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Abstract

This chapter aims to describe current and emerging roles of spontaneous report-
ing systems (SRSs) for assessing and monitoring drug safety. Moreover, it offers a 
perspective on the near future, which entails the so-called era of Big Data, keeping 
in mind both regulator and researcher viewpoints. After a panorama on key data 
sources and analyses of post-marketing data of adverse drug reactions, a critical 
appraisal of methodological issues and debated future applications of SRSs will be 
presented, including the exploitation and challenges in evidence integration (i.e., 
merging and combining heterogeneous sources of data into a unique indicator of 
risk) and patient’s reporting via social media. Finally, a call for a responsible use of 
these studies is offered, with a proposal on a set of minimum requirements to assess 
the quality of disproportionality analysis in terms of study conception, performing 
and reporting.

Keywords: pharmacovigilance, signal, spontaneous reporting system, 
disproportionality analysis

1. Introduction

Prescription of a medication is based on a balance between expected benefits, 
already investigated before marketing authorization, and possible risks (i.e., 
adverse effects), which become fully apparent only as time goes by after marketing 
authorization. Premarketing development, in fact, provides evidence on efficacy of 
drugs in ideal clinical setting of use (i.e., clinical trials); only the most frequent side 
effects are recognized in this step. The use of drugs in the real-world circumstances 
will show the actual risk-benefit profile.

The World Health Organization (WHO) previously defined pharmacovigilance 
(PhV) as “the science and activities relating to the detection, assessment, under-
standing and prevention of adverse effects or any other possible drug-related prob-
lems” [1], a definition that, in the recent past, was regarded as being synonymous 
with post-marketing surveillance for adverse drug reactions (ADRs).

After the adoption in 2012 of the new pharmacovigilance legislation 
(Regulation (EU) No 1235/2010 and Directive 2010/84/EU) [2, 3] approved by 
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the European Parliament and European Council in December 2010, PhV embraces 
the whole risk-benefit assessment, thus dealing with multiple types of evidence 
emerging along the life cycle of drugs for continuous reassessment of the place in 
therapy of each medicine, both in clinical and in regulatory terms.

Many sources of data and relevant methods of analysis are used in PhV: from 
disproportionality analyses (DAs) in spontaneous reporting systems (SRSs) to 
analytical studies (cohort or case-control designs). These traditional approaches 
are now integrated by innovative strategies (e.g., social media mining and case-
population studies) in the fourth-generation PhV [4].

In this chapter, current and emerging roles of DAs in SRSs will be critically dis-
cussed, keeping in mind both regulator and researcher viewpoints. A panorama on 
key data sources (and their proper selection) will be described, followed by a criti-
cal appraisal of methodological issues and debated future applications, including 
exploitation and challenges in evidence integration (i.e., merging and combining 
heterogeneous sources of data into a unique indicator of risk) and patient’s report-
ing via social media. All these issues are based on key publications of the authors 
and on the latest advances published in the literature (MEDLINE, as of May 1, 
2018). Finally, a call for a responsible use of these studies is offered, with a proposal 
(authors’ personal ideas) on a set of minimum requirements to assess the quality of 
DAs in terms of study conception, performing and reporting.

2. Post-marketing data sources

Not only notification of suspected adverse drug events is mandatory for health 
professionals, but also other subjects can report events to the relevant regula-
tory authorities. According to ICH-E2 guidelines (International Conference on 
Harmonization, http://www.ich.org/products/guidelines/efficacy/article/efficacy-
guidelines.html), each National Drug Agency maintains its specific SRS to collect 
all notifications and routinely use data-mining algorithms (DMAs) to process data, 
with the aim of identifying possible signals of unknown drug-effect associations. 
These DMAs identify drug-reaction pairs occurring with a significant dispro-
portion in comparison with all other pairs, through the method of case-non case 
approach. Reactions are usually recorded according to the “MedDRA” classification 
(medical dictionary for regulatory activities), which allows to select cases at dif-
ferent hierarchical levels (from SOC—system organ class to PT—preferred term; 
https://www.meddra.org/).

Clinical pharmacology knowledge is requested to design and interpret results 
from DMAs and to decide if further examination is needed (either within the same 
source of data or by other types of data) or specific bias affects the validity of the 
findings. Other healthcare data sources are available for PhV to corroborate results 
of SRS data mining, despite developed for other reasons. As a general classification, 
they can be pooled into two main groups: electronic medical records (EMRs) and 
claim databases.

Electronic medical records (EMRs) aim to assist physicians in daily clinical 
practice (including appropriate prescription) by collecting sociodemographic and 
clinical information (diagnoses, risk factors, treatments, and outcomes). Primary 
care is the most frequent setting to develop these kinds of databases such as Clinical 
Practice Research Datalink (CPRD; formerly General Practice Research Database—
GPRD, in UK); Health Search (by the Italian College of General Practitioners); The 
Health Improvement Network (THIN), in UK; and Interdisciplinary Processing of 
Clinical Information (IPCI), in the Netherlands. The high quantity of data makes 
them valuable sources to address clinical pharmacology questions, including new 
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effects of drugs (especially on primary endpoints, to confirm premarketing evi-
dence) and assessment of appropriate drug use (closer to the main purpose of the 
registries).

Claim databases were mainly created for administrative purposes, and together 
with hospital databases provide valuable sources to address PhV questions: data 
provided (e.g., diagnoses of hospital admissions, reimbursed prescriptions of drugs 
and diagnostic procedures in ambulatory care) are generally used for reimburse-
ment and other economic issues, and, as a secondary aim, they represent an impor-
tant source of information for epidemiological questions (taking into account that 
nonreimbursed intervention is usually not recorded, information on lifestyle and 
actual exposure to medicines is lacking.

3. Main spontaneous reporting systems

Each National Drug Agency collects its own reports in a dedicated spontaneous 
reporting database, and some international SRSs gather reports originating both by 
systematic flows from national databases and by direct submission of the reporter. 
Each source has specific characteristics and limitations to be considered when 
planning a drug safety analysis (e.g., completeness of data and options for database 
interrogation); however, collecting information from all these accessible sources is 
the mainstay in PhV.

Table 1 shows an overview of main international PhV databases, which cover a 
very large population and heterogeneous patterns of drug use and ADR reporting 
attitudes. Public access to SRSs is becoming a standard, as addressed in Section 
8.2.

4. The appropriate choice of data source according to the research 
question

The identification of the most appropriate source of data is a key step to 
properly address the research question, considering strength and limitations 
of the different approaches (Table 2). For instance, SRSs represent the best 
source of data to investigate the so-called designated medical events (DMEs), 
usually rare with strong drug-attributable component (e.g., Torsades de Pointes 
and Stevens-Johnson Syndrome) [5, 6]. Conversely, possible role of drugs in 
events with high background incidence (e.g., myocardial infarction) can be 
better investigated by healthcare databases (EMRs and claim databases) [7, 8]. 
No matter of the type of ADR, a typical time sequence to detect safety profile 
of drugs considers data mining of SRSs as the first step of the analysis, followed 
by investigation through healthcare databases to confirm or refuse statistically 
significant associations.

From data cleaning (a mere data managing step, see later) to statistical analy-
ses, all steps of data management are considered tasks to address questions on 
ADRs. Usually, each source of data requires specific data-mining approaches (e.g., 
disproportion calculation for SRSs and multiple regression analysis for EMRs), but 
emergent strategies to better exploit the more accessible sources are now appearing 
in the literature (e.g., self-controlled time series and prescription sequence sym-
metry analysis—PSSA) [9]. In fact, data mining could virtually provide as many 
associations as possible between drug and effect, but without consensus among 
experts on the methodological steps and confirmation of pathophysiological 
pathways, the association can easily conduct to interpret errors.
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FAERS WHO—VigiBase EudraVigilance Australian Database 

of Adverse Event 

Notifications 

(DAEN)

Canada Vigilance 

Adverse Reaction 

Online Database

Japanese 

Adverse Drug 

Event Report 

database 

(JADER)

Website http://www.fda.gov/Drugs/

GuidanceComplianceRegulatoryInformation/

Surveillance/AdverseDrugEffects/default.htm

http://www.vigiaccess.org http://www.

adrreports.eu

https://www.tga.gov.

au/database-adverse-

event-notifications-

daen

https://www.

canada.ca/en/

health-canada/

services/drugs-

health-products/

medeffect-canada/

adverse-reaction-

database.html

http://www.

pmda.go.jp/

Access Full data access (download) since 2004a Web-based interface 

(VigiLize™, VigiFlow™, 

VigiMine, applications for 

full data accessc)

Web-based 

interface 

(different access 

policies for full 

data accessd)

Full data access 

(download)

Full data access 

(download)

Timeframe 1969–present 1968–present 2001–present 1971–present 1965–present 2004–present

Products 

covered

All drugs and biologicsb All drugs and biologics, 

including vaccines

All drugs 

and biologics 

authorized in the 

European Union

All medicines, 

including vaccines, 

used in Australiae

All drugs, biologics, 

vaccines, and 

natural health 

products licensed in 

Canadaf

All drugs and 

biologics, 

including 

vaccines used in 

Japan
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FAERS WHO—VigiBase EudraVigilance Australian Database 

of Adverse Event 

Notifications 

(DAEN)

Canada Vigilance 

Adverse Reaction 

Online Database

Japanese 

Adverse Drug 

Event Report 

database 

(JADER)

Source of 

reports

Healthcare professionals,  

drug companies,  

patients/consumers

National and regional 

pharmacovigilance centers 

(which may receive reports 

from patients, healthcare 

professionals, or drug 

companies)

National 

competent 

authorities 

and marketing 

authorization 

holders 

(currently, no 

direct reporting 

from patients 

and healthcare 

professionals)

Healthcare 

professionals, 

consumers, and 

market authorization 

holders

Healthcare 

professionals, 

consumers, 

and market 

authorization 

holders

Healthcare 

professionals, 

consumers, 

and market 

authorization 

holders

Current 

number 

of reports 

available

>12 million (as of April 2015),  

more than 1,000,000 per year  

(2012–2014)

>10 million (as of 2016) >1 million 

received in 2013

Unknown (no public 

statistics provided)

Unknown (no 

public statistics 

provided)

~500,000 (as of 

2017)

Origin of 

submitted 

reports

USA and serious/unexpected  

reports from EU, Japan,  

and other extra-US countries

Worldwide (107 official 

members and 33 associate 

members), but majority 

from EU and the US

EU Australia Canada Japan
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FAERS WHO—VigiBase EudraVigilance Australian Database 

of Adverse Event 

Notifications 

(DAEN)

Canada Vigilance 

Adverse Reaction 

Online Database

Japanese 

Adverse Drug 

Event Report 

database 

(JADER)

Coding 

system for 

event

MedDRA MedDRA MedDRA MedDRA MedDRA MedDRA

Search 

strategy 

through “free 

text” in the 

narratives

No (a Freedom of Information Act can be 

requested to the FDA)

No No No No No

Modified and updated from [32, 113]. ADR: adverse drug reaction; MedDRA: Medical Dictionary for Regulatory Activities.
aDifferent web-based tools are provided; see Böhm et al. [14]. Recently, the FDA has launched the FAERS Public Dashboard, a highly interactive web-based tool that allows to query FAERS data in a user-
friendly fashion (https://fis.fda.gov/sense/app/777e9f4d-0cf8-448e-8068-f564c31baa25/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis).
bDevices, vaccines, and other products are not included, as they are specifically recorded in ad hoc databases: MAUDE—Manufacturer and User Facility Device Experience (ttps://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfMAUDE/search.CFM), VAERS—Vaccines Adverse Event Reporting System (https://vaers.hhs.gov/data/datasets.html), and CAERS—Center for Food Safety and Applied Nutrition 
Adverse Event Reporting System (https://www.fda.gov/food/complianceenforcement/ucm494015.htm).
cFreely available for all members in the WHO Program for International Drug Monitoring.
dSpecific access policies are described depending on stakeholder groups. For details, see the following link: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2011/07/news_
detail_001299.jsp&murl=menus/news_and_events/news_and_events.jsp&mid=WC0b01ac058004d5c1. On November 22, 2017, a new and improved version of EudraVigilance was launched. The new 
system has enhanced features for the reporting and analysis of suspected adverse reactions to support a better safety monitoring of medicines and a more efficient reporting process for stakeholders.
eMedical devices are not included, as they are specifically recorded in the ad hoc Database of Adverse Event Notifications—medical devices (http://apps.tga.gov.au/prod/DEVICES/daen-entry.aspx).
fData on human blood and blood components have only been included since September 1, 2015; data on vaccines used for immunization have only been included since January 1, 2011; the majority of vaccine 
reports are submitted to the Canadian Adverse Events Following Immunization Surveillance System (CAEFISS).

Table 1.  
Overview of major international spontaneous reporting systems that can be searched via online systems.
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Table 2.  
Overview of study designs to assess safety of medicines.

Strengths Weaknesses

Disproportionality approach It can be conducted 

rapidly, and it is easy to 

implement.

It can be conducted on 

spontaneous reporting 

systems and healthcare 

databases.

Good performance 

(accuracy in discriminating 

false from true positives) 

when major confounders 

and biases are accounted 

for.

Highly suitable for rare 

events with high drug-

attributable risk (e.g., TdP 

and DILI).

Does not provide risk estimates.

Loss of information due to 

aggregated data.

Unable to handle numerous 

confounders.

Sensitive to protopathic and 

indication biases.

Less suitable for events with 

high background incidence (e.g., 

myocardial infarction).

Traditional 

pharmacoepidemiological designs

It provides risk estimates 

(cohort and case-control 

design).

It allows controlling for 

confounders if matching 

and nesting are performed 

(case-control design).

Robust to confounders that 

are stable over time (case 

crossover, self-controlled 

cohort, and self-controlled 

case series).

Highly suitable for events 

with high background 

incidence (e.g., myocardial 

infarction).

It needs very large dataset to have 

enough power to detect signals 

in case of rare events (cohort and 

case-control design).

Less suitable for rare events with 

high drug-attributable risk (e.g., 

TdP and DILI).

Prescription sequence symmetry 

analysis (PSSA)

Rapid and easy to be 

performed (it only 

requires patient identifier, 

medication code, and 

medication dispensed 

date).

Graphical output can 

be generated to help 

data visualization and 

interpretation.

Highly specific and 

moderate sensitivity.

It can control for time-

constant confounders.

It does not provide risk estimates 

(it complements disproportionality 

approach).

Prescribing trends are affected 

by external factors (adjustment is 

required).

Inappropriate identification of 

new use (exclusion/censoring of 

switchers is required).

Time-variant confounders.

Sensitive to inverse causality, 

protopathic, and indication biases.

Systematic review with 

meta-analysis

It can provide risk 

estimates (especially 

if RCT is the primary 

source).

It does not require 

additional data collection.

It can be conducted rapidly.

It can highlight gaps in 

research.

Validity depends on the scientific 

rigor of the methods, quality, and 

type of primary source (RCT or 

observational studies).

Meta-analysis of nonrandomized 

studies (observational) is currently 

not standardized.

Modified from [9]. DILI: drug-induced liver injury; RCT: randomized controlled trial; TdP: torsade de pointes.
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5. Current applications of disproportionality analyses and case-by-case 
assessment

5.1 The regulator’s view

Traditionally, regulatory decision-making has relied on detection of safety 
signals through spontaneous reports. Today, things are changing for several reasons, 
including increased awareness of prescribers on the importance of PhV and the 
emerging role of different health professionals and patients.

A modern model involves signal detection, signal validation (i.e., signal should 
represent a novel causal relationship between a drug and an event), signal priori-
tization (evaluation of clinical impact of the safety issue), and some other steps 
to drive the decision-making, also on the basis of data on how drugs are used in a 
population and how their utilization can be influenced. Drug consumption is also 
now frequently analyzed by regulators to evaluate the actual impact of risk mini-
mization strategies in a specific settings, such as the risk of progressive multifocal 
leukoencephalopathy with multiple sclerosis therapies [10].

Regulatory agencies routinely perform analyses of SRSs to detect disproportion-
ality signals, especially for new drugs. Although the Food and Drug Administration 
(FDA) and the European Medicine Agency (EMA) have different frameworks, they 
are promoting rigorous scientific information exchange for optimal post-approval 
drug safety monitoring [11]. Both agencies publicly posted the list of signals emerg-
ing from internal analyses, with the aim to promote transparency and stimulate 
research while avoiding alarm. Usually, many of these signals remain (fortunately) 
unnoticed by clinicians, and only a minority of them result in measures affecting 
clinical practice, such as ketoacidosis with sodium-glucose cotransporter-2 inhibi-
tors, which in turn prompted the FDA to revise relevant labels.

Also for old drugs, the importance of spontaneous reports should not be overlooked, 
especially because the amount of time of a drug on the market (drug age) is correlated 
with the number of signals detected [12]. The recent case of tiocolchicoside, restricted 
in recommended dose and treatment duration by the EMA, is noteworthy: after with-
drawal of tetrazepam, the use of alternatives (including tiocolchicoside) and relevant 
spontaneous reporting increased, which made evident specific safety concerns [13].

In the past, regulatory actions on a given safety issue did not support clinical 
practice. The case of haloperidol and the risk of torsade de pointes (TdP) is a typical 
example: an ECG before administration was indeed recommended in some cir-
cumstances before administering the medicine. However, it was not duly taken into 
account that a psychotic crisis does not usually allow appropriate ECG measure-
ment, and this results in the inability to use injectable haloperidol in the emergency 
setting. The clinical consequence was a loss of this therapeutic option and its 
substitution with alternatives, which are not necessarily better.

5.2 The researcher’s view

Disproportionality analyses (DAs) are attracting considerable interest in the 
medical literature for several reasons:

1. there is increasing availability of publicly accessible SRSs and open-access tools 
to independently analyze international databases [14]; the various web-based 
resources mainly differ in terms of data transparency, possibility to customize 
searches and analyses (e.g., correction for confounders);

2. DAs are inexpensive and relatively quick and easy to perform, at least by 
frequentist methods such as reporting odds ratio (ROR) and proportional 
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reporting ratio (PRR); these methods can be applied systematically to analyze 
a given pharmacological class or specific DMEs such as TdP [15];

3. they are likely to be published in a high ranking journal, especially when 
sophisticated analyses are presented, claiming to correct for multiple con-
founders [16], and a strong signal emerges. This aspect raises ethical issues: on 
one hand, the researcher may be more prone toward an alarming interpreta-
tion of the findings to increase the impact of the publication. On the other 
hand, when broadly looking at the published literature in the past 5 years, only 
a minority of industry-sponsored studies provided “negative findings,” that is, 
the lack of statistically significant DAs [17, 18].

This “uncontrolled” scenario has generated what someone coined “apophenia,” 
that is, the perception of meaningful patterns and causal connections among ran-
dom data [19], or the so-called pharmacovigilance syndrome, that is, the incorrect 
use of spontaneous adverse event reports to infer that a drug causes an adverse reac-
tion, what the incidence or prevalence of such events may be, and whether one drug 
has lower or higher risk than another [20]. This in turn increases the complexity in 
the risk-benefit assessment [21] and may generate false alarm among clinicians [22].

It must be emphasized that statistical techniques, usually referred to as quantita-
tive analyses [23], cannot be used as a standalone approach to assess a drug-related 
risk because no risk quantification can be offered: they should be viewed in con-
junction with a qualitative analysis of individual reports, whenever feasible, and 
other pieces of evidence (e.g., observational studies). In other words, they cannot 
replace a proper clinical judgment in the individual patient.

In the recent past, a debate arose on the proper use of DAs and the benefit of 
their publication [24, 25]. However, no actions have been taken so far. The key 
applications of DAs are summarized as follows:

A. Signal detection (including specific events or the overall safety profile). This is 
the main goal of DAs, especially for medicines with unpredictable pharmacoki-
netics-pharmacodynamics such as biologicals [26], or recently marketed drugs 
with still undefined safety profile. This is also justified for rare adverse events 
that may escape detection in premarketing clinical trials (e.g., TdP, liver injury) 
or in case an imbalance (not reaching statistical significance) emerged from 
clinical data, as happened for pioglitazone and bladder cancer [27]. The choice 
of comparator group is pivotal in signal detection, especially in terms of clini-
cal implications. For instance, a novel antidiabetic drug should be compared 
with other antidiabetic drugs through the so-called analysis by therapeutic area 
(i.e., comparing the reporting of a given drug with other agents belonging to 
the same therapeutic class), in order to identify patients that are likely to share 
the common risk factors, mitigate the confounding by indication bias, and 
investigate the potential intraclass variations of risk [28–32]. As a matter of fact, 
a suspected risk for a drug can be interpreted by a clinical point of view only 
if compared to the same risk of therapeutic alternatives, especially for severe 
disorders (e.g., diabetes) because patient cannot be left without treatment.

B. Test/verify/confirm a pharmacological hypothesis. This can be illustrated 
by a number of examples in the recent past, including the relationship between 
hERG blockade and occurrence of TdP in humans [33]; the risk of diabetes by 
antipsychotics, which was more frequently associated with agents blocking 
simultaneously histamine H1 and serotonin 5-HT2C receptors [34]; the associa-
tion between different receptor occupancy and antipsychotic-induced move-
ment disorders [35], and the link between dopamine receptor agonist drugs and 
specific impulse control disorders [36].
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C. Address/verify methodological issues. This aspect is receiving an increas-
ing attention because it may strongly impact on final results. Before planning 
the analysis, it is important to verify all potential biases affecting the drug(s) 
or event(s) under investigation and prespecify strategies to handle with these 
confounders (see Section 7) [37–43].

D. Investigate the likelihood of drug-drug interactions. A few pilot initiatives pro-
posed theoretical strategies as well as relevant automated methods to detect signals 
resulting from drug-drug interactions (DDIs) in PhV databases [44–48]. Various 
approaches can be used to highlight adverse drug interactions: (a) reported 
suspicion of interactions as noted by the reporter in a case narrative, (b) assign-
ment of the two drugs as interacting (c) drug-drug interaction reported as adverse 
event, and (d) increased co-reporting for the drug pair when disproportionality 
is applied [49]. There is also interest in using SRSs to investigate whether a given 
drug-drug combination moderates the frequency of an adverse event [50, 51].

A recent systematic review highlighted that only a minority of studies aimed at 
confirming or supporting previous regulatory decisions on a given safety aspect [52], 
thus strengthening the aforementioned concept that DAs do not usually support, on 
their own, regulatory actions but must be integrated with other data sources.

Apart from DAs, the value of case-by-case assessment should not be disregarded. 
In fact, the individual evaluation of reports performed by pharmacovigilance 
experts with medical background has multiple aims: (a) it may per se be used for 
signal detection of rare ADRs, such as in the case of DMEs by detecting potential 
drug-event combinations even earlier than DAs [53] and (b) it may confirm or refuse 
disproportionality signals, by strengthening/reducing causality assessment or by 
identifying duplicates by automated strategy (through the use of narratives). The 
key challenging aspect of case-by-case analysis is represented by causality assess-
ment, that is, the process of differential diagnoses to prove actual causal relation-
ship: exclusion of alternative causes, biological and temporal plausibility, evidence 
of dechallenge and rechallenge (usually unintentional) should be verified. The 
complexity of causality assessment stems from the fact that it needs to be viewed 
from the context of the patient treated rather than the drug product [54]. Although 
several approaches are available to assess causality, no single method is universally 
accepted and there is no gold standard [55]. The choice of the most suitable approach 
may also depend on the event under investigation; for instance, ALDEN is a specific 
algorithmic score validated for assessment of drug causality in Stevens-Johnson syn-
drome/toxic epidermal necrolysis [56], whereas Roussel Uclaf Causality Assessment 
Method (RUCAM) was implemented for drug-induced liver injury [57].

As a conclusive remark, it should be recognized that most researchers are from 
academia, and in fact, their additional role is university teaching. In the last few 
years, experts of medical teaching have strengthened the importance of PhV in the 
core curriculum of undergraduate students of healthcare courses (i.e., medicine, 
pharmacy, dentistry, nursing, etc.). WHO and the most active national PhV centers 
are committed to better define knowledge, skills, and attitudes that students should 
acquire in order to have an active role in pharmacovigilance [58].

6. Potential future applications: evidence integration and risk estimates

Integration of heterogeneous data (literature including mass media, clinical 
trials, observational studies, spontaneous reporting data analysis, case reports, 
and preclinical data) is currently in the research domain at the preliminary level, 
with the degree of confidence and reliance on a given source as key unresolved 
issues. An attempt to achieve a risk score on the pro-arrhythmic potential of drugs 
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was undertaken within the ARITMO project [59], where a Dempster-Shafer model 
was used to combine evidence from heterogeneous and independent sources 
using expert judgment [60]. The only published experience on data integration in 
pharmacovigilance comes from the (useful) interplay between SRSs and healthcare 
databases to increase the accuracy of signal detection [61, 62].

In the following section, the issue of evidence integration for research purposes will 
be addressed in the context of systematic reviews, which are increasingly being used 
as they can make researchers and readers aware about what is known, how it is known, 
how evidence varies across studies, and thus about what is not already known [63].

Issues of data quality and inherent limitations cause remarkable impact in spon-
taneous reporting studies in which more sources of variability (e.g., missing data) 
and biases affecting the results could be identified (competition or notoriety bias). 
Nevertheless, so far, no specific tools or techniques have been developed to select, 
compare, or pool together data from DAs. This could be due to a relative paucity of 
this kind of analysis in the medical literature.

Disproportionality is used to detect “signals of disproportionate reporting” (SDRs) 
that, once detected, are usually investigated through other, and more precisely, study 
designs. It is thus rare to have additional DAs regarding the same outcome related 
to the same drug or drug class and that used a comparable tool for signal detection 
(frequentist vs. Bayesian approaches). Nevertheless, at least theoretically, techniques 
and statistical basis used to perform meta-analysis could also be used to analyze results 
from disproportionality, at least to evaluate consistency of signal across different 
databases. A consistent signal found in two databases could be probably prioritized in 
comparison with inconsistent ones. Notably, raw data cannot be pooled because of the 
existence of an unquantified degree of redundancy (i.e., duplicates across databases), 
but results can be combined to reach a single “pharmacovigilance score” [59].

It is well known that results of DA cannot be considered as measures of risk: the 
number of cases in a spontaneous reporting database does correspond to neither 
the number of cases that happened under the drug nor to that of cases induced by 
the drug, and the number of exposed people is not measured. From this point of 
view, including results of disproportionality in a meta-analysis could be considered 
inappropriate, although identification of heterogeneity in reporting may be of 
interest [64]. In the absence of any clear guideline, disproportionality studies could 
be searched and included in (qualitative) systematic reviews, but their results 
must be kept separated from pooled risk estimates of (quantitative) meta-analyses 
[65]. A recent experience by a French team on safety of drugs acting on the nitric 
oxide pathway in pulmonary hypertension considers together results from a DA of 
VigiBase and from a meta-analysis of clinical trials and concludes that the safety 
profiles of riociguat and phosphodiesterase inhibitors were different, thus provid-
ing a rationale for safe prescribing [66]. This approach, as the integration of sponta-
neous reporting analysis in meta or teleoanalysis [67], is still a research question.

Preliminary findings raise the hypothesis that, provided that all technical and 
clinical aspects are addressed, the performance of DAs is remarkable [7] and may 
approach the relative risks of analytical studies, thus providing an initial indication 
of the likely clinical importance of an adverse event [68].

7. Methodological aspects

7.1 Current concepts in study design

Once the research question has been identified, the researcher must keep in 
mind the various limitations and biases affecting SRSs to reduce the likelihood 
of detecting spurious signals. Moreover, clinical, pharmacological, and statistical 
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considerations are needed to select the most appropriate dataset, definition of 
cases, exposure, and covariables for stratification/adjustment.

Although the discussion on performance, accuracy, and reliability of different 
approaches to perform DAs was fascinating a decade ago, at present there is still no 
recognized gold standard methodology, and the key factor that may influence results 
is represented by the threshold defined for the number of cases [69, 70]. DAs in 
spontaneous reporting databases test whether an ADR is reported more frequently 
than expected; they allow identifying the so-called SDRs [23, 71]. These SDRs must 
be differentiated from safety signals because the existence of a SDR is not sufficient 
to constitute a safety signal (it does not always result in one, in fact), and a safety 
signal does not always imply a corresponding SDR [72].

As previously described, the various SRSs differ in terms of accessibility, catch-
ment area, drug codification, and other technical issues. For instance, two key steps 
must be managed when analyzing the publicly available version of FAERS: drug 
mapping and removal of duplicates. These aspects have been extensively covered in 
the previous book chapter, and the reader should refer to this publication for details 
[73]. The FDA is continuously working to develop a probabilistic record-linkage 
algorithm combining structured and unstructured data (narratives) to improve the 
detection rate and accordingly reduce the occurrence of false positive signals [74].

7.2 Bias and strategies for their minimization

Before considering a potential causal relationship for a given identified SDR, 
main biases that affect signal detection from spontaneous reporting must be 
eliminated or at least mitigated. Notably, even after accounting for major bias, 
clinical association cannot be inferred from SRSs, and channeling bias (selective 

Bias Example Underlying reason Minimization strategy

Indication 
bias

Angiotensin Converting 

Enzyme (ACE) 

inhibitors showing 

signal of hypoglycemia.

These agents are largely used 

in diabetic patients.

Sensitivity analysis 

including only 

nondiabetic patients 

(i.e., using antidiabetic 

agents).

Drug 
competition 
bias

Anticoagulants when 

analyzing drug-induced 

bleeding.

Anticoagulants are expected 

to cause bleeding as toxic 

effect of their drug class.

Analysis by excluding 

reports with 

anticoagulants.

Event 
competition 
bias

Extrapyramidal 

syndrome (ES) 

when analyzing 

first-generation 

antipsychotics (FGA).

ES is a typical ADR in FGA-

treated patients.

Analysis by excluding 

ES to detect new safety 

signal for FGA.

Notoriety bias Rhabdomyolysis 

occurrence with 

statins after regulatory 

warnings.

After that alert, the number 

of events arose.

Studying signal before 

the alert.

Dilution bias Suicide ideation related 

to new antidepressant.

A warning issued for a whole 

pharmacological class has 

stronger impact for newer 

drugs because the new ADR 

is diluted by other ADRs for 

older drugs.

Taking into account the 

time of drug approval 

and investigate different 

sources of dilution (e.g., 

warnings, publications, 

etc.).

Modified from [114].

Table 3.  
Major biases in disproportionality analyses and strategies for their minimization.
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prescription of newer drugs to patients with more severe disease [75]) is unlikely to 
be fully accounted by statistical adjustments. They are described later together with 
practical examples and relevant minimization strategies as shown in Table 3.

Overall, we can identify: (A) indication bias when a drug is found to be asso-
ciated with a given event for the sole reason that it is indicated in patients with 
comorbidities that increase the risk of that event; (B) competition bias also called 
“masking effect” when an event/drug more frequently reported for a given drug/
event can “mask” identification of other possible ADRs/drugs [42, 76–82]; 
(C) notoriety bias when media attention (e.g., regulatory warning and milestone 
publication) causes over-reporting of peculiar ADR for specific drugs [37, 38]; and 
(D) dilution bias when a whole drug class is influenced by media attention for an 
event, older drugs with a larger numbers of reports are less likely to generate safety 
signal than newer drugs (with less reports) [83].

The Weber effect is an additional factor that may influence the reporting of 
given drugs, although it cannot be formally considered as a source of bias [84]. It 
was originally described as a higher reporting especially during the first 2 years 
after marketing approval, thus suggesting novelty per se as a risk factor for notifica-
tion, although modern adverse event reporting systems seem less affected by this 
bias [43].

8. Unsettled issues

8.1 Patient reporting: current status

The 2012 PhV legislation forced national competent authorities and marketing 
authorization holders to record and report cases of suspected adverse reactions 
reported by patients [3]. This, in turn, caused legislation remarkable increase of 
the total number of patient reports (+113%) after 3 years, with the Netherlands, 
the UK, Germany, France, and Italy accounting for 75% of all patient reports 
[85]. The relevance of patient reports is heterogeneous, and a recent survey on 
141 countries worldwide showed that in one-fourth of them, patients were not 
allowed to report. Conversely, countries receiving the highest percentage of 
patient reports in 2014 were the USA (64%) and Canada (30%).

More than 70 countries had fewer than 50 reports from patients [86]. The quality 
and the value of patient reports in the context of signal detection were evaluated in 
many published studies [87–91]. The value of the reports as a signal is directly depen-
dent on the amount of clinically relevant information, in addition to the fact that an 
ADR report requires a thorough examination of the potential drug-event  association. 
Most of the published studies comparing information reported by patients and 
healthcare professionals focused on the completeness of information [86, 92].

Patient reports give detailed descriptions of suspected ADRs, attribute reac-
tions to specific medicines, and provide information useful for assessing causality. 
Patient reports often have richer narratives than those of healthcare professionals, 
including detailed information about the impact of the suspected ADR on the 
patient’s life [91].

Many studies, mainly from the UK and the Netherlands, showed that patient 
reports allow for the identification of new ADRs and lead to the strengthening of 
signal detection activities [90, 93, 94].

In summary, patient’s reporting offers a different perspective in drug safety 
assessment and may potentially contribute in signal detection. However, it is impor-
tant to further investigate its actual role in drug safety assessment; in fact, the large 
number of reports without clear causal relationship (recently called “precautionary 
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report”) may alter adverse event profile by masking safety signals or, conversely, 
creating spurious associations [95].

8.2 Ethical and transparency issues

The relevance of patient reporting highlights the need of public access to 
spontaneous reporting data, and many countries now provide public access to SRSs, 
with the possibility to have summary presentations for reactions associated to each 
single drug in the database or a case listing of limited information for each single 
case report. Both EMA and WHO Uppsala Monitoring Centre (UMC) developed 
web tools to access a limited set of spontaneous reporting data in their database, 
EudraVigilance (adrreports.eu) and VigiBase (vigiaccess.org).

The EMA policy includes the possibility for academia or nonprofit organization 
to ask for a greater access to data as aggregated data outputs or line listings based 
on core data elements (http://www.ema.europa.eu/ema/index.jsp?curl=pages/
regulation/general/general_content_000674.jsp). However, it has been commented 
that the EMA’s approach to transparency over PhV data is too timid. The public 
access of PhV data is even more restricted for vaccines, mainly due to the potential 
negative impact of this public access to the vaccination campaigns. The reporting 
of serious adverse events not causally related to the vaccination could lead to a 
misrepresentation of vaccine risks that could be used by antivaccine movement. To 
our knowledge, very few European countries (e.g., Italy and the Netherlands) give 
public access to spontaneous data related to vaccines.

A different approach to transparency is followed by UMC and FDA. In VigiBase, 
custom search service provided by UMC is performed upon request. Any stakehold-
ers can use the custom search services to request a limited set of data for specific 
studies or projects for a fee.

The best level of transparency is observed for FDA data. Data for both drugs 
(FAERS) and vaccine (VAERS) can be obtained using web-based search tools 
that return structured and/or unstructured data. Moreover, the entire database 
is quarterly downloadable in comma-separated value (CSV) or other formats. 
This access needs technical skills to properly process the relational database 
files and any unstructured fields. However, it gives the possibility to any users 
to analyze FDA spontaneous reporting data even applying DAs [5]. Since June 
2014, the FDA developed an innovative platform called openFDA (openfda.gov) 
to facilitate access and use of big important FDA public datasets by developers, 
researchers, and the public through harmonization of data across disparate 
FDA datasets provided via application programming interfaces (APIs) [96]. 
Recently, the FDA has also launched the FAERS Public Dashboard, a highly 
interactive web-based tool that will allow to query FAERS data in a user-friendly 
fashion (https://fis.fda.gov/sense/app/777e9f4d-0cf8-448e-8068-f564c31baa25/
sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis). These different 
approaches to public access spontaneous reporting data lead to a bizarre situa-
tion because the reports included in EudraVigilance, VigiBase, and FAERS are 
largely overlapped, and it could be possible to have different information for the 
same report.

8.3 Social media: opportunities and challenges

An area of emerging interest for research is represented by the use of informa-
tion provided by patients in social media on personal experiences when using a 
given drug. At present, it is under investigation whether or not (and how) social 
media data mining can contribute to signal detection [94, 95].
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A recent review summarizes prevalence, frequency, and comparative value of 
information on adverse events of healthcare interventions from user comments and 
videos in social media. The study assessed over 174 social media sites, with discus-
sion forums (71%) being the most popular. The overall prevalence of adverse event 
reports in social media varied from 0.2 to 8% of posts. Moreover, there was general 
agreement on overall concordance between adverse events mentioned in social 
media and those already documented in other sources (such as drug labels and 
published trials) [97].

The web-recognizing adverse drug reaction (Web-RADR) project, leaded by 
EMA and funded within the innovative medicines innovation (IMI), aims to recom-
mend policies, frameworks, tools, and methodologies in the use of social media and 
mobile technology to improve drug safety [98]. Specific objectives are as follows: 
(a) to develop the specific mobile application prototypes to support adverse drug 
reaction reporting and the provision of drug safety information to application users 
and (b) to assess the usefulness of social media data for PhV and more specifically 
in signal detection activities.

The theoretical advantages of social media in the context of signal detection 
rely on potential earlier identification of rare and serious drug-related problems, in 
comparison with conventional SRSs, considering the opportunity to share informa-
tion as fast as possible and the large number of active users in the social media. It 
has been reported that patient reports of suspected adverse reactions, particularly 
for specific reactions, can precede those of healthcare professionals [99]. One study 
of social media posts containing discussions of adverse drug events (“Proto-AEs”) 
found that there were nearly three times as many Proto-AEs found in Twitter data 
than reported to the FDA by consumers, with rank correlation between them at the 
distribution of reactions at MedDRA SOC level [100].

Another important value from social media analyses comes from extracting 
qualitative insights into the actual discussions made by patients around a drug 
and an adverse event. This can be of great value for addressing issues related to 
the patient experience around an ADR and its impact on the quality of life [101]. 
Moreover, mining data from social media gives us a greater chance of capturing 
ADRs that a patient would not necessarily complain about to their doctor or nurse 
and can also help assessment of the risk perceptions of patients.

Key challenge is represented by the identification of drugs and ADRs in the 
text strings through a particular type of machine learning called natural language 
processing (NLP). From the perspective of PhV and NLP specifically, user posts 
on social media contain colloquial language and also misspellings. Especially when 
using lexicon-based approaches, these present problems as the accuracy of direct 
matches decreases. Colloquial and informal language is more difficult to parse, and 
thus, recent research tasks have focused on developing NLP tools specifically for 
data from social media [102, 103]. The balance between sensitivity and specificity 
of these tools in identifying ADRs is a key issue because a high number of false posi-
tives could heavily impact the efficacy of signal detection activities.

Another key element is the quality of the information on adverse events reported 
in the social media, which was analyzed only by a few works. A study where 
Internet narratives posted by patients were evaluated showed that the informative-
ness level was very incomplete and makes their assessment and use for PhV purpose 
difficult [104].

Concerning the potential of social media analyzes for earlier signal detection, 
contrasting data are published [105, 106].

Social media data mining uses information for PhV purposes, which were not 
primarily shared by the patient for this purpose. This raises a number of ethical 
questions, especially about identification of individuals by utilizing additional 
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information, such as the geocode location on posting, username, and other poten-
tially personally identifiable information [107], which are still unresolved. How 
would patient using social media react when approached for additional information 
by organizations that collect PhV data? Since this is a new area, ethically sound 
policy guidance needs to be developed.

A different approach in the use of Internet data for signal detection is the use 
of anonymized logs of web searchers [108]. In a recent study, a web-based search 
query method called “query log reaction score” was developed to detect whether 
adverse events associated with certain drugs could be found from search engine 
query data. The web query methods have moderate sensitivity (80%) in detecting 
signals in web query data compared with reference signal detection algorithms, but 
many false positives were generated, and this method had low specificity [109].

9. Future perspectives

The continuous increasing number of spontaneous reports and the increasing 
quality in their systematic archiving and accessing comply scientific community to 
improve methods of analysis and ways to interpret them for regulatory, clinical, and 
research purposes.

A specific debated issue on the current role of data-mining procedures of SRSs 
regards the possibility to directly compare drugs within the same therapeutic class 
[110]. We are in favor of this approach and strongly encourage further research 
regarding the use of SRSs, under stringently defined conditions, to compare adverse 
event rates for drugs [111]. To this aim, all the following criteria must be fulfilled:

1. Same therapeutic indication(s). The effect of the underlying disease may be 
reduced by restricting DAs to drugs within the same therapeutic area [29, 30].

2. Similar market penetration and utilization. Drug consumption/prescription 
should be considered in order to: (i) complement DAs by highlighting possible 
risk differences through reporting rates (especially for vaccines and DMEs) 
[112]; (ii) weigh the drug risk at the population level (and assess the public 
health impact of ADRs); and (iii) prioritize safety signals emerging from 
traditional DAs [113].

3. Similar time on the market. This aspect should be carefully considered in the 
analyses to avoid the temporal or time-point bias, especially when comparing 
first- versus second-generation drugs. Standardization of the time on the market 
using the same fixed-length post-approval time-frame has been proposed [110].

4. Data distortions are unlikely to occur or apply in a similar manner across the drugs 
under investigation. Stratification (for age and sex) or adjustment should always 
be considered to minimize the presence of known confounders. Moreover, the 
existence of specific biases should be verified and accounted for.

An emerging application of SRSs, in the era of Big Data, is represented by their 
integration with other heterogeneous sources of healthcare data (e.g., the avail-
ability of prescription-data, hospital admission and discharge, population-based, 
disease-based, death registries, social media, and literature) to support proactive 
PhV in the risk-benefit assessment, as performed in the ARITMO projects through 
the Dempster-Shafer approach [59].



17

Evolving Roles of Spontaneous Reporting Systems to Assess and Monitor Drug Safety
DOI: http://dx.doi.org/10.5772/intechopen.79986

Finally, the question arises as to whether all disproportionality studies should be 
published in scientific journals. Supporters of scientific transparency and full release 
of datasets via Open Science would undoubtedly call for public availability of study 
results, including negative findings. A proposal was recently formulated [114].

This controversy on the quality of DAs raises the concern on how best assess it 
and reach consensus on a “set of minimum requirements to assess the quality of 
DAs in terms of study conception, performing and reporting.” Provisional criteria 
have been recently proposed (from the experience of antidiabetic drugs) [114], but 
further discussion is warranted:

• Clear title. Avoid the general terms such as “pharmacovigilance analysis.” 
Prefer the following terms: “disproportionality analysis,” “analysis of spontane-
ous reporting system,” and “analysis of spontaneous reports.”

• Scientifically sound study conception. The scientific rationale must be clearly 
indicated and fall within one of these aforementioned categories (DAs are par-
ticularly suited for DMEs). Regulatory approach (i.e., identification of a poten-
tial signal during routine monitoring of spontaneous reporting systems) and 
commissioned analysis for regulatory purposes should not be formally eligible 
for publication in a journal, unless an added value emerges (e.g., the analysis is 
extended to the entire pharmacological class).

• Transparent study design. The unit of analysis should be described. Case(s) 
and exposure (reference group) definition should be specifically defined. The 
search strategy must be stated, and a clear description behind the choice is 
warranted. Key confounders to be accounted for must be a priori identified. 
Strategies to handle these biases must be indicated, including stratified or 
adjusted analyses. Notoriety must be carefully assessed: a structured literature 
evaluation is recommended, instead of a mere check to summary of product 
characteristics.

• Balanced discussion and conclusion. Prefer the term “disproportionality 
signal” and “signal of disproportionate reporting,” and avoid the terms such 
as “alarm signal,” “signal of risk,” “increased risk,” “association,” “incidence.” 
Compare the results with those emerging from similar studies (emerged from the 
structure literature evaluation). Limitations should be provided in a dedicated 
section, avoid a mere listing of known biases affecting spontaneous reporting 
system. Avoid the specific recommendations (decision-making approach) to 
support drug prescription or selection of drugs claimed to be safer.

From a technical standpoint, good signal detection practices have been  published 
by the Innovative Medicines Initiative Pharmacoepidemiological Research on 
Outcomes of Therapeutics by a European ConsorTium (PROTECT) project, which 
have formulated 39 recommendations for those working in the PhV community [115].

A final issue regards the timeliness of publishing DAs when keeping with signal 
detection. For instance, the analysis by Elashoff et al. [16] on pancreatitis reports 
with incretin-based drugs, apart from methodological flaws and data misinterpre-
tation causing unjustified alarm, was also untimely, considering that observational 
studies had already been carried out. Conversely, liver injury with direct-acting 
oral anticoagulants (DOACs) was studies because of limited predictivity of 
premarketing phases in detecting clinical signals of liver toxicity and previous 
concern with ximelagatran: the disproportionality signal raised for rivaroxaban in 
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FAERS [116] was tested by the recent US population-based studies, which found 
lower hospitalization rates for liver injury with DOAC initiators than patients 
starting warfarin, with rivaroxaban and dabigatran associated with the highest 
and lowest risk [117, 118], although confounders are likely to exist [119, 120]. This 
case underscores the value of performing well-conducted DAs and the importance 
of directing subsequent analytical research to confirm or refute the drug-related 
hypothesis.

All these unsettled issues witness the need and the importance of implementing 
research to finally clarify the role of DAs in clinical practice.

10. Concluding remarks

Regulators and especially clinicians are appreciating the importance and the 
role of DAs to monitor and assess the safety profile of marketed drugs. All “actors” 
dealing with SRSs must always be aware of the so-called seduction bias and self-
deception bias (i.e., over-reliance on mathematical models and the subconscious 
confidence in expecting a given output from results), thus be reminded of inherent 
limitations that, at present, do not allow to assess actual risk in clinical practice, 
mainly because of the lack of certainty in the occurrence of adverse events and the 
lack of exposure data [121].

From a research perspective, there is an urgent need to raise the bar, aiming to 
increase the accuracy and reproducibility (in one word the quality) of this kind 
of study. From one side, there is a room for improvement in several aspects of the 
analysis of SRSs, including relevant implications and their appropriate use such 
as the aspect of “no findings” (i.e., findings of nondisproportional results), which 
has not received sufficient attention so far. Moreover, different research teams 
are implementing sophisticated methods to account for confounders in signal 
detection, so that DAs may approach relative risk. In the meantime, we propose 
to include disproportionality studies in (qualitative) systematic reviews keeping 
results separated from pooled risk estimates of (quantitative) meta-analyses [63].

In conclusion, SRSs represent an invaluable source to monitor and assess the 
safety of medications, including drugs, vaccines, and healthcare products.

We call for a responsible use and publication of DAs, which should be regulated 
through a consensus approach among experts; this would finally establish the use 
and transferability of DAs in clinical practice.
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