

Adaptive Middleware for
the Internet of Things –

The GAMBAS Approach

RIVER PUBLISHERS SERIES IN COMMUNICATIONS

Series Editors:

ABBAS JAMALIPOUR MARINA RUGGIERI
The University of Sydney University of Rome Tor Vergata
Australia Italy

JUNSHAN ZHANG
Arizona State University
USA

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google
Scholar for evaluation and indexing.

The “River Publishers Series in Communications” is a series of
comprehensive academic and professional books which focus on communica-
tion and network systems. Topics range from the theory and use of
systems involving all terminals, computers, and information processors to
wired and wireless networks and network layouts, protocols, architectures,
and implementations. Also covered are developments stemming from new
market demands in systems, products, and technologies such as personal
communications services, multimedia systems, enterprise networks, and
optical communications.

The series includes research monographs, edited volumes, handbooks
and textbooks, providing professionals, researchers, educators, and advanced
students in the field with an invaluable insight into the latest research and
developments.

For a list of other books in this series, visit www.riverpublishers.com

Adaptive Middleware for
the Internet of Things –

The GAMBAS Approach

Marcus Handte
Universität Duisburg-Essen

Germany

Pedro José Marrón
Universität Duisburg-Essen

Germany

Gregor Schiele
Universität Duisburg-Essen

Germany

Manuel Serrano Matoses
Etra Investigacion´ Y Desarrollo

Spain

River Publishers

Published 2018 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Adaptive Middleware for the Internet of Things – The GAMBAS Approach / by Marcus Handte,
Pedro José Marrón, Gregor Schiele, Manuel Serrano Matoses.

© The Editor(s) (if applicable) and The Author(s) 2018. This book is published open access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa business

ISBN 978-87-9351-978-7 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.

DOI: 10.1201/9781003336952

Contents

Preface ix

List of Figures xiii

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 GAMBAS Objectives . 4
1.3 Application Scenarios . 5

1.3.1 Mobility Scenario 5
1.3.2 Environmental Scenario 7

1.4 Overarching Vision . 8
1.4.1 Smart Cities . 9
1.4.2 Characteristics . 11

1.5 State of the Art . 11
1.5.1 Hardware Technologies 12
1.5.2 Communication Middleware 18
1.5.3 Context Management 19
1.5.4 Sensing Applications 20

1.6 Innovations . 20

2 Architecture 23
2.1 Static Perspective . 23

2.1.1 Operational View 23
2.1.2 Component View 26
2.1.3 Data View . 30

2.2 Dynamic Perspective . 34
2.2.1 Acquisition View 34
2.2.2 Processing View 37
2.2.3 Inference View . 43

v

vi Contents

2.3 Interface Perspective . 46
2.3.1 Storage Interfaces 47
2.3.2 Query Interfaces 48
2.3.3 Privacy Interfaces 52
2.3.4 Control Interfaces 56

3 Data Acquisition 59
3.1 Focus and Contribution . 59

3.1.1 Data Acquisition Frameworks 60
3.1.2 Rapid Prototyping Tools 61
3.1.3 Application-Specific Acquisition 62
3.1.4 Contribution . 63

3.2 Data Acquisition Framework 64
3.2.1 Component System 66
3.2.2 Activation System 73

3.3 Data Acquisition Components 82
3.3.1 Context Recognition 82
3.3.2 Intent Recognition 87

4 Data Processing 89
4.1 Focus and Contribution . 89

4.1.1 Data Representation 90
4.1.2 Query Processing 90
4.1.3 Contribution . 91

4.2 Data Model . 92
4.2.1 Data Definition . 93
4.2.2 Query Specification 102

4.3 Data Discovery . 109
4.3.1 Architecture . 110
4.3.2 Metadata Management 110
4.3.3 Querying Data Sources 113
4.3.4 Security and Privacy 113
4.3.5 Client-side Caching 114

4.4 Data Processing . 115
4.4.1 Data Storage . 115
4.4.2 Query Processor 119

5 Privacy Preservation 123
5.1 Focus and Contribution . 123

Contents vii

5.1.1 Trusted Computing Hardware 123
5.1.2 Key Exchange and Derivation 124
5.1.3 Obfuscation and Generalization 125
5.1.4 Contribution . 126

5.2 Privacy Framework . 127
5.2.1 Overview . 128
5.2.2 Mechanisms . 132

5.3 Privacy Policy . 146
5.3.1 Automatic Generation 149
5.3.2 Manual Fine-Tuning 151

5.4 Privacy Integration . 151
5.4.1 Data Transfer . 151
5.4.2 Data Acquisition 155
5.4.3 Data Processing 158

6 Applications 161
6.1 Application Development Support 161

6.1.1 Overview . 162
6.1.2 J2SE Support . 163
6.1.3 Android Support 165
6.1.4 Application Examples 169

6.2 Application Architecture 178
6.2.1 Mobility Scenario 179
6.2.2 Environmental Scenario 182

6.3 Application Components 185
6.3.1 Application Services 185
6.3.2 Sensing Applications 190
6.3.3 End-user Applications 194
6.3.4 Operator Applications 199

6.4 Application Evaluation . 201

7 Conclusion 205

Bibliography 209

Index 221

About the Authors 223

http://taylorandfrancis.com

Preface

In early 2011, a small group of researchers and developers from
three academic institutions, the Universitat¨ Dusiburg-Essen, the National
University of Ireland in Galway and the Open University, and three
commercial entities, ETRA I+D, EMT Madrid and Aristech, jointly decided
to collaborate to address the challenges imposed by the impedance mismatch
between information availability and access methods. After an initial set of
discussions, they agreed on forming a research consortium that would extend
the basic concepts of today’s information systems in order to support their
automatic adaptation to the context of their users. Instead of requiring users
to provide large amounts of inputs to find and access a particular piece of
information, the members of the consortium envisioned information services
that would automatically offer the right information at the right time.

Enabling such a shift in system design required a new breed of
information services. Instead of being driven by sequences of explicit user
inputs, the goal was to have the services react to the behavior of their users.
Towards this end, the services would need to access an up-to-date view of
the users’ context in order to adapt to their behavior automatically. Without
adequate system support, this would lead to complex application logic that
would have to capture, process and share large amounts of potentially
private data. The resulting complexity for application developers would often
outweigh the potential benefits of having behavior-driven services, especially,
when considering small and medium-sized enterprises that could not afford
the development of a powerful software infrastructure to support services.

To address this problem, the consortium applied for a research grant in
the 7th Framework Programme of the European Union and acquired funding
to design and implement GAMBAS, the Generic Adaptive Middleware
for Behavior-Driven Autonomous Services. The hardware basis for this
middleware was planned to be widely available personal mobile devices, such
as smartphones and laptops, existing services on the Internet and upcoming
Internet-connected Objects that would form the Internet of Things (IoT). Due

ix

x Preface

to the composition of the consortium, which consisted of two companies in
the public transport domain, the focus of the application areas described in
the grant proposal were mobility and environmental monitoring applications
in a smart city domain.

After the positive evaluation of the research grant, the consortium started
its work on GAMBAS in February 2012. Three years later, the consortium
successfully completed the project and provided not only a fully functional
middleware system that was available under a public source license, but also
developed a significant number of services and applications that demonstrated
the maturity of the concepts and implementation. During the middleware and
application development, the consortium published more than 25 articles and
papers in conferences and journals and pushed the state of the art in adaptive
data acquisition, interoperable data processing and privacy preservation.

Since 2011, the computing landscape has changed. IoT has made its way
from academic conferences into mainstream and is present in the minds of
regular people. Even small and medium-sized companies are manufacturing
Internet-connected devices and processing personal information on a large
scale. However, at the same time, we continuously hear new reports on data
breaches that cause the release of large amounts of personal data from fitness
trackers, IP-based home surveillance cameras and other inexpensive hardware
capable of some sort of data acquisition. This shows that the concepts
related to the dynamic and distributed processing of sensor information
in a privacy-preserving manner realized by the GAMBAS middleware are
not obsolete. Instead, they are more relevant today than they were seven
years ago.

Looking at the latest consumer trends, we see that digital assistants
are on the rise and many people are now installing Internet-connected
microphones in their home environments to access them at any point in
time. At a conceptual level, the idea of digital assistants can be seen as a
specific implementation of the idea of autonomous behavior-driven services.
By learning about the context of the user, e.g. through the user’s phone
book, calendar and the user’s interaction with the assistant, the service
continuously improves its accuracy and usefulness. Thereby, the service
provides a easy-to-use user interface-based natural language understanding.
However, when focusing on the details of the underlying implementations,
we find rather closed systems operated exclusively by the largest players in
the computing industry. In addition, the systems require users to put their full
trust into their manufacturer.

Preface xi

In contrast, the idea behind behavior-driven services in GAMBAS is to
avoid such single-points-of-trust by facilitating secure sharing and distributed
processing of data based on an interoperable data representation. As a
consequence, we are convinced that the concepts proposed in GAMBAS have
not lost their appeal. Instead, we think that they are an important alternative
to the centralized architectures that are in use today. By summarizing the
GAMBAS approach to IoT middleware in this book, we hope to inspire
future designers and developers to consider the concepts implemented in
the GAMBAS middleware as design choices whose applicability has been
demonstrated in several applications.

http://taylorandfrancis.com

List of Figures

Figure 1.1 The Challenge. 2
Figure 1.2 Approach and Components. 5
Figure 1.3 Smart City Vision. 9
Figure 2.1 Roles of Entities. 24
Figure 2.2 Classes of Data. 31
Figure 2.3 Personal Data Acquisition. 36
Figure 2.4 Collaborative Data Acquisition. 37
Figure 2.5 One-time Processing of Public Data. 39
Figure 2.6 Continuous Processing of Public Data. 40
Figure 2.7 One-time Processing of Shared Data. 42
Figure 2.8 Continuous Processing of Shared Data. 43
Figure 3.1 Data Acquisition Framework Overview. 65
Figure 3.2 Component System Overview. 66
Figure 3.3 Speech Detection Configuration Example. 68
Figure 3.4 Component System Structure. 71
Figure 3.5 Component System Tool Support. 72
Figure 3.6 Activation System Overview. 74
Figure 3.7 Examples of Activation System States. 75
Figure 3.8 Examples of Activation System Transitions. 76
Figure 3.9 Activation System Structure. 77
Figure 3.10 Configuration Mapping Example. 79
Figure 3.11 Executed Configurations and Transitions. 80
Figure 3.12 Activation System Tool Support. 81
Figure 3.13 Trip Recognition Classifier. 84
Figure 3.14 Trip Recognition Confusion Matrix. 84
Figure 3.15 Average Frequency Vectors (Train Station, Restaurant,

Rock Concert, Sport Arena, Subway, Train). 85
Figure 4.1 The GAMBAS Ontologies. 94
Figure 4.2 User Class. 95
Figure 4.3 Place Class. 97
Figure 4.4 Activity Class. 98

xiii

xiv List of Figures

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1
Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Journey Class. 99
TravelMode Class. 101
Bus Class. 101
Jogging Class. 102
Shopping Class. 103
Dynamic Data Discovery Registry Administration
Interface. 110
Dynamic Data Discovery Registry Architecture. . . 111
Secure Data Discovery Registry. 114
SDS Throughput Comparison. 118
SDS Memory Comparison. 119
Stream Processing Module. 122
Privacy Components for Personal Data Acquisition. 129
Privacy Components for Collaborative Data
Acquisition. 130
Privacy Components for One-time Processing of
Shared Data. 131
Privacy Components for Continuous Processing of
Shared Data. 132
BASE Middleware. 133
Certificate Hierarchy Example. 135
Certificate-based Key Exchange. 136
PIKE-based Key Exchange. 138
User-level Key Posted on Facebook. 139
Secure Multi-hop Communication Example. 140
Data Request using Access Control. 144
Continuous Query Processing using Access Control. 145
Privacy Policy Permission Example. 146
Privacy Policy Sharing Level Example. 148
Privacy Settings in Facebook. 150
Client and Server Communication. 154
Device to Device Authentication. 155
Integrated System. 162
Abstract Middleware Structure. 163
GAMBAS for J2SE. 164
GAMBAS for Android. 166
User Interface. 168
Voiceprint Luncher Training. 169
Voiceprint Launcher Usage. 170

List of Figures xv

Figure 6.8 Voiceprint Launcher Coverage. 171
Figure 6.9 Voiceprint Launcher Configurations for Training

and Classification. 171
Figure 6.10 Linked Weather Android App and J2SE Service. . . 174
Figure 6.11 Linked Weather Coverage. 175
Figure 6.12 Locator History and Sharing. 176
Figure 6.13 Locator Coverage. 178
Figure 6.14 Mobility Scenario Architecture. 179
Figure 6.15 Environmental Scenario Architecture. 183
Figure 6.16 Tile and Incident Service. 186
Figure 6.17 Crowd and Routing Service. 187
Figure 6.18 Network and Timetable Service. 188
Figure 6.19 Geo and Log Service. 189
Figure 6.20 Noise Service. 190
Figure 6.21 Environment Service. 190
Figure 6.22 Noise-level Crowd-Sensing. 191
Figure 6.23 Embedded Sensors. 192
Figure 6.24 Embedded Crowd-Level Detection Application. . . 193
Figure 6.25 Crowd-Level Detection Configuration. 193
Figure 6.26 Madrid Navigator App. 194
Figure 6.27 Madrid Navigator Routing. 195
Figure 6.28 Madrid Navigator Navigation. 196
Figure 6.29 Madrid Navigator Features. 197
Figure 6.30 Environmental Map. 198
Figure 6.31 Congestion Notifications. 200
Figure 6.32 Demand Notifcations and Occupancy Analysis. . . 200
Figure 6.33 Madrid Navigator Feedback. 202
Figure 6.34 Madrid Navigator Results. 202

http://taylorandfrancis.com

List of Abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
ARM Advanced RISC Machines
BESOS Building Energy Decision Support Systems for Smart

Cities
CCS Constrained Computer System
CPU Central Processing Unit
CQELS Continuous SPARQL
CQP Continuous Query Processor
DB Database
DBMS Database Management Sytem
DDR Data Discovery Registry
DH Diffie Hellman
DQF Distributed Query Processing Framework
ECDH Elliptic-Curve Diffie-Hellman
EDBC Event-driven Backward Chaining
FFT Fast Fourier Transform
FOAF Friend of a Friend
GAMBAS Generic Adaptive Middleware for Behavior-driven

Autonomous Services
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
GTFS General Transit Feed Specification
ICT Information and Communication Technology
IDE Integrated Development Environment
IETF Internet Engineering Task Force
ISO International Organization for Standardization
IUI Intent-aware User Interface
JSON Javascript Object Notation
LAN Local Area Network

xvii

xviii List of Abbreviations

LBS Location-based Service
LOD Linked Open Data
MAC Message Authentication Code
MB Megabyte
NFC Near Field Communication
OBD Onboard Diagnostics
OS Operating System
OSI Open Systems Interconnection
OWL Web Ontology Language
PECES Pervasive Computing in Embedded Systems
PIKE Piggy-backed Key Exchange
PLANET Platform for the Deployment and Operation of

Heterogeneous Networked Cooperating Objects
PPO Privacy Preference Ontology
PRF Privacy Preservation Framework
QP Query Processor
RAM Random Access Memory
RDF Resource Description Framework
RF Radio Frequency
RSA Rivest-Shamir-Adleman
SDK Software Development Kit
SDS Semantic Data Storage
SIMON Assisted Mobility for Older and Impaired Users
SPARQL SPARQL Protocol and RDF Query Language
SPI Service Programming Interface
SPITFIRE Semantic-Service Provisioning for the Internet of Things

using Future Internet Research by Experimentation
SPT Spitfire Ontology
SSL Secure Sockets Layer
UI User Interface
UMTS Universal Mobile Telecomunication System
URI Unified Resource Identifier
XML Extensible Markup Language
YANTRIP Yet Another N-Triple Parser

1
Introduction

This chapter first introduces the motivation behind the developments
described in this book. Then, it discusses the main objectives of GAMBAS
and describes the two motivating scenarios in the domain of mobility and
environmental monitoring. Based on these scenarios, the chapter derives
the overall vision and identifies the innovative characteristics. Finally, the
chapter closes with a discussion of the state of the art that is used to high-
light the primary innovations realized by the development of the GAMBAS
middleware.

1.1 Motivation

With the advent of powerful personal mobile devices such as smart phones,
digital assistants and tablet computers, an ever-increasing number of people
has constant access to the wealth of information stored on the millions of
servers connected via the Internet. Over the last years, the availability of such
devices has caused a paradigm shift in the way people deal with information.
Instead of collecting and printing potentially relevant documents in advance,
using a personal computer that is only available at particular locations, they
now access information on-demand and on-the-go.

Yet, despite this significant change in behavior, the technical means to
access information have only changed marginally. As depicted in Figure 1.1,
in most cases, information is accessed via the web, which requires users
to memorize long URLs, click through sequences of web pages or browse
irrelevant search results. Alternatively, if they are frequently accessing the
same service, they may install an app or application that provides more
convenient access. However, such an installation requires advance planning
and does not provide suitable support for services that are primarily useful
in a particular environment. Moreover, even if they are using a local proxy,

1 DOI: 10.1201/9781003336952-1

2 Introduction

Figure 1.1 The Challenge.

the utilization of a more complex service, for example, to book a train ticket,
requires users to specify numerous inputs such as destination, time, etc. using
miniaturized and often, inadequate peripherals. As a consequence, the state
of the art puts a natural limit on the complexity of the software and thus on
the level of support that can be gained from existing services.

In contrast, ubiquitous computing [Wei91] envisions services which pro-
vide seamless and distraction-free support for simple and complex everyday
tasks of their users. In order to realize this vision, the set of services avail-
able and the services themselves must be adapted to the users situation,
behavior and to varying user intents. Thereby, adaptation must be performed
autonomously in order to ensure that it does not conflict with the goal of
providing a distraction-free user experience. This, in turn, requires services
to gather a broad range of characteristics of the user’s context at runtime.
Examples for these characteristics include the user’s location, activity, plans
and goals.

Personal mobile devices such as smart mobile phones and personal dig-
ital assistants provide a promising basis for determining user context in an
automated manner on a large scale. The reasons for this are manifold. First
and foremost, personal mobile devices are self-contained and do not require

1.1 Motivation 3

additional infrastructure support, but existing cellular and wireless local area
networks can provide the backbone for device interaction if needed. Sec-
ondly, though these devices are resource-constrained, newer generations are
designed to support more complex tasks such as displaying a high-resolution
movie. As a consequence, the devices are often not utilized to their fullest
capacity, leaving enough resources to perform context recognition. Thirdly,
with a variety of on-board sensor, personal mobile devices have access to
both physical and virtual data sources, which allows multi-modal context
recognition with high precision. Lastly, since the devices are carried by and
owned by a single user continuously, the device’s context is tightly correlated
to the user’s context and the recognition alone does not invade privacy.

In the past, these characteristics have contributed to the development
of a number of context recognition systems for personal mobile devices.
The recognition methods applied by existing systems are usually fine-tuned
for specific requirements in order to provide reasonably accurate results
while requiring limited resources. Although these methods are suitable for
accurately detecting desired characteristics, they cover only a narrow set that
can be detected by one device. Moreover, due to the resource-constrained
nature of personal mobile devices, developers have usually concentrated on
providing solutions for a concrete service.

The vision of ubiquitous computing, however, extends beyond the bound-
aries of a single service as it envisions seamless support for everyday tasks.
As a consequence, achieving the overall vision of ubiquitous computing
raises a number of challenges which include:

• the development of concepts to support the automated recognition of
a broad range of context information types to support a variety of
application scenarios in a generic fashion,

• the development of context recognition methods that are able to cope
with the limited resource availability and energy constraints of personal
mobile devices,

• the development of novel data acquisition and distribution protocols to
share context information in order to increase the recognition accuracy
without endangering privacy,

• the definition of an interoperable data representation model for con-
text information and associated query models to support machine-to-
machine communication,

• the design of a scalable data infrastructure to share and aggregate possi-
bly frequently changing context information gathered by a large number
of devices,

4 Introduction

• the development of tools to reduce the required amount of manual
configuration of policies and the mechanisms to validate them in order
to protect the privacy of users,

• the design of new context-based human computer interaction techniques
that are able to incorporate user goals and intents.

1.2 GAMBAS Objectives

The main objective of the GAMBAS project was to develop an innovative and
adaptive data acquisition and processing middleware to enable the privacy-
preserving and automated use of behavior-driven services that are able to
adapt autonomously to the context of their users. Towards this end, GAMBAS
was set up to address the complete set of challenges listed in the previous
section in order to provide a truly integrated solution, thus closing a signif-
icant gap between the systems that were in use at the time and the vision
of ubiquitous computing. The primary result of the project was the design,
implementation and validation of a Generic Adaptive Middleware, i.e. a set of
application-independent services, to support the development and utilization
of Behavior-driven Autonomous Services.

As depicted in Figure 1.2, the GAMBAS middleware enables the devel-
opment of novel applications and Internet-based services that utilize context
information in order to adapt to the behavior of the user autonomously. To
do this, the middleware provides the means to gather context in a generic, yet
resource-efficient manner and it supports the privacy-preserving sharing of
the acquired data. Thereby, it applies interoperable data representations which
support scalable processing of data gathered from a large number of devices.
In order to make the resulting services accessible to the user, the middleware
supports intent-aware interaction, e.g., by providing recommendations for
services, which minimizes the need for user inputs.

The realization of this middleware accompanied the development and
integration of a flexible context recognition framework that is able to capture
the context of users (e.g. location, activity, plans, intents), an interoperable
data model to represent context information, a scalable data processing
infrastructure to query and aggregate context information and to integrate
context into services, a suite of security protocols to enforce the user’s
privacy when sharing context information and last but not least, a system
to largely automate the discovery and selection of relevant services avail-
able to the user. In addition, it encompassed the development of tools to
simplify the configuration of privacy policies, which ensures that the user’s

1.3 Application Scenarios 5

Figure 1.2 Approach and Components.

privacy expectations are met to improve the user experience and to increase
user acceptance.

As a consequence, the implementation of this middleware by the members
of the GAMBAS consortium resulted in a number of innovations in the
research areas of context recognition, data modeling and processing and
privacy preservation.

1.3 Application Scenarios

To define the scope of the vision addressed by the GAMBAS consortium, we
first introduce the two scenarios that motivated the project. Thereafter, we
discuss how they fit to the overall vision.

1.3.1 Mobility Scenario

John has just arrived to a new city. At the airport, he receives a message on his
mobile phone by Bluetooth broadcast welcoming him to the city and inviting
him to download an application on his smart phone in order to make his life
in the city easier and to make his visit more enjoyable.

He follows the link proposed by the welcome message and downloads the
application. When booting the application for the first time, he is requested to

6 Introduction

provide some data that does not affect his privacy. From that moment on, the
application begins to capture the context related to John’s interests including
the change of positions, used transport modes, visited shops, etc.

The interface requests John to select which type of information he is
interested in. John can choose from different sources of information and
services. For this short visit to the city, John selects the mobility, events and
shopping layers. The selection of “events” invites John to refine his selection
and choose among different kinds of events: sports, theater, exhibitions,
conferences, etc. John selects sports and theater.

The interface also suggests John to connect his smart phone application
with social networks such as FourSquare, Facebook and Twitter. John selects
Foursquare in order to publish his “check-in” events and share them with his
friends in the city.

As it is the first time John visits the city, and he has just downloaded the
application, the application is not able to predict the targeted destination of
John. His city behavior profile has been just created and the phone’s calendar
is empty.

Thus, the application asks John: What do you want to do?
John responds via voice I want to go to the hotel Astoria. The smart

interface of the application detects and recognizes the semantics of the phrase
go to and hotel Astoria and suggests this destination. John confirms this
selection with a simple gesture on his smart phone.

The application then shows John the route through public transport means
to reach his destination. John begins his trip first by metro and then continues
by bus. The application on his phone is able to detect at any time where John
is and alerts John shortly before he has to leave the metro. Thereby, it notifies
him about which bus to take next.

If he decides to leave the recommended route, he can do so at any point
and at any time. If he decides to go for a walk in the city, he can leave the
route and get updated route recommendations. At any point, he can look up
information on the bus stops and metro stations or other points of interest
(POI) making use of speech recognition combined with semantic services.

During the journey, the application informs John of the sport and theater
events taking place in the next days in the city.

When he is close to his destination and since it is already lunch time,
his smart phone suggests three restaurants nearby his hotel. At any point
during his visit to the city, John can identify locations with a voice tag.
At the location of the selected restaurant, he can use the voice recognition
system to tag the location Luigi’s restaurant or good pasta. Later on, the

1.3 Application Scenarios 7

voice recognition will be able to use this information to lead John back to
the restaurant.

After lunch, the application suggests buying in Cortefiel next to his hotel
that has a two-for-one offer on spring shirts.

Once arrived at his destination, the application detects his check-in and
suggests John to publish the event on his enabled social networks. John
accepts the suggestion and according to his settings, his location is published
in Foursquare. Once the goal is achieved, i.e. arrival at the destination – the
application returns to its initial state, What do you want to do?

This time, John ignores his smart phone however. While John is in the
city, the application keeps analyzing his behavior and suggesting information
and services based on his position and preferences.

The application can notify John about shopping deals depending on his
position and the proximity of the shops. Thus, the interaction with the user
becomes more efficient and the GAMBAS framework is capable of filtering
the offers, resulting in distraction-free support for the user’s tasks.

1.3.2 Environmental Scenario

Paul is a regular user of the smart city application on his mobile phone. He
uses it often to find the best options to get around in the city. For this, he is
always subscribed to the mobility layer.

Today, he has decided to do some sport around the city, and his friend
Ringo has explained him how to make use of the smart city application to
obtain a jogging route through the less polluted areas of the city (CO2 levels).
He indicates the number of kilometers he wants to run, and for how long, and
he also specifies that if possible he would like to run with a friend.

As a result, the smart city application offers him a route with Ringo. Paul
observes that in order to have a reasonable route, the mobile application is
proposing to take first a bus to the starting point of his jogging route.

At the same time, Ringo, who was already planning to go jogging,
receives an alert asking him if he wants to share a route with Paul. He accepts
and both friends receive a confirmation on the appointment in their agendas.

Ringo is not as concerned when it comes to environmental issues as Paul,
so he does not use the public transport. Instead its smart city application
proposes him a route by car through an urban tolling area. He is though quite
concerned about costs, and by default he is subscribed to the mobility layer
offering him a car pooling services. The urban tolling in the city depends on
a number of factors such as type of vehicle used, number of passengers in

8 Introduction

the car and level of pollution in the city. Ringo receives a proposal from the
application to share the trip with his friend George.

When activating the environmental layer on his mobile phone – in order
to access the levels of CO2 in the city – Paul has accepted to join the
group of users collaborating with the municipality to study the noise levels
in the city. Without any further intervention from his side, its mobile phone
records and processes measurements of noise level each time Paul is outdoors
and changes his position. At the end of the day, Paul can access the city
pollution map application and check the noise levels in the route he has
being following, including the jogging activity. Moreover, he obtains his
environmental footprint due to the trip on public bus.

1.4 Overarching Vision

Given the advances in computer technology and the proliferation of wireless
communication and sensing technologies, GAMBAS envisions the realiza-
tion of major parts of the ubiquitous computing vision by means of a cloud
of intelligent services, which provides adaptive and predictive information
to people.

The basis for providing this information is the ability to automatically
capture the state of the physical world by means of personal mobile devices
as well as other sensing-enabled devices integrated in stationary or mobile
Internet-connected objects. Given a variety of observations made by these
sensors, the devices of a person can observe parts of its behavior which, in
turn, can then be used to estimate and possibly predict parts of the person’s
behavior by means of a profile.

Upon request of the person, different views on this profile can be exposed
(in a tightly controlled fashion) to different services such that they can adapt
themselves not only to the person’s current situation but also to some of the
person’s future intents. Thereby, the adaptive services might have to interact
with other services as well as the personal mobile devices of other persons.

This creates dynamic mashups of services that share and integrate the
information managed by them. To allow the ad hoc creation of such mashups,
the information managed by each services and the information available
on personal mobile devices must be discoverable. In addition, in order to
seamlessly combine the information provided by different sources, it must be
possible to easily link different pieces of information. This requires the use
of a common, extensible and interoperable data representation to allow data
processing that extends beyond the boundaries of a single service or device.

1.4 Overarching Vision 9

Based on the data provided by these dynamic service mashups, GAMBAS
envisions new types of user interaction paradigms that transform the reactive
information retrieval that is commonly applied by most Internet services
into a proactive information provisioning that emerges from this system of
Internet-connected objects and services.

1.4.1 Smart Cities

By employing the overarching vision described previously to the context
of smart cities, it is possible to further detail the vision without narrowing
its general applicability. GAMBAS envisions a smart city as a cloud of
intelligent digital services that provides adaptive and predictive information
to citizens. GAMBAS foresees a variety of services that manage different
types of information that relates to the city as depicted in Figure 1.3.

Conceptually, these services and their data can be grouped into the
so-called layers that cover different aspects of people’s life in the city.
A shopping layer, for example, might encompass services that manage store

Figure 1.3 Smart City Vision.

10 Introduction

locations and special offers or recommendations on products and experience
reports on different stores. Similarly, a mobility layer might encompass
services that manage taxi locations, bus routes, subway stations or traffic
information. A social layer might manage relationships between citizens,
events that take place in the city, bar and restaurant locations, recommenda-
tions, etc. An environmental layer might manage information related to water
or air quality in the city or it might capture the noise levels at different places.
Clearly, some of the services found in these layers can apply to multiple layers
as some pieces of information and some of the services might be applicable
to multiple aspects. As a simple example, both the shopping and the mobility
layer may rely on generic geographic information about the smart city.

In order to enable the creation of dynamic mashups of services, the ser-
vices export (parts of) their information. The information is then represented
using an interoperable data representation that allows automatic linking of
different pieces of information. This makes the information accessible to
other services which can then add additional value by providing, for example,
a better experience for a specific group of citizens. In order to simplify the
integration of services, a distributed query processing system enables the
execution of queries across different information sources.

To provide up-to-date information and adaptive information to users,
the layers capture information from different sensors embedded in various
Internet-connected objects. The objects may belong either to a particular
service provider or to a citizen. The devices in the first category, may, for
example, encompass sensors embedded in a taxi or a bus or they may be
deployed at specific positions such as a bus stop or a metro station. The
devices in the second category may encompass the personal mobile devices
of the citizens such as their smart phones but they also may contain traditional
systems such as their desktops at home, for example.

To protect the privacy of the citizens, they can control the collection
and sharing of data with the services in different layers. Towards this end,
behavioral data is stored and processed on the devices that belong to the
citizen. Optionally, in order to access additional services, they may share their
information with specific service providers or other citizens. In order to avoid
the expensive task of manually controlling the sharing process, automatic
proposals for different settings can be computed based on social relationships
that are formalized by means of existing policies that the citizens created for
similar contexts.

To access the information from services and to perceive their current
context, citizens will run a special application on their personal devices. The

1.5 State of the Art 11

application performs predictions based on the citizens’ past behavior. Given
these predictions, the application is able to proactively retrieve information
from different layers that are interesting for a particular citizen. Furthermore,
it automatically determines appropriate times to notify the citizen about
important events. For example, when traveling in a bus, the application may
notify the citizen shortly before the bus stops at the target destination such that
the citizen does not miss the bus stop. In cases where the citizen is exploring
new terrains that cannot be predicted, a natural user interface based on speech
recognition technology allows the citizen to specify alternative goals.

1.4.2 Characteristics

Based on this smart city architecture, it is possible to identify two key
characteristics that differentiate the basic idea from other approaches in this
application domain:

• Adaptive Acquisition and Presentation: In terms of data acquisition,
the GAMBAS vision foresees citizens not only as consumers of digital
services, but also as an important source of information that can provide
feedback to different stakeholders. This feedback can then be used to
adapt services, which results in mutual benefits for both the citizens and
the providers of services.

• Dynamic and Distributed Processing: In terms of data processing, the
GAMBAS vision foresees high dynamics that depend on the individual
behavior of citizens as well as the results of their aggregation. This
enables novel services that go beyond the possibilities of today’s service
infrastructures as they are typically focusing on isolated operation (often
referred to as “data silos”) or they solely combine a few data sources that
are determined statically.

1.5 State of the Art

Although it has not been realized so far, overall, the vision of ubiquitous
computing as defined by Mark Weiser [Wei91] is not new. Ever since its
formulation in 1991, researchers and practitioners have focused on closing
different research gaps. With respect to middleware issues, a significant
amount of research has been performed in the area of enabling seamless
device interaction as well as application adaptation. Furthermore, there have
been considerable efforts in the area of enabling context management, which
is an important basis for context-adaptive applications. Lately, the availability
of results in these areas has led to the development of a number of large-scale

12 Introduction

sensing applications. In the following, we briefly review the state of the art
in each of these fields, but before we do this, we quickly review the available
hardware technologies.

1.5.1 Hardware Technologies

As for any other software project, the execution environment for the
GAMBAS middleware is defined by a subset of the existing hardware plat-
forms. Due to the specific focus of GAMBAS on enabling adaptive data
acquisition with Internet-connected objects, in the following, we briefly
discuss the available hardware technologies with respect to devices, com-
munication and sensing. The focus is not to provide a comprehensive list
of available technologies. Instead, we take a more high-level perspective
that uses current technology as examples but, in principle, is independent
of the concrete implementation. Based on the resulting discussion of device,
communication and sensing technology, we then introduce a classification of
device types that are the basis for GAMBAS. Thereby, it is noteworthy to
mention that not all features of the GAMBAS middleware are realized for all
types of devices. However, it enables their integration into a single system.

1.5.1.1 Devices
The devices forming the Internet of Things are heterogeneous. For exam-
ple, besides traditional personal computer systems, a significant number of
devices are either mobile or integrated. When analyzing the different types of
devices, we can categorize them with respect to several orthogonal axes.

1. Specialization: Naturally, we can classify devices on the degree of spe-
cialization. This degree may range from general purpose devices such
as PCs or laptops to special purpose devices such as micro-controllers
that are integrated into all kinds of objects. Although, in principle, the
concepts developed by GAMBAS are applicable to all kinds of Internet-
connected objects, the GAMBAS middleware does not focus on the
latter. The reason for this is that highly specialized devices are often
closed systems that cannot be programmed easily. However, given the
rapid advances of technology, we can expect that many closed devices
will open up in the future.

2. Resources: Independent of the degree of specialization, we can classify
devices on the available resources. On the one end of the spectrum, the
set of devices forming the Internet of Things may encompass resource-
rich devices such as mainframes or clusters of workstations. On the
other end, they may contain resource-poor devices such as simple sensor

1.5 State of the Art 13

nodes. In between, there are devices such as laptops or devices with less
resources such as mobile phones or tablets.

3. Mobility: Another important axis is the degree of mobility. Here, we can
distinguish stationary devices and mobile devices. In contrast to station-
ary devices, mobile devices are usually equipped with batteries and thus,
their energy is a limited resource that needs to be managed appropriately.
This is especially true, when using mobile devices for long-running tasks
such as the continuous monitoring of the environment.

4. Interaction: Last but not least, the devices can also be classified based
on their capability of supporting immediate interaction with a user. Here,
we can distinguish devices that support user inputs, e.g., by means of
graphical or audible interfaces, and devices that are invisibly integrated
other objects. This axis is particularly relevant since only devices that
support the interaction with a user can be configured manually by the
user. Due to the invisible integration, the remaining devices can solely
be configured indirectly through other devices.

1.5.1.2 Communication
Existing communication technologies can be broadly classified into wired
and wireless. Due to the success of mobile devices, the latter ones have
become main stream over the last couple of years. At the present time, there
are several technologies that are widely available and frequently integrated
into mobile devices. They cover the complete spectrum from low to high
speeds and low to high range. At the same time, they exhibit vastly different
energy profiles.

• Near-Field Communication is a set of standards to enable radio
communication between devices by bringing them in close proximity.
NFC is based on existing standards on radio frequency identification
(RFID). In contrast to other technologies in that family, it enables bi-
directional communication between two devices. However, it offers only
low transmission speeds and it is only applicable to very close range
communication (i.e. few centimeters). At the present time, it is mostly
used for mobile payment systems or in order to bootstrap connections
with other communication technologies (e.g., Bluetooth).

• ZigBee is a standard for short-range communication. ZigBee is specifi-
cally designed for low-power devices with low data rate and short-range
communication capabilities. The IEEE standard 802.15.4 defines the
physical and the MAC layer for ZigBee. The devices in a ZigBee setup
can be categorized into ZigBee coordinators, ZigBee routers and ZigBee

14 Introduction

devices. The ZigBee coordinator is the central entity that keeps record
of the devices in the network as well of the other ZigBee coordinators.
The ZigBee router is responsible for routing messages and associating
devices with each other. Devices that are not ZigBee coordinators or
ZigBee routers are classified as ZigBee devices.

• Bluetooth is another popular short-range communication standard.
Bluetooth modules are commonly available for standard computers and
various peripherals. These modules support low-bandwidth and short-
range communication. Depending on the communication range and
energy consumption, Bluetooth devices are divided into three classes.
Class 1 Bluetooth devices consume around 100 mW and support approx-
imately 100 m. Class 2 Bluetooth devices consumes up to 2.5 mW and
support communication range of approximately 10 m. Class 3 consumes
the minimal power (1 mW) but also provide the shortest communication
range (approximately 1 m).

• Wi-Fi is probably the most popular communication standard for con-
necting various devices such as laptops or mobile phones wirelessly.
Wi-Fi certification is given to the devices with wireless capabilities that
implement IEEE 802.11 standards. There exist several 802.11 standards
that include 802.11a, 802.11b, 802.11g and 802.11n. Wi-Fi-supported
routers cover approximately 100 m in outdoors. Since the clients in the
Wi-Fi network do not require wire, the network can be easily extended.
Wi-Fi-enabled devices can move in a limited area but they have rela-
tively short range. A possible shortcoming of Wi-Fi-certified devices is
that they have comparatively higher energy requirements.

• UMTS (Universal Mobile Telecommunications System) is the successor
of GSM and designed to support third-generation telephone technology.
UMTS is specifically designed to support advanced services. It is devel-
oped to support 14 Mbps data transfer rate and UMTS support is now
commonly available in most smart phones. Compared to its predecessor
(GSM), it consumes more power. However, in terms of speed and service
capabilities, it is a significant improvement over GSM.

For stationary devices, wired communication technologies are still an impor-
tant alternative to wireless technology. Many stationary general-purpose
devices such as servers are usually connected with Ethernet.

• Ethernet is based on IEEE 802.3 specification and is a very popular
LAN technology. The specification defines standard for physical layer
as well as data link layer of the OSI model. Starting with 10 Mbps, it
has evolved to support 100 Mbps (fast Ethernet) and later 1000 Mbps

1.5 State of the Art 15

(Gigabit Ethernet) speed. Currently, the fastest speed standard supported
by Ethernet is 10 Gbps, although we can assume that there will be further
progress on connection speeds.

1.5.1.3 Sensing
Besides device and communication technologies, the third hardware pillar
of GAMBAS is sensing technology. Over the last couple of years, device
manufacturers have started to integrate various sensors into different types of
devices. At the present time, current mobile devices such as smart phones and
tablets commonly exhibit the following combination of sensors:

• Accelerometer: Accelerometers are used to measure the acceleration
that a device experiences. In most cases, they are able to differentiate
acceleration along three axes. Usually, they are used to adapt the screen
orientation of the device according to the way the user is holding it.
However, researchers have also used accelerometers for various other
tasks such as classifying the mode of locomotion or detecting potholes.

• Gyroscope: More recently, device manufacturers have started to add
gyroscopes to the set of standard sensors that are available on mobile
phones. Gyroscopes are used to measure the orientation of a device.
Advanced applications include inertial navigation systems, for example.
However, at the present time, they are mostly used to support gaming.

• Microphone: As a natural consequence of their function, all mobile
phones are equipped with microphones that allow them to record and
transmit voice during a call. However, in addition to that, most devices
nowadays exhibit multiple microphones (e.g. to enable automatic noise
reduction) that can also be used to capture and analyze ambient sound.

• Proximity: In order to activate and deactivate the screen automatically
during a call, many mobile phones are equipped with proximity sensors
that can measure the distance between the phone and another object
(typically in front of the screen) in a course-grained scale (e.g. far or
close).

• GPS: To support location-based services and to support user navigation,
many mobile devices are equipped with GPS receivers. Although they
cannot be used reliably in indoor environments, outdoors they provide
reliable localization with 5 to 10 m accuracy.

• Camera: Similar to microphones, nowadays, most mobile phones and
tablets are equipped with cameras which can be used to record videos
as well as still images. In addition to simply taking pictures or recording
videos, they can also be used to recognize visual tags (e.g. QR-Tags) and

16 Introduction

they can be used for different types of context recognition applications
(e.g. to automatically detect gas station prices).

• RF: Although they are mostly intended for communication, RF-based
communication technologies such as Wi-Fi or GSM can also be used
to extend the capabilities of other sensors such as GPS, for example.
The use of these technologies as sensors usually requires special maps
that model the signal propagation in a certain area. Using these maps, a
course-grained but energy-efficient localization can be supported.

Besides mobile devices, researchers have also developed a number of sensing
platforms such as Berkeley Mica2 or UCLA iBadge, etc., mostly in the area
of wireless sensor networks. Typically, these platforms can be extended with
different types of sensors, but most of them contain at least the following
combination of sensors.

• Light: Light sensors typically measure the light level received at a
particular point of the device. In many cases, light sensors are directly
built into the sensor node or they can be added by attaching a sensor
board.

• Temperature: Temperature sensors typically measure the ambient tem-
perature of the sensor node. In many cases, the sensors are not calibrated
and the raw values need to be converted programmatically to the usual
Celsius or Fahrenheit scale.

• Pressure: Pressure sensors typically measure the barometric pressure,
and thus, they can be used to compute the altitude.

• Humidity: Humidity sensors typically measure the humidity using
capacitive measurements. In many cases, they are bundled with tem-
perature sensors.

In addition to mobile devices and sensor nodes, there are numerous
application-specific sensors. Due to their great variety, it is not possible to
provide a comprehensive list here. To name some examples that may be
relevant in the context of GAMBAS, using the OBD unit of a modern car, it is
possible to capture various engine-related values. These include, for example,
the current fuel consumption or the current state of the catalytic converter.

1.5.1.4 Classification
Based on the previous discussion of device, communication and sensing tech-
nologies, we can identify four broad classes of devices that are forming the
hardware platform for services developed with the GAMBAS middleware.

1.5 State of the Art 17

Intuitively, based on the capabilities of the device, the support provided by
the middleware differs.

• Back-end computer system (BCS): Back-end systems usually consist
of one (or more) general-purpose computer that is connected to the
Internet via a wired and often high-speed connection. Usually, they
exhibit high storage and processing capacities and they are shared by
multiple users remotely, i.e. through the Internet. Consequently, to most
of their users, they do not expose a physical interface that would enable
interaction. Instead, they are accessed through web-browsers or via
custom applications that are performing some form of remote call (e.g.
RPC, RMI, etc.). The GAMBAS middleware uses these systems for data
storage, aggregation and processing.

• Traditional computer system (TCS): Traditional computer systems
encompass workstations, desktops and laptops. If they are stationary,
they are typically connected via wired connections. If they are mobile,
like laptops, the predominant communication technology is Wi-Fi. In
some cases, they are equipped with a few sensors (e.g. microphones,
cameras, accelerometers for hard disk protection). Usually, they are
accessed and used by a single user (e.g. personal desktop/laptop) or
a small group (e.g. shared workstation). Although, they have fewer
resources than most back-end computer systems, when considering
that they are not shared between many users, the ratio of resources to
number of users may be equally high. The GAMBAS middleware uses
these systems primarily to perform similar tasks as back-end systems
(although on a smaller scale). However, it also enables their usage as
sensing devices.

• Constrained computer system (CCS): Constrained computer systems
include mobile devices such as smart phones and tablets. Further-
more, they include stationary devices such as set top boxes or indus-
trial PCs. When compared with traditional computer systems, they
exhibit a significantly lower amount of computing resources with less
capable processor architectures (e.g. ARM instead of X64) and less
amount of memory (e.g. MB instead of GB). In many cases, they are
equipped with a multitude of built-in sensors (e.g. mobile phone) or
they can be attached to application-specific sensors (e.g. industrial PC).
Consequently, they provide the primary basis for data acquisition in
GAMBAS. In addition, they are also used as a personal data storage
that can be accessed remotely.

18 Introduction

• Embedded computer system (ECS): Embedded computer systems
include highly specialized micro-controllers or ASICs that are built
into existing products such as a dishwasher or a car. Furthermore, they
include less specialized sensor platforms that may be programmable
such as a SunSPOT or a Mica2 node. Usually, these systems are
not directly connected to the Internet. Instead, they can be connected
through some gateway device that mediates the interaction. Although
such embedded devices outnumber the other classes, the GAMBAS
middleware does not focus on the use of these devices as a pri-
mary processing platform. The reason for this is that usually, these
devices cannot provide their function without additional computing
infrastructure. Furthermore, in many cases, they are not equipped with
easily accessible interfaces or they do not provide sufficient computing
resources to implement additional services. However, the GAMBAS
middleware supports their use as data sources when combined with
a more capable device such as a constrained computer system or a
traditional computer system.

1.5.2 Communication Middleware

Regarding device interaction, researchers and practitioners have developed a
number of communication middleware systems to enable the seamless and
trustworthy cooperation of a heterogeneous set of possibly resource-poor
connected objects. Examples for past and present research projects in this
area are the 3PC [3PC12], GAIA [RJH02] and AURA [GSSS02] projects or
the PECES FP7 project [PEC12], to name a few. Traditionally, the resulting
systems either focused on enabling the interaction of devices at a specific
geographic location (i.e. the so-called smart spaces) or focused on enabling
the interaction of devices that are in close proximity (i.e. the so-called smart
peer groups). More recently, systems such as the PECES middleware have
integrated and extended these two concepts by enabling the interaction within
a smart space that is formed by devices in close proximity and beyond smart
spaces by enabling device interaction across the Internet in a peer-to-peer
fashion. Since the resulting concepts provide a higher degree of flexibility,
the GAMBAS middleware will use PECES as its underlying communication
middleware.

Besides device interaction, research on communication middleware also
addressed the development of new programming paradigms to support the
development of adaptive applications, for example, on the basis of goals

1.5 State of the Art 19

as done by O2S [PPS+08] or components as done by PCOM [Han09] or
flows as done in the ALLOW FP7 project [ALL12]. While these abstrac-
tions are interesting to support the development of adaptive applications,
the GAMBAS project does not primarily target the development of new
abstractions to support application adaptation. Instead, it focuses on the
acquisition of context information as well as the processing of environmental
information in a privacy-preserving way, which usually provides an important
basis for adaptation that is independent of the concrete abstraction that
performs the adaptation. Consequently, from a high-level perspective, the
goal of GAMBAS is a more fundamental one that will enable the use of such
abstractions at a later point in the development process.

1.5.3 Context Management

The importance of context information for the realization of ubiquitous
computing has been recognized very early after the formulation of the vision
[SAW94]. Over the course of several years, researchers have developed a
number of middleware systems to acquire and leverage context information,
e.g. [HKL+99], [SDA99], [Bar05]. Traditionally, these systems have either
focused on the scalability issues that arise from providing context awareness
in an application-independent way using a federated system [HKL+99] or
focused on the actual distributed acquisition and usage when developing
applications with a limited scale such as a room or a house [SDA99], [Bar05].
In addition to that, specialized context management systems have been inte-
grated into all kinds of middleware systems for smart environments such as
GAIA [RJH02] and AURA [GSSS02], to name a few. Similar to [SDA99] and
[Bar05], these systems focused on a rather restricted execution environment.

Besides that, the active research in the area of sensor networks and
cooperating objects has spawned a number of initiatives to acquire context
information from a heterogeneous set of networked sensors that is deployed
in an environment. Project at the European level include, for example, the
PLANET FP7 project [PLA12] which works on concepts to deploy and
operate large-scale sensor networks to capture environmental information.
However, usually these systems focus on low-level networking aspects of
various sensors or they solve high-level data management aspects resulting
from a large number of sensors. Thereby, these systems do not have to
consider the resulting privacy implications when moving from environmental
context – such as temperature or animal population – to personal context –
such as human location, activity and plans.

20 Introduction

1.5.4 Sensing Applications

In the recent past, the advances with respect to middleware, device and
sensing technologies have led to the development of a number of large-
scale sensing applications that are often summarized as participatory sensing
[BEH+06] or people-centric sensing [CEL+06] applications. Similar to
the goals of GAMBAS, these applications leverage the personal Internet-
connected objects of users to capture relevant sensor information. The type of
information typically depends heavily on the application area. To give some
examples, DietSense [RSB+09] tries to collect diet-related information about
the user through photos and sound samples. PEIR [MRS+09] provides an
estimate of the environmental impact of a user trip by determining the mode
of locomotion. BikeNet [EML+10] captures the biking experience by means
of measuring the location and speed and providing an estimate over the used
calories. Haze Watch [CYCS12] captures pollution information by attaching
external sensors to a mobile phone.

Usually, these and other similar types of applications capture the sensor
information at some central application server where it is then processed
and analyzed. Furthermore, although they are very similar, they are often
built completely from scratch without adequate middleware support. Finally,
in most cases, the applications merely inform the user about the collected
data by providing some aggregated view on it. The GAMBAS middleware
simplifies the development of such applications by providing a scalable,
interoperable basis. In contrast to collecting all data at some trustworthy
central server, however, the GAMBAS middleware provides configurable
sharing that enables users to protect their privacy, if that is desired, which
allows users to balance the potential loss of privacy with the potential gaining
in service quality. Furthermore, instead of merely aggregating and visualiz-
ing the information, the middleware enables the behavior-driven adaptation
of services.

1.6 Innovations

Building upon the existing work, the GAMBAS middleware specifically tar-
gets the acquisition of personal context information. Consequently, it shares
similar goals with several of the existing large-scale sensing applications.
However, in contrast to existing applications, GAMBAS also can enforce
the user’s privacy goals. Towards this end, the acquisition is performed
primarily with personal Internet-connected objects. This empowers the user

1.6 Innovations 21

to limit the sharing of the acquired context. In order not to overwhelm
the user, the GAMBAS middleware contains a framework to automate the
sharing in a privacy-preserving manner. Furthermore, to directly use the
acquired context on the connected object, the middleware provides concepts
to implement intent-aware user interfaces, which allows the user to have full
control over the use of the GAMBAS software via a fine granular system
to enable and disable features as needed. Finally, in order to use the shared
context effectively in enterprise business processes, the middleware makes
use of an interoperable data representation with the associated processing
infrastructure that supports a large number of sensors. This provides the basis
for efficient object–object interactions and thus, it enables the development
of services that can autonomously adapt to the user’s behavior.

http://taylorandfrancis.com

2
Architecture

This chapter describes the high-level architecture of the GAMBAS middle-
ware. To clarify the architecture, the chapter first presents a static perspective
that focuses on the identification and definition of entities that are operating
different parts of the architecture (operational view), building blocks that
constitute the architecture (component view) as well as types of information
that are handled by the architecture (data view). After presenting the static
perspective on the architecture, the chapter introduces a dynamic perspective
that focuses on a description of the interaction of architectural components.
To do this, the dynamic perspective provides details on the acquisition of
data (acquisition view), the discovery of data and the respective processing
of queries (processing view) and the usage of data for inferences (inference
view). Finally, to clarify the interactions, the chapter discusses the interfaces
between the different components.

2.1 Static Perspective

The static perspective introduces the entities that interact with each other
in order to produce and consume services. Furthermore, it introduces a
functional breakdown into a number of core building blocks. Finally, it
discusses different characteristics of the data that shall be handled by these
building blocks in order to facilitate the envisioned creation and usage of
behavior-based autonomous services. The dynamic perspective, which is
discussed later on, ties these entities and building blocks together by describ-
ing how the different types of data are exchanged among the building blocks
in order to achieve different goals of entities.

2.1.1 Operational View

As basis for the further discussion of the functional building blocks, it is
important to clarify the roles of different parties that may be involved in the
operation of various parts of the architecture. It is worth mentioning that a

23 DOI: 10.1201/9781003336952-2

24 Architecture

single entity may exhibit a number of roles simultaneously and the roles that
it adopts may also depend on the specific type of data that might be processed
by a service. Furthermore, it is also possible to look at the infrastructure from
different angles. For example, we might take a data-oriented view and classify
the entities as either data acquirers or data aggregators. In the following,
however, we look at the operation of the infrastructure from a service-centric
perspective, as this clarifies the entities and also highlights the innovative
features that are targeted by the project.

As depicted in Figure 2.1, from a high-level service-centric perspective,
the entities involved in the GAMBAS architecture can exhibit one of more of
the following three roles:

• Service operators: A service operator is responsible for executing and
maintaining a part of the software and hardware infrastructure that
is required for a particular service or a set of services. The opera-
tor provides computing resources such as processing capabilities and
storage capacities in such a way that they can be accessed remotely

Figure 2.1 Roles of Entities.

2.1 Static Perspective 25

via the network. The operator is not responsible for the actual func-
tionality provided by the service. Instead, the service operator simply
provides the basic infrastructure, possibly with service-level agreements
on the performance of the system. To protect the privacy of sensitive
data, we envision that some generic services such as the distributed
stream processing between employees of the same enterprise or between
groups of friends might be operated by an enterprise or by one or more
citizens. To ease the provisioning of such generic services, we envision
that service operators might offer them as pre-installed and managed
bundles, similar to existing website or cloud computing offerings. Alter-
natively, technically advanced users might run the necessary software
components on their own Internet-connected home server or wireless
home router.

• Service providers: While a service operator is solely providing
thetechnical basis for the execution of a particular service, the service
provider is the actual responsible entity that offers the service to dif-
ferent users. In many cases, the service provider will be interested
in offering a particular set of data to the consumers of the service.
Furthermore, the service provider might also be interested in collecting
some information from the service consumers which can then be used,
for example, to improve the quality of the service. In this case, the ser-
vice provider actually becomes the consumer (of parts) of the provided
service. Besides service providers that want to share a particular data
set, we also envision service providers that simply combine existing
data sets (possibly offered by different service providers) in order to
add value. For example, one service provider might combine the social
graph of a set of persons with their travel behavior in order to provide
recommendations for trip routes. To do this, the service provider might
have to access the social graph and the trip routes from two services that
are controlled by another provider. To enable such service mashups, the
GAMBAS middleware uses an interoperable data representation that is
based on linked open data principles.

• Service consumers: The last role foreseen by the architecture is the
actual consumer of a service. The service consumer accesses the data
and functionality offered by a service provider using the infrastructure
of the service operator in order to ease their everyday tasks. In many
cases, the consumer will be an end user that is accessing a particular
service from a mobile Internet-connected device. Thereby, the end user
might not have to initiate the interaction. Instead, the intent-aware user

26 Architecture

interface might initiate interactions via the middleware at the right point
in time without manual intervention. In order to improve the service
quality available to them, the end users might be willing to opt-in to
collect additional data that can help the service provider to improve
the service. This mutually beneficial data collection and sharing forms
the basis for the second group of service consumers. In addition to the
end users, we envision that service providers can become the consumers
of their own services. As a simple example, consider that a city might
offer a service that enables users to share and report air quality measure-
ments. The end users, i.e., the citizens, might then use the resulting air
quality map to avoid polluted parts of the city. In addition to this, the
service provider, i.e. the municipality, might use the service in order to
dynamically adjust the road toll on different streets of the city in order
to improve the minimum air quality.

Although these three roles are not new and are at the core of most service-
oriented infrastructures, their interpretation in the context of the GAMBAS
project is more dynamic. The basis for this is formed by the two key
characteristics of the overall vision, namely the adaptive data acquisition and
presentation as well as the dynamic and distributed data processing. Due to
the former, the service consumers may also contribute to the provisioning of
a service by collecting and sharing some data using their Internet-connected
mobile devices. This, in turn, can result in mutual benefits for the service
providers and the consumers. For some services, the providers may become
the consumers of their own services. Due to the latter, new types of service
providers may emerge in the network. Instead of providing their own data
sets, they may simply link the existing data sets in novel ways – possibly
enriching them with additional data. This will allow more tailored and spe-
cialized services and it should lead to a more thorough support for various
types of service consumers that may exhibit different behaviors.

2.1.2 Component View

Intuitively, as a service-oriented architecture that is supposed to be capturing
and delivering data, we can identify three main building blocks which provide
data acquisition, data storage and distributed data processing. On top of that,
in order to enable the limited sharing of data, we can furthermore identify a
building block that is responsible for managing the data access. Finally, in
order to remotely retrieve the necessary data in an automatic fashion, we can
identify a building block that takes care of data presentation. In the following,
we describe these building blocks in more detail:

2.1 Static Perspective 27

• Data Acquisition Framework (DQF): A primary capability of the
GAMBAS middleware is its ability to automatically capture data on
behalf of the end user or a service provider. For this, the middleware
encompasses a data acquisition framework that is capable of running
on different types of devices. Based on the four device classes intro-
duced in Section 1.5.1.4, the data acquisition framework primarily
targets Constrained Computer Systems (CCS). In addition to that, the
data acquisition framework provides support for Embedded Computer
Systems (ECS) by means of connecting the embedded systems to a
constrained system. The data acquisition framework provides generic
and extensible support for virtual and physical sensors, and it optimizes
the data acquisition with respect to energy consumption. Furthermore,
in order to support applications, the data acquisition framework provides
a number of example activities and intent recognition components that
primarily deal with location information, movement modalities, bus
routes and environmental information. The data that is captured using
the acquisition framework can either be stored locally on the device or it
can be forwarded automatically to a particular service that is connected
to the Internet. The former approach can be taken in order to protect
the user’s privacy when dealing with privacy sensitive data, whereas the
later approach can be taken with data that does not impact the user’s
privacy or which is explicitly shared on behalf of the user.

• Semantic Data Storage (SDS): To store the data of the user on a local
device or at a particular service, the architecture introduces a semantic
data storage component. Similar to the data acquisition framework, the
semantic data storage is primarily targeted at device classes with more
resources, such as Constrained (CCS), Traditional (TCS) and Backend
Computer Systems (BCS). The data that is stored in a semantic data
storage component follows the linked open data principles and uses
the interoperable data representations that have been developed as part
of the GAMBAS middleware. Furthermore, the data storage is able to
interface with different types of query processors, depending on the
resources available on the device. This implies that there may be differ-
ent implementations of this component that are optimized for different
device classes.

• Legacy Data Wrapper (LDW): The semantic data storage compo-
nent is primarily targeted at the management of interoperable data that
is following the linked open data principles. However, in the short
term to mid-term, it is unrealistic to expect that all types of informa-
tion that are interesting for a service consumer are modeled with this

28 Architecture

approach. Consequently, it is necessary to integrate with data that is
stored in an existing “data silo” using a proprietary data representation.
In order to smoothen the transition from proprietary to interoperable
representations, the architecture explicitly foresees legacy data wrapper
components that transform the data and possible functionality provided
by legacy services into an interoperable data representation. Intuitively,
it is not possible to provide a generic legacy data wrapper that can
handle all possible data representations. Instead, the GAMBAS mid-
dleware encompasses basic software that eases the development of an
application-specific data wrapper. Thereby, the basic software primarily
targets Traditional (TCS) and Backend Computer Systems (BCS) as
these are commonly used to manage data and to provide services.

• Query Processors (xQP): In order to make the data stored in semantic
data storages available to services and applications, the architecture
introduces query processor components that are capable of executing
queries on top of the storages. As described in detail in Chapter 4, the
query language that is supported by the query processors is a subset of
the SPARQL language that considers the limited resources available on
Constrained Computer Systems (CCS). Due to the different dynamics of
different types of data that is handled by the GAMBAS middleware and
due to the different amounts of resources that are available on different
classes of devices, the architecture divides the query processors into the
following two components:

◦ One-time Query Processor (OQP): The one-time query proces-
sor is targeted at the execution of queries that evaluate the current
state of the data in the semantic data storages. It executes queries
that produce a single result based on the current information and
the specific query. Consequently, this query processor is targeted at
static information that does not change frequently or at applications
that only require a one-time view. From a resource perspective,
the one-time query processor is designed to support a broad range
of devices including Constrained (CCS), Traditional (TCS) and
Backend Computer Systems (BCS). Due to resource constrains,
one-time query processors in CCS are limited to process only data
stored in semantic data storages belonging to the same system.
OQPs in less constrained devices have access to remote seman-
tic data storages to allow the combination of data from multiple
sources. As explained later on, the provisioning remote access
respects the privacy constrains.

2.1 Static Perspective 29

◦ Continuous Query Processor (CQP): In contrast to the one-time
query processor, the continuous query processor is specifically
targeted at dynamic data. It executes queries that can produce
multiple results based on the changes to the underlying informa-
tion and the specific query. Consequently, this query processor
is suitable for services and applications that require continuous
monitoring of events that might be captured by multiple data
sources. However, in order to handle such queries, it is necessary to
introduce buffers that can easily exceed the resources available on
Constrained Computer Systems (CCS). Consequently, this type of
query processor will be targeted at Traditional Computer Systems
(TCS) and Backend Computer Systems (BCS). Yet, in order to
evaluate continuous queries, Constrained Computer Systems may
make use of continuous query processors that are provided as a
service that is operated by a third party. Towards this end, the
continuous query processor can be considered to be a generic
component that can be deployed by different entities, provided
that they have access to a suitable Internet-connected computer
system. Similar to OQPs, access to remote data is also enabled
in continuous query processors.

• Data Discovery Registry (DDR): To enable transparent distributed
query processing, the query processors must be able to discover the data
sources that are available on the network. To make the data discover-
able, a device may announce the data available in the semantic data
storage to the data discovery registry which in turn will typically use
a semantic data storage component to manage the announcements. In
case of personal mobile devices, the announcement may be limited or
modified depending on the privacy preferences of a particular end user.
To enable this, the semantic data storage and the data discovery registry
must interface with the privacy framework.

• Privacy Framework (PRF): Given the above components, it is possible
to acquire information using all types of systems. Furthermore, it is
possible to access dynamic as well as static information using one-
time and continuous queries. In principle, this is sufficient to enable
the acquisition and sharing of data. However, as some data such as the
end user location or the end user travel preferences might be sensitive
from a privacy perspective, it is necessary to limit the data acquisition
and in particular the data sharing such that it respects the privacy
preferences of different entities. Achieving this is the primary task of

30 Architecture

the privacy framework. Conceptually, the framework interacts with the
semantic data storage as well as the data acquisition framework that is
deployed on each personal device. In addition, the privacy framework
may also be used to limit the access to information that is provided by a
particular service. For this, it is integrated into the device that is offering
the service.
Using a privacy policy that can be generated automatically by means
of plug-ins that access proprietary data sources, the privacy framework
takes care of exporting sensitive data in such a way that it can only
be accessed by legitimate entities. Furthermore, depending on the user
preferences, it can apply obfuscation in order to limit the data precision
and it may anonymize the data in order to unlink the data from a par-
ticular user. Since the GAMBAS middleware targets the use of personal
mobile devices as primary sources of data, the privacy framework not
only supports Traditional Computer Systems (TCS) but also Constrained
Computer Systems (CCS) as its execution platform.

• Intent-aware User Interface (IUI): As the last building block of the
architecture, the intent-aware user interface is responsible for leveraging
the remaining components in such a way that the end user ideally
receives the right information at the right time. To do this, the intent-
aware user interface executes queries against different services based on
the behavior of the user and decides on how and when to present what
information to the user. Since the past behavior of the user might not be
sufficient to predict new user goals, the intent-aware user interface can
also provide ways of allowing the user to modify the predicted behavior.
Furthermore, as it is the primary component that is visible to the user,
it has to support manual customization by the user. This encompasses,
for example, the selection of layers that are interesting for a user or the
manual tweaking of a generated privacy policy in a user-friendly way.
Although we envision that the concepts behind the intent-aware user
interface are applicable to different types of devices, we assume that in
the short term and mid-term, they will be most useful for users when
they are presented on their personal mobile devices. Consequently, the
current implementation of the GAMBAS middleware focuses primarily
on Constrained Computer Systems (CCS).

2.1.3 Data View

The GAMBAS architecture aims at supporting a broad range of ser-
vices and applications whose data exhibits vastly different characteristics.

2.1 Static Perspective 31

Data
Access

Data
Represen-

tati on

Data
Dynamics

Data
Classes

• Public Data
• Shared Data
• Private Data

• Legacy Data
• Linked Data

• Stati c Data
• Dynamic Data

Figure 2.2 Classes of Data.

Depending on the point of view, it is possible to classify these characteristics
along various orthogonal dimensions. As depicted in Figure 2.2, we focus on
the level of data access, the type of data representation and the dynamics of
the data. In the following, we take a closer look at these three dimensions
and describe how the different classes of data are handled by the GAMBAS
middleware architecture.

2.1.3.1 Data Access
Given the fact that GAMBAS aims at supporting the development of
behavior-driven services that adapt autonomously to the user, it is clear that
the GAMBAS architecture must be able to thoroughly support different levels
of access to data, especially in cases where the collected data may be sensitive
in terms of privacy. Based on the level of access, we can identify the following
categories:

• Public Data: Public data may belong to an individual or an organization
which makes the data available to third parties. Thereby, the entity
that owns the data grants free access to all data for all other entities.
Examples of such data could be stock prices, weather information, etc.
We can assume that many applications will require public data to provide
relevant and useful services. Although we can assume that most public
data will be provided by services that are executed on resource-rich

32 Architecture

devices connected continuously to the Internet, the GAMBAS architec-
ture also allows the provisioning of public data by means of Constrained
Computer Systems (CCS) such as a mobile phone. To enable seamless
discovery of public data, however, the device responsible for the data
must publish the metadata in the Data Discovery Registry (DDR).

• Private Data: In most cases, private data belongs to an individual
person and it could be the user’s personal data or data that the user
is not willing to share with everyone. Examples of such data could
be the user’s contact information or the user’s current location. In
addition, private data may also reflect the internal data of an enterprise
that is not supposed to be shared with other entities. For this type of
data, the GAMBAS consortium made the deliberate decision to limit
its distribution. Although it might be more practical to provide online
access to private data, the GAMBAS architecture foresees the storage
of private data exclusively on the devices that own it in order to prevent
illegitimate access and processing through third parties. Consequently,
the private data will remain on the devices that collected it unless the
responsible entity makes a deliberate decision to share (parts of) it.

• Shared Data: In many cases, limiting the types of data to only private
and public can be overly constraining. Depending on the user’s pref-
erences or on the business model of an enterprise, it might be more
beneficial to share (parts of) the private information in order to get
better services or to increase the revenue. For both cases, the GAMBAS
architecture foresees support for shared data. In essence, shared data
is a particular view on the private data. This view can be accessed by
other entities that are authorized. In order to safely support shared data,
it is necessary to enable trustworthy authentication among the different
entities and there needs to be a policy that details who will gain access
to which view on the data. Managing this process and the associated
policies is done by means of the privacy framework that is an integral
part of the architecture. The privacy framework thereby ensures that only
legitimate entities will be able to access a shared view.

2.1.3.2 Data Representation
As hinted in the component view, in the short term and mid-term, we cannot
assume that all types of data will be represented using the models and
approaches developed by the GAMBAS project. Instead, we must ease the
integration of existing data that may be represented using proprietary formats

2.1 Static Perspective 33

by means of legacy data wrappers. Consequently, based on the level of
integration, we can identify the following two classes of data:

• Linked Data: Linked data represents data that follows the linked open
data principles that are the basis for the interoperable data representation
used by the GAMBAS middleware. Using the semantic data storage
component, it is possible to store linked data on any supported device.
Furthermore, using the one-time and the continuous query processor,
it is possible to query the static and dynamic data stored in one or
more semantic data storage components. To implement interoperable
services and to ensure that it is possible to easily create composed
services, it is necessary that the information is represented using this
data representation.

• Legacy Data: Although there are good reasons for picking up the inter-
perable data representations promoted by the GAMBAS middleware, it
is clearly unreasonable to assume that all data providers will immedi-
ately switch their data format. Consequently, the GAMBAS middleware
provides ways to integrate legacy data that does not follow the linked
open data principles. To do this, the GAMBAS middleware pursues a
dual strategy. For frequently used personal data coming from different
existing services such as Google calendar or Facebook, the GAMBAS
middleware provides fully functional wrappers that allow the use of the
stored information in order to compute privacy policies or to use them
as sensor inputs. For public data coming from existing services such as
the route information and time tables of public buses, the GAMBAS
middleware provides support by simplifying the development of legacy
data wrappers. Together, this allows the immediate use of frequently
used data and it fosters extensibility with respect to more specialized
existing services.

2.1.3.3 Data Dynamics
Finally, the last dimension categorizes the data on the basis of its dynamics.
Intuitively, the dynamics of the underlying data can have a significant impact
on the way it needs to be handled by the architecture. Clearly, there is a broad
spectrum of possible dynamics and even data such as street names, which can
be considered to be static, is subject to change. However, at both ends of the
spectrum, we can identify the following categories:

• Static Data: Static data is data that never changes or changes rather
infrequently. Examples for static data are geographic information such

34 Architecture

as a map of a city or the route information of a public bus. Clearly, both
examples can change over time. However, considering their update rate
of months or years, it is usually possible to query the information once
and then cache the results of the query for a significant amount of time.
Aside from caching intermediate results, it is also possible to replicate
the complete set of static data that is offered by one service at another
service in order to trade-off storage for network bandwidth and latency.
Given this optimization potential, the handling of static data is often less
demanding than the processing of dynamic data.

• Dynamic Data: Dynamic data is data that changes frequently. Examples
for dynamic data are the location of a particular user or a bus in the city.
Although there might be periods in which updates are less frequent, like
at night when the user is sleeping or the bus is parked at the depot, in
many cases, it is not possible to apply similar optimizations as with static
data. For example, the application of replication will require frequent
synchronization and the introduction of caches for intermediate results
may lead to significant imprecisions. Consequently, in many cases,
dynamic data requires the execution of continuous queries, which are
more resource-intensive to evaluate.

2.2 Dynamic Perspective

Given the introduction of the entities, building blocks and data types in the
static perspective of the architecture, the dynamic perspective describes how
they interact in order to achieve the different goals. Due to the technical
objectives of the GAMBAS middleware, the dynamic perspective focuses on
three main parts, namely the acquisition view, the processing view and the
inference view. The acquisition view describes how different types of data
are collected. The processing view describes how different types of data can
be queried. The inference view describes how different data inferences can
be drawn using the architecture.

2.2.1 Acquisition View

From the point of view of data acquisition, the GAMBAS middleware sup-
ports two different scenarios. The first scenario is targeting the personal
acquisition of data that is used to capture the user’s behavior on behalf of
the user. The second scenario is targeting the collaborative acquisition of data
from a large number of users that is used to improve or provide a particular
service upon request of a service provider.

2.2 Dynamic Perspective 35

For the first scenario, the identity of the user is important to ensure
that the resulting profile can be associated with the right user. Consequently,
the acquired data may be highly sensitive from a privacy perspective. For
the second scenario, the identity of the user is often not important but the
service provider is rather interested in an aggregated view of the data. Con-
sequently, by ensuring that the acquired data cannot be associated directly
with a particular user, the resulting privacy issues of data collection can
be minimized.

Independent of the type of acquisition, we assume that the user must be
able to give an explicit consent to the data acquisition at least once in order
to ensure that only the desired data types are acquired. To do this, the user
must interact with the privacy framework by means of the intent-aware user
interface to set the associated preferences. In the following, we outline how
both scenarios are handled from an architectural perspective.

2.2.1.1 Personal Data Acquisition
A primary objective of the GAMBAS middleware is to enable the
development of behavior-driven services. Intuitively, the realization of a
behavior-driven service requires knowledge about the behavior of the service
consumers. A key feature of the GAMBAS middleware is to provide support
for the gathering of such knowledge automatically in the background.

In contrast to other approaches, the middleware focuses on the use of
personal mobile Internet-connected objects such as tablets or smartphones
as primary platforms for data acquisition. The reasons for this are manifold.
First and foremost, many Internet-connected objects are self-contained and do
not require additional infrastructure support. Secondly, the objects are often
not utilized to their fullest capacity, leaving enough resources to perform
context recognition. Thirdly, many Internet-connected objects have access
to both physical and virtual data sources, which allows multi-modal context
recognition with high precision. Lastly, the object’s context is usually tightly
correlated to the user’s context and the recognition alone (i.e. without sharing)
does not invade privacy.

While the former points are primarily underlining the technical suitability
of personal mobile Internet-connected objects as acquisition platforms, the
last point highlights a key feature of the approach taken by GAMBAS that is
the explicit decision to focus on privacy. Given the possibly privacy-sensitive
nature of a behavior profile, the data contained in it must be considered private
unless a user actively shares it, e.g., in order to enable service adaptation.
Consequently, the data should not be accessible directly by other parties

(Facebook, Google, etc.)Internet-c ed Object

36 Architecture

Personal MobilePersonal Mobile External ServicesExternal Services

1. Retrieve policy-related
data

5. Collect data and store it
locally

2. Generate personalized
privacy policy

4. Limit data acquisition
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

IUI

PRF

SDS

DQF

onnect (Facebook, Google, etc.)Internet-connected Object

Figure 2.3 Personal Data Acquisition.

rather than the user. In order to achieve this, all personal data collected by
the system is stored locally on the devices of the respective users.

The resulting component interaction for personal data acquisition is
depicted in Figure 2.3. To reduce the configuration effort for the user, the
privacy framework retrieves policy-related data from third-party services
such as Facebook or Google, for example. Using this data, it computes an
initial privacy policy. This policy can then be refined through the intent-
aware user interface in order to enable manual control over all aspects of
data acquisition and sharing. The resulting personal privacy policy is then
used by the data acquisition framework, which limits the acquisition to those
data types that are allowed by the user. In order to limit the access, the
acquired data is stored locally in the semantic data storage of the mobile
Internet-connected object.

2.2.1.2 Collaborative Data Acquisition
In addition to personal data acquisition, the GAMBAS middleware also
supports the collaborative collection of data, for example, to enable the opti-
mization of services based on aggregated usage information. Intuitively, this
requires an alternative to the previously described personal data acquisition,
since the local storage of data is not suitable for aggregating remote data.
To support this, the GAMBAS architecture introduces the ability to remotely
store information. Intuitively, this remote storage raises additional privacy
concerns since a service provider might be able to associate the reported data
with a particular user.

To mitigate this, the GAMBAS middleware enables fine-grained control
over the collection process using the same procedure that has been introduced

2.2 Dynamic Perspective 37

for personal data acquisition. This enables a user to control the data that
will be acquired on behalf of a service provider. In addition, the architecture
also enables modifications to the data that is reported to a service. As a
simple example, the middleware could refrain from sending unique identifiers
or could replace them with (randomly) generated pseudonyms that change
over time. In more complicated scenarios, the middleware might also apply
obfuscation to reduce the data quality or it might refrain from reporting
certain pieces of information at all. For this, the data acquisition framework
provides a user with control over the data that is reported. This control can
then be exercised to limit the sharing of data in such a way that it does not
conflict with the users privacy requirements.

The resulting component interaction for collaborative data acquisition is
depicted in Figure 2.4. Like in the personal data acquisition case, the privacy
framework retrieves policy-related data from third-party services, which is
used to compute an initial privacy policy. This policy can then be refined
through the intent-aware user interface in order to enable manual control.
The data acquisition framework uses the resulting privacy policy to limit the
data acquisition to those data types that are allowed by the user and to modify
the data accordingly before transmission. As a last step, the data acquired by
the adaptive data acquisition framework is then sent to a remote device where
it is stored or further processed.

2.2.2 Processing View

To describe the processing of queries, it is necessary to consider the different
classes of data depending on the possible level of access. Intuitively, since

Personal Mobile
Internet-connected Object

Personal Mobile
Internet-connected Object

External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

1. Retrieve policy-related
data

5. Report (desired) data
and store it remotely

2. Generate personalized
privacy policy

4. Limit data acquisition
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

GAMBAS ServiceGAMBAS Service

IUI

PRF

DQF

SDS

Figure 2.4 Collaborative Data Acquisition.

38 Architecture

private data is only available to the device that collected it, distributed
processing is not possible with private data. Instead, only local queries can
be executed on it. However, as described previously, a user may share (parts
of) his/her private data with other users or their devices. In order to ensure
that shared data can only be accessed by legitimate entities, an associated
access control mechanism is required. Furthermore, it is necessary to encrypt
the underlying communication in order to avoid the overhearing of data over
insecure network connections. For public data, access control and encryption
are not necessary since the data is freely shared with everyone. Due to these
differences, the GAMBAS architecture supports two possible data discovery
and access mechanisms that are used depending on the level of access granted
to the data. In the following, we describe both of them individually. Intu-
itively, it is possible to create queries that involve public as well as shared data
by combining both approaches. Similarly, local queries follow the same idea
but since they are targeting only data that is available locally, the associated
discovery procedures are omitted.

2.2.2.1 Processing of Public Data
Overall, the processing of public data relies on the following generic three-
step procedure that is frequently used in service-oriented architectures:

• Export (Announcement, Publication): In the first step, the availability
of the data is indicated to other devices by means of exporting meta-
data (which describes the available data) to the data discovery registry.
Depending on the architecture, this step is often referred to as export,
announcement or publication. If the underlying data changes in such a
way that the metadata is no longer valid, the changes must be reflected
by an update to the exported metadata to avoid stale references.

• Search (Lookup, Binding): In the second step, which takes place before
query execution, the data discovery registry is used by the query proces-
sor to find the relevant data sources. To do this, the query processor
executes a query on the metadata that is stored in the data discovery
registry. The query that must be executed on the metadata typically
depends on the query that has been posted to the query processor from an
application. Based on the result of the query against the data discovery
registry, the query processor continues with the execution of the actual
query against some of the retrieved data sources.

• Execution (Usage, Invocation): In the third step, the actual query is
executed against the data sources. Depending on the capabilities of the

2.2 Dynamic Perspective 39

query processor, the query execution might be decomposed in further
phases such as query planning and query execution. In the query plan-
ning phase, the query processor will typically select one of multiple
possible query execution strategies in order to optimize certain goals
such as decreasing the network load or decreasing the resource usage on
certain types of devices.

Figure 2.5 shows an example for the execution of a query on two public data
sources. Intuitively, steps one, two and three are decoupled in time, i.e. they
must happen sequentially but the time period between them may vary.

As a first step, the public data sources announce their data by exporting
associated metadata to the data discovery registry. Typically, this is done
once the device starts up its semantic data storage and the announcement
might be updated in cases where the data storage holds dynamic data that
is reflected in the metadata. Intuitively, however, the update frequency of
the metadata should be lower than the update frequency of the actual data
in order to avoid scalability issues with the data discovery registry. Once
a query is issued, for example, through the intent-aware user interface, the
query processor receives it and interprets it. Based on its contents, it will then
create and execute queries on the data discovery registry, which results in a
set of possible data sources. Based on the strategy taken by the query engine,
an appropriate query plan is generated and executed. For the execution, the
query processor executes sub-queries against the necessary set of semantic
data storages – via their local query processors – and returns the result to the
intent-aware user interface.

Query Issuer

4. Execute Query

Public Data Source

Public Data Source

Discovery ServiceDiscovery Service

4. Execute Query

1. Export Metadata

1. Export Metadata

3. Search Data Source

2. Initiate Query

OQP

IUI

SDS

SDS

DDR

Figure 2.5 One-time Processing of Public Data.

40 Architecture

Query IssuerQuery Issuer

4. Execute Query

Public Data SourcePublic Data Source

Public Data SourcePublic Data Source

Discovery ServiceDiscovery Service

4. Execute Query

1. Export Metadata

1. Export Metadata

2. Initiate Query

Processing ServiceProcessing Service

3. Search Data Source

CQPIUI

SDS

SDS

DDR

Figure 2.6 Continuous Processing of Public Data.

While the approach described above is sufficient to enable the processing
of one-time queries, the execution of continuous queries over dynamic data
raises additional issues. Due to the associated resource requirements, the
GAMBAS middleware does not encompass a continuous query processor for
all types of devices. Instead, the continuous query processor is only suitable
for Traditional Computer Systems (TCS) and Backend Computer Systems
(BCS). Consequently, it is necessary to handle continuous queries on other
systems by means of a third-party system. For public data, this third-party
system can be introduced easily. As depicted in Figure 2.6, the system simply
acts as a proxy for query processing and there is no need to change the
remaining interaction.

2.2.2.2 Processing of Shared Data
As indicated before, the processing of shared data cannot be handled in the
same manner as the processing of public data due to the additional require-
ments on access control and encryption. Consequently, we need to modify
and extend the previous interaction by introducing additional steps that take
care of both. For this, the architecture foresees the following general process:

• Export (Announcement, Publication): As with public data, the first
step is to announce the availability of data to other devices by means
of exporting metadata. However, in contrast to public data, only the
device identity will be exported in order to avoid privacy issues resulting
from the export of private metadata. In cases where no privacy issues

2.2 Dynamic Perspective 41

result, other metadata could be exported as well in order to improve
the performance of the query processor. Alternatively, it is possible to
encrypt the metadata as described in Chapter 4.

• Search (Lookup, Binding): In the second step, which takes place
before query execution, the data discovery registry is used by the query
processor to find the relevant data sources by means of querying their
identities.

• Preparation: The third step takes care of the creation of a view of the
remote data that shall be shared with the device that executes a query.
The view creation itself consists of a number of sub-steps. First, the
identity and data requirements are forwarded to the privacy framework
of the device issuing the query. Second, the privacy framework contacts
the privacy frameworks on the devices hosting the shared data. For
this purpose, the privacy framework performs a mutual authentication.
Furthermore, the privacy framework executing on the devices hosting
the shared data performs access control, which will eventually result in
the creation of a view that represents the data that shall be visible to
the requester. Thereby, it is noteworthy to mention that this view may
modify the original data based on the level of access. For example, the
device hosting the data might decide to generalize parts of the data or to
make parts of the data inaccessible. Once the view is created, a secure
token is generated, which can then be used to access the view. This token
is returned back to the query processor.

• Execution (Usage, Invocation): In the last step, the actual query is
executed against the view provided by the devices hosting the shared
data. In order to access the view, the query processor provides the token
to the shared data source and it uses an encrypted channel to transmit
both the query and the result.

Figure 2.7 depicts this process with one device that is issuing a one-time
query on two sources providing shared data. As described previously, the time
between export and access of the device’s identify information in the data
discovery registry may be high since the device providing shared data will
usually export its identity as well as other public and optionally encrypted
metadata that does not raise privacy issues upon startup.

Following the general process described above, the devices hosting the
shared data export their identity and non-privacy-critical metadata in a similar
fashion, as public data sources will share their metadata. As depicted in
Figure 2.7, the processing is then initiated by means of a query issued by

42 Architecture

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden tity and
Public Metadata

1. Export Iden tity and
Public Metadata

2. Initiate Query

3. Search Data Source 4. Request Access to
Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authen ticate & Authorize)

5. Request Access
(Authen ticate & Authorize)

6. Create View

6. Create View

OQP

IUI

SDS

DDR
PRF

PRF

PRF

SDS

Figure 2.7 One-time Processing of Shared Data.

the intent-aware user interface. In order to access shared data, the query will
typically specify the identity of one or more data sources whose connectiv-
ity information must be retrieved by searching through the data discovery
registry in step two. Once the information is retrieved, the query processor
will request the creation of the view through the local privacy framework.
To prepare the view, the privacy framework on the query issuer contacts the
devices hosting the shared data. Thereby, the privacy framework components
on the devices will jointly perform request authentication and authorization. If
this is successfully completed, the devices hosting the shared data will create
the view on the data that shall be exposed to the query issuer. Thereby, they
may perform arbitrary operations on the data such as generalizing information
or removing information from the view on a per-request basis. Once the
view is prepared, the privacy framework on the query issuer device will
receive an access token enabling it to access the newly created view. This
token is then passed back to the query processor, which will then issue the
respective sub-queries to each of the data sources (again via the local query
processors). Thereby, the whole transaction is encrypted and authenticated
using the token. Once the sub-queries have been executed, the views on the
devices hosting the shared data will be disposed and the result will be returned
to the intent-aware user interface.

To enable stream processing on Constrained Computer Systems (CCS),
the architecture mimics the proxy-based approach taken for public data where
a remote processing service provides the hardware and software resources to
perform queries. As shown in Figure 2.8, the primary difference between

2.2 Dynamic Perspective 43

Processing ServiceProcessing Service

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden tity and
Public Metadata

1. Export Iden tity and
Public Metadata

2. Initiate Query

3. Search Data Source
4. Request Access to

Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authen ticate & Authorize)

5. Request Access
(Authen ticate & Authorize)

6. Create View

6. Create View

IUI

PRF

CQP

SDS

PRF

DDR

PRF

SDS

Figure 2.8 Continuous Processing of Shared Data.

continuous and one-time processing originates from the fact that a third
party will be involved in data access. Consequently, this third party will
have to be trusted by the shared data sources or they have to deny the
request. In order to make the associated decision, the access request will
not only have to authenticate and authorize the query issuer but it also has
to decide upon the trust of the processing service. To do this, the request
must identify the processing service that will be used during the processing.
Furthermore, the remote communication between the actual query issuer
and the continuous query processor must be secured accordingly. However,
as described in Chapter 5, this can be done using regular cryptographic
methods.

2.2.3 Inference View

Another key usage scenario of the GAMBAS middleware is the gathering of
data from multiple sources in order to derive additional information. Based
on the scenarios described in Section 1.3 and considering the acquisition and
processing views described in the previous sections, we can identify two main
classes of inferences, namely local and distributed inferences.

Local inferences are primarily based on information that is available to a
single device. Thereby, the term local does not exclude the use of static public
or shared data. A device can opt for locally storing a view of the static remote
data to simplify the processing.

44 Architecture

For dynamic data, however, such an approach is usually ill-suited – at
least for devices that cannot host a continuous query processor – since the
remote data would have to be refreshed continuously. Consequently, from
an architectural perspective, the GAMBAS middleware realizes (simpler
forms of) distributed inferences by means of executing continuous queries.
Intuitively, the degree to which such inferences are possible depends on the
capabilities of the query language. In the following, we briefly outline the
approach taken to support local and distributed inferences.

2.2.3.1 Local Inferences
As indicated previously, local inferences encompass inferences on local data
that is held by a device as well as public or shared static data that is available
remotely and can be accessed by the device. Given the local availability
of data, it is then possible to derive additional data using custom software
that is executed by the device. Based on the application scenarios described
in Section 1.3, the GAMBAS middleware supports two types of such local
inferences which we outline in the following.

• Personal inferences: Personal inferences are inferences over the behav-
ior data collected using personal data acquisition. They may entail
the derivation of aggregated information from multiple sensors or the
prediction of future behavior based on traces of the past behavior. In
order to enable such an aggregation or prediction, the device itself
may require additional static information. For example, in order to
determine the typical bus stops that are used by a user, the personal
mobile object of the user may have to retrieve the GPS coordinates
of the bus stops. Similarly, in order to predict future trip destinations,
it may be necessary to retrieve the street address of previously visited
locations. From an architectural perspective, the GAMBAS middleware
provides support for such personal inferences mainly by means of the
adaptive data acquisition framework, which provides extensible support
for data aggregation, behavior tracking and prediction. In addition, it is
also possible to support this type of inferences at the user interface level
in cases where the required inferences are highly application-specific.

• Service inferences: In addition to personal inferences which affect
the data stored on the personal mobile objects, there is also a need
to support service-specific inferences, which may be a result of the
aggregation of data acquired collaboratively. As a simple example, it
may be necessary to aggregate collaborative sensor readings in order to

2.2 Dynamic Perspective 45

derive an environmental map. Similarly, it might be necessary to assign
the occupancy information collected by different users to different buses
on a route in order to predict their remaining capacity. Intuitively, such
aggregations should be handled by the service that collects the data since
they may require the combination of data reported by multiple sources.
However, since such aggregations are often highly application-specific,
the GAMBAS middleware primarily supports them by providing data
access by means of a generic query processor, which is detailed in
Chapter 4. For aggregations that exceed the capabilities of this query
processor, it is necessary to implement custom application logic.

2.2.3.2 Distributed Inferences
In contrast to local inferences which are limited to local data and static remote
data, distributed inferences combine the dynamic data of multiple remote
data sources. Considering the application scenarios targeted by the GAMBAS
middleware, such inferences are necessary, for example, in order to detect the
collocation of friends in the same public bus. Since we can assume that many
users are not willing to publicly share their current location, such information
is typically only shared among a specific and user-dependent set of people.
To protect the privacy of the users, the GAMBAS middleware only stores
this information on the personal mobile objects of the associated user. Thus,
given that the user is willing to share this information, it must be retrieved
from there.

As indicated previously, however, due to the resource constraints of many
personal mobile devices, the GAMBAS middleware does not encompass a
continuous query processor for these types of devices. Thus, there are only
two ways of supporting distributed inferences. The first and simplest way is
to perform the inference by means of a continuous query that is executed
on some third-party system that is jointly trusted by the group of users. The
second way to realize such inferences is to implement a custom service to
perform the inference.

Both approaches have different benefits and limitations. The former
approach does not require any custom implementation and thus, is easier
to realize. However, given that the query language applied in GAMBAS
may not support arbitrary application-specific functions, it is limited to the
set of operators supported by the language. The latter approach does not
suffer from this problem since arbitrary code can be used during the service
implementation. However, in contrast to the use of an existing middleware
component, it is much more complicated as it requires the development of

46 Architecture

custom software. To realize the applications described in Chapter 6, it was
sufficient to use a continuous query processor in order to perform the desired
distributed inference; however, in a broader context, it may be necessary to
provide additional custom services.

2.3 Interface Perspective

Given the static and dynamic perspective of the high-level architecture
described in the previous sections, it is possible to identify the interfaces
between the core building blocks that constitute the GAMBAS middleware.
To do this, we take the different building blocks detailed in the component
view of the static perspective, namely the data acquisition framework (DQF),
the semantic data storage (SDS), the one-time and the continuous query
processor (xQP), the data discovery registry (DDR), the privacy preservation
framework (PRF) and the intent-aware user interface (IUI). Using these
building blocks, we step through all interactions described in the dynamic per-
spective, namely the acquisition view, the processing view and the inference
view. Consequently, we get the following interactions:

• DQF–SDS: In order to store contextual information for personal as well
as collaborative data acquisition, the data acquisition framework needs
to interact with the semantic data storage.

• xQP–SDS: To execute one-time as well as continuous queries over
public or shared data, the one-time and continuous query processor
needs to interact with the semantic data storages hosting the data.

• xQP–xQP: To execute distributed queries, the query processor needs to
communicate with remote instances of itself to place subqueries there
and receive results back.

• xQP–DDR: In order to determine the appropriate data source before
executing a distributed query, the one-time as well as the continuous
query processor needs to interact with the data discovery registry.

• xQP–PRF: When executing a distributed query over shared data, the
one-time as well as the continuous query processor needs to interact
with the privacy framework in order to gain access to the shared data.

• PRF–DQF: To protect the user from unwanted data collection, the
access to the data acquisition framework is guarded by the privacy
preservation framework. Thus, performing data acquisition requires
interaction between these components.

• PRF–PRF: In order to gain access to shared data, the privacy framework
must be able to interact with other instances of the framework remotely

2.3 Interface Perspective 47

to negotiate the appropriate access levels and to prepare the necessary
views for querying.

• IUI–xQP: To retrieve data from the local storage or from remote
services, the intent-aware user interface must execute distributed one-
time or continuous queries over the associated data storages using the
one-time and the continuous query processor.

• IUI–PRF: Although, the privacy preservation framework is supposed
to enable the automated generation of a privacy policy, some users may
want to control their sharing more tightly. In order to enable this, the
intent-aware user interface enables manual configuration of the privacy
framework.

In the following subsections, we describe the required functionality and the
resulting interfaces in more detail. Thereby, we try to refrain from describing
low-level implementation details. Instead, we rather focus on an architectural
perspective by describing the types and flows of data that is interchanged
through the interfaces. However, where appropriate, we also give some initial
ideas on how this flow can be realized.

2.3.1 Storage Interfaces

DQF–SDS Interface: As detailed in the acquisition view, there are two
basic types of data acquisition foreseen in the GAMBAS architecture, namely
personal data acquisition (on behalf of the user) and collaborative data acqui-
sition (voluntary, on behalf of a service). For both types of data acquisition,
it is necessary to store the sensed data – either on the mobile device or
on a remote device hosting the service. To perform the data acquisition,
the GAMBAS architecture introduces the data acquisition framework (DQF)
which is responsible for recognizing different types of context in an energy-
efficient manner. To store data following the open linked data principles that
are forming the core of the interoperability mechanisms provided by the
GAMBAS, the architecture foresees a semantic data storage (SDS). In order
to enable the persistent storage and the later retrieval of recognized context,
it is necessary to introduce an interface between these two components.

Based on this rationale, it is necessary to support the insertion of data
into the semantic data storage. In addition, in order to support the storage of
transient states, it is also necessary to support the deletion of data from the
storage. This allows, for example, the removal of stale entries. As described in
detail in Chapter 4, the storages are using RDF as their internal data format.

48 Architecture

Thus, the insertion and deletion functions or the storage use this format as
well. As a result, the interface consists of the following two functions that
can be called either locally (to support personal data acquisition) or remotely
(to support collaborative data acquisition):

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion
of an RDF triple into the semantic data storage by placing either a local
or remote call and indicates whether the insertion has been completed
successfully.

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion
of an RDF triple from the semantic data storage by placing either a local
or a remote call and indicates whether the deletion has been completed
successfully.

As indicated previously, the architecture foresees the usage of the interface
through the data acquisition framework by means of a special storage compo-
nent that enables the application developer to define the data storage that will
receive the insertion (or deletion) as well as the graph (i.e. the set of triples)
that shall be generated (or updated). Once the data acquisition framework
generates a new result and transmits it to the storage component, the storage
component will perform a deletion of previously inserted triples (if desired)
and execute an insertion of the newly created graph. If the insertion or
deletion shall be executed on a remote system (to perform collaborative data
acquisition), the same set of procedures shall be executed. To improve the
overall performance of the interface, in particular, when executing insertions
and deletions remotely, it is beneficial to support batch insertions and dele-
tions. This can significantly reduce the latency of updates, especially when
multiple triples have to be removed and inserted into a remote storage over a
low-bandwidth connection (such as a GPRS link, for example).

2.3.2 Query Interfaces

xQP–SDS Interface: As explained in the components view, there are two
types of query processors. One-time query processors (OQP) aim at executing
one-time queries, i.e. queries that are evaluated against the current state of
the data. One-time query processors are focused on more static data. For the
dynamic data, continuous query processors (CQP) are in place. CQPs can
monitor the input data coming from streams, and as soon as a new data item
is generated, the CQP will evaluate the query and if new results are produced,
they are then forwarded to the query initiator. In both cases, the data is stored

2.3 Interface Perspective 49

in semantic data storages and the goal of the query processors is to make
the data from an SDS available to services and applications. Therefore, an
interface between xQP and SDS is needed. Query processors should be added
to retrieve data from an SDS that matches a query. Additionally, an xQP also
servers as an interface to add or delete data in an SDS, for example, the data
generated from the user intention interface.

For query optimization purposes, the query processor might make use
of what we call “temporary data”. Temporary data is used only during the
query execution and can be discarded afterwards. As an example, the query
processor might decide to temporarily store the public data in a local SDS
to avoid remote calls during the processing. To keep the storage costs low,
this data would be removed after the query is executed. For this, the query
processor need to provide functions to add, retrieve and delete temporary data
from an SDS.

Based on this rationale, it is necessary to support retrieving data from
a semantic data storage that matches a query, as well as data insertions
and deletions. This applies for both persistent data and temporary data. As
described in detail in Chapter 4, the data retrieval is done via SPARQL
queries. As a result, the interface consists of functions described below. Since
the query processing supports the aggregation of data from different sources,
the functions can be called either locally or remotely:

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion
of an RDF triple into the semantic data storage by placing either a local
or remote call and indicates whether the insertion has been completed
successfully.

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion
of an RDF triple from the semantic data storage by placing either a local
or a remote call and indicates whether the deletion has been completed
successfully.

• Insert Temporary (RDF Triple) Success :: Local: Enables the inser-
tion of an RDF triple into a temporary graph in the local semantic
data storage and indicates whether the insertion has been completed
successfully.

• Reset Temporary () Success :: Local: Deletes all entries in the
temporary graph.

• Retrieve (SPARQL Query) result set :: Local: Enables to query the
local SDS for data items that match a given search pattern. To specify
the search pattern, an SPARQL query can be used. Matching data items

50 Architecture

are returned as a result set, containing all suitable bindings for each
requested variable.

• Retrieve Temporary (SPARQL Query) result set :: Local: Enables to
query the temporary graph of the local SDS for data items that match a
given search pattern. To specify the search pattern, an SPARQL query
can be used. Matching data items are returned as a result set, containing
all suitable bindings for each requested variable.

The architecture foresees the usage of the interface as in most query pro-
cessing systems. Since the SDS uses a graph data structure to store the
RDF triples, the retrieval function works by finding sub-graphs on the SDS
that matches the input query. The query processor takes care of parsing the
input query to generate the execution plan. The processor also contains a
component that inserts and deletes data from a data storage. To improve the
overall performance of the interface, as in the case of the DQF–SDS interface,
batch insertions and deletions are a useful optimization, especially on remote
calls. Optimizations on the query execution plan, with the use of temporary
data are also possible.

xQP–xQP Interface: In the GAMBAS architecture, some queries can only
be answered by combining data from multiple sources. One solution would
be to gather all data from the relevant sources in a single device and execute
the query locally on that device. However, there are many problems with
this approach. For starters, it would create a lot of data traffic, since it is not
possible to know a priori which data is needed, therefore each source would
ship all its data to a single device. Scalability would also be an issue, since the
device executing the query would become a bottleneck. Finally, this approach
does not preserve privacy and therefore becomes unsuitable for the GAMBAS
framework.

Our solution is to equip each device hosting data with a query processor.
Each query processor can execute queries locally over the device’s data,
and it can also aggregate results from multiples sources. For executing a
distributed query among the devices, the query initiator first identifies the
relevant sources using the DDR. It then breaks the query into subqueries.
Each subquery is sent to the device that contains the data for it. The query
processor on each device will then execute the subquery locally and only
forward the relevant results to the query initiator (as opposed to all data).
The query initiator merges the results of all subqueries and creates the final
query result.

2.3 Interface Perspective 51

To execute distributed queries, the query processor needs to communicate
with remote instances of itself to place subqueries there and receive results
back. This is done by implementing an interface that allows query proces-
sors to post queries to remote query processors and retrieve the results, as
shown below.

• Retrieve (SPARQL Query) result set :: Remote: Enables to query a
remote xQP for data items that match a given search pattern. To specify
the search pattern, an SPARQL query can be used. Matching data items
are returned as a result set, containing all suitable bindings for each
requested variable. This is used to place subqueries that are part of a
distributed query.

The middleware architecture foresees the usage of the interface during the
execution of distributed queries. Since the local execution is done over RDF
triples, the interface between query processors is done using a language
suitable for RDF, in our case SPARQL.

xQP–DDR Interface: To answer queries which involve remote data, the
query processor must be able to discover the data sources that are available
on the network. Once a query is issued, the query processor receives and
interprets it. This allows the processor to identify which data is needed to
answer the query (for example, the location of friends of a user). The data
discovery registry contains the meta information about the data sources, not
the data itself. This is to preserve the privacy of shared data. By consulting
the registry, the query processor can obtain the list of sources that contain the
data in question. For instance, the registry can return the list of semantic data
storages from the friends’ devices.

Based on this rationale, an interface between query processors and reg-
istry is needed. The interface must allow the processor obtain a list of remote
SDSs (or endpoints) that contains a particular type of data. This interface
requires only one functionally, which is given below:

• Resolve (data source specification) endpoints :: Remote: Enables the
discovery of SDS endpoints that can be contacted for a specific kind of
data, e.g. whom to contact to get information about a user’s location. To
do so, a data source specification is given, e.g. specifying the user for
which data is searched (for instance, a friend). This request is sent to the
remote discovery server and a set of matching endpoints is returned.

The interface functionality detailed is used during the processing of queries
that involve remote data. The query processor identifies which data sources

52 Architecture

are needed (e.g. the sources containing the location of friends), and request
them to the registry. The registry then performs a lookup on the metadata
it stores and returns the list of remote storages that matches the request. To
improve the performance of the interface, and the performance of the query
processing in general, the metadata stored in the registry can be enhanced
in order to provide more accurate and results sets. However, storing more
metadata might lead to privacy issues, so this needs to be handled carefully.

2.3.3 Privacy Interfaces

xQP–PRF Interface: During the query execution, the query processor iden-
tifies the sources needed to answer the query and then sends a request to
the registry. The registry resolves the sources and sends the list of endpoints
(remote storages) that contain that data in need back to the processor. For
shared data however, before the query processor can access the data on the
remote source, a privacy control is performed to check if the query initiator
has the rights to access the data. A view of the data matching the privacy rules
in place is created and shared with the query processor. This is done in the
preparation phase explained in Section 2.2.2.2. The query processor forwards
the identity and data requirements to the privacy framework, which in turn
checks with the privacy framework of the device hosting the shared data. A
view of the data is created based on the access control. The view can reflect
the original data, or it can modify the original data according to the privacy in
place. For example, it can aggregate or hide parts of the original data. Once
the view is created, a secure access token is generated and sent to the query
processor. If a remote endpoint is trying to access the shared data, the secure
access token will allow transferring the shared data securely over the chosen
communication channel.

Based on this rationale, an interface between xQP and PRF is needed to
check whether the query initiator is allowed to access the data. Additionally,
if the xQP is executing a remote query, the communication must be properly
secured. For this, the user and data access credentials are sent over a secure
proxy that is part of the communication subsystem of the middleware to
provide a secure data connection between the two endpoints. As discussed in
Chapter 5, the secure proxy manages the secure communication transparently.
Thus, the interface does not include a method that enables the exchange of
security tokens or start the encryption. In contrast to that, the access to data
must be checked through an interface. The interface consists of one function
that checks if the query initiator (i.e. the user requesting the data) is allowed

2.3 Interface Perspective 53

to access the data. The data being requested also needs to be specified. The
PRF looks at these two input items and decides whether the query is allowed
or not. Each request is handled by the privacy framework of each semantic
data storage and therefore this function is performed locally. The function
supported by this interface is given below:

• Check (Set of Ontology Classes, Requester) allowance :: Local:
Enables to check with the PRF, if executing a received query is allowed
according to the currently active privacy policies. To do so, the query
processor hands the PRF (1) a set of classes in the GAMBAS ontology
that specify what data types the query will access and (2) the origin of
the query, e.g. if it was a local query or a query from a remote user. The
PRF returns whether this query is allowed or not.

The architecture foresees the usage of the interface described above in
the privacy-preserving query execution mechanism, when shared data is
involved. The query processor must first interact with the privacy framework,
which is responsible to allow or deny data access and responsible for data
encryption/decryption.

PRF–DQF Interface: The Adaptive Data Acquisition Framework (DQF)
enables the collection of data using various sensors built into the user’s mobile
device. The collected data can then be used personally (i.e. by the device,
in the case of personal data acquisition) or collaboratively (i.e. by a remote
service, in the case of collaborative data acquisition) to optimize services in
a behavior-driven manner. Clearly, the data acquired by means of sensors
built into the device of a user may raise privacy concerns. Furthermore,
the preferences with respect to privacy may vary drastically from user to
user. In order to empower users to exercise control over which data can be
collected, the access to the data acquisition framework is guarded by the
Privacy Preservation Framework (PRF). Thereby, all accesses made to the
data acquisition framework are checked against the user’s privacy preferences
with respect to data collection. This allows the user to limit the data types
that can be collected at all. In extreme cases, a user may limit the collection
of all data through the GAMBAS middleware. In less extreme cases, the user
may limit the collection of a particular type of context information, such as
location-related information or audio information.

The PRF–DQF interface enables the data acquisition framework to check
whether the user has given consent to the acquisition of a particular type of
contextual information. To do this, the DQF performs calls to the PRF in
order to verify that the data types that shall be captured are permissible under

54 Architecture

the user’s current preferences. Furthermore, since the user’s preferences may
change at any point in time, it is necessary that the PRF provides functionality
to signal a change to the DQF whenever the user’s preferences with respect to
a particular data type change. Consequently, the interface must be composed
of the following two functions:

• Check (Datatype) authorize :: Local: The PRF checks the data type
that is about to be captured against the preferences of the user and returns
a Boolean to indicate whether the user permits the acquisition of the
specified data type. If the access is denied, the acquisition is aborted. If
access is granted, the acquisition task can be started.

• Signal (Datatype) void :: Local: The PRF signals a change to the
preferences with respect to a particular data type such that the DQF can
check all currently executed data acquisition tasks against the updated
set of preferences. If a data acquisition task is no longer permitted by
the user, it must be aborted.

In order to guarantee that all data acquisition tasks continuously conform to
the user’s preferences, the architecture foresees the continuous and gapless
usage of this interface for all calls to the DQF. This means that all tasks
that are started within the DQF need to pass through the check method of
the PRF with the associated data types. In addition, as long as the DQF
is executing any tasks, it needs to react to changes indicated by the signal
method. If a signaled change affects a data type that is currently acquired,
the check for the associated (set of) task(s) needs to be reevaluated, possibly
aborting any conflicting tasks. The check of the DQF against the policy
managed by the PRF may entail some slight overhead, which may become
significant if data acquisition tasks are started and stopped very frequently. In
this case, it makes sense to cache the user’s preferences in memory to reduce
the associated overhead. However, in most usage scenarios, the overhead
can be neglected.

PRF–PRF Interface: The PRF allows the transfer of data between two
devices. The data that is transferred should be encrypted. The reason for this
is twofold. At first, the data might contain private information that should
not be shared with unauthorized users or devices. Additionally, the shared
data might be transferred over an insecure communication channel (e.g. the
Internet or an insecure WiFi network). To enable encrypted communication,
it is necessary for both communication endpoints to use a cryptographic key.
Using the efficient concept of symmetric encryption, the key must be identical

2.3 Interface Perspective 55

and exchanged before the secure communication can take place. During the
exchange of a cryptographic key, the communication endpoints show that
they are eligible to access the data that should be transferred by authorizing
themselves. After the authorization process, both endpoints possess a shared
cryptographic key that allows them to transfer data securely.

The PRF–PRF interface allows the authorization of communication end-
points. The successful authorization can be performed in two different ways.
The first way uses asymmetric cryptography and is based on certificates,
similar to the implementation of SSL in the Internet. This allows an ad-hoc
identification of devices that belong to a certain domain. If the domain root is
trusted, the authorization will be successful. Also, the access rights depend on
the trust in this root. For authentication, the device’s certificate is transferred
together with a challenge that proves that the device is in possession of the
certificate’s private key. Together this data forms the device’s credentials that
are checked at the other endpoint. The alternative of using compute intense
asymmetric cryptography is symmetric cryptography. Using symmetric cryp-
tography, a key can be attached to a connection between two endpoints. The
first half of this shared key allows the identification of the other endpoint.
The other half can be either directly used for the secure communication
or used to exchange a new session key securely. For efficiency reasons,
both of these checks (i.e. for asymmetric and symmetric cryptography) are
performed directly during the communication. The local interface is designed
as follows:

• Check (credentials, user pseudonym) authorize :: Local: The PRF
checks the security credentials of a user and returns a Boolean that shows
if the user was authorized successfully.

The middleware architecture foresees the usage of the interface described
above for every secure transmission of data. The communication endpoint
must first authorize each other at the remote privacy preservation framework,
before a key for the secure communication is computed. Intuitively, the
authorization that is performed by the privacy-preserving framework incurs
some overhead during the data transfer. However, without the authorization,
the communication partner is unknown to another device and this contradicts
the privacy of the transferred data. While the authorization therefore is a
crucial mechanism, it is may be possible to use more lightweight security
mechanism, resulting in a decrease of the security level, in application
scenarios that permit this.

56 Architecture

2.3.4 Control Interfaces

IUI–xQP Interface: The Intent-Aware User Interface (IUI) is connected
to the GAMBAS middleware through a query processing interface, which
provides access to local and remote data sources. Local data pertains, for
example, to personal travel information, which may include the user’s travel
history for making predictions to adapt the IUI to his future travel behavior.
Remote data could include transport information hosted by third-party ser-
vices such as a city’s local transport agency (e.g. estimated time of arrivals),
time tables and information about the travel habits from the user’s friends
in the social network as stored on their mobile devices. Since all this data
is represented based on linked data principles using RDF triples, it can be
queried in a uniform manner by means of a powerful graph-based query
language irrespective of what specific kind of data is requested and where
this data is located.

When the IUI needs to access data, it uses an interface from xQP to
connect to external services and read information objects. In particular, this
interface is a facade from xQP that calls methods and translate the received
data into an understandable format for IUI. As a result, the interface consists
of a single power query processor, which allows us the IUI to specify generic
queries over data stored on local and remote SDS:

• Select (SPARQL Query) result set :: Local & Remote: Enables the
retrieval of bindings for requested variables. To specify the variables as
well as conditions that bindings for them must match, an SPARQL select
query can be given. A query can be executed on a single data source or
multiple ones, allowing to query and integrate information from multiple
users at once. Matching data items are returned as a result set, containing
all suitable bindings for each specified variable.

Frequent data access may be a critical factor for the IUI, especially when the
queries need to be forwarded to remote data storage over cellular network
connections. The low bandwidth of these connections and high variance in
quality of service may slow down the query process and cause significant
delays in information delivery that can negatively affect the user’s experience.
In order to improve upon this, the design of IUI foresees a caching strategy,
where some static data (e.g. routing information, bus coordinates, time tables)
is kept on the mobile device so that no repeated updates are required. This
is especially useful for transport network data, which is not expected to
change very often. For dynamic data (e.g. arrival time or crowd level of
a vehicle), possible optimization strategies include primarily pre-fetching,

2.3 Interface Perspective 57

where the data is retrieved before it is requested by the user. As the data
is already available on the device prior to the access to the information, the
delay experienced by the user can be minimized.

IUI–PRF Interface: The goal of the privacy preservation framework (PRF)
is to protect the user’s privacy by providing security mechanisms that enable
the secure and authentic interaction between different devices. Thereby,
access to different types of data is controlled by the privacy preservation
framework on behalf of the user. To do this, the privacy framework relies on
a policy that defines the user’s preferences with respect to the sharing of data
with other users. Although the privacy framework attempts to minimize the
configuration effort for the user by deriving a suitable policy from the policies
that a user is already applying on different social services, there might be
cases where the user wants to exercise full control over the sharing of data. To
do this, the privacy preservation framework exposes a configuration interface
to the intent-aware user interface (IUI) that provides manual control over the
sharing.

To exercise manual control over the sharing of information, the privacy
preservation framework enables the intent-aware user interface to (re-) con-
figure the privacy policy. Given that the main entities contained in polices are
users and permissions on different data types that express that a particular user
may access a particular type of data, it makes sense to expose functionality
to manipulate these two entities. To enable the development of a visual
representation of the user’s current privacy policy, the functionality required
to manipulate the policy is additionally augmented with functionality to
simply retrieve the current policy. In summary, this results in the following
six functions that are available only locally and that are only accessible to the
intent-aware UI in order to avoid unwanted modifications.

• ListUsers() usernames :: Local: This function enables the intent-aware
user interface to list the names of users that have been configured on
a particular device. The resulting list of user names can be pruned or
extended using the following two functions.

• AddUser(username) void :: Local: This function enables the intent-
aware user interface to add another user to the list of users that have been
configured for a device. If the user is already configured, the method
simply returns. If the user does not yet exist, it will be added to the list.

• RemoveUser(username) void :: Local: This function enables the
intent-aware user interface to remove a previously configured user
from the list of configured users. If the user is not configured, the

58 Architecture

method simply returns. If the user was configured, the user and all its
permissions to access data on the device will be removed.

• ListPermissions(username) datatypes :: Local: This function enables
the intent-aware user interface to view all the permissions that have been
configured for a previously configured user. The list will include all data
types to which the specified user will have access. If the user has not
been configured, the list of data types will be empty.

• AddPermission(username, datatype) void :: Local: This function
enables the intent-aware user interface to add a permission for a previ-
ously configured user such that the specified user will be able to access
data of the specified type. If the user is currently not configured or the
user already exhibits a permission to access the data type, the method
simply returns. Otherwise, the permission will be added for the specified
user.

• RemovePermission(username, datatype) void :: Local: This function
enables the intent-aware user interface to remove a previously added
permission on a specified data type for a specified user. If the permission
or the user does not exist, this method simply returns. Otherwise, the
permission will be removed and the user will no longer be able to access
the specified data type.

The primary intended usage of this interface is the manual manipulation of
the privacy policy through a graphical user interface on the device of the user.
Thereby, it is important to mention that the access to this interface is intended
to be restricted to an intent-aware user interface component that ships together
with the GAMAS middleware and that it cannot be accessed through other
components in order to avoid unwanted manipulations. Consequently, we
envision the creation of one or more list views that show which user has
access to what type of data as well as controls that enable the injection of
changes to these lists.

3
Data Acquisition

This chapter describes the data acquisition framework of the GAMBAS
middleware. The description includes discussions on the framework archi-
tecture, including the component system for developing context recognition
applications and the activation system for enabling automatic, state-based
activation of different configurations. The chapter also provides insight
into the design rationale for the system. This includes a discussion of the
motivation behind the component-based approach for context recognition,
the chosen component model, energy-efficient techniques to perform con-
text recognition on resource-constrained mobile devices, etc. Furthermore,
rationale behind the state machine abstraction for the activation system and
how energy optimization techniques used in the component system are fully
utilized by the activation system is given. Before we discuss the framework,
however, we first outline related work and clarify the innovations and research
gaps closed by the data acquisition framework.

3.1 Focus and Contribution

Data acquisition is an essential part of any context recognition system. For
such systems, data acquisition normally involves acquiring raw data from
different types of sensors such as accelerometers, microphones, gyroscopes,
proximity sensors, Wi-Fi, GPS, etc. The sensors can be embedded into a
single device or alternatively, they can be embedded in different devices that
are distributed in the environment. The data acquisition system acquires data
from these sensors and pre-processes it before forwarding it to more complex
recognition logic. Existing data acquisition systems differ depending on the
leveraged resources and on the target application requirements. An efficient
data acquisition system should be generic enough to be executable in different
settings (different hardware and different application requirements) with little

59 DOI: 10.1201/9781003336952-3

60 Data Acquisition

or no tuning. In the following, we briefly review the state of the art for
data acquisition systems mainly focusing personal mobile devices like smart
mobile phones, PDAs, etc. Thereafter, we identify the gaps in the existing
solutions and from these gaps, we derive a list of innovations realized by the
data acquisition framework of the GAMBAS middleware.

3.1.1 Data Acquisition Frameworks

There exist a number of context data acquisition systems and frameworks
for personal mobile devices [CK00]. These frameworks vary in their char-
acteristics depending on their target applications and operating environ-
ments. Examples include [HH10], [DHH07], [BM10], [YTN05], [KZX+11],
[LYL+10], [GJAS06], [RMM+10] and [CBSG12]. [HH10] describes a data
acquisition framework for on-body sensor networks which runs on resource-
constrained embedded systems and is used for human activity recognition.
[DHH07] describes a context acquisition framework which allows the col-
lection of raw sensor data from different sensing sources. The framework
provides programming abstractions for developers to fetch data from different
sensor implementation programs without developing the underlying commu-
nication mechanisms for the target platforms. [BM10] describes a service-
oriented architecture based data acquisition framework. It allows sensor data
fusion with local and external sources to build and manage context-aware
services for personal mobile devices in a transparent manner. The framework
protects the user’s private data by using suitable privacy-preserving policies to
handle information in P2P networks. [YTN05] describes a context acquisition
framework based on a customized sensing platform named Muffin. Muffin
supports a variety of sensors to help detect different types of contexts. The
Citron framework running on Muffin uses a black box architecture for context
processing and provides parallel processing of different sensor data streams
(audio, accelerometer, etc.) to identify the user’s context. [KZX+11] com-
bines both on-body sensors and mobile phones for joint context recognition.
The main contribution of this work is the provisioning of a framework
to support the collaboration of TinyOS-based sensor modes and Android-
based smart phones. This work also makes use of online training to improve
the accuracy of the classifiers and it can automatically turn off redundant
sensing sources to save energy. [LYL+10] describes a continuous sensing
engine for context recognition applications. It uses the concept of pipes for
different sensing sources (microphone, accelerometer, GPS) to balance out

3.1 Focus and Contribution 61

the application requirements and the available resources. [GJAS06] outlines
a software architecture and a service for on-body sensors as part of the
user’s attire. The system is realized using MicaZ motes. Challenges addressed
in this work include storage of data, uploading of data, synchronization
of data, power management of motes, reconstruction of activity logs, user
interfaces, etc. The presented architecture is aimed at the future development
of smart attire systems. [RMM+10] is a data acquisition framework for
detecting user’s social and physiological patterns using smart mobile phones.
The system can be programmed using a declarative language to describe
user behavior models, action base and knowledge base. The system can
be adapted at runtime to activate and deactivate sensors. The recognition
is based on GMMs (Gaussian mixture models). The system is aimed at
helping social scientist to understand the correlation of user emotions with
the places, groups and their activities. [CBSG12] is a collaborative context
recognition system for smart mobile phones. The system execution is a
two-stage process consisting of stages, namely grouping stage and context
recognition stage. In the grouping stage, devices are clustered based on their
proximity. Once devices are clustered, they scan the environment and send
the raw data for subsequent context recognition to a backend server. In the
context recognition stage, the system uses coupled hidden Markov models to
model activity and location sequences. The system is aimed at advertisement
systems where advertisements are shown based on mutual context and interest
of user groups.

3.1.2 Rapid Prototyping Tools

There also exist a number of rapid prototyping tools for expeditious
development of context recognition applications. Commonly known tools
include [SDA99], [BAL08] and [TRL+09]. [SDA99] is targeted at context
recognition with pre-deployed sensors and provides a uniform abstraction
for applications to access and use context information by hiding the actual
context sensing and interpretation from applications. [BAL08] is targeted
towards activity recognition for wearable systems. This toolkit provides
functionalities to develop distributed context recognition systems as well
as reusable components, parametrizable algorithms, filters and classifiers.
[TRL+09] is a data gathering and processing open-source platform targeted
towards mobile phones with varying hardware capabilities. It consists of a
minimal core that can be extended by plug-ins.

62 Data Acquisition

3.1.3 Application-Specific Acquisition

The systems mentioned above are generally used for dealing with
heterogeneous sensing sources and providing flexibility for application devel-
opers to customize applications in a certain way. However, there exist a
number of fine-tuned data acquisition and context recognition systems that
can only be used in a narrow set of situations. Examples include [BC09],
[MLEC07], [LLEC08], [LPL+09] and [EML+07]. These and many alike
systems are manually fine-tuned for particular applications and therefore
are able to detect only the fixed set of characteristics. As a result, these
systems cannot be adapted to dynamic environments which a user might
experience in a daily routine. They use built-in sensors in mobile phones to
recognize the required context. For instance, [MLEC07] uses microphones
and accelerometers to determine user context which is then injected into
social networking websites. [LLEC08] uses accelerometers and microphones
to detect road conditions. [TRL+09] uses location sensors to identify road
traffic congestions. Sound Sense [LPL+09] uses a microphone to classify
different types of sounds in the surrounding. [BC09] is a system aimed at
video recording of social events in a distributed manner using mobile phones.
The phones are grouped based on the social activity in which their users are
involved. For detection of a social activity, a phone at the appropriate location
is chosen to record events. At the end of the social activity, all recordings from
different phones are combined into one video by a backend server to create a
video highlighting important events of the social gathering.

Data acquisition and retrieval of contextual information is a resource
consuming process which can have a significant effect on overall system
performance for resource constrained personal mobile devices. Over the
last years, there has been some work towards devising mechanisms for
achieving energy-efficient data acquisition and processing. Examples include
[KLJ+08], [WLA+09], [RH10] and [RMJ+11]. [KLJ+08] detects changes
in the context data at an early stage. For instance, rather than waiting for
the results from the classifier, the system detects changes in sample values at
the sensor level. Thereafter, only those samples are further processed which
can lead in a context change, whereas [WLA+09] uses hierarchical sensor
management strategy to detect user states and state transitions and only fires
a transition when a particular transition probability is met. As a result, this
reduces the unnecessary execution of unwanted sensors. [RMJ+11] is aimed
at computing multiple contexts from multiple sensing sources. The authors
have proposed a theoretical model that shows the inaccuracy of estimating

3.1 Focus and Contribution 63

multiple contexts from multiple sensing sources. The work also presents a
heuristic algorithm for searching the set of sensors to recognize the required
multiple contexts.

3.1.4 Contribution

Designing a context data acquisition system is usually driven by the target
applications and operating environments. Therefore, such systems are opti-
mized with considerations to their requirements. The above-mentioned
systems are similarly aimed at optimizing a particular characteristic, which
could be the efficient utilization of available resources or the highly accurate
recognition of a particular context or the efficient prototyping of context
recognition applications. Looking at the description of these systems reveals
a need for a generic yet efficient system that in essence should be a complete
framework, which, on the one hand, allows efficient usage of available
resource and, on the other hand, supports rapid development of specialized
recognition applications with high accuracy. The data acquisition framework
in GAMBAS middleware bridges these gaps. It aims at providing a complete
solution that meets all the aforementioned objectives. Specifically, the data
acquisition framework of the GAMBAS middleware adopts a component-
based approach allowing multi-modal context data acquisition. The frame-
work provides an extensive component toolkit for rapid development of new
context recognition tasks. Using a component-based solution, the data acqui-
sition framework applies resource-efficient techniques (memory, energy, etc.)
with no or little impact on the recognition accuracy. Moreover, the data
acquisition framework is executable in distributed settings to enhance the
quality of desired context and helps in providing relevant services to different
groups of users (depending on their location, interests, etc.). Finally, the
framework provides a number of basic components that can be used to build
applications. These components cover activity and intent recognition as well
as sound and speech recogntion.

The activity recognition components in the data acquisition framework
focus on computing various user activities or user contexts. Due to the
application scenarios targeted by the GAMBAS middleware, the primary
focus lies on location-based activities, e.g. shopping in a supermarket, waiting
for the bus at the stop, traveling in a bus (standing or sitting), sightseeing in
a new city, etc. The data acquisition components rely on a variety of means
(motion sensor, Wi-Fi, GPS, on-line calendars) to recognize these and similar
activities. Similarly, the data acquisition framework encompasses necessary

64 Data Acquisition

components to estimate the user’s intents. By this, we mean the user’s likely
location or activity in the future, e.g. knowing that a user is traveling on a
bus to his destination, it might be useful or interesting to notify him about
the possibility of meeting a friend. If he is willing to change his route,
then prompt him of new shopping facilities near the destination. The intent
recognition components support computing such user intents based on user’s
activity patterns or interests.

The sound and speech recognition components focus on interpreting
acoustic signals in the environment of the user. A primary focus lies on the
recognition of environmental sounds, like engine sounds, traffic noise, talking
people, etc. to determine the means of transportation. The goal is to identify
delays in public transportation to adjust the predictions of personal intentions.
The so acquired data can be distributed in accordance with the privacy setting
to optimize travel plans of other users who rely on the same means of
transportation. The components use historic data and compare it to live data to
identify differences in schedule or behavior patterns. The speech recognition
components are designed to allow the integration into other applications on
the device. This allows developers to create new applications that offer voice
control via speech recognition.

3.2 Data Acquisition Framework

The data acquisition framework (DQF) is one of the fundamental building
blocks of the GAMBAS middleware. Conceptually, the DQF is respon-
sible for context recognition on personal mobile devices including smart
phones, PDAs and laptops. The DQF supports various platforms including
Android, Windows and Linux. It is realized as a multi-stage system. At
lower stages, it allows developing reusable components and component com-
positions for context recognition applications. At higher stages, it enables
application developers to automatically activate compositions when needed.
To do this, the DQF is split into two parts as shown in Figure 3.1, a component
system and an activation system.

The component system uses a component abstraction to enable the
composition of different context recognition stacks that are executed con-
tinuously. A context recognition stack or simply a configuration refers to a
set of sampling, preprocessing and classification components wired together
to detect a specific context. Examples of such contexts include the physical
activity of a person, the location of a person, etc. The configurations can be
used to detect context for a multitude of purposes and have applications in

3.2 Data Acquisition Framework 65

Figure 3.1 Data Acquisition Framework Overview.

areas of smart home environments, assisted living for elderly, proactive route
planning, shopping, etc.

The activation system uses a state machine abstraction to determine the
point in time when a certain configuration or a set of configurations should
be enabled. The activation system enables the required configurations in an
automatic manner based on the conditions associated with the state transi-
tions. An example of a simple (coarsely granular) state machine associated
with an employee could consist of two states, “Working” and “Relaxing”.
State “Working” may consist of configurations “Meeting”, “Cafeteria”, etc.
and state “Relaxing” may consist of configurations “Living Room” and
“Gardening”. Based on the transition values, the activation system will dis-
able the configurations associated with one and enable the ones associated
with the other. In addition, the state machines can also have more fine granular

66 Data Acquisition

states representing stages specific to a single task, e.g. a state can represent
the sampling of an accelerometer with lower or higher rate. In such a case, a
state change may occur when the device screen turns on, for instance. In the
following, we describe both systems in detail.

3.2.1 Component System

At the lower level of the data acquisition framework, context and activity
recognition is done using a component-based approach which promotes
reusability and rapid prototyping. In addition, this approach also enables
the automated analysis of application structures in order to optimize their
execution with respect to energy efficiency.

From the perspective of the component system, each application consists
of two parts: the part containing the recognition logic and the part containing
the remaining application logic. The part that contains the recognition logic
usually consists of sampling, preprocessing and classification components
that are connected in a specific manner as shown in Figure 3.2. The part that
contains the remaining application logic can be structured arbitrarily. Upon
start up, a context recognition application passes the required configuration to
the component system, which then instantiates the specified components and
executes them. Upon closing, the configuration is removed by the component
system which eventually releases the components that are no longer required.
The component system is implemented in Java and supports various platforms

Figure 3.2 Component System Overview.

3.2 Data Acquisition Framework 67

including J2SE environments and Android. Using an Eclipse-based graphical
editor, application developers can visually create configurations by selecting
and parameterizing components and by wiring them as needed. In the follow-
ing, we first provide more details on the underlying component model, before
we discuss the runtime and development support.

3.2.1.1 Component Model
To structure the recognition logic, the component system realizes a
light-weight component model which introduces three abstractions. First,
components represent different operations at a developer-defined level of
granularity. Second, connectors are used to represent both the data and the
control flow between individual components. Third, configurations are used
to define a particular composition of components that recognizes one or more
context characteristics.

3.2.1.1.1 Components
Components are atomic, reusable building blocks that constitute the recog-
nition logic. Similar to other systems such as J2EE or OSGi, components
can be defined at arbitrary levels of granularity. Yet, in contrast, they can be
instantiated multiple times and they are parameterizable to support different
application requirements. Due to the support for parametrization, the compo-
nent model is more flexible than other models. In addition to parameters, all
components exhibit a simple life cycle that consists of a started and a stopped
state. To interact with other components, a component may declare a set of
typed input and output ports that can be connected to other components using
connectors.

As depicted in Figure 3.3, the recognition logic of a speech detection
application may, for example, consist of a number of components which can
be divided into three levels. At the lowest level, the sampling components
are used to gather raw data from an audio sensor. On top of the sampling
components, a set of preprocessing components take care of various transfor-
mations, noise removal and feature extraction. Finally, the extracted features
are fed into (a hierarchy of) classifier components that detect the desired
characteristics. Depending on the purpose and extent of the application logic,
it is usually possible to further subdivide the layers into smaller operators.
Although the component system does not enforce a particular granularity,
such operators should usually be implemented as individual components to
maximize the potential for reuse.

ti

OS

68 Data Acquisition

Audio Source

Short To Double

Low Energy
Frame Rate

Zero Crossing
Rate

Fast Fourier
Transform

Spectral
Rolloff Bandwidth Spectral

Entropy

Speech
Classifier

Further Applica on Logic

Classifier
Broadcaster

ApplicationApplication

ClassificationClassification

PreprocessingPreprocessing

SamplingSampling

Rate: 8000 Hz
Depth: 16 bit

Record: 2000 ms
Cycle: 10000 ms

Prec.: 1024 terms

OS Microphone

Figure 3.3 Speech Detection Configuration Example.

3.2.1.1.2 Parameters
Parameterizations increase the reusability of a component implementation
across different applications. The component system allows components to
support a developer-defined set of parameters. Components expose these
parameters to adapt their internal behavior. As shown in Figure 3.3, at the
sampling layer, these parameters might be used to express different sampling
rates, sampling depths, frame sizes and duty cycles. At the preprocessing
layer, they might be used to configure different filters or the precision of
a transformation. In the component system, the parameters are not exposed
to other components. Instead, they can be accessed and manipulated by the
components.

3.2.1.1.3 Ports
In order to support application-independent composition, each component
may declare a number of strongly typed input and output ports. Input ports
are used to access results from other components. Output ports are used to

3.2 Data Acquisition Framework 69

transfer computed results to another component. Thus, ports enable compo-
nents to interact with each other in a controlled manner. The developer can
add multiple input and output ports of different types. The component system
takes care of the necessary memory allocation and de-allocation and performs
efficient buffer management for each of the ports in transparent manner.

3.2.1.1.4 Connectors
In order to be reusable, components are isolated from each other by means
of ports. However, the recognition of a context feature often requires the
combination of multiple components in a specific way. Connectors express
such combinations by determining how the typed input and output ports of
different components are connected with each other. In order to minimize the
overhead of the component abstraction, connectors are implemented using an
observer pattern [GHJV95] in which the output ports are acting as subjects,
whereas the input ports are acting as observers. This enables modeling of 1:n
relationships between the components, which is required to avoid duplicate
computations. To avoid strong coupling between components, input ports do
not register themselves at the output ports, but the component system takes
care of managing all required connections. An example of connectors can
be seen in Figure 3.3, where the output port of the fast Fourier transform
component is connected to the input ports of the bandwidth, the spectral roll
off and the spectral entropy component.

3.2.1.1.5 Configurations
To recognize a particular piece of context, a context recognition application
must explicitly list all required components together with their connectors in
a so-called configuration. While this approach slightly increases the devel-
opment effort, it also increases the potential reuse of components that can
be applied on data coming from different sources. As an example of such
component, consider a Fast Fourier Transform (FFT) that converts a signal
from its time domain into the frequency domain. Clearly, such a component
can be applied to various types of signals such as acceleration measurements
or audio signals. Thus, by explicitly modeling the wiring of components as
part of a configuration, it is possible to reuse this component in different
application contexts. In addition to listing components together with their
connectors, the support for parameterizable components also requires the
developer to explicitly specify a complete set of parameter values that shall
be used by each component. As a result, every configuration consists of a

70 Data Acquisition

parameterization as well as associated connectors. An example of a speech
detection configuration is shown in Figure 3.3.

3.2.1.2 Runtime System
The main task of the runtime system of the component system is to sup-
port the execution of configurations defined by different context recognition
applications in an energy-efficient manner. This includes loading the config-
urations specified by the context recognition applications, instantiating the
components with right parameterizations and connecting them in the manner
specified by the application. In addition to that, the runtime system applies
energy optimization techniques if more than one application is executed
simultaneously. When the applications do not require the context information
anymore, the runtime system stops executing the associated configurations.
A detailed description of the component system structure and execution of
applications is given in the following sections.

3.2.1.2.1 System Structure
As shown in Figure 3.4, the main elements of the runtime system of the com-
ponent system are the configuration store, the configuration folding algorithm
[IHW+12] and the applications. The configuration store is used to cache the
configurations associated with applications that are active. It is also used to
store their folded configuration. The configuration folding algorithm provides
energy-efficient execution of context recognition applications, provided that
more than one application is executed simultaneously. The entity responsible
for managing the runtime system is called the component manager.

3.2.1.2.2 Configuration Execution
The component manager controls the execution of the componentized recog-
nition logic of all running applications. To manipulate the components
executed at any point in time, the component manager provides an API that
enables developers to add and remove configurations at runtime. When a new
configuration is added, the component manager first stores the configuration
internally. Then, it initiates a reconfiguration of the running recognition logic
that reflects the modified set of required configurations. To reduce the energy
requirements, the component manager does not directly start the components
contained in the configuration. Instead, it uses the set of active configurations
as an input for our configuration folding algorithm.

The goal of the configuration folding algorithm is to remove redundant
components that are present in different applications and perform the same

ti

Further Applica on LogicFurther Application Logic

3.2 Data Acquisition Framework 71

sampling or compute redundant results. Using the set of configurations, the
configuration folding algorithm computes a single, folded configuration that
produces all results required by all running applications without duplicate
sampling or computation. Once the configuration has been folded, the com-
ponent manager forwards it to the delta configuration activator. By comparing
the running and the folded configuration, the activator determines and exe-
cutes the set of life cycle and connection management operations (starting,
stopping and rewiring of components) that must be applied to the running
configuration in order to transform it into the folded target configuration.
When executing the different operations, the delta activator takes care of
ensuring that their ordering adheres to the guarantees provided by the com-
ponent life cycle. To do this, it stops existing components before they are
manipulated. This procedure is illustrated in Figure 3.4.

3.2.1.2.3 Platform Support
The core abstractions of the component systems as well as the component
manager are implemented in Java 1.5. In order to support multiple platforms,
different wrappers have been implemented that simplify the usage of the
component system on platforms including Windows, Linux and Android.

3.2.1.3 Tool Support
The component system encompasses offline tools to support rapid proto-
typing. These tools include a visual editor which is used for creating and

Recognition Logic
Sampling

Preprocessing

Classifica tion

Component Manager

Configura tion Store

Configura tion Store

Co
nfi

g.

Co
nfi

g.

Co
nfi

g.

Configuration Folding
Algorithm

Fo
ld

ed
Co

nfi
g.

Delta Configuration
Activator Component

Further Applica tion Logic

Component

Component

Add and remove
configura tions

Signal changes
In context

Adapt
components,
parameters,
and wiringRun folding

algorithm

(1)(1)

Update
configura tion

(2)(2)

(3)(3)

(4)(4)

Figure 3.4 Component System Structure.

72 Data Acquisition

Figure 3.5 Component System Tool Support.

updating configurations for the context recognition applications. The visual
editor provides a user-friendly interface, which allows developers to drag,
drop, parameterize and wire existing components to create new configura-
tions or update existing ones. The visual editor is implemented as a plug-in
for the Eclipse IDE (Version 3.7 and above). A screenshot of the visual editor
is shown in Figure 3.5.

In addition to the visual editor, the component system also provides a
large set of generic sampling, preprocessing and classification components
as part of the component toolkit. At the sampling level, the toolkit provides
components that access sensors available on most personal mobile devices.
This includes physical sensors such as accelerometers, microphones, mag-
netometers, GPS as well as Wi-Fi and Bluetooth scanning. In addition, the
toolkit encompasses components that provide access to virtual sensors, for
instance, personal calendars.

For preprocessing, the toolkit contains various components for signal
processing and statistical analysis. This includes simple components that
compute averages, percentiles, variances, entropies, etc. over data frames as
well as more complicated components such as finite impulse response filters,
fast Fourier transformations, gates, etc. Furthermore, the toolkit also contains

3.2 Data Acquisition Framework 73

a number of specialized feature extraction components that compute features
for different types of sensors such as the spectral rolloff and entropy or zero
crossing rate, which are used in audio recognition applications [LPL+09] or
Wi-Fi fingerprints, which can be used for indoor localization.

At the classification layer, the toolkit contains a number of trained
classifiers, which we created as part of the audio and motion recognition
applications. Finally, there are a number of platform-specific components
which are used to forward context to an application which enables the
development of platform-independent classifiers. On Android, for example,
a developer can attach the output of a classifier to a broadcast component
which sends results to interested applications using broadcast intents. We
have also developed a number of components that are useful for application
development and performance evaluation. These includes components that
record raw data streams coming from sensors as well as pseudo sensors that
generate readings using pre-recorded data streams. Together, these compo-
nents can greatly simplify the application development process on mobile
devices as they enable the emulation of sensors that might not be available on
a development machine.

3.2.2 Activation System

To fully understand the context of a person, it is usually necessary to recog-
nize more than one context characteristic. As an example, consider that to
know if a person is working in his office, context characteristics such as his
location, pattern of movement, types of meetings and classification of ambi-
ent sounds are required. As described earlier, such context characteristics
can be detected using the component system by developing configurations
with the appropriate components, parameterizations and connections. Fur-
thermore, in order to fully identify a particular context, more than one
configuration would be needed at a particular time. In real life, however, the
context of an entity does not remain static and over the period of time, it
requires detection of different context characteristics.

Moreover, the context of a person depends on the task that the person is
involved in. In other words, to know the context of a person, it is essential to
know the current task. Furthermore, these tasks often follow certain patterns,
e.g. tasks that a working person usually has consist of waking up in the
morning, dressing up according to the weather, traveling to the work place,
sitting in the office, holding meetings and discussions, going for lunch and
coffee breaks, working on a computer, going for shopping, going home,

74 Data Acquisition

relaxing, having dinner, sleeping, etc. Thus, the resulting routine is often
predictable, at least partially.

Given the presence of such regular patterns of reoccurring tasks, the goal
of the activation system is to exploit the knowledge about their existence
in order to minimize the amount of sampling and processing that is needed
to detect the user’s context. To do this, the activation system enables the
developer to model individual tasks as a set of states that occur sequentially.
For each of the states, the developer may specify a set of configurations
that describe the context that shall be recognized. In addition, the developer
specifies a set of transitions between the states that define possible sequences.
Using this model, the activation system takes care of executing the right
configurations at the right time as shown in Figure 3.6. In the following, we
describe this basic idea in more detail.

3.2.2.1 Activation Model
In the GAMBAS data acquisition framework, the modeling of the routines of
a task is supported by the activation system, which uses a state machine as
its primary model. Specifically, the activation system enables the automatic,
state-based activation of different configurations associated with developer-
defined tasks. Hence, in the activation system, the entity’s context is modeled
as a state with different configurations associated with it, irrespective of its
granularity. The transitions between the states are modeled using context-
dependent rules. In the following, we discuss these concepts in more detail.

Figure 3.6 Activation System Overview.

3.2 Data Acquisition Framework 75

3.2.2.1.1 States
A state refers to a particular decision point during the execution of a larger
task. It entails a set of confgurations that individually detect different context
characteristics but collectively identify one of the possible decisions taken by
the user.

For this purpose, states may be used to model decision points at different
levels of granularity. An example of a coarse-grained state is shown in
Figure 3.7(a). In this example, a high-level “working” state may encompass
confgurations that detect whether the person is in a meeting, working in his
offce or having lunch at the canteen. An example for a fne-grained use
of state is shown in Figure 3.7(b). Here, the state “Fast Sampling” may be
used in conjunction with a “Slow Sampling” state in order to control the
precision of a certain set of confgurations such as a movement detector or
a sound classifer.

3.2.2.1.2 Transitions
Transitions are defned by the conditional changes in the confgurations
associated with a state. When the changes suggest that a certain condition
holds, the activation systems disables the current state and its associated

State “Working”

a a a

…

C1

P1 P2

S1 S2

C1

P1

S1

P2

C1

P1

S1

Office detection
configuration

Meeting detection
configuration

Canteen detection
configuration

(a) (b)

State “Fast Sampling”

a

C1

P1 P2

S1 S2

Movement detection
configuration

a

C1

P1

S1

P2

Sound detection
configuration

Figure 3.7 Examples of Activation System States. (a) Coarse-grained Usage and (b) Fine-
grained Usage.

76 Data Acquisition

configurations and enables the ones associated with the new state. The
activation system uses rules to model the conditions. Internally, each rule
is represented by an abstract syntax tree, in which expressions for each
configuration are defined. Depending on the evaluation of the expressions,
the activation system decides whether a state must be changed.

Figure 3.8(a) shows two example states. State 1 has two configurations,
Configuration A and Configuration B. State 2 also has two configurations,
Configuration C and Configuration D. The transition from State 1 to State 2
is labeled as Transition 1 → 2, and the transition from State 2 to State 1 is
labeled as Transition 2 → 1.

The abstract syntax tree of the rule for Transition 1 → 2 and Tran-
sition 2 → 1 is shown in Figure 3.8(b) and Figure 3.8(c), respectively.
Assuming that State 1 is currently the active state, the activation system
continuously evaluates the rules defined by the expression of Transition
1 → 2 and when the outcome of the expression, here represented by an
AND operator, is true, it will disable Configuration A and Configuration B
and enable Configuration C and Configuration D. Similarly, when State 2 is
the current state, the activation system evaluates the rules associated with

Figure 3.8 Examples of Activation System Transitions. (a) Activation System Transition
Example, (b) Transition from 1 to 2 and (c) Transition from 2 to 1.

3.2 Data Acquisition Framework 77

Transition 2 → 1 and it will execute the associated state change whenever
this is implied by the outcome.

3.2.2.2 Runtime System
The main task of the runtime system is to load and execute the state machines
defined by different applications. For this, the system instantiates the con-
figurations associated with states, identifies the current state, instantiates
rules for different transitions and evaluates the expressions associated with
the respective transitions. Thereby, the activation system executes the state
machines in an energy-efficient manner by applying configuration folding
among all configurations across all the different states. The outcome of such a
“folded” state machine is a single-folded configuration. Clearly, it is possible
that in such a folded configuration, different configurations share the same
graph structure, at least to a certain level. Therefore, the activation system
provides logic for evaluating transition between the states.

3.2.2.2.1 System Structure
The main structural elements of the activation system are shown in Figure 3.9.
These include a state machine store, the configuration folding algorithm, a
rule engine and the state machine manager. The state machine store is used to

Figure 3.9 Activation System Structure.

78 Data Acquisition

cache the state machines associated with the applications. The configuration
folding algorithm is used to compute an energy-efficient configuration for an
entire state machine. To do this, the activation system applies configuration
folding on the configurations of the currently executed state machines. The
transitions between the states are modeled as if-else conditions and are man-
aged by the rule engine. Once the folded configuration of the state machine
and the rules for the state transitions are loaded, the state machine manager
attaches the rules in the folded configuration, instantiates it and executes it.
Similar to the component system, when the application logic indicates that no
further context information is needed, the activation system stops executing
the state machine.

3.2.2.2.2 Configuration Mapping
To provide a better understanding of the integration between the component
system and the activation system, we describe how the configurations related
to different states are folded and how the rule engine applies rules repre-
senting transitions between the states. To understand the mapping, consider
an example of a state machine with two states as shown in Figure 3.10(a).
Each state has two configurations attached to it. When the activation system
loads the state machine, it applies the configuration folding algorithm on
all configurations associated with both states, and the result is shown in
Figure 3.10(b).

Let us assume that the rules for the two transitions are defined as follows:
• 1 → 2: IF Config. A OR Config. B EQUALS false THEN State 2
• 2 → 1: IF Config. C OR Config. D EQUALS false THEN State 1

The resulting mapping for the states, transitions and the folded configurations
of State 1 and State 2 are shown in Figure 3.11(a) and Figure 3.11(b),
respectively. If the state machine is residing in State 1 (c.f. Figure 3.11(a)),
the configurations that must be evaluated according to the definition are Con-
figuration A and Configuration B. Since folding has already taken place for
all configurations of the state machine, the required graph structure for Con-
figurations A and B is distributed across in two different graphs. However,
these graph structures also share configurations from other states. Therefore,
in order to evaluate the relevant configurations only, the activation system
enables only the components that are required to compute Configuration A
and Configuration B as shown in Figure 3.11(a). The remaining components
are disabled. During the execution of the components required for State 1,

3.2 Data Acquisition Framework 79

Figure 3.10 Configuration Mapping Example. (a) States, Transitions and Configurations and
(b) Resulting Folded Configurations.

the activation system continuously evaluates the rule for the transition from
State 1 to State 2 using the rule’s syntax tree.

When the conditions defined by one of the active rules hold, the activation
system initiates the state transition. Thereby, it stops the configurations of
the previous state that are no longer needed and it starts the configurations
required by the new state. In addition, the system stops the evaluation of the
rules associated with the previous state and begins with the evaluation of the

80 Data Acquisition

S 1

P 1

C1 C2

S 3

P 3

C3 C4

Folded configuration

=

Config. A FALSE

=

OR

Config. B FALSE

=

Config. C FALSE

=

OR

Config. D FALSE

Active graph
structures

Transition 1a 2

Rules for Transition

(a)

S 1

P 1

C1 C2

S 3

P 3

C3 C4

=

Config. A FALSE

=

OR

Config. B FALSE

=

Config. C FALSE

=

OR

Config. D FALSE

Active graph
structures

Transition 2a 1

Folded configuration

Rules for Transition

(b)

Figure 3.11 Executed Configurations and Transitions. (a) State 1 and (b) State 2.

rules for the new state. The result after transitioning from State 1 to State 2 is
shown in Figure 3.11(b). Once State 2 becomes active, the system activates
the Configurations C and D which are associated with State 2 and it begins
the evaluation of the transition rule from State 2 to State 1.

3.3 Data Acquisition Components 81

3.2.2.2.3 Platform Support
Similar to the component system described previously, the core abstractions
of the activation systems have been implemented using Java 1.5. In order to
support multiple platforms, different wrappers have been implemented that
simplify the usage of the activation system on platforms including Windows,
Linux and Android.

3.2.2.2.4 Tool Support
Just like the component system, the activation system also provides a suite of
offline tools to support rapid prototyping. These tools include a visual editor
which simplifies the definition of states and transitions. The visual editor
provides a user-friendly interface which allows developers to drag, drop,
parameterize and wire existing configurations to create new state machines or
to update existing ones. Similar to the visual editor of the component system,
the visual editor for the activation system is also implemented as a plug-in for
the widely used Eclipse IDE.

In addition to the visual editor, the activation system provides a set of
configurations as part of the configuration toolkit for detecting different
context such as location, speech, motion, etc. With the availability of the
toolkit, developers do not have to create configurations from scratch. Instead,
they can reuse existing configurations with trained classifiers, which can
significantly reduce the application development time. A screenshot of the
tool support for component system is shown in Figure 3.12.

Figure 3.12 Activation System Tool Support.

82 Data Acquisition

3.3 Data Acquisition Components

As indicated by the previous discussions, the data acquisition framework of
the GAMBAS middleware is highly configurable and extensible to support
the acquisition and processing of arbitrary data from different sources. Using
component compositions and state-machine definitions, even complex con-
text recognition tasks can be supported in a highly structured manner. In order
to speed up the development of applications, the data acquisition framework
contains a set of basic recognition stacks including (trained) classifiers that
support a broad variety of low-level and high-level context acquisition tasks.
Using these building blocks, we have realized a broad number of applications
described in more detail in Chapter 6. However, since they are usable beyond
the scope of these applications, we briefly describe them in the following.

3.3.1 Context Recognition

The context recognition components are the basic building blocks of a
context recognition application. The component toolkit provided with the
component system consists of a large number of sampling, preprocessing
and classification components. These components can be used to create new
applications. Moreover, with the help of the toolkit, developers can imple-
ment their own components with little effort. Due to the targeted application
scenarios described in Section 1.3, the components that we developed with
the GAMBAS middlware are primarily focusing on location recognition, trip
recognition and sound recognition.

3.3.1.1 Location Recognition
In order to determine the location of the user, the location recognition
components integrate GPS information with RF signals that are present in
the user’s environment. Specifically, the components combine information
from GPS, GSM and Wi-Fi sensors of the user’s phone. Each of them has its
own advantages and limitations but their collective use can provide efficient
and accurate location recognition. With the widespread use of Wi-Fi, a user
can typically see multiple Wi-Fi access points in the surroundings. With the
limited range or signal strength of a typical Wi-Fi signal, a user can see
different set of access points as he moves from one location to another. Thus,
capturing this information alone can provide the user with a good view of
his location. However, in places where Wi-Fi signals are not available or are
very weak, GSM signals can be used instead. Typically a mobile phone can

3.3 Data Acquisition Components 83

report up to 6 neighboring cell towers. Though the range of a GSM cell tower
is usually large and same locations may exhibit identical cell information,
together with Wi-Fi, GSM can provide accurate location information as well.
Lastly, GPS signals are used to identify outdoor locations where Wi-Fi and
GSM signals are not present or unique. Since each of these technologies
have different energy requirements, they are used in a staged fashion that
allows a user to run the location recognition continuously without draining
the phone’s battery.

3.3.1.2 Trip Recognition
The location of a user is an important piece of information for both users
and service providers. Similarly, having information about the mode of
locomotion between two locations can be beneficial for service providers.
Knowing how trip was done – i.e. whether the user went on foot, took a
car or a bus, stood in the bus or was able to find a seat – can help public
transit providers to offer better services. In order to determine the mode of
locomotion, the GAMBAS middleware encompasses multistage classifiers
which integrate different sensors including accelerometers, Wi-Fi scans and
GSM cell-IDs. Thereby, the classifiers use accelerometer samples to identify
the general motion of the user. This allows them to determine if the user is
walking, running, climbing stairs, etc. If a continuous detection of walking or
running is detected between the locations, they can derive that the user was
traveling on foot. If the user is not walking, the trip recognition components
are using Wi-Fi and GSM cell information to estimate the movement speed
of the user, which can then be used to narrow down the remaining modes
(e.g. driving in a car, riding a bus, etc.).

Given a suitable infrastructure, such as the one deployed in the city of
Madrid, it is even possible to identify the actual vehicle type (e.g. a specific
public bus running on a particular bus line). However, even if this infrastruc-
ture is not available, it is still possible to derive the movement modality with
high accuracy. In order to measure the accuracy of configuration for the trip
recognition, we performed a number of validation tests over the data gathered
from different modes of transportation. The final classifier with the overall of
accuracy of 91.4% and the confusion matrix are shown in Figure 3.13 and
Figure 3.14, respectively.

These results have been gathered by capturing training data from
4 persons in Duisburg and Bonn over the course of multiple days. Conse-
quently, there might be a bias regarding the fit for this particular area and
overall the results may be worse when applied to different areas or users.

84 Data Acquisition

Figure 3.13 Trip Recognition Classifier.

Figure 3.14 Trip Recognition Confusion Matrix.

However, given the high accuracy of the results, it is conceivable that this
approach is broadly applicable in general.

3.3.1.3 Sound Recognition
The sound recognition components make use of audio-data collected on the
mobile device and combine it with location data. They can be used for two
major purposes. First, they can be used to identify features of the user’s
environment as done with noise recognition. Second, they can be used in

3.3 Data Acquisition Components 85

Figure 3.15 Average Frequency Vectors (Train Station, Restaurant, Rock Concert, Sport
Arena, Subway, Train).

order to provide a natural way of performing user inputs as done with Voice
Tagging or Voice Control.

3.3.1.3.1 Noise Recognition
There are several user contexts that come along with a characteristic sound
environment. Being on a crowded bus, for example, a person is surrounded
by a constant bus engine sound as well as human voices and other noises
created by a crowd of people. This can be exploited to extract information
about the user context from audio collected on the mobile device as well as
to gather information about the public transport traffic situation in the whole
city. To do this, we collected data sets using mobile devices carried around
the city by test users. The devices are used to record several distinct audio
environments like crowded bus stations and traffic jams. The collected data
is then used to create sound profiles of different environments, e.g. crowded,
not crowded, rush hour, etc. To do this, we compute an average frequency
vector from individual samples. As shown in Figure 3.15, the average fre-
quency vectors are different depending on the characteristic sounds present
in an environment.

In order to classify recordings, the noise recognition components compute
the average frequency vectors of new samples and compare them with the
known profiles using the Euclidean distance between the new and all known

86 Data Acquisition

vectors. In order to minimize the number of comparisons, we use K-Means
clustering to reduce the candidates to one (good) representative for each
sound profile.

3.3.1.3.2 Voice Tagging
Every person typically has certain locations that he attends frequently, for
example, his home or his work place. To enable the user to enter these
locations as destinations in a more efficient way, the voice-tagging component
enables users to speed up repeated inputs. In a first step, it allows the user
to add a short audio tag to his current whereabouts. For this purpose, an
application typically offers a button saying “voice tagging”, which, when
pressed, starts a short audio recording. Typically the audio input will contain a
sequence of one to three words spoken by the user. This audio is then stored in
the database in a reduced form, together with the current geo data, provided
by the location recognition component. At any later point in time, the user
can refer to his audio tag by speaking the words used for the tag again.
So if he had tagged a place by saying “my favorite restaurant”, he would
just have to phrase these words again to select the tagged location. At first
sight, this component looks like a speech-recognition-application. However,
the required computations to perform the matching between the stored voice
tags and the user input are much simpler. In addition, the integration of voice
tags into an application is also easier, since it does not require the definition
of a grammar that defines the possible inputs. However, in contrast to voice
control, voice tagging requires more effort on the side of the user, since the
user has to set up tags in advance to be able to use his or her voice as an input.

3.3.1.3.3 Voice Control
The idea of the voice-control component is to enable the user to tell the
application where he wants to go next by simple speech input. Typically,
the component is activated via a voice-control button in the user interface.
Once the button is pressed, it will start to receive audio data and return the
recognized location. A typical speech input would be “I want to go to the main
station.” To enable voice control, we have integrated a customized version
of the Sphinx speech recognition engine for which we developed custom
models to support different target languages (including German, Spanish
and English). In addition, we have developed a custom grammar for the
applications described in Chapter 6. Due to the specific application scenario,
the grammar includes a general list of public transport stations in the city

3.3 Data Acquisition Components 87

of Madrid and it contains template sentences that are frequently used to
specify routing targets such as “how do I get to Moncloa” or “compute a
route to Atocha”.

3.3.2 Intent Recognition

The intent recognition components take the recognized locations and trips and
provide future predictions on them. Knowing the current location and mode
of user transport provides significant opportunities to the service providers
to improve their business, but the added ability to predict how long the user
will stay at a particular place and what would be his next destination could
help service providers to offer even more useful services. Apart from the
service providers, a user can have many personal applications that can take
advantage of this information. For instance, there can be a device charge
reminder application which can alert the user to charge the batteries, based on
the predicted duration of his stay at the current location and also his intended
next destination. With respect to intent recognition, the acquisition framework
provides duration prediction and destination prediction components.

3.3.2.1 Duration Prediction
Knowing how a long a user will stay in a particular place requires storing
user location and running an offline analysis to compute predictions for the
duration of user’s stay in the same place in the future. There can be different
options to store information about user’s stay in a particular location, e.g.
this information can be stored in users’ device, in the cloud and also at third-
party trusted servers. Clearly, storing such information elsewhere than on the
user’s device is prone to privacy issues and thus for the scope of GAMBAS,
this information is only stored on the user’s device. During the training
phase, whenever a user visits a new place or a place that he has visited
before, the duration prediction component stores how long the user stayed
there, at which day of the week and at, which time of the day. The system
then performs offline analysis on this data in addition to previously stored
data which includes the information about the frequency of the user’s visit to
that location and his usual next locations. The system then runs a prediction
algorithm to compute new predictions or update existing ones. In order to
minimize the impact on the battery of the user’s device, the offline analysis of
data is usually done whenever the device is plugged to a socket and charged
for a longer time, e.g. during the night.

88 Data Acquisition

3.3.2.2 Destination Prediction
In addition to knowing the current location and stay of a user in a particular
location, the ability to predict the next user destination is also very useful.
This information can be used to compute the transport routes proactively,
for example. Similar to the duration prediction, the destination prediction is
performed by analyzing the history of places visited by the user. This mainly
involves identifying some sequence in the places visited by the user, the time
of the day, the day of the week, frequency of visits, etc. For example, we
can predict that every Saturday the user first goes shopping, then goes to a
fitness club and afterwards meets friends and family. Similar to the duration
prediction, this information is stored on the device and offline analysis (when
the device is being charged) is performed to compute new predictions or
update the existing ones.

3.3.2.3 Prediction Algorithm
The prediction algorithm uses three prediction techniques, namely time series
prediction, least k history predictor and a location-dependent Markov model.
The time series prediction works by taking into account the history of visits by
a user to a particular location. Each visit to a particular location is saved and
marked by the starting time and the duration of stay at that location. In order
to predict the starting time when the user is likely to visit that location again,
we choose latest last m values of starting times from the history of visits. We
than identify subsets of m values of starting times in the history of visits and
identify sets that are close to the latest last m values. The predicted value for
next user visit to that location is obtained by averaging the next starting time
value following the sets of m values. At the end of this exercise, we have a set
of predicted starting time of all the locations that the user might visit. In order
to select a unique next location, we check whether the predicted starting time
of a location is under some time threshold T. If we can find such a starting
time, we select the associated location to be the next possible location. If more
than one predicted locations satisfy the criteria, we choose one randomly. A
similar approach is also used for determining the duration of stay. In our tests
with multiple users, the prediction techniques typically range around 20–40%
accuracy, depending on the regularity of the movement patterns of the user.

4
Data Processing

This chapter describes the data processing supported by the GAMBAS
middleware. Towards this end, the chapter first describes the formalisms and
ontologies for the data and query models. The formalisms and ontologies
provide a unified view of the heterogeneous data produced by the different
players in the targeted applications. Such a unified view, based on semantic
descriptions of the data and the data sources, is in line with the linked data
paradigm, and it not only facilitates data understanding, but also improves
data discovery and integration between both objects and persons, and other
sources of data that follows the same paradigm, such as the Web of Data.
Based on the data and query models, the chapter introduces the general data
discovery mechanisms that are used to make data available to others. Finally,
the chapter describes the architecture and implementation of the distributed
data storage and processing system that allows devices to cooperate with each
other in a seamless and interoperable way.

4.1 Focus and Contribution

The data representation and the associated query processing infrastructure
are key to allow data interoperability between the devices and services
targeted by the GAMBAS middleware. This is particularly important given
that behavior-driven services often base their decision on data coming from
multiple sources. Descriptions of the data and the data sources should be
available to all devices. Such descriptions can include the features of interest,
accuracy, measuring condition, time point, location, etc., and they are essen-
tial for search and discovery when an Internet-connected object is confronted
with a large number of data sources. The query processing needs to account
for the dynamic nature of some of the generated data, and it should be done
in a distributed fashion, whenever possible, to improve scalability and also to
increase privacy-level of data processing.

89 DOI: 10.1201/9781003336952-4

90 Data Processing

4.1.1 Data Representation

There have been a lot of efforts in employing Semantic Web technology to
semantically enrich sensor data [WZL06], [BFL+07], [SHS08], [RMLM09],
[PHS10]. In order to allow easy integration with other data sources avail-
able in a Linked Open Data (LOD) cloud, [Lin12] suggests that sensor
data sources should be published following the Linked Data principles
[BHBL09] – a concept that is known as Linked Stream Data [SC09]. The
advantages of such an approach are manifold. Not only would it support the
direct integration of sensor data with the large amounts of already available
web and enterprise data, but it can also benefit from a large body of work and
infrastructure from existing research areas such as LOD, Web and Data Base
Management Systems (DBMS). One example scenario is the case where GPS
locations streamed as Linked Data are combined in real time with a Cocitation
Collection Service available in the LOD cloud. The service can then notify an
author if there is any other author in the same location whose papers he cites.
However, the state of the art in Semantic Web technologies is inadequate
for sensor-generated data, due to the highly dynamic and temporal aspects
of this data. Moreover, the data representation suggested by Semantic Web
technologies typically are not suitable for devices with limited data storage.

Stream elements of Linked Stream Data are usually represented as RDF
triples with temporal annotations. A temporal annotation of an RDF triple can
be an interval-based [LPSZ10] or point-based [GHV07] label. An interval-
based label is a pair of timestamps, which commonly are natural numbers
representing logical time. The pair of timestamps, [start, end], is used to
specify the interval that the RDF triple is valid. The point-based label is a
single natural number representing the time point that the triple was recorded
or received. Both approaches have their advantages and disadvantages. The
point-based label looks redundant and less efficient in comparison to the
interval-based one. Furthermore, the interval-based label is more expressive
than the point-based label because the latter is a special case of the former, i.e.
when start = end. However, a point-based label is more practical for streaming
data sources where triples are generated unexpectedly and instantaneously.

4.1.2 Query Processing

The state of the art in query processing of Semantic Web data can also
not be directly applied to the context of data generated by smart mobile
devices. There has been work on extending Semantic Web technologies for
stream data. StreamingSPARQL [BGJ08] has rules for translating continuous

4.1 Focus and Contribution 91

queries, common in stream processing scenarios, to SPARQL algebra, the
standard query processing language for Linked Data. Streaming SPARQL
extends the SPARQL 1.1 query language for representing continuous queries
on RDF Streams.

CSPARQL [BBCG10] combines triple stores with data stream man-
agement systems (DSMS). When a continuous query arrives, it is first
split into static and dynamic parts, and both parts are executed inde-
pendently and results are combined at the end. EP-SPARQL [AFRS11]
translates the processing into logic programs. The execution mechanism
of EP-SPARQL is based on event-driven backward chaining (EDBC) rules.
EP-SPARQL queries are compiled into EDBC rules, which enable timely,
event-driven and incremental detection of complex events (i.e., answers to
EP-SPARQL queries). EDBC rules are logic rules and hence can be mixed
with other background knowledge (i.e. domain knowledge that is used for
reasoning).

CQELS (Continuous Query Evaluation over Linked Streams) provides
a native and adaptive query processor for unified query processing over
Linked Stream Data and Linked Data [LPDTXPH11]. The query executor is
able to switch between equivalent physical query plans during the lifetime
of the query. The CQELS engine employs both efficient data structures
for sliding windows and triple storages, to provide high-throughput native
access methods on RDF datasets and RDF data streams. Similar to other
systems, the CQELS engine extends SPARQL 1.1 for continuous queries.
However, it also supports updates in RDF datasets as well as variables
for stream identifiers, allowing queries that continuously discover streams
that contain a certain property. Despite the progress in Linked Stream Data
processing, currently none of the approaches consider a distributed solution
for resource-constrained devices.

4.1.3 Contribution

Data representation and query processing of Linked Stream Data is an
active research area with many open challenges. The GAMBAS middleware
addresses the problem of data interoperability among dynamic heterogeneous
data sources, where data storage is limited. It provides an infrastructure sup-
porting the discovery of dynamic linked data sources that runs on resource-
constrained devices. Thereby, it provides solutions for important aspects of
continuous query processing over heterogeneous Internet-connected objects
to create a scalable system that can react to changes in the network and in the
data being produced.

92 Data Processing

Data interoperability is achieved by means of a unified representation
of the heterogeneous data and their data sources, following the Linked
Open Data principles. The unified view consists of basic vocabularies and
ontologies that cover all aspects of the data required to realize the application
scenarios. Special care is taken to represent dynamic and temporal aspects.
The goal is to enable the devices themselves to store their generated data
locally in the form of Linked Data, by using the vocabularies and ontologies
provided as part of the middleware. Therefore, special care is taken to limit
the amount of data that needs to be stored, since storage in connected objects
is limited. To do this, the descriptions applied by GAMBAS are complete,
yet compact.

To allow data discovery, the infrastructure constructs and maintains a
directory of descriptions, which are accessible to every device and are con-
stantly updated to incorporate changes in the network, whilst respecting the
communication cost for each device. The directory complies with the privacy
rules, by having the devices to publish only information they wish to make it
public and by supporting the encryption of metadata.

To support both data interoperability and discovery, the data processing
framework of GAMBAS provides Linked Data storage capabilities for all
connected objects. This improves scalability and also privacy, since each
device can take on the responsibility of storing its own data and it can there-
fore decide which data can be disclosed to which devices. There are many
Linked Data storage frameworks available but none of them are designed
for resource-constrained devices. The GAMBAS middleware encompasses
a data storage framework based on the state of the art approaches that also
complies with limitations imposed in terms of memory, processing power,
battery life, etc. On top of the data storages, a query processing framework is
offered that follows the same guidelines. Even though the query processing
capability at each device is limited, distributed query processing techniques
are integrated in order to provide a more powerful processing framework
among the devices.

4.2 Data Model

As basis for interoperable distributed data processing, this section introduces
the data definitions and query specifications integrated into the GAMBAS
middleware. The data definition is based on an ontology that has been devel-
oped with the goal of supporting the internal mechanisms of the middleware
as well as the application scenarios targeted by the middleware. The ontology
and query examples are described using free text descriptions and UML-like

4.2 Data Model 93

diagrams to clarify ontological relationships among concepts and groups of
concepts. These diagrams are used to facilitate the comprehension of onto-
logical concepts and their relationships. Along with that, example instances
are used to illustrate how to populate ontology instances in RDF/Turtle
[W3C12d]. For the description of the example queries, GAMBAS uses a
subset of SPARQL query semantics and syntaxes rather than creating a
new query language. In order to enable the processing of streams of data,
GAMBAS leverages the CQELS query language.

4.2.1 Data Definition

Figure 4.1 shows the GAMBAS ontologies, its classes, the dependencies
among the classes as well as the external ontologies from which the ontol-
ogy extends concepts and properties. The external ontologies include PIMO
[Sem12], SPT [SPI12], GoodRelations[Goo12] , Ordered List[Ord12] and
Vehicle Sales [Mar12]. The PIMO Ontology provides a vocabulary for
describing calendaring data (events, tasks, meetings). The SPITFIRE Ontol-
ogy (SPT), developed within the SPITFIRE project, aligns already existing
vocabularies – such as DOLCE [CNR12], WGS84 [W3C12f] and FOAF
[FOA12] – to enable the semantic description of not only sensor mea-
surements and sensor metadata, but also the context surrounding them. In
particular, the activities sensed by sensors are modeled and related with social
domain vocabularies and complex event descriptions. The GoodRelations
ontology is widely used to describe business and product offerings. We take
advantage of the Ordered List Ontology to represent a sequence of steps. An
OrderedList is a list of slots with indexes to each slot and pointers to the
next and the previous slot. The Vehicle Sales ontology is a web vocabulary
for describing cars, boats, bikes and other vehicles for e-commerce, and it
is useful in the context of GAMBAS to generalize the means of transport of
a user.

The GAMBAS ontology consists of a number of sub-classes, the generic
classes being User, Place and Activity. In addition, the ontology contains
the classes Journey, TravelMode and Bus that are motivated by the mobility
scenario as well as Jogging and Shopping that are motivated by the envi-
ronmental application scenario. In the following, we describe these classes in
more detail.

4.2.1.1 User Class
The User class is used to describe users of the GAMBAS middleware. In
GAMBAS, users play the roles of both data consumer and provider. As a

94 Data Processing

Figure 4.1 The GAMBAS Ontologies.

consumer, a user is accessing services provided through some user interface
such as suggestions of bus routes or jogging areas. As a data provider, users
allow GAMBAS to acquire personal data such as location and activities (e.g.
traveling in a public transport, jogging, shopping, etc).

Figure 4.2 shows the User class in the GAMBAS ontology. The user
class is a subclass of the spt:Agent class from the SPITFIRE ontology, which
allows us to describe the user’s profile such as name, email and addresses.
Privacy settings are crucial in GAMBAS. To model them, we rely on the Pri-
vacy Preference vocabulary given by the Privacy Preference Ontology (PPO)
[DER12]. However, during the implementation of the application prototype,
it became apparent that the PPO was not suitable to describe users’ shared
keys and permission settings, which are needed in the privacy-preserving

4.2 Data Model 95

Figure 4.2 User Class.

data exchange mechanism of GAMBAS. Therefore, we added privacy-related
properties to the user profile. More specifically, we extended the Profile class
to include the sharedKeys and certificates used by the mechanisms described
in Chapter 5.

The user’s calendar information, which is used as input for the user’s
intent analysis, is described by creating a PIMO (Personal Information
Model) instance. Users are connected to other users via the “foaf:knows”
property, which allows us to list the friends of a user. The location of a user
is also available and can be represented with the Place class.

Users in GAMBAS perform activities, for instance, commuting in a bus
or shopping. The GAMBAS ontology provides a vocabulary to represent the
user’s activities, including the past, future and current ones. Past and current
activities are used in combination to determine which are the user’s next
activities. This is done by the user’s intent analysis.

Listing 4.20 shows an example of how to use the above concepts to
describe a user within the GAMBAS scope, using the Turtle syntax. The
example shows, among other things, how users can set access levels to other
users. In this particular example, the user “John” is giving the user “Paul”
access to his location. Note that the access is restricted to read-only, therefore
Paul cannot modify or create instances of location for John.

To preserve the user’s privacy, instances of the User class are stored in
the mobile devices of the respective users. The user’s location, current and
next activities are dynamic properties. All remaining properties are expected
to change less often and are therefore considered to be mostly static.

96 Data Processing

Listing 4.1 User Instance Example
ex:john a gbs:User, pimo:Agent;
foaf:nickname ‘‘userid’’ˆˆxsd:string ;
ex:john gbs:current ex:activity1 ;
ex:john foaf:knows ex:paul ;
gbs:Profile ex:johnProfile ;
gbs:pastActs ex:archive1 ;
gbs:settings ex:ppoJohn ;
.
ex:archive1 a gbs:PastActivities ;
gbs:act ex:activity2 ;
gbs:act ex:activityn;
.
ex:activity2 a :Journey ;
prov:wasAssociatedWith ex:user ;
prov:startedAtTime ‘‘..’’ˆˆxsd:datetime ;
prov:endedAtTime ‘‘..’’ˆˆxsd:datetime ;
.
.
ex:johnProfile a gbs:Profile;
gbs:hasSharedKey ‘‘B8C382391061E449CE51B29C2549BB1F’’;
.
ex:ppoJohn a ppo:PrivacyPreference;
ppo:hasCondition[ppo:classAsObject gbs:Place];
ppo:hasAccess acl:Read;
ppo:hasAccessSpace[ppo:hasAccessAgent ex:Paul>;].
.
ex:activity23 a :Jogging ;
ao:mood ex:friendly ;
prov:wasAssociatedWith ex:john ;
gbs:runWith ex:paul ;
prov:startedAtTime ‘‘2012-04-03T10:00:00Z’’ˆˆxsd:
dateTime ;
prov:endedAtTime ‘‘2012-04-03T11:00:00Z’’ˆˆxsd:date
Time ;
gbs:path ex:runningLeg ;
.

4.2.1.2 Place Class
The location of a user in GAMBAS can be captured by different sensors (e.g.,
GPS, WIFI, GSM). The GAMBAS Place class, shown in Figure 4.3, provides
different properties for the different representations. The Place class is built
upon the spt:Place class, which already provides a vocabulary that includes

4.2 Data Model 97

Figure 4.3 Place Class.

concepts like, city, street and GPS coordinates. The Place class extends
spt:Place by enabling the representation of bus stops and cell location.

The CellReading class extends the spt:OV class, which provides the
vocabulary to describe sensor observations. A noise level can be associated
with every location, which can be used, in combination with the user’s
preferences, to suggest optimal travel routes. In addition, the place class adds
properties related to the environmental scenario, such has CO2 levels and
pollen count.

It is important to note that locations can be described by the set of
locations it contains. This allows us to aggregate information from smaller
areas, to generate a broader view. Lastly, as bus stops are a very relevant type
of place in the mobility application scenario of GAMBAS, we introduce a
subclass of Place, called BusStop, to specifically model them. In addition, we
can have a property associated with a bus stop that lists all the bus lines that
serve that stop.

A directory of locations is made available via external servers. For
privacy reasons, the users’ current location is dynamically stored on the
mobile device.

98 Data Processing

4.2.1.3 Activity Class
A user may perform different activities, e.g. visiting a location, shopping,
taking the bus or train, jogging, etc. The GAMBAS Activity class, shown
in Figure 4.4, provides the properties to describe an activity. Every activity
can have a start/end location and start/end time. Locations are represented
as instances of the Place class. For representing the time, we use the
xsd:datetime description from the OWL Time ontology [W3C12e]. Different
activities, such as traveling in a bus or jogging on a particular route, are
modeled as subclasses.

4.2.1.4 Journey Class
The journey class models special activities that represent general location
changes of the user. A journey can involve a trip by a bus or other modes of
transportations (e.g. walk between two bus stops to switch buses). A journey
consists of a series of segments, or steps, and these steps are described using
the class Step, which is also part of the GAMBAS ontology.

In each Step, we can specify a number of properties, such as arrival/de-
parture times (both scheduled and estimated), duration, distance covered and
start/end locations. Moreover, we can specify the travel mode used in each
instance of Step, which will be described later on.

In some cases, we are interested in recording every segment between two
consecutive bus stops, i.e. to check whether a user might meet a friend or not.
By using the gbs:singleSteps property, we can model this case, and each Step
will correspond to two consecutive points in the journey. However, we might
also be interested in a more compact version of the journey, where steps in

Figure 4.4 Activity Class.

4.2 Data Model 99

Figure 4.5 Journey Class.

which the travel model has not changed can be represented by one single
step. This provides a shortcut to determine when a user entered or left a bus,
for instance. For this, we have created a gbs:compactSteps property. Note
that this compact version can be created at any time from the list of single
steps. While it provides some redundant information, it greatly improves the
performance of some queries. In addition, we also introduce a mechanism
to keep track of the order in which the steps were performed during the
journey. We take advantage of the Ordered List Ontology [Ord12] to represent
a sequence of instances of the Step class. An OrderedList is a list of slots with
indexes to each slot and pointers to the next and the previous slot. In our case,
each slot contains an item of type Step. Figure 4.5 illustrates the Journey
class, and an example is given in Listing 4.2.

The instances of the Journey class can be stored in the user’s mobile
device or a trusted external server. Information regarding the schedules
is static, while the estimated departure/arrival times are usually updated
dynamically.

4.2.1.5 TravelMode Class
As we mentioned in the previous section, a journey is composed of multiple
steps, and each step can be performed by a different travel mode. To model
this, we introduce an abstract class that represents the different travel modes.
At the moment, there are two possible subclasses: BusRide and Walk, but it is
straight forward to extend this by adding other means of transport, e.g. car or
subway. Figure 4.6 illustrates the TravelMode class, as well as its subclasses.

For steps where a bus ride was used, we can specify further properties,
like the bus used and the crowd level of the vehicle. We can also attach the

100 Data Processing

Listing 4.2 Journey Instance Example
ex:itinerary1 a gbs:Journey
gbs:orderedSteps ex:list1 ;
gbs:singleStep ex:step1 ;
gbs:singleStep ex:step2 ;
.

ex:list1 a olo:OrderedList ;
olo:slot ex:slot1 ;
.
ex:slot1 a :Slot
olo:item ex:step1 ;
olo:next ex:slot2 ;
.

ex:slot2 a :Slot
olo:item ex:step2 ;
.

ex:step1 a gbs:Step ;
gbs:startLocation ex:PlazaMayor ;
gbs:endLocation ex:stop2 ;
gbs:distance ‘‘10’’ ; #distance between the two
stops.
gbs:scheduleArrival ‘‘21:13:54Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘21:23:00Z’’ˆˆxsd:time ;.
gbs:travelmode ex:walk ;
gbs:instructions ‘‘walk from Plaza Mayor to stop2’’ ;
.
ex:step2 a :Step ;
gbs:startLocation ex:stop2 ;
gbs:endLocation ex:stop3 ;
gbs:distance ‘‘15’’ ; #distance between the two
stops.
gbs:scheduleArrival ‘‘21:30:00Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘21:35:00Z’’ˆˆxsd:time ;.
gbs:travelmodel ex:busride ;

information about the user performing the bus ride directly to this class, which
can be beneficial for some types of queries.

4.2.1.6 Bus Class
A bus ride is performed by a bus, and this is also represented in the GAMBAS
ontology. Figure 4.7 shows the Bus class. A bus can be associated with a
stream of crowd levels to describe the number of passengers that are traveling

4.2 Data Model 101

Figure 4.6 TravelMode Class.

Figure 4.7 Bus Class.

on the bus. Aggregated values can be recorded and stored in instances of the
BusRide class, to compute statistics of the crowd levels in the different bus
routes. In addition, we can represent the route of a bus line by reusing our
Journey class. Other properties include the bus line name, the bus status (in
service or not) and the bus’ current location.

The information about buses is provided by the transport layer and it is
usually stored in an external semantic data storage. The bus location, crowd
levels and its status are constantly updated.

4.2.1.7 Jogging Class
The Jogging class is a subclass of the Activity class, and it can record the path
followed during the jog, the distance covered, the aggregated CO2 and pollen

102 Data Processing

Figure 4.8 Jogging Class.

levels and the friends met during jogging. Since we do not expect changes
regarding transportation mode during a Jogging activity, we can model the
path taken as one single instance of the Step class, which already provides
all the required properties (start/end location, polyline, duration). Figure 4.8
shows the Jogging Class.

The jogging activities are recorded in the mobile device of the user that
performed the activity. However, in order to support coordination, they may
be shared explicitly, e.g. with friends.

4.2.1.8 Shopping Class
In addition, the ontology includes a Shopping class, which is also a subclass
of the Activity class, to describe the user’s shopping. Instead of proposing
a new class to model stores and their products, we use the GoodRelations
ontology [Goo12], which is well known and widely used. The Shopping class
allows us to enlist the products bought by the user during this activity as well
as shops visited. Figure 4.9 shows the Shopping Class that are typically stored
on the user’s mobile device.

4.2.2 Query Specification

The data instantiated from the GAMBAS ontology is represented as RDF
[W3C12a]. SPARQL [W3C12b] is the most widely used RDF query lan-
guage, and therefore it has been chosen as a query language in the GAMBAS
context. However, some of the data in GAMBAS is available as a stream of
RDF data, or RDF streams. This is the case for the dynamic information,
like the location of a user. For handling RDF streams, GAMBAS relies on an
extension of the SPARQL query language, called the CQELS query language

4.2 Data Model 103

Figure 4.9 Shopping Class.

[LPDTXPH11]. The full specification of the SPARQL query semantics and
syntaxes are defined by the W3C and can be found in [W3C12b]. In the RDF
data model, each instance must have a globally unique URI. An RDF instance
has properties that have values as literals or other instances. A literal can have
text or numeric value.

In the context of GAMBAS, the SPARQL-SELECT and CQELS-
SELECT queries are sufficient for all realized applications. The output of
these queries is results sets in tabular form of literal and URI. Query results
can be easily serialized, for example, in XML [W3C12c] or JSON [W3C13a]
format. In the following, we present a number of examples for queries against
the data definitions contained in the GAMBAS ontology. The main purpose
of these examples is to clarify how the ontology and the definitions can be
accessed using SPARQL and CQELS, respectively.

4.2.2.1 Queries on Users
For retrieving the list of all users registered at the system, we can use the
query shown in Listing 4.3.

Listing 4.3 Query All Users
PREFIX : http://www.gambas-ict.eu/ont/
SELECT *
WHERE ?x a :User.

To determine the current activity of the user with a specific user identifier,
we could use the query shown in Listing 4.4. Similarly, we could retrieve the
user’s calendar entries or friends.

For analyzing the users’ intent, we can access information like the activi-
ties where a bus ride on a particular bus line was involved. Especially for the
case where we want to discover whether two users have been on the same
bus, we can ask for activities with a particular bus line and via a certain step.

104 Data Processing

Listing 4.4 Query Current Activity
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?activity
WHERE ?x foaf:nick ‘‘userid’’ .

?activity :current ?x .
FILTER (?endtime > NOW) .

A step, in this case, corresponds to the route between two consecutive bus
stops given by the URIs of the start and end locations. In both cases, we can
narrow the search to a time interval. Listing 4.5 shows an example for this.

Listing 4.5 Query Bus Rides of a Line for a Segment within an Interval
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?busride
WHERE ?x foaf:nick ‘‘userid’’ .

?activity a :Journey ;
prov:wasAssociatedWith ?x ;

:singleStep ?step. ?step :startLocation
<startLocURI>;
:endLocation <endLocURI> ;
:travelMode ?busride.
?busride a :BusRide ;
:serviceBus ?bus .
?bus gbs:busLine <buslineURI> .
?activity prov:startedAtTime ?starttime ;
prov:endedAtTime ?endtime .

FILTER (?endtime < ‘‘2012-04-03T00:00:00Z’’ˆˆxsd:date
Time) .
FILTER (?starttime > ‘‘2012-04-02T00:00:00Z’’ˆˆxsd:
dateTime) .

The examples show that the GAMBAS ontology is flexible whether you
are looking for a journey specified by start and location or other properties,
such as the bus line taken. The travelMode property allows us to filter out
activities where a bus was not involved.

For the user intention mining, it is important to analyze the historical
information associated with buses. The query shown in Listing 4.6 retrieves
all recorded bus traces of a user in a given bus.

Note that we can use the compact representation of the journey to retrieve
the full segment of the user in a bus, rather than the individual steps.

4.2 Data Model 105

Listing 4.6 Query Ride History of a User
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?step
WHERE ?x foaf:nick ‘‘userid’’ ;

:pastActs ?acts. ?acts :act ?journey ;
:compactStep ?step. ?step
:travelMode a :BusRide .

In the environmental domain, we can look for journeys in which some
of the steps had a CO2 level above a given threshold. This is shown in
Listing 4.7.

Listing 4.7 Journeys with CO2 Level above Threshold
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?journey
WHERE ?x foaf:nick ‘‘userid’’ . ?activity a :Journey ;

prov:wasAssociatedWith ?x ; :singleStep ?step.
?step :startLocation ?startLoc ;
:endLocation ?endLoc.
?startLoc gbs:co2Level ?startco2.
?endLoc gbs:co2Level ?endco2
OR{?startco2 > <threshold>. ?endco2 >
<threshold>} .

For the above query, we need to retrieve all the start and end locations and
check for their CO2 levels. We iterate over every single step on the journey
to make sure we retrieve all locations visited in that journey.

Another interested query is to retrieve a list of users who had gone jogging
with a particular user shown in Listing 4.8. This could be used, for instance,
to indicate a stronger friendship level between the two users.

Listing 4.8 Query Users Jogging with a User
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?user
WHERE ?x foaf:nick ‘‘userid’’ .

?activity a :Jogging ;
prov:wasAssociatedWith ?x ;
:runWith ?user.

106 Data Processing

As we mentioned earlier, GAMBAS extends the query set by supporting
queries that involve dynamic information. For this, it uses the CQLES query
language that resembles SPARQL. The main difference is the introduction of
the STREAM command that allows us to specify a window of data within
the stream. The query shown in Listing 4.9 retrieves the current location of
a user.

Listing 4.9 Continuously Query the Latest User Location
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?location
WHERE ?x foaf:nick ‘‘userid’’ .
STREAM <streamURI> [NOW] {?x :location ?location}.

In this query example, <streamURI> refers to the URI from where the
stream with the data in question can be accessed. The parameter [NOW]
extracts the latest location streamed. CQELS is a very flexible language,
allowing an easy integration of static and dynamic data. For example,
for suggesting bus stops near the user, we can write the query shown in
Listing 4.10.

Listing 4.10 Continuously Query Near by Bus Stops
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX spt: http:// spitfire-project.eu/ontology/ns/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?nearby
WHERE ?x foaf:nick ‘‘userid’’ .
STREAM <streamURI> [NOW] {?x :location ?location}.
?nearby a :BusStop ; spt:nearby ?location.

It is noteworthy to highlight that CQELS queries are continuous queries,
which means they are registered in the system and whenever new data is
generated in the stream, the query is evaluated and results are pushed to the
output. For example, we can imagine a scenario of a user walking around and
getting notifications of nearby bus stops as he changes location.

4.2.2.2 Queries on Buses
This section presents a subset of queries about buses, bus stops and bus lines.
For instance, to get bus stops near a particular GPS location, we can query as
shown in Listing 4.11.

4.2 Data Model 107

Listing 4.11 Query Bus Stops at GPS Location
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX g: http://www.w3.org/2003/01/geo/wgs84_pos#
PREFIX spt: http:// spitfire-project.eu/ontology/
ns/
SELECT ?place
WHERE ?place a :BusStop ; spt:nearby ?location.

?location a :Place ; g:Lat ‘‘50.0’’ ; g:long
‘‘3.0’’.

Similarly, we can also retrieve the bus route for a particular bus line. The
corresponding query is shown in Listing 4.12.

Listing 4.12 Query Bus Stops of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?busroute
WHERE ? busline a :BusLine ; :route ?busRoute

To retrieve the list of stops covered by a bus line in the correct sequence,
we can use the ordered list to iterate over the different steps as shown in
Listing 4.13. Note that the query might return duplicates if start/end loca-
tions overlap. However, this can be easily fixed by a simple scan over the
results list.

Listing 4.13 Query Bus Stop Sequence of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX olo: http://purl.org/ontology/olo/core#
SELECT ?start ?stop
WHERE { ?busline a :BusLine ; :route ?busRoute.

?busRoute :orderedSteps ?list.
?list olo:slot ?slot .
?slot olo:item ?step ; olo:index ?index .
?step :startLoc ?start ; :endLoc ?end

}
ORDER BY ASC(?index).

With the Place ontology, we can easily query for all bus lines that run on
a stop. Moreover, we can also query for bus lines that run on a given date on
that stop as shown in Listing 4.14. To do this, the query looks at the routes of
the bus lines and filters them by the date.

For a user waiting at a bus stop, we want to send notifications of possible
delays. We can first retrieve all the bus lines that run on the stop and check
their timetables against the stream of estimated times. In the query shown in
Listing 4.15, we can specify a threshold (e.g., 5 minutes), and if the current

108 Data Processing

Listing 4.14 Query Bus Stop Sequence of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX prov: http://www.w3.org/ns/prov#
SELECT ?busline
WHERE <busstopURI> :busLine ?busline .

?busline :route ?route .
?route prov:startedAtTime ?start ; prov:
endedAtTime ?end.

FILTER(?start ><date>). FILTER (?end <<date>).

Listing 4.15 Query Delayed Buses
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?estimateddeparture
WHERE ?x foaf:nick ‘‘userid’’ ; :location ?stop.

?stop :busline ?line .
?line :route ?route .
?route :singleStep ?step .
?step :startLocation ?stop ;
:scheduleDeparture ?scheduleDeparture

STREAM <streamURI> [NOW]
{ ?step :estimatedDeparture ?estimated
Departure }.

FILTER (?estimateddeparture >
?scheduleDeparturel +threshold).

live departure time estimation is over the threshold, then the system will
notify the user.

The last query examples are related to the crowd-level information avail-
able for different public transit vehicles. To access the latest status and
crowd-level information of a particular bus, we can use the query depicted
in Listing 4.16.

Listing 4.16 Query Latest Crowd Level of Bus
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?crowdLevel ?status
WHERE ?bus a:Bus
STREAM <streamURI> [NOW] {?bus :crowdLevel ?
crowdLevel}.
STREAM <streamURI> [NOW] {?bus :status ?status}.

Using the GAMBAS ontology, we can store an aggregated value of crowd
levels recorded for a particular step of a journey. This value can be, for
instance, the maximum crowd level at any stage of that step or the average

4.3 Data Discovery 109

value. In the query depicted in Listing 4.17, we show how to extract the
maximum crowd level of a step.

Listing 4.17 Query Latest Crowd Level of Bus
PREFIX : http://www.gambas-ict.eu/ont/
SELECT MAX (?crowdLevel)
WHERE ?step a :Step ; :estimatedDeparture ?start ;

:estimatedArrival ?end ; :travelMode ?busride .
?busride :serviceBus ?bus .

STREAM <streamURI> [RANGE 30min]
{?bus:crowdLevel ?crowdLevel[timeStamp]}.

FILTER (?start < timeStamp < ?end).

When processing data streams, we can extract windows of data, by
specifying the window parameters. In the previous queries, we used [NOW]
to extract the latest value. Here, we select all the data of the last 30 minutes.
Note that it is not possible to specify a start/end time interval for the window
operators. Nevertheless, we can take advantage of the fact that every stream
data can have a timestamp associated with it. In the case of this query, we
assume that the start time did not occur before 30 minutes ago, and we select
the valid crowd levels during the step in the filter condition.

4.3 Data Discovery

To enable the distributed execution of queries across multiple data stores,
the query processors must be able to discover the available data stores. The
GAMBAS dynamic data discovery system is responsible for providing this
functionality. From an architectural perspective, it is realized as a central
registry service that offers two distinct interfaces: (1) a GAMBAS-based
registration interface to export metadata and search for data sources and
(2) a web-based administration interface that allows to configure the discov-
ery system, check its state and browse current registrations. The discovery
system is developed using the Google Web Toolkit (GWT), a toolkit for the
development of web-based client/server applications, and deployed in a Java
servlet container such as Apache Tomcat. Figure 4.10 shows a screenshot of
the administration interface of the discovery registry.

Besides a central registry instance for normal system operation, applica-
tion developers can run their own private instances of the discovery system
in their local networks. This allows using separate discovery systems for
development work or prototyping and isolates the development systems from
each other and the central discovery system used for normal system operation.

110 Data Processing

Figure 4.10 Dynamic Data Discovery Registry Administration Interface.

4.3.1 Architecture

The architecture of the GAMBAS dynamic data discovery is shown in
Figure 4.11. The system is deployed as a servlet in a regular servlet container.
It builds upon the GAMBAS communication system to realize remote com-
munication and lease management as described later. The data registration
is co-located with a communication gateway component that is used by
the communication system to enable multi hop routing and connectivity in
peer-to-peer environments with firewalls or networks with native address
translation (NAT).

The co-location of the registry with the gateway allows to easily locate the
registry and thus simplifies the bootstrapping of the system. The dynamic data
registration contains all functionalities needed to publish metadata describing
data sources, to update this information and ensure its freshness. The web-
based administration interface depicted in Figure 4.10 allows to configure
the discovery system (as well as the communication gateway) and to browse
current metadata as well as exchanged messages.

4.3.2 Metadata Management

Metadata is used to describe data sources such that clients can easily select
semantic data stores that contain data that is relevant for their queries.

4.3 Data Discovery 111

Figure 4.11 Dynamic Data Discovery Registry Architecture.

The metadata published in the registry follows the linked data paradigm
to describe the data provided by devices. Listing 4.18 and Listing 4.19
show different examples of metadata information for a service providing
environmental information about places and a service providing information
about bus schedules, respectively.

Listing 4.18 Register a Service for Environmental Information
<place1> a gbs:Place ;

gbs:noiseLevel ‘‘-1’’ ;
gbs:co2level ‘‘-1’’ ;
gbs:pollenCount ‘‘-1’’ .

Listing 4.19 Register a Service for Bus Schedules
<line1> a gbs:BusLine ; gbs:route <route1> ;

dc:title ‘‘some_line’’ .
<route1> a gbs:Journey ; gbs:singleStep <step1> .
<step1> a gbs:Step ; gbs:startLocation <p1>;

gbs:endLocation <p2> ;
gbs:scheduleArrival ‘‘00:00:00Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘00:00:00Z’’ˆˆxsd:time .

It is important to note that the registry only keeps the data structure
(ontologies classes and properties), but not the actual instances and property
values. As the purpose of the directory is to allow discovery, it only needs
to store the shape of the RDF graph, which are then used to match against
user queries. An example query looking for providers of GPS coordinates is
shown in Listing 4.20.

112 Data Processing

Listing 4.20 Finding Services Providing GPS Coordinates
SELECT distinct ?g
WHERE { GRAPH ?g

{ ?p geo:lat ?lat ; geo:lon ?lon . }
}

4.3.2.1 Publishing Metadata
To make a data source available, the discovery service offers remote methods
using the underlying communication system to register a new data source,
to update a registration and to remove a registration. To do so, data sources
send their metadata description to the registry. This metadata is then stored at
the registry and made available for clients to find suitable data sources. The
signature of the registration method is:

• DeviceRegistration register(DeviceDescriptor)
The method takes a device description that specifies the metadata to

describe a data source and returns a new registration object that can be used
to maintain the registration. In case a description changes, data sources can
update a registration by calling the update method:

• Boolean update(DeviceDescriptor, DeviceRegistration)
This method takes a new descriptor as well as an existing registration

(obtained by an earlier call to register) and returns a Boolean specifying if the
update was successful. If the registration cannot be found in the registry, the
update will fail.

4.3.2.2 Unpublishing Metadata
At some point of time, a data source might want to stop offering data or it
may become unavailable. To stop offering data, a data source can deregister
itself from the registry using the remove method:

• void remove(DeviceRegistration)
This method takes a registration and removes it from the registry. If the

registration cannot be found in the registry, the method fails silently, i.e.
no error notification is given. In any case, after the method finishes, the
registration is no longer available for clients.

In addition to this explicit removal, the discovery service also employs a
lease mechanism to ensure freshness of registrations in cases where a data
source becomes unavailable without being able to deregister. To do so, the
discovery service uses an existing component of the communication system.

4.3 Data Discovery 113

For every registration, it starts a lease process that checks the availability of
registered data sources periodically. In case a data source is not available
several times, a lease manager integrated into the communication system
notifies the discovery service, which eventually removes the registration.

4.3.3 Querying Data Sources

To find suitable data sources for a specific data need, clients can issue data
source queries at the discovery system. To do so, they can call the find-method
of the registry:

• DeviceResult find(DeviceQuery)
This method takes a query (implemented as an DeviceQuery) that spec-

ifies the intended data sources and returns a query result (implemented a
DeviceResult) possibly including a set of suitable data sources.

4.3.4 Security and Privacy

In addition to support for public services, a secure version of the Dynamic
Data Registry (DDR) provides privacy guarantees for users who may wish to
limit sharing of their data to specific users or groups of users. To do this,
the secure version of the registry integrates an encryption scheme known
as IPHVE. This scheme not only ensures that only users with access to a
particular data item are able to discover the location of the item in question,
but it also ensures that the registry itself cannot become a security or privacy
liability, since the registry itself also cannot read the stored metadata.

IPHVE is an attribute-based encryption scheme, which extends the
Hidden Vector Encryption scheme [IP08]. IPHVE uses the Dual Pairing
Vector Spaces (DPVS) framework [OT08]. Some of the main operations are:

• Setup – Generates a Secret Key (SK) and Public Key (PK).
• Encryption – Generates a Ciphertext (Ct) given a Message (M), PK

and a Vector of Attributes (Vx).
• Key Generation – A Decryption Token (DTk) is generated given SK

and another Vector of Attributes (Vy).
• Decryption – Given Ct and DTk, generates a Plain Text (Pt) if the PK

used to generate DTk corresponds to the SK used to generate Ct, if Vx
and Vy correspond to the HVE definition.

• Test or Verification – Returns true if, given Ct and DTk, Vx and Vy
correspond to the HVE definition.

114 Data Processing

As an extension to IPHVE, a Generic Decryption Token (GDTk) can be
generated, which allows users to set provider-defined attribute values. The
GDTk can then be modified by the users with a Random Session Key (RSK),
which prevents the registry to decrypt a message.

The resulting interaction with the secure DDR is shown in Figure 4.12.
The message exchange remains similar, i.e. data providers publish metadata
for users to discover. The novelty lies in the addition of a message from the
data provider to the user with a decryption token that enables discovery. This
token needs to be included in the message to the registry in order to get
the results.

4.3.5 Client-side Caching

Since discovery is a mandatory step in execution of remote queries, the
discovery process increases the latency experienced by applications. To
mitigate this, the GAMBAS middleware provides a client-side cache that
enables clients to store information about remote data providers to reuse
this information in case there is another request for the same data. This is
a standard approach for remote directory systems that is also used by DNS,
for example. When executing a query, the mechanism first checks if it already
has information about the requested data provider in a local cache. If that is
the case, then this information is returned. Otherwise, a standard discovery
request is issued. Freshness is provided by using standard techniques, i.e.
leases and data invalidation in case of unsuccessful communication requests.

Figure 4.12 Secure Data Discovery Registry.

4.4 Data Processing 115

4.4 Data Processing

Using the Dynamic Data Discovery Registry, it is possible to discover the
systems that are storing data that might be relevant for the execution of a
query. However, the Data Discovery Registry only stores metadata. In order to
provide security and privacy guarantees, the data itself is stored in a semantic
data storage that can be queried using a query processor. In the following, we
discuss the details of these two remaining components.

4.4.1 Data Storage

The semantic data storage (SDS) component provides the ability to store
and retrieve RDF [W3C12a] data on devices equipped with the GAMBAS
middleware. These devices range from constrained to back-end computer
systems. To cope with these different device classes, two different versions of
the SDS are provided: one for Android and one for J2SE environments. Both
versions rely on a common (i.e. platform independent) base implementation
as far as possible. To further reduce the development effort, both versions use
a basic triple store for actually storing data and extend this triple store with
GAMBAS-specific functionality, e.g. a remote storage interface or handling
of intermittent query results (used for distributed queries).

As no established triple store exists for both J2SE and Android, we
decided to use different triple stores for them and to provide a unified
interface on top of them through the GAMBAS middleware. For J2SE, we use
Apache Jena [Apa13], a well-established, efficient and powerful implementa-
tion that supports many additional functions such as full support for SPARQL
1.1. For Android, we use rdf-on-the-go [NUI12], a triple store implementa-
tion that is derived from Jena. On top of the triple stores, GAMBAS adds
additional support for formatting query results as JSON strings according
to [W3C13a]. Finally, to support formatting RDF data as N-Triple strings
[W3C04], the semantic data storage contains bindings to a custom but generic
N-Triple parser, called YANTRIP (Yet Another N-TRIple Parser) that is
based on the JavaCC parser generator to minimize development effort and
to allow for easy extensibility.

In the following, we discuss the optimization techniques applied to the
semantic data storage components in order to increase their scalability. The
focus of the optimizations lies on memory consumption and data indexing
techniques of the storage on mobile devices. Consequently, the optimization
primarily apply to the Android version of the SDS, since this version faces
the most restricting constraints.

116 Data Processing

4.4.1.1 Data Storage Optimization Techniques
Reducing the memory footprint is one of the critical key targets to improve
performance of the SDS [Nor07], especially when running on mobile devices.
Although random access memory on mobile devices has improved, the heap
size of an Android application is still limited. For example, the system
RAM of an ASUS NEXUS 7 tablet is approximated 1GB, but the default
memory heap size for an application running on it is only 64MB. There
are a couple of reasons for this limitation. First, Android is a multi-tasking
operational system with many applications stored in memory concurrently. If
an application occupies too much memory, it might impact other applications
or bloat the whole system. Second, Android uses the mark-sweep algorithm
to perform garbage collection. Thus, an application will be paused while
being garbage collected and bigger heap sizes lead to longer pause times
[MNP+10]. This reduces the performance of an application significantly.

To reduce memory footprint, the GAMBAS SDS for Android employs
dictionary encoding which is similar to the implementations of Jena TDB or
Sesame. In contrast to solutions for standard computers, we use a compact
integer format that is optimized for millions rather than billions of RDF
nodes. We believe this is the common scale of most mobile personal infor-
mation applications. Existing RDF stores for mobile devices are restricted to
smaller data sizes of approximately one order of magnitude less [ZS12]. Each
RDF node is processed and mapped to a node identifier before it is loaded
into main memory. A node identifier is 32 bits in size, where 9 bits are used
for encoding the node type and the remaining 23 bits for encoding a string
identifier. Most operations on nodes, e.g., matching during a query execution,
can be performed on these node identifiers without accessing the actual string
representation. Thus, only one integer must be kept in memory for each node,
while string representations can be stored on flash memory. This leads to a
memory footprint of just up to 12 bytes per triple, while memory profiling
reported about 450 bytes per triple for the Jena memory model. Note that
despite this large memory footprint reduction, we do not restrict our system
to keep all triples in main memory. Instead, our RDF store can store triples in
flash memory as discussed next.

For efficient access, all RDF triples are indexed with a schema we already
presented in [LPPRH10]. It consists of three triple indexes with different node
orders with respect to subject (S), predicate (P) and object (O): SPO, POS and
OSP. The indexes are stored in flash memory to reduce the required amount
of main memory and to make data persistent. We also operate a triple cache
in main memory, which contains currently used parts of the indexes.

4.4 Data Processing 117

Flash memory has a great impact on the design of an efficient DBMS
for mobile platforms [LNK+07]. For example, well-known B-Tree indexing
techniques were shown to be not suitable for flash memory [LHLY09]. There-
fore, we have built a special lightweight key-value database. This database is
optimized for flash memory and allows us to fully control I/O blocking and
block caching. This way we can better manage memory access and mini-
mize the impact of Android’s garbage collection due to erase-before-write
limitations of flash devices [JS10].

Flash I/O is based on memory blocks. Instead of reading or writing
individual bytes, the I/O unit always reads/writes a whole block. The size
of a block depends on the individual devices. Thus, in order to write a single
byte in a block, the whole block must be read, modified and written again.
This makes random access writing very inefficient. Our aim is to reduce
the number of read and write accesses as much as possible. To do so, we
partition each index into individual blocks, which have the same size as
the flash I/O blocks of the device. The individual blocks are stored in flash
memory. A metadata structure specifies the triples contained in each block,
given as lowest and highest node identifier in the sorted block. The triple
cache contains a number of index blocks. If a new triple is added, it must be
added to the indexes. To do so, the system loads the required index blocks into
the cache. Then, the triple must be included at the right position in the index.
This is trivial if the triple should be added at the end of an existing block that
still has open space. Otherwise, we would need to move all triples by one
position, resulting in a large number of writes. To reduce this overhead, we
do not change the original block. Instead, we slice the block into two parts: an
old, original block and a new one. The old one is not changed at all. The new
one contains all triples starting with the newly added one. Then, the metadata
structure is updated to specify that the new block contains all parts including
the new triple, while the old one only contains parts before that.

As an example, imagine that a block contains three triples for subject
nodes with identifiers 1, 5 and 7. The metadata will specify that this block
contains triples for subjects 1 to 7. To add a triple starting with a subject node
with identifier 6, we read the original block if it is not already in the cache
and create a new block containing the triples starting with identifiers 6 and 7.
Then, we update the metadata to specify that the old node contains triples for
subjects 1 to 5, while the new one contains triples for subjects 6 to 7. We did
not have to modify the original block in any way. The new block is still in
the cache and hopefully will get additional triples for the same subject before
writing it onto flash later. This way, we will only need to perform one write

118 Data Processing

access to flash memory. To further reduce the number of read/write accesses,
when we need to remove a block from the cache and write it back to flash,
our strategy chooses a block that has a high chance of not being changed in
the future. Together, these optimizations reduce the overhead of using flash
memory considerably.

4.4.1.2 Data Storage Optimization Results
To evaluate the performance gains when applying the optimization techniques
to a Semantic Data Storage, we have implemented them as part of the SDS for
Android. Using this implementation, we compare the new version with the
old version, which used Berkeley DB as underlying database (RDF-BDB).
We also compare against the Android version of Jena TDB (TDBoid).

Figure 4.13 shows that the throughput of the improved version of the
SDS (RDF-OTG) is four times higher than TDBoids and is roughly seven
times higher then the original version (RDF-BDB). Moreover, besides having
much better update throughput, RDF-OTG also consumes considerably less
memory than other systems (see Figure 4.14). Especially, while the previous
version crashed at 200,000 triples due to memory overflow error (i.e. the
application consumed more than 64MB heap size), the improved version only
needs 20MB heap size for the same amount of triples.

A similar trend can be seen when analyzing the response times of queries
and the scalability of the optimized implementation. There, we can measure a
performance increase of 20 to 200 times, depending on the query complexity.
Similarly, while the original version of rdf-on-the-go was only able to handle

Figure 4.13 SDS Throughput Comparison.

4.4 Data Processing 119

Figure 4.14 SDS Memory Comparison.

200000 triples, using the optimization techniques, it is possible to scale up to
4 million triples while still achieving response times in the order of seconds.

4.4.2 Query Processor

The query processing (QP) component enables clients to execute SPARQL
[W3C12b] data queries on data sources, including queries on the local SDS,
on remote SDS or on a combination of both. The GAMBAS architecture
contains two different components for this: the one-time query processor
(OQP) and the continuous query processor (CQP). The QP relies on the
SDS to store RDF data and to execute local SPARQL queries and retrieve
results for them. To enable this, the SDS provides a special interface to
the QP. This interface allows direct access to the SDS in order to increase
system performance. In addition to this, the interface is also used to store
intermediate results of distributed queries. In the following, we discuss how
the two main functional parts of the query processor, the privacy analysis and
the distributed query support, are realized.

4.4.2.1 Access Control
When a query is received, the query processor has to check if this query can
be executed within the specified privacy policies of the user. To do so, each
query has an accompanied CallerContext to identify the sender of a query
and to distinguish local and remote queries. Each query can be authorized or
denied by an implementation of a so-called PrivacyManager that is described
in more detail in Chapter 5. The authorization process is based on an analysis

120 Data Processing

of the received query, more specifically on the kind of data (models with data
classes in the ontology) that the query will affect, e.g. a user or a location.
The privacy manager can block the query, if the remote user is not allowed to
access those classes. This allows a very fast authorization phase even on low-
end Android devices, because it requires no result filtering. The actual privacy
authorization workflow is handled by the so-called PrivacyQueryVerifier,
which coordinates several internal classes to:

1. Extract the predicates for each subject in the query.
2. Derive the most probable class for each subject in the query.
3. Ask the privacy manager if the querying user might access the derived

classes.
In order to support the ontology class derivation on Android devices, the
ontologies are preprocessed and only an index is included inside the mid-
dleware. This avoids the overhead for parsing the ontologies, reduces the
memory requirements and speeds up the analysis.

4.4.2.2 Distributed Queries
Dynamic distributed queries in GAMBAS are realized via a partial implemen-
tation of the recommendation for SPARQL 1.1 federated queries [W3C13b].
A query may contain one or more SERVICE keywords, each one specifying
a sub-query on a remote data source. Following the linked data principles,
data sources are identified by URIs. In principle, SPARQL 1.1 allows SER-
VICE sub-queries with unbound data sources. The QP does not support such
queries since they can lead to a high communication overhead and may easily
overwhelm restricted computer systems.

The core functionality for distributed queries consists of a generic dis-
tributed query processor and an intermediate result storage. The latter is
implemented using semantic data storage. The distributed query processor
receives a query and checks if it can be handled locally or contains remote
parts. In the first case, it executes the query on the local SDS. In the second
case, it forwards the query execution to the intermediate result storage. The
result storage sends each SERVICE sub-query to the specified data source,
collects intermediate results from them in the local SDS and joins them
into an integrated result set. The question remains how the query issuer
knows the right data sources for its query. For this, the QP uses the data
discovery registry (DDR) described in Section 4.3. The general approach can
be summarized as follows:

4.4 Data Processing 121

1. A query issuer wants to retrieve data from data sources of multiple
remote users.

2. To do so, the query issuer first places a local query for the URIs
identifying these users, e.g. based on their names or pseudonyms. Thus,
the query issuer must know these users before sending them queries.
Due to privacy, we do not allow users to send queries to other users that
they do not know.

3. The query issuer then constructs a distributed query by adding one
SERVICE sub-query for each remote user, which contains the user’s
URI as the URI of the remote data source.

4. This query is then placed at the QP.
5. When the QP finds SERVICE sub-queries, it accesses the local SDS

and retrieves the pseudonyms of all users, whose URIs are contained in
SERVICE queries.

6. With this information, the QP then contacts the DDR and requests con-
tact information for all data sources that are bound to these pseudonyms.

7. After retrieving these, it uses this information to contact these data
sources and place their SERVICE sub-query at them.

Note that to reduce the complexity for the application developers, the QP
contains utilities that can be used to construct a query with all necessary
SERVICE parts from a query template, in case that the remote query is
identical for all receivers, e.g. querying location information for a set of users.

4.4.2.3 Continuous Queries
In addition to one-time queries, the GAMBAS data processing system also
supports continuous query processing over streaming data. Similar to the one-
time query processor, the continuous module also follows the Linked Data
paradigm. This allows data integration among different data sources, being
stream or static. Stream data is represented by Linked Data Streams [SC09],
whereas the processing is supported by an instantiation of the CQELS
framework for Linked Data Stream processing [LPDTXPH11].

The architecture of the module for stream processing is shown in
Figure 4.15. It consists of an application client and an application server. For
the full-duplex client–server communication, the system uses Websockets,
which are supported by the client–server framework Netty [Net14]. In the
client application for Android devices, the system uses the SDS as the
Semantic Web framework, which provides an API to extract data from and
write data to Linked Data Streams. The Client Publisher Handler manages

122 Data Processing

Client WebSocket
Communication

Semantic Web Framework

Client
Publisher
Handler

Client
Subscriber

Handler

Application Client

WebSocket Stream
Processing Server

CQELS engine

Server
Publisher
Handler

Server
Subscriber

Handler

Application Server

Figure 4.15 Stream Processing Module.

the upstream, which pushes RDF-triples from clients to server. To subscribe
for the stream data from a particular server, the Client Subscriber Handler reg-
isters the queries to the server and manages the results listeners. Each listener
listens to the results from the server through a downstream corresponding
to the registered query. In the server application, the Linked Data Stream
management and continuous query processor are provided by the CQELS
engine. The physical streams are handled by the Server Publisher Handler
and the Server Subscriber Handler. The Server Publisher Handler is tightly
connected to the input manager of CQELS, in order to get the data from
the clients. The Server Subscriber Handler registers the subscribed queries to
the CQELS executor and routes the results to the corresponding subscribed
channels.

5
Privacy Preservation

This chapter describes the automated privacy preservation framework of the
GAMBAS middleware. The framework extends the adaptive data acquisition
and distributed data processing frameworks to support the automated sharing
of contextual information in a privacy-preserving manner. In the GAMBAS
middleware, privacy preservation encompasses mechanisms and protocols
to limit the access to contextual information to trustworthy clients, which
also allow the user to specify which data items can be used by the system.
Furthermore, it includes tools to automatically derive sharing policies by
inspecting privacy settings from a configurable and extensible set of web
services. Specific care is taken to avoid the use of central points of trust
in order to support the policy enforcement at runtime and to maximize the
applicability of derived policies to different types of context information. In
the following, the chapter first clarifies the focus and contribution of privacy
preservation in the GAMBAS middleware. Thereafter, it describes the privacy
protocols and mechanisms and discusses the policy generation tools. Finally,
the chapter presents details on the integration into the other systems.

5.1 Focus and Contribution

Context privacy is an important and very active research area in the ubiquitous
computing domain. Therefore, we briefly review the state of the art in
this area, before we discuss the contributions of the privacy preservation
framework of the GAMBAS middleware with respect to security and privacy.

5.1.1 Trusted Computing Hardware

Hardware-based privacy approaches try to make use of current security
technologies that enable trusted hardware design. This is usually based on the

123 DOI: 10.1201/9781003336952-5

124 Privacy Preservation

Intel trusted execution technology (TXT). The TXT uses the trusted platform
module (TPM) that is already built-in in many business PCs and laptops.
The TXT only allows trusted (and cryptographically validated) software to
run on the device. So the software itself cannot be tampered. This implies
that the software engineering process is monitored closely and the privacy-
preserving quality of the software can be approved [LZD08]. The drawback
of such a design beside the costs is the inflexibility in hardware design. For
example, simply attaching a new hardware device will tamper the security,
so “secure” versions of all hardware components that are used for context
processing are necessary. This includes “common” components like a USB-
controller or a storage-controller. Thus, in summary, all these approaches are
based on special hardware and need the complex creation of trusted software.

5.1.2 Key Exchange and Derivation

Context privacy can be achieved in several ways. One possibility is creating
a common symmetric key with users and devices which are allowed to
access the produced context [Mis08]. This approach is often used in eHealth
scenarios. An alternative is to derive keys based on the context information in
the surroundings [HV09], [RB04]. The context information used to create
these keys is usually based on physical characteristics like the acoustic
“fingerprint” of a room or a similar “fingerprint” based on Wi-Fi radio signals.
In general, common symmetric keys cannot be used in dynamic environ-
ments, because a new key must be created and redistributed if some device
leaves the group of devices that are allowed to access context information.
Many of the approaches that create keys from the context information that
persists in the current environment either need servers and a central authority
[HV09] or can only be used in a very limited physical region [RB04]. Besides
using encryption to keep the transferred context information secret, it is
possible to create hashes that are distributed instead of the original context
information. Because a hash is a one-way function, the original context
cannot be reconstructed easily. This is similar to an approach that uses hashes
and pseudonyms to hide the context from unauthorized access [EBBS07].

Another centralized approach shifts the context that can be accessed to
a central database [HM08]. Similarly, it is possible to rely on several third
parties that store (possibly private) context information [MMG11]. Here,
the user is supposed to control the access to this context information using
permissions (or a user-defined policy). When a user issues requests to a
context-based service, k-anonymity [Swe02] can help to make the accessing

5.1 Focus and Contribution 125

user anonymous. However, relying on central databases always means that the
user has to put trust in the database providers with regard to their compliance
with the user’s policy. Additionally, each provider needs to store the data
securely; otherwise, a data leak may make a user’s private context available.

5.1.3 Obfuscation and Generalization

Obfuscation and generalization of context information can be used to provide
context privacy, usually by blurring the context. Often, these techniques
are used for the privacy of location [XC09], [ACDCdVS08]. Although
k-anonymity is also suggested as a solution to the privacy of location [GG03],
[ZH09], [SHL+05], its use is also disputed [STD+10]. Other approaches for
location privacy rely on the collaboration of users, either with [SPTH11],
[RR98] or without user interaction [BS04]. MobiCrowd [SPTH11] allows
users that request information from the location-based service (LBS) to share
the information among each other. The information is signed by the LBS, so it
can be verified by each user individually. Besides the fact that the LBS cannot
gather information about users that share the context among each other, the
LBS is queried less regularly, so this also has an effect on load balancing. This
idea is roughly based on the use of crowds to anonymized requests [RR98].
Here, a proxy technology is used that (randomly) forwards web requests (e.g.
http, ftp, gopher, etc.) to other computers or to the target server on the Internet
to make the original user, who created the request, anonymous.

An approach for location privacy which is not based on the interaction
between different users uses the so-called “Mix Zones” [BS04]. In Mix
Zones, users are changing their pseudonyms secretly to maintain location
privacy. Mix Zones require specially marked zones that cannot be used
by location-based services. Additionally, using a map, many traces through
mixed zones might be guessed successfully due to normal human movement
behavior. The IETF working group called “Geopriv” [IET13] is also focused
on location privacy. The Geopriv working group uses central servers that
apply a user-specific policy and send the data to the location-based service if
the policy did approve it. An evaluation of the privacy risk of location-based
services [FSH12] using traces from real users concludes that current solutions
which use user anonymity are effectively not providing location privacy and
this result may encourage “the use of distributed solutions in which users
store maps and the related information directly on their mobile devices.”

The generalization of context information can also be done with other
context information, especially when the information encompasses numerical

126 Privacy Preservation

values like age or height [PRAB08]. The quality of a service customized
on this context information might of course be lower than if the actual
context information would have been used; however, the user’s privacy is
still preserved.

Social networking sites often contain different context information.
Additionally, they usually allow a fine-grained access control policy to be
defined. Helping the user in creating and maintaining this policy as well
as extracting policy information out of the social network will allow an
in-depth analysis of privacy settings [FL10]. A similar approach is taken
by the privacy policy tool PRiMMA [WCMS10] that allows editing privacy
settings in social networks more fine-grained than supported by the network
itself. The tool allows co-ownership of shared data (e.g. photos) and allows
all owners to edit the privacy settings. Since social networks currently do not
support a more complex privacy policy, it is necessary to store the context
data on an additional server and use a separate viewer for policy editing.
Often, social networks cannot be trusted with private context information,
so a decentralized social network that stores the user’s profile on the user’s
devices [NPA10] provides a solution. The necessary access control is directly
enforced by the user’s devices, according to the user’s policy that must be
specified beforehand. To have a high availability of the user’s profile, the
profile’s context data is distributed among devices from different, trusted
users. Another approach, comparable to our approach in GAMBAS, uses a
server-side aggregator [JJFZ11] that crawls through different social networks
and collaboration tools to retrieve the user’s context that should be shared
between users and devices. The user needs to specify a common profile and
edit her privacy settings, defining a privacy policy. All approaches which
target the privacy policies in social networks usually involve manual user
actions that need to be done additionally to defining the privacy settings in
the social networks.

5.1.4 Contribution

Privacy-preserved sharing of context information is a very active research
area without providing the user with a clear solution. GAMBAS provides
concepts and mechanisms that focus on the automated privacy-preserving
sharing of context information while still being applicable for devices in
the ubiquitous computing scenario, which includes heterogeneous devices,
mobility and resource constraints. Hardware-based approaches for privacy-
preservation need special hardware and a defined software development

5.2 Privacy Framework 127

process that allows security audits, which define the “trust” in software. Since
GAMBAS is using a dynamic architecture in software and hardware, this
approach is not feasible.

Current approaches for context privacy often rely on (external) databases
run by third-party providers. In contrast to that, GAMBAS does not rely
on central databases, so no infrastructure is necessary to share context
information in a privacy-preserving way. Key derivation for context privacy
is usually only applicable in special environments and not a general solution
in a pervasive scenario where devices exhibit mobility and are not bound
to any infrastructure. Additionally, the necessary configuration conflicts with
the goal of a distraction-free usage of devices. The context generalization in
GAMBAS extends the existing approaches. If a generalization path is avail-
able that would make the context information privacy-preserving according
to the used privacy policy, GAMBAS tries to use obfuscation or generaliza-
tion, so customized service access is possible while preserving privacy. This
obfuscation can be done in an automatic way, without distracting the user.

Approaches that extend social networks mainly focus on the privacy
policies. The policies must be created manually by the users. This requires
the user to learn the usually complex privacy policy language. Additionally
some approaches require a central server that stores context and/or the
defined policy. This requires additional server infrastructure where the user’s
context is stored. In GAMBAS, we use a decentralized approach where
the context is usually stored on the user’s device instead of a third-party
server. Privacy policies can be retrieved automatically from social networks
without user interaction. Also, these approaches must be extended to be
applicable to not only one social networking site, but many and to other
context providers like physical sensors. To create a privacy-preserved sharing
of context information, GAMBAS encompasses extraction tools that gather
and generalize privacy policies from a set of web services automatically as
well as an associated set of mechanisms and protocols that enforce these
policies at runtime.

5.2 Privacy Framework

In GAMBAS, the data acquisition and the interoperable data representation
and processing mechanisms are developed to gather and distribute all possible
types of data. Furthermore, it is possible to access dynamic as well as static
information using one-time and continuous queries. To protect the privacy of
users, the privacy framework has to limit the data acquisition and in particular

128 Privacy Preservation

the data sharing such that it respects the privacy preferences (i.e. policies)
of different entities. Enforcing the desired limits is the primary task of the
privacy framework.

Conceptually, the privacy preservation framework interacts with the
semantic data storage (SDS) as well as the data acquisition framework (DQF)
that are deployed on each personal device. In addition, the privacy framework
may also be used to limit the access to information that is provided by a
particular service. For this, it is also integrated into devices that are offering
the services. Using a privacy policy, the privacy framework takes care of
exporting sensitive data in a way that it can only be accessed by legiti-
mate entities. The necessary privacy policy can be generated automatically
by means of plug-ins that access proprietary data sources. Furthermore,
depending on the user preferences, the framework can apply obfuscation
in order to limit the data precision and it can also anonymize the data in
order to unlink the data from a particular user. Since GAMBAS aims at
supporting the use of personal mobile devices as primary sources of data,
the privacy framework supports not only traditional computer systems, but
also constrained computer systems as its execution platform.

5.2.1 Overview

The architecture presented in Chapter 2 describes different views on data.
Regarding privacy, there are two relevant views. One is the data acqui-
sition view in Section 2.2.1, and the other one is the processing view in
Section 2.2.2. Here, we first concentrate on the data acquisition view, before
we have a look at the processing view from a privacy-preserving perspective.

The data acquisition view envisions two different scenarios. The first
scenario is targeting the personal acquisition of data that is used to capture
the user’s behavior on behalf of the user. The second scenario is targeting the
collaborative acquisition of data from a large number of users that is used to
improve or provide a particular service upon request of a service provider. In
both scenarios, private data may be processed. Therefore, both scenarios are
relevant regarding privacy.

For the first scenario, the identity of the user is important to ensure that
the resulting profile can be associated with the right user. Consequently, the
acquired data may be highly sensitive from a privacy perspective. For the
second scenario, the user’s identity is not that important, since often an
aggregated view of the data will be used. Additionally, for both scenarios,
it is necessary for the user to give an explicit consent to the data acquisition

5.2 Privacy Framework 129

at least once in order to ensure that only the desired data types are acquired.
To do this, the user can interact with the privacy framework by means of
the intent-aware user interface to define the associated preferences. In the
following, we show and describe the architectural figures from Section 2.2.1
that were extended to highlight the relevant parts for the automated privacy
preservation framework.

As can be seen in Figure 5.1, the privacy preservation framework is rele-
vant for every step of this scenario. The first two steps include the retrieval of
the policy-related data from a third party (e.g. a social network or a business
collaboration tool) and the generation of a personalized privacy policy from
this data. A Policy Generator can create this policy using the policy language
described later on in this chapter. Similarly, the third step concentrates on
the policy. Here, the integration and visualization of the policy in the user
interface is the focus of this step. It enables the user to manually modify
the automatically generated policy to suit his or her needs. The last two
steps concentrate on the data acquisition and the storing of collected data.
For privacy reasons, the user may limit the data acquisition directly at the
data acquisition framework, actively avoiding the gathering of certain data. A
second filter step includes the short-time or long-time storage of data in the
device-based registry. The user may limit or modify (e.g. obfuscate or blur)
the stored data according to his or her policy. Since this scenario is focused

Personal Mobile
Internet-connected Object

Personal Mobile
Internet-connected Object

External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

1. Retrieve policy-related
data

5. Collect data and store
it locally

2. Generate personalized
privacy policy

4. Limit data acquisition
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

Policy – UI Integration

Policy – UI IntegrationPolicy Generator

Acess Control – Device-
based Registry

Acess Control – DQF

DQF

PRF

SDS

IUI

Figure 5.1 Privacy Components for Personal Data Acquisition.

130 Privacy Preservation

on personal data acquisition, this may affect predictions that are based on the
data’s history, but it does not affect other devices.

The second scenario is focused on collaborative data acquisition. This
includes the sharing of data with third parties, like an external SDS. The
scenario is depicted in Figure 5.2. While the first four steps are identical to the
ones presented for the first scenario on personal data acquisition, the last step
differs. In the last step, data is not stored locally on the device, but transferred
to a remote SDS where the data is stored or further processed. At this point,
the privacy preservation framework needs to secure the connection to the
remote service. This is done by means of mechanisms for device/service
authentication and by encryption. The encryption prevents eavesdroppers
from overhearing the data transmission and is necessary since the data might
be transferred over insecure networks like the Internet. The authentication
enables an access control component to identify the remote service and to
apply the necessary limitations with regard to the acquired data. Since the
data is shared with a remote service, it is often necessary to enforce a stricter
policy. The access control component of the privacy preservation framework
must therefore limit, anonymize, obfuscate or blur data, if requested by
the policy.

In addition to data acquisition, the second relevant view is the processing
view. Similar to acquisition, the processing view envisions two scenarios

Personal Mobile
Internet-connected Object-

DQF

PRF External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

IUI

1. Retrieve policy-
related data

5. Report anonymized
data and store it remotely

2. Generate personalized
privacy policy

4. Limit data acquisition
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

GAMBAS Service

GAMBAS Service

SDS

Policy Generator

Policy Generator

Policy – UI Integration

Acess Control – DQF Acess Control – SDS
Mechanisms – Authentication/Key Exchange and Encryption

Figure 5.2 Privacy Components for Collaborative Data Acquisition.

5.2 Privacy Framework 131

that are relevant with respect to privacy. The first scenario describes the
processing of shared data using a one-time query to the data discovery registry
(DDR), and then accessing the shared data source. In the second scenario, a
continuous query is executed at the continuous query processor (CQP) that
retrieves and sends data on behalf of the user continuously.

The one-time processing of shared data is depicted in Figure 5.3, which
shows how the privacy preservation framework integrates into the GAMBAS
architecture for the processing of shared data. As a first step, if the data
source’s owner decides to share data through GAMBAS, the data source will
be exported to the DDR. If now, as a second step, a device (i.e. the query
issuer) initiates a query regarding the data source(s), it will look up the data
sources at the DDR. After that, the query issuer will remotely access the
data, if the user gave his consent to accessing and processing remote data.
The consent is provided by means of the privacy policy. The remote data
access makes use of the authentication and key exchanging mechanisms that
are provided by the privacy preservation framework (Step 5). On access, the
shared data sources check the status of the query issuer (i.e. check, if their
policy allows data to be shared with this entity) and create a personalized
view for this query issuer. In the last step, the query issuer uses the key
that was exchanged in Step 5 to access and retrieve the data from the shared
data sources. In this step, the communication channel is encrypted to prevent
unauthorized devices from overhearing the data in transit.

Query Issuer

Query Issuer

7. Execute Query on View
(Encrypt)

Shared Data Source

Shared Data Source

Shared Data Source

Shared Data Source

Discovery Service

Discovery Service

1. Export Identity

1. Export Identity

OQP

SDS

SDS

DDR

2. Initiate Query

PRF

PRF

PRF

3. Search Data Source 4. Request Access to
Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authenticate & Authorize)

5. Request Access
(Authenticate & Authorize)

6. Create View

6. Create View

Policy – UI Integration

Mechanisms – Encryption

Mechanisms – Encryption

Mechanisms –
Authentication/Key Exchange

Mechanisms –
Authentication/Key Exchange

Access Control – SDS

Access Control – SDS

IUI

Figure 5.3 Privacy Components for One-time Processing of Shared Data.

132 Privacy Preservation

Processing ServiceProcessing Service

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Identity

1. Export Identity

CQP
IUI

SDS

SDS

DDR

2. Initiate Query

PRF

PRF

PRF

3. Search Data Source
4. Request Access to

Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authenticate & Authorize)

5. Request Access
(Authenticate & Authorize)

6. Create View

6. Create View

Policy – UI Integration

Mechanisms – Encryption

Mechanisms – Encryption

Mechanisms –
Authentication/Key Exchange

Mechanisms –
Authentication/Key Exchange

Access Control – SDS

Access Control – SDS

Figure 5.4 Privacy Components for Continuous Processing of Shared Data.

The second scenario is shown in Figure 5.4. In this scenario, a continuous
query is executed. In contrast to one-time processing, the query is not exe-
cuted by the query issuer itself. Instead, an intermediate middleware service,
the continuous query processor (CQP), is used. This changes the message
flow in comparison to Figure 5.3, since the CQP executes the query (i.e.
performs Step 7) and not the query issuer. Therefore, the query issuer needs
to trust the processing service that is running the CQP to perform queries and
aggregate data reliably. As the CQP is executing the query on behalf of the
query issuer, the query issuer is still requesting the access to the shared data
sources. The retrieved access token is then handed over to the CQP, which
uses it to execute the query. Although the message flow is more complicated,
due to the addition of the CQP, the processing load decreases for the query
issuer. From a privacy point of view, the CQP executes and analyzes the
query, i.e. processes potentially private data. Any query issuer that is using
a CQP should therefore either only request and process public data or must
exhibit trust in the CQP it is using.

5.2.2 Mechanisms

The privacy preservation framework uses several mechanisms to keep data
private, e.g. prevent eavesdroppers from overhearing private data, establish
encrypted communication channels and authenticate users and servers. Addi-
tionally, the framework uses a privacy policy to describe which data should

5.2 Privacy Framework 133

be shared with whom. The mechanisms then make sure that the primitives
that are defined by the policy (i.e. users, groups, data and access rights) are
enforced properly at any point in time. To enforce the policy with regard to
users or groups, authentication is necessary. For the security of data, devices
and servers need to communicate securely (i.e. using encryption commu-
nication channels). Access to the shared data is controlled by combining
authentication and secure communication. Additionally, access control must
be enforced depending on the different views and scenarios that are targeted
by the GAMBAS middleware.

To support remote communication, the GAMBAS middleware relies on
the BASE communication middlware depicted in Figure 5.5. Originally, this
middleware has been developed by researchers at the Universitat¨ Stuttgart
[BSGR03] and it has been refined over several years [HWS+10]. For exam-
ple, in the European research project PECES (PErvasive Computing in
Embedded Systems) [PEC12], BASE has been used to enable the secure
networking of embedded devices in smart spaces over the Internet [AHM12].

As hinted in Figure 5.5, the BASE middleware provides a rather tradi-
tional object-oriented interface for the application programmer, which relies
on explicitly defined service interfaces and generated proxies and skeletons.
Underneath, it enables spontaneous and secure device interaction and dis-
covery. To do this, BASE relies on an extensible plug-in model that can be
used to support different communication technologies and protocols. The
extensibility of BASE includes hooks for the integration of authentication
and key-exchange mechanisms as well as encryption protocols. However,
instead of describing BASE, in the following, we focus on the contributions
of GAMBAS that are required to implement the overall system architecture.
From a conceptual point of view, these contributions are independent of the

Figure 5.5 BASE Middleware.

134 Privacy Preservation

concrete implementation and could have been implemented on top of other
communication middleware systems as well. However, due to its flexible
communication plug-in support, we found that implementing them with
BASE was efficient.

5.2.2.1 Authentication and Key Exchange
In order to enable trustworthy and secure interaction between devices, it is
necessary to authenticate interacting devices and the data exchanged between
them. In particular, it is necessary to authenticate individual devices/services,
e.g. during the establishment of a connection or during the access of
shared data.

In GAMBAS, authentication relies on both asymmetric and symmetric
cryptography, which requires the availability of keys. In the case of symmetric
approaches, the keys are available only to a particular set of devices, which
may use this key to ensure authenticity with respect to the devices that share
the key. In the case of asymmetric approaches, the key consists of a public
part (the so-called public key) and a private part (the so-called private key).
The keys may then be used to authenticate individual devices.

Both symmetric and asymmetric approaches can be used to distribute
further keys on the basis of existing keys. However, there needs to be at least
one key available to bootstrap the overall process. Usually, this key needs to
be distributed by means of a secure channel. Typically, this is done offline,
e.g. as part of the device configuration. In GAMBAS, while still supporting
this type of key distribution, we also offer a more convenient key exchange
for user-to-user authentication, which is as secure as the underlying service.

5.2.2.1.1 Server Authentication
Server authentication enables the authentication of a server or a server-based
service to another device. The other device can either be another server
(for server-to-server communication) or a user device (e.g. a smartphone).
In GAMBAS, servers are used to host services like a traffic information
service or GAMBAS-related services like the CQP. The authenticity of these
servers and services is important since GAMBAS applications rely on the
data retrieved from them.

It is noteworthy that the server infrastructure envisioned by GAMBAS is
similar to the server infrastructure in other networks, like the Internet. Here,
pre-deployed certificates enable the verification of the authenticity of sites for
purposes like Internet banking or e-mail retrieval. Since these mechanisms are
in daily usage and have been proven effective for years, GAMBAS also relies

5.2 Privacy Framework 135

on them. Each server in GAMBAS is therefore equipped with a certificate
that is issued by the certificate authority or some trusted third party (e.g. a
particular company).

Since certificates rely on asymmetric cryptography, this results in a key
pair (a public and a private key) being deployed on every server. While only
the server knows its private key, the public key (as part of the certificate) is
shown to devices for authentication. Using a common certificate infrastruc-
ture, the public key is signed by the authority’s key pair, which might then
again be signed by the domain authority’s key pair, leading to a certificate
tree. An example certificate hierarchy tree is depicted in Figure 5.6.

As can be seen in Figure 5.6, it is not necessary for a GAMBAS appli-
cation to trust a whole company. It is sufficient to trust only the parts of the
company that are providing GAMBAS-related servers and services. Access-
ing a GAMBAS-related server will then trigger a certificate verification. It is
possible to verify whether a particular certificate belongs to the GAMBAS-
related sub-tree by recursively validating the certificate chain from bottom
to top. To do this, the signatures must be verified one at a time. If the chain
is valid and if it contains a pre-deployed GAMBAS certificate, the validated
certificate belongs to the spanned part of the tree, i.e. it belongs to a valid
GAMBAS server.

Similar to other infrastructures, the GAMBAS middleware makes use of
the X.509 certificate standard. Among other things, this standard defines a
common format for certificates, which enables the use of existing tools to
generate keys and certificates offline. Specifically, it is possible to use the
implementations provided by the OpenSSL library. This avoids the need for
implementing key generation mechanisms and thus, it eliminates the need for
providing tools that exist already.

For device authentication, GAMBAS uses an authentication based on
the standard ISO authentication framework [CCI89], which can be used
with the Diffie–Hellman (DH) key exchange in its original version (using

Figure 5.6 Certificate Hierarchy Example.

136 Privacy Preservation

Figure 5.7 Certificate-based Key Exchange.

RSA certificates). The interaction is depicted in Figure 5.7. Additionally,
the GAMBAS middleware supports a modified version of DH that relies
on elliptic curve cryptography (ECC) certificates, which is more lightweight
and therefore better suited for the use on smartphones or other devices with
constraint resources. The exchanged keys can then be used with a key-
derivation function like PBKDF2 [Kal00] to create a common shared key
among any set of devices.

For pre-deployed username/password combinations, we use a hash-based
authentication mechanism that does not reveal any user or password infor-
mation to eavesdroppers which is important, since the past successful attacks
on protocols such as MS-CHAPv2 show the necessity of a higher security
standard. However, due to the focus on smartphone applications, finding the
right balance between security and user convenience is a challenge.

Both the certificate-based and the username/password-based key
exchanges result in the computation of a common shared key that cannot be
computed by any attacker that might have overheard the communication. This
key may be stored by a key store component of the middleware and used for
further communication attempts, which speeds up the communication start
by skipping the authorization part. This does not result in lower security,
because the possession of a common shared key shows that each interaction
partner was authorized properly before. Nevertheless, such a key should never
become persistent. It should time-out or be renewed after a certain amount
of time.

5.2.2.1.2 User-to-User Authentication
User-to-user authentication explicitly authenticates one user’s device to
another user’s device, e.g. to share data between two smartphones. This can

5.2 Privacy Framework 137

be used to share data between users that trust each other, e.g. friends or
co-workers. The authentication between users is different from the server
authentication described previously, because the devices are not necessar-
ily part of a certificate infrastructure. Only few users set up a certificate
infrastructure for their private devices, so we cannot reasonably rely on user
certificates.

Clearly, user-to-user authentication is not necessary in all scenarios, e.g.
if a user requests information about the next bus from A to B from a service
provided by the bus company. It is necessary, however, in scenarios that
include the collaboration of users. This includes the sharing of data (like
the current location) or a behavior profile that describes a possible future
movement pattern of the user. Clearly, such private information should not
be shared with anybody, but instead, it should be properly secured. As the
first step to the solution, GAMBAS introduces an innovative user-to-user
authentication mechanism that makes use of collaboration tools such as
Google Calendar or social networks such as Facebook and that can be used
as an alternative to the common infrastructure-based certificate architecture.

Many users are using social networks or similar services on a regular
basis. They define trusted users in these networks by adding them to their
personal network (e.g. friend relationships on Facebook). This information
can be used to exchange a shared key, piggybacked on the service. To do
this, GAMBAS introduces the so-called PIggybacked Key-Exchange (PIKE)
[AHIM13].

PIKE can be used on any service that enables the secure restricted sharing
of resources. This means that the service authenticates its users, models rela-
tionships between different users with respect to resource usage and enables
the specification and enforcement of access rights. From the perspective of
the users, the service performs its access control to resources properly. This
means that a) it protects the resources from being accessed by illegitimate
users and b) it allows access from legitimate users. Yet, beyond proper service
operation, we do not assume that the service is necessarily trustworthy.
Examples for these services are Facebook or Google Calendar. To use PIKE,
the device of the user must be able to access the service regularly through
the network. For this, the service provides some API or it uses a mobile
application that synchronizes the changes to the resource.

Every time the friend relationship changes, PIKE starts to analyze the
friends in order to detect new friends. In case a new friend is found, it will
trigger a key exchange between the two friends, using the secure resource-
sharing capabilities of the service. To do this, PIKE performs either a local

138 Privacy Preservation

modification on the triggering resource or, if this is not possible due to a
limitation of the mobile application, it uses the API of the service. Once the
changes have been made, PIKE simply waits for the next resource synchro-
nization at which point the new friend will have received the key through the
secure resource.

Once the personal interaction takes place, these keys can be used for
authentication among the devices of the friends. To do this, PIKE simply
extracts the keys from the secure resource and provides them during the
interaction to the GAMBAS middleware.

To formalize this interaction, Figure 5.8 depicts the resulting logical
protocol flow. Conceptually, PIKE involves three entities, namely the two
devices of the interaction partners (i.e. “Friend A” and “Friend B”) creating a
new friend relationship and the service. To establish keys, these three entities
interact with each other using three steps.

• After the change in the relationship was triggered (either through an
active notification or through a regular service synchronization interval),
the two friends contact the service to check if there needs to be a key
established between them.

• If so, the two friends compute two keys (KA and KB) independent from
each other and post them to a secure resource.

• In the next synchronization interval, they recognize and retrieve the key
posted by the other friend. Then, they compute the combined key KAB
and store it on their device(s).

After the completion of these steps, the interaction partners possess the
exchanged key. Once a personal interaction through GAMBAS takes place,
the key (or a derived key) can be used to enable group communication as
well as private communication and user-level authentication between the
two friends.

Figure 5.8 PIKE-based Key Exchange.

5.2 Privacy Framework 139

Figure 5.9 User-level Key Posted on Facebook.

To execute PIKE on top of the Facebook service, GAMBAS uses the
Facebook Graph API to access and modify data from the social network.
Each user of Facebook has a place for discussions, the so-called wall. This
wall is used to post the keys KA and KB that is then automatically picked up
by the friends’ devices. Since friends cannot change the visibility of posts on
another friend’s wall, the keys are posted to the own wall. On this wall, posts
can be created with a privacy setting that constraints the access to the other
friend (see Figure 5.9 for an example). The friends will then retrieve their
keys by going through their walls.

The combination of KA and KB to KAB can use different mechanisms.
While simple mechanisms like an XOR of the two values and the use of a
key-derivation function to create KAB will result in the same security as the
underlying service (i.e. Facebook, which does not leak the posts, i.e. complies
with its security and privacy settings), a more complex mechanism like a
Diffie–Hellman key exchange can also provide security against data loss.

The key KAB that will be exchanged after performing PIKE enables the
users to authenticate each other with an exchanged key, even when their
devices are not connected with the Internet, but in physical vicinity. A key
for every friend relationship ensures that the authenticity is on a user-to-user
basis and even malicious users cannot tamper the authentication to another
user. Similar to other exchanged keys in GAMBAS, this key may be stored
by the key store component and used for further communication attempts,
which speeds up the communication start by skipping the authorization part.
Also this key should not become persistent, but PIKE should be re-performed
from time to time such that the key is renewed.

5.2.2.2 Secure Communication
Secure communication is generally used to avoid eavesdroppers from
overhearing private data. In GAMBAS, the communication between different

140 Privacy Preservation

services, servers and mobile devices may contain private data. Imagine a user
searching for the next bus to the mall. If this search (usually a request to a
travel planner service) can be overheard, not only the next location of a user
(i.e. the mall), but also the planned activity (i.e. shopping) is revealed. Similar
problems occur, if personal data like audio recordings, GPS coordinates
or movement patterns are shared between users. Any eavesdropper might
receive this data if he is in the vicinity and can then later analyze this
data, creating user profiles. To avoid this, the GAMBAS middleware relies
exclusively on secure communication channels.

To establish a communication channel between two devices, the BASE
middleware uses plug-ins that abstract from the used communication tech-
nology. Due to BASE’s architecture, it is possible to extend this plug-in
stack easily. For secure communication, we add an encryption plug-in to the
set of existing plug-ins. The plug-in searches the key stored in the device
local SDS for a key of the communication partner and uses this key to per-
form authenticated and encrypted (i.e. secure) communication. An example
communication stack using the encryption plug-in is shown (for multi-hop
communication) in Figure 5.10.

Although not all applications in GAMBAS require secure communication,
recent publications [AHM12] have shown that the overhead by means of com-
munication latency is small. Therefore, secure communication is activated
by default and should only be deactivated for public announcements. The
encryption technology used in GAMBAS is AES, a symmetric encryption
mechanism, which is both fast and secure and available for all devices in
the GAMBAS scenarios. AES relies on a shared key between the communi-
cation partners that must be exchanged beforehand. The authentication/key
exchange in Section 5.2.2.1 shows how such a key can be established in

Figure 5.10 Secure Multi-hop Communication Example.

5.2 Privacy Framework 141

GAMBAS. To establish a secure communication, authentication is a crucial
step that must not be skipped. Without authenticity, the identity of the com-
munication partner remains unclear. If a secure communication channel does
not establish identities, any data that is traveling to a (possibly) unauthorized
communication partner must be regarded as public data.

After the authentication, the exchanged shared key is stored in a key
store together with the device or user id. To enable secure communication,
the device or user id is then used to retrieve the key from the key store.
To improve the performance, the shared key can be cached after the com-
munication for the next interaction, but should be changed regularly (e.g.,
by performing a re-authentication) to avoid impersonation attacks using lost
keys for interactions.

5.2.2.3 Access Control
To ensure privacy, GAMBAS relies on user-specific privacy policies. Access
control enforces these privacy policies. Using access control, data that is
captured by the data acquisition framework (DQF) is protected from unau-
thorized access. In GAMBAS, access control must take into account the
following three points:

• Authentication: A user or device must be authenticated, before it may
access any resource in GAMBAS that is using access control. Therefore,
it must use one of the mechanisms described in Section 5.2.2.1.

• Encryption: A user or device must use encryption while accessing data
that is using access control. The encryption, described in Section 5.2.2.2,
enforces the secrecy of the data while it is being transferred.

• Policy Compliance: Before any data is transferred, the access control
must check the policy (see Section 5.3) for the data to be sent. The policy
contains the users or devices that may access the data (if any) and the
access control must follow the policy.

If these points are evaluated properly by the access control mechanisms,
the policy is enforced securely. The general process of access control in
GAMBAS can be seen as the execution of these six steps:

1. Device A wants to access private data on Device B. Since the data is
private, Device B is using access control to protect it from unauthorized
access.

2. Device A opens a communication channel to Device B. It sends the
plug-in configuration for authentication/key exchange and encryption to
signal the need for secure communication.

142 Privacy Preservation

3. Using the plug-ins, the two devices authenticate to each other. Device A
sees that Device B is owned by “Bob”, while Device B authorizes the
user “Alice” from Device A.

4. Device B now checks, if Device A is using encryption on the commu-
nication channel. If this is not the case, the interaction is terminated
otherwise the interaction continues.

5. If successful, Device B checks the policy for the data that is to be
retrieved by Device A. It searches for the appropriate data type and the
access rights of Alice.

6. If the data type can be found and the access rights of this type allow Alice
to access the data, Device B grants access and Device A can retrieve the
requested data.

In general, it might not be necessary to authenticate Device B in Step 3.
Nevertheless, many of the authorization schemes presented in this document
are using symmetric authentication, i.e. both communication partners are
authenticated at the same time. Additionally, the general process is modified
depending on the communication partners in GAMBAS.

In GAMBAS, access control is used to access any private data. Since the
scenarios in GAMBAS are manifold, the general access control process needs
to be adapted to these scenarios. In the following, the three different access
control mechanisms in GAMBAS are presented. At first, we show how access
control is used in the data acquisition framework. Then, we concentrate on
any device-based registry and at last, we describe how data access and access
control with remote data storages is realized.

5.2.2.3.1 Data Acquisition Framework (DQF)
The data acquisition framework (DQF) is running directly on the user’s
device. It is implemented as a module of the GAMBAS middleware, which is
realized as a combination of different modules. In GAMBAS, all modules are
running in the same process on the device. Since processes in operating sys-
tems are isolated against each other, only other GAMBAS modules (running
in the same process) can call the internal API. The PRF provides methods
that allow the DQF to check whether a certain data type is allowed to be
detected. The DQF must call this method before any attempt is taken, to create
a recognition stack for detecting any kind of data or context. The method
then returns a value that states whether the data or context is allowed to be
detected or not. The DQF then changes the recognition stack accordingly to
only detect the kind of data or context that is allowed to be detected by the
privacy preservation policy.

5.2 Privacy Framework 143

This access control mechanism does not need any authentication or
encryption since it limits the data acquisition directly on the device. Only
GAMBAS modules can therefore retrieve and access the policy and the
acquired data. On every startup of a GAMBAS application that needs to
acquire data using the DQF, the DQF will check the privacy policy for any
data type that needs to be detected by this application. If the policy does not
allow the gathering of this data type, the application might not be started
successfully, but the privacy of the user is preserved. This type of access
control enhances the privacy of the user by not capturing data. Data that
is not captured cannot get lost or overheard by anybody, even if the user’s
device gets stolen, the data cannot be revealed since it was not gathered at
all. Not acquiring data is therefore a valid privacy goal that can be fulfilled in
GAMBAS using the privacy preservation policy. It puts the user in the direct
position of defining the data types that are allowed to be used for context or
activity recognition.

5.2.2.3.2 Device-based Registry
Any device-based registry like the semantic data storage (SDS) stores data
that was gathered by the DQF. The data is stored directly on the device itself,
not involving remote interaction. Similar to the limitation of data gathering
that was described in the previous subsection, this allows the access control
to be performed without the need of encryption and authentication.

In GAMBAS, the data stored in a device-based registry is used to predict
possible user behavior in the future. To protect his privacy, a user can choose
not to store specific data on the device at all, such that no history on the device
is created. Additionally, the privacy preservation framework makes it possible
to mark stored data as not exportable. This can be modeled using a policy
entry for this specific data type, which does not give any access rights to
another user. The data is then only processed on the device itself and does not
leave the device. Of course, this might result in a limited prediction since the
device only has limited processing power. To mitigate this, the preservation
policy that is used to limit the access is personalized to each user and may be
tweaked, if it is perceived as too restrictive or too liberal.

The PRF contains a method that must be called through the API by any
GAMBAS application, if data acquired by the DQF is stored on the device
(e.g. using a device-based SDS). This method is similar to the one described
in the previous section, but returns whether the data may be stored on the
device or not. The application can then see if it is allowed to build a data
history for this type of data. It must then comply with the result of this call.

144 Privacy Preservation

Authenticate, exchange key

Authenticate, exchange key

Start encrypted request for data

Device A Device B

Compute the exchanged key

Check for encryption
check prior authentication
check access rights

Compute the exchanged key

Send the requested data

Figure 5.11 Data Request using Access Control.

In contrast to the DQF, a device-based registry like an SDS also con-
tains a remote interface that may be called by other devices. If no data is
shared, this remote interface must be inaccessible for other devices. If data
is shared, the remote interface uses the device’s PRF to perform access control
as described in the general process of access control above. A check for
authenticity and access rights, as well as the use of encrypted communication
is necessary, before any private data may be shared. A simplified message
flow for a successful data request can be seen in Figure 5.11.

5.2.2.3.3 Remote Data Storage and Continuous Queries
In some scenarios envisioned by GAMBAS, data might be stored outside the
user’s device. It could be stored in a remote SDS that provides additional
computing capacities to give a better prediction on the future values of the
data. Storing data remotely requires full user consent and could possibly
breach privacy, since private data is transferred and stored on a remote device
or server that is usually not owned by the user. This scenario is depicted in
Figure 5.2. Here, the data is stored on a remote SDS, for example, to be
aggregated for statistical purposes.

Private data is only stored remotely if the privacy policy has a valid entry
for the specific private data type and it allows the sharing of the data type at
this remote location. Similar to the mechanisms described before, the PRF
provides a method that shows, for given values of data type and remote ser-
vice or server, whether the data is allowed to be transferred there. In addition
to the enforcement of the policy (which already includes the authentication
of the remote service or server), the remote transfer needs to be encrypted,
such that the data cannot be overheard. The access control mechanism is
implemented similar to the ones described previously. Since storing data in a
remote location is inconvenient for many users, the GAMBAS applications

5.2 Privacy Framework 145

try to minimize the need for this. One important exception is the remote
storing of information that users are obligated to by contract, for example, a
bus company that gives out chip cards, which are validated by touching chip
card readers at the bus entry, may use the travel information in an anonymized
fashion, if it informs its customers accurately.

In addition to the simple one-time query that usually only needs one
request–response message flow, GAMBAS supports continuous queries that
may be used to notify users if the response data changes. Continuous queries
do need a permanent Internet connection and may need more resources
than a simple smartphone can provide (in terms of CPU power and RAM).
Therefore, the continual query processer (CQP) is realized as a remote
GAMBAS service.

A query involving a remote CQP changes the authorization flow, since the
CQP is querying other data sources on behalf of the user. As can be seen in
Figure 5.12, the device now first authenticates the remote CQP service, which
will then issue a request to access a certain data source. The device must now
check with the privacy policy whether the CQP service is allowed to access
the requested data on behalf of the user. If the policy evaluates to true, the data
source is queried to hand out an access token that enables a remote device to
act on behalf of Device A. The data source will again check, if the user of
Device A is allowed to retrieve the queried data. If that is the case, the data
will be processed by the remote CQP service. The PRF of the data source
will consult its policy to evaluate these two questions. If they evaluate to true,
the data source will transfer an access token to Device A. This access token

Authenticate, give accessTokenAuthen ticate, give accessToken

Authen ticate, request accessTokenAuthenticate, request accessToken

Hand over accessTokenHand over accessToken

Query Device Data Source

Query data source with accessTokenQuery data source with accessToken

CQP Service

Authenticate, initiate continuous queryAuthenticate, initiate con tinuous query

Authen ticate, request access to data source

Authen ticate, request access to data source
Stream result to querying device

Return query resultReturn query resultWill be executed
repeatedly

Figure 5.12 Continuous Query Processing using Access Control.

146 Privacy Preservation

can then be used by the remote CQP service to execute the query, retrieve the
data and stream the query result continuously to Device A. The CQP might
execute the query repeatedly and update the continuous query result that is
streamed to the device accordingly. If used with more than one data source,
the CQP service needs an access token for every source and is also used to
aggregate data remotely. This aggregation removes burden from the device
and makes it possible to execute even complicated continual queries with
resource-constrained devices.

To preserve privacy whenever possible, the remote CQP service needs
to be properly authenticated and trusted by the device using it. An ideal CQP
would be a home server that is in possession by the user itself. In that case, the
query result will not depend on the relationship between the data source and
the CQP service (since it is identical to the relationship between the source
and the user’s device). If an external CQP service is used, the data source
could change its view on the data, since the policy on the source could have
different constraints for the user and the external CQP service.

In the case of a remote CQP, all interactions between devices, data sources
and the CQP must be encrypted, because they might contain private data.
As shown in Figure 5.12, also all devices must be authenticated, such that
the privacy preservation framework can perform the access control properly.
Although the access control process is more complicated since more parties
are involved, the benefits of using a remote CQP (i.e. a resource-saving query
execution) outweigh the drawbacks in many scenarios.

5.3 Privacy Policy

The privacy preservation policy is used to describe the access rights of data
types. Additionally, it describes how data types relate to each other. The
policy is customizable for the user and can be serialized in a policy language
that is based on RDF. When used in the PRF, the policy can specify which data
types should be shared with which users (or companies). Therefore, the policy
contains the data types and the sharing permissions, individual to each user.

The policy representation shown in Figure 5.13 displays policy permis-
sions (i.e. using triples), which model the access rights on data types. Each

Figure 5.13 Privacy Policy Permission Example.

5.3 Privacy Policy 147

of these RDF triples contains a unique name as first argument, and then
one of the relations “affects”, “grantedTo” or “obfuscation”, which denote
different aspects of the policy permissions. The third argument of the triple,
i.e. “affects”, is the data type that should be affected by this permission. The
relation “grantedTo” denotes the user that is granted this permission. Since a
permission could grant the same access rights to many users, the triple using
the relation “grantedTo” can occur more than once (with different users) in
one permission. The user name (which could include a unique identifier) links
to the profiles that this user is using on social networks or other collaboration
tools. The last relation “obfuscation”, optionally defines the obfuscation level
for this permission. Depending on the data type, different obfuscation levels
are possible. For the current location, this could be the actual GPS coordinates
(i.e. no obfuscation), the current city or the current country the user is located
in. Since the policy is created individually for every user, the user itself is
implicitly part of every policy triple and is left out in the policy language.
This means instead of creating statements like Charlie’s data type location is
“grantedTo” Bob using the “obfuscation” level city, we simplify the policy
triples in Charlie’s policy to the ones depicted in Figure 5.13.

The data types are specified in the data model described in Chapter 4 and
used by the data acquisition framework discussed in Chapter 3. Since each
different data type might provide different obfuscation levels, the levels are
also defined as part of the data model. While some data types like “location”
can provide more than one obfuscation level, other data types might not
provide any. Thus, the use of obfuscation is optional and depends heavily on
the underlying data type. In summary, both the data type and the obfuscation
level are based on the data model of the GAMBAS middleware.

Another type of policy definition are triples that describe relations
between different data types. These relations define a simple hierarchical
relationship between data types and can be used to infer access rights for
similar data or data that is used as a building block for a more complex data
type. Imagine that Charlie shares his current location with Alice. If now Alice
asks for the name of the street where Charlie is located, the PRF will search
for the data type “street”, might fail to find a policy entry for it and will deny
access to it. Therefore, the policy language includes the consistsOf-relation.
Using the privacy policy Location consistsOf street,city,country, the data type
“street” can be found and if there are no Permission policy relations for
“street”, the “location” data type is checked. In this example, Charlie shares
his current location with Alice, so the location data type grants access rights
also for the “street” data type.

148 Privacy Preservation

To support the different level of access control, e.g. storing data on
the device itself, device-based registry and the sharing of data with remote
devices, the policy introduces another relation that describes the level of
sharing data. The sharingLevel-relation shows on which level data may
be shared or stored. Using this relation, the privacy policy can be easily
used to enforce the sharing level on data. GAMBAS relies on three pre-
defined keywords that describe where data may be stored. The tree keywords
are “Remote”, which defines that data may be stored by remote devices,
“Device”, which denotes that the data should only be stored at the device
itself and must not be shared with others, and “DetectOnly”, which does not
allow the data to be stored anywhere. When “Device” or “DetectOnly” are
chosen, the Permission-relations are ignored, i.e. data may not be shared with
anybody, when using this keyword.

An example for the sharingLevel-relation is presented in Figure 5.14.
Here, location data is shared with remote devices; for the access rights,
the Permission-relations that are linked with the location data type must be
considered. Data about the current travel path may be stored on the device and
used for prediction that is executed on the device. This policy triple does not
allow sending the current travel path data to remote devices. In this example,
audio data might only be used for detection using the DQF, but not be stored
anywhere.

In summary, the privacy policy consists of three relation types. All of
them can be described using privacy triples:

• The Permission-relations that define access rights and obfuscation levels
of data types.

• The consistsOf -relation that defines hierarchical relationships between
data types.

• The sharingLevel-relation that defines the sharing level of the data type.
Next, we describe the policy generator, which enables the automatic

generation of the policy from social networks or other collaboration tools.
Thereafter, we describe the integration of the privacy policy with the user
interface to enable the user to modify the policy manually.

Figure 5.14 Privacy Policy Sharing Level Example.

5.3 Privacy Policy 149

5.3.1 Automatic Generation

The privacy preservation policy that is used by the PRF to constrain the access
to data gathered by the DQF can be created automatically, by the policy
generator. This enables the user to use GAMBAS applications without an
extensive (manual) configuration phase, while still having a privacy policy
that protects private data. The policy generator is therefore one of the key
concepts to enable automation in the privacy preservation framework.

Many users use social networks or collaboration tools like Google Calen-
dar as part of their everyday routine. They post messages to colleagues and
friends, share photos and create shared appointments. Often, it is possible
to constrain access to messages to a pre-defined user group. This could
be a list of friends on Facebook or individual users for a shared event in
Google Calendar. Similar, the access to other data in the social networks or
collaboration tools can be constrained by the user. Figure 5.15(a) depicts
an example. Using the APIs that are provided by the social networks or
collaboration tools, these privacy settings can be retrieved automatically. An
example using Facebook’s graph API is shown in Figure 5.15(b).

A user that is using such a social network or collaboration tool is therefore
already creating one or more privacy policies (depending on the number of
tools that are used). The privacy policy generator can query these policies
using the tools’ APIs. Since the policy generator operates on the user’s own
device(s) and uses the user’s accounts to access the tools, a policy which is
individual for each user can be generated. This generated policy is then also
tailored to the needs of the user, because it is only an import of a user-defined
policy into the privacy framework. To support as many social networks or
collaboration tools as possible, the policy generator has a modular structure.
This structure makes the policy generator extensible with regard to other
collaboration tools.

Usually, the user is able to define privacy settings in each social network
or collaboration tool individually. Because the user may edit this settings
freely and independent from each other, the settings might be inconsistent.
The policy generator is then not able to create a consistent policy. If this is the
case, the generator can detect and display the conflicting settings and suggest
possible solutions to the user. After the conflicts are (manually) resolved, the
policy generator creates a consistent policy.

Using the consistsOf -relation, the policy generator proposes different
generalization strategies to apply the policy to a broad set of data types that
can be acquired by the DQF. This enables the generalization of the policy,

150 Privacy Preservation

Figure 5.15 Privacy Settings in Facebook. (a) User Interface and (b) Programming Interface
(JSON).

which includes new data types that might be related to data types retrieved
from the privacy settings in social networks or collaboration tools.

In summary, the policy that is used to allow access to different data
types is generated automatically using the policy generator. The generator
is designed to pick up policies or privacy settings that are pre-specified by
the user in a social network or collaboration tool and to create a policy that
is compatible to the GAMBAS policy format. The generator includes tools to
resolve conflicting settings and is able to generalize data types. The generated
policy can also be fine-tuned by the user using the user interface presented
in the next sub-section. Even without the fine-tuning, the generated privacy
policy is consistent and tailored to the user’s needs, without putting the user’s
privacy at risk.

5.4 Privacy Integration 151

5.3.2 Manual Fine-Tuning

The user interface developed as part of the middleware enables the user
to fine-tune the privacy policy. In general, the privacy policy is created
automatically using the policy generator. The automated creation takes into
account the settings of the user in social networks and other collaboration
tools, like the Google Calendar. Although this automatically derived policy
is therefore created on an individual basis, a user may want to modify the
policy. To do this, the privacy preservation framework encompasses methods
that allow retrieving the current policy and methods that can modify the
existing policy.

Using the user interface, the user can change the policy triples visually,
without having to use the policy language. This allows also non-expert users
to edit the policy successfully. The user interface displays the data types and
then shows the relevant policy relations graphically. The user can modify the
data types by clicking on them and, for example, choose users from a list of
users for the Permission-relations. Editing the other relations is similar. Any
change in the graphical user interface results in a change of the policy, i.e.
causes the addition, deletion or modification of policy triples. The user might
also use the interface to export or import the privacy policy, which enables
expert users to modify the RDF representation of the policy directly.

5.4 Privacy Integration

To clarify the mechanisms and protocols of the privacy framework, we
describe how they are integrated into data transfer, data acquisition and data
processing defined in the previous chapters.

5.4.1 Data Transfer

To support data exchange and possibly the exchange of context information,
data will be transferred between different devices. This data – for example,
a user asking the servers of a public transit network operator for the route
of a bus trip – can breach privacy. In this case, an eavesdropper could
get the current and future location of the user. Therefore, the data should
be transferred securely. In GAMBAS, the Privacy Preservation Framework
(PRF) is responsible for all security and privacy needs and therefore is also
responsible for securing the data transfer. For this, all data that is transferred
should be encrypted. The reason for this is twofold. Firstly, the data might

152 Privacy Preservation

contain private information that should not be shared with unauthorized users
or devices. Secondly, the shared data might be transferred over an insecure
communication channel (e.g. the Internet or an insecure WiFi network).

To apply the efficient concept of symmetric encryption (AES) to secure
communication, a shared key must be exchanged before any encrypted com-
munication can take place. During the exchange of a cryptographic key,
the communication endpoints show that they are eligible to access the data
that should be transferred by authorizing themselves. After the authorization
process, both endpoints possess a shared cryptographic key that allows them
to transfer data securely.

In the GAMBAS PRF, authorization can be performed in two different
ways. The first way uses asymmetric cryptography and is based on cer-
tificates, similar to the implementation of SSL in the Internet. This allows
an ad-hoc identification of devices that belong to a certain domain. If the
domain root is trusted, the authorization will be successful. Also, the access
rights may depend on the trust in this root. For authentication, the device’s
certificate is transferred together with a challenge that proves that the device
is in possession of the certificate’s private key. Together this data forms the
device’s credentials that are checked at the other endpoint. The alternative of
using compute intense asymmetric cryptography is symmetric cryptography.
Using symmetric cryptography, a key (256 Bit) can be attached to a connec-
tion between two endpoints. The first half (128 Bit) of this shared key allows
the identification of the other endpoint. The other half (128 Bit) can either
directly used for the secure communication or can be used to exchange a new
session key securely. For efficiency reasons, both of these checks (i.e. for
asymmetric and symmetric cryptography) are performed transparently by the
communication system of the GAMBAS middleware.

The secure data transfer is generally foreseen for every transmission
of data. The communication endpoints must first authorize each other at
the remote privacy preservation framework, before a key for the secure
communication is computed. The authorization that is performed by the
privacy-preserving framework incurs some overhead during the data transfer.
However, without the authorization, the communication partner is unknown
to another device and this contradicts the privacy of the transferred data.
Therefore, while the authorization is a crucial mechanism, it is possible to use
more lightweight security mechanisms, but this would result in a decrease of
the security level.

To enable encrypted data transfer, it is necessary for both communication
endpoints to use a cryptographic key. In GAMBAS, we support devices

5.4 Privacy Integration 153

with different capabilities with regard to the available resources (like RAM,
CPU and battery power). The encryption is therefore based on a hybrid
scheme that allows an efficient and secure encryption. With respect to data
processing, we can differentiate between three different cases. The first case
is the communication between a user’s device (a client) and a server (e.g.
the server is asked for a bus route by a user’s device). The second case is
the communication between devices of two users. An example could be two
friends who want to exchange photos with each other. The third case is the
communication between two servers. An example could be server of a public
transit network operator who communicates with a weather service server to
get the current forecast (which might influence the bus planning for the day).

The difference between a user’s device and a server in GAMBAS is that
the server is able to authenticate itself using a cryptographic certificate. This
ensures the identity of the server and allows for server authentication, before
the connection is established. In contrast, the user’s device does not have a
certificate since it is not bound to a certificate domain. Therefore, different
methods of authentication must be used, if a user needs to be authenticated
and/or identified. Because of these differences, the three cases mainly differ
in the authentication phase.

5.4.1.1 Client and Server Communication
When a device (client) contacts a service that is provided by a server, the
connection will be established as shown in Figure 5.16. The server will
use its certificate to authenticate itself against the client device. The client
application validates the certificate of the server against either a pre-deployed
service certificate or a pre-deployed certificate root. The root certificate can
be used for companies that support different kinds of services and eases
the deployment without lowering the provided security. This is a one-sided
authentication, i.e. the server authenticates itself against the client, but the
client is not authenticated. If it is necessary to authenticate the client, the
server may add any authentication scheme after the secure connection is
established. A username/password authentication could, for example, use the
secure remote password protocol (SRP 6) to authenticate the clients.

Using the (unencrypted) authentication messages, an elliptic curve Diffie–
Hellman (ECDH) key exchange is performed. As a result, both sides will be
able to compute a secret key that cannot be computed by eavesdroppers. The
signature of the message that is created by the server also prevents man-in-
the-middle attacks. After the authentication handshake and the key exchange,
the interaction is encrypted by using the exchanged secret key.

154 Privacy Preservation

Figure 5.16 Client and Server Communication.

5.4.1.2 Device-to-Device Communication
When two devices establish a connection, usually they cannot authenticate
each other. The authentication cannot rely on certificates, since the devices
do not know each other and normally do not possess a certificate. The users
might identify their devices manually, by device id, and may then create a
manual key on both of them. But GAMBAS also allows two other easier
methods to establish a key for each device.

The first method uses PIKE to exchange a key using an online social
network such as Facebook that is used by both users. This key is exchanged
before the interaction takes place and allows two or more devices to interact
securely with each other. The user identification is extracted from the rela-
tionship in the online social network and can then be used at the time later
on. This allows for a completely automatic key exchange that does not need
any user interaction. The only necessary step a user has to take is to connect
GAMBAS with the social network, e.g. through Facebook Connect as shown
in Figure 5.17(a).

The second method uses the NFC technology. Nowadays, many smart-
phones are equipped with an NFC reader system that may also be used
for short-range one-way communication. The GAMBAS middleware imple-
mentation for Android integrates with NFC to exchange a key. For this, the
middleware encompasses a service that is used to redirect the communication
back to the device that initiated the one-way NFC communication. This
backward channel is necessary to transfer the device id of the device that
received the NFC message. Using this service, we can establish a key just by
holding two devices together. For this, a user simply needs to press a button
in the user interface shown in Figure 5.17(b) and then bring two phones in
physical proximity to each other.

5.4 Privacy Integration 155

Figure 5.17 Device to Device Authentication. (a) PIKE-based Key Exchange via Facebook
and (b) Manual Key Exchange via NFC.

After the successful key exchange, the communication between the two
devices can be encrypted. Additionally, the devices can identify themselves
using the already established keys.

5.4.1.3 Server-to-Server Communication
The server to server communication in GAMBAS is similar to other commu-
nication on the Internet. Each server authenticates to the other server using its
own, pre-deployed certificates. Similar to the client–server communication,
the certificates can be verified by using the server certificates or by using
a common root certificate. Again, the authentication includes an ECDH
key exchange, which results in a shared key for this connection. Then, the
communication between the two servers will be encrypted using this key.

5.4.2 Data Acquisition

The Adaptive Data Acquisition Framework (DQF) enables the collection of
data using various sensors built into the user’s mobile device. The collected

156 Privacy Preservation

data can then be used personally (i.e. by the device, in the case of personal
data acquisition) or collaboratively (i.e. by a remote service, in the case of
collaborative data acquisition) to optimize services based on the users’ behav-
ior. Clearly, the data acquired by means of sensors built into the device of a
user may raise privacy concerns. Furthermore, the preferences with respect to
privacy may vary drastically from user to user. In order to empower users to
exercise control over which data can be collected, the access to the data acqui-
sition framework is guarded by the Privacy Preservation Framework (PRF).
Thereby, all accesses made to the data acquisition framework are checked
against the user’s privacy preferences with respect to data collection. This
allows the user to limit the data types that can be collected at all. In extreme
cases, a user may limit the collection of all data through the GAMBAS
middleware. In less extreme cases, the user may limit the collection of a
particular type of context information, such as location-related information
or audio information.

The PRF-DQF interface enables the data acquisition framework to check
whether the user has given consent to the acquisition of a particular type of
contextual information. To do this, the DQF performs calls to the PRF in
order to verify that the data types that shall be captured are permissible under
the user’s current preferences. Furthermore, since the user’s preferences may
change at any point in time, it is necessary that the PRF provides functionality
to signal a change to the DQF whenever the user’s preferences with respect
to a particular data type change.

The PRF therefore has two different duties. First, it checks the data type
that is about to be captured against the preferences of the user and returns a
Boolean to indicate whether the user permits the acquisition of the specified
data type. If the access is denied, the acquisition is aborted. If access is
granted, the acquisition task can be started. Additionally, a user could modify
his privacy settings. Therefore, the PRF needs to signal a change to the
preferences with respect to a particular data type such that the DQF can
check all currently executed data acquisition tasks against the updated set
of preferences. If a data acquisition task is no longer permitted by the user, it
must be aborted by the DQF.

In order to guarantee that all data acquisition tasks continuously conform
to the user’s preferences, the GAMBAS middleware implements the contin-
uous and gapless usage of this interface for all calls to the DQF. This means
that all tasks that are started within the DQF need to pass through the check
method of the PRF with the associated data types. In addition, as long as

5.4 Privacy Integration 157

the DQF is executing any tasks, it needs to react to changes indicated by
the signal method. If a signaled change affects a data type that is currently
acquired, the check for the associated (set of) task(s) needs to be reevaluated,
possibly aborting any conflicting tasks.

As every export of user’s context information is filtered based on the
privacy policy of the user, for every request of data by the service provider, the
DQF checks it with the privacy framework. If the PRF allows the data to be
sent, only then the users’ context information is exported. The PRF and DQF
communicate this information check through control interfaces provided by
the PRF. Specifically, PRF provides different methods that allow the DQF to
check if a certain data type is allowed to be detected. The DQF must call
these methods before creating a recognition stack for detecting any kind of
data or context. Based on the results from these methods, the DQF detects the
context data and subsequently sends it to the service providers.

In order to allow acquisition and subsequent export of user’s context
information, the GAMBAS middleware ensures that the context recogni-
tion applications can gather and export only the allowed context features.
In order to achieve this, the data DQF checks for permissions with the
privacy-preserving framework whenever a new application is started.

When the data acquisition framework starts to acquire data, it analyzes the
feature requirements of the application and then checks with the PRF whether
the desired features are allowed to be gathered. The PRF will decide, based
on the privacy policy that is set by the user and will inform the acquisition
framework whether the requested features are allowed to be gathered or not.
If the requested features are allowed, then the DQF starts gathering context
information.

When the PRF refreshes the privacy policy (either through a user that edits
the policy or through an update issued by the Privacy Policy Generator), the
GAMBAS core service indicates this change to the DQF, which again checks
the permissions with the privacy framework. If an already running application
does not adhere to the new privacy policy, then the application is shut down
immediately.

The list of privacy features that a user can edit in the privacy policy
includes features related to the acquisition of sensing data such as audio sens-
ing, location sensing, motion sensing, ambient sensing and features related
to the communication such as enabling of remote gateway communication,
enabling of Wi-Fi and Bluetooth as communication technologies, etc.

158 Privacy Preservation

5.4.3 Data Processing

Dynamic and distributed data processing is an essential part of the GAMBAS
middleware. Data processing in GAMBAS is performed by the Query Proces-
sors (xQP), which provides GAMBAS applications with the necessary data.
Often, the processor executes remote queries. These queries are executed at
remote devices and may try to access private data. The GAMBAS Privacy
Preservation Framework therefore has to check the access to the requested
data types and allow/deny access based on the policy of the remote user.

During the query execution, the query processor identifies the sources
needed to answer the query and then sends a request to the registry. The
registry resolves the sources and sends back to the processor the list of end-
points (remote storages) that contain needed data. For shared data, however,
before the query processor can access the data on the remote source, a privacy
control is performed to check if the query initiator has the rights to access the
data. A view of the data matching the privacy rules in place is created and
shared with the query processor. The query processor forwards the identity
and data requirements to the privacy framework, which in turn checks with
the privacy framework of the remote device hosting the shared data. A view
of the data is created based on the access control. The view can reflect the
original data, or it can modify the original data according to the privacy in
place. For example, it can aggregate or hide parts of the original data, like
changing GPS coordinates to the name of the city or country.

If a one-time query is issued, the access is granted based on the privileges
of the user that is trying to access the data. The query can then be directly
executed and will be transferred over a secure connection. If a continuous
query is issued, a secure access token is generated and sent to the query
processor. If a remote endpoint is trying to access the shared data, the secure
access token will allow transferring the shared data securely over the chosen
communication channel.

The interface between the xQP and the PRF checks whether the query
initiator is allowed to access the data. Additionally, if the xQP is executing
a remote query, the communication must be properly secured. The user and
data access credentials are sent over a secure data connection between the two
endpoints. Since the middleware manages the secure communication trans-
parently, the interface does not include a method that enables the exchange
of security tokens or start the encryption. Instead, this is done through the
authentication and key exchange plug-ins that the PRF integrated into the
GAMBAS middleware.

5.4 Privacy Integration 159

The access to data by the query processor must be checked through an
interface at the PRF. The interface consists of one function that checks if
the query initiator (i.e. the user requesting the data) is allowed to access the
data. The data types that are being requested also need to be specified. The
PRF queries the privacy policy of the device using the specified input and
decides whether the query is allowed or not. Each request is handled by the
privacy framework of each semantic data storage; therefore, this function is
performed locally.

The PRF therefore has a local PrivacyManager that implements and inter-
face that can be used by the xQP to check with the PRF if executing a received
query is allowed according to the currently active privacy policies. To do
so, the query processor hands the PRF (1) a set of classes in the GAMBAS
ontology that specify what data types the query will access and (2) the origin
of the query, e.g. if it was a local query or a query from a remote user. The
PRF then returns whether this query is allowed or not. The PRF needs to be
contacted for every query execution, when shared data is involved. The query
processor must first interact with the privacy framework, which is responsible
for allowing or denying data access, for data encryption/decryption and for
device authentication.

Of course, the privacy-preserving framework incurs some overhead in
the query processing, specifically an additional method call, device authen-
tication and data encryption. However, the PRF is crucial to maintain the
privacy of the users’ data. To minimize the performance impact, the PRF
uses lightweight privacy rules and lightweight encryption mechanisms (e.g.
symmetric encryption using AES) to allow a secure and privacy preserving
execution of queries by the xQP. More lightweight encryption mechanisms
could be applied, but this would result in a decrease of the privacy and secu-
rity level without a high speed-up compared to the used security mechanisms,
if measured on current smartphones.

http://taylorandfrancis.com

6
Applications

This chapter describes the applications that have been built using the
GAMBAS middleware. To do this, the chapter briefly outlines the integration
of the system components described in Chapter 3, Chapter 4 and Chapter 5.
Based on this description, it introduces the application development support
provided by GAMBAS for different execution environments. To clarify this,
we present a number of simple but full-featured applications that leverage the
different components of the middleware. Based on this, we then describe the
two large-scale applications that have been built with the middleware. These
applications focus on realizing significant parts of the mobility scenario and
the environmental scenario introduced in Chapter 1 that motivated the work
on the GAMBAS middleware.

6.1 Application Development Support

In the following, we describe how the GAMBAS middleware is used during
application development. To do this, we first briefly review how the different
middleware components described in the previous chapters are integrated into
a single system. Thereafter, we discuss how different execution environments
are supported through the GAMBAS SDK and middleware runtime. Finally,
we present a number of simple applications that have been built with the SDK
to demonstrate the different features offered by GAMBAS.

As shown in Figure 6.1, the integrated GAMBAS system consists of
(1) a number of networked devices executing the GAMBAS middleware
and (2) the GAMBAS Dynamic Data Registry. Each device may execute
one or more GAMBAS applications (or simply apps) using the GAMBAS
middleware. An example for such an app is an Android application executed
by an end user on his smart phone. Another example would be server software

161 DOI: 10.1201/9781003336952-6

162 Applications

Figure 6.1 Integrated System.

executed by a service provider on a dedicated server connected to the Internet.
As described in Chapter 4, the GAMBAS Dynamic Data Registry is a generic
service that provides devices with the ability to discover data sources. The
functionality of this registry is comparable to the Domain Name System
(DNS), which provides name resolution on the Internet. Although GAMBAS
assumes that this functionality is provided publicly, GAMBAS allows devel-
opers to run their own registry during development and testing. Since the
functionality of the registry has been described in detail in Chapter 4, in the
following, we focus on the remaining functionalities.

6.1.1 Overview

Figure 6.2 gives an abstract overview of the middleware structure. The
integration is realized by: (1) a set of interfaces, support libraries and tools
called the Software Development Kit (SDK) and (2) the GAMBAS CoreSer-
vice which provides the accompanying runtime environment. The Software
Development Kit (SDK) in turn consists of two parts. The Service Program-
ming Interface (SPI) is used to develop GAMBAS functionality and integrate
it into the middleware. The Application Programming Interface (API) is
used to develop GAMBAS apps. The CoreService sets up the GAMBAS
middleware and manages the life cycle of GAMBAS system components.
Each system component encapsulates the implementation of one of the core
GAMBAS parts described in Chapter 3, Chapter 4 and Chapter 5, e.g. the
Semantic Data Storage (SDS) or the Data Acquisition Framework (DQF).

In addition, the CoreService integrates a special communication system
component that encapsulates an extended version of the BASE communica-
tion middleware discussed in Chapter 5. This enhances GAMBAS with com-
munication support to interact with remote GAMBAS devices. Furthermore,
the CoreService realizes the SPI by linking each system component to all
other components that they use during their own execution via interfaces from

6.1 Application Development Support 163

Figure 6.2 Abstract Middleware Structure.

the SPI. This effectively provides a tight and efficient integration between the
components without inducing dependencies to their actual implementation.
Finally, the CoreService implements the GAMBAS API towards GAMBAS
applications in both Android and J2SE environments. To do this, it receives
calls, forwards them to the right system component and delivers results back
to the original caller.

Due to the intrinsic differenced between Android and J2SE execution
environments, the abstract structure shown in Figure 6.2 has two dis-
tinct concrete implementations. In the following, we briefly describe their
differences and similarities.

6.1.2 J2SE Support

GAMBAS for J2SE specializes and implements the generic middleware
architecture described before for server systems running J2SE. This allows
service providers to integrate their services into the GAMBAS platform.
Figure 6.3 shows the resulting system architecture. Since the J2SE version
of GAMBAS is primarily intended for the development of server systems, it
does not include support for user interfaces. Clearly, service providers will,
in many cases, add their own user interface, e.g. based on web technologies.
This, however, is outside of the scope of GAMBAS and thus not explicitly
supported. All other GAMBAS system components mentioned previously are
integrated, namely communication, data acquisition (the DQF), data storage
(the SDS) and querying (the xQP), as well as security and privacy (the PRF).

164 Applications

Figure 6.3 GAMBAS for J2SE.

As described before, the CoreService realizes the SDK and manages the
life cycle of the whole GAMBAS system and all its components on a local
device. GAMBAS for J2SE is implemented as a library that is linked to
an application using it. To start using the GAMBAS system, an application
has to first import and instantiate the CoreService. The CoreService can
be configured by passing it an instance of CoreSetting. This allows the
application to specify, e.g. the address of the GAMBAS data registry and
communication gateway as well as a pseudonym that should be used to
address the system. Settings can be changed dynamically and the CoreService
will perform any necessary updates automatically, e.g. when a pseudonym
should be changed. When the CoreService is instantiated (and thus started)
it instantiates, configures and starts in turn all necessary GAMBAS system
components.

To decouple life cycle management of components from their actual
implementation, each component is encapsulated by a specific subclass of
AbstractSystem, providing, e.g. methods for startup and shutdown. As an
example, the SDS is integrated by sublassing AbstractSystem with a new
class DataStorageSystem, which implements all life cycle management func-
tions independently of the actual SDS implementation. This way, the SDS
is independent of the CoreService and can, e.g. be reused in other contexts
without other GAMBAS components. The CoreService also passes each
component references to all other components it may require. As an example,
the query processor uses the data storage, the communication system and the
privacy manager. The CoreService enables this by passing references to these

6.1 Application Development Support 165

three components to the query processor. At runtime, the query processor
calls these components directly, without using the CoreService anymore.

To use functionality of the GAMBAS middleware, e.g. to store data,
applications can call a number of methods on the CoreService. The Core-
Service in turn forwards this request to the corresponding local system
component, retrieves results from it and forwards them to the calling appli-
cation. This design was chosen over directly exposing system components
to applications because it allows the CoreService to impose further checks
on the correctness, security and consistency of these calls, if needed. As an
example, the CoreService might deny a new request if it has already started
shutting down the system. In addition to this, this approach also provides
access transparency for system components, i.e. it allows us to decouple the
system components from the way they are called. If an application wants
to call a remote system component (e.g. to store data in a remote SDS), it
can do so by calling a local method on the CoreService. The CoreService
will forward this request to the communication system (essentially acting as
a communication broker), which will send it to the remote system. There,
the incoming request will be forwarded by the communication system to
the CoreService, which in turn forwards it to the corresponding system
component. Finally, if an application wants to stop the GAMBAS middle-
ware, it again calls the CoreService, which notifies all components and shuts
down the system correctly.

As a result, the CoreService is the central component of this architecture.
It is responsible for receiving and answering all local and remote calls
from applications, mediates all dependencies between system components
and fully manages their life cycles. This encapsulates nearly all integration
activities into it, reduces the complexity of implementing the actual system
components and allows them to focus on their core functionality.

6.1.3 Android Support

In addition to J2SE devices, the GAMBAS middleware also directly supports
application development on Android devices. From a high-level perspective,
the Android integration is similar to the J2SE version, but when looking at
the details, it has two main differences: first, it separates the core middleware
from applications using it, reflecting the distinct Android runtime model
and reducing the overall resource need of the system. Second, it includes
additional support for user interactions with the intentional user interface
(IUI). The resulting architecture can be seen in Figure 6.4.

166 Applications

Figure 6.4 GAMBAS for Android.

6.1.3.1 GAMBAS Middleware App
On Android, the main functions of the GAMBAS middleware are realized as a
stand-alone Android app instead of a linkable library. This app is independent
of any third-party Android applications using it. On Android, the life cycle
of an app is controlled by the OS. It may at any time pause or stop/destroy
any app, if it requires more resources. If the GAMBAS middleware would
be linked to an app using it, the OS could decide to stop it, if the app is not
used by the user right now. By separating the middleware into its own app,
we are separating its life cycle management from that of all apps that use it.
In addition, this design allows us to efficiently share a single instance of the
middleware between all third-party apps, reducing the needed resources and
thus allowing the OS to keep all apps active in memory for a longer time.

An alternative approach would be to model the middleware as an Android
service. However, allowing the middleware to have its own user interface –
independently of any other app – allows us to integrate all configuration
activities that a user wants to perform for the whole system in one place. In
addition, it also allows the user to start and stop the middleware explicitly,

6.1 Application Development Support 167

since its execution will reduce battery lifetime. To remind the user that
GAMBAS is running, we display a corresponding icon in the Android status
bar. By clicking this icon, the user can display the middleware user interface
and control its behavior, e.g. reconfigure or stop it.

The separation of the middleware into a distinct app also influences
how third-party apps can access its functionality. Direct calls are no longer
possible since the apps are running in separate processes. Therefore, we use
Android intents to interact with the middleware. Intents are small events
or messages that a process can publish and that can be received by other
processes. To use the GAMBAS middleware, an application can publish a
number of intents that are received by the middleware. The CoreService
includes support for this. It translates the intents into direct calls and forwards
them to the corresponding GAMBAS system components. Once a result is
available, the CoreService translates it back into an intent and publishes it,
allowing the original app to receive it.

Clearly, this is more complicated for app developers than directly calling
a method on a Java object. To reduce the complexity of the interface, we
provide a GAMBAS API service. This service is realized as a Java class
that can be subclassed by an application developer. It already includes all
necessary functionalities to translate calls to the middleware into intents and
vice versa as well as additional support for handling life cycle and error.
Thus, by using this API service, the app developer can access the middleware
without knowing about the specifics of Android interprocess communication.

6.1.3.2 GAMBAS User Interface
As described above, the GAMBAS middleware for Android devices contains
the Intent Aware User Interface (IUI). The IUI is separated into two parts:
an interface to control the behavior of the GAMBAS middleware itself and
support for the development of user interfaces of third-party apps.

The GAMBAS middleware user interface enables the user to config-
ure a multitude of aspects (Figure 6.5(b)) such as the middleware life
cycle (Figure 6.5(a)), the used data discovery registry and communication
gateway (Figure 6.5(f)), the user’s pseudonym, known friends, their keys
(Figure 6.5(d)) and privacy policies. This allows users to inspect and adapt
the current system state in one integrated place and makes it much easier for
them to understand what data is currently made available to whom.

In addition, the middleware user interface allows to manage all third-party
GAMBAS apps (Figure 6.5(c)) in an integrated view. This view allows to

168 Applications

Figure 6.5 User Interface. (a) Start, (b) Settings, (c) Apps, (d) Privacy, (e) Features,
(f) Development.

install new apps from the Google Market, to start them and to remove them
once they are no longer needed. Finally, in order to give full control over sens-
ing to the users, the user interface also enables users to disable the different
data collection components offered by the data acquisition framework.

6.1 Application Development Support 169

6.1.4 Application Examples

To test and showcase the GAMBAS SDKs, we have developed sev-
eral applications that demonstrate the use of the different features of the
GAMBAS middleware. These application have been made available to devel-
opers and they have also been published on the Android market. In the
following, we briefly describe three of these applications. We first describe
the application functionality and then map it to the middleware functionality.

6.1.4.1 GAMBAS Voiceprint Launcher
The GAMBAS Voiceprint Launcher is an Android application developed
on top of the GAMBAS middleware. The application uses the voiceprint
technology developed as part of the data acquisition framework (c.f.
Chapter 3). The Voiceprint Launcher enables a user to launch an applica-
tion by issuing a voice command. To enable the launching of applications
via a voice command, the user first needs to train the launcher by creat-
ing recordings of the commands that shall start different applications (see
Figure 6.6).

To do this, the user can add an application from the list of applications
installed on the device. Then, the user can select the application and press
the train button (i.e. the button with the white headset) to start the training.
Alternatively, the user can press the delete button (i.e. the button with the
white trash can) to delete the application and all training data. Once the

Figure 6.6 Voiceprint Luncher Training.

170 Applications

user has pressed the train button, a dialog appears that prompts the user to
say the application name loud. Once the user completed this, the application
computes a voiceprint and stores it locally.

As soon as the user has trained one or more applications, he can start
the application by pressing the start button (i.e. the white microphone). This
will open up a dialog that prompts him to say the application name out
loud. Once he has done that, the application will compute a voiceprint and
match it against all stored voiceprints. The closest match will be selected
and the associated application will be started. Alternatively, the user can also
add the voiceprint launcher widget to the home screen of the device. This
allows the user to directly access the launcher (see Figure 6.7).

From a technical perspective, the GAMBAS Voiceprint Launcher
demonstrates a substantial part of the middleware. However, it is noteworthy
that it solely executes locally on the phone of a user and thus, it does
not require any remote connectivity or services. Consequently, it does not
cover any communication-related aspects and it also does not cover the J2SE
integration. As depicted in Figure 6.8, the GAMBAS Voiceprint Launcher
extensively uses the GAMBAS middleware on Android through the Android
SDK that connects it with the core service of the GAMBAS Middleware App.

Of the functionality provided by the core service, the GAMBAS
Voiceprint Launcher uses four out of five building blocks as follows:

Figure 6.7 Voiceprint Launcher Usage.

ti

6.1 Application Development Support 171

GAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e

an
d

Q
ue

ry
 P

ro
ce

ss
or

Da
ta

 A
cq

ui
siti

on

Se
cu

rit
y

an
d

Pr
iv

ac
y

Co
m

m
un

ic
a ti

on

Voiceprint Launcher App

App-specific Code

GAMBAS API Service

Intents

In
te

n
on

al
 U

se
r I

nt
er

fa
ce

Figure 6.8 Voiceprint Launcher Coverage.

6.1.4.1.1 Data Acquisition
In order to capture audio data and to compute and classify voiceprints, the
application uses the audio components of the context recognition framework.
In particular, the application uses an AudioSensor component to capture
audio, a Windowing and FFT component to perform preprocessing, a trig-
ger component for silence detection, a voiceprint generator and matcher
component for voiceprint computations and classification as well as an intent
broadcaster component to signal the successful acquisition of a voiceprint as
well as to signal the classification result. Figure 6.9 depicts the configurations
of the component system.

Figure 6.9 Voiceprint Launcher Configurations for Training (left) and Classification (right).

172 Applications

6.1.4.1.2 Data Processing
To store the voiceprints as well as the set of configured applications, the
GAMBAS Voiceprint Launcher uses the semantic data storage as well as
the SPARQL-based query processor. To store the voiceprints, they are seri-
alized as strings such that they can be stored as RDF triples. To retrieve
the set of configured applications and the associated serialized voiceprints,
the GAMBAS Voiceprint Launcher uses the SDK to issue SPARQL queries
against the data storage that are executed with the middleware’s built-in local
one-time query processor.

6.1.4.1.3 Privacy Preservation
Although the Voiceprint Launcher is executed locally on the device, it still
integrates with some of the privacy features of the GAMBAS middleware.
In particular, as depicted above, the GAMBAS Voiceprint Launcher’s access
to the device’s soundcard and audio capabilities are controlled through
the GAMBAS middleware. Thus, a user can prevent the application from
recording audio by simply deactivating the associated middleware feature.
Consequently, the requests to capture audio by means of the configurations
depicted previously will be blocked by the middleware. The associated block-
ing will then be signaled back to the application via the Android SDK such
that it can react to it in an adequate way, for example, by showing a dialog
that tells the user that the application requires audio capabilities to function
properly. Intuitively, for more complex applications, it may also be possible
to provide different modes of operation, e.g., a mode that uses audio and a
mode that does not. However, for the GAMBAS Voiceprint Launcher, the
ability to record audio is essential. Consequently, it is not feasible to provide
such a mode.

6.1.4.1.4 Intentional User Interface
Similar to security and privacy, the GAMBAS Voiceprint Launcher also
integrates with the intentional user interface through the SDK. In order to
provide the user with a clean view on the applications that are installed as
well as the features that are requested by them, the GAMBAS Middleware
app uses intent-based interaction to populate the list of installed GAMBAS-
enabled applications. This enables the user to quickly list all GAMBAS
applications and to start an application from the GAMBAS Middleware App’s
user interface.

6.1 Application Development Support 173

6.1.4.2 GAMBAS Linked Weather
While the GAMBAS Voiceprint Launcher is focused on the Android SDK,
the GAMBAS Linked Weather application focuses primarily on data man-
agement, remote communication and the J2SE SDK. The application uses
the legacy data wrapper to integrate with a third-party data source, namely
the weather web service provided by Wetter.com. To do this, a J2SE-based
service periodically retrieves the weather information for the largest German
cities and stores it in a semantic data storage that is equipped with remote
communication and distributed query processing functionality such that the
data becomes accessible to other devices.

To demonstrate the J2SE application as well as the interaction between
J2SE-based and Android devices, we have developed a Linked Weather app.
The functionality provided by the application is depicted in Figure 6.10. The
application enables a user to add an arbitrary number of cities to his device.
Once the cities are added, the user can press a sync button to retrieve the latest
weather information. Internally, tapping the sync button will issue a series of
remote SPARQL queries against the RDF data stored in the semantic data
storage on the J2SE device, which will synchronize the local data storage of
the Android device with the remote data storage of the server. In order to
reduce the amount of data that must be transferred, however, only the cities
selected by the user are actually synchronized. When the synchronization is
completed, the user can tap any city to view the current forecasts. This will
issue a series of local queries against the storage, to retrieve the forecasts for
a city. At this point, there is no more need for remote interaction as the device
already has the associated data.

As depicted in Figure 6.11, the GAMBAS Linked Weather application
uses the GAMBAS middleware on Android through the Android SDK and
on J2SE through the J2SE SDK. From the functionality provided by the
core services, the GAMBAS Linked Weather uses four building blocks
as follows:

6.1.4.2.1 Secure Communication
In order to interact with each other, both the Android and the J2SE parts of
the application use the communication services provided by the middleware.
Thereby, the Android part of the application contacts an application-specific
service provided by the J2SE part of the application. To determine the
communication endpoint that provides the application-specific service, the
Android app interacts with the dynamic data discovery registry.

174 Applications

Figure 6.10 Linked Weather Android App and J2SE Service.

6.1.4.2.2 Data Processing
In order to store the weather information, both the Android and the J2SE parts
of the application use the storage facilities provided by the local semantic data
storage. In addition, the Android part of the application executes (remote)
queries on the semantic data storage of the J2SE part of the application in
order to synchronize the local weather information with the most current
version of the weather information provided by the J2SE application.

ti

6.1 Application Development Support 175

GAMBAS Middleware J2SE GAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e

an
d

Q
ue

ry
 P

ro
ce

ss
or

D
at

a
A

cq
ui

si
ti

on

S
ec

ur
it

y
an

d
P

ri
va

cy

Co
m

m
un

ic
a ti

on

Linked Weather App

App-specific Code

GAMBAS API Service

Intents

In
te

n
on

al
 U

se
r I

nt
er

fa
ce

Linked Weather Service

GAMBAS Core Service

St
or

ag
e

an
d

Q
ue

ry
 P

ro
ce

ss
or

D
at

a
A

cq
ui

si
ti

on

S
ec

ur
it

y
an

d
P

ri
va

cy

Co
m

m
un

ic
a ti

on

Direct Calls

Legacy Data Wrapper

Figure 6.11 Linked Weather Coverage.

6.1.4.2.3 Intentional User Interface
Similar to the GAMBAS Voiceprint Launcher, the GAMBAS Linked Weather
application also integrates with the intentional user interface through the
SDK. The integration closely follows the explanation given previously in the
sense that the application is shown in the associated list with the associated
permissions.

6.1.4.2.4 Legacy Data Wrapper
In order to integrate with Wetter.com, the actual provider of the weather
information made accessible through the J2SE service, the J2SE specific
part of the application uses a legacy data wrapper that translates the custom
data model used by Wetter.com to linked open data that is then stored in
the semantic data storage and made available through the query processor to
mobile devices. To gather data, the J2SE service periodically pull the latest
data from the web service. However, in order to avoid exceeding the free
quota provided by Wetter.com, the pull frequency is set to one day.

6.1.4.3 GAMBAS Locator
To demonstrate the location prediction algorithms developed as part of the
data acquisition framework as well as the privacy-preserving data-sharing
among devices, we have developed the GAMBAS Locator application
depicted in Figure 6.12. Similar to the GAMBAS Voiceprint Launcher, the
GAMBAS Locator only uses the Android version of the GAMBAS mid-
dleware. From an end-user perspective, GAMBAS Locator enables users to
continuously track their location. They can track visits to locations that are
relevant for them and they can share their current location with their friends

176 Applications

Figure 6.12 Locator History and Sharing.

in a peer-to-peer fashion through the GAMBAS middleware. In addition, the
application computes and visualizes predictions for the next user location
based on the location history captured by the application. Since the history
and predictions are stored in the local SDS of the user’s device, they can be
used by other applications easily, i.e. by simply querying the local SDS.

To enable the sharing of location information with other users, the
GAMBAS Locator uses the secure communication and data sharing mech-
anisms described in Chapter 5. To perform the necessary key-exchange for
user authentication, the GAMBAS Locator can leverage the keys provided
by the GAMBAS Middleware App. This means that if a user is using some
social network like Facebook, for example, the user simply needs to connect
the GAMBAS Middleware App with his Facebook account. Once this is
done, the GAMBAS middleware will automatically exchange keys with all
of his friends who are also using GAMBAS. If the user does not use social
networking sites, he can alternatively use NFC to manually exchange a
key. From an application programmer’s perspective, using this functionality
does not require a single line of code, since the middleware takes care of
implementing it. Similarly, in order to share the location information with
another user, the GAMBAS Locator does not require any backend service.
Instead, due to the distributed processing capabilities of the middleware, the
devices can exchange this information directly without a trusted third party.
From an application developer’s perspective, this eliminates the need and cost

6.1 Application Development Support 177

for developing and running a service infrastructure. Thus, using GAMBAS,
the developer can focus soley on implementing the user-facing functions.

6.1.4.3.1 Secure Communication
In order to interact with each other, the Android applications of different
users are relying on the secure communication services provided by the
middleware. Thereby, the authentication and encryption is done transparently
for the application. In addition, it is noteworthy to point out that the sharing
is not mediated through a service, which is the common realization of most
location sharing apps that are available today. The keys that are required to
ensure a proper end-to-end authentication of different users are provided by
the mechanisms of the privacy preservation framework.

6.1.4.3.2 Data Acquisition
To capture the user’s location, the GAMBAS Locator application makes use
of the data acquisition framework. To do this, it sets up an component configu-
ration with an associated state machine in the activation system. Together, the
component and the activation system perform a periodic but energy-efficient
localization of the user’s device. To do this, the localization stack integrates
the motion sensors, the GPS receiver and the network hardware. This ensures
that the energy-hungry GPS receiver is only used when the user’s location
cannot be established through the motion sensors or through Wi-Fi scans.
In addition, the GAMAS Locator also uses the data acquisition framework
to perform the predictions on the user’s next location. The predictions are
triggered periodically whenever a new location is detected. Towards this end,
the prediction components are accessing the user’s location history that is
stored in the semantic data storage of the user’s device.

6.1.4.3.3 Data Processing
In order to store the location information including the user’s location his-
tory and the predicted next location, the GAMBAS Locator leverages the
Semantic Data Storage of the device. When a prediction must be computed,
the prediction components query the local data storage for an (aggregated)
view on the user’s history. The data model presented in Chapter 4 specifically
addresses this issue by supporting aggregation.

6.1.4.3.4 Privacy Preservation
To enable access control on the data stored in the SDS, the issuer of remote
queries must be authenticated. To do this, the privacy preservation framework

178 Applications

GAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e

an
d

Q
ue

ry
 P

ro
ce

ss
or

Da
ta

 A
cq

ui
siti

on

Se
cu

rit
y

an
d

Pr
iv

ac
y

Co
m

m
un

ic
ati

on

GAMBAS Locator App

App-specific Code

GAMBAS API Service

Intents

In
te

nti
on

al
 U

se
r I

nt
er

fa
ce

Figure 6.13 Locator Coverage.

presented in Chapter 5 defines two key exchange mechanisms that are either
automatic (i.e. when using Piggybacked Key Exchange on top of an online
service) or easy to use (e.g. when using a physical gesture to exchange a
key between two nearby devices through NFC). In addition to authenticity,
however, it is also necessary to define who should be able to access the
data. For this, the privacy preservation framework provides an automatic
policy generation tool that provides a pre-configured privacy policy based
on the user’s sharing behavior. Based on this, the user can get recommen-
dations (c.f. Figure 6.13) for suitable policies that can be customized later
on. Due to these two mechanisms, the GAMBAS Locator application does
not need to handle the intrinsics of secure sharing. Instead, it simply relies
on the GAMBAS middleware which automatically provides the necessary
mechanisms to enforce the level of privacy desired by the user.

6.1.4.3.5 Intentional User Interface
Similar to the other applications, the GAMBAS Locator also integrates
with the intentional user interface through the SDK. The integration closely
follows the previous explanations. However, due to this integration, the
application developer does not need to provide user interfaces to configure
the sharing of location information. Instead, the application can simply rely
on the definitions managed through the user interface of the GAMBAS
Middleware app.

6.2 Application Architecture

As basis for the description of the application components in the next section,
we provide an instantiation of the high-level architecture detailed in Chapter 2

6.2 Application Architecture 179

for the mobility and environmental scenario outlined in Chapter 1. For each of
the scenarios, we describe deployment that maps the abstract software com-
ponents detailed in the component view to concrete systems. Furthermore,
we outline the interactions that will take place at runtime.

6.2.1 Mobility Scenario

As described in Chapter 1, one of the motivating application scenarios behind
the GAMBAS middleware is support for mobility applications in a smart city.
To demonstrate the middleware capabilities, we developed a so-called Public
Transport Exploitation System (PTES) and a GAMBAS mobile application
to take into account the information retrieved directly from the user and
to offer citizens customized services – not exclusively related to mobility
though – in order to enhance their trip experience. Overall, the scenario
encompasses personal mobile Internet-connected objects such as the smart
phones of citizens, buses that are equipped with embedded systems, existing
external services and a number of novel GAMBAS services. Figure 6.14
shows both their deployment and interaction.

6.2.1.1 System Deployment
As depicted in Figure 6.14, the mobility scenario contains a number of
computer systems that run various parts of the GAMBAS middleware as well

Processing System

Processing System

Citizen
Systems
Citizen

Systems

Discovery System

Discovery System

CQP

SDS

DDR

PRF

PRF

OQP

xQP

SDS

xQP

LDW

PRF

DQF

SDS

IUI

External Systems
(Facebook, Google, etc.)

External Systems
(Facebook, Google, etc.)

Execute Continuous
Queries for Distributed

Inferences

Export and Search
Metadata and Identity

Information

Report Data of
Collaborative Acquisition
for Service Optimization

Query Information for
Intent-aware Interaction
and Personal Inferences

Enable Intent-aware
User Interaction

Acquire Data for
Personal and

Collaborative Use

Derive Policy and Get
Social Information

Perform Local Inferences
on Collaboratively

Acquired Data

Transport
System

Transport
System

DQF

Bus
Systems

Bus
Systems

Report Data of
Collaborative Acquisition
for Service Optimization

Figure 6.14 Mobility Scenario Architecture.

180 Applications

as application-specific code that realizes the selected use cases. The computer
systems are:

• Citizen Systems: In order to access services, citizens make use of their
personal mobile devices like smartphones and tablets, which are running
a mobile application. The application consists of the intent-aware user
interface as well as background services that automatically acquire
data and either forward or store it. Furthermore, it makes parts of the
stored data accessible to other devices. Typically, these systems can be
considered as Constrained Computer Systems (CCS). Consequently, the
background operations must optimize their resource usage, especially in
terms of energy. The application makes use of the data acquisition frame-
work, the semantic data storage and – to protect the user’s privacy –
the privacy preservation framework. In order to make data available to
other devices and to support local inferences at the application level, the
device is equipped with a one-time query processor. Finally, in order to
enable intent-aware user interaction, the application makes use of the
intent-aware user interfaces.

• Transport System: In order to provide route information and to aggre-
gate capacity-related information, we introduce a transport system that
is available on the Internet. Since the data about bus routes and schedules
is already available in a legacy system, the transport system uses a legacy
data wrapper in order to tap into this information source. Furthermore,
in order to store information coming from the citizen systems as well as
from public buses, the system is equipped with semantic data storage.
To support local as well as distributed inference on the data and to make
it available to third parties, the system is equipped with a one-time and
a continuous query processor. Finally, in order to protect the raw data
and to restrict the sharing of data, the system is equipped with a privacy
framework component that limits the sharing accordingly.

• Bus Systems: Besides the citizen systems, the mobility scenario also
relies on embedded systems deployed in public buses in order to collect
data. Consequently, the buses are equipped with an application that
determines the relevant context and forwards it to the transport system,
which then stores and aggregates the data. In order to do this, the
embedded system running in the bus makes use of the data acquisition
framework in order to acquire and report the data.

• Discovery System: To enable transparent access to data coming from
different data sources, it is necessary to make the possible data sources

6.2 Application Architecture 181

discoverable. Performing this task is the primary function of the discov-
ery system. In order to do that, it runs a data discovery registry which
uses the semantic data storage component and a one-time as well as a
continuous query processor component in order to store metadata and
identity information of data sources. In contrast to other systems in the
architecture, this system is application-independent.

• Processing System: To enable the citizen systems to run continuous
queries against each other’s devices, the architecture encompasses a
second generic type of system. This processing system is equipped with
a privacy framework and a continuous query processor.

• External Systems: To reduce the configuration effort for the privacy
mechanisms, the privacy preservation framework taps into the informa-
tion available in other external systems. For this, the privacy framework
provides a number of adapters that can access the user-specific infor-
mation in these external systems. Since these systems are maintained
by third parties, no additional GAMBAS software is installed on them.
Consequently, the adapters of the privacy framework are responsible for
performing the necessary data conversion.

6.2.1.2 System Interaction
In order to implement the mobility scenario, the systems and their associated
components have to interact with each other locally (within a single system)
and some of them have to interact remotely. This interaction follows the
abstract interaction patterns described as part of the dynamic perspective in
the high-level architecture presented in Chapter 2.

In order to enable distributed query processing, all semantic data storage
components export metadata and/or identity information to the discovery
system. The query processors and the privacy framework use this information
transparently to determine and contact the appropriate data sources and to
create the necessary views, respectively.

For the mobility scenario, most queries are issued by the citizen systems.
They target either the transport system, e.g. in order to compute route infor-
mation, or other citizen systems, e.g. in order to find collocated routes or to
determine whether two friends are in the same bus. Since some of the latter
type of queries may be continuous queries, the remote processing system
must interpret them – as continuous queries are not supported directly on
Constrained Computer Systems (CCS).

In order to provide advanced behavior-driven services, the citizen systems
and the bus systems are used to collect data collaboratively. As described

182 Applications

previously, for citizen systems, this requires each citizen to opt in to the data
collection and sharing by configuring the appropriate privacy settings. For
bus systems, such a configuration is not necessary since the collected data
does not affect privacy. Once relevant data is collected at the bus system or
the citizen system, it is reported to the transport system.

The transport system collects the data received from the bus systems
and citizen systems. Furthermore, it stores and aggregates it for service
optimization purposes. This should typically result in local inferences as the
aggregations required for the mobility scenario do not require dynamic data
that is not available locally.

In order to make the optimized services accessible to the citizens,
the application running on citizen systems provides an intent-aware user
interface. Using the behavior information gathered by the data acquisition
framework, the intent-aware user interface can notify the citizen about impor-
tant events and it can display relevant information at the right time. In cases
where the required predictions for this are imprecise or not possible, the
citizen may specify goals using a speech recognition engine that is part of
the framework.

In order to fetch the information that is relevant for the citizen, the
intent-aware user interface issues queries and performs local or distributed
inferences using the query processor and application-specific code. For some
distributed inferences, it is necessary to access the data gathered by citizen
systems of other citizens that share this data.

In order to enable privacy-preserving sharing, the privacy preservation
framework controls the access to the data stored on the citizen systems. The
basis for this is a privacy policy that is initialized using the information
from external services such as Facebook or Google. The privacy preserva-
tion framework retrieves the privacy-related information from these systems
periodically in order to determine relationships between different citizens and
to keep the initial policy up-to-date. However, it is noteworthy that citizens
can manipulate this generated policy through the user interface in order to
customize it to their needs.

6.2.2 Environmental Scenario

The environmental application scenario is related to the mobility scenario due
to the sources of information that are used for data collection. Specifically,
the architectural instantiation described in the following relies on the data
being captured by the bus system and a mobile application. Consequently,

6.2 Application Architecture 183

Processing SystemProcessing System

Citizen
Systems
Citizen

Systems

Discovery SystemDiscovery System

CQP

SDS

DDR

PRF

PRF
OQP

xQP

SDS

xQP

PRF

DQF

SDS

IUI

External Systems
(Facebook, Google, etc.)

External Systems
(Facebook, Google, etc.)

Execute Continuous
Queries for Distributed

Inferences

Export and Search
Metadata and Identity

Information

Report Data of
Collaborative Acquisition

for Service Operation

Query Information for
Intent-aware Interaction
and Personal Inferences

Enable Intent-aware
User Interaction

Acquire Data for
Personal and

Collaborative Use

Derive Policy and Get
Social Information

Perform Local Inferences
on Collaboratively

Acquired Data

DQF

Bus
Systems

Bus
Systems

Transport
System

Transport
System

Environment
System

Environment
System

Report Data of
Collaborative Acquisition

for Service Operation

Query Mobility
Information for

Aggregation

Figure 6.15 Environmental Scenario Architecture.

from an architectural perspective, the environmental scenario can be thought
of as an extended version of the transport scenario. This is also clearly visible
when comparing the instantiated architecture depicted in Figure 6.15 with
the associated instantiation of the mobility scenario depicted in Figure 6.14.
Nonetheless, we briefly describe both the deployment and the resulting inter-
action. For the sake of brevity, we refrain from revisiting the interactions with
the transport system and focus on the environment system instead.

6.2.2.1 System Deployment
As depicted in Figure 6.15, the environmental scenario contains a number
of computer systems that run various parts of the GAMBAS middleware as
well as application-specific code that realizes the application functions. As
indicated previously, a number of these systems are slight variations of the
systems in the mobility scenario:

0 Citizen Systems: Citizens are using their systems to gather information
and to access services. For this, they rely on the same set of components
as in the mobility scenario. However, the application-specific code has
to be extended to accommodate the different usage.

0 Transport System: Since some of the environmental use cases require
transport-related information, the transport system of the mobility sce-
nario is used to offer it. Specifically, the transport system is used to
determine bus locations, which are required to provide the necessary
context for environmental information.

184 Applications

• Bus Systems: Similar to the mobility scenario, the environmental sce-
nario also makes use of embedded systems deployed in public buses in
order to collect environmental data. The environmental data, however,
will not be reported to the transport system but it will be reported to a
new system – called the environmental system.

• Discovery System: Since the environmental scenario also requires dis-
tributed data processing, it is necessary to rely on the discovery system
that manages the metadata and identity information.

• Processing System: Just like in the mobility scenario, a dedicated
processing system is used to enable the citizen systems to run continuous
queries against each other’s devices. The processing system is equipped
with a privacy framework and a continuous query processor.

• External Systems: The environmental scenario makes use of external
systems to initialize the privacy policy. These systems are maintained
by third parties, so no additional GAMBAS software can be installed
on them and the necessary adapters are provided by the GAMBAS
middleware app.

In addition to these systems which were also used for the mobility scenario,
the architecture of the environmental scenario also introduces a new system:

• Environment System: Conceptually, the environment system is related
to the transport system introduced in the mobility scenario as it manages
and aggregates the environmental data reported by the bus and citizen
systems. The main difference between the transport system and the
environment system is the lack of a legacy data wrapper since the
environment system does not have to tap into existing data sources.
Other than that it, performs conceptually similar tasks such as data
storage, aggregation and the computation of inferences.

6.2.2.2 System Interaction
In order to realize the different applications for the environmental scenario,
the systems and their associated components have to interact with each other
in a similar fashion as in the mobility scenario. The export of metadata and
identity information is handled by the data storage components, the privacy
framework and the data discovery registry. The searching is done transpar-
ently by the query processors and the privacy framework, which also create
views on the semantic data storage of the citizen system, if necessary. The
control for this is enabled by the policy generated by the privacy framework,
which can be manually adjusted through the user interface.

6.3 Application Components 185

Queries are issued by the citizen systems and the environmental system.
They target either the transport system, e.g. in order to compute route infor-
mation or other citizen systems. If a citizen system requires the execution of
a continuous query, the remote processing system is used.

In order to provide advanced behavior-driven services, the citizen systems
and the bus systems are used for collecting data collaboratively. The envi-
ronment system collects the data received from the bus systems and citizen
systems. Furthermore, it stores and aggregates the data, for example, to offer
a pollution map, which can be used in conjunction with the transport system
to compute alternative routes. This should typically result in local inferences
at the environment system since the route information is mostly static and can
be retrieved once for each computation.

In order to make the environmental services accessible to the citizens,
the application running on citizen system provides an intent-aware user
interface. In order to fetch the information that is relevant for the citizen, the
intent-aware user interface issues queries and performs local or distributed
inferences using the query processor and the application-specific code. This
may entail distributed inferences, which are enabled by combining the contin-
uous query processor on the processing system with the privacy frameworks
on the citizen systems.

6.3 Application Components

As indicated by the application architecture, the implementation of the appli-
cation scenarios entails a number of different components that are required
to deliver the application functions. In the background, there are a number
of application services that store and offer the data captured through sensing
applications used by citizens or running in buses. In addition, there are back-
ground services that wrap legacy data coming from third-party data sources.
Thus, in order to create a complete picture of the applications developed as
part of GAMBAS, we first describe these application services. Thereafter, we
outline the applications that we developed to capture the required data. On
the basis of this description, we then describe the end-user applications for
citizens as well as a set of innovative applications that feed the captured data
back to the transit network operator.

6.3.1 Application Services

To power the mobility and environmental applications, we have developed
a number of application-specific services using the GAMBAS middleware.

186 Applications

These services integrate with different data sources including data coming
from EMT Madrid (incident feed, time tables, routes, etc.), open data pro-
vided by OpenStreetMap (addresses, geometry, etc.) and application-specific
data (e.g. crowd-levels measured by the embedded applications running in
vehicles). Although these services are conceptually backend services that
are not directly visible to end users, the application services encompass
frontends targeted at application developers and service administrators. In
the following, we briefly walk through the different services and, where
applicable, show a few screenshots of their frontends.

6.3.1.1 Tile Service
The tile service integrates with OpenStreetMap geometry data in order to
generate images that are used to draw the map-based visualization. It sup-
ports multiple output formats and color schemes. The api has been designed
to work with the Leaflet.js Javascript library, which is used consistently
throughout the GAMBAS mobile applications. The screenshot shown in
Figure 6.16(a) depicts a number of output options.

6.3.1.2 Incident Service
The incident service integrates with the EMT Madrid incident feed in order to
provide incident information to the navigation application described later on.

Figure 6.16 Tile and Incident Service. (a) Tile Service and (b) Incident Service.

6.3 Application Components 187

Figure 6.17 Crowd and Routing Service. (a) Crowd Service and (b) Routing Service.

It is tightly integrated with the routing service in order to enable the output
of route incidents for trips computed by the user. Since the EMT inci-
dent feed is only available in the Spanish language, the incident service
has been integrated with Microsoft Translator, which provides machine
translations into other languages supported by the mobile prototype appli-
cations. Figure 6.16(b) shows the resulting machine-translated output that is
integrated into the routing result on the mobile app.

6.3.1.3 Crowd Service
The crowd service captures the crowd-level information generated by several
buses in the city of Madrid. The captured data is then used by the routing ser-
vice in order to provide crowd-level information as part of the routing result.
To do this, the service aggregates the reports and assigns them to 15 minute
timeslots, which are then used to drive the predictions. Figure 6.17(a) shows
a sample crowd-level for one of these 15 minute timeslots.

6.3.1.4 Routing Service
The routing service (c.f. Figure 6.17(b)) integrates with the EMT GTFS data
in order to compute crowd-aware routes, which are then used to power the
navigation functions in the mobile application for citizens. In addition to
transit routes using buses, it can also compute walking routes. If available,
incident and crowd-level data will be returned directly as part of the routing
result in order to minimize the amount of data that must be transferred
between the mobile application and the service.

6.3.1.5 Network Service
The network service provides the mobile application for citizens with
network-related information such as location and names of stops, routes of

188 Applications

Figure 6.18 Network and Timetable Service. (a) Network Service and (b) Timetable Service.

lines, etc. The resulting information is then used to visualize the route in
the application. Using a tool, it is possible to extract the information from
the network service and to ship it with the application. This is done in order
to minimize the latency for displaying search results. Figure 6.18(a) shows
the application which uses the built-in address database for auto-completion
during place search.

6.3.1.6 Timetable Service
The timetable service provides the mobile navigation application with bus
schedule information that is extracted from the GTFS information provided
by EMT Madrid. Since the associated amount of GTFS data is too large to be
processed directly on the device, this service takes care of extracting the rele-
vant subsets based on a stop name and a calendar date. The mobile application
then visualizes the output in a tabular form as depicted in Figure 6.18(b).

6.3.1.7 Geo Service
The geo service integrates with OpenStreetMap in order to resolve addresses
into GPS coordinates. The service is used by the mobile applications to
enable the user to search for addresses and to resolve GPS coordinates into
addresses. The number of results returned by the service to the application is
configurable in order to enable the optimization of applications for different
criteria (i.e. bandwidth vs. flexibility). Figure 6.19(a) shows the output of the
service on a map when searching for a particular address.

6.3.1.8 Log Service
The log service captures usage information generated by the mobile appli-
cations and enables the offline analysis of the user behavior for evaluation

6.3 Application Components 189

Figure 6.19 Geo and Log Service. (a) Geo Service and (b) Log Service.

purposes. It is based on a simple event abstraction that captures the reporting
component, a generated user identifier, the time and the type of event as well
as associated application-specific event data. A logging framework that has
been integrated into the mobile applications is used to capture and synchro-
nize the data produced by an application with the service. The captured events
can be downloaded for later analysis. To do this, the service supports different
queries based on event types, application components, dates, etc. In addition,
the service can generate a report summary to track its internal status (e.g.
which devices are uploading data, when devices have uploaded data and how
much data has been captured already).

6.3.1.9 Noise Service
This service captures, aggregates and visualizes the noise information cap-
tured by a mobile sensing application. In addition, it can display the noise
level for the captured locations. In order to avoid overloading clients, the
data is aggregated inside the service before it is delivered to other appli-
cations. Figure 6.20 shows some sample noise data. The circles indicate
locations where noise measurements are available. The circle color indicates
the average noise-level at the location.

6.3.1.10 Environmental Service
The environmental service captures the environmental information gathered
through measurements taken by sensors located in various buses that are
driving through the city of Madrid. Thereby, the service associates the mea-
surement with the real-time location of the bus. The service is equipped with

190 Applications

Figure 6.20 Noise Service.

Figure 6.21 Environment Service.

a simple user interface so that the individual measurments can be displayed.
Thereby, it is possible to filter the measurements based on the sensor type as
shown in Figure 6.21.

6.3.2 Sensing Applications

To provide data for the end-user applications, we have developed a number
of sensing applications that target environmental information (noise, CO2-
level, pollen-levels, etc.) and transit information (i.e. crowd-levels of buses).
As indicated in Section 6.2, this data is captured partly by mobile applications
running on the devices of end-users and partly by embedded applications that

6.3 Application Components 191

are integrated into the buses that are operating in the city of Madrid. In the
following, we briefly describe these sensing applications.

6.3.2.1 Noise-level Mobile App
To measure the noise profile at different points in the city, we extended the
GAMBAS Locator application described in Section 6.1.4.3 with support for
crowd-sensing. To do this, we integrated a data acquisition configuration that
captures the sound profile using as the average frequency vector described
in Chapter 3 and the sound pressure level. A user that wants to participate
can activate the periodic background capturing of the sound profile through a
settings screen. When activated, the sound profile is stored locally whenever
the user’s location is computed. As a result, the user can then visualize the
the daily noise exposure as shown in Figure 6.22.

In addition to locally storing the information, the user can opt-in to
crowd sensing. If the user enables crowd sensing, the sound profile and noise
level will be uploaded to the noise service together with the user’s current
location and measurement time. Given a larger number of participants, the
measurements can be used to create a picture of the noise profile of a city.

6.3.2.2 Pollution-level System
To capture pollution information in the city, we equipped a small number
of buses with an environmental sensor as shown in Figure 6.23. Using an

Figure 6.22 Noise-level Crowd-Sensing.

192 Applications

Figure 6.23 Embedded Sensors.

application embedded into the existing ICT infrastructure of the bus, we
were using this deployment to continuously capture sensor readings while
the bus was operating. The captured readings were then transmitted to the
environmental service where the sensor data was stored together with the
real-time GPS position of the bus.

6.3.2.3 Crowd-level System
One of the innovative functions of the mobile navigation app described in
the following is to provide users with real-time and predicted crowd-level
information about the vehicles on different routes. To capture this crowd-level
information, we developed an embedded system and integrated into several
buses [HIW+14]. The system consists of a TP-Link 3020, which is equipped
with a Linux-based operating system (OpenWRT) running the JamVM virtual
machine. Several operating system services have been specifically configured
to enable a simple installation (e.g. DHCP, NTP) and to support remote
administration (e.g. SSH, AutoSSH). The system uses pcaplib and tcpdump
in order to sniff 802.11 probe requests and beacon frames. These are then
interpreted by a set of components running on top of the GAMBAS data
acquisition framework in order to determine the crowd-level of a bus (by
counting the number of people). Figure 6.24 depicts the hardware as well as
the software stack.

The configuration depicted in Figure 6.25 consists of a number of com-
ponents. The first one (RadioTap Sensor) captures packets using tcpdump,
filters and classifies them. Sitting on top of the senor, the annotator and gate
components are responsible for counting the persons. Finally, the reading
segmenter prepares an output file to be transmitted to a server at regular
time intervals. These uploads are then performed asynchronously using the
reading uploader. The reading uploader interacts with the crowd service,
described previously, that stores the crowd-levels and makes them available

6.3 Application Components 193

Figure 6.24 Embedded Crowd-Level Detection Application.

Figure 6.25 Crowd-Level Detection Configuration.

194 Applications

to the mobile application. In order to mitigate potential privacy issues, how-
ever, the collected data is anonymized by removing any personal identifiable
information (i.e. device MAC addresses) before it is uploaded.

6.3.3 End-user Applications

The end-user applications provide regular citizens with the ability to
access the information captured through the sensing applications and man-
aged by the GAMBAS application services. In the following, we briefly
outline the two end-user applications that have been developed for the
mobility and the environmental scenario.

6.3.3.1 Navigation App
For the mobility scenario, we developed a mobile application for Android.
Since the mobility-related application services are integrating data from the
public bus network of the city of Madrid, we called this application Madrid
Navigator.

The Madrid Navigator is a maps and navigation application that is con-
ceptually similar to other modern navigation applications for mobile phones.
As depicted in Figure 6.26, it provides users with a map of their environment
and allows them to search for places and bus stops. Using the voice control

Figure 6.26 Madrid Navigator App. (a) Position, (b) Search and (c) Menu.

6.3 Application Components 195

components described in Chapter 3, users can not only search for places via
text input but also through speech input. Using different icons, the Madrid
Navigator categorizes search results into cities, streets, buildings and bus
stops. Depending on the category, the Madrid Navigator can show additional
information such as bus routes going through a particular stop or timetables.

In addition to retrieving additional information, the search results can also
be used to compute routes. To do this, a user can simply pick any place on
the map and tap on a route button. Alternatively, the user can enter a source
and a destination address or GPS coordinate into the routing screen shown in
Figure 6.28. On this screen, a user can also adjust different parameters such
as the desired arrival or departure time and specify the desired modality (e.g.
on foot or by bus). When the user is satisfied and starts the computation, the
specified parameters are transmitted to a GAMBAS service that computes
one or more route alternatives. Once the routes have been computed, they are
visualized in a list of route summaries. The user can inspect this list and get
additional information by tapping on one of the summaries.

As shown in Figure 6.27, the detailed view not only shows information
about the sequence of actions on the route, but it also depicts crowd-level
information on the specific bus that is proposed. This allows users to compare
consecutive trips on the same route with respect to the expected crowdedness

Figure 6.27 Madrid Navigator Routing. (a) Request, (b) Summary and (c) Detail.

196 Applications

of the bus. To determine this information, we use the embedded sensing
application described previously, which we deployed in several buses run-
ning through the city. Using this embedded application, we collect real-time
information about the number of passengers on board of the buses. The
resulting information is then processed in order to compute predictions for
other buses, which are not equipped with the crowd-level sensing application.
The resulting predictions are then fed back into the routing service such that
they can be used (a) to guide routing decisions and (b) to inform the users.

Once a user has decided to follow a particular route proposal, the user can
start a navigation session for the route. During this session, the GAMBAS
middleware can automatically share the user’s intended destination with the
transit network operator. As explained later on, this allows the operator to
detect routes that are going to be in high demand in the near future. Thereby,
the user’s identity is hidden from the operator. During navigation session, the
user is supported through step-by-step instructions as shown in Figure 6.28.

The step-by-step instructions implement the concept of micro-navigation
described in [FKR+14]. The idea behind micro-navigation is to optimally
support the user’s information needs during the usage of public transporta-
tion. For this, the app must provide the right pieces of information at the
time when they are needed. To do this, the application usage text messages

Figure 6.28 Madrid Navigator Navigation. (a) Walking, (b) Riding and (c) Textual.

6.3 Application Components 197

that are shown at the bottom of the screen at all times. In addition, the
application provides (optional) voice output using text-to-speech. To generate
instructions, the application uses the GAMBAS data acquisition framework
to tap into the sensors and information provided by the bus. To do this, the
application automatically connects to the Wi-Fi network available in every
bus operated by EMT Madrid and connects to the internal information system
to determine the location and route of the bus. This information is then used to
generate messages that correspond exactly to the user’s context. For example,
the app will notify the user to get off the bus shortly before it arrives at
the correct stop. Similarly, if the user has taken the wrong bus, the app will
immediately inform the user and propose a corrective action (e.g. to re-plan
the route or to exit the bus at the next stop).

As shown in Figure 6.29, the app also enables users to directly access
the bus information whenever they are traveling. This allows them to get
real-time information about expected arrival times, even if they are not using
micro-navigation. In addition, the application also integrates with the incident
feed provided by the bus operator. This incident feed describes changes to
schedules, e.g. due to demonstrations in the city center or traffic accidents.
Thereby, the incidents are directly integrated into the routing results as well

Figure 6.29 Madrid Navigator Features. (a) Bus Infos, (b) Route Incidents and (c) Time
Table.

198 Applications

as the timetable information that can be fetched for different stops. In addition
to incidents, the timetable information also includes real-time information for
buses that are departing within the next 20 minutes. To do this, the application
integrates with a real-time service provided by EMT Madrid through the
GAMBAS middleware.

6.3.3.2 Environmental Map
For the environmental scenario, we have developed a web-based application
that enables end-users to inspect the state of the environment. This state is
captured through measurements of pollutants that are acquired via the sensor
deployment in buses and the noise-level measurements of the mobile noise-
sensing application. For this, the environmental map application integrates
with the GAMBAS noise service and the environmental service, described
previously. After retrieving the data from them, the application applies the
following data aggregation approach to create a visually appealing data
representation:

1. Values corresponding to measurements at certain locations are clustered.
2. Based on the clusters, we identify the Voronoi partitions to define the

area of the cluster.
3. Using Delaunay triangulation, we find adjacent areas to interpolate

missing data.
4. Finally, we perform hexagonal binning in order to represent the result.

The resulting hexagonal visualization is then added to an overlay of tiles
computed with the tile service, which results in the final result shown in
Figure 6.30. Thus, using the web-based application, a user can simply move

Figure 6.30 Environmental Map. (a) Voronoi Clusters and (b) Hexagonal Map.

6.3 Application Components 199

the map to a specific location in the city and then view the different sensor
readings in a manner that is easy to understand.

6.3.4 Operator Applications

In addition to the application services, sensing applications and mobile
applications, we have also developed a number of applications that are not
targeting the citizens. Instead, they are targeted towards the transit net-
work operator, which, in our specific case, is EMT Madrid. The operator
applications are aggregating the information collected through the crowd-
level sensors and the mobile applications in order to help the operators to
understand the current transit network usage. This understanding can then
be used to optimize the network, possibly in real time, e.g. by dispatching
additional buses or issuing route warnings, etc. In the following, we briefly
outline these services.

6.3.4.1 Congestion Notifications
At the EMT Madrid headquarter, there are operators that control all the
operations related to the bus network management. Crowd-level detection
provides an estimation of the bus occupancy. A bus is considered as “con-
gested” when a threshold of 85% of its capacity is exceeded. When the
embedded application on the bus detects that a bus is getting congested, it
generates a notification to signal this to the operator. If 2/3 of the vehicles
within a route are congested, then the operator receives another notification
that signals the congestion in the route. These alarms and notifications have
been incorporated to the management system in a way that they can be
visualized in the same graphical user interface that EMT is currently using.
Figure 6.31 shows how the operator that is managing a route is notified
when the threshold level is exceeded, by displaying an “Ocupacion LLENO”
message (full occupation) and in red, the message “Ruta atocha-misericordia
congestionada” (Atocha-misericordia route congested).

6.3.4.2 Demand Notifications
As described previously, the most demanded routes by the Madrid Navigator
users are detected based on the usage of the navigation functionality. The
currently used destinations during navigation are stored in the demand ser-
vice. Once a certain number of destinations located in a certain area, for
a given period of time, are reached, then that area can be categorized as a
high-demanded destination zone. As a result, it will be shown to the bus

200 Applications

Figure 6.31 Congestion Notifications.

Figure 6.32 Demand Notifcations and Occupancy Analysis. (a) Demand Notification and
(b) Occupancy Analysis.

network operators who can use this information to detect a massive event
such as a concert or a demonstration. Based on this, the operator can decide
whether to reinforce the related bus lines covering that area or not. The
information is offered to the bus operator in a map by using the hexagonal
binning representation. The different hexagonal areas allow the operator to
visualize the most demanded destinations in a quick and simple manner, as
shown in Figure 6.32(a).

6.3.4.3 Occupancy Analysis
Crowd-level measurements are received in real time and stored in a data
storage for offline analysis. For this storage service, we developed an operator
tool to display the real-time and historical bus occupancy. Using this tool, the

6.4 Application Evaluation 201

bus network operator is able to visualize occupancy information in a geo-
located manner for a selected bus line. The viewer is implemented as a web
application to visualize the buses location integrated with a map. The colors
in the different routes are showing the crowd-level data at a specific time:
low-crowded (green), medium-occupied (orange) and congested (red), in the
same way as this information is shown in the mobile app.

6.4 Application Evaluation

During the course of the development of the GAMBAS middleware, we
deployed all application services and sensing components. In addition, we
performed a large-scale deployment of the Madrid Navigator navigation
application. For the operator applications and the pollution map, we per-
formed only internal testing with a closed user group. During the internal
testing of the environmental applications, we found that the pollutant sensing
system in the bus was not able to collect meaningful data. After an analysis
and several rounds of discussions with the hardware manufacturer of the
pollution sensor, we stopped the further roll-out of the system due to the
unreliability of the sensor readings. As a consequence, the evaluation results
described in the following are centered around the mobility scenario and the
navigation app in particular.

To evaluate the Madrid Navigator navigation app, we distributed it
through the Android market in order to make it available to interested users
and application developers. During the evaluation period, the application was
downloaded more than 1000 times and used by both an internal group of
testers and actual citizens that were not related to GAMBAS. From this
deployment, we collected a significant amount of feedback both implicit
(through the app usage) and explicit (through in-app questions and a feedback
form). In the following, we briefly describe the application functionality and
the results gathered during the deployment.

In order to detect issues and to improve the app during the deployment,
we instrumented it with logging code. If a user gave his explicit consent as
shown in Figure 6.33, we uploaded and analyzed the logs using the logging
service described previously. In addition to implicit feedback, we also offered
two ways to provide explicit feedback. First, we integrated a feedback form
into the application and second, we used pop-up dialogs to ask user’s about
their current experience. For this, we implemented a regular 5-star rating
dialog shown in Figure 6.33. Using the in-app questions, the users collectively
generated 350 responses to different questions. Each of these questions could

202 Applications

Figure 6.33 Madrid Navigator Feedback. (a) Implicit, (b) Form and (c) Question.

Figure 6.34 Madrid Navigator Results. (a) Reliability, (b) Interface, (c) Navigation,
(d) Motivation, (e) Usage and (f) Recommendation.

have been rated between 0 and 5 stars. The responses to each question are
shown in Figure 6.34. In the following, we briefly discuss the results.

To determine whether the application worked as expected on the broad
number of devices of the users, we asked the users to provide a rating with

6.4 Application Evaluation 203

respect to reliability. As depicted above, 36% of the users gave a 5-star rating
(works as it should), 27% of the users gave a 4-star rating and 37% of the
users gave a 3-star rating resulting in an average rating of 4 (out of 5).
Consequently, we think that the mobile application was working well in many
cases as none of the users gave a rating that was worse than 3 stars.

The second question that we posed to the users was to rate the overall
usability of the user interface between easy-to-use (5 stars) and very com-
plicated (0 stars). With 43%, the majority of users thought that the interface
is neither easy nor complicated to use. Another 43% assigned a 4 or 5 star
rating marking the interface clearly as easy-to-use. However, on the negative
side, 14% of the users thought that the interface was rather complicated. We
speculated that this could be due to issues on devices that have a small screen,
which could result in usability issues with the map-based visualizations (e.g.
small icons, etc.). However, we were not able to prove this assumption.

In addition to crowd-level and incident-aware routing, one of the core
features of the GAMBAS Madrid Navigator is the application of context-
awareness to enable intent-aware navigation instructions. Thus, in order to
evaluate the usefulness of this feature, we asked the users whether they
consider the navigation to be useful. Here, the overwhelming majority of
users (95%) is rating the application with a 3 star or higher rating. 41% are
rating the application even with the maximum rating resulting in an average
of 3.85 stars. This clearly shows that a) the navigation was working reliable
and b) the idea of micro-navigation was clearly considered to be useful.

In order to determine the impact of the Madrid Navigator on the user’s
transport behavior, we asked whether they think that the application could
motivate them to use more public transportation. Here, the answer is again
rather positive since 36% of the users completely agree that the application
could motivate them and another 20% rather agrees, which results in an aver-
age rating of 3.92 stars. Consequently, we argue that navigation applications
like the Madrid Navigator that employ context- and intent-awareness can be
a benefit for transport network operators.

To determine whether the application actually helps users during their
trips, we asked whether the application makes it easier for them to use the
bus network. Again, the overall results were rather positive since 39% of
the users stated that it would simplify their trips at least somewhat and only
6% answered that the application would not help. Thus, the overwhelming
majority of users providing detailed and precise navigation instructions by
means of context recognition at the right point in time can simplify their
bus trips.

204 Applications

Finally, to gather the users overall impression on the Madrid Navigator,
we asked them whether they would recommend the application to other users.
Just like with previous questions on the reliability, usability and helpfulness of
the application, the explicit user feedback reveals a rather positive result. With
an average of 3.58 stars, the users are either undecided or would recommend
the application.

In summary, these results are a clear indication for the maturity and use-
fulness of the navigation application. Given the fact that the implementation
of the Madrid Navigator and all of its background services was leveraging
the GAMBAS middleware, this also demonstrates the applicability of the
abstractions provided by it. Thereby, it is important to stress that, in contrast
to many other research projects, the tests were performed under realistic
conditions with a large number of users that were not affiliated with the
GAMBAS project.

7
Conclusion

The GAMBAS middleware encompasses several subsystems covering an
adaptive data acquisition, interoperable data modeling and distributed
processing, automated privacy preservation as well as associated user inter-
faces. As described in Chapter 3, Chapter 4 and Chapter 5, these subsystems
can be further split into concepts, frameworks, mechanisms and protocols. In
the following, we briefly revist their functions and highlight their technical
innovations.

Given that the GAMBAS middleware aims at supporting behavior-driven
services, the data acquisition framework is clearly one of the fundamental
building blocks of the GAMBAS middleware. Conceptually, the framework
is responsible for context recognition on personal mobile devices including
smart phones, PDAs and laptops. The framework supports various platforms
including Android, Windows and Linux. It follows a multi-stage approach,
which enables the development of context recognition applications from
generic components that can be executed in an energy-efficient manner. To
do this, the data acquisiton framework leverages a component abstraction to
foster genericity and a state machine abstraction to enable the energy-efficient
execution of complex context recogniton logic. Both these subsystems have
been extensively used in development of various applications and technical
demonstrations of GAMBAS. Some of the examples include the recognition
of the user’s context during a multimodal trip in order to support micro-
navigation or the detection of noise and crowd levels to improve the user
experience while traveling.

In order to make the acquired data usable by different applications,
the GAMBAS middleware introduces interoperable data representations that
follow the linked open data principles and are based on semantic web
technologies. The GAMBAS ontology not only enables different applications
to leverage the same data, but it is also used internally by the middleware,

205 DOI: 10.1201/9781003336952-7

206 Conclusion

for example, to model users and privacy policies. It is also noteworthy to
mention that the ontology, that is accompanying the GAMBAS middleware,
is not trying to reinvent the necessary concepts. Instead, it integrates a
large number of ontologies that are already actively used. This increases
the compatibility and simplifies the application development. On top of
the interoperable data representations, the GAMBAS middleware introduces
a dynamic data processing system that features a semantic-based auto-
discovery powered by an associated linked open-data infrastructure. This
infrastructure leverages a dynamic data registry to make data available across
arbitrary applications, and it features data storages that can be queried locally
and remotely. Using the efficient implementation of semantic data storages,
it is possible to use standard query languages for semantic data even on
resource-poor mobile devices while maintaining a query performance that is
suitable for complex applications such as the mobile navigation application
described in Chapter 6. Using specifically designed language extensions such
as CQELS, the GAMBAS middleware not only supports queries on static
data, but instead, it also allows evaluation of continuous queries over dynamic
data streams. However, since this requires a higher amount of processing
power, this support is not integrated directly into mobile devices. Instead,
the GAMBAS middleware uses a distributed query processing architecture
that offloads the effort to more powerful systems.

As a result of the automated acquisition of context information and
the distributed processing of context information enabled by the GAMBAS
middleware, security and privacy are becoming key issues that must be con-
sidered. For this reason, the GAMBAS middleware encompasses mechanisms
and protocols to automate the preservation of the user’s privacy as far as
possible. In this context, it is worth pointing out that the GAMBAS privacy
preservation framework goes well beyond encrypted communication by man-
aging the access to the user’s data on the basis of the user’s privacy policy.
To do so, it integrates with all other system components including the data
acquisition framwork, dynamic data registry and the semantic data storages
running on devices of the user’s and services deployed on the Internet. To
implement access control on top of authenticated communication, the privacy
framework allows users to automatically bootstrap the required encryption
keys through popular online services such as Facebook. This not only mini-
mizes the friction of secure data sharing, but it also enables secure peer-based
(i.e. server-less) sharing of data between user devices without any manual
configuration. Similarly, to minimize the user effort for setting up privacy
policies, their generation can be (partially) automated through these services

Conclusion 207

as well. Towards this end, the privacy framework encompasses a policy
generator that interprets the sharing behavior of a user to derive a suitable
policy generation.

Together, these concepts, frameworks, protocols and mechanisms pro-
vide a generic structure that simplifies the development of behavior-driven
services. This has been successfully demonstrated by the large number of
applications and services that have been built using the GAMBAS middle-
ware during its development. The applications implement several innovative
features that are based on the user’s behavior. This includes the automated
capturing of user-specific information (e.g. intended trip destinations, noise
exposure, etc.) as well as the privacy-preserving sharing of derived infor-
mation (e.g. crowd levels, high-demanded routes, noise pollution in the city,
etc.). The resulting data can be made available to service operators such as
the bus network operators from EMT Madrid, which allows them to optimize
their services, e.g. by dispatching more buses when high-demanded routes or
destinations are detected.

Over the course of the project, the GAMBAS middleware has been
made publicly available to third-party developers. The full source code of
GAMBAS is available via a public Maven repository that can be reached
through the project website. The source distribution includes tutorials and
example applications to showcase and demonstrate the use of the middle-
ware to simplify the development of applications leveraging behavior-driven
services. In addition, the distribution also includes binaries in the form of a
software development kit that is packaged to support application development
on a broad range of different platforms.

From an academic perspective, the development of the GAMBAS mid-
dleware has resulted in a significant amount of research contributions beyond
the state of the art. During the 3-year-long development of the GAMBAS
middleaware and its applications, the members of the GAMBAS consor-
tium published specific concepts, algorithms and evaluations in more than
25 papers and articles in academic conferences and journals with high visibil-
ity. Furthermore, the consoritum organized 5 different stakeholder workshops
that shaped the design of the middleware significantly. Finally, the consortium
demonstrated the GAMBAS technology and its applications at 3 different
industrial events in order to disseminate the research beyond the academic
sector.

In addition to publications, the availability of the GAMBAS middleware
has resulted in a considerable pickup of the underlying implementations and

208 Conclusion

concepts through other research projects. For example, the SIMON Project1

has reused most of the mobility-related services to implement a mobile
application that provides mobility support for disabled and elderly persons
in 4 major European cities. The SmartKYE Project2 has reused the highly
configurable component-based approach to data acquisition and processing
provided by the data acquisition framework of the GAMBAS middleware
in their energy-management infrastructure. Finally, the BESOS Project3 has
reused concepts from the privacy framework and the SmartAction Project4

has reused GAMBAS for a joint IOT-middleware demonstration.
Given the current computing landscape with mostly centralized IoT

infrastructures, we hope that this book will further strengthen the pickup
of the approaches, concepts and technology developed and validated by the
GAMBAS middleware and its applications.

1SIMON Project Homepage: http://simon-project.eu/
2SmartKye Project Homepage: http://smartkye.eu/
3BESOS Project Homepage: http://besos-project.eu/
4SmartAction Project Homepage: http://www.smart-action.eu/

Bibliography

[3PC12] 3PC. 3PC Project, Project Homepage. http://www.3pc.info,
2012. Accessed: April 2012.

[ACDCdVS08] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati,
and P. Samarati. A privacy-aware access control system. J. Comput.
Secur., 16(4):369–397, December 2008.

[AFRS11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad
Stojanovic. Ep-sparql: A unified language for event processing and
stream reasoning. In Proceedings of the 20th International Conference
on World Wide Web, WWW ’11, pages 635–644, New York, NY, USA,
2011. ACM.

[AHIM13] W. Apolinarski, M. Handte, M. U. Iqbal, and P. J. Marrn. Piggy-
backed key exchange using online services (pike). In 2013 IEEE Inter-
national Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pages 309–311, March 2013.

[AHM12] W. Apolinarski, M. Handte, and P. J. Marrn. An approach for
secure role assignment. In 2012 Eighth International Conference on
Intelligent Environments, pages 34–41, June 2012.

[ALL12] ALLOW. ALLOW FET Proactive, Project Homepage. http://
www.allow-project.eu, 2012. Accessed: April 2012.

[Apa13] Apache Foundation. Apache jena homepage. http://jena.apache.
org/, 2013. Accessed: May 2013.

[BAL08] D. Bannach, O. Amft, and P. Lukowicz. Rapid prototyping of activ-
ity recognition applications. IEEE Pervasive Computing, 7(2):22–31,
April 2008.

[Bar05] Jakob E. Bardram. The java context awareness framework (jcaf) –
a service infrastructure and programming framework for context-aware
applications. In Hans W. Gellersen, Roy Want, and Albrecht Schmidt,
editors, Pervasive Computing, pages 98–115, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

209

210 Bibliography

[BBCG10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and
Michael Grossniklaus. An execution environment for c-sparql queries.
In Proceedings of the 13th International Conference on Extending
Database Technology, EDBT ’10, pages 441–452, New York, NY, USA,
2010. ACM.

[BC09] Xuan Bao and Romit Roy Choudhury. Vupoints: Collaborative
sensing and video recording through mobile phones. In Proceedings
of the 1st ACM Workshop on Networking, Systems, and Applications for
Mobile Handhelds, MobiHeld ’09, pages 7–12, New York, NY, USA,
2009. ACM.

[BEH+06] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,
S. Reddy, and M. B. Srivastava. Participatory sensing. In Workshop on
World-Sensor-Web (WSW06): Mobile Device Centric Sensor Networks
and Applications, pages 117–134, 2006.

[BFL+07] Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan,
Anton Riabov, and Fan Ye. A semantics-based middleware for utilizing
heterogeneous sensor networks. In James Aspnes, Christian Scheideler,
Anish Arora, and Samuel Madden, editors, Distributed Computing in
Sensor Systems, pages 174–188, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[BGJ08] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Stream-
ing sparql – extending sparql to process data streams. In
Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis
Koubarakis, editors, The Semantic Web: Research and Applications,
pages 448–462, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data –
the story so far. International Journal on Semantic Web Information
Systems, 5:1–22, 2009.

[BM10] Ana M. Bernardos and José R. Madrazo, Evaand Casar. An embed-
dable fusion framework to manage context information in mobile
devices.In Emilio Corchado, Manuel Grana˜ Romay, and Alexan-
dre Manhaes Savio, editors, Hybrid Artificial Intelligence Systems,
pages 468–477, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BS04] A. R. Beresford and F. Stajano. Mix zones: user privacy in location-
aware services. In IEEE Annual Conference on Pervasive Computing
and Communications Workshops, 2004. Proceedings of the Second,
pages 127–131, March 2004.

Bibliography 211

[BSGR03] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. Base –
a micro-broker-based middleware for pervasive computing. In Pro-
ceedings of the First IEEE International Conference on Pervasive
Computing and Communications, 2003. (PerCom 2003)., pages 443–
451, March 2003.

[CBSG12] Heng-Tze Cheng, Senaka Buthpitiya, Feng-Tso Sun, and Martin
Griss. Omnisense: A collaborative sensing framework for user context
recognition using mobile phones. In Elevent international workshop on
Mobile Computing Systems and Applications Hotmobile, 2012.

[CCI89] CCITT. The directory-authentication framework. Recommendation
X.509, 1989.

[CEL+06] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane,
Emiliano Miluzzo, and Ronald A. Peterson. People-centric urban
sensing. In Proceedings of the 2nd Annual International Workshop on
Wireless Internet, WICON ’06, New York, NY, USA, 2006. ACM.

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile
computing research. Technical report, Dartmouth College, Hanover,
NH, USA, 2000.

[CNR12] CNR. DOLCE: a descriptive ontology for linguistic and cog-
nitive engineering. http://www.loa.istc.cnr.it/DOLCE.html, 2012.
Accessed: May 2012.

[CYCS12] J. Carrapetta, N. Youdale, A. Chow, and V. Sivaraman. Haze
Watch Project, Project Homepage. http://www.pollution.ee.unsw.
edu.au, 2012. Accessed: April 2012.

[DER12] DERI. Privacy preference ontology. http://vocab.deri.ie/ppo,
2012. Accessed: May 2012.

[DHH07] Anusuriya Devaraju, Simon Hoh, and Michael Hartley. A context
gathering framework for context-aware mobile solutions. In Pro-
ceedings of the 4th International Conference on Mobile Technology,
Applications, and Systems and the 1st International Symposium on
Computer Human Interaction in Mobile Technology, Mobility ’07,
pages 39–46, New York, NY, USA, 2007. ACM.

[EBBS07] D. Evans, A. R. Beresford, T. Burbridge, and A. Soppera.
Context-derived pseudonyms for protection of privacy in transport
middleware and applications. In Pervasive Computing and Commu-
nications Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE
International Conference on, pages 395–400, March 2007.

[EML+07] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson,
G-S. Ahn, and A. T. Campbell. The bikenet mobile sensing system for

212 Bibliography

cyclist experience mapping. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems, SenSys ’07,
pages 87–101, New York, NY, USA, 2007. ACM.

[EML+10] Shane B. Eisenman, Emiliano Miluzzo, Nicholas D. Lane,
Ronald A. Peterson, Gahng-Seop Ahn, and Andrew T. Campbell.
Bikenet: A mobile sensing system for cyclist experience mapping. ACM
Trans. Sen. Netw., 6(1):6:1–6:39, January 2010.

[FKR+14] Stefan Foell, Gerd Kortuem, Reza Rawassizadeh, Marcus Handte,
Umer Iqbal, and Pedro Marr´ Micro-navigation for urban bus pas-on.
sengers: Using the internet of things to improve the public transport
experience. In Proceedings of the First International Conference on IoT
in Urban Space, URB-IOT ’14, pages 1–6, ICST, Brussels, Belgium,
Belgium, 2014. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[FL10] Lujun Fang and Kristen LeFevre. Privacy wizards for social net-
working sites. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 351–360, New York, NY, USA,
2010. ACM.

[FOA12] FOAF. Foaf vocabulary specification. http://xmlns.com/foaf/
spec/, 2012. Accessed: May 2012.

[FSH12] Julien Freudiger, Reza Shokri, and Jean-Pierre Hubaux. Evaluating
the privacy risk of location-based services. In George Danezis, edi-
tor, Financial Cryptography and Data Security, pages 31–46, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[GG03] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-
based services through spatial and temporal cloaking. In Proceedings of
the 1st International Conference on Mobile Systems, Applications and
Services, MobiSys ’03, pages 31–42, New York, NY, USA, 2003. ACM.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[GHV07] C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing time
into rdf. IEEE Transactions on Knowledge and Data Engineering,
19(2):207–218, Feb 2007.

[GJAS06] Raghu K. Ganti, Praveen Jayachandran, Tarek F. Abdelzaher, and
John A. Stankovic. Satire: A software architecture for smart attire. In
Proceedings of the 4th International Conference on Mobile Systems,

Bibliography 213

Applications and Services, MobiSys ’06, pages 110–123, New York,
NY, USA, 2006. ACM.

[Goo12] GoodRelations. Goodrelations language reference. http://purl.
org/goodrelations/v1, 2012. Accessed: May 2012.

[GSSS02] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter
Steenkiste. Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 1(2):22–31, April 2002.

[Han09] M. Handte. System-support for adaptive pervasive applications,
PhD Thesis. Universität Stuttgart, 2009.

[HH10] Michael Haslgr¨ Darsens: A frame-ubler and Clemens Holzmann.
work for distributed activity recognition from body-worn sensors. In
Proceedings of the Fifth International Conference on Body Area Net-
works, BodyNets ’10, pages 240–246, New York, NY, USA, 2010.
ACM.

[HIW+14] Marcus Handte, Muhammad Umer Iqbal, Stephan Wagner, Wolf-
gang Apolinarski, Pedro José Marr´ noz Navarro, on, Eva Maria Mu˜
Santiago Martinez, Sara Izquierdo Barthelemy, and Mario González
Fernández. Crowd density estimation for public transport vehicles. In
EDBT/ICDT Workshops, 2014.

[HKL+99] Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Rothermel,
and Markus Schwehm. Next century challenges: Nexus—an
open global infrastructure for spatial-aware applications. In Proceed-
ings of the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking, MobiCom ’99, pages 249–255, New York,
NY, USA, 1999. ACM.

[HM08] D. Henrici and P. Mller. Providing security and privacy in rfid
systems using triggered hash chains. In 2008 Sixth Annual IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom), pages 50–59, March 2008.

[HV09] Dijiang Huang and Mayank Verma. Aspe: Attribute-based secure
policy enforcement in vehicular ad hoc networks. Ad Hoc Netw.,
7(8):1526–1535, November 2009.

[HWS+10] M. Handte, S. Wagner, G. Schiele, C. Becker, and P. J. Marron.
The base plug-in architecture - composable communication support for
pervasive systems. In 7th ACM International Conference on Pervasive
Services, July 2010.

[IET13] IETF. Ietf geopriv charter. http://datatracker.ietf.org/wg/
geopriv/charter/, 2013. Accessed: May 2013.

214 Bibliography

[IHW+12] Muhammad Umer Iqbal, Marcus Handte, Stephan Wagner, Wolf-
gang Apolinarski, and Pedro José Marr´ Enabling energy-efficient on.
context recognition with configuration folding. 2012 IEEE Inter-
national Conference on Pervasive Computing and Communications,
pages 198–205, 2012.

[IP08] Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption
with groups of prime order. In Steven D. Galbraith and Kenneth G.
Paterson, editors, Pairing-Based Cryptography – Pairing 2008,
pages 75–88, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[JJFZ11] P. Jagtap, A. Joshi, T. Finin, and L. Zavala. Preserving privacy in
context-aware systems. In 2011 IEEE Fifth International Conference
on Semantic Computing, pages 149–153, Sept 2011.

[JS10] S. Ji and D. Shin. An efficient garbage collection for flash memory-
based virtual memory systems. IEEE Transactions on Consumer
Electronics, 56(4):2355–2363, November 2010.

[Kal00] B. Kaliski. Pkcs 5: Password-based cryptography specification
version 2.0. RFC 2898, September 2000.

[KLJ+08] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee,
Youngki Lee, Souneil Park, Taiwoo Park, and Junehwa Song. Seemon:
Scalable and energy-efficient context monitoring framework for sensor-
rich mobile environments. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, MobiSys
’08, pages 267–280, New York, NY, USA, 2008. ACM.

[KZX+11] Matthew Keally, Gang Zhou, Guoliang Xing, Jianxin Wu, and
Andrew Pyles. Pbn: Towards practical activity recognition using
smartphone-based body sensor networks. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’11,
pages 246–259, New York, NY, USA, 2011. ACM.

[LHLY09] Yinan Li, Bingsheng He, Qiong Luo, and Ke Yi. Tree indexing
on flash disks. In Proceedings of the 25th International Conference
on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China, page 13031306, March 2009.

[Lin12] Linked Data. Linked Data, homepage. http://linkeddata.org,
2012. Accessed: May 2012.

[LLEC08] Nicholas D. Lane, Hong Lu, Shane B. Eisenman, and Andrew T.
Campbell. Cooperative techniques supporting sensor-based people-
centric inferencing. In Jadwiga Indulska, Donald J. Patterson, Tom
Rodden, and Max Ott, editors, Pervasive Computing, pages 75–92,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Bibliography 215

[LNK+07] Sang-Won Lee, Gap-Joo Na, Jae-Myung Kim, Joo-Hyung Oh,
and Sang-Woo Kim. Research issues in next generation dbms for
mobile platforms. In Proceedings of the 9th International Conference
on Human Computer Interaction with Mobile Devices and Services,
MobileHCI ’07, pages 457–461, New York, NY, USA, 2007. ACM.

[LPDTXPH11] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira,
and Manfred Hauswirth. A native and adaptive approach for unified pro-
cessing of linked streams and linked data. In Lora Aroyo, Chris Welty,
Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha
Noy, and Eva Blomqvist, editors, The Semantic Web – ISWC 2011,
pages 370–388, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[LPL+09] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury,
and Andrew T. Campbell. Soundsense: Scalable sound sensing for
people-centric applications on mobile phones. In Proceedings of the
7th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’09, pages 165–178, New York, NY, USA, 2009.
ACM.

[LPPRH10] Danh Le-Phuoc, Josiane Xavier Parreira, Vinny Reynolds, and
Manfred Hauswirth. Rdf on the go: An rdf storage and query pro-
cessor for mobile devices. In Proceedings of the 2010 International
Conference on Posters & Demonstrations Track – Volume 658,
ISWC-PD’10, pages 149–152, Aachen, Germany, Germany, 2010.
CEUR-WS.org.

[LPSZ10] Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine
Zimmermann. Anql: Sparqling up annotated rdfs. In Peter F. Patel-
Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z.
Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web –
ISWC 2010, pages 518–533, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[LYL+10] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem
Choudhury, and Andrew T. Campbell. The jigsaw continuous sens-
ing engine for mobile phone applications. In Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’10,
pages 71–84, New York, NY, USA, 2010. ACM.

[LZD08] C. Li, Y. Zhang, and L. Duan. Establishing a trusted architecture
on pervasive terminals for securing context processing. In 2008 Sixth
Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 639–644, March 2008.

216 Bibliography

[Mar12] Martin Hepp. Vehicle sales ontology. http://www.heppnetz.de/
ontologies/vso/ns, 2012. Accessed: May 2012.

[Mis08] J. Misic. Enforcing patient privacy in healthcare wsns using ecc
implemented on 802.15.4 beacon enabled clusters. In 2008 Sixth
Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 686–691, March 2008.

[MLEC07] Emiliano Miluzzo, Nicholas D. Lane, Shane B. Eisenman, and
Andrew T. Campbell. Cenceme – injecting sensing presence into
social networking applications. In Gerd Kortuem, Joe Finney, Rodger
Lea, and Vasughi Sundramoorthy, editors, Smart Sensing and Context,
pages 1–28, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[MMG11] D. McAuley, R. Mortier, and J. Goulding. The dataware man-
ifesto. In 2011 Third International Conference on Communication
Systems and Networks (COMSNETS 2011), pages 1–6, Jan 2011.

[MNP+10] Cludio Maia, Luis Miguel Nogueira, Luis Miguel Pinho, Cludio
Maia, Luis Miguel Nogueira, Luis Miguel Pinho, and Lus Miguel
Pinho. Evaluating android os for embedded real-time systems. In
Proceedings of the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, 2010.

[MRS+09] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke,
Deborah Estrin, Mark Hansen, Eric Howard, Ruth West, and Péter
Boda. Peir, the personal environmental impact report, as a platform for
participatory sensing systems research. In Proceedings of the 7th Inter-
national Conference on Mobile Systems, Applications, and Services,
MobiSys ’09, pages 55–68, New York, NY, USA, 2009. ACM.

[Net14] Netty. The Netty Project, homepage. http://netty.io, 2014.
Accessed: August 2014.

[Nor07] Anil Nori. Mobile and embedded databases. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’07, pages 1175–1177, New York, NY, USA, 2007.
ACM.

[NPA10] Rammohan Narendula, Thanasis G. Papaioannou, and Karl Aberer.
Privacy-aware and highly-available osn profiles. In Proceedings
of the 2010 19th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises, WETICE ’10,
pages 211–216, Washington, DC, USA, 2010. IEEE Computer Society.

[NUI12] NUIG. Rdf-on-the-go: Triple store implementation for android.
http://rdfonthego.googlecode.com/, 2012. Accessed: May 2012.

Bibliography 217

[Ord12] Ordered List Ontology. The ordered list ontology. http://purl.org/
ontology/olo/core#, 2012. Accessed: May 2012.

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryp-
tion and signatures from vector decomposition. In Steven D. Galbraith
and Kenneth G. Paterson, editors, Pairing-Based Cryptography – Pair-
ing 2008, pages 57–74, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[PEC12] PECES. PECES FP7 Project, Project Homepage. http://www.
ict-peces.eu, 2012. Accessed: April 2012.

[PHS10] H. Patni, C. Henson, and A. Sheth. Linked sensor data. In 2010
International Symposium on Collaborative Technologies and Systems,
pages 362–370, May 2010.

[PLA12] PLANET. PLANET FP7 Project, Project Homepage. http://
www.planet-ict.eu, 2012. Accessed: April 2012.

[PPS+08] J. M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward.
Structured decomposition of adaptive applications. In 2008 Sixth
Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 1–10, March 2008.

[PRAB08] L. Pareschi, D. Riboni, A. Agostini, and C. Bettini. Composition
and generalization of context data for privacy preservation. In 2008
Sixth Annual IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 429–433, March 2008.

[RB04] Philip Robinson and Michael Beigl. Trust context spaces: An infras-
tructure for pervasive security in context-aware environments. In Dieter
Hutter, G¨ uller, Werner Stephan, and Markus Ullmann, editors, unter M¨
Security in Pervasive Computing, pages 157–172, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[RH10] A. Rice and S. Hay. Decomposing power measurements
for mobile devices. In 2010 IEEE International Conference
on Pervasive Computing and Communications (PerCom),
pages 70–78, March 2010.

[RJH02] G. C. Roman, C. Julien, and Qingfeng Huang. Network abstrac-
tions for context-aware mobile computing. In Proceedings of the
24th International Conference on Software Engineering. ICSE 2002,
pages 363–373, May 2002.

[RMJ+11] N. Roy, A. Misra, C. Julien, S. K. Das, and J. Biswas. An energy-
efficient quality adaptive framework for multi-modal sensor context
recognition. In 2011 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 63–73, March 2011.

218 Bibliography

[RMLM09] Alejandro Rodrı́guez, Robert McGrath, Yong Liu, and James
Myers. Semantic management of streaming data. In Proceedings
of the 2Nd International Conference on Semantic Sensor Networks –
Volume 522, SSN’09, pages 80–95, Aachen, Germany, Germany, 2009.
CEUR-WS.org.

[RMM+10] Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J.
Rentfrow, Chris Longworth, and Andrius Aucinas. Emotionsense: A
mobile phones based adaptive platform for experimental social psychol-
ogy research. In Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, UbiComp ’10, pages 281–290, New York,
NY, USA, 2010. ACM.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web
transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, November 1998.

[RSB+09] S. Reddy, V. Samanta, J. Burke, D. Estrin, M. Hansen, and M. Sri-
vastava. Mobisense 2014 – mobile network services for coordinated
participatory sensing. In 2009 International Symposium on Autonomous
Decentralized Systems, pages 1–6, March 2009.

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, WMCSA ’94, pages 85–90,
Washington, DC, USA, 1994. IEEE Computer Society.

[SC09] Juan F. Sequeda and Oscar Corcho. Linked stream data: A position
paper. In Proceedings of the 2Nd International Conference on Seman-
tic Sensor Networks – Volume 522, SSN’09, pages 148–157, Aachen,
Germany, Germany, 2009. CEUR-WS.org.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context
toolkit: Aiding the development of context-enabled applications. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’99, pages 434–441, New York, NY, USA, 1999. ACM.

[Sem12] Semantic Desktop. Personal information model. http://
www.semanticdesktop.org/ontologies/2007/11/01/pimo/#, 2012.
Accessed: May 2012.

[SHL+05] Krishna Sampigethaya, Leping Huang, Mingyan Li, Radha
Poovendran, Kanta Matsuura, and Kaoru Sezaki. Caravan : Providing
location privacy for vanet. In Embedded Security in Cars (ESCAR),
2005.

[SHS08] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic sensor
web. IEEE Internet Computing, 12(4):78–83, July 2008.

Bibliography 219

[SPI12] SPITFIRE Consortium. The spitfire ontology. http://
spitfire-project.eu/ontology/ns/, 2012. Accessed: May 2012.

[SPTH11] R. Shokri, P. Papadimitratos, G. Theodorakopoulos, and J. P.
Hubaux. Collaborative location privacy. In 2011 IEEE Eighth
International Conference on Mobile Ad-Hoc and Sensor Systems,
pages 500–509, Oct 2011.

[STD+10] Reza Shokri, Carmela Troncosof, Claudia Diaz, Julien Freudiger,
and Jean-Pierre Hubaux. Unraveling an old cloak: K-anonymity for
location privacy. In Proceedings of the 9th Annual ACM Workshop
on Privacy in the Electronic Society, WPES ’10, pages 115–118, New
York, NY, USA, 2010. ACM.

[Swe02] Latanya Sweeney. K-anonymity: A model for protecting pri-
vacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570,
October 2002.

[TRL+09] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts,
Samuel Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriks-
son. Vtrack: Accurate, energy-aware road traffic delay estimation
using mobile phones. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’09, pages 85–98, New
York, NY, USA, 2009. ACM.

[W3C04] W3C. N-triples specification. http://www.w3.org/TR/
rdf-testcases/#ntriples, 2004. Accessed: May 2012.

[W3C12a] W3C. Resource description framework (rdf): Concepts and
abstract syntax. http://www.w3.org/TR/rdf-concepts/, 2012.
Accessed: May 2012.

[W3C12b] W3C. Sparql query language for rdf. http://www.w3.org/TR/
rdf-sparql-query/, 2012. Accessed: May 2012.

[W3C12c] W3C. Sparql query results xml format. http://www.w3.org/
TR/rdf-sparql-XMLres/, 2012. Accessed: May 2012.

[W3C12d] W3C. Terse rdf triple language. http://www.w3.org/TR/
2012/WD-turtle-20120710/, 2012. Accessed: May 2012.

[W3C12e] W3C. Time ontology in owl. http://www.w3.org/TR/
owl-time/, 2012. Accessed: May 2012.

[W3C12f] W3C. Wgs84 geo positioning: an rdf vocabulary. http://www.
w3.org/2003/01/geo/wgs84 pos, 2012. Accessed: May 2012.

[W3C13a] W3C. Query results json format. https://www.w3.org/TR/
sparql11-results-json/, 2013. Accessed: May 2018.

[W3C13b] W3C. Sparql 1.1 federated query w3c recommendation. http://
www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/,
2013. Accessed: June 2014.

220 Bibliography

[WCMS10] R. Wishart, D. Corapi, S. Marinovic, and M. Sloman. Collabo-
rative privacy policy authoring in a social networking context. In 2010
IEEE International Symposium on Policies for Distributed Systems and
Networks, pages 1–8, July 2010.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific
American, 265:94, 09 1991.

[WLA+09] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A. Jacobson,
Jason Hong, Bhaskar Krishnamachari, and Norman Sadeh. A frame-
work of energy efficient mobile sensing for automatic user state recog-
nition. In Proceedings of the 7th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’09, pages 179–192, New
York, NY, USA, 2009. ACM.

[WZL06] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams:
A framework for composable semantic interpretation of sensor data. In
Kay Römer, Holger Karl, and Friedemann Mattern, editors, Wireless
Sensor Networks, pages 5–20, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[XC09] Toby Xu and Ying Cai. Location safety protection in ad hoc net-
works. Ad Hoc Networks, 7(8):1551 – 1562, 2009. Privacy and Security
in Wireless Sensor and Ad Hoc Networks.

[YTN05] T. Yamabe, A. Takagi, and T. Nakajima. Citron: a context
information acquisition framework for personal devices. In 11th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’05), pages 489–495, Aug 2005.

[ZH09] G. Zhong and U. Hengartner. A distributed k-anonymity protocol for
location privacy. In 2009 IEEE International Conference on Pervasive
Computing and Communications, pages 1–10, March 2009.

[ZS12] Stefan Zander and Bernhard Schandl. Context-driven rdf data
replication on mobile devices. Semant. web, 3(2):131–155, April 2012.

Index

A
access control 41, 119, 141, 206
application scenarios 5, 45,

92, 185
authentication 32, 134, 136, 155
authorization 42, 119, 136, 152

C
certificate 55, 95, 135, 155
communication 120, 130,

139, 177
component configuration 177
configuration folding 70, 71,

77, 78
continous query 29, 91, 122, 185

D
data acquisition 35, 59, 82, 177

E
encryption 38, 113, 141, 206
energy-efficient 16, 59, 78, 177

I
intent-aware 30, 129, 179, 203

K
key exchange 124, 134, 138, 155

L
linked open data 25, 95, 175, 205

M
middleware 18, 132, 166, 207

P
permission 57, 146, 157, 175
privacy policy 30, 126, 146, 184
pseudonym 55, 121, 164, 167

Q
query processing 10, 50, 90, 181

R
RDF 49, 91, 151, 173

S
semantic data 27, 53, 101, 181
semantic web 90, 121, 122, 205
service infrastructure 11, 177
smart city 7, 9, 11, 179
software components 25, 179
SPARQL 50, 102, 120, 173
stream processing 25, 42, 91, 122

U
user preferences 30, 128

V
visual editor 71, 72, 81

221

http://taylorandfrancis.com

About the Authors

Dr. Marcus Handte received a master’s degree in computer science from
the Georgia Institute of Technology in 2002 and his Diploma in Software
Engineering from the University of Stuttgart in 2003. From August 2007 to
October 2009 he was working as a full-time researcher at Fraunhofer IAIS,
since then he is working at the University of Duisburg-Essen. In 2009 he
received a PhD in computer science from the University of Stuttgart and in
2013 he received his postdoctoral lecture qualification from the University
of Duisburg-Essen. His past research focused on middleware for adaptive
and self-configuring systems. From 2012 to 2015, he was responsible for
the technical coordination of the research and development work within the
GAMBAS project.

Prof. Dr. Pedro José Marrón received his bachelor and master’s degree
in computer engineering from the University of Michigan in Ann Arbor in
1996 and 1998 and his Ph.D. from the University of Freiburg in 2001. After
a professorship at the University of Bonn, he is currently full professor at
the University of Duisburg-Essen, where he leads the “Networked Embedded
Systems Group”. Pedro Marron is also founder of Locoslab GmbH, an SME
specialized in low cost solutions for localization in indoor environments and
is also the president of UBICITEC, the European Center for Ubiquitous Tech-
nologies and Smart Cities, which counts with over 20 institutional partners
from industry and academia.

Prof. Dr. Gregor Schiele is a full professor for computer science and the
leader of the research group for embedded systems at the University of
Duisburg-Essen, Germany. His research focusses on adaptive systems and
the Internet of Things (IoT). Before joining the University of Duisburg-Essen
in 2014, Dr. Schiele worked in different roles at the National University of
Ireland in Galway, the Digital Enterprise Research Institute (DERI) and the

223

224 About the Authors

Insight Centre for Data Analytics in Ireland, as well as at the Universities of
Mannheim and Stuttgart in Germany. He received his doctorate in computer
science from the University of Stuttgart in 2007 for his work on System
Support for Pervasive Computing. Dr. Schiele has published over 50 papers,
articles and book chapters. He served in more than 100 international tech-
nical program committees, is a reviewer for multiple international journals
and co-organised a multitude of scientific workshops and conferences. His
research received funding from the DFG, the DAAD, a multitude of industry
partners, as well as the EU. He is collaborating closely with partners in the
EU and worldwide, including in Norway, South Africa, and the USA and is a
regular reviewer for international journals and research programs.

Manolo Serrano Matoses is an Electronic Engineer. He holds a
double degree in Telecommunications from the Polytechnic University of

´Valencia (Spain) and l’Ecole Nationale Sup´ el´erieure des T´ ecommunications
de Bretagne (France) – networking specialisation. He is currently Head of the
New Technologies Area within the Technology department of ETRA I+D.
Manolo actively participated in the GAMBAS project, and coordinated the
EMMA and PECES projects, predecessors of the work done in GAMBAS.
Manolo is passionate about technology, and he is responsible within its
company on the proposal of new innovative paths to improve the company
products and explore new business application domains.

	Cover
	Half Title
	Series
	Title
	Copyright
	Contents
	Preface
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 GAMBAS Objectives
	1.3 Application Scenarios
	1.3.1 Mobility Scenario
	1.3.2 Environmental Scenario

	1.4 Overarching Vision
	1.4.1 Smart Cities
	1.4.2 Characteristics

	1.5 State of the Art
	1.5.1 Hardware Technologies
	1.5.2 Communication Middleware
	1.5.3 Context Management
	1.5.4 Sensing Applications

	1.6 Innovations

	2 Architecture
	2.1 Static Perspective
	2.1.1 Operational View
	2.1.2 Component View
	2.1.3 Data View

	2.2 Dynamic Perspective
	2.2.1 Acquisition View
	2.2.2 Processing View
	2.2.3 Inference View

	2.3 Interface Perspective
	2.3.1 Storage Interfaces
	2.3.2 Query Interfaces
	2.3.3 Privacy Interfaces
	2.3.4 Control Interfaces

	3 Data Acquisition
	3.1 Focus and Contribution
	3.1.1 Data Acquisition Frameworks
	3.1.2 Rapid Prototyping Tools
	3.1.3 Application-Specific Acquisition
	3.1.4 Contribution

	3.2 Data Acquisition Framework
	3.2.1 Component System
	3.2.2 Activation System

	3.3 Data Acquisition Components
	3.3.1 Context Recognition
	3.3.2 Intent Recognition

	4 Data Processing
	4.1 Focus and Contribution
	4.1.1 Data Representation
	4.1.2 Query Processing
	4.1.3 Contribution

	4.2 Data Model
	4.2.1 Data Definition
	4.2.2 Query Specification

	4.3 Data Discovery
	4.3.1 Architecture
	4.3.2 Metadata Management
	4.3.3 Querying Data Sources
	4.3.4 Security and Privacy
	4.3.5 Client-side Caching

	4.4 Data Processing
	4.4.1 Data Storage
	4.4.2 Query Processor

	5 Privacy Preservation
	5.1 Focus and Contribution
	5.1.1 Trusted Computing Hardware
	5.1.2 Key Exchange and Derivation
	5.1.3 Obfuscation and Generalization
	5.1.4 Contribution

	5.2 Privacy Framework
	5.2.1 Overview
	5.2.2 Mechanisms

	5.3 Privacy Policy
	5.3.1 Automatic Generation
	5.3.2 Manual Fine-Tuning

	5.4 Privacy Integration
	5.4.1 Data Transfer
	5.4.2 Data Acquisition
	5.4.3 Data Processing

	6 Applications
	6.1 Application Development Support
	6.1.1 Overview
	6.1.2 J2SE Support
	6.1.3 Android Support
	6.1.4 Application Examples

	6.2 Application Architecture
	6.2.1 Mobility Scenario
	6.2.2 Environmental Scenario

	6.3 Application Components
	6.3.1 Application Services
	6.3.2 Sensing Applications
	6.3.3 End-user Applications
	6.3.4 Operator Applications

	6.4 Application Evaluation

	7 Conclusion
	Bibliography
	Index
	About the Authors

