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Preface 

After getting my Ph.D. in 2014, I came to Kyoto University for postdoctoral research. 
My host, Prof. Masayoshi Nakashima, invited me to participate in a research project 
on free-standing structures. The free-standing structure has the configuration that 
the superstructure is disconnected from the foundation, and the interface between 
the superstructure base and the foundation is lubricated with graphite to reduce the 
friction coefficient. This idea is very close to sliding isolation. Professor Nakashima 
intended to use this technology in structural retrofitting, so he used a new name. 

After performing a preliminary literature review, I found that scientific research 
on sliding base (SB) structures (I used this name in my later papers, and in some early 
papers, “sliding structures” is commonly used) started as early as the 1980s. Both 
Westermo and Udwadia and Mostaghel et al. published a paper on the response of 
SB structures subjected to harmonic excitation in 1983. Afterward, other researchers 
(e.g., Jangid R. S. at the Indian Institute of Technology) also conducted several analyt-
ical studies on SB structures. However, there still existed some research gaps in this 
topic prior to 2014. For instance, the theoretical solutions for the sliding-sliding case 
had not been derived; the former studies only used a small number of ground motion 
records, and simplified equations for estimating the peak superstructure response and 
the peak sliding displacement had not been developed. 

During my one year and two months stay in Japan, I completed a study on the 
dynamic responses of two-degree-of-freedom SB systems subjected to harmonic 
excitations. Meanwhile, I took part in the shaking table tests of free-standing 
structures, which was a unique research experience for me. 

After completing my postdoctoral fellowship, I joined Huaqiao University as a 
faculty. My research focus returned to the steel-concrete composite structures, my 
main research interest. However, I still spare some time to continue the left work on 
SB structures. From 2016 to 2022, I, working with two of my graduate students, Fan 
Lin and Li-Wen Xu, completed studies on the peak responses and design methods of 
SB structures subjected to three-component earthquake excitations. My colleague, 
Prof. Yi-Chao Gao, helped me develop the program for response history analyses of 
SB structures subjected to three-component excitations. I am very grateful for his 
help.

v



vi Preface

I wrote this book based on my research on SB structures in the past eight years. 
I hope this book’s publication can guide the design of SB structures and promote 
practical applications of SB structures. 

Xiamen, China Hong-Song Hu



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Fundamentals of Sliding Base (SB) Structures . . . . . . . . . . . . . . . . . . 1 
1.2 Practical Implementations of SB Structures . . . . . . . . . . . . . . . . . . . . 1 
1.3 Review of Analytical Studies on SB Structures . . . . . . . . . . . . . . . . . 3 

1.3.1 Studies on 2DOF SB Systems Subjected to Harmonic 
Ground Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.3.2 Studies on SB Structures Under Earthquake Excitation . . . . 3 

2 Responses of 2DOF Sliding Base Systems Under Harmonic 
Ground Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 Typical Response Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.3 Occurrence Conditions of the Three Types of Periodic 

Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.3.1 Boundaries Between the Stick-Stick and Stick-Sliding 

Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.3.2 Boundaries Between the Stick-Sliding 

and Sliding-Sliding Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.4 Parametric Study for the Maximum Responses . . . . . . . . . . . . . . . . . . 15 

2.4.1 Maximum Pseudo Acceleration of the Top Mass . . . . . . . . . . 15 
2.4.2 Amplitude of the Sliding Displacement . . . . . . . . . . . . . . . . . . 17 

2.5 Theoretical Solutions for the Responses of the Sliding-Sliding 
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
2.5.1 Solutions for the Maximum Pseudo Acceleration . . . . . . . . . 19 
2.5.2 Interpretation of the Solutions for the Maximum 

Pseudo Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
2.5.3 Solutions for the Sliding Displacement Amplitude . . . . . . . . 29 

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii Contents

3 Response Histories of Sliding Base Structures Under 
Earthquake Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
3.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
3.2 Numerical Computation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
3.3 Response Histories Under Earthquake Excitation . . . . . . . . . . . . . . . . 39 

4 Peak Superstructure Responses of Single-Story Sliding Base 
Structures Under Earthquake Excitation . . . . . . . . . . . . . . . . . . . . . . . . . 45 
4.1 Critical Parameters and Their Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
4.2 Earthquake Ground Motions Considered . . . . . . . . . . . . . . . . . . . . . . . 48 
4.3 Normalized Ground Motion Intensity for the Initiation 

of Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
4.4 Parametric Study for the Maximum Superstructure Response . . . . . 51 

4.4.1 Comparison of the Response in Two Orthogonal 
Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

4.4.2 Effect of the Vertical Earthquake Component . . . . . . . . . . . . 54 
4.4.3 Effect of the Natural Period of the Superstructure . . . . . . . . . 55 
4.4.4 Effect of the Difference Between the Static 

and Dynamic Friction Coefficients . . . . . . . . . . . . . . . . . . . . . . 56 
4.4.5 Effects of the Earthquake Magnitude 

and Source-to-Site Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
4.4.6 Effect of Near-Fault Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
4.4.7 Statistical Results for Each Site Class . . . . . . . . . . . . . . . . . . . 59 

4.5 Simplified Equations for Estimating the Maximum 
Superstructure Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

5 Equivalent Lateral Forces for Design of Multistory Sliding 
Base Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
5.1 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
5.2 Peak Base Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
5.3 Equivalent Lateral Force Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

5.3.1 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
5.3.2 Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

6 Peak Sliding Displacements of Sliding Base Structures Under 
Earthquake Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
6.1 Selection of Ground Motion Intensity Measure . . . . . . . . . . . . . . . . . 77 
6.2 Critical Parameters and Their Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
6.3 Parametric Study for the Normalized Peak Sliding 

Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
6.3.1 Comparison of the Responses in the Two Orthogonal 

Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents ix

6.3.2 Probability Distribution of the Normalized PSD 
at a Given Level of Normalized Ground Motion 
Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

6.3.3 Effect of the Vertical Ground Motion Component . . . . . . . . . 85 
6.3.4 Effects of the Superstructure Natural Period and Mass 

Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
6.3.5 Effect of Near-Fault Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

6.4 Fragility Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Chapter 1 
Introduction 

1.1 Fundamentals of Sliding Base (SB) Structures 

Base isolation is an effective approach for reducing damages to structures and their 
contents under severe earthquake excitations. It is generally implemented by using 
special isolators, such as laminated rubber bearings (e.g., Kelly, 1986; Kikuchi & 
Aiken, 1997; Skinner et al., 1993; Yamamoto et al., 2009) and friction pendulum (FP) 
bearings (e.g., Becker & Mahin, 2013; Castaldo & Tubaldi, 2015; Mokha et al., 1991; 
Roussis & Constantinou, 2006). The properties of these isolators can be elaborately 
designed to achieve a certain structural performance. However, they are expensive and 
require high construction techniques. Therefore, when the cost is a major concern, 
base isolation using isolators may not be an appropriate choice. 

Adopting a sliding interface between the base of the superstructure and the foun-
dation (Fig. 1.1) can also reduce the seismic response of the superstructure. The 
mechanism is very simple: as the friction force between the superstructure and the 
foundation has an upper limit, the seismic force transmitted to the superstructure is 
limited. Structures that adopt this type of isolation technique are called sliding base 
(SB) structures in this book. Since the implementation of SB structures is simple 
and cost effective, they are applicable to low-rise buildings in rural areas. Actually, 
SB structures have been used in some low-rise masonry buildings (Li, 1984; Zhou, 
1997).

1.2 Practical Implementations of SB Structures 

For the past four decades, several materials have been investigated regarding their 
potential use along the sliding interface of SB structures. Qamaruddin et al. (1986) 
conducted shaking table tests on sliding brick building models with different sliding 
layer materials, namely, graphite powder, dry sand, and wet sand, and obtained fric-
tion coefficients of 0.25, 0.34 and 0.41, respectively, for the corresponding interfaces.
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Sliding surface 

Fig. 1.1 Schematic plot of a building adopting SB technique

Tehrani and Hasani (1996) conducted experimental studies on adobe buildings with 
dune sand and lightweight expanded clay as sliding layers; the friction coefficients 
were reported as 0.25 for dune sand and 0.2–0.3 for lightweight expanded clay. Barba-
gallo et al. (2017) tested a steel-mortar interface lubricated by graphite powder; the 
static and dynamic friction coefficients were close to 0.19 and 0.16, respectively, and 
they were independent of both the sliding velocity and the superstructure properties. 

Polymer materials are also suitable choices for the sliding interface. Yegian 
et al. (2004) investigated the frictional characteristics of four synthetic interfaces 
[namely, geotextile-high density polyethylene (HDPE), polypropylene (PTFE)-
PTFE, ultrahigh molecular weight polyethylene (UHMWPE)-UHMWPE, and 
geotextile-UHMWPE] as potential candidates for sliding isolation through cyclic 
and shaking table tests. It was determined that the geotextile-UHMWPE interface 
was suitable for sliding isolation applications because the friction coefficient of this 
interface is insensitive to large variations in the sliding velocity and normal stress; as 
a result, this interface can easily be introduced into engineering design. The obtained 
static and dynamic friction coefficients of the geotextile-UHMWPE interface were 
approximately 0.11 and 0.08, respectively. Nanda et al. (2012, 2015) conducted 
experimental studies on four sliding interfaces with green marble against HDPE, 
green marble, geosynthetics and rubber sheeting, respectively. The static friction 
coefficients were found to be independent of the normal stress, and the dynamic 
friction coefficients were insensitive to variations in the sliding velocity. Moreover, 
the observed dynamic friction coefficients of the four investigated interfaces ranged 
from 0.07 to 0.18, and the relative differences between the static and dynamic friction 
coefficients were all below 15%. Jampole et al. (2016) adopted sliding isolation bear-
ings consisting of HDPE sliders and galvanized steel surfaces to seismically isolate 
light-frame residential houses; shaking table tests showed that the friction coefficient 
of this sliding interface was nearly 0.18 with a slight variation between the stick and 
sliding phases.
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The aforementioned sliding interfaces were basically insensitive to the variations 
in the sliding velocity and pressure. Therefore, the Coulomb friction model can be 
used to model the behavior of the sliding interface of an SB structure. 

1.3 Review of Analytical Studies on SB Structures 

1.3.1 Studies on 2DOF SB Systems Subjected to Harmonic 
Ground Motions 

The simplest model for an SB structure contains two masses, one for the superstruc-
ture and the other for the sliding base; thus, this model is referred to as a 2-degree-
of-freedom (2DOF) SB system. Westermo and Udwadia (1983) and Mostaghel et al. 
(1983) first studied the dynamic responses of 2DOF SB systems under harmonic exci-
tations, and both groups developed the governing equations of motion and numer-
ical implementations needed to perform response history analyses of such systems. 
Westermo and Udwadia (1983) pointed out that the response of this system under 
harmonic excitations converged rapidly to a periodic response after several cycles. 
Three different periodic responses were observed, namely stick-stick, stick-sliding, 
and sliding-sliding cases, depending on the amplitude of the input accelerations 
and the structural characteristics of the system. They also derived the explicit equa-
tions for the condition of the initiation of the stick-sliding case. Mostaghel et al. 
(1983) conducted parametric studies for the critical responses of the 2DOF SB 
system under harmonic ground motions. Iura et al. (1992) followed the work of West-
ermo and Udwadia (1983), and Mostaghel et al. (1983). They derived the analytical 
expressions for the condition of the initiation of the sliding-sliding case. Therefore, 
combined with the work of Westermo and Udwadia (1983), the explicit equations 
for the occurrence conditions of three periodic response cases were obtained. More 
recently, Hu and Nakashima (2017) conducted a comprehensive parametric study on 
the maximum responses of 2DOF SB systems under harmonic ground motions and 
derived a theoretical solution for the response corresponding to the sliding-sliding 
case. 

1.3.2 Studies on SB Structures Under Earthquake Excitation 

Mostaghel and Tanbakuchi (1983) studied the seismic responses of 2DOF SB systems 
subjected to the N-S component of the El-Centro record from the 1940 Imperial 
Valley earthquake and the S86E component of the Olympia record from the 1949 
Western Washington earthquake. Response spectra of the absolute acceleration and 
sliding displacement were developed. It was found that the SB isolation can effec-
tively control the level of the superstructure response. Qamaruddin et al. (1986b)
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conducted a study similar to that of Mostaghel and Tanbakuchi (1983), with emphasis 
on using the SB system in masonry buildings. The N-S component of the El Centro 
record and the longitudinal component of the Koyna record were considered. The 
findings of their study were similar to those of Mostaghel and Tanbakuchi (1983). 
Yang et al. (1990) and Vafai et al. (2001) studied the responses of multiple-degree-
of-freedom (MDOF) SB structures. Their focus was to develop efficient numerical 
methods for response history analyses, whereas the response characteristics of these 
structures were not sufficiently addressed. 

Jangid (1996a) compared the responses of single-story SB structures subjected 
to two components and a single component of the El-Centro record; the numer-
ical results indicated that the former increased the sliding displacement and reduced 
the absolute acceleration of the superstructure in comparison with the latter. Shakib 
and Fuladgar (2003a) adopted the same model as Jangid (1996a) but included the 
vertical component in the ground motion input, and three ground motion records 
were considered, namely, the El-Centro record, the Tabas record from the 1978 
Tabas earthquake, and the Renaldi record from the 1994 Northridge earthquake. The 
effect of the vertical component was highly dependent on the superstructure period 
and the input ground motions; additionally, the responses of low-period structures 
could be strongly affected by the vertical component of the ground motion, while 
this influence was insignificant when the superstructure period exceeded 0.7 s. Jangid 
(1996b) and Shakib and Fuladgar (2003b) also studied the responses of asymmetric 
single-story SB structures under multidimensional inputs. Both studies indicated that 
the bidirectional interaction between the frictional resistance at the sliding interface 
and the vertical component of the earthquake excitation could significantly affect the 
responses of torsionally coupled systems with SB isolation. More recently, Hu et al. 
(2020, 2022) investigated the peak superstructure response and peak sliding displace-
ment of SB structures subjected to three-component earthquake excitation using 
a large number of ground motion records. The influence of various structural and 
ground motion characteristics on these two response quantities was comprehensively 
studied, and simplified design equations were also developed. 
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Chapter 2 
Responses of 2DOF Sliding Base Systems 
Under Harmonic Ground Motions 

2.1 Equations of Motion 

For a 2DOF SB system shown in Fig. 2.1, the dynamic equilibrium equations can be 
written as

{
m
(
üg + üs + ür

)+ cu̇r + kur = 0 
mb
(
üg + üs

)+ m
(
üg + üs + ür

) = f 
(2.1) 

in which m, k, and c refer to the top mass, lateral stiffness, and viscous damping 
coefficient of the superstructure, respectively; mb is the mass of the sliding base; 
ug(t), us(t), and ur(t) are the ground displacement, sliding displacement, and relative 
displacement between the top mass and sliding base, respectively; u̇g , u̇s , and u̇r 
are the corresponding velocities; üg , üs , and ür are the corresponding; and f is the 
friction force between the sliding base and foundation. The first equation of Eq. (2.1) 
denotes the dynamic equilibrium of the top mass, while the second equation is the 
dynamic equilibrium of the entire system.

The SB system can display two kinds of phases in its response history: the stick 
phase and the sliding phase. For the stick phases, the sliding acceleration, üs , is  
equal to 0, and the sliding friction force is greater than the friction force, f ; therefore, 
Eq. (2.1) leads to 

⎧⎨ 

⎩ 

m ür + cu̇r + kur = −m üg 

α ̈ur + üg = f /(m + mb) 
| f | < (m + mb)μg 

(2.2) 

where 

α = m 

m + mb 
(2.3) 

© The Author(s) 2023 
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6 2 Responses of 2DOF Sliding Base Systems Under Harmonic Ground …

Fig. 2.1 A 2DOF sliding 
base system

us 

ur 

c 

ug 
.. 

Sliding base, mb 

Top mass, m 

k/2 k/2 

Sliding surface 

is the mass ratio; μ is the friction coefficient; and g is the gravity acceleration. The 
first equation of Eq. (2.2) can be written as 

ür + 2ξω  ̇ur + ω2 ur = −üg (2.4) 

where 

ω =
/

k 

m 
, ξ  = c 

2ωm 
(2.5) 

ω and ξ are the natural frequency and damping ratio of the corresponding fixed 
base structure, respectively. Equation (2.4) is the differential equation governing the 
relative displacement of a single-degree-of-freedom (SDOF) system under ground 
acceleration, üg . 

According to the second and third equations of Eq. (2.2), we obtain

||α ̈ur + üg

|| < μg (2.6) 

This is the precondition for the stick phases. Sliding occurs when it is no longer 
satisfied, and 

f = δ(m + mb)μg (2.7) 

in which δ represents the direction of the friction force, and |δ| = 1. While transi-
tioning from the stick phase to the sliding phase, the direction of the friction force 
remains unchanged. Thus, it can be inferred from the second equation of Eq. (2.2) 
that δ and α ̈ur + üg have the same sign at the moment before sliding. By substituting
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Eq. (2.7) into the second equation of Eq. (2.1), we obtain 

üs = δμg − α ̈ur − üg (2.8) 

Substituting Eq. (2.8) into the first equation of Eq. (2.1) to obtain 

(1 − α)m ür + c u̇r + kur = −δμmg (2.9) 

Dividing Eq. (2.9) by (1  − α)m to obtain 

ür + 2ξ1ω1 u̇r + ω2 
1ur = −  

δμg 

1 − α 
(2.10) 

where 

ω1 = ω √
1 − α 

, ξ1 = ξ √
1 − α 

(2.11) 

Equation (2.10) is the differential equation of a SDOF system with the natural 
frequency of ω1 and damping ratio of ξ1 under a step force. The static displacement 
corresponding to the step force is 

ust = 
−δμg 

ω2 
1(1 − α) 

= 
−δμg 

ω2 
(2.12) 

Thus, in the sliding phases, a new natural frequency, ω1, and a new damping ratio, 
ξ1, of the relative displacement vibration are determined, both of which are linked to 
the mass ratio, α. The solution of Eq. (2.10) is

(
ur (t) 
u̇r (t)

)
= A(τ )

(
ur (ti ) 
u̇r (ti )

)
+ b(τ ) (2.13) 

in which t is the global time, ti is the moment when sliding starts, τ = t − ti, and 

A(τ ) = e−ξ1ω1τ 

⎡ 

⎢⎣ 
cos(ω1d τ ) + ξ1/ 

/
1 − ξ 2 1 sin(ω1d τ ) sin(ω1d τ ) 

ω1

√
1−ξ 2 1 

−ω1 sin(ω1d τ ) √
1−ξ 2 1 

cos(ω1d τ ) − ξ1/ 
/
1 − ξ 2 1 sin(ω1d τ ) 

⎤ 

⎥⎦ 

(2.14) 

b(τ ) = ust 

⎡ 

⎢⎣ 
1 − e−ξ1ω1τ

(
ξ1/ 
/
1 − ξ 2 1 sin(ω1d τ ) + cos(ω1d τ )

)

e−ξ1ω1τ ω1 sin(ω1d τ ) √
1−ξ 2 1 

⎤ 

⎥⎦ (2.15)
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Fig. 2.2 Flow chart for calculating the response history of the 2DOF sliding base system 

ω1d = ω1 

/
1 − ξ 2 1 (2.16) 

The first term in the right-hand side of Eq. (2.13) corresponds to free vibration 
caused by the initial condition, while the second term represents the vibration caused 
by the step force. 

At the onset of sliding, the velocity of sliding equals to 0, i.e., u̇s(ti ) = 0. 
Therefore, integrating Eq. (2.8) leads to 

u̇s(t) = δμg(t − ti ) − α( ̇ur (t) − u̇r (ti )) −
(
u̇g(t) − u̇g(ti )

)
(2.17) 

this round Sliding stops once u̇s(t) returns to 0 again. The sliding of the structure can 
either stop or persist, based on whether Eq. (2.6) is satisfied or not. For this check of 
Eq. (2.6), Eq. (2.4) should be used to determine the relative acceleration ür , under 
the assumption that sliding stops. The sliding displacement, us(t), can be obtained 
by integrating Eq. (2.17): 

us(t) = us(ti ) + 
1 

2 
δμg(t − ti )2 − α(ur (t) − ur (ti ) − u̇r (ti )(t − ti )) 

− (ug(t) − ug(ti ) − u̇g(ti )(t − ti )
)

(2.18) 

Figure 2.2 summarizes the process of computing the response history. 

2.2 Typical Response Histories 

In the following analyses, the ground acceleration is taken as a sinusoidal wave if 
not specified: 

üg = ag sin
(
ωgt
)

(2.19) 

where ag and ωg are the amplitude and frequency of the sinusoidal wave, respectively.
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Figure 2.3 shows the responses of a sliding base system with μ = 0.2, α = 0.5, 
T = 2π/ω = 0.5 s, ξ = 5%, Tg = 2π/ωg = 1 s, and ag = 0.4g, in which T represents 
the natural period of the superstructure, and Tg indicates the period of the ground 
acceleration. As shown in Fig. 2.3, the responses of the system converge to steady 
periodic responses with the same period as the ground acceleration after several 
cycles. The sliding base system pauses briefly before sliding in the opposite direction 
in this instance. This is referred to as the stick-sliding case. After the amplitude of the 
ground acceleration exceeds a certain value, the sliding base system will continue 
to slide incessantly during the steady periodic state, as shown in Fig. 2.4, where the 
ground acceleration amplitude, ag, is increased to 1.2g. This is referred to as the 
sliding-sliding case. Sliding will not occur if the ground acceleration is sufficiently 
low, which is known as stick-stick case. The sliding base structure and the fixed base 
structure have no difference in this case. The following analyses focus on the steady 
periodic responses. 
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Fig. 2.3 Responses of the sliding base system for μ = 0.2, α = 0.5, T = 2π/ω = 0.5 s, ξ = 5%, 
Tg = 2π/ωg = 1 s,  ag = 0.4g: a absolute acceleration of the top mass; and b sliding displacement
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Fig. 2.4 Responses of the sliding base system for μ = 0.2, α = 0.5, T = 2π/ω = 0.5 s, ξ = 5%, 
Tg = 2π/ωg = 1 s,  ag = 1.2g: a absolute acceleration of the top mass; and b sliding displacement 

2.3 Occurrence Conditions of the Three Types of Periodic 
Responses 

2.3.1 Boundaries Between the Stick-Stick and Stick-Sliding 
Cases 

For the stick-stick case, the steady response of the relative displacement is 

ur (t) = −  
ag 
ω2 

Rd sin
(
ωgt − φ

)
(2.20) 

φ = tan−1 2ξ
(
ωg/ω

)
1 − (ωg/ω

)2 (2.21) 

where φ is the phase angle, which defines the time by which the response lags behind 
the input ground motion. Substituting Eqs. (2.19) and (2.20) into the precondition 
for the stick phases (i.e., Eq. 2.6) gives

||α Ra sin
(
ωgt − φ

)+ sin
(
ωgt
)|| < μg/ag (2.22)
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where 

Ra =
(
ωg/ω

)2 
Rd =

(
ωg/ω

)2
/[

1 − (ωg/ω
)2]2 + [2ξ(ωg/ω

)]2 (2.23) 

is the acceleration response factor for the fixed base structures. Equation (2.22) can 
be rewritten as

||(α Ra cos φ + 1) sin
(
ωgt
)− α Ra sin φ cos

(
ωgt
)|| < μg/ag (2.24) 

Equation (2.24) is always satisfied for the stick-stick cases, so the maximum value 
of the left-hand side term should be smaller than μg/ag; thus, we have  

μg/ag >
/

(α Ra)
2 + 2(α Ra) cos φ + 1 (2.25) 

Therefore, the boundaries between the stick-stick and stick-sliding cases are 

ag 
μg 

= 1 √ 
(α Ra)

2 + 2(α Ra) cos φ + 1 
(2.26) 

The variations of the boundaries between the stick-stick and stick-sliding cases 
for different ωg/ω and α are shown in Fig. 2.5. 

Fig. 2.5 Boundaries 
between the stick-stick and 
stick-sliding cases (ξ = 5%)
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2.3.2 Boundaries Between the Stick-Sliding 
and Sliding-Sliding Cases 

As derived in Sect. 2.2, Eq. (2.10) is the governing equation of the relative displace-
ment during the sliding phase. Equation (2.10) is the differential equation of a SDOF 
fixed base system with the natural frequency of ω1 and damping ratio of ξ1 subjected 
to a step force. The static displacement corresponding to this step force, ust , is given  
in Eq. (2.12), which has the same sign as the sliding direction. As shown in Fig. 2.4, 
for the sliding-sliding case, the sliding base system slides in one direction for half 
period of the ground motion, 0.5Tg, and then slides in the opposite direction for 
another 0.5Tg, and so on. Therefore, the equivalent step force also changes direction 
in 0.5Tg when the sliding direction changes, as shown in Fig. 2.6. Thus, the relative 
displacements of the two opposite half sliding cycles have the same absolute values 
but opposite signs. 

For a certain half sliding cycle, the solution of Eq. (2.10) (i.e. Eq. 2.13) can be 
rewritten as

(
ur (t) 
u̇r (t)

)
= A(τ )

(
ur0 
u̇r0

)
+ b(τ ) (2.27) 

where ur0 and u̇r0 are the relative displacement and velocity at the moment when this 
half sliding cycle starts, and this moment is denoted as ti; τ = t − ti is the local time 
during this half sliding cycle, so 0 ≤ τ ≤ π/ωg . When τ = π/ωg , the opposite half 
sliding cycle starts, the relative displacement and velocity at this moment are equal 
to −ur0 and −u̇r0, respectively. Therefore,

P(t) 

0.5Tg 

0.5Tg 

0.5Tg 

0.5Tg 

0.5Tg 

0.5Tg 

t 

k1=m 1 
2 

c1=2m 1 1 

mP(t)/k1 

g/ 2

- g/ 2 

ur(t) 

Fig. 2.6 Dynamic model for the relative displacement 
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−
(
ur0 
u̇r0

)
= A

(
π/ωg

)(ur0 
u̇r0

)
+ b
(
π/ωg

)
(2.28) 

The solutions of Eq. (2.28) are  

ur0 = ust 
− sinh θ1 +

(
ξ1/ 
/
1 − ξ 2 1

)
sin θ2 

cosh θ1 + cos θ2 

= 
−δμg 

ω2 

− sinh θ1 +
(

ξ1/

/
1 − ξ 2 1

)
sin θ2 

cosh θ1 + cos θ2 
(2.29) 

u̇r0 = −ust ω1 

sin θ2/ 
/
1 − ξ 2 1 

cosh θ1 + cos θ2 
= 

δμgω1 

ω2 

sin θ2/
/
1 − ξ 2 1 

cosh θ1 + cos θ2 
(2.30) 

where 

θ1 = ξ1 
ω1 

ωg 
π, θ2 =

/
1 − ξ 2 1 

ω1 

ωg 
π = 

ω1d 

ωg 
π (2.31) 

and δ represents the direction of the friction force, i.e., the opposite direction of 
sliding. 

By substituting Eqs. (2.29) and (2.30) into Eq. (2.27), the relative displacement 
and velocity at any time of this half sliding cycle are obtained: 

ur (ti + τ ) = 
−δμg 

ω2 ⎛ 

⎜⎜⎜⎝ 

1 − e−ξ1ω1τ 

cos(θ2 − ω1d τ ) 
/
1 − ξ 2 1 − ξ1 sin(θ2 − ω1d τ ) + ξ1 sin(ω1d τ )eθ1 +

/
1 − ξ 2 1 cos(ω1d τ )eθ1 /

1 − ξ 2 1 (cosh θ1 + cos θ2) 

⎞ 

⎟⎟⎟⎠ 

(2.32) 

u̇r (ti + τ ) = 
−δμgω1 

ω2 
e−ξ1ω1τ sin(ω1d τ )

(
eθ1 + cos θ2

)− cos(ω1d τ ) sin θ2 /
1 − ξ 2 1 (cosh θ1 + cos θ2) 

(2.33) 

When τ = π/ωg , the opposite half sliding cycle initiates. From Eq. (2.17), we 
have 

u̇s
(
ti + π/ωg

) = δμgπ/ωg − α(− 2 u̇r0) − 2ag/ωg cos
(
ωgti

) = 0 (2.34)
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Therefore, 

cos
(
ωgti

) = 
δπ μg 
2ag 

+ 
αωg u̇r0 

ag 
= A1 

δμg 

ag 
(2.35) 

where 

A1 = αωgω1 

ω2 
/
1 − ξ 2 1 

sin θ2 
cosh θ1 + cos θ2 

+ 
π 
2 

(2.36) 

Since a certain half sliding cycle initiates at t = ti,
||α ̈ur + üg

||
t=ti 

= δ
(
α
(− 2ξω  ̇ur0 − ω2 ur0 − ag sin

(
ωgti

))+ ag sin
(
ωgti

))
= −A2μg + δ(1 − α)ag sin

(
ωgti

) ≥ μg (2.37) 

where 

A2 = 
α

(
ξ1 sin θ2/ 

/
1 − ξ 2 1 + sinh θ1

)

cosh θ1 + cos θ2 
(2.38) 

From Eqs. (2.35) and (2.37), we have 

(1 − α)2
(
a2 g − A2 

1(μg)
2
) ≥ (1 + A2)

2 (μg)2 (2.39) 

Thus, the boundaries between the stick-sliding and sliding-sliding cases are 

ag 
μg 

=
/

(1 + A2)
2 /(1 − α)2 + A2 

1 (2.40) 

The variations of the boundaries between the stick-sliding and sliding-sliding 
cases for different ωg/ω and α are shown in Fig. 2.7.

When ωg/ω1 → 0, θ1 and θ2 → +∞, A1 → π/2, and A2 → α; thus, Eq. (2.40) 
becomes 

ag 
μg 

=
/

(1 + α)2 /(1 − α)2 + (π/2)2 (2.41) 

When ωg/ω1 → +∞, θ1 and θ2 → 0, A1 → π/(2(1 − α)), and A2 → 0; thus, 
Eq. (2.40) becomes 

ag 
μg 

= 
√ 
1 + (π/2)2 

1 − α 
(2.42)
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Fig. 2.7 Boundaries 
between the stick-sliding and 
sliding-sliding cases (ξ = 
5%)
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As can be seen in Fig. 2.7, there are also some local peak values when θ2 = (2n − 
1)π . These points are corresponding to the resonance. 

2.4 Parametric Study for the Maximum Responses 

2.4.1 Maximum Pseudo Acceleration of the Top Mass 

The maximum shear force applied to the superstructure can be represented by the 
maximum pseudo acceleration of the top mass (Chopra, 2001), A, as follows: 

A = ω2 × (max|ur (t)|) = 
k 

m 
(max|ur (t)|) (2.43) 

The function of  ag, μg, ωg/ω, α, and ξ is related to A in the 2DOF sliding base 
system depicted in Fig. 2.1. Figure 2.8 illustrates how the normalized maximum 
pseudo acceleration, A/μg, relates to the frequency ratio, ωg/ω, for varying values 
of α and ag/μg. A sliding base structure, unlike fixed base structures, has multiple 
resonant frequencies when sliding occurs. ag/μg and α can also affect these resonant 
frequencies. As shown in Fig. 2.8a, b, as ag/μg increases, several resonant frequency 
ratios appear in the region of ωg/ω < 1, and these ratios shift towards higher values 
gradually and eventually reach upper limits, which correspond to the sliding-sliding 
cases. As shown in Fig. 2.8c, d, resonances are more prone to happen with smaller 
mass ratios, α.

As shown in Fig. 2.8c, d, the maximum pseudo acceleration typically reduces 
with an increase in the mass ratio, α. The reason for this is that the damping ratio 
corresponding to the sliding phase, ξ1, is equal to ξ/

√
1 − α as given in Eq. (2.11), 

which increases as α increases. However, in the resonant frequency ranges of a
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Fig. 2.8 Relationship between the normalized maximum pseudo acceleration and ωg/ω (ξ = 5%): 
a α = 0.5; b α = 0.8; c ag/μg = 2; and d ag/μg = 8

specific sliding base structure, the maximum pseudo acceleration may be greater 
compared to other structures with lower mass ratios. 

Figure 2.9 shows the relationship between A/μg and ag/μg for different values 
of α and ωg/ω, where the circle and triangle represent the boundary between the 
stick-stick and stick-sliding cases, and the boundary between the stick-sliding and 
sliding-sliding cases, respectively. The A/μg versus ag/μg curves are segregated 
into three areas, each corresponding to cases of stick-stick, stick-sliding, and sliding-
sliding. In the stick-stick region, responses remain independent of mass ratio, α, with 
the A/μg versus ag/μg curve taking the form of a straight line. The slope of this 
straight line is equal to the displacement response factor, Rd , for a fixed base structure: 

Rd = 1/[
1 − (ωg/ω

)2]2 + [2ξ(ωg/ω
)]2 (2.44)

In the stick-sliding region, due to additional resonances when ωg/ω < 1, the  
maximum pseudo acceleration of a sliding base structure may exceed that of the 
related fixed base structure. This phenomenon can be observed in Fig. 2.9a for  ωg/ω 
= 0.1 and 0.5. In the sliding-sliding region, the upper limit of the maximum pseudo
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Fig. 2.9 Relationship between the normalized maximum pseudo acceleration and ag/μg (ξ = 5%): 
a α = 0.5; b ωg/ω = 0.5

acceleration is reached, and does not change even when there are larger ground 
accelerations. This upper limit reflects the effectiveness of sliding base structures 
for isolating extremely large earthquakes. As shown in Fig. 2.9b, in normal circum-
stances, as the mass ratio increases, the likelihood of the sliding-sliding case occurring 
becomes more difficult. This trend can be more clearly observed in Fig. 2.7. 

2.4.2 Amplitude of the Sliding Displacement 

As shown in Fig. 2.4b, the maximum sliding displacement results from the accu-
mulation of transient responses that occur before reaching the steady periodic state. 
Hence, the maximum sliding displacement is considerably influenced by the initial 
ground acceleration, e.g., there is a significant disparity in the maximum sliding 
displacement between the sine and cosine ground accelerations. To represent the 
extent of sliding when exposed to harmonic ground motions, the amplitude of the 
sliding displacement, us,ap, is a more appropriate response quantity compared to the 
maximum sliding displacement. It is defined as the difference between the maximum 
and minimum sliding displacements during the steady state; therefore, the value of 
it is exclusively linked to the responses of the steady state. 

Figure 2.10 depicts the correlation between the frequency ratio, ωg/ω, and the 
normalized sliding displacement amplitude, us,ap/

(
ag/ω2 

g

)
, for  varying  α and ag/μg 

values. As shown in Fig. 2.10a, b, when ωg/ω A is less than 1, the normalized sliding 
displacement amplitude is not greatly affected by the mass, α, ratio or frequency ratio, 
ωg/ω. There is a noticeable reduction of the sliding displacement amplitude when 
ωg/ω increases, after the frequency ratio, ωg/ω, surpasses 1. This result is in agree-
ment with Fig. 2.5, where the critical ag/μg for the occurrence of the stick-sliding 
case increases as ωg/ω increases once ωg/ω surpasses 1. As shown in Fig. 2.10b, if



18 2 Responses of 2DOF Sliding Base Systems Under Harmonic Ground …

0 

0.4 

0.8 

1.2 

1.6 

2 

0.1 1 10 
g/ 

=0.5 
=0.6 
=0.7 
=0.8 
=0.9 

u s
,a
p/(
a g
/ 

g 
)

2 

0 

0.4 

0.8 

1.2 

1.6 

2 

0.1 1 10 
g/ 

=0.5 
=0.6 
=0.7 
=0.8 
=0.9 

(a) (b) 

Fig. 2.10 Relationship between the normalized sliding displacement amplitude and ωg/ω (ξ = 
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the normalized ground acceleration amplitude, ag/μg, is sufficiently large, as ωg/ω 
surpasses a certain value, the sliding displacement amplitude will rise alongside an 
increase in ωg/ω. Figure 2.5 is also in accordance with this, where the critical value 
of ag/μg leading to stick-sliding decreases with increasing value of ωg/ω once the 
peak point of critical value ag/μg is reached. Figure 2.10b also indicates that there is 
a tendency generally for the sliding displacement amplitude to decrease as the mass 
ratio increases in the area of large frequency ratios. 

Figure 2.11 depicts the correlation between the normalized sliding displacement 
amplitude, us,ap/

(
ag/ω2 

g

)
, and the normalized ground acceleration amplitude, ag/μg, 

for different ωg/ω and α. As shown in Fig. 2.11, after sliding occurs, the normalized 
sliding displacement amplitude increases as ag/μg increases, but with a gradually 
decreasing speed increase. The normalized sliding displacement amplitude has an 
upper bound value that is 2. The reason for this is that when ag/μg is very large, 
the absolute acceleration of the sliding base (which is limited by the friction coeffi-
cient) is negligible compared with the ground acceleration, so the sliding base can 
be considered motionless from the perspective of ground, and us,ap is equal to the 
vibration amplitude of the ground displacement, 2ag/ω2 

g .

2.5 Theoretical Solutions for the Responses 
of the Sliding-Sliding Case 

For the sliding-sliding case, the maximum pseudo acceleration reaches the upper 
limit, and is no longer dependent on the amplitude of the ground acceleration. This 
upper limit response has important physical meaning, and reflects the effectiveness 
of the sliding base system for reducing the superstructure response. 

In this section, the theoretical solutions for the maximum pseudo acceleration 
and sliding displacement amplitude for the sliding-sliding case are derived. The 
derived results are further used to explain the mechanism of the sliding base system.
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For the stick-sliding case, theoretical solutions cannot be obtained because of the 
complicated transformation between stick and sliding phases. 

2.5.1 Solutions for the Maximum Pseudo Acceleration 

The maximum relative displacement will be obtained when the relative velocity is 
equal to 0, i.e. u̇r = 0; thus, the corresponding local time, τ j , can be obtained by 
taking the right-hand side of Eq. (2.33) equal to zero: 

tan
(
ω1d τ j

) = sin θ2 
eθ1 + cos θ2 

(2.45) 

From Eq. (2.45), several solutions for τ j may be obtained, and the number of 
solutions is dependent on the value of θ2. By substituting Eq. (2.45) into Eq. (2.32), 
the relative displacement at the moment of τ j can be obtained: 

ur
(
ti + τ j

) = 
−δμg 

ω2

(
1 − e 

− ξ1 √
1−ξ 2 1 

ω1d τ j cos
(
θ2 − ω1d τ j

)+ cos
(
ω1d τ j

)
eθ1 

cosh θ1 + cos θ2

)

(2.46)
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Using Eq. (2.46), the normalized maximum pseudo acceleration can be written 
as 

A/μg = max

|||||
ur
(
ti + τ j

)
ω2 

μg

|||||
= max

|||||1 − e 
− ξ1 √

1−ξ2 1 

ω1d τ j cos
(
θ2 − ω1d τ j

)+ cos
(
ω1d τ j

)
eθ1 

cosh θ1 + cos θ2

||||| (2.47) 

Equation (2.47) is not an explicit equation yet, since there may be more than one 
solution for τ j and the corresponding pseudo acceleration. The maximum pseudo 
acceleration is the maximum of these candidates. To obtain the explicit form of 
Eq. (2.47), different cases of θ2 need to be considered. The following presents the 
complete derivations for the explicit expressions of the normalized maximum pseudo 
acceleration, A/μg. 

Equation (2.45) leads to 

sin2
(
ω1d τ j

) = tan2
(
ω1d τ j

)
tan2
(
ω1d τ j

)+ 1 
= sin2 θ2 

2eθ1 (cosh θ1 + cos θ2) 
(2.48) 

If θ2 /= nπ (n = 1, 2, . . .), sin θ2 /= 0, so  sin
(
ω1d τ j

) /= 0 from Eq. (2.48). 
Therefore, Eq. (2.47) can be rewritten as Eq. (2.49) by using  Eq. (2.45). 

A/μg = max

|||||1 − e 
− ξ1 √

1−ξ2 1 

ω1d τ j sin θ2 
sin
(
ω1d τ j

)
(cosh θ1 + cos θ2)

||||| (2.49) 

Case 1. If 0 < θ2 < π  , sin θ2 > 0. From Eq.  (2.45), we have 

tan
(
ω1d τ j

) = sin θ2 
eθ1 + cos θ2 

< 
sin θ2 

1 + cos θ2 
= tan(θ2/2) (2.50) 

Since 0 ≤ τ j ≤ π/ωg , 0 ≤ ω1d τ j ≤ θ2, so there is only one solution for τ j , and 

ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
< θ2/2 < π/2 (2.51) 

From Eq. (2.51), we have sin
(
ω1d τ j

)
> 0, so from Eq.  (2.48), we have 

sin θ2 
sin
(
ω1d τ j

) = 
√ 
2eθ1 (cosh θ1 + cos θ2) (2.52)
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Substituting Eq. (2.52) into Eq. (2.49) gives  

A/μg =
||||||1 − e 

− ξ1 √
1−ξ2 1 

ω1d τ j
/

2eθ1 

cosh θ1 + cos θ2

|||||| (2.53) 

Case 2. If π <  θ2 < 2π , sin θ2 < 0, From Eq.  (2.45), we have 

tan(θ2/2) = sin θ2 
1 + cos θ2 

< tan
(
ω1d τ j

) = sin θ2 
eθ1 + cos θ2 

< 0 (2.54) 

so the smallest solution for τ j is 

π/2 < θ2/2 < ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  π (2.55) 

Since 

arctan

(
sin θ2 

eθ1 + cos θ2

)
+ 2π >  θ2/2 + π >  θ2 (2.56) 

there is no other solutions for τ j because 0 ≤ ω1d τ j ≤ θ2. From Eq.  (2.55), we have 
sin
(
ω1d τ j

)
> 0, so from Eq. (2.48), we have 

sin θ2 
sin
(
ω1d τ j

) = −  
√ 
2eθ1 (cosh θ1 + cos θ2) (2.57) 

Substituting Eq. (2.57) into Eq. (2.49) gives  

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ j
/

2eθ1 

cosh θ1 + cos θ2 
(2.58) 

Case 3. If θ2 > 2π and θ2 /= nπ (n = 1, 2, . . .), there are at least two solutions 
for τ j . If  sin θ2 > 0, i.e., 2nπ <  θ2 < (2n + 1)π , then from Eq. (2.45), we have 
tan
(
ω1d τ j

)
> 0. Therefore, the first solution for τ j is 

0 < ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
< π/2 (2.59) 

and the corresponding pseudo acceleration is

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| =
||||||1 − e 

− ξ1 √
1−ξ 2 1 

φ

/
2eθ1 

cosh θ1 + cos θ2

|||||| (2.60)
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where 

φ = arctan
(

sin θ2 
eθ1 + cos θ2

)
(2.61) 

The second solution for τ j is 

π <  ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  3π/2 (2.62) 

and the corresponding pseudo acceleration is

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| = 1 + e 
− ξ1 √

1−ξ2 1 

(φ+π )
/

2eθ1 

cosh θ1 + cos θ2 
(2.63) 

The pseudo accelerations corresponding to other solutions of τ j are all smaller 
than the larger one of Eqs. (2.60) and (2.63), since the oscillation of the relative 
displacement gradually decays because of the damping. If Eq. (2.60) is equal to

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| = 1 − e 
− ξ1 √

1−ξ 2 1 
φ

/
2eθ1 

cosh θ1 + cos θ2 
(2.64) 

it is clear that Eq. (2.63) is larger than Eq. (2.60). If Eq. (2.60) is equal to

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| = e 
− ξ1 √

1−ξ2 1 

φ

/
2eθ1 

cosh θ1 + cos θ2 
− 1 (2.65) 

Equation (2.60) minus Eq. (2.63) is  

e 
− ξ1 √

1−ξ2 1 

φ

/
2eθ1 

cosh θ1 + cos θ2

(
1 − e 

− ξ1 √
1−ξ2 1 

π
)

− 2 

< 

/
2eθ1 

cosh θ1 + cos θ2

(
1 − e− θ1 

θ2 
π
)

− 2 

< 

/
2eθ1 

cosh θ1 − 1
(
1 − e−θ1

)− 2 

= eθ1 − 1 
cosh θ1 − 1

(
1 − e−θ1

)− 2 = 0 (2.66) 

Therefore, Eq. (2.63) is always larger than Eq. (2.60), and the maximum pseudo 
acceleration is obtained at
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π <  ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  3π/2 (2.67) 

and the maximum pseudo acceleration is 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ j
/

2eθ1 

cosh θ1 + cos θ2 
(2.68) 

Case 4. If sin θ2 < 0, i.e., (2n + 1)π <  θ2 < (2n + 2)π , then from Eq. (2.45), we 
have tan

(
ω1d τ j

)
< 0. Therefore, the maximum pseudo acceleration will be obtained 

at the first solution of τ j , that is 

π/2 < ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  π (2.69) 

and the maximum pseudo acceleration is 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ j
/

2eθ1 

cosh θ1 + cos θ2 
(2.70) 

Case 5. If θ2 = nπ (n = 1, 2, . . .), sin θ2 = 0, and from Eq. (2.45), we have 
tan
(
ω1d τ j

) = 0, so the first solution for τ j is 

ω1dτ j = 0 (2.71) 

Substituting Eq. (2.71) into Eq. (2.46) gives the corresponding pseudo accelera-
tion:

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| = 
(− 1)n + eθ1 

cosh θ1 + (− 1)n 
− 1 (2.72) 

The second solution for τ j is 

ω1d τ j = π (2.73) 

and Substituting Eq. (2.73) into Eq. (2.46) gives the corresponding pseudo acceler-
ation:

|||||
ur
(
ti + τ j

)
ω2 

μg

||||| = 1 + e 
− ξ1 √

1−ξ 2 1 
π (− 1)n + eθ1 

cosh θ1 + (− 1)n 

= 1 + e−θ1/n
(− 1)n + eθ1 

cosh θ1 + (− 1)n
(2.74)
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Equation (2.72) minus Eq. (2.74) is  

(− 1)n + eθ1 

cosh θ1 + (− 1)n
(
1 − e−θ1/n

)− 2 ≤ 
(− 1)n + eθ1 

cosh θ1 + (− 1)n
(
1 − e−θ1

)− 2 

=
{ − 2(1+eθ1 ) 

cosh θ1+1 < 0 (n is even) 
0 (n is odd) 

(2.75) 

Therefore, Eq. (2.72) is always smaller than Eq. (2.74). For θ2 = 
nπ (n = 1, 2, . . .), 

(− 1)n + eθ1 

cosh θ1 + (− 1)n 
=
/

2eθ1 

cosh θ1 + (− 1)n 
=
/

2eθ1 

cosh θ1 + cos θ2 
(2.76) 

so the maximum pseudo acceleration can be written as 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

π

/
2eθ1 

cosh θ1 + cos θ2 
(2.77) 

The results of Cases 2–5 can be combined in one equation, that is, for θ2 ≥ π , 
the normalized maximum pseudo acceleration is 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ j
/

2eθ1 

cosh θ1 + cos θ2 
(2.78) 

where 

π/2 < ω1d τ j = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  3π/2 (2.79) 

In summary, the explicit solutions for the maximum pseudo acceleration are as 
follows: 

For 0 < θ2 < π , the normalized maximum pseudo acceleration is 

A/μg =
||||||1 − e 

− ξ1 √
1−ξ2 1 

ω1d τ0

/
2eθ1 

cosh θ1 + cos θ2

|||||| (2.80) 

where 

ω1d τ0 = arctan
(

sin θ2 
eθ1 + cos θ2

)
< π/2 (2.81)
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For θ2 ≥ π , the normalized maximum pseudo acceleration is 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ0

/
2eθ1 

cosh θ1 + cos θ2 
(2.82) 

where 

π/2 < ω1d τ0 = arctan
(

sin θ2 
eθ1 + cos θ2

)
+ π <  3π/2 (2.83) 

In the above equations, τ0 is the local time corresponding to the maximum pseudo 
acceleration. θ1 and θ2 in Eqs. (2.80)–(2.83) are only related to ξ1 and ω1/ωg as 
given in Eq. (2.31); thus, the normalized maximum pseudo acceleration, A/μg, is  
only dependent on ξ1 and ω1/ωg for the sliding-sliding case. ξ1 and ω1 are the natural 
frequency and damping ratio for the sliding phase, which are related to the mass ratio, 
α, as shown  in  Eq. (2.11). 

2.5.2 Interpretation of the Solutions for the Maximum 
Pseudo Acceleration 

Figure 2.12 plots the relationship between A/μg and ωg/ω using the derived theo-
retical solutions. As shown in Fig. 2.12a, the results from the theoretical solutions 
and numerical methods are the same, which verifies the accuracy of the theoretical 
solutions. As shown in Fig. 2.12b, as the mass ratio, α, increases, the frequency ratios, 
ωg/ω, of resonance shift towards larger values and the general responses decrease. 
This is because ξ1 and ω1 increase as α increases for given ξ and ω. 
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Fig. 2.12 Relationship between A/μg and ωg/ω (ξ = 5%): a verification of the theoretical 
solutions for α = 0.5; b results for different values of α
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In the following paragraphs, we will examine various frequency ratio regions, 
and elucidate the outcomes illustrated in Fig. 2.12b. When ωg/ω1 → 0, θ1 and 
θ2 → +∞, so from Eq. (2.83), we have ω1d τ0 → π , and Eq. (2.82) becomes 

A/μg = 1 + e 
− ξ1 √

1−ξ2 1 

ω1d τ0

/
2eθ1 

cosh θ1 + cos θ2 
→ 1 + 2e 

− ξ1 √
1−ξ2 1 

π 
(2.84) 

If the damping ratio, ξ = 0, the right-hand side of Eq. (2.84) is equal to 3, which 
implies that the maximum pseudo acceleration is equal to 3 times μg. For actual struc-
tures with damping, the normalized maximum pseudo acceleration, A/μg, is always 
between 1 and 3, as demonstrated by Eq. (2.84). This is because when ωg/ω1 → 0, 
the ground motion period is much larger than the natural period of the sliding system, 
so there is sufficient time for the oscillation of the relative displacement to decrease 
and stabilize to the static displacement, ust = −δμg/ω2, prior to the onset of the 
opposite sliding. Once sliding changes direction, the relative displacement initiates 
oscillation around the new static equilibrium displacement, −ust . If the damping 
is sufficiently small, the relative displacement can approach − 3ust during the first 
oscillation cycle; if the damping is very large, the oscillation of the relative displace-
ment diminishes rapidly and is only capable of attaining the new static equilibrium 
displacement, −ust . Figure 2.13 shows the steady state response of the normalized 
pseudo acceleration for α = 0.8, ξ = 5%, T = 1 s and Tg = 10 s (ωg/ω1 = 0.045). 

Equation (2.82) can also be written as 

A/μg = 1 + 2e 
− ξ1 √

1−ξ2 1 

ω1d τ0
/

1(
e−θ1 − 1

)2 + 2e−θ1 (cos θ2 + 1) 
(2.85) 

If ξ = 0 [which means θ1 = 0 from Eq.  (2.31)] and θ2 = (2n − 1)π (where n is 
a positive integer), the normalized maximum pseudo acceleration, A/μg, becomes 
infinite from Eq. (2.85). If ξ /= 0, a local peak value will be obtained for A/μg when 
θ2 = (2n − 1)π , i.e., ω1d = (2n − 1)ωg from Eq. (2.31), in which ω1d is the natural 
frequency of the damped vibration during the sliding phase:
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Fig. 2.13 Normalized pseudo acceleration response for α = 0.8, T = 1 s,  Tg = 10 s and ξ = 5% 
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A/μg = 1 + 2e 
− ξ1 √

1−ξ 2 1 
π 1 

1 − e−θ1 
(2.86) 

This result is consistent with the observations from Fig. 2.12b that there are 
multiple resonant frequencies in the area of ωg/ω1 < 1.  

For ξ = 0, Fig. 2.14 displays the normalized pseudo acceleration response for 
ω1 = ωg and ω1 = 3ωg . The ground acceleration, üg , is taken as ag cos

(
ωgt
)
, where 

ag is a large value so that sliding can occur during the whole time of investigation. 
Since ω1d = ω1 = (2n − 1)ωg for ξ = 0, the relative displacement reaches the peak 
value of a certain half sliding cycle when the direction of sliding changes, which is 
the furthest location from the static equilibrium displacement of the next half sliding 
cycle. From Eq. (2.13), the relative displacement at the end of one half sliding cycle 
for ξ = 0 is  

ur
(
ti + Tg/2

) = cos
(
ω1Tg/2

)
ur(ti ) + ust − ust cos

(
ω1Tg/2

) = −ur(ti ) + 2ust 
(2.87)

So

||ur(ti + Tg/2
)||− |ur (ti )| = 2μg/ω2 (2.88) 

Thus, during one cycle of the ground motion, Tg, the maximum relative displace-
ment can increase by 4μg/ω2, and can continue increasing until the ground accelera-
tion is not large enough anymore to start sliding. For actual structures, the maximum 
relative displacement will be reached after several cycles of ground motion because 
of the damping, as shown in Fig. 2.15 for ξ = 5%, α = 0.8, T = 1 s and Tg = 0.45 s(
ωg/ω1d = 1

)
. When ωg/ω1 → 0, θ1 → +∞  from Eq. (2.31), so Eq. (2.86) tends 

toward Eq. (2.84). This means that when ωg/ω decreases, the resonance will slowly 
disappear, as shown in Fig. 2.12b.

When ωg/ω1 → +∞, θ1 and θ2 → 0 from Eq. (2.31), we have ω1d τ0 → θ2/2 
from Eq. (2.81), so Eq. (2.80) becomes 

A/μg =
||||||1 − e 

− ξ1 √
1−ξ2 1 

ω1d τ0

/
2eθ1 

cosh θ1 + cos θ2

||||||→
|||||
1 − 2ξ 2 1 

8

(
ω1 

ωg 
π

)2
|||||→ 0 

(2.89) 

This is because when ωg/ω1 → +∞, the frequency of ground acceleration is 
considerably larger than the natural frequency of the sliding system, so the oscilla-
tion of the relative displacement can be hardly stimulated because of the frequently 
changed sliding direction.
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Fig. 2.14 Response of the normalized pseudo acceleration for ξ = 0: a ω1 = ωg ; b ω1 = 3ωg
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Fig. 2.15 Response of the normalized pseudo acceleration for ξ = 5%, α = 0.8, T = 1 s and  Tg 
= 0.45 s
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2.5.3 Solutions for the Sliding Displacement Amplitude 

In Sect. 2.4.2, we have obtained 

cos
(
ωgti

) = 
δπ μg 
2ag 

+ 
αωg u̇r0 

ag 

= 
δμg 

ag 

⎛ 

⎝ αωgω1 

ω2 
/
1 − ξ 2 1 

sin θ2 
cosh θ1 + cos θ2 

+ 
π 
2 

⎞ 

⎠ (2.90) 

By substituting t = ti + π/ωg into Eq. (2.18) and using Eq. (2.90), the amplitude 
of the sliding displacement can be obtained as follows: 

us,ap =
||us(ti + π/ωg

)− us (ti )
||

=
|||||
1 

2 
δμg

(
π/ωg

)2 + α
(
2ur0 + u̇r0

(
π/ωg

))− 
2ag 

ω2 
g 
sin
(
ωgti

)− 
πag 

ω2 
g 

cos
(
ωgti

)|||||
=
|||||
− 2ag 
ω2 
g 

sin
(
ωgti

)+ 2αur0

|||||

=

||||||||
2ag 

ω2 
g 
sin
(
ωgti

)+ 2α 
δμg 

ω2 

− sinh θ1 +
(

ξ1/ 
/
1 − ξ 2 1

)
sin θ2 

cosh θ1 + cos θ2

||||||||
(2.91) 

Therefore, the normalized sliding displacement amplitude is 

us,ap/
(
ag/ω

2 
g

) =

||||||||
2 sin

(
ωgti

)+ 2α 
δμgω2 

g 

agω2 

− sinh θ1 +
(

ξ1/

/
1 − ξ 2 1

)
sin θ2 

cosh θ1 + cos θ2

||||||||
(2.92) 

As revealed by Eq. (2.92), unlike the maximum pseudo acceleration, the sliding 
displacement amplitude is dependent on the amplitude of the ground acceleration, 
ag, for the sliding-sliding case. When ag/μg → +∞, cos

(
ωgti

) → 0 as revealed 
by Eq. (2.90), so the normalized sliding displacement amplitude, us,ap/

(
ag/ω2 

g

)
, 

in Eq. (2.92) tends toward to 2, which is consistent with the results presented in 
Sect. 2.5.2.
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2.6 Conclusions 

This chapter presents the responses of 2DOF sliding base systems subjected to 
harmonic ground motions. The response history of a SB system can exhibit two 
types of phases: the stick phase and the sliding phase. During the sliding phase, the 
vibration of the relative displacement has a higher natural frequency and damping 
ratio compared with the stick phase, which is related to the mass ratio. The equiva-
lent dynamic force for the vibration of the relative displacement during the sliding 
phase is a step force, which results a static displacement as given in Eq. (2.12). 
The responses of the sliding base system under harmonic ground motions converge 
rapidly to steady periodic responses with the same period as the ground accelera-
tion. The sliding base system displays three types of motions, namely stick-stick, 
stick-sliding, and sliding-sliding, as the ground acceleration amplitude increases. 

A sliding base structure has multiple resonant frequencies when it slides, unlike 
fixed base structures. For the sliding-sliding case, resonance happens when the period 
of ground motion is odd times of the natural period of vibration of the relative 
displacement that occurs during sliding. As the mass ratio increases, the maximum 
pseudo acceleration generally decreases. However, Resonance can result in obtaining 
larger maximum pseudo acceleration for larger mass ratios in some particular cases. 
Moreover, in certain instances, the sliding base structure can have a higher maximum 
pseudo acceleration than its fixed base counterpart due to extra resonances. In the 
sliding-sliding case, the upper limit of pseudo acceleration is reached, regardless of 
the amplitude of the ground acceleration. Equations (2.80)–(2.83) can be used to 
calculate the maximum pseudo acceleration in the sliding-sliding case. 

The amplitude of the sliding displacement is a suitable response quantity to repre-
sent the extent of sliding, and it can be normalized by the half of the vibration 
amplitude of the ground displacement, ag/ω2 

g . The normalized sliding displacement 
amplitude, us,ap/

(
ag/ω2 

g

)
, is more affected by the mass ratio and frequency ratio, 

ωg/ω, in region  ωg/ω ≥ 1 compared to region ωg/ω < 1. The normalized sliding 
displacement amplitude exhibits a higher value as ag/μg increases following the 
sliding occurring, yet its rate of increase gradually reduces, and it eventually reaches 
an upper bound of 2.
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Chapter 3 
Response Histories of Sliding Base 
Structures Under Earthquake Excitation 

3.1 Equations of Motion 

Figure 3.1a shows a schematic diagram of an N-story SB structure, the sliding base 
of which rests on the foundation. By lumping the structure mass at the corresponding 
floor level, the multistory SB structure can be analyzed using the simplified model 
shown in Fig.  3.1b. The lateral displacements of the ith floor in the x and y directions 
with respect to the sliding base are denoted as urxi and uryi, respectively. By further 
assuming that the structure is symmetrical about the x and y axes, the equations of 
dynamic equilibrium of the structure subjected to three-component excitations are 
as follows: 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

m
[(
ügx  + üsx

)
1 + ür x

] + cx u̇r x  + kxur x  = 0 
mb

(
ügx  + üsx

) + 1Tm[(
ügx  + üsx

)
1 + ür x

] = fx 
m

[(
ügy + üsy

)
1 + üry

] + cy u̇ry  + kyury  = 0 
mb

(
ügy + üsy

) + 1Tm[(
ügy + üsy

)
1 + üry

] = fy 
(3.1)

where m, cx (cy), and kx (ky) are the mass, damping, and stiffness matrices, respec-
tively, when the structure base is fixed; mb is the mass of the sliding base; 0 and 1 are 
the vectors whose elements are all zero and unity, respectively. ügx  (t) and ügy(t) are 
the x and y components, respectively, of the ground acceleration; üsx  (t) and üsy(t) are 
the sliding accelerations with respect to the ground in the x and y directions, respec-
tively; ur x  = [urx1, urx2, . . . ,  urx  N  ] and ury  =

[
ury1, ury2, . . . ,  ury  N

]
are the floor 

displacement vectors in the x and y directions, respectively; u̇r x  and u̇ry , and ür x  and 
üry  are the corresponding velocity and acceleration vectors, respectively; and f x(t) 
and f y(t) are  the  x and y components, respectively, of the friction force at the sliding 
interface. In Eq. (3.1), the first and second (third and fourth) equations represent the 
dynamic equilibrium of each floor mass and the whole structure, respectively, in the 
x-direction (y-direction). 
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Fig. 3.1 N-story SB structure: a schematic diagram; and b simplified model

For the model shown in Fig. 3.1b, the mass matrix m is 

m = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

m1 0 0  · · ·  0 
m2 0 · · ·  0 

m3 · · ·  0 
sym. 

. . . 
... 

mN 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(3.2) 

where mi (i = 1, 2, 3, …, N) is the mass of the ith floor. The stiffness matrices kx 

and ky are 

kx = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

kx1 + kx2 −kx2 0 · · · 0 0  
kx2 + kx3 −kx3 · · · 0 0  

kx3 + kx4 · · · 0 0  
. . . 

... 
... 

−kx(N−1) 0 
sym. kx(N−1) + kxN  −kxN  

kxN  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(3.3) 

and
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ky = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

ky1 + ky2 −ky2 0 · · · 0 0  
ky2 + ky3 −ky3 · · · 0 0  

ky3 + ky4 · · · 0 0  
. . . 

... 
... 

−ky(N−1) 0 
sym. ky(N−1) + kyN  −kyN  

kyN  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(3.4) 

where kxi and kyi are the lateral stiffness of the ith  story in the  x and y directions, 
respectively. The damping of the superstructure can be assumed to be of the Rayleigh 
type; thus, when the damping ratios of two specified modes of the superstructure are 
given, the damping matrix cx and cy can then be determined. 

The response history of an SB structure can exhibit two types of phases: stick 
phase and sliding phase. For the stick phases, during which sliding does not occur, 
the sliding acceleration is equal to 0, and the friction force, f , is smaller than the 
static friction force; thus, we have 

⎧ 
⎨ 

⎩ 

üsx  = üsy  = 0 
f = 

/
f 2 x + f 2 y < (m + mb)

(
g + ügz

)
μs 

(3.5) 

where ügz(t) is the z (vertical) component of the ground acceleration, g is the gravity 
acceleration, and μs is the static friction coefficient. Combining Eqs. (3.1) and (3.5) 
leads to 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

m
[
ügx1 + ür x

] + cx u̇r x  + kxur x  = 0 
m

[
ügy1 + üry

] + cy u̇ry  + kyury  = 0
⎡
|
|
|

(
1Tmür x

∑N 
i=1 mi + mb 

+ ügx

)2 

+
(

1Tmür x
∑N 

i=1 mi + mb 

+ ügy

)2 

<
(
g + ügz

)
μs 

(3.6) 

The first and second equations of Eq. (3.6) govern the response of an SB structure 
during the stick phases. The third equation of Eq. (3.6) is the precondition for the 
stick phases; when it is no longer satisfied, a sliding phase starts. 

During the sliding phases, the direction of the friction force is opposite to the 
direction of the sliding velocity; thus, we have



36 3 Response Histories of Sliding Base Structures Under Earthquake …

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

fx = −u̇sx  
/
u̇2 sx  + u̇2 sy

(
N∑

i=1 

mi + mb

)
(
g + ügz

)
μ 

fy = −u̇sy  
/
u̇2 sx  + u̇2 sy

(
N∑

i=1 

mi + mb

)
(
g + ügz

)
μ 

(3.7) 

where μ is the dynamic friction coefficient. Combining Eqs. (3.1) and (3.7) yields 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

üsxm1 + mür x  + cx u̇r x  + kxur x  = −ügxm1 

üsx  + 1Tmür x
∑N 

i=1 mi + mb 

+ u̇sx  
/
u̇2 sx  + u̇2 sy

(
g + ügz

)
μ = −ügx  

üsym1 + müry  + cy u̇ry  + kyury  = −ügym1 

üsy  + 1Tmüry
∑N 

i=1 mi + mb 

+ u̇sy  
/
u̇2 sx  + u̇2 sy

(
g + ügz

)
μ = −ügy 

(3.8) 

Equation (3.8) governs the response of an SB structure during the sliding phases. 
When the sliding velocity during a sliding phase becomes 0, this round of sliding ends. 
Afterwards, the structure may continue to slide or enter a stick phase depending on 
whether the third equation of Eq. (3.6) is satisfied. Based on the governing equations 
for the stick and sliding phases and the transition conditions between different phases, 
as presented above, a program was developed for computing the responses of SB 
structures subjected to three-dimensional excitations. The numerical methods for 
solving Eq. (3.8) will be presented in the next section. 

3.2 Numerical Computation Methods 

The first and second equations of Eq. (3.6), which govern the response of an SB 
structure during the stick phases, are the same as the governing equations of a fixed 
base structure. The numerical methods for solving these equations can be found in 
Chopra (2001).
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The system of differential equations presented in Eq. (3.8) can be solved by the 
time-stepping method. The response quantities (üsx  )i+1,

(
üsy

)

i+1, (ur x  )i+1, (u̇r x  )i+1, 

(ür x  )i+1,
(
ury

)

i+1,
(
u̇ry

)

i+1 and
(
üry

)

i+1 at time i + 1 satisfy Eq. (3.8) at time i + 1, 
i.e., 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(üsx  )i+1m1 + m( ̈ur x  )i+1 + cx (u̇r x  )i+1 + kx (ur x  )i+1 = −(
ügx

)

i+1m1 

( ̈usx  )i+1 + 1Tm(ür x  )i+1
∑N 

i=1 mi + mb 

+ ( ̇usx  )i+1
/

[
( ̇usx  )i+1

]2 +
[(
u̇sy

)

i+1

]2

[
g + (

ügz
)

i+1

]
μ = −(

ügx
)

i+1
(
üsy

)

i+1m1 + m(
üry

)

i+1 + cy
(
u̇ry

)

i+1 + ky
(
ury

)

i+1 = −(
ügy

)

i+1m1

(
üsy

)

i+1 + 1
Tm

(
üry

)

i+1
∑N 

i=1 mi + mb 

+
(
u̇sy

)

i+1
/

[
( ̇usx  )i+1

]2 +
[(
u̇sy

)

i+1

]2

(
g + ügz

)
μ = −(

ügy
)

i+1 

(3.9) 

Using Newmark’s equations (Newmark, 1959) for the relationships between the 
response quantities at time i + 1 and the corresponding quantities at time i, we have  

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

( ̇usx  )i+1 = ( ̇usx  )i + 1 
2
Δt(üsx  )i + 1 

2
Δt(üsx  )i+1 

(ur x  )i+1 = (ur x  )i + Δt(u̇r x  )i + [(0.5 − β)(Δt)](ür x  )i +
[
β(Δt)2

]
(ür x  )i+1 

(u̇r x  )i+1 = ( ̇ur x  )i + 1 
2
Δt(ür x  )i + 1 

2
Δt(ür x  )i+1

(
u̇sy

)

i+1 =
(
u̇sy

)

i + 1 
2
Δt

(
üsy

)

i + 1 
2
Δt

(
üsy

)

i+1
(
ury

)

i+1 =
(
ury

)

i + Δt
(
u̇ry

)

i + [(0.5 − β)(Δt)]
(
üry

)

i +
[
β(Δt)2

](
üry

)

i+1

(
u̇ry

)

i+1 =
(
u̇ry

)

i + 1 
2
Δt

(
üry

)

i + 1 
2
Δt

(
üry

)

i+1 

(3.10) 

where Δt is the time step, and β, which ranges from 1/6 to 1/4, is a parameter that 
controls the variation in the acceleration over a time step. Equation (3.10) can be 
converted to
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(üsx  )i+1 = 2
Δt

[
( ̇usx  )i+1 − ( ̇usx  )i

] − ( ̈usx  )i 

(ür x  )i+1 = 1 

β(Δt)2
[
(ur x  )i+1 − (ur x  )i

] − 1 

βΔt 
(u̇r x  )i −

(
1 

2β 
− 1

)

(ür x  )i 

( ̇ur x  )i+1 = 1 

2βΔt

[
(ur x  )i+1 − (ur x  )i

] +
(

1 − 1 
2β

)

( ̇ur x  )i +
(

Δt − Δt 

4β

)

(ür x  )i

(
üsy

)

i+1 = 2
Δt

[(
u̇sy

)

i+1 −
(
u̇sy

)

i

]
− (

üsy
)

i

(
üry

)

i+1 =
1 

β(Δt)2

[(
ury

)

i+1 −
(
ury

)

i

]
− 1 

βΔt

(
u̇ry

)

i −
(

1 

2β 
− 1

)
(
üry

)

i

(
u̇ry

)

i+1 =
1 

2βΔt

[(
ury

)

i+1 −
(
ury

)

i

]
+

(

1 − 1 
2β

)
(
u̇ry

)

i +
(

Δt − Δt 

4β

)
(
üry

)

i 

(3.11) 

Substituting Eq. (3.11) into Eq. (3.9) gives  

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

2

Δt 
( ̇usx  )i+1m1 +

[
1 

β(Δt)2 
m + 1 

2βΔt 
cx + kx

]

(ur x  )i+1 = p1 
2

Δt 
( ̇usx  )i+1 + ( ̇usx  )i+1

/
[
( ̇usx  )i+1

]2 +
[(
u̇sy

)

i+1

]2

[
g + (

ügz
)

i+1

]
μ 

+ 1 

β(Δt)2 
1Tm(ur x  )i+1

∑N 
i=1 mi + mb 

= p2 
2

Δt

(
u̇sy

)

i+1m1 +
[

1 

β(Δt)2 
m + 1 

2βΔt 
cy + ky

]
(
ury

)

i+1 = p3 
2

Δt

(
u̇sy

)

i+1 +
(
u̇sy

)

i+1
/

[
( ̇usx  )i+1

]2 +
[(
u̇sy

)

i+1

]2

[
g + (

ügz
)

i+1

]
μ 

+ 1 

β(Δt)2 
1Tm

(
ury

)

i+1
∑N 

i=1 mi + mb 

= p4 

(3.12) 

where
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

p1 =
[

−(
ügx

)

i+1 + 2
Δt 

( ̇usx  )i + (üsx  )i
]

m1 +
[

1 

β(Δt)2 
m + 1 

2βΔt 
cx

]

(ur x  )i 

+
[

1 

βΔt 
m −

(

1 − 1 
2β

)

cx

]

(u̇r x  )i +
[(

1 

2β 
− 1

)

m −
(

Δt − Δt 

4β

)

cx

]

(ür x  )i 

p2 = −(
ügx

)

i+1 + 2
Δt 

( ̇usx  )i + (üsx  )i 

+ 1Tm
∑N 

i=1 mi + mb

[
1 

β(Δt)2 
(ur x  )i + 1 

βΔt 
(u̇r x  )i +

(
1 

2β 
− 1

)

(ür x  )i

]

p3 =
[

−(
ügy

)

i+1 + 2
Δt

(
u̇sy

)

i +
(
üsy

)

i

]

m1 +
[

1 

β(Δt)2 
m + 1 

2βΔt 
cy

]
(
ur y

)

i 

+
[

1 

βΔt 
m −

(

1 − 1 
2β

)

cy

]
(
u̇r y

)

i +
[(

1 

2β 
− 1

)

m −
(

Δt − Δt 

4β

)

cy

]
(
ür y

)

i 

p4 = −(
ügy

)

i+1 + 2
Δt

(
u̇sy

)

i +
(
üsy

)

i 

+ 1Tm
∑N 

i=1 mi + mb

[
1 

β(Δt)2
(
ur y

)

i +
1 

βΔt

(
u̇r y

)

i +
(

1 

2β 
− 1

)
(
ür y

)

i

]

(3.13) 

When determining the response quantities at time i + 1, the response quantities 
at time i are already known; thus, Eq. (3.12) is a system of nonlinear equations with 
four unknowns, namely, ( ̇usx  )i+1, (ur x  )i+1,

(
u̇sy

)

i+1 and
(
ury

)

i+1. These nonlinear 
equations can be solved using the Newton–Raphson iteration technique (Chopra, 
2001). After determining the values of ( ̇usx  )i+1, (ur x  )i+1,

(
u̇sy

)

i+1 and
(
ury

)

i+1, 
other response quantities, namely, (usx  )i+1, (üsx  )i+1, ( ̇ur x  )i+1, (ür x  )i+1,

(
usy

)

i+1,(
üsy

)

i+1,
(
u̇ry

)

i+1 and
(
üry

)

i+1 at time i + 1 can also be determined using Newmark’s 
equations. 

3.3 Response Histories Under Earthquake Excitation 

Figure 3.2 shows the x-component of the ground accelerations recorded at the 
Mammoth Lakes station during the 1980 Mammoth Lakes earthquake. The peak 
ground acceleration (PGA) in the x-direction is 3.8 m/s2. Figure 3.3 shows the 
absolute acceleration history of the top mass of a single-story fixed base structure 
subjected to this ground motion. The natural periods of the superstructure along the 
two principal axes are both 0.3 s, and the damping ratios are taken as 5%. The peak 
absolute acceleration of the top mass is 7.66 m/s2, which is approximately 2 times the 
corresponding PGA. Figure 3.4 shows the responses of SB structures with different 
friction coefficients subjected to this ground motion. The superstructure is the same
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Fig. 3.2 x-component of the ground accelerations recorded at the Mammoth Lakes station during 
the 1980 Mammoth Lakes earthquake 
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Fig. 3.3 Absolute acceleration history of the top mass of a single-story fixed base structure 
subjected to the Mammoth Lakes record

as that of the aforementioned fixed base structure. The mass of the sliding base is 
3/7 of the  top mass.  As  shown in Fig.  3.4, the peak absolute acceleration of the top 
mass decreases quickly as the friction coefficient decreases; when μ = μs = 0.05, 
the peak absolute acceleration of the top mass is 1.16 m/s2, which is only 15% of 
the peak absolute acceleration when the base is fixed. The response history of the 
sliding displacement varies significantly when different friction coefficients are used. 
As the friction coefficient decreases, sliding occurs more frequently. Furthermore, 
the maximum sliding displacements may be obtained in the opposite directions for 
different friction coefficients. 
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Fig. 3.4 Response histories of SB structures with different friction coefficients subjected to the 
Mammoth Lakes record



42 3 Response Histories of Sliding Base Structures Under Earthquake …

0 2 4 6 8  

0 

0 2 4 6 8

-0.02

-0.01 

0.01 

0.02 

t (s) 

t (s) 

u s
x 
(m

) 

(c) 

s = = 0.1 

s = = 0.1

-2.50

-1.25 

0 

1.25 

2.50 
u g

x+
u s

x+
u r

x1
 (m

/s
2 )

..
.. 

.. 

0 2 4 6 8  

0 2 4 6 8

-0.02

-0.01 

0 

0.01 

0.02 

t (s) 

t (s) 

u s
x 
(m

) 

(d) 

s = = 0.05 

s = = 0.05

-2.50

-1.25 

0 

1.25 

2.50 

u g
x+
u s

x+
u r

x1
 (m

/s
2 )

..
.. 

.. 

Fig. 3.4 (continued)
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Chapter 4 
Peak Superstructure Responses 
of Single-Story Sliding Base Structures 
Under Earthquake Excitation 

4.1 Critical Parameters and Their Ranges 

In Chap. 3, the equations of motion for multistory SB structures have been derived. 
For single-story SB structures (Fig. 4.1), the governing equations can be simplified 
to the following forms: 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ür x  + 2ξx ωx u̇r x  + ω2 
xurx  = −ügx  

ür y  + 2ξyωy u̇r y  + ω2 
yury  = −ügy

/
(
α ̈urx  + ügx

)2 + (
α ̈ury  + ügy

)2 
<

(
g + ügz

)
μs 

(4.1)

for the stick phases, and 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

üsx  + ür x  + 2ξx ωx u̇r x  + ω2 
xurx  = −ügx  

üsx  + u̇sx  
/
u̇2 sx  + u̇2 sy

(
g + ügz

)
μ + α ̈urx  = −ügx  

üsy  + ür y  + 2ξyωy u̇r y  + ω2 
yury  = −ügy 

üsy  + u̇sy  
/
u̇2 sx  + u̇2 sy

(
g + ügz

)
μ + α ̈ury  = −ügy 

(4.2) 

for the sliding phases. In Eqs. (4.1) and (4.2), ωx = √
kx /m and ξx = cx /(2mωx ) 

(ωy =
√
ky/m and ξy = cy/(2mωy)) are the natural frequency and damping ratio, 

respectively, of the corresponding fixed base (FB) structure in the x-direction (y-
direction), and α = m/(m + mb) is defined as the mass ratio. 

As revealed by Eqs. (4.1) and (4.2), the response of an SB structure is greatly 
affected by the friction coefficient; thus, it is meaningful to relate the intensity of 
the ground motion and the acceleration response of the superstructure to the friction 
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Fig. 4.1 Single-story SB structure: a schematic plot; and b simplified model

coefficient, μ. To consider the response in the x-direction, we introduce 

u∗ 
st  x  = 

μg 

ω2 
x 

(4.3) 

which is the displacement of the corresponding FB structure when subjected to a 
static force, mgμ, in the  x-direction. Dividing Eqs. (4.1) and (4.2) by  u∗

st  x  leads to 
the following equations: 
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ügyω2 
x

)2 

<

(

1 + 
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where urx  (t) = urx  (t)/u∗
st  x  and ury(t) = ury(t)/u∗

st  x  are the normalized relative 
displacements and usx  (t) = usx  (t)/u∗

st  x  and usy(t) = usy(t)/u∗
st  x  are the normalized 

sliding displacements; u̇r x  (t), u̇r y(t), u̇sx  (t) and u̇sy(t) and ür x  (t), ür y(t), üsx  (t) and 
üsy(t) are the corresponding normalized velocities and accelerations, respectively; 
agx0 and agy0 are the peak values of the x and y components, respectively, of the 
ground acceleration; and ügx  (t) = ügx  (t)/agx0 and ügy(t) = ügy(t)/agy0 represent 
the waveforms of the ground acceleration history. Equations (4.4) and (4.5) imply  
that the normalized displacements, namely, urx  (t), ury(t), usx  (t) and usy(t), are  
dependent only on ωx , ωy/ωx , ξx , ξy, α, μs/μ, agx0/μg, agy0/agx0, ügx  (t), ügy(t) 
and ügz(t)/g, among which agy0/agx0, ügx  (t), ügy(t) and ügz(t)/g are associated 
with the ground motion characteristics. 

The maximum earthquake force applied to the superstructure in the x-direction 
can be expressed as mAx, where Ax is the peak pseudoacceleration (Chopra, 2001) 
in the x-direction, which is defined as 

Ax = ω2 
x × max(|urx  (t)|) (4.6) 

By using Eq. (4.3), the normalized peak pseudoacceleration, Ax/μg, can be written 
as 

Ax 

μg 
= 

ω2 
x × max(|urx  (t)|) 

μg
= 

max(|urx  (t)|) 
u∗
st  x  

= max(|urx  (t)|) (4.7) 

Therefore, Ax/μg is equivalent to the maximum absolute value of the 
normalized relative displacement, urx  (t). Since urx  (t) is dependent only on 
ωx , ωy/ωx , ξx , ξy, α, μs /μ, agx0/μg, agy0/agx0, ügx  (t), ügy(t) and ügz(t)/g, Ax/μg 
is also only dependent on these parameters. According to the principle of symmetry, 
the parameters that determine the response in the y-direction are the same as those 
that determine the response in the x-direction. 

The first step towards conducting parametric studies in the following sections 
is to investigate the ranges of the critical parameters in accordance with common 
practice. Due to the fact that SB structures are designed for low-rise buildings, the 
natural periods of the superstructure, denoted as Tx = 2π /ωx and Ty = 2π /ωy in the 
x-direction and y-direction, respectively, are limited under 1.0 s. Building structures 
are typically designed with similar stiffnesses in two orthogonal directions; therefore, 
the range of Tx/Ty = ωy/ωx, the ratio of superstructure periods in the two horizontal 
directions, is assumed to be from 1/2 to 2. For the general application of SB isolation 
in masonry structures (e.g., Nanda et al., 2015; Qamaruddin et al., 1986), bond beams 
are constructed under the masonry walls as the SB element; since the bond beams 
weigh less than the roof (or floor) diaphragm, the resulting mass ratio, α, will be 
larger than 0.5 (Qamaruddin et al., 1986). When using sliding isolation bearings 
(e.g., Jampole et al., 2016), the mass of every floor is considered nearly equal; thus, 
the resulting mass ratio is approximately 0.5 for single-story buildings and over 0.5 
for multistory buildings. Based on the statements provided, the mass ratio, α, is  
taken to be not less than 0.5 for subsequent analyses. Several studies (Barbagallo
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et al., 2017; Nanda et al., 2012, 2015; Yegian et al., 2004) investigating friction 
characteristics of sliding interfaces have found that the static friction coefficient, μs, 
is slightly greater than the dynamic friction coefficient μ; previous studies (Yegian 
et al., 2004) found that the maximum observed value of μs/μ was 1.38. Therefore, μs/ 
μ is taken to range from 1.0 to 1.4. The damping ratios in the x and y directions (i.e., 
ξ x and ξ y, respectively) are both taken as 5%, which is a commonly adopted value. 
The range of the values of the dynamic friction coefficient, μ, of the sliding interfaces 
investigated for SB structures (Barbagallo et al., 2017; Hasani, 1996; Jampole et al., 
2016; Nanda et al., 2012; Qamaruddin et al., 1986; Yegian et al., 2004) is from 0.07 to 
0.41. Furthermore, since the peak ground acceleration (PGA) seldom exceeds 1.2g, 
the maximum value considered for agx0/μg is taken as 20, i.e., agx0 = 1.4g if μ = 
0.07. 

4.2 Earthquake Ground Motions Considered 

The ground motion records were selected for each site class defined by ASCE 7-
10 (ASCE, 2010) from the Pacific Earthquake Engineering Research Center-Next 
Generation Attenuation (PEER-NGA) database. Since SB isolation takes effect 
primarily under significant ground accelerations, it is advisable to select ground 
motion records that have sufficiently large PGAs. by doing so, an extremely small 
value of μ can also be avoided as far as possible when conducting a parametric study. 
Therefore, for site classes C and D, only the ground motion records in which the peak 
value of the x-component, agx0, is not less than 0.15g were considered. However, less 
than 50 records with agx0 ≥ 0.05g could be found in the PEER-NGA database for site 
classes B and E; as a result of this limitation, 40 acceleration records were selected 
for site classes B and E, each with agx0 ≥ 0.05g, and all of them were non-pulse-like 
records. Site classes C and D each had 120 acceleration records selected; within 
those 120 records, there were 90 non-pulse-like records and 30 near-fault pulse-like 
records in each group. The 90 non-pulse-like records for both site class C and site 
class D were selected according to different combinations of the magnitude interval 
and source-to-site distance (defined as the closest distance to the fault rupture zone) 
interval. Three intervals of the magnitude, M, namely, 5.2 ≤ M < 6.0, 6.0 ≤ M < 6.7  
and 6.7 ≤ M < 7.7, and three intervals of the source-to-site distance, D, namely, 0 < 
D < 14 km,  14  ≤ D < 24 km and 24 ≤ D < 120 km, were employed herein, resulting 
in 9 different combinations of magnitude and distance intervals. Given a specific 
site class (C or D), 10 records were selected for each of these combinations. A total 
of 320 records of earthquake ground motion, originating from 69 earthquakes with 
a magnitude M ranging from 5.2 to 7.7, were used in this study. Figure 4.2 shows 
the distribution of the magnitudes and source-to-site distances of the ground motion 
records selected for each site class.

The previous section mentioned that the response of the superstructure in the 
x-direction is influenced by both the y and z (vertical) components of the ground 
acceleration; therefore, comparing the PGAs of all three components is necessary to
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Fig. 4.2 Distribution of magnitudes and source-to-site distances of the ground motion records: 
a site class B; b site class C; c site class D; and d site class E

investigate the significance of the interaction between the two horizontal directions 
and the impact of the vertical component. Figure 4.3 shows the distributions of agy0/ 
agx0 and agz0/agx0 for the 320 selected ground motion records. As shown in Fig. 4.3a, 
the values of agy0/agx0 are mostly (95.6%) between 0.5 and 2 with an average value of 
1.02. This shows that the assessed earthquake ground motions typically demonstrate 
comparable intensities in both horizontal directions. Figure 4.3b reveals that the agz0/ 
agx0 values are primarily concentrated within the 0.2–0.8 range, with an average value 
of 0.62, which indicates that the PGA of the vertical component is generally smaller 
than those of the horizontal component.

4.3 Normalized Ground Motion Intensity for the Initiation 
of Sliding 

If the third equation of Eq. (4.1) is satisfied throughout the entire excitation history, 
sliding will not occur; thus, the critical static friction coefficient, μcr , for the initiation 
of sliding can be determined using the following equation:
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Fig. 4.3 Distributions of a agy0/agx0; and  b agz0/agx0

μcr = max 
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α ̈urx  (t) + ügx  (t)

)2 + (
α ̈ury(t) + ügy(t)

)2 

g + ügz(t) 

⎞ 

⎠ (4.8) 

where ür x  (t) and ür y(t) are computed using the first and second equations of 
Eq. (4.1). According to Eq. (4.8), disregarding the influence of the vertical 
component, ügz(t), there exists a linear correlation between μcr and PGA; and 
hence, max

(
agx0, agy0

)
/μg can be used as a more generalized indicator for deter-

mining the occurrence of sliding, i.e., sliding occurs when max
(
agx0, agy0

)
/μsg > 

max
(
agx0, agy0

)
/μcr g. 

Figure 4.4 plots the counted median, counted 5th percentile, and counted 95th 
percentile values of max

(
agx0, agy0

)
/μcr g for the 120 selected ground motion records 

for site class D. In the computation, Ty is taken to be the same as Tx. Figure 4.4a 
shows that as the mass ratio, α, decreases, the median value of max

(
agx0, agy0

)
/μcr g 

increases for a given superstructure period, Tx. The reason for this is that, in 
short-period structures, the peak relative acceleration is typically larger than the 
corresponding PGA, leading to larger values of μcr in Eq. (4.8) for larger values 
of α. Figure 4.4a also shows that, except for Tx ≤ 0.3 s, the median value of 
max

(
agx0, agy0

)
/μcr g increases as Tx increases for a given mass ratio. This result is 

consistent with the shape of the corresponding response spectrum of FB structures. 
When max

(
agx0, agy0

)
/μsg is equal to the corresponding counted 5th percentile 

value of max
(
agx0, agy0

)
/μcr g, sliding occurs for a small number of ground motions. 

However, the effect of this short-term sliding on the superstructure response is 
insignificant because of the very short sliding duration in these cases. Therefore, the 
response of an SB structure can be considered the same as that of the corresponding 
FB structure when max

(
agx0, agy0

)
/μsg is smaller than the corresponding value in 

Fig. 4.4b. During 0.2 s ≤ Tx ≤ 0.4 s, the 5th percentile value of max
(
agx0, agy0

)
/μcr g 

is estimated to be 0.27 for α = 0.9, and it increases to 0.42 when α = 0.5. The values 
in Fig. 4.4c can be regarded as the lower bounds of max

(
agx0, agy0

)
/μsg to ensure the 

occurrence of sliding. The trends observed in Fig. 4.4 are also evident in the results
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for the other site classes, except with slight difference in their respective specific 
values. 

4.4 Parametric Study for the Maximum Superstructure 
Response 

According to the previous discussion on the range of agx0/μg, ten levels of agx0/μg, 
namely, 0.25, 0.5, 1, 2, 4, 6, 8, 12, 16 and 20, in which agx0/μg = 0.25 is basically 
equivalent to the FB case, are used in the following analyses. The dynamic friction 
coefficient, μ, for the sliding interfaces used in SB structures (Barbagallo et al., 
2017; Hasani, 1996; Jampole et al., 2016; Nanda et al., 2012; Qamaruddin et al., 
1986; Yegian et al., 2004) falls between 0.07 and 0.41. If μ is limited to the range 
between 0.07 and 0.41, none of the selected ground motion records can yield all 
the levels of agx0/μg considered. However, in order to analyze the dispersion of the 
superstructure response at various levels of agx0/μg, it is necessary to apply the same 
number of ground motion records for all agx0/μg levels. For this purpose, the value of 
μ is adjusted with unscaled ground motion records for each target value of agx0/μg. 
By doing so, to reach a large value of agx0/μg (e.g., agx0/μg = 16 or 20) for ground 
motion records with small PGAs, it will be inevitable to use very small values of μ 
(e.g., μ ≤ 0.02). 

Figure 4.5 shows each individual value of Ax /μg computed using the 90 non-
pulse-like records for site class D in addition to the mean, the mean plus one standard 
deviation (SD) (corresponding to the 84th percentile value of the normal distribution), 
the counted median and the counted 84th percentile. In this computation, μs = μ and 
Tx = Ty = 0.3 s are adopted. The mean and the counted median agree well with each 
other, as do the mean plus SD and the counted 84th percentile. As stated above, the 
value of μ is adjusted to reach the target value of agx0/μg with unscaled ground motion 
records. The considered cases are classified into two groups based on the values of 
μ obtained; one with μ within the common range of 0.07–0.41 and the other with μ 
outside this range. Different symbols are used in Fig. 4.5 to denote the data in these 
two groups. As expected, the resulting values of μ are basically beyond the common
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Fig. 4.5 Individual and some statistical values of Ax /μg: a α = 0.5; and  b α = 0.8

range when agx0/μg ≥ 12, because there are very few records of PGA ≥ 0.8g in the 
ground motion database. In order to determine the reliability of the results obtained 
using μ which is out of the common range, the probability densities of the computed 
values of Ax/μg at agx0/μg = 1 and 4 corresponding to the two different groups are 
compared in Fig. 4.6; in this figure, the normal probability density functions with the 
corresponding mean and SD are also presented. The distributions of Ax /μg in each 
group are fundamentally similar to each other. Based on this observation, similar 
results would likely be obtained for large values of agx0/μg if a sufficient number 
of ground motion records with large PGAs were used. Additionally, the probability 
density of the calculated values corresponds quite well with the corresponding fitted 
normal probability density function, which suggests that the probability distribution 
of Ax /μg for a given agx0/μg value is approximately in accordance with a normal 
distribution. 

4.4.1 Comparison of the Response in Two Orthogonal 
Directions 

Figure 4.7 shows the mean values of Ax /μg at each level of agx0/μg, in addition 
to each individual value of Ay/μg at the corresponding level of agy0/μg computed 
using the 90 non-pulse-like records selected for site class D. In this computation, μs 

= μ and Tx = Ty = 0.3 s are used. Figure 4.7 shows a basically uniform distribution 
of the discrete points with

(
agy0/μg, Ay/μg

)
coordinates along both sides of the 

mean Ax /μg versus agx0/μg curve. This indicates that the normalized peak pseu-
doacceleration and the normalized PGA have an essentially identical relationship in 
both orthogonal horizontal directions; in other words, the results obtained for the 
x-direction can also be applied to the y-direction. Therefore, only the response in the 
x-direction is analyzed hereafter.
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4.4.2 Effect of the Vertical Earthquake Component 

The responses of SB structures under only the two horizontal components of earth-
quake excitation were also computed in order to study the effect of the vertical 
component. Figure 4.8 shows the ratios of Ax under three-component excitation to 
that under the corresponding excitation with the two horizontal components. The 90 
non-pulse-like records selected for site class D with μs = μ and Tx = Ty were used 
to compute the results shown in Fig. 4.8. According to these figures, the vertical 
component of ground motion can either increase or decrease the horizontal response 
of the superstructure. In general, the vertical component has a greater effect on stiffer 
structures. For certain ground motions, with Tx ≤ 0.3 s, the ratios of Ax under three-
component excitation to that under two-component excitation exceed 1.15. However, 
for most of the ground motions considered, the ratios of Ax under three-component 
excitation to that under two-component excitation are between 0.95 and 1.05, and 
the mean values are basically equal to 1.0. Therefore, the overall effect of the vertical 
component on the superstructure response is negligible. 
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4.4.3 Effect of the Natural Period of the Superstructure 

Figure 4.9 shows the relationship between the mean Ax/μg and Tx for different 
values of α and agx0/μg. The mean values of Ax /μg were computed using the 90 
non-pulse-like records for site class D while assuming that μs = μ and Tx = Ty. 
According to Fig. 4.9, as  Tx increases, the mean values of Ax /μg increase for Tx ≤ 
0.3 s, but decrease for Tx ≥ 0.4 s, resulting in the maximum mean values of Ax /μg 
are obtained at Tx = 0.3 s or 0.4 s. In general, the mean values of Ax /μg at Tx = 
0.3 s or 0.4 s are close to each other. As agx0/μg increases, the influence of Tx on 
the superstructure response decreases; for example, the ratio of the minimum to the 
maximum mean values of Ax /μg in Fig. 4.9a is 0.69 for  agx0/μg = 2 and increases 
to 0.87 for agx0/μg = 12. As shown in Fig. 4.9, it can be inferred that the mean 
value of Ax /μg does not exhibit a considerable variation within the range of Tx that 
has been considered; therefore, it is appropriate to use the response from the period 
with the maximum mean Ax /μg as a representation of the responses for possible SB 
structures. As mentioned above, for site class D, this period can be taken as 0.3 s; 
for site classes B, C, and E, the critical periods obtained are 0.2, 0.2, and 0.4 s, 
respectively. 

In all the above analyses, Tx = Ty is adopted. Figure 4.10 compares the mean 
values of Ax /μg for different values of Tx/Ty in order to investigate the possible 
impact of Tx/Ty on the superstructure response. In general, the mean values of Ax /μg 
at a given level of agx0/μg decreases as Tx/Ty increases. Nevertheless, this variation 
is quite limited; the presented results in Fig. 4.10 show that the ratios of the mean 
value of Ax /μg for Tx/Ty = 0.5 to Tx/Ty = 2 do not exceed 1.06. Therefore, the 
results obtained for Tx = Ty are representative of those obtained for the possible 
value of Tx/Ty in the range considered.
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Fig. 4.10 Effect of Tx /Ty on the mean values of Ax /μg: a α = 0.5; and b α = 0.8 

4.4.4 Effect of the Difference Between the Static 
and Dynamic Friction Coefficients 

Based on the investigation mentioned above, μs/μ generally within the range of 
1.0–1.4. Figure 4.11 compares the mean values of Ax/μg corresponding to different 
values of μs/μ in order to investigate the influence of μs/μ. As expected, for most 
of the ground motions considered, the superstructure response is not significantly 
influenced by the value of μs/μ when agx0/μg = 0.25, because sliding does not occur 
at this agx0/μg level. The influence of μs/μ is most clearly observed for agx0/μg = 1. 
If agx0/μg exceeds 1, the influence of μs/μ decreases as agx0/μg increases because 
for larger agx0/μg values, the responses of SB structures are primarily dominated by 
the sliding phase, during which the responses are independent of the static friction 
coefficient. The ratios of the mean value of Ax/μg for μs/μ = 1.4 to that for μs/μ = 
1 are all below 1.08 and mostly below 1.02. Therefore, the effect of the difference 
between the static and dynamic friction coefficients can be neglected. In the following 
analyses, μs = μ is assumed.

4.4.5 Effects of the Earthquake Magnitude 
and Source-to-Site Distance 

The mean values of Ax/μg for each distance interval and magnitude were computed 
using 90 non-pulse-like records selected for site class D in order to study the effects 
of the earthquake magnitude and source-to-site distance. Figure 4.12 shows the mean 
values of Ax /μg for the three magnitude intervals. For the entire range of agx0/μg, 
no general trend can be observed for Ax /μg as the earthquake magnitude increases. 
However, when agx0/μg = 0.25, the mean values of Ax /μg for 6.7 ≤ M < 7.7  are  
approximately 10% larger than those for 6.0 ≤ M < 6.7; the relative differences in
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Fig. 4.11 Effect of μs/μ on the mean values of Ax /μg: a α = 0.5; and b α = 0.8
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Fig. 4.12 Mean values of Ax /μg for three magnitude intervals: a α = 0.5; and b α = 0.8

the mean values of Ax /μg between any two of these groups at a given agx0/μg are 
all below 7% and mostly below 5%. This indicates that the earthquake magnitude 
has little effect on the superstructure responses of SB structures. 
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Fig. 4.13 Mean values of Ax /μg for three distance intervals: a α = 0.5; and b α = 0.8 

Figure 4.13 shows the mean values of Ax /μg for three distance intervals. The 
influence of the source-to-site distance on the superstructure response, like that of 
the magnitude of the earthquake, is also insignificant. 

4.4.6 Effect of Near-Fault Pulses 

The acceleration, velocity, and displacement histories of near-fault ground motions 
influenced by forward directivity contain distinct pulses. To investigate the possible 
effects of these pulses, the mean values of Ax /μg computed using the 30 pulse-
like records and 30 non-pulse-like records both recorded for 0 < D < 14 km and 
site class D are compared in Fig. 4.14. When sliding basically does not occur, 
i.e., agx0/μg = 0.25, the mean value of Ax /μg corresponding to the non-pulse-
like records is 1.16 times that corresponding to the pulse-like records. The corre-
sponding FB structure has a larger response amplification factor, Ax/agx0, for non-
pulse-like ground motions compared to pulse-like ones, as indicated. Chopra and 
Chintanapakdee (2001) reported similar results, where they examined the normal-
ized response spectra of harmonic excitations containing different numbers of cycles 
to interpret this phenomenon. The response amplification factor increased as the 
number of cycles increased, implying that the response amplification factors of 
pulse-like ground motions with one or several dominant pulses are generally smaller 
than those of non-pulse-like ground motions with more excitation cycles. As illus-
trated in Fig. 4.14a, when α = 0.5, the ratio of the mean value of Ax /μg for the 
non-pulse-like records to that of the pulse-like records remains almost the same as 
agx0/μg increases. However, when α increases to 0.8, the ratio decreases signifi-
cantly as agx0/μg increases, as shown in Fig. 4.14b. This phenomenon is consistent 
with the fact that the difference in the superstructure response between different 
ground motions decreases as α increases. More detailed results related to this fact 
are presented in the next section.
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Fig. 4.14 Effect of near-fault pulses on the mean values of Ax /μg: a α = 0.5; and b α = 0.8 

4.4.7 Statistical Results for Each Site Class 

Figure 4.15 shows the mean values of Ax /μg for each site class. Herein, only the 
non-pulse-like records were used for the computation to maintain consistency. Thus, 
the numbers of ground motion records used for site classes B, C, D and E are 40, 90, 
90 and 40, respectively. As shown in Fig. 4.15, except for agx0/μg = 0.25 (which is 
basically equivalent to the FB case), as the mass ratio, α, increases, the superstructure 
response reduces. This phenomenon can be easily explained by using the governing 
equations for the sliding phases during unidirectional excitation. Under unidirectional 
excitation in the x-direction, Eq. (4.2) can be simplified into 

ür x  + 2 
ξx √
1 − α 

ωx √
1 − α 

u̇r x  + ω2 
x 

1 − α 
urx  = 

u̇sx  
|u̇sx | 

μg 

1 − α 
(4.9)

which is the differential equation of a single-degree-of-freedom (SDOF) system with 
a natural frequency of ωx / 

√
1 − α and a damping ratio of ξx / 

√
1 − α subjected to 

a step force corresponding to a static displacement of μg/ω2 
x . The damping ratio of 

this equivalent system increases as α increases, leading to a general decrease in the 
response of urx as α increases. 

After agx0/μg exceeds 0.5, the mean Ax /μg versus agx0/μg curves experience 
a rapid decline in tangent slopes as a result of sliding. When agx0/μg exceeds a 
sufficiently large value, i.e., there is an upper limit for the superstructure response of 
an SB structure, the tangent slopes are expected to finally become 0. This situation is 
favorable for isolating extremely large earthquakes. The efficiency of the SB system 
can also be demonstrated by the value of Ax/agx0, which is equal to the origin-oriented 
secant slope of the Ax /μg versus agx0/μg curve. Taking α = 0.8 in Fig. 4.15b (site 
class C) as an example: when agx0/μg = 2, the mean value of Ax/agx0 is 0.82, whereas 
this value is 2.23 for the FB case; consequently, the superstructure response of the 
SB structure is just 36.8% of that of the corresponding FB structure in this instance.
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Fig. 4.15 Mean values of Ax /μg for each site class: a site class B; b site class C; c site class D; 
and d site class E

Figure 4.16 presents the ratios of the mean value of Ax /μg for site class C (D or 
E) to that for site class B, for α = 0.5 and 0.8, in order to investigate the effects of 
local site conditions on the superstructure response. It is evident that the response 
of the superstructure is affected by the local site conditions; as the site soil becomes 
softer, the mean values of Ax/μg increase. For agx0/μg = 0.25, when sliding basically 
does not occur, the ratios of the mean values of Ax/μg for site classes C, D and E 
to that for site class B are equal to 1.19, 1.20 and 1.24, respectively. These ratios 
generally decrease as agx0/μg increases. As shown in Fig. 4.16a, when agx0/μg = 2, 
these ratios decrease to 1.07, 1.07 and 1.12 for site classes C, D and E, respectively; 
and they further decrease to 1.02, 1.03 and 1.04 when agx0/μg = 12.

Figure 4.17 shows the coefficients of variation (COVs) of Ax /μg for every site 
class in order to investigate the dispersion of the superstructure response at a specified 
value of agx0/μg. The COVs of the Ax/μg versus agx0/μg curves are similar for all 
four site classes. In the range of agx0/μg ≤ 2, the COVs of Ax/μg decrease rapidly 
as agx0/μg increases; after agx0/μg exceeds 2, the COVs of Ax/μg are quite constant. 
This means that sliding tends to reduce the dispersion of the superstructure response
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Fig. 4.16 Effect of local site conditions on the mean values of Ax /μg: a α = 0.5; and b α = 0.8
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Fig. 4.17 Coefficients of variation of Ax /μg for each site class: a site class B; b site class C; c site 
class D; and d site class E

due to the record-to-record variability. As α increases, the COVs of Ax /μg decrease 
in general. This can also be interpreted by using Eq. (4.9); larger values of α leads to 
larger equivalent damping ratios for the sliding phases, further resulting in smaller 
dispersion of the structural response. 
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4.5 Simplified Equations for Estimating the Maximum 
Superstructure Response 

For the design of SB structures, it is desirable to employ simplified equations to 
estimate the peak pseudoacceleration of the superstructure. Based on the preceding 
discussions, we know the following: (1) the relationship between Ax /μg and agx0/μg 
is basically identical to that between Ay/μg and agy0/μg; (2) the dependencies of 
the mean value of Ax /μg (or Ay/μg) on the vertical earthquake component, Tx/Ty, 
μs/μ, the earthquake magnitude and the source-to-site distance can be neglected; 
and (3) the response of possible SB structures can be represented by the response 
at a critical period for each site class with appropriate conservativeness. Thus, the 
following equation was proposed to estimate the mean values of Ax /μg and Ay/μg: 

Ax 

μg 
= β1

(
agx0/μg

)β2

(
agx0/μg

)β2 + β3 

and 
Ay 

μg 
= β1

(
agy0/μg

)β2

(
agy0/μg

)β2 + β3 

(4.10) 

where β1, β2 and β3 are the regression coefficients that depend on the site class and the 
mass ratio, α. Equation (4.10) captures the trend of Ax /μg

(
Ay/μg

)
with respect to 

agx0/μg
(
agy0/μg

)
, i.e., Ax /μg → 0 when agx0/μg → 0, and Ax /μg approaches an 

upper limit when agx0/μg → +∞. The Curve Fitting Toolbox of MATLAB (2014) 
was used to conduct nonlinear regression analyses for determining the values of 
the regression coefficients in Eq. (4.10). In order to assess conservativeness, regres-
sion analyses were conducted using results obtained from non-pulse-like records, 
considering that responses under pulse-like ground motions generally exhibit smaller 
values compared to those under non-pulse-like ground motions. Table 4.1 presents 
the values of β1, β2 and β3 obtained for each site class and various values of α. The  
values predicted through Eq. (4.10) are also compared to the values computed from 
response history analyses shown in Fig. 4.15. The mean values of Ax /μg can be 
accurately estimated by the proposed equation. The values of β1, β2 and β3 for the 
α values not included in Table 4.1 can be found by linear interpolation of the values 
from Table 4.1, because each regression coefficient has an approximately linear rela-
tionship with α; if  α > 0.9, using the β1, β2 and β3 values for α = 0.9 can give 
conservative results.

As shown in the previous section, a normal distribution is appropriate for modeling 
the probability distribution of Ax/μg with respect to a specific site class, agx0/μg and 
α. Therefore, if we can further derive a simplified equation for the COV (or SD = 
mean× COV), then the value of Ax/μg (or Ay/μg) corresponding to any probability of 
nonexceedance can be readily determined. Figure 4.17 shows that, despite possible 
variations of the exact values among different groups, the trends of the COVs of 
Ax /μg with respect to agx0/μg remain consistent for the four site classes. Because 
the computed COV values are related to the selected ground motion records used 
in the computation (i.e., a different set of records for the same site class may lead 
to different COVs), it is reasonable to expect equivalent dispersion levels for the
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Table 4.1 Values of the regression coefficients in Eq. (4.10) 

Site class α β1 β2 β3 

B 0.5 3.26 1.07 1.12 

0.6 3.20 0.92 1.22 

0.7 3.10 0.81 1.30 

0.8 2.80 0.73 1.24 

0.9 2.41 0.58 1.15 

C 0.5 3.32 1.03 0.90 

0.6 3.17 0.88 0.97 

0.7 2.92 0.76 0.97 

0.8 2.71 0.63 1.02 

0.9 2.48 0.45 1.10 

D 0.5 3.37 1.01 0.92 

0.6 3.09 0.90 0.90 

0.7 2.93 0.76 0.97 

0.8 2.78 0.61 1.06 

0.9 2.39 0.47 0.99 

E 0.5 3.27 1.16 0.81 

0.6 3.00 1.06 0.80 

0.7 2.73 0.94 0.81 

0.8 2.68 0.68 0.99 

0.9 2.87 0.40 1.41

four site classes, provided that a sufficient number of records are selected for each 
group. In general, the computed COV values are the largest for site class C under 
the circumstance of the ground motion records considered. Therefore, the data of 
site class C are used to derive the simplified equation for the COVs of Ax/μg and 
Ay/μg since a larger COV value leads to a conservative result for a probability of 
nonexceedance larger than 50%. The proposed equation is given by 

δAx /μg = γ1 exp
(−γ2

(
agx0/μg

)) + γ3 and δAy /μg = γ1 exp
(−γ2

(
agy0/μg

)) + γ3 
(4.11) 

where δAx /μg
(
δAy /μg

)
is the COV of Ax /μg

(
Ay/μg

)
, and γ1, γ2 and γ3 are the 

regression coefficients that depend on α. Table 4.2 presents the values of γ1, γ2 and γ3 
based on the nonlinear regression analyses for various α values. Figure 4.18 shows a 
comparison of the values predicted using Eq. (4.11) and the values obtained through 
response history analyses. A satisfactory estimation for the COVs of Ax /μg is yielded 
by the proposed equation. Similar to Eq. (4.10), for the values of α not listed in 
Table 4.2, the values of γ1, γ2 and γ3 can be calculated from the linear interpolation
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Table 4.2 Values of the 
regression coefficients in 
Eq. (4.11) 

α γ1 γ2 γ3 

0.5 0.23 1.82 0.20 

0.6 0.28 2.25 0.19 

0.7 0.34 2.25 0.15 

0.8 0.42 2.62 0.12 

0.9 0.52 3.23 0.10 

Fig. 4.18 Comparison 
between the COVs of Ax /μg 
computed using Eq. (4.11) 
and those computed from 
response history analyses 
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of those provided in Table 4.2; for  α > 0.9, the values of γ1, γ2 and γ3 for α = 0.9 
can be used. 

4.6 Conclusions 

In this chapter, a comprehensive parametric investigation of the normalized peak 
pseudoacceleration of single-story SB structures subjected to three-component earth-
quake excitation is presented. The relationship between the normalized peak pseu-
doacceleration and the normalized PGA is basically identical for the two orthogonal 
horizontal directions. The horizontal response of the superstructure can be either 
reduced or increased by the vertical component of ground motion. If Tx ≤ 0.3 s, for 
certain ground motions, the superstructure response can increase by more than 1.15 
due to the vertical component; but the effect of the vertical component is negligible 
for the majority of situations. The normalized peak pseudoacceleration exhibits a 
pattern of initially increasing and subsequently decreasing as the natural period of 
the superstructure increases. For the range of Tx considered, the variation in the 
mean value of Ax/μg is not very significant. For simplicity and conservativeness, the 
response of possible SB structures can be represented by the response at the period 
where the maximum mean Ax/μg is generally obtained. The influence of the natural 
period ratio in the two orthogonal horizontal directions and the possible difference
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between the static and dynamic friction coefficients on the superstructure responses 
of SB structures is insignificant. 

The effects of the earthquake magnitude and the source-to-site distance are very 
small and can be neglected in practice. Superstructures typically exhibit smaller 
responses when subjected to pulse-like ground motions compared to non-pulse-like 
ones. Local site conditions have an effect on the response of the superstructure. For 
sites located on softer soil, a larger response is obtained, and the dependence on the 
local site conditions decreases as the normalized PGA increases. The trend of the 
COVs of Ax/μg with respect to agx0/μg is similar among the four site classes. The 
COVs decline rapidly at smaller values of agx0/μg and remain basically constant after 
agx0/μg ≥ 2. For a given site class, agx0/μg and α, a normal distribution is appropriate 
for modeling the probability distribution of Ax/μg. 

The mean values and COVs of Ax/μg decrease as α increases. An upper limit for 
the superstructure response exists for every mass ratio, which is beneficial for the 
isolation of extremely large earthquakes. Implementing Eqs. (4.10) and (4.11) with 
the associated values of the regression coefficients can provide good estimates for 
the mean values and COVs, respectively, of Ax/μg and can be used to predict the 
value of the normalized peak pseudoacceleration corresponding to any probability 
of nonexceedance. 
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Chapter 5 
Equivalent Lateral Forces for Design 
of Multistory Sliding Base Structures 

5.1 Model Descriptions 

In Chap. 4, the parameter mass ratio, α, was introduced. This parameter is defined as 
the ratio between the superstructure mass and the overall mass of the SB structure. 
The response of the superstructure is heavily influenced by the parameter α, as  
demonstrated in Chap. 4. The mass ratio of a multistory SB structure presented in 
Fig. 5.1 can be calculated by 

α =
∑N 

i=1 mi
∑N 

i=1 mi + mb 

(5.1)

in which mi is the mass of the ith floor; mb represents the mass of the sliding base; 
and N corresponds to the story number. 

Based on practical applications, a maximum of five stories can be considered as 
the upper limit for the story number of SB structures. For a building with N ≤ 5, it is 
reasonable to consider that the mass of every floor is equal. Thus, Eq. (5.1) becomes 

α = Nm  

Nm  + mb 
(5.2) 

in which m represents the mass of each floor. In practical applications, the value of 
α should be at least 0.5 as m is usually equal to or greater than mb. Hence, the value 
of α can be considered not less than 0.5. 

It is assumed that the stiffness of each story is equal. The parametric study in 
Chap. 4 demonstrates that the natural period ratio between the two orthogonal hori-
zontal directions has a negligible impact on the superstructure responses. There-
fore, it is assumed that the story stiffness in both the x and y directions is identical 
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Fig. 5.1 Schematic plot of a multistory SB structure

and represented as k. Given these assumptions, the fundamental period, T 1, of the  
superstructure is expressed as follows: 

T1 = 2π 
/

m 

Ck  
(5.3) 

in which the values of coefficient C are equal to 0.382, 0.198, 0.121, and 0.081 for N 
= 2, 3, 4, and 5, respectively. As Chap. 4 demonstrates, the superstructure responses 
in single-story SB structures remain basically unchanged when the superstructure 
period falls within the typical range, and it is feasible to conservatively represent 
the responses of potential SB structures with the response at the period that gener-
ally yields the highest superstructure responses. The truth of this result persists in 
multistory SB structures. The computed results based on T 1 = 0.3 s are used in the 
subsequent analyses as maximum superstructure responses occur mostly at T 1 close 
to 0.3 s. 

The construction of the damping matrix involves the utilization of Rayleigh 
damping. For N = 2, the damping ratios for the first and second modes are taken as 
5%, while for N = 3 and 4, the damping ratios for the first and third modes are 5%, 
and for N = 5, the damping ratios for the first and fourth modes are taken as 5%. 

The static and dynamic friction coefficients are assumed to be the same as 
the difference between them was found to have little effect on the superstructure 
responses. In accord with Chap. 4, the maximum value of agx0/μg is taken as 20, 
where agx0 is the peak value of the x component of the ground acceleration, μ is the 
friction coefficient, and g is the gravity acceleration.



5.2 Peak Base Shear 69

It was found that the variance between the static and dynamic friction coefficients 
had minimal impact on the superstructure responses, thus they are assumed to be 
equal. In accordance with Chap. 4, an upper limit of 20 is placed on the value of 
agx0/μg. 

5.2 Peak Base Shear 

After obtaining the displacement history by performing response history analysis, 
the equivalent static forces in the x-direction, Fx = [Fx1, Fx2, . . . ,  FxN  ] (Fxi is the 
force acting on the  ith floor) for a multistory SB structure can be determined using 
the following equation (Chopra, 2001) 

Fx (t) = kxur x  (t) (5.4) 

The peak base shear, Vbx, can subsequently be computed by 

Vbx = max 
t

|
|1T kxur x  (t)

|
| (5.5) 

Because of the close relationship between the peak base shear and the mass of 
the superstructure, as well as the friction coefficient, the normalized peak base shear, 
V bx , is introduced as follows 

V bx = Vbx 

Nmgμ 
= 

max 
t

|
|1T kxur x  (t)

|
|

Nmgμ 
(5.6) 

For a single-story SB structure, Eq. (5.6) is simplified to 

V bx = 
max 

t 
|kurx  (t)| 
mgμ

= 
ω2 
x × max(|urx  (t)|) 

μg
= 

Ax 

μg 
(5.7) 

As indicated by Eq. (5.7), the normalized peak base shear, V bx is equivalent 
to the normalized peak pseudoacceleration, Ax /μg, for single-story SB structures. 
The normalized peak pseudoacceleration has been thoroughly examined in Chap. 4. 
Hence, with certain modifications, the equations created for predicting Ax /μg could 
be employed to predict V bx for multistory SB structures. 

By replacing Ax /μg in Eqs. (4.10) and (4.11) with V bx , the following equations 
are yielded: 

V bx = β1
(
agx0/μg

)β2

(
agx0/μg

)β2 + β3 

(5.8)
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and 

δV bx = γ1 exp
(−γ2

(
agx0/μg

)) + γ3 (5.9) 

in which δV bx represents the coefficient of variation (COVs) of V bx . In order to verify 
if Eqs. (5.8) and (5.9) are applicable to multistory SB structures, the mean values and 
COVs of V bx of structures with varying story number N are compared in Fig. 5.2a, 
b, respectively, using the 180 non-pulse-like ground motion records for site classes 
C and D. As can be seen in Fig. 5.2a, when agx0/μg is given, the mean value of 
V bx decreases and ultimately approaches a constant value as N increases. In order 
to account for this impact, the introduction of a reduction factor, denoted as γN , is  
necessary. This factor is calculated by taking the ratio of the mean V bx of a structure 
that has N stories, to the mean V bx of a single-story structure that has the same 
α under the same agx0/μg. The analyzed data suggest that the influence of α and 
agx0/μg on γN is minimal. The nonlinear regression analyses yielded the following 
formula for calculating γN : 

γN = 0.25e−0.65N + 0.86 (5.10) 

Therefore, the mean value of V bx for an N-story SB structure can be calculated 
by the following equation: 

V bx =
(
0.25e−0.65N + 0.86

) β1
(
agx0/μg

)β2

(
agx0/μg

)β2 + β3 

(5.11)
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Fig. 5.2 Statistical values of V bx : a mean values; b COVs 
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The values of the coefficients β1, β2 and β3 are provided in Table 4.1. As depicted 
in Fig. 5.2b, The COVs of V bx are not significantly affected by the story number N. 
Hence, Eq. (5.9) can be used for multistory SB structures without requirement of 
modifications. The values of γ1, γ2 and γ3 are provided in Table 4.2. 

5.3 Equivalent Lateral Force Distribution 

The response histories of Vxi/(Nmg) for a three-story SB structure (with α = 0.8 
and μ = 0.1) and corresponding FB structure under the Mammoth Lakes record 
(agx0 = 0.39g) from the 1980 Mammoth Lakes earthquake are presented in Fig. 5.3, 
where Vxi is the story shear of the ith story. In the case of the FB structure, the peak 
story shears for various stories occur simultaneously. However, for the SB structure, 
the peak shear time for each story varies. Hence, it is not feasible to employ the 
distribution of equivalent static forces at the peak base shear to ascertain the peak 
shear of other stories. 

Peak story shears are the response quantities that need to be used in design. There-
fore, the equivalent lateral forces were calculated through the following process: (1)
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Fig. 5.3 Response histories of each story shear of a three-story SB structure (with α = 0.8 and 
μ = 0.1) and  b three-story FB structure subjected to the Mammoth Lakes record from the 1980 
Mammoth Lakes earthquake 
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Fig. 5.4 Distributions of Fe 
xi  /F

e 
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b agx0/μg = 12 

Identify the peak story shear of each story for every ground motion; (2) Organize the 
peak story shears for each story from the 180 ground motion records in ascending 
order; (3) Determine equivalent lateral forces using the peak story shears at the corre-
sponding percentile. The equivalent lateral force of the ith floor is represented as Fe 

xi  . 
The distributions of Fe 

xi  /F
e 
xN  for various percentiles are illustrated in Fig. 5.4 when 

α = 0.8. As shown in Fig. 5.4, the selected percentile does not have a significant 
impact on the distribution of Fe 

xi  /F
e 
xN  . Accordingly, the distribution of F

e 
xi  /F

e 
xN  for 

the 50th percentile is selected for the subsequent analyses. 

5.3.1 Parametric Study 

Figure 5.5 depicts the data points (Fe 
xi  /F

e 
xN  , i/N) corresponding to different N in the 

same plot. As shown in this figure, the trend is almost the same for the data points 
(Fe 

xi  /F
e 
xN  , i/N) for different N. Therefore, the same relationship between Fe 

xi  /F
e 
xN  

and i/N can be used for different N.
The distributions of Fe 

xi  /F
e 
xN  for various α and agx0/μg are shown Figs. 5.6 and 

5.7. The  value of  Fe 
xi  /F

e 
xN  for i < N decreases with an increase in α or agx0/μg; and 

as agx0/μg increases, the distribution of Fe 
xi  /F

e 
xN  becomes fixed. When agx0/μg 

exceeds a specific value, the corresponding lateral forces at the lower levels invert 
direction for α ≥ 0.7. These results means that the increase of α or agx0/μg results 
in the concentration of equivalent lateral forces at the upper floors.
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5.3.2 Simplified Equations 

Referring to the shapes of the i /N − Fe 
xi  /F

e 
xN  curves depicted in Figs. 5.6 and 5.7, the  

distribution of equivalent lateral forces was modeled using the following equation: 

Fe 
xi  /F

e 
xN  = c(i /N )2 + (1 − c)(i/N ) (5.12) 

The regression coefficient c in Eq. (5.12) is dependent on agx0/μg and α. Equa-
tion (5.12) satisfies the boundary conditions that when i = 0, Fe 

xi  /F
e 
xN  = 0, and when 

i = N, Fe 
xi  /F

e 
xN  = 1. The values of c attained from nonlinear regression analyses for 

varying values of agx0/μg and α are presented in Fig. 5.8. The  value of  c increases 
and approaches a constant as agx0/μg increases for a given α, and it also increases 
with an increase in α. These trends are in agreement with the effects of agx0/μg and 
α on the distributions of Fe 

xi  /F
e 
xN  , which has been discussed in the previous section. 

Through nonlinear regression analyses, the following equation was developed for 
calculating the value of c: 

c = (− 4.3α + 0.29)e−0.68(agx0/μg) + 3.4α − 0.95 (5.13)
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As depicted in Figs. 5.6 and 5.7, the distributions of Fe 
xi  /F

e 
xN  determined using 

Eqs. (5.12) and (5.13) demonstrate good agreement with those that were computed 
based on response history analyses. 

5.4 Conclusions 

In this chapter, the equivalent lateral forces for the design of multistory SB structures 
are studied. The increase in story number N tends to reduce the mean value of the 
normalized peak base shear but has little effect on the coefficient of variation. The 
peak story shears of a multistory SB structure under an earthquake ground motion 
occur at varying times for each story. Based on this truth, the equivalent lateral forces 
can be calculated by utilizing the peak story shears that correspond to the same 
percentile. Based on the computed results, it can be inferred that the distribution 
of equivalent lateral forces is generally not influenced by the percentile chosen. 
The distributions of equivalent lateral forces for various N follow a similar pattern. 
Additionally, with an increase in the normalized PGA and mass ratio, the equivalent 
lateral forces tend to concentrate at the upper floors. Using Eqs. (5.9), (5.11), (5.12), 
and (5.13), the equivalent lateral forces required for the design of multistory SB 
structures can be determined.
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Chapter 6 
Peak Sliding Displacements of Sliding 
Base Structures Under Earthquake 
Excitation 

6.1 Selection of Ground Motion Intensity Measure 

The 180 ordinary ground motion records and 60 near-fault pulse-like records on site 
classes C and D, which has been presented in Chap. 4, will continue to be used in the 
response history analyses conducted in this chapter. In Chap. 3, some typical response 
histories of the sliding displacements are presented. The PSDs in the two principal 
directions (i.e., x and y directions), usx0 and usy0, can be directly determined once the 
response histories of the sliding displacements are obtained through response history 
analyses. The maximum of PSDs over all the horizontal directions or the PSD with 
respect to the origin, ust0, can also be determined by 

ust0 = max 
t 

/
usx  (t)

2 + usy(t)2 (6.1) 

In design, the PSDs of interest that are required to check the sliding displacement 
are reliant on the boundary shape of the sliding surface. For SB masonry struc-
tures (e.g., Nanda et al., 2015; Qamaruddin et al., 1986a), bond beams are generally 
constructed under the masonry walls as sliding elements, and the boundary shape 
of the sliding surface is generally rectangular to align with the building plane. For 
this case, it is necessary to check the sliding displacements separately in the two 
principal directions, and the PSDs required in design are usx0 and usy0. Generally, 
when using sliding isolation bearings (e.g., Jampole et al., 2016), the boundary shape 
of the sliding surface is circular. For this case, design requires comparison of ust0 
with the sliding displacement threshold. The analyses that follow investigate all of 
usx0, usy0, and ust0, covering the two cases mentioned before. 

To develop dependable earthquake excitation-based prediction models for the 
PSDs of SB structures, it is necessary to choose a suitable ground motion intensity 
measure (IM) that provides relatively small record-to-record variability of the PSDs 
at a given IM. The PGA and PGV, which rely exclusively on the ground motion char-
acteristics, are the most traditional measures of ground motion intensity. Although 
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there have been proven several IMs that consider both ground motion and struc-
tural properties [e.g., spectral acceleration at the first-mode period of the structure 
(Housner, 1941) and average spectral acceleration (Eads et al., 2015)] to be more 
efficient for seismic response assessment of fixed base (FB) structures, the changing 
dynamic property of a SB structure may render them unsuitable when sliding occurs. 
Thus, a feasible approach to assess the PSDs of SB structures involves choosing an 
IM that solely relies on the ground motion characteristics and analyzing the effect 
of distinct structural properties in isolation. 

PGA and PGV are potential IMs due to their widespread usage among researchers 
and engineers, as well as the availability of corresponding attenuation relationships 
(Villaverde, 2009). To compare the efficiency (Luco & Cornell, 2007) of different 
IMs (i.e., their capability to produce small variability of the PSD at a given IM), 
response history analyses of a SB structure with Tx = Ty = 0.4 s (Tx = 2π /ωx and 
Ty = 2π /ωy), ξ x = ξ y = 5%, and α = 0.7 subjected to the three components of the 180 
ordinary ground motion records were conducted. Figure 6.1 displays the calculated 
values of usx0 and ust0 in relation to their respective PGAs (agx0 and agt0) and PGVs 
(vgx0 and vgt0), where two levels of friction coefficient μ are considered, namely μ 
= 0.1 and 0.2. In order to maintain consistency with the definition of ust0, Eqs. (6.2) 
and (6.3) are respectively used to compute the PGA and PGV corresponding to ust0, 
which are the maximum values of PGA and PGV over all the horizontal directions. 

agt0 = max 
t

/
ügx  (t)

2 + ügy(t)
2 (6.2) 

vgt0 = max 
t

/
u̇gx  (t)

2 + u̇gy(t)
2 (6.3) 

The superiority of PGV over PGA is evident from Fig. 6.1. Previous researchers 
(e.g., Jampole et al., 2020; Ryan & Chopra, 2004) have also observed this result. To 
further quantify the performance of different IMs, the results shown in Fig. 6.1 were
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Fig. 6.1 Correlations between PSDs and corresponding PGAs and PGVs: a μ = 0.1; and b μ = 
0.2 
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also subjected to correlation coefficient computation; since a linear relationship may 
not be the best representation of the connection between the PSD and any of the IMs 
under consideration, the Spearman rank correlation coefficient (Maritz, 1995), ρs, 
for nonlinear correlations is used here. For μ = 0.1, the computed values of ρs are 
0.38 (0.38) and 0.80 (0.85) for the correlations between usx0 and agx0 (ust0 and agt0), 
and usx0 and vgx0 (ust0 and vgt0), respectively; and for μ = 0.2, these values are 0.56 
(0.60) and 0.69 (0.73), respectively. The efficiency of PGV as an IM is relatively 
high, and it improves with increased sliding extent, which is appreciated because 
design is mainly concerned with sliding displacements that are sufficiently large and 
may exceed the preset threshold. Nevertheless, the variability of the PSD at a given 
PGV is still considerable in comparison with the peak superstructure response of SB 
structures presented in Chap. 4. This relatively large variability is primarily attributed 
to the following reasons, which have been pointed out by Jampole et al. (2020): 

(1) The initiation of sliding is dominated by the acceleration quantities; thus, initi-
ating sliding through a pulse with larger PGV may not be easier as the larger 
PGV could be the result of longer duration instead of a larger acceleration 
amplitude. 

(2) Although the incremental velocity of a pulse can effectively describe the sliding 
excursion resulting from a velocity pulse, the incremental velocity of the largest 
pulse may not necessarily be in close proximity to the PGV of a ground motion 
record because the value of PGV is also affected by the initial conditions 
preceding the largest pulse. 

(3) The PSD obtained from seismic excitation of a SB structure is an accumulative 
result of multiple sliding excursions initiated by large velocity pulses, especially 
for lower friction levels. The efficiency of PGV is further decreased due to the 
accumulative effect, as it is typically associated with a dominant pulse. 

Jampole et al. (2020) suggested a new IM, named EIGV, that is more effective in 
forecasting PSDs of rigid bodies exposed to earthquake ground motions. However, 
because the correlation between the PSD and PGV is acceptable and PGV is simple 
and well accepted by the engineering community as a ground motion IM, PGV is 
adopted herein. 

6.2 Critical Parameters and Their Ranges 

The parametric study presented in Chap. 5 indicates that the story number N generally 
does not influence the distribution of the equivalent lateral forces, which implies that 
the sliding displacement of a multistory SB structure should be close to that of the 
corresponding single-story SB structure with the same mass ratio and fundamental 
period. To verify this inference, the responses of a three-story and a single-story 
SB structure with the mass ratio α = 0.75 and the fundamental periods in the x 
and y directions equal to 0.4 s were computed. Figure 6.2 compares the probability
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Fig. 6.2 Comparison of the probability distributions of the normalized PSDs of three-story and 
single-story SB structures (α = 0.75 and Tx = Ty = 0.4 s): a vgx0/μ = 2 m/s;  b vgx0/μ = 6 m/s;  
c vgx0/μ = 12 m/s; d vgt0/μ = 2 m/s;  e vgt0/μ = 6 m/s; and  f vgt0/μ = 12 m/s 

distributions of the PSDs normalized by the friction coefficient μ of these two struc-
tures. As can be seen, the probability distributions of the normalized PSDs of the 
three-story and single-story structures almost coincide at a given level of the PGV 
normalized by μ. Therefore, single-story SB structures can be used to evaluate the 
PSDs of general SB structures. 

As already presented in Chap. 4, the governing equations of single-story SB 
structures are as follows: For the stick phases,

{
ür x  + 2ξx ωx u̇r x  + ω2 

xurx  = −ügx  

ür y  + 2ξyωy u̇r y  + ω2 
yury  = −ügy 

(6.4) 

The precondition for the stick phases is

/(
α ̈urx  + ügx

)2 + (
α ̈ury  + ügy

)2 
<

(
g + ügz

)
μs (6.5) 

For the sliding phases, 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

üsx  + ür x  + 2ξx ωx u̇r x  + ω2 
xurx  = −ügx  

üsx  + u̇sx  √
u̇2 sx+u̇2 sy

(
g + ügz

)
μ + α ̈urx  = −ügx  

üsy  + ür y  + 2ξyωy u̇r y  + ω2 
yury  = −ügy 

üsy  + u̇sy  √
u̇2 sx+u̇2 sy

(
g + ügz

)
μ + α ̈ury  = −ügy 

(6.6)
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As can be seen from Eqs. (6.4) to (6.6), the responses of SB structures are influ-
enced by the friction coefficient (the dynamic and static friction coefficients are 
assumed to be the same), which is a critical parameter. By dividing both sides of 
Eqs. (6.4)–(6.6) by  μ, it can be observed that the effects of μ can be incorporated into 
both the response quantities and ground motion IM, i.e., the normalized displace-
ment quantities, urx  (t) = urx  (t)/μ, ury(t) = ury(t)/μ, usx  (t) = usx  (t)/μ, and 
usy(t) = usy(t)/μ, are dependent on the normalized IMs, vgx0/μ and vgy0/μ (where 
vgx0 and vgy0 are the PGVs in the x and y directions, respectively), and μ is not an 
independent variable anymore. Thus, to simplify the estimation of PSDs related to 
different levels of ground motion intensity associated with various levels of μ, we  
can evaluate the normalized PSDs (usx0/μ, usy0/μ, and ust0/μ) at various normalized 
PGVs (vgx0/μ, vgy0/μ, and vgt0/μ). Equations (6.4)–(6.6) shows that ωx, ωy, ξ x, ξ y, 
α, ügz(t), and the horizontal ground motion waveform are other parameters that may 
affect the normalized PSDs. 

The common ranges of the natural periods of the superstructure (Tx = 2π /ωx 

and Ty = 2π /ωy), the damping ratios (ξ x and ξ y), and the mass ratio (α) have been 
presented in Sect. 4.2, and thus are not repeated here. The friction coefficients of 
the sliding interfaces investigated for SB structures (Barbagallo et al., 2017; Hasani, 
1996; Jampole et al., 2016; Nanda et al., 2012; Qamaruddin et al., 1986; Yegian 
et al., 2004) range from 0.07 to 0.41. Apart from very few near-fault records from 
high-magnitude earthquakes, most of the ground motions recorded have PGVs below 
1.2 m/s. On these bases, the normalized PGV is limited to 18 m/s, which is equiv-
alent to PGV = 1.26 m/s when μ = 0.07. When the normalized PGV is 1 m/s, the 
PSDs associated with μ lying in the common range are well below 0.1 m, a value 
that can be considered as the lower bound of the sliding displacement threshold in 
practice. Therefore, analyzing the cases with normalized PGV below 1 m/s is not 
necessary from a design perspective. In the following parametric study, eleven levels 
of normalized PGVs, namely 1, 1.5, 2, 4, 6, 8, 10 12, 14, 16, and 18 m/s, are consid-
ered. These levels of normalized PGVs were achieved by adjusting the value of μ 
with the ground motion records unscaled. 

6.3 Parametric Study for the Normalized Peak Sliding 
Displacements 

6.3.1 Comparison of the Responses in the Two Orthogonal 
Directions 

The coupling of the friction forces in the two orthogonal directions [i.e., their resultant 
is equal to (m + mb)

(
g + ügz

)
μ] causing the ground motion in one direction tends 

to decrease the friction force component in the orthogonal direction, resulting in an 
increase in the sliding displacement in that direction. However, this effect is recip-
rocal. Assuming using enough number of ground motions, the relationship between
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the average normalized PSD and normalized PGV in one direction that was obtained 
should be the same as that in the orthogonal direction under the circumstance of 
three-component seismic excitation. To confirm this inference, Fig. 6.3 displays the 
mean values of usx0/μ at each level of vgx0/μ considered and the data points, (vgy0/μ, 
usy0/μ), corresponding to the response in the y direction. These data were obtained 
from response history analyses of SB structures with Tx = Ty = 0.4 s and α = 0.7 
using the 180 non-pulse-like ground motion records. Figure 6.3 presents only the 
data points with 1 m/s ≤ vgy0/μ ≤ 18 m/s, in order to maintain consistency with 
the range of the normalized ground motion IM considered in the x direction. It was 
found that a quadratic polynomial curve can well represent the relationship between 
mean usx0/μ and vgx0/μ; therefore, a regression curve, obtained through the use of 
a quadratic polynomial equation for fitting the data points, is displayed in Fig. 6.3. 
As can be seen in this figure, the regression curve for the relationship between the 
mean usy0/μ and vgy0/μ agrees well with the curve of the mean usx0/μ versus vgx0/μ. 
Therefore, it can be inferred that the relationship between the mean normalized PSD 
and normalized PGV is essentially identical for the two orthogonal horizontal direc-
tions. However, it is important to note that the PSDs may vary greatly between the 
two orthogonal directions for an individual ground motion, despite both directions 
having the same PGVs. In terms of statistical results, the outcomes achieved for the 
x-direction through a considerable number of ground motions can be extended to 
the y-direction. For this reason, only the response in the x direction is investigated 
hereafter. 
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Fig. 6.3 Comparison of the relationship between the normalized PSD and normalized PGV for the 
two orthogonal horizontal directions
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6.3.2 Probability Distribution of the Normalized PSD 
at a Given Level of Normalized Ground Motion 
Intensity 

Figure 6.4 depicts the cumulative probability distribution of the normalized PSD 
(usx0/μ and ust0/μ) at four distinct levels of normalized PGV (vgx0/μ and vgt0/μ). 
The data used to determine these empirical cumulative distributions were derived 
from response history analyses using the 180 non-pulse-like ground motion records 
with the structural parameters Tx = Ty = 0.4 s and α = 0.7. The figure clearly 
depicts that the empirical distributions are asymmetrical around the sample median 
and have lengthier tails moving towards upper values. The lognormal distribution, 
which has been extensively utilized in seismic performance assessment of building 
structures (e.g., Ruiz-Garcia & Miranda, 2007; Zareian & Krawinkler, 2007), also 
presents such type of feature and, thus, could be suitable for modeling the probability 
distributions of usx0/μ at a given level of vgx0/μ and ust0/μ at a given level of vgt0/ 
μ. The sample geometric mean and sample logarithmic standard deviation (Ang & 
Tang, 2006) are typically used to estimate the two parameters (i.e., the median and 
logarithmic standard deviation) of the fitted lognormal distribution function. For this 
study, the equations for estimating the parameters can be written as 

(usx0/μ)m = exp

(
n∑

i=1 

ln(usx0/μ)i /n

)
(6.7a) 

(ust0/μ)m = exp

(
n∑

i=1 

ln(ust0/μ)i /n

)
(6.7b) 

σln(usx0/μ) =
/∑n 

i=1

[
ln(usx0/μ)i − ln(usx0/μ)m

]2 
n − 1 

(6.8a) 

σln(ust0/μ) =
/∑n 

i=1

[
ln(ust0/μ)i − ln(ust0/μ)m

]2 
n − 1 

(6.8b)

where (usx0/μ)m and (ust0/μ)m are the medians of usx0/μ and ust0/μ, respectively; 
σln(usx0/μ) and σln(ust0/μ) are the lognormal standard deviations of usx0/μ and ust0/μ, 
respectively; (usx0/μ)i and (ust0/μ)i are the observed value; and n is the sample size. 
However, for vgx0/μ (and vgt0/μ) ≤ 2 m/s, some observed values of usx0/μ (and ust0/ 
μ) are 0 or very close to 0, which makes Eqs. (6.7) and (6.8) invalid because the 
natural logarithm of zero does not exist and the value computed by Eq. (6.7) will be 
dominated by the natural logarithm of a value that is near 0. Thus, for these cases, 
(usx0/μ)m and (ust0/μ)m are taken as the counted medians, and σln(usx0/μ) and σln(ust0/μ) 
are estimated by Eq. (6.9) based on the assumption that the data are sampled from 
lognormal distributions.
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Fig. 6.4 Empirical and fitted lognormal probability distributions of the normalized PSD at given 
levels of corresponding normalized PGV: a vgx0/μ = 1 m/s;  b vgx0/μ = 2 m/s;  c vgx0/μ = 6 m/s;  
d vgx0/μ = 12 m/s; e vgt0/μ = 1 m/s;  f vgt0/μ = 2 m/s;  g vgt0/μ = 6 m/s;  h vgt0/μ = 12 m/s

σln(usx0/μ) = ln
[
(usx0/μ)84% 

(usx0/μ)50%

]
(6.9a) 

σln(ust0/μ) = ln
[

(ust0/μ)84% 

(ust0/μ)50%

]
(6.9b) 

where (usx0/μ)50% and (usx0/μ)84% are the counted median and counted 84th percentile 
of usx0/μ, respectively; and (ust0/μ)50% and (ust0/μ)84% are the counted median and 
counted 84th percentile of ust0/μ, respectively. 

Figure 6.4 also displays the fitted lognormal distribution functions for each 
of the four levels of vgx0/μ and vgt0/μ. In general, the fitted lognormal distribu-
tion agrees fairly well with the corresponding empirical distribution. The well-
known Kolmogorov–Smirnov (K-S) goodness-of-fit tests (Ang & Tang, 2006) were 
conducted to further verify the adequacy of the lognormal distribution. Figure 6.4 
depicts the graphical representations of the K-S test with a 5% significance level. 
The figure displays that all data points for vgx0/μ (and vgt0/μ) = 2, 6, and 12 m/s, are 
within the limits of acceptability (i.e., the two dotted lines in Fig. 6.4), indicating that 
the assumed lognormal distribution is acceptable. For vgx0/μ (and vgt0/μ) = 1 m/s,  
due to the presence of several null values, certain points at the lower tail fall outside 
the acceptable limits; however, the practical sliding displacement threshold is much 
higher than the PSDs associated with this lower tail, thus the utility of the lognormal 
distribution remains unaffected. Concluding from the aforementioned discussions, it 
is evident that the lognormal distribution is appropriate for modeling the probability 
distributions of usx0/μ at a given level of vgx0/μ, and ust0/μ at a given level of vgt0/μ.
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Fig. 6.5 Comparison of the probability distributions of the normalized PSD under two- and three-
component excitations: a vgx0/μ = 1 m/s;  b vgx0/μ = 2 m/s;  c vgx0/μ = 6 m/s;  d vgx0/μ = 12 m/s; 
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6.3.3 Effect of the Vertical Ground Motion Component 

To investigate the influence of the vertical component on the PSD, the computation 
was carried out on the responses of SB structures exposed solely to the two horizontal 
components of the 180 non-pulse-like ground motions. Figure 6.5 shows a compar-
ison between the normalized PSD probability distribution under the two-component 
excitation and that of corresponding three-component excitation. The normalized 
PSD probability distributions for both cases in this figure are almost the same at a 
given normalized PGV level, with only slight differences in the upper portions of 
the cumulative distribution curves. This result indicates that the effect of the vertical 
component on the PSD is negligible. Shao and Tung (1999) and Konstantinidis and 
Nikfar (2015) have also arrived at comparable conclusions regarding the sliding 
behavior of rigid bodies. 

6.3.4 Effects of the Superstructure Natural Period and Mass 
Ratio 

Figures 6.6 and 6.7 present the relationships between (usx0/μ)m and vgx0/μ, and (ust0/ 
μ)m and vgt0/μ, respectively, for different values of Tx and α, which were determined 
by using the 180 non-pulse-like ground motion records and assuming Tx = Ty. As  
shown in these figures, the trend of (usx0/μ)m changing as vgx0/μ increases closely 
resembles the trend of (ust0/μ)m changing as vgt0/μ increases. In comparison with 
the normalized PGV, the influence of Tx and α on (usx0/μ)m and (ust0/μ)m is not 
so significant. To further investigate the combined effects of Tx and α on (usx0/μ)m 
and (ust0/μ)m, (usx0/μ)m and (ust0/μ)m are plotted against Tx and α in Figs. 6.8 and
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6.9, respectively, for four representative levels of normalized PGV. This figure also 
presents the results of rigid bodies, which correspond to Tx = 0. As can be seen in 
Figs. 6.8 and 6.9, when Tx ≤ 0.4 s, the mass ratio basically has a negligible effect 
on (usx0/μ)m and (ust0/μ)m; when Tx > 0.4 s, the influence of α becomes slightly 
more significant, and (usx0/μ)m and (ust0/μ)m generally increase as α increases. This 
phenomenon cannot be simply interpreted using the governing equations presented 
previously; additionally, since a larger value of α does not always lead to a larger (usx0/ 
μ)m or (ust0/μ)m, as presented in Figs. 6.8 and 6.9, the inherent characteristics of the 
ground motion time history should have played a significant role in this general trend. 
For a given mass ratio, the values of (usx0/μ)m and (ust0/μ)m generally first increase 
and then decrease as Tx increases, and the differences between the maximum and 
minimum values of (usx0/μ)m and (ust0/μ)m for Tx within the range considered range 
from 0.04 to 0.33 m and 0.02 to 0.27 m, respectively, and generally increase as the 
corresponding normalized PGV increases. From this result, we know that the PSDs 
of actual SB structures may be underestimated by relying solely on the response of 
rigid bodies. For simplicity, it is reasonable to use the maximum values of (usx0/μ)m 
and (ust0/μ)m for the range of Tx considered to conservatively estimate the PSDs of 
possible SB structures. 

Figures 6.10 and 6.11 present the relationships between σln(usx0/μ) and vgx0/μ, 
and σln(ust0/μ) and vgt0/μ, respectively, for different values of Tx and α. For  some  
cases when vgx0/μ (and vgt0/μ) = 1 m/s, the values of (usx0/μ)50% [and (ust0/μ)50%] 
are 0 or very close to 0; thus, the values obtained from using Eq. (6.9) to compute 
σln(usx0/μ) [and σln(ust0/μ)] are infinite or unreasonably large. For this reason, the results 
corresponding to vgx0/μ (and vgt0/μ) = 1 m/s are not presented in Fig. 6.10 (and 
Fig. 6.11). As shown in Fig. 6.10 (and Fig. 6.11), σln(usx0/μ) [and σln(ust0/μ)] generally
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Fig. 6.9 Combined effects of Tx and α on (ust0/μ)m: a vgt0/μ = 2 m/s;  b vgt0/μ = 6 m/s;  c vgt0/μ 
= 10 m/s; d vgt0/μ = 14 m/s

lie between 0.4 and 0.6 except for some cases when vgx0/μ (and vgt0/μ) = 1.5 and 
2 m/s. When the normalized PGV is small, sliding is not predominant, and the 
ground acceleration may play a more significant role than the ground velocity as the 
acceleration quantities dominate the initiation of sliding as revealed by Eq. (6.5); 
furthermore, sliding is less likely to occur for smaller values of α and larger values 
of Tx, as demonstrated in Chap. 4. This explains why the values of σln(usx0/μ) [and 
σln(ust0/μ)] are generally larger for vgx0/μ (and vgt0/μ) = 1.5 and 2 m/s and even larger 
values are obtained when Tx = 1 s and α ≤ 0.7.

The combined effects of Tx and α on σln(usx0/μ) and σln(ust0/μ) are plotted in 
Figs. 6.12 and 6.13, respectively, for four representative levels of normalized PGV. 
In general, the influence of α on σln(usx0/μ) [and σln(ust0/μ)] is small except for vgx0/μ 
(and vgt0/μ) ≤ 2 m/s. For any given level of vgx0/μ (and vgt0/μ), the maximum value 
of σln(usx0/μ) [and σln(ust0/μ)] is obtained at Tx = 1 s; this value is 0.87 (and 1.12) 
for vgx0/μ (and vgt0/μ) = 2 m/s and is around 0.63 (and 0.58) for all other levels of 
vgx0/μ (and vgt0/μ) ≥ 4 m/s. The value of Tx at which the minimum σln(usx0/μ) [and 
σln(ust0/μ)] is obtained varies for different levels of vgx0/μ (and vgt0/μ). For a given 
level of vgx0/μ (and vgt0/μ), the minimum value of σln(usx0/μ) [and σln(ust0/μ)] ranges 
from 0.41 to 0.57 (and 0.38–0.53). The average value of σln(usx0/μ) [and σln(ust0/μ)] is
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Fig. 6.11 Relationships between σln(ust0/μ) and vgt0/μ for different values of Tx and α: a α = 0.5; 
b α = 0.7; c α = 0.9; d Tx = 0.1 s; e Tx = 0.4 s; f Tx = 0.7 s

0.60 (and 0.58) for vgx0/μ (and vgt0/μ) = 2 m/s and ranges from 0.49 to 0.58 (and 
0.45–0.55) for vgx0/μ (and vgt0/μ) ≥ 4 m/s.

The equality Tx = Ty is employed in all of the aforementioned analyses. To 
investigate the possible effect of Tx/Ty on the PSD, the values of (usx0/μ)m and (ust0/ 
μ)m corresponding to different values of Tx/Ty are compared in Figs. 6.14 and 6.15, 
respectively, and those of σln(usx0/μ) and σln(ust0/μ) are compared in Figs. 6.16 and 6.17, 
respectively. For the data presented in these figures, α is taken as 0.7. These figures
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Fig. 6.12 Combined effects of Tx and α on σln(usx0/μ): a vgx0/μ = 2 m/s;  b vgx0/μ = 6 m/s;  c vgx0/ 
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make it clear that Tx/Ty has a negligible influence. Therefore, the results obtained 
for Tx = Ty can represent those of the other Tx/Ty within the range considered.

6.3.5 Effect of Near-Fault Pulses 

Distinct pulses in near-fault ground motions affected by forward directivity may result 
in distinct sliding response characteristics as compared to ordinary ground motions. 
To investigate this effect, the (usx0/μ)m versus vgx0/μ and (ust0/μ)m versus vgt0/μ 
curves obtained using the 60 near-fault pulse-like records and the 180 non-pulse-like 
records are compared in Figs. 6.18 and 6.19, respectively. When vgx0/μ ≤ 4 m/s (and 
vgt0/μ ≤ 6 m/s), the values of (usx0/μ)m [and (ust0/μ)m] corresponding to the pulse-
like records are close to those corresponding to the non-pulse-like records. When 
vgx0/μ exceeds 6 m/s (and vgt0/μ exceeds 8 m/s), the value of (usx0/μ)m [and (ust0/ 
μ)m] for the pulse-like records starts to exceed the corresponding value for the non-
pulse-like records, and the difference increases monotonically as vgx0/μ (and vgt0/μ) 
increases. To interpret the underlying reason for this phenomenon, Fig. 6.20 (Tx = 
Ty = 0.4 s and α = 0.7 are adopted) illustrates the ground acceleration, velocity, and
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Fig. 6.14 Effects of Tx /Ty on (usx0/μ)m (α = 0.7): a Tx = 0.4 s; b Tx = 0.7 s; c Tx = 1 s  
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Fig. 6.15 Effects of Tx /Ty on (ust0/μ)m (α = 0.7): a Tx = 0.4 s; b Tx = 0.7 s; c Tx = 1 s
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Fig. 6.16 Effects of Tx /Ty on σln(usx0/μ) (α = 0.7): a Tx = 0.4 s; b Tx = 0.7 s; c Tx = 1 s  
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Fig. 6.17 Effects of Tx /Ty on σln(ust0/μ) (α = 0.7): a Tx = 0.4 s; b Tx = 0.7 s; c Tx = 1 s

sliding displacement time histories corresponding to the counted median of usx0/μ in 
each (non-pulse-like or pulse-like) group. By comparing the time histories presented 
in Fig. 6.20b for  vgx0/μ = 10 m/s, we can find that the prominent long-period velocity 
pulse in the pulse-like ground motion is the cause of the larger value of (usx0/μ)m in 
comparison with the non-pulse-like ground motion. However, when vgx0/μ is small, 
as illustrated in Fig. 6.20a for  vgx0/μ = 2 m/s, the contribution of the long-period 
velocity pulse is not so significant. The simplified equation (Eq. 6.10) proposed by 
Jampole et al. (2018) for predicting the PSD of a rigid block subjected to a half-
sine pulse which was derived from simplification of the corresponding closed-form 
solution can provide an approximate interpretation of this result. 

us,max = 
a2 pT 

2 
p 

4μg 
− 

1 

2 
apT 

2 
p + 

1 

4 
T 2 p μg (6.10)

where us,max is the PSD of the rigid block; and ap and Tp are the peak acceleration 
and duration of the half-sine pulse, respectively. Dividing both sides of Eq. (6.10) 
by μ and replacing apTp with πvgi/2 (where vpi is the peak velocity of the half-sine 
pulse), lead to 

us,max 

μ 
= 

π 2 

16g

(
vpi 

μ

)2 

− 
π 
4 

vpi 

μ 
Tp + 

1 

4 
T 2 p g (6.11)
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Fig. 6.19 Effects of near-fault pulses on (ust0/μ)m: a α = 0.5; b α = 0.7; and c α = 0.9

Equation (6.11) indicates that the quadratic relationship between normalized PSD 
and normalized PGV remains when a half-sine pulse is applied for excitation, that 
is, as the normalized PGV increases, the rate of increase of the normalized PSD with 
respect to it also increases, i.e., the effect of the prominent long-period velocity pulse 
is more significant when normalized PGV levels are higher. 

Figures 6.21 and 6.22 compare the σln(usx0/μ) versus vgx0/μ and σln(ust0/μ) versus 
vgt0/μ curves, respectively, of the pulse-like records with those of the non-pulse-like 
records. As shown in this figure, when vgx0/μ (and vgt0/μ) ≤ 4 m/s, the values of 
σln(usx0/μ) [and σln(ust0/μ)] for the pulse-like records are generally larger than those for 
the non-pulse-like records; when vgx0/μ (and vgt0/μ) ≥ 6 m/s, the value of σln(usx0/μ) 
[and σln(ust0/μ)] for the pulse-like records does not change much and is slightly smaller 
than the corresponding value for the non-pulse-like records. Since the computed 
dispersion is partly influenced by the selected ground motion records, and typically 
there are minimal differences in the computed σln(usx0/μ) [and σln(ust0/μ)] of the  two  
ground motion types, it is reasonable to expect a similar level of inherent dispersion 
for the two types of ground motions.
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Fig. 6.21 Effects of near-fault pulses on σln(usx0/μ): a α = 0.5; b α = 0.7; c α = 0.9 
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Fig. 6.22 Effects of near-fault pulses on σln(ust0/μ): a α = 0.5; b α = 0.7; c α = 0.9 

6.4 Fragility Curves 

From the investigations in the preceding section, we know that the influence of Tx 

and α on (usx0/μ)m [and (ust0/μ)m] is limited in comparison with that of vgx0/μ (and 
vgt0/μ). Therefore, in the design of SB structures, it is advisable to use the maximum 
values of (usx0/μ)m and (ust0/μ)m conservatively for the common range of Tx. The  
maximum (usx0/μ)m versus vgx0/μ and maximum (ust0/μ)m versus vgt0/μ curves are 
plotted in Fig. 6.23 for different values of α and for both the non-pulse-like and 
pulse-like ground motions. Since the curves corresponding to different values of α 
are very close to each other, for simplicity, equations for design can be developed 
solely based on the findings of α = 0.9, which are generally larger than those of other 
values of α. It is found that a quadratic polynomial curve can well fit the relationship 
between the maximum (usx0/μ)m and vgx0/μ, as well as the maximum (ust0/μ)m and 
vgt0/μ, and the obtained regression formulae are as follows:

(1) For the non-pulse-like ground motions, 

(usx0/μ)m = 0.0052
(
vgx0/μ

)2 + 0.261
(
vgx0/μ

) − 0.254 ≥ 0 (6.12a) 

(ust0/μ)m = 0.0047
(
vgt0/μ

)2 + 0.283
(
vgt0/μ

) − 0.308 ≥ 0 (6.12b)
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Fig. 6.23 Comparison of the design equations and numerical results for the relationships between 
the median normalized PSD and normalized PGV: a non-pulse-like ground motions; b pulse-like 
ground motions

(2) For the near-fault pulse-like ground motions, 

(usx0/μ)m = 0.017
(
vgx0/μ

)2 + 0.257
(
vgx0/μ

) − 0.341 ≥ 0 (6.13a) 

(ust0/μ)m = 0.020
(
vgt0/μ

)2 + 0.190
(
vgt0/μ

) − 0.282 ≥ 0 (6.13b) 

where (usx0/μ)m and (ust0/μ)m are in m, and vgx0/μ and vgt0/μ are in m/s.  
According to the findings presented previously, replacing the subscript letter 
“x” with “y” enables the application of Eqs. (6.12a) and (6.13a) to the response 
in the y direction as well. As shown in Fig. 6.23, Eqs. (6.12) and (6.13) can 
well predict the corresponding relationships between the median normalized 
PSD and normalized PGV, and the coefficients of determination, R2, of these 
equations are all larger than 0.99. Further comparison of the curves determined 
by Eqs. (6.12a) and (6.12b) [and Eqs. (6.13a) and (6.13b)], as presented in 
Fig. 6.23, indicates that the relationship between the median normalized PSD 
and normalized PGV in each principal direction is close to that with respect 
to the origin. Since the median normalized PSD versus normalized PGV curve 
corresponding to Eq. (6.12b) [and Eq. (6.13a)] is slightly above that corre-
sponding to Eq. (6.12a) [and Eq. (6.13b)], Eqs. (6.12b) and (6.13a) can be used 
conservatively as unified equations for predicting the response in each principal 
direction as well as the maximum response over all the directions.
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It is worth mentioning here that Ryan and Chopra (2004) also proposed a design 
equation for calculating the median peak displacements, (ust0)m, of friction pendulum 
isolators: 

(ust0)m = 
4.36 

4π 2 
T 0.14 b η(−0.99−0.20 ln η) max

(
vgx0, vgy0

)
(6.14) 

where Tb is the isolation period, and η is defined as 

η = μg 

ωd max
(
vgx0, vgy0

) (6.15) 

ωd in Eq. (6.15) is the frequency marking the transition from the velocity-sensitive to 
the displacement-sensitive region of the median spectrum of the stronger horizontal 
ground-motion components. Note that in Eq. (6.14), the PSD with respect to the 
origin is taken as the response quantity of interest, while the PGV of the stronger 
component is taken as the ground motion IM, which sets it apart from the treatment 
in this study. The comparison of the median normalized PSD versus normalized PGV 
curve, determined by Eq. (6.14) [ωd = 3.05 is adopted, as done by Ryan and Chopra 
(2004), and Tb is taken as 10 s such that the corresponding radius of the FP isolator 
is sufficiently large to yield the same response as that of a flat sliding system], with 
those determined by Eqs. (6.12) and (6.13) in Fig.  6.23, is presented. As can be seen, 
the curve determined by Eq. (6.14) is close to those determined by Eq. (6.13), which 
is proposed for near-fault pulse-like ground motions. This is because the 20 ground 
motions used in the response history analyses conducted by Ryan and Chopra (2004) 
were from large-magnitude earthquakes and recorded at sites near fault ruptures, the 
characteristics of which are close to the near-fault pulse-like ground motions used in 
the present study. 

As demonstrated in the preceding section, there does not exhibit a clear trend for 
the influence of the structural parameters, Tx, Tx/Ty, and α on the logarithmic stan-
dard deviations, σln(usx0/μ) and σln(ust0/μ), and the values of σln(usx0/μ) [and σln(ust0/μ)] 
are generally between 0.4 and 0.6 except for some cases when vgx0/μ (and vgt0/ 
μ) is small. Based on these results, adopting a constant value for σln(usx0/μ) [and 
σln(ust0/μ)] is reasonable in design. This value is taken as 0.55 for both σln(usx0/μ) 
and σln(ust0/μ) here, which is approximately the average of all the results computed 
using the non-pulse-like ground motion records when vgx0/μ (and vgt0/μ) ≥ 2 m/s.  
As previously discussed, the dispersion for the pulse-like and non-pulse-like ground 
motions is expected to be the same; thus, the values of σln(usx0/μ) and σln(ust0/μ) for 
the pulse-like ground motions are also taken as 0.55. The aforementioned dispersion 
is a result of the random nature of the ground motion, which belongs to the aleatory 
uncertainty. Other sources of variability are referred to as the epistemic uncertainty, 
which is related to the lack of knowledge about the real structural properties and 
modeling approximations. Simultaneous consideration of both types of uncertainty 
involves an elaborate Monte Carlo simulation with appropriate distribution functions 
for the structural properties, which requires considerable effort. For simplicity, an
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approximate method based on the assumption that the effects of aleatory and epis-
temic sources are independent (FEMA, 2009) is adopted here. Assuming a recom-
mended epistemic dispersion of 0.35 for average modeling quality, as suggested 
by FEMA P-58-1 (FEMA, 2018), the total dispersion of the normalized PSD is √
0.552 + 0.352 = 0.65. 
The fragility curve is an effective approach in assessing the seismic vulnerability 

of SB structures caused by excessive sliding, which presents the probabilities of 
exceeding a specified sliding displacement threshold at various levels of ground 
motion intensity. Since the normalized PSD (usx0/μ, usy0/μ, and ust0/μ) at a given level 
of corresponding normalized PGV (vgx0/μ, vgy0/μ, and vgt0/μ) follows the lognormal 
distribution, the probability, Pf , of exceeding the sliding displacement threshold, 
ulim, for given values of PGV = pgv and μ = μ0 can be computed by 

Pf = P(Us0 > ulim|PGV  = pgv, μ = μ0 ) 
= P[(Us0/μ0) > (ulim/μ0)|(PGV  /μ) = (pgv/μ0) ] 

= 1 − Φ

(
ln(ulim/μ0) − ln(us0/μ0)m 

βtot

)
(6.16) 

where Us0 represents the PSD of interest; Φ is the standard normal cumulative 
distribution function; the median normalized PSD, (us0/μ0)m, is computed using 
Eq. (6.12) or Eq.  (6.13); and the total dispersion, β tot, is taken as 0.65, as discussed 
previously. Figure 6.24 shows the fragility curves for some typical values of μ and ulim 

[Eqs. (6.12b) and (6.13a) were used in the computation], which clearly demonstrate 
the variation of Pf as the PGV increases and the effects of the primary parameters. 
As shown in Fig. 6.24, for small values of ulim (e.g., ulim = 0.1 m) or large values of 
μ (e.g., μ = 0.4), there is no significant difference between the fragility curves of the 
non-pulse-like and pulse-like ground motions; as ulim increases or μ decreases, this 
difference becomes more significant and the SB structures subjected to pulse-like 
ground motions are more vulnerable in comparison with those subjected to non-
pulse-like ground motions. This outcome agrees with the differences in the median 
normalized PSD and normalized PGV relationships depicted in Fig. 6.18 for both 
ground motion types.

6.5 Conclusions 

This chapter presents a comprehensive study on the peak sliding displacements of 
SB structures subjected to three-component earthquake excitations. The PSDs in 
both the two main directions and with respect to the origin are taken into account. 
PGV is chosen as the ground motion IM because it exhibits a higher correlation with 
PSD compared to PGA and its attenuation relationship is conveniently accessible for 
design use.
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Fig. 6.24 Fragility curves: a μ = 0.1; b μ = 0.2; c μ = 0.3; d μ = 0.4

It is possible for an individual ground motion to exhibit significant differences in 
its PSDs between the two orthogonal horizontal directions, despite both directions 
having the same PGVs; however, on average, the relationship between the normalized 
PSD and normalized PGV is essentially identical for the two orthogonal directions. 
The effect of the vertical ground motion component on the PSD is negligible. The 
probability distributions of usx0/μ at a given level of vgx0/μ and ust0/μ at a given level 
of vgt0/μ can be modeled by the lognormal distribution. The relationship between 
(usx0/μ)m and vgx0/μ and that between (ust0/μ)m and vgt0/μ are close to each other. 
The influence of Tx, Tx/Ty, and α on (usx0/μ)m and (ust0/μ)m is insignificant; thus, 
it is appropriate to conservatively use the maximum values of (usx0/μ)m and (ust0/ 
μ)m for the common ranges of Tx, Ty, and α in the design of SB structures. The 
lognormal standard deviation, σln(usx0/μ) [and σln(ust0/μ)], generally lies between 0.4 
and 0.6 except for some cases when vgx0/μ (and vgt0/μ) is below 2. 

When the normalized PGV is small, the values of (usx0/μ)m [and (ust0/μ)m] corre-
sponding to the pulse-like records are close to those corresponding to the non-pulse-
like records. When the normalized PGV exceeds a certain value (approximately
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6–8 m/s), the value of (usx0/μ)m [and (ust0/μ)m] for the pulse-like records starts to 
exceed the corresponding value for the non-pulse-like records, and the difference 
increases monotonically as vgx0/μ (and vgt0/μ) increases. The difference in the value 
of σln(usx0/μ) [and σln(ust0/μ)] for the two types of ground motions is small. 
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