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Preface

Solitons were first discovered by a Scottish engineer, J. Scott Russell, in 1834 while
riding his horse by a water channel when a boat suddenly stopped. A hump of water
rolled off the prow of the boat and moved rapidly down the channel for several miles,
preserving its shape and speed. The observation was surprising because the hump
did not rise and fall, or spread and die out, as ordinary water waves do.

In the 150 years or so since the discovery of Scott Russell, solitons have been
discovered in numerous systems besides hydrodynamics. Probably the most im-
portant application of these is in the context of optics where they can propagate
in optical fibers without distortion: they are being studied for high-data-rate (tera-
bits) communication. Particle physicists have realized that solitons may also exist
in their models of fundamental particles, and cosmologists have realized that such
humps of energy may be propagating in the far reaches of outer space. There is even
speculation that all the fundamental particles (electrons, quarks etc.) may be viewed
as solitons owing to their quantum properties, leading to a “dual” description of
fundamental matter.

In this book I describe the simplest kinds of solitons, called “kinks” in one
spatial dimension and “domain walls” in three dimensions. These are also humps
of energy as in Scott Russell’s solitons. However, they also have a topological
basis that is absent in hydrodynamical solitons. This leads to several differences
e.g. water solitons cannot stand still and have to propagate with a certain velocity,
while domain walls can propagate with any velocity. Another important point in this
regard is that strict solitons, such as those encountered in hydrodynamics, preserve
their identity after scattering. The kinks and domain walls discussed in this book
do not necessarily have this property, and can dissipate their energy on collision,
and even annihilate altogether.

Why focus on kinks and domain walls? Because they are known to exist in many
laboratory systems and may exist in other exotic settings such as the early uni-
verse. They provide a simple setting for discussing non-linear and non-perturbative

xi



xii Preface

physics. They can give an insight into the dynamics of phase transitions. Lessons
learned from the study of kinks and domain walls may also be applied to other
more complicated topological defects. Domain walls are good pedagogy as one
can introduce novel field theoretic, cosmological, and quantum issues without ex-
traneous complexities that occur with their higher co-dimension defects (strings
and monopoles).

The chapters of this book can be approximately categorized under four different
headings. The first two chapters discuss solitons as classical solutions, the next
three describe their microscopic classical and quantum properties, followed by
another three chapters that discuss macroscopic properties and applications. The
very last chapter discusses two real-world systems with kinks and, very briefly,
Scott Russell’s soliton. The book should be accessible to a theoretically inclined
graduate student, and a large part of the book should also be accessible to an
advanced undergraduate. At the end of every chapter, I have listed a few “open
questions” to inspire the reader to take the subject further. Some of these questions
are intentionally open-ended so as to promote greater exploration. Needless to say,
there are no known answers to most of the open questions (that is why they are
“open”) and the solutions to some will be fit to print.

Every time I think about research in this area, I feel very fortunate for having
unwittingly chosen it, for my journey on the “soliton train” has weaved through
a vast landscape of physical phenomena, each with its own flavor, idiosyncrasies,
and wonder. I hope that this book, as it starts out in classical solitons, then moves
on to quantum effects, phase transitions, gravitation, and cosmology, and a bit of
condensed matter physics, has captured some of that wonder for the reader.

This is not the first book on solitons and hopefully not the last one either. In
this book I have presented a rather personal perspective of the subject, with some
effort to completeness but focusing on topics that have intrigued me. Throughout, I
have included some material that is not found in the published literature. Prominent
among these is Section 4.5, where it is shown that the leading quantum correction
to the kink mass is negative. The discussion of Section 6.5, with its emphasis on
a bifurcation of correlation scales, also expresses a new viewpoint. I had partic-
ular difficulty deciding whether to include or omit discussion of domain walls in
supersymmetric theories. On the one hand, many beautiful results can be derived
for supersymmetric domain walls. On the other, the high degree of symmetry is
certainly not realized (or is broken) in the real world. Also, non-supersymmetric
domain walls are less constrained by symmetries and hence have richer possibilities.
In the end, I decided not to include a discussion of supersymmetric walls, noting
the excellent review by David Tong (see below). Some other must-read references
are:
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1

Classical kinks

Kink solutions are special cases of “non-dissipative” solutions, for which the energy
density at a given point does not vanish with time in the long time limit. On the
contrary, a dissipative solution is one whose energy density at any given location
tends to zero if we wait long enough [35],

limt→∞ maxx{T00(t, x)} = 0, dissipative solution (1.1)

where T00(t, x) is the time-time component of the energy-momentum tensor, or
the energy density, and is assumed to satisfy T00 ≥ 0. Dissipationless solutions are
special because they survive indefinitely in the system.

In this book we are interested in solutions that do not dissipate. In fact, for
the most part, the solutions we discuss are static, though in a few cases we also
discuss field configurations that dissipate. However, in these cases the dissipation
is very slow and hence it is possible to treat the dissipation as a small perturbation.
In addition to being dissipationless, kinks are also characterized by a topological
charge. Just like electric charge, topological charge is conserved and this leads to
important quantum properties.

In this chapter, we begin by studying kinks as classical solutions in certain field
theories, and devise methods to find such solutions. The simplest field theories that
have kink solutions are first described to gain intuition. These field theories are also
realized in laboratory systems as we discuss in Chapter 9. The simple examples
set the stage for the topological classification of kinks and similar objects in higher
dimensions (Section 1.10), and are valuable signposts in our discussion of the more
complicated systems of Chapter 2.
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2 Classical kinks
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Figure 1.1 Shape of the λφ4 potential.

1.1 Z2 kink

The prototypical kink is the so-called “Z2 kink.” It is based on a field theory with
a single real scalar field, φ, in 1 + 1 dimensions. The action is

S =
∫

d2x

[
1

2
(∂µφ)2 − V (φ)

]

=
∫

d2x

[
1

2
(∂µφ)2 − λ

4
(φ2 − η2)2

]
(1.2)

where µ = 0, 1, and λ and η are parameters. The Lagrangian is invariant under the
transformation φ → −φ and hence possesses a “reflectional” Z2 symmetry. The
potential for φ (see Fig. 1.1) is

V (φ) = λ

4
(φ2 − η2)2 = −m2

2
φ2 + λ

4
φ4 + λη4

4
(1.3)

where m2 ≡ λη2. The potential has two minima: φ = ±η, that are related by the
reflectional symmetry. The “vacuum manifold,” labeled by the classical field con-
figurations with lowest energy, has two-fold degeneracy since V (φ) = V (−φ).

The equations of motion can be derived from the action

∂2
t φ − ∂2

x φ + λ(φ2 − η2)φ = 0 (1.4)

where ∂t ≡ ∂/∂t and similarly for ∂x . A solution is φ(t, x) = +η, and another
is φ(t, x) = −η. These have vanishing energy density and are called the “trivial
vacua.” The action describing excitations (sometimes called “mesons”) about one
of the trivial vacua can be derived by setting, for example, φ = η + ψ , where ψ is
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the excitation field. Then

S =
∫

d2x

[
1

2
(∂µψ)2 − m2

ψ

2
ψ2 −

√
λ

2
mψψ3 − λ

4
ψ4

]
(1.5)

where

mψ =
√

2m (1.6)

is the mass of the meson.
Next consider the situation in which different parts of space are in different

vacua. For example, φ(t, −∞) = −η and φ(t, +∞) = +η. In this case, the function
φ(t, x) has to go from−η to+η as x goes from−∞ to+∞. By continuity of the field
there must be at least one point in space, x0, such that φ(t, x0) = 0. Since V (0) �= 0,
there is potential energy in the vicinity of x0, and the energy of this state is not
zero. The solution of the classical equation of motion that interpolates between the
different boundary conditions related by Z2 transformations is called the “Z2 kink.”

We might wonder why the Z2 kink cannot evolve into the trivial vacuum? For
this to happen, the boundary condition at, say, x = +∞ would have to change in a
continuous way from +η to −η. However, a small deviation of the field at infinity
from one of the two vacua costs an infinite amount of potential energy. This is
because as φ is changed, the field in an infinite region of space lies at a non-zero
value of the potential (see Fig. 1.1). Hence, there is an infinite energy barrier to
changing the boundary condition.1

A way to characterize the Z2 kink is to notice the presence of a conserved current

jµ = 1

2η
εµν∂νφ (1.7)

where µ, ν = 0, 1 and εµν is the antisymmetric symbol in two dimensions (ε01 =
1). By the antisymmetry of εµν , it is clear that jµ is conserved: ∂µ jµ = 0. Hence

Q =
∫

dx j0 = 1

2η
[φ(x = +∞) − φ(x = −∞)] (1.8)

is a conserved charge in the model. For the trivial vacua Q = 0, and for the kink con-
figuration described above Q = 1. So the kink configuration cannot relax into the
vacuum – it is in a sector that carries a different value of the conserved “topological
charge.”

To obtain the field configuration with boundary conditions φ(±∞) = ±η, we
solve the equations of motion in Eq. (1.4). We set time derivatives to vanish since

1 In Chapter 2 we will come across an example where the vacuum manifold is a continuum and correspondingly
there is a continuum of boundary conditions that can be chosen as opposed to the discrete choice in the Z2 case.
This will lead to some new considerations.
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we are looking for static solutions. Then, the kink solution is

φk(x) = η tanh

(√
λ

2
ηx

)
(1.9)

In fact, one can Lorentz boost this solution to get

φk(t, x) = η tanh

(√
λ

2
ηX

)
(1.10)

where

X ≡ x − vt√
1 − v2

(1.11)

(Recall that we are working in units in which the speed of light is unity i.e. c = 1.)
The solution in Eq. (1.10) represents a kink moving at velocity v.

Another class of solutions is obtained by translating the solution in Eq. (1.9)

φk(x ; a) = η tanh

(√
λ

2
η(x − a)

)
(1.12)

It is easily checked that translations do not change the energy of the kink. This is
often stated as saying that the kink has a zero energy fluctuation mode (or simply
a “zero mode”). To explain this statement, we need to consider small fluctuations
of the field about the kink solution, similar to Eq. (1.5). We now have

φ = φk(x) + ψ(t, x) (1.13)

where φk denotes the kink solution. The fluctuation field, ψ , obeys the linearized
equation

∂2
t ψ − ∂2

x ψ + λ
(
3φ2

k − η2
)
ψ = 0 (1.14)

To find the fluctuation eigenmodes we set

ψ = e−iωt f (x) (1.15)

where f (x) obeys

−∂2
x f + λ

(
3φ2

k − η2
) = ω2 f (1.16)

We will discuss all the solutions to this equation in Chapter 4. Here we focus on the
translation mode. Since translations cost zero energy, there has to be an eigenmode
with ω = 0. This can be obtained by directly solving Eq. (1.16) or by noting that
for small a, the solution in Eq. (1.12) can be Taylor expanded as

φk(x ; a) = φk(x ; a = 0) + a
dφk

dx

∣∣∣∣
a=0

(1.17)
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-0.5

0.5

1

Figure 1.2 The curve ranging from −1 to +1 as x goes from −∞ to +∞ shows
the Z2 kink profile for λ = 2 and η = 1. The energy density of the kink has also
been plotted on the same graph for convenience, and to show that all the energy is
localized in the narrow region where the field has a gradient.

Comparing Eqs. (1.17) and (1.13), the zero mode solution is

f0(x) = dφk

dx

∣∣∣∣
a=0

= η2

√
λ

2
sech2

(√
λ

2
ηx

)
(1.18)

The solution in Eq. (1.9) can be used to calculate the energy density of the kink

E = 1

2
(∂tφk)2 + 1

2
(∂xφk)2 + V (φk)

= 0 + V (φk) + V (φk)

= λη4

2
sech4

(√
λ

2
ηx

)
(1.19)

where the second line is written to explicitly show that (∂xφ)2 = 2V (φ). The kink
profile and the energy density are shown in Fig. 1.2. The total energy is

E =
∫

dx E = 2
√

2

3

m3

λ
(1.20)

As is apparent from the solution and also the energy density profile, the half-
width of the kink is,

w =
√

2

λ

1

η
=

√
2

m
= 2

mψ

(1.21)

On the x > 0 side of the kink we have φ ∼ +η while on the x < 0 side we have
φ ∼ −η. At the center of the kink, φ = 0, and hence the Z2 symmetry is restored
in the core of the kink. Therefore the interior of the kink is a relic of the symmetric
phase of the system.
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1.2 Rescaling

It is convenient to rescale variables in the action in Eq. (1.2) as follows

	 = φ

η
, yµ =

√
λ ηxµ (1.22)

Then the rescaled action is

S = η2
∫

d2 y

[
1

2
(∂µ	)2 − 1

4
(	2 − 1)2

]
(1.23)

where derivatives are now with respect to yµ. The overall multiplicative factor, η2,
does not enter the classical equations of motion. Hence the classical λφ4 action is
free of parameters.2

1.3 Derrick’s argument

In the context of rescaling, we now give Derrick’s result that there can be no static,
finite energy solutions in scalar field theories in more than one spatial dimension
[45]. Consider the general action in n spatial dimensions

S =
∫

dn+1x

[
1

2

∑
a

(∂µφa)2 − V (φa)

]
(1.24)

where the potential is assumed to satisfy V (φa) ≥ 0. The index on φa means that the
model can contain an arbitrary number of scalar fields. Let a purported static, finite
energy solution to the equations of motion be φa

0 (xµ) and consider the rescaled field
configuration

	a
0(xµ) = φa

0 (αxµ) (1.25)

where α ≥ 0 is the rescaling parameter. Then the energy of the rescaled field con-
figuration is

E
[
	a

0

] =
∫

dnx

[
1

2

(∇	a
0

)2 + V
(
	a

0

)]
(1.26)

where the sum over a is implicit and ∇ denotes the spatial gradient. Now define
yµ = αxµ and this gives

E
[
	a

0

] =
∫

dn y

[
α−n+2

2

(∇φa
0 (y)

)2 + α−n V
(
φa

0 (y)
)]

(1.27)

2 In quantum theory, however, the value of the action enters the path integral evaluation of the transition amplitudes
and this will depend on η2. So the properties of the quantized kink also depend on the value of η2 (see Chapter 4).
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Since the kinetic terms are non-negative, we find that with n ≥ 2 and α > 1 this
gives

E
[
	a

0

]
< E

[
φa

0

]
(1.28)

and hence φa
0 cannot be an extremum of the energy. Only if n = 1 can φa

0 be a static,
finite energy solution.

In more than one spatial dimension, Derrick’s argument allows for static solutions
of infinite energy. The next section describes one such static solution in three spatial
dimensions.

1.4 Domain walls

When kink solutions are placed in more than one spatial dimension, they become
extended planar structures called “domain walls.” The field configuration for a Z2

domain wall in the yz-plane in three spatial dimensions is

φ(t, x, y, z) = η tanh

(√
λ

2
ηx

)
(1.29)

The energy density of the wall is concentrated over all the yz-plane and is given
by Eq. (1.19). The new aspects of domain walls are that they can be curved and
deformations can propagate along them. These will be discussed in detail in Chap-
ter 7.

Another feature of the planar domain wall is that it is invariant under boosts in
the plane parallel to the wall. This is simply because the solution is independent of
t , y and z and any transformations of these coordinates do not affect the solution.

1.5 Bogomolnyi method for Z2 kink

Rather than directly solve the equations of motion, as was done in Section 1.1, we
can also obtain the kink solution by the clever method discovered by Bogomolnyi
[20]. The method is to obtain a first-order differential equation by manipulating the
energy functional into a “whole square” form

E =
∫

dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 + V (φ)

]

=
∫

dx

[
1

2
(∂tφ)2 + 1

2

(
∂xφ ∓

√
2V (φ)

)2 ±
√

2V (φ)∂xφ

]

=
∫

dx

[
1

2
(∂tφ)2 + 1

2

(
∂xφ ∓

√
2V (φ)

)2
]

±
∫ φ(+∞)

φ(−∞)
dφ′√2V (φ′)
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Then, for fixed values of φ at ±∞, the energy is minimized if

∂tφ = 0 (1.30)

and

∂xφ ∓
√

2V (φ) = 0. (1.31)

Further, the minimum value of the energy is

Emin = ±
∫ φ(+∞)

φ(−∞)
dφ′√2V (φ′). (1.32)

The energy can only be minimized provided a solution to Eq. (1.31) exists with
the correct boundary conditions. This relates the choice of sign in Eq. (1.31) to
the boundary conditions and to the sign in Eq. (1.32). In our case, for the Z2

kink boundary conditions (φ(+∞) > φ(−∞)), we take the − sign in Eq. (1.31).
Inserting

√
V (φ) =

√
λ

4
(η2 − φ2) (1.33)

in Eq. (1.31) we get the kink solution in Eq. (1.9).
The energy of the kink follows from Eq. (1.32)

E = 2
√

2

3

√
λη3 = 2

√
2

3

m3

λ
(1.34)

where m = √
λη is the mass scale in the model (see Eq. (1.3)).

1.6 Z2 antikink

In an identical manner, we can construct antikink solutions that have Q = −1. The
boundary conditions necessary to get Q = −1 are φ(±∞) = ∓η (see Eq. (1.8)).
In the Bogomolnyi method, antikinks are obtained by taking the opposite choice of
signs to the ones in the previous section

E =
∫

dx

[
1

2
(∂tφ)2 + 1

2

(
∂xφ +

√
2V (φ)

)2 −
√

2V (φ)∂xφ

]
(1.35)

This leads to the antikink solution

φ̄k = −η tanh

(√
λ

2
ηx

)
(1.36)
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1.7 Many kinks

The kink solution is well-localized and so it should be possible to write down field
configurations with many kinks. However, a peculiarity of the Z2 kink system is
that a kink must necessarily be followed by an antikink since the asymptotic fields
are restricted to lie in the vacuum: φ = ±η. It is not possible to have neighboring
Z2 kinks or a system with topological charge |Q| > 1.

There is a simple scheme, called the “product ansatz,” to write down approxi-
mate multi-kink field configurations, i.e. alternating kinks and antikinks. Suppose
we have kinks at locations x = ki and antikinks at x = l j , where i, j label the
various kinks and antikinks. The locations are assumed to be consistent with the
requirement that kinks and antikinks alternate: . . . li < ki < li+1 . . . Then an ap-
proximate field configuration that describes N kinks and N ′ antikinks is given
by the product of the solutions for the individual objects with a normalization
factor

φ(x) = 1

ηN+N ′−1

N∏
i=1

φk(x − ki )
N ′∏

j=1

[−φk(x − l j )] (1.37)

where φk is the kink solution. Note that |N − N ′| ≤ 1 since kinks and antikinks
must alternate.

The product ansatz is a good approximation as long as the kinks are separated
by distances that are much larger than their widths. In that case, in the vicinity of a
particular kink, say at x = ki , only the factor φ(x − ki ) is non-trivial. All the other
factors in Eq. (1.37) multiply together to give +1.

Another scheme to write down approximate multi-kink solutions is “additive”
[109]. If φi denotes the i th kink (or antikink) in a sequence of N kinks and antikinks,
we have

φ(x) =
N∑

i=1

φi ± (N2 − 1)η, N2 = N (mod 2) (1.38)

where the sign is + if the leftmost object is a kink and − if it is an antikink.
Neither the product or the additive ansatz yields a multi-kink solution to the

equations of motion. Instead they give field configurations that resemble several
widely spaced kinks that have been patched together in a smooth way. If the multi-
kink configuration given by either of the ansätze is evolved using the equation of
motion, the kinks will start moving due to forces exerted by the other kinks. In the
next section we discuss the inter-kink forces.
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h

−a

−a + R

0

+a

x

f

−a − R

Figure 1.3 A widely separated kink-antikink.

1.8 Inter-kink force

Consider a kink at x = −a and an antikink at x = +a where the separation 2a is
much larger than the kink width (see Fig. 1.3). We would like to evaluate the force
on the kink owing to the antikink [109].

The energy-momentum tensor for the action Eq. (1.2) with a general potential
V (φ) is

Tµν = ∂µφ∂νφ − gµν

{
1

2
(∂αφ)2 − V (φ)

}
(1.39)

where gµν is the metric tensor that we take to be the flat metric, that is, gµν =
diag(1, −1). The force exerted on a kink is given by Newton’s second law, by
the rate of change of its momentum. The momentum of a kink can be found by
integrating the kink’s momentum density, T 0i = −T0i , in a large region around the
kink. If the kink is located at x = −a, let us choose to look at the momentum, P ,
of the field in the region (−a − R, −a + R)

P = −
∫ −a+R

−a−R
dx ∂tφ∂xφ (1.40)

After using the field equation of motion (for a general potential) and on performing
the integration, the force on the field in this region is

F = dP

dt
=

[
−1

2
(∂tφ)2 − 1

2
(∂xφ)2 + V (φ)

]−a+R

−a−R

(1.41)

To proceed further we need to know the field φ in the interval (−a − R, −a + R).
This may be obtained using the additive ansatz given in Eq. (1.38) which we take
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as an initial condition

φ(t = 0, x) = φk(x) + φ̄k(x) − φk(∞) (1.42)

In addition, we assume that the kinks are initially at rest

∂tφ

∣∣∣∣
t=0

= 0 (1.43)

The expression for the force is further simplified by using the Bogomolnyi equation
(Eq. (1.31)) which is satisfied by both φk and φ̄k

(∂xφ)2 = 2V (φ) (1.44)

This gives

F =
[
−∂xφk∂x φ̄k + V (φk + φ̄k − φk(∞)) − V (φk) − V (φ̄k)

]−a+R

−a−R

(1.45)

The terms involving the potential can be expanded since the field is nearly in the
vacuum at x = −a ± R. Let us define

φ±
k = φk(−a ± R), φ̄±

k = φ̄k(−a ± R)

�φ±
k = φk(−a ± R) − φk(±∞)

�φ̄±
k = φ̄k(−a ± R) − φ̄k(−∞) (1.46)

(Note that the argument in the very last term is −∞, independent of the signs in
the other terms. This is because both x = −a ± R lie to the left of the antikink.)
Also define

m2
ψ ≡ V ′′(φk(∞)) = V ′′(φ̄k(∞)) (1.47)

Then the force is

F = −(∂xφ
+
k ∂x φ̄

+
k − ∂xφ

−
k ∂x φ̄

−
k ) + m2

ψ (�φ+
k �φ̄+

k − �φ−
k �φ̄−

k ) (1.48)

Let us illustrate this formula for the Z2 kink, where

φk(x) = η tanh(σ (x + a))

φ̄k(x) = −η tanh(σ (x − a)) (1.49)

with σ = √
λ/2 η. Inserting these expressions in Eq. (1.48) and retaining only the

leading order behavior gives

F = 4m4
ψ

λ
e−mψ l (1.50)
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where l ≡ 2a is the kink separation. The force is attractive since it is acting on the
kink at x = −a and points toward the antikink at x = +a.

The result for the force could have been guessed from other considerations. The
kinks are interacting by the exchange of massive scalars of mass mψ . As described
in many quantum field theory texts [119] the force mediated by scalar interactions
is the Yukawa force which goes like exp(−mψ l). The dimensionful prefactor of
the force can be deduced on dimensional grounds while the numerical coefficient
requires more detailed analysis.

1.9 Sine-Gordon kink

The sine-Gordon model is a scalar field theory in 1 + 1 space-time dimensions
given by the Lagrangian

L = 1

2
(∂µφ)2 − α

β2
(1 − cos(βφ)) (1.51)

The model is invariant under φ → φ + 2πn where n is any integer and thus pos-
sesses Z symmetry. The vacua are given by φ = 2πn/β and are labeled by the
integer n.

As in the Z2 case, the classical kink solutions can be found directly from the
second-order equations of motion or by using the Bogomolnyi method (see Sec-
tion 1.5). The kinks are solutions that interpolate between neighboring vacua. The
unit charge kink solution is

φk = 4

β
tan−1

(
e
√

αx
) + φ(−∞) (1.52)

where the inverse tangent is taken to lie in the interval (−π/2, +π/2). The antikink
with φ(−∞) = 2π/β and φ(+∞) = 0 is obtained from Eq. (1.52) by replacing x
by −x .

φ̄k = 4

β
tan−1

(
e−√

αx
) + φ(+∞) (1.53)

The width of the kink follows directly from these solutions and is ∼1/
√

α.
The energy of the kink also follows from Bogomolnyi’s method (Eq. (1.32))

EsG = 8
√

α

β2
(1.54)

Defining mψ = √
α – the mass of excitations of the true vacuum – and

√
λ = √

αβ

we get

EsG = 8
m3

ψ

λ
(1.55)
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While the Z2 and sine-Gordon kinks are similar as classical solutions, there
are some notable differences. For example, it is possible to have consecutive sine-
Gordon kinks whereas in the Z2 case, kinks can only neighbor antikinks. In addition,
the sine-Gordon system allows non-dissipative classical bound states of kink and
antikink – the so-called “breather” solutions – while no such solutions are known
in the Z2 case (though see Section 3.1). The sine-Gordon kink is also much more
amenable to a quantum analysis as we discuss in Chapter 4.

We can use the additive ansatz described in Section 1.7 to construct field configu-
rations for many kinks. Specializing to a kink-kink pair (φ(−∞) = 0 to φ(+∞) =
4π/β) and a kink-antikink pair (φ(−∞) = 0 and back to φ(+∞) = 0), we have

φkk(t, x) = 4

β

[
tan−1

(
e
√

α(x−a)
) + tan−1

(
e
√

α(x−b)
)]

(1.56)

φkk̄(t, x) = 4

β

[
tan−1

(
e
√

α(x−a)
) + tan−1

(
e−√

α(x−b)
)] − 2π

β
(1.57)

with b > a.
The additive ansatz described above gives approximate solutions to the equations

of motion for widely separated kinks (b − a >> 1/
√

α). A one-parameter family
of exact, non-dissipative, breather solutions composed of a kink and an antikink is

φb(t, x) = 4

β
tan−1

[
η sin(ωt)

cosh(ηωx)

]
(1.58)

where η = √
α − ω2/ω and the tan−1 function is taken to lie in the range

(−π/2, +π/2). The frequency of oscillation, ω, is the parameter that labels the
different breathers of the one-parameter family.

To see the breather as a bound state of a kink and an antikink, note that
φ(t, ±∞) = 0. Also, if η � 1, then φ(t, 0) ≈ 2π/β during the time when
η sin(ωt) � 1. Hence the breather splits up into a kink and an antikink for part
of the oscillation period. For the remainder of the oscillation period, the kink and
an antikink overlap and a clear separation cannot be made.

The constant energy of the breather is evaluated by substituting the solution at
t = 0 (for convenience) in the sine-Gordon Hamiltonian with the result

Eb = 16

β2

√
α − ω2 = 2EsG

√
1 − ω2

α
(1.59)

As expected, when ω → 0, the breather energy is twice the kink energy.
As in Section 1.8 we can find the force on a kink owing to an antikink: from

Eq. (1.48) the leading order behavior of the force is

F = 20m2
ψ

β2
e−mψ l (1.60)

where l is the kink separation.
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1.10 Topology: π0

The kinks in the Z2 and sine-Gordon models can be viewed as arising purely
for topological reasons, as we now explain. A very important advantage of the
topological viewpoint is that it is generalizable to a wide variety of models and
can be used to classify a large set of solutions. When applied to field theories in
higher spatial dimensions, topological considerations are convenient in order to
demonstrate the existence of solutions such as strings and monopoles.

Consider a field theory for a set of fields denoted by Φ that is invariant under
transformations belonging to a group G. This means that the Hamiltonian of the
theory is invariant under G:

H[Φ] = H[Φg] (1.61)

where g ∈ G and Φg represents Φ after it has been transformed by the action of
g. The group G is a symmetry of the system, if Eq. (1.61) holds for every g ∈ G
and for every possible Φ. Now, let the Hamiltonian be minimized when Φ = Φ0.
Then, from Eq. (1.61), it is also minimized with Φ = Φg

0 for any g ∈ G, and the
manifold of lowest energy states – “vacuum manifold” – is labeled by the set of
field configurations Φg

0. However, there will exist a subgroup (sometimes trivial),
H of G, whose elements do not move Φ0:

Φh
0 = Φ0 (1.62)

Hence, a group element gh ∈ G acting on Φ0 has the same result as g acting on
Φ0 (because h acts first and does not move Φ0). So, while the configuration Φg

0

has the same energy as Φ0 for any g, not all the Φg
0s are distinct from each other.

The distinct Φg
0s are labeled by the set of elements {gh : h ∈ H} ≡ gH . The set

of elements {gH : g ∈ G} are said to form a “coset space” and the set is denoted
by G/H ; each element of the space is a coset (more precisely a “left coset” since
g multiplies H from the left). Therefore the vacuum manifold is isomorphic to the
coset space G/H .

We have so far connected the symmetries of the model to the vacuum manifold.
Now we discuss the tools for describing the topology of the vacuum manifold. This
will lead to a description of the topology of the vacuum manifold directly in terms
of the symmetries of the model.

The topology of a manifold, M , is classified by the homotopy groups, πn(M ; x0),
n = 0, 1, 2,. . . The idea is to consider maps from n-spheres to M , with the
image of an n-sphere in M containing one common base point, x0 (see Fig. 1.4).
If two maps can be continuously deformed into each other, they are considered
to be topologically equivalent. In this way, the set of maps is divided into equiva-
lence classes of maps, where each equivalence class contains the set of maps that



1.10 Topology: π0 15

are continuously deformable into each other. The elements of πn(M ; x0) are the
equivalence classes of maps from Sn to M with fixed base point. It is also possible
to define (except for n = 0 as explained below) a suitable “product” of two maps:
essentially the product of maps f and g (denoted by g · f ) and is defined to be
“ f composed with g” or “ f followed by g.” Then it is easily verified that the prod-
uct is closed, associative, an identity map exists, and every map has an inverse. In
mathematical language, ∀ f, g, h ∈ G,

f · g ∈ G

f · (g · h) = ( f · g) · h

∃ e ∈ G such that f · e = e · f = f

∃ f −1 ∈ G such that f · f −1 = f −1 · f = e (1.63)

Thus all the group properties are satisfied and πn(M ; x0) is a group.
Two homotopy groups with different base points, say πn(M ; x0) and πn(M ; x ′

0),
can be shown to be isomorphic and hence the reference to the base point is often
dropped and the homotopy group simply written as πn(M). Mathematicians have
calculated the homotopy groups for a wide variety of manifolds and this makes it
very convenient to determine if a given symmetry breaking leads to a topologically
non-trivial vacuum manifold [145, 3, 171].

In the case of kinks or domain walls, the field defines a mapping from the
points x = ±∞ to the vacuum manifold. Hence the relevant homotopy “group” is
π0(M ; x0), which contains maps from S0 (a point) to M . Since the base point is fixed,
the image of either of the two possible S0s (x = ±∞) has to be x0, and π0(M ; x0)
is trivial. Even if we do not impose the restriction that the maps should have a fixed
base point, it is not possible to define a suitable composition of maps. Therefore π0

does not have the right group structure and should merely be considered as a set of
maps from S0 to the vacuum manifold. The exception occurs if M = G/H is itself
a group, which occurs when H is a normal subgroup of G, because then π0(M) can
inherit the group structure of M . In this case, the product of two maps from S0 to
M can be defined to be the map from S0 to the product of the two image points in
M . Generally, however, π0(M) should simply be thought of as a set of maps from
S0 to the various disconnected pieces of M .

To connect the elements of the homotopy groups to topological field config-
urations assume that the field, Φ, is in the vacuum manifold on Sn

∞. Therefore,
Φ∞ ≡ Φ(x ∈ Sn

∞) defines a map from Sn to the vacuum manifold and this map can
be topologically non-trivial if πn(M) is non-trivial. We want to show that if the map
Φ∞ is topologically non-trivial, Φ cannot be in the vacuum manifold at all points
in the interior of Sn

∞. Consider what happens as the radius of Sn
∞ is continuously

decreased. If the field remains on the vacuum manifold, continuity implies that the
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Sn

x0

M

Figure 1.4 The nth homotopy group consists of maps from the n-dimensional
sphere, Sn , to the vacuum manifold, M , such that the image of any map contains
one common base point x0 ∈ M . If two maps can be continuously deformed into
each other, they are identified, and correspond to the same element of πn . If two
maps cannot be continuously deformed into each other, then they correspond to
distinct elements of πn . For example, this can happen if one of the maps encloses
a “hole” in M , while the other encloses the hole a different number of times.

map ΦR from a sphere of radius R to M must also be non-trivial. Then as R → 0,
the map would still be non-trivial, implying that the field is multivalued at the origin
since the field must continue to map Sn

R non-trivially as R → 0. However, a field
(by definition) cannot be multivalued. The only way out is if the field does not lie on
the vacuum manifold everywhere. Therefore non-trivial topology at infinity implies
that the energy density does not vanish at some points in space. The distribution of
energy density is the topological defect which, depending on dimensionality, can
manifest itself as a domain wall (n = 0), string (n = 1) or monopole (n = 2) or
texture (n = 3).

The above argument establishes that topologically non-trivial boundary condi-
tions imply non-vanishing energy in the field. However, it does not establish that
a static solution exists with those boundary conditions. These must be found on a
case-by-case basis. Indeed there are examples of topologically non-trivial boundary
conditions where no static solution exists.3 Also distinct elements of πn(M) (n ≥ 1)
need not lead to distinct field solutions. Only those solutions that correspond to el-
ements of πn(M) that cannot be continuously deformed into each other, if the maps
are released from the base point, are distinct. The italicized remark is in recognition
of the fact that there can be two maps that are mathematically distinct (i.e. cannot be
deformed into each other) only because they are fixed at the base point. However,
the analog of a “common base point” in field theory would be to restrict attention
to field configurations for which the fields attain a certain fixed value at some point
on Sn

∞. Such a restriction is generally unphysical and hence, we are interested in

3 For example, in three dimensions, the boundary conditions corresponding to a charge two ’t Hooft-Polyakov
magnetic monopole [124, 79] do not lead to any solution (for all but one value of model parameters). This is
because any field configuration with those boundary conditions breaks up into two magnetic monopoles, each
of unit charge, that repel each other and are never static.
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maps that cannot be deformed into each other even if we release the restriction that
all maps have a common base point (for a more detailed discussion, see [171]).

In the case when the vacuum manifold has disconnected components, π0(G/H )
is non-trivial since there are points (zero-dimensional spheres) that lie in different
components that cannot be continuously deformed into one another. Therefore kinks
occur whenever π0(G/H ) is non-trivial. In the λΦ4 model, G = Z2, H = 1 and
π0(G/H ) = Z2. In the sine-Gordon model G = Z , H = 1 and π0(G/H ) = Z . If
π0 = Z N , we name the resulting kinks “Z N kinks.” In these simple examples, π0

forms a group because G is Abelian and so G/H itself is a group. An example
in which π0 is not a group can be constructed by choosing G = S3 (Sn is the
permutation group of n elements) broken down to H = S2.

The kinks in a model with disconnected elements in M can now be classified.
Every element of π0(M) corresponds to a mapping from a point at spatial infinity
to M and hence specifies a domain at infinity. Kinks occur if the domains at ±∞
are distinct. Therefore pairs of elements of π0(M) classify domain walls.

1.11 Bogomolnyi method revisited

The Bogomolnyi method can be extended to include a large class of systems. Let us
start with the general energy functional for a matrix-valued complex scalar field Φ

E =
∫

dx
[
Tr|∂t	|2 + Tr|∂x	|2 + V (	, 	∗)

]
=

∫
dx

[
∂t	

∗
ab∂t	ba + ∂x	

∗
ab∂x	ba + V (	, 	∗)

]
(1.64)

where a sum over matrix components labeled by a, b is understood. As in Sec-
tion 1.5, we would like to write the energy density in “whole square” form

E =
∫

dx
[
Tr{|∂t	|2 + |∂x	 ∓ U (	)|2 ± (∂x	

†U ) ± (U †∂x	)}] (1.65)

where we are restricting ourselves to static solutions and U is some matrix-valued
function of Φ such that

Tr(U †U ) = V (	, 	∗) (1.66)

The energy is minimized if

∂t	 = 0 (1.67)

and

Tr|∂x	 ∓ U (	, 	∗)|2 = 0 (1.68)
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which in turn gives

∂x	 ∓ U (	, 	∗) = 0 (1.69)

The energy of the kink is

E = ±
∫ +∞

−∞
dx Tr(∂x	

† U + U †∂x	) (1.70)

There is a further special case – the “supersymmetric” case – in which the energy
integral can be performed explicitly. This is if U is a total derivative

U ∗ = ∂W

∂	
(1.71)

where W (Φ,Φ∗) is the “superpotential,” assumed to be real. Then

E = ±
∫ +∞

−∞
dx Tr

(
∂x	

† ∂W

∂	∗ + ∂x	
T ∂W

∂	

)

= ±
∫ +∞

−∞
dx ∂x W

= ±[W (	(+∞)) − W (	(−∞))] (1.72)

Therefore we see that the Bogomolnyi method allows for first-order equations
of motion provided that V can be written as Tr(U †U ). The method also provides
an explicit expression for the kink energy if V is given in terms of a superpotential
W as

V (	) = Tr(U †U ) = Tr

∣∣∣∣dW

d	

∣∣∣∣
2

(1.73)

1.12 On more techniques

The kink solutions we have been discussing fall under the more general category
of “solitary waves,” often discussed under the soliton heading. Strictly speaking,
for a solution to classify as a “soliton,” it also has to satisfy certain conditions
on its scattering with other solitons. The subject is incredibly rich, and has led to
the development of very sophisticated mathematical techniques such as Backlund
transformations, inverse scattering methods, Lax heirarchy, etc. In addition, solitons
have found tremendous importance in physical applications, especially non-linear
optics and communication. Readers interested in the mathematics and physics of
solitons might wish to consult [1, 48, 56].

Strict solitons are usually discussed in one spatial dimension and have limited
application in the context of particle physics. Nonetheless, there are equally so-
phisticated techniques to study solitary wave solutions in higher dimensions. In
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particular, the ADHM construction [12] is used to find instanton solutions in four
spatial dimensions and the Nahm equations lead to magnetic monopole solutions
in three dimensions [114].

The soliton analyses mentioned above consider equations with complicated non-
linear terms and higher derivatives. In the context of particle physics, such terms
and derivatives are rarely encountered. However, one complication that arises is
due to larger (non-Abelian) symmetry groups. In the next chapter we will take
the analysis of this section to such particle-physics motivated models. There we
will find a spectrum of kink solutions with unusual interactions. As we proceed to
further chapters, we will learn that the physics of such non-Abelian kinks can be
quite different from that of the simple kinks discussed in this chapter.

1.13 Open questions

1. Discuss the conditions needed for a breather solution to exist. If an exact breather does not
exist, can there be an approximate breather (see Section 3.1)? What is the approximation?
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Kinks in more complicated models

The Z2 and sine-Gordon kinks discussed in the last chapter are not representative of
kinks in models where non-Abelian symmetries are present. Kinks in such models
have more degrees of freedom and this introduces degeneracies when imposing
boundary conditions, leading to many kink solutions with different internal struc-
tures (but the same topology). Indeed, kink-like solutions may exist even when the
topological charge is zero. The interactions of kinks in these more complicated
models, their formation and evolution, plus their interactions with other particles
are very distinct from the kinks of the last chapter.

We choose to focus on kinks in a model that is an example relevant to particle
physics and cosmology. The model is the first of many Grand Unified Theories of
particle physics that have been proposed [63]. The idea behind grand unification
is that Nature really has only one gauge-coupling constant at high energies, and
that the disparate values of the strong, weak, and electromagnetic coupling con-
stants observed today are due to symmetry breaking and the renormalization-group
running of coupling constants down to low energies. Since there is only one gauge-
coupling constant in these models, there is a simple grand unified symmetry group
G that is valid at high energies, for example, at the high temperatures present in
the very early universe. At lower energies, G is spontaneously broken in stages,
eventually leaving only the presently known quantum chromo dynamics (QCD) and
electromagnetic symmetries SU (3)c × U (1)em of particle physics, with its two dif-
ferent coupling constants. It can be shown [63] that the minimal possibility for G is
SU (5). However, since Grand Unified Theories predict proton decay, experimental
observation of the longevity of the proton (∼ 5 × 1033 years) leads to constraints
on grand unified models. The (non-supersymmetric) SU (5) Grand Unified Theory
is ruled out by the current lower limits on the proton’s lifetime. Therefore particle-
physics model builders consider yet larger groups G, or with an extended scalar
field sector, or supersymmetric extensions of SU (5), and other models based on
larger groups. Even if the symmetry group is larger than SU (5), it often happens

20
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that after a series of symmetry breaking, the residual symmetry is SU (5), which
then proceeds to break to the current symmetry group. Hence the study of SU (5)
symmetry breaking is extremely relevant to particle physics, even if it is not the
ultimate grand unified symmetry group.

In this chapter we shall study kinks in a model with SU (5) × Z2 symmetry
though almost all the discussion can be generalized to an SU (N ) × Z2 model for
odd values of N [163, 120]. The extra Z2 symmetry is explained in the next section.
Since we only desire to study kinks in a particle-physics motivated model, it would
seem simpler to choose a model based on the smaller SU (3) group. However, it
can be shown that there is no way to construct a model with just SU (3) symmetry
and with the simplest choice of field content, which is one adjoint field. Instead,
the model must have the larger O(8) symmetry. Other fields need to be included
so as to reduce the O(8) to SU (3), but that introduces additional parameters which
make the SU (3) model more messy than the SU (5) model.

Dealing with continuous groups such as SU (5) requires certain background
material. The fundamental representation of SU (N ) generators is described in Ap-
pendix B. A summary of some aspects of the SU (5) model of grand unification is
given in Section 5.5.

2.1 SU (5) model

The SU (5) model can be written as1

L = Tr(Dµ�)2 − 1

2
Tr(Xµν Xµν) − V (�) (2.1)

where, in terms of components, � is a scalar field (also called a Higgs field)
transforming in the adjoint representation of SU (5), that is, � → �′ = g�g† for
g ∈ SU (5). The gauge field strengths are Xµν = Xa

µνT a and the SU (5) generators
T a are normalized such that Tr(T aT b) = δab/2. The definition of the covariant
derivative is

Dµ = ∂µ − ieXµ (2.2)

and its action on the adjoint scalar is given by

Dµ� = ∂µ� − ie[Xµ, �] (2.3)

The gauge field strength is given in terms of the covariant derivative via

−ieXµν = [Dµ, Dν] (2.4)

1 We are using the Einstein summation convention in which repeated group and space-time indices are summed
over. So, explicitly, � = ∑24

a=1 �a T a . See Appendix B for more details on the SU (5) generators T a .



22 Kinks in more complicated models

and the potential is the most general quartic in �

V (�) = −m2Tr(�2) + h[Tr(�2)]2 + λTr(�4) + γ Tr(�3) − V0 (2.5)

where V0 is a constant that is chosen so as to set the minimum value of the potential
to zero.

The model in Eq. (2.1) does not have any topological kinks because there are
no broken discrete symmetries. In particular, the Z2 symmetry under � → −� is
absent owing to the cubic term in Eq. (2.5). Note that � → −� is not achievable
by an SU (5) transformation. To show this, consider Tr(�3). This is invariant under
any SU (5) transformation, but not under � → −�. However, if γ = 0, there are
topological kinks connecting the two vacua related by � → −�. For non-zero but
small γ , these kinks are almost topological. In our analysis in this chapter we set
γ = 0, in which case the symmetry of the model is SU (5) × Z2. The philosophy
underlying grand unification does not forbid discrete symmetry factors since such
factors do not entail additional gauge-coupling constants. Indeed, model builders
often set γ = 0 for simplicity. Now a non-zero vacuum expectation value of �

breaks the discrete Z2 factor leading to topological kinks.

2.2 SU (5) × Z2 symmetry breaking and topological kinks

The potential in Eq. (2.5) has a (degenerate) global minimum at

�0 = η

2
√

15
diag(2, 2, 2, −3, −3) (2.6)

where η = m/
√

λ′ provided

λ ≥ 0, λ′ ≡ h + 7

30
λ ≥ 0 (2.7)

For the global minimum to have V (�0) = 0, in Eq. (2.5) we set

V0 = −λ′

4
η4 (2.8)

As discussed in Section 1.10, if we transform �0 by any element of SU (5) × Z2,
the transformed �0 is still at a minimum of the potential. However, �0 is left
unmoved by transformations belonging to

G321 ≡ [SU (3) × SU (2) × U (1)]

Z3 × Z2
(2.9)

where SU (3) acts on the upper-left 3 × 3 block of �0, SU (2) on the lower-right
2 × 2 block, and U (1) is generated by �0 itself. Hence, G321 is the unbroken
symmetry group.
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Φ            (−)

Φ                       (+)

Figure 2.1 The vacuum manifold of the SU (5) × Z2 model consists of two dis-
connected 12-dimensional copies. Kink solutions correspond to paths that originate
in one piece at x = −∞, denoted by �(−), leave the vacuum manifold, and end
in the other disconnected piece at x = +∞. Topological considerations specify
that �(+) has to lie in the disconnected piece on the right, but not where it should
be located within this piece.

SU (5) has 24 generators while the unbroken group, G321, has a total of 12
generators, namely, 8 of SU (3), 3 of SU (2), and 1 of U (1). Therefore the vacuum
manifold is 24 − 12 = 12 dimensional but in two disconnected pieces as depicted in
Fig. 2.1 because of the Z2 factor. Kink solutions occur if the boundary conditions lie
in different disconnected pieces. However, if we start at some point on the vacuum
manifold at x = −∞, say �(−∞) = �−, we have a choice of boundary conditions
for �+, the vacuum expectation value of � at x = +∞ (compare with the Z2 case
where the path had to go from definite initial to definite final values of �).

We will narrow down the possible choices for �+ very shortly. First we point out
that the gauge fields can be set to zero in finding kink solutions [163]. To see this
explicitly, the only linear term in the gauge field is ieTr(Xi [�, ∂i�]). However, our
solution for � satisfies [�, ∂i�] = 0 [120] and so the variation vanishes to linear
order in gauge field fluctuations. A closer look also reveals that the quadratic terms
of perturbations in the gauge fields contribute positively to the energy of the kink
solutions and so the gauge fields do not cause an instability of the solutions [163].
Hence we set

Xµ = 0 (2.10)

As we now show, the boundary conditions that lead to static solutions of the equa-
tions of motion are rather special [120].

Theorem: A static solution can exist only if [�+, �−] = 0.

We only give a sketch of the proof here since it is of a technical nature. The
essential idea is that if �k(x) is a static solution, then the energy should be extrem-
ized by it. By considering perturbations of the kind U (x)�kU †(x) where U (x) is an
infinitesimal rotation of SU (5), one finds that the energy can be extremized only if



24 Kinks in more complicated models

[�k, ∂x�k] = 0 for all x . Now at large x , we have �k → �+. In this region ∂x�k

has terms that are proportional to �− as well, even if these are exponentially small,
since �(x) is an analytic function. Hence, a static solution requires [�+, �−] = 0.

The theorem immediately narrows down the possibilities that we need to consider
when trying to construct kink solutions. If we fix

�− = �0 = η

2
√

15
diag(2, 2, 2, −3, −3) (2.11)

�+ can take on the following three values

�
(0)
+ = − η

2
√

15
diag(2, 2, 2, −3, −3)

�
(1)
+ = − η

2
√

15
diag(2, 2, −3, 2, −3)

�
(2)
+ = − η

2
√

15
diag(2, −3, −3, 2, 2) (2.12)

One can also rotate these three choices by elements of the unbroken group G321−
that leaves �− invariant and obtain three disjoint classes of possible values of �+.
The three choices given above are representatives of their classes.

The kink solution for any of the three boundary conditions is of the form

φ
(q)
k = F (q)

+ (x)M(q)
+ + F (q)

− (x)M(q)
− + g(q)(x)M(q) (2.13)

where q = 0, 1, 2 labels the solution class,

M(q)
+ = �

(q)
+ + �

(q)
−

2
, M(q)

− = �
(q)
+ − �

(q)
−

2
(2.14)

and M(q) will be specified below.
The boundary conditions for F (q)

± are

F (q)
− (∓∞) = ∓1, F (q)

+ (∓∞) = +1, g(q)(∓∞) = 0 (2.15)

The formulae for M(q)
± and M(q) can now be explicitly written using Eq. (2.12)

in (2.14)

M(q)
+ = η

5

4
√

15
diag(03−q, 1q, −1q, 02−q) (2.16)

M(q)
− = η

1

4
√

15
diag(−413−q, 1q, 1q, 612−q) (2.17)

M(q) = µ diag(q(2 − q)13−q, −(2 − q)(3 − q)12q, q(3 − q)12−q) (2.18)

with the normalization µ given by

µ = η[2q(2 − q)(3 − q)(12 − 5q)]−1/2 (2.19)
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Figure 2.2 The profile functions F (1)
+ (x) (nearly 1 throughout), F (1)

− (x) (shaped
like a tanh function), and g(1)(x) (nearly zero) for the q = 1 topological kink with
parameters h = −3/70, λ = 1, and η = 1.

If q = 0 or q = 2 we set µ = 0. We have used 0k and 1k to denote the k × k zero
and unit matrices respectively. Note that the matrices M(q)

± are relatively orthogonal

Tr(M(q)
+ M(q)

− ) = 0 (2.20)

but are not normalized to η2/2.
Now we discuss the three kink solutions in the SU (5) × Z2 model. For q = 0,

the solution is that of a Z2 kink that has been embedded in the SU (5) × Z2 model.
The explicit solution is

F (0)
+ (x) = 0, F (0)

− (x) = − tanh

(
x

w

)
, g(0)(x) = 0 (2.21)

wherew = √
2/m. For q = 1, the profile functions have been evaluated numerically

and are shown in Fig. 2.2. Approximate analytic solutions can also be found in
[120]. For q = 2 the solution has also been found numerically. Here we describe
an approximate solution which is exact if

h

λ
= − 3

20
(2.22)

i.e. λ′ = λ/12. With this particular choice

F (2)
+ (x) = 1, F (2)

− (x) = tanh

(
x

w

)
, g(2)(x) = 0 (2.23)
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where w = √
2/m. This is also an approximate solution for h/λ ≈ −3/20. The

energy of the approximate solution can be used to estimate the mass of the q = 2
kink

M (2) ≈ M (0)

6

{
1

6

[
1 + 5λ

12λ′

]}1/2

≡ M (0)
√

p

6
(2.24)

where M (2) denotes the mass of the q = 2 kink, and M (0) = 2
√

2m3/3λ′. The
expression for the energy is exact for h/λ = −3/20.

It can be shown for a range of parameters that the q = 2 kink solution is per-
turbatively stable. Numerical evaluations of the energy find that the q = 2 kink is
lighter than the q = 0, 1 kinks for all values of p. Equation (2.24) shows the q = 2
kink is lighter than the q = 0 kink for a large range of parameters. This can be
understood qualitatively by noting that only one component of � changes sign in
the q = 2 kink, while 3 and 5 components change sign in the q = 1 and q = 0
kinks respectively.

2.3 Non-topological SU (5) × Z2 kinks

An interesting point to note is that the ansatz in Eq. (2.13) is valid even if �
(q)
± are

not in distinct topological sectors. These imply the existence of non-topological
kink solutions in the model [120]. If we include a subscript NT to denote “non-
topological” and T to denote “topological,” we have

�
(q)
NTk = F (q)

+ (x)M(q)
NT+ + F (q)

− (x)M(q)
NT− + g(q)(x)M(q)

NT (2.25)

where the MNT± matrices are still defined by Eq. (2.14) with the non-topological
values of �±. MNT is still given by Eq. (2.18). To consider a non-topological domain
wall, we simply want to consider �+ to be in the same discrete sector as �−. If �T+
denotes a boundary condition for a topological kink, a possible boundary condition
for a non-topological kink is: �NT+ = −�T+. Then we find

M(q)
NT+ = M(q)

T−, M(q)
NT− = M(q)

T+, M(q)
NT = M(q)

T (2.26)

Hence

�
(q)
NTk = F (q)

− (x)M(q)
T+ + F (q)

+ (x)M(q)
T− + g(q)(x)M(q)

T (2.27)

To get F (q)
∓ for the non-topological kink we have to solve the topological F (q)

±
equation of motion but with the boundary conditions for F (q)

∓ (see Eq. (2.15)). To
obtain g(q) for the non-topological kink, we need to interchange F (q)

+ and F (q)
− in the

topological equation of motion. The boundary conditions for g(q) are unchanged.
Generally the non-topological solutions, when they exist, are unstable. However,
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Table 2.1 The space of three topological kinks in the SU (5) model.

G321 is the group SU (3) × SU (2) × U (1). The dimensionality of the space
of each type of kink is also given.

Kink Space Dimensionality

q = 0 G321/G321 0
q = 1 G321/[SU (2) × U (1)3] 6
q = 2 G321/[SU (2)2 × U (1)2] 4

the possibility that some of them may be locally stable for certain potentials cannot
be excluded.

2.4 Space of SU (5) × Z2 kinks

The kink solutions discussed in Section 2.1 can be transformed into other degenerate
solutions using the SU (5) transformations. Hence, each solution is representative
of a space of solutions. We now discuss the space associated with each of these
solutions.

If we denote a kink solution in the SU (5) × Z2 model by �
(q)
k , another solution is

φ
(q)h
k = hφ

(q)
k h†, h ∈ G321− (2.28)

where G321− is the unbroken group whose elements leave �− unchanged.2 The
reason �

(q)h
k also describes a solution is that the rotation h does not change the

energy of the field configuration, �
(q)
k . Therefore �

(q)h
k has the same energy and

the same topology as �
(q)
k , and hence it describes another kink solution.

Of the elements of G321−, there are some that act trivially on �
(q)
k and for these

h, �(q)h
k is not distinct from �

(q)
k . These elements form a subgroup of G321− that we

call Kq . Therefore the space of kinks can be labeled by elements of the coset space
G321−/Kq . Since we are given the forms of the kink solutions in Eq. (2.13), it is not
hard to work out Kq . For example, for the q = 2 kink, Kq is given by the SU (5)
elements that commute with both G321− and G321+ and so Kq = SU (2)2 × U (1)2.
Once we have determined Kq the dimensionality of the coset space G321−/Kq is
determined as the dimensionality of G321−, which is 12, minus the dimensionality
of Kq , which is 12, 6, and 8 for q = 0, 1, and 2 respectively.

The three classes of kink solutions labeled by the index q in the SU (5) × Z2

model have different spaces as shown in Table 2.1.

2 We could also have included elements that change �
(q)
+ as well as �−. These would simply be global rotations

of the entire solution and would be the same for every type of defect.
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The dimensionality of the space of a given type of kink solution also corresponds
to the dimensionality of the space of boundary conditions �+ for which that type
of kink solution is obtained. As an example, there is only one value of �+, namely
�+ = −�−, that gives rise to the q = 0 kink. While for the q = 1 kink, one can
choose �+ to be any value from a 6-dimensional space. This means that, in any
process where boundary conditions are chosen at random, the probabilities of get-
ting the correct boundary conditions for a q = 0 or a q = 2 kink are of measure
zero, since the space of boundary conditions for the q = 1 kink is two dimensions
greater than that for the q = 2 kink. In any random process, the q = 1 kink is always
obtained. Since this kink is unstable, it then decays into the q = 2 kink. Therefore
the production of q = 2 kinks is a two-step process in this system. We will see
further evidence of this two-step process in Chapter 6.

2.5 Sn kinks

The SU (5) × Z2 model discussed above shows novel features because of the large
non-Abelian symmetry. It is possible to see some of the richness of the model
by going to a simpler model where the continuous non-Abelian symmetries are
replaced by discrete non-Abelian symmetries (also see [92] for a similar model).
If we truncate the SU (5) × Z2 model to just the diagonal degrees of freedom
of �, we get a model that is symmetric only under permutations of the diag-
onal entries and the overall Z2. Hence the symmetry group is S5 × Z2, where
S5 is the permutation group of five objects. The model now has four real scalar
fields, one for each diagonal generator of SU (5). With this truncation we can
write

� → f1λ3 + f2λ8 + f3τ3 + f4Y (2.29)

where the fi are functions of space and time, and the generators λ3, λ8, τ3, and Y are
defined in Appendix B. Inserting this form of � into the SU (5) × Z2 Lagrangian
in Eq. (2.1) we get

L = 1

2

4∑
i=1

(∂µ fi )
2 + V ( f1, f2, f3, f4) (2.30)

and

V = −m2

2

4∑
i=1

f 2
i + h

4

(
4∑

i=1

f 2
i

)2

+ λ

8

3∑
a=1

f 4
a + λ

4

[
7

30
f 4
4 + f 2

1 f 2
2

]

+ λ

20

[
4
(

f 2
1 + f 2

2

) + 9 f 2
3

]
f 2
4 + λ√

5
f2 f4

(
f 2
1 − f 2

2

3

)
+ m2

4
η2 (2.31)
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S5/S3× S2

Z2

Figure 2.3 The vacuum manifold for the S5 × Z2 model contains two sets of ten
points related by the Z2 symmetry. Kink solutions exist that interpolate between
vacua related by Z2 transformations and also between vacua within one set of ten
points. The former correspond to the topological kinks in SU (5) × Z2 and the
latter to the non-topological kinks in that model.

This model has the desired S5 × Z2 symmetry because it is invariant under permu-
tations of the diagonal elements of �, that is, under permutations of various linear
combinations of fi . The Z2 symmetry is under fi → − fi for every i .

Symmetry breaking proceeds as in the SU (5) × Z2 case. The S5 × Z2 symmetry
is broken by a vacuum expectation value along the Y direction i.e. f4 �= 0. The
residual symmetry group consists of permutations in the SU (3) and SU (2) blocks.
Therefore the unbroken symmetry group is H = S3 × S2. There are 5! × 2 = 240
elements of S5 × Z2 and 3! × 2! = 12 elements of H . Therefore the vacuum mani-
fold consists of 240/12 = 20 distinct points. Ten of these points are related to
the other ten by the non-trivial element of Z2 as shown in Fig. 2.3. If we fix the
boundary condition at x = −∞, then a Z2 kink can be obtained with ten different
boundary conditions at x = +∞. These ten solutions must somehow correspond
to the kink solutions that we have already found in the SU (5) × Z2 case. Counting
all the possible different diagonal possibilities for �+ in the SU (5) × Z2 model we
see that there are three q = 2 kinks, six q = 1 kinks, and one q = 0 kink, making
a total of ten kinks. In the S5 × Z2 model there are ten more (one of these is the
trivial solution) kinks that do not involve the Z2 transformation (change of sign)
in going from �− to �+. These are the ten remnants of the non-topological kinks
described in Section 2.3.

2.6 Symmetries within kinks

The symmetry groups outside the kink, G321±, are isomorphic (see Fig. 2.4). How-
ever, the fields transform differently under the elements of these groups. As a result,
there is a “clash of symmetries” [43] inside the kink, and the unbroken symmetry
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H− H+

Kink

Figure 2.4 A kink and the symmetries outside denoted by H±. The groups H+
and H− are isomorphic but their action on fields may not necessarily be identical.

group within the kink is generally smaller than that outside. This does not happen
in the case of the Z2 kink in which the symmetry outside is trivial while inside it is
Z2 (since the field vanishes). We now examine the clash of symmetries in the case
of the SU (5) × Z2 q = 2 kink.

The general form of �
(2)
k is given in Eq. (2.13) with the profile functions in

Eq. (2.23). Then

�
(2)
k (x = 0) = M (2)

+ ∝ diag(0, 1, 1, −1, −1) (2.32)

The symmetries within the kink are given by the elements of SU (5) × Z2 that
leave M (2)

+ invariant. Hence the internal symmetry group consists of two SU (2)
factors, one for each block proportional to the 2 × 2 identity, and two U (1) factors
since all diagonal elements of SU (5) commute with M (2)

+ . Therefore the symmetry
group inside the SU (5) × Z2 kink is [SU (2)]2 × [U (1)]2. This is smaller than the
SU (3) × SU (2) × U (1) symmetry group outside the kink.3

The conclusion that the symmetry inside a kink is smaller than that outside holds
quite generally [164]. Classically this would imply that there are more massless par-
ticles outside the kink than inside it. However, when quantum effects are taken into
account this classical picture can change because the fundamental states in the out-
side region may consist of confined groups of particles (“mesons” and “hadrons”)
that are very massive [51]. If a particle carries non-Abelian charge of a symme-
try that is unbroken outside the wall but broken inside to an Abelian subgroup, it
may cost less energy for the particle to live on the wall. This is because it may be

3 As in Section 2.4 we could have found the symmetry group inside the kink by finding those transformations in
G321− that are also contained in G321+.
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unconfined inside the wall where it only carries Abelian charge, while it can only
exist as a heavy meson or a hadron outside the wall.4

2.7 Interactions of static kinks in non-Abelian models

The interaction potential between kinks found in Section 1.8 is easily generalized
to kinks in non-Abelian field theories. Following the procedure discussed in that
section, the force in the SU (5) × Z2 case is

F = dP

dt
= [ − Tr(�̇2) − Tr(�′2) + V (�)

]x2

x1
(2.33)

where −a − R and −a + R are defined in Fig. 1.3. Evaluation of F yields an
exponentially small interaction force whose sign depends on Tr(Q1 Q2) [121] where
Q1 and Q2 are the topological charges of the kinks. If the Higgs field at x = −∞
is �−, between the two kinks is �0, and is �+ at x = +∞, then Q1 ∝ �0 − �−
and Q2 ∝ �+ − �0 (see Eq. (1.8)).

What is most interesting about the interaction is that a kink and an antikink
can repel. Here one needs to be careful about the meaning of an “antikink.” An
antikink should have a topological charge that is opposite to that of a kink. That
is, a kink and its antikink together should be in the trivial topological sector. But
this condition still leaves open several different kinds of antikinks for a given
kink. To be specific consider a kink-antikink pair, where the Higgs field across the
kink changes from �(−∞) ∝ +(2, 2, 2, −3, −3) to �(0) ∝ −(2, −3, −3, 2, 2).
(Here we suppress the normalization factor and the “diag” for convenience of
writing.) There can be two types of antikinks to the right of this kink. In the first
type (called Type I) the Higgs field can go from �(0) ∝ −(2, −3, −3, 2, 2) to
�(+∞) ∝ +(2, 2, 2, −3, −3), which is the same as the value of the Higgs field at
x = −∞ and thus reverts the change in the Higgs across the kink. In the second
type (Type II), the Higgs field can go from �(0) ∝ −(2, −3, −3, 2, 2) to �(+∞) ∝
+(−3, 2, 2, −3, 2). Now the Higgs at x = +∞ is not the same as the Higgs at
x = −∞, but the two asymptotic field values are in the same topological sector.

By evaluating Tr(Q1 Q2), where Q1 and Q2 are the charge matrices of the two
kinks, it is easy to check that the force between a kink and its Type I antikink is
attractive, but the force between a kink and its Type II antikink is repulsive. The
q = 2 kinks can have charge matrices Q(i) that we list up to a proportionality factor

Q(1) = (−4, 1, 1, 1, 1), Q(2) = (1, −4, 1, 1, 1), Q(3) = (1, 1, −4, 1, 1),

Q(4) = (1, 1, 1, −4, 1), Q(5) = (1, 1, 1, 1, −4) (2.34)

4 Localization of particles to the interior of defects has led to the construction of cosmological scenarios where
our observed universe is a three-dimensional defect or “brane” embedded in a higher dimensional space-time.
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Stable antikinks have the same charges but with a minus sign. Then, one can take
a kink with one of the five charges listed above and it repels an antikink that has
the −4 occurring in a different entry because Tr(Q1 Q2) > 0. Hence, there are
combinations of kinks and antikinks for which the interaction is repulsive. Further,
in a statistical system a kink is most likely to have a Type II antikink as a neighbor
and such a kink-antikink pair cannot annihilate since the force is repulsive.

The result that the force between two kinks is proportional to the trace of the
product of the charges extends to other solitons (e.g. magnetic monopoles) as well.
In this way, the forces between certain monopoles with equivalent magnetic charge
can be attractive whereas normally we would think that like magnetic charges repel,
and between certain monopoles and antimonopoles can be repulsive.

2.8 Kink lattices

In this section we describe the possibility of forming stable lattices of domain
walls in one spatial dimension and the consequences in higher dimensions. Our
discussion is in the context of the S5 × Z2 model though similar structures have
been seen in other field theory models as well [92, 43].

We know that Z2 topology forces a kink to be followed by an antikink. Then
we can set up a sequence of kinks and antikinks whose charges are arranged in the
following way

. . . Q(1) Q̄(5) Q(3) Q̄(1) Q(5) Q̄(3) . . . (2.35)

where Q(i) and Q̄(i) refer to a kink and an antikink of type i respectively (see
Eq. (2.34)). Alternately, this sequence of kinks would be achieved with the following
sequence of Higgs field vacuum expectation values (illustrated in Fig. 2.5)

. . . → −(2, 2, 2, −3, −3) → +(2, −3, −3, 2, 2)

→ −(−3, 2, 2, −3, 2)

→ +(2, −3, 2, 2, −3)

→ −(2, 2, −3, −3, 2)

→ +(−3, −3, 2, 2, 2)

→ −(2, 2, 2, −3, −3) → . . . (2.36)

The forces between kinks fall off exponentially fast and hence the dominant forces
are between nearest neighbors. As discussed in the previous section, the sign of the
force between the i th soliton (kink or antikink) and the (i + 1)th soliton (antikink
or kink) is proportional to Tr(Qi Qi+1) where Qi is the charge of the i th object.
For the sequence above, Tr(Qi Qi+1) > 0 for every i and neighboring solitons repel
each other. In particular, they cannot overlap and annihilate.
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Z2

S5/S3× S2

Figure 2.5 In the lattice of kinks of Eq. (2.36), the vacua are arranged sequentially
in a pattern so as to return to the starting vacuum only after several transitions
between the two discrete (Z2) sectors.

The sequence of kinks in Eq. (2.35) has a period of six kinks. These six kinks
have a net topological charge that vanishes since the last vacuum expectation value
in Eq. (2.36) is the same as the first value. Hence we can put the sequence in a
periodic box, i.e. compact space. This gives us a finite lattice of kinks.

The sequence described above has the minimum possible period (namely, six).
It is easy to construct other sequences with greater periodicity. For example

. . . Q(1) Q̄(5) Q(3) Q̄(4) Q(2) Q̄(1) Q(5) Q̄(3) Q(4) Q̄(2) . . . (2.37)

is a repeating sequence of ten kinks.
The lattice of kinks is a solution in both the S5 × Z2 and the SU (5) × Z2 models.

However, it is stable in the former and unstable in the latter. The instability in the
SU (5) × Z2 model occurs because a kink of a given charge, say Q(3), can change
with no energy cost into a kink of some other charge, for example Q(1). Then, in
the sequence of Eq. (2.35), the third kink changes into Q(1), then annihilates with
the antikink with charge Q̄(1) on its right. In this way the lattice can relax into the
vacuum. In the S5 × Z2 case, however, the degree of freedom that can change the
charge of a kink is absent and the lattice is stable.

So far we have been discussing a kink lattice in one periodic dimension. This is
equivalent to having a kink lattice in a circular space. Next consider what happens
in a plane in two spatial dimensions. A circle in this plane can once again have a
kink lattice since neighboring kinks and antikinks repel. However, when extended
to the whole plane, the kink lattice must have a nodal point as shown in Fig. 2.6. In
three spatial dimensions, the nodal points must extend into nodal curves.5

We shall discuss kink lattices further in Chapter 6.

5 This is very similar to the case where several domain walls terminate on topological strings, except that there
are no topological strings in the model.
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Figure 2.6 A domain wall lattice consisting of six domain walls can be formed
in a one-dimensional sub-space (dashed circle) of a two-dimensional plane. This
domain wall lattice is stable. Extending it to the two-dimensional plane, the differ-
ent domain walls converge to a nodal point. This implies that the S5 × Z2 model
contains domain wall nodes (or junctions) in two dimensions and nodal curves in
three spatial dimensions.

2.9 Open questions

1. Discuss all topological and non-topological kink solutions in an SU (N ) × Z2 model
where N is even. In [163] the case with odd N is discussed.6

6 However, it is incorrectly stated that the Z2 symmetry is included in SU (N ) when N is even, as can be seen
from the Tr(�3) argument of Section 2.1.
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Interactions

In the previous two chapters, we have described kink solutions in several models
but these solutions have mostly been discussed in isolation. In any real system, there
is a variety of kinks and antikinks, in addition to small excitations (particles) of the
fields. The interactions of kinks with other kinks and with particles play an important
role in the evolution of the system. The motion of kinks is also accompanied by
the radiation of particles. Ambient particles in the system scatter off kinks, and
kinks collide with each other, and perhaps annihilate into particles. As discussed
in Section 1.9, in some models a kink-antikink pair can bind together to form a
non-dissipative solution which is called a “breather.” In other models, approximate
breather solutions have been found, which play an important role in the scattering
of a kink and an antikink. These topics are discussed in the following sections.

3.1 Breathers and oscillons

So far we have been considering kinks, which are static solutions to the equations
of motion. In the sine-Gordon model of Eq. (1.51), a one-parameter family of non-
static, dissipationless solutions is also known. These are bound states of a kink and
an antikink and are called breathers. The breather solution was described briefly in
Section 1.9 and can be re written as

φb(t, x ; v) = 4

β
tan−1

[
sin(v

√
αt/

√
1 + v2)

v cosh(
√

αx/
√

1 + v2)

]
(3.1)

where v is a free parameter (see Fig. 3.1). We will have more to say about breathers
when we quantize kinks in Chapter 4 as they play a very fundamental role in the
novel duality between the sine-Gordon model and the massive Thirring model (see
Section 4.7).

Breather solutions are not known to exist in the λφ4 model [135]. However,
numerical studies of the scattering of a Z2 kink and antikink revealed the existence of

35
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Figure 3.1 The sine-Gordon breather shown at various times during one oscil-
lation period. At certain times, the field profile is that of a separated kink and an
antikink. At other times, the kink and the antikink overlap and cannot be distin-
guished.

extremely long-lived, oscillating bound states of kinks and antikinks [4, 19, 26, 64].
The existence of kink-antikink bound states has been interpreted as a resonance
phenomenon between the natural excitation frequency of the kink profile (shape
mode) and the frequency of oscillation of the bound kink-antikink system. Radiation
from a time-dependent scalar field configuration will be suppressed if the oscillation
frequency of the configuration is small compared to the mass of the radiation quanta
and this can be used to understand the longevity of oscillons (Farhi, 2005, private
communication).

The simplest hypothesis is that oscillons are approximate breather solutions
since a region of the sine-Gordon potential and the λφ4 potential have very similar
shapes. We can compare the two potentials when the sine-Gordon potential has been
shifted so that it has a maximum at φ = 0. The parameter β in the sine-Gordon
model is chosen so that the first positive minimum is at φ = +η. α is fixed by
requiring that the masses of small excitations in the true vacua, given by the second
derivative of the potential, are equal in the two models. Then the two potentials are
given by

VZ2 (φ) = λ

4
(φ2 − η2)2 (3.2)

VsG(�) = α

β2
(1 − cos(β(φ − η))) (3.3)

with

α = 2λη2, β = π

η
(3.4)
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Figure 3.2 The λφ4 potential (broken curve) and the shifted sine-Gordon poten-
tial (solid curve) when the parameters are chosen so that the vacua occur at the
same values of φ and the curvatures of the potentials at the vacua are also equal.
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Figure 3.3 The profiles of the kinks in the λφ4 model (broken curve) and the
shifted sine-Gordon model (solid curve) with potentials as shown in Fig. 3.2.

The two potentials can be compared in the vicinity of their true vacuum at φ = η.
Then

VZ2 (φ) = λη2(φ − η)2 + λη(φ − η)3 + λ

4
(φ − η)4 (3.5)

and

VsG(φ) = λη2(φ − η)2 − 2π2λ

4!
(φ − η)4 + O((φ − η)6) (3.6)

In Fig. 3.2 we show these two potentials and in Fig. 3.3 we compare the kink
profiles.

We will return to the breather and its role in the quantum sine-Gordon model at
the end of Section 4.7.
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3.2 Kinks and radiation

By “radiation” we mean propagating excitations of small amplitude of a field,
which in this chapter will be taken to be the same field that makes up the kink.
Asymptotically, these excitations have the usual plane wave form: exp(i(ωt ± kx)).
In the kink background, these “scattering states” are found as solutions to the
equation of motion for fluctuations about the kink. If we denote the kink solution
by φk(x), the fluctuation field ψ(t, x) is

ψ(t, x) = φ(t, x) − φk(x) (3.7)

We will assume |ψ | � 〈φ〉, where 〈φ〉 is the vacuum expectation value of φ. To
find the scattering states, we take ψ = f (x)e−iωt where it is understood that the
real or imaginary part should be taken – in other words, the physical modes are
[ f (x)e−iωt ± f ∗(x)e+iωt ]. Perturbing the Lagrangian for φ (first line of Eq. (1.2)),
we find that f (x) satisfies the (linearized) equation of motion

H f ≡ − f ′′ + U (x) f = ω2 f (3.8)

where

U (x) ≡ V ′′(φk(x)) ≡ ∂2V

∂φ2

∣∣∣∣
φ=φk

(3.9)

The scattering states around a static kink are obtained by solving the Schrödinger-
type equation, Eq. (3.8), which for some potentials, falls in the general class of
equations discussed in Appendix C.

We now consider the Z2 kink for which the potential U is obtained from Eqs. (3.9)
and (1.2) to be

U (x) = λ
(
3φ2

k − η2
)

(3.10)

We now list the eigenmodes of Eq. (3.8). (We will encounter them again in Chap-
ter 4.) First, there are two bound states, also known as “discrete” modes:

ω0 = 0, f0 = sech2z (3.11)

ω1 =
√

3

2
mψ, f1 = sinhz sech2z (3.12)

where z = x/w = mψ x/2. The ω = 0 mode is called the “translation mode” and the
second is the “shape mode.” Then there is a continuum of states for mψ < ω < ∞
which are the scattering states:

fk = eikx [3 tanh2z − 1 − w2k2 − i 3wk tanhz] (3.13)

The dispersion relation is

ω2
k = k2 + m2

ψ (3.14)
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We are now interested in processes that involve both a kink and the scattering
states (radiation). For example, if a kink accelerates, it will emit radiation. What
is the radiated power? The answer will depend on the forces that make the kink
accelerate and whether or not these forces deform the structure of the kink.1 We
shall examine the radiation from kink shape deformations and other interactions of
kinks and radiation after a brief diversion in the next section.

3.3 Structure of the fluctuation Hamiltonian

In this section we will show two interesting properties of the fluctuation
Hamiltonian, H , defined in Eq. (3.8). The first is that the potential U (x) has a
very special form that implies that the Hamiltonian can be factored. The second is
that there exists a “partner Hamiltonian” with (almost) the same spectrum as the
original Hamiltonian.

The special form of U follows from the fact that the kink has a translation zero
mode (see Section 1.1). Hence there exists an eigenstate with ω = 0. Denote this
“translation mode” by ψt. Hence

Hψt = (−∂2 + U (x))ψt = 0 (3.15)

Therefore

U (x) = ψ ′′
t

ψt
(3.16)

which can also be rewritten as

U (x) = f ′ + f 2, f = (ln(ψt))
′ (3.17)

For the particular cases of the Z2 and sine-Gordon kinks, not only is U (x)
of the form in Eq. (3.17) but it is also reflectionless. Then, an incident wave is
fully transmitted and the reflection coefficient vanishes. In this case, the only non-
trivial characteristic of scattering states is that the waves get a phase shift owing to
the presence of U (x). This property will be useful when we quantize the kink in
Section 4.1.

The Hamiltonian H with a potential of the form in Eq. (3.17) has the important
property that it can be factored

H = A+ A ≡ (+∂ + f )(−∂ + f ) (3.18)

Therefore the equation for the eigenstates is simply

H f = A+ A f = ω2 f (3.19)

1 In the case of domain walls in three spatial dimensions, the curvature of the wall is itself responsible for
acceleration. This motion leads to the emission of scalar and gravitational radiation and will be discussed in
Chapter 8.
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The factorization has the consequence that one can readily construct a “partner”
Hamiltonian, H−, that has almost an identical eigenspectrum as H . This partner
Hamiltonian is H− = AA+. If fi is an eigenstate of H with eigenvalue ω2

i , then
A fi is an eigenstate of H− with the same eigenvalue. This argument works for all
eigenstates except the one for which A fi = 0. Hence H has a single extra eigenstate
with ω = 0.2

The potential U (x) determines the spectrum of excitations around a soliton.
The factorizability of the Hamiltonian is useful in the problem of reconstructing
V (φ) from the spectrum of fluctuations (i.e. the set of ω2) using inverse scattering
methods [165].

3.4 Interaction of kinks and radiation

As remarked below Eq. (3.17) the potentials U (x) for both the Z2 and the sine-
Gordon kinks are rather special since they are reflectionless. All that happens is
that the transmitted wave gets phase shifted. This is equivalent to a time delay in
the propagation of the wave through the kink.

From the solution for the scattering states given in Eq. (3.13) for the Z2 kink we
find a momentum dependent phase shift

δk|Z2 = 2 tan−1

(
3wk

w2k2 − 2

)
(3.22)

This corresponds to a time delay

τk

∣∣∣∣Z2 = δk

ω

∣∣∣∣
Z2

= 2√
k2 + m2

ψ

tan−1

(
3wk

w2k2 − 2

)
(3.23)

Similarly the phase shift and time delay in the case of the sine-Gordon kink are

δk|sG = π − 2 tan−1

(
k

mψ

)
(3.24)

τk

∣∣∣∣sG = δk

ω

∣∣∣∣
sG

= 1√
k2 + m2

ψ

[
π − tan−1

(
k

mψ

)]
(3.25)

2 The two partner Hamiltonians can also be combined to form a supersymmetric Hamiltonian, Hss

Hss =
( A+ A 0

0 AA+
)

= {Q, Q+} ≡ Q Q+ + Q+ Q (3.20)

where

Q =
( 0 0

A 0

)
, Q+ =

( 0 A+
0 0

)
(3.21)
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While there is no reflection of radiation of the same field that makes up the kink
in the Z2 and sine-Gordon cases, there can be reflection of fluctuations of other
fields [53]. As an example [171], consider a second scalar field χ included in the
Z2 model so that the full Lagrangian becomes

L = Lφ + 1

2
(∂µχ )2 − m2

χ

2
χ2 − σ

2
φ2χ2 (3.26)

where Lφ is the Lagrangian for the Z2 model (Eq. (1.2)). Then the scattering modes
of χ in the presence of a Z2 kink are found by solving

∂2
t χ − ∂2

x χ + m2
χχ + σφ2

kχ = 0 (3.27)

Substituting φk = η tanh(x/w) and χ = exp(−iωt) f (x), we get

∂2
X f + (ν2 − σ̄ sech2(X )) f = 0 (3.28)

where X ≡ x/w, ν2 = w2(ω2 − m2
χ − ση2), σ̄ = ση2w2. (Recall that w =√

2/λη2.)
Equation (3.28) is a special case of the differential equation described in Ap-

pendix C. The scattering state is found for real values of ν and has the asymptotics:
f → eikx for x → ∞, and for x → −∞:

f → �(1 − ikw)�(−ik)eikx

�(1/2 + γ − ik)�(1/2 − γ − ik)
+ �(1 − ikw)�(ik)e−ikx

�(1/2 + γ )�(1/2 − γ )
(3.29)

where k = ν/w and γ = √
σ̄ + 1/4.

The reflection coefficient can be read off from the asymptotic behavior of f (x)
as x → −∞ and has been evaluated in Section 12.3 of [113]

R = 1 + cos(2πγ )

cosh(2πk) + cos(2πγ )
(3.30)

The transmission coefficient is

T = 2 sinh2(πk)

cosh(2πk) + cos(2πγ )
= 1 − R (3.31)

From the asymptotic expression in Eq. (3.29), it is also possible to calculate the
time delay of the reflected and transmitted waves owing to the kink. For example,
if we write

�(1 − ikw)�(−ik)

�(1/2 + γ − ik)�(1/2 − γ − ik)
= |T |1/2eiδk (3.32)

where T is the transmission coefficient above, then the time delay of the transmitted
wave is given by δk/ω.
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3.5 Radiation from kink deformations

A static kink does not emit any radiation. Nor does it emit radiation if it is moving
at constant velocity (see Eq. (1.10)). However, if the kink is accelerating (owing to
some external force), or its shape is deformed, it can emit radiation in the form of
scalar particles [106, 107]. In 3 + 1 dimensions, acceleration and deformations arise
since the kinks (domain walls) are moving under their own tension, except in the
very special cases of static solutions. The radiation emitted from curved domain
walls has not been calculated analytically, though the problem has been studied
numerically [182]. In the case of 1 + 1 dimensional Z2 kinks that are undergoing
periodic deformations, the radiation has been found analytically in [110, 140], and
we shall describe this calculation below.

Following [110], we simplify notation by setting λ = 2 and η = 1 in the Z2 model
so that w = 1 in these units (see Section 1.1). Then the field φ(x, t) is written in
terms of the complete set of small excitations. This gives

φ(x, t) = φk(x) + R(t) f0(x) + A(t) f1(x) + f (x, t) (3.33)

where φk = tanh(x), f0 and f1 are the translation and shape modes respectively as
given in Eqs. (3.11) and (3.12), R(t) and A(t) are their time-dependent amplitudes,
and the function f (x, t) contains all the continuum states around the kink. The
frequency of oscillation of R(t) is ω0 = 0 and of A(t) is ω1 = √

3. These values
were derived for linearized fluctuations about the kink. Non-linearities will modify
ω1 = √

3 but we assume that such modifications are small.
We will work in the rest frame of the kink and so

R(t) = 0 (3.34)

The idea now is to insert Eq. (3.33) in the equation of motion for φ with some
choice of the amplitude A(t) which is assumed to be small, and then to find the
solution for the scattering states, f (x, t), which form the radiation.

Insertion of Eq. (3.33) in Eq. (1.4) gives

( Ä + 3A) f1 + f̈ − f ′′ + 2
(
3φ2

k − 1
)

f = −6( f + φk) f 2
1 A2

− 6( f + 2φk) f f1 A − 2 f 3
1 A3

− 6φk f 2 − 2 f 3 (3.35)

where the equations satisfied by φk and f1 have been used. Assuming that A is small,
and that f is O(A2) or smaller, the leading order equation is Ä + 3A = 0 + O(A2).
Then to order A2, the equation for f is

( Ä + 3A) f1 + f̈ − f ′′ + 2
(
3φ2

k − 1
)

f = −6φk f 2
1 A2 (3.36)
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The f -independent terms on the right-hand side of Eq. (3.35) are source terms
which cause radiation. Hence f will not be zero at order A2. The terms will also
cause the amplitude, A, of the shape mode to depart from the purely oscillatory
behavior. To determine how much of the source affects radiation and how much
affects the shape mode, note that f1 and f are orthogonal∫

dx f1(x) f (x, t) = 0 (3.37)

So we can decompose the equation into a direction parallel to f1 in mode space and
orthogonal to it. One assumption we have to make is that the back-reaction of the
radiative modes on the shape mode is higher order in A. For example, Eq. (3.37)
does not by itself imply that f ′′ and f1 are orthogonal. Then, multiplying Eq. (3.36)
by f1 and integrating over all space gives

Ä + 3A = −6A2
∫

dxφk f 2
1 ≡ −6αA2 (3.38)

provided we have normalized f1 so that∫
dx[ f1(x)]2 = 1 (3.39)

Explicit evaluation gives

α = 3π

32
(3.40)

The equation orthogonal to f1 is

f̈ − f ′′ + 2
(
3φ2

k − 1
)

f = −6φk f 2
1 A2 + 6α f1 A2 (3.41)

and this will determine the radiation from the deformed kink once we have specified
A.

The leading order solution for A is

A = A0 cos(
√

3t) (3.42)

Hence

A2 = A2
0

2
[cos(2

√
3t) + 1] (3.43)

This form implies that the source for f in Eq. (3.41) has a time-dependent piece
and another time-independent piece. Since the equation is linear in f , only the
time-dependent piece proportional to cos(2

√
3t) is important. Setting

f (x, t) = Re(eiωt F(x)) (3.44)
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the equation that needs to be solved is

−F ′′ + (
6φ2

k − 2 − ω2
)
F = 3

2

(
α f1 − φk f 2

1

)
A2

0ei(ω0−ω)t (3.45)

where ω0 = 2
√

3. Since the left-hand side is time-independent, this only has solu-
tions for

ω = ω0 = 2
√

3 (3.46)

and then all the solutions of the homogeneous equation are known (see Appendix C;
[113, 126]). The solutions of the homogeneous equation with plane wave asymp-
totics are

Fq(x) = (
3φ2

k − 1 − q2 − 3iqφk
)
eiqx (3.47)

where q = √
ω2 − 4. Knowing all the solutions of the homogeneous equation, it is

possible to explicitly construct the (retarded) Green’s function suitable for outgoing
radiation.

G(x, y) =
{−F−q(y)Fq(x)/W, (x < y)

−Fq(y)F−q(x)/W, (x > y)
(3.48)

where W is the Wronskian

W = Fq(x)F−q
′(x) − Fq

′(x)F−q(x) (3.49)

The Wronskian is a constant and its value can be found by using the explicit solutions

W = −2iq(q2 + 1)(q2 + 4) (3.50)

The solution of the inhomogeneous equation (3.45) is found by convoluting the
source with the Green’s function

F(x) =
∫ +∞

−∞
dy G(x, y)

3

2

[
α f1(y) − φk(y) f 2

1 (y)
]
A2

0 (3.51)

With a little more manipulation, we obtain the radiation field in the x → +∞ limit

f (x, t) = Re

[ −3A2
0ei(ωt−qx)

2iq(2 − q2 − 3iq)

∫ +∞

−∞
dy φk(y) f 2

1 (y)Fq(y)

]
(3.52)

with ω = ω0 = 2
√

3 and q = √
ω2 − 4 = 2

√
2. The integral can be done explicitly

leading to

f (x, t) = πq(q2 − 2)

32 sinh(πq/2)

√
q2 + 4

q2 + 1
A2

0 cos(ωt − qx − δ) (3.53)
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The phase δ can be read off from Eq. (3.52) because the integral is purely imaginary
and does not contribute

δ = tan−1

(
3q

q2 − 2

)
(3.54)

Now that we have the solution for the radiation field, we can find the energy
flux by using the T0i components of the energy-momentum tensor in Eq. (1.39).
Including a factor of 2 to account for the radiation toward x → −∞, we obtain the
radiated power [110]

dE

dt
= −0.020A4

0 (3.55)

The back-reaction of the radiation on the deformation amplitude can be estimated
on the grounds of energy conservation. In [110] the results above are compared to
the results of a numerical evolution of the deformations using the full non-linear
equations with good agreement.

3.6 Kinks from radiation

By time reversing kink and antikink annihilation, it should be possible to obtain
kink-antikink creation from incoming radiation. However, the stream of incoming
radiation would have to be sent with just the correct phase relationship and energy.
Such initial conditions occupy zero volume in the space of all initial conditions. A
more physical problem is to identify the set, or a large subset, of initial conditions
for the incoming radiation that will lead to kink-antikink creation. This problem is
unsolved. Yet certain interesting results have been obtained in [110] in the “gradient
flow” approximation in which the second time derivative terms in the equation of
motion are neglected.

Consider the collision of two kinks in the presence of a pre-existing kink [110],
as depicted in Fig. 3.4. As the kink-antikink-kink (kk̄k) system evolves, a kink-
antikink annihilate, and we are left with a kink whose shape is excited. Reversing
this process, if we start with a kink whose shape is excited, it can produce a kink-
antikink pair. In [110], this relation between the shape mode and the creation of a
kink-antikink pair was explored.

3.7 Scattering of kinks

The sine-Gordon model is a famous example of a completely integrable system [48].
Sine-Gordon kinks are examples of “solitons” in the strict mathematical sense in
which when two or more solitons (or anti-solitons) scatter, they simply pass through
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Figure 3.4 A kink collides from the left with another kink coming in from the
right in the presence of an antikink in the middle. The time evolution of the field is
shown in succession by the solid, dotted, dashed, and dashed-dotted curves. The
evolution shows that a kink and antikink annihilate leaving behind a kink whose
shape mode is excited (dotted and dashed curves). With further evolution, the shape
mode will dissipate and an unexcited kink will remain as seen in the dashed-dotted
curve. [Figure reprinted from [110].]

each other. The only consequence of the scattering is that there is a phase shift, or
equivalently, a time delay. The time delay may be understood by realizing that the
force between two kinks in the sine-Gordon model is attractive. Hence the kinks
collide and form a bound state for some time. The time delay may be viewed as the
time spent by the kinks in the form of a bound state. A crucial aspect of the scattering
is that there is no dissipation. More details can be found, for example, in [48].

Kink scattering in the Z2 model has a more complex character. In this case, we
cannot have kink-kink scattering because two Z2 kinks cannot be adjacent to each
other. Instead, we need only consider kink-antikink scattering. This has been the
subject of significant investigation [26, 4]. When a kink-antikink collide, the only
possibilities are that they reflect back or they annihilate (see Fig. 3.5).

As we might expect, at very low incoming velocities, a bound state is formed and
annihilation inevitably occurs, while at very high velocities, reflection takes place.
The remarkable discovery of numerical studies of kink-antikink scattering is that
the change from annihilation to reflection does not happen at just one critical value
of the incoming velocity. Instead there are bands of incoming velocity at which
annihilation occurs, while at other values of the incoming velocity the kink and
antikink are reflected. The plot in Fig. 3.6 shows these results.

The unexpected dependence of kink-antikink scattering on the incoming velocity
has been examined closely in [26, 4]. The behavior is understood as a resonance
effect between oscillations of the mode that describes the shape distortions of the



3.7 Scattering of kinks 47

(c)

f = +h

f = +h

f = +h

f = −h

f = −h

f = −h

(a)

(b)

vivi

vf vf

Figure 3.5 A kink and an antikink with incoming velocity vi are shown in panel
(a). The two possible outcomes of the scattering are shown in panels (b) and (c).
In panel (b), the kinks scatter and reflect. Their outgoing velocity v f need not be
equal to vi . In panel (c), the kink and antikink have annihilated and radiated away
their energy, leaving behind the trivial vacuum. In both outcomes, the scattering
is likely to be accompanied with radiation that has not been depicted.
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Figure 3.6 The ratio of outgoing to incoming kink velocities after scattering
versus the incoming velocity [26, 4]. When the outgoing velocity is plotted to be
zero, a kink-antikink bound state is formed that decays to the vacuum by radiation.
Notice that the kink-antikinks annihilate in certain bands in the initial velocity.
[Figure reprinted from [26].]
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Figure 3.7 Two curved domain walls collide and intercommute. At the collision
point, there is lots of radiation owing to annihilation or owing to the formation of
a closed domain wall that then collapses and decays into radiation. To imagine the
walls in three dimensions, rotate the figures along the horizontal axis. In the initial
state the two curved walls are disconnected from each other while in the final state,
the wall is in the shape of a “wormhole,” with a sphere in the middle.

kinks and the oscillations of the kinks as a whole owing to kink-antikink interactions.
We shall not describe the details of the analysis here.

The scattering of SU (5) × Z2 kinks has been studied numerically in [121]. In
this case, there is an additional degree of freedom, namely the non-Abelian charge
of the colliding kinks (or “color”) and there are a variety of initial conditions that can
be considered. For the stable variety of kinks – the q = 2 kinks (see Section 3.2) –
the scattering of kinks and antikinks of the same color is qualitatively similar to that
of Z2 kinks. If the colors are different, however, there is a repulsive force between
the kinks and they are observed to bounce back elastically.

3.8 Intercommuting of domain walls

We finally consider the collision of two domain walls. The outcome is found by
numerical evolution of the equations of motion. As the walls come together, they
reconnect along the curve of intersection [136] as shown in Fig. 3.7. This process
is called “intercommuting” or, simply, “reconnection.”

3.9 Open questions

1. Suppose we want to create a well-separated Z2 kink-antikink pair by colliding small
amplitude plane waves (particles) in the φ = +η vacuum. What conditions must be
imposed on the incoming waves? What is the space of initial conditions that leads to
domain wall formation? Can the initial conditions be implemented in a practical setting
(e.g. accelerator experiments)?

2. Can a domain wall lattice be generalized to other defects, e.g. a lattice of strings and
monopoles?
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3. Study the interaction of domain walls and strings/magnetic monopoles in a model that
contains both types of defects e.g. the SU (5) × Z2 model has walls and magnetic
monopoles.

4. Construct a sine-Gordon-like breather field configuration in the λφ4 model. This will not
be an exact solution of the field equation of motion. Hence it will radiate. Calculate the
radiated power. Are there circumstances in which the radiated power is very small?

5. Can the analysis of radiation from kink deformations be extended to the case of oscillating
domain walls? The simplest procedure would be to decompose the field as in Eq. (3.33)
and to include a suitable external (harmonic) potential that drives the translation mode
only. This will cause the kink to oscillate as a whole without deformations. However, the
oscillations will source the shape mode and the radiation, and an analysis of the kind in
Section 3.5 seems feasible.

6. Can the analysis of radiation from kink deformations be extended to the case of spherical
domain walls?

7. How can the radiation analysis be extended to vortex solutions in two or more spatial
dimensions?



4

Kinks in quantum field theory

A particle in a classical harmonic oscillator potential, mω2x2/2, has minimum en-
ergy when it sits at rest at the bottom of the potential. Then the particle’s energy
vanishes. The Heisenberg uncertainty principle however modifies this picture for
the quantum harmonic oscillator. The particle cannot sit at rest (with definite mo-
mentum) at the bottom of the potential (a definite location). Indeed, the quantum
zero point motion lifts the ground state energy to ω/2. Further, the excited states
of the simple harmonic oscillator are discrete and occur at energies (n + 1/2)ω,
n = 0, 1, 2, . . .

Just as the classical harmonic oscillator is modified by quantum effects, any
classical solution to a field theory is also modified by quantum effects. Quantum
effects give corrections to the classical kink energy owing to zero point quantum
field fluctuations. These quantum corrections are small provided the coupling con-
stant in the model is weak. To “quantize the kink” means to evaluate all the energy
levels of the kink (first quantization) and to develop a framework for doing quantum
field theory in a kink background. This involves identifying all excitations in the
presence of the kink and their interactions. The field theory of the excitations in
the non-trivial background of the kink is akin to second quantization. Finally, one
would also like to describe the creation and annihilation of kinks themselves by
suitable kink creation and annihilation operators. This would be the elusive third
quantization.

Initially we calculate the leading order quantum corrections to the energy of the
Z2 and sine-Gordon kinks. As these two examples illustrate, the precise value of
the quantum correction depends on the exact model and kink under consideration.
Yet there is one common feature – quantum corrections tend to reduce the energy
of the kink. This result is quite general and we prove it using a variational argument
in Section 4.5.

The quantum corrections to the kink mass are obtained by using a perturbative
analysis where the coupling constant is the expansion parameter, as first done

50
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in [38, 42]. For fixed values of the masses of particles in the field theory, the
energy of the classical solution is proportional to the coupling constant raised to
a negative power (for example, see Eq. (1.20)) and so the perturbative analysis
holds only if the kink is much more massive than the particles in the model. As the
coupling constant is increased, quantum effects become stronger and eventually
the perturbative scheme breaks down. Remarkably, the sine-Gordon model is still
amenable to analysis in this regime and, at strong coupling, the sine-Gordon kinks
become lighter than the particles. Indeed, there exists a weakly coupled description
of the model in which perturbative methods can be used: this is the massive Thirring
model in which the particles (low energy excitations of a fermionic field) correspond
to the sine-Gordon kinks at strong coupling (see Section 4.7).

The phenomenon observed in the sine-Gordon and massive Thirring models, in
which solitons of one model (Model 1) are identified with the particles of a second
model (Model 2) and vice versa in certain regimes of the coupling constants, is
known as “duality.” Model 1 is said to be dual to Model 2 if the particle-plus-soliton
spectrum of Model 1 maps onto the soliton-plus-particle spectrum of Model 2 and
vice versa. Both models describe the same physics, except that the light and heavy
degrees of freedom are interchanged.

The Z2 model does not share the remarkable symmetries of the sine-Gordon
model and less is known about the Z2 kink at strong coupling. However, the mass
of the Z2 kink can be evaluated at strong coupling using lattice field theory. We
describe these results in Section 4.8 and conclude, once again, that the kink becomes
less massive as the coupling is increased and eventually becomes massless.

In this book, we only describe quantization of the mass of the kink using canonical
techniques. A more extensive discussion of various other techniques and issues can
be found in [35, 126] and in the series of papers in [38, 42].

4.1 Quantization of kinks: broad outline

In this section, we evaluate the contribution of the zero point fluctuations to the
energy of the kink. Then we briefly discuss excited states.

The quantization procedure can be outlined as follows:

� Consider a field theory in two dimensions with compact spatial dimension of size
L , assumed large compared to any other length scale in the problem. Periodic
boundary conditions are imposed on the fields. Eventually take L → ∞.

� Consider small quantum fluctuations, ψ , about the classical kink background,
φk,

φ(t, x) = φk(x) + ψ(t, x) (4.1)
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n = 0
n = ± 1

n = ± 2

n = ± 2

n = −1
n = +1
n = 0

Figure 4.1 A trivial potential on a periodic space with period L is shown on the
left. The field modes are labeled by an integer n = 0, ±1, ±2, . . . When there is a
kink, the potential felt by the modes becomes non-trivial as depicted by the curved
bottom of the figure on the right. What used to be the n = 0 mode in the trivial
potential (on the left) becomes the lowest bound state, the zero mode, in the non-
trivial potential. Similarly a linear combination of the n = ±1 modes in the trivial
box may become a second bound state (n = +1 in this illustration) and the other
states remain unbound but shift in form and energy.

Linearize the equation for ψ and then quantize, that is, regard the field ψ as a
quantum operator

ψ(t, x) =
∑

[ak fk(t, x) + a†
k f ∗

k (t, x)] (4.2)

where a†
k and ak are creation and annihilation operators. The fk are mode functions

i.e. orthonormal solutions of the linearized equations of motion for ψ in the kink
background. The equation satisfied by fk is

∂2
t fk − ∂2

x fk + V ′′(φk(x)) fk = 0 (4.3)

� Find all the eigenmodes, fk, of the fluctuations and their eigenfrequencies ωk. As
shown in Fig. 4.1, in the presence of the kink the modes are displaced. Some of
the low-lying modes without the kink become bound states in the presence of the
kink, and the others become scattering states as L → ∞.

� Each eigenmode corresponds to a quantum harmonic oscillator with zero point
fluctuations. Sum up the zero point energies of all the modes to get the quantum
correction to the classical kink energy, Ecl,

Ẽ = Ecl +
∑

i

1

2
ωi (4.4)

In the L → ∞ limit, the sum over the modes becomes a sum over bound states
and an integral over scattering states. Also note that Eq. (4.4) is only valid to
leading order in the quantum corrections since we have ignored interactions of the
fluctuation field, ψ .
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In following this procedure, quantum field theoretic subtleties arise.

� The zero point energy of the trivial vacuum (without the kink) must be subtracted
from the zero point energy of the kink since we want to define the energy of the
trivial vacuum to be zero. Therefore

E = Ecl +
∑

i

1

2
ωi −

[
Ecl,0 +

∑
i

1

2
ω

(0)
i

]

where Ecl,0 is the classical energy of the trivial vacuum and is chosen to vanish
(Ecl,0 = 0), and ω

(0)
i are the eigenfrequencies of the modes in the trivial vacuum.

� The energy must be expressed in terms of renormalized parameters.

In the trivial vacuum, the energy eigenvalue for the mode with n nodes is

ω(0)
n =

√
k2

n + m2
ψ (4.5)

where kn = 2πn/L and n ∈ Z, the set of all integers. Now suppose that the kink
potential V ′′ is turned on slowly, i.e. that the potential term in Eq. (4.3) is multiplied
by a parameter that vanishes for the free field theory and is continuously increased
to one to get to the kink case. As the parameter increases, modes in the trivial
box evolve into modes in the kink background. Some of the low-lying modes in
the trivial box become the bound states of the kink. Let us label these modes by
the index b (for “bound”) and the remaining modes by c (for “continuum”). (In the
example of Fig. 4.1, b = 0, 1, and c is any integer except for 0, 1.) Then

E = Ecl + 1

2

∑
b

(
ωb − ω

(0)
b

) + 1

2

∑
c

[√
p2

c + m2
ψ −

√
k2

c + m2
ψ

]
(4.6)

where ωc ≡
√

p2
c + m2

ψ and mψ denotes the mass of the ψ particles. In the limit

L → ∞, the sum over continuum states becomes an integral.
The terms in Eq. (4.6) can be understood quite simply. The first term on the right

is the classical kink energy, the second contains the excess quantum corrections
owing to the zero point motion of the modes bound to the kink, and the third term
is the excess energy in the zero point motion of the modes that are not bound to the
kink. The wave numbers of the scattering modes in the background of the kink are
denoted by pν while that of the modes in the trivial vacuum by kn .

In the trivial vacuum and when L → ∞, the scattering states are plane waves,
which are both energy and momentum eigenstates with kn = 2πn/L . In the pres-
ence of the kink, the scattering states are energy eigenstates but not momentum
eigenstates and, in general, an incoming wave gets both reflected and transmit-
ted. Without specifying the field theory, further progress is possible when the
scattering potential, V ′′(φk(x)), is reflectionless. This may seem very restrictive,
but it holds for both the Z2 and sine-Gordon models and we assume it to be
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true for the remainder of this analysis. Then, asymptotically, the scattering states
behave as

ei(px−α(p)/2) as x = −L/2 → −∞ (4.7)

ei(px+α(p)/2) as x = +L/2 → +∞ (4.8)

where α(p) is a phase shift. Note that on multiplying by exp(iα(0)/2), the p = 0
state can be chosen to be purely real at x = −∞. Since the scattering potential,
V ′′(φk(x)), is also real, this implies that the imaginary part of the wavefunction can
be taken to be zero everywhere. Therefore α(0) = 0.

The phase of the scattering states has a winding number given by the total phase
change across the box. Since we have imposed periodic boundary conditions, the
total phase winding, (pL + α(p))/2π , must be an integer. This quantizes p so that

pν L + α(pν) = 2νπ (4.9)

where ν ∈ Z and we have denoted the νth wave-vector by pν .
Now that the scattering states in the soliton potential have been labeled by the

integer ν, and those when the potential vanishes by the integer n, correspondence
must be drawn between ν and n. To illustrate the problem, consider the pν = 0
mode. As discussed above, α(0) = 0 and hence, from Eq. (4.9), ν = 0 labels this
mode. Further, this mode has the lowest energy of the continuum states. In the
specific example of Fig. 4.1, this mode corresponds to the n = −1 mode in the
trivial box since the n = 0, 1 modes have become bound and have dropped out of
the set of scattering states. Therefore n = −1 corresponds to ν = 0, in this example.

With kn = 2πn/L , we can write

pν L + �(pν) = 2nπ = kn L (4.10)

where

�(pν) ≡ α(pν) + 2π (n − ν) (4.11)

The shift in going from n to ν is the change in the total winding of the phase as
the potential evolves from the trivial box to the soliton potential (see Fig. 4.1). As
long as there is no change in the relative ordering of the energy levels, the heirarchy
of the energy levels is maintained, and the mapping between n and ν is a constant
shift. Since some of the low-lying states in the trivial potential have dropped out
from the set of continuum states and have been converted into bound states, the set
of integers n is partitioned into two subsets – one for the integers that lie above
the would-be bound states and another for the integers that lie below the would-be
bound states. The map from n in each subset to ν is a constant shift but the shift is
different in the two subsets.
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Next we think of n − ν as a function of k. In the L → ∞ limit, (n − ν) is constant
everywhere except at k = 0, meaning that the derivative of n − ν with respect to k
is a Dirac delta function at k = 0,

d�

dk
= coeff.δ(k) + dα(k)

dk
(4.12)

To determine the coefficient of the delta function, let us denote by Nb the number
of states in the trivial potential that have dropped out as bound states in the kink
potential. In a large interval n+ − n− (n+ is positive and n− is negative), the cor-
responding interval in ν is smaller by Nb, and hence the coefficient of the delta
function is given by −2π Nb

d�

dk
= −Nb2πδ(k) + dα(k)

dk
(4.13)

For large momenta (and energy) the modes are unaffected by the deformation of
the potential at the bottom of the well. Hence pν → kn in this region and �(p) → 0
as |p| → ∞.

The phase shift �(pν) depends on the potential in the equation of motion for
ψ(t, x), as in Eq. (4.3). As we explain below, the scattering potential created by
the soliton background is non-perturbative. Therefore the phase shifts need not
be small owing to factors of the coupling constant. However, note that �(pν)/L
is small as L → ∞ and we need only keep terms up to linear order in 1/L .
Therefore

√
p2

ν + m2
ψ =

√(
kn − �(pν)

L

)2

+ m2
ψ

=
√

k2
n + m2

ψ − kn�(kn)

L
√

k2
n + m2

ψ

+ O

(
1

L2

)
(4.14)

Note that in the last line �(pν) has been replaced by �(kn) since pν = kn + O(1/L).
We now want to express the energy of the kink in terms of renormalized param-

eters. If we denote the renormalized mass of ψ by mψ,R and the bare mass by mψ,b,
then

m2
ψ,R = m2

ψ,b − δm2
ψ (4.15)

where δmψ denotes the quantum contribution of vacuum fluctuations to the mass
of ψ , and δm2

ψ is due to the self-coupling of the field and hence is proportional to
the coupling constant.

The expression for the energy in Eq. (4.6) is valid to leading order in quantum
corrections. The classical energy is inversely proportional to the coupling constant
(e.g. Eq. (1.20)) and so the leading corrections are independent of the coupling
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constant. Note that mψ in the last two terms in Eq. (4.6) can be freely replaced
by mψ,R since we are only evaluating the lowest order (coupling constant inde-
pendent) quantum correction to the energy and δm2

ψ is proportional to the coupling
constant. Retaining only the terms that are of leading order in the coupling constant,
expanding Ecl in δm2

ψ , and using Eq. (4.14), we get

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

(
ωb − ω

(0)
b

) − 1

2L

∑
n

kn�(kn)√
k2

n + m2
ψ,R

(4.16)

where �Ecl denotes the leading order change in Ecl when replacing bare parameters
by renormalized parameters.

In the limit L → ∞, the sum over n becomes an integral

∑
n

→ L

2π

∫ +∞

−∞
dk (4.17)

Hence,

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

ωb − Nb

2
mψ,R − 1

4π

∫
dk

k�(k)√
k2 + m2

ψ,R

(4.18)

where we have made use of the fact that ω
(0)
b =

√
k2

b + m2
ψ,R → mψ,R as kb ∝

1/L → 0.
On integration by parts∫

dk
k�(k)√

k2 + m2
ψ,R

=
[
�(k)

√
k2 + m2

ψ,R

]+∞

−∞
−

∫
dk

√
k2 + m2

ψ,R

d�

dk
(4.19)

Since �(k) vanishes as k → ±∞, the boundary term gives a finite contribution.
The last term contains the derivative of �(k) and is given in Eq. (4.13). Therefore
the final result is

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

ωb − 1

4π
[|k|�(k)]+∞

−∞

+ 1

4π

∫
dk

√
k2 + m2

ψ,R

dα

dk
(4.20)

Our general calculation can be pushed a little further since, in one spatial dimen-
sion, all divergences can be removed by normal ordering a “renormalized potential,”
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VR, which can be written in terms of the bare potential, V (φ) [35]

VR = exp

{
1

8π

(
ln

4�2

m2

)
d2

dφ2

}
V (φ) + ε0 (4.21)

where � is a momentum cut-off, and m is the bare mass. The constant ε0 renor-
malizes the vacuum energy, and is chosen so that the expectation value of the
Hamiltonian in the ground state vanishes. For example, in λφ4 theory (Eq. (1.2)),

VR = [γ (3γ λ − m2) + ε0] + 1

2
(6γ λ − m2)φ2 + λ

4
φ4 (4.22)

where

γ ≡ 1

8π
ln

(
4�2

m2

)
�→∞= 1

8π

∫ +�

−�

dk√
k2 + m2

(4.23)

Then, the quantum correction to the mass is δm2 = 6λγ , while the quantum cor-
rection to the mass of the excitations in the Z2 model is:

δm2
ψ = 2δm2 = 12λγ (4.24)

In the sine-Gordon model (Eq. (1.51))

VR = α

β2
[1 − e−γβ2

cos(βφ)] + ε0 (4.25)

and the quantum corrections to the parameters can be read off.
Returning to the general expression in Eq. (4.21), the bare parameters occurring

in V (φ) can be chosen to absorb the cut-off dependent factors. Then the potential
VR is given entirely in terms of finite physical parameters. If the classical solution
is found for the physical value of the coupling constant, denoted by λR, then �Ecl

only depends on the correction to the mass term, δm2
ψ ,

�Ecl = E ′
cl[mψ,R; λR]

2mψ,R
δm2

ψ (4.26)

where E ′
cl denotes derivative of Ecl with respect to the mass, mψ,R. At this stage,

we are still left with the last two terms in Eq. (4.20) involving the phase shifts.
However, there is no general prescription for finding the phase shifts, and each
problem has to be dealt with individually.

Equation (4.20) is our final general expression for the ground state energy of the
quantized kink provided that the classical kink solution gives rise to a reflectionless
potential. To make further progress one needs to find Ecl[mψ,R; λR], �Ecl, ωb, and
the derivative of α(k). These quantities are model specific and we shall find them
in the λφ4 and sine-Gordon models in the next two sections.
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Before going on to some examples, it is helpful to track the coupling constant
dependence of the various terms in Eq. (4.16). We write the potential as

V (φ) = −m2

2
φ2 + εS(φ) (4.27)

where m is the mass parameter, ε is the small coupling constant, and S is some
unspecified function of φ, perhaps containing other parameters. The classical energy
term in Eq. (4.16) is inversely proportional to the coupling constant. So the leading
order correction is independent of the coupling constant. In the second term, δm2

ψ

is proportional to the coupling constant but E ′
cl is inversely proportional to the

coupling constant. Hence the product is independent of the coupling constant. Next
we come to the coupling constant dependence of the energy eigenvalues and the
phase shifts. The spectrum of excitations is found by solving for eigenmodes in
the kink background. The kink background provides a potential with which the
excitations interact. The important point here is that this potential is non-trivial
even to zeroth order in the coupling constant. The vacuum expectation value of φ,
denoted by φ0, is found by minimizing V . Therefore

S′(φ0)

φ0
= m2

ε
(4.28)

Then

V ′′(φ0) = −m2 + εS′′(φ0) (4.29)

and approximating S′′(φ0) as S′(φ0)/φ0,

V ′′(φ0) ∼ −m2 + ε
S′(φ0)

φ0
∼ m2 (4.30)

Hence the scattering potential in Eq. (4.3) for the mode functions is independent
of the coupling constant, and the phase shifts, α(k), are non-trivial even to zeroth
order in the coupling constant.

As we see in the specific examples given below, both δm2
ψ and the last sum in

Eq. (4.16) are divergent. However, the divergences cancel, leading to a finite result
for the energy.

4.2 Example: Z2 kink

We now find the energy of the quantized Z2 kink by evaluating explicitly the terms
in Eq. (4.16).

The classical energy piece is already known from Eq. (1.20)

Ecl[mψ,R; λR] = 2
√

2

3

m3

λR
= m3

ψ,R

3λR
(4.31)
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Then �Ecl is given by Eq. (4.26) and E ′
cl is found by differentiating Eq. (4.31)

E ′
cl[mψ,R; λR] = m2

ψ,R

λR
(4.32)

The mass correction δm2
ψ arises owing to the interaction term λφ4/4 in this

model. The calculation of δm2
ψ is quite involved since it requires renormalization

in a model with spontaneous symmetry breaking, which means that we should
find the mass correction from the action in Eq. (1.5). Then there are both cubic
and quartic interactions. This calculation can be found in quantum field theory
textbooks, for example [119]. The end result is

δm2
ψ = 3λR

2π

∫
dk√

k2 + m2
ψ,R

(4.33)

The integral in Eq. (4.33) is divergent. However it is only one term in the expression
for the quantum kink energy in Eq. (4.18). In particular, the last term with the
phase shifts is also divergent, but the quantum kink energy is finite since the two
divergences cancel. Note that we can replace mψ by mψ,R in the final integral since
we are only evaluating the leading order correction.

Next consider the terms in Eq. (4.16) that involve the spectrum of fluctuations
about the classical kink. To find the spectrum, substitute Eq. (4.1) in the field
equation, Eq. (1.4), and expand to lowest non-trivial order in ψ . This was already
done in Section 3.2 and we now summarize the results

ω0 = 0, χ0 = sech2z

ω1 =
√

3

2
mψ, χ1 = sinhz sech2z

mψ < ω < ∞, χk = eikx [3 tanh2z − 1 − w2k2 − i 3wk tanhz]

where z = x/w = mψ x/2, and the dispersion relation is

ω2
k = k2 + m2

ψ (4.34)

Note that the eigenvalues ωk are independent of the coupling constant because λ

does not occur in Eq. (3.10) if mψ = √
2λη is held fixed. However, this statement

is only true to leading order in λ because the mass parameter, the kink width, and
indeed the form of the kink solution get modified owing to quantum corrections,
and induce λ dependence in the spectrum. Since we are only working to leading
order in quantum corrections, the mass parameter mψ entering Eq. (3.10) and the
definition of the kink width, w, are the same as mψ,R.
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The next step is to impose periodic boundary conditions with period L → ∞ on
the scattering state. For this we find the asymptotic behavior of χk

χk → eikz(2 − w2k2 ∓ i 3wk) ∝ exp{i(kz ± α(k)/2)}, z → ±∞ (4.35)

from which the phase shifts follow

α(k) = 2 tan−1

[
3wk

w2k2 − 2

]
(4.36)

Hence

dα

dk
= −6w

w2k2 + 2

(w2k2 + 1)(w2k2 + 4)
(4.37)

and

�(k) → 6

wk
, |k| → ∞ (4.38)

Now we combine all the terms in Eq. (4.20)

E = m3
ψ,R

3λR
+

√
3

4
mψ,R − 3

2π
mψ,R − 3m3

ψ,R

16π

∫ +∞

−∞

dk√
k2 + m2

ψ,R

1

k2 + m2
ψ,R/4

(4.39)

The last integral is done easily yielding the final result for the kink mass with
leading order quantum correction

E = m3
ψ,R

3λR
−

(
3

π
− 1

2
√

3

)
mψ,R

2

= m3
ψ,R

3λR
− 0.33mψ,R (4.40)

Note the minus sign in front of the quantum correction to the energy. In Section 4.5
we show that this is a general feature.

4.3 Example: sine-Gordon kink

To quantize the sine-Gordon kink of Section 1.9, we follow the same procedure as
for the Z2 kink. The mode functions now satisfy

−d2ψ

dX2
+ (2 tanh2 X − 1)ψ = ω2

m2
ψ

ψ (4.41)
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where X ≡ mψ x . The kink solution, from Eq. (1.52), is

φk = 4

β
tan−1

(
e
√

αx
) ≡ 4mψ√

λ
tan−1

(
emψ x

)
(4.42)

where λ ≡ αβ2. The classical energy (Eq. (1.55)) is

EsG,cl = 8

√
α

β2
≡ 8

m3
ψ

λ
(4.43)

The spectrum has only one bound state, the translational zero mode given by

ω1 = 0, ψ0 = dφk

dx
= 2m2

ψ√
λ

sech(mψ x) (4.44)

The scattering state with wave-vector k can be written quite generally in terms of
hypergeometric functions (see [113], Vol. II, Section 12.3, or Appendix C)

ψκ = N (cosh X )iκ X F

(
−iκ − 1, −iκ + 1

2
+ 3

2
|1 − iκ| e−X

eX + e−X

)
(4.45)

where N is a normalization factor and κ = k/mψ corresponds to the wave-vector.
The phase shifts are found by taking the asymptotic forms of Eq. (4.45)

ψκ → Neiκ X , X → ∞
→ Nei(π+2θ )eiκ X , X → −∞ (4.46)

where tan θ = κ . Hence the phase shift is

αk = π − 2 tan−1

(
k

mψ

)
(4.47)

Therefore

dαk

dk
= −2mψ

k2 + m2
ψ

(4.48)

At large |k|, �(k) (as needed in Eq. (4.20)) is given by

�(k) = 2mψ

k
, |k| → ∞ (4.49)

To find �Ecl occurring in Eq. (4.20), we can use the renormalized potential in
Eq. (4.25). The parameter β, which occurs in the argument of the cosine function,
is taken to be the physical (renormalized) value, while

(
√

α)b = (
√

α)R

(
1 + β2

2
γ

)
(4.50)
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to leading order in β2. The subscripts refer to bare and renormalized quantities and
γ is defined in Eq. (4.23). Therefore

�Ecl = mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

(4.51)

Finally, with
∑

ωb = 0, we can put together all the various terms in Eq. (4.20)
to get

E = 8m3
ψ,R

λR
+ mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

+ 0 − mψ,R

π
− mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

= 8m3
ψ,R

λR
− mψ,R

π

= 8m3
ψ,R

λR
− 0.32mψ,R (4.52)

Once again the quantum correction is negative and, coincidentally, quite close to
the Z2 value (see Eq. (4.40)).

4.4 Quantized excitations of the kink

So far we have only calculated the quantum correction to the mass of the kink in
its ground state. Now consider the excited states of the kink.

As in the second quantization of a free quantum field theory, particle creation
and annhilation operators are introduced for each of the excitation modes of the
kink. As we shall see, this is straightforward except for the zero mode. The end
result is a procedure for doing quantum field theory with both particles and kinks
included in the spectrum of states. Here we only give some introductory remarks.
For a more extended discussion see [67, 126].

Let us denote the bound state mode functions by Fb(t, x) and the scattering
mode functions by fk(t, x). The t dependence is of the form exp(−iωi t) where ωi

is the frequency of the bound or scattering mode. Then the second quantized field
operator is

φ = φk(x) +
∑

b

[
ĉb Fb(t, x) + ĉ†b F∗

b (t, x)
] +

∑
k

[
âk fk(t, x) + â†

k f ∗
k (t, x)

]
(4.53)

where φk is the classical kink solution, c†b, cb are creation/annihilation operators
for the bound states, and similarly a†

k , ak are creation/annihilation operators for the
scattering states. Now, for the zero mode, ω = 0 and F0(t, x) = F∗

0 (t, x). Therefore
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the zero mode contribution to the sum is

[ĉ0 + ĉ†0]F0(x) (4.54)

Since c0 and c†0 are only present in the combination c0 + c†0 let us define b0 = ĉ0 + ĉ†0
which is then the annihilation operator for the zero mode. However, note that
b†

0 = b0 and so [b0, b†
0] = [b0, b0] = 0: the zero mode is classical as the operator

b0 commutes with all other operators. This is to be contrasted with [ak, a†
p] =

2πδ(k − p).
Just as the translation mode is a bosonic zero mode, there can also be fermionic

zero modes that we discuss in Chapter 5. In that case, the creation and annihilation
operators satisfy anticommutation relations leading to {b0, b†

0} = 0. This relation
has the remarkable consequence of leading to fractional quantum numbers as we
discuss in Chapter 5.

4.5 Sign of the leading order correction

A striking feature of the leading order quantum corrections to the energies of the
Z2 and sine-Gordon kink is that they are negative. In other words, quantum effects
reduce the mass of the kink. A variational argument [104] (Coleman, S., 1992,
private communication) shows that this observation holds true quite generally in
one dimension.1

Let the Hamiltonian of the 1 + 1 dimensional system be

H ≡
∫

dxH =
∫

dx [H0 + V (φ)] (4.55)

where φ is a scalar field,

H0 ≡ 1

2
π2 + 1

2
(∂xφ)2 (4.56)

and π is the canonical field momenta. Written in this way, the parameters entering
the Hamiltonian are bare parameters and subject to renormalization. In one spatial
dimension, however, it can be shown that [35]

H = Nm [H0 + VR] (4.57)

where Nm denotes normal ordering with respect to free particles of mass m, and
the renormalized potential is (Eq. (4.21))

VR = exp

{
1

8π

(
ln

4�2

m2

)
d2

dφ2

}
V (φ) + ε (4.58)

1 The conclusion may not hold if the model also contains fermionic fields.
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where � is an ultraviolet momentum cut-off and ε is a constant to be chosen such
that 〈0|H |0〉 = 0 where |0〉 is the true ground state of the model.

The energy of the kink, including the contribution of quantum fluctuations in the
ground state, is

E = k〈0|H [φk + ψ]|0〉k (4.59)

where |0〉k denotes the vacuum for the quantum fluctuations, ψ , around the classical
one kink state φk.

Straightforward manipulation now gives the quantum correction to the kink mass

E − Ecl,R = k〈0|H [φk + ψ] − H [φk]|0〉k

=
∫

dx k〈0|Nm(H0[φk + ψ] − H0[φk] + VR[φk + ψ] − VR[φk])|0〉k

where Ecl,R is the energy of the classical solution obtained with the renormalized
potential, VR. Next we use the variational principle, which states that the ground
state energy of a system is minimized in its true ground state, and the expectation
of the Hamiltonian in any other trial state gives an upper bound to the ground state
energy. If we denote the perturbative vacuum state – the state with zero particles of
mass m – by |0, m〉, then

E ≤ Ecl,R +
∫

dx 〈0, m|Nm(H0[φk + ψ] − H0[φk] + VR[φk + ψ] − VR[φk])|0, m〉
= Ecl,R

The last line follows since there are no ψ independent terms in the expectation
value under the integral,2 and the annihilation operators of ψ occur to the right
owing to normal ordering and annihilate the trial vacuum state.

Note that Ecl,R is the energy of the classical solution found by minimizing HR[φ],
i.e. the Hamiltonian in Eq. (4.55) but with the potential given in Eq. (4.58). Since the
true ground state of the system is not known, the constant ε is not known either. The
potential VR can be minimized, but there is no guarantee that the minimal value of
VR will be zero. Therefore Ecl,R might get an infinite contribution from integrating
min(VR) over all of space. Then the variational bound E ≤ Ecl,R is not very useful.
However, we do know the value of ε to lowest order in the coupling constant and
this is precisely so that 〈0, m|H |0, m〉 = 0. This coincides with choosing ε so as to
make min(VR) = 0. Hence the bound

E ≤ Ecl,R = Ecl (4.60)

2 To see this, note that the expectation value vanishes if ψ = 0.
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where Ecl denotes the classical energy without any quantum corrections, is mean-
ingful to leading order in perturbation theory and it provides us with the completely
general result that the lowest order correction to the soliton energy is negative.

4.6 Boson-fermion connection

A bosonic field, φ, in quantum field theory satisfies the equal time commutation
relation

[φ(x, t), φ̇(y, t)] = δ(x − y) (4.61)

Alternatively, a fermionic field, ψ , satisfies the anticommutation relations

{ψa(x, t), ψ†
b(y, t)} = δ(x − y)δab (4.62)

where a, b = 1, 2 label the two components of the spinor in one spatial dimension.
It is remarkable that one can construct explicitly a fermionic field ψ satisfying
Eq. (4.62) in terms of a bosonic field φ that satisfies Eq. (4.61) [108].

The connection between ψa and φ is

ψ1(x) = C : eP+(x) :, ψ2(x) = −iC : eP−(x) : (4.63)

where the c-number C is defined in terms of a mass parameter µ and another cut-off
parameter, ε,

C =
( µ

2π

)1/2
eµ/8ε (4.64)

The operators P± contain a free parameter β and are defined by

P±(x) = −i
2π

β

∫ x

−∞
dξ φ̇(ξ ) ∓ iβ

2
φ(x) (4.65)

The symbol :: in Eq. (4.63) denotes normal ordering with respect to the mass µ.
This means that the field φ is to be treated as a free field with mass parameter
µ and the quantum operator, φ, is expanded in terms of creation and annihilation
operators that create and destroy particles of this free field theory. A normal ordered
operator contains various products of creation and annihilation operators with the
annihilation operators always occurring on the right. It is understood that the in-
tegral in Eq. (4.65) is cut off at large ξ by a factor exp(−εξ ). Note that normal
ordering is a symbol and should be treated carefully – normal ordering of strings
of operators should be done prior to commuting operators that occur within the
string.
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To check if Eq. (4.62) is satisfied for x �= y, we use the identity (see Appendix D)3

: eA+B := e−[A+,B−] : eA :: eB := e−[B+,A−] : eB :: eA : (4.66)

where A and B are any two operators that can be written as a linear sum of terms
involving only creation or annihilation operators

A = A+ + A−, B = B+ + B− (4.67)

The commutators [A+, B−] and [B+, A−] are assumed to be c-numbers. Insertion
of Eq. (4.66) in Eq. (4.62) gives the commutation relation in Eq. (4.61) for x �= y.

It is harder to check that the commutation relations in Eq. (4.61) hold when
x = y. Since products of quantum operators at the same point are singular, the
commutator must be evaluated at two different points in space, x and y, followed
by the coincidence limit y → x . We now outline the scheme employed in [108].

We want to check the anticommutation relation

{ψa(x), ψ†
b(y)} = Zδ(x − y) (4.68)

where the constant Z , possibly infinite, has been introduced in recognition of the
fact that the fields get renormalized. Rather than check Eq. (4.68), we can check
the equivalent commutation relation

[ jµ(x), ψ(y)] = −
(

g0µ + β2

4π
εµ0γ 5

)
ψ(x)δ(x − y) (4.69)

where the current jµ has been regularized using point-splitting and is defined by

jµ(x) = lim
y→x

{[
δµ0 + β2

4π
δ

µ

1

]
[µ(x − y)]σ ψ̄(x)γ µψ(y) + Fµ(x − y)

}
(4.70)

where σ is a regularizing parameter and Fµ(x − y) an unspecified c-valued func-
tion. The γ -matrices are defined by the algebra

{γ µ, γ ν} = 2gµν, γ 5 = iγ 0γ 1 (4.71)

where gµν = diag(1, −1) is the two-dimensional Minkowski metric. An explicit
representation of the γ -matrices is given in Eq. (5.15). In Eq. (4.69), εµν is the
totally antisymmetric tensor.

First the current jµ is evaluated with ψa as given in Eq. (4.63). The evaluation
requires

[φ+(x, t2), φ−(y, t1)] = �+[(x − y)2 − (dt + iε)2] (4.72)

3 In the literature it is sometimes incorrectly stated that the identity eA+B = e[B,A]/2eAeB (no normal ordering)
is being used.
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where dt = t2 − t1 and �+ is the propagator. For small x − y

�+ = − 1

4π
ln[µ2{(x − y)2 − (dt + iε)2}] + O((x − y)2) (4.73)

By differentiating Eq. (4.72) we can also obtain the commutators of time derivatives
of φ+ and φ−. These appear in the evaluation of jµ since ψ is defined in terms of
φ̇ in Eq. (4.63).

The result for jµ is singular in the limit y → x except for a single choice of the
regularizing parameter, σ , occurring in the definition of jµ. This single choice is

σ = β2

8π

(
1 − 4π

β2

)2

(4.74)

With this value of σ , the commutator in Eq. (4.69) can be verified. Thus the
ψ operator indeed satisfies the anticommutation relations of a fermionic field.
Furthermore, the current can be explicitly calculated, leading to

jµ = − β

2π
εµν∂νφ (4.75)

To summarize, given a quantum scalar field in 1 + 1 dimensions, it is possi-
ble to construct a fermionic field from it via the relation (4.63). Starting with a
fermionic field, a bosonic field may be constructed from it via Eq. (4.75). Note that
the transformations from bosons to fermions and vice versa hold at the quantum
operator level and not just at the level of expectation values. Further, they hold
for any choice of interactions in the bosonic or the fermionic model. However, in
the case when the bosonic model is the sine-Gordon model, the fermionic model
obtained by transforming to the fermionic variables is another well-known model,
namely the massive Thirring model as we now describe.

4.7 Equivalence of sine-Gordon and massive Thirring models

The sine-Gordon model is given by the Lagrangian (Eq. (1.51))

LsG = 1

2
(∂µφ)2 − α

β2
(1 − cos(βφ)) (4.76)

while the massive Thirring model is

LmT = iψ̄ �∂ψ − mψ̄ψ − g

2
ψ̄γ µψ ψ̄γµψ (4.77)

where ψ is a two-component fermionic field.
In [34] (also see [35]) it is shown that the sine-Gordon model does not have a

well-defined ground state for β2 > 8π . To clarify what this means, consider the
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simple example of a free field theory

L free = 1

2
(∂µφ)2 − δ

2
φ2 (4.78)

This model has a well-defined ground state only in the range δ ≥ 0. The model does
not have a well-defined ground state for δ < 0. Similarly the sine-Gordon model
only has a ground state for a definite range of parameters, though the reasons are
much more subtle.4 The sine-Gordon only has a well-defined ground state if the
parameter β2 is restricted to lie in the interval (0, 8π ).

In the range, 0 ≤ β2 ≤ 8π , there is a one-to-one mapping between vacuum
expectation values of a string of operators in the sine-Gordon model to those in
the massive Thirring model. This means that any vacuum expectation value in the
sine-Gordon model has a “corresponding” vacuum expectation value in the massive
Thirring model. This strongly suggests that the two models are equivalent, even at
the operator level [35].

As we have seen in the last section, there is indeed a two-component fermionic
field, ψ , that can be constructed from a bosonic field φ (Eq. (4.63)). In [108] it was
shown that ψ also obeys the equations of motion of the massive Thirring model
if the bosonic field φ obeys the equations for the sine-Gordon equation with the
coupling constant g written in terms of the coupling constant β as

g

π
= 1 − 4π

β2
(4.79)

Note that when the sine-Gordon model is weakly coupled (small β), the massive
Thirring model is strongly coupled and vice versa. Hence the sine-Gordon model
and the massive Thirring model are completely equivalent as quantum field theories
but one is a better description at small β (large g) and the other at large β (small g).

What has the equivalence of the sine-Gordon and massive Thirring models got
to do with kinks? Consider the commutation relations between φ and ψ . Using
Eq. (4.63) and the identity (see Appendix D) [A, : eB : ] =: [A, eB] : with A =
φ(y) and : eB := ψ we find

[φ(y), ψ(x)] = 2π

β
ψ(x), (y < x) (4.80)

[φ(y), ψ(x)] = 0, (y > x) (4.81)

Now consider the action of ψ(x) on an eigenstate, |s〉 of the field operator φ. Let
us choose this eigenstate to be such that

φ|s〉 = 0 (4.82)

4 For example, in contrast to the model in Eq. (4.78), the classical sine-Gordon model has well-defined global
minima for all values of the coupling constant β.
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If we write |s ′〉 = ψ(x)|s〉, the relation in Eq. (4.80) gives

φ(y)|s ′〉 = 2π

β
|s ′〉, (y < x) (4.83)

and Eq. (4.81) gives

φ(y)|s ′〉 = 0, (y > x) (4.84)

Therefore the state obtained after action by ψ(x) is one where the value of φ is 2π/β

for y < x and 0 for y > x . In other words, the field ψ(x) creates a step-change of φ.
The step-function profile is viewed as a “bare kink” which gets dressed by quantum
effects that produce a smooth kink profile with some finite width. So the field ψ(x)
is the creation operator for a (bare) soliton at location x . In the Thirring model, the
field ψ(x) is interpreted as the creation operator for a fermion located at x . Hence
the sine-Gordon kink is identified with the fermion in the massive Thirring model.

The topological charge on a sine-Gordon kink is

Qk =
∫

dx j0
B =

∫
dx j0

F (4.85)

where the fermionic current is defined in terms of the bosonic current in Eq. (4.75).
Therefore the fermion in the massive Thirring model carries the topological charge
of the sine-Gordon kink. In other words, the kink of the strongly coupled sine-
Gordon model is better described as a weakly coupled fermion of the massive
Thirring model. Here we see the duality between particles and solitons.

Can we also interpret the bosonic particles of the sine-Gordon model in terms of
“solitons” of the massive Thirring model? The massive Thirring model only contains
fermions, and classical solutions of the Dirac equation do not have the interpretation
of solitons. This is because the fermionic fields anticommute and fermions obey the
Pauli exclusion principle. Instead a classical solution of the Dirac equation is a state
that one (and only one) fermion can occupy. However, there can be bound states
of two or more fermions since the force between a fermion and an antifermion is
attractive for g > 0. A bound state of two fermions can be shown to correspond to
a particle of the sine-Gordon field φ. If the fermions in the weakly coupled massive
Thirring model have mass m, then the bound state energy is approximately 2m
since it involves two fermions. However, the binding energy decreases (becomes
more negative) with increasing interaction strength, g, and eventually the bound
state becomes lighter than a single fermion. At this stage, a suitable description of
the system is in terms of the bound state being the fundamental degree of freedom
as in the sine-Gordon model.

The bound state of two massive Thirring fermions is also a bound state of
two sine-Gordon kinks i.e. a breather. Hence it should be possible to interpret
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the breather as a particle in the sine-Gordon model. This is seen to be true when the
breather is quantized [38–41, 35]. Then, to lowest order, the energy levels of
the quantized breather are equal to the mass of one, two, three, etc. particles of
the sine-Gordon particle.

4.8 Z2 kinks on the lattice

Lattice field theory provides another tool to probe the quantum nature of solitons
and, in particular, the variation of mass with coupling constant.

The starting point is the action for the Z2 model defined in Eq. (1.2). The action
is to be inserted in the Feynman path integral, which can then be used to find
expectation values for any quantum operator. In the Feynman path integral, it is
necessary to integrate over field configurations, and this is done numerically on a
discretized Euclidean space-time. The reader is referred to the lattice literature for
details [37, 112, 141]. Here we shall give the results relevant to the Z2 kink.

The mass of a Z2 kink is defined as the expectation value of a suitable operator
defined on the lattice in the limit that the lattice spacing, a, goes to zero. One
important issue is that there are several different candidate operators on the lattice
that all go to the correct limit as a → 0 and, in practice, it is not possible to take the
limit all the way to a = 0. At best, the numerical analysis gives the expectation of
the operator on the lattice for several different values of a and then some scheme
must be found for extrapolating the results to a → 0. In [32], the authors evaluate
the mass of the Z2 kink using two different lattice operators. The results are shown
in Fig. 4.2. We note that the kink mass decreases monotonically as the coupling
constant increases and remains bounded by the classical mass. At a certain coupling,
the kink mass goes to zero, and the kink, not the φ quanta, is the lightest degree of
freedom in the model.

The mass of the sine-Gordon kink has been calculated analytically for a range
of parameters in [156] (also see [35]).

4.9 Comments

Several researchers have taken alternate paths to studying quantized kinks. In
supersymmetric theories there is greater control over quantum corrections and the
mass can, in some cases, be evaluated exactly [51]. Alternate methods to quantize
supersymmetric kinks have also been developed in [66]. Variational methods to
study the λφ4 theory have been developed in [49]. The scattering of kinks in classi-
cal and quantum theory has been studied in [153]. Kink masses and scattering have
also been calculated in [132] using the Hartree approximation.
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Classical prediction
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Figure 4.2 The figure shows how the mass of the Z2 kink depends on the inverse
coupling constant, β0 = 1/λ0, where λ0 ≡ 6λa2 is the coupling constant in the
discrete theory on a 48 × 48 lattice and a is the lattice spacing. (The factor of 6
is due to our choice of 1/4 in the λ term in Eq. (1.2) as opposed to 1/4! in [32].)
The lattice mass parameter, r0 ≡ −m2a2, is held fixed at r0 = −2.2. From the
plot we see that the classical value of the kink mass is larger than the quantum
value. The one-loop corrected mass (see Section 4.2) and the mass found by using
two different choices of the lattice mass operator are also shown. The kink mass
vanishes at β0 = 0.0804. [Figure reprinted from [32].]

The construction of fermion operators from boson operators and vice versa has
been discussed and used extensively in condensed matter applications under the
name of bosonization. A review, in addition to an historical introduction, may be
found in [44]. Finally, the technique of bosonization has also been applied to thermal
systems in [69].

4.10 Open questions

1. The quantum corrections to the Z2 and sine-Gordon kinks were calculated explicitly using
the phase shifts. However, the phase shift approach only works if the potential U (x) is
reflectionless. What are the conditions necessary for a potential to be reflectionless? Are
reflectionless potentials always in factorizable form (see Section 3.3)? (The example of
a step-function potential shows that the converse is not true.)
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2. We have shown that the leading order quantum correction to the kink mass is always
negative. Can this statement be generalized to all orders? Can one show that the mass
of a kink goes to zero in the strong coupling limit? Or perhaps that it is monotonically
decreasing as a function of increasing coupling constant?

3. If the Z2 kink at strong coupling is to be viewed as a particle, then the particle must obey
unusual statistics because two kinks cannot be next to each other. Discuss this statistics
and its implications for the dual model.

4. From the SU (5) × Z2 example we learned that a classical kink may be embedded in
many different ways in “large” models. On quantization, do the different embeddings
correspond to distinct degrees of freedom?

5. Does the addition of fermionic particles change the conclusion that quantum corrections
always reduce the energy of a kink?

6. For the sine-Gordon model we have explicitly seen that there is a relation between kinks
and particles. It seems reasonable that the connection holds in other models too. In 3 + 1
dimensions, we could expect the connection to exist between magnetic monopoles and
observed particles (e.g. [162, 103]). Construct a model that has families of solitons,
similar to the electron, muon, and tau families observed in Nature (see [122]).

7. In Section 3.1 we have discussed the existence of quasi-breather solutions called
“oscillons” in the Z2 model. Can quantum oscillons have an interpretation that is similar
to quantized breathers as discussed at the end of Section 4.7?
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Condensates and zero modes on kinks

In this chapter we study the effect of a kink on other bosonic or fermionic fields that
may be present in the system. Under certain circumstances, it might be energetically
favorable for a bosonic field, denoted by χ , to become non-trivial within the kink.
Then we say that there is a “bosonic condensate” which is trapped on the kink.
On a domain wall, the condensate has dynamics that are restricted to lie on the
world-sheet of the wall.

The situation is similar for a fermionic field though there are subtleties. For a
fermionic field, denoted by ψ , the Dirac equation is solved in the presence of a
kink background made up of bosonic fields. This determines the various quantum
modes that the fermionic excitations can occupy. In several cases, there can be
“zero modes” of fermions in the background of a kink and this leads to several
new considerations. (Fermionic zero modes were first discovered in [27, 84] in the
context of strings.) In addition to the zero mode, there may be fermionic bound
states. The high energy states that are not bound to the wall are called “scattering
(or continuum) states.”

A difference between bosonic and fermionic condensates is that bosonic solu-
tions can be treated classically but fermionic solutions can only be interpreted in
quantum theory. For example, while there may be a bosonic solution with χ = 0,
the solution ψ = 0 of the Dirac equation has no meaning because this solution
is not normalizable. Solutions of the Dirac equation are only meant to supply us
with the modes that fermionic particles or antiparticles can occupy, and as such
are required to be normalizable. It is a separate issue to decide if the modes are
occupied or not. A mode contributes to the energy of the soliton only if it is occu-
pied. This is quite different from the bosonic case in which there can be a classical
condensate, on top of which there are modes that may or may not be occupied
by bosonic particles. Fermions can form a classical condensate only after they
have paired up to form bosons (“Cooper pairs”), and this leads to superfluidity or
superconductivity.

73
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Fermionic zero modes can lend solitons some novel properties such as fractional
quantum numbers (see Section 5.3).

5.1 Bosonic condensates

Consider the model

L = Lk[φ] + 1

2
(∂µχ )2 − U (φ, χ) (5.1)

where Lk[φ] is the Lagrangian that leads to a kink solution in φ. For example, Lk

can be the Lagrangian for the Z2 or sine-Gordon models discussed in Chapter 1. χ

is another scalar field that interacts with φ via some general interaction potential
U (φ, χ). Note that U (φ, χ) does not contain any terms that are independent of χ –
those are included in the potential, V (φ), that occurs in Lk. As an example, we
could have

U (φ, χ) = −m2
χ

2
χ2 + λχ

4
χ4 + σ

2
φ2χ2 (5.2)

We are assuming that the parameters in the model are chosen so that the minimum
of the full potential, V + U , is at φ �= 0 but χ = 0. This requirement also excludes
terms that are linear in χ (e.g. φ2χ ).

In the fixed background of the kink, χ satisfies the classical equation of motion

∂2
t χ − ∂2

x χ + Uχ (φk(x), χ ) = 0 (5.3)

where Uχ denotes the derivative of U with respect to χ and φk is the kink solution.
Far from the wall, the lowest energy solution is χ (±∞) = 0.

A solution to Eq. (5.3) is χ (x) = 0 and the energy of this solution is equal to the
kink energy in the model Lk. However, the trivial solution may not be the one of
lowest energy. To show that a lower energy solution exists, we need only show that
the trivial solution, χ = 0, is unstable. Then we consider linearized perturbations
of the form χ = cos(ωt) f (x) around the trivial solution. Inserting this form into
Eq. (5.3) leads to the Schrödinger equation

−∂2
x f + Uχχ (φk(x)) f = ω2 f (5.4)

where Uχχ denotes the second derivative of V with respect to χ . If this equa-
tion has solutions with ω2 < 0, it implies that there are solutions for χ on the
kink background that grow with time as cosh(+|ω|t), denoting an instability of
the state with χ = 0. This means that the solution with least energy must have a
non-trivial χ configuration. The lowest energy χ configuration is non-zero inside
the kink and vanishing outside and is called a “bosonic condensate” (or simply
“condensate”).
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5.1.1 Bosonic condensate: an example

A simple example in which there is a bosonic condensate on a Z2 kink can be found
in the model of Eq. (5.1), or explicitly,

L = 1

2
(∂µφ)2 + 1

2
(∂µχ )2 − λ

4
(φ2 − η2)2 + m2

χ

2
χ2 − λχ

4
χ4 − σ

2
φ2χ2 (5.5)

Ignoring the condensate field χ , the kink solution is

φk = η tanh
( x

w

)
(5.6)

and the Schrödinger equation corresponding to Eq. (5.4) is

−∂2
x f + [ − m2

χ + ση2 tanh2 X
]

f = ω2 f (5.7)

where X = x/w.
With ση2 > m2

χ , we see that the Schrödinger potential is asymptotically positive,
and hence f (±∞) = 0. This is consistent with the requirement that χ not have a
vacuum expectation value. At the origin, Uχχ < 0, and hence the Schrödinger
potential is a well that is centered at the origin. Since a potential well in one
dimension always has a bound state [139], it follows that there is at least one bound
state for χ . For a deep enough well i.e. large enough m2

χ , the bound state has negative
energy eigenvalue (ω2 < 0), and the trivial solution χ = 0 is unstable. Hence there
is a range of parameters (m2

χ ) for which a χ condensate exists.
To determine the range of m2

χ for which there is an instability, consider the
critical case when there is a zero eigenvalue solution, f0, of Eq. (5.7). Then we can
write

−∂2
x f0 + ση2

3
[3 tanh2 X − 1] f0 =

[
m2

χ − ση2

3

]
f0 (5.8)

This is exactly the same form as Eq. (3.8), together with the potential in Eq. (3.10),
provided we identify 3λ with σ , and ω2 with the term within square brackets on
the right-hand side. Since the lowest energy eigenvalue is zero for Eq. (3.8), there
is a zero eigenvalue for Eq. (5.7) if

m2
χ = ση2

3
(5.9)

For a larger value of m2
χ , Eq. (5.7) has a negative eigenvalue, signaling an instability.

Therefore a condensate solution exists in the range

ση2

3
< m2

χ < ση2 (5.10)
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The exact profile for the condensate can be found by solving the full coupled
equations of motion for φ and χ . This includes the non-linear terms in χ and the
back-reaction of the condensate on the kink, and, in most cases, has to be done
numerically. Let us denote the solution obtained in this way by (φk(x), χ0(x)).
Then

χ (t, x, y, z) = χ0(x) cos(ωt − ky y − kzz + θ0), ω =
√

k2
y + k2

z (5.11)

where θ0 is a constant, is also a solution. The reason is simply that(
∂2

t − ∂2
y − ∂2

z

)
cos(ωt − ky y − kzz + θ0) = 0 (5.12)

The trigonometric form of the solution in Eq. (5.11) was chosen so as to obtain
a real solution. An identical analysis in the case when χ is a complex field leads to

χ (t, x, y, z) = χ0(x)e±i(ωt−ky y−kz z+θ0) (5.13)

The solution represents waves propagating in the (ky, kz) direction in the plane of
the domain wall.

5.2 Fermionic zero modes

Fermionic fields may be coupled to the kink via terms that respect the discrete
symmetries in the bosonic sector that are responsible for the existence of the kink.
In the case of the Z2 model, the coupling can be a Yukawa term and the Lagrangian
may be written as

L = Lφ + iψ̄ �∂ψ − gφψ̄ψ (5.14)

where Lφ denotes the scalar part of the Lagrangian, �∂ ≡ γ µ∂µ, g is the coupling
constant, ψ is a four-component fermionic field, and γ µ are the Dirac matrices
that satisfy {γ µ, γ ν} = 2gµν with gµν = diag(1, −1, −1, −1) being the space-time
metric. The explicit representation of the Dirac matrices that we adopt is

γ 0 =
(

0 1
1 0

)
, γ i =

(
0 σ i

−σ i 0

)
(5.15)

where i = 1, 2, 3 (also sometimes written as i = x, y, z) and the Pauli spin matrices
are defined as

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
(5.16)

The Yukawa interaction term in the model in Eq. (5.14) respects the φ → −φ

symmetry of the Z2 model provided we also transform the fermion field by
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ψ → ψ ′ = γ 5ψ where

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
( −1 0

0 1

)
(5.17)

This can be seen by using the properties (γ 5)† = γ 5, {γ 5, γ µ} = 0 and (γ 5)2 = 1.1

If φk(x) denotes the kink solution, the Dirac equation in the kink background is

i�∂ψ − gφk(x)ψ = 0 (5.18)

Let us first try and solve Eq. (5.18) explicitly. Recognizing that φk does not
depend on t , y, and z, we write the ansatz

ψ = f (t, y, z)ξ (x) (5.19)

where f (t, y, z) is a function while ξ (x) is a four-component spinor. With this
ansatz, the Dirac equation separates

iγ a∂a f = −γ aka f (5.20)

iγ x∂xξ − gφkξ = +γ akaξ (5.21)

where γ aka is the constant matrix of separation and the index a runs over t, y, z.
Requiring that the fermion be localized on the wall, we get the boundary conditions

ξ (±∞) = 0 (5.22)

These boundary conditions are valid only for bound states. If we wish to consider the
scattering of fermions off a domain wall, we would choose incoming and reflected
plane waves at x = −∞.

The Dirac equations have an infinite number of solutions, corresponding to all
the fermion eigenmodes in the domain wall background. These include fermionic
bound states and scattering states. There is one state, however, which is novel
because it leads to some very interesting properties of the soliton, described in the
sections below. This state is the one with zero energy eigenvalue, also called the
“zero mode.”

Equation (5.20) can be solved

f = exp(ikaxa) ≡ exp(i(ωt − ky y − kzz)) (5.23)

Zero energy is obtained by setting ω = 0 = ky = kz and then f = 1. Let us first
look at this case (ka = 0).

Multiplying Eq. (5.21) by iγ x we see that iγ xξ satisfies the same equation of
motion as ξ . Therefore if ξ is a solution, then so is iγ xξ . Hence solutions to the

1 The Yukawa term does not respect the φ → φ + 2π/β symmetry of the sine-Gordon model and hence our
discussion of fermion zero modes cannot be used for that case. Nor do we consider the case of fermions with
Majorana mass terms [147].
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Dirac equation come in distinct pairs unless ξ is an eigenstate of iγ x , in which case
the two solutions ξ and iγ xξ are not distinct. The zero mode solution is found by
choosing ξ to be an eigenstate of iγ x

iγ xξ = cξ (5.24)

and, since (iγ x )2 = 1, we must have c = ±1. The ξ equation now becomes

∂xξ = cgφkξ (5.25)

and the solution is

ξ (x) = ξ (0) exp

[
cg

∫ x

0
φk(x ′)dx ′

]
(5.26)

Assuming φk(+∞) > 0 and g > 0, the boundary conditions in Eq. (5.22) are only
satisfied if c = −1. (The boundary condition at x = −∞ is also satisfied provided
φk(−∞) < 0.) Therefore the zero mode solution is

ξ (x) = ξ (0) exp

[
−g

∫ x

0
φk(x ′)dx ′

]
, (g > 0) (5.27)

If φk(+∞) < 0 and g > 0, the solution is obtained by choosing c = +1.
To determine ξ (0), we solve the eigenvalue equation iγ xξ (0) = −ξ (0) and find

ξ (0) =

⎛
⎜⎜⎝

α

β

iβ
iα

⎞
⎟⎟⎠ (5.28)

where α, β are any complex constants. Therefore there are two basis zero modes
(with coefficients α and β) and the general zero mode is a linear superposition
of these two modes. The constants, α and β, can be fixed by normalizing the
wavefunction.

Next consider the case with ka �= 0. Then Eq. (5.27) is still a solution to Eq. (5.21)
provided kaγ

aξ (0) = 0. By explicitly substituting the γ a matrices and ξ (0), this
leads to the two equations

kyα + i(ω + kz)β = 0 (5.29)

i(ω − kz)α − kyβ = 0 (5.30)

A solution for α and β exists only if

ω = ±
√

k2
y + k2

z (5.31)
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which is the dispersion relation for a massless particle (see Fig. 5.1). With this
relation, the solutions fix the ratio of α and β to obtain

ψ = Nei(ωt−ky y−kz z)

2
√

ω
e−g

∫ x
0 φk(x ′)dx ′

⎛
⎜⎜⎜⎝

√
ω + kz

sgn(ky)i
√

ω − kz

−sgn(ky)
√

ω − kz

i
√

ω + kz

⎞
⎟⎟⎟⎠ (5.32)

where N is a normalization constant where sgn(ky) ≡ ky/|ky|.
So far we have not specified the exact form of the kink profile φk and Eq. (5.32)

holds for any model in which the Yukawa interaction term respects the symmetries.
Next, as an example, we use the solution for the Z2 kink (see Eq. (1.9)). Then the
integral over φk can be done explicitly to yield

ψ = Nei(ωt−ky y−kz z)

2
√

ω

[
sech

( x

w

)]g
√

2/λ

⎛
⎜⎜⎜⎝

√
ω + kz

sgn(ky)i
√

ω − kz

−sgn(ky)
√

ω − kz

i
√

ω + kz

⎞
⎟⎟⎟⎠ , (g > 0)

(5.33)
where w is the width of the kink as defined in Eq. (1.21). This is our final expression
for the zero mode on the Z2 kink.

In the asymptotic vacuum, where φ is constant, the Dirac equation derived from
Eq. (5.14) yields four solutions all with the same momentum. These four states are
referred to as spin up and down states for the particle and hole (or antiparticle). On
the domain wall, however, there are only two zero mode solutions for fixed value
of the momentum (ky, kz). One of these has positive energy (ω) and the other has
negative energy. Therefore the two states may be called particle and hole states but
the spin degree of freedom is not present. Consider the special case when ky = 0
and kz �= 0. Then we have ω = ±kz and the spinor is proportional to (1, 0, 0, i)T if
ω = +kz , and to (0, i, −1, 0)T if ω = −kz . If we also take kz = 0, both these two
states have ω = 0 and become degenerate in energy.

The two-fold degeneracy of the zero mode (ω = 0) occurs since we are work-
ing in three spatial dimensions where the Dirac spinors have four components.
If we find the zero modes in one spatial dimension, the fermions are described
by two-component spinors, and then there is only a single zero mode. If we use
four-component spinors in one spatial dimension, it amounts to having two two-
component spinors that do not interact with each other. Hence the degrees of free-
dom are doubled.

Note that the boundary conditions in Eq. (5.22) can only be satisfied if φk changes
sign in going from x = −∞ to +∞. So the topological nature of the kink is essential
to the existence of the zero mode.



80 Condensates and zero modes on kinks

w w

k k

Figure 5.1 The dispersion curve for fermions in the vacuum is shown on the left
and for fermion zero modes on the domain wall on the right.

In constructing the zero mode, we have postulated that ξ be an eigenstate of
iγ x . Therefore there is a possibility that there might be other zero mode solutions.
However, it is possible to prove that this is not the case and the zero mode(s) that
we have found are the only such solutions. The proof proceeds by choosing a set
of orthogonal basis spinors

χ1 =

⎛
⎜⎜⎝

1
0
0
i

⎞
⎟⎟⎠ , χ2 =

⎛
⎜⎜⎝

0
1
i
0

⎞
⎟⎟⎠ , χ3 =

⎛
⎜⎜⎝

i
0
0
1

⎞
⎟⎟⎠ , χ4 =

⎛
⎜⎜⎝

0
i
1
0

⎞
⎟⎟⎠ (5.34)

The first two spinors are eigenstates of iγ x with eigenvalue −1. These are the spinors
that occur in the general solution we have already found subject to the condition
that iγ xξ = −ξ . Since the Dirac equation is linear, any new solution must be a
linear combination of χ3 and χ4. However, both these basis spinors are eigenstates
of iγ x with eigenvalue +1 and we have seen that such states cannot be part of the
solution since the boundary conditions cannot be met. Therefore there are no other
zero mode solutions beside the ones that we have already constructed.

As mentioned in the introduction to this chapter, the interpretation of fermionic
zero modes is quite distinct from that of bosonic condensates. Fermionic modes
should be viewed as states in which the fermions can reside. A mode by itself
does not carry energy density or charge or some other physical quantity. Only if
the mode is occupied, can it contribute to the energy. However, the zero mode is
special in some ways since, even if it is occupied, the fermion occupying the zero
mode contributes zero energy. Likewise, if the zero mode is unoccupied, it also
contributes zero energy and so the system has a degenerate ground state. Indeed
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the occurrence of a zero mode leads to some novel and important quantum field
theoretic consequences that we shall outline in Section 5.3.

In the discussion of fermion zero modes above we have considered only a Yukawa
interaction between the fermion field and the field that makes up the domain wall.
More generally, there can also be Majorana interactions. Zero modes of Majorana
fermions on domain walls have been discussed in [147].

Just like scalar field condensates and fermionic zero modes on domain walls,
there can also be gauge field (or spin-1) condensates. These arise when the model
has broken gauge symmetries in addition to broken discrete symmetries. This is
precisely the situation in the SU (5) × Z2 model discussed in Chapter 2 and the
kinks in the model have condensates of spin-1 fields as we describe in Section 5.5.

Finally we close this section by remarking that there are several mathematical
“index theorems” that can be used to obtain information on the number of zero
modes on a soliton [176]. In the case of domain walls that we have been discussing,
however, the index theorems do not lead to a useful result.

5.3 Fractional quantum numbers

To quantize a fermionic field we find all the modes (solutions of the Dirac equation)
and then associate creation and annhilation operators with each of the modes.2 The
same procedure may be followed in the presence of zero modes [83]. As discussed
in the previous section, there is a single zero mode on the Z2 kink (in one spatial
dimension), which is denoted by ψ0. Then the expansion of the field operator in
modes is

ψ = a0ψ0 +
∑

p

[
bpψp+ + d†

pψ
c
p−

]
(5.35)

The second term is the usual sum over the positive energy modes, ψp+, and fermion-
number conjugates of the negative energy modes, ψc

p−.3 There is no sum over spin
because there is no spin degree of freedom in one spatial dimension. The first term
in Eq. (5.35) contains the zero mode, ψ0, and a0 is the operator associated with
this mode. The term may seem strange because the zero mode does not have a
corresponding conjugated term. This is because ψc

0 = ψ0 and so the mode func-
tions associated with a0 and its conjugate operator are identical. However, one still
has the usual equal time anticommutation relations for the field and its canonical
momentum

{ψa(x), ψ†
b(y)} = δ(x − y)δab (5.36)

2 We work in one spatial dimension in this section and hence spinors have two components.
3 That is, ψc

p− is the wavefunction of a hole in the Dirac sea that has momentum p.



82 Condensates and zero modes on kinks

while other anticommutators vanish. Using the expansion in terms of creation and
annihilation operators this gives

{a0, a0} = {a†
0, a†

0} = 0, {a0, a†
0} = 1 (5.37)

Since the Dirac Lagrangian in Eq. (5.14) is invariant if the fermion fields are
rotated by a phase, the model has a conserved fermion number current. The Noether
current is given by ψ̄γ µψ (µ = 0, 1). In the quantum theory the physical current
operator needs to be normal ordered. This is equivalent to defining the fermion
number operator as

Qf =
∫

dx : j0 := 1

2

∫
dx(ψ†

αψα − ψαψ
†
α) (5.38)

We can act by this operator on any state to determine the fermion number of that
state. Let us denote the state with no positive energy particles and empty zero mode
by |0; −〉 and the state with no positive energy particles and filled zero mode by
|0; +〉. Then the fermion numbers of these two states are

Qf|0; ±〉 = 1

2
[a†

0a0 − a0a†
0]|0; ±〉

= 1

2
[2a†

0a0 − 1]|0; ±〉

= ±1

2
|0; ±〉 (5.39)

Therefore the kink carries a half-integer fermion number of either sign. If the
fermion carries electric charge, the electric charge on the kink is also half-integral.

It is critical to not think of the kink as being “kink plus fermion.” Instead the kink
is made of both the bosonic and fermionic fields. Then there are only two states for
the kink: one with filled zero mode and the second with the zero mode empty.

Surprising as the half-integer fermion number is, further work in [150, 68] ob-
tained different fractional charges in other systems (see Section 9.1). Indeed, [68]
shows that the charges can even be irrational.

5.4 Other consequences

If the bosonic condensate is electrically charged, the domain wall becomes super-
conducting. To see this in some more detail, consider the case of a complex, elec-
trically charged, scalar field, χ , interacting with the field φ that forms a domain
wall

L = L[φ] + L[Aµ] + 1

2
|Dµχ |2 − m2

χ

2
|χ |2 − λχ

4
|χ |4 − σ

2
φ2|χ |2 (5.40)
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The first term is the Lagrangian for the Z2 model and the second is the usual
Maxwell Lagrangian for the gauge field Aµ. The covariant derivative is defined by

Dµ = ∂µ − iq Aµ (5.41)

The propagating modes of the condensate are

χ = χ0(x)ei(ωt−k·x) (5.42)

where χ0(x) is the condensate profile and k is the wave-vector restricted to lie in
the plane of the wall, the yz-plane. Since χ carries electric charge, q, the electric
current is

jχ = iq

2
(χ †∇χ − χ∇χ †) (5.43)

Inserting Eq. (5.42) into (5.43), we find that the current is along the k direction

jχ = q|χ0|2k (5.44)

The simplest way to see that the wall with the condensate is superconducting is
to write

χ = χ0(x)eiθ (5.45)

where χ0 is the condensate solution and θ is the phase variable. Then the low
energy Lagrangian for the θ degree of freedom can be derived by integrating the
full Lagrangian density, Eq. (5.40), over x to get

L(θ ) = 1

2
(∂µθ − eAµ)2 (5.46)

where we have omitted an overall constant factor. This effective Lagrangian is
the relativistic generalization of the Lagrangian in the Ginzburg-Landau theory of
superconductivity. Assuming that the relativistic generalization does not make any
qualitative difference, results from the Ginzburg-Landau theory can then be applied
directly to the present case. In particular, the domain wall with charged condensate
can be expected to carry persistent electric currents, have magnetic vortices, and
exhibit the Meissner effect (expulsion of magnetic fields) [61].

We now discuss fermionic superconductivity on domain walls. The relevant
modes are given in Eq. (5.33) and the (normal ordered) current is

jψ = q : ψ†γψ : (5.47)

Using the expansion of ψ in terms of creation and annihilation operators
(Eq. (5.35)), the current in any Fock state of fermions can be evaluated. Similarly,
the electric charge on a domain wall can also be evaluated.

Fermions on domain walls can only make the wall superconducting if they form
Cooper pairs and condense. It is believed that the slightest attractive interaction
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between the fermions on the wall will lead to condensation below some critical
temperature. On a domain wall, there are possible channels for attractive inter-
actions. For example, the fermions interact with each other via exchange of φ

quanta and this can lead to an attractive force. The problem of rigorously showing
fermionic superconductivity of domain walls has not been investigated. In partic-
ular, the Meissner effect, which is the hallmark of superconductivity, has not been
shown. Indeed, the response of non-interacting fermion zero modes to an external
magnetic field has been discussed with the conclusion that the walls are diamagnetic
[173] (also see [82, 172]).

In the particle-physics/cosmology literature, the existence of electrically charged
zero modes is simply assumed to imply superconductivity (though see [15]). A
reason for this assumption is that a current on a wall persists even without the
application of an external electric field. Once the current carrying fermionic zero
mode states have been populated there are very few processes by which these states
can be emptied [184]. Two such dissipative processes are the scattering of counter-
propagating fermion zero modes, and the scattering of fermion zero modes with
fluctuations of the domain wall field itself. Generally these processes occur at a very
slow rate, at least in astrophysical situations of interest. Hence, strictly speaking,
domain walls in particle physics/cosmology have only been shown to be excellent
conductors and not superconductors.

The equilibrium current on a domain wall in any setting depends on the balance
of the rates of current increase owing to an external electric field and decrease
owing to dissipation. Note that an external magnetic field in which a domain wall is
moving is, effectively, an electric field in the rest frame of the wall. Since magnetic
fields are ubiquitous in astrophysics, any cosmological domain walls with fermion
zero modes can be expected to be current carrying. Superconducting domain walls
in realistic grand unification models have been discussed in [98].

The fermion zero mode states that we have discussed above are single particle
eigenstates. The true states of the domain wall are also affected by fermion-fermion
interactions. The many-body problem falls in the class of two-dimensional systems
of interacting fermions. In the presence of a strong external magnetic field, so that
the Landau level spacing is large compared to other energy scales, the fermions on
the wall are similar to electrons in a quantum Hall system.

5.5 Condensates on SU (5) × Z2 kinks

In Chapter 2 we have discussed kinks in an SU (5) × Z2 model, which is the simplest
example of a Grand Unified Theory. Even though SU (5) grand unification is known
not to be phenomenologically viable, the model is still pedagogically useful.
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The Lagrangian for the model is

L = Lb[�, χ, Xµ] + L f[χ, ψ, Xµ] (5.48)

where the SU (5) adjoint field, �, does not couple directly to the fermionic fields
(denoted generically by ψ). Only an additional SU (5) fundamental field, χ , couples
to the fermions. The vacuum expectation value of χ is responsible for electroweak
symmetry breaking and the masses of all the observed quarks and leptons arise
from this symmetry breaking. The SU (5) symmetry breaking has no consequences
for the fermionic sector, except via the χ field. This indirect effect can be important
in the presence of kinks, since χ can form a condensate on the kink, which can then
interact with some of the fermions. We will discuss this further below.

The bosonic part of the Lagrangian is

Lb = Tr(Dµ�)2 + |Dµχ |2 − V (�, χ) − 1

2
Tr(Xµν Xµν) (5.49)

The covariant derivative is defined by Dµ ≡ ∂µ − igXµ and its action on the scalar
fields is

Dµ� ≡ ∂µ� − ig[Xµ, �], Dµχ ≡ (∂µ − igXµ)χ (5.50)

The potential is given by

V (�, χ) = V (�) + V (χ ) + λ4(Tr�2)χ †χ + λ5(χ †�2χ ) (5.51)

with

V (�) = −m2
1(Tr�2) + λ1(Tr�2)2 + λ2(Tr�4) (5.52)

V (χ) = −m2
2χ

†χ + λ3(χ †χ )2 (5.53)

Successful grand unification requires that the global minimum of the potential
leaves an SU (3) × U (1) symmetry unbroken.4 As already described in Section 2.2,
the minimum of the potential with χ set equal to zero, occurs at

�0 = η

2
√

15
diag(2, 2, 2, −3, −3) (5.54)

(up to SU (5) × Z2 transformations) in the parameter range

λ ≥ 0, λ′ ≡ h + 7

30
λ ≥ 0 (5.55)

The vacuum expectation value of � breaks SU (5) × Z2 to [SU (3) × SU (2) ×
U (1)]/Z6. If we assume that the back-reaction of a vacuum expectation value of χ

4 Symmetry breaking patterns have been discussed quite generally in [99].
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on that of � is small, we can write down a reduced potential for χ alone

Vred(χ ; �0) =
(

−m2
2 + λ4Tr�2

0 + λ5

15
η2

)
χ †

aχa

+
(

−m2
2 + λ4Tr�2

0 + 3λ5

20
η2

)
χ
†
bχb + λ3(χ †χ )2 (5.56)

where a = 1, 2, 3 and b = 4, 5. The symmetry is broken to [SU (3) × U (1)]/Z3

only if the vacuum expectation value of χ is along the χ4 or χ5 directions. This
further restricts the range of parameters to

λ5

15
η2 > m2

2 − λ4Tr�2
0 >

3λ5

20
η2, λ3 > 0 (5.57)

which also implies λ5 < 0 and m2 < λ4Tr�2
0. We assume that these conditions on

the parameters are satisfied. Then a minimum of the reduced potential occurs at

χT = ηew(0, 0, 0, 1, 0) (5.58)

where

η2
ew = 1

2λ3

(
m2

2 − λ4Tr�2
0 − 3λ5

20
η2

)
(5.59)

is the electroweak symmetry breaking scale. The final [SU (3) × U (1)]/Z3 sym-
metry corresponds to the color and electromagnetic symmetries present today.

Next we describe the fermionic sector.5 There are two fermion fields: ψ , which
is in the fundamental (5-dimensional) representation of SU (5) and ζ , which is in
the antisymmetric 10-dimensional representation. The known quarks and leptons
fit within the components of these fields. With the choice of vacuum expectation
values in Eq. (5.58)

(ψ i )L = (dc1, dc2, dc3, e−, −νe)L (5.60)

(ψ i )R = (
d1, d2, d3, e+, −νc

e

)
R (5.61)

(ζi j )L = 1√
2

⎛
⎜⎜⎜⎜⎝

0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0

⎞
⎟⎟⎟⎟⎠

L

(5.62)

(see Eq. (14.9) in [30]). The numerical index on the u and d fields refers to color
charge, and the placement (subscript or superscript) depends on the representation

5 Actually we describe only one of the three families of the standard model fermionic sector, and then too the
neutrino is taken to be massless.
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(fundamental or fundamental conjugate) in which the field transforms under the
unbroken SU (3). The c superscript denotes charge conjugation:

ψc ≡ iγ 2ψ∗ (5.63)

The L and R subscripts refer to left- and right-handed spinors

ψL ≡ 1 − γ 5

2
ψ, ψR ≡ 1 + γ 5

2
ψ (5.64)

The Dirac γ matrices are defined in Eqs. (5.15) and (5.17).
Now we are ready to describe the interactions of the various fields with the

SU (5) × Z2 kink, described as the q = 2 kink in Chapter 2.

� In the presence of a (q = 2) kink, the vacuum expectation values are

�(−∞) = + η

2
√

15
diag(2, 2, 2, −3, −3)

χT (−∞) = ηew(0, 0, 0, 1, 0)

�(+∞) = − η

2
√

15
diag(2, −3, −3, 2, 2)

χT (+∞) = ηew(0, 0, 1, 0, 0)

Note that the non-trivial entry of χ has to coincide with one of the −3 entries of
� since this is what minimizes the potential V (�, χ). Therefore χ must rotate
through the kink. Inside the kink, the fields are not pure rotations of the asymptotic
values.

� The component �11 goes from +2 to −2 as the wall is crossed. Hence it must
vanish in the wall. This is very similar to the Z2 case, where the field vanishes
at the center of the wall. The field χ interacts with � as given by the potential
in Eq. (5.51). Note the interaction term λ5Tr(χ †�2χ ), which directly couples χ1

to �11. (The other term couples all components of χ to Tr�2 only.) By explicit
construction it can be seen that χ1 can condense on the wall for a certain range
of parameters [146]. Hence the SU (5) × Z2 model allows for scalar condensates
on the wall (see Section 5.1). In addition, since χ1 is a complex scalar field, the
condensate has an associated phase. The choice of phase on different parts of the
wall may be different, leading to vortices in χ1 that can only exist on the wall.
Since χ1 transforms non-trivially under the unbroken SU (3), the vortices carry
color magnetic field. This is similar to our discussion below Eq. (5.46).

� Next we consider fermion interactions with the wall [146]. The fermions do not
couple directly to �. Hence the only coupling to the wall is due to the rotation of χ

in passage through the wall and to the condensate in the χ1 component. Consider
the scattering of the fifth component, ψ5, which corresponds to a neutrino on the
left side of the wall but a d-quark on the right. This fifth component has non-zero
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reflection and transmission probability. If it reflects, the particle is still a neutrino.
If it transmits, it must change into a d-quark. If a neutrino becomes a d-quark in
passing through the wall, it must pick up electric and color charge from the wall.
Hence we are forced to conclude that there must be electric and color excitations
that live entirely on the wall. If a χ1 condensate is not present, the only available
excitations are the charged gauge field components. Hence charged gauge fields
must condense on the wall.

To see the presence of a charged gauge field condensate, it is most convenient
to go to a gauge where the scalar field vacuum expectation values are oriented in
the same directions on both sides of the wall, as we now discuss.

� Consider a very thin wall, so that

�(x < 0) = + η

2
√

15
diag(2, 2, 2, −3, −3) ≡ �0

�(x > 0) = − η

2
√

15
diag(2, −3, −3, 2, 2) (5.65)

Now we perform a local gauge transformation that rotates � into the direction of
�0 (up to a sign) everywhere. Such a gauge rotation is local since it is equal to the
identity transformation for x < 0 but is non-trivial for x > 0 since it exchanges
the 23- and 45-blocks of �. In both regions, x < 0 and x > 0, the gauge rotation
is constant. The rotation is non-constant only at x = 0 i.e. on the wall. Hence the
gauge fields after the rotation vanish everywhere except on the wall itself and there
are gauge degrees of freedom residing on the wall. A more explicit calculation
shows that the gauge fields living on the wall carry electric and color charge.

5.6 Possibility of fermion bound states

In addition to fermionic zero modes on a kink, there may also be fermionic bound
states. Such bound states would have a non-vanishing energy eigenvalue ω with
0 < ω < m. Since the energy eigenvalue is less than the asymptotic mass, the
fermion would be bound to the wall. We examine whether the model in Eq. (5.14)
leads to fermionic bound states on a Z2 kink.

For convenience we work in one spatial dimension. Then spinors have two
components and there are only two gamma matrices, which can be taken to be

γ 0 = σ 3 =
(

1 0
0 −1

)
, γ 1 = iσ 1 =

(
0 1
1 0

)
(5.66)

Then the Dirac equation i�∂ψ − gφkψ = 0 together with ψ = exp(−iωt)ξ gives

∂xξ1 = −(ω + gφk)ξ2

∂xξ2 = +(ω − gφk)ξ1 (5.67)
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where

ξ =
(

ξ1(x)
ξ2(x)

)
(5.68)

and we are interested in solutions with

0 < ω < mf ≡ gη (5.69)

The boundary conditions at the origin for ξ1 and ξ2 may be determined by
noting that we are free to rescale both ξ1 and ξ2 by a constant factor. So we can
set ξ1(0) = +1. Further, using the symmetry φk(x) = −φk(−x), we find that the
equations are invariant if we replace ξ1(x) by cξ2(−x) and ξ2(x) by cξ1(−x), where
c is a constant. Hence

ξ1(x) = cξ2(−x), ξ2(x) = cξ1(−x) (5.70)

This gives

ξ1(x) = cξ2(−x) = c2ξ1(x) (5.71)

Since ξ1(x) cannot vanish for all x , we get

c = ±1 (5.72)

Therefore there are two possible boundary conditions at the origin

ξ2(0) = ±ξ1(0) = ±1 (5.73)

At infinity we require ξ1 → 0 and ξ2 → 0.
A numerical search for a solution with non-zero ω did not reveal any bound

states for the range of parameters 0.1 < mfw < 20, where w is the width of the
kink. However this does not exclude the existence of fermion bound states (beside
the zero mode) on kinks in other systems, and it remains an open problem to find
systems where such bound states exist.

5.7 Open questions

1. Explore the classical and quantum physics of a domain wall with electrically charged
bosonic and fermionic zero modes placed in an external magnetic field. What happens
if the domain wall is moving?

2. Calculate the reflection of photons off a superconducting domain wall. Is the wall a good
mirror? (See [184].)

3. Construct a system in which the kink has both a zero mode and a fermionic bound state.
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Formation of kinks

In this chapter we study the formation of kinks and domain walls during a phase
transition. We start by describing the effective potential for a field theory at finite
temperature. This sets up a useful framework for discussing phase transitions and
defect formation.

6.1 Effective potential

The effective potential is a tool that is often used to study phase transitions in
field theory [89, 179, 90, 47, 100]. The idea is to consider the interaction of
a scalar degree of freedom (“order parameter”) with a thermal background of
particles. Such processes induce additional temperature dependent terms in the
potential for the order parameter, leading to an “effective potential.” The shape
of the effective potential varies as a function of temperature and new minima
might appear. The global minimum defines the vacuum of the model. If a new
global minimum appears at some temperature, it indicates that the system makes
a transition to a new expectation value of the order parameter and there is a
phase change. We now describe the (one loop) effective potential in a little more
detail.

We consider a field theory of scalar, spinor and vector fields

L = LB + LF (6.1)

with the bosonic Lagrangian

LB = 1

2
(Dµ�i )D

µ�i − V (�) − 1

4
Fa

µν Fµνa (6.2)

where �i are the components of the scalar fields,

Dµ ≡ ∂µ − ieAa
µT a (6.3)

90
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the T a are group generators, and

Fa
µν ≡ ∂µ Aa

ν − ∂ν Aa
µ + e f abc Ab

µ Ac
ν (6.4)

where Aa
µ are the gauge fields.

The Lagrangian for a fermionic multiplet � is

LF = i�̄γ µDµ� − �̄�i��i (6.5)

where �i are the Yukawa coupling matrices. The quantity � denotes a collection of
fermionic fields and the Yukawa coupling term may be written more explicitly as
�̄σ

α �
αβ

iσρ�
ρ
β �i where α, β label the various fermionic fields, the superscripts σ, ρ

on the fermion fields are spinor indices, and i labels the interaction term with the
scalar field �i . �i has spinor indices because it could contain the unit matrix (vector
coupling) and/or the γ 5 matrix (axial coupling) defined in Eq. (5.17).

If the expectation values of the scalar fields are denoted by �0i , then the mass
matrices of the various fields are written as

µ2
i j = ∂2V

∂�i∂� j

∣∣∣∣
�=�0

, scalar fields (6.6)

m = �i�0i , spinor fields (6.7)

M2
ab = e2(TaTb)i j�0i�0 j , vector fields (6.8)

where a, b are gauge field group indices.
Then the finite temperature, one loop effective potential is1

Veff(�0, T ) = V (�0) + M2

24
T 2 − π2

90
N T 4 (6.9)

where

N = NB + 7

8
NF (6.10)

is the number of bosonic and fermionic spin states, and

M2 = Tr(µ2) + 3Tr(M2) + 1

2
Tr(γ 0mγ 0m) (6.11)

where γ 0 is defined in Eq. (5.15). Note that M2 depends on the expectation value
�0 through the defining equations for the mass matrices given above. For example,
M2 contains a term proportional to Tr(�2

0).
An important feature of the effective potential is that it can show the presence

of phase transitions. If there are scalar fields with negative mass squared terms in

1 Radiative corrections and spontaneous symmetry breaking are discussed in [33, 178].
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Figure 6.1 Sketch of effective potential for first-order phase transition (left) and
second-order phase transition (right). In the first-order case, the global minimum of
the potential at high temperature (�0 = 0 in illustration) becomes a local minimum
at low temperature. In the second-order case, the global minimum of the potential
at high temperature becomes a local maximum at low temperature. The effective
potential at �0 = 0 decreases with increasing temperature because of the last term
proportional to −N T 4 in Eq. (6.9).

V (�), the contributions from the M2T 2 term in the effective potential, Eq. (6.9),
can make the effective mass squared positive for these fields if the temperature
is high enough (see Fig. 6.1). Therefore when the system is at high temperature,
the effective mass squared can be positive and the minimum of the potential at
�0 = 0. As the system is cooled, the effective mass squared becomes negative and
the minimum of the effective potential occurs at non-zero values of �0 and the
lowest energy state has shifted from �0 = 0 to �0 �= 0. The order parameter, �,
acquires a non-zero “vacuum expectation value” at some critical temperature. This
is the phenomenon of spontaneous symmetry breaking and manifests itself as a
phase transition. The phase at high temperature had a certain symmetry dictated by
the invariance of the field theory with �0 = 0 and at low temperature the symmetry
is changed because now �0 �= 0.

As a simple example of an effective potential, consider the λφ4 model of Eq. (1.2)
with

V (φ) = −m2
0

2
φ2 + λ

4
φ4 + λ

4
η4 (6.12)

Then µ2 of Eq. (6.6) is given by

µ2 = −m2
0 + 3λφ2

0 (6.13)

and since there is only one scalar field in this model

M2 = −m2
0 + 3λφ2

0 (6.14)
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Therefore, up to a term that is independent of φ0, the effective potential becomes

Veff(φ0, T ) = m̄2

2
φ2

0 + λ

4
φ4

0 (6.15)

with

m̄2 = −m2
0 + λ

4
T 2 (6.16)

Note that the masses of small excitations around the true vacuum are given by
V ′′

eff(φ0) withφ0 being the vacuum expectation value. By minimizing Veff (Eq. (6.15))
we get

φ0,min(T ) = 0, m̄2 > 0 (6.17)

=
√

−m̄2

λ
, m̄2 < 0 (6.18)

leading to the mass squared for small excitations (particles) in the true vacuum

m2
eff ≡ V ′′

eff(φ0,min) = λ

4

(
T 2 − T 2

c

)
, T > Tc (6.19)

= λ

2

(
T 2

c − T 2
)
, T < Tc (6.20)

where Tc is the critical temperature

Tc = 2m0√
λ

(6.21)

In cosmology, since the universe is expanding, it is also cooling. Therefore
we can have one or many cosmological phase transitions and the particle-physics
symmetries at high temperatures (early universe) and low temperatures (recent
universe) are different. The symmetry after the phase transition can be smaller
or larger than the symmetry before the phase transition. In other words, lowering
the temperature can spontaneously break or restore a symmetry. We will mostly
consider symmetry breaking during the phase transition but examples of symmetry
restoration are also easy to construct. A system in which symmetry restoration is
observed is Rochelle salt [85, 179].

6.2 Phase dynamics

The effective potential Veff(�0, T ) is calculated for a system that is in thermal equi-
librium, assuming a homogeneous vacuum expectation value of the order parameter
�0. Yet thermal equilibrium is not maintained during the phase transition and also
the phase change occurs in an inhomogeneous manner. The dynamics are clear
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Figure 6.2 A schematic diagram of bubbles nucleating in a first-order phase
transition. The two types of bubbles correspond to the two different values of the
order parameter. The bubbles grow and collide, and new bubbles nucleate as well.
Eventually the whole system is in the new phase.

for a first-order phase transition in which the high temperature phase becomes a
metastable state (see Fig. 6.1) at some critical temperature. Now the system can be
stuck in this metastable state even when the temperature drops significantly below
the critical temperature. An external perturbation can cause the system to transition
to the global vacuum. In the absence of an external perturbation, quantum tunneling
can trigger the transition. In either case, bubbles of a critical size of the true vacua
(�0 �= 0) nucleate in the false vacuum (�0 = 0) background (see Fig. 6.2). These
bubbles grow and eventually merge thus filling space and completing the phase
transition. Clearly this process is not homogeneous and cannot be described by an
effective potential.

In a second-order transition, in contrast to a first-order transition, there is no
metastable state in which the system can be trapped. Thus �0 evolves continuously
(“spinodal decomposition”) from �0 = 0 to �0 �= 0. However, different spatial
regions evolve at different rates owing to thermal and quantum fluctuations, and �0

is not spatially uniform. Once again, since the effective potential assumes constant
�0, it can indicate the existence of a second-order phase transition but cannot
be expected to accurately describe the dynamics of the transition. Since defect
formation crucially depends on the inhomogeneities of the order parameter during
the transition, new ideas have been needed to predict the statistical properties of
defects formed in a second-order phase transition.

In one spatial dimension, the distribution of kinks is described by the number
density of kinks, and correlators of kink locations. In higher dimensions, the prob-
lem becomes richer because domain walls are extended and can curve and have
complicated topology. In addition to the mass density in domain walls, we are
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interested in the statistical distribution of shapes and sizes of domain walls formed
at the phase transition.

6.3 Kibble mechanism: first-order phase transition

At a first-order phase transition, the order parameter has to change from �0 = 0 to
its non-zero vacuum expectation value. We are interested in the case when there is
more than one possible non-zero value for �0. Then the dynamics in a small spatial
region select a vacuum. However the vacuum selected in different spatial regions
can be different. For example, in the case of the Z2 model, the field in a certain
region might relax into the φ = +η vacuum, whereas in another region it might
relax into φ = −η (see Fig. 6.2).

In a first-order phase transition, each bubble is filled with constant �0 i.e. a
fixed vacuum is chosen within a bubble but it can be different for different bubbles.
With time, the bubbles grow and collide and fill up the volume. Let us denote by
ξ the characteristic size of a region where the same vacuum is selected, after the
phase transition is over. Then ξ is the typical size of bubbles when they percolate.
If � denotes the bubble nucleation rate per unit volume and v is the velocity of
the growing bubble walls, then we can define a length scale and a time scale on
dimensional grounds (in D spatial dimensions) by

ξ̃ =
( v

�

)1/(D+1)
, τ̃ =

(
1

vD�

)1/(D+1)

(6.22)

The domain size ξ is a numerical factor times ξ̃ and in practice we take ξ ∼ ξ̃ .
Similarly τ̃ is related to the time that it takes to complete the phase transition.2

The process of bubble percolation has been studied both analytically and nu-
merically [95]. Taking the centers of the bubbles as the vertices of a lattice and
connecting only the centers of bubbles that collide, we obtain a random lattice (see
Fig. 6.3). We would like to determine the characteristics of such a random lattice
since this plays a role in determining the network of defects that form. For example,
the typical number of bubbles with which any given bubble collides, also known
as the “coordination number” of the random lattice, plays a role in the fraction of
closed topological defects (closed domain walls, loops of string, or closely paired
monopole-antimonopole pair) that are formed.

In one spatial dimension, every bubble trivially collides with two other bubbles.
In two spatial dimensions the average number of collisions is the same as the
coordination number of a fully triangulated lattice of infinite extent. From purely

2 Equation (6.22) relates ξ to the nucleation rate �, but it is very hard to measure � in any experiment. In fact, it
may be easier to measure properties of the defect network, then ξ , and from it infer �.
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Figure 6.3 If two bubbles collide, their centers are joined by straight lines. The
figure then shows the “random bubble lattice” expected in a first-order phase
transition in two spatial dimensions.

geometrical constraints that we describe next, the coordination number is six (see,
for example, [129]).

The lattice is infinite in extent and by identifying the points at infinity we can
view the lattice as lying on a two-dimensional sphere. Then Euler’s formula relates
the number of vertices (V ), edges (E) and faces (F) of the lattice

V − E + F = 2 (6.23)

Let the coordination number be n. Therefore for every vertex there are n edges
but every edge is bounded by two vertices. This relates the number of edges to the
number of vertices: E = nV/2. Also, every face is a triangle, giving three edges
to every face. But an edge is shared by two faces. So E = 3F/2. Putting together
these relations in Euler’s formula gives

V − nV/2 + nV/3 = 2 (6.24)

In the limit of V → ∞, this yields n = 6.
In three spatial dimensions, similar arguments have been given [95] to show

that the average coordination number is 13.4. This result is not completely fixed
by geometrical constraints as in two dimensions and the result can vary a little
depending on the details of the bubble size distribution.

Returning to the λφ4 model, each bubble either has the phase φ0 = +η or φ0 =
−η within it. If bubbles of different phases collide, a domain wall forms between the
centers of those bubbles. If bubbles of the same phase collide, a wall does not form,
though it is possible that a closed domain wall or a wall-antiwall pair forms owing
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to the energetics of the bubble collision. We expect small closed walls and closely
separated walls and antiwalls to annihilate. Hence the distribution of domain walls
after the phase transition is simply described by the locations of bubble collisions
when the bubbles carry different phases. Since the phase in the bubbles is ±η with
equal probability, the phase transition is simulated by assigning ±η to each of the
vertices of the random bubble lattice as in Fig. 6.3. We shall further discuss the
properties of the wall network at formation during a first-order phase transition in
Section 6.6.

As we have seen, a first-order phase transition is relatively simple to conceptual-
ize. A second-order phase transition is harder to understand. To discuss second-order
phase transitions, it is useful to first define an equilibrium correlation length.

6.4 Correlation length

The “equilibrium correlation length,” ξ̄ , is defined as the distance over which field
correlations are significant. Generally the field correlations at two spatial points
fall off exponentially with increasing separation between the points, exp(−r/ξ̄ ),
and the exponent defines the equilibrium correlation length, ξ̄ . Hence we need to
evaluate the correlation function

G(r ) = 〈T |φ(t, x)φ(t, y)|T 〉 (6.25)

where G only depends on r ≡ |x − y|because the system is translationally invariant.
The thermal state is denoted by |T 〉 and is defined as the state containing the
equilibrium number density distribution (Fermi-Dirac or Bose-Einstein) of particles

|T 〉 = |{nk}〉T (6.26)

nk = 1

eβωk ± 1
(6.27)

where β ≡ 1/T and ωk is the energy of particles in the k mode.3

With the Z2 model in mind, we have only one scalar field and the quantum field
operator can be expanded in modes about the true vacuum

φ(t, x) = φ0(T ) +
∫

d3k

(2π )3

1√
2ωk

[
e−iωk t+ik·xak + e+iωk t−ik·xa†

k

]
(6.28)

where φ0(T ) is the vacuum expectation value of the field at temperature T , and ak

and a†
k are annihilation and creation operators. The dispersion relation is that for

a free particle with temperature dependent mass m(T ) (see Eq. (6.20) for the λφ4

model; we have dropped the subscript “eff” for convenience)

ω2
k = k2 + m2 (6.29)

3 The chemical potential vanishes in the present case.



98 Formation of kinks

The thermal state |T 〉 contains a Bose-Einstein distribution of the particle exci-
tations and the number of scalar particles at momentum k is given by

nk = 1

eβωk − 1
(6.30)

where β = 1/T (Boltzmann constant has been set to 1).
By inserting the expansion in Eq. (6.28) in the correlator, we find

G(r ) =
∫

d3k

(2π )3

1√
2ωk

∫
d3 p

(2π )3

1√
2ωp

ei(k·x−p·y)〈T |a†
kap|T 〉 + K (6.31)

where K is a constant which is independent of temperature and proportional to
δ(3)(x − y). Then

G(r ) =
∫

d3k

(2π )3

e−ik·(x−y)

eβωk − 1
+ K

= T

4πr
e−m(T )r + K (6.32)

where, in doing the integral, we have assumed m(T ) 
 T . From the final expression
we get the equilibrium correlation length

ξ̄ = 1

m(T )
(6.33)

For the Z2 model (Eq. (6.20))

m2 = λ

4

(
T 2 − T 2

c

)
, T > Tc (6.34)

= λ

2

(
T 2

c − T 2
)
, T < Tc (6.35)

Therefore the equilibrium correlation length is

ξ̄ (T ) =
√

4

λ

1√
T 2 − T 2

c

, T > Tc (6.36)

=
√

2

λ

1√
T 2

c − T 2
, T < Tc (6.37)

or

ξ̄ (T ) ∝ |T − Tc|−1/2 (6.38)

The essential feature in ξ̄ is the singularity at T = Tc, that occurs at a time that
we denote tc. Assuming that the cooling (quench) occurs at a constant rate Tc/τext

(in a range of temperature around Tc), we have

T − Tc = − Tc

τext
(t − tc) (6.39)
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Figure 6.4 Sketch of equilibrium correlation length as a function of time as given
in Eq. (6.40).

hence we write

ξ̄ ∼ |T − Tc|−ν ∝ |t − tc|−ν (6.40)

for T close to Tc. The exponent ν is called a “critical exponent” and the mean
field theory calculation described above gives ν = 1/2. However, the mean field
theory ignores particle interactions and renormalization group methods give ν =
2/3, which is closer to experiment. A sketch of the shape of ξ̄ (Eq. (6.40)) is shown
in Fig. 6.4.

One shortcoming of the mean field calculation of ξ̄ is that we have quantized
the field φ in a fixed true vacuum so that φ0(T ) in Eq. (6.28) is independent of x .
This assumes that the same vacuum is chosen everywhere below Tc. On the other
hand, we are precisely interested in the spatial extent of a region in a single vacuum.
Hence a more suitable expansion of φ would be

φ(t, x) = φ0(t, x, T ) +
∫

d3k

(2π )3

1√
2ωk

[
fk(t, x)ak + f ∗

k (t, x)a†
k

]
(6.41)

instead of Eq. (6.28). The vacuum expectation value, φ0, is now allowed to depend
on both t and x since the background domain walls may be non-static. The second
term in the expansion describes small fluctuations (particles) with mode functions
fk in the classical background φ0(t, x, T ) at x .

The expansion in Eq. (6.41) is not as obvious as might appear at first sight. We
have seen in Chapter 4 that a kink can itself be written in terms of particles via the
Mandelstam operator. This was done in the sine-Gordon model but it is conceivable
that such an operator also exists in other models. So the above expansion only makes
sense for a state in which there is a clear separation between the particle degrees
of freedom appearing in the sum and the soliton degrees of freedom included in
φ0. For example, if the walls are very close to each other the separation of the two
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terms may not be justified. Hence the phenomenon of defect formation is closely
tied to the separation of classical (soliton) and quantum (particle) variables.

We are interested in

ξ0 = 〈T |φ0(t, x, T )φ0(t, y, T )|T 〉 (6.42)

However, we have no way of calculating this equal time “domain correlation func-
tion” since (i) the thermal state refers to a thermal distribution of particles, not of
domains, and (ii) the defects do not remain in thermal equilibrium with the par-
ticles. This impasse is made less severe by realizing that the calculation of ξ̄ for
T > Tc does not suffer from this problem since then φ0 = 0 is the unique vacuum.
We expect the correlations for T < Tc to be determined by those for T > Tc and so
it might be sufficient to know the correlation length for T > Tc. (We discuss this
further in Section 6.5.) To emphasize this point, the two branches of the sketch in
Fig. 6.4 correspond to two different quantities – the equilibrium correlation length
for t < tc is for excitations in a different vacuum from that for t > tc. So, while
Eq. (6.40) describes the correlations of particle excitations in a given true vacuum
for T < Tc (t > tc), we cannot expect that this has anything to do with the size of
domains of constant vacuum.

The next subtlety is that the divergence of the equilibrium correlation length at
T = Tc should not be taken too literally. The reason is that there is an external
agency (refrigerator) driving the phase transition on a time scale given by τext. As
the system gets closer to the critical temperature, it takes longer for equilibrium
to be established, while the external agency continues to cool the system at a rate
determined by external factors. At some temperature above the critical temperature
the time taken to maintain equilibrium becomes larger than the time scale at which
the external conditions are changing.

Assume that the external temperature is being lowered at a constant rate

T = Tc

(
1 − t

τext

)
(6.43)

where Tc is the critical temperature and we have chosen Tc = 0 for convenience.
The equilibrium correlation length has the form

ξ̄ (T ) = η|ε|−ν (6.44)

where ν is a critical exponent, η is some unspecified length scale, and

ε ≡ 1 − T

Tc
(6.45)

The rate of change of ξ̄ is

dξ̄

dt
= − ε

|ε|
νη

τext
|ε|−(ν+1) = − νξ̄

τextε
(6.46)
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This equation shows that as ε → 0−, ξ̄ must change at an ever faster rate if equi-
librium is to be maintained.

The relaxation rate can be obtained by perturbing the system and finding
how long it takes for the perturbation (“sound”) to equilibrate. The result is the
“relaxation time”

τrel = τ0|ε|−µ (6.47)

where µ is another critical exponent. Then the “speed of relaxation” is the sound
speed

cs(T ) = ξ̄

τrel
= η

τ0
|ε|µ−ν (6.48)

Note that τrel diverges as T approaches Tc. This is called “critical slowing down.”
When the system cannot keep up with the external changes, equilibrium is lost.
Denoting the temperature at which τrel becomes equal to τext by T∗ we find

T∗ = Tc

[
1 +

(
ντ0

τext

)1/(µ+1)
]

(6.49)

which occurs at

t∗ = −τext

(
ντ0

τext

)1/(µ+1)

(6.50)

So we expect the correlation length ξ for T > Tc to be equal to the equilibrium
correlation length ξ̄ until time t∗, after which ξ departs from ξ̄ and grows more
slowly (see Fig. 6.5). The behavior of ξ between t∗ and tc is not known and it
is generally assumed that ξ does not change very much in this interval. After tc,
there are two distinct vacua, and we need to consider both the correlation scale of
chosen vacua (denoted by ξ0) and the correlations of excitations within a chosen
vacuum, ξ . As time goes by, walls annihilate and the domain size with a given
vacuum grows. We discuss ξ0 in the next section.

6.5 Kibble-Zurek mechanism: second-order phase transition

The domain correlation length, ξ0, over which the same vacuum is chosen, is dif-
ferent from the equilibrium correlation length denoted by ξ̄ (Eq. (6.40)). It is also
different from the correlation length ξ obtained for particle excitations, including
the phenomenon of critical slow down, since ξ0 has nothing to do with particle
excitations. We now discuss different approaches to estimating ξ0 (for a review see
[10]).
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Figure 6.5 The correlation length at high temperature (t < tc) increases as the
critical temperature is approached, departing from the equilibrium correlation
length when critical slowing down becomes important at t∗. Below the critical
temperature, there are two correlation length scales of interest. The domain cor-
relation length, ξ0, relates to the extent of the spatial domains that are in the same
vacuum. This is precisely the spacing of domain walls. Wall-antiwall annihilations
cause ξ0 to grow with time. The particle correlation length, ξ , however, decreases
with time since the mass of the particles grows, and eventually approaches the zero
temperature value. The dynamics of how ξ0 separates from ξ̄ are not understood
and are denoted by the shaded region.

To estimate ξ0 in the case of a second-order phase transition, Kibble [87] used
two different criteria. First, he obtained an upper bound to ξ0 in the cosmological
context based on causality considerations. If the phase transition takes place at a
certain cosmic time τ , then the vacua at points separated by more than cτ , where c
is the speed of light, must have been selected independently since cτ is the size of
the cosmic horizon. Hence ξ < cτ . This is the “causality bound.”

The second estimate is based on finding the Ginzburg length. This is the length
over which the choice of vacuum cannot change owing to thermal fluctuations. For
concreteness, let us imagine that there is a domain of size l in which φ = +φ0(T )
(T < Tc) in the Z2 model. In one spatial dimension this corresponds to a wall-
antiwall separated by a distance l, and in three dimensions it corresponds to a
closed domain wall of characteristic size l. The idea is that, if l is small, thermal
fluctuations can spontaneously change the phase within the domain from φ = +φ0

to φ = −φ0. However, if l is large, the phase in the domain is frozen, and the
distribution of defects does not change spontaneously owing to thermal fluctuations.
The smallest length l for which a domain is frozen defines the distance between
closest defects and hence predicts the number density of defects.

The energy required to change the phase in a volume R3 is given by R3�V (T )
where�V is the free energy density difference between the minimum and maximum
of the potential at a temperature T . The thermal fluctuation energy available per
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excitation mode is T according to equipartition. Equating the required and the
available energies gives

R3�V (T ) ≈ T (6.51)

Therefore, at temperature T < Tc, a region that is smaller than

R ∼
(

T

�V (T )

)1/3

(6.52)

will have enough thermal energy to fluctuate from one vacuum to the other. For
example, in the Z2 model (see Eq. (6.15))

�V (T ) = m̄4

4λ
= λ

64

(
T 2 − T 2

c

)2
(6.53)

Therefore, at temperature T < Tc, the length scale below which regions are still
fluctuating are

R(T ) = 4

λ1/3

[
T(

T 2
c − T 2

)2

]1/3

∼ 42/3

λ1/3Tc

[
1 − T

Tc

]−2/3

(6.54)

where the last approximation holds for T ∼ Tc.
For a region to fluctuate from one vacuum to another, not only does it need

the energy to jump over the barrier, but all different parts of the region need to
jump together. This means that all the particles in the domain should be activated
coherently. The particle coherence scale is described by the correlation length,
which is approximated by the equilibrium correlation length, ξ̄ . Therefore, at a
temperature T , regions of size less than lf = min(R(T ), ξ̄ (T )) (subscript “f” stands
for “fluctuating”) can actively change vacua. The Ginzburg temperature, TG, is
defined by the condition R(TG) = ξ̄ (TG), and the Ginzburg length is defined by
lG = ξ̄ (TG). For the Z2 model, this gives

Tc − TG ≈ λTc (6.55)

lG = ξ̄ (TG) ≈ 1

λTc
(6.56)

Early estimates took the Ginzburg temperature to be the epoch when domain walls
are formed. The number density of walls then follows by dimensional analysis as
∼ 1/ l D

G .
The relevance of the Ginzburg temperature for defect formation is not clear. As

discussed in the previous section, the correlation length ξ̄ is calculated for particle
excitations in a given vacuum, whereas we are interested in the correlation length
of the vacuum domains denoted by ξ0. In fact, experiments in He-3 find that defects
are produced at a temperature below Tc but above TG, implying that the Ginzburg
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criterion is not a necessary condition for defect formation. A discussion of the
relevance of the Ginzburg criterion in the context of vortex formation in He-3 and
He-4 may be found in [86].

Zurek estimated the domain size, ξZ, by considering the time scales involved
during the phase transition [187, 188, 93]. As discussed at the end of Section 6.4, the
system cannot keep up with external changes at t = t∗ (Fig. 6.5). Zurek postulated
that the correlation length at the instant when the system can no longer keep up
with the external changes determines the size of the domains that get frozen. This
in turn determines the number of defects.

To estimate ξ0 at tc we know ξ̄ at the time critical slowing down becomes im-
portant. To this we add the distance that a perturbation can propagate from the
slow-down time, t∗, to the phase transition time, tc (see Fig. 6.5). That gives us

ξ0(tc) = ξ̄ (t∗) +
∫ tc

t∗
dt cs(t) (6.57)

= η
1 + µ

1 + µ − ν

(
τext

ντ0

)ν/(1+µ)

(6.58)

The crucial part of this relation is

ξ0(tc) ∝
(

τext

τ0

)ν/(1+µ)

(6.59)

This relation gives the dependence of the number density of domain walls in D
spatial dimensions on the external time

n ∝
(

τext

τ0

)−νD/(1+µ)

(6.60)

We can control τext in experiments and hence this is a testable prediction.
The above analysis can be improved yet further. For example, we have calculated

ξ0 at t = tc. Yet thermal fluctuations after t = tc (i.e. T < Tc) may be important and
the domain structure may freeze out at yet lower temperatures, as in the discussion
of the Ginzburg length scale above. So the relevant time at which ξ0 is stable to
thermal fluctuations is somewhat after tc, in agreement with the analysis of [8].

There is yet another view of defect formation at a phase transition first proposed
in [5]. In numerical simulations of a U (1) field theory, the authors found that
there is a distribution of vortices even at temperatures above the phase transition.
However, these vortices are small, closed structures. At the critical temperature,
the vortices link up and form infinite, open structures. Thus the phase transition is
coincident with a percolation transition of the vortices. If this feature is generally
true, we expect a population of small, closed domain walls to exist above the critical
temperature. As the temperature is lowered, the walls connect and grow larger and
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Table 6.1 Size distribution of black clusters found by simulations
on a cubic lattice.

Cluster size 1 2 3 4 6 10 31 082

Number 462 84 14 13 1 1 1

at the critical temperature, the walls percolate, giving walls of infinite extent. The
percolation picture has not been checked by simulating the domain wall forming
phase transition. However, we can still study the statistical properties of the network
of walls formed after a phase transition using some simple arguments that we now
describe.

The topic of defect formation and, more generally, phase transition dynamics is
still under active investigation.

6.6 Domain wall network formation

The previous sections focused on the density of domain walls that can be expected
to form during a suitable phase transition. In this section we focus on a somewhat
different aspect of the problem: what are the statistical properties of the domain
walls formed at a phase transition? Are the domain walls formed as little closed
spherical structures? Or are they infinite and planar? First we discuss the simple
case of a network of Z2 walls and then the more complicated case of SU (5) × Z2

walls.

6.6.1 Z2 network

The properties of the network of Z2 domain walls at formation have been determined
by numerical simulations implementing the “Kibble mechanism.” The vacuum in
any correlated region of space is determined at random. Then, if there are only two
degenerate vacua (call them black and white), there are spatial regions that are in the
black phase with 50% probability and others in the white phase. The boundaries
between these regions of different phases are the locations of the domain walls
(see Fig. 6.6).

Numerical simulations of the Kibble mechanism on a cubic lattice gave the
statistics shown in Table 6.1 [74, 159]. The data show that there is essentially one
giant connected black cluster. By symmetry there is one connected white cluster.
In the infinite volume limit, these clusters are also infinite and their surface areas
are infinite. Therefore the topological domain wall formed at the phase transition
is infinite.
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Figure 6.6 The distribution of two phases (black and white) on a square lattice
in two spatial dimensions. Domain walls lie at the interface of the black and white
regions.

6.6.2 SU (5) network

What does the Kibble mechanism predict for SU (5) × Z2 domain walls? Just as in
the Z2 case, we have to throw down values of the Higgs field on a lattice, assuming
that every point on the vacuum manifold is equally likely, and then examine the
walls that would form at the interface. In Section 2.2 we have found that there are
three kinds of wall solutions in this model and we have labeled the walls by the
index q, which can take values 0, 1, or 2. Each kind of wall has the same topology
but they have different masses. Each wall type is formed with some probability.
Based on the Kibble mechanism, the probability that a certain wall forms is directly
related to the number of boundary values that result in the formation of that kind of
wall. So we need to evaluate all the boundary conditions that lead to domain walls
with a certain value of q.

The space of boundary conditions leading to a given type of domain wall is
discussed in Section 2.4. However, similar considerations occur in simpler models
and it is helpful to think of the problem in a discrete case, for example the S5 × Z2

kinks described in Section 2.5. Take a fixed (discrete) vacuum in one domain. The
neighboring domain can be in any other vacuum state with equal probability.
There are ten possible states for the neighboring domain. Only one of these gives
the q = 0 wall, six give the q = 1 wall, and three give the q = 2 wall. Then the
Kibble mechanism implies that the network contains q = 0, 1, 2 walls and their
number densities are in the ratio 1 : 6 : 3. This means that the network is domi-
nantly composed of the q = 1 wall. However, since the q = 2 wall is the lightest
wall, the q = 1 walls formed by the Kibble mechanism during the phase transi-
tion subsequently decay into q = 2 walls. We will show some evidence for this
two-stage process in Section 6.7.
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Similarly we can identify the space of boundary conditions that lead to a particular
kind of kink in the SU (5) × Z2 model. We considered this problem in Section 2.4
and listed the spaces in Table 2.1. From the table we read off that the space of
boundary conditions leading to the q = 0 kink is zero dimensional, for the q = 1
kink it is six dimensional, and is four dimensional for the q = 2 kink. Since a six-
dimensional space is infinitely bigger than a 0- or a four-dimensional space, the
probability of a kink being of the q = 0 or q = 2 variety is zero, and the probability
of the kink being of the q = 1 variety is 1.

A subtlety that has not been discussed above is that there is also the possibility
that if we lay down Higgs fields randomly, we may get [�−, �+] �= 0 (see theorem
in Section 2.2). In this case, as described in Section 2.2, there is no static solution
to the equations. Then the field configuration evolves toward a static configuration.
Our discussion above assumes that such a configuration has been reached, and
neighboring domains always have values of � that commute. This is not completely
satisfactory since there are time scales that are associated with the relaxation and
these must be compared to other time scales characterizing the phase transition.
This is why a numerical study, such as that in Section 6.7, is needed.

To summarize, the Kibble mechanism predicts that only q = 1 domain walls
are formed at the SU (5) × Z2 phase transition. However, we know that the stable
variety of walls have q = 2, and hence the q = 1 walls decay into them. The
formation of walls and the conversion of q = 1 walls into q = 2 walls during
a phase transformation in the SU (5) × Z2 model has not been studied. However,
these questions have been addressed in the related S5 × Z2 model as we now discuss.

6.7 Formation of S5 × Z2 domain wall network

As discussed in the last section, the q = 1 domain wall of the S5 × Z2 model
occupies the largest volume in the space of boundary conditions but the q = 2 wall
has least energy. Hence there is a tension between “entropy” (number of states) and
“energy” (mass of wall). In a phase transition, based on the Kibble argument, we
might expect the entropy to be more important. However, the higher energy walls
q = 1 cannot survive indefinitely and eventually decay into the q = 2 walls. One
way to study these processes is by direct simulation of the fields as a function of
temperature [123, 6, 7].

The simulations are based on a Langevin equation where thermal effects are
treated as a noise term in the classical equations of motion together with a damping
term. For the S5 × Z2 model (Eq. (2.30)) with its four scalar fields, the equations
are (

∂2
t − ∇2

)
fi + Vi + � ∂t fi = �i (6.61)
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Figure 6.7 Energy density distribution in space at an early time at high temper-
ature (top panel) and then at various times after the phase transition in the lower
panels. The last panel shows that the system has relaxed into a stable lattice of
kinks.

where i = 1, . . . , 4 and Vi denotes the derivative of V with respect to fi . If � =
0 = �i , these equations are simply the classical equations of motion for the fi .
In a thermal system, we imagine that the fields are in contact with a heat bath at
temperature T with which energy can be exchanged. Then there can be dissipation
which is represented by the � term and thermal noise which is represented by the
�i term. The dissipation constant � is taken to be independent of the temperature
but the �i are stochastic and taken to be Gaussian distributed with the following
correlation functions

〈�i (x, t)〉 = 0,

〈�i (x, t)� j (y, t ′)〉 = 2� T δi jδ(x − y)δ(t − t ′) (6.62)

The procedure is to solve Eq. (6.61) with any initial condition. The noise and
dissipation eventually drive the system to a thermal distribution at temperature T .
To mimic the phase transition, the noise is then set to zero. All of a sudden the
system has to find a new equilibrium state. This equilibrium state has domain walls
and these are located and tracked in the subsequent evolution.

In one spatial dimension, the results are shown in Fig. 6.7. At high temperature
the energy distribution is very noisy. After the phase transition, the presence of
kinks is clear. During the evolution, some of these kinks annihilate. In the end we
are left with a kink lattice.
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Figure 6.8 Length in walls (denoted by N ) in two spatial dimensions against time
for the q = 2 walls in the S5 × Z2 model (upper solid curve) and the single field Z2
case (lower solid curve). The dashed curve corresponds to the total S5 × Z2 wall
length measured by counting zeros of the diagonal elements of �(x) and hence
includes walls with any value of q . The difference between the solid and dashed
curves shows that the initial network consists of a large fraction of q �= 2 walls but
then later all the walls decay into the q = 2 walls. Comparison with the Z2 case
shows that the S5 × Z2 network decays more slowly. (The upturn at the very end
in the Z2 case is due to the finite simulation box.)

Similar numerical simulations have also been done in two spatial dimensions.
The total energy in all kinds of walls is plotted as a function of time in Fig. 6.8. The
figure also shows the energy in only the q = 2 walls as a function of time. The
difference of these curves shows that not all walls are of the q = 2 variety at
formation. Other kinds of walls are present immediately after the phase transition
but they must then decay into the least massive q = 2 wall.

As discussed in Section 2.8, the S5 × Z2 kinks can have nodes in two spatial
dimensions (see Fig. 2.6). So we expect a network of domain walls to form after a
phase transition in which six or more domain walls are joined at junctions. This is
exactly what is seen in simulations (Fig. 6.9). Another feature that is apparent on a
closer look at the network is that there are many pairs of walls that are very close
to each other. These pairs occur because the unstable q = 1 walls eventually decay
into two q = 2 walls. The forces separating the q = 2 walls are exponentially small
and so they stay close-by during further evolution.

We have seen that the final state of the S5 × Z2 phase transition in one spatial
dimension is a lattice of domain walls (Fig. 6.7). In one dimension, it can be argued
that a lattice forms with unit probability provided the size of the simulation box is
much larger than the wall thickness. In two dimensions, if the spatial extent in one
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Figure 6.9 Network of S5 × Z2 walls in two spatial dimensions soon after the
phase transition. The picture looks very similar to the network of (one-dimensional)
walls connected to a network of (point-like) strings studied in [130].

direction is smaller than that in the other direction, so that the simulation box is
rectangular with periodic boundary conditions, the evolution is very much like in
one dimension and a lattice forms once again (see Fig. 6.10). Even on a square two-
dimensional simulation box, a domain wall lattice is seen to form with a probability
∼ 0.05 [7].

6.8 Biased phase transitions

The existence of domain walls relies only on the existence of discrete vacua. Then
it is possible to imagine situations where the degeneracy of the discrete vacua
is slightly broken (see Fig. 6.11).4 Now the probability that the higher energy
vacuum is selected during the phase transition in some region is less than 1/2
and the probability that the lower energy vacuum is selected is larger than 1/2.
This process can again be simulated on a square lattice by throwing down black
squares with probability p < 1/2. If p is very small, there are only a few black
squares and these are disconnected from each other. So the domain walls are small

4 Or perhaps the vacua are exactly degenerate but the likelihood of being in one particular vacuum is slightly
larger because of the way in which the system was prepared.
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Figure 6.10 Three stages for the domain wall network evolution in a toroidal do-
main, with dimensions Lx = 500 and L y = 150. The different shades correspond
to the five possible charges of the domain walls (see Section 2.7). Note that in the
bottom figure there is a pair of neighboring wall and antiwall of the same type (the
walls just before and after the 300 mark). These later annihilate, leading to a final
stable lattice consisting of ten walls.
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Figure 6.11 An asymmetric well in which the degeneracy of the vacua is slightly
broken.
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and closed. At a critical value of p, call it pc, the black squares connect and the
distribution is dominated by one infinite cluster of black squares. Then the black
squares are said to percolate. Therefore the domain wall formation problem reduces
to the classic problem of “percolation theory” [143, 96, 36] where we are interested
in the critical probability and also the critical exponents that appear in various
correlation functions as the critical point is approached. On a triangular lattice in
two dimensions, the critical probability is known to be 0.5 and on a cubic lattice in
three dimensions it is 0.31. The problem may even be studied on a random lattice
as discussed in [95].

The analysis for biased domain walls implies that even if the potential is slightly
asymmetric, infinite domain walls can form. For the SU (5) × Z2 potential described
in Eq. (2.5), the asymmetry is due to the cubic term with coupling constant, γ . For
small but non-zero values of γ , infinite domain walls form.

6.9 Open questions

1. What is the number density of domain walls formed in a second-order phase transition?
The question may need to be sharpened since the density keeps changing with time.
Also, while the number density is important in cosmology, condensed matter physicists
are mainly concerned with scaling laws (critical exponents) since these are expected to
be universal. So a sharper question would be in terms of a critical exponent related to
the number density (e.g. Eq. (6.60)).

2. Is there a condensed matter system which gives a domain wall lattice?
3. Is there any role for domain wall lattices in (higher dimensional) cosmology?
4. If a domain wall lattice can be generalized to strings and monopoles, do string and

monopole lattices form during a phase transition?



7

Dynamics of domain walls

In this chapter we discuss the dynamics of kinks and domain walls first in the zero
thickness approximation, and then briefly in the full field theory. The zero thickness
approximation can be expected to be valid in the case when all other length scales,
such as the radii of curvature of a domain wall, are much larger than the wall
thickness.1 We start by deriving the action for a kink in 1 + 1 dimensions as this
is the simplest case and contains the essential features of the higher dimensional
cases. Then we derive the action for a domain wall in 3 + 1 dimensions and some
consequences. In this chapter we ignore gravitational effects which can be quite
important in certain situations (see Chapter 8).

7.1 Kinks in 1 + 1 dimensions

In 1 + 1 dimensions, if we ignore the structure of the kink, then we expect the kink
to behave simply as a massive point particle. Its dynamics are then given by the
usual action for a massive point particle

S1+1 = −M
∫

dτ (7.1)

where M is the mass of the kink and dτ is the line element which may also be
written as

dτ = dt

(
gµν

dXµ

dt

dX ν

dt

)1/2

(7.2)

where gµν is the metric of the space-time background and Xµ(t) is the location of
the kink at time t .

While the action in Eq. (7.1) seems reasonable on physical grounds, there should
be a systematic way to derive it starting from the original field theory action of which

1 This expectation is not completely correct since the wall velocity is also important [183, 73].

113
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Figure 7.1 The world-line of the kink is represented by the curve. The kink frame
coordinates ya = (τ, ξ ) are defined in the instantaneous rest frame of the kink and
are functions of the background coordinates xµ = (t, x).

the kink is a solution. Such a derivation should lead to Eq. (7.1) plus corrections
that depend on the internal structure of the kink.

To derive the effective action (Eq. (7.1)), the key assumption is that the field
profile of the kink is well-approximated by that of the known static kink solution in
the instantaneous rest frame of the kink. To proceed with the derivation, we work in
“kink frame coordinates” which are denoted by ya = (τ, ξ ), a = 0, 1, as illustrated
in Fig. 7.1 (τ is also called the kink world-line coordinate). These coordinates are
functions of the background coordinates that are denoted by xµ = (t, x), µ = 0, 1.

The kink world-line is given by the position 2-vector Xµ = (t, X (t)). Therefore
the vector tangent to the world-line is T µ = NT (1, ∂t X ) where NT is a normalization
factor chosen to enforce

gµνT µT ν = 1 (7.3)

The unit vector, Nµ(τ ), orthogonal to the world-line is found by solving

gµνT µN ν = 0 (7.4)

together with the normalization condition

gµν NµN ν = −1 (7.5)

In the special case of a Minkowski background, gµν = ηµν = diag(1, −1), we find
T µ = γ (1, V ) where V ≡ ∂t X , and Nµ = γ (V, 1) where γ = 1/

√
1 − V 2.

The coordinate τ is along T µ and ξ is along Nµ. Therefore, in the neighborhood
of some fixed point on the world-line, any space-time point can be written as

xµ = Xµ

0 + τT µ

0 + ξ Nµ

0 ≡ Xµ(τ ) + ξ Nµ(τ0) (7.6)
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where the subscript 0 refers to the fixed point on the world-line. Since the energy
density in the fields vanishes far from the kink, only the neighborhood of the world-
line is relevant for deriving the effective action. Hence ξ is small and to lowest order
we can replace τ0 in the last term by τ to get

xµ = Xµ(τ ) + ξ Nµ(τ ) (7.7)

With the coordinate transformation in Eq. (7.7), the world-line metric can be
written in the ya coordinate system

hab = gµν∂axµ∂bxν (7.8)

Therefore

h00 = gµν(∂τ Xµ + ξ∂τ Nµ)(∂τ X ν + ξ∂τ N ν)

= gµν∂τ Xµ∂τ X ν + O(ξ )

h01 = gµν(∂τ Xµ + ξ∂τ Nµ)N ν = O(ξ )

h11 = gµν NµN ν = −1

where we have used the orthogonality of ∂τ Xµ ∝ T µ and Nµ, and the normalization
of Nµ. So the determinant of hab is

h = −gµν(Xµ)∂τ Xµ∂τ X ν + O(ξ ) (7.9)

where we have also expanded the background metric around the kink location.
Next we write,

φ(xµ) = φ0(ya) + ψ(ya) (7.10)

where φ0 is the static kink profile function in the kink frame coordinates. For
example, in the case of the Z2 kink, φ0 = η tanh(

√
λ/2 ηξ ) (see Eq. (1.9)). The

field ψ is the departure of the true field configuration from the static kink profile
φ0. The assumption is that the contribution of ψ to the action is small and hence ψ

can be used as a parameter for a perturbative expansion.
Now the field theory action is

S =
∫

d2x
√−gL[φ, φ̇; gµν] (7.11)

in terms of the Lagrangian density L and g = Det(gµν). The metric is taken to be
a fixed background and the gravitational effects of the wall are ignored. The full
problem of gravitating domain walls is significantly more complicated at a technical
level [21].

Now we write this action in the kink frame coordinates to get

S = S0 + O(ξ, ψ) (7.12)
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with

S0 =
∫

dτdξ
√

|h| L[φ0(ξ ), φ̇0(ξ ); hab]

=
∫

dτ
√

|h|
∫

dξ L[φ0(ξ ), 0; hab]

= −M
∫

dτ
√

|h| (7.13)

where M is the mass of the kink. The last equality follows since the solution is
static and hence the Lagrangian density equals the energy density up to a sign.
The integration of the Lagrangian density then gives the −M factor. The effective
action is therefore the action for a point particle, simply given by the length of the
world-line. This result can easily be extended to walls (and strings) propagating in
higher dimensions, and the leading term in the effective action is proportional to the
world volume. Such geometric effective actions are often referred to as “Nambu-
Goto actions.” Even if the self-gravity of the domain wall is taken into account, the
dominant contribution to the effective action is still the Nambu-Goto action [21].

The next-to-leading order terms in the effective action, denoted by O(ξ, ψ) in
Eq. (7.12), have been discussed for domain walls in [138, 21, 73, 28], building on
the earlier analysis for strings [57, 105, 72]. The first-order corrections in both ψ

and ξ vanish because the field φ0 is a solution of the equation of motion and hence
the action is an extremum at φ0. The lowest non-trivial corrections come at second
order in ξ and ψ . An alternative approach to studying domain wall dynamics has
been developed in [9].

Finally we remark that the parameter τ can be chosen arbitrarily. Any other
world-line coordinate, τ ′(τ ), leaves the effective action invariant. This fact is called
“reparametrization invariance” of the action.

7.2 Walls in 3 + 1 dimensions

The location of a domain wall, Xµ(τ, ζ, χ), is described by three world-volume
coordinates ya = (τ, ζ, χ). Any point, xµ, can now be written in terms of the “wall
frame coordinates” (see Eq. (7.6) and Fig. 7.2)

xµ = Xµ(τ, ζ, χ) + ξ Nµ(τ, ζ, χ) (7.14)

where Nµ is the normal to the wall.
The derivation of the Nambu-Goto action proceeds exactly as in the kink case

of the last section and we get

S0 = −σ

∫
d3ρ

√
|h| (7.15)
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Figure 7.2 A curved section of a domain wall is shown. The world-sheet coordi-
nates are (τ, ζ, χ, ξ ) while those in the ambient space (“bulk”) are (t, x, y, z).

where σ is the energy per unit area (tension) of the wall, the integral is over the
wall world volume, h = Det(hab), and the world-volume metric is

hab = gµν(Xρ)∂a Xµ∂b X ν (7.16)

where a, b = τ, ζ, χ . Note that the determinant of hab is positive for the kink in
1 + 1 dimensions and also the domain wall in 3 + 1 dimensions.

The major difference between the kink in 1 + 1 dimensions and the domain wall
is that the wall can be curved, and so the profile φ0, which only applies to planar
walls, does not solve the equation of motion. For example, as the wall moves, it
accelerates and emits radiation. The radiation part must be treated as a perturbation.
However, the analysis is conceptually the same as for the kink and the derivation
may be found in [138, 21, 73, 28].

From the Nambu-Goto action for the domain wall, we can derive the equations
of motion. The variation of S0 involves the variation of h = Det(hαβ). This follows
from the identity (see Appendix E)

δlnDetM = Tr(M−1δM) (7.17)

valid for any invertible matrix M. Applying this identity to the matrix hab we get

δh = hhabδhab (7.18)

where hab is the inverse of hab so that

habhbc = δa
c (7.19)

Therefore the variation of S0 is

δS0 = −σ

2

∫
d3ρ

√
|h|habδhab (7.20)
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We obtain the wall equation of motion by requiring δS0 = 0 together with the
definition of hab in Eq. (7.16)

1√|h|∂a(
√

|h|hab∂b Xσ ) = �σ
µνhab∂a Xµ∂b X ν (7.21)

where the Christoffel symbol is defined by the background metric gµν

�σ
µν = gσρ

2
(∂νgρµ + ∂µgρν − ∂ρgµν) (7.22)

In the special case of a Minkowski background metric, the Christoffel symbol
vanishes and

1√|h|∂a(
√

|h|hab∂b Xσ ) = 0 (7.23)

Using Eq. (7.17), the determinant h can be eliminated and the equation of motion
can be written as

∂a(hab∂b Xσ ) + 1

2
hcd∂ahcd hab∂b Xσ = 0 (7.24)

The equation of motion for a wall is highly non-linear because hab itself is
defined as a quadratic in derivatives of Xµ. One way to simplify the equations is to
choose convenient coordinates. This is possible because the equations of motion
of the wall are reparametrization invariant, i.e. we are free to choose any world-
volume coordinates (τ, ζ, χ). A similar situation occurs for strings that have a 1 + 1
dimensional world sheet. There, by a choice of coordinates, the equation of motion
can be converted to a simple wave equation in 1 + 1 dimensions together with some
quadratic constraints that can be solved quite generally. In the case of the domain
wall, however, no such convenient choice of coordinates is known and the equations
have not been solved in general. Only a few special solutions are known. Of these,
static solutions subject to suitable boundary conditions have minimal surface area,
and these have been extensively studied in the mathematics literature e.g. [115].

In a realistic setting, the dynamics of the walls are affected by inter-kink forces,
by the interaction of any surrounding particles, the gravitational field of the wall, and
the evolution of the background space-time. In addition, there are collisions between
different walls, leading to intercommuting (Section 3.8), and annihilation of walls
and antiwalls. If there are zero modes on the walls as described in Chapter 5, they
could also carry charges and currents and this would introduce other interactions.

7.3 Some solutions

In 1 + 1 dimensions the kink moves like a point particle of mass M . The dynamics
are richer in 3 + 1 dimensions where a closed domain wall can oscillate and move
in complicated ways. The Nambu-Goto action is valid when the radii of curvature of
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the wall and the separation of different sections of wall are both large compared to
the thickness of the wall. In addition, the velocity of the wall (in the center of mass
frame) should be small. (See Section 7.3.3 for the criterion in the case of collapsing
spherical domain walls.) When these conditions are not met, the only way to proceed
is to consider the dynamics using the underlying field theory. In this section, we
ignore field theory effects and describe some solutions to the Nambu-Goto action.

7.3.1 Planar solutions: traveling waves

A planar domain wall in the z = 0 plane is given by

Xµ(τ, ζ, χ) = (τ, ζ, χ, 0) (7.25)

Next consider a planar domain wall with some ripples

Xµ(τ, ζ, χ) = (τ, ζ, χ, z(τ, ζ, χ)) (7.26)

The function z describes the ripples and we would like solutions for z.
For the wall in Eq. (7.26), the world-volume metric is

hab = ηab − ∂az∂bz (7.27)

where

ηab = diag(1, −1, −1) (7.28)

Inverting hab is not simple, but inverting ηab is. So consider the “trial” inverse
metric

h̃bc = ηbc + ηbd∂d z ηce∂ez (7.29)

Then by evaluating habh̃bc, it can be seen that h̃bc is the correct inverse metric
provided

ηab∂az∂bz = 0 (7.30)

Now we can use Eq. (7.24) and the constraint (7.30) to get the equation of motion
for the function z(τ, ζ, χ)

∂a∂az = 0 (7.31)

Hence any function that satisfies Eqs. (7.31) and (7.30) extremizes the Nambu-Goto
action for a domain wall.

Solutions of Eqs. (7.31) and (7.30) have been discussed in [58]. The constraint
condition implies that the solution must necessarily be time-dependent. A class of
solutions is obtained by noting, for example, that z = f (τ − ζ ) solves the equation
of motion and also the constraint for any choice of function f . This corresponds
to a pulse of arbitrary shape on a planar domain wall that propagates in the +x
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c

Figure 7.3 Sketch of a traveling wave on a planar domain wall. The pulse propa-
gates at the speed of light along the wall.

direction at the speed of light. Similarly

z = f (τ ± (n1ζ + n2χ )), n2
1 + n2

2 = 1 (7.32)

is a solution for any unit vector (n1, n2). These solutions are known as “traveling
waves” (see Fig. 7.3).

Other solutions of the wave equation (Eq. (7.31)) are also known – for exam-
ple, circular waves – but these do not satisfy the constraint equation and/or have
singularities.

7.3.2 Axially symmetric walls

Here we look for a static wall solution in a Minkowski background. The (Cartesian)
coordinates of the wall take the form

Xµ(τ, θ, λ) = (τ, R(λ) cos θ, R(λ) sin θ, λ) (7.33)

with ηµν = diag(1, −1, −1, −1). The wall metric is seen to be

hab = diag(1, −R2, −(1 + R′2)) (7.34)

where R′ is the derivative of R with respect to λ. The equation of motion, Eq. (7.21),
then leads to

d

dλ

(
R√

1 + R′2

)
= 0,

d

dλ

(
R R′√

1 + R′2

)
=

√
1 + R′2 (7.35)

with the solution

R(λ) = 1

α
cosh(αλ) (7.36)
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Figure 7.4 Sketch of a catenoid solution.

where α is a parameter, τ = t , λ = z and θ is the angle in cylindrical coordinates.
Equation (7.36) describes a one-parameter family of static, axially symmetric, do-
main wall solutions (see Fig. 7.4).

The solution in Eq. (7.36) is a catenoid that is seen in soap films which, like
domain walls, also minimize their surface area [23]. Experiments with soap films
are done with two parallel circular rings, each of diameter D, placed a certain
distance, d, apart. Then the soap film forms a catenoid for d/D < 0.66 [117].
Actually there are two catenoid solutions for d/D < 0.66 since the relation αD =
cosh(αd/2) has two solutions for α for fixed values of D and d in this regime. A
third solution, which consists of two disconnected disks circumscribed by each of
the circular rings also exists. For larger values of the separation-to-diameter ratio,
d/D, the two-disk solution has less surface area than the catenoid solutions, and
the catenoid can pinch off and minimize its area by transforming to the two disks.
It seems reasonable to assume that the soap film analysis also applies to the domain
wall.

The catenoid is a static solution of the Nambu-Goto equations of motion. It
could happen that the catenoid is not a solution of the field equations. A simple
example of a solution to the Nambu-Goto equations that does not solve the field
equations can be constructed quite easily. Two parallel planar walls (a wall and
an antiwall) form a solution to the Nambu-Goto equations but, since these walls
have an exponentially small attractive force, they do not form a solution to the
field equations. However, by fixing the boundary conditions (as in the soap film
case by the rings), the catenoid solution for domain walls has been constructed
numerically by solving the equations of motion for the scalar field in the Z2 model
(Sutcliffe, P., 2005, private communication). The stability of the catenoid solution
to the Nambu-Goto equations is an open question (Section 7.7).
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Quite complicated static domain wall solutions have also been studied in the
context of quasicrystals [137] and microemulsions [70].

In addition to static solutions, we could seek time-dependent solutions with axial
symmetry. The simplest such case would be a cylindrical domain wall whose radius
is a function of time. The radius would contract, pass through zero, and then grow
again. A similar solution is obtained for spherical walls which we discuss more
explicitly in the next section.

To obtain the cylindrical solution, we note that energy is conserved during col-
lapse. The energy per unit length of a cylindrical wall is

� = σ2π R√
1 − Ṙ2

= constant (7.37)

where σ is the energy per unit area of the wall, R is the radius of the cylinder at
time t , and an overdot denotes differentiation with respect to t . The square root
factor in the denominator takes care of the Lorentz boost.

The conservation of energy (i.e. constancy of �), immediately leads to the
solution

R(t) = R0 cos

(
t

R0

)
(7.38)

where R0 = �/σ2π is the radius when the wall is at rest.

7.3.3 Spherical walls

Our final example of domain wall solutions is with a spherical ansatz

Xµ(τ, θ, φ) = (τ, R(τ )r̂) (7.39)

where

τ = t, r̂ = (sin θ cos φ, sin θ sin φ, cos θ ) (7.40)

and θ, φ are spherical angular coordinates. The space-time metric is ηµν =
diag(1, −1, −1, −1).

We now find

hab = diag(1 − Ṙ2, −R2, −R2 sin2 θ ) (7.41)

where overdots denote derivatives with respect to τ . After some algebra, from
Eq. (7.21) we obtain the equation of motion

R̈ = − 2

R
(1 − Ṙ2) (7.42)
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Figure 7.5 Radius of a collapsing spherical domain wall against time in the thin
wall approximation. The coordinates in the plot are in units of the maximum radius
of the wall.

For R �= 0, Ṙ2 �= 0, 1 this can also be written as

d

dτ

(
R2√

1 − Ṙ2

)
= 0 (7.43)

which implies

4πσ
R2√

1 − Ṙ2
= M (7.44)

where M is a constant of motion, to be identified with the mass of the spherical
domain wall (σ is the mass per unit area of the wall).

The solution can be written in terms of the elliptic integral of the first kind∫ x

x∗

dx√
1 − x4

= ±τ − τ0

R0
(7.45)

where

R2
0 ≡ M

4πσ
, x ≡ R

R0
(7.46)

R0 has the interpretation of being the radius when the wall is at rest and x∗ is the
value of x at some initial time τ0. The sign in Eq. (7.45) is chosen according to
whether one is interested in the expanding or contracting solution. The radius of a
collapsing spherical domain wall is plotted in Fig. 7.5.

The behavior of perturbations on the spherical domain wall has been studied in
[182]. The result is that at late times the ratio of the perturbation amplitude divided
by the radius of the spherical wall, grows as 1/R as the wall collapses.
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In the Nambu-Goto description, the spherical domain wall oscillates about the
center. However, the solution is only valid as long as the thin wall approximation
holds. By comparing various terms in the field equations of motion, the thin wall
approximation is seen to break down when [183, 73]

R

R0
∼

(
w

R0

)1/3

(7.47)

where w is the wall thickness. This relation is also confirmed by numerically solving
the equation of motion in the field theory [183]. In [73], the leading order corrections
owing to the thickness and gravity of the spherical domain wall are included, with the
conclusion that both these effects tend to slow down the dynamics. The Nambu-Goto
action also becomes inadequate owing to radiative losses. As the wall collapses, we
expect energy losses owing to radiation and eventually annihilation of the domain
wall into radiation. We discuss these processes further in Section 7.5.

The collapse of a zero thickness spherical domain wall is prevented if the back-
ground space-time is expanding. Static solutions are obtained if the background is
expanding at a constant rate, as in de Sitter space. In a particular coordinate system,
the line element for de Sitter space becomes time independent

ds2 = f (r )dt2 − f −1(r )dr2 − r2(dθ2 + sin2 θdφ2) (7.48)

where f (r ) = 1 − H 2r2 and H is a constant corresponding to the expansion rate.
Following the analysis of [16] for a circular string, the action for a spherical domain
wall in the zero thickness limit is

S = −4πσ

∫
dt R2

√
f − Ṙ2

f
(7.49)

where R(t) is the radius of the spherical wall and f = f (R). Extremization of this
action leads to the first integral

Ṙ2 − f 2 + ε−2 R4 f 3 ≡ Ṙ2 + V (R) = 0 (7.50)

where ε = E/4πσ and E is a constant (the first integral). For a static solution we
need both V (R) = 0 and V ′(R) = 0 where prime denotes derivative with respect
to R. These conditions give the static solution

R = H−1

√
2

3
(7.51)

with

E = 4πσ

H 2

2

3
√

3
(7.52)
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The potential V (R) is a maximum at the location of this solution and therefore
the solution is unstable. The instability can be understood without calculation. If the
radius of the wall is perturbed to be a little smaller than the value at the solution,
the effects of Hubble expansion are weaker while the force owing to curvature is
stronger, and so the wall collapses. On the other hand, if the radius is perturbed to
be a little larger than the solution value, the expansion effect is stronger while the
curvature force is weaker, and the wall expands to yet greater radii.

Planar and spherical domain walls in de Sitter space have been considered in the
full field theory in [17, 18]. It is found [17] that instanton solutions describing the
nucleation of spherical domain walls exist only when the thickness of the wall is
less than H−1/

√
2. This result is also relevant to the problem of finding static thick

spherical domain walls in de Sitter space, since an instanton solution can exist only
if the static domain wall solution exists (though the converse may not hold). Hence
spherical domain wall solutions of the field theory in de Sitter space exist if the
domain wall thickness is less than H−1/

√
2.

7.4 Solutions in field theory: traveling waves

The traveling wave solutions discussed in Section 7.3.1 in the zero thick-
ness approximation are also exact solutions to the field equations of motion
[160, 161].

Consider the field

φ(t, x) = φ0(z − z0(t, x, y)) (7.53)

where φ0(z) is the classical solution for a domain wall in the z = 0 plane. We now
insert this ansatz in the field theory equation of motion. A little algebra shows that
the ansatz is a solution provided

∂a∂
az0 = 0, (∂az0)2 = 0 (7.54)

where a = t, x, y. These are the same equations obtained above for planar solu-
tions to the Nambu-Goto equations (Eqs. (7.31) and (7.30)). As discussed there,
the only non-singular solutions to these equations have the form of traveling
waves e.g.

z0(t, x, y) = f (t ± x, y) (7.55)

Hence traveling waves are solutions to the field equations and do not dissipate
owing to radiation.2

2 It can be shown that traveling waves do not dissipate even when they are considered in quantum field theory
[46].
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Figure 7.6 Collapse of a spherical sine-Gordon domain wall. The curves in the
left-hand plots show the field as a function of radial distance for several different
times. The right-hand plot shows the corresponding energy density distributions.
[Figure reprinted from [183].]

7.5 Spherical domain walls: field theory

We have seen in Section 3.7 that the collision of a kink and an antikink in 1 + 1
dimensions leads to chaotic dynamics. The kinks bounce back for certain velocities
while for other velocities, both smaller and larger, they annihilate. So we might
expect the dynamics of a collapsing spherical domain wall to show similar features.
Numerical simulations of the sine-Gordon model show that a collapsing spherical
domain wall does not radiate very much energy until it becomes very small (of order
the thickness of the wall), then emits a large amount of radiation, then bounces back
to form an expanding spherical domain wall (though with less energy than the initial
configuration), which then reverses and collapses again (see Fig. 7.6). Simulations
of a λφ4 spherical domain wall, however, do not show any bounce back [183].

7.6 Kink lattice dynamics (Toda lattice)

In Section 6.6.2 we have seen that a phase transition can lead to the formation of a
lattice of kinks (Fig. 6.7). What happens if one of the kinks in a lattice collides with
a neighboring kink? The interaction potential between neighboring kinks decays
exponentially with distance and energy conservation implies that the collision is
perfectly elastic. The momentum of the incoming kink is transferred to the target
kink [123]. These properties are exactly those assumed for a chain of masses in
what is called a “Toda lattice” [155]. The many beautiful properties of a Toda
lattice apply to the (one-dimensional) lattice of kinks as well. For example, there
are soliton solutions that run along the Toda lattice. So there are also solitons in the
dynamical modes of the kink lattice i.e. solitons in the dynamics of solitons!
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7.7 Open questions

1. Are there closed domain walls in three dimensions that do not self-intersect as they
oscillate? What happens in higher dimensions?

2. Can one show analytically that walls must intercommute on intersection?
3. When traveling waves on domain walls collide, they dissipate some of their energy. Find

the energy radiated. Find the energy that goes into excitations of the bound state in the
case of the Z2 wall.

4. Analyze the catenoid domain wall solution and its stability.
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Gravity and cosmology of domain walls

Domain walls resulting from a symmetry breaking in the early universe could have
novel and dramatic gravitational and cosmological consequences.

We first derive the gravitational effects of a planar domain wall, describing the
different ways to view the system. Then we discuss spherical walls as an example
of curved domain walls. To discuss the cosmological consequences, it is necessary
to have a picture of domain wall formation in the cosmological context. With
the background of Chapter 6 we discuss the formation of the wall network in
cosmology, then the evolution and cosmological implications. We end by reviewing
the cosmological constraints on domain walls and the few possible ways around
the constraints.

8.1 Energy-momentum of domain walls

The energy-momentum tensor for a scalar field with potential V (φ) is given in
Eq. (1.39)

Tµν = ∂µφ∂νφ − gµν

{
1

2
(∂αφ)2 − V (φ)

}
(8.1)

In the thin-wall limit, varying the Nambu-Goto action (Eq. (7.15)) gives the energy-
momentum tensor

T µν

∣∣∣∣
NG

= σ√−g

∫
d3ρ

√
|h| hab∂a Xµ∂b X ν δ(4)(xµ − Xµ) (8.2)

where Xµ is the location of the wall. For a planar wall located at x = 0 in flat
space-time, this gives

T µν

∣∣∣∣
NG,plane

= σ (1, 0, −1, −1)δ(x) (8.3)
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For a planar wall, including self-gravity, the energy-momentum tensor can be ex-
plicitly written once we have chosen a suitable ansatz for the metric (see Eq. (8.4)
below).

8.2 Gravity: thin planar domain walls

The gravitational effects of a planar domain wall have been found in the thin-wall
limit in [167, 169, 80] using the vacuum solutions found in [154]. The thin-wall
limit simplifies the analysis because then there is no need to solve the field equations
of motion. All the energy-momentum is localized on the thin domain wall and so
only the vacuum Einstein equations need to be solved on either side of the wall.
The presence of the wall shows up in matching the vacuum solutions on the two
sides of the wall i.e. implementing the “junction conditions.” Such a matching is
facilitated by using the Gauss-Codazzi formalism [81] and this has been done in
[80]. Here we derive the metric of a domain wall without going through the general
Gauss-Codazzi formalism, following the derivation in [169] instead.

A planar domain wall located in the x = 0 plane has rotational symmetry in
this plane. Further we expect space-time symmetry under x → −x . Under these
conditions the form of the line element can be taken to be [154]

ds2 = e2u(+dt2 − dx2) − e2v(dy2 + dz2) (8.4)

where u and v are functions of t and |x |. Note that the possibility that the metric is
time-dependent has been retained.

In the thin-wall limit, there is no energy-momentum off the wall and so the
energy-momentum tensor, Tµν , vanishes everywhere except on the wall. Therefore
only the vacuum Einstein equations, Rµν = 0, where Rµν is the Ricci tensor, need
be solved. The solution for x > 0 is

e2v = f (t + x) + g(x − t) (8.5)

u = −1

4
ln( f + g) + h(x + t) + k(x − t) (8.6)

where the functions f , g, h, and k satisfy

f ′′ − g′′ − 2 f ′h′ + 2g′k ′ = 0 (8.7)

f ′′ + g′′ − 2 f ′h′ − 2g′k ′ = 0 (8.8)

where primes denote derivatives with respect to x . The solution for x < 0 can be
obtained by symmetry since u and v are functions of |x |.
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Next we solve the Einstein equations, Tµν = Gµν/8πG, where Gµν is the
Einstein tensor calculated for the metric in Eq. (8.4). This leads to

T 0
0 = 1

4πG
v′

0e−2u0δ(x)

T 1
1 = 0

T 2
2 = T 3

3 = − 1

8πG
(u′

0 + v′
0)e−2u0δ(x) (8.9)

where u0 = u(t, x = 0+), v0 = v(t, x = 0+).
In general, u0, u′

0, and v′
0 are time-dependent, and so these expressions for T µ

ν are
also time-dependent. However, the energy-momentum tensor for the wall should
be time-independent. This gives us the constraint that the functions f , g, h, and k
must be chosen so that u0, u′

0, and v′
0 are time-independent. Then the only possible

choice for the functions (for x > 0) that also satisfy Eq. (8.8) is

f = 0, g = eK (t−x)

h = − K

4
(t + x), k = K

2
(t − x) (8.10)

where

K = 4πGσ (8.11)

The corresponding functions for x < 0 are

f = eK (t+x), g = 0

h = K

2
(t + x), k = − K

4
(t − x) (8.12)

Then the domain wall line element is

ds2 = e−K |x |[dt2 − dx2 − eK t (dy2 + dz2)] (8.13)

which can also be put in the commonly encountered form

ds2 = (1 − κ|X |)2dt2 − dX2 − (1 − κ|X |)2e2κt (dy2 + dz2) (8.14)

where κ = 2πGσ via the coordinate transformation

|X | = 1

κ
(1 − e−κ|x |) (8.15)

8.3 Gravitational properties of the thin planar wall

On spatial slices of constant X (X = X0) the metric of Eq. (8.14) takes the form

ds2
3 = dt̄2 − e2κ̄ t̄ (dȳ2 + dz̄2) (8.16)
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where overbars denote that the coordinates have been rescaled by the factor
(1 − κ|X0|) and κ̄ = κ/(1 − κ|X0|). The three-dimensional line element of
Eq. (8.16) shows that space-like slices of constant X are expanding exponentially
fast, just as in an inflationary space-time.

The inflationary nature of the metric can be understood from the viewpoint of
an observer living on the wall who is blind to the coordinate normal to the wall.
From such an observer’s perspective, the space-time is filled with vacuum energy,
as given by the energy-momentum tensor of Eq. (8.3), and hence is inflating.

Next we examine the metric on spatial slices obtained by setting y = y0, z = z0

ds2 = (1 − κ|X |)2dt2 − dX2 (8.17)

This is the metric of 1 + 1 dimensional Rindler space-time, which is Minkowski
space-time written in the rest frame coordinates of a uniformly accelerated observer
with acceleration a = 1/κ away from the wall which is located at X = 0. To see
this, use the coordinate transformation

τ = (1 − κ|X |)
2κ

(eκt − e−κt )

ξ = (1 − κ|X |)
2κ

(eκt + e−κt ) (8.18)

In these coordinates the Rindler line element is of Minkowski form

ds2 = dτ 2 − dξ 2 (8.19)

Now note that

ξ 2 − τ 2 =
(

1

κ
− |X |

)2

(8.20)

Therefore the world line of a particle at fixed X is a hyperboloid in Minkowski space-
time, which describes a particle moving at constant acceleration. In particular, the
wall located at X = 0 has acceleration 1/κ . Therefore an inertial observer sees the
wall accelerating away with acceleration 1/κ . From the perspective of an observer
on the wall, all particles are repelled from the wall.

In the Rindler space metric there is a horizon at |X | = 1/κ . It is clear from the
coordinate transformation given above, this is a coordinate singularity since the
space-time is equivalent to Minkowski space-time.

As discussed in [80] the full domain wall metric in Eq. (8.14) can also be brought
to Minkowski form. This shows explicitly that the domain wall space-time is flat
everywhere except on the wall itself. As in the reduced metric of Eq. (8.17), in the
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Minkowski coordinates (tM, xM, yM, zM) the wall is located at (see Eq. (8.20))

x2
M + y2

M + z2
M = t2

M + 1

κ2
(8.21)

Hence, in the coordinates where the metric is Minkowski, the wall is spherical with
time-dependent radius that decreases (for tM < 0) until it gets to 1/κ at tM = 0 and
then bounces back. This behavior does not depend on which side of the wall the
observer is located. Both see the wall accelerating away from them with constant
acceleration 1/κ .

There is an intuitive way to see that the wall’s gravity must be repulsive. In the
weak field approximation, the gravitational potential of the wall is proportional to
ρ + p1 + p2 + p3 where ρ is the energy density of the wall and pi are the pressure
components of the energy-momentum tensor. From the energy-momentum tensor
in Eq. (8.3) we have p2 = p3 = −ρ and p1 = 0. Therefore ρ + p1 + p2 + p3 =
−ρ < 0 instead of the positive value obtained for matter without pressure. Therefore
the gravitational potential is repulsive instead of being attractive.

Since the metric is Minkowski in the (tM, xM, yM, zM) coordinates, geodesics are
given by

xµ

M(tM) = xµ

0 + uµ (tM − t0) (8.22)

where, xµ

0 is the position of the particle at time tM = t0, and uµ is the (constant)
velocity vector.

8.4 Gravity: thick planar wall

Here we consider the gravitational field of a thick domain wall i.e. taking both the
scalar field and Einstein equations into account.

The Einstein equations are

Gµν = 8πGTµν

= 8πG

[
∂µφ∂νφ − gµν

{
1

2
(∂αφ)2 − V (φ)

}]
(8.23)

where we have used Tµν from Eq. (8.1). The scalar field equation is

∇µ∇µφ + V ′(φ) = 0 (8.24)

where ∇µ is the covariant derivative.
These equations have been solved in [181] for the case when 16πGη2 � 1

where η is the vacuum expectation value of the field φ. The line element outside
the thick wall is still given by Eq. (8.14) and there are no qualitative new effects.
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The case when 16πGη2 > 1, however, does lead to new effects as first discussed
in [170, 101, 102] and as summarized in the next section.

8.5 Topological inflation

If 16πGη2 > 1, the gravitational forces within the wall are stronger than the forces
associated with the self-interaction of the scalar field. This can be seen by the
following heuristic argument [170].

Consider the Z2 model with the quartic potential

V (φ) = λ

4
(φ2 − η2)2 (8.25)

The thickness of the domain wall can be estimated by equating gradient and potential
energies, which also agrees with the Bogomolnyi equation (see Eq. (1.31)), in the
case when gravitational effects are ignored. The field φ gets an expectation value
η and so, in the interior of the domain wall,

1

2
(∇φ)2 = η2

2δ2
∼ V (0) = λ

4
η4 (8.26)

and the thickness, δ, is

δ ∼
√

2

λη
(8.27)

This is an estimate of the length scale on which the scalar field interactions are
working.

Next, the length scale associated with gravitational effects is found from the
Friedman-Robertson-Walker equation, which relates the space-time expansion rate,
H , to the energy density

H 2 ∼ 8πG

3
ρ (8.28)

which, when used inside the wall with ρ ∼ λη4/2, gives

H−1 ∼
√

3

4πGλ

1

η2
(8.29)

Hence scalar field forces dominate over gravitational forces inside the domain wall
if H−1 > δ, or the order of magnitude condition,

16πGη2 < 1 (8.30)

Therefore when 16πGη2 < 1 we can expect that gravitational effects are small
in the interior of the domain wall. If, however, H−1 < δ, the field is approximately



134 Gravity and cosmology of domain walls

smooth over a region where gravitational effects are strong. The field inside the
domain wall has potential energy ∼ λη4 and this is what drives the gravitational
effects. Therefore, we expect that the space-time inside the domain wall inflates
in the direction normal to the wall, in addition to the inflation parallel to the wall
that we have already seen in the thin-wall case (Eq. (8.14)). Furthermore, the field
inside the wall is stuck on top of the potential owing to the topology that led to
the existence of the wall. So the inflation goes on forever for topological reasons.
Hence this inflation is called “topological inflation.”

This picture has been confirmed by numerical solution of the coupled scalar
field and Einstein equations in [131, 31, 94] with the conclusion that topological
inflation inside the Z2 domain wall occurs for η > 0.33mP where mP is the Planck
mass defined by G = 1/m2

P.
Domain walls that are undergoing topological inflation cannot however form in

the usual way during a cosmological phase transition as we discuss in Section 8.9
below.

8.6 Spherical domain wall

The metric of a thin spherical domain wall has been discussed in the thin-wall limit
in [80]. Inside the wall the metric is flat using Birkhoff’s theorem (e.g. see [177])

ds2 = dT 2 − dr2 − r2(dθ2 + sin2 θdφ2), r < R(t) (8.31)

where R(t) is the radius of the spherical wall and

Ṫ = (1 + Ṙ2)1/2 (8.32)

with overdots denoting derivatives with respect to the proper time of an observer
moving with the domain wall. The proper time is related to the time coordinate t
via the relation (

1 − 2G M

R

)
ṫ =

(
1 − 2G M

R
+ Ṙ2

)1/2

(8.33)

Outside the sphere, the metric is Schwarzschild with mass parameter M

ds2 =
(

1 − 2G M

r

)
dt2 −

(
1 − 2G M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2), r > R(t)

(8.34)
The mass is related to the maximum radius of the spherical wall, Rm, by

M = 4πσ R2
m(1 − 2πGσ Rm) (8.35)



8.7 Scalar and gravitational radiation from domain walls 135

1

.8

.6

.4

.2

0

0 20 40 60 80 100

t

P

120 140 160 180

SG

f4

200

Figure 8.1 Energy in a large volume enclosing a collapsing spherical domain
wall in the sine-Gordon and Z2 models [183] as a function of time. The energy is
roughly conserved until the radius becomes comparable to the wall thickness and
then decreases sharply. The step-like features in the sine-Gordon models occur
because the sphere bounces several times before annihilating. The spherical wall
in the Z2 model annihilates without bouncing. [Figure reprinted from [183].]

provided Rm < 1/4πGσ . If Rm > 1/4πGσ , it means that the spherical domain
wall is a black hole even at the maximum value of its radius and the analysis breaks
down.

8.7 Scalar and gravitational radiation from domain walls

A collapsing spherical domain wall emits scalar radiation and loses energy. It may
be possible to extend the formalism in Section 3.5 to calculate this energy loss.
However, such an analysis is not currently available. Instead the energy emission
rate has been found numerically and is shown in Fig. 8.1 for spherical walls in the
sine-Gordon and Z2 models [183].

A collapsing spherical domain wall does not emit gravitational radiation since
the spherical symmetry implies a vanishing quadrupole moment of the energy-
momentum distribution. However, colliding domain walls can lead to gravitational
[157] and scalar radiation [175]. A dimensional analysis based on the quadrupole
approximation for the gravitational power emitted when two relativistic spherical
walls collide gives [157]

Pg ∼ G M2
B

R2
(8.36)



136 Gravity and cosmology of domain walls

where MB ∼ 4πσ R2 is the mass of the bubble and R is the radius upon collision.
Numerical analyses of bubble collisions (during first-order phase transitions) found
that the quadrupole approximation overestimates the power radiated in gravitational
radiation by about a factor of 50 [91].

8.8 Collapse into black holes

If the radius, R(t) of a collapsing spherical domain wall remains larger than the
Schwarzschild radius, RS = 2G M , where M is the mass of the domain wall, then
the domain wall does not become a black hole. As the wall collapses, it emits
scalar radiation and, if this is rapid enough, M decreases sufficiently rapidly so
that RS < R at all times. Whether this happens can be checked explicitly by nu-
merical evolution of the scalar field plus Einstein equations. We expect that if the
Schwarzschild radius of the spherical domain wall is smaller than the width of the
wall, black holes are not formed since rapid wall annihilation and radiation precede
collapse to within the Schwarzschild radius.

The converse case of black hole formation in the case when the scalar radiation
is not too rapid is harder to demonstrate convincingly. The reason is that the time
evolution of the fields gets slower as the black hole event horizon is about to form. By
simply evolving the fields, it is impossible to see the formation of the event horizon
and hence conclude that the domain wall collapses to form a black hole. However, it
is hard to imagine any other outcome, especially since the scalar radiation rate only
becomes significant once the spherical domain wall collapses to a size comparable
to the thickness of the wall.

The collapse of a slightly perturbed spherical domain wall has been studied
numerically in [182] with the result that the amplitude of perturbations stays con-
stant during the collapse. This means that the ratio of the perturbation amplitude
to the radius grows during collapse as 1/R(t) and the shape of the wall deviates
increasingly from being spherical.

8.9 Cosmological domain walls: formation

The formation of domain walls in a phase transition in flat non-expanding space-
time has been discussed in Chapter 6. Since the universe is expanding and cooling,
cosmic phase transitions can occur, just as in the laboratory, and domain walls can
also form. If the phase transition proceeds quickly on cosmological time scales, the
structure of these domain wall networks is similar to those formed in the laboratory
and described in Chapter 6. The network is dominated by one infinite domain wall
with very complicated topology. However, if the phase transition occurs slowly
on cosmological time scales, the expansion can prevent the phase transition from



8.10 Cosmological domain walls: evolution 137

completion. For example, in a first-order phase transition, if the bubble nucleation
rate is very slow, the bubbles will not be able to percolate because the expansion
increases the separation of the bubbles that have already nucleated. These consid-
erations are important for inflationary cosmology but here we will assume that the
phase transition completes since otherwise domain walls would not be formed.

In a model with 16πGη2 > 1 (η is the vacuum expectation value of the scalar
field), domain wall formation requires some new considerations [22, 166]. The
reason is that the energy density inside the domain walls is larger than that outside.
Hence if such inflating domain walls (see Section 8.5) were to form, the space-time
expansion rate within them would be greater than that of the ambient cosmological
expansion rate in which they were created. It is possible to show that a faster
expanding region within a horizon of a slower expanding region can be created
only if the null energy condition1 is violated. The formation of defects proceeds
according to the classical dynamics of a scalar field with energy-momentum tensor
given by Eq. (8.1). Contracting the energy-momentum tensor twice with a null
vector, Nµ, and using gµν NµN ν = 0 gives

NµN νTµν = (Nµ∂µφ)2 ≥ 0 (8.37)

Hence the null energy condition is satisfied during defect formation and there is an
obstruction to the formation of topologically inflating domain walls. The exception
is if the faster expanding region has an extent that is larger than the cosmological
horizon. In this situation, the domain wall is fatter than the horizon during the
phase transition. Then the particle interaction rate is also slower than the Hubble
expansion rate and the particles are not in a thermal state unless they were set up
in that state as an initial condition at the Big Bang. The domain wall network that
is produced will depend on the initial state of the particles.

8.10 Cosmological domain walls: evolution

If we assume that there is a dense network of walls within our cosmological horizon
and that the network does not lose a significant amount of energy to radiation, we
can work out the expansion rate of the universe and the scaling of the density of
walls.

The energy-momentum of the scalar field that forms the domain walls is given
in Eq. (8.1). If we denote an average over a large volume by 〈·〉 we have

〈Tµν〉 = 〈∂µφ∂νφ〉 −
〈
gµν

{
1

2
(∂αφ)2 − V (φ)

}〉
(8.38)

1 The null energy condition is Nµ N ν Tµν > 0 where Nµ is any null vector and Tµν is the energy-momentum
tensor. For fluids with energy density ρ and isotropic pressure p, the null energy condition is ρ + p > 0.
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We assume that gµν is a background metric and only dependent on time. Also the
field distribution is assumed to be isotropic so that

〈(∂xφ)2〉 = 〈(∂yφ)2〉 = 〈(∂zφ)2〉 (8.39)

and

〈∂iφ∂ jφ〉 = 0, i 
= j (8.40)

Define

〈φ′2〉 = 1

3
〈(∂xφ)2 + (∂yφ)2 + (∂zφ)2〉 (8.41)

If we further assume that the field is dominantly in the form of domain walls that
satisfy Eq. (1.31) to a good approximation, we get

〈φ′2〉 = 2

3
〈V 〉 (8.42)

which leads to

〈Txx〉 = 5

6
〈φ̇2〉 − 2

3
〈Ttt〉 (8.43)

For slowly varying fields this leads to the effective equation of state p = −2ρ/3
where p is the (isotropic) pressure and ρ the energy density [186]. If we assume
that the time dependence of φ is only due to a boost of the domain walls, we can
use φ̇ = vγ ∂Xφ = vγ

√
2V (φ) and ∂xφ = γ ∂Xφ, where X = γ (x − vt) and γ is

the Lorentz factor (see Eq. (1.10)). This leads to

〈Txx〉 =
(

〈v2〉 − 2

3

)
〈Ttt〉 (8.44)

Following Appendix F and treating the wall network as a fluid with equation
of state p = −2ρ/3, we can write down the solutions for the scale factor and the
scaling of the energy density in walls. If the initial conditions are such that the wall
density is ρ0 when the scale factor is a0, the solution is

ρwalls(a) = ρ0
a0

a
, a(t) = a0

(
t

t0

)2

(8.45)

Note that this derivation ignores processes by which the wall network could lose
energy into scalar and gravitational radiation. In addition, the walls interact with
surrounding matter and experience friction. These effects make the problem of
understanding the evolution of the wall network much more challenging. We now
describe some numerical [125, 36, 97, 59] and analytical [77, 78] efforts to under-
stand the evolution of the network.
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8.11 Evolution: numerical results

There are two numerical schemes for evolving a network of domain walls. The
first is to use the zero thickness approximation for walls. In this approximation, it
is hard to treat the collision of walls and the loss of energy from the network into
radiation. The second approach is to solve the field theory equations of motion. In
this approach, all the degrees of freedom of the system are retained. In fact, a lot
of degrees of freedom that are evolved are inessential to the domain wall network
and this additional baggage slows down the simulations. In an expanding universe
the problem is even more severe because the overall length scales grow larger with
time while the domain wall thickness remains the same. Thus the simulation needs
to handle very disparate length scales.

In [125, 36, 97, 59], the authors get around these problems by solving the field
theory equations of motion but by letting the domain walls expand with the universe.

More specifically, consider the Z2 model in an expanding space-time with metric

gµν = a2(τ )ηµν (8.46)

where ηµν = diag(1, −1, −1, −1) and τ is the conformal time. The equation of
motion is

∂2
τ φ + 2

ȧ

a
∂τφ − ∇2φ + λ(φ2 − a2η2)φ = 0 (8.47)

In the approach pioneered in [125] the a2η2 in the last term is replaced by a constant,
effectively decreasing the vacuum expectation value, η, with Hubble expansion.
Since the width of the domain wall is proportional to 1/η, this amounts to letting
the thickness of the walls grow in proportion to the scale factor.

The result of this numerical study shows that the areal density, A, i.e. area of
walls in a given region divided by the volume of the region, scales inversely as the
first power of conformal time

A = A0

(τ0

τ

)p
, p ≈ 1 (8.48)

where the subscript 0 refers to some initial time. This result holds in Minkowski
space-time (a ∝ τ 0), radiation-dominated (a ∝ τ 1/2), and matter-dominated
(a ∝ τ 1/3) cosmologies.

The domain wall network has also been studied by a combination of numerical
and analytical techniques that use scaling arguments [13, 14].

8.12 Evolution: analytical work

An analytic technique to study the evolution of non-relativistic interfaces in the
condensed matter context was developed in [116] (also see [24, 65, 111]). The
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technique has been extended to relativistic systems in [77, 78] and we now sum-
marize the main features of this analysis.

The starting point is to define a fictitious scalar field u(xµ) such that it vanishes
on the domain wall network

u(Xµ(σ a)) = 0, a = 0, 1, 2 (8.49)

where the domain wall network is located at Xµ(σ a) and σ a denote world-volume
coordinates. While u(xµ) could have been taken to be the scalar field in the original
field theory (say for the Z2 model), this is not suitable since u is later assumed to be
a random field with a Gaussian distribution. The next step is to derive an equation
of motion for u.

We define the domain wall world-volume metric as in Eq. (7.16)

hab = gµν(X )∂a Xµ∂b X ν (8.50)

where gµν is the ambient space-time metric and the indices a, b refer to world-
volume coordinates. Two derivatives of Eq. (8.49) lead to

1√|h|∂a(
√

|h|hab∂b Xµ)∂µu + hab∂a Xµ∂b X ν∂µ∂νu = 0 (8.51)

As long as the thin-wall limit is valid and, in particular, walls do not intersect,
Xµ satisfies the Nambu-Goto equation. When walls do intersect, the Nambu-Goto
formalism breaks down. The formalism can continue to be valid provided we impose
additional boundary conditions by hand at the intersection point. Depending on
the boundary conditions that one imposes at the intersection point, the Nambu-
Goto equation can describe intercommuting walls or walls that pass through each
other. In the present formalism, the boundary conditions automatically arise from
the evolution of the u field. The dynamics of the u field are such that they always
describe walls that intercommute [77]. Using the Nambu-Goto equations of motion,
Eq. (7.21), then leads to the equation of motion for the fictitious field u

[(∂u)2gµν − ∂µu∂νu]
(
∂µ∂νu − �ρ

µν∂ρu
) = 0 (8.52)

where �ρ
µν is the Christoffel symbol defined in Eq. (7.22).

To solve Eq. (8.52) we must find a way to handle the non-linear terms. The key
point now is that the domain wall network contains a random distribution of walls
and hence u is a statistical field. One approach to treat the non-linear terms is to
use the mean field approximation. In this approach non-linear terms are replaced
by averages of non-linear terms multiplied by a single power of u. For example

u3 → 〈u2〉u (8.53)

Further, the distribution of u is assumed to be Gaussian.
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After defining the correlators that enter the mean field theory version of
Eq. (8.52), the field u satisfies the equation of motion

∂2
τ u + µ(τ )

τ
∂τ u − v2∇2u = 0 (8.54)

where, as in the previous section, τ is the conformal time, The functions µ and
v2 are defined in terms of the assumed two-point correlation functions of u (for
details see [77, 78]). Once the solution for u is obtained from the linear differential
equation, Eq. (8.54), the average areal density, A, and other quantities may be
calculated. The results agree with the scaling in Eq. (8.48).

8.13 Cosmological constraints

The cosmological constraint on domain walls is remarkably robust, being almost
independent of the field theory, details of the phase transition, and cosmology [186].
At any time after the domain wall forming phase transition, the vacua in different
cosmological horizons are uncorrelated. This means that there is at least one domain
wall per horizon. The minimum area of a horizon size domain wall is ∼ H−2 where
H−1 is the horizon size. Therefore the domain wall energy density averaged over
a horizon volume is ρwalls ∼ σ H . Comparing this to the critical density of the
universe,2 we get

�walls ≡ ρwalls

ρc
∼ Gσ

H
∼ Gσ t (8.55)

where t is the cosmic time. (We have taken H ∼ 1/t which is true in a Friedman-
Robertson-Walker cosmology in which a(t) ∝ tα with 0 < α < 1.) Hence, as time
proceeds, there comes an epoch when the domain walls are the dominant form of
energy in the universe. This happens at time t∗ given by

t∗ ∼ 1

Gσ
(8.56)

Now σ ∼ η3 (e.g. Eq. (1.20)) up to factors of coupling constants which we assume
are order unity. We also know particle physics fairly well up to an energy scale of
about 100 GeV (approximately the electroweak scale) and have not seen any scalar
fields yet. So the minimum value of σ is about (100 GeV)3. Walls of this tension
would have started dominating the universe at (see Appendix A for numerical
values)

t∗

∣∣∣∣
min

∼ m2
P

η3
∼ 108 s (8.57)

2 The critical density of the universe is defined as ρc = 3H2/8πG, where H (t) = ȧ/a is the Hubble expansion
rate defined in terms of the scale factor a(t) and its time derivative, ȧ.
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or approximately 10 years after the Big Bang. Once the walls dominate, the universal
expansion becomes a ∝ t2 (Eq. (F.5)). This is unacceptable for several reasons. For
example, since the domain wall dominated universe accelerates (ä > 0), density
perturbations that are larger than the horizon keep getting stretched and stay larger
than the horizon. This means that super-horizon density perturbations can never re-
enter the horizon, which is an essential condition for them to start growing to form
the galaxies, clusters, and large-scale structures that we currently observe. Even
the growth of sub-horizon density perturbations is suppressed owing to cosmic
acceleration.

A second constraint on a network of cosmic domain walls acting as a fluid
with equation of state p = −2ρ/3 comes from the measured expansion rate of the
universe using supernovae data [127, 118]. These surveys find that the equation
of state parameter, w ≡ p/ρ, for our universe is less than about −0.8 [11, 128].
However, a universe dominated by a network of static (“frustrated”) domain walls
[25] would have w ≈ −0.67.

Another possibility that has been considered is that perhaps there are some
features that are missing in the standard model of particle physics, and that there
indeed are very light domain walls in the universe [76]. Such light walls, if light
enough, would be benign and could potentially play a role in cosmology. If we
require that the domain walls not dominate the universe until the present time
(∼ 1017 s), Eq. (8.57), gives η < 100 MeV. Other cosmological constraints, such
as arising from the isotropy of the cosmic microwave background can be used to
put similar or somewhat stronger bounds on η [144, 158].

8.14 Constraints on and implications for particle physics

Let us summarize the picture that has emerged in this chapter.

� If a field theory has discrete symmetries that are spontaneously broken in the
ground state, it must contain domain wall solutions.

� If high-energy particle physics is described by such a field theory and the discrete
symmetry gets spontaneously broken in the early universe, cosmic domain walls
are produced.

� If the standard model is complete at energies below 100 GeV, then there can be no
domain walls in the universe and no spontaneously broken discrete symmetries
in particle physics.

A closer examination of this sequence of arguments reveals a few loopholes that
allow for spontaneously broken discrete symmetries in particle physics. First, there
is the possibility that the discrete symmetry was broken right from the moment of
the Big Bang. Then the whole universe could have been in one of the many discrete
vacua at its very creation and no domain walls would be formed even though the
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D

V(f)

f2

f1

Figure 8.2 Sketch of the potential in the model of Eq. (8.58). Domain walls arise
owing to a 2π change in the angular field variable and the location of the field
inside the wall is marked by D. Such domain walls can terminate on strings, and
the field within the string is located at φ = 0.

underlying particle-physics theory could have broken discrete symmetries. This
kind of scenario has been studied for magnetic monopoles in [50]. A related possi-
bility is that, if the universe went through a period of superluminal expansion (“in-
flation”),3 then correlations extend to scales that are vastly larger than our current
horizon and our region of the universe is very likely to be free of any domain walls
[97]. In another variant, domain walls are formed but subsequently inflated away.

All the above loopholes only apply to very high-energy domain walls where
quantum gravity and/or inflation effects are relevant. If a particle-physics model
has spontaneously broken discrete symmetries at lower energy scales (but still larger
than ∼ 100 MeV) no loopholes are known and the model is ruled out based on the
“cosmological domain wall catastrophe.” However, there is still the possibility that
metastable or biased domain walls (see Section 6.8) can exist for some time in the
universe. We now describe these two possibilities.

8.15 Metastable domain walls

In certain field theories, it is possible for domain walls to get punctured. To see how
this can happen, consider the potential for a complex scalar field φ

V (φ) = λ

4
(|φ|2 − η2)2 − αη

32
(φ + φ∗)3 (8.58)

where we assume 0 < α << λ. The shape of this potential is shown in Fig. 8.2. The
first term is minimized when |φ| = η and, restricting φ to the submanifold |φ| = η,

3 Inflation occurs when the universe is dominated by a field that has an equation of state with −ρ < p < −ρ/3.
Then the expansion rate of the universe is superluminal and volumes that are larger than the horizon can get
correlated.
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String
Domain wall

Wall

String

Hole

χ = 0

χ = 2p χ = 0

Figure 8.3 Cross-section of a wall that terminates on a string is shown on the
left, and a wall with a puncture bordered by a string is shown on the right.

the second term is minimized when φ + φ∗ = +2η. Another way of writing the
potential is by setting φ = ψ exp(iχ ) and then ψ , χ are real fields. Then

V (φ) = λ

4
(ψ2 − η2)2 − αη

4
ψ3 cos3 χ (8.59)

The extrema of V are at ψ = 0 and at

ψ = η

[
3α + √

9α2 + 64λ2

8λ

]
, χ = nπ (8.60)

where n is an integer. The true vacua occur when n is an even integer. For ex-
ample, domain wall solutions exist with the boundary condition χ (x = −∞) = 0,
χ (x = +∞) = 2π .

Now consider a domain wall in the model in 3 + 1 dimensions. Such a domain
wall can terminate as shown in Fig. 8.3 since the path from χ = 0 to χ = 2π can
be contracted by lifting it over the top (ψ = 0) of the potential. While we have
not described cosmic strings here, in models such as Eq. (8.58), we can have finite
sections of open walls that are bordered by strings. Walls can also get punctured
by holes that are bounded by strings. For further discussion of walls bounded by
strings, we refer the reader to [88, 168, 171].

The evolution of a network of walls that can have punctures is very different
from that of stable walls because a puncture can grow and eat up the wall. This
provides a very efficient way for the wall network to lose energy and so the network
never dominates the universe [168].

Another scheme that allows for the universe to have a finite period of time with
domain walls is if a discrete symmetry is broken and then restored (see Section 6.1).
Walls would be formed at the first phase transition and then they would dissolve at
the second phase transition when the symmetry is restored. However, this scheme
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would imply an unbroken discrete symmetry in the low-energy particle physics.
We do not know of such a discrete symmetry although the possibility cannot be
excluded.

Finally, domain walls could have existed for some time in the early universe
if there is an approximate discrete symmetry in the high-energy particle-physics
model [60]. We have already seen an example of an approximate discrete symmetry
in the SU (5) Grand Unification model discussed in Section 2.1. If the cubic coupling
in the potential in Eq. (2.5) is small, it can be ignored and the resulting model has
SU (5) × Z2 symmetry, with all the domain wall solutions discussed in Section 2.2.
A simpler example is that of the λφ4 together with a small cubic term. The potential
is

V (φ) = −m2

2
φ2 + γ mφ3 + λ

4
φ4 (8.61)

Now the model still has two local minima but they are not exactly degenerate if γ

is very small (see Fig. 6.11). At the phase transition, a network of domain walls is
formed and the typical separation and curvature scale of the domain walls is given
by the correlation length ξ0. With time the curvature scale grows and is denoted by
R(t). So the force per unit area on the wall owing to tension is ∼ σ/R(t) where σ is
the energy density of the wall. There is also a pressure difference pushing the wall
toward the vacuum with the lowest energy. This pressure is given by the energy
difference between the vacua and hence is proportional to γ

p ∼ γ mη3 (8.62)

where η is the vacuum expectation value of the field. Therefore the tension is much
larger than the pressure, and the dynamics of the wall network are unaffected by
the pressure difference coming from the cubic term as long as

R(t) <
σ

γ mη3
∼ 1

γ η
(8.63)

Once the network has evolved to a point where this condition is not met, the pressure
becomes important and drives the domain wall network such that the whole system
reaches the true vacuum. From the area scaling law in Eq. (8.48), it follows that
R(t) grows linearly with conformal time.4 Therefore, in a radiation dominated
universe,

R = R0
τ

τ0
= R0

(
t

t0

)1/2

(8.64)

4 The scaling law holds at late times after friction becomes unimportant. At earlier times, R grows as a different
power of conformal time [87].
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where R0 can be taken to be the correlation length at the time of the phase transition
t0. Inserting this relation in Eq. (8.63) and using R0 ∼ 1/η, we get that the walls
survive for a duration

twalls ∼ t0
γ 2

(8.65)

If γ is small, the walls can survive for many Hubble expansions. In fact, if the walls
survive for a long time, they might start dominating the density of the universe
before they disappear.

Even if domain walls are present in the universe for a relatively short time, they
can still have important implications for cosmology. As the wall network evolves,
the ambient matter interacts with the walls. Magnetic monopoles can get trapped on
domain walls, leading to faster annihilation. This is the sweeping scenario discussed
in [52]. In addition, the eventual collapse of domain walls can lead to black hole
formation. These issues have received some attention but have yet to be studied in
detail.

8.16 Open questions

1. What happens when a black hole collides with a domain wall? Does it get stuck on the
wall? Or does it pass through? For a discussion from the gravitational point of view, see
[29, 148].

2. Develop an analytical formulation (perhaps along the lines of Section 3.5) to calculate
the scalar radiation rate from collapsing domain walls.

3. Discuss the cosmology of superconducting domain walls.
4. What is the outcome of the SU (5) Grand Unified phase transition when the cubic coupling

is small? Are domain walls formed? How does the network evolve?
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Kinks in the laboratory

In this chapter we discuss two laboratory systems where kinks are known to exist.
The first system is trans polyacetylene which has a broken Z2 symmetry as in the
λφ4 model. The second system is a Josephson junction transmission line, which is
a laboratory realization of the sine-Gordon system. Helium-3 is another laboratory
system that contains a wide variety of topological defects and the reader is referred to
[174] for a discussion. In the third section of this chapter we describe Scott Russell’s
solitons in water. These solitons are not topological like the others discussed in this
book but we include the discussion anyway since the reader’s curiosity may have
been aroused by the story in the Preface.

9.1 Polyacetylene

Polyacetylene consists of a linear chain of CH bonds. A sequence of x units is
written as (CH)x . In the ground state of polyacetylene, the carbon atom forms three
σ bonds, one of them is to the H in the CH unit, one to the unit on the left and one
to the right. In addition, there is one more electron orbital that can cause bonding.
This is called the π electron, and the π bond can form to the left or to the right.
Then there are two possible sequences – first when the double (σ and π ) bond is
to the carbon on the right and the single to the left, the second when the double
bond is to the left and the single to the right. These two possibilities are illustrated
in Fig. 9.1 [149] in the trans configuration of polyacetylene.1

The average bond length a ≈ 1.22 Å but the CH units are displaced so as to make
double bonds (slightly) shorter than the single bonds. The physical displacements un

along the horizontal axis in the two structures are depicted in Fig. 9.1. Qualitatively,
the essential point is that the π electrons have to choose to either form the double

1 In the cis configuration, there are also two states related by the left-right transformation but they are not degenerate
in energy.
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Figure 9.1 Structure of the two degenerate ground states of trans polyacetylene.
The upper structure is denoted by A and the lower by B. Double bonds are denoted
by heavy lines.
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Figure 9.2 If the B state occurs on the left side of a chain and the A on the
right, there is a kink in between where the simple alternating structure cannot be
maintained. The kink is the region where the alternate single-double bonds do not
exist.

bond to the left or to the right. Hence there is a Z2 symmetry which is broken in the
(“dimerized”) ground state. Kinks form if different ground states are chosen at dif-
ferent locations (Fig. 9.2). The center of the kink is located at the CH unit where the
π electron wavefunction is equally shared between the CH units to the left and right.

The Hamiltonian of the system depends on the displacement variables, un and
on the locations of the π electrons

H = −
∑
n,s

(tn+1,nc†n+1,scn,s + h.c.) +
∑

n

K

2
(un+1 − un)2 +

∑
n

M

2
u̇2

n (9.1)

where

tn+1,n = t0 − α(un+1 − un) (9.2)



9.2 Josephson junction transmission line 149

is the hopping integral to leading order in displacements. The operators c†n,s and
cn,s are creation and annihilation operators for electrons of spin s on the nth CH
group. The parameter K is the effective spring constant of the σ bonds and M is
the mass of the CH group.

To connect with the discussion of Chapter 1, the displacement variable

φn = (−1)nun (9.3)

can be viewed as a scalar field defined on a lattice interacting with a fermion (the π

electron). The last two terms in Eq. (9.1) correspond to gradient and time derivative
terms of a continuum field φ(x) that corresponds to the discrete variables, φn . The
first term describes interactions between φ and the electrons. The effective interac-
tion for the φ field, after integrating out the fermionic variables, must respect the
Z2 symmetry, and hence corresponds to a φ4 interaction to lowest order. Therefore
a non-relativistic version of the Z2 model of Eq. (1.2) captures some of the gross
features of polyacetylene.

The properties of kinks in polyacetylene (Fig. 9.2) have been studied in [150]
using the Hamiltonian in Eq. (9.1) with the result that the kink width is approxi-
mately 14 lattice spacings and the mass is approximately six electron masses [152]
in good agreement with experiments [75].

The quantum properties of polyacetylene kinks have also been studied. In Sec-
tion 5.3 we discussed how kinks can carry fractional quantum numbers [83]. Poly-
acetylene kinks also carry fractional quantum numbers and electric charge, namely
“half a bond” or ±(2e)/2 charge since each bond consists of two electrons (one
from each atom at either end of a bond) [150]. Indeed, in a chain where two single
bonds are followed by a double bond (instead of the alternating single and double
bonds in trans polyacetylene) the fractional charge can be shown to be one-third of
a bond [151]. Reference [68] generalizes these ideas much further and shows that
solitons may even carry irrational charges.

9.2 Josephson junction transmission line

We follow [134] in deriving the sine-Gordon equation for the Josephson transmis-
sion line.

Let us recall the basics of a transmission line, schematically shown in Fig. 9.3
[54]. A potential difference is applied to the ends of two elements of a transmission
line e.g. the two cables of a coaxial cable. The potential, V , and current, I , in
each of the wires are functions of the location on the transmission line, namely
the x coordinate, and also of time. There is also a potential difference between the
wires, and the current in the two wires can be different, but this is not shown in
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I (t, x)

V (t, x)

J

L 0

C0

x

dx
Figure 9.3 Schematics of a transmission line with inductance L0 and capacitance
C0 per unit length. The symbols marked J represent a second coupling between the
two transmission components. This coupling is absent in an ordinary transmission
line but represents the tunneling current in the Josephson transmission line.

the figure. We will only be considering the potential and current distribution along
a single wire. Let L0 denote the inductance per unit length of the line, and C0

the capacitance per unit length. Then Faraday’s law of induction tells us that the
induced e.m.f. between points x + dx and x is proportional to the rate of change
of the current in the segment within those points

V (t, x + dx) − V (t, x) = −(L0dx)
∂ I

∂t
(9.4)

or

∂V

∂x
= −L0

∂ I

∂t
(9.5)

Charge accumulates on the segment from x to x + dx in time dt owing to the
different entering and exiting currents. The charge on the segment is also given by
the capacitance times the potential. Hence

I (t, x + dx) − I (t, x) = −(C0dx)
∂V

∂t
(9.6)

or

∂ I

∂x
= −C0

∂V

∂t
(9.7)

Equations (9.5) and (9.7) can be combined to obtain wave equations for the current
and the potential.

A Josephson junction transmission line differs from the ordinary transmission
line described above in that the two “wires” are superconductors and they are
separated by a thin insulator. This set-up is shown in Fig. 9.4. Current can tunnel
through the insulator and jump from one wire to the other. Hence the charge on a
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Figure 9.4 A Josephson junction transmission line is constructed by separating
two superconducting plates by a thin layer of an insulating material.

segment also changes owing to the Josephson current and Eq. (9.7) gets modified

∂ I

∂x
= −C0

∂V

∂t
− jJ(x, t) (9.8)

where jJ is the Josephson current per unit length.
The charge carriers (Cooper pairs) in either superconductor are described by

macroscopic wavefunctions

ψ1 = √
ρ1eiφ1, ψ2 = √

ρ2eiφ2 (9.9)

where ρ1 and ρ2 are the charge carrier number densities in the superconductors.
The tunneling Josephson current per unit area is [55]

jJ = j0 sin φ (9.10)

where j0 is the maximum Josephson current and is proportional to
√

ρ1ρ2, and

φ = φ1 − φ2 (9.11)

The Schrödinger equations for ψ1 and ψ2 imply

∂φ

∂t
= q

�
V (9.12)

where V is the potential difference across the junction and q = 2e is the electric
charge of a Cooper pair.

From Eqs. (9.5) and (9.12) we obtain

I = −�

q L0

∂φ

∂x
(9.13)

Now we can insert this expression for I , and V as found from Eq. (9.12), in Eq. (9.8)
to get

∂2φ

∂t2
− 1

L0C0

∂2φ

∂x2
+ j0q

C�
sin φ = 0 (9.14)
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Rescaling t and x by the Josephson time and length scales

τ =
(

�C0

q J0

)1/2

, l =
(

�

q J0L0

)1/2

(9.15)

gives the sine-Gordon equation as derived from Eq. (1.51) with α = 1 = β.

9.3 Solitons in shallow water

The solitons discussed in this book have all had a topological origin. In contrast,
the solitons first discovered by Scott Russell in a water channel, and mentioned in
the Preface, have their origin in the non-linearities of hydrodynamics and do not
have a topological origin.

The first step to show the existence of the water solitons is to derive the Korteweg-
deVries (KdV) equation for waves of long wavelength moving in one direction in
shallow water. We do not give this derivation here and instead refer the reader to,
for example, Section 13.11 of [180].

The KdV equation is

∂u

∂t
+ u

∂u

∂x
+ δ2 ∂3u

∂x3
= 0 (9.16)

where u is related to the height of the fluid surface and δ is a parameter. The soliton
solution is [185]

u = u∞ + (u0 − u∞)sech2

[
X − X0

�

]
(9.17)

where X = x − vt , X0 is a constant, v is the velocity of the soliton,

� = δ

[
u0 − u∞

12

]−1/2

(9.18)

The velocity of the soliton is given by

v = u∞ + u0 − u∞
3

(9.19)

in terms of the arbitrary constants u0 and u∞. Note that the amplitude of the soliton
and the velocity are related.

9.4 Concluding remarks

There are a number of situations where solitons have been discussed in the par-
ticle physics literature. Most of these discussions, such as of domain walls in the
SU (5) × Z2 model in Chapter 2, have been in the framework of Grand Unified
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Theories. The attention has mostly focused on magnetic monopoles and strings
because monopoles seem inevitable in this class of theories and strings are less
constrained by cosmology. Similar topological structures also exist in the standard
model of electroweak interactions but the monopoles are confined and the strings
are unstable [2]. Domain wall and string solutions also exist in QCD in various
external conditions, for example in high density matter such as might be present
in the interiors of neutron stars [142]. Unlike solitons in the laboratory, however,
solitons in particle physics and cosmology have not yet been discovered experi-
mentally. Given the very similar underpinnings of laboratory and particle physics
systems, there is hope that this situation will soon change.

9.5 Open questions

1. Is there a condensed matter system with spontaneously broken permutation symmetry?
Discuss the domain walls in that system and whether a lattice can exist. Can the walls
be observed experimentally?

2. If there are QCD domain walls in neutron stars, how might they be observed from Earth?



Appendix A

Units, numbers and conventions

We will work in natural units in which � = c = 1. In these units, all dimensionful
quantities have dimensions of mass to some power. One way to convert from mass (g) to
length (cm) and time (s), is to remember the values for the Planck mass, time, and length:
mP = 1.2 × 1019 GeV, tP = 5.4 × 10−43 s, lP = 1.6 × 10−33 cm. Also, mPtP = 1 = mPlP
in natural units. It is also useful to remember mP = 2.2 × 10−5 g and, when dealing with
magnetic fields, the conversion: 1 Gauss = 1.95 × 10−20 GeV2. In addition, for
cosmological estimates it is convenient to know that 1 pc = 3.1 × 1018 cm.

The metric signature is taken to be (+, −, −, −).
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Appendix B

SU (N ) generators

SU (N ) is the group of special (unit determinant), unitary, N × N complex matrices.1 By
considering the various constraints on the 2N 2 real components of the matrix owing to the
special and unitary conditions, we can see that the matrix has N 2 − 1 independent degrees
of freedom. Then, if g ∈ SU (N ), we can write

g = exp(iαa T a) (B.1)

where a sum over a = 1, . . . , N 2 − 1 is implicit, αa are real constants, and T a are the
“generators” of the group. The T a satisfy the SU (N ) Lie algebra and can be represented
by matrices of various dimensions. In the N = 2 (SU (2)) case, the two-dimensional
representation is in terms of Pauli spin matrices, T a = σ a/2, or explicitly

T 1 = 1

2

( 0 1
1 0

)
, T 2 = 1

2

( 0 −i
i 0

)
, T 3 = 1

2

( 1 0
0 −1

)
(B.2)

The Lie algebra is

[T a, T b] = iεabcT c (B.3)

where εabc is the totally antisymmetric tensor. One can also easily construct the higher
dimensional representations. It is conventional to normalize the generators to satisfy

Tr(T a T b) = 1

2
δab (B.4)

where δab is the Kronecker delta.
To get a set of generators for SU (N ), it is simplest to build on the SU (2) generators in

Eq. (B.2). First, one puts the Pauli spin matrices in the upper left-hand corner and obtains
three SU (N ) generators

T a = 1

2

(
σ a 0 . . .
0 0 . . .

)
, a = 1, 2, 3 (B.5)

Then one puts the off-diagonal Pauli spin matrices in the off-diagonal positions. Since
there are N (N − 1)/2 off-diagonal positions of which two have already been filled by the
a = 1, 2 generators, we can construct N (N − 1) − 2 more generators by filling each

1 For a review of group theory in particle physics, see [62].
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remaining position by either 1 (as in σ 1) or by ±i (as in σ 2). These look like

1

2

⎛
⎜⎜⎝

0 0 . . . . . . . . .
0 0 . . . . . . . . .
. . . . 1 jk
0 . . . 1k j
. . . . . . . . . . . . . . .

⎞
⎟⎟⎠ ,

1

2

⎛
⎜⎜⎝

0 0 . . . . . .
0 0 . . . . . . . . .
. . . . −i jk
0 . . . ik j . . .
. . . . . . 0 . . . . . .

⎞
⎟⎟⎠ (B.6)

where the subscripts j , k denote the position in the matrix.
Finally we construct the diagonal generators. These are written by putting a series of 1s

in say, n, successive diagonal positions, and then entering −n in the nn entry of the
matrix. This scheme ensures that the generator is traceless and the resulting matrix is

diag(1, . . . , 1n, −n, 0, . . . , 0) (B.7)

where 1n denotes 1 in the nn entry. The normalization is then fixed using the convention in
Eq. (B.4) to get the generator

1√
2n(n + 1)

diag(1, . . . , 1n, −n, 0, . . . , 0) (B.8)

In this way we construct N − 1 diagonal generators, one for each value of n. The third
Pauli matrix is already included as the a = 3 generator.

As a check, we find that the total number of generators constructed is
3 + (N (N − 1) − 2) + (N − 2) = N 2 − 1 and this agrees with the degrees of freedom in
SU (N ).

In the SU (5) Grand Unified model discussed in Chapter 2 an alternate set of diagonal
generators is useful.

λ3 = 1

2
diag(1, −1, 0, 0, 0)

λ8 = 1

2
√

3
diag(1, 1, −2, 0, 0)

τ3 = 1

2
diag(0, 0, 0, 1, −1)

Y = 1

2
√

15
diag(2, 2, 2, −3, −3)

After the SU (5) symmetry is broken by the canonical vacuum expectation value of �
(Eq. (2.6)), λ3 and λ8 are generators of the unbroken SU (3), τ3 of SU (2), and Y of U (1).



Appendix C

Solution to a common differential equation

We have often encountered a differential equation of the type

−d2ψ

dx2
+ [

ε − v cosh 2µ − v sinh 2µ tanh x + v cosh2 µ sech2x
]
ψ = 0 (C.1)

where v, µ are parameters and ε is the eigenvalue. This differential equation has been
solved in Section 12.3 of [113] where the Schrödinger problem has also been extensively
studied. Here we reproduce the solution.

The solution is given in terms of new parameters a and b

a = 1

2

√
ve2µ − ε − 1

2

√
ve−2µ − ε ≡ 1

2
κ+ − 1

2
κ− (C.2)

b = 1

2

√
ve2µ − ε + 1

2

√
ve−2µ − ε ≡ 1

2
κ+ + 1

2
κ− (C.3)

Then, with

ψ = e−ax sechbx F(x) (C.4)

the equation for F becomes

F ′′ − 2[a + b tanh x]F ′ + [v cosh2 µ − b(b + 1)]sech2x F = 0 (C.5)

where primes denote derivatives with respect to x . Defining

u = 1

2
[1 − tanh x] (C.6)

we get the hypergeometric equation

u(1 − u)
d2 F

du2
+ [a + b + 1 − 2(b + 1)u]

dF

du
+ [v cosh2 µ − b(b + 1)]F = 0 (C.7)

The general solution may be found in [71]

F = AF1 + B F2 (C.8)

where A and B are constants of integration and

F1 = F(α, β; γ ; u) (C.9)

F2 = u1−γ F(α − γ + 1, β − γ + 1; 2 − γ ; u) (C.10)
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where

α = b + 1

2
−

√
vcosh2µ + 1

4

β = b + 1

2
+

√
vcosh2µ + 1

4
(C.11)

γ = a + b + 1 (C.12)

and γ is assumed to not be an integer.
The general analysis can be taken further by considering the solution at x = ±∞. A

solution that is regular at x → ∞ (i.e. u = 0) is obtained by setting B = 0 in Eq. (C.8).
Regularity at x = −∞ (u = 1) is only obtained for certain values of ε, and thus the
energy levels are quantized. The details of the general analysis may be found in
Section 12.3 of [113].

In this book, we have often encountered the special case with µ = 0. Then, bound
states are obtained for the following discrete values of b > 0

bn =
√

v + 1

4
−

(
n + 1

2

)
(C.13)

where n = 0, 1, 2, . . . , N with N determined by bN+1 ≤ 0. The discrete eigenvalues of ε
follow from the definition in Eq. (C.3)

εn = (2n + 1)

√
v + 1

4
−

(
n2 + n + 1

2

)
(C.14)



Appendix D

Useful operator identities

Identity 1

We wish to prove1

eA+B = eAeBeC/2 (D.1)

where C = [B, A] is assumed to commute with A and B.
Let

S(x) = e(A+B)x (D.2)

where x is a parameter. Write

S(x) = eAxU (x) (D.3)

where U is an unknown matrix-valued function. Then

(A + B)S(x) = dS

dx
= AeAxU (x) + eAx dU

dx
(D.4)

which leads to
dU

dx
= e−Ax Be+AxU (x) (D.5)

Now

BeAx = B
∑

n

(Ax)n

n!
=

∑
n

(Ax)n

n!
B +

∑
n

[B, An]xn

n!
(D.6)

Also,

[B, An] = An−1[B, A] + [B, An−1]A = · · · = [B, A]n An−1 (D.7)

provided C = [B, A] commutes with A. Therefore

BeAx = eAx B + [B, A]xeAx (D.8)

and
dU

dx
= (B + [B, A]x)U (x) (D.9)

1 Several of the proofs in this Appendix were provided by Harsh Mathur, private communication (2005).
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This equation can be solved to get

U (x) = exp(Bx + [B, A]x2/2) (D.10)

This solution satisfies the boundary condition U (0) = 1.
Hence

S(x) = e(A+B)x = eAx eBx e[B,A]x2/2 (D.11)

With x = 1, we get the desired result.

Identity 2

Here we outline a proof of the identity

: eA+B :=: eA :: eB : eD (D.12)

where D = [A+, B−] is assumed to be a c-number. Also, a linear decomposition of A and
B is assumed A = A+ + A−, B = B+ + B− and the superscripts ± refer to terms
proportional to creation (+) and annihilation (−) operators. Expressions sandwiched
between : : are normal ordered, and so annihilation operators are placed to the right of
creation operators.

The first step is the identity

: eA := eA−
eA+

(D.13)

This can be proved by explicit expansion of the exponentials.
Then

: eA :: eB := eA−
eA+

eB−
eB+

(D.14)

and

: eA+B := eA−
eB−

eA+
eB+

(D.15)

since [A−, B−] = 0 = [A+, B+].
Now we use the identity, Eq. (D.1) proved in the previous section to exchange the order

of the middle two factors in Eq. (D.14) and together with Eq. (D.15) gives the identity in
Eq. (D.12).

Identity 3

Here we wish to show

A : eB :=: {A + [A+, B−]}eB : (D.16)

A : eB : =
∞∑

n=0

(A+ + A−)

n!

n∑
k=0

n!

k!(n − k)!
(B−)k(B+)n−k (D.17)

=
∞∑

n=0

1

n!

n∑
k=0

n!

k!(n − k)!
{(B−)k A+ + [A+, (B−)k]

+A−(B−)k} (B+)n−k (D.18)
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Now use

[A+, (B−)k] = k(B−)k−1[A+, B−] (D.19)

provided that [A+, B−] is a c-number. Therefore

A : eB : =
∞∑

n=0

1

n!

n∑
k=0

n!

k!(n − k)!
{(B−)k A+ + k(B−)k−1[A+, B−]

+A−(B−)k} (B+)n−k (D.20)

= : (A + [A+, B−])eB : (D.21)

Similarly we can show

: eB : A =: eB(A + [B+, A−]) : (D.22)

Putting this together with Eq. (D.16) we get

[A, : eB :] =: [A, eB] : +([A+, B−] − [B+, A−]) : eB : (D.23)

In the case of interest for deriving Eq. (4.80) we have

A+ = (A−)†, B+ = −(B−)† (D.24)

then

[A+, B−] − [B+, A−] = [A+, B−] + [A+, B−]† (D.25)

With A = φ(y) and : eB := ψ(x), [A+, B−] is purely imaginary and the right-hand side
vanishes. Then Eq. (D.23) gives the identity

[A, : eB :] =: [A, eB] : (D.26)



Appendix E

Variation of the determinant

If M is a matrix function and δM is a small variation of M , we wish to find the variation
of the determinant of M (we follow Section 4.7 of [177]).

Consider

δ[ln(DetM(x))] = ln(Det(M + δM)) − ln(Det(M))

= ln

[
Det(M + δM)

Det(M)

]

= ln(DetM−1Det(M + δM))

= ln(Det{M−1(M + δM)})
= ln(Det{1 + M−1δM})
= ln(1 + Tr{M−1δM}) + O((δM)2)

= Tr{M−1δM} + O((δM)2) (E.1)

Hence

δ[(DetM(x))] = Tr[M−1(x)δM(x)]DetM(x) (E.2)

which is the desired result.
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Appendix F

Summary of cosmological equations

Assuming an isotropic and homogeneous universe, the cosmological line element is the
Friedman-Robertson-Walker line element, and can be written as:

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
(F.1)

The function a(t) is known as the scale factor. k is a parameter that is −1 for a hyperbolic
or negatively curved universe, 0 for a flat universe, and +1 for a positively curved
universe.

The equations of motion for a are derived from Einstein’s equations assuming that the
universe is filled with one or more fluids1 with total energy density ρ and pressure p.
Then:

H 2 ≡
(

ȧ

a

)2

= 8πG

3
ρ − k

a2
(F.2)

ä = −4πG

3
(ρ + 3p)a (F.3)

and energy-momentum conservation gives:

d

da
(ρa3) = −3pa2 (F.4)

In addition, we need the equation of state for the fluid to connect p and ρ. Some examples
of equations of state are: p = −ρ (cosmological constant), p = 0 (dust), p = ρ/3
(radiation), and p = −2ρ/3 (slowly evolving wall network). Note that ρ may contain
contributions from a large variety of forms of matter and then the corresponding energy
densities and pressures must be added together.

1 The fluid approximation means that the relaxation time of the various components – which in our case may
be plasma, gas, stars, galaxies, walls, fundamental particles – is much shorter than the characteristic time for
changes in the scale factor.
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164 Summary of cosmological equations

Assuming a single dominant component of energy density in a flat universe (k = 0),
Eqs. (F.2) and (F.4) can be solved to obtain:

p = −ρ → a ∝ eHt , ρ ∝ a0

p = 0 → a ∝ t2/3, ρ ∝ 1

a3

p = ρ

3
→ a ∝ t1/2, ρ ∝ 1

a4

p = −2

3
ρ → a ∝ t2, ρ ∝ 1

a
(F.5)

p = wρ → a ∝ t2/3(w+1), ρ ∝ a−3(w+1) (F.6)
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