Android application executed
by an end user on his smart phone. Another example would be server software
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Figure 6.1 Integrated System. 

executed by a service provider on a dedicated server connected to the Internet. 
As described in Chapter 4, the GAMBAS Dynamic Data Registry is a generic 
service that provides devices with the ability to discover data sources. The 
functionality of this registry is comparable to the Domain Name System 
(DNS), which provides name resolution on the Internet. Although GAMBAS 
assumes that this functionality is provided publicly, GAMBAS allows devel-
opers to run their own registry during development and testing. Since the 
functionality of the registry has been described in detail in Chapter 4, in the 
following, we focus on the remaining functionalities. 

6.1.1 Overview 

Figure 6.2 gives an abstract overview of the middleware structure. The 
integration is realized by: (1) a set of interfaces, support libraries and tools 
called the Software Development Kit (SDK) and (2) the GAMBAS CoreSer-
vice which provides the accompanying runtime environment. The Software 
Development Kit (SDK) in turn consists of two parts. The Service Program-
ming Interface (SPI) is used to develop GAMBAS functionality and integrate 
it into the middleware. The Application Programming Interface (API) is 
used to develop GAMBAS apps. The CoreService sets up the GAMBAS 
middleware and manages the life cycle of GAMBAS system components. 
Each system component encapsulates the implementation of one of the core 
GAMBAS parts described in Chapter 3, Chapter 4 and Chapter 5, e.g. the 
Semantic Data Storage (SDS) or the Data Acquisition Framework (DQF). 

In addition, the CoreService integrates a special communication system 
component that encapsulates an extended version of the BASE communica-
tion middleware discussed in Chapter 5. This enhances GAMBAS with com-
munication support to interact with remote GAMBAS devices. Furthermore, 
the CoreService realizes the SPI by linking each system component to all 
other components that they use during their own execution via interfaces from 
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Figure 6.2 Abstract Middleware Structure. 

the SPI. This effectively provides a tight and efficient integration between the 
components without inducing dependencies to their actual implementation. 
Finally, the CoreService implements the GAMBAS API towards GAMBAS 
applications in both Android and J2SE environments. To do this, it receives 
calls, forwards them to the right system component and delivers results back 
to the original caller. 

Due to the intrinsic differenced between Android and J2SE execution 
environments, the abstract structure shown in Figure 6.2 has two dis-
tinct concrete implementations. In the following, we briefly describe their 
differences and similarities. 

6.1.2 J2SE Support 

GAMBAS for J2SE specializes and implements the generic middleware 
architecture described before for server systems running J2SE. This allows 
service providers to integrate their services into the GAMBAS platform. 
Figure 6.3 shows the resulting system architecture. Since the J2SE version 
of GAMBAS is primarily intended for the development of server systems, it 
does not include support for user interfaces. Clearly, service providers will, 
in many cases, add their own user interface, e.g. based on web technologies. 
This, however, is outside of the scope of GAMBAS and thus not explicitly 
supported. All other GAMBAS system components mentioned previously are 
integrated, namely communication, data acquisition (the DQF), data storage 
(the SDS) and querying (the xQP), as well as security and privacy (the PRF). 
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Figure 6.3 GAMBAS for J2SE. 

As described before, the CoreService realizes the SDK and manages the 
life cycle of the whole GAMBAS system and all its components on a local 
device. GAMBAS for J2SE is implemented as a library that is linked to 
an application using it. To start using the GAMBAS system, an application 
has to first import and instantiate the CoreService. The CoreService can 
be configured by passing it an instance of CoreSetting. This allows the 
application to specify, e.g. the address of the GAMBAS data registry and 
communication gateway as well as a pseudonym that should be used to 
address the system. Settings can be changed dynamically and the CoreService 
will perform any necessary updates automatically, e.g. when a pseudonym 
should be changed. When the CoreService is instantiated (and thus started) 
it instantiates, configures and starts in turn all necessary GAMBAS system 
components. 

To decouple life cycle management of components from their actual 
implementation, each component is encapsulated by a specific subclass of 
AbstractSystem, providing, e.g. methods for startup and shutdown. As an 
example, the SDS is integrated by sublassing AbstractSystem with a new 
class DataStorageSystem, which implements all life cycle management func-
tions independently of the actual SDS implementation. This way, the SDS 
is independent of the CoreService and can, e.g. be reused in other contexts 
without other GAMBAS components. The CoreService also passes each 
component references to all other components it may require. As an example, 
the query processor uses the data storage, the communication system and the 
privacy manager. The CoreService enables this by passing references to these 
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three components to the query processor. At runtime, the query processor 
calls these components directly, without using the CoreService anymore. 

To use functionality of the GAMBAS middleware, e.g. to store data, 
applications can call a number of methods on the CoreService. The Core-
Service in turn forwards this request to the corresponding local system 
component, retrieves results from it and forwards them to the calling appli-
cation. This design was chosen over directly exposing system components 
to applications because it allows the CoreService to impose further checks 
on the correctness, security and consistency of these calls, if needed. As an 
example, the CoreService might deny a new request if it has already started 
shutting down the system. In addition to this, this approach also provides 
access transparency for system components, i.e. it allows us to decouple the 
system components from the way they are called. If an application wants 
to call a remote system component (e.g. to store data in a remote SDS), it 
can do so by calling a local method on the CoreService. The CoreService 
will forward this request to the communication system (essentially acting as 
a communication broker), which will send it to the remote system. There, 
the incoming request will be forwarded by the communication system to 
the CoreService, which in turn forwards it to the corresponding system 
component. Finally, if an application wants to stop the GAMBAS middle-
ware, it again calls the CoreService, which notifies all components and shuts 
down the system correctly. 

As a result, the CoreService is the central component of this architecture. 
It is responsible for receiving and answering all local and remote calls 
from applications, mediates all dependencies between system components 
and fully manages their life cycles. This encapsulates nearly all integration 
activities into it, reduces the complexity of implementing the actual system 
components and allows them to focus on their core functionality. 

6.1.3 Android Support 

In addition to J2SE devices, the GAMBAS middleware also directly supports 
application development on Android devices. From a high-level perspective, 
the Android integration is similar to the J2SE version, but when looking at 
the details, it has two main differences: first, it separates the core middleware 
from applications using it, reflecting the distinct Android runtime model 
and reducing the overall resource need of the system. Second, it includes 
additional support for user interactions with the intentional user interface 
(IUI). The resulting architecture can be seen in Figure 6.4. 
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Figure 6.4 GAMBAS for Android. 

6.1.3.1 GAMBAS Middleware App 
On Android, the main functions of the GAMBAS middleware are realized as a 
stand-alone Android app instead of a linkable library. This app is independent 
of any third-party Android applications using it. On Android, the life cycle 
of an app is controlled by the OS. It may at any time pause or stop/destroy 
any app, if it requires more resources. If the GAMBAS middleware would 
be linked to an app using it, the OS could decide to stop it, if the app is not 
used by the user right now. By separating the middleware into its own app, 
we are separating its life cycle management from that of all apps that use it. 
In addition, this design allows us to efficiently share a single instance of the 
middleware between all third-party apps, reducing the needed resources and 
thus allowing the OS to keep all apps active in memory for a longer time. 

An alternative approach would be to model the middleware as an Android 
service. However, allowing the middleware to have its own user interface – 
independently of any other app – allows us to integrate all configuration 
activities that a user wants to perform for the whole system in one place. In 
addition, it also allows the user to start and stop the middleware explicitly, 
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since its execution will reduce battery lifetime. To remind the user that 
GAMBAS is running, we display a corresponding icon in the Android status 
bar. By clicking this icon, the user can display the middleware user interface 
and control its behavior, e.g. reconfigure or stop it. 

The separation of the middleware into a distinct app also influences 
how third-party apps can access its functionality. Direct calls are no longer 
possible since the apps are running in separate processes. Therefore, we use 
Android intents to interact with the middleware. Intents are small events 
or messages that a process can publish and that can be received by other 
processes. To use the GAMBAS middleware, an application can publish a 
number of intents that are received by the middleware. The CoreService 
includes support for this. It translates the intents into direct calls and forwards 
them to the corresponding GAMBAS system components. Once a result is 
available, the CoreService translates it back into an intent and publishes it, 
allowing the original app to receive it. 

Clearly, this is more complicated for app developers than directly calling 
a method on a Java object. To reduce the complexity of the interface, we 
provide a GAMBAS API service. This service is realized as a Java class 
that can be subclassed by an application developer. It already includes all 
necessary functionalities to translate calls to the middleware into intents and 
vice versa as well as additional support for handling life cycle and error. 
Thus, by using this API service, the app developer can access the middleware 
without knowing about the specifics of Android interprocess communication. 

6.1.3.2 GAMBAS User Interface 
As described above, the GAMBAS middleware for Android devices contains 
the Intent Aware User Interface (IUI). The IUI is separated into two parts: 
an interface to control the behavior of the GAMBAS middleware itself and 
support for the development of user interfaces of third-party apps. 

The GAMBAS middleware user interface enables the user to config-
ure a multitude of aspects (Figure 6.5(b)) such as the middleware life 
cycle (Figure 6.5(a)), the used data discovery registry and communication 
gateway (Figure 6.5(f)), the user’s pseudonym, known friends, their keys 
(Figure 6.5(d)) and privacy policies. This allows users to inspect and adapt 
the current system state in one integrated place and makes it much easier for 
them to understand what data is currently made available to whom. 

In addition, the middleware user interface allows to manage all third-party 
GAMBAS apps (Figure 6.5(c)) in an integrated view. This view allows to 
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Figure 6.5 User Interface. (a) Start, (b) Settings, (c) Apps, (d) Privacy, (e) Features, 
(f) Development. 

install new apps from the Google Market, to start them and to remove them 
once they are no longer needed. Finally, in order to give full control over sens-
ing to the users, the user interface also enables users to disable the different 
data collection components offered by the data acquisition framework. 
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6.1.4 Application Examples 

To test and showcase the GAMBAS SDKs, we have developed sev-
eral applications that demonstrate the use of the different features of the 
GAMBAS middleware. These application have been made available to devel-
opers and they have also been published on the Android market. In the 
following, we briefly describe three of these applications. We first describe 
the application functionality and then map it to the middleware functionality. 

6.1.4.1 GAMBAS Voiceprint Launcher 
The GAMBAS Voiceprint Launcher is an Android application developed 
on top of the GAMBAS middleware. The application uses the voiceprint 
technology developed as part of the data acquisition framework (c.f. 
Chapter 3). The Voiceprint Launcher enables a user to launch an applica-
tion by issuing a voice command. To enable the launching of applications 
via a voice command, the user first needs to train the launcher by creat-
ing recordings of the commands that shall start different applications (see 
Figure 6.6). 

To do this, the user can add an application from the list of applications 
installed on the device. Then, the user can select the application and press 
the train button (i.e. the button with the white headset) to start the training. 
Alternatively, the user can press the delete button (i.e. the button with the 
white trash can) to delete the application and all training data. Once the 

Figure 6.6 Voiceprint Luncher Training. 
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user has pressed the train button, a dialog appears that prompts the user to 
say the application name loud. Once the user completed this, the application 
computes a voiceprint and stores it locally. 

As soon as the user has trained one or more applications, he can start 
the application by pressing the start button (i.e. the white microphone). This 
will open up a dialog that prompts him to say the application name out 
loud. Once he has done that, the application will compute a voiceprint and 
match it against all stored voiceprints. The closest match will be selected 
and the associated application will be started. Alternatively, the user can also 
add the voiceprint launcher widget to the home screen of the device. This 
allows the user to directly access the launcher (see Figure 6.7). 

From a technical perspective, the GAMBAS Voiceprint Launcher 
demonstrates a substantial part of the middleware. However, it is noteworthy 
that it solely executes locally on the phone of a user and thus, it does 
not require any remote connectivity or services. Consequently, it does not 
cover any communication-related aspects and it also does not cover the J2SE 
integration. As depicted in Figure 6.8, the GAMBAS Voiceprint Launcher 
extensively uses the GAMBAS middleware on Android through the Android 
SDK that connects it with the core service of the GAMBAS Middleware App. 

Of the functionality provided by the core service, the GAMBAS 
Voiceprint Launcher uses four out of five building blocks as follows: 

Figure 6.7 Voiceprint Launcher Usage. 
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Figure 6.8 Voiceprint Launcher Coverage. 

6.1.4.1.1 Data Acquisition 
In order to capture audio data and to compute and classify voiceprints, the 
application uses the audio components of the context recognition framework. 
In particular, the application uses an AudioSensor component to capture 
audio, a Windowing and FFT component to perform preprocessing, a trig-
ger component for silence detection, a voiceprint generator and matcher 
component for voiceprint computations and classification as well as an intent 
broadcaster component to signal the successful acquisition of a voiceprint as 
well as to signal the classification result. Figure 6.9 depicts the configurations 
of the component system. 

Figure 6.9 Voiceprint Launcher Configurations for Training (left) and Classification (right). 
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6.1.4.1.2 Data Processing 
To store the voiceprints as well as the set of configured applications, the 
GAMBAS Voiceprint Launcher uses the semantic data storage as well as 
the SPARQL-based query processor. To store the voiceprints, they are seri-
alized as strings such that they can be stored as RDF triples. To retrieve 
the set of configured applications and the associated serialized voiceprints, 
the GAMBAS Voiceprint Launcher uses the SDK to issue SPARQL queries 
against the data storage that are executed with the middleware’s built-in local 
one-time query processor. 

6.1.4.1.3 Privacy Preservation 
Although the Voiceprint Launcher is executed locally on the device, it still 
integrates with some of the privacy features of the GAMBAS middleware. 
In particular, as depicted above, the GAMBAS Voiceprint Launcher’s access 
to the device’s soundcard and audio capabilities are controlled through 
the GAMBAS middleware. Thus, a user can prevent the application from 
recording audio by simply deactivating the associated middleware feature. 
Consequently, the requests to capture audio by means of the configurations 
depicted previously will be blocked by the middleware. The associated block-
ing will then be signaled back to the application via the Android SDK such 
that it can react to it in an adequate way, for example, by showing a dialog 
that tells the user that the application requires audio capabilities to function 
properly. Intuitively, for more complex applications, it may also be possible 
to provide different modes of operation, e.g., a mode that uses audio and a 
mode that does not. However, for the GAMBAS Voiceprint Launcher, the 
ability to record audio is essential. Consequently, it is not feasible to provide 
such a mode. 

6.1.4.1.4 Intentional User Interface 
Similar to security and privacy, the GAMBAS Voiceprint Launcher also 
integrates with the intentional user interface through the SDK. In order to 
provide the user with a clean view on the applications that are installed as 
well as the features that are requested by them, the GAMBAS Middleware 
app uses intent-based interaction to populate the list of installed GAMBAS-
enabled applications. This enables the user to quickly list all GAMBAS 
applications and to start an application from the GAMBAS Middleware App’s 
user interface. 
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6.1.4.2 GAMBAS Linked Weather 
While the GAMBAS Voiceprint Launcher is focused on the Android SDK, 
the GAMBAS Linked Weather application focuses primarily on data man-
agement, remote communication and the J2SE SDK. The application uses 
the legacy data wrapper to integrate with a third-party data source, namely 
the weather web service provided by Wetter.com. To do this, a J2SE-based 
service periodically retrieves the weather information for the largest German 
cities and stores it in a semantic data storage that is equipped with remote 
communication and distributed query processing functionality such that the 
data becomes accessible to other devices. 

To demonstrate the J2SE application as well as the interaction between 
J2SE-based and Android devices, we have developed a Linked Weather app. 
The functionality provided by the application is depicted in Figure 6.10. The 
application enables a user to add an arbitrary number of cities to his device. 
Once the cities are added, the user can press a sync button to retrieve the latest 
weather information. Internally, tapping the sync button will issue a series of 
remote SPARQL queries against the RDF data stored in the semantic data 
storage on the J2SE device, which will synchronize the local data storage of 
the Android device with the remote data storage of the server. In order to 
reduce the amount of data that must be transferred, however, only the cities 
selected by the user are actually synchronized. When the synchronization is 
completed, the user can tap any city to view the current forecasts. This will 
issue a series of local queries against the storage, to retrieve the forecasts for 
a city. At this point, there is no more need for remote interaction as the device 
already has the associated data. 

As depicted in Figure 6.11, the GAMBAS Linked Weather application 
uses the GAMBAS middleware on Android through the Android SDK and 
on J2SE through the J2SE SDK. From the functionality provided by the 
core services, the GAMBAS Linked Weather uses four building blocks 
as follows: 

6.1.4.2.1 Secure Communication 
In order to interact with each other, both the Android and the J2SE parts of 
the application use the communication services provided by the middleware. 
Thereby, the Android part of the application contacts an application-specific 
service provided by the J2SE part of the application. To determine the 
communication endpoint that provides the application-specific service, the 
Android app interacts with the dynamic data discovery registry. 
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Figure 6.10 Linked Weather Android App and J2SE Service. 

6.1.4.2.2 Data Processing 
In order to store the weather information, both the Android and the J2SE parts 
of the application use the storage facilities provided by the local semantic data 
storage. In addition, the Android part of the application executes (remote) 
queries on the semantic data storage of the J2SE part of the application in 
order to synchronize the local weather information with the most current 
version of the weather information provided by the J2SE application. 
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Figure 6.11 Linked Weather Coverage. 

6.1.4.2.3 Intentional User Interface 
Similar to the GAMBAS Voiceprint Launcher, the GAMBAS Linked Weather 
application also integrates with the intentional user interface through the 
SDK. The integration closely follows the explanation given previously in the 
sense that the application is shown in the associated list with the associated 
permissions. 

6.1.4.2.4 Legacy Data Wrapper 
In order to integrate with Wetter.com, the actual provider of the weather 
information made accessible through the J2SE service, the J2SE specific 
part of the application uses a legacy data wrapper that translates the custom 
data model used by Wetter.com to linked open data that is then stored in 
the semantic data storage and made available through the query processor to 
mobile devices. To gather data, the J2SE service periodically pull the latest 
data from the web service. However, in order to avoid exceeding the free 
quota provided by Wetter.com, the pull frequency is set to one day. 

6.1.4.3 GAMBAS Locator 
To demonstrate the location prediction algorithms developed as part of the 
data acquisition framework as well as the privacy-preserving data-sharing 
among devices, we have developed the GAMBAS Locator application 
depicted in Figure 6.12. Similar to the GAMBAS Voiceprint Launcher, the 
GAMBAS Locator only uses the Android version of the GAMBAS mid-
dleware. From an end-user perspective, GAMBAS Locator enables users to 
continuously track their location. They can track visits to locations that are 
relevant for them and they can share their current location with their friends 
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Figure 6.12 Locator History and Sharing. 

in a peer-to-peer fashion through the GAMBAS middleware. In addition, the 
application computes and visualizes predictions for the next user location 
based on the location history captured by the application. Since the history 
and predictions are stored in the local SDS of the user’s device, they can be 
used by other applications easily, i.e. by simply querying the local SDS. 

To enable the sharing of location information with other users, the 
GAMBAS Locator uses the secure communication and data sharing mech-
anisms described in Chapter 5. To perform the necessary key-exchange for 
user authentication, the GAMBAS Locator can leverage the keys provided 
by the GAMBAS Middleware App. This means that if a user is using some 
social network like Facebook, for example, the user simply needs to connect 
the GAMBAS Middleware App with his Facebook account. Once this is 
done, the GAMBAS middleware will automatically exchange keys with all 
of his friends who are also using GAMBAS. If the user does not use social 
networking sites, he can alternatively use NFC to manually exchange a 
key. From an application programmer’s perspective, using this functionality 
does not require a single line of code, since the middleware takes care of 
implementing it. Similarly, in order to share the location information with 
another user, the GAMBAS Locator does not require any backend service. 
Instead, due to the distributed processing capabilities of the middleware, the 
devices can exchange this information directly without a trusted third party. 
From an application developer’s perspective, this eliminates the need and cost 
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for developing and running a service infrastructure. Thus, using GAMBAS, 
the developer can focus soley on implementing the user-facing functions. 

6.1.4.3.1 Secure Communication 
In order to interact with each other, the Android applications of different 
users are relying on the secure communication services provided by the 
middleware. Thereby, the authentication and encryption is done transparently 
for the application. In addition, it is noteworthy to point out that the sharing 
is not mediated through a service, which is the common realization of most 
location sharing apps that are available today. The keys that are required to 
ensure a proper end-to-end authentication of different users are provided by 
the mechanisms of the privacy preservation framework. 

6.1.4.3.2 Data Acquisition 
To capture the user’s location, the GAMBAS Locator application makes use 
of the data acquisition framework. To do this, it sets up an component configu-
ration with an associated state machine in the activation system. Together, the 
component and the activation system perform a periodic but energy-efficient 
localization of the user’s device. To do this, the localization stack integrates 
the motion sensors, the GPS receiver and the network hardware. This ensures 
that the energy-hungry GPS receiver is only used when the user’s location 
cannot be established through the motion sensors or through Wi-Fi scans. 
In addition, the GAMAS Locator also uses the data acquisition framework 
to perform the predictions on the user’s next location. The predictions are 
triggered periodically whenever a new location is detected. Towards this end, 
the prediction components are accessing the user’s location history that is 
stored in the semantic data storage of the user’s device. 

6.1.4.3.3 Data Processing 
In order to store the location information including the user’s location his-
tory and the predicted next location, the GAMBAS Locator leverages the 
Semantic Data Storage of the device. When a prediction must be computed, 
the prediction components query the local data storage for an (aggregated) 
view on the user’s history. The data model presented in Chapter 4 specifically 
addresses this issue by supporting aggregation. 

6.1.4.3.4 Privacy Preservation 
To enable access control on the data stored in the SDS, the issuer of remote 
queries must be authenticated. To do this, the privacy preservation framework 
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Figure 6.13 Locator Coverage.

presented in Chapter 5 defines two key exchange mechanisms that are either
automatic (i.e. when using Piggybacked Key Exchange on top of an online
service) or easy to use (e.g. when using a physical gesture to exchange a
key between two nearby devices through NFC). In addition to authenticity,
however, it is also necessary to define who should be able to access the
data. For this, the privacy preservation framework provides an automatic
policy generation tool that provides a pre-configured privacy policy based
on the user’s sharing behavior. Based on this, the user can get recommen-
dations (c.f. Figure 6.13) for suitable policies that can be customized later
on. Due to these two mechanisms, the GAMBAS Locator application does
not need to handle the intrinsics of secure sharing. Instead, it simply relies
on the GAMBAS middleware which automatically provides the necessary
mechanisms to enforce the level of privacy desired by the user.

6.1.4.3.5 Intentional User Interface
Similar to the other applications, the GAMBAS Locator also integrates
with the intentional user interface through the SDK. The integration closely
follows the previous explanations. However, due to this integration, the
application developer does not need to provide user interfaces to configure
the sharing of location information. Instead, the application can simply rely
on the definitions managed through the user interface of the GAMBAS
Middleware app.

6.2 Application Architecture

As basis for the description of the application components in the next section,
we provide an instantiation of the high-level architecture detailed in Chapter 2
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for the mobility and environmental scenario outlined in Chapter 1. For each of
the scenarios, we describe deployment that maps the abstract software com-
ponents detailed in the component view to concrete systems. Furthermore,
we outline the interactions that will take place at runtime.

6.2.1 Mobility Scenario

As described in Chapter 1, one of the motivating application scenarios behind
the GAMBAS middleware is support for mobility applications in a smart city.
To demonstrate the middleware capabilities, we developed a so-called Public
Transport Exploitation System (PTES) and a GAMBAS mobile application
to take into account the information retrieved directly from the user and
to offer citizens customized services – not exclusively related to mobility
though – in order to enhance their trip experience. Overall, the scenario
encompasses personal mobile Internet-connected objects such as the smart
phones of citizens, buses that are equipped with embedded systems, existing
external services and a number of novel GAMBAS services. Figure 6.14
shows both their deployment and interaction.

6.2.1.1 System Deployment
As depicted in Figure 6.14, the mobility scenario contains a number of
computer systems that run various parts of the GAMBAS middleware as well
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as application-specific code that realizes the selected use cases. The computer 
systems are: 

• Citizen Systems: In order to access services, citizens make use of their 
personal mobile devices like smartphones and tablets, which are running 
a mobile application. The application consists of the intent-aware user 
interface as well as background services that automatically acquire 
data and either forward or store it. Furthermore, it makes parts of the 
stored data accessible to other devices. Typically, these systems can be 
considered as Constrained Computer Systems (CCS). Consequently, the 
background operations must optimize their resource usage, especially in 
terms of energy. The application makes use of the data acquisition frame-
work, the semantic data storage and – to protect the user’s privacy – 
the privacy preservation framework. In order to make data available to 
other devices and to support local inferences at the application level, the 
device is equipped with a one-time query processor. Finally, in order to 
enable intent-aware user interaction, the application makes use of the 
intent-aware user interfaces. 

• Transport System: In order to provide route information and to aggre-
gate capacity-related information, we introduce a transport system that 
is available on the Internet. Since the data about bus routes and schedules 
is already available in a legacy system, the transport system uses a legacy 
data wrapper in order to tap into this information source. Furthermore, 
in order to store information coming from the citizen systems as well as 
from public buses, the system is equipped with semantic data storage. 
To support local as well as distributed inference on the data and to make 
it available to third parties, the system is equipped with a one-time and 
a continuous query processor. Finally, in order to protect the raw data 
and to restrict the sharing of data, the system is equipped with a privacy 
framework component that limits the sharing accordingly. 

• Bus Systems: Besides the citizen systems, the mobility scenario also 
relies on embedded systems deployed in public buses in order to collect 
data. Consequently, the buses are equipped with an application that 
determines the relevant context and forwards it to the transport system, 
which then stores and aggregates the data. In order to do this, the 
embedded system running in the bus makes use of the data acquisition 
framework in order to acquire and report the data. 

• Discovery System: To enable transparent access to data coming from 
different data sources, it is necessary to make the possible data sources 
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discoverable. Performing this task is the primary function of the discov-
ery system. In order to do that, it runs a data discovery registry which 
uses the semantic data storage component and a one-time as well as a 
continuous query processor component in order to store metadata and 
identity information of data sources. In contrast to other systems in the 
architecture, this system is application-independent. 

• Processing System: To enable the citizen systems to run continuous 
queries against each other’s devices, the architecture encompasses a 
second generic type of system. This processing system is equipped with 
a privacy framework and a continuous query processor. 

• External Systems: To reduce the configuration effort for the privacy 
mechanisms, the privacy preservation framework taps into the informa-
tion available in other external systems. For this, the privacy framework 
provides a number of adapters that can access the user-specific infor-
mation in these external systems. Since these systems are maintained 
by third parties, no additional GAMBAS software is installed on them. 
Consequently, the adapters of the privacy framework are responsible for 
performing the necessary data conversion. 

6.2.1.2 System Interaction 
In order to implement the mobility scenario, the systems and their associated 
components have to interact with each other locally (within a single system) 
and some of them have to interact remotely. This interaction follows the 
abstract interaction patterns described as part of the dynamic perspective in 
the high-level architecture presented in Chapter 2. 

In order to enable distributed query processing, all semantic data storage 
components export metadata and/or identity information to the discovery 
system. The query processors and the privacy framework use this information 
transparently to determine and contact the appropriate data sources and to 
create the necessary views, respectively. 

For the mobility scenario, most queries are issued by the citizen systems. 
They target either the transport system, e.g. in order to compute route infor-
mation, or other citizen systems, e.g. in order to find collocated routes or to 
determine whether two friends are in the same bus. Since some of the latter 
type of queries may be continuous queries, the remote processing system 
must interpret them – as continuous queries are not supported directly on 
Constrained Computer Systems (CCS). 

In order to provide advanced behavior-driven services, the citizen systems 
and the bus systems are used to collect data collaboratively. As described 
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previously, for citizen systems, this requires each citizen to opt in to the data 
collection and sharing by configuring the appropriate privacy settings. For 
bus systems, such a configuration is not necessary since the collected data 
does not affect privacy. Once relevant data is collected at the bus system or 
the citizen system, it is reported to the transport system. 

The transport system collects the data received from the bus systems 
and citizen systems. Furthermore, it stores and aggregates it for service 
optimization purposes. This should typically result in local inferences as the 
aggregations required for the mobility scenario do not require dynamic data 
that is not available locally. 

In order to make the optimized services accessible to the citizens, 
the application running on citizen systems provides an intent-aware user 
interface. Using the behavior information gathered by the data acquisition 
framework, the intent-aware user interface can notify the citizen about impor-
tant events and it can display relevant information at the right time. In cases 
where the required predictions for this are imprecise or not possible, the 
citizen may specify goals using a speech recognition engine that is part of 
the framework. 

In order to fetch the information that is relevant for the citizen, the 
intent-aware user interface issues queries and performs local or distributed 
inferences using the query processor and application-specific code. For some 
distributed inferences, it is necessary to access the data gathered by citizen 
systems of other citizens that share this data. 

In order to enable privacy-preserving sharing, the privacy preservation 
framework controls the access to the data stored on the citizen systems. The 
basis for this is a privacy policy that is initialized using the information 
from external services such as Facebook or Google. The privacy preserva-
tion framework retrieves the privacy-related information from these systems 
periodically in order to determine relationships between different citizens and 
to keep the initial policy up-to-date. However, it is noteworthy that citizens 
can manipulate this generated policy through the user interface in order to 
customize it to their needs. 

6.2.2 Environmental Scenario 

The environmental application scenario is related to the mobility scenario due 
to the sources of information that are used for data collection. Specifically, 
the architectural instantiation described in the following relies on the data 
being captured by the bus system and a mobile application. Consequently, 
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Figure 6.15 Environmental Scenario Architecture.

from an architectural perspective, the environmental scenario can be thought
of as an extended version of the transport scenario. This is also clearly visible
when comparing the instantiated architecture depicted in Figure 6.15 with
the associated instantiation of the mobility scenario depicted in Figure 6.14.
Nonetheless, we briefly describe both the deployment and the resulting inter-
action. For the sake of brevity, we refrain from revisiting the interactions with
the transport system and focus on the environment system instead.

6.2.2.1 System Deployment
As depicted in Figure 6.15, the environmental scenario contains a number
of computer systems that run various parts of the GAMBAS middleware as
well as application-specific code that realizes the application functions. As
indicated previously, a number of these systems are slight variations of the
systems in the mobility scenario:

0 Citizen Systems: Citizens are using their systems to gather information
and to access services. For this, they rely on the same set of components
as in the mobility scenario. However, the application-specific code has
to be extended to accommodate the different usage.

0 Transport System: Since some of the environmental use cases require
transport-related information, the transport system of the mobility sce-
nario is used to offer it. Specifically, the transport system is used to
determine bus locations, which are required to provide the necessary
context for environmental information.
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• Bus Systems: Similar to the mobility scenario, the environmental sce-
nario also makes use of embedded systems deployed in public buses in 
order to collect environmental data. The environmental data, however, 
will not be reported to the transport system but it will be reported to a 
new system – called the environmental system. 

• Discovery System: Since the environmental scenario also requires dis-
tributed data processing, it is necessary to rely on the discovery system 
that manages the metadata and identity information. 

• Processing System: Just like in the mobility scenario, a dedicated 
processing system is used to enable the citizen systems to run continuous 
queries against each other’s devices. The processing system is equipped 
with a privacy framework and a continuous query processor. 

• External Systems: The environmental scenario makes use of external 
systems to initialize the privacy policy. These systems are maintained 
by third parties, so no additional GAMBAS software can be installed 
on them and the necessary adapters are provided by the GAMBAS 
middleware app. 

In addition to these systems which were also used for the mobility scenario, 
the architecture of the environmental scenario also introduces a new system: 

• Environment System: Conceptually, the environment system is related 
to the transport system introduced in the mobility scenario as it manages 
and aggregates the environmental data reported by the bus and citizen 
systems. The main difference between the transport system and the 
environment system is the lack of a legacy data wrapper since the 
environment system does not have to tap into existing data sources. 
Other than that it, performs conceptually similar tasks such as data 
storage, aggregation and the computation of inferences. 

6.2.2.2 System Interaction 
In order to realize the different applications for the environmental scenario, 
the systems and their associated components have to interact with each other 
in a similar fashion as in the mobility scenario. The export of metadata and 
identity information is handled by the data storage components, the privacy 
framework and the data discovery registry. The searching is done transpar-
ently by the query processors and the privacy framework, which also create 
views on the semantic data storage of the citizen system, if necessary. The 
control for this is enabled by the policy generated by the privacy framework, 
which can be manually adjusted through the user interface. 
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Queries are issued by the citizen systems and the environmental system. 
They target either the transport system, e.g. in order to compute route infor-
mation or other citizen systems. If a citizen system requires the execution of 
a continuous query, the remote processing system is used. 

In order to provide advanced behavior-driven services, the citizen systems 
and the bus systems are used for collecting data collaboratively. The envi-
ronment system collects the data received from the bus systems and citizen 
systems. Furthermore, it stores and aggregates the data, for example, to offer 
a pollution map, which can be used in conjunction with the transport system 
to compute alternative routes. This should typically result in local inferences 
at the environment system since the route information is mostly static and can 
be retrieved once for each computation. 

In order to make the environmental services accessible to the citizens, 
the application running on citizen system provides an intent-aware user 
interface. In order to fetch the information that is relevant for the citizen, the 
intent-aware user interface issues queries and performs local or distributed 
inferences using the query processor and the application-specific code. This 
may entail distributed inferences, which are enabled by combining the contin-
uous query processor on the processing system with the privacy frameworks 
on the citizen systems. 

6.3 Application Components 

As indicated by the application architecture, the implementation of the appli-
cation scenarios entails a number of different components that are required 
to deliver the application functions. In the background, there are a number 
of application services that store and offer the data captured through sensing 
applications used by citizens or running in buses. In addition, there are back-
ground services that wrap legacy data coming from third-party data sources. 
Thus, in order to create a complete picture of the applications developed as 
part of GAMBAS, we first describe these application services. Thereafter, we 
outline the applications that we developed to capture the required data. On 
the basis of this description, we then describe the end-user applications for 
citizens as well as a set of innovative applications that feed the captured data 
back to the transit network operator. 

6.3.1 Application Services 

To power the mobility and environmental applications, we have developed 
a number of application-specific services using the GAMBAS middleware. 
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These services integrate with different data sources including data coming 
from EMT Madrid (incident feed, time tables, routes, etc.), open data pro-
vided by OpenStreetMap (addresses, geometry, etc.) and application-specific 
data (e.g. crowd-levels measured by the embedded applications running in 
vehicles). Although these services are conceptually backend services that 
are not directly visible to end users, the application services encompass 
frontends targeted at application developers and service administrators. In 
the following, we briefly walk through the different services and, where 
applicable, show a few screenshots of their frontends. 

6.3.1.1 Tile Service 
The tile service integrates with OpenStreetMap geometry data in order to 
generate images that are used to draw the map-based visualization. It sup-
ports multiple output formats and color schemes. The api has been designed 
to work with the Leaflet.js Javascript library, which is used consistently 
throughout the GAMBAS mobile applications. The screenshot shown in 
Figure 6.16(a) depicts a number of output options. 

6.3.1.2 Incident Service 
The incident service integrates with the EMT Madrid incident feed in order to 
provide incident information to the navigation application described later on. 

Figure 6.16 Tile and Incident Service. (a) Tile Service and (b) Incident Service. 
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Figure 6.17 Crowd and Routing Service. (a) Crowd Service and (b) Routing Service. 

It is tightly integrated with the routing service in order to enable the output 
of route incidents for trips computed by the user. Since the EMT inci-
dent feed is only available in the Spanish language, the incident service 
has been integrated with Microsoft Translator, which provides machine 
translations into other languages supported by the mobile prototype appli-
cations. Figure 6.16(b) shows the resulting machine-translated output that is 
integrated into the routing result on the mobile app. 

6.3.1.3 Crowd Service 
The crowd service captures the crowd-level information generated by several 
buses in the city of Madrid. The captured data is then used by the routing ser-
vice in order to provide crowd-level information as part of the routing result. 
To do this, the service aggregates the reports and assigns them to 15 minute 
timeslots, which are then used to drive the predictions. Figure 6.17(a) shows 
a sample crowd-level for one of these 15 minute timeslots. 

6.3.1.4 Routing Service 
The routing service (c.f. Figure 6.17(b)) integrates with the EMT GTFS data 
in order to compute crowd-aware routes, which are then used to power the 
navigation functions in the mobile application for citizens. In addition to 
transit routes using buses, it can also compute walking routes. If available, 
incident and crowd-level data will be returned directly as part of the routing 
result in order to minimize the amount of data that must be transferred 
between the mobile application and the service. 

6.3.1.5 Network Service 
The network service provides the mobile application for citizens with 
network-related information such as location and names of stops, routes of 
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Figure 6.18 Network and Timetable Service. (a) Network Service and (b) Timetable Service. 

lines, etc. The resulting information is then used to visualize the route in 
the application. Using a tool, it is possible to extract the information from 
the network service and to ship it with the application. This is done in order 
to minimize the latency for displaying search results. Figure 6.18(a) shows 
the application which uses the built-in address database for auto-completion 
during place search. 

6.3.1.6 Timetable Service 
The timetable service provides the mobile navigation application with bus 
schedule information that is extracted from the GTFS information provided 
by EMT Madrid. Since the associated amount of GTFS data is too large to be 
processed directly on the device, this service takes care of extracting the rele-
vant subsets based on a stop name and a calendar date. The mobile application 
then visualizes the output in a tabular form as depicted in Figure 6.18(b). 

6.3.1.7 Geo Service 
The geo service integrates with OpenStreetMap in order to resolve addresses 
into GPS coordinates. The service is used by the mobile applications to 
enable the user to search for addresses and to resolve GPS coordinates into 
addresses. The number of results returned by the service to the application is 
configurable in order to enable the optimization of applications for different 
criteria (i.e. bandwidth vs. flexibility). Figure 6.19(a) shows the output of the 
service on a map when searching for a particular address. 

6.3.1.8 Log Service 
The log service captures usage information generated by the mobile appli-
cations and enables the offline analysis of the user behavior for evaluation 
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Figure 6.19 Geo and Log Service. (a) Geo Service and (b) Log Service. 

purposes. It is based on a simple event abstraction that captures the reporting 
component, a generated user identifier, the time and the type of event as well 
as associated application-specific event data. A logging framework that has 
been integrated into the mobile applications is used to capture and synchro-
nize the data produced by an application with the service. The captured events 
can be downloaded for later analysis. To do this, the service supports different 
queries based on event types, application components, dates, etc. In addition, 
the service can generate a report summary to track its internal status (e.g. 
which devices are uploading data, when devices have uploaded data and how 
much data has been captured already). 

6.3.1.9 Noise Service 
This service captures, aggregates and visualizes the noise information cap-
tured by a mobile sensing application. In addition, it can display the noise 
level for the captured locations. In order to avoid overloading clients, the 
data is aggregated inside the service before it is delivered to other appli-
cations. Figure 6.20 shows some sample noise data. The circles indicate 
locations where noise measurements are available. The circle color indicates 
the average noise-level at the location. 

6.3.1.10 Environmental Service 
The environmental service captures the environmental information gathered 
through measurements taken by sensors located in various buses that are 
driving through the city of Madrid. Thereby, the service associates the mea-
surement with the real-time location of the bus. The service is equipped with 
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Figure 6.20 Noise Service. 

Figure 6.21 Environment Service. 

a simple user interface so that the individual measurments can be displayed. 
Thereby, it is possible to filter the measurements based on the sensor type as 
shown in Figure 6.21. 

6.3.2 Sensing Applications 

To provide data for the end-user applications, we have developed a number 
of sensing applications that target environmental information (noise, CO2-
level, pollen-levels, etc.) and transit information (i.e. crowd-levels of buses). 
As indicated in Section 6.2, this data is captured partly by mobile applications 
running on the devices of end-users and partly by embedded applications that 
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are integrated into the buses that are operating in the city of Madrid. In the 
following, we briefly describe these sensing applications. 

6.3.2.1 Noise-level Mobile App 
To measure the noise profile at different points in the city, we extended the 
GAMBAS Locator application described in Section 6.1.4.3 with support for 
crowd-sensing. To do this, we integrated a data acquisition configuration that 
captures the sound profile using as the average frequency vector described 
in Chapter 3 and the sound pressure level. A user that wants to participate 
can activate the periodic background capturing of the sound profile through a 
settings screen. When activated, the sound profile is stored locally whenever 
the user’s location is computed. As a result, the user can then visualize the 
the daily noise exposure as shown in Figure 6.22. 

In addition to locally storing the information, the user can opt-in to 
crowd sensing. If the user enables crowd sensing, the sound profile and noise 
level will be uploaded to the noise service together with the user’s current 
location and measurement time. Given a larger number of participants, the 
measurements can be used to create a picture of the noise profile of a city. 

6.3.2.2 Pollution-level System 
To capture pollution information in the city, we equipped a small number 
of buses with an environmental sensor as shown in Figure 6.23. Using an 

Figure 6.22 Noise-level Crowd-Sensing. 
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Figure 6.23 Embedded Sensors. 

application embedded into the existing ICT infrastructure of the bus, we 
were using this deployment to continuously capture sensor readings while 
the bus was operating. The captured readings were then transmitted to the 
environmental service where the sensor data was stored together with the 
real-time GPS position of the bus. 

6.3.2.3 Crowd-level System 
One of the innovative functions of the mobile navigation app described in 
the following is to provide users with real-time and predicted crowd-level 
information about the vehicles on different routes. To capture this crowd-level 
information, we developed an embedded system and integrated into several 
buses [HIW+14]. The system consists of a TP-Link 3020, which is equipped 
with a Linux-based operating system (OpenWRT) running the JamVM virtual 
machine. Several operating system services have been specifically configured 
to enable a simple installation (e.g. DHCP, NTP) and to support remote 
administration (e.g. SSH, AutoSSH). The system uses pcaplib and tcpdump 
in order to sniff 802.11 probe requests and beacon frames. These are then 
interpreted by a set of components running on top of the GAMBAS data 
acquisition framework in order to determine the crowd-level of a bus (by 
counting the number of people). Figure 6.24 depicts the hardware as well as 
the software stack. 

The configuration depicted in Figure 6.25 consists of a number of com-
ponents. The first one (RadioTap Sensor) captures packets using tcpdump, 
filters and classifies them. Sitting on top of the senor, the annotator and gate 
components are responsible for counting the persons. Finally, the reading 
segmenter prepares an output file to be transmitted to a server at regular 
time intervals. These uploads are then performed asynchronously using the 
reading uploader. The reading uploader interacts with the crowd service, 
described previously, that stores the crowd-levels and makes them available 
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Figure 6.24 Embedded Crowd-Level Detection Application. 

Figure 6.25 Crowd-Level Detection Configuration. 
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to the mobile application. In order to mitigate potential privacy issues, how-
ever, the collected data is anonymized by removing any personal identifiable 
information (i.e. device MAC addresses) before it is uploaded. 

6.3.3 End-user Applications 

The end-user applications provide regular citizens with the ability to 
access the information captured through the sensing applications and man-
aged by the GAMBAS application services. In the following, we briefly 
outline the two end-user applications that have been developed for the 
mobility and the environmental scenario. 

6.3.3.1 Navigation App 
For the mobility scenario, we developed a mobile application for Android. 
Since the mobility-related application services are integrating data from the 
public bus network of the city of Madrid, we called this application Madrid 
Navigator. 

The Madrid Navigator is a maps and navigation application that is con-
ceptually similar to other modern navigation applications for mobile phones. 
As depicted in Figure 6.26, it provides users with a map of their environment 
and allows them to search for places and bus stops. Using the voice control 

Figure 6.26 Madrid Navigator App. (a) Position, (b) Search and (c) Menu. 
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components described in Chapter 3, users can not only search for places via 
text input but also through speech input. Using different icons, the Madrid 
Navigator categorizes search results into cities, streets, buildings and bus 
stops. Depending on the category, the Madrid Navigator can show additional 
information such as bus routes going through a particular stop or timetables. 

In addition to retrieving additional information, the search results can also 
be used to compute routes. To do this, a user can simply pick any place on 
the map and tap on a route button. Alternatively, the user can enter a source 
and a destination address or GPS coordinate into the routing screen shown in 
Figure 6.28. On this screen, a user can also adjust different parameters such 
as the desired arrival or departure time and specify the desired modality (e.g. 
on foot or by bus). When the user is satisfied and starts the computation, the 
specified parameters are transmitted to a GAMBAS service that computes 
one or more route alternatives. Once the routes have been computed, they are 
visualized in a list of route summaries. The user can inspect this list and get 
additional information by tapping on one of the summaries. 

As shown in Figure 6.27, the detailed view not only shows information 
about the sequence of actions on the route, but it also depicts crowd-level 
information on the specific bus that is proposed. This allows users to compare 
consecutive trips on the same route with respect to the expected crowdedness 

Figure 6.27 Madrid Navigator Routing. (a) Request, (b) Summary and (c) Detail. 
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of the bus. To determine this information, we use the embedded sensing 
application described previously, which we deployed in several buses run-
ning through the city. Using this embedded application, we collect real-time 
information about the number of passengers on board of the buses. The 
resulting information is then processed in order to compute predictions for 
other buses, which are not equipped with the crowd-level sensing application. 
The resulting predictions are then fed back into the routing service such that 
they can be used (a) to guide routing decisions and (b) to inform the users. 

Once a user has decided to follow a particular route proposal, the user can 
start a navigation session for the route. During this session, the GAMBAS 
middleware can automatically share the user’s intended destination with the 
transit network operator. As explained later on, this allows the operator to 
detect routes that are going to be in high demand in the near future. Thereby, 
the user’s identity is hidden from the operator. During navigation session, the 
user is supported through step-by-step instructions as shown in Figure 6.28. 

The step-by-step instructions implement the concept of micro-navigation 
described in [FKR+14]. The idea behind micro-navigation is to optimally 
support the user’s information needs during the usage of public transporta-
tion. For this, the app must provide the right pieces of information at the 
time when they are needed. To do this, the application usage text messages 

Figure 6.28 Madrid Navigator Navigation. (a) Walking, (b) Riding and (c) Textual. 
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that are shown at the bottom of the screen at all times. In addition, the 
application provides (optional) voice output using text-to-speech. To generate 
instructions, the application uses the GAMBAS data acquisition framework 
to tap into the sensors and information provided by the bus. To do this, the 
application automatically connects to the Wi-Fi network available in every 
bus operated by EMT Madrid and connects to the internal information system 
to determine the location and route of the bus. This information is then used to 
generate messages that correspond exactly to the user’s context. For example, 
the app will notify the user to get off the bus shortly before it arrives at 
the correct stop. Similarly, if the user has taken the wrong bus, the app will 
immediately inform the user and propose a corrective action (e.g. to re-plan 
the route or to exit the bus at the next stop). 

As shown in Figure 6.29, the app also enables users to directly access 
the bus information whenever they are traveling. This allows them to get 
real-time information about expected arrival times, even if they are not using 
micro-navigation. In addition, the application also integrates with the incident 
feed provided by the bus operator. This incident feed describes changes to 
schedules, e.g. due to demonstrations in the city center or traffic accidents. 
Thereby, the incidents are directly integrated into the routing results as well 

Figure 6.29 Madrid Navigator Features. (a) Bus Infos, (b) Route Incidents and (c) Time 
Table. 
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as the timetable information that can be fetched for different stops. In addition 
to incidents, the timetable information also includes real-time information for 
buses that are departing within the next 20 minutes. To do this, the application 
integrates with a real-time service provided by EMT Madrid through the 
GAMBAS middleware. 

6.3.3.2 Environmental Map 
For the environmental scenario, we have developed a web-based application 
that enables end-users to inspect the state of the environment. This state is 
captured through measurements of pollutants that are acquired via the sensor 
deployment in buses and the noise-level measurements of the mobile noise-
sensing application. For this, the environmental map application integrates 
with the GAMBAS noise service and the environmental service, described 
previously. After retrieving the data from them, the application applies the 
following data aggregation approach to create a visually appealing data 
representation: 

1. Values corresponding to measurements at certain locations are clustered. 
2. Based on the clusters, we identify the Voronoi partitions to define the 

area of the cluster. 
3. Using Delaunay triangulation, we find adjacent areas to interpolate 

missing data. 
4. Finally, we perform hexagonal binning in order to represent the result. 

The resulting hexagonal visualization is then added to an overlay of tiles 
computed with the tile service, which results in the final result shown in 
Figure 6.30. Thus, using the web-based application, a user can simply move 

Figure 6.30 Environmental Map. (a) Voronoi Clusters and (b) Hexagonal Map. 
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the map to a specific location in the city and then view the different sensor 
readings in a manner that is easy to understand. 

6.3.4 Operator Applications 

In addition to the application services, sensing applications and mobile 
applications, we have also developed a number of applications that are not 
targeting the citizens. Instead, they are targeted towards the transit net-
work operator, which, in our specific case, is EMT Madrid. The operator 
applications are aggregating the information collected through the crowd-
level sensors and the mobile applications in order to help the operators to 
understand the current transit network usage. This understanding can then 
be used to optimize the network, possibly in real time, e.g. by dispatching 
additional buses or issuing route warnings, etc. In the following, we briefly 
outline these services. 

6.3.4.1 Congestion Notifications 
At the EMT Madrid headquarter, there are operators that control all the 
operations related to the bus network management. Crowd-level detection 
provides an estimation of the bus occupancy. A bus is considered as “con-
gested” when a threshold of 85% of its capacity is exceeded. When the 
embedded application on the bus detects that a bus is getting congested, it 
generates a notification to signal this to the operator. If 2/3 of the vehicles 
within a route are congested, then the operator receives another notification 
that signals the congestion in the route. These alarms and notifications have 
been incorporated to the management system in a way that they can be 
visualized in the same graphical user interface that EMT is currently using. 
Figure 6.31 shows how the operator that is managing a route is notified 
when the threshold level is exceeded, by displaying an “Ocupacion LLENO” 
message (full occupation) and in red, the message “Ruta atocha-misericordia 
congestionada” (Atocha-misericordia route congested). 

6.3.4.2 Demand Notifications 
As described previously, the most demanded routes by the Madrid Navigator 
users are detected based on the usage of the navigation functionality. The 
currently used destinations during navigation are stored in the demand ser-
vice. Once a certain number of destinations located in a certain area, for 
a given period of time, are reached, then that area can be categorized as a 
high-demanded destination zone. As a result, it will be shown to the bus 
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Figure 6.31 Congestion Notifications. 

Figure 6.32 Demand Notifcations and Occupancy Analysis. (a) Demand Notification and 
(b) Occupancy Analysis. 

network operators who can use this information to detect a massive event 
such as a concert or a demonstration. Based on this, the operator can decide 
whether to reinforce the related bus lines covering that area or not. The 
information is offered to the bus operator in a map by using the hexagonal 
binning representation. The different hexagonal areas allow the operator to 
visualize the most demanded destinations in a quick and simple manner, as 
shown in Figure 6.32(a). 

6.3.4.3 Occupancy Analysis 
Crowd-level measurements are received in real time and stored in a data 
storage for offline analysis. For this storage service, we developed an operator 
tool to display the real-time and historical bus occupancy. Using this tool, the 
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bus network operator is able to visualize occupancy information in a geo-
located manner for a selected bus line. The viewer is implemented as a web 
application to visualize the buses location integrated with a map. The colors 
in the different routes are showing the crowd-level data at a specific time: 
low-crowded (green), medium-occupied (orange) and congested (red), in the 
same way as this information is shown in the mobile app. 

6.4 Application Evaluation 

During the course of the development of the GAMBAS middleware, we 
deployed all application services and sensing components. In addition, we 
performed a large-scale deployment of the Madrid Navigator navigation 
application. For the operator applications and the pollution map, we per-
formed only internal testing with a closed user group. During the internal 
testing of the environmental applications, we found that the pollutant sensing 
system in the bus was not able to collect meaningful data. After an analysis 
and several rounds of discussions with the hardware manufacturer of the 
pollution sensor, we stopped the further roll-out of the system due to the 
unreliability of the sensor readings. As a consequence, the evaluation results 
described in the following are centered around the mobility scenario and the 
navigation app in particular. 

To evaluate the Madrid Navigator navigation app, we distributed it 
through the Android market in order to make it available to interested users 
and application developers. During the evaluation period, the application was 
downloaded more than 1000 times and used by both an internal group of 
testers and actual citizens that were not related to GAMBAS. From this 
deployment, we collected a significant amount of feedback both implicit 
(through the app usage) and explicit (through in-app questions and a feedback 
form). In the following, we briefly describe the application functionality and 
the results gathered during the deployment. 

In order to detect issues and to improve the app during the deployment, 
we instrumented it with logging code. If a user gave his explicit consent as 
shown in Figure 6.33, we uploaded and analyzed the logs using the logging 
service described previously. In addition to implicit feedback, we also offered 
two ways to provide explicit feedback. First, we integrated a feedback form 
into the application and second, we used pop-up dialogs to ask user’s about 
their current experience. For this, we implemented a regular 5-star rating 
dialog shown in Figure 6.33. Using the in-app questions, the users collectively 
generated 350 responses to different questions. Each of these questions could 
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Figure 6.33 Madrid Navigator Feedback. (a) Implicit, (b) Form and (c) Question. 

Figure 6.34 Madrid Navigator Results. (a) Reliability, (b) Interface, (c) Navigation, 
(d) Motivation, (e) Usage and (f) Recommendation. 

have been rated between 0 and 5 stars. The responses to each question are 
shown in Figure 6.34. In the following, we briefly discuss the results. 

To determine whether the application worked as expected on the broad 
number of devices of the users, we asked the users to provide a rating with 
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respect to reliability. As depicted above, 36% of the users gave a 5-star rating 
(works as it should), 27% of the users gave a 4-star rating and 37% of the 
users gave a 3-star rating resulting in an average rating of 4 (out of 5). 
Consequently, we think that the mobile application was working well in many 
cases as none of the users gave a rating that was worse than 3 stars. 

The second question that we posed to the users was to rate the overall 
usability of the user interface between easy-to-use (5 stars) and very com-
plicated (0 stars). With 43%, the majority of users thought that the interface 
is neither easy nor complicated to use. Another 43% assigned a 4 or 5  star 
rating marking the interface clearly as easy-to-use. However, on the negative 
side, 14% of the users thought that the interface was rather complicated. We 
speculated that this could be due to issues on devices that have a small screen, 
which could result in usability issues with the map-based visualizations (e.g. 
small icons, etc.). However, we were not able to prove this assumption. 

In addition to crowd-level and incident-aware routing, one of the core 
features of the GAMBAS Madrid Navigator is the application of context-
awareness to enable intent-aware navigation instructions. Thus, in order to 
evaluate the usefulness of this feature, we asked the users whether they 
consider the navigation to be useful. Here, the overwhelming majority of 
users (95%) is rating the application with a 3 star or higher rating. 41% are 
rating the application even with the maximum rating resulting in an average 
of 3.85 stars. This clearly shows that a) the navigation was working reliable 
and b) the idea of micro-navigation was clearly considered to be useful. 

In order to determine the impact of the Madrid Navigator on the user’s 
transport behavior, we asked whether they think that the application could 
motivate them to use more public transportation. Here, the answer is again 
rather positive since 36% of the users completely agree that the application 
could motivate them and another 20% rather agrees, which results in an aver-
age rating of 3.92 stars. Consequently, we argue that navigation applications 
like the Madrid Navigator that employ context- and intent-awareness can be 
a benefit for transport network operators. 

To determine whether the application actually helps users during their 
trips, we asked whether the application makes it easier for them to use the 
bus network. Again, the overall results were rather positive since 39% of 
the users stated that it would simplify their trips at least somewhat and only 
6% answered that the application would not help. Thus, the overwhelming 
majority of users providing detailed and precise navigation instructions by 
means of context recognition at the right point in time can simplify their 
bus trips. 
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Finally, to gather the users overall impression on the Madrid Navigator, 
we asked them whether they would recommend the application to other users. 
Just like with previous questions on the reliability, usability and helpfulness of 
the application, the explicit user feedback reveals a rather positive result. With 
an average of 3.58 stars, the users are either undecided or would recommend 
the application. 

In summary, these results are a clear indication for the maturity and use-
fulness of the navigation application. Given the fact that the implementation 
of the Madrid Navigator and all of its background services was leveraging 
the GAMBAS middleware, this also demonstrates the applicability of the 
abstractions provided by it. Thereby, it is important to stress that, in contrast 
to many other research projects, the tests were performed under realistic 
conditions with a large number of users that were not affiliated with the 
GAMBAS project. 



7 
Conclusion 

The GAMBAS middleware encompasses several subsystems covering an 
adaptive data acquisition, interoperable data modeling and distributed 
processing, automated privacy preservation as well as associated user inter-
faces. As described in Chapter 3, Chapter 4 and Chapter 5, these subsystems 
can be further split into concepts, frameworks, mechanisms and protocols. In 
the following, we briefly revist their functions and highlight their technical 
innovations. 

Given that the GAMBAS middleware aims at supporting behavior-driven 
services, the data acquisition framework is clearly one of the fundamental 
building blocks of the GAMBAS middleware. Conceptually, the framework 
is responsible for context recognition on personal mobile devices including 
smart phones, PDAs and laptops. The framework supports various platforms 
including Android, Windows and Linux. It follows a multi-stage approach, 
which enables the development of context recognition applications from 
generic components that can be executed in an energy-efficient manner. To 
do this, the data acquisiton framework leverages a component abstraction to 
foster genericity and a state machine abstraction to enable the energy-efficient 
execution of complex context recogniton logic. Both these subsystems have 
been extensively used in development of various applications and technical 
demonstrations of GAMBAS. Some of the examples include the recognition 
of the user’s context during a multimodal trip in order to support micro-
navigation or the detection of noise and crowd levels to improve the user 
experience while traveling. 

In order to make the acquired data usable by different applications, 
the GAMBAS middleware introduces interoperable data representations that 
follow the linked open data principles and are based on semantic web 
technologies. The GAMBAS ontology not only enables different applications 
to leverage the same data, but it is also used internally by the middleware, 
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for example, to model users and privacy policies. It is also noteworthy to 
mention that the ontology, that is accompanying the GAMBAS middleware, 
is not trying to reinvent the necessary concepts. Instead, it integrates a 
large number of ontologies that are already actively used. This increases 
the compatibility and simplifies the application development. On top of 
the interoperable data representations, the GAMBAS middleware introduces 
a dynamic data processing system that features a semantic-based auto-
discovery powered by an associated linked open-data infrastructure. This 
infrastructure leverages a dynamic data registry to make data available across 
arbitrary applications, and it features data storages that can be queried locally 
and remotely. Using the efficient implementation of semantic data storages, 
it is possible to use standard query languages for semantic data even on 
resource-poor mobile devices while maintaining a query performance that is 
suitable for complex applications such as the mobile navigation application 
described in Chapter 6. Using specifically designed language extensions such 
as CQELS, the GAMBAS middleware not only supports queries on static 
data, but instead, it also allows evaluation of continuous queries over dynamic 
data streams. However, since this requires a higher amount of processing 
power, this support is not integrated directly into mobile devices. Instead, 
the GAMBAS middleware uses a distributed query processing architecture 
that offloads the effort to more powerful systems. 

As a result of the automated acquisition of context information and 
the distributed processing of context information enabled by the GAMBAS 
middleware, security and privacy are becoming key issues that must be con-
sidered. For this reason, the GAMBAS middleware encompasses mechanisms 
and protocols to automate the preservation of the user’s privacy as far as 
possible. In this context, it is worth pointing out that the GAMBAS privacy 
preservation framework goes well beyond encrypted communication by man-
aging the access to the user’s data on the basis of the user’s privacy policy. 
To do so, it integrates with all other system components including the data 
acquisition framwork, dynamic data registry and the semantic data storages 
running on devices of the user’s and services deployed on the Internet. To 
implement access control on top of authenticated communication, the privacy 
framework allows users to automatically bootstrap the required encryption 
keys through popular online services such as Facebook. This not only mini-
mizes the friction of secure data sharing, but it also enables secure peer-based 
(i.e. server-less) sharing of data between user devices without any manual 
configuration. Similarly, to minimize the user effort for setting up privacy 
policies, their generation can be (partially) automated through these services 



Conclusion 207 

as well. Towards this end, the privacy framework encompasses a policy 
generator that interprets the sharing behavior of a user to derive a suitable 
policy generation. 

Together, these concepts, frameworks, protocols and mechanisms pro-
vide a generic structure that simplifies the development of behavior-driven 
services. This has been successfully demonstrated by the large number of 
applications and services that have been built using the GAMBAS middle-
ware during its development. The applications implement several innovative 
features that are based on the user’s behavior. This includes the automated 
capturing of user-specific information (e.g. intended trip destinations, noise 
exposure, etc.) as well as the privacy-preserving sharing of derived infor-
mation (e.g. crowd levels, high-demanded routes, noise pollution in the city, 
etc.). The resulting data can be made available to service operators such as 
the bus network operators from EMT Madrid, which allows them to optimize 
their services, e.g. by dispatching more buses when high-demanded routes or 
destinations are detected. 

Over the course of the project, the GAMBAS middleware has been 
made publicly available to third-party developers. The full source code of 
GAMBAS is available via a public Maven repository that can be reached 
through the project website. The source distribution includes tutorials and 
example applications to showcase and demonstrate the use of the middle-
ware to simplify the development of applications leveraging behavior-driven 
services. In addition, the distribution also includes binaries in the form of a 
software development kit that is packaged to support application development 
on a broad range of different platforms. 

From an academic perspective, the development of the GAMBAS mid-
dleware has resulted in a significant amount of research contributions beyond 
the state of the art. During the 3-year-long development of the GAMBAS 
middleaware and its applications, the members of the GAMBAS consor-
tium published specific concepts, algorithms and evaluations in more than 
25 papers and articles in academic conferences and journals with high visibil-
ity. Furthermore, the consoritum organized 5 different stakeholder workshops 
that shaped the design of the middleware significantly. Finally, the consortium 
demonstrated the GAMBAS technology and its applications at 3 different 
industrial events in order to disseminate the research beyond the academic 
sector. 

In addition to publications, the availability of the GAMBAS middleware 
has resulted in a considerable pickup of the underlying implementations and 
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concepts through other research projects. For example, the SIMON Project1 

has reused most of the mobility-related services to implement a mobile 
application that provides mobility support for disabled and elderly persons 
in 4 major European cities. The SmartKYE Project2 has reused the highly 
configurable component-based approach to data acquisition and processing 
provided by the data acquisition framework of the GAMBAS middleware 
in their energy-management infrastructure. Finally, the BESOS Project3 has 
reused concepts from the privacy framework and the SmartAction Project4 

has reused GAMBAS for a joint IOT-middleware demonstration. 
Given the current computing landscape with mostly centralized IoT 

infrastructures, we hope that this book will further strengthen the pickup 
of the approaches, concepts and technology developed and validated by the 
GAMBAS middleware and its applications. 

1SIMON Project Homepage: http://simon-project.eu/ 
2SmartKye Project Homepage: http://smartkye.eu/ 
3BESOS Project Homepage: http://besos-project.eu/ 
4SmartAction Project Homepage: http://www.smart-action.eu/ 
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Boda. Peir, the personal environmental impact report, as a platform for 
participatory sensing systems research. In Proceedings of the 7th Inter-
national Conference on Mobile Systems, Applications, and Services, 
MobiSys ’09, pages 55–68, New York, NY, USA, 2009. ACM. 

[Net14] Netty. The Netty Project, homepage. http://netty.io, 2014. 
Accessed: August 2014. 

[Nor07] Anil Nori. Mobile and embedded databases. In Proceedings of 
the 2007 ACM SIGMOD International Conference on Management of 
Data, SIGMOD ’07, pages 1175–1177, New York, NY, USA, 2007. 
ACM. 

[NPA10] Rammohan Narendula, Thanasis G. Papaioannou, and Karl Aberer. 
Privacy-aware and highly-available osn profiles. In Proceedings 
of the 2010 19th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, WETICE ’10, 
pages 211–216, Washington, DC, USA, 2010. IEEE Computer Society. 

[NUI12] NUIG. Rdf-on-the-go: Triple store implementation for android. 
http://rdfonthego.googlecode.com/, 2012. Accessed: May 2012. 



Bibliography 217 

[Ord12] Ordered List Ontology. The ordered list ontology. http://purl.org/ 
ontology/olo/core#, 2012. Accessed: May 2012. 

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryp-
tion and signatures from vector decomposition. In Steven D. Galbraith 
and Kenneth G. Paterson, editors, Pairing-Based Cryptography – Pair-
ing 2008, pages 57–74, Berlin, Heidelberg, 2008. Springer Berlin 
Heidelberg. 

[PEC12] PECES. PECES FP7 Project, Project Homepage. http://www. 
ict-peces.eu, 2012. Accessed: April 2012. 

[PHS10] H. Patni, C. Henson, and A. Sheth. Linked sensor data. In 2010 
International Symposium on Collaborative Technologies and Systems, 
pages 362–370, May 2010. 

[PLA12] PLANET. PLANET FP7 Project, Project Homepage. http:// 
www.planet-ict.eu, 2012. Accessed: April 2012. 

[PPS+08] J. M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward. 
Structured decomposition of adaptive applications. In 2008 Sixth 
Annual IEEE International Conference on Pervasive Computing and 
Communications (PerCom), pages 1–10, March 2008. 

[PRAB08] L. Pareschi, D. Riboni, A. Agostini, and C. Bettini. Composition 
and generalization of context data for privacy preservation. In 2008 
Sixth Annual IEEE International Conference on Pervasive Computing 
and Communications (PerCom), pages 429–433, March 2008. 

[RB04] Philip Robinson and Michael Beigl. Trust context spaces: An infras-
tructure for pervasive security in context-aware environments. In Dieter 
Hutter, G¨ uller, Werner Stephan, and Markus Ullmann, editors, unter M¨ 
Security in Pervasive Computing, pages 157–172, Berlin, Heidelberg, 
2004. Springer Berlin Heidelberg. 

[RH10] A. Rice and S. Hay. Decomposing power measurements 
for mobile devices. In 2010 IEEE International Conference 
on Pervasive Computing and Communications (PerCom), 
pages 70–78, March 2010. 

[RJH02] G. C. Roman, C. Julien, and Qingfeng Huang. Network abstrac-
tions for context-aware mobile computing. In Proceedings of the 
24th International Conference on Software Engineering. ICSE 2002, 
pages 363–373, May 2002. 

[RMJ+11] N. Roy, A. Misra, C. Julien, S. K. Das, and J. Biswas. An energy-
efficient quality adaptive framework for multi-modal sensor context 
recognition. In 2011 IEEE International Conference on Pervasive 
Computing and Communications (PerCom), pages 63–73, March 2011. 



218 Bibliography 

[RMLM09] Alejandro Rodrı́guez, Robert McGrath, Yong Liu, and James 
Myers. Semantic management of streaming data. In Proceedings 
of the 2Nd International Conference on Semantic Sensor Networks – 
Volume 522, SSN’09, pages 80–95, Aachen, Germany, Germany, 2009. 
CEUR-WS.org. 

[RMM+10] Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J. 
Rentfrow, Chris Longworth, and Andrius Aucinas. Emotionsense: A 
mobile phones based adaptive platform for experimental social psychol-
ogy research. In Proceedings of the 12th ACM International Conference 
on Ubiquitous Computing, UbiComp ’10, pages 281–290, New York, 
NY, USA, 2010. ACM. 

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web 
transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, November 1998. 

[RSB+09] S. Reddy, V. Samanta, J. Burke, D. Estrin, M. Hansen, and M. Sri-
vastava. Mobisense 2014 – mobile network services for coordinated 
participatory sensing. In 2009 International Symposium on Autonomous 
Decentralized Systems, pages 1–6, March 2009. 

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware computing 
applications. In Proceedings of the 1994 First Workshop on Mobile 
Computing Systems and Applications, WMCSA ’94, pages 85–90, 
Washington, DC, USA, 1994. IEEE Computer Society. 

[SC09] Juan F. Sequeda and Oscar Corcho. Linked stream data: A position 
paper. In Proceedings of the 2Nd International Conference on Seman-
tic Sensor Networks – Volume 522, SSN’09, pages 148–157, Aachen, 
Germany, Germany, 2009. CEUR-WS.org. 

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context 
toolkit: Aiding the development of context-enabled applications. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’99, pages 434–441, New York, NY, USA, 1999. ACM. 

[Sem12] Semantic Desktop. Personal information model. http:// 
www.semanticdesktop.org/ontologies/2007/11/01/pimo/#, 2012. 
Accessed: May 2012. 

[SHL+05] Krishna Sampigethaya, Leping Huang, Mingyan Li, Radha 
Poovendran, Kanta Matsuura, and Kaoru Sezaki. Caravan : Providing 
location privacy for vanet. In Embedded Security in Cars (ESCAR), 
2005. 

[SHS08] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic sensor 
web. IEEE Internet Computing, 12(4):78–83, July 2008. 



Bibliography 219 

[SPI12] SPITFIRE Consortium. The spitfire ontology. http:// 
spitfire-project.eu/ontology/ns/, 2012. Accessed: May 2012. 

[SPTH11] R. Shokri, P. Papadimitratos, G. Theodorakopoulos, and J. P. 
Hubaux. Collaborative location privacy. In 2011 IEEE Eighth 
International Conference on Mobile Ad-Hoc and Sensor Systems, 
pages 500–509, Oct 2011. 

[STD+10] Reza Shokri, Carmela Troncosof, Claudia Diaz, Julien Freudiger, 
and Jean-Pierre Hubaux. Unraveling an old cloak: K-anonymity for 
location privacy. In Proceedings of the 9th Annual ACM Workshop 
on Privacy in the Electronic Society, WPES ’10, pages 115–118, New 
York, NY, USA, 2010. ACM. 

[Swe02] Latanya Sweeney. K-anonymity: A model for protecting pri-
vacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 
October 2002. 

[TRL+09] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, 
Samuel Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriks-
son. Vtrack: Accurate, energy-aware road traffic delay estimation 
using mobile phones. In Proceedings of the 7th ACM Conference on 
Embedded Networked Sensor Systems, SenSys ’09, pages 85–98, New 
York, NY, USA, 2009. ACM. 

[W3C04] W3C. N-triples specification. http://www.w3.org/TR/ 
rdf-testcases/#ntriples, 2004. Accessed: May 2012. 

[W3C12a] W3C. Resource description framework (rdf): Concepts and 
abstract syntax. http://www.w3.org/TR/rdf-concepts/, 2012. 
Accessed: May 2012. 

[W3C12b] W3C. Sparql query language for rdf. http://www.w3.org/TR/ 
rdf-sparql-query/, 2012. Accessed: May 2012. 

[W3C12c] W3C. Sparql query results xml format. http://www.w3.org/ 
TR/rdf-sparql-XMLres/, 2012. Accessed: May 2012. 

[W3C12d] W3C. Terse rdf triple language. http://www.w3.org/TR/ 
2012/WD-turtle-20120710/, 2012. Accessed: May 2012. 

[W3C12e] W3C. Time ontology in owl. http://www.w3.org/TR/ 
owl-time/, 2012. Accessed: May 2012. 

[W3C12f] W3C. Wgs84 geo positioning: an rdf vocabulary. http://www. 
w3.org/2003/01/geo/wgs84 pos, 2012. Accessed: May 2012. 

[W3C13a] W3C. Query results json format. https://www.w3.org/TR/ 
sparql11-results-json/, 2013. Accessed: May 2018. 

[W3C13b] W3C. Sparql 1.1 federated query w3c recommendation. http:// 
www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/, 
2013. Accessed: June 2014. 



220 Bibliography 

[WCMS10] R. Wishart, D. Corapi, S. Marinovic, and M. Sloman. Collabo-
rative privacy policy authoring in a social networking context. In 2010 
IEEE International Symposium on Policies for Distributed Systems and 
Networks, pages 1–8, July 2010. 

[Wei91] Mark Weiser. The computer for the 21st century. Scientific 
American, 265:94, 09 1991. 

[WLA+09] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A. Jacobson, 
Jason Hong, Bhaskar Krishnamachari, and Norman Sadeh. A frame-
work of energy efficient mobile sensing for automatic user state recog-
nition. In Proceedings of the 7th International Conference on Mobile 
Systems, Applications, and Services, MobiSys ’09, pages 179–192, New 
York, NY, USA, 2009. ACM. 

[WZL06] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: 
A framework for composable semantic interpretation of sensor data. In 
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