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Preface

Computing, in the sense of doing mathematical calculations, is a skill that mankind
has developed over thousands of years. Programming, on the other hand, is in
its infancy, with a history that spans a few decades only. Both topics are vastly
comprehensive and usually taught as separate subjects in educational institutions
around the world, especially at the undergraduate level. This book is about the
combination of the two, because computing today becomes so much more powerful
when combined with programming.

Most universities and colleges implicitly require students to specialize in com-
puter science if they want to learn the craft of programming, since other student
programs usually do not offer programming to an extent demanded for really mas-
tering this craft. Common arguments claim that it is sufficient with a brief introduc-
tion, that there is not enough room for learning programming in addition to all other
must-have subjects, and that there is so much software available that few really need
to program themselves. A consequence is that engineering students often graduate
with shallow knowledge about programming, unless they happened to choose the
computer science direction.

We think this is an unfortunate situation. There is no doubt that practicing engi-
neers and scientists need to know their pen and paper mathematics. They must also
be able to run off-the-shelf software for important standard tasks and will certainly
do that a lot. Nevertheless, the benefits of mastering programming are many.

Why learn programming?

1. Ready-made software is limited to handling certain standard problems. What do
you do when the problem at hand is not covered by the software you bought?
Fortunately, a lot of modern software systems are extensible via programming.
In fact, many systems demand parts of the problem specification (e.g., material
models) to be specified by computer code.

2. With programming skills, you may extend the flexibility of existing software
packages by combining them. For example, you may integrate packages that do
not speak to each other from the outset. This makes the work flow simpler, more
efficient, and more reliable, and it puts you in position to attack new problems.

v
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3. It is easy to use excellent ready-made software the wrong way. Insight in
programming and the mathematics behind is fundamental for understanding
complex software, avoiding pitfalls, and become a safe user.

4. Bugs (errors in computer code) are present in most larger computer programs
(also in the ones from the shop!). What do you do when your ready-made
software gives unexpected results? Is it a bug, is it wrong use, or is it the math-
ematically correct result? Experience with programming of mathematics gives
you a good background for answering these questions. The one who can pro-
gram, can also make tailored code for a simplified problem setting and use that
to verify the computations done with off-the-shelf software.

5. Lots of skilled people around the world solve computational problems by writ-
ing their own code and offer their code for free on the Internet. To take advantage
of this truly great source of software in a reliable way, one must normally be able
to understand and possibly modify computer code offered by others.

6. It is recognized world wide that students struggle with mathematics and physics.
Too many find such subjects difficult and boring. With programming, we can
execute the good old subjects in a brand new way! According to the authors’
own experience, students find it much more motivating and enlightening when
programming is made an integrated part of mathematics and physical science
courses. In particular, the problem being solved can be much more realistic than
when the mathematics is restricted to what you can do with pen and paper.

7. Finally, we launch our most important argument for learning computer program-
ming: the algorithmic thinking that comes with the process of writing a program
for a computational problem enforces a thorough understanding of both the
problem and solution method. We can simply quote the famous Norwegian
computer scientist Kristen Nyggaard: “Programming is understanding”.

In the authors’ experience, programming is an excellent pedagogical tool for
understanding mathematics: “You think you know when you can learn, are more
sure when you can write, even more when you can teach, but certain when you
can program” (Alan Perlis, computer scientist, 1922-1990). Consider, for example,
integration. A numerical method for integration has a much stronger focus on what
the integral actually is and means compared to analytical methods, where much
time and effort must be devoted to integration by parts, integration by substitution,
etc. Moreover, when programming the numerical integration formula, it becomes
evident that it works for “all” mathematical functions and that the implementation
should be in terms of a general function applicable to “all” integrals. In this way,
students learn to recognize a special problem as belonging to a class of problems
(e.g., integration, differential equations, root finding), for which we have general
numerical methods implemented in widely applicable software. When they write
this software, as we do in this book, they learn how to generalize and increase the
abstraction level of the mathematical problem. When they use this software, they
learn how a special case should be attacked by general methods and software for
the class of problems that comprises the special case at hand. This is the power of
mathematics in a nutshell, and it is paramount that students understand this way of
thinking.
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Target audience and background knowledge This book was written for students,
teachers, engineers and scientists that know nothing about programming and nu-
merical methods from before, but who seek a minimum of the fundamental skills
required to get started with programming as a tool for solving scientific and engi-
neering problems. Some knowledge of one- and multi-variable calculus is assumed.
The basic programming concepts are presented in only 50 pages (Chaps. 1 and 2),
before practical applications of these concepts are demonstrated in important math-
ematical subjects addressed in the remaining parts of the book (Chaps. 3–6). Each
chapter is followed by a set of exercises that cover a wide range of application ar-
eas, e.g. biology, geology, statistics, physics and mathematics. The exercises were
particularly designed to bring across important points from the text. The reader will
realize that the modest content of the first 50 pages can in fact bring you quite far
in powerful problem solving!

Learning the very basics of programming should not take long, but as with any
other craft, mastering the skill requires continued and extensive practice. Some
beginning practice is gained through Chaps. 3–6, but the authors strongly empha-
size that this is only a start. Students should continue to practice programming in
subsequent courses, while those who exercise self-study, should keep up the learn-
ing process through continued application of the craft. The book is a good starting
point when teaching computer programming as an integrated part of standard uni-
versity courses in mathematics and physical sciences. In our experience, such an
integration is doable and indeed rewarding.

Numerical methods An overall goal with this book is to motivate computer pro-
gramming as a very powerful tool for doing mathematics. All examples are related
to mathematics and its use in engineering and science. However, to solve math-
ematical problems through computer programming, we need numerical methods.
Explaining basic numerical methods is therefore an integral part of the book. Our
choice of topics is governed by what is most needed in science and engineering, as
well as in the teaching of applied physical science courses. Mathematical models
are then central, with differential equations constituting the most frequent type of
models. Consequently, the numerical focus in this book is on differential equations.
As a soft pedagogical starter for the programming of mathematics, we have chosen
the topic of numerical integration. There is also a chapter on root finding, which
is important for the numerical solution of nonlinear differential equations. We re-
mark that the book is deliberately brief on numerical methods. This is because our
focus is on implementing numerical algorithms, but to develop reliable, working
programs, the programmer must be confident about the basic ideas of the numerical
approximations involved.

The computer language: Matlab We have chosen to use the programming lan-
guage Matlab, because this language gives very compact and readable code that
closely resembles the mathematical recipe for solving the problem at hand. Mat-
lab also has a gentle learning curve. There is a Python companion of this book in
case that language is preferred. Comparing these two versions of the book provides
an excellent demonstration of how similar these languages are. We use the term
Matlab throughout this book to mean the commercial MATLAB (R) software [12]
or the open source alternative Octave [4]. Other computer languages, like Fortran,
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C, and C++, have a strong position in science and engineering. During the last
two decades, however, there has been a significant shift in popularity from these
compiled languages to more high-level and easier-to-read languages like Matlab,
Python, R, Maple, Mathematica, and IDL, for instance. This latter class of lan-
guages is computationally less efficient, but superior with respect to overall human
problem solving efficiency. This book emphasizes how to think like a programmer,
rather than focusing on technical language details. Thus, the book should put the
reader in a good position for learning other programming languages later, including
the classic ones: Fortran, C, and C++.

How this book is different There are numerous texts on computer programming
and numerical methods, so how does the present one differ from the existing lit-
erature? Compared to books on numerical methods, our book has a much stronger
emphasis on the craft of programming and on verification. We want to give students
a thorough understanding of how one thinks about programming as a problem solv-
ing method and how one can be sure that programs are correct (well, you can never
be completely sure, but we show how you can provide convincing evidence for
correctness).

Even though there are lots of books on numerical methods where many algo-
rithms have a corresponding computer implementation (see, e.g., [1–3, 5–7, 11,
13–22]) it is assumed that the reader “can program” beforehand. The present book
teaches the craft of structured programming along with the fundamental ideas of
numerical methods. Furthermore, we have so far not found any other numerical
methods book that has a strong emphasis on verifying implementations. In this
book, unit testing and corresponding test functions are introduced early on. We
also put much emphasis on coding algorithms as functions, as opposed to “flat pro-
grams”, which often dominate in the literature and among practitioners. Functions
are reusable because they utilize the general formulation of a mathematical algo-
rithm such that it becomes applicable to a large class of problems.

There are also numerous books on computer programming, but to our knowledge
only one [9] that aims to teach how to think about programming in the context
of numerical methods and scientific applications. That book [9] has its primary
focus on teaching Python and is a very comprehensive introduction to Python as
a language and the thinking about programming as a computer scientist. Sometimes
one needs a text that does not go so deep into the language-specific details, but
instead targets the shortest path to reliable mathematical problem solving through
programming. With this attitude in mind, a lot of topics were left out of the present
book, simply because they were not strictly needed in the mathematical problem
solving process. An example of such a topic is object-oriented programming.

Whenever the need for a structured introduction to programming arises in sci-
ence and engineering courses, this book may be your option, either for self-study or
for use in organized teaching. The thinking, habits, and practice covered in a couple
of hundred pages will put readers in a firm position for utilizing and understanding
the power of computers for problem solving in science and engineering.

Supplementary materials All program and data files referred to in this book are
available from the book’s primary web site: http://hplgit.github.io/prog4comp/.

http://hplgit.github.io/prog4comp/
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1The First Few Steps

1.1 What Is a Program? AndWhat Is Programming?

Today, most people are experienced with computer programs, typically programs
such asWord, Excel, PowerPoint, Internet Explorer, and Photoshop. The interaction
with such programs is usually quite simple and intuitive: you click on buttons, pull
down menus and select operations, drag visual elements into locations, and so forth.
The possible operations you can do in these programs can be combined in seemingly
an infinite number of ways, only limited by your creativity and imagination.

Nevertheless, programs often make us frustrated when they cannot do what we
wish. One typical situation might be the following. Say you have some measure-
ments from a device, and the data are stored in a file with a specific format. You
may want to analyze these data in Excel and make some graphics out of it. How-
ever, assume there is no menu in Excel that allows you to import data in this specific

1© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_1



2 1 The First Few Steps

format. Excel can work with many different data formats, but not this one. You start
searching for alternatives to Excel that can do the same and read this type of data
files. Maybe you cannot find any ready-made program directly applicable. You
have reached the point where knowing how to write programs on your own would
be of great help to you! With some programming skills, you may write your own
little program which can translate one data format to another. With that little piece
of tailored code, your data may be read and analyzed, perhaps in Excel, or perhaps
by a new program tailored to the computations that the measurement data demand.

The real power of computers can only be utilized if you can program them.
By programming you can get the computer to do (most often!) exactly what you
want. Programming consists of writing a set of instructions in a very specialized
language that has adopted words and expressions from English. Such languages
are known as programming or computer languages. The set of instructions is given
to a program which can translate the meaning of the instructions into real actions
inside the computer.

The purpose of this book is to teach you to write such instructions dedicated to
solve mathematical and engineering problems by fundamental numerical methods.

There are numerous computer languages for different purposes. Within the en-
gineering area, the most widely used computer languages are Python, MATLAB,
Octave, Fortran, C, C++, and to some extent Maple, and Mathematica. How you
write the instructions (i.e. the syntax) differs between the languages. Let us use an
analogy.

Assume you are an international kind of person, having friends abroad in Eng-
land, Russia and China. They want to try your favorite cake. What can you do?
Well, you may write down the recipe in those three languages and send them over.
Now, if you have been able to think correctly when writing down the recipe, and
you have written the explanations according to the rules in each language, each of
your friends will produce the same cake. Your recipe is the “computer program”,
while English, Russian and Chinese represent the “computer languages” with their
own rules of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”. Depending on
the error, this may cause “baking execution” to stop, or perhaps produce the wrong
cake. In your computer program, the errors you introduce are called bugs (yes,
small insects! . . . for historical reasons), and the process of fixing them is called
debugging. When you try to run your program that contains errors, you usually
get warnings or error messages. However, the response you get depends on the er-
ror and the programming language. You may even get no response, but simply the
wrong “cake”. Note that the rules of a programming language have to be followed
very strictly. This differs from languages like English etc., where the meaning might
be understood even with spelling errors and “slang” included.

This book comes in two versions, one that is based on Python, and one based on
Matlab. Both Python and Matlab represent excellent programming environments
for scientific and engineering tasks. The version you are reading now, is the Matlab
version.

Readers who want to expand their scientific programming skills beyond the
introductory level of the present exposition, are encouraged to study the book
A Primer on Scientific Programming with Python [9]. This comprehensive book
is as suitable for beginners as for professional programmers, and teaches the art
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of programming through a huge collection of dedicated examples. This book is
considered the primary reference, and a natural extension, of the programming
matters in the present book.

Some computer science terms
Note that, quite often, the terms script and scripting are used as synonyms for
program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried to explain
the difference between script and program in a humorous way (from perl.com1):
Suppose you went back to Ada Lovelace2 and asked her the difference between
a script and a program. She’d probably look at you funny, then say something
like: Well, a script is what you give the actors, but a program is what you give
the audience. That Ada was one sharp lady . . . Since her time, we seem to
have gotten a bit more confused about what we mean when we say scripting. It
confuses even me, and I’m supposed to be one of the experts.

There are many other widely used computer science terms to pick up. Writing
a program (or script or code) is often expressed as implementing the program.
Executing a program means running the program. An algorithm is a recipe for
how to construct a program. A bug is an error in a program, and the art of
tracking down and removing bugs is called debugging (see, e.g., Wikipedia3).
Simulating or simulation refers to using a program to mimic processes in the
real world, often through solving differential equations that govern the physics
of the processes.

1.2 AMatlab Programwith Variables

Our first example regards programming a mathematical model that predicts the po-
sition of a ball thrown up in the air. From Newton’s 2nd law, and by assuming
negligible air resistance, one can derive a mathematical model that predicts the ver-
tical position y of the ball at time t . From the model one gets the formula

y D v0t � 0:5gt2;

where v0 is the initial upwards velocity and g is the acceleration of gravity, for
which 9:81ms�2 is a reasonable value (even if it depends on things like location
on the earth). With this formula at hand, and when v0 is known, you may plug in
a value for time and get out the corresponding height.

1.2.1 The Program

Let us next look at a Matlab program for evaluating this simple formula. Assume
the program is contained as text in a file named ball.m. The text looks as follows
(file ball.m):

1 http://www.perl.com/pub/2007/12/06/soto-11.html
2 http://en.wikipedia.org/wiki/Ada_Lovelace
3 http://en.wikipedia.org/wiki/Software_bug#Etymology

http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
https://github.com/hplgit/prog4comp/tree/master/src/m/ball.m
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
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% Program for computing the height of a ball in vertical motion

v0 = 5; % Initial velocity

g = 9.81; % Acceleration of gravity

t = 0.6; % Time

y = v0*t - 0.5*g*t^2 % Vertical position

Computer programs and parts of programs are typeset with a blue background
in this book. A slightly darker top and bottom bar, as above, indicates that the code
is a complete program that can be run as it stands. Without the bars, the code is just
a snippet and will (normally) need additional lines to run properly.

1.2.2 Dissection of the Program

A computer program is plain text, as here in the file ball.m, which contains in-
structions to the computer. Humans can read the code and understand what the
program is capable of doing, but the program itself does not trigger any actions on
a computer before another program, the Matlab interpreter, reads the program text
and translates this text into specific actions.

You must learn to play the role of a computer
AlthoughMatlab is responsible for reading and understanding your program, it is
of fundamental importance that you fully understand the program yourself. You
have to know the implication of every instruction in the program and be able to
figure out the consequences of the instructions. In other words, you must be able
to play the role of a computer. The reason for this strong demand of knowledge is
that errors unavoidably, and quite often, will be committed in the program text,
and to track down these errors, you have to simulate what the computer does
with the program. Next, we shall explain all the text in ball.m in full detail.

When you run your program in Matlab, it will interpret the text in your file line
by line, from the top, reading each line from left to right. The first line it reads is

% Program for computing the height of a ball in vertical motion.

This line is what we call a comment. That is, the line is not meant for Matlab to read
and execute, but rather for a human that reads the code and tries to understand what
is going on. Therefore, one rule in Matlab says that whenever Matlab encounters
the sign % it takes the rest of the line as a comment. Matlab then simply skips
reading the rest of the line and jumps to the next line. In the code, you see several
such comments and probably realize that they make it easier for you to understand
(or guess) what is meant with the code. In simple cases, comments are probably not
much needed, but will soon be justified as the level of complexity steps up.

The next line read by Matlab is

v0 = 5; % Initial velocity
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According to its rules, Matlab will now create a variable with the name v0 and
set (the value of) that variable equal to 5. We say that 5 is assigned to v0. This
means that whenever Matlab reads v0 hereafter, it plugs in 5 instead of the name
v0, since it knows that v0 has the value 5. You may think of v0 as a variable v0 in
mathematics. The next two lines

g = 9.81; % Acceleration of gravity

t = 0.6; % Time

are of the same kind, so having read them too, Matlab knows of three variables (v0,
g, t) and their values. These variables are then used by Matlab when it reads the
next line, the actual “formula”,

y = v0*t - 0.5*g*t^2 % Vertical position

Again, according to its rules, Matlab interprets * as multiplication, - as minus and
^ as exponent (let us also add here that, not surprisingly, + and / would have been
understood as addition and division, if such signs had been present in the expres-
sion). Having read the line, Matlab performs the mathematics on the right-hand
side, and then assigns the result (in this case the number 1.2342) to the variable
name y. Also, since the final line has no semi-colon, Matlab understands that we
also want the result printed to screen. When ball.m is run, the number 1.2342
appears on the screen.

Note that leaving out a semi-colon provides an easy way to print things to screen
in general. Simply writing, e.g., v0 in the program above, i.e. without the semi-
colon, will make the content of v0 be printed to screen.

In the code above, you see several blank lines too. These are simply skipped by
Matlab and you may use as many as you want to make a nice and readable layout
of the code.

1.2.3 Why Not Just Use a Pocket Calculator?

Certainly, finding the answer as done by the program above could easily have been
done with a pocket calculator. No objections to that and no programming would
have been needed. However, what if you would like to have the position of the ball
for every milli-second of the flight? All that punching on the calculator would have
taken you something like four hours! If you know how to program, however, you
could modify the code above slightly, using a minute or two of writing, and easily
get all the positions computed in one go within a second. A much stronger argu-
ment, however, is that mathematical models from real life are often complicated and
comprehensive. The pocket calculator cannot cope with such problems, even not
the programmable ones, because their computational power and their programming
tools are far too weak compared to what a real computer can offer.
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1.2.4 Why YouMust Use a Text Editor toWrite Programs

When Matlab interprets some code in a file, it is concerned with every character in
the file, exactly as it was typed in. This makes it troublesome to write the code into
a file with word processors like, e.g., Microsoft Word, since such a program will
insert extra characters, invisible to us, with information on how to format the text
(e.g., the font size and type). Such extra information is necessary for the text to be
nicely formatted for the human eye. Matlab, however, will be much annoyed by the
extra characters in the file inserted by a word processor. Therefore, it is fundamental
that you write your program in a text editor where what you type on the keyboard
is exactly the characters that appear in the file and that Matlab will later read. There
are many text editors around. Some are stand-alone programs like Emacs, Vim,
Gedit, Notepad++, and TextWrangler. Many prefer to use the text editor that comes
with the graphical Matlab environment.

1.2.5 Write and Run Your First Program

Reading only does not teach you computer programming: you have to program
yourself and practice heavily before you master mathematical problem solving via
programming. Therefore, it is crucial at this stage that you write and run a Matlab
program. We just went through the program ball.m above, so let us next write and
run that code.

But first a warning: there are many things that must come together in the right
way for ball.m to run correctly on your computer. There might be problems with
your Matlab installation, with your writing of the program (it is very easy to in-
troduce errors!), or with the location of the file, just to mention some of the most
common difficulties for beginners. Fortunately, such problems are solvable, and
if you do not understand how to fix the problem, ask somebody. Typically, once
you are beyond these common start-up problems, you can move on to learn pro-
gramming and how programs can do a lot of otherwise complicated mathematics
for you.

The term Matlab refers to both the software package Matlab from MathWorks
Inc., and the programming language Matlab. Matlab programs can either be run
in the commercial Matlab software package, or they can be run in the free GNU
Octave4 software, usually just called Octave. We first describe how to operate the
Matlab software and then Octave.

The first step is to generate a directory in which you will place your futureMatlab
code. Do this in a terminal window (Terminal on Mac, Power Shell or Command
Prompt on Windows, or (e.g.) gnome-terminal on Linux). Write mkdir mycode to
create a directory with name mycode. Then move into that directory by writing cd
mycode.

Write and run a program in Matlab. Start Matlab and try out the following.

1. Write the Matlab program ball.m. Do this by choosing File/New/Script from
the menu in the Command window. In the editor window that pops up, simply

4 http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
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write the code lines there as they were given above for ball.m. Now save this
with the name ball.m in the right directory, i.e. myCode, via Save As from the
File menu. The program is now ready for use!

2. Run the program. Do this in the Command window by writing the name of the
program without the extension, i.e. write “ball”, and press enter. Matlab will
now run the program.

Write a program in a text editor and run it in Octave. Octave users must write
the program in a plain text editor such as Gedit on Linux computers; TextWran-
gler on Mac, or Notepad++ on Windows. Popular, but more advanced text editors,
primarily Emacs and Vim, are also available for these platforms.

1. Write the Matlab program ball.m by launching a text editor and write each line
exactly as they are listed in the ball.m program. Save the file as ball.m in the
mycode directory.

2. Run the program. Type octave. The Octave program is started and gives you
a prompt octave:1>, which indicates that you can give Octave commands.
Type run ball.m and press enter. Octave will now run the program.

With a little luck, you should now get the number 1.2342 out in the command win-
dow. If so, congratulations! You have just executed your first self-written computer
program in Matlab (or Octave), and you are ready to go on studying this book!

m-files
A program such as ball.m, i.e., code stored in a file with the extension .m, is
usually referred to as an m-file.

1.3 AMatlab Programwith a Library Function

Imagine you stand on a distance, say 10m away, watching someone throwing a ball
upwards. A straight line from you to the ball will then make an angle with the
horizontal that increases and decreases as the ball goes up and down. Let us consider
the ball at a particular moment in time, at which it has a height of 10m.

What is the angle of the line then? Again, this could easily be done with a cal-
culator, but we continue to address gentle mathematical problems when learning
to program. Before thinking of writing a program, one should always formulate
the algorithm, i.e., the recipe for what kind of calculations that must be performed.
Here, if the ball is x m away and y m up in the air, it makes an angle � with the
ground, where tan � D y=x. The angle is then tan�1.y=x/.

Let us make a Matlab program for doing these calculations. We introduce names
x and y for the position data x and y, and the descriptive name angle for the angle
� . The program is stored in a file ball_angle.m:

x = 10; % Horizontal position

y = 10; % Vertical position

angle = atan(y/x);

(angle/pi)*180 % Computes and prints to screen

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_angle.m
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Before we turn our attention to the running of this program, let us take a look
at one new thing in the code. The line angle = atan(y/x), illustrates how the
function atan, corresponding to tan�1 in mathematics, is called with the ratio
y/x as input parameter or argument. The atan function takes one argument,
and the computed value is returned from atan. This means that where we see
atan(y/x), a computation is performed (tan�1.y=x/) and the result “replaces” the
text atan(y/x). This is actually no more magic than if we had written just y/x:
then the computation of y/x would take place, and the result of that division would
replace the text y/x. Thereafter, the result is assigned to the name angle on the
left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles in radians.
The return value of atan must hence be converted to degrees, and that is why we
perform the computation (angle/pi)*180. With the missing semi-colon, Matlab
will do the computations and print the result to the screen. And yes, the famous pi
(�) is a variable that is known to Matlab.

1.4 AMatlab Programwith Vectorization and Plotting

We return to the problem where a ball is thrown up in the air and we have a formula
for the vertical position y of the ball. Say we are interested in y at every milli-
second for the first second of the flight. This requires repeating the calculation of
y D v0t � 0:5gt2 one thousand times.

We will also draw a graph of y versus t for t 2 Œ0; 1�. Drawing such graphs on
a computer essentially means drawing straight lines between points on the curve,
so we need many points to make the visual impression of a smooth curve. With one
thousand points, as we aim to compute here, the curve looks indeed very smooth.

In Matlab, the calculations and the visualization of the curve may be done with
the program ball_plot.m, reading

v0 = 5;

g = 9.81;

t = linspace(0, 1, 1001);

y = v0*t - 0.5*g*t.^2;

plot(t, y);

xlabel(’t (s)’);

ylabel(’y (m)’);

This program produces a plot of the vertical position with time, as seen in
Fig. 1.1. As you notice, the code lines from the ball.m program in Sect. 1.2 have
not changed much, but the height is now computed and plotted for a thousand points
in time!

Let us take a look at the differences between the new program and our previous
program.

The function linspace takes 3 parameters, and is generally called as

linspace(start, stop, n)

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_plot.m
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Fig. 1.1 Plot generated by the script ball_plot.m, showing the vertical position of the ball at
a thousand points in time

This is our first example of a Matlab function that takes multiple arguments. The
linspace function generates n equally spaced coordinates, starting with start
and ending with stop. The expression linspace(0, 1, 1001) creates 1001 co-
ordinates between 0 and 1 (including both 0 and 1). The mathematically inclined
reader will notice that 1001 coordinates correspond to 1000 equal-sized intervals in
Œ0; 1� and that the coordinates are then given by ti D i=1000 (i D 0; 1; : : :; 1000).

The value returned from linspace (being stored in t) is an array, i.e., a collec-
tion of numbers. When we start computing with this collection of numbers in the
arithmetic expression v0*t - 0.5*g*t.^2, the expression is calculated for every
number in t (i.e., every ti for i D 0; 1; : : :; 1000), yielding a similar collection of
1001 numbers in the result y. That is, y is also an array.

Note the dot that has been inserted in 0.5*g*t.^2, i.e. just before the operator ^.
This is required to make Matlab do ^ to each number in t. The same thing applies
to other operators, as shown in several examples later.

This technique of computing all numbers “in one chunk” is referred to as vec-
torization. When it can be used, it is very handy, since both the amount of code and
computation time is reduced compared to writing a corresponding for or while
loop (Chap. 2) for doing the same thing.

The plotting commands are simple:

1. plot(t, y) means plotting all the y coordinates versus all the t coordinates
2. xlabel(’t (s)’) places the text t (s) on the x axis
3. ylabel(’y (m)’) places the text y (m) on the y axis
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At this stage, you are strongly encouraged to do Exercise 1.4. It builds on the
example above, but is much simpler both with respect to the mathematics and the
amount of numbers involved.

1.5 More Basic Concepts

So far we have seen a few basic examples on how to apply Matlab programming to
solve mathematical problems. Before we can go on with other and more realistic
examples, we need to briefly treat some topics that will be frequently required in
later chapters. These topics include computer science concepts like variables, ob-
jects, error messages, and warnings; more numerical concepts like rounding errors,
arithmetic operator precedence, and integer division; in addition to more Matlab
functionality when working with arrays, plotting, and printing.

1.5.1 UsingMatlab Interactively

You may also use Matlab interactively (i.e. without writing a program). For exam-
ple, you may do calculations like the following directly at the command prompt
>> in the Command window (a prompt means a “ready sign”, i.e. the program al-
lows you to enter a command, and different programs often have different looking
prompts).

>> 2+2

ans = 4

>> 2*3

ans = 6

>> 10/2

ans = 5

>> 2^3

ans = 8

You may also define variables and use formulas interactively as

>> v0 = 5;

>> g = 9.81;

>> t = 0.6;

>> y = v0*t - 0.5*g*t^2

y =

1.2342000000000

Sometimes you would like to repeat a command you have given earlier, or per-
haps give a command that is almost the same as an earlier one. Then you can use the
“up-arrow” key. Pressing this one time gives you the previous command, pressing
two times gives you the command before that, and so on. If you go too far, you may
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go back with the “down-arrow” key. When you have the command at the prompt, it
may be edited before pressing enter (which lets Matlab read it).

1.5.2 Arithmetics, Parentheses and Rounding Errors

When the arithmetic operators +, -, *, / and ^ appear in an expression, Mat-
lab gives them a certain precedence. Matlab interprets the expression from left
to right, taking one term (part of expression between two successive + or -) at
a time. Within each term, ^ is done before * and /. Consider the expression
x = 1*5^2 + 10*3 - 1.0/4. There are three terms here and interpreting this,
Matlab starts from the left. In the first term, 1*5^2, it first does 5^2 which equals
25. This is then multiplied by 1 to give 25 again. The second term is 10*3, i.e., 30.
So the first two terms add up to 55. The last term gives 0.25, so the final result is
54.75 which becomes the value of x.

Note that parentheses are often very important to group parts of expressions
together in the intended way. Let us say x = 4 and that you want to divide 1.0 by
x + 1. We know the answer is 0.2, but the way we present the task to Matlab is
critical, as shown by the following example.

>> x = 4;

>> 1.0/x+1

ans = 1.25000000000000000

>> 1.0/(x+1)

ans = 0.20000000000000001

In the first try, we see that 1.0 is divided by x (i.e., 4), giving 0.25, which is
then added to 1. Matlab did not understand that our complete denominator was
x+1. In our second try, we used parentheses to “group” the denominator, and we
got what we wanted. That is, almost what we wanted! Since most numbers can be
represented only approximately on the computer, this gives rise to what is called
rounding errors. We should have got 0.2 as our answer, but the inexact number
representation gave a small error. Usually, such errors are so small compared to the
other numbers of the calculation, that we do not need to bother with them. Still,
keep it in mind, since you will encounter this issue from time to time. More details
regarding number representations on a computer is given in Sect. 3.4.3.

1.5.3 Variables

Variables in Matlab will be of a certain type. Real numbers are in computer lan-
guage referred to as floating point numbers, being the default (i.e. what Matlab uses
if nothing is specified) data type in Matlab. These are of two kinds, single and dou-
ble, corresponding to single and double precision, respectively. It is the “double”
that is the default type. With double precision, twice as many bits (64) are used
for storage as with single precision. Writing x = 2 in some Matlab program, by
default makes x a double, i.e. a float variable.
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Whole numbers may be stored more memory efficiently as integers, however,
and there are several ways of doing this. For example, writing x = int8(2), or
x = int16(2), will store the integer 2 in the variable x by use of 8 or 16 bits,
respectively.

Another common type of variable is a string, which we get by writing, e.g., x =
’This is a string’. The variable x then becomes a string variable containing
the text between single quotes (the string actually becomes an array of characters,
see “Arrays” below). Several other standard data types also exist in Matlab.

You may also convert between variable types in different ways. For example,
after first writing x = 2 (which causes x to become a double), you may write y
= single(x) to make y contain the number 2 with single precision only. Type
conversion may also occur automatically, e.g. when calling a ready-made Matlab
function that requires input data to be of a certain type. When combining variables
of different types, the result will have a type according to given rules. For example,
multiplying a single and a double, gives a single variable.

Names of variables should be chosen so that they are descriptive. When com-
puting a mathematical quantity that has some standard symbol, e.g. ˛, this should
be reflected in the name by letting the word alpha be part of the name for the cor-
responding variable in the program. If you, e.g., have a variable for counting the
number of sheep, then one appropriate name could be no_of_sheep. Such naming
makes it much easier for a human to understand the written code. Variable names
may also contain any digit from 0 to 9, or underscores, but can not start with a digit.
Letters may be lower or upper case, which to Matlab is different. Note that certain
names in Matlab are reserved, meaning that you can not use these as names for vari-
ables. Some examples are for, while, if, else, end, global and function. If
you accidentally use a reserved word as a variable name you get an error message.

We have seen that, e.g., x = 2 will assign the value 2 to the variable x. But how
do we write it if we want to increase x by 4? We may then write an assignment like
x = x + 4. Now Matlab interprets this as: “take whatever value that is in x, add 4,
and let the result become the new value of ‘x’”. In other words, the old value of x is
used on the right hand side of =, no matter how messy the expression might be, and
the result becomes the new value of x. In a similar way, x = x - 4 reduces the
value of x by 4, x = x*4 multiplies x by 4, and x = x/4 divides x by 4, updating
the value of x accordingly.

1.5.4 Formatting Text and Numbers

Results from scientific computations are often to be reported as a mixture of text and
numbers. Usually, we want to control how numbers are formatted. For example,
we may want to write 1/3 as 0.33 or 3.3333e-01 (3:3333 � 10�1). The fprintf
command is the key tool to write out text and numbers with full control of the
formatting. The first argument to fprintf is a string with a particular syntax to
specify the formatting, the so-called printf syntax. (The peculiar name stems from
the printf function in the programming language C where the syntax was first
introduced.)

Suppose we have a real number 12.89643, an integer 42, and a text ’some
message’ that we want to write out in the following two alternative ways:
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real=12.896, integer=42, string=some message

real=1.290e+01, integer= 42, string=some message

The real number is first written in decimal notationwith three decimals, as 12.896,
but afterwards in scientific notation as 1.290e+01. The integer is first written as
compactly as possible, while on the second line, 42 is formatted in a text field of
width equal to five characters.

The following program, formatted_print.m, applies the printf syntax to con-
trol the formatting displayed above:

real = 12.89643;

integer = 42;

string = ’some message’;

fprintf(’real=%.3f, integer=%d, string=%s’, real, integer, string);

fprintf(’real=%9.3e, integer=%5d, string=%s’, real, integer, string);

The output of fprintf is a string, specified in terms of text and a set of variables
to be inserted in the text. Variables are inserted in the text at places indicated by %.
After % comes a specification of the formatting, e.g., %f (real number), %d (integer),
or %s (string). The format %9.3f means a real number in decimal notation, with 3
decimals, written in a field of width equal to 9 characters. The variant %.3f means
that the number is written as compactly as possible, in decimal notation, with three
decimals. Switching f with e or E results in the scientific notation, here 1.290e+01
or 1.290E+01. Writing %5dmeans that an integer is to be written in a field of width
equal to 5 characters. Real numbers can also be specified with %g, which is used
to automatically choose between decimal or scientific notation, from what gives the
most compact output (typically, scientific notation is appropriate for very small and
very large numbers and decimal notation for the intermediate range).

A typical example of when printf formatting is required, arises when nicely
aligned columns of numbers are to be printed. Suppose we want to print a column
of t values together with associated function values g.t/ D t sin.t/ in a second
column. The simplest approach would be

t0 = 2;

dt = 0.55;

% Unformatted print

t = t0 + 0*dt; g = t*sin(t);

fprintf(’%g %g\n’, t, g);

t = t0 + 1*dt; g = t*sin(t);

fprintf(’%g %g\n’, t, g);

t = t0 + 2*dt; g = t*sin(t);

fprintf(’%g %g\n’, t, g);

with output

2 1.81859

2.55 1.42209

3.1 0.1289

https://github.com/hplgit/prog4comp/tree/master/src/m/formatted_print.m
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(Repeating the same set of statements multiple times, as done above, is not good
programming practice – one should use a for loop, as explained later in Sect. 2.3.)
Observe that the numbers in the columns are not nicely aligned. Using the printf
syntax ’%6.2f %8.3f’ % (t, g) for t and g, we can control the width of each
column and also the number of decimals, such that the numbers in a column are
aligned under each other and written with the same precision. The output then
becomes

Formatting via printf syntax

2.00 1.819

2.55 1.422

3.10 0.129

We shall frequently use the printf syntax throughout the book so there will be
plenty of further examples.

1.5.5 Arrays

In the program ball_plot.m from Sect. 1.4 we saw how 1001 height computations
were executed and stored in the variable y, and then displayed in a plot showing y
versus t, i.e., height versus time. The collection of numbers in y (or t, respec-
tively) was stored in what is called an array, a construction also found in most other
programming languages. Such arrays are created and treated according to certain
rules, and as a programmer, you may direct Matlab to compute and handle arrays
as a whole, or as individual array elements. Let us briefly look at a smaller such
collection of numbers.

Assume that the heights of four family members have been collected. These
heights may be generated and stored in an array, e.g., named h, by writing

h = zeros(4,1)

h(1) = 1.60

h(2) = 1.85

h(3) = 1.75

h(4) = 1.80

where the array elements appear as h(1), h(2), etc. Generally, when we read or
talk about the array elements of some array a, we refer to them by reading or saying
“a of one” (i.e. a(1)), “a of two” (i.e. a(2)), and so on. The very first line in the
example above, i.e.

h = zeros(4,1)

instructs Matlab to reserve, or allocate, space in memory for an array h with four
elements and initial values set to 0. (Note that zeros(4,1) gives a column array,
while zeros(1,4) gives a line array. Try it at the command prompt to see the
difference. Sometimes this distinction is important, e.g. when doing matrix – vector
calculations.) The next four lines command Matlab to overwrite the zeros with the
desired numbers (measured heights), one number for each element. Elements are,
by rule, indexed (numbers within parentheses) from 1 to the last element, in this
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case 4. We say that Matlab has one-based indexing. This differs from zero-based
indexing (e.g., found in Python) where the array index starts with 0.

As illustrated in the code, you may refer to the array as a whole by the name h,
but also to each individual element by use of the index. The array elements may
enter in computations as individual variables, e.g., writing z = h(1) + h(2) +
h(3) + h(4) will compute the sum of all the elements in h, while the result is
assigned to the variable z. Note that this way of creating an array is a bit different
from the one with linspace, where the filling in of numbers occurred automati-
cally “behind the scene”.

By use of a colon, you may pick out a slice of an array. For example, to
create a new array from the two elements h(1) and h(2), we could write
slice_h = h(1:2). For the generated slice_h array, indices are as usual,
i.e., 1 and 2 in this case. The very last entry in an array may be addressed as,
e.g., h(length(h)), where the ready made function length gives the number of
elements in the array.

1.5.6 Plotting

Sometimes you would like to have two or more curves or graphs in the same plot.
Assume we have h as above, and also an array H with the heights 0.50m, 0.70m,
1.90m, and 1.75m from a family next door. This may be done with the program
plot_heights.m given as

h = zeros(4, 1);

h(1) = 1.60; h(2) = 1.85; h(3)= 1.75; h(4) = 1.80;

H = zeros(4, 1);

H(1) = 0.50; H(2) = 0.70; H(3)= 1.90; H(4) = 1.75;

family_member_no = zeros(4, 1);

family_member_no(1) = 0; family_member_no(2) = 1;

family_member_no(3) = 2; family_member_no(4) = 3;

plot(family_member_no, h, family_member_no, H);

xlabel(’Family member number’);

ylabel(’Height (m)’)

Running the program gives the plot shown in Fig. 1.2.
Alternatively, the two curves could have been plotted in the same plot by use of

two plot commands, which gives more freedom as to how the curves appear. To do
this, you could plot the first curve by

plot(family_member_no, h)

hold(’on’)

Then you could (in principle) do a lot of other things in your code, before you plot
the second curve by

plot(family_member_no, H)

hold(’off’)

https://github.com/hplgit/prog4comp/tree/master/src/m/plot_heights.m
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Fig. 1.2 Generated plot for the heights of family members from two families

Notice the use of hold here. hold(’on’) tells Matlab to plot also the following
curve(s) in the same window. Matlab does so until it reads hold(’off’). If you
do not use the hold(’on’) or hold(’off’) command, the second plot command
will overwrite the first one, i.e., you get only the second curve.

In case you would like the two curves plotted in two separate plots, you can do
this by plotting the first curve straightforwardly with

plot(family_member_no, h)

then do other things in your code, before you do

figure()

plot(family_member_no, H)

Note how the graphs are made continuous by Matlab, drawing straight lines be-
tween the four data points of each family. This is the standard way of doing it and
was also done when plotting our 1001 height computations with ball_plot.m in
Sect. 1.4. However, since there were so many data points then, the curve looked
nice and smooth. If preferred, one may also plot only the data points. For example,
writing

plot(h, ’*’)
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will mark only the data points with the star symbol. Other symbols like circles etc.
may be used as well.

There are many possibilities in Matlab for adding information to a plot or for
changing its appearance. For example, you may add a legend by the instruction

legend(’This is some legend’)

or you may add a title by

title(’This is some title’)

The command

axis([xmin xmax ymin ymax])

will define the plotting range for the x axis to stretch from xmin to xmax and,
similarly, the plotting range for the y axis from ymin to ymax. Saving the figure to
file is achieved by the command

print(’some_plot’, ’-dpng’); # PNG format

print(’some_plot’, ’-dpdf’); # PDF format

print(’some_plot’, ’-dtiff’); # TIFF format

print(’some_plot’, ’-deps’); # Encanspulated PostScript format

For the reader who is into linear algebra, it may be useful to know that stan-
dard matrix/vector operations are straightforward with arrays, e.g., matrix-vector
multiplication. For example, assume you would like to calculate the vector y
(note that boldface is used for vectors and matrices) as y D Ax, where A is
a 2 � 2 matrix and x is a vector. We may do this as illustrated by the program
matrix_vector_product.m reading

x = zeros(2, 1);

x(1) = 3; x(2) = 2; % Insert some values

A = zeros(2, 2);

A(1,1) = 1; A(1,2) = 0;

A(2,1) = 0; A(2,2) = 1;

y = A*x % Computes and prints

Here, x is first established as a column array with the zeros function. Then the test
values are plugged in (3 and 2). The matrix A is first created as a two dimensional
array with A = zeros(2, 2) before filling in values. Finally, the multiplication
is performed as y = A*x. Running the program gives the following output on the
screen:

y =

3

2

https://github.com/hplgit/prog4comp/tree/master/src/m/matrix_vector_product.m
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1.5.7 Error Messages andWarnings

All programmers experience error messages, and usually to a large extent during the
early learning process. Sometimes error messages are understandable, sometimes
they are not. Anyway, it is important to get used to them. One idea is to start with
a program that initially is working, and then deliberately introduce errors in it, one
by one. (But remember to take a copy of the original working code!) For each error,
you try to run the program to see what Matlab’s response is. Then you know what
the problem is and understand what the error message is about. This will greatly
help you when you get a similar error message or warning later.

Very often, you will experience that there are errors in the program you have
written. This is normal, but frustrating in the beginning. You then have to find the
problem, try to fix it, and then run the program again. Typically, you fix one error
just to experience that another error is waiting around the corner. However, after
some time you start to avoid the most common beginner’s errors, and things run
more smoothly. The process of finding and fixing errors, called debugging, is very
important to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do) different
things in the program you need to fix. A simpler procedure, that often brings you
a long way, is to print information to the screen from different places in the pro-
gram. First of all, this is something you should do (several times) during program
development anyway, so that things get checked as you go along. However, if the
final program still ends up with error messages, you may save a copy of it, and do
some testing on the copy. Useful testing may then be to remove, e.g., the latter half
of the program (by inserting comment signs %), and insert print commands at clever
places to see what is the case. When the first half looks ok, insert parts of what
was removed and repeat the process with the new code. Using simple numbers and
doing this in parallel with hand calculations on a piece of paper (for comparison) is
often a very good idea.

Matlab also offers means to detect and handle errors by the program itself! The
programmer must then foresee (when writing the code) that there is a potential for
error at some particular point. If, for example, some user of the program is asked
(by the running program) to provide a number, and intends to give the number 5,
but instead writes the word five, the program could run into trouble. A try-catch
construction may be used by the programmer to check for such errors and act appro-
priately (see Sect. 6.2 for an example), avoiding a program crash. This procedure
of trying an action and then recovering from trouble, if necessary, is referred to as
exception handling and is the modern way of dealing with errors in a program.

When a program finally runs without error messages, it might be tempting to
think that Ah . . . , I am finished!. But no! Then comes program testing, you need to
verify that the program does the computations as planned. This is almost an art and
may take more time than to develop the program, but the program is useless unless
you have much evidence showing that the computations are correct. Also, having
a set of (automatic) tests saves huge amounts of time when you further develop the
program.
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Verification versus validation
Verification is important, but validation is equally important. It is great if your
program can do the calculations according to the plan, but is it the right plan? Put
otherwise, you need to check that the computations run correctly according to
the formula you have chosen/derived. This is verification: doing the things right.
Thereafter, you must also check whether the formula you have chosen/derived
is the right formula for the case you are investigating. This is validation: doing
the right things. In the present book, it is beyond scope to question how well
the mathematical models describe a given phenomenon in nature or engineering,
as the answer usually involves extensive knowledge of the application area. We
will therefore limit our testing to the verification part.

1.5.8 Input Data

Computer programs need a set of input data and the purpose is to use these data to
compute output data, i.e., results. In the previous program we have specified input
data in terms of variables. However, one often wants to get the input through some
dialog with the user. Here is one example where the program asks a question, and
the user provides an answer by typing on the keyboard:

age = input(’What is your age? ’)

fprintf(’Ok, so you are half way to %d, wow!\n’, age*2)

So, after having interpreted and run the first line, Matlab has established the variable
age and assigned your input to it. The second line combines the calculation of
twice the age with a message printed on the screen. Try these two lines in a little
test program to see for yourself how it works.

There are other ways of providing input to a program as well, e.g., via a graphical
interface (as many readers will be used to) or at the command line (i.e., as param-
eters succeeding, on the same line, the command that starts the program). Reading
data from a file is yet another way. Logically, what the program produces when run,
e.g. a plot or printout to the screen or a file, is referred to as program output.

1.5.9 Symbolic Computations

Even though the main focus in this book is programming of numerical methods,
there are occasions where symbolic (also called exact or analytical) operations are
useful. Doing symbolic computations means, as the name suggests, that we do com-
putations with the symbols themselves rather than with the numerical values they
could represent. Let us illustrate the difference between symbolic and numerical
computations with a little example. A numerical computation could be

x = 2;

y = 3;

z = x*y



20 1 The First Few Steps

which will make the number 6 appear on the screen. A symbolic counterpart of this
code could be

syms x y

z = x*y

which causes the symbolic result x*y to appear on the screen. Note that no numer-
ical value was assigned to any of the variables in the symbolic computation. Only
the symbols were used, as when you do symbolic mathematics by hand on a piece
of paper.

Symbolic computations in Matlab make use of the Symbolic Toolbox (but sup-
port for symbolic computations in Octave is weak). Each symbol is represented by
a standard variable, but the name of the symbol must be declared with syms name
for a single symbol, or syms name1 name2 ... for multiple symbols. The fol-
lowing script example_symbolic.m is a quick demonstration of some of the basic
symbolic operations that are supported in Matlab.

syms x y

2*x + 3*x - y % Algebraic computation

f = x^2;

diff(f, x) % Differentiate x^2 wrt x

f = cos(x);

int(f, x) % Integrate cos(x) wrt x

f = (x^2 + x^3)/x^2;

simplify(f) % Simplify f

f = sin(x)/x

limit(f, x, 0) % Find limit of f as x -> 0

f = 15*x - 15;

solve(f, x) % Solve 15*x - 15 = 0 wrt x

Other symbolic calculations like Taylor series expansion, linear algebra (with
matrix and vector operations), and (some) differential equation solving are also
possible.

Symbolic computations are also readily accessible through the (partly) free on-
line tool WolframAlpha5, which applies the very advanced Mathematica6 package
as symbolic engine. The disadvantage with WolframAlpha compared to the Sym-
bolic Toolbox is that the results cannot automatically be imported into your code
and used for further analysis. On the other hand, WolframAlpha has the advantage
that it displays many additional mathematical results related to the given problem.
For example, if we type 2x + 3x - y in WolframAlpha, it not only simplifies the
expression to 5x - y, but it also makes plots of the function f .x; y/ D 5x � y,
solves the equation 5x � y D 0, and calculates the integral

R R
.5x C y/dxdy.

5 http://www.wolframalpha.com
6 http://en.wikipedia.org/wiki/Mathematica

https://github.com/hplgit/prog4comp/tree/master/src/m/example_symbolic.m
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
http://www.wolframalpha.com
http://en.wikipedia.org/wiki/Mathematica
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The commercial Pro version can also show a step-by-step of the analytical compu-
tations in the problem. You are strongly encouraged to try out these commands in
WolframAlpha:

� diff(x^2, x) or diff(x**2, x)
� integrate(cos(x), x)
� simplify((x**2 + x**3)/x**2)
� limit(sin(x)/x, x, 0)
� solve(5*x - 15, x)

WolframAlpha is very flexible with respect to syntax.
Another impressive tool for symbolic computations is Sage7, which is a very

comprehensive package with the aim of “creating a viable free open source alterna-
tive to Magma, Maple, Mathematica and Matlab”. Sage is implemented in Python.
Projects with extensive symbolic computations will certainly benefit from exploring
Sage.

1.5.10 Concluding Remarks

Programming demands you to be accurate!
In this chapter, you have seen some examples of how simple things may be done
in Matlab. Hopefully, you have tried to do the examples on your own. If you
have, most certainly you have discovered that what you write in the code has
to be very accurate. For example, with our previous example of four heights
collected in an array h, writing h[1] instead of h(1) gives an error, even if you
and I know perfectly well what you mean! Remember that it is not a human
that runs your code, it is a machine. Therefore, even if the meaning of your
code looks fine to a human eye, it still has to comply in detail to the rules of the
programming language. If not, you get warnings and error messages. This also
goes for lower and upper case letters. Pay attention to such details also when
they are given in later chapters.

Remember to insert comments to explain your code
When you write a computer program, you have two very different kinds of read-
ers. One is Matlab, which will interpret and run your program according to the
rules. The other is some human, for example, yourself or a peer. It is very impor-
tant to organize and comment the code so that you can go back to your own code
after, e.g., a year and still understand what clever constructions you put in there.
This is relevant when you need to change or extend your code (which usually
happens often in reality). Organized coding and good commenting is even more
critical if other people are supposed to understand code that you have written.

One important contribution to writing readable code, is to indent parts of the
code that naturally belong together. You will see this used systematically from
Chap. 2 and on. It is a highly recommendable habit to develop for a programmer.

7 http://sagemath.org/

http://sagemath.org/
http://sagemath.org/
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Fast code versus readable and correct code
Numerical computing has a strong tradition in paying much attention to creating
fast code. Real industrial applications of numerical computing often involves
simulations that run for hours, days, and even weeks. Fast code is tremendously
important in those cases. The problem with a strong focus on fast code, un-
fortunately, is sometimes that clear and easily understandable constructions are
replaced by clever and less readable, but faster code. However, for beginners it is
most important to learn to write readable and correct code. We will make some
comments on constructions that are fast or slow, but the main focus of this book
is to teach how to write correct programs, not the fastest possible programs.

Matlab requires a license
Matlab has a student licence version that is cheap as long as you are a student.
Note, however, that the student version is stripped of much functionality. A com-
mercial license is required to use Matlab in industry.

Matlab has a whole range of toolboxes with ready-made code dedicated to
particular fields in science and engineering. We encountered one of these above,
the Symbolic Toolbox. Generally, the more toolboxes you want to include in
your license, the more expensive it gets.

Tip: how to deal with long lines
If a statement in a program gets too long, it may be continued on the next line by
inserting three dots in succession immediately after the last character of the line
that is split (no spaces between!).

The present introductory book just provides a tiny bit of all the functionality
that Matlab has to offer. An important source of information is the homepage “of
Matlab”: http://www.mathworks.com. In addition, there are lots of excellent books
(for references, see Preface).

1.6 Exercises

Exercise 1.1: Error messages
Save a copy of the program ball.m and confirm that the copy runs as the original.
You are now supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Matlab’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Insert the word hello on the empty line above the assignment to v0.
b) Remove the % sign in front of the comment initial velocity.
c) Remove the = sign in the assignment to v0.
d) Change the symbol ^ into **.
e) Change the calculation of y to y = v0*t.
f) Write x on the line just above where y is calculated.

http://www.mathworks.com
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g) Change the statement y = v0*t - 0.5*g*t^2 into y = v0*t - 0.5*g*t^2;.
That is, insert a semicolon at the end.

Filename: testing_ball.m.

Exercise 1.2: Volume of a cube
Write a program that computes the volume V of a cube with sides of length L D
4 cm and prints the result to the screen. Both V and L should be defined as separate
variables in the program. Run the program and confirm that the correct result is
printed.

Hint See ball.m in the text.
Filename: cube_volume.m.

Exercise 1.3: Area and circumference of a circle
Write a program that computes both the circumference C and the area A of a circle
with radius r D 2 cm. Let the results be printed to the screen on a single line with
an appropriate text. The variables C , A and r should all be defined as separate
variables in the program. Run the program and confirm that the correct results are
printed.
Filename: circumference_and_area.m.

Exercise 1.4: Volumes of three cubes
We are interested in the volume V of a cube with length L: V D L3, computed for
three different values of L.

a) Use the linspace function to compute three values of L, equally spaced on the
interval Œ1; 3�.

b) Carry out by hand the computation V D L3 if L is an array with three elements.
That is, compute V for each value of L.

c) In a program, write out the result V of V = L.^3 when L is an array with three
elements as computed by linspace in a). Compare the resulting volumes with
your hand calculations.

d) Make a plot of V versus L.

Filename: volume3cubes.m.

Exercise 1.5: Average of integers
Write a program that stores the sum 1 C 2 C 3 C 4 C 5 in one variable and then
creates another variable with the average of these five numbers. Print the average to
the screen and check that the result is correct.
Filename: average_int.m.

Exercise 1.6: Interactive computing of volume and area

a) Compute the volume in Exercise 1.2 by using Matlab interactively, i.e., do the
computations at the command prompt (in a Matlab shell as we also say). Com-
pare with what you got previously from the written program.

b) Do the same also for Exercise 1.3.
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Exercise 1.7: Update variable at command prompt
Invoke Matlab interactively and perform the following steps.

1. Initialize a variable x to 2.
2. Add 3 to x. Print out the result.
3. Print out the result of x + 1*2 and (x+1)*2. (Observe how parentheses make

a difference).
4. What variable type is x?

Exercise 1.8: Formatted print to screen
Write a program that defines two variables as x = pi and y = 2. Then let the
program compute the product z of these two variables and print the result to the
screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.m.

Exercise 1.9: Matlab documentation and random numbers
Write a program that prints four random numbers to the screen. The numbers should
be drawn from a uniform distribution over the interval Œ0; 10/ (0 inclusive, 10 ex-
clusive). Find the information needed for the task, see for example http://www.
mathworks.com.

Hint Matlab has a built-in function rand for drawing random numbers. Try >>
help rand at the command prompt.
Filename: drawing_random_numbers.m.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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2.1 If Tests

Very often in life, and in computer programs, the next action depends on the out-
come of a question starting with “if”. This gives the possibility to branch into
different types of action depending on some criterion. Let us as usual focus on
a specific example, which is the core of so-called random walk algorithms used in
a wide range of branches in science and engineering, including materials manufac-
turing and brain research. The action is to move randomly to the north (N), east (E),
south (S), or west (W) with the same probability. How can we implement such an
action in life and in a computer program?

We need to randomly draw one out of four numbers to select the direction in
which to move. A deck of cards can be used in practice for this purpose. Let the
four suits correspond to the four directions: clubs to N, diamonds to E, hearts to S,
and spades to W, for instance. We draw a card, perform the corresponding move,
and repeat the process a large number of times. The resulting path is a typical
realization of the path of a diffusing molecule.

In a computer program, we need to draw a random number, and depending on
the number, update the coordinates of the point to be moved. There are many ways
to draw random numbers and translate them into (e.g.) four random directions, but
the technical details usually depend on the programming language. Our technique
here is universal: we draw a random number in the interval Œ0; 1/ and let Œ0; 0:25/

correspond to N, Œ0:25; 0:5/ to E, Œ0:5; 0:75/ to S, and Œ0:75; 1/ to W. Let x and y
hold the coordinates of a point and let d be the length of the move. A pseudo code
(i.e., not “real” code, just a “sketch of the logic”) then goes like

25© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – MATLAB/Octave,
Texts in Computational Science and Engineering 14, DOI 10.1007/978-3-319-32452-4_2
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r = random number in [0,1)

if 0 <= r < 0.25

move north: y = y + d

else if 0.25 <= r < 0.5

move east: x = x + d

else if 0.5 <= r < 0.75

move south: y = y - d

else if 0.75 <= r < 1

move west: x = x - d

Note the need for first asking about the value of r and then performing an action.
If the answer to the “if” question is positive (true), we are done and can skip the
next else if questions. If the answer is negative (false), we proceed with the next
question. The last test if 0:75 � r < 1 could also read just else, since we here
cover all the remaining possible r values.

The exact code in Matlab reads

r = rand() % random number in [0,1)

if 0 <= r < 0.25

% move north

y = y + d;

elseif 0.25 <= r < 0.5

% move east

x = x + d;

elseif 0.5 <= r < 0.75

% move south

y = y - d;

else

% move west

x = x - d;

end

We use else in the last test to cover the different types of syntax that is allowed.
Matlab recognizes the reserved words if, elseif, and else and expects the code
to be compatible with the rules of if tests:

� The test reads if condition, elseif condition, or else, where condition
is a boolean expression that evaluates to true (1) or false (0).

� If condition is true, the following statements up to the next elseif, else, or
end are executed, and the remaining elseif or else branches are skipped.

� If condition is false, the program flow jumps to the next elseif or else
branch.

The blocks after if, elseif, or else may contain new if tests, if desired.
Working with if tests requires mastering boolean expressions. Here are some

basic boolean expressions involving the logical operators ==, =, <, <=, >, and
>=. Given the assignment to temp, you should go through each boolean expression
below and determine if it is true or false.
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temp = 21 % assign value to a variable

temp == 20 % temp equal to 20

temp ~= 20 % temp not equal to 20

temp < 20 % temp less than 20

temp > 20 % temp greater than 20

temp <= 20 % temp less than or equal to 20

temp >= 20 % temp greater than or equal to 20

2.2 Functions

Functions are widely used in programming and is a concept that needs to be mas-
tered. In the simplest case, a function in a program is much like a mathematical
function: some input number x is transformed to some output number. One ex-
ample is the tanh�1.x/ function, called atan in computer code: it takes one real
number as input and returns another number. Functions in Matlab are more gen-
eral and can take a series of variables as input and return one or more variables, or
simply nothing. The purpose of functions is two-fold:

1. to group statements into separate units of code lines that naturally belong to-
gether (a strategy which may dramatically ease the problem solving process),
and/or

2. to parameterize a set of statements such that they can be written only once and
easily be re-executed with variations.

Examples will be given to illustrate how functions can be written in various con-
texts.

If we modify the program ball.m from Sect. 1.2 slightly, and include a function,
we could let this be a new program ball_function.m as

function ball_function()

% This is the main program

time = 0.6; % Just pick some time

vertical_position = y(time);

fprintf(’%f \n’,vertical_position)

time = 0.9; % Pick another time

vertical_position = y(time);

fprintf(’%f \n’,vertical_position)

end

% The function ’y’ is a _local_ function in this file

function result = y(t)

g = 9.81; % Acceleration of gravity

v0 = 5; % Initial velocity

result = v0*t - 0.5*g*t^2;

end

Here, Matlab interprets this as the definition of two functions, recognized
by the reserved word function that appears two places. The first function
ball_function, is defined by the statements between (and including) function

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_function.m
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ball_function() and the first end. Note that the first function in a file should
have the same name as the name of the file (apart from the extension .m). The
second function, i.e. y, is similarly defined between function result = y(t)
and the second end.

Opposed to the function y, the function ball_functiondoes not return a value.
This is stated in the first line of each function definition. Comparing, you notice that
y has an assignment there, whereas ball_function has not. The final statement
of the function y, i.e.

result = v0*t - 0.5*g*t^2;

will be understood by Matlab as “first compute the expression, then place the result
in result and send it back (i.e. return) to where the function was called from”.
The function depends on one variable (or we say that it takes one argument or input
parameter), the value of which must be provided when the function is called.

What do these things mean? Well, the function definition itself, e.g. of y, just
tells Matlab that there is a function y, taking the specified arguments as input, and
returning a specified output result. Matlab keeps this information ready for use
in case a call to y is performed elsewhere in the code. In our case, a call to y
happens twice by the line vertical_position = y(time). By this instruction,
Matlab takes y(time) as a call to the function y, assigning the value of time to the
variable t. So in the first call, t becomes 0.6, while in the second call t becomes
0.9. In both cases the code lines of y are executed and the returned result (the output
parameter) is stored in vertical_position, before it is next printed by Matlab.

Note that the reserved word returnmay be used to enforce a return from a func-
tion before it reaches the end. For example, if a function contains if-elseif-else
constructions, return may be done from within any of the branches. This may be
illustrated by the following function containing three return statements:

function result = check_sign(x)

if x > 0

result = ’x is positive’;

return;

elseif x < 0

result = ’x is negative’;

return;

else

result = ’x is zero’;

return;

end

end

Remember that only one of the branches is executed for a single call on check_
sign, so depending on the number x, the return may take place from any of the
three return alternatives.

One phrase you will meet often when dealing with programming, is main pro-
gram or main function, or that some code is in main. This is nothing particu-
lar to Matlab, and simply means the first function that is defined in a file, e.g.
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ball_function above. You may define as many functions as you like in a file after
the main function. These then become local functions, i.e. they are only known in-
side that file. In particular, only the main function may be called from the command
window, whereas local functions may not.

A function may take no arguments, or many, in which case they are just listed
within the parentheses (following the function name) and separated by a comma.
Let us illustrate. Take a slight variation of the ball example and assume that the
ball is not thrown straight up, but at an angle, so that two coordinates are needed to
specify its position at any time. According to Newton’s laws (when air resistance is
negligible), the vertical position is given by y.t/ D v0yt �0:5gt2 and the horizontal
position by x.t/ D v0xt . We can include both these expressions in a new version of
our program that prints the position of the ball for chosen times. Assume we want
to evaluate these expressions at two points in time, t D 0:6 s and t D 0:9 s. We
can pick some numbers for the initial velocity components v0y and v0x, name the
program ball_position_xy.m, and write it for example as

function ball_position_xy()

initial_velocity_x = 2.0;

initial_velocity_y = 5.0;

time = 0.6; % Just pick one point in time

x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);

fprintf(’%f %f \n’, x_pos, y_pos)

time = 0.9; % Pick another point in time

x_pos = x(initial_velocity_x, time);

y_pos = y(initial_velocity_y, time);

fprintf(’%f %f \n’, x_pos, y_pos)

end

function result = y(v0y, t)

g = 9.81; % Acceleration of gravity

result = v0y*t - 0.5*g*t^2;

end

function result = x(v0x, t)

result = v0x*t;

end

Now we compute and print the two components for the position, for each of the
two chosen points in time. Notice how each of the two functions now takes two
arguments. Running the program gives the output

1.2 1.2342

1.8 0.52695

A function may also return more than one value. For example, the two functions
we just defined could alternatively have been defined into one as

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_position_xy.m
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function [result1, result2] = xy(v0x, v0y, t)

g = 9.81; % acceleration of gravity

result1 = v0x*t;

result2 = v0y*t - 0.5*g*t^2;

end

Notice the two return values result1 and result2 that are listed in the function
header, i.e., the first line of the function definition. When calling the function,
arguments must appear in the same order as in the function definition. We would
then write

[x_pos,y_pos] = xy(initial_x_velocity, initial_y_velocity, time);

The variables x_pos and y_pos could then have been printed or used in other ways
in the code.

There are possibilities for having a variable number of function input and output
parameters (using nargin and nargout). However, we do not go further into that
topic here.

Variables that are defined inside a function, e.g., g in the last xy function, are
local variables. This means they are only known inside the function. Therefore,
if you had accidentally used g in some calculation outside the function, you would
have got an error message. By use of the reserved word global, a variable may
be known also outside the function in which it is defined (without transferring it as
a parameter). For example, if, in some function A, we write

global some_variable;

some_variable = 2;

then, in another function B, we could use some_variabledirectly if we just specify
it first as being global, e.g.

global some_variable;

some_other_variable = some_variable*2;

We could even change the value of some_variable itself inside B if we like, so
that upon return to the function A, some_variablewould have a new value. If you
define one global and one local variable, both with the same name, the function
only sees the local one, so the global variable is not affected by what happens with
its local companion of the same name. The arguments named in the header of
a function definition are by rule local variables inside the function. One should
strive to define variables mostly where they are needed and not everywhere.

In any programming language, it is a good habit to include a little explanation
of what the function is doing, unless what is done by the function is obvious, e.g.,
when having only a few simple code lines. This explanation (sometimes known as
a doc string) should be placed just at the top of the function. This explanation is
meant for a human who wants to understand the code, so it should say something
about the purpose of the code and possibly explain the arguments and return values
if needed. If we do that with our xy function from above, we may write the first
lines of the function as
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function xy(v0x, v0y, t)

% Compute the x and y position of the ball at time t

Note that a function you have written may call another function you have written,
even if they are not defined within the same file. Such a call requires the called
function to be located in a file with the same name as the function (apart from the
extension .m). This file must also be located in a folder where Matlab can find it,
e.g. in the same folder as the calling function.

Functions are straightforwardly passed as arguments to other functions, as illus-
trated by the following script function_as_argument.m:

function function_as_argument()

x = 2;

y = 3;

% Create handles to the functions defined below

sum_xy_handle = @sum_xy;

prod_xy_handle = @prod_xy;

sum = treat_xy(sum_xy_handle, x, y);

fprintf(’%f \n’, sum);

prod = treat_xy(prod_xy_handle, x, y);

fprintf(’%f \n’, prod);

end

function result = treat_xy(f, x, y)

result = f(x, y);

end

function result = sum_xy(x, y)

result = x + y;

end

function result = prod_xy(x, y)

result = x*y;

end

When run, this program first prints the sum of x and y (i.e., 5), and then it
prints the product (i.e., 6). We see that treat_xy takes a function name as its first
parameter. Inside treat_xy, that function is used to actually call the function that
was given as input parameter. Therefore, as shown, we may call treat_xy with
either sum_xy or prod_xy, depending on whether we want the sum or product of x
and y to be calculated.

To transfer a function to the function treat_xy, we must use function handles,
one for each function we want to transfer. This is done by the sign @ combined with
the function name, as illustrated by the lines

sum_xy_handle = @sum_xy;

prod_xy_handle = @prod_xy;

https://github.com/hplgit/prog4comp/tree/master/src/m/function_as_argument.m


32 2 Basic Constructions

Note that it is the handle that is used in the function call, as, e.g., in

sum = treat_xy(sum_xy_handle,x,y);

Functions may also be defined within other functions. It that case, they become
local functions, or nested functions, known only to the function inside which they
are defined. Functions defined in main are referred to as global functions. A nested
function has full access to all variables in the parent function, i.e. the function within
which it is defined.

One convenient way of defining one-line functions (they can not be more than
one line!), is by use of anonymous functions. You may then define, e.g., a square
function by the name my_square, as

my_square = @(x) x^2;

and then use it simply as

y = my_sqare(2);

which would have assigned the value 4 to y. Note that my_square here becomes
a handle that may be used directly as a function parameter for example.

Overhead of function calls
Function calls have the downside of slowing down program execution. Usu-
ally, it is a good thing to split a program into functions, but in very computing
intensive parts, e.g., inside long loops, one must balance the convenience of call-
ing a function and the computational efficiency of avoiding function calls. It is
a good rule to develop a program using plenty of functions and then in a later
optimization stage, when everything computes correctly, remove function calls
that are quantified to slow down the code.

2.3 For Loops

Many computations are repetitive by nature and programming languages have cer-
tain loop structures to deal with this. Here we will present what is referred to as
a for loop (another kind of loop is a while loop, to be presented afterwards). Assume
you want to calculate the square of each integer from 3 to 7. This could be done
with the following program.

for i = 3:7

i^2

end

What happens when Matlab interprets your code here? First of all, the word
for is a reserved word signalling to Matlab that a for loop is wanted. Matlab then
sticks to the rules covering such constructions and understands that, in the present
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example, the loop should run 5 successive times (i.e., 5 iterations should be done),
letting the variable i take on the numbers 3; 4; 5; 6; 7 in turn. During each iteration,
the statement inside the loop (i.e. i^2) is carried out. After each iteration, i is
automatically (behind the scene) updated. When the last number is reached, the last
iteration is performed and the loop is finished. When executed, the program will
therefore print out 9; 16; 25; 36 and 49. The variable i is often referred to as a loop
index, and its name (here i) is a choice of the programmer.

Note that, had there been several statements within the loop, they would all be
executed with the same value of i (before i changed in the next iteration). Make
sure you understand how program execution flows here, it is important.

The specification of the values desired for the loop variable (here 3:7) is more
generally given as start:step:stop, meaning that the loop variable should take
on the integers from start to stop, inclusive at both ends, in steps of step. If step
is skipped, the default value is 1, as in the example above. Note that decreasing
integers may be produced by letting start > stop combined with a negative step.
This makes it easy to, e.g., traverse arrays in either direction.

Let us modify ball_plot.m from Sect. 1.4 to illustrate how useful for loops
are if you need to traverse arrays. In that example we computed the height of the
ball at every milli-second during the first second of its (vertical) flight and plotted
the height versus time.

Assume we want to find the maximum height during that time, how can we do
it with a computer program? One alternative may be to compute all the thousand
heights, store them in an array, and then run through the array to pick out the maxi-
mum. The program, named ball_max_height.m, may look as follows.

g = 9.81;

v0 = 5;

t = linspace(0, 1, 1000);

y = v0*t - 0.5*g*t.^2;

% At this point, the array y with all the heights is ready.

% Now we need to find the largest value within y.

largest_height = y(1); % Preliminary value

for i = 2:1000

if y(i) > largest_height

largest_height = y(i);

end

end

fprintf(’The largest height achieved was %f m \n’,largest_height);

% We might also like to plot the path again just to compare

plot(t,y);

xlabel(’Time (s)’);

ylabel(’Height (m)’)

There is nothing new here, except the for loop construction, so let us look at it
in more detail. As explained above, Matlab understands that a for loop is desired
when it sees the word for. The value in y(1) is used as the preliminary largest

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_max_height.m
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height, so that, e.g., the very first check that is made is testing whether y(2) is
larger than this height. If so, y(2) is stored as the largest height. The for loop
then updates i to 2, and continues to check y(3), and so on. Each time we find
a larger number, we store it. When finished, largest_height will contain the
largest number from the array y. When you run the program, you get

The largest height achieved was 1.274210 m

which compares favorably to the plot that pops up.
To implement the traversing of arrays with loops and indices, is sometimes chal-

lenging to get right. You need to understand the start, stop and step length choices
for an index, and also how the index should enter expressions inside the loop. At the
same time, however, it is something that programmers do often, so it is important
to develop the right skills on these matters.

Having one loop inside another, referred to as a double loop, is sometimes useful,
e.g., when doing linear algebra. Say we want to find the maximum among the
numbers stored in a 4 � 4 matrix A. The code fragment could look like

largest_number = A(1,1);

for i = 1:length(A)

for j = 1:length(A)

if A(i,j) > largest_number

largest_number = A(i,j);

end

end

end

Here, all the j indices (1 - 4) will be covered for each value of index i. First, i
stays fixed at i = 1, while j runs over all its indices. Then, i stays fixed at i = 2
while j runs over all its indices again, and so on. Sketch A on a piece of paper and
follow the first few loop iterations by hand, then you will realize how the double
loop construction works. Using two loops is just a special case of using multiple or
nested loops, and utilizing more than two loops is just a straightforward extension
of what was shown here. Note, however, that the loop index name in multiple loops
must be unique to each of the nested loops. Note also that each nested loop may
have as many code lines as desired, both before and after the next inner loop.

The vectorized computation of heights that we did in ball_plot.m (Sect. 1.4)
could alternatively have been done by traversing the time array (t) and, for each t
element, computing the height according to the formula y D v0t � 1

2
gt2. However,

it is important to know that vectorization goes much quicker. So when speed is
important, vectorization is valuable.

Use loops to compute sums
One important use of loops, is to calculate sums. As a simple example, assume
some variable x given by the mathematical expression

x D
NX

iD1

2 � i;
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i.e., summing up the N first even numbers. For some given N , say N D 5, x

would typically be computed in a computer program as:

N = 5;

x = 0;

for i = 1:N

x = x + 2*i;

end

x

Executing this code will print the number 30 to the screen. Note in particular
how the accumulation variable x is initialized to zero. The value of x then gets
updated with each iteration of the loop, and not until the loop is finished will
x have the correct value. This way of building up the value is very common in
programming, so make sure you understand it by simulating the code segment
above by hand. It is a technique used with loops in any programming language.

2.4 While Loops

Matlab also has another standard loop construction, the while loop, doing iterations
with a loop index very much like the for loop. To illustrate what such a loop may
look like, we consider another modification of ball_plot.m in Sect. 1.4. We will
now change it so that it finds the time of flight for the ball. Assume the ball is
thrown with a slightly lower initial velocity, say 4:5ms�1, while everything else is
kept unchanged. Since we still look at the first second of the flight, the heights at the
end of the flight become negative. However, this only means that the ball has fallen
below its initial starting position, i.e., the height where it left the hand, so there is
no problem with that. In our array y we will then have a series of heights which
towards the end of y become negative. Let us, in a program named ball_time.m
find the time when heights start to get negative, i.e., when the ball crosses y D 0.
The program could look like this

g = 9.81;

v0 = 4.5; % Initial velocity

t = linspace(0, 1, 1000); % Acceleration of gravity

y = v0*t - 0.5*g*t.^2; % Generate all heights

% At this point, the array y with all heights is ready

i = 1;

while y(i) >= 0

i = i + 1;

end

% Having the index, we may look up the time in the array t

fprintf(’The time (switch from positive to negative): %f\n’, t(i));

https://github.com/hplgit/prog4comp/tree/master/src/m/ball_time.m
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% We plot the path again just for comparison

plot(t, y);

xlabel(’Time (s)’);

ylabel(’Height (m)’);

If you type and run this program you should get

y=0 at 0.917417417417

The new thing here is the while loop only. The loop will run as long as the boolean
expression y(i) >= 0 evaluates to true. Note that the programmer introduced
a variable (the loop index) by the name i, initialized it (i = 1) before the loop, and
updated it (i = i + 1) in the loop. So for each iteration, i is explicitly increased
by 1, allowing a check of successive elements in the array y.

Compared to a for loop, the programmer does not have to specify the number
of iterations when coding a while loop. It simply runs until the boolean expression
becomes false. Thus, a loop index (as we have in a for loop) is not required. Fur-
thermore, if a loop index is used in a while loop, it is not increased automatically;
it must be done explicitly by the programmer. Of course, just as in for loops and
if blocks, there might be (arbitrarily) many code lines in a while loop. Any for
loop may also be implemented as a while loop, but while loops are more general
so not all of them can be expressed as a for loop.

A problem to be aware of, is what is usually referred to as an infinite loop. In
those unintentional (erroneous) cases, the boolean expression of the while test
never evaluates to false, and the program can not escape the loop. This is one
of the most frequent errors you will experience as a beginning programmer. If you
accidentally enter an infinite loop and the program just hangs forever, press Ctrl+c
to stop the program.

2.5 Reading from andWriting to Files

Input data for a program often come from files and the results of the computations
are often written to file. To illustrate basic file handling, we consider an example
where we read x and y coordinates from two columns in a file, apply a function f

to the y coordinates, and write the results to a new two-column data file. The first
line of the input file is a heading that we can just skip:

% x and y coordinates

1.0 3.44

2.0 4.8

3.5 6.61

4.0 5.0

The relevant Matlab lines for reading the numbers and writing out a similar file are
given in the file file_handling.m

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling.m
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filename = ’tmp.dat’;

infileID = fopen(filename, ’r’); % Open file for reading

fgetl(infileID); % Read and skip first line

% First read file to count number of lines with data

no_of_lines = 0;

while ~feof(infileID)

no_of_lines = no_of_lines + 1;

fgetl(infileID);

end

fclose(infileID);

% Can now define arrays x and y of known length

x = zeros(no_of_lines, 1);

y = zeros(no_of_lines, 1);

% Re-open the file for reading

infileID = fopen(filename, ’r’); % Open file for reading

fgetl(infileID); % Read and skip first line

% Read x and y coordinates from the file and store in arrays

i = 1;

while i <= no_of_lines

x(i) = fscanf(infileID, ’%f’, 1);

y(i) = fscanf(infileID, ’%f’, 1);

i = i + 1;

end

fclose(infileID);

% Next, we treat the y-coordinates and write to file

F = @(y) log(y);

y = F(y); % Overwrite y with new values

filename = ’tmp_out.dat’;

outfileID = fopen(filename, ’w’); % Open file for writing

i = 1;

while i <= no_of_lines

fprintf(outfileID, ’%10.5f %10.5f’, x(i), y(i));

i = i + 1;

end

fclose(outfileID);

Such a file with a comment line and numbers in tabular format is very common
so Matlab has functionality to ease reading and writing. Here is the same example
(file file_handling_easy.m):

filename = ’tmp.dat’;

data = load(filename);

x = data(:,1);

y = data(:,2);

data(:,2) = log(y); % insert transformed y back in array

filename = ’tmp_out.dat’;

outfile = fopen(filename, ’w’); % open file for writing

fprintf(outfile, ’%% x and y coordinates\n’);

https://github.com/hplgit/prog4comp/tree/master/src/m/file_handling_easy.m
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fprintf(outfile, ’%10.5f %10.5f\n’, data);

fclose(outfile);

2.6 Exercises

Exercise 2.1: Introducing errors
Write the program ball_function.m as given in the text and confirm that the
program runs correctly. Then save a copy of the program and use that program
during the following error testing.

You are supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Matlab’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Change the first line from function ball_function() to ball_
function(), i.e. remove the word function.

b) Change the first line from function ball_function() to function ball_
func(), i.e., change the name of the function.

c) Change the line function result = y(t) to function y(t).
d) Change the line function result = y(t) to function result = y(),

i.e., remove the parameter t.
e) Change the first statement that calls y from vertical_position = y(time);

to vertical_position = y();.

Filename: introducing_errors.m.

Exercise 2.2: Compare integers a and b
Explain briefly, in your own words, what the following program does.

a = input(’Give an integer a: ’);

b = input(’Give an integer b: ’);

if a < b

fprintf(’a is the smallest of the two numbers\n’);

elseif a == b

fprintf(’a and b are equal\n’);

else

fprintf(’a is the largest of the two numbers\n’);

end

Proceed by writing the program, and then run it a few times with different values
for a and b to confirm that it works as intended. In particular, choose combinations
for a and b so that all three branches of the if construction get tested.
Filename: compare_a_and_b.m.

Exercise 2.3: Functions for circumference and area of a circle
Write a program that takes a circle radius r as input from the user and then computes
the circumference C and area A of the circle. Implement the computations of C and
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A as two separate functions that each takes r as input parameter. Print C and A to
the screen along with an appropriate text. Run the program with r D 1 and confirm
that you get the right answer.
Filename: functions_circumference_area.m.

Exercise 2.4: Function for area of a rectangle
Write a program that computes the area A D bc of a rectangle. The values of b

and c should be user input to the program. Also, write the area computation as
a function that takes b and c as input parameters and returns the computed area.
Let the program print the result to screen along with an appropriate text. Run the
program with b D 2 and c D 3 to confirm correct program behavior.
Filename: function_area_rectangle.m.

Exercise 2.5: Area of a polygon
One of the most important mathematical problems through all times has been to
find the area of a polygon, especially because real estate areas often had the shape
of polygons, and it was necessary to pay tax for the area. We have a polygon as
depicted below.

The vertices (“corners”) of the polygon have coordinates .x1; y1/, .x2; y2/, : : :,
.xn; yn/, numbered either in a clockwise or counter clockwise fashion. The area A

of the polygon can amazingly be computed by just knowing the boundary coordi-
nates:

A D 1

2

ˇ
ˇ.x1y2 C x2y3 C : : : C xn�1yn C xny1/

� .y1x2 C y2x3 C : : : C yn�1xn C ynx1/
ˇ
ˇ :
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Write a function polyarea(x, y) that takes two coordinate arrays with the ver-
tices as arguments and returns the area. Assume that x and y are either lists or
arrays.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.
Filename: polyarea.m.

Exercise 2.6: Average of integers
Write a program that gets an integer N > 1 from the user and computes the average
of all integers i D 1; : : : ; N . The computation should be done in a function that
takes N as input parameter. Print the result to the screen with an appropriate text.
Run the program with N D 5 and confirm that you get the correct answer.
Filename: average_1_to_N.m.

Exercise 2.7: While loop with errors
Assume some program has been written for the task of adding all integers i D
1; 2; : : : ; 10:

some_number = 0;

i = 1;

while j < 11;

some_number += 1

print some_number

a) Identify the errors in the program by just reading the code and simulating the
program by hand.

b) Write a new version of the program with errors corrected. Run this program and
confirm that it gives the correct output.

Filename: while_loop_errors.m.

Exercise 2.8: Area of rectangle versus circle
Consider one circle and one rectangle. The circle has a radius r D 10:6. The
rectangle has sides a and b, but only a is known from the outset. Let a D 1:3 and
write a program that uses a while loop to find the largest possible integer b that
gives a rectangle area smaller than, but as close as possible to, the area of the circle.
Run the program and confirm that it gives the right answer (which is b D 271).
Filename: area_rectangle_vs_circle.m.

Exercise 2.9: Find crossing points of two graphs
Consider two functions f .x/ D x and g.x/ D x2 on the interval Œ�4; 4�.

Write a program that, by trial and error, finds approximately for which values
of x the two graphs cross, i.e., f .x/ D g.x/. Do this by considering N equally
distributed points on the interval, at each point checking whether jf .x/�g.x/j < �,
where � is some small number. Let N and � be user input to the program and let
the result be printed to screen. Run your program with N D 400 and � D 0:01.
Explain the output from the program. Finally, try also other values of N , keeping
the value of � fixed. Explain your observations.
Filename: crossing_2_graphs.m.
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Exercise 2.10: Sort array with numbers
The built-in function rand may be used to draw pseudo-random numbers for the
standard uniform distribution between 0 and 1 (exclusive at both ends). See help
rand.

Write a script that generates an array of 6 random numbers between 0 and 10.
The program should then sort the array so that numbers appear in increasing order.
Let the program make a formatted print of the array to the screen both before and
after sorting. The printouts should appear on the screen so that comparison is made
easy. Confirm that the array has been sorted correctly.
Filename: sort_numbers.m.

Exercise 2.11: Compute �

Up through history, great minds have developed different computational schemes
for the number � . We will here consider two such schemes, one by Leibniz (1646–
1716), and one by Euler (1707–1783).

The scheme by Leibniz may be written

� D 8

1X

kD0

1

.4k C 1/.4k C 3/
;

while one form of the Euler scheme may appear as

� D
v
u
u
t6

1X

kD1

1

k2
:

If only the first N terms of each sum are used as an approximation to � , each
modified scheme will have computed � with some error.

Write a program that takes N as input from the user, and plots the error develop-
ment with both schemes as the number of iterations approaches N . Your program
should also print out the final error achieved with both schemes, i.e. when the num-
ber of terms is N. Run the program with N D 100 and explain briefly what the
graphs show.
Filename: compute_pi.m.

Exercise 2.12: Compute combinations of sets
Consider an ID number consisting of two letters and three digits, e.g., RE198. How
many different numbers can we have, and how can a program generate all these
combinations?

If a collection of n things can have m1 variations of the first thing, m2 of the sec-
ond and so on, the total number of variations of the collection equals m1m2 � � � mn.
In particular, the ID number exemplified above can have 26�26�10�10�10 D 676;000

variations. To generate all the combinations, we must have five nested for loops.
The first two run over all letters A, B, and so on to Z, while the next three run over
all digits 0; 1; : : : ; 9.

To convince yourself about this result, start out with an ID number on the form
A3 where the first part can vary among A, B, and C, and the digit can be among 1,
2, or 3. We must start with A and combine it with 1, 2, and 3, then continue with
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B, combined with 1, 2, and 3, and finally combine C with 1, 2, and 3. A double for
loop does the work.

a) In a deck of cards, each card is a combination of a rank and a suit. There are 13
ranks: ace (A), 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and four
suits: clubs (C), diamonds (D), hearts (H), and spades (S). A typical card may
be D3. Write statements that generate a deck of cards, i.e., all the combinations
CA, C2, C3, and so on to SK.

b) A vehicle registration number is on the form DE562, where the letters vary from
A to Z and the digits from 0 to 9. Write statements that compute all the possible
registration numbers and stores them in a list.

c) Generate all the combinations of throwing two dice (the number of eyes can
vary from 1 to 6). Count how many combinations where the sum of the eyes
equals 7.

Filename: combine_sets.m.

Exercise 2.13: Frequency of random numbers
Write a program that takes a positive integer N as input and then draws N random
integers in the interval Œ1; 6� (both ends inclusive). In the program, count how many
of the numbers, M , that equal 6 and write out the fraction M=N . Also, print all the
random numbers to the screen so that you can check for yourself that the counting
is correct. Run the program with a small value for N (e.g., N = 10) to confirm that
it works as intended.

Hint Use 1+floor(6*rand()) to draw a random integer between 1 and 6.
Filename: count_random_numbers.m.

Remarks For large N , this program computes the probability M=N of getting six
eyes when throwing a dice.

Exercise 2.14: Game 21
Consider some game where each participant draws a series of random integers
evenly distributed from 0 and 10, with the aim of getting the sum as close as pos-
sible to 21, but not larger than 21. You are out of the game if the sum passes 21.
After each draw, you are told the number and your total sum, and are asked whether
you want another draw or not. The one coming closest to 21 is the winner.

Implement this game in a program.

Hint Use floor(11*rand()) to draw random integers in Œ0; 10�.
Filename: game_21.m.

Exercise 2.15: Linear interpolation
Some measurements yi , i D 0; 1; : : : ; N (given below), of a quantity y have been
collected regularly, once every minute, at times ti D i , i D 0; 1; : : : ; N . We want
to find the value y in between the measurements, e.g., at t D 3:2min. Computing
such y values is called interpolation.
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Let your program use linear interpolation to compute y between two consecutive
measurements:

1. Find i such that ti � t � tiC1.
2. Find a mathematical expression for the straight line that goes through the points

.i; yi / and .i C 1; yiC1/.
3. Compute the y value by inserting the user’s time value in the expression for the

straight line.

a) Implement the linear interpolation technique in a function that takes an array
with the yi measurements as input, together with some time t , and returns the
interpolated y value at time t .

b) Write another function with a loop where the user is asked for a time on the
interval Œ0; N � and the corresponding (interpolated) y value is written to the
screen. The loop is terminated when the user gives a negative time.

c) Use the following measurements: 4:4; 2:0; 11:0; 21:5; 7:5, corresponding to
times 0; 1; : : : ; 4 (min), and compute interpolated values at t D 2:5 and
t D 3:1min. Perform separate hand calculations to check that the output
from the program is correct.

Filename: linear_interpolation.m.

Exercise 2.16: Test straight line requirement
Assume the straight line function f .x/ D 4x C 1. Write a script that tests the
“point-slope” form for this line as follows. Within a chosen interval on the x-axis
(for example, for x between 0 and 10), randomly pick 100 points on the line and
check if the following requirement is fulfilled for each point:

f .xi / � f .c/

xi � c
D a; i D 1; 2; : : : ; 100 ;

where a is the slope of the line and c defines a fixed point .c; f .c// on the line. Let
c D 2 here.
Filename: test_straight_line.m.

Exercise 2.17: Fit straight line to data
Assume some measurements yi ; i D 1; 2; : : : ; 5 have been collected, once every
second. Your task is to write a program that fits a straight line to those data.

a) Make a function that computes the error between the straight line f .x/ D axCb

and the measurements:

e D
5X

iD1

.axi C b � yi /
2 :

b) Make a function with a loop where you give a and b, the corresponding value of
e is written to the screen, and a plot of the straight line f .x/ D ax C b together
with the discrete measurements is shown.
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c) Given the measurements 0:5; 2:0; 1:0; 1:5; 7:5, at times 0; 1; 2; 3; 4, use the func-
tion in b) to interactively search for a and b such that e is minimized.

Filename: fit_straight_line.m.

Remarks Fitting a straight line to measured data points is a very common task. The
manual search procedure in c) can be automated by using a mathematical method
called the method of least squares.

Exercise 2.18: Fit sines to straight line
A lot of technology, especially most types of digital audio devices for processing
sound, is based on representing a signal of time as a sum of sine functions. Say the
signal is some function f .t/ on the interval Œ��; �� (a more general interval Œa; b�

can easily be treated, but leads to slightly more complicated formulas). Instead of
working with f .t/ directly, we approximate f by the sum

SN .t/ D
NX

nD1

bn sin.nt/; (2.1)

where the coefficients bn must be adjusted such that SN .t/ is a good approximation
to f .t/. We shall in this exercise adjust bn by a trial-and-error process.

a) Make a function sinesum(t, b) that returns SN .t/, given the coefficients bn

in an array b and time coordinates in an array t. Note that if t is an array, the
return value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a) and deter-
mines if the function computes a test case correctly. As test case, let t be an
array with values ��=2 and �=4, choose N D 2, and b1 D 4 and b2 D �3.
Compute SN .t/ by hand to get reference values.

c) Make a function plot_compare(f, N, M) that plots the original function f .t/

together with the sum of sines SN .t/, so that the quality of the approximation
SN .t/ can be examined visually. The argument f is a Matlab function imple-
menting f .t/, N is the number of terms in the sum SN .t/, and M is the number
of uniformly distributed t coordinates used to plot f and SN .

d) Write a function error(b, f, M) that returns a mathematical measure of the
error in SN .t/ as an approximation to f .t/:

E D
sX

i

.f .ti / � SN .ti //
2;

where the ti values are M uniformly distributed coordinates on Œ��; ��. The
array b holds the coefficients in SN and f is a Matlab function implementing the
mathematical function f .t/.

e) Make a function trial(f, N) for interactively giving bn values and getting
a plot on the screen where the resulting SN .t/ is plotted together with f .t/.
The error in the approximation should also be computed as indicated in d). The
argument f is a Matlab function for f .t/ and N is the number of terms N in the
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sum SN .t/. The trial function can run a loop where the user is asked for the bn

values in each pass of the loop and the corresponding plot is shown. You must
find a way to terminate the loop when the experiments are over. Use M=500 in
the calls to plot_compare and error.

f) Choose f .t/ to be a straight line f .t/ D 1
�

t on Œ��; ��. Call trial(f, 3)
and try to find through experimentation some values b1, b2, and b3 such that the
sum of sines SN .t/ is a good approximation to the straight line.

g) Now we shall try to automate the procedure in f). Write a function that has
three nested loops over values of b1, b2, and b3. Let each loop cover the interval
Œ�1; 1� in steps of 0:1. For each combination of b1, b2, and b3, the error in the
approximation SN should be computed. Use this to find, and print, the smallest
error and the corresponding values of b1, b2, and b3. Let the program also plot
f and the approximation SN corresponding to the smallest error.

Filename: fit_sines.m.

Remarks

1. The function SN .x/ is a special case of what is called a Fourier series. At
the beginning of the 19th century, Joseph Fourier (1768–1830) showed that any
function can be approximated analytically by a sum of cosines and sines. The
approximation improves as the number of terms (N ) is increased. Fourier series
are very important throughout science and engineering today.
(a) Finding the coefficients bn is solved much more accurately in Exercise 3.12,

by a procedure that also requires much less human and computer work!
(b) In real applications, f .t/ is not known as a continuous function, but func-

tion values of f .t/ are provided. For example, in digital sound applications,
music in a CD-quality WAV file is a signal with 44100 samples of the corre-
sponding analog signal f .t/ per second.

Exercise 2.19: Count occurrences of a string in a string
In the analysis of genes one encounters many problem settings involving searching
for certain combinations of letters in a long string. For example, we may have
a string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string letter by letter. The length of the string is given by
length(gene), so with a loop index i, for i = 1:length(gene)will produce
the required index values. Letter number i is then reached through gene(i), and
a substring from index i up to and including j, is created by gene(i:j).

a) Write a function freq(letter, text) that returns the frequency of the letter
letter in the string text, i.e., the number of occurrences of letter divided
by the length of text. Call the function to determine the frequency of C and G
in the gene string above. Compute the frequency by hand too.

b) Write a function pairs(letter, text) that counts how many times a pair
of the letter letter (e.g., GG) occurs within the string text. Use the function
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to determine how many times the pair AA appears in the string gene above.
Perform a manual counting too to check the answer.

c) Write a function mystruct(text) that counts the number of a certain structure
in the string text. The structure is defined as G followed by A or T until a double
GG. Perform a manual search for the structure too to control the computations
by mystruct.

Filename: count_substrings.m.
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3Computing Integrals

We now turn our attention to solving mathematical problems through computer
programming. There are many reasons to choose integration as our first application.
Integration is well known already from high school mathematics. Most integrals
are not tractable by pen and paper, and a computerized solution approach is both
very much simpler and much more powerful – you can essentially treat all integralsR b

a
f .x/dx in 10 lines of computer code (!). Integration also demonstrates the

difference between exact mathematics by pen and paper and numerical mathematics
on a computer. The latter approaches the result of the former without any worries
about rounding errors due to finite precision arithmetics in computers (in contrast to
differentiation, where such errors prevent us from getting a result as accurate as we
desire on the computer). Finally, integration is thought of as a somewhat difficult
mathematical concept to grasp, and programming integration should greatly help
with the understanding of what integration is and how it works. Not only shall we
understand how to use the computer to integrate, but we shall also learn a series
of good habits to ensure your computer work is of the highest scientific quality.
In particular, we have a strong focus on how to write Matlab code that is free of
programming mistakes.

Calculating an integral is traditionally done by

bZ

a

f .x/ dx D F.b/ � F.a/; (3.1)
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where

f .x/ D dF

dx
:

The major problem with this procedure is that we need to find the anti-derivative
F.x/ corresponding to a given f .x/. For some relatively simple integrands f .x/,
finding F.x/ is a doable task, but it can very quickly become challenging, even
impossible!

The method (3.1) provides an exact or analytical value of the integral. If we
relax the requirement of the integral being exact, and instead look for approximate
values, produced by numerical methods, integration becomes a very straightforward
task for any given f .x/ (!).

The downside of a numerical method is that it can only find an approximate an-
swer. Leaving the exact for the approximate is a mental barrier in the beginning, but
remember that most real applications of integration will involve an f .x/ function
that contains physical parameters, which are measured with some error. That is,
f .x/ is very seldom exact, and then it does not make sense to compute the integral
with a smaller error than the one already present in f .x/.

Another advantage of numerical methods is that we can easily integrate a func-
tion f .x/ that is only known as samples, i.e., discrete values at some x points,
and not as a continuous function of x expressed through a formula. This is highly
relevant when f is measured in a physical experiment.

3.1 Basic Ideas of Numerical Integration

We consider the integral
bZ

a

f .x/dx : (3.2)

Most numerical methods for computing this integral split up the original integral
into a sum of several integrals, each covering a smaller part of the original inte-
gration interval Œa; b�. This re-writing of the integral is based on a selection of
integration points xi , i D 0; 1; : : : ; n that are distributed on the interval Œa; b�.
Integration points may, or may not, be evenly distributed. An even distribution sim-
plifies expressions and is often sufficient, so we will mostly restrict ourselves to that
choice. The integration points are then computed as

xi D a C ih; i D 0; 1; : : : ; n; (3.3)

where

h D b � a

n
: (3.4)

Given the integration points, the original integral is re-written as a sum of inte-
grals, each integral being computed over the sub-interval between two consecutive
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integration points. The integral in (3.2) is thus expressed as

bZ

a

f .x/dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx : (3.5)

Note that x0 D a and xn D b.
Proceeding from (3.5), the different integration methods will differ in the way

they approximate each integral on the right hand side. The fundamental idea is that
each term is an integral over a small interval Œxi ; xiC1�, and over this small interval,
it makes sense to approximate f by a simple shape, say a constant, a straight line,
or a parabola, which we can easily integrate by hand. The details will become clear
in the coming examples.

Computational example To understand and compare the numerical integration
methods, it is advantageous to use a specific integral for computations and graphical
illustrations. In particular, we want to use an integral that we can calculate by hand
such that the accuracy of the approximation methods can easily be assessed. Our
specific integral is taken from basic physics. Assume that you speed up your car
from rest and wonder how far you go in T seconds. The distance is given by the
integral

R T

0 v.t/dt , where v.t/ is the velocity as a function of time. A rapidly
increasing velocity function might be

v .t/ D 3t2et3

: (3.6)

The distance after one second is

1Z

0

v.t/dt; (3.7)

which is the integral we aim to compute by numerical methods. Fortunately, the
chosen expression of the velocity has a form that makes it easy to calculate the
anti-derivative as

V.t/ D et3 � 1 : (3.8)

We can therefore compute the exact value of the integral as V.1/ � V.0/ � 1:718

(rounded to 3 decimals for convenience).

3.2 The Composite Trapezoidal Rule

The integral
R b

a
f .x/dx may be interpreted as the area between the x axis and the

graph y D f .x/ of the integrand. Fig. 3.1 illustrates this area for the choice (3.7).
Computing the integral

R 1

0
f .t/dt amounts to computing the area of the hatched

region.
If we replace the true graph in Fig. 3.1 by a set of straight line segments, we

may view the area rather as composed of trapezoids, the areas of which are easy to
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Fig. 3.1 The integral of v.t/ interpreted as the area under the graph of v

compute. This is illustrated in Fig. 3.2, where 4 straight line segments give rise to
4 trapezoids, covering the time intervals Œ0; 0:2/, Œ0:2; 0:6/, Œ0:6; 0:8/ and Œ0:8; 1:0�.
Note that we have taken the opportunity here to demonstrate the computations with
time intervals that differ in size.

The areas of the 4 trapezoids shown in Fig. 3.2 now constitute our approximation
to the integral (3.7):

1Z

0

v.t/dt � h1

�
v.0/ C v.0:2/

2

�

C h2

�
v.0:2/ C v.0:6/

2

�

C h3

�
v.0:6/ C v.0:8/

2

�

C h4

�
v.0:8/ C v.1:0/

2

�

; (3.9)

where

h1 D .0:2 � 0:0/; (3.10)

h2 D .0:6 � 0:2/; (3.11)

h3 D .0:8 � 0:6/; (3.12)

h4 D .1:0 � 0:8/ (3.13)

With v.t/ D 3t2et3
, each term in (3.9) is readily computed and our approximate

computation gives
1Z

0

v.t/dt � 1:895 : (3.14)
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Fig. 3.2 Computing approximately the integral of a function as the sum of the areas of the trape-
zoids

Compared to the true answer of 1.718, this is off by about 10%. However, note
that we used just 4 trapezoids to approximate the area. With more trapezoids, the
approximation would have become better, since the straight line segments at the
upper trapezoid side then would follow the graph more closely. Doing another hand
calculation with more trapezoids is not too tempting for a lazy human, though,
but it is a perfect job for a computer! Let us therefore derive the expressions for
approximating the integral by an arbitrary number of trapezoids.

3.2.1 The General Formula

For a given function f .x/, we want to approximate the integral
R b

a f .x/dx by n

trapezoids (of equal width). We start out with (3.5) and approximate each integral
on the right hand side with a single trapezoid. In detail,

bZ

a

f .x/ dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx;

� h
f .x0/ C f .x1/

2
C h

f .x1/ C f .x2/

2
C : : :

C h
f .xn�1/ C f .xn/

2
(3.15)
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By simplifying the right hand side of (3.15) we get

bZ

a

f .x/ dx � h

2
Œf .x0/ C 2f .x1/ C 2f .x2/ C : : : C 2f .xn�1/ C f .xn/� (3.16)

which is more compactly written as

bZ

a

f .x/ dx � h

"
1

2
f .x0/ C

n�1X

iD1

f .xi / C 1

2
f .xn/

#

: (3.17)

Composite integration rules
The word composite is often used when a numerical integration method is ap-
plied with more than one sub-interval. Strictly speaking then, writing, e.g., “the
trapezoidal method”, should imply the use of only a single trapezoid, while “the
composite trapezoidal method” is the most correct name when several trapezoids
are used. However, this naming convention is not always followed, so saying just
“the trapezoidal method”may point to a single trapezoid as well as the composite
rule with many trapezoids.

3.2.2 Implementation

Specific or general implementation? Suppose our primary goal was to compute
the specific integral

R 1

0
v.t/dt with v.t/ D 3t2et3

. First we played around with
a simple hand calculation to see what the method was about, before we (as one
often does in mathematics) developed a general formula (3.17) for the general or
“abstract” integral

R b

a
f .x/dx. To solve our specific problem

R 1

0
v.t/dt we must

then apply the general formula (3.17) to the given data (function and integral limits)
in our problem. Although simple in principle, the practical steps are confusing for
many because the notation in the abstract problem in (3.17) differs from the notation
in our special problem. Clearly, the f , x, and h in (3.17) correspond to v, t , and
perhaps �t for the trapezoid width in our special problem.

The programmer’s dilemma
1. Should we write a special program for the special integral, using the ideas

from the general rule (3.17), but replacing f by v, x by t , and h by �t?
2. Should we implement the general method (3.17) as it stands in a general

function trapezoid(f, a, b, n) and solve the specific problem at hand
by a specialized call to this function?

Alternative 2 is always the best choice!

The first alternative in the box above sounds less abstract and therefore more
attractive to many. Nevertheless, as we hope will be evident from the examples,
the second alternative is actually the simplest and most reliable from both a math-
ematical and programming point of view. These authors will claim that the second
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alternative is the essence of the power of mathematics, while the first alternative is
the source of much confusion about mathematics!

Implementation with functions For the integral
R b

a
f .x/dx computed by the for-

mula (3.17) we want the corresponding Matlab function trapezoid to take any f ,
a, b, and n as input and return the approximation to the integral.

We write a Matlab function trapezoidal in a file trapezoidal.m as close
as possible to the formula (3.17), making sure variable names correspond to the
mathematical notation:

function integral = trapezoidal(f, a, b, n)

h = (b-a)/n;

result = 0.5*f(a) + 0.5*f(b);

for i = 1:(n-1)

result = result + f(a + i*h);

end

integral = h*result;

end

This function must be placed in a file trapezoidal.m to be reused in other pro-
grams and in interactive sessions.

Solving our specific problem in a session An interactive session can make use
of the trapezoidal function in trapezoidal.m to solve our particular problemR 1

0
v.t/dt :

octave:1> v = @(t) 3*(t^2)*exp(t^3);

octave:2> n = 4;

octave:4> numerical = trapezoidal(v, 0, 1, n);

octave:5> numerical

numerical = 1.9227

Let us compute the exact expression and the error in the approximation:

octave:6> V = @(t) exp(t^3);

octave:7> exact = V(1) - V(0);

octave:8> error = exact - numerical

ans = -0.20443

Is this error convincing? We can try a larger n:

octave:9> numerical = trapezoidal(v, 0, 1, 400);

octave:10> exact - numerical

ans = -2.1236e-05

Fortunately, many more trapezoids give a much smaller error.

https://github.com/hplgit/prog4comp/tree/master/src/m/trapezoidal.m
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Solving our specific problem in a program Instead of computing our special
problem in an interactive session, we can do it in a program. As always, a chunk
of code doing a particular thing is best isolated as a function even if we do not see
any future reason to call the function several times and even if we have no need for
arguments to parameterize what goes on inside the function. In the present case,
we just put the statements we otherwise would have put in a main program, inside
a function:

function application()

v = @(t) 3*(t^2)*exp(t^3);

n = input(’n: ’)

numerical = trapezoidal(v, 0, 1, n);

% Compare with exact result

V = @(t) exp(t^3);

exact = V(1) - V(0);

error = exact - numerical;

fprintf("n=%d: %.16f, error: %g", n, numerical, error)

end

Now we compute our special problem by calling application() as the only state-
ment in the main program. The application function and its call is in the file
trapezoidal_app.m, which can be run as

Terminal> octave trapezoidal_app.m

...

n: 4

n = 4

n=4: 1.9227167504675762, error: -0.204435

3.2.3 Alternative Flat Special-Purpose Implementation

Let us illustrate the implementation implied by alternative 1 in the Programmer’s
dilemma box in Sect. 3.2.2. That is, we make a special-purpose code where we
adapt the general formula (3.17) to the specific problem

R 1

0
3t2et3

dt .
Basically, we use a for loop to compute the sum. Each term with f .x/ in the

formula (3.17) is replaced by 3t2et3
, x by t , and h by �t1. A first try at writing

a plain, flat program doing the special calculation is

a = 0.0; b = 1.0;

n = input(’n: ’)

dt = (b-a)/n;

1 Replacing h by �t is not strictly required as many use h as interval also along the time axis.
Nevertheless, �t is an even more popular notation for a small time interval, so we adopt that
common notation.
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% Integral by the trapezoidal method

numerical = 0.5*3*(a^2)*exp(a^3) + 0.5*3*(b^2)*exp(b^3);

for i = 1:(n-1)

numerical = numerical + 3*((a + i*dt)^2)*exp((a + i*dt)^3);

end

numerical = numerical*dt;

exact_value = exp(1^3) - exp(0^3);

error = exact_value - numerical;

fprintf(’n=%d: %.16f, error: %g’, n, numerical, error);

The problem with the above code is at least three-fold:

1. We need to reformulate (3.17) for our special problem with a different notation.
2. The integrand 3t2et3

is inserted many times in the code, which quickly leads to
errors.

3. A lot of edits are necessary to use the code to compute a different integral –
these edits are likely to introduce errors.

The potential errors involved in point 2 serve to illustrate how important it is to
use Matlab functions as mathematical functions. Here we have chosen to use the
anonymous function to define the integrand as the variable v:

v = @(t) 3*(t^2)*exp(t^3);

a = 0.0; b = 1.0;

n = input(’n: ’)

dt = (b-a)/n;

% Integral by the trapezoidal method

numerical = 0.5*v(a) + 0.5*v(b);

for i = 1:(n-1)

numerical = numerical + v(a + i*dt);

end

numerical = numerical*dt;

F = @(t) exp(t^3);

exact_value = F(b) - F(a);

error = exact_value - numerical;

fprintf(’n=%d: %.16f, error: %g’, n, numerical, error);

Unfortunately, the two other problems remain and they are fundamental.
Suppose you want to compute another integral, say

R 1:1

�1
e�x2

dx. How much do
we need to change in the previous code to compute the new integral? Not so much:

� the formula for v must be replaced by a new formula
� the limits a and b
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� the anti-derivative V is not easily known2 and can be omitted, and therefore we
cannot write out the error

� the notation should be changed to be aligned with the new problem, i.e., t and
dt changed to x and h

These changes are straightforward to implement, but they are scattered around in
the program, a fact that requires us to be very careful so we do not introduce new
programming errors while we modify the code. It is also very easy to forget to make
a required change.

With the previous code in trapezoidal.m, we can compute the new integralR 1:1

�1
e�x2

dx without touching the mathematical algorithm. In an interactive session
(or in a program) we can just do

octave:1> trapezoidal(@(x) exp(-x^2), -1, 1.1, 400)

ans = 1.5269

When you now look back at the two solutions, the flat special-purpose program
and the function-based program with the general-purpose function trapezoidal,
you hopefully realize that implementing a general mathematical algorithm in a gen-
eral function requires somewhat more abstract thinking, but the resulting code can
be used over and over again. Essentially, if you apply the flat special-purpose style,
you have to retest the implementation of the algorithm after every change of the
program.

The present integral problems result in short code. In more challenging engineer-
ing problems the code quickly grows to hundreds and thousands of lines. Without
abstractions in terms of general algorithms in general reusable functions, the com-
plexity of the program grows so fast that it will be extremely difficult to make sure
that the program works properly.

Another advantage of packaging mathematical algorithms in functions is that
a function can be reused by anyone to solve a problem by just calling the function
with a proper set of arguments. Understanding the function’s inner details is not
necessary to compute a new integral. Similarly, you can find libraries of functions
on the Internet and use these functions to solve your problems without specific
knowledge of every mathematical detail in the functions.

This desirable feature has its downside, of course: the user of a function may
misuse it, and the function may contain programming errors and lead to wrong an-
swers. Testing the output of downloaded functions is therefore extremely important
before relying on the results.

2 You cannot integrate e�x2
by hand, but this particular integral is appearing so often in so many

contexts that the integral is a special function, called the Error function (http://en.wikipedia.org/
wiki/Error_function) and written erf.x/. In a code, you can call erf(x).

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function
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3.3 The Composite Midpoint Method

The idea Rather than approximating the area under a curve by trapezoids, we can
use plain rectangles. It may sound less accurate to use horizontal lines and not
skew lines following the function to be integrated, but an integration method based
on rectangles (the midpoint method) is in fact slightly more accurate than the one
based on trapezoids!

In the midpoint method, we construct a rectangle for every sub-interval where
the height equals f at the midpoint of the sub-interval. Let us do this for four
rectangles (Fig. 3.3), using the same sub-intervals as we had for hand calculations
with the trapezoidal method: Œ0; 0:2/, Œ0:2; 0:6/, Œ0:6; 0:8/, and Œ0:8; 1:0�. We get

1Z

0

f .t/dt � h1f

�
0 C 0:2

2

�

C h2f

�
0:2 C 0:6

2

�

C h3f

�
0:6 C 0:8

2

�

C h4f

�
0:8 C 1:0

2

�

; (3.18)

where h1, h2, h3, and h4 are the widths of the sub-intervals, used previously with
the trapezoidal method and defined in (3.10)–(3.13).

With f .t/ D 3t2et3
, the approximation becomes 1.632. Compared with the true

answer (1.718), this is about 5% too small, but it is better than what we got with
the trapezoidal method (10%) with the same sub-intervals. More rectangles give
a better approximation.

Fig. 3.3 Computing approximately the integral of a function as the sum of the areas of the rect-
angles
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3.3.1 The General Formula

Let us derive a formula for the midpoint method based on n rectangles of equal
width:

bZ

a

f .x/ dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx;

� hf

�
x0 C x1

2

�

C hf

�
x1 C x2

2

�

C : : : C hf

�
xn�1 C xn

2

�

;

(3.19)

� h

�

f

�
x0 C x1

2

�

C f

�
x1 C x2

2

�

C : : : C f

�
xn�1 C xn

2

��

:

(3.20)

This sum may be written more compactly as

bZ

a

f .x/dx � h

n�1X

iD0

f .xi /; (3.21)

where xi D �
a C h

2

�C ih.

3.3.2 Implementation

We follow the advice and lessons learned from the implementation of the
trapezoidal method and make a function midpoint(f, a, b, n) (in a file
midpoint.m) for implementing the general formula (3.21):

function result_integration = midpoint(f, a, b, n)

h = (b-a)/n;

result = 0;

for i = 0:(n-1)

result = result + f((a + h/2) + i*h);

end

result_integration = h*result;

end

We can test the function as we explained for the similar trapezoidalmethod.
The error in our particular problem

R 1

0
3t2et3

dt with four intervals is now about 0.1
in contrast to 0.2 for the trapezoidal rule. This is in fact not accidental: one can
show mathematically that the error of the midpoint method is a bit smaller than for
the trapezoidal method. The differences are seldom of any practical importance,
and on a laptop we can easily use n D 106 and get the answer with an error of about
10�12 in a couple of seconds.

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m
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3.3.3 Comparing the Trapezoidal and theMidpointMethods

The next example shows how easy we can combine the trapezoidal and
midpoint functions to make a comparison of the two methods in the file compare_
integration_methods.m:

g = @(y) exp(-y^2);

a = 0;

b = 2;

fprintf(’ n midpoint trapezoidal\n’);

for i = 1:20

n = 2^i;

m = midpoint(g, a, b, n);

t = trapezoidal(g, a, b, n);

fprintf(’%7d %.16f %.16f\n’, n, m, t);

end

Note the efforts put into nice formatting – the output becomes

n midpoint trapezoidal

2 0.8842000076332692 0.8770372606158094

4 0.8827889485397279 0.8806186341245393

8 0.8822686991994210 0.8817037913321336

16 0.8821288703366458 0.8819862452657772

32 0.8820933014203766 0.8820575578012112

64 0.8820843709743319 0.8820754296107942

128 0.8820821359746071 0.8820799002925637

256 0.8820815770754198 0.8820810181335849

512 0.8820814373412922 0.8820812976045025

1024 0.8820814024071774 0.8820813674728968

2048 0.8820813936736116 0.8820813849400392

4096 0.8820813914902204 0.8820813893068272

8192 0.8820813909443684 0.8820813903985197

16384 0.8820813908079066 0.8820813906714446

32768 0.8820813907737911 0.8820813907396778

65536 0.8820813907652575 0.8820813907567422

131072 0.8820813907631487 0.8820813907610036

262144 0.8820813907625702 0.8820813907620528

524288 0.8820813907624605 0.8820813907623183

1048576 0.8820813907624268 0.8820813907623890

A visual inspection of the numbers shows how fast the digits stabilize in both meth-
ods. It appears that 13 digits have stabilized in the last two rows.

Remark
The trapezoidal and midpoint methods are just two examples in a jungle of nu-
merical integration rules. Other famous methods are Simpson’s rule and Gauss
quadrature. They all work in the same way:

bZ

a

f .x/dx �
n�1X

iD0

wi f .xi / :

https://github.com/hplgit/prog4comp/tree/master/src/m/compare_integration_methods.m
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That is, the integral is approximated by a sum of function evaluations, where
each evaluation f .xi / is given a weight wi . The different methods differ in the
way they construct the evaluation points xi and the weights wi . We have used
equally spaced points xi , but higher accuracy can be obtained by optimizing the
location of xi .

3.4 Testing

3.4.1 Problems with Brief Testing Procedures

Testing of the programs for numerical integration has so far employed two strate-
gies. If we have an exact answer, we compute the error and see that increasing
n decreases the error. When the exact answer is not available, we can (as in the
comparison example in the previous section) look at the integral values and see that
they stabilize as n grows. Unfortunately, these are very weak test procedures and
not at all satisfactory for claiming that the software we have produced is correctly
implemented.

To see this, we can introduce a bug in the application function that calls
trapezoidal: instead of integrating 3t2et3

, we write “accidentally” 3t3et3
, but

keep the same anti-derivative V.t/et3
for computing the error. With the bug and

n D 4, the error is 0.1, but without the bug the error is 0.2! It is of course com-
pletely impossible to tell if 0.1 is the right value of the error. Fortunately, increasing
n shows that the error stays about 0.3 in the program with the bug, so the test pro-
cedure with increasing n and checking that the error decreases points to a problem
in the code.

Let us look at another bug, this time in the mathematical algorithm: instead
of computing 1

2
.f .a/ C f .b// as we should, we forget the second 1

2
and write

0.5*f(a) + f(b). The error for n D 4; 40; 400 when computing
R 1:9

1:1
3t2et3

dt

goes like 1400, 107, 10, respectively, which looks promising. The problem is that
the right errors should be 369, 4.08, and 0.04. That is, the error should be reduced
faster in the correct than in the buggy code. The problem, however, is that it is
reduced in both codes, and we may stop further testing and believe everything is
correctly implemented.

Unit testing
A good habit is to test small pieces of a larger code individually, one at a time.
This is known as unit testing. One identifies a (small) unit of the code, and then
one makes a separate test for this unit. The unit test should be stand-alone in
the sense that it can be run without the outcome of other tests. Typically, one
algorithm in scientific programs is considered as a unit. The challenge with unit
tests in numerical computing is to deal with numerical approximation errors.
A fortunate side effect of unit testing is that the programmer is forced to use
functions to modularize the code into smaller, logical pieces.
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3.4.2 Proper Test Procedures

There are three serious ways to test the implementation of numerical methods via
unit tests:

1. Comparing with hand-computed results in a problem with few arithmetic oper-
ations, i.e., small n.

2. Solving a problem without numerical errors. We know that the trapezoidal rule
must be exact for linear functions. The error produced by the programmust then
be zero (to machine precision).

3. Demonstrating correct convergence rates. A strong test when we can compute
exact errors, is to see how fast the error goes to zero as n grows. In the trape-
zoidal and midpoint rules it is known that the error depends on n as n�2 as
n ! 1.

Hand-computed results Let us use two trapezoids and compute the integralR 1

0
v.t/, v.t/ D 3t2et3

:

1

2
h.v.0/ C v.0:5// C 1

2
h.v.0:5/ C v.1// D 2:463642041244344;

when h D 0:5 is the width of the two trapezoids. Running the program gives exactly
the same result.

Solving a problem without numerical errors The best unit tests for numerical
algorithms involve mathematical problems where we know the numerical result be-
forehand. Usually, numerical results contain unknown approximation errors, so
knowing the numerical result implies that we have a problem where the approx-
imation errors vanish. This feature may be present in very simple mathematical
problems. For example, the trapezoidal method is exact for integration of linear
functions f .x/ D ax C b. We can therefore pick some linear function and con-
struct a test function that checks equality between the exact analytical expression
for the integral and the number computed by the implementation of the trapezoidal
method.

A specific test case can be
R 4:4

1:2
.6x � 4/dx. This integral involves an “arbitrary”

interval Œ1:2; 4:4� and an “arbitrary” linear function f .x/ D 6x � 4. By “arbitrary”
we mean expressions where we avoid the special numbers 0 and 1 since these have
special properties in arithmetic operations (e.g., forgetting to multiply is equivalent
to multiplying by 1, and forgetting to add is equivalent to adding 0).

Demonstrating correct convergence rates Normally, unit tests must be based on
problems where the numerical approximation errors in our implementation remain
unknown. However, we often know or may assume a certain asymptotic behavior
of the error. We can do some experimental runs with the test problem

R 1

0
3t2et3

dt

where n is doubled in each run: n D 4; 8; 16. The corresponding errors are then
12%, 3% and 0.77%, respectively. These numbers indicate that the error is roughly
reduced by a factor of 4 when doubling n. Thus, the error converges to zero as n�2

and we say that the convergence rate is 2. In fact, this result can also be shown
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mathematically for the trapezoidal and midpoint method. Numerical integration
methods usually have an error that converge to zero as n�p for some p that depends
on the method. With such a result, it does not matter if we do not know what
the actual approximation error is: we know at what rate it is reduced, so running
the implementation for two or more different n values will put us in a position to
measure the expected rate and see if it is achieved.

The idea of a corresponding unit test is then to run the algorithm for some n

values, compute the error (the absolute value of the difference between the exact
analytical result and the one produced by the numerical method), and check that the
error has approximately correct asymptotic behavior, i.e., that the error is propor-
tional to n�2 in case of the trapezoidal and midpoint method.

Let us develop a more precise method for such unit tests based on convergence
rates. We assume that the error E depends on n according to

E D C nr;

where C is an unknown constant and r is the convergence rate. Consider a set of
experiments with various n: n1; n2; : : : ; nq . We compute the corresponding errors
E1; : : : ; Eq . For two consecutive experiments, number i and i � 1, we have the
error model

Ei D C nr
i ; (3.22)

Ei�1 D C nr
i�1 : (3.23)

These are two equations for two unknowns C and r . We can easily eliminate C by
dividing the equations by each other. Then solving for r gives

ri D ln.Ei =Ei�1/

ln.ni =ni�1/
: (3.24)

We have introduced a subscript i in r since the estimated value for r varies with
i . Hopefully, ri approaches the correct convergence rate as the number of intervals
increases and i ! q.

3.4.3 Finite Precision of Floating-Point Numbers

The test procedures above lead to comparison of numbers for checking that calcu-
lations were correct. Such comparison is more complicated than what a newcomer
might think. Suppose we have a calculation a + b and want to check that the result
is what we expect. We start with 1 C 2:

>> a = 1; b = 2; expected = 3;

>> a + b == expected

ans = 1
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Then we proceed with 0:1 C 0:2:

>> a = 0.1; b = 0.2; expected = 0.3;

>> a + b == expected

ans = 0

So why is 0:1 C 0:2 ¤ 0:3? The reason is that real numbers cannot in general be
exactly represented on a computer. They must instead be approximated by a float-
ing-point number3 that can only store a finite amount of information, usually about
17 digits of a real number. Let us print 0.1, 0.2, 0.1 + 0.2, and 0.3 with 17 decimals:

>> fprintf(’%.17f\n%.17f\n%.17f\n%.17f\n’, 0.1, 0.2, 0.1 + 0.2, 0.3)

0.10000000000000001

0.20000000000000001

0.30000000000000004

0.29999999999999999

We see that all of the numbers have an inaccurate digit in the 17th decimal place.
Because 0:1 C 0:2 evaluates to 0.30000000000000004 and 0.3 is represented as
0.29999999999999999, these two numbers are not equal. In general, real numbers
in Matlab have (at most) 16 correct decimals.

When we compute with real numbers, these numbers are inaccurately repre-
sented on the computer, and arithmetic operations with inaccurate numbers lead
to small rounding errors in the final results. Depending on the type of numerical
algorithm, the rounding errors may or may not accumulate.

If we cannot make tests like 0.1 + 0.2 == 0.3, what should we then do? The
answer is that we must accept some small inaccuracy and make a test with a toler-
ance. Here is the recipe:

>> a = 0.1; b = 0.2; expected = 0.3;

>> computed = a + b;

>> diff = abs(expected - computed);

>> tol = 1E-15;

>> diff < tol

ans = 1

Here we have set the tolerance for comparison to 10�15, but calculating 0.3 -
(0.1 + 0.2) shows that it equals -5.55e-17, so a lower tolerance could be used
in this particular example. However, in other calculations we have little idea about
how accurate the answer is (there could be accumulation of rounding errors in more
complicated algorithms), so 10�15 or 10�14 are robust values. As we demonstrate
below, these tolerances depend on the magnitude of the numbers in the calculations.

Doing an experiment with 10k C 0:3 � .10k C 0:1 C 0:2/ for k D 1; : : : ; 10

shows that the answer (which should be zero) is around 1016�k . This means that
the tolerance must be larger if we compute with larger numbers. Setting a proper
tolerance therefore requires some experiments to see what level of accuracy one
can expect. A way out of this difficulty is to work with relative instead of absolute

3 https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point
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differences. In a relative difference we divide by one of the operands, e.g.,

a D 10k C 0:3; b D .10k C 0:1 C 0:2/; c D a � b

a
:

Computing this c for various k shows a value around 10�16. A safer procedure is
thus to use relative differences.

3.4.4 Constructing Unit Tests andWriting Test Functions

Software testing in other languages often applies comprehensive test frameworks to
automatically run through large numbers of tests. This is very advantageous as one
can at any time check that the code works. It is a good habit to run the test suite
after every edit of the source code files.

Matlab also has test frameworks, but we shall here just use the common ideas
(across languages) for writing tests and not employ any particular framework for
running the tests. Our convention is to put each test in a separate test function, with
the following properties:

� the name must start with test_
� the test function cannot have any arguments
� the tests inside test functions must be boolean expressions
� a boolean expression b must be tested with assert(b, msg), where msg is an

optional object (string or number) to be written out when b is false

Suppose we have written a function

function u = add(a, b)

u = a + b;

end

A corresponding test function might then be

function test_add

expected = 1 + 1;

computed = add(1, 1);

assert(computed == expected, ’1+1=%g’, computed);

end

Test functions and their calls are conveniently placed in files whose names start
with test_. A simple script can be made to search for such files and run them
automatically (essentially, this is what testing frameworks do).

As long as we add integers, the equality test in the test_add function is appro-
priate, but if we try to call add(0.1, 0.2) instead, we will face the rounding error
problems explained in Sect. 3.4.3, and we must use a test with tolerance instead:
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function test_add

expected = 0.3;

computed = add(0.1, 0.2;

tol = 1E-14;

diff = abs(expected - computed);

assert(diff < tol, ’diff=%g’, diff);

end

Below we shall write test functions for each of the three test procedures we
suggested: comparison with hand calculations, checking problems that can be ex-
actly solved, and checking convergence rates. We stick to testing the trapezoidal
integration code and collect all test functions in one common file by the name
test_trapezoidal.m.

In Matlab, we need to enforce the following rules on files for the function to be
tested and the test functions:

� The numerical method (to be tested) must be available as a function in a file with
the same name as the function.

� The test functions are put in separate files.

Hand-computed numerical results Our previous hand calculations for two trape-
zoids can be checked against the trapezoidal function inside a test function (in
a file test_trapezoidal.m):

function test_trapezoidal_one_exact_result

% Compare one hand-computed result

v = @(t) 3*(t^2)*exp(t^3);

n = 2;

computed = trapezoidal(v, 0, 1, n);

expected = 2.463642041244344;

error = abs(expected - computed);

tol = 1E-14;

assert(error < tol, ’error=%g > tol=%g’, error, tol);

end

Note the importance of checking err against exact with a tolerance: rounding
errors from the arithmetics inside trapezoidal will not make the result exactly
like the hand-computed one. The size of the tolerance is here set to 10�14, which is
a kind of all-round value for computations with numbers not deviating much from
unity.

Solving a problem without numerical errors We know that the trapezoidal rule
is exact for linear integrands. Choosing the integral

R 4:4

1:2
.6x � 4/dx as test case, the

corresponding test function for this unit test may look like

function test_trapezoidal_linear

% Check that linear functions are integrated exactly

f = @(x) 6*x - 4;

F = @(x) 3*x^2 - 4*x; % Anti-derivative

https://github.com/hplgit/prog4comp/tree/master/src/m/test_trapezoidal.m
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a = 1.2; b = 4.4;

expected = F(b) - F(a);

tol = 1E-14;

for n = [2 20 21]

computed = trapezoidal(f, a, b, n);

error = abs(expected - computed);

assert(error < tol, ’n=%d, err=%g’, n, error);

end

end

Demonstrating correct convergence rates In the present example with integra-
tion, it is known that the approximation errors in the trapezoidal rule are propor-
tional to n�2, n being the number of subintervals used in the composite rule.

Computing convergence rates requires somewhat more tedious programming
than the previous tests, but can be applied to more general integrands. The al-
gorithm typically goes like

� for i D 1; 2; : : : ; q

– ni D 2i

– Compute integral with ni intervals
– Compute the error Ei

– Estimate ri from (3.24) if i > 1

The corresponding code may look like

function r = convergence_rates(f, F, a, b, num_experiments)

n = zeros(num_experiments, 1);

E = zeros(num_experiments, 1);

r = zeros(num_experiments-1, 1);

expected = F(b) - F(a);

for i = 1:num_experiments

n(i) = 2^i;

computed = trapezoidal(f, a, b, n(i));

error = abs(expected - computed);

E(i) = error;

if (i > 1)

r(i-1) = log(E(i-1)/E(i))/log(n(i-1)/n(i));

r(i-1) = round(r(i-1)*100)/100; % Truncate, two decimals

end

end

end

Making a test function is a matter of choosing f, F, a, and b, and then checking
the value of ri for the largest i :

function test_trapezoidal_conv_rate

% Check empirical convergence rates against the expected -2.

v = @(t) 3*(t^2)*exp(t^3);

V = @(t) exp(t^3);

a = 1.1; b = 1.9;

num_experiments = 14;
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r = convergence_rates(v, V, a, b, num_experiments)

tol = 0.01;

assert(abs(r(num_experiments-1)) - 2 < tol, ’%f, %f, %f, %f, %f’,...

r((num_experiments-1)-4:num_experiments-1));

end

Running the test shows that all ri , except the first one, equal the target limit 2
within two decimals. This observation suggests a tolerance of 10�2.

Remark about version control of files
Having a suite of test functions for automatically checking that your soft-
ware works is considered as a fundamental requirement for reliable computing.
Equally important is a system that can keep track of different versions of the files
and the tests, known as a version control system. Today’s most popular version
control system is Git4, which the authors strongly recommend the reader to use
for programming and writing reports. The combination of Git and cloud storage
such as GitHub is a very common way of organizing scientific or engineering
work. We have a quick intro5 to Git and GitHub that gets you up and running
within minutes.

The typical workflow with Git goes as follows.

1. Before you start working with files, make sure you have the latest version of
them by running git pull.

2. Edit files, remove or create files (new files must be registered by git add).
3. When a natural piece of work is done, commit your changes by the git

commit command.
4. Implement your changes also in the cloud by doing git push.

A nice feature of Git is that people can edit the same file at the same time and
very often Git will be able to automatically merge the changes (!). Therefore,
version control is crucial when you work with others or when you do your work
on different types of computers. Another key feature is that anyone can at any
time view the history of a file, see who did what when, and roll back the entire
file collection to a previous commit. This feature is, of course, fundamental for
reliable work.

3.5 Vectorization

The functions midpoint and trapezoid usually run fast in Matlab and compute
an integral to a satisfactory precision within a fraction of a second. However, long
loops in Matlab may run slowly in more complicated implementations. To increase
the speed, the loops can be replaced by vectorized code. The integration functions
constitute a simple and good example to illustrate how to vectorize loops.

We have already seen simple examples on vectorization in Sect. 1.4 when we
could evaluate a mathematical function f .x/ for a large number of x values stored
in an array. Basically, we can write

4 https://en.wikipedia.org/wiki/Git_(software)
5 http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html

https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
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function result = f(x)

result = exp(-x)*sin(x) + 5.*x

end

x = linspace(0, 4, 101); # coordinates from 100 intervals on [0, 4]

y = f(x); # all points evaluated at once

The result y is the array that would be computed if we ran a for loop over the
individual x values and called f for each value. Vectorization essentially eliminates
this loop in Matlab (i.e., the looping over x and application of f to each x value are
instead performed in a library with fast, compiled code).

Vectorizing the midpoint rule The aim of vectorizing the midpoint and trape-
zoidal functions is also to remove the explicit loop in Matlab. We start with
vectorizing the midpoint function since trapezoid is not equally straightforward.
The fundamental ideas of the vectorized algorithm are to

1. compute all the evaluation points in one array x
2. call f(x) to produce an array of corresponding function values
3. use the sum function to sum the f(x) values

The evaluation points in the midpoint method are xi D aC.i C 1
2
/h, i D 0; : : : ; n�

1. That is, n uniformly distributed coordinates between a C h=2 and b � h=2. Such
coordinates can be calculated by x = linspace(a+h/2, b-h/2, n). Given that
the Matlab implementation f of the mathematical function f works with an array
argument, which requires array versions of arithmetic operators (.+, .*, etc.) in
Matlab, f(x) will produce all the function values in an array. The array elements
are then summed up by sum: sum(f(x)). This sum is to be multiplied by the
rectangle width h to produce the integral value. The complete function is listed
below.

function result_integration = midpoint_vec(f, a, b, n)

h = (b-a)/n;

x = linspace(a + h/2, b - h/2, n);

result_integration = h*sum(f(x));

end

The code is found in the file midpoint_vec.m. An interactive test reads

octave:1> v = @(t) 3.*t.^2.*exp(t.^3);

octave:2> midpoint_vec(v, 0, 1, 10)

ans = 1.7015

Note the need for the vectorized operator .* in the function expression since v(x)
will be called with array arguments x.

The vectorized code performs all loops very efficiently in compiled code, result-
ing in much faster execution. Moreover, many readers of the code will also say that
the algorithm looks clearer than in the loop-based implementation.

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_vec.m
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Vectorizing the trapezoidal rule We can use the same approach to vectorize the
trapezoid function. However, the trapezoidal rule performs a sum where the end
points have different weight. If we do sum(f(x)), we get the end points f(a) and
f(b) with weight unity instead of one half. A remedy is to subtract the error from
sum(f(x)): sum(f(x)) - 0.5*f(a) - 0.5*f(b). The vectorized version of
the trapezoidal method then becomes (code in trapezoidal_vec.m)

function result_integration = trapezoidal_vec(f, a, b, n)

h = (b-a)/n;

x = linspace(a, b, n+1);

result_integration = h*(sum(f(x)) - 0.5*f(a) - 0.5*f(b))

end

3.6 Measuring Computational Speed

Now that we have created faster, vectorized versions of functions in the previous
section, it is interesting to measure how much faster they are. The purpose of the
present section is therefore to explain how we can record the CPU time consumed
by a function so we can answer this question. The “stop watch” in Matlab is the
function pair tic (start) and toc. Here is an interactive session measuring the effect
of midpoint_vec versus midpoint:

octave:1> v = @(t) 3*t^2*exp(t^3);

octave:2> v_ = @(t) 3.*t.^2.*exp(t.^3);

octave:3> tic; midpoint_vec(v_, 0, 1, 1000000); toc

Elapsed time is 0.38 seconds.

octave:4> tic; midpoint(v_, 0, 1, 1000000); toc

Elapsed time is 40 seconds.

octave:5> 40/0.38

ans = 105.26

The vectorized version is 100 times faster!

3.7 Double and Triple Integrals

3.7.1 TheMidpoint Rule for a Double Integral

Given a double integral over a rectangular domain Œa; b� � Œc; d �,

bZ

a

dZ

c

f .x; y/dydx;

how can we approximate this integral by numerical methods?

Derivation via one-dimensional integrals Since we know how to deal with in-
tegrals in one variable, a fruitful approach is to view the double integral as two

https://github.com/hplgit/prog4comp/tree/master/src/m/trapezoidal_vec.m


70 3 Computing Integrals

integrals, each in one variable, which can be approximated numerically by previous
one-dimensional formulas. To this end, we introduce a help function g.x/ and write

bZ

a

dZ

c

f .x; y/dydx D
bZ

a

g.x/dx; g.x/ D
dZ

c

f .x; y/dy :

Each of the integrals

bZ

a

g.x/dx; g.x/ D
dZ

c

f .x; y/dy

can be discretized by any numerical integration rule for an integral in one variable.
Let us use the midpoint method (3.21) and start with g.x/ D R d

c
f .x; y/dy. We

introduce ny intervals on Œc; d � with length hy . The midpoint rule for this integral
then becomes

g.x/ D
dZ

c

f .x; y/dy � hy

ny �1X

j D0

f .x; yj /; yj D c C 1

2
hy C jhy :

The expression looks somewhat different from (3.21), but that is because of the
notation: since we integrate in the y direction and will have to work with both x

and y as coordinates, we must use ny for n, hy for h, and the counter i is more
naturally called j when integrating in y. Integrals in the x direction will use hx and
nx for h and n, and i as counter.

The double integral is
R b

a
g.x/dx, which can be approximated by the midpoint

method:
bZ

a

g.x/dx � hx

nx�1X

iD0

g.xi /; xi D a C 1

2
hx C ihx :

Putting the formulas together, we arrive at the composite midpoint method for a dou-
ble integral:

bZ

a

dZ

c

f .x; y/dydx � hx

nx�1X

iD0

hy

ny �1X

j D0

f .xi ; yj /

D hxhy

nx�1X

iD0

ny �1X

j D0

f .a C hx

2
C ihx; c C hy

2
C jhy/ : (3.25)

Direct derivation The formula (3.25) can also be derived directly in the two-
dimensional case by applying the idea of the midpoint method. We divide the
rectangle Œa; b� � Œc; d � into nx � ny equal-sized cells. The idea of the midpoint
method is to approximate f by a constant over each cell, and evaluate the constant
at the midpoint. Cell .i; j / occupies the area

Œa C ihx; a C .i C 1/hx� � Œc C jhy; c C .j C 1/hy�;



3.7 Double and Triple Integrals 71

and the midpoint is .xi ; yj / with

xi D a C ihx C 1

2
hx; yj D c C jhy C 1

2
hy :

The integral over the cell is therefore hxhyf .xi ; yj /, and the total double integral
is the sum over all cells, which is nothing but formula (3.25).

Programming a double sum The formula (3.25) involves a double sum, which
is normally implemented as a double for loop. A Matlab function implementing
(3.25) may look like

function result = midpoint_double1(f, a, b, c, d, nx, ny)

hx = (b - a)/nx;

hy = (d - c)/ny;

I = 0;

for i = 0:(nx-1)

for j = 0:(ny-1)

xi = a + hx/2 + i*hx;

yj = c + hy/2 + j*hy;

I = I + hx*hy*f(xi, yj);

end

end

result = I;

end

With this function, which is available in the file midpoint_double1.m, we may
now compute some integral

R 2

0

R 3

2
.2x C y/dydx D 9 in an interactive shell and

demonstrate that the function computes the right number:

>> f = @(x, y) 2*x + y;

>>> midpoint_double1(f, 0, 2, 2, 3, 5, 5)

9.0

Reusing code for one-dimensional integrals It is very natural to write a two-
dimensional midpoint method as we did in function midpoint_double1when we
have the formula (3.25). However, we could alternatively ask, much as we did in
the mathematics, can we reuse a well-tested implementation for one-dimensional
integrals to compute double integrals? That is, can we use function midpoint

function result_integration = midpoint(f, a, b, n)

h = (b-a)/n;

result = 0;

for i = 0:(n-1)

result = result + f((a + h/2) + i*h);

end

result_integration = h*result;

end

from Sect. 3.3.2 “twice”? The answer is yes, if we think as we did in the mathemat-
ics: compute the double integral as a midpoint rule for integrating g.x/ and define

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_double1.m
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g.xi/ in terms of a midpoint rule over f in the y coordinate. The corresponding
function has very short code:

function I = midpoint_double2(f, a, b, c, d, nx, ny)

function result = g(x)

result = midpoint(@(y) f(x, y), c, d, ny);

end

g_handle = @g;

I = midpoint(g_handle, a, b, nx);

end

The important advantage of this implementation is that we reuse a well-tested
function for the standard one-dimensional midpoint rule and that we apply the one-
dimensional rule exactly as in the mathematics.

Verification via test functions How can we test that our functions for the dou-
ble integral work? The best unit test is to find a problem where the numerical
approximation error vanishes because then we know exactly what the numerical
answer should be. The midpoint rule is exact for linear functions, regardless of how
many subinterval we use. Also, any linear two-dimensional function f .x; y/ D
px C qy C r will be integrated exactly by the two-dimensional midpoint rule. We
may pick f .x; y/ D 2x Cy and create a proper test function that can automatically
verify our two alternative implementations of the two-dimensional midpoint rule.
To compute the integral of f .x; y/ we take advantage of SymPy to eliminate the
possibility of errors in hand calculations. The test function becomes

function test_midpoint_double()

% Test that a linear function is integrated exactly.

f = @(x, y) 2*x + y;

a = 0; b = 2; c = 2; d = 3;

syms x y;

I_expected = int(int(f, y, c, d), x, a, b);

% Test three cases: nx < ny, nx = ny, nx > ny

nx = 3; ny = 5;

for i = (0:2)

nx = nx + 1; ny = ny - 1;

I_computed1 = midpoint_double1(f, a, b, c, d, nx, ny);

I_computed2 = midpoint_double2(f, a, b, c, d, nx, ny);

tol = 1E-14;

%fprintf(’...

% I_expected = %g, I_computed1 = %g, I_computed2 = %g\n’,...

% I_expected, I_computed1, I_computed2);

assert(abs(I_computed1 - I_expected) < tol);

assert(abs(I_computed2 - I_expected) < tol);

end

end
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Let test functions speak up?
If we call the above test_midpoint_double function and nothing happens, our
implementations are correct. However, it is somewhat annoying to have a func-
tion that is completely silent when it works – are we sure all things are properly
computed? During development it is therefore highly recommended to insert
a print statement such that we can monitor the calculations and be convinced
that the test function does what we want. Since a test function should not have
any print statement, we simply comment it out as we have done in the function
listed above.

The trapezoidal method can be used as alternative for the midpoint method. The
derivation of a formula for the double integral and the implementations follow ex-
actly the same ideas as we explained with the midpoint method, but there are more
terms to write in the formulas. Exercise 3.13 asks you to carry out the details.
That exercise is a very good test on your understanding of the mathematical and
programming ideas in the present section.

3.7.2 TheMidpoint Rule for a Triple Integral

Theory Once a method that works for a one-dimensional problem is generalized
to two dimensions, it is usually quite straightforward to extend the method to three
dimensions. This will now be demonstrated for integrals. We have the triple integral

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx

and want to approximate the integral by a midpoint rule. Following the ideas for
the double integral, we split this integral into one-dimensional integrals:

p.x; y/ D
fZ

e

g.x; y; z/dz

q.x/ D
dZ

c

p.x; y/dy

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx D
bZ

a

q.x/dx
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For each of these one-dimensional integrals we apply the midpoint rule:

p.x; y/ D
fZ

e

g.x; y; z/dz �
nz�1X

kD0

g.x; y; zk/;

q.x/ D
dZ

c

p.x; y/dy �
ny�1X

j D0

p.x; yj /;

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx D
bZ

a

q.x/dx �
nx�1X

iD0

q.xi /;

where

zk D e C 1

2
hz C khz; yj D c C 1

2
hy C jhy xi D a C 1

2
hx C ihx :

Starting with the formula for
R b

a

R d

c

R f

e
g.x; y; z/dzdydx and inserting the two

previous formulas gives

bZ

a

dZ

c

fZ

e

g.x; y; z/ dzdydx

� hxhyhz

nx�1X

iD0

ny�1X

j D0

nz�1X

kD0

g.a C 1

2
hx C ihx; c C 1

2
hy C jhy; e C 1

2
hz C khz/ :

(3.26)
Note that we may apply the ideas under Direct derivation at the end of Sect. 3.7.1
to arrive at (3.26) directly: divide the domain into nx � ny � nz cells of volumes
hxhyhz ; approximate g by a constant, evaluated at the midpoint .xi ; yj ; zk/, in each
cell; and sum the cell integrals hxhyhzg.xi ; yj ; zk/.

Implementation We follow the ideas for the implementations of the midpoint
rule for a double integral. The corresponding functions are shown below and
found in the files midpoint_triple1.m, midpoint.m, midpoint_triple2.m,
test_midpoint_triple.m.

function result = midpoint_triple1(g, a, b, c, d, e, f, nx, ny, nz)

hx = (b - a)/nx;

hy = (d - c)/ny;

hz = (f - e)/nz;

I = 0;

for i = 0:(nx-1)

for j = 0:(ny-1)

for k = 0:(nz-1)

xi = a + hx/2 + i*hx;

yj = c + hy/2 + j*hy;

https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple1.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint.m
https://github.com/hplgit/prog4comp/tree/master/src/m/midpoint_triple2.m
https://github.com/hplgit/prog4comp/tree/master/src/m/test_midpoint_triple.m
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zk = e + hz/2 + k*hz;

I = I + hx*hy*hz*g(xi, yj, zk);

end

end

end

result = I;

end

function result_integration = midpoint(f, a, b, n)

h = (b-a)/n;

result = 0;

for i = 0:(n-1)

result = result + f((a + h/2) + i*h);

end

result_integration = h*result;

end

function I = midpoint_triple2(g, a, b, c, d, e, f, nx, ny, nz)

function result = p(x, y)

result = midpoint(@(z) g(x, y, z), e, f, nz);

end

function result = q(x)

result = midpoint(@(y) p(x, y), c, d, ny);

end

q_handle = @q;

I = midpoint(q_handle, a, b, nx);

end

function test_midpoint_triple()

% Test that a linear function is integrated exactly.

g = @(x, y, z) 2*x + y - 4*z;

a = 0; b = 2; c = 2; d = 3; e = -1; f = 2;

syms x y z;

I_expected = int(int(int(f, y, c, d), x, a, b), z, e, f);

nx = 3; ny = 5; nz = 2;

for i = 0:2

nx = nx + 1; ny = ny - 1; nz = nz + 2;

I_computed1 = midpoint_triple1(...

g, a, b, c, d, e, f, nx, ny, nz)

I_computed2 = midpoint_triple2(...

g, a, b, c, d, e, f, nx, ny, nz)

tol = 1E-14;

fprintf(’...

I_expected = %g, I_computed1 = %g, I_computed2 = %g\n’,...

I_expected, I_computed1, I_computed2);

assert(abs(I_computed1 - I_expected) < tol);

assert(abs(I_computed2 - I_expected) < tol);

end

end
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3.7.3 Monte Carlo Integration for Complex-ShapedDomains

Repeated use of one-dimensional integration rules to handle double and triple inte-
grals constitute a working strategy only if the integration domain is a rectangle or
box. For any other shape of domain, completely different methods must be used.
A common approach for two- and three-dimensional domains is to divide the do-
main into many small triangles or tetrahedra and use numerical integration methods
for each triangle or tetrahedron. The overall algorithm and implementation is too
complicated to be addressed in this book. Instead, we shall employ an alternative,
very simple and general method, called Monte Carlo integration. It can be im-
plemented in half a page of code, but requires orders of magnitude more function
evaluations in double integrals compared to the midpoint rule.

However, Monte Carlo integration is much more computationally efficient than
the midpoint rule when computing higher-dimensional integrals in more than three
variables over hypercube domains. Our ideas for double and triple integrals can
easily be generalized to handle an integral in m variables. A midpoint formula then
involves m sums. With n cells in each coordinate direction, the formula requires
nm function evaluations. That is, the computational work explodes as an exponen-
tial function of the number of space dimensions. Monte Carlo integration, on the
other hand, does not suffer from this explosion of computational work and is the
preferred method for computing higher-dimensional integrals. So, it makes sense
in a chapter on numerical integration to address Monte Carlo methods, both for
handling complex domains and for handling integrals with many variables.

The Monte Carlo integration algorithm The idea of Monte Carlo integration ofR b

a
f .x/dx is to use the mean-value theorem from calculus, which states that the

integral
R b

a
f .x/dx equals the length of the integration domain, here b�a, times the

average value of f , Nf , in Œa; b�. The average value can be computed by sampling
f at a set of random points inside the domain and take the mean of the function
values. In higher dimensions, an integral is estimated as the area/volume of the
domain times the average value, and again one can evaluate the integrand at a set of
random points in the domain and compute the mean value of those evaluations.

Let us introduce some quantities to help us make the specification of the integra-
tion algorithm more precise. Suppose we have some two-dimensional integral

Z

˝

f .x; y/dxdx;

where ˝ is a two-dimensional domain defined via a help function g.x; y/:

˝ D f.x; y/ j g.x; y/ � 0g
That is, points .x; y/ for which g.x; y/ � 0 lie inside ˝, and points for which
g.x; y/ < ˝ are outside ˝. The boundary of the domain @˝ is given by the im-
plicit curve g.x; y/ D 0. Such formulations of geometries have been very common
during the last couple of decades, and one refers to g as a level-set function and the
boundary g D 0 as the zero-level contour of the level-set function. For simple ge-
ometries one can easily construct g by hand, while in more complicated industrial
applications one must resort to mathematical models for constructing g.
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Let A.˝/ be the area of a domain ˝. We can estimate the integral by this Monte
Carlo integration method:

1. embed the geometry ˝ in a rectangular area R

2. draw a large number of random points .x; y/ in R

3. count the fraction q of points that are inside ˝

4. approximate A.˝/=A.R/ by q, i.e., set A.˝/ D qA.R/

5. evaluate the mean of f , Nf , at the points inside ˝

6. estimate the integral as A.˝/ Nf

Note that A.R/ is trivial to compute since R is a rectangle, while A.˝/ is unknown.
However, if we assume that the fraction of A.R/ occupied by A.˝/ is the same as
the fraction of random points inside ˝, we get a simple estimate for A.˝/.

To get an idea of the method, consider a circular domain ˝ embedded in a rect-
angle as shown below. A collection of random points is illustrated by black dots.

Implementation AMatlab function implementing
R

˝
f .x; y/dxdy can be written

like this:

function result = MonteCarlo_double(f, g, x0, x1, y0, y1, n)

%

% Monte Carlo integration of f over a domain g>=0, embedded

% in a rectangle [x0,x1]x[y0,y1]. n^2 is the number of

% random points.

% Draw n^2 random points in the rectangle

x = x0 + (x1 - x0)*rand(n,1);

y = y0 + (y1 - y0)*rand(n,1);

% Compute sum of f values inside the integration domain

f_mean = 0;

num_inside = 0; % number of x,y points inside domain (g>=0)
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y p g

for i = 1:length(x)

for j = 1:length(y)

if g(x(i), y(j)) >= 0

num_inside = num_inside + 1;

f_mean = f_mean + f(x(i), y(j));

end

end

end

f_mean = f_mean/num_inside;

area = num_inside/(n^2)*(x1 - x0)*(y1 - y0);

result = area*f_mean;

end

(See the file MonteCarlo_double.m.)

Verification A simple test case is to check the area of a rectangle Œ0; 2� � Œ3; 4:5�

embedded in a rectangle Œ0; 3� � Œ2; 5�. The right answer is 3, but Monte Carlo
integration is, unfortunately, never exact so it is impossible to predict the output of
the algorithm. All we know is that the estimated integral should approach 3 as the
number of random points goes to infinity. Also, for a fixed number of points, we
can run the algorithm several times and get different numbers that fluctuate around
the exact value, since different sample points are used in different calls to the Monte
Carlo integration algorithm.

The area of the rectangle can be computed by the integral
R 2

0

R 4:5

3
dydx, so in

this case we identify f .x; y/ D 1, and the g function can be specified as (e.g.) 1
if .x; y/ is inside Œ0; 2� � Œ3; 4:5� and �1 otherwise. Here is an example on how
we can utilize the MonteCarlo_double function to compute the area for different
number of samples:

>> g = @(x, y) -1 + 2*(0 <= x && x <= 2 && 3 <= y && y <= 4.5);

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 100)

2.9484

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)

2.947032

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 1000)

3.0234600000000005

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)

2.9984580000000003

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 2000)

3.1903469999999996

>> MonteCarlo_double(@(x, y) 1, g, 0, 3, 2, 5, 5000)

2.986515

To get a one-line definition of g, we have exploited the fact that each of the boolean
tests (in parenthesis separated by &&) will evaluate to either 0 (if false) or 1 (if
true). If all of them evaluate to true, the whole parenthesis will evaluate to 1 and the
number 1 (from �1 C 2 	 1) is returned. On the other hand, if any single one of the
boolean tests evaluate to false, the parenthesis will evaluate to 0 and the number �1
(from �1 C 2 	 0) is returned. We see that the values fluctuate around 3, a fact that
supports a correct implementation, but in principle, bugs could be hidden behind
the inaccurate answers.

https://github.com/hplgit/prog4comp/tree/master/src/m/MonteCarlo_double.m
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It is mathematically known that the standard deviation of the Monte Carlo es-
timate of an integral converges as n�1=2, where n is the number of samples. This
kind of convergence rate estimate could be used to verify the implementation, but
this topic is beyond the scope of this book.

Test function for function with random numbers To make a test function, we
need a unit test that has identical behavior each time we run the test. This seems
difficult when random numbers are involved, because these numbers are different
every time we run the algorithm, and each run hence produces a (slightly) different
result. A standard way to test algorithms involving random numbers is to fix the
seed of the random number generator. Then the sequence of numbers is the same
every time we run the algorithm. Assuming that the MonteCarlo_double function
works, we fix the seed, observe a certain result, and take this result as the correct
result. Provided the test function always uses this seed, we should get exactly this
result every time the MonteCarlo_double function is called. Our test function can
then be written as shown below.

function test_MonteCarlo_double_rectangle_area()

% Check the area of a rectangle.

g = @(x, y) -1 + 2*(0 <= x && x <= 2 && 3 <= y && y <= 4.5);

x0 = 0; x1 = 3; y0 = 2; y1 = 5; % embedded rectangle

n = 1000;

rand("seed", 8); % must fix the seed!

I_expected = 3.117285; % computed with this seed

I_computed = MonteCarlo_double(@(x,y) 1, g, x0, x1, y0, y1, n);

assert(abs(I_expected - I_computed) < 1E-14);

end

(See the file test_MonteCarlo_double_rectangle_area.m.)

Integral over a circle The test above involves a trivial function f .x; y/ D 1. We
should also test a non-constant f function and a more complicated domain. Let ˝

be a circle at the origin with radius 2, and let f D p
x2 C y2. This choice makes it

possible to compute an exact result: in polar coordinates,
R

˝ f .x; y/dxdy simpli-

fies to 2�
R 2

0
r2dr D 16�=3. We must be prepared for quite crude approximations

that fluctuate around this exact result. As in the test case above, we experience bet-
ter results with larger number of points. When we have such evidence for a working
implementation, we can turn the test into a proper test function. Here is an example:

function test_MonteCarlo_double_circle_r()

% Check the integral of r over a circle with radius 2.

function result = g(x, y)

xc = 0; yc = 0; % center

R = 2; % radius

result = R^2 - ((x-xc)^2 + (y-yc)^2);

end

g_handle = @g;

https://github.com/hplgit/prog4comp/tree/master/src/m/test_MonteCarlo_double_rectangle_area.m
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% Exact: integral of r*r*dr over circle with radius R becomes

% 2*pi*1/3*R^3

syms r;

I_exact = int(@(r) 2*pi*r*r, r, 0, 2);

fprintf(’Exact integral: %g\n’, I_exact);

x0 = -2; x1 = 2; y0 = -2; y1 = 2;

n = 1000;

rand("seed", 6); % must fix the seed!

I_expected = 16.85949525320151 % Computed with this seed

I_computed = MonteCarlo_double(...

@(x, y) sqrt(x^2 + y^2), g_handle, x0, x1, y0, y1, n);

fprintf(’MC approximation (%d samples): %.16f’, n^2, I_computed);

assert(abs(I_computed - I_expected) < 1E-15);

end

(See the file test_MonteCarlo_double_circle_r.m.)

3.8 Exercises

Exercise 3.1: Hand calculations for the trapezoidal method
Compute by hand the area composed of two trapezoids (of equal width) that ap-
proximates the integral

R 3

1
2x3dx. Make a test function that calls the trapezoidal

function in trapezoidal.mand compares the return value with the hand-calculated
value.
Filename: trapezoidal_test_func.m.

Exercise 3.2: Hand calculations for the midpoint method
Compute by hand the area composed of two rectangles (of equal width) that approx-
imates the integral

R 3

1
2x3dx. Make a test function that calls the midpoint function

in midpoint.m and compares the return value with the hand-calculated value.
Filename: midpoint_test_func.m.

Exercise 3.3: Compute a simple integral
Apply the trapezoidal and midpoint functions to compute the integral

R 6

2
x.x �

1/dx with 2 and 100 subintervals. Compute the error too.
Filename: integrate_parabola.m.

Exercise 3.4: Hand-calculations with sine integrals
We consider integrating the sine function:

R b

0
sin.x/dx.

a) Let b D � and use two intervals in the trapezoidal and midpoint method.
Compute the integral by hand and illustrate how the two numerical methods
approximates the integral. Compare with the exact value.

b) Do a) when b D 2� .

Filename: integrate_sine.pdf.

https://github.com/hplgit/prog4comp/tree/master/src/m/test_MonteCarlo_double_circle_r.m
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Exercise 3.5: Make test functions for the midpoint method
Modify the file test_trapezoidal.m such that the three tests are applied to the
function midpoint implementing the midpoint method for integration.
Filename: test_midpoint.m.

Exercise 3.6: Explore rounding errors with large numbers
The trapezoidal method integrates linear functions exactly, and this property
was used in the test function test_trapezoidal_linear in the file test_
trapezoidal.m. Change the function used in Sect. 3.4.2 to f .x/ D 6�108x�4�106

and rerun the test. What happens? How must you change the test to make it useful?
How does the convergence rate test behave? Any need for adjustment?
Filename: test_trapezoidal2.m.

Exercise 3.7: Write test functions for
R 4

0

p
xdx

We want to test how the trapezoidal function works for the integral
R 4

0

p
xdx.

Two of the tests in test_trapezoidal.m are meaningful for this integral.
Compute by hand the result of using 2 or 3 trapezoids and modify the test_
trapezoidal_one_exact_result function accordingly. Then modify test_
trapezoidal_conv_rate to handle the square root integral.
Filename: test_trapezoidal3.m.

Remarks The convergence rate test fails. Printing out r shows that the actual con-
vergence rate for this integral is �1:5 and not �2. The reason is that the error in the
trapezoidal method6 is �.b � a/3n�2f 00.�/ for some (unknown) � 2 Œa; b�. With
f .x/ D p

x, f 00.�/ ! �1 as � ! 0, pointing to a potential problem in the size
of the error. Running a test with a > 0, say

R 4

0:1

p
xdx shows that the convergence

rate is indeed restored to �2.

Exercise 3.8: Rectangle methods
The midpoint method divides the interval of integration into equal-sized subinter-
vals and approximates the integral in each subinterval by a rectangle whose height
equals the function value at the midpoint of the subinterval. Instead, one might use
either the left or right end of the subinterval as illustrated in Fig. 3.4. This defines
a rectangle method of integration. The height of the rectangle can be based on the
left or right end or the midpoint.

a) Write a function rectangle(f, a, b, n, height=’left’) for computing
an integral

R b

a
f .x/dx by the rectangle method with height computed based on

the value of height, which is either left, right, or mid.
b) Write three test functions for the three unit test procedures described in

Sect. 3.4.2. Make sure you test for height equal to left, right, and mid. You
may call the midpoint function for checking the result when height=mid.

Hint Edit test_trapezoidal.m.
Filename: rectangle_methods.m.

6 http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
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Fig. 3.4 Illustration of the rectangle method with evaluating the rectangle height by either the left
or right point

Exercise 3.9: Adaptive integration
Suppose we want to use the trapezoidal or midpoint method to compute an integralR b

a
f .x/dx with an error less than a prescribed tolerance �. What is the appropriate

size of n?
To answer this question, we may enter an iterative procedure where we compare

the results produced by n and 2n intervals, and if the difference is smaller than �,
the value corresponding to 2n is returned. Otherwise, we halve n and repeat the
procedure.

Hint It may be a good idea to organize your code so that the function adaptive_
integration can be used easily in future programs you write.

a) Write a function

adaptive_integration(f, a, b, eps, method=midpoint)

that implements the idea above (eps corresponds to the tolerance �, and method
can be midpoint or trapezoidal).

b) Test the method on
R 2

0
x2dx and

R 2

0

p
xdx for � D 10�1; 10�10 and write out

the exact error.
c) Make a plot of n versus � 2 Œ10�1; 10�10� for

R 2

0

p
xdx. Use logarithmic scale

for �.

Filename: adaptive_integration.m.

Remarks The type of method explored in this exercise is called adaptive, because
it tries to adapt the value of n to meet a given error criterion. The true error can very
seldom be computed (since we do not know the exact answer to the computational
problem), so one has to find other indicators of the error, such as the one here where
the changes in the integral value, as the number of intervals is doubled, is taken to
reflect the error.
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Exercise 3.10: Integrating x raised to x

Consider the integral

I D
4Z

0

xx dx :

The integrand xx does not have an anti-derivative that can be expressed in terms of
standard functions (visit http://wolframalpha.comand type integral(x^x,x)
to convince yourself that our claim is right. Note that Wolfram alpha does give you
an answer, but that answer is an approximation, it is not exact. This is because
Wolfram alpha too uses numerical methods to arrive at the answer, just as you will
in this exercise). Therefore, we are forced to compute the integral by numerical
methods. Compute a result that is right to four digits.

Hint Use ideas from Exercise 3.9.
Filename: integrate_x2x.m.

Exercise 3.11: Integrate products of sine functions
In this exercise we shall integrate

Ij;k D
�Z

��

sin.jx/ sin.kx/dx;

where j and k are integers.

a) Plot sin.x/ sin.2x/ and sin.2x/ sin.3x/ for x 2� � �; �� in separate plots. Ex-
plain why you expect

R �

��
sin x sin 2x dx D 0 and

R �

��
sin 2x sin 3x dx D 0.

b) Use the trapezoidal rule to compute Ij;k for j D 1; : : : ; 10 and k D 1; : : : ; 10.

Filename: products_sines.m.

Exercise 3.12: Revisit fit of sines to a function
This is a continuation of Exercise 2.18. The task is to approximate a given function
f .t/ on Œ��; �� by a sum of sines,

SN .t/ D
NX

nD1

bn sin.nt/ : (3.27)

We are now interested in computing the unknown coefficients bn such that SN .t/

is in some sense the best approximation to f .t/. One common way of doing this
is to first set up a general expression for the approximation error, measured by
“summing up” the squared deviation of SN from f :

E D
�Z

��

.SN .t/ � f .t//2dt :

http://wolframalpha.com
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We may view E as a function of b1; : : : ; bN . Minimizing E with respect to
b1; : : : ; bN will give us a best approximation, in the sense that we adjust b1; : : : ; bN

such that SN deviates as little as possible from f .
Minimization of a function of N variables, E.b1; : : : ; bN / is mathematically per-

formed by requiring all the partial derivatives to be zero:

@E

@b1

D 0;

@E

@b2

D 0;

:::

@E

@bN

D 0 :

a) Compute the partial derivative @E=@b1 and generalize to the arbitrary case
@E=@bn, 1 � n � N .

b) Show that

bn D 1

�

�Z

��

f .t/ sin.nt/ dt :

c) Write a function integrate_coeffs(f, N, M) that computes b1; : : : ; bN by
numerical integration, using M intervals in the trapezoidal rule.

d) A remarkable property of the trapezoidal rule is that it is exact for integralsR �

��
sin nt dt (when subintervals are of equal size). Use this property to

create a function test_integrate_coeff to verify the implementation of
integrate_coeffs.

e) Implement the choice f .t/ D 1
�

t as a Matlab function f(t) and call inte-
grate_coeffs(f, 3, 100) to see what the optimal choice of b1; b2; b3 is.

f) Make a function plot_approx(f, N, M, filename) where you plot f(t)
together with the best approximation SN as computed above, using M intervals
for numerical integration. Save the plot to a file with name filename.

g) Run plot_approx(f, N, M, filename) for f .t/ D 1
�

t forN D 3; 6; 12; 24.
Observe how the approximation improves.

h) Run plot_approx for f .t/ D e�.t��/ and N D 100. Observe a fundamental
problem: regardless of N , SN .��/ D 0, not e2� � 535. (There are ways to fix
this issue.)

Filename: autofit_sines.m.

Exercise 3.13: Derive the trapezoidal rule for a double integral
Use ideas in Sect. 3.7.1 to derive a formula for computing a double integralR b

a

R d

c
f .x; y/dydx by the trapezoidal rule. Implement and test this rule.

Filename: trapezoidal_double.m.

Exercise 3.14: Compute the area of a triangle by Monte Carlo integration
Use the Monte Carlo method from Sect. 3.7.3 to compute the area of a triangle with
vertices at .�1; 0/, .1; 0/, and .3; 0/.
Filename: MC_triangle.m.
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4Solving Ordinary Differential Equations

Differential equations constitute one of the most powerful mathematical tools to
understand and predict the behavior of dynamical systems in nature, engineering,
and society. A dynamical system is some system with some state, usually expressed
by a set of variables, that evolves in time. For example, an oscillating pendulum,
the spreading of a disease, and the weather are examples of dynamical systems. We
can use basic laws of physics, or plain intuition, to express mathematical rules that
govern the evolution of the system in time. These rules take the form of differential
equations. You are probably well experienced with equations, at least equations like
axCb D 0 or ax2CbxCc D 0. Such equations are known as algebraic equations,
and the unknown is a number. The unknown in a differential equation is a function,
and a differential equation will almost always involve this function and one or more
derivatives of the function. For example, f 0.x/ D f .x/ is a simple differential
equation (asking if there is any function f such that it equals its derivative – you
might remember that ex is a candidate).

The present chapter starts with explaining how easy it is to solve both single
(scalar) first-order ordinary differential equations and systems of first-order differ-
ential equations by the Forward Euler method. We demonstrate all the mathematical
and programming details through two specific applications: population growth and
spreading of diseases.

Then we turn to a physical application: oscillating mechanical systems, which
arise in a wide range of engineering situations. The differential equation is now of
second order, and the Forward Euler method does not perform well. This observa-
tion motivates the need for other solution methods, and we derive the Euler-Cromer
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scheme1, the 2nd- and 4th-order Runge-Kutta schemes, as well as a finite difference
scheme (the latter to handle the second-order differential equation directly without
reformulating it as a first-order system). The presentation starts with undamped
free oscillations and then treats general oscillatory systems with possibly nonlinear
damping, nonlinear spring forces, and arbitrary external excitation. Besides de-
veloping programs from scratch, we also demonstrate how to access ready-made
implementations of more advanced differential equation solvers in Matlab.

As we progress with more advanced methods, we develop more sophisticated
and reusable programs, and in particular, we incorporate good testing strategies so
that we bring solid evidence to correct computations. Consequently, the beginning
with population growth and disease modeling examples has a very gentle learning
curve, while that curve gets significantly steeper towards the end of the treatment
of differential equations for oscillatory systems.

4.1 Population Growth

Our first taste of differential equations regards modeling the growth of some pop-
ulation, such as a cell culture, an animal population, or a human population. The
ideas even extend trivially to growth of money in a bank. Let N.t/ be the number
of individuals in the population at time t . How can we predict the evolution of N.t/

in time? Below we shall derive a differential equation whose solution is N.t/. The
equation reads

N 0.t/ D rN.t/; (4.1)

where r is a number. Note that although N is an integer in real life, we model N as
a real-valued function. We are forced to do this because the solution of differential
equations are (normally continuous) real-valued functions. An integer-valued N.t/

in the model would lead to a lot of mathematical difficulties.
With a bit of guessing, you may realize that N.t/ D Cert , where C is any

number. To make this solution unique, we need to fix C , done by prescribing the
value of N at some time, usually t D 0. Say N.0/ is given as N0. Then N.t/ D
N0e

rt .
In general, a differential equation model consists of a differential equation, such

as (4.1) and an initial condition, such as N.0/ D N0. With a known initial con-
dition, the differential equation can be solved for the unknown function and the
solution is unique.

It is, of course, very seldom that we can find the solution of a differential equa-
tion as easy as in this example. Normally, one has to apply certain mathematical
methods, but these can only handle some of the simplest differential equations.
However, we can easily deal with almost any differential equation by applying nu-
merical methods and a bit of programming. This is exactly the topic of the present
chapter.

1 The term scheme is used as synonym for method or computational recipe, especially in the con-
text of numerical methods for differential equations.
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4.1.1 Derivation of theModel

It can be instructive to show how an equation like (4.1) arises. Consider some
population of (say) an animal species and let N.t/ be the number of individuals
in a certain spatial region, e.g. an island. We are not concerned with the spatial
distribution of the animals, just the number of them in some spatial area where
there is no exchange of individuals with other spatial areas. During a time interval
�t , some animals will die and some new will be born. The number of deaths and
births are expected to be proportional to N . For example, if there are twice as many
individuals, we expect them to get twice as many newborns. In a time interval �t ,
the net growth of the population will be

N.t C �t/ � N.t/ D NbN.t/ � NdN.t/;

where NbN.t/ is the number of newborns and NdN.t/ is the number of deaths. If
we double �t , we expect the proportionality constants Nb and Nd to double too, so it
makes sense to think of Nb and Nd as proportional to �t and “factor out” �t . That
is, we introduce b D Nb=�t and d D Nd=�t to be proportionality constants for
newborns and deaths independent of �t . Also, we introduce r D b � d , which is
the net rate of growth of the population per time unit. Our model then becomes

N.t C �t/ � N.t/ D �t rN.t/ : (4.2)

Equation (4.2) is actually a computational model. Given N.t/, we can advance
the population size by

N.t C �t/ D N.t/ C �t rN.t/ :

This is called a difference equation. If we know N.t/ for some t , e.g., N.0/ D N0,
we can compute

N.�t/ D N0 C �t rN0;

N.2�t/ D N.�t/ C �t rN.�t/;

N.3�t/ D N.2�t/ C �t rN.2�t/;

:::

N..k C 1/�t/ D N.k�t/ C �t rN.k�t/;

where k is some arbitrary integer. A computer program can easily compute N..k C
1/�t/ for us with the aid of a little loop.

Warning
Observe that the computational formula cannot be started unless we have an
initial condition!

The solution of N 0 D rN is N D Cert for any constant C , and the initial
condition is needed to fix C so the solution becomes unique. However, from
a mathematical point of view, knowing N.t/ at any point t is sufficient as initial
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condition. Numerically, we more literally need an initial condition: we need to
know a starting value at the left end of the interval in order to get the computa-
tional formula going.

In fact, we do not need a computer since we see a repetitive pattern when doing
hand calculations, which leads us to a mathematical formula for N..k C 1/�t/:

N..k C 1/�t/ D N.k�t/ C �t rN.k�t/ D N.k�t/.1 C �t r/

D N..k � 1/�t/.1 C �t r/2

:::

D N0.1 C �t r/kC1 :

Rather than using (4.2) as a computational model directly, there is a strong tra-
dition for deriving a differential equation from this difference equation. The idea is
to consider a very small time interval �t and look at the instantaneous growth as
this time interval is shrunk to an infinitesimally small size. In mathematical terms,
it means that we let �t ! 0. As (4.2) stands, letting �t ! 0 will just produce an
equation 0 D 0, so we have to divide by �t and then take the limit:

lim
�t!0

N.t C �t/ � N.t/

�t
D rN.t/ :

The term on the left-hand side is actually the definition of the derivative N 0.t/, so
we have

N 0.t/ D rN.t/;

which is the corresponding differential equation.
There is nothing in our derivation that forces the parameter r to be constant –

it can change with time due to, e.g., seasonal changes or more permanent environ-
mental changes.

Detour: Exact mathematical solution
If you have taken a course on mathematical solution methods for differential
equations, you may want to recap how an equation likeN 0 D rN orN 0 D r.t/N

is solved. The method of separation of variables is the most convenient solution
strategy in this case:

N 0 D rN

dN

dt
D rN

dN

N
D rdt

NZ

N0

dN

N
D

tZ

0

rdt
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lnN � lnN0 D
tZ

0

r.t/dt

N D N0 exp .

tZ

0

r.t/dt/;

which for constant r results in N D N0e
rt . Note that exp .t/ is the same as et .

As will be described later, r must in more realistic models depend on N . The
method of separation of variables then requires to integrate

R N

N0
N=r.N /dN ,

which quickly becomes non-trivial for many choices of r.N /. The only gener-
ally applicable solution approach is therefore a numerical method.

4.1.2 Numerical Solution

There is a huge collection of numerical methods for problems like (4.2), and in
general any equation of the form u0 D f .u; t/, where u.t/ is the unknown function
in the problem, and f is some known formula of u and optionally t . For example,
f .u; t/ D ru in (4.2). We will first present a simple finite difference method solving
u0 D f .u; t/. The idea is four-fold:

1. Introduce a mesh in time with Nt C1 points t0; t1; : : : ; tNt
. We seek the unknown

u at the mesh points tn, and introduce un as the numerical approximation to
u.tn/, see Fig. 4.1.

2. Assume that the differential equation is valid at the mesh points.
3. Approximate derivatives by finite differences, see Fig. 4.2.
4. Formulate a computational algorithm that can compute a new value un based on

previously computed values ui , i < n.

Fig. 4.1 Mesh in time with corresponding discrete values (unknowns)
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Fig. 4.2 Illustration of a forward difference approximation to the derivative

An example will illustrate the steps. First, we introduce the mesh, and very
often the mesh is uniform, meaning that the spacing between points tn and tnC1 is
constant. This property implies that

tn D n�t; n D 0; 1; : : : ; Nt :

Second, the differential equation is supposed to hold at the mesh points. Note that
this is an approximation, because the differential equation is originally valid at all
real values of t . We can express this property mathematically as

u0.tn/ D f .un; tn/; n D 0; 1; : : : ; Nt :

For example, with our model equation u0 D ru, we have the special case

u0.tn/ D run; n D 0; 1; : : : ; Nt ;

or
u0.tn/ D r.tn/un; n D 0; 1; : : : ; Nt ;

if r depends explicitly on t .
Third, derivatives are to be replaced by finite differences. To this end, we need

to know specific formulas for how derivatives can be approximated by finite dif-
ferences. One simple possibility is to use the definition of the derivative from any
calculus book,

u0.t/ D lim
�t!0

u.t C �t/ � u.t/

�t
:

At an arbitrary mesh point tn this definition can be written as

u0.tn/ D lim
�t!0

unC1 � un

�t
:
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Instead of going to the limit �t ! 0 we can use a small �t , which yields a com-
putable approximation to u0.tn/:

u0.tn/ � unC1 � un

�t
:

This is known as a forward difference since we go forward in time (unC1) to collect
information in u to estimate the derivative. Figure 4.2 illustrates the idea. The error
of the forward difference is proportional to �t (often written as O.�t/, but we will
not use this notation in the present book).

We can now plug in the forward difference in our differential equation sampled
at the arbitrary mesh point tn:

unC1 � un

�t
D f .un; tn/; (4.3)

or with f .u; t/ D ru in our special model problem for population growth,

unC1 � un

�t
D run : (4.4)

If r depends on time, we insert r.tn/ D rn for r in this latter equation.
The fourth step is to derive a computational algorithm. Looking at (4.3), we

realize that if un should be known, we can easily solve with respect to unC1 to get
a formula for u at the next time level tnC1:

unC1 D un C �tf .un; tn/ : (4.5)

Provided we have a known starting value, u0 D U0, we can use (4.5) to advance the
solution by first computing u1 from u0, then u2 from u1, u3 from u2, and so forth.

Such an algorithm is called a numerical scheme for the differential equation and
often written compactly as

unC1 D un C �tf .un; tn/; u0 D U0; n D 0; 1; : : : ; Nt � 1 : (4.6)

This scheme is known as the Forward Euler scheme, also called Euler’s method.
In our special population growth model, we have

unC1 D un C �t run; u0 D U0; n D 0; 1; : : : ; Nt � 1 : (4.7)

We may also write this model using the problem-specific symbol N instead of the
generic u function:

N nC1 D N n C �t rN n; N 0 D N0; n D 0; 1; : : : ; Nt � 1 : (4.8)

The observant reader will realize that (4.8) is nothing but the computational
model (4.2) arising directly in the model derivation. The formula (4.8) arises,
however, from a detour via a differential equation and a numerical method for the
differential equation. This looks rather unnecessary! The reason why we bother to
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Fig. 4.3 The numerical solution at points can be extended by linear segments between the mesh
points

derive the differential equation model and then discretize it by a numerical method
is simply that the discretization can be done in many ways, and we can create
(much) more accurate and more computationally efficient methods than (4.8) or
(4.6). This can be useful in many problems! Nevertheless, the Forward Euler
scheme is intuitive and widely applicable, at least when �t is chosen to be small.

The numerical solution between the mesh points
Our numerical method computes the unknown function u at discrete mesh points
t1; t2; : : : ; tNt

. What if we want to evaluate the numerical solution between the
mesh points? The most natural choice is to assume a linear variation between
the mesh points, see Fig. 4.3. This is compatible with the fact that when we plot
the array u0; u1; : : : versus t0; t1; : : :, a straight line is drawn between the discrete
points.

4.1.3 Programming the Forward Euler Scheme; the Special Case

Let us compute (4.8) in a program. The input variables are N0, �t , r , and Nt . Note
that we need to compute Nt C 1 new values N 1; : : : ; N Nt C1. A total of Nt C 2

values are needed in an array representation of N n, n D 0; : : : ; Nt C 1.
Our first version of this program is as simple as possible:

N_0 = input(’Give initial population size N_0: ’);

r = input(’Give net growth rate r: ’);

dt = input(’Give time step size: ’);

N_t = input(’Give number of steps: ’);

t = linspace(0, (N_t+1)*dt, N_t+2);

N = zeros(N_t+2, 1);
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N(1) = N_0;

for n = 1:N_t

N(n+1) = N(n) + r*dt*N(n);

end

if N_t < 70

numerical_sol = ’bo’;

else

numerical_sol = ’b-’;

end

plot(t, N, numerical_sol, t, N_0*exp(r.*t), ’r-’);

xlabel(’t’); ylabel(’N(t)’);

legend(’numerical’, ’exact’, ’location’, ’northwest’);

filestem = strcat(’growth1_’, num2str(N_t), ’steps’);

print(filestem, ’-dpng’); print(filestem, ’-dpdf’);

The complete code above resides in the file growth1.m.
Let us demonstrate a simulation where we start with 100 animals, a net growth

rate of 10 percent (0.1) per time unit, which can be one month, and t 2 Œ0; 20�

months. We may first try �t of half a month (0.5), which implies Nt D 40 (or to
be absolutely precise, the last time point to be computed according to our set-up
above is tNt C1 D 20:5). Figure 4.4 shows the results. The solid line is the exact
solution, while the circles are the computed numerical solution. The discrepancy is
clearly visible. What if we make �t 10 times smaller? The result is displayed in
Fig. 4.5, where we now use a solid line also for the numerical solution (otherwise,
400 circles would look very cluttered, so the program has a test on how to display
the numerical solution, either as circles or a solid line). We can hardly distinguish
the exact and the numerical solution. The computing time is also a fraction of

Fig. 4.4 Evolution of a population computed with time step 0.5 month

https://github.com/hplgit/prog4comp/tree/master/src/m/growth1.m
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Fig. 4.5 Evolution of a population computed with time step 0.05 month

Fig. 4.6 Evolution of a population computed with time step 2 months

a second on a laptop, so it appears that the Forward Euler method is sufficiently
accurate for practical purposes. (This is not always true for large, complicated
simulation models in engineering, so more sophisticated methods may be needed.)

It is also of interest to see what happens if we increase �t to 2 months. The
results in Fig. 4.6 indicate that this is an inaccurate computation.



4.1 Population Growth 97

4.1.4 Understanding the Forward Euler Method

The good thing about the Forward Euler method is that it gives an understanding
of what a differential equation is and a geometrical picture of how to construct the
solution. The first idea is that we have already computed the solution up to some
time point tn. The second idea is that we want to progress the solution from tn to
tnC1 as a straight line.

We know that the line must go through the solution at tn, i.e., the point .tn; un/.
The differential equation tells us the slope of the line: u0.tn/ D f .un; tn/ D run.
That is, the differential equation gives a direct formula for the further direction of
the solution curve. We can say that the differential equation expresses how the
system (u) undergoes changes at a point.

There is a general formula for a straight line y D ax C b with slope a that goes
through the point .x0; y0/: y D a.x � x0/ C y0. Using this formula adapted to the
present case, and evaluating the formula for tnC1, results in

unC1 D run.tnC1 � tn/ C un D un C �t run;

which is nothing but the Forward Euler formula. You are now encouraged to do Ex-
ercise 4.1 to become more familiar with the geometric interpretation of the Forward
Euler method.

4.1.5 Programming the Forward Euler Scheme; the General Case

Our previous program was just a flat main program tailored to a special differential
equation. When programming mathematics, it is always good to consider a (large)
class of problems and making a Matlab function to solve any problem that fits into
the class. More specifically, we will make software for the class of differential
equation problems of the form

u0.t/ D f .u; t/; u D U0; t 2 Œ0; T �;

for some given function f , and numbers U0 and T . We also take the opportunity to
illustrate what is commonly called a demo function. As the name implies, the pur-
pose of such a function is solely to demonstrate how the function works (not to be
confused with a test function, which does verification by use of assert). The Mat-
lab function calculating the solution must take f , U0, �t , and T as input, find the
corresponding Nt , compute the solution, and return an array with u0; u1; : : : ; uNt

and an array with t0; t1; : : : ; tNt
. The Forward Euler scheme reads

unC1 D un C �tf .un; tn/; n D 0; : : : ; Nt � 1 :

The corresponding program ode_FE.mmay now take the form

function [sol, time] = ode_FE(f, U_0, dt, T)

N_t = floor(T/dt);

u = zeros(N_t+1, 1);
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t = linspace(0, N_t*dt, length(u));

u(1) = U_0;

for n = 1:N_t

u(n+1) = u(n) + dt*f(u(n), t(n));

end

sol = u;

time = t;

end

Note that the function ode_FE is general, i.e. it can solve any single differen-
tial equation u0 D f .u; t/. However, we will soon (in Sect. 4.2.6) generalize this
ode_FE function to handle a system of multiple odes, where a single ode is just
a special case (this most general version of ode_FE is what we actually store in the
file ode_FE.m).

A proper demo function for this solver might be written as (file demo_
population_growth.m):

function demo_population_growth()

% Test case: u’ = r*u, u(0)=100

function r = f(u, t)

r = 0.1*u;

end

[u, t] = ode_FE(@f, 100, 0.5, 20);

plot(t, u, t, 100*exp(0.1*t));

end

The solution should be identical to what the growth1.m program produces with
the same parameter settings (r D 0:1, N0 D 100). This feature can easily be tested
by inserting a print statement, but a much better, automated verification is suggested
in Exercise 4.1. You are strongly encouraged to take a “break” and do that exercise
now.

Remark on the use of u as variable
In the ode_FE program, the variable u is used in different contexts. Inside the
ode_FE function, u is an array, but in the f(u,t) function, as exemplified in the
demo_population_growth function, the argument u is a number. Typically,
we call f (in ode_FE) with the u argument as one element of the array u in the
ode_FE function: u(n).

4.1.6 Making the Population GrowthModel More Realistic

Exponential growth of a population according the model N 0 D rN , with exponen-
tial solution N D N0ert , is unrealistic in the long run because the resources needed
to feed the population are finite. At some point there will not be enough resources
and the growth will decline. A common model taking this effect into account as-
sumes that r depends on the size of the population, N :

N.t C �t/ � N.t/ D r.N.t//N.t/ :

https://github.com/hplgit/prog4comp/tree/master/src/m/demo_population_growth.m
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The corresponding differential equation becomes

N 0 D r.N /N :

The reader is strongly encouraged to repeat the steps in the derivation of the Forward
Euler scheme and establish that we get

N nC1 D N n C �t r.N n/N n;

which computes as easy as for a constant r , since r.N n/ is known when computing
N nC1. Alternatively, one can use the Forward Euler formula for the general problem
u0 D f .u; t/ and use f .u; t/ D r.u/u and replace u by N .

The simplest choice of r.N / is a linear function, starting with some growth value
Nr and declining until the population has reached its maximum, M , according to the
available resources:

r.N / D Nr.1 � N=M / :

In the beginning, N 
 M and we will have exponential growth e Nrt , but as N

increases, r.N / decreases, and when N reaches M , r.N / D 0 so there is now
more growth and the population remains at N.t/ D M . This linear choice of r.N /

gives rise to a model that is called the logistic model. The parameter M is known
as the carrying capacity of the population.

Let us run the logistic model with aid of the ode_FE function. We choose
N.0/ D 100, �t D 0:5 month, T D 60 months, r D 0:1, and M D 500. The
complete program, called logistic.m, is basically a call to ode_FE:

f = @(u, t) 0.1*(1 - u/500)*u;

U_0 = 100;

dt = 0.5; T = 60;

[u, t] = ode_FE(f, U_0, dt, T);

plot(t, u, ’b-’);

xlabel(’t’); ylabel(’N(t)’);

filestem = strcat(’tmp_’,num2str(dt));

% Note: this print statement gets a problem with the decimal point

%print(filestem,’-dpng’); print(filestem,’-dpdf’);

% so we rather do it like this:

filename = strcat(filestem, ’.png’); print(filename);

filename = strcat(filestem, ’.pdf’); print(filename);

dt = 20; T = 100;

[u, t] = ode_FE(f, U_0, dt, T);

plot(t, u, ’b-’);

xlabel(’t’); ylabel(’N(t)’);

filestem = strcat(’tmp_’,num2str(dt));

print(filestem, ’-dpng’); print(filestem, ’-dpdf’);

Figure 4.7 shows the resulting curve. We see that the population stabilizes
around M D 500 individuals. A corresponding exponential growth would reach
N0e

rt D 100e0:1�60 � 40;300 individuals!
It is always interesting to see what happens with large �t values. We may set

�t D 20 and T D 100. Now the solution, seen in Fig. 4.8, oscillates and is

https://github.com/hplgit/prog4comp/tree/master/src/m/logistic.m
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Fig. 4.7 Logistic growth of a population

Fig. 4.8 Logistic growth with large time step

hence qualitatively wrong, because one can prove that the exact solution of the
differential equation is monotone. (However, there is a corresponding difference
equation model, NnC1 D rNn.1 � Nn=M /, which allows oscillatory solutions and
those are observed in animal populations. The problem with large �t is that it
just leads to wrong mathematics – and two wrongs don’t make a right in terms of
a relevant model.)
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Remark on the world population
The number of people on the planet2 follows the model N 0 D r.t/N , where the
net reproduction r.t/ varies with time and has decreased since its top in 1990.
The current world value of r is 1.2%, and it is difficult to predict future values3.
At the moment, the predictions of the world population point to a growth to 9.6
billion before declining.

This example shows the limitation of a differential equation model: we need
to know all input parameters, including r.t/, in order to predict the future. It is
seldom the case that we know all input parameters. Sometimes knowledge of the
solution from measurements can help estimate missing input parameters.

4.1.7 Verification: Exact Linear Solution of the Discrete Equations

How can we verify that the programming of an ODE model is correct? The best
method is to find a problem where there are no unknown numerical approximation
errors, because we can then compare the exact solution of the problem with the re-
sult produced by our implementation and expect the difference to be within a very
small tolerance. We shall base a unit test on this idea and implement a correspond-
ing test function (see Sect. 3.4.4) for automatic verification of our implementation.

It appears that most numerical methods for ODEs will exactly reproduce a solu-
tion u that is linear in t . We may therefore set u D at C b and choose any f whose
derivative is a. The choice f .u; t/ D a is very simple, but we may add anything
that is zero, e.g.,

f .u; t/ D a C .u � .at C b//m:

This is a valid f .u; t/ for any a, b, and m. The corresponding ODE looks highly
non-trivial, however:

u0 D a C .u � .at C b//m:

Using the ode_FE function, we may write a proper test function as follows (in
file test_ode_FE_exact_linear.m):

function test_ode_FE_exact_linear()

% Test if a linear function u(t) = a*x + b is exactly reproduced.

a = 4; b = -1; m = 6;

exact_solution = @(t) (a*t + b)’;

f = @(u, t) a + (u - exact_solution(t))^m;

dt = 0.5; T = 20.0;

[u, t] = ode_FE(f, exact_solution(0), dt, T);

diff = max(abs(exact_solution(t) - u));

tol = 1E-15; % Tolerance for float comparison

assert(diff < tol);

end

2 http://en.wikipedia.org/wiki/Population_growth
3 http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html

http://en.wikipedia.org/wiki/Population_growth
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html
https://github.com/hplgit/prog4comp/tree/master/src/m/test_ode_FE_exact_linear.m
http://en.wikipedia.org/wiki/Population_growth
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html
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Observe that we cannot compare diff to zero, which is what we mathematically
expect, because diff is a floating-point variable that most likely contains small
rounding errors. Therefore, we must compare diff to zero with a tolerance, here
10�15.

You are encouraged to do Exercise 4.2 where the goal is to make a test function
for a verification based on comparison with hand-calculated results for a few time
steps.

4.2 Spreading of Diseases

Our aim with this section is to show in detail how one can apply mathematics and
programming to investigate spreading of diseases. The mathematical model is now
a system of three differential equations with three unknown functions. To derive
such a model, we can use mainly intuition, so no specific background knowledge of
diseases is required.

4.2.1 Spreading of a Flu

Imagine a boarding school out in the country side. This school is a small and closed
society. Suddenly, one or more of the pupils get a flu. We expect that the flu may
spread quite effectively or die out. The question is how many of the pupils and
the school’s staff will be affected. Some quite simple mathematics can help us to
achieve insight into the dynamics of how the disease spreads.

Let the mathematical function S.t/ count how many individuals, at time t , that
have the possibility to get infected. Here, t may count hours or days, for instance.
These individuals make up a category called susceptibles, labeled as S. Another
category, I, consists of the individuals that are infected. Let I.t/ count how many
there are in category I at time t . An individual having recovered from the disease
is assumed to gain immunity. There is also a small possibility that an infected will
die. In either case, the individual is moved from the I category to a category we call
the removed category, labeled with R. We let R.t/ count the number of individuals
in the R category at time t . Those who enter the R category, cannot leave this
category.

To summarize, the spreading of this disease is essentially the dynamics of mov-
ing individuals from the S to the I and then to the R category:

We can use mathematics to more precisely describe the exchange between the
categories. The fundamental idea is to describe the changes that take place during
a small time interval, denoted by �t .

Our disease model is often referred to as a compartment model, where quantities
are shuffled between compartments (here a synonym for categories) according to
some rules. The rules express changes in a small time interval �t , and from these
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changes we can let �t go to zero and obtain derivatives. The resulting equations
then go from difference equations (with finite �t) to differential equations (�t !
0).

We introduce a uniform mesh in time, tn D n�t , n D 0; : : : ; Nt , and seek S

at the mesh points. The numerical approximation to S at time tn is denoted by Sn.
Similarly, we seek the unknown values of I.t/ and R.t/ at the mesh points and
introduce a similar notation I n and Rn for the approximations to the exact values
I.tn/ and R.tn/.

In the time interval �t we know that some people will be infected, so S will de-
crease. We shall soon argue by mathematics that there will be ˇ�tSI new infected
individuals in this time interval, where ˇ is a parameter reflecting how easy people
get infected during a time interval of unit length. If the loss in S is ˇ�tSI , we have
that the change in S is

SnC1 � Sn D �ˇ�tSnI n : (4.9)

Dividing by �t and letting �t ! 0, makes the left-hand side approach S 0.tn/ such
that we obtain a differential equation

S 0 D �ˇSI : (4.10)

The reasoning in going from the difference equation (4.9) to the differential equa-
tion (4.10) follows exactly the steps explained in Sect. 4.1.1.

Before proceeding with how I and R develops in time, let us explain the formula
ˇ�tSI . We have S susceptibles and I infected people. These can make up SI

pairs. Now, suppose that during a time interval T wemeasure that m actual pairwise
meetings do occur among n theoretically possible pairings of people from the S
and I categories. The probability that people meet in pairs during a time T is (by
the empirical frequency definition of probability) equal to m=n, i.e., the number
of successes divided by the number of possible outcomes. From such statistics we
normally derive quantities expressed per unit time, i.e., here we want the probability
per unit time, �, which is found from dividing by T : � D m=.nT /.

Given the probability �, the expected number of meetings per time interval of
SI possible pairs of people is (from basic statistics) �SI . During a time interval
�t , there will be �SI�t expected number of meetings between susceptibles and
infected people such that the virus may spread. Only a fraction of the ��tSI

meetings are effective in the sense that the susceptible actually becomes infected.
Counting that m people get infected in n such pairwise meetings (say 5 are infected
from 1000 meetings), we can estimate the probability of being infected as p D
m=n. The expected number of individuals in the S category that in a time interval
�t catch the virus and get infected is then p��tSI . Introducing a new constant
ˇ D p� to save some writing, we arrive at the formula ˇ�tSI .

The value of ˇ must be known in order to predict the future with the disease
model. One possibility is to estimate p and � from their meanings in the derivation
above. Alternatively, we can observe an “experiment” where there are S0 suscepti-
bles and I0 infected at some point in time. During a time interval T we count that N

susceptibles have become infected. Using (4.9) as a rough approximation of how S

has developed during time T (and now T is not necessarily small, but we use (4.9)
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anyway), we get

N D ˇTS0I0 ) ˇ D N

TS0I0

: (4.11)

We need an additional equation to describe the evolution of I.t/. Such an equa-
tion is easy to establish by noting that the loss in the S category is a corresponding
gain in the I category. More precisely,

I nC1 � I n D ˇ�tSnI n : (4.12)

However, there is also a loss in the I category because people recover from the
disease. Suppose that we can measure that m out of n individuals recover in a time
period T (say 10 of 40 sick people recover during a day: m D 10, n D 40, T D
24 h). Now, 	 D m=.nT / is the probability that one individual recovers in a unit
time interval. Then (on average) 	�tI infected will recover in a time interval �t .
This quantity represents a loss in the I category and a gain in the R category. We
can therefore write the total change in the I category as

I nC1 � I n D ˇ�tSnI n � 	�tI n : (4.13)

The change in the R category is simple: there is always an increase from the I
category:

RnC1 � Rn D 	�tI n : (4.14)

Since there is no loss in the R category (people are either recovered and immune,
or dead), we are done with the modeling of this category. In fact, we do not strictly
need the equation (4.14) for R, but extensions of the model later will need an equa-
tion for R.

Dividing by �t in (4.13) and (4.14) and letting �t ! 0, results in the corre-
sponding differential equations

I 0 D ˇSI � 	I; (4.15)

and
R0 D 	I : (4.16)

To summarize, we have derived difference equations (4.9)–(4.14), and alternative
differential equations (4.15)–(4.16). For reference, we list the complete set of the
three difference equations:

SnC1 D Sn � ˇ�tSnI n; (4.17)

I nC1 D I n C ˇ�tSnI n � 	�tI n; (4.18)

RnC1 D Rn C 	�tI n : (4.19)

Note that we have isolated the new unknown quantities SnC1, I nC1, and RnC1 on
the left-hand side, such that these can readily be computed if Sn, I n, and Rn are
known. To get such a procedure started, we need to know S0, I 0, R0. Obviously,
we also need to have values for the parameters ˇ and 	 .
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We also list the system of three differential equations:

S 0 D �ˇSI; (4.20)

I 0 D ˇSI � 	I; (4.21)

R0 D 	I : (4.22)

This differential equation model (and also its discrete counterpart above) is known
as an SIR model. The input data to the differential equation model consist of the
parameters ˇ and 	 as well as the initial conditions S.0/ D S0, I.0/ D I0, and
R.0/ D R0.

4.2.2 A Forward Euler Method for the Differential Equation System

Let us apply the same principles as we did in Sect. 4.1.2 to discretize the differential
equation system by the Forward Euler method. We already have a time mesh and
time-discrete quantities Sn, I n, Rn, n D 0; : : : ; Nt . The three differential equations
are assumed to be valid at the mesh points. At the point tn we then have

S 0.tn/ D �ˇS.tn/I.tn/; (4.23)

I 0.tn/ D ˇS.tn/I.tn/ � 	I.tn/; (4.24)

R0.tn/ D 	I.tn/; (4.25)

for n D 0; 1; : : : ; Nt . This is an approximation since the differential equations are
originally valid at all times t (usually in some finite interval Œ0; T �). Using forward
finite differences for the derivatives results in an additional approximation,

SnC1 � Sn

�t
D �ˇSnI n; (4.26)

I nC1 � I n

�t
D ˇSnI n � 	I n; (4.27)

RnC1 � Rn

�t
D 	I n : (4.28)

As we see, these equations are identical to the difference equations that naturally
arise in the derivation of the model. However, other numerical methods than the
Forward Euler scheme will result in slightly different difference equations.

4.2.3 Programming the Numerical Method; the Special Case

The computation of (4.26)–(4.28) can be readily made in a computer program
SIR1.m:

% Time unit: 1 h

beta = 10/(40*8*24);

gamma = 3/(15*24);

dt = 0.1; % 6 min

https://github.com/hplgit/prog4comp/tree/master/src/m/SIR1.m
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D = 30; % Simulate for D days

N_t = floor(D*24/dt); % Corresponding no of hours

t = linspace(0, N_t*dt, N_t+1);

S = zeros(N_t+1, 1);

I = zeros(N_t+1, 1);

R = zeros(N_t+1, 1);

% Initial condition

S(1) = 50;

I(1) = 1;

R(1) = 0;

% Step equations forward in time

for n = 1:N_t

S(n+1) = S(n) - dt*beta*S(n)*I(n);

I(n+1) = I(n) + dt*beta*S(n)*I(n) - dt*gamma*I(n);

R(n+1) = R(n) + dt*gamma*I(n);

end

plot(t, S, t, I, t, R);

legend(’S’, ’I’, ’R’, ’Location’,’northwest’);

xlabel(’hours’);

print(’tmp’, ’-dpdf’); print(’tmp’, ’-dpng’);

This program was written to investigate the spreading of a flu at the mentioned
boarding school, and the reasoning for the specific choices ˇ and 	 goes as follows.
At some other school where the disease has already spread, it was observed that in
the beginning of a day there were 40 susceptibles and 8 infected, while the numbers
were 30 and 18, respectively, 24 hours later. Using 1 h as time unit, we then have
from (4.11) that ˇ D 10=.40 � 8 � 24/. Among 15 infected, it was observed that
3 recovered during a day, giving 	 D 3=.15 � 24/. Applying these parameters to
a new case where there is one infected initially and 50 susceptibles, gives the graphs
in Fig. 4.9. These graphs are just straight lines between the values at times ti D i�t

as computed by the program. We observe that S reduces as I and R grows. After
about 30 days everyone has become ill and recovered again.

We can experiment with ˇ and 	 to see whether we get an outbreak of the disease
or not. Imagine that a “wash your hands” campaign was successful and that the
other school in this case experienced a reduction of ˇ by a factor of 5. With this
lower ˇ the disease spreads very slowly so we simulate for 60 days. The curves
appear in Fig. 4.10.

4.2.4 Outbreak or Not

Looking at the equation for I , it is clear that we must have ˇSI � 	I > 0 for I to
increase. When we start the simulation it means that

ˇS.0/I.0/ � 	I.0/ > 0;

or simpler
ˇS.0/

	
> 1 (4.29)
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Fig. 4.9 Natural evolution of a flu at a boarding school

Fig. 4.10 Small outbreak of a flu at a boarding school (ˇ is much smaller than in Fig. 4.9)

to increase the number of infected people and accelerate the spreading of the dis-
ease. You can run the SIR1.m program with a smaller ˇ such that (4.29) is violated
and observe that there is no outbreak.
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The power of mathematical modeling
The reader should notice our careful use of words in the previous paragraphs.
We started out with modeling a very specific case, namely the spreading of a flu
among pupils and staff at a boarding school. With purpose we exchanged words
like pupils and flu with more neutral and general words like individuals and
disease, respectively. Phrased equivalently, we raised the abstraction level by
moving from a specific case (flu at a boarding school) to a more general case
(disease in a closed society). Very often, when developing mathematical mod-
els, we start with a specific example and see, through the modeling, that what is
going on of essence in this example also will take place in many similar prob-
lem settings. We try to incorporate this generalization in the model so that the
model has a much wider application area than what we aimed at in the begin-
ning. This is the very power of mathematical modeling: by solving one specific
case we have often developed more generic tools that can readily be applied to
solve seemingly different problems. The next sections will give substance to this
assertion.

4.2.5 Abstract Problem and Notation

When we had a specific differential equation with one unknown, we quickly turned
to an abstract differential equation written in the generic form u0 D f .u; t/. We re-
fer to such a problem as a scalar ODE. A specific equation corresponds to a specific
choice of the formula f .u; t/ involving u and (optionally) t .

It is advantageous to also write a system of differential equations in the same
abstract notation,

u0 D f .u; t/;

but this time it is understood that u is a vector of functions and f is also vector. We
say that u0 D f .u; t/ is a vector ODE or system of ODEs in this case. For the SIR
model we introduce the two 3-vectors, one for the unknowns,

u D .S.t/; I.t/; R.t//;

and one for the right-hand side functions,

f .u; t/ D .�ˇSI; ˇSI � 	I; 	I / :

The equation u0 D f .u; t/ means setting the two vectors equal, i.e., the components
must be pairwise equal. Since u0 D .S 0; I 0; R0/, we get that u0 D f implies

S 0 D �ˇSI;

I 0 D ˇSI � 	I;

R0 D 	I :

The generalized short notation u0 D f .u; t/ is very handy since we can derive
numerical methods and implement software for this abstract system and in a par-
ticular application just identify the formulas in the f vector, implement these, and
call functionality that solves the differential equation system.
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4.2.6 Programming the Numerical Method; the General Case

In Matlab code, the Forward Euler step

unC1 D un C �tf .un; tn/;

being a scalar or a vector equation, can be coded as

u(n+1,:) = u(n,:) + dt*f(u(n,:), t(n))

both in the scalar and vector case. In the vector case, u(n,:) is a one-dimensional
array of length m C 1 holding the mathematical quantity un, and the Matlab func-
tion f must return an array of length m C 1. Then the expression u(n,:) +
dt*f(u(n,:), t(n)) is an array plus a scalar times an array.

For all this to work, the complete numerical solution must be represented by
a two-dimensional array, created by u = zeros(N_t+1, m+1). The first index
counts the time points and the second the components of the solution vector at one
time point. That is, u(n,i) corresponds to the mathematical quantity un

i . Writing
u(n,:) picks out all the components in the solution at the time point with index n.
The nice feature of these facts is that the same piece of Matlab code works for both
a scalar ODE and a system of ODEs!

The ode_FE function for the vector ODE is placed in the file ode_FE.m and was
written as follows:

function [u, t] = ode_FE(f, U_0, dt, T)

N_t = floor(T/dt);

u = zeros(N_t+1, length(U_0));

t = linspace(0, N_t*dt, length(u));

u(1,:) = U_0; % Initial values

t(1) = 0;

for n = 1:N_t

u(n+1,:) = u(n,:) + dt*f(u(n,:), t(n));

end

end

Let us show how the previous SIR model can be solved using the new general
ode_FE that can solve any vector ODE. The user’s f(u, t) function takes a vector
u, with three components corresponding to S , I , and R as argument, along with the
current time point t(n), and must return the values of the formulas of the right-hand
sides in the vector ODE. An appropriate implementation is

function result = f(u, t)

S = u(1); I = u(2); R = u(3);

result = [-beta*S*I beta*S*I - gamma*I gamma*I]

end

where beta and gamma are problem specific parameters set outside of that function.
Note that the S, I, and R values correspond to Sn, I n, and Rn. These values are
then just inserted in the various formulas in the vector ODE.

https://github.com/hplgit/prog4comp/tree/master/src/m/ode_FE.m
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We can now show a function (in file demo_SIR.m) that runs the previous SIR
example, but which applies the generic ode_FE function:

function demo_SIR()

% Test case using an SIR model

dt = 0.1; % 6 min

D = 30; % Simulate for D days

N_t = floor(D*24/dt); % Corresponding no of hours

T = dt*N_t; % End time

U_0 = [50 1 0];

f_handle = @f;

[u, t] = ode_FE(f_handle, U_0, dt, T);

S = u(:,1);

I = u(:,2);

R = u(:,3);

plot(t, S, ’b-’, t, I, ’r-’, t, R, ’g-’);

legend(’S’, ’I’, ’R’);

xlabel(’hours’);

% Consistency check:

N = S(1) + I(1) + R(1);

eps = 1E-12; % Tolerance for comparing real numbers

for n = 1:length(S)

err = abs(S(n) + I(n) + R(n) - N);

if (err > eps)

error(’demo_SIR: error=%g’, err);

end

end

end

function result = f(u,t)

beta = 10/(40*8*24);

gamma = 3/(15*24);

S = u(1); I = u(2); R = u(3);

result = [-beta*S*I beta*S*I - gamma*I gamma*I];

end

Recall that the u returned from ode_FE contains all components (S , I , R) in
the solution vector at all time points. We therefore need to extract the S , I , and R

values in separate arrays for further analysis and easy plotting.
Another key feature of this higher-quality code is the consistency check. By

adding the three differential equations in the SIR model, we realize that S 0 C I 0 C
R0 D 0, which means that S CI CR D const. We can check that this relation holds
by comparing Sn C I n C Rn to the sum of the initial conditions. The check is not
a full-fledged verification, but it is a much better than doing nothing and hoping that
the computation is correct. Exercise 4.5 suggests another method for controlling the
quality of the numerical solution.

https://github.com/hplgit/prog4comp/tree/master/src/m/demo_SIR.m
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4.2.7 Time-Restricted Immunity

Let us now assume that immunity after the disease only lasts for some certain time
period. This means that there is transport from the R state to the S state:

Modeling the loss of immunity is very similar to modeling recovery from the
disease: the amount of people losing immunity is proportional to the amount of
recovered patients and the length of the time interval �t . We can therefore write
the loss in the R category as �
�tR in time �t , where 
�1 is the typical time it
takes to lose immunity. The loss in R.t/ is a gain in S.t/. The “budgets” for the
categories therefore become

SnC1 D Sn � ˇ�tSnI n C 
�tRn; (4.30)

I nC1 D I n C ˇ�tSnI n � 	�tI n; (4.31)

RnC1 D Rn C 	�tI n � 
�tRn : (4.32)

Dividing by �t and letting �t ! 0 gives the differential equation system

S 0 D �ˇSI C 
R; (4.33)

I 0 D ˇSI � 	I; (4.34)

R0 D 	I � 
R : (4.35)

This system can be solved by the same methods as we demonstrated for the original
SIR model. Only one modification in the program is necessary: adding nu*R[n] to
the S[n+1] update and subtracting the same quantity in the R[n+1] update:

for n = 1:N_t

S(n+1) = S(n) - dt*beta*S(n)*I(n) + dt*nu*R(n)

I(n+1) = I(n) + dt*beta*S(n)*I(n) - dt*gamma*I(n)

R(n+1) = R(n) + dt*gamma*I(n) - dt*nu*R(n)

end

The modified code is found in the file SIR2.m.
Setting 
�1 to 50 days, reducing ˇ by a factor of 4 compared to the previous

example (ˇ D 0:00033), and simulating for 300 days gives an oscillatory behavior
in the categories, as depicted in Fig. 4.11. It is easy now to play around and study
how the parameters affect the spreading of the disease. For example, making the
disease slightly more effective (increase ˇ to 0.00043) and increasing the average
time to loss of immunity to 90 days lead to other oscillations, see Fig. 4.12.

4.2.8 Incorporating Vaccination

We can extend the model to also include vaccination. To this end, it can be useful
to track those who are vaccinated and those who are not. So, we introduce a fourth

https://github.com/hplgit/prog4comp/tree/master/src/m/SIR2.m
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Fig. 4.11 Including loss of immunity

Fig. 4.12 Increasing ˇ and reducing 
 compared to Fig. 4.11

category, V, for those who have taken a successful vaccination. Furthermore, we
assume that in a time interval �t , a fraction p�t of the S category is subject to
a successful vaccination. This means that in the time �t , p�tS people leave from
the S to the V category. Since the vaccinated ones cannot get the disease, there is no
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Fig. 4.13 The effect of vaccination: p D 0:0005 (left) and p D 0:0001 (right)

impact on the I or R categories. We can visualize the categories, and the movement
between them, as

The new, extended differential equations with the V quantity become

S 0 D �ˇSI C 
R � pS; (4.36)

V 0 D pS; (4.37)

I 0 D ˇSI � 	I; (4.38)

R0 D 	I � 
R : (4.39)

We shall refer to this model as the SIRV model.
The new equation for V 0 poses no difficulties when it comes to the numerical

method. In a Forward Euler scheme we simply add an update

V nC1 D V n C p�tSn :

The program needs to store V.t/ in an additional array V, and the plotting command
must be extended with more arguments to plot V versus t as well. The complete
code is found in the file SIRV1.m.

Using p D 0:0005 and p D 0:0001 as values for the vaccine efficiency pa-
rameter, the effect of vaccination is seen in Fig. 4.13 (other parameters are as in
Fig. 4.11).

https://github.com/hplgit/prog4comp/tree/master/src/m/SIRV1.m
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4.2.9 Discontinuous Coefficients: a Vaccination Campaign

What about modeling a vaccination campaign? Imagine that six days after the out-
break of the disease, the local health station launches a vaccination campaign. They
reach out to many people, say 10 times as efficiently as in the previous (constant
vaccination) case. If the campaign lasts for 10 days we can write

p.t/ D
(

0:005; 6 � 24 � t � 15 � 24;

0; otherwise

Note that we must multiply the t value by 24 because t is measured in hours, not
days. In the differential equation system, pS.t/ must be replaced by p.t/S.t/, and
in this case we get a differential equation system with a term that is discontinu-
ous. This is usually quite a challenge in mathematics, but as long as we solve the
equations numerically in a program, a discontinuous coefficient is easy to treat.

There are two ways to implement the discontinuous coefficient p.t/: through
a function and through an array. The function approach is perhaps the easiest:

function value = p(t)

if (6*24 <= t <= 15*24)

value = 0.005;

else

value = 0;

end

end

In the code for updating the arrays S and V we get a term p(t(n))*S(n).
We can also let p.t/ be an array filled with correct values prior to the simulation.

Then we need to allocate an array p of length N_t+1 and find the indices corre-
sponding to the time period between 6 and 15 days. These indices are found from
the time point divided by �t . That is,

p = zeros(N_t+1,1);

start_index = 6*24/dt + 1;

stop_index = 15*24/dt + 1;

p(start_index:stop_index) = 0.005;

The p.t/S.t/ term in the updating formulas for S and V simply becomes p(n)*
S(n). The file SIRV2.m contains a program based on filling an array p.

The effect of a vaccination campaign is illustrated in Fig. 4.14. All the data are
as in Fig. 4.13 (left), except that p is ten times stronger for a period of 10 days and
p D 0 elsewhere.
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Fig. 4.14 The effect of a vaccination campaign

4.3 Oscillating One-Dimensional Systems

Numerous engineering constructions and devices contain materials that act like
springs. Such springs give rise to oscillations, and controlling oscillations is a key
engineering task. We shall now learn to simulate oscillating systems.

As always, we start with the simplest meaningful mathematical model, which
for oscillations is a second-order differential equation:

u00.t/ C !2u.t/ D 0; (4.40)

where ! is a given physical parameter. Equation (4.40) models a one-dimensional
system oscillating without damping (i.e., with negligible damping). One-dimen-
sional here means that some motion takes place along one dimension only in some
coordinate system. Along with (4.40) we need the two initial conditions u.0/ and
u0.0/.

4.3.1 Derivation of a Simple Model

Many engineering systems undergo oscillations, and differential equations consti-
tute the key tool to understand, predict, and control the oscillations. We start with
the simplest possible model that captures the essential dynamics of an oscillating
system. Some body with mass m is attached to a spring and moves along a line
without friction, see Fig. 4.15 for a sketch (rolling wheels indicate “no friction”).
When the spring is stretched (or compressed), the spring force pulls (or pushes) the
body back and work “against” the motion. More precisely, let x.t/ be the position
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Fig. 4.15 Sketch of a one-dimensional, oscillating dynamic system (without friction)

of the body on the x axis, along which the body moves. The spring is not stretched
when x D 0, so the force is zero, and x D 0 is hence the equilibrium position of
the body. The spring force is �kx, where k is a constant to be measured. We as-
sume that there are no other forces (e.g., no friction). Newton’s 2nd law of motion
F D ma then has F D �kx and a D Rx,

� kx D m Rx; (4.41)

which can be rewritten as
Rx C !2x D 0; (4.42)

by introducing ! D p
k=m (which is very common).

Equation (4.42) is a second-order differential equation, and therefore we need
two initial conditions, one on the position x.0/ and one on the velocity x0.0/. Here
we choose the body to be at rest, but moved away from its equilibrium position:

x.0/ D X0; x0.0/ D 0 :

The exact solution of (4.42) with these initial conditions is x.t/ D X0 cos!t . This
can easily be verified by substituting into (4.42) and checking the initial conditions.
The solution tells that such a spring-mass system oscillates back and forth as de-
scribed by a cosine curve.

The differential equation (4.42) appears in numerous other contexts. A classical
example is a simple pendulum that oscillates back and forth. Physics books derive,
from Newton’s second law of motion, that

mL� 00 C mg sin � D 0;

where m is the mass of the body at the end of a pendulum with length L, g is the
acceleration of gravity, and � is the angle the pendulum makes with the vertical.
Considering small angles � , sin � � � , and we get (4.42) with x D � , ! D p

g=L,
x.0/ D �, and x0.0/ D 0, if � is the initial angle and the pendulum is at rest at
t D 0.
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4.3.2 Numerical Solution

We have not looked at numerical methods for handling second-order derivatives,
and such methods are an option, but we know how to solve first-order differential
equations and even systems of first-order equations. With a little, yet very common,
trick we can rewrite (4.42) as a first-order system of two differential equations. We
introduce u D x and v D x0 D u0 as two new unknown functions. The two
corresponding equations arise from the definition v D u0 and the original equation
(4.42):

u0 D v; (4.43)

v0 D �!2u : (4.44)

(Notice that we can use u00 D v0 to remove the second-order derivative from New-
ton’s 2nd law.)

We can now apply the Forward Euler method to (4.43)–(4.44), exactly as we did
in Sect. 4.2.2:

unC1 � un

�t
D vn; (4.45)

vnC1 � vn

�t
D �!2un; (4.46)

resulting in the computational scheme

unC1 D un C �t vn; (4.47)

vnC1 D vn � �t !2un : (4.48)

4.3.3 Programming the Numerical Method; the Special Case

A simple program for (4.47)–(4.48) follows the same ideas as in Sect. 4.2.3:

omega = 2;

P = 2*pi/omega;

dt = P/20;

T = 3*P;

N_t = floor(T/dt);

t = linspace(0, N_t*dt, N_t+1);

u = zeros(N_t+1, 1);

v = zeros(N_t+1, 1);

% Initial condition

X_0 = 2;

u(1) = X_0;

v(1) = 0;
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Fig. 4.16 Simulation of an oscillating system

% Step equations forward in time

for n = 1:N_t

u(n+1) = u(n) + dt*v(n);

v(n+1) = v(n) - dt*omega^2*u(n);

end

plot(t, u, ’b-’, t, X_0*cos(omega*t), ’r--’);

legend(’numerical’, ’exact’, ’Location’,’northwest’);

xlabel(’t’);

print(’tmp’, ’-dpdf’); print(’tmp’, ’-dpng’);

(See file osc_FE_special_case.m.)
Since we already know the exact solution as u.t/ D X0 cos!t , we have reasoned

as follows to find an appropriate simulation interval Œ0; T � and also howmany points
we should choose. The solution has a period P D 2�=!. (The period P is the time
difference between two peaks of the u.t/ � cos!t curve.) Simulating for three
periods of the cosine function, T D 3P , and choosing �t such that there are 20
intervals per period gives �t D P=20 and a total of Nt D T=�t intervals. The rest
of the program is a straightforward coding of the Forward Euler scheme.

Figure 4.16 shows a comparison between the numerical solution and the exact
solution of the differential equation. To our surprise, the numerical solution looks
wrong. Is this discrepancy due to a programming error or a problem with the For-
ward Euler method?

First of all, even before trying to run the program, you should sit down and
compute two steps in the time loop with a calculator so you have some intermediate
results to compare with. Using X0 D 2, dt D 0:157079632679, and ! D 2, we
get u1 D 2, v1 D �1:25663706, u2 D 1:80260791, and v2 D �2:51327412. Such

https://github.com/hplgit/prog4comp/tree/master/src/m/osc_FE_special_case.m


4.3 Oscillating One-Dimensional Systems 119

Fig. 4.17 Simulation of an oscillating system with different time steps. Upper left: 40 steps per
oscillation period. Upper right: 160 steps per period. Lower left: 2000 steps per period. Lower
right: 2000 steps per period, but longer simulation

calculations show that the program is seemingly correct. (Later, we can use such
values to construct a unit test and a corresponding test function.)

The next step is to reduce the discretization parameter �t and see if the results
become more accurate. Figure 4.17 shows the numerical and exact solution for
the cases �t D P=40; P=160; P=2000. The results clearly become better, and
the finest resolution gives graphs that cannot be visually distinguished. Neverthe-
less, the finest resolution involves 6000 computational intervals in total, which is
considered quite much. This is no problem on a modern laptop, however, as the
computations take just a fraction of a second.

Although 2000 intervals per oscillation period seem sufficient for an accurate
numerical solution, the lower right graph in Fig. 4.17 shows that if we increase the
simulation time, here to 20 periods, there is a little growth of the amplitude, which
becomes significant over time. The conclusion is that the Forward Euler method
has a fundamental problem with its growing amplitudes, and that a very small �t

is required to achieve satisfactory results. The longer the simulation is, the smaller
�t has to be. It is certainly time to look for more effective numerical methods!
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Fig. 4.18 Adjusted method: first three periods (left) and period 36–40 (right)

4.3.4 AMagic Fix of the Numerical Method

In the Forward Euler scheme,

unC1 D un C �t vn;

vnC1 D vn � �t !2un;

we can replace un in the last equation by the recently computed value unC1 from
the first equation:

unC1 D un C �t vn; (4.49)

vnC1 D vn � �t !2unC1 : (4.50)

Before justifying this fix more mathematically, let us try it on the previous exam-
ple. The results appear in Fig. 4.18. We see that the amplitude does not grow, but the
phase is not entirely correct. After 40 periods (Fig. 4.18 right) we see a significant
difference between the numerical and the exact solution. Decreasing �t decreases
the error. For example, with 2000 intervals per period, we only see a small phase
error even after 50,000 periods (!). We can safely conclude that the fix results in an
excellent numerical method!

Let us interpret the adjusted schememathematically. First we order (4.49)–(4.50)
such that the difference approximations to derivatives become transparent:

unC1 � un

�t
D vn; (4.51)

vnC1 � vn

�t
D �!2unC1 : (4.52)

We interpret (4.51) as the differential equation sampled at mesh point tn, because
we have vn on the right-hand side. The left-hand side is then a forward difference or
Forward Euler approximation to the derivative u0, see Fig. 4.2. On the other hand,
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Fig. 4.19 Illustration of a backward difference approximation to the derivative

we interpret (4.52) as the differential equation sampled at mesh point tnC1, since we
have unC1 on the right-hand side. In this case, the difference approximation on the
left-hand side is a backward difference,

v0.tnC1/ � vnC1 � vn

�t
or v0.tn/ � vn � vn�1

�t
:

Figure 4.19 illustrates the backward difference. The error in the backward differ-
ence is proportional to �t , the same as for the forward difference (but the propor-
tionality constant in the error term has different sign). The resulting discretization
method for (4.52) is often referred to as a Backward Euler scheme.

To summarize, using a forward difference for the first equation and a backward
difference for the second equation results in a much better method than just using
forward differences in both equations.

The standard way of expressing this scheme in physics is to change the order of
the equations,

v0 D �!2u; (4.53)

u0 D v; (4.54)

and apply a forward difference to (4.53) and a backward difference to (4.54):

vnC1 D vn � �t !2un; (4.55)

unC1 D un C �t vnC1 : (4.56)

That is, first the velocity v is updated and then the position u, using the most re-
cently computed velocity. There is no difference between (4.55)–(4.56) and (4.49)–
(4.50) with respect to accuracy, so the order of the original differential equations
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does not matter. The scheme (4.55)–(4.56) goes under the names Semi-implicit
Euler4 or Euler-Cromer. The implementation of (4.55)–(4.56) is found in the file
osc_EC.m. The core of the code goes like

u = zeros(N_t+1,1);

v = zeros(N_t+1,1);

% Initial condition

u(1) = 2;

v(1) = 0;

% Step equations forward in time

for n = 1:N_t

v(n+1) = v(n) - dt*omega^2*u(n);

u(n+1) = u(n) + dt*v(n+1);

end

4.3.5 The 2nd-Order Runge-KuttaMethod (or Heun’s Method)

A very popular method for solving scalar and vector ODEs of first order is the
2nd-order Runge-Kutta method (RK2), also known as Heun’s method. The idea,
first thinking of a scalar ODE, is to form a centered difference approximation to the
derivative between two time points:

u0
�

tn C 1

2
�t

�

� unC1 � un

�t
:

The centered difference formula is visualized in Fig. 4.20. The error in the centered
difference is proportional to �t2, one order higher than the forward and backward
differences, which means that if we halve �t , the error is more effectively reduced
in the centered difference since it is reduced by a factor of four rather than two.

The problem with such a centered scheme for the general ODE u0 D f .u; t/ is
that we get

unC1 � un

�t
D f .unC 1

2 ; tnC 1
2
/;

which leads to difficulties since we do not know what unC 1
2 is. However, we can

approximate the value of f between two time levels by the arithmetic average of
the values at tn and tnC1:

f .unC 1
2 ; tnC 1

2
/ � 1

2
.f .un; tn/ C f .unC1; tnC1// :

This results in

unC1 � un

�t
D 1

2
.f .un; tn/ C f .unC1; tnC1//;

4 http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
https://github.com/hplgit/prog4comp/tree/master/src/m/osc_EC.m
http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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Fig. 4.20 Illustration of a centered difference approximation to the derivative

which in general is a nonlinear algebraic equation for unC1 if f .u; t/ is not a lin-
ear function of u. To deal with the unknown term f .unC1; tnC1/, without solving
nonlinear equations, we can approximate or predict unC1 using a Forward Euler
step:

unC1 D un C �tf .un; tn/ :

This reasoning gives rise to the method

u	 D un C �tf .un; tn/; (4.57)

unC1 D un C �t

2
.f .un; tn/ C f .u	; tnC1// : (4.58)

The scheme applies to both scalar and vector ODEs.
For an oscillating system with f D .v; �!2u/ the file osc_Heun.m implements

this method. The demo script demo_osc_Heun.m runs the simulation for 10 periods
with 20 time steps per period. The corresponding numerical and exact solutions are
shown in Fig. 4.21. We see that the amplitude grows, but not as much as for the
Forward Euler method. However, the Euler-Cromer method is much better!

We should add that in problems where the Forward Euler method gives sat-
isfactory approximations, such as growth/decay problems or the SIR model, the
2nd-order Runge-Kutta method or Heun’s method, usually works considerably bet-
ter and produces greater accuracy for the same computational cost. It is therefore
a very valuable method to be aware of, although it cannot compete with the Euler-
Cromer scheme for oscillation problems. The derivation of the RK2/Heun scheme
is also good general training in “numerical thinking”.

4.3.6 Software for Solving ODEs

Matlab and Octave users have a handful of functions for solving ODEs, e.g. the
popular methods ode45 and ode23s. To illustrate, we may use ode45 to solve the
simple problem u0 D u, u.0/ D 2, for 100 time steps until t D 4:

https://github.com/hplgit/prog4comp/tree/master/src/m/osc_Heun.m
https://github.com/hplgit/prog4comp/tree/master/src/m/demo_osc_Heun.m
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Fig. 4.21 Simulation of 10 periods of oscillations by Heun’s method

u0 = 2; % initial condition

time_points = linspace(0, 4, 101);

[t, u] = ode45(@exp_dudt, time_points, u0);

plot(t, u);

xlabel(’t’); ylabel(’u’);

Here, ode45 is called with three parameters. The first one, @exp_dudt, is a han-
dle to a function that specifies the right hand side of the ODE, i.e., f(u, t). In the
present example, it reads

function dudt = exp_dudt(t, u)

dudt = u

The second parameter, time_points, is an array that gives the time points on the
interval where we want the solution to be reported. Alternatively, this second pa-
rameter could have been given as [0 4], which just specifies the interval, giving no
directions to Matlab as to where (on the interval) the solution should be found. The
third parameter, u0, just states the initial condition.

Other ODE solvers in Matlab work in a similar fashion. Several ODEs may also
be solved with one function call and parameters may be included.

There is a jungle of methods for solving ODEs, and it would be nice to have easy
access to implementations of a wide range of methods, especially the sophisticated
and complicated adaptive methods (like ode45 and ode23s above) that adjusts �t
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automatically to obtain a prescribed accuracy. The Python package Odespy5 gives
easy access to a lot of numerical methods for ODEs.

The simplest possible example on using Odespy is to solve the same problem
that we just looked at, i.e., u0 D u, u.0/ D 2, for 100 time steps until t D 4:

import odespy

def f(u, t):

return u

method = odespy.Heun # or, e.g., odespy.ForwardEuler

solver = method(f)

solver.set_initial_condition(2)

time_points = np.linspace(0, 4, 101)

u, t = solver.solve(time_points)

In other words, you define your right-hand side function f(u, t), initialize an
Odespy solver object, set the initial condition, compute a collection of time points
where you want the solution, and ask for the solution. The returned arrays u and t
can be plotted directly: plot(t, u).

Warning
Note that Odespymust be operated from Python, so you need to learn some basic
Python to make use of this software. The type of Python programming you need
to learn has a syntax very close to that of Matlab.

A nice feature of Odespy is that problem parameters can be arguments to the
user’s f(u, t) function. For example, if our ODE problem is u0 D �au C b, with
two problem parameters a and b, we may write our f function as

def f(u, t, a, b):

return -a*u + b

The extra, problem-dependent arguments a and b can be transferred to this function
if we collect their values in a list or tuple when creating the Odespy solver and use
the f_args argument:

a = 2

b = 1

solver = method(f, f_args=[a, b])

This is a good feature because problem parameters must otherwise be global vari-
ables – now they can be arguments in our right-hand side function in a natural way.
Exercise 4.16 asks you to make a complete implementation of this problem and plot
the solution.

Using Odespy to solve oscillation ODEs like u00 C !2u D 0, reformulated as
a system u0 D v and v0 D �!2u, is done as follows. We specify a given number

5 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy
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of time steps per period and compute the associated time steps and end time of the
simulation (T), given a number of periods to simulate:

import odespy

# Define the ODE system

# u’ = v

# v’ = -omega**2*u

def f(sol, t, omega=2):

u, v = sol

return [v, -omega**2*u]

# Set and compute problem dependent parameters

omega = 2

X_0 = 1

number_of_periods = 40

time_intervals_per_period = 20

from numpy import pi, linspace, cos

P = 2*pi/omega # length of one period

dt = P/time_intervals_per_period # time step

T = number_of_periods*P # final simulation time

# Create Odespy solver object

odespy_method = odespy.RK2

solver = odespy_method(f, f_args=[omega])

# The initial condition for the system is collected in a list

solver.set_initial_condition([X_0, 0])

# Compute the desired time points where we want the solution

N_t = int(round(T/dt)) # no of time intervals

time_points = linspace(0, T, N_t+1)

# Solve the ODE problem

sol, t = solver.solve(time_points)

# Note: sol contains both displacement and velocity

# Extract original variables

u = sol[:,0]

v = sol[:,1]

The last two statements are important since our two functions u and v in the ODE
system are packed together in one array inside the Odespy solver. The solution
of the ODE system is returned as a two-dimensional array where the first column
(sol[:,0]) stores u and the second (sol[:,1]) stores v. Plotting u and v is
a matter of running plot(t, u, t, v).

Remark
In the right-hand side function we write f(sol, t, omega) instead of f(u,
t, omega) to indicate that the solution sent to f is a solution at time t where
the values of u and v are packed together: sol = [u, v]. We might well use u
as argument:
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def f(u, t, omega=2):

u, v = u

return [v, -omega**2*u]

This just means that we redefine the name u inside the function to mean the
solution at time t for the first component of the ODE system.

To switch to another numerical method, just substitute RK2 by the proper name
of the desired method. Typing pydoc odespy in the terminal window brings up
a list of all the implemented methods. This very simple way of choosing a method
suggests an obvious extension of the code above: we can define a list of methods,
run all methods, and compare their u curves in a plot. As Odespy also contains
the Euler-Cromer scheme, we rewrite the system with v0 D �!2u as the first ODE
and u0 D v as the second ODE, because this is the standard choice when using the
Euler-Cromer method (also in Odespy):

def f(u, t, omega=2):

v, u = u

return [-omega**2*u, v]

This change of equations also affects the initial condition: the first component is
zero and second is X_0 so we need to pass the list [0, X_0] to solver.set_
initial_condition.

The code osc_odespy.py contains the details:

def compare(odespy_methods,

omega,

X_0,

number_of_periods,

time_intervals_per_period=20):

from numpy import pi, linspace, cos

P = 2*pi/omega # length of one period

dt = P/time_intervals_per_period

T = number_of_periods*P

# If odespy_methods is not a list, but just the name of

# a single Odespy solver, we wrap that name in a list

# so we always have odespy_methods as a list

if type(odespy_methods) != type([]):

odespy_methods = [odespy_methods]

# Make a list of solver objects

solvers = [method(f, f_args=[omega]) for method in

odespy_methods]

for solver in solvers:

solver.set_initial_condition([0, X_0])

# Compute the time points where we want the solution

dt = float(dt) # avoid integer division

N_t = int(round(T/dt))

time_points = linspace(0, N_t*dt, N_t+1)

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_odespy.py
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legends = []

for solver in solvers:

sol, t = solver.solve(time_points)

v = sol[:,0]

u = sol[:,1]

# Plot only the last p periods

p = 6

m = p*time_intervals_per_period # no time steps to plot

plot(t[-m:], u[-m:])

hold(’on’)

legends.append(solver.name())

xlabel(’t’)

# Plot exact solution too

plot(t[-m:], X_0*cos(omega*t)[-m:], ’k--’)

legends.append(’exact’)

legend(legends, loc=’lower left’)

axis([t[-m], t[-1], -2*X_0, 2*X_0])

title(’Simulation of %d periods with %d intervals per period’

% (number_of_periods, time_intervals_per_period))

savefig(’tmp.pdf’); savefig(’tmp.png’)

show()

A new feature in this code is the ability to plot only the last p periods, which allows
us to perform long time simulations and watch the end results without a cluttered
plot with too many periods. The syntax t[-m:] plots the last m elements in t
(a negative index in Python arrays/lists counts from the end).

We may compare Heun’s method (or equivalently the RK2 method) with the
Euler-Cromer scheme:

compare(odespy_methods=[odespy.Heun, odespy.EulerCromer],

omega=2, X_0=2, number_of_periods=20,

time_intervals_per_period=20)

Figure 4.22 shows how Heun’s method (the blue line with small disks) has consid-
erable error in both amplitude and phase already after 14–20 periods (upper left),
but using three times as many time steps makes the curves almost equal (upper
right). However, after 194–200 periods the errors have grown (lower left), but can
be sufficiently reduced by halving the time step (lower right).

With all the methods in Odespy at hand, it is now easy to start exploring other
methods, such as backward differences instead of the forward differences used in
the Forward Euler scheme. Exercise 4.17 addresses that problem.

Odespy contains quite sophisticated adaptive methods where the user is “guar-
anteed” to get a solution with prescribed accuracy. There is no mathematical guar-
antee, but the error will for most cases not deviate significantly from the user’s
tolerance that reflects the accuracy. A very popular method of this type is the
Runge-Kutta-Fehlberg method, which runs a 4th-order Runge-Kutta method and
uses a 5th-order Runge-Kutta method to estimate the error so that �t can be ad-
justed to keep the error below a tolerance. This method is also widely known as
ode45, because that is the name of the function implementing the method in Mat-
lab. We can easily test the Runge-Kutta-Fehlberg method as soon as we know the
corresponding Odespy name, which is RKFehlberg:
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Fig. 4.22 Illustration of the impact of resolution (time steps per period) and length of simulation

compare(odespy_methods=[odespy.EulerCromer, odespy.RKFehlberg],

omega=2, X_0=2, number_of_periods=200,

time_intervals_per_period=40)

Note that the time_intervals_per_period argument refers to the time points
where we want the solution. These points are also the ones used for numerical
computations in the odespy.EulerCromer solver, while the odespy.RKFehlberg
solver will use an unknown set of time points since the time intervals are adjusted
as the method runs. One can easily look at the points actually used by the method as
these are available as an array solver.t_all (but plotting or examining the points
requires modifications inside the comparemethod).

Figure 4.23 shows a computational example where the Runge-Kutta-Fehlberg
method is clearly superior to the Euler-Cromer scheme in long time simulations, but
the comparison is not really fair because the Runge-Kutta-Fehlberg method applies
about twice as many time steps in this computation and performs much more work
per time step. It is quite a complicated task to compare two so different methods
in a fair way so that the computational work versus accuracy is scientifically well
reported.
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Fig. 4.23 Comparison of the Runge-Kutta-Fehlberg adaptive method against the Euler-Cromer
scheme for a long time simulation (200 periods)

4.3.7 The 4th-Order Runge-Kutta Method

The 4th-order Runge-Kutta method (RK4) is clearly the most widely used method
to solve ODEs. Its power comes from high accuracy even with not so small time
steps.

The algorithm We first just state the four-stage algorithm:

unC1 D un C �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
; (4.59)

where

Of nC 1
2 D f

�

un C 1

2
�tf n; tnC 1

2

�

; (4.60)

Qf nC 1
2 D f

�

un C 1

2
�t Of nC 1

2 ; tnC 1
2

�

; (4.61)

Nf nC1 D f
�
un C �t Qf nC 1

2 ; tnC1

�
: (4.62)

Application We can run the same simulation as in Figs. 4.16, 4.18, and 4.21, for 40
periods. The 10 last periods are shown in Fig. 4.24. The results look as impressive
as those of the Euler-Cromer method.
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Fig. 4.24 The last 10 of 40 periods of oscillations by the 4th-order Runge-Kutta method

Implementation The stages in the 4th-order Runge-Kutta method can easily be
implemented as a modification of the osc_Heun.py code. Alternatively, one can
use the osc_odespy.py code by just providing the argument odespy_methods=
[odespy.RK4] to the compare function.

Derivation The derivation of the 4th-order Runge-Kutta method can be presented
in a pedagogical way that brings many fundamental elements of numerical dis-
cretization techniques together and that illustrates many aspects of “numerical
thinking” when constructing approximate solution methods.

We start with integrating the general ODE u0 D f .u; t/ over a time step, from tn
to tnC1,

u.tnC1/ � u.tn/ D
tnC1Z

tn

f .u.t/; t/dt :

The goal of the computation is u.tnC1/ (unC1), while u.tn/ (un) is the most recently
known value of u. The challenge with the integral is that the integrand involves the
unknown u between tn and tnC1.

The integral can be approximated by the famous Simpson’s rule6:

tnC1Z

tn

f .u.t/; t/dt � �t

6

�
f n C 4f nC 1

2 C f nC1
�

:

6 http://en.wikipedia.org/wiki/Simpson’s_rule

http://en.wikipedia.org/wiki/Simpson's_rule
http://en.wikipedia.org/wiki/Simpson's_rule
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The problem with this formula is that we do not know f nC 1
2 D f .unC 1

2 ; tnC 1
2
/

and f nC1 D .unC1; tnC1/ as only un is available and only f n can then readily be
computed.

To proceed, the idea is to use various approximations for f nC 1
2 and f nC1 based

on using well-known schemes for the ODE in the intervals Œtn; tnC 1
2
� and Œtn; tnC1�.

Let us split the integral into four terms:

tnC1Z

tn

f .u.t/; t/dt � �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
;

where Of nC 1
2 , Qf nC 1

2 , and Nf nC1 are approximations to f nC 1
2 and f nC1 that can uti-

lize already computed quantities. For Of nC 1
2 we can simply apply an approximation

to unC 1
2 based on a Forward Euler step of size 1

2
�t :

Of nC 1
2 D f

�

un C 1

2
�tf n; tnC 1

2

�

(4.63)

This formula provides a prediction of f nC 1
2 , so we can for Qf nC 1

2 try a Backward
Euler method to approximate unC 1

2 :

Qf nC 1
2 D f

�

un C 1

2
�t Of nC 1

2 ; tnC 1
2

�

: (4.64)

With Qf nC 1
2 as an approximation to f nC 1

2 , we can for the final term Nf nC1 use
a midpoint method (or central difference, also called a Crank-Nicolson method)
to approximate unC1:

Nf nC1 D f .un C �t Of nC 1
2 ; tnC1/ : (4.65)

We have now used the Forward and Backward Euler methods as well as the cen-
tered difference approximation in the context of Simpson’s rule. The hope is that
the combination of these methods yields an overall time-stepping scheme from tn
to tnC1 that is much more accurate than the individual steps which have errors pro-
portional to �t and �t2. This is indeed true: the numerical error goes in fact like
C�t4 for a constant C , which means that the error approaches zero very quickly as
we reduce the time step size, compared to the Forward Euler method (error � �t),
the Euler-Cromer method (error � �t) or the 2nd-order Runge-Kutta, or Heun’s,
method (error � �t2).

Note that the 4th-order Runge-Kutta method is fully explicit so there is never
any need to solve linear or nonlinear algebraic equations, regardless of what f

looks like. However, the stability is conditional and depends on f . There is a large
family of implicit Runge-Kutta methods that are unconditionally stable, but require
solution of algebraic equations involving f at each time step. The Odespy package
has support for a lot of sophisticated explicit Runge-Kutta methods, but not yet
implicit Runge-Kutta methods.
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Fig. 4.25 General oscillating system

4.3.8 More Effects: Damping, Nonlinearity, and External Forces

Our model problem u00 C !2u D 0 is the simplest possible mathematical model for
oscillating systems. Nevertheless, this model makes strong demands to numerical
methods, as we have seen, and is very useful as a benchmark for evaluating the
performance of numerical methods.

Real-life applications involve more physical effects, which lead to a differential
equation with more terms and also more complicated terms. Typically, one has
a damping force f .u0/ and a spring force s.u/. Both these forces may depend non-
linearly on their argument, u0 or u. In addition, environmental forces F.t/ may act
on the system. For example, the classical pendulum has a nonlinear “spring” or
restoring force s.u/ � sin.u/, and air resistance on the pendulum leads to a damp-
ing force f .u0/ � ju0ju0. Examples on environmental forces include shaking of the
ground (e.g., due to an earthquake) as well as forces from waves and wind.

With three types of forces on the system: F , f , and s, the sum of forces is written
F.t/ � f .u0/ � s.u/. Note the minus sign in front of f and s, which indicates
that these functions are defined such that they represent forces acting against the
motion. For example, springs attached to the wheels in a car are combined with
effective dampers, each providing a damping force f .u0/ D bu0 that acts against
the spring velocity u0. The corresponding physical force is then �f : �bu0, which
points downwards when the spring is being stretched (and u0 points upwards), while
�f acts upwards when the spring is being compressed (and u0 points downwards).

Figure 4.25 shows an example of a mass m attached to a potentially nonlinear
spring and dashpot, and subject to an environmental force F.t/. Nevertheless, our
general model can equally well be a pendulum as in Fig. 4.26 with s.u/ D mg sin �

and f . Pu/ D 1
2
CDA% P� j P� j (where CD D 0:4, A is the cross sectional area of the

body, and % is the density of air).
Newton’s second law for the system can be written with the mass times acceler-

ation on the left-hand side and the forces on the right-hand side:

mu00 D F.t/ � f .u0/ � s.u/ :

This equation is, however, more commonly reordered to

mu00 C f .u0/ C s.u/ D F.t/ : (4.66)
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Fig. 4.26 A pendulum with forces

Because the differential equation is of second order, due to the term u00, we need
two initial conditions:

u.0/ D U0; u0.0/ D V0 : (4.67)

Note that with the choices f .u0/ D 0, s.u/ D ku, and F.t/ D 0 we recover the
original ODE u00 C !2u D 0 with ! D p

k=m.
How can we solve (4.66)? As for the simple ODE u00 C !2u D 0, we start by

rewriting the second-order ODE as a system of two first-order ODEs:

v0 D 1

m
.F.t/ � s.u/ � f .v// ; (4.68)

u0 D v : (4.69)

The initial conditions become u.0/ D U0 and v.0/ D V0.
Any method for a system of first-order ODEs can be used to solve for u.t/ and

v.t/.

The Euler-Cromer scheme An attractive choice from an implementational, ac-
curacy, and efficiency point of view is the Euler-Cromer scheme where we take
a forward difference in (4.68) and a backward difference in (4.69):

vnC1 � vn

�t
D 1

m
.F.tn/ � s.un/ � f .vn// ; (4.70)

unC1 � un

�t
D vnC1; (4.71)

We can easily solve for the new unknowns vnC1 and unC1:

vnC1 D vn C �t

m
.F.tn/ � s.un/ � f .vn// ; (4.72)

unC1 D un C �tvnC1 : (4.73)
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Remark on the ordering of the ODEs
The ordering of the ODEs in the ODE system is important for the extended
model (4.68)–(4.69). Imagine that we write the equation for u0 first and then the
one for v0. The Euler-Cromer method would then first use a forward difference
for unC1 and then a backward difference for vnC1. The latter would lead to
a nonlinear algebraic equation for vnC1,

vnC1 C �t

m
f .vnC1/ D vn C �t

m

�
F.tnC1/ � s.unC1/

�
;

if f .v/ is a nonlinear function of v. This would require a numerical method for
nonlinear algebraic equations to find vnC1, while updating vnC1 through a for-
ward difference gives an equation for vnC1 that is linear and trivial to solve by
hand.

We can implement the Euler-Cromer method like this:

function [u_values, v_values, t_values] =...

EulerCromer(f, s, F, m, T, U_0, V_0, dt)

N_t = floor(round(T/dt));

fprintf(’N_t: %d’, N_t);

t = linspace(0, N_t*dt, T_t+1);

u = zeros(N_t+1,1);

v = zeros(N_t+1,1);

% Initial conditions

u(1) = U_0;

v(1) = V_0;

% Step equations forward in time

for n = 1:N_t

v(n+1) = v(n) + dt*(1/m)*(F(t(n)) - f(v(n)) - s(u(n)));

u(n+1) = u(n) + dt*v(n+1);

end

u_values = u;

v_values = v;

t_values = t;

end

The 4-th order Runge-Kutta method The RK4 method just evaluates the right-
hand side of the ODE system,

�
1

m
.F.t/ � s.u/ � f .v// ; v

�

for known values of u, v, and t , so the method is very simple to use regardless of
how the functions s.u/ and f .v/ are chosen.
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4.3.9 Illustration of Linear Damping

We consider an engineering system with a linear spring, s.u/ D kx, and a viscous
damper, where the damping force is proportional to u0, f .u0/ D bu0, for some
constant b > 0. This choice may model the vertical spring system in a car (but
engineers often like to illustrate such a system by a horizontal moving mass like
the one depicted in Fig. 4.25). We may choose simple values for the constants to
illustrate basic effects of damping (and later excitations). Choosing the oscillations
to be the simple u.t/ D cos t function in the undamped case, we may set m D 1,
k D 1, b D 0:3, U0 D 1, V0 D 0. The following function implements this case:

function linear_damping()

b = 0.3;

f = @(v) b*v;

s = @(u) k*u;

F = @(t) 0;

m = 1;

k = 1;

U_0 = 1;

V_0 = 0;

T = 12*pi;

dt = T/5000;

[u, v, t] = EulerCromer(f, s, F, m, T, U_0, V_0, dt);

plot_u(u, t);

end

The plot_u function is a collection of plot statements for plotting u.t/, or a part
of it. Figure 4.27 shows the effect of the bu0 term: we have oscillations with (an
approximate) period 2� , as expected, but the amplitude is efficiently damped.

Remark about working with a scaled problem
Instead of setting b D 0:3 and m D k D U0 D 1 as fairly “unlikely” physical
values, it would be better to scale the equation mu00 Cbu0 Cku D 0. This means
that we introduce dimensionless independent and dependent variables:

Nt D t

tc
; Nu D u

uc

;

where tc and uc are characteristic sizes of time and displacement, respectively,
such that Nt and Nu have their typical size around unity. In the present problem,
we can choose uc D U0 and tc D p

m=k. This gives the following scaled (or
dimensionless) problem for the dimensionless quantity Nu.Nt/:

d 2 Nu
d Nt2

C ˇ
d Nu
d Nt C Nu D 0; Nu.0/ D 1; Nu0.0/ D 0; ˇ D bp

mk
:

The striking fact is that there is only one physical parameter in this problem:
the dimensionless number ˇ. Solving this problem corresponds to solving the



4.3 Oscillating One-Dimensional Systems 137

Fig. 4.27 Effect of linear damping

original problem (with dimensions) with the parameters m D k D U0 D 1 and
b D ˇ. However, solving the dimensionless problem is more general: if we have
a solution Nu.Nt I ˇ/, we can find the physical solution of a range of problems since

u.t/ D U0 Nu.t
p

k=mI ˇ/ :

As long as ˇ is fixed, we can find u for any U0, k, and m from the above for-
mula! In this way, a time consuming simulation can be done only once, but still
provide many solutions. This demonstrates the power of working with scaled or
dimensionless problems.

4.3.10 Illustration of Linear Damping with Sinusoidal Excitation

We now extend the previous example to also involve some external oscillating force
on the system: F.t/ D A sin.wt/. Driving a car on a road with sinusoidal bumps
might give such an external excitation on the spring system in the car (w is related
to the velocity of the car).

With A D 0:5 and w D 3,

w = 3;

A = 0.5;

F = @(t) A*sin(w*t);

we get the graph in Fig. 4.28. The striking difference from Fig. 4.27 is that the
oscillations start out as a damped cos t signal without much influence of the external
force, but then the free oscillations of the undamped system (cos t) u00 C u D 0
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Fig. 4.28 Effect of linear damping in combination with a sinusoidal external force

die out and the external force 0:5 sin.3t/ induces oscillations with a shorter period
2�=3. You are encouraged to play around with a larger A and switch from a sine to
a cosine in F and observe the effects. If you look this up in a physics book, you can
find exact analytical solutions to the differential equation problem in these cases.

A particularly interesting case arises when the excitation force has the same fre-
quency as the free oscillations of the undamped system, i.e., F.t/ D A sin t . With
the same amplitude A D 0:5, but a smaller damping b D 0:1, the oscillations in
Fig. 4.28 becomes qualitatively very different as the amplitude grows significantly
larger over some periods. This phenomenon is called resonance and is exemplified
in Fig. 4.29. Removing the damping results in an amplitude that grows linearly in
time.

4.3.11 Spring-Mass Systemwith Sliding Friction

A body with mass m is attached to a spring with stiffness k while sliding on a plane
surface. The body is also subject to a friction force f .u0/ due to the contact between
the body and the plane. Figure 4.30 depicts the situation. The friction force f .u0/
can be modeled by Coulomb friction:

f .u0/ D

8
<̂

:̂

��mg; u0 < 0;

�mg; u0 > 0;

0; u0 D 0
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Fig. 4.29 Excitation force that causes resonance

Fig. 4.30 Sketch of a one-dimensional, oscillating dynamic system subject to sliding friction and
a spring force

where � is the friction coefficient, and mg is the normal force on the surface where
the body slides. This formula can also be written as f .u0/ D �mg sign.u0/, pro-
vided the signum function sign.x/ is defined to be zero for x D 0 (the sign function
in Matlab‘ has this property). To check that the signs in the definition of f are right,
recall that the actual physical force is �f and this is positive (i.e., f < 0) when it
works against the body moving with velocity u0 < 0.

The nonlinear spring force is taken as

s.u/ D �k˛�1 tanh.˛u/;

which is approximately �ku for small u, but stabilizes at ˙k=˛ for large ˙˛u.
Here is a plot with k D 1000 and u 2 Œ�0:1; 0:1� for three ˛ values:
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If there is no external excitation force acting on the body, we have the equation
of motion

mu00 C �mg sign.u0/ C k˛�1 tanh.˛u/ D 0 :

Let us simulate a situation where a body of mass 1 kg slides on a surface with
� D 0:4, while attached to a spring with stiffness k D 1000 kg=s2. The initial dis-
placement of the body is 10 cm, and the ˛ parameter in s.u/ is set to 60 1/m. Using
the EulerCromer function from the EulerCromer code, we can write a function
sliding_friction for solving this problem:

function sliding_friction()

f = @(v) mu*m*g*sign(v);

alpha = 60.0;

s = @(u) k/alpha*tanh(alpha*u);

F = @(t) 0;

g = 9.81;

mu = 0.4;

m = 1;

k = 1000;

U_0 = 0.1;

V_0 = 0;

T = 2;

dt = T/5000;

[u, v, t] = EulerCromer(f, s, F, m, T, U_0, V_0, dt);

plot_u(u, t);

end

Running the sliding_friction function gives us the results in Fig. 4.31 with
s.u/ D k˛�1 tanh.˛u/ (left) and the linearized version s.u/ D ku (right).
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Fig. 4.31 Effect of nonlinear (left) and linear (right) spring on sliding friction

4.3.12 A Finite Difference Method; Undamped, Linear Case

We shall now address numerical methods for the second-order ODE

u00 C !2u D 0; u.0/ D U0; u0.0/ D 0; t 2 .0; T �;

without rewriting the ODE as a system of first-order ODEs. The primary motivation
for “yet another solution method” is that the discretization principles result in a very
good scheme, and more importantly, the thinking around the discretization can be
reused when solving partial differential equations.

The main idea of this numerical method is to approximate the second-order
derivative u00 by a finite difference. While there are several choices of difference
approximations to first-order derivatives, there is one dominating formula for the
second-order derivative:

u00.tn/ � unC1 � 2un C un�1

�t2
: (4.74)

The error in this approximation is proportional to �t2. Letting the ODE be valid at
some arbitrary time point tn,

u00.tn/ C !2u.tn/ D 0;

we just insert the approximation (4.74) to get

unC1 � 2un C un�1

�t2
D �!2un : (4.75)

We now assume that un�1 and un are already computed and that unC1 is the new
unknown. Solving with respect to unC1 gives

unC1 D 2un � un�1 � �t2!2un : (4.76)

A major problem arises when we want to start the scheme. We know that u0 D
U0, but applying (4.76) for n D 0 to compute u1 leads to

u1 D 2u0 � u�1 � �t2!2u0; (4.77)
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where we do not know u�1. The initial condition u0.0/ D 0 can help us to eliminate
u�1 – and this condition must anyway be incorporated in some way. To this end,
we discretize u0.0/ D 0 by a centered difference,

u0.0/ � u1 � u�1

2�t
D 0 :

It follows that u�1 D u1, and we can use this relation to eliminate u�1 in (4.77):

u1 D u0 � 1

2
�t2!2u0 : (4.78)

With u0 D U0 and u1 computed from (4.78), we can compute u2, u3, and so forth
from (4.76). Exercise 4.19 asks you to explore how the steps above are modified in
case we have a nonzero initial condition u0.0/ D V0.

Remark on a simpler method for computing u1

We could approximate the initial condition u0.0/ by a forward difference:

u0.0/ � u1 � u0

�t
D 0;

leading to u1 D u0. Then we can use (4.76) for the coming time steps. How-
ever, this forward difference has an error proportional to �t , while the centered
difference we used has an error proportional to �t2, which is compatible with
the accuracy (error goes like �t2) used in the discretization of the differential
equation.

The method for the second-order ODE described above goes under the name
Störmer’s method or Verlet integration7. It turns out that this method is mathemat-
ically equivalent with the Euler-Cromer scheme (!). Or more precisely, the general
formula (4.76) is equivalent with the Euler-Cromer formula, but the scheme for the
first time level (4.78) implements the initial condition u0.0/ slightly more accurately
than what is naturally done in the Euler-Cromer scheme. The latter will do

v1 D v0 � �t!2u0; u1 D u0 C �tv1 D u0 � �t2!2u0;

which differs from u1 in (4.78) by an amount 1
2
�t2!2u0.

Because of the equivalence of (4.76) with the Euler-Cromer scheme, the numer-
ical results will have the same nice properties such as a constant amplitude. There
will be a phase error as in the Euler-Cromer scheme, but this error is effectively
reduced by reducing �t , as already demonstrated.

The implementation of (4.78) and (4.76) is straightforward in a function (file
osc_2nd_order.m):

7 http://en.wikipedia.org/wiki/Verlet_integration

http://en.wikipedia.org/wiki/Verlet_integration
https://github.com/hplgit/prog4comp/tree/master/src/m/osc_2nd_order.m
http://en.wikipedia.org/wiki/Verlet_integration
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function [u, t] = osc_2nd_order(U_0, omega, dt, T)

% Solve u’’ + omega^2*u = 0 for t in (0,T], u(0)=U_0

% and u’(0)=0, by a central finite difference method with

% time step dt.

N_t = floor(round(T/dt));

u = zeros(N_t+1, 1);

t = linspace(0, N_t*dt, N_t+1);

u(1) = U_0;

u(2) = u(1) - 0.5*dt^2*omega^2*u(1);

for n = 2:N_t

u(n+1) = 2*u(n) - u(n-1) - dt^2*omega^2*u(n);

end

end

4.3.13 A Finite Difference Method; Linear Damping

A key issue is how to generalize the scheme from Sect. 4.3.12 to a differential
equation with more terms. We start with the case of a linear damping term f .u0/ D
bu0, a possibly nonlinear spring force s.u/, and an excitation force F.t/:

mu00 C bu0 C s.u/ D F.t/; u.0/ D U0; u0.0/ D 0; t 2 .0; T � : (4.79)

We need to find the appropriate difference approximation to u0 in the bu0 term.
A good choice is the centered difference

u0.tn/ � unC1 � un�1

2�t
: (4.80)

Sampling the equation at a time point tn,

mu00.tn/ C bu0.tn/ C s.un/ D F.tn/;

and inserting the finite difference approximations to u00 and u0 results in

m
unC1 � 2un C un�1

�t2
C b

unC1 � un�1

2�t
C s.un/ D F n; (4.81)

where F n is a short notation for F.tn/. Equation (4.81) is linear in the unknown
unC1, so we can easily solve for this quantity:

unC1 D
�

2mun C
�

b

2
�t � m

�

un�1 C �t2.F n � s.un//

��

m C b

2
�t

��1

:

(4.82)
As in the case without damping, we need to derive a special formula for u1. The

initial condition u0.0/ D 0 implies also now that u�1 D u1, and with (4.82) for
n D 0, we get

u1 D u0 C �t2

2m
.F 0 � s.u0// : (4.83)
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In the more general case with a nonlinear damping term f .u0/,

mu00 C f .u0/ C s.u/ D F.t/;

we get

m
unC1 � 2un C un�1

�t2
C f

�
unC1 � un�1

2�t

�

C s.un/ D F n;

which is a nonlinear algebraic equation for unC1 that must be solved by numerical
methods. A much more convenient scheme arises from using a backward difference
for u0,

u0.tn/ � un � un�1

�t
;

because the damping term will then be known, involving only un and un�1, and we
can easily solve for unC1.

The downside of the backward difference compared to the centered difference
(4.80) is that it reduces the order of the accuracy in the overall scheme from �t2

to �t . In fact, the Euler-Cromer scheme evaluates a nonlinear damping term as
f .vn/when computing vnC1, and this is equivalent to using the backward difference
above. Consequently, the convenience of the Euler-Cromer scheme for nonlinear
damping comes at a cost of lowering the overall accuracy of the scheme from sec-
ond to first order in �t . Using the same trick in the finite difference scheme for
the second-order differential equation, i.e., using the backward difference in f .u0/,
makes this scheme equally convenient and accurate as the Euler-Cromer scheme in
the general nonlinear case mu00 C f .u0/ C s.u/ D F .

4.4 Exercises

Exercise 4.1: Geometric construction of the Forward Euler method
Section 4.1.4 describes a geometric interpretation of the Forward Euler method.
This exercise will demonstrate the geometric construction of the solution in de-
tail. Consider the differential equation u0 D u with u.0/ D 1. We use time steps
�t D 1.

a) Start at t D 0 and draw a straight line with slope u0.0/ D u.0/ D 1. Go one
time step forward to t D �t and mark the solution point on the line.

b) Draw a straight line through the solution point .�t; u1/ with slope u0.�t/ D u1.
Go one time step forward to t D 2�t and mark the solution point on the line.

c) Draw a straight line through the solution point .2�t; u2/ with slope u0.2�t/ D
u2. Go one time step forward to t D 3�t and mark the solution point on the
line.

d) Set up the Forward Euler scheme for the problem u0 D u. Calculate u1, u2, and
u3. Check that the numbers are the same as obtained in a)-c).

Filename: ForwardEuler_geometric_solution.m.
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Exercise 4.2: Make test functions for the Forward Euler method
The purpose of this exercise is to make a file test_ode_FE.m that makes use of the
ode_FE function in the file ode_FE.m and automatically verifies the implementation
of ode_FE.

a) The solution computed by hand in Exercise 4.1 can be used as a reference so-
lution. Make a function test_ode_FE_1() that calls ode_FE to compute three
time steps in the problem u0 D u, u.0/ D 1, and compare the three values u1,
u2, and u3 with the values obtained in Exercise 4.1.

b) The test in a) can be made more general using the fact that if f is linear in u and
does not depend on t , i.e., we have u0 D ru, for some constant r , the Forward
Euler method has a closed form solution as outlined in Sect. 4.1.1: un D U0.1C
r�t/n. Use this result to construct a test function test_ode_FE_2() that runs
a number of steps in ode_FE and compares the computed solution with the listed
formula for un.

Filename: test_ode_FE.m.

Exercise 4.3: Implement and evaluate Heun’s method

a) A 2nd-order Runge-Kutta method, also known has Heun’s method, is derived
in Sect. 4.3.5. Make a function ode_Heun(f, U_0, dt, T) (as a counterpart
to ode_FE(f, U_0, dt, T) in ode_FE.m) for solving a scalar ODE problem
u0 D f .u; t/, u.0/ D U0, t 2 .0; T �, with this method using a time step size
�t .

b) Solve the simple ODE problem u0 D u, u.0/ D 1, by the ode_Heun and the
ode_FE function. Make a plot that compares Heun’s method and the Forward
Euler method with the exact solution u.t/ D et for t 2 Œ0; 6�. Use a time step
�t D 0:5.

c) For the case in b), find through experimentation the largest value of �t where
the exact solution and the numerical solution by Heun’s method cannot be dis-
tinguished visually. It is of interest to see how far off the curve the Forward
Euler method is when Heun’s method can be regarded as “exact” (for visual
purposes).

Filename: ode_Heun.m.

Exercise 4.4: Find an appropriate time step; logistic model
Compute the numerical solution of the logistic equation for a set of repeatedly
halved time steps: �tk D 2�k�t , k D 0; 1; : : :. Plot the solutions correspond-
ing to the last two time steps �tk and �tk�1 in the same plot. Continue doing this
until you cannot visually distinguish the two curves in the plot. Then one has found
a sufficiently small time step.

Hint Extend the logistic.m file. Introduce a loop over k, write out �tk , and ask
the user if the loop is to be continued.
Filename: logistic_dt.m.
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Exercise 4.5: Find an appropriate time step; SIR model
Repeat Exercise 4.4 for the SIR model.

Hint Use the ode_FE function and make a modified demo_SIR function that has
a loop over repeatedly halved time steps. Plot S , I , and R versus time for the two
last time step sizes in the same plot.
Filename: SIR_dt.m.

Exercise 4.6: Model an adaptive vaccination campaign
In the SIRV model with time-dependent vaccination from Sect. 4.2.9, we want to
test the effect of an adaptive vaccination campaign where vaccination is offered as
long as half of the population is not vaccinated. The campaign starts after � days.
That is, p D p0 if V < 1

2
.S0 C I 0/ and t > � days, otherwise p D 0.

Demonstrate the effect of this vaccination policy: choose ˇ, 	 , and 
 as in
Sect. 4.2.9, set p D 0:001, � D 10 days, and simulate for 200 days.

Hint This discontinuous p.t/ function is easiest implemented as a Matlab function
containing the indicated if test. You may use the file SIRV1.m as starting point,
but note that it implements a time-dependent p.t/ via an array.
Filename: SIRV_p_adapt.m.

Exercise 4.7: Make a SIRV model with time-limited effect of vaccination
We consider the SIRV model from Sect. 4.2.8, but now the effect of vaccination is
time-limited. After a characteristic period of time, � , the vaccination is no more
effective and individuals are consequently moved from the V to the S category and
can be infected again. Mathematically, this can be modeled as an average leakage
���1V from the V category to the S category (i.e., a gain ��1V in the latter).
Write up the complete model, implement it, and rerun the case from Sect. 4.2.8
with various choices of parameters to illustrate various effects.
Filename: SIRV1_V2S.m.

Exercise 4.8: Refactor a flat program
Consider the file osc_FE.m implementing the Forward Euler method for the os-
cillating system model (4.43)–(4.44). The osc_FE.m is what we often refer to as
a flat program, meaning that it is just one main program with no functions. To eas-
ily reuse the numerical computations in other contexts, place the part that produces
the numerical solution (allocation of arrays, initializing the arrays at time zero, and
the time loop) in a function osc_FE(X_0, omega, dt, T), which returns u, v,
t. Place the particular computational example in osc_FE.m in a function demo().
Construct the file osc_FE_func.m such that the osc_FE function can easily be
reused in other programs.
Filename: osc_FE_func.m.

Exercise 4.9: Simulate oscillations by a general ODE solver
Solve the system (4.43)–(4.44) using the general solver ode_FE described in
Sect. 4.2.6. Program the ODE system and the call to the ode_FE function in
a separate file osc_ode_FE.m.
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Equip this file with a test function that reads a file with correct u values and
compares these with those computed by the ode_FE function. To find correct u

values, modify the program osc_FE.m to dump the u array to file, run osc_FE.m,
and let the test function read the reference results from that file.
Filename: osc_ode_FE.m.

Exercise 4.10: Compute the energy in oscillations

a) Make a function osc_energy(u, v, omega) for returning the potential and
kinetic energy of an oscillating system described by (4.43)–(4.44). The potential
energy is taken as 1

2
!2u2 while the kinetic energy is 1

2
v2. (Note that these

expressions are not exactly the physical potential and kinetic energy, since these
would be 1

2
mv2 and 1

2
ku2 for a model mx00 C kx D 0.)

Place the osc_energy in a separate file osc_energy.m such that the function
can be called from other functions.

b) Add a call to osc_energy in the programs osc_FE.m and osc_EC.m and plot
the sum of the kinetic and potential energy. How does the total energy develop
for the Forward Euler and the Euler-Cromer schemes?

Filenames: osc_energy.m, osc_FE_energy.m, osc_EC_energy.m.

Exercise 4.11: Use a Backward Euler scheme for population growth
We consider the ODE problem N 0.t/ D rN.t/, N.0/ D N0. At some time,
tn D n�t , we can approximate the derivative N 0.tn/ by a backward difference,
see Fig. 4.19:

N 0.tn/ � N.tn/ � N.tn � �t/

�t
D N n � N n�1

�t
;

which leads to
N n � N n�1

�t
D rN n ;

called the Backward Euler scheme.

a) Find an expression for the N n in terms of N n�1 and formulate an algorithm for
computing N n, n D 1; 2; : : : ; Nt .

b) Implement the algorithm in a) in a function growth_BE(N_0, dt, T) for solv-
ing N 0 D rN , N.0/ D N0, t 2 .0; T �, with time step �t (dt).

c) Implement the Forward Euler scheme in a function growth_FE(N_0, dt, T)
as described in b).

d) Compare visually the solution produced by the Forward and Backward Euler
schemes with the exact solution when r D 1 and T D 6. Make two plots, one
with �t D 0:5 and one with �t D 0:05.

Filename: growth_BE.m.
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Exercise 4.12: Use a Crank-Nicolson scheme for population growth
It is recommended to do Exercise 4.11 prior to the present one. Here we look at the
same population growth model N 0.t/ D rN.t/, N.0/ D N0. The time derivative
N 0.t/ can be approximated by various types of finite differences. Exercise 4.11
considers a backward difference (Fig. 4.19), while Sect. 4.1.2 explained the forward
difference (Fig. 4.2). A centered difference is more accurate than a backward or
forward difference:

N 0
�

tn C 1

2
�t

�

� N.tn C �t/ � N.tn/

�t
D N nC1 � N n

�t
:

This type of difference, applied at the point tnC 1
2

D tn C 1
2
�t , is illustrated geomet-

rically in Fig. 4.20.

a) Insert the finite difference approximation in the ODE N 0 D rN and solve for
the unknown N nC1, assuming N n is already computed and hence known. The
resulting computational scheme is often referred to as aCrank-Nicolson scheme.

b) Implement the algorithm in a) in a function growth_CN(N_0, dt, T) for solv-
ing N 0 D rN , N.0/ D N0, t 2 .0; T �, with time step �t (dt).

c) Make plots for comparing the Crank-Nicolson scheme with the Forward and
Backward Euler schemes in the same test problem as in Exercise 4.11.

Filename: growth_CN.m.

Exercise 4.13: Understand finite differences via Taylor series
The Taylor series around a point x D a can for a function f .x/ be written

f .x/ D f .a/ C d

dx
f .a/.x � a/ C 1

2Š

d 2

dx2
f .a/.x � a/2

C 1

3Š

d 3

dx3
f .a/.x � a/3 C : : :

D
1X

iD0

1

iŠ

d i

dxi
f .a/.x � a/i :

For a function of time, as addressed in our ODE problems, we would use u instead
of f , t instead of x, and a time point tn instead of a:

u.t/ D u.tn/ C d

dt
u.tn/.t � tn/ C 1

2Š

d 2

dt2
u.tn/.t � tn/2

C 1

3Š

d 3

dt3
u.tn/.t � tn/3 C : : :

D
1X

iD0

1

iŠ

d i

dt i
u.tn/.t � tn/i :

a) A forward finite difference approximation to the derivative f 0.a/ reads

u0.tn/ � u.tn C �t/ � u.tn/

�t
:
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We can justify this formula mathematically through Taylor series. Write up the
Taylor series for u.tn C �t/ (around t D tn, as given above), and then solve
the expression with respect to u0.tn/. Identify, on the right-hand side, the finite
difference approximation and an infinite series. This series is then the error in
the finite difference approximation. If �t is assumed small (i.e. �t << 1), �t

will be much larger than �t2, which will be much larger than �t3, and so on.
The leading order term in the series for the error, i.e., the error with the least
power of �t is a good approximation of the error. Identify this term.

b) Repeat a) for a backward difference:

u0.tn/ � u.tn/ � u.tn � �t/

�t
:

This time, write up the Taylor series for u.tn ��t/ around tn. Solve with respect
to u0.tn/, and identify the leading order term in the error. How is the error
compared to the forward difference?

c) A centered difference approximation to the derivative, as explored in Exer-
cise 4.12, can be written

u0
�

tn C 1

2
�t

�

� u.tn C �t/ � u.tn/

�t
:

Write up the Taylor series for u.tn/ around tn C 1
2
�t and the Taylor series for

u.tn C �t/ around tn C 1
2
�t . Subtract the two series, solve with respect to

u0.tn C 1
2
�t/, identify the finite difference approximation and the error terms on

the right-hand side, and write up the leading order error term. How is this term
compared to the ones for the forward and backward differences?

d) Can you use the leading order error terms in a)–c) to explain the visual observa-
tions in the numerical experiment in Exercise 4.12?

e) Find the leading order error term in the following standard finite difference ap-
proximation to the second-order derivative:

u00.tn/ � u.tn C �t/ � 2u.tn/ C u.tn � �t/

�t
:

Hint Express u.tn˙�t/ via Taylor series and insert them in the difference formula.
Filename: Taylor_differences.pdf.

Exercise 4.14: Use a Backward Euler scheme for oscillations
Consider (4.43)–(4.44)modeling an oscillating engineering system. This 2�2 ODE
system can be solved by the Backward Euler scheme, which is based on discretizing
derivatives by collecting information backward in time. More specifically, u0.t/ is
approximated as

u0.t/ � u.t/ � u.t � �t/

�t
:

A general vector ODE u0 D f .u; t/, where u and f are vectors, can use this
approximation as follows:

un � un�1

�t
D f .un; tn/;
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which leads to an equation for the new value un:

un � �tf .un; tn/ D un�1 :

For a general f , this is a system of nonlinear algebraic equations.
However, the ODE (4.43)–(4.44) is linear, so a Backward Euler scheme leads to

a system of two algebraic equations for two unknowns:

un � �tvn D un�1; (4.84)

vn C �t!2un D vn�1 : (4.85)

a) Solve the system for un and vn.
b) Implement the found formulas for un and vn in a program for computing the

entire numerical solution of (4.43)–(4.44).
c) Run the program with a �t corresponding to 20 time steps per period of the

oscillations (see Sect. 4.3.3 for how to find such a �t). What do you observe?
Increase to 2000 time steps per period. How much does this improve the solu-
tion?

Filename: osc_BE.m.

Remarks While the Forward Euler method applied to oscillation problems u00 C
!2u D 0 gives growing amplitudes, the Backward Euler method leads to signifi-
cantly damped amplitudes.

Exercise 4.15: Use Heun’s method for the SIR model
Make a program that computes the solution of the SIR model from Sect. 4.2.1 both
by the Forward Euler method and by Heun’s method (or equivalently: the 2nd-order
Runge-Kutta method) from Sect. 4.3.5. Compare the two methods in the simulation
case from Sect. 4.2.3. Make two comparison plots, one for a large and one for
a small time step. Experiment to find what “large” and “small” should be: the large
one gives significant differences, while the small one lead to very similar curves.
Filename: SIR_Heun.m.

Exercise 4.16: Use Odespy to solve a simple ODE
Solve

u0 D �au C b; u.0/ D U0; t 2 .0; T �

by the Odespy software. Let the problem parameters a and b be arguments to the
right-hand side function that specifies the ODE to be solved. Plot the solution for
the case when a D 2, b D 1, T D 6=a, and we use 100 time intervals in Œ0; T �.
Filename: odespy_demo.m.

Exercise 4.17: Set up a Backward Euler scheme for oscillations
Write the ODE u00 C !2u D 0 as a system of two first-order ODEs and discretize
these with backward differences as illustrated in Fig. 4.19. The resulting method is
referred to as a Backward Euler scheme. Identify the matrix and right-hand side of
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the linear system that has to be solved at each time level. Implement the method, ei-
ther from scratch yourself or using Odespy (the name is odespy.BackwardEuler).
Demonstrate that contrary to a Forward Euler scheme, the Backward Euler scheme
leads to significant non-physical damping. The figure below shows that even with
60 time steps per period, the results after a few periods are useless:

Filename: osc_BE.m.

Exercise 4.18: Set up a Forward Euler scheme for nonlinear and damped
oscillations
Derive a Forward Euler method for the ODE system (4.68)–(4.69). Compare
the method with the Euler-Cromer scheme for the sliding friction problem from
Sect. 4.3.11:

1. Does the Forward Euler scheme give growing amplitudes?
2. Is the period of oscillation accurate?
3. What is the required time step size for the two methods to have visually coin-

ciding curves?

Filename: osc_FE_general.m.

Exercise 4.19: Discretize an initial condition
Assume that the initial condition on u0 is nonzero in the finite difference method
from Sect. 4.3.12: u0.0/ D V0. Derive the special formula for u1 in this case.
Filename: ic_with_V_0.pdf.
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5Solving Partial Differential Equations

The subject of partial differential equations (PDEs) is enormous. At the same time,
it is very important, since so many phenomena in nature and technology find their
mathematical formulation through such equations. Knowing how to solve at least
some PDEs is therefore of great importance to engineers. In an introductory book
like this, nowhere near full justice to the subject can be made. However, we still
find it valuable to give the reader a glimpse of the topic by presenting a few basic
and general methods that we will apply to a very common type of PDE.

We shall focus on one of the most widely encountered partial differential equa-
tions: the diffusion equation, which in one dimension looks like

@u

@t
D ˇ

@2u

@x2
C g :

The multi-dimensional counterpart is often written as

@u

@t
D ˇr2u C g :

We shall restrict the attention here to the one-dimensional case.
The unknown in the diffusion equation is a function u.x; t/ of space and time.

The physical significance of u depends on what type of process that is described
by the diffusion equation. For example, u is the concentration of a substance if the
diffusion equation models transport of this substance by diffusion. Diffusion pro-
cesses are of particular relevance at the microscopic level in biology, e.g., diffusive
transport of certain ion types in a cell caused by molecular collisions. There is also
diffusion of atoms in a solid, for instance, and diffusion of ink in a glass of water.

One very popular application of the diffusion equation is for heat transport in
solid bodies. Then u is the temperature, and the equation predicts how the temper-
ature evolves in space and time within the solid body. For such applications, the
equation is known as the heat equation. We remark that the temperature in a fluid
is influenced not only by diffusion, but also by the flow of the liquid. If present,
the latter effect requires an extra term in the equation (known as an advection or
convection term).

The term g is known as the source term and represents generation, or loss, of heat
(by some mechanism) within the body. For diffusive transport, g models injection
or extraction of the substance.
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We should also mention that the diffusion equation may appear after simplifying
more complicated partial differential equations. For example, flow of a viscous fluid
between two flat and parallel plates is described by a one-dimensional diffusion
equation, where u then is the fluid velocity.

A partial differential equation is solved in some domain ˝ in space and for
a time interval Œ0; T �. The solution of the equation is not unique unless we also
prescribe initial and boundary conditions. The type and number of such conditions
depend on the type of equation. For the diffusion equation, we need one initial con-
dition, u.x; 0/, stating what u is when the process starts. In addition, the diffusion
equation needs one boundary condition at each point of the boundary @˝ of ˝.
This condition can either be that u is known or that we know the normal derivative,
ru � n D @u=@n (n denotes an outward unit normal to @˝).

Let us look at a specific application and how the diffusion equation with initial
and boundary conditions then appears. We consider the evolution of temperature in
a one-dimensional medium, more precisely a long rod, where the surface of the rod
is covered by an insulating material. The heat can then not escape from the surface,
which means that the temperature distribution will only depend on a coordinate
along the rod, x, and time t . At one end of the rod, x D L, we also assume that the
surface is insulated, but at the other end, x D 0, we assume that we have some de-
vice for controlling the temperature of the medium. Here, a function s.t/ tells what
the temperature is in time. We therefore have a boundary condition u.0; t/ D s.t/.
At the other insulated end, x D L, heat cannot escape, which is expressed by the
boundary condition @u.L; t/=@x D 0. The surface along the rod is also insulated
and hence subject to the same boundary condition (here generalized to @u=@n D 0

at the curved surface). However, since we have reduced the problem to one dimen-
sion, we do not need this physical boundary condition in our mathematical model.
In one dimension, we can set ˝ D Œ0; L�.

To summarize, the partial differential equation with initial and boundary condi-
tions reads

@u.x; t/

@t
D ˇ

@2u.x; t/

@x2
C g.x; t/; x 2 .0; L/ ;t 2 .0; T �; (5.1)

u.0; t/ D s.t/; t 2 .0; T �; (5.2)

@

@x
u.L; t/ D 0; t 2 .0; T �; (5.3)

u.x; 0/ D I.x/; x 2 Œ0; L� : (5.4)

Mathematically, we assume that at t D 0, the initial condition (5.4) holds and that
the partial differential equation (5.1) comes into play for t > 0. Similarly, at the end
points, the boundary conditions (5.2) and (5.3) govern u and the equation therefore
is valid for x 2 .0; L/.

Boundary and initial conditions are needed!
The initial and boundary conditions are extremely important. Without them,
the solution is not unique, and no numerical method will work. Unfortunately,
many physical applications have one or more initial or boundary conditions as
unknowns. Such situations can be dealt with if we have measurements of u, but
the mathematical framework is much more complicated.
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What about the source term g in our example with temperature distribution in
a rod? g.x; t/ models heat generation inside the rod. One could think of chemical
reactions at a microscopic level in some materials as a reason to include g. How-
ever, in most applications with temperature evolution, g is zero and heat generation
usually takes place at the boundary (as in our example with u.0; t/ D s.t/).

Before continuing, we may consider an example of how the temperature distri-
bution evolves in the rod. At time t D 0, we assume that the temperature is 10 ıC.
Then we suddenly apply a device at x D 0 that keeps the temperature at 50 ıC at
this end. What happens inside the rod? Intuitively, you think that the heat genera-
tion at the end will warm up the material in the vicinity of x D 0, and as time goes
by, more and more of the rod will be heated, before the entire rod has a temperature
of 50 ıC (recall that no heat escapes from the surface of the rod).

Mathematically, (with the temperature in Kelvin) this example has I.x/ D
283K, except at the end point: I.0/ D 323K, s.t/ D 323K, and g D 0. The
figure below shows snapshots from four different times in the evolution of the
temperature.

5.1 Finite DifferenceMethods

We shall now construct a numerical method for the diffusion equation. We know
how to solve ordinary differential equations, so in a way we are able to deal with
the time derivative. Very often in mathematics, a new problem can be solved by
reducing it to a series of problems we know how to solve. In the present case,
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it means that we must do something with the spatial derivative @2=@x2 in order
to reduce the partial differential equation to ordinary differential equations. One
important technique for achieving this, is based on finite difference discretization
of spatial derivatives.

5.1.1 Reduction of a PDE to a System of ODEs

Introduce a spatial mesh in ˝ with mesh points

x0 D 0 < x1 < x2 < � � � < xN D L :

The space between two mesh points xi and xiC1, i.e. the interval Œxi ; xiC1�, is call
a cell. We shall here, for simplicity, assume that each cell has the same length
�x D xiC1 � xi , i D 0; : : : ; N � 1.

The partial differential equation is valid at all spatial points x 2 ˝, but we may
relax this condition and demand that it is fulfilled at the internal mesh points only,
x1; : : : ; xN �1:

@u.xi ; t/

@t
D ˇ

@2u.xi ; t/

@x2
C g.xi ; t/; i D 1; : : : ; N � 1 : (5.5)

Now, at any point xi we can approximate the second-order derivative by a finite
difference:

@2u.xi ; t/

@x2
� u.xiC1; t/ � 2u.xi ; t/ C u.xi�1; t/

�x2
: (5.6)

It is common to introduce a short notation ui.t/ for u.xi ; t/, i.e., u approximated at
some mesh point xi in space. With this new notation we can, after inserting (5.6)
in (5.5), write an approximation to the partial differential equation at mesh point
.xi ; t) as

dui.t/

dt
D ˇ

uiC1.t/ � 2ui.t/ C ui�1.t/

�x2
C gi .t/; i D 1; : : : ; N � 1 : (5.7)

Note that we have adopted the notation gi .t/ for g.xi ; t/ too.
What is (5.7)? This is nothing but a system of ordinary differential equations in

N � 1 unknowns u1.t/; : : : ; uN �1.t/! In other words, with aid of the finite differ-
ence approximation (5.6), we have reduced the single partial differential equation
to a system of ODEs, which we know how to solve. In the literature, this strategy is
called the method of lines.

We need to look into the initial and boundary conditions as well. The initial con-
dition u.x; 0/ D I.x/ translates to an initial condition for every unknown function
ui.t/: ui.0/ D I.xi /, i D 0; : : : ; N . At the boundary x D 0 we need an ODE in
our ODE system, which must come from the boundary condition at this point. The
boundary condition reads u.0; t/ D s.t/. We can derive an ODE from this equation
by differentiating both sides: u0

0.t/ D s0.t/. The ODE system above cannot be used
for u0

0 since that equation involves some quantity u0
�1 outside the domain. Instead,

we use the equation u0
0.t/ D s0.t/ derived from the boundary condition. For this
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particular equation we also need to make sure the initial condition is u0.0/ D s.0/

(otherwise nothing will happen: we get u D 283 K forever).
We remark that a separate ODE for the (known) boundary condition u0 D s.t/

is not strictly needed. We can just work with the ODE system for u1; : : : ; uN , and
in the ODE for u0, replace u0.t/ by s.t/. However, these authors prefer to have an
ODE for every point value ui , i D 0; : : : ; N , which requires formulating the known
boundary at x D 0 as an ODE. The reason for including the boundary values in the
ODE system is that the solution of the system is then the complete solution at all
mesh points, which is convenient, since special treatment of the boundary values is
then avoided.

The condition @u=@x D 0 at x D L is a bit more complicated, but we can
approximate the spatial derivative by a centered finite difference:

@u

@x

ˇ
ˇ
ˇ
ˇ
iDN

� uN C1 � uN �1

2�x
D 0 :

This approximation involves a fictitious point xN C1 outside the domain. A common
trick is to use (5.7) for i D N and eliminate uN C1 by use of the discrete boundary
condition (uN C1 D uN �1):

duN .t/

dt
D ˇ

2uN �1.t/ � 2uN .t/

�x2
C gN .t/ : (5.8)

That is, we have a special version of (5.7) at the boundary i D N .

What about simpler finite differences at the boundary?
Some reader may think that a smarter trick is to approximate the boundary con-
dition @u=@x at x D L by a one-sided difference:

@u

@x

ˇ
ˇ
ˇ
ˇ
iDN

� uN � uN �1

�x
D 0 :

This gives a simple equation uN D uN �1 for the boundary value, and a corre-
sponding ODE u0

N D u0
N �1. However, this approximation has an error of order

�x, while the centered approximation we used above has an error of order �x2.
The finite difference approximation we used for the second-order derivative in
the diffusion equation also has an error of order �x2. Thus, if we use the sim-
pler one-sided difference above, it turns out that we reduce the overall accuracy
of the method.

We are now in a position to summarize how we can approximate the partial
differential equation problem (5.1)–(5.4) by a system of ordinary differential equa-
tions:

du0

dt
D s0.t/; (5.9)

dui

dt
D ˇ

�x2
.uiC1.t/ � 2ui.t/ C ui�1.t// C gi.t/; i D 1; : : : ; N � 1; (5.10)

duN

dt
D 2ˇ

�x2
.uN �1.t/ � uN .t// C gN .t/ : (5.11)
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The initial conditions are

u0.0/ D s.0/; (5.12)

ui .0/ D I.xi /; i D 1; : : : ; N : (5.13)

We can apply any method for systems of ODEs to solve (5.9)–(5.11).

5.1.2 Construction of a Test Problemwith Known Discrete Solution

At this point, it is tempting to implement a real physical case and run it. However,
partial differential equations constitute a non-trivial topic where mathematical and
programming mistakes come easy. A better start is therefore to address a carefully
designed test example where we can check that the method works. The most attrac-
tive examples for testing implementations are those without approximation errors,
because we know exactly what numbers the program should produce. It turns out
that solutions u.x; t/ that are linear in time and in space can be exactly reproduced
by most numerical methods for partial differential equations. A candidate solution
might be

u.x; t/ D .3t C 2/.x � L/ :

Inserting this u in the governing equation gives

3.x � L/ D 0 C g.x; t/ ) g.x; t/ D 3.x � L/ :

What about the boundary conditions? We realize that @u=@x D 3t C 2 for x D L,
which breaks the assumption of @u=@x D 0 at x D L in the formulation of the
numerical method above. Moreover, u.0; t/ D �L.3t C 2/, so we must set s.t/ D
�L.3tC2/ and s0.t/ D �3L. Finally, the initial condition dictates I.x/ D 2.x�L/,
but recall that we must have u0 D s.0/, and ui D I.xi /, i D 1; : : : ; N : it is
important that u0 starts out at the right value dictated by s.t/ in case I.0/ is not
equal this value.

First we need to generalize our method to handle @u=@x D 	 ¤ 0 at x D L. We
then have

uN C1.t/ � uN �1.t/

2�x
D 	 ) uN C1 D uN �1 C 2	�x;

which inserted in (5.7) gives

duN .t/

dt
D ˇ

2uN �1.t/ C 2	�x � 2uN .t/

�x2
C gN .t/ : (5.14)

5.1.3 Implementation: Forward Euler Method

In particular, we may use the Forward Euler method as implemented in the general
function ode_FE from Sect. 4.2.6. The ode_FE function needs a specification of
the right-hand side of the ODE system. This is a matter of translating (5.9), (5.10),
and (5.14) to Matlab code (in file test_diffusion_pde_exact_linear.m):

https://github.com/hplgit/prog4comp/tree/master/src/m/test_diffusion_pde_exact_linear.m


5.1 Finite Difference Methods 159

function right_hand_side = rhs(u, t)

global beta; global dx;

global L; global x;

dudx = @(t) (3*t + 2);

dsdt = @(t) 3*(-L);

g = @(x, t) 3*(x-L);

N = length(u) - 1;

rhs = zeros(1, N+1);

rhs(1) = dsdt(t);

for i = 2:N

rhs(i) = (beta/dx^2)*(u(i+1) - 2*u(i) + u(i-1)) +...

g(x(i), t);

end

rhs(N+1) = (beta/dx^2)*(2*u(N) + 2*dx*dudx(t) -...

2*u(N+1)) + g(x(N+1), t);

right_hand_side = rhs;

end

Note that dudx is the function representing the 	 parameter in (5.14). Also note that
the rhs function relies on access to global variables beta, dx, L, and x, and global
functions dsdt, g, and dudx.

We expect the solution to be correct regardless of N and �t , so we can choose
a small N , N D 4, and �t D 0:1. A test function with N D 4 goes like

function test_diffusion_pde_exact_linear()

global beta; global dx; % needed in rhs

global L; global x;

function value = u_exact(x, t)

value = (3*t + 2)*(x - L);

end

function value = s(t)

value = u_exact(0, t);

end

L = 1.5;

beta = 0.5;

N = 4;

x = linspace(0, L, N+1);

dx = x(2) - x(1);

u = zeros(1, N+1);

U_0 = zeros(1, N+1);

U_0(1) = s(0);

U_0(2:length(U_0)) = u_exact(x(2:length(x)), 0);

dt = 0.1

T = 1.2;

rhs_handle = @rhs;
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[u, t] = ode_FE(rhs_handle, U_0, dt, T);

tol = 1E-12;

for i = 1:length(u(:,1))

diff = max(abs(u_exact(x, t(i)) - u(i,:)));

assert(diff < tol, ’diff=%.16g’, diff);

fprintf(’diff=%g at t=%g\n’, diff, t(i));

end

end

With N D 4 we reproduce the linear solution exactly. This brings confidence to the
implementation, which is just what we need for attacking a real physical problem
next.

5.1.4 Application: Heat Conduction in a Rod

Let us return to the case with heat conduction in a rod (5.1)–(5.4). Assume that
the rod is 50 cm long and made of aluminum alloy 6082. The ˇ parameter equals
�=.%c/, where � is the heat conduction coefficient, % is the density, and c is the
heat capacity. We can find proper values for these physical quantities in the case of
aluminum alloy 6082: % D 2:7 � 103 kg/m3, � D 200 W

mK, c D 900 J
Kkg. This

results in ˇ D �=.%c/ D 8:2 � 10�5 m2=s. Preliminary simulations show that we are
close to a constant steady state temperature after 1 h, i.e., T D 3600 s.

The functions s, dsdt, f, and dudx must be changed, but the rhs function be-
comes almost identical to the one from the previous section:

function right_hand_side = rhs(u, t)

global beta; global dx;

global L; global x;

dudx = @(t) 0;

dsdt = @(t) 0;

f = @(x, t) 0;

N = length(u) - 1;

rhs = zeros(1, N+1);

rhs(1) = dsdt(t);

for i = 2:N

rhs(i) = (beta/dx^2)*(u(i+1) - 2*u(i) + u(i-1)) +...

f(x(i), t);

end

rhs(N+1) = (beta/dx^2)*(2*u(N) + 2*dx*dudx(t) -...

2*u(N+1)) + f(x(N+1), t);

right_hand_side = rhs;

end

Some new parameter values must also be set, and for the timestep, let us use
�t D 0:00034375. We may also make an animation on the screen to see how
u.x; t/ develops in time (see file rod_FE.m):

https://github.com/hplgit/prog4comp/tree/master/src/m/rod_FE.m
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function rod_FE()

global beta; global dx;

global L; global x;

s = @(t) 423;

L = 1;

beta = 1;

N = 40;

x = linspace(0, L, N+1);

dx = x(2) - x(1);

u = zeros(1, N+1);

U_0 = zeros(1, N+1);

U_0(1) = s(0);

U_0(2:length(U_0)) = 283;

dt = dx^2/(2*beta);

fprintf(’stability limit: %g\n’, dt);

%dt = 0.00034375

T = 1.2;

rhs_handle = @rhs;

tic;

[u, t] = ode_FE(rhs_handle, U_0, dt, T);

cpu_time = toc;

fprintf(’CPU time: %.1fs\n’, cpu_time);

% Make movie

delay = 0.001;

h = plot(x, u(1,:));

axis([x(1), x(length(x)), 273, 1.2*s(0)]);

xlabel(’x’); ylabel(’u(x,t)’);

set(h, ’xData’, x);

counter = 0;

for i = 2:length(u(:,1))

t(i)

set(h, ’yData’, u(i,:));

legend(strcat(’t=’,num2str(t(i))), ’location’, ’northeast’);

pause(delay);

if mod(i, 10) == 0

filestem = sprintf(’tmp_%04d’, counter);

print(filestem, ’-dpng’);

counter = counter + 1;

end

end

end

The plotting statements update the u.x; t/ curve on the screen. In addi-
tion, we save a fraction of the plots to files tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. These plots can be combined to ordinary video files.
A common tool is ffmpeg or its sister avconv.

These programs take the same type of command-line options. To make a Flash
video movie.flv, run

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec flv movie.flv
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Fig. 5.1 Unstable simulation of the temperature in a rod

The -i option specifies the naming of the plot files in printf syntax, and -r specifies
the number of frames per second in the movie. On Mac, run ffmpeg instead of
avconvwith the same options. Other video formats, such as MP4, WebM, and Ogg
can also be produced:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 4 -vcodec libtheora movie.ogg

The results of a simulation start out as in Figs. 5.1 and 5.2. We see that the solu-
tion definitely looks wrong. The temperature is expected to be smooth, not having
such a saw-tooth shape. Also, after some time (Fig. 5.2), the temperature starts to
increase much more than expected. We say that this solution is unstable, meaning
that it does not display the same characteristics as the true, physical solution. Even
though we tested the code carefully in the previous section, it does not seem to work
for a physical application! How can that be?

The problem is that �t is too large, making the solution unstable. It turns out
that the Forward Euler time integration method puts a restriction on the size of �t .
For the heat equation and the way we have discretized it, this restriction can be
shown to be [10]

�t � �x2

2ˇ
: (5.15)
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Fig. 5.2 Unstable simulation of the temperature in a rod

This is called a stability criterion. With the chosen parameters, (5.15) tells us that
the upper limit is �t D 0:0003125, which is smaller than our choice above. Re-
running the case with a �t equal to �x2=.2ˇ/, indeed shows a smooth evolution of
u.x; t/. Find the program rod_FE.m and run it to see an animation of the u.x; t/

function on the screen.

Scaling and dimensionless quantities
Our setting of parameters required finding three physical properties of a certain
material. The time interval for simulation and the time step depend crucially on
the values for ˇ and L, which can vary significantly from case to case. Often, we
are more interested in how the shape of u.x; t/ develops, than in the actual u, x,
and t values for a specific material. We can then simplify the setting of physical
parameters by scaling the problem.

Scaling means that we introduce dimensionless independent and dependent
variables, here denoted by a bar:

Nu D u � u	

uc � u	 ; Nx D x

xc

; Nt D t

tc
;

where uc is a characteristic size of the temperature, u	 is some reference temper-
ature, while xc and tc are characteristic time and space scales. Here, it is natural
to choose u	 as the initial condition, and set uc to the stationary (end) temper-
ature. Then Nu 2 Œ0; 1�, starting at 0 and ending at 1 as t ! 1. The length L
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Fig. 5.3 Snapshots of the dimensionless solution of a scaled problem

is xc , while choosing tc is more challenging, but one can argue for tc D L2=ˇ.
The resulting equation for Nu reads

@ Nu
@Nt D @2 Nu

@ Nx2
; Nx 2 .0; 1/ :

Note that in this equation, there are no physical parameters! In other words, we
have found a model that is independent of the length of the rod and the material
it is made of (!).

We can easily solve this equation with our program by setting ˇ D 1, L D 1,
I.x/ D 0, and s.t/ D 1. It turns out that the total simulation time (to “infin-
ity”) can be taken as 1.2. When we have the solution Nu. Nx; Nt/, the solution with
dimension Kelvin, reflecting the true temperature in our medium, is given by

u.x; t/ D u	 C .uc � u	/ Nu.x=L; tˇ=L2/ :

Through this formula we can quickly generate the solutions for a rod made of
aluminum, wood, or rubber – it is just a matter of plugging in the right ˇ value.

Figure 5.3 shows four snapshots of the scaled (dimensionless) solution N. Nx; Nt /.
The power of scaling is to reduce the number of physical parameters in a prob-

lem, and in the present case, we found one single problem that is independent of
the material (ˇ) and the geometry (L).
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5.1.5 Vectorization

Occasionally in this book, we show how to speed up code by replacing loops over
arrays by vectorized expressions. The present problem involves a loop for comput-
ing the right-hand side:

for i = 2:N

rhs(i) = (beta/dx^2)*(u(i+1) - 2*u(i) + u(i-1)) + g(x(i), t);

end

This loop can be replaced by a vectorized expression with the following reasoning.
We want to set all the inner points at once: rhs(2:N) (this goes from index 2 up
to, and including, N). As the loop index i runs from 2 to N, the u(i+1) term will
cover all the inner u values displaced one index to the right (compared to 2:N), i.e.,
u(3:N+1). Similarly, u(i-1) corresponds to all inner u values displaced one index
to the left: u(1:N-1). Finally, u(i) has the same indices as rhs: u(2:N). The
vectorized loop can therefore be written in terms of slices:

rhs(2:N) = (beta/dx^2)*(u(3:N+1) - 2*u(2:N) + u(1:N-1)) + g(x(2:N), t);

This rewrite speeds up the code by about a factor of 10. A complete code is found
in the file rod_FE_vec.m.

5.1.6 Using Odespy to Solve the System of ODEs

A nice feature with having a problem defined as a system of ODEs is that we have
a rich set of numerical methods available. Matlab/Octave contains general-purpose
ODE software such as the ode45 routine that we may apply. However, we shall
here step out of the Matlab/Octave world and make use of the Odespy package
(see Sect. 4.3.6). Odespy requires the problem to be formulated in Python code.
Since Python and Matlab have very similar syntax for the type of programming
encountered when using Odespy, it should not be a big step for Matlab/Octave users
to utilize Odespy.

Suppose we have defined the right-hand side of our ODE system in a function
rhs, the following Python program makes use of Odespy and its adaptive Runge-
Kutta method of order 4–5 (RKFehlberg) to solve the system.

import odespy

solver = odespy.RKFehlberg(rhs)

solver.set_initial_condition(U_0)

T = 1.2

N_t = int(round(T/float(dt)))

time_points = linspace(0, T, N_t+1)

u, t = solver.solve(time_points)

https://github.com/hplgit/prog4comp/tree/master/src/m/rod_FE_vec.m
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Fig. 5.4 Time steps used by the Runge-Kutta-Fehlberg method: error tolerance 10�3 (left) and
10�6 (right)

# Check how many time steps are required by adaptive vs

# fixed-step methods

if hasattr(solver, ’t_all’):

print ’# time steps:’, len(solver.t_all)

else:

print ’# time steps:’, len(t)

The very nice thing is that we can now easily experiment with many different
integration methods. Trying out some simple ones first, like RK2 and RK4, quickly
reveals that the time step limitation of the Forward Euler scheme also applies to
these more sophisticated Runge-Kutta methods, but their accuracy is better. How-
ever, the Odespy package offers also adaptive methods. We can then specify a much
larger time step in time_points, and the solver will figure out the appropriate
step. Above we indicated how to use the adaptive Runge-Kutta-Fehlberg 4–5 solver.
While the �t corresponding to the Forward Euler method requires over 8000 steps
for a simulation, we started the RKFehlbergmethod with 100 times this time step
and in the end it required just slightly more than 2500 steps, using the default tol-
erance parameters. Lowering the tolerance did not save any significant amount of
computational work. Figure 5.4 shows a comparison of the length of all the time
steps for two values of the tolerance. We see that the influence of the tolerance is mi-
nor in this computational example, so it seems that the blow-up due to instability is
what governs the time step size. The nice feature of this adaptive method is that we
can just specify when we want the solution to be computed, and the method figures
out on its own what time step that has to be used because of stability restrictions.

We have seen how easy it is to apply sophisticated methods for ODEs to this
PDE example. We shall take the use of Odespy one step further in the next section.

5.1.7 Implicit Methods

A major problem with the stability criterion (5.15) is that the time step becomes
very small if �x is small. For example, halving �x requires four times as many
time steps and eight times the work. Now, with N D 40, which is a reasonable
resolution for the test problem above, the computations are very fast. What takes
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time, is the visualization on the screen, but for that purpose one can visualize only
a subset of the time steps. However, there are occasions when you need to take
larger time steps with the diffusion equation, especially if interest is in the long-
term behavior as t ! 1. You must then turn to implicit methods for ODEs. These
methods require the solutions of linear systems, if the underlying PDE is linear, and
systems of nonlinear algebraic equations if the underlying PDE is non-linear.

The simplest implicit method is the Backward Euler scheme, which puts no re-
strictions on �t for stability, but obviously, a large �t leads to inaccurate results.
The Backward Euler scheme for a scalar ODE u0 D f .u; t/ reads

unC1 � un

�t
D f .unC1; tnC1/ :

This equation is to be solved for unC1. If f is linear in u, it is a linear equation,
but if f is nonlinear in u, one needs approximate methods for nonlinear equations
(Chap. 6).

In our case, we have a system of linear ODEs (5.9)–(5.11). The Backward Euler
scheme applied to each equation leads to

unC1
0 � un

0

�t
D s0.tnC1/; (5.16)

unC1
i � un

i

�t
D ˇ

�x2
.unC1

iC1 � 2unC1
i C unC1

i�1 / C gi .tnC1/; (5.17)

i D 1; : : : ; N � 1;

unC1
N � un

N

�t
D 2ˇ

�x2
.unC1

N �1 � unC1
N / C gi.tnC1/ : (5.18)

This is a system of linear equations in the unknowns unC1
i , i D 0; : : : ; N , which

is easy to realize by writing out the equations for the case N D 3, collecting all
the unknown terms on the left-hand side and all the known terms on the right-hand
side:

unC1
0 D un

0 C �t s0.tnC1/; (5.19)

unC1
1 � �t

ˇ

�x2
.unC1

2 � 2unC1
1 C unC1

0 / D un
1 C �t g1.tnC1/; (5.20)

unC1
2 � �t

2ˇ

�x2
.unC1

1 � unC1
2 / D un

2 C �t g2.tnC1/ : (5.21)

A system of linear equations like this, is usually written on matrix form Au D b,
where A is a coefficient matrix, u D .unC1

0 ; : : : ; nnC1
N / is the vector of unknowns,

and b is a vector of known values. The coefficient matrix for the case (5.19)–(5.21)
becomes

A D

0

B
@

1 0 0

��t
ˇ

�x2 1 C 2�t
ˇ

�x2 ��t
ˇ

�x2

0 ��t
2ˇ

�x2 1 C �t
2ˇ

�x2

1

C
A
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In the general case (5.16)–(5.18), the coefficient matrix is an .N C 1/ � .N C 1/

matrix with zero entries, except for

A1;1 D 1 (5.22)

Ai;i�1 D ��t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.23)

Ai;iC1 D ��t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.24)

Ai;i D 1 C 2�t
ˇ

�x2
; i D 2; : : : ; N � 1 (5.25)

AN;N �1 D ��t
2ˇ

�x2
(5.26)

AN;N D 1 C �t
2ˇ

�x2
(5.27)

If we want to apply general methods for systems of ODEs on the form u0 D
f .u; t/, we can assume a linear f .u; t/ D Ku. The coefficient matrix K is found
from the right-hand side of (5.16)–(5.18) to be

K1;1 D 0 (5.28)

Ki;i�1 D ˇ

�x2
; i D 2; : : : ; N � 1 (5.29)

Ki;iC1 D ˇ

�x2
; i D 2; : : : ; N � 1 (5.30)

Ki;i D � 2ˇ

�x2
; i D 2; : : : ; N � 1 (5.31)

KN;N �1 D 2ˇ

�x2
(5.32)

KN;N D � 2ˇ

�x2
(5.33)

We see that A D I � �t K.
To implement the Backward Euler scheme, we can either fill a matrix and call

a linear solver, or we can apply Odespy. We follow the latter strategy. Implicit
methods in Odespy need the K matrix above, given as an argument jac (Jacobian
of f ) in the call to odespy.BackwardEuler. Here is the Python code for the
right-hand side of the ODE system (rhs) and the K matrix (K) as well as state-
ments for initializing and running the Odespy solver BackwardEuler (in the file
rod_BE.py):

def rhs(u, t):

N = len(u) - 1

rhs = zeros(N+1)

rhs[0] = dsdt(t)

for i in range(1, N):

rhs[i] = (beta/dx**2)*(u[i+1] - 2*u[i] + u[i-1]) + \

g(x[i], t)

https://github.com/hplgit/prog4comp/tree/master/src/py/rod_BE.py
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rhs[N] = (beta/dx**2)*(2*u[i-1] + 2*dx*dudx(t) -

2*u[i]) + g(x[N], t)

return rhs

def K(u, t):

N = len(u) - 1

K = zeros((N+1,N+1))

K[0,0] = 0

for i in range(1, N):

K[i,i-1] = beta/dx**2

K[i,i] = -2*beta/dx**2

K[i,i+1] = beta/dx**2

K[N,N-1] = (beta/dx**2)*2

K[N,N] = (beta/dx**2)*(-2)

return K

import odespy

solver = odespy.BackwardEuler(rhs, f_is_linear=True, jac=K)

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

solver.set_initial_condition(U_0)

T = 1*60*60

N_t = int(round(T/float(dt)))

time_points = linspace(0, T, N_t+1)

u, t = solver.solve(time_points)

The file rod_BE.py has all the details and shows a movie of the solution. We can
run it with any �t we want, its size just impacts the accuracy of the first steps.

Odespy solvers apply densematrices!
Looking at the entries of the K matrix, we realize that there are at maximum
three entries different from zero in each row. Therefore, most of the entries
are zeroes. The Odespy solvers expect dense square matrices as input, here
with .N C 1/ � .N C 1/ elements. When solving the linear systems, a lot of
storage and work are spent on the zero entries in the matrix. It would be much
more efficient to store the matrix as a tridiagonal matrix and apply a specialized
Gaussian elimination solver for tridiagonal systems. Actually, this reduces the
work from the order N 3 to the order N .

In one-dimensional diffusion problems, the savings of using a tridiagonal ma-
trix are modest in practice, since the matrices are very small anyway. In two- and
three-dimensional PDE problems, however, one cannot afford dense square ma-
trices. Rather, one must resort to more efficient storage formats and algorithms
tailored to such formats, but this is beyond the scope of the present text.

5.2 Exercises

Exercise 5.1: Simulate a diffusion equation by hand
Consider the problem given by (5.9), (5.10) and (5.14). Set N D 2 and com-
pute u0

i , u1
i and u2

i by hand for i D 0; 1; 2. Use these values to construct a test
function for checking that the implementation is correct. Copy useful functions
from test_diffusion_pde_exact_linear.m and make a new test function
test_diffusion_hand_calculation.
Filename: test_rod_hand_calculations.m.
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Exercise 5.2: Compute temperature variations in the ground
The surface temperature at the ground shows daily and seasonal oscillations. When
the temperature rises at the surface, heat is propagated into the ground, and the
coefficient ˇ in the diffusion equation determines how fast this propagation is. It
takes some time before the temperature rises down in the ground. At the surface,
the temperature has then fallen. We are interested in how the temperature varies
down in the ground because of temperature oscillations on the surface.

Assuming homogeneous horizontal properties of the ground, at least locally, and
no variations of the temperature at the surface at a fixed point of time, we can ne-
glect the horizontal variations of the temperature. Then a one-dimensional diffusion
equation governs the heat propagation along a vertical axis called x. The surface
corresponds to x D 0 and the x axis point downwards into the ground. There is
no source term in the equation (actually, if rocks in the ground are radioactive, they
emit heat and that can be modeled by a source term, but this effect is neglected
here).

At some depth x D L we assume that the heat changes in x vanish, so @u=@x D
0 is an appropriate boundary condition at x D L. We assume a simple sinusoidal
temperature variation at the surface:

u.0; t/ D T0 C Ta sin

�
2�

P
t

�

;

where P is the period, taken here as 24 hours (24 � 60 � 60 s). The ˇ coefficient may
be set to 10�6 m2=s. Time is then measured in seconds. Set appropriate values for
T0 and Ta.

a) Show that the present problem has an analytical solution of the form

u.x; t/ D A C Be�rx sin.!t � rx/;

for appropriate values of A, B , r , and !.
b) Solve this heat propagation problem numerically for some days and animate the

temperature. You may use the Forward Euler method in time. Plot both the
numerical and analytical solution. As initial condition for the numerical solu-
tion, use the exact solution during program development, and when the curves
coincide in the animation for all times, your implementation works, and you can
then switch to a constant initial condition: u.x; 0/ D T0. For this latter initial
condition, how many periods of oscillations are necessary before there is a good
(visual) match between the numerical and exact solution (despite differences at
t D 0)?

Filename: ground_temp.m.

Exercise 5.3: Compare implicit methods
An equally stable, but more accurate method than the Backward Euler scheme, is
the so-called 2-step backward scheme, which for an ODE u0 D f .u; t/ can be
expressed by

3unC1 � 4un C un�1

2�t
D f .unC1; tnC1/ :
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The Odespy package offers this method as odespy.Backward2Step. The purpose
of this exercise is to compare three methods and animate the three solutions:

1. The Backward Euler method with �t D 0:001

2. The backward 2-step method with �t D 0:001

3. The backward 2-step method with �t D 0:01

Choose the model problem from Sect. 5.1.4.
Filename: rod_BE_vs_B2Step.m.

Exercise 5.4: Explore adaptive and implicit methods
We consider the same problem as in Exercise 5.2. Now we want to explore the use
of adaptive and implicit methods from Odespy to see if they are more efficient than
the Forward Euler method. Assume that you want the accuracy provided by the
Forward Euler method with its maximum �t value. Since there exists an analytical
solution, you can compute an error measure that summarizes the error in space and
time over the whole simulation:

E D
s

�x�t
X

i

X

n

.U n
i � un

i /2 :

Here, U n
i is the exact solution. Use the Odespy package to run the following implicit

and adaptive solvers:

1. BackwardEuler
2. Backward2Step
3. RKFehlberg

Experiment to see if you can use larger time steps than what is required by the
Forward Euler method and get solutions with the same order of accuracy.

Hint To avoid oscillations in the solutions when using the RKFehlberg method, the
rtol and atol parameters to RKFFehlberg must be set no larger than 0.001 and
0.0001, respectively. You can print out solver_RKF.t_all to see all the time steps
used by the RKFehlberg solver (if solver is the RKFehlberg object). You can then
compare the number of time steps with what is required by the other methods.
Filename: ground_temp_adaptive.m.

Exercise 5.5: Investigate the � rule

a) The Crank-Nicolson method for ODEs is very popular when combined with
diffusion equations. For a linear ODE u0 D au it reads

unC1 � un

�t
D 1

2
.aun C aunC1/ :

Apply the Crank-Nicolson method in time to the ODE system for a one-
dimensional diffusion equation. Identify the linear system to be solved.
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b) The Backward Euler, Forward Euler, and Crank-Nicolson methods can be given
a unified implementation. For a linear ODE u0 D au this formulation is known
as the � rule:

unC1 � un

�t
D .1 � �/aun C �aunC1 :

For � D 0 we recover the Forward Euler method, � D 1 gives the Backward
Euler scheme, and � D 1=2 corresponds to the Crank-Nicolson method. The
approximation error in the � rule is proportional to �t , except for � D 1=2

where it is proportional to �t2. For � � 1=2 the method is stable for all �t .
Apply the � rule to the ODE system for a one-dimensional diffusion equation.
Identify the linear system to be solved.

c) Implement the � rule with aid of the Odespy package. The relevant object name
is ThetaRule:

solver = odespy.ThetaRule(rhs, f_is_linear=True, jac=K, theta=0.5)

d) Consider the physical application from Sect. 5.1.4. Run this case with the � rule
and � D 1=2 for the following values of �t : 0.001, 0.01, 0.05. Report what you
see.

Filename: rod_ThetaRule.m.

Remarks Despite the fact that the Crank-Nicolson method, or the � rule with � D
1=2, is theoretically more accurate than the Backward Euler and Forward Euler
schemes, it may exhibit non-physical oscillations as in the present example if the
solution is very steep. The oscillations are damped in time, and decreases with de-
creasing �t . To avoid oscillations one must have �t at maximum twice the stability
limit of the Forward Euler method. This is one reason why the Backward Euler
method (or a 2-step backward scheme, see Exercise 5.3) are popular for diffusion
equations with abrupt initial conditions.

Exercise 5.6: Compute the diffusion of a Gaussian peak
Solve the following diffusion problem:

@u

@t
D ˇ

@2u

@x2
; x 2 .�1; 1/; t 2 .0; T � (5.34)

u.x; 0/ D 1p
2�

exp
�

� x2

22

�

; x 2 Œ�1; 1�; (5.35)

@

@x
u.�1; t/ D 0 t 2 .0; T �; (5.36)

@

@x
u.1; t/ D 0 t 2 .0; T � : (5.37)

The initial condition is the famous and widely usedGaussian functionwith standard
deviation (or “width”)  , which is here taken to be small,  D 0:01, such that the
initial condition is a peak. This peak will then diffuse and become lower and wider.
Compute u.x; t/ until u becomes approximately constant over the domain.
Filename: gaussian_diffusion.m.
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Remarks Running the simulation with  D 0:2 results in a constant solution u � 1

as t ! 1, while one might expect from “physics of diffusion” that the solution
should approach zero. The reason is that we apply Neumann conditions as bound-
ary conditions. One can then easily show that the area under the u curve remains
constant. Integrating the PDE gives

1Z

�1

@u

@t
dx D ˇ

1Z

�1

@d 2u

@x2
dx :

Using the Gauss divergence theorem on the integral on the right-hand and moving
the time-derivative outside the integral on the left-hand side results in

@

@t

1Z

�1

u.x; t/dx D ˇ

�
@du

@x

	1

�1

D 0:

(Recall that @u=@x D 0 at the end points.) The result means that
R 1

�1
udx remains

constant during the simulation. Giving the PDE an interpretation in terms of heat
conduction can easily explain the result: with Neumann conditions no heat can
escape from the domain so the initial heat will just be evenly distributed, but not leak
out, so the temperature cannot go to zero (or the scaled and translated temperature
u, to be precise). The area under the initial condition is 1, so with a sufficiently fine
mesh, u ! 1, regardless of  .

Exercise 5.7: Vectorize a function for computing the area of a polygon
Vectorize the implementation of the function for computing the area of a polygon
in Exercise 2.5. Make a test function that compares the scalar implementation in
Exercise 2.5 and the new vectorized implementation for the test cases used in Exer-
cise 2.5.

Hint Notice that the formula x1y2 C x2y3 C � � � C xn�1yn D Pn�1
iD0 xiyiC1 is the

dot product of two vectors, x(1:end-1) and y(2,end), which can be computed as
dot(x(1:end-1), y(2,end)), or more explicitly as sum(x(1:end-1).*y(1:
end)).
Filename: polyarea_vec.m.

Exercise 5.8: Explore symmetry
One can observe (and also mathematically prove) that the solution u.x; t/ of the
problem in Exercise 5.6 is symmetric around x D 0: u.�x; t/ D u.x; t/. In such
a case, we can split the domain in two and compute u in only one half, Œ�1; 0�

or Œ0; 1�. At the symmetry line x D 0 we have the symmetry boundary condition
@u=@x D 0. Reformulate the problem in Exercise 5.6 such that we compute only
for x 2 Œ0; 1�. Display the solution and observe that it equals the right part of the
solution in Exercise 5.6.
Filename: symmetric_gaussian_diffusion.m.
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Remarks In 2D and 3D problems, where the CPU time to compute a solution of
PDE can be hours and days, it is very important to utilize symmetry as we do above
to reduce the size of the problem.

Also note the remarks in Exercise 5.6 about the constant area under the u.x; t/

curve: here, the area is 0.5 and u ! 0:5 as t ! 0:5 (if the mesh is sufficiently
fine – one will get convergence to smaller values for small  if the mesh is not fine
enough to properly resolve a thin-shaped initial condition).

Exercise 5.9: Compute solutions as t ! 1
Many diffusion problems reach a stationary time-independent solution as t ! 1.
The model problem from Sect. 5.1.4 is one example where u.x; t/ D s.t/ D const
for t ! 1. When u does not depend on time, the diffusion equation reduces to

�ˇu00.x/ D f .x/;

in one dimension, and
�ˇr2u D f .x/;

in 2D and 3D. This is the famous Poisson equation, or if f D 0, it is known as the
Laplace equation. In this limit t ! 1, there is no need for an initial condition, but
the boundary conditions are the same as for the diffusion equation.

We now consider a one-dimensional problem

� u00.x/ D 0; x 2 .0; L/; u.0/ D C; u0.L/ D 0; (5.38)

which is known as a two-point boundary value problem. This is nothing but the
stationary limit of the diffusion problem in Sect. 5.1.4. How can we solve such
a stationary problem (5.38)? The simplest strategy, when we already have a solver
for the corresponding time-dependent problem, is to use that solver and simulate
until t ! 1, which in practice means that u.x; t/ no longer changes in time (within
some tolerance).

A nice feature of implicit methods like the Backward Euler scheme is that one
can take one very long time step to “infinity” and produce the solution of (5.38).

a) Let (5.38) be valid at mesh points xi in space, discretize u00 by a finite difference,
and set up a system of equations for the point values ui ,i D 0; : : : ; N , where ui

is the approximation at mesh point xi .
b) Show that if �t ! 1 in (5.16)–(5.18), it leads to the same equations as in a).
c) Demonstrate, by running a program, that you can take one large time step with

the Backward Euler scheme and compute the solution of (5.38). The solution is
very boring since it is constant: u.x/ D C .

Filename: rod_stationary.m.

Remarks If the interest is in the stationary limit of a diffusion equation, one can
either solve the associated Laplace or Poisson equation directly, or use a Backward
Euler scheme for the time-dependent diffusion equation with a very long time step.
Using a Forward Euler scheme with small time steps is typically inappropriate in
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such situations because the solution changes more and more slowly, but the time
step must still be kept small, and it takes “forever” to approach the stationary state.
This is yet another example why one needs implicit methods like the Backward
Euler scheme.

Exercise 5.10: Solve a two-point boundary value problem
Solve the following two-point boundary-value problem

u00.x/ D 2; x 2 .0; 1/; u.0/ D 0; u.1/ D 1 :

Hint Do Exercise 5.9. Modify the boundary condition in the code so it incorporates
a known value for u.1/.
Filename: 2ptBVP.m.
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6Solving Nonlinear Algebraic Equations

As a reader of this book you are probably well into mathematics and often “ac-
cused” of being particularly good at “solving equations” (a typical comment at
family dinners!). However, is it really true that you, with pen and paper, can solve
many types of equations? Restricting our attention to algebraic equations in one
unknown x, you can certainly do linear equations: ax C b D 0, and quadratic ones:
ax2 C bx C c D 0. You may also know that there are formulas for the roots of cu-
bic and quartic equations too. Maybe you can do the special trigonometric equation
sin x C cosx D 1 as well, but there it (probably) stops. Equations that are not re-
ducible to one of the mentioned cannot be solved by general analytical techniques,
which means that most algebraic equations arising in applications cannot be treated
with pen and paper!

If we exchange the traditional idea of finding exact solutions to equations with
the idea of rather finding approximate solutions, a whole new world of possibilities
opens up. With such an approach, we can in principle solve any algebraic equation.

177© The Author(s) 2016
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Let us start by introducing a common generic form for any algebraic equation:

f .x/ D 0 :

Here, f .x/ is some prescribed formula involving x. For example, the equation

e�x sin x D cosx

has
f .x/ D e�x sin x � cosx :

Just move all terms to the left-hand side and then the formula to the left of the
equality sign is f .x/.

So, when do we really need to solve algebraic equations beyond the simplest
types we can treat with pen and paper? There are two major application areas. One
is when using implicit numerical methods for ordinary differential equations. These
give rise to one or a system of algebraic equations. The other major application type
is optimization, i.e., finding the maxima or minima of a function. These maxima and
minima are normally found by solving the algebraic equation F 0.x/ D 0 if F.x/ is
the function to be optimized. Differential equations are very much used throughout
science and engineering, and actually most engineering problems are optimization
problems in the end, because one wants a design that maximizes performance and
minimizes cost.

We first consider one algebraic equation in one variable, with our usual emphasis
on how to program the algorithms. Systems of nonlinear algebraic equations with
many variables arise from implicit methods for ordinary and partial differential
equations as well as in multivariate optimization. Our attention will be restricted to
Newton’s method for such systems of nonlinear algebraic equations.

Terminology
When solving algebraic equations f .x/ D 0, we often say that the solution x

is a root of the equation. The solution process itself is thus often called root
finding.

6.1 Brute Force Methods

The representation of a mathematical function f .x/ on a computer takes two forms.
One is a Matlab function returning the function value given the argument, while the
other is a collection of points .x; f .x// along the function curve. The latter is the
representation we use for plotting, together with an assumption of linear variation
between the points. This representation is also very suited for equation solving
and optimization: we simply go through all points and see if the function crosses
the x axis, or for optimization, test for a local maximum or minimum point. Be-
cause there is a lot of work to examine a huge number of points, and also because
the idea is extremely simple, such approaches are often referred to as brute force
methods. However, we are not embarrassed of explaining the methods in detail and
implementing them.
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6.1.1 Brute Force Root Finding

Assume that we have a set of points along the curve of a function f .x/:

We want to solve f .x/ D 0, i.e., find the points x where f crosses the x axis.
A brute force algorithm is to run through all points on the curve and check if one
point is below the x axis and if the next point is above the x axis, or the other way
around. If this is found to be the case, we know that f must be zero in between
these two x points.

Numerical algorithm More precisely, we have a set of n C 1 points .xi ; yi /, yi D
f .xi /, i D 0; : : : ; n, where x0 < : : : < xn. We check if yi < 0 and yiC1 > 0 (or
the other way around). A compact expression for this check is to perform the test
yi yiC1 < 0. If so, the root of f .x/ D 0 is in Œxi ; xiC1�. Assuming a linear variation
of f between xi and xiC1, we have the approximation

f .x/ � f .xiC1/ � f .xi /

xiC1 � xi

.x � xi / C f .xi / D yiC1 � yi

xiC1 � xi

.x � xi / C yi ;

which, when set equal to zero, gives the root

x D xi � xiC1 � xi

yiC1 � yi

yi :

Implementation Given some Matlab implementation f(x) of our mathematical
function, a straightforward implementation of the above numerical algorithm looks
like

x = linspace(0, 4, 10001);

y = f(x);
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root = NaN; % Initialization

for i = 1:(length(x)-1)

if y(i)*y(i+1) < 0

root = x(i) - (x(i+1) - x(i))/(y(i+1) - y(i))*y(i);

break; % Jump out of loop

end

end

if isnan(root)

fprintf(’Could not find any root in [%g, %g]\n’, x(0), x(-1));

else

fprintf(’Find (the first) root as x=%g\n’, root);

end

(See the file brute_force_root_finder_flat.m.)
Note the nice use of setting root to NaN: we can simply test if isnan(root)

to see if we found a root and overwrote the NaN value, or if we did not find any root
among the tested points.

Running this program with some function, say f .x/ D e�x2
cos.4x/ (which has

a solution at x D �
8
), gives the root 0.392699, which has an error of 8:2 � 10�8.

Increasing the number of points with a factor of ten gives a root with an error of
3:1 � 10�10.

After such a quick “flat” implementation of an algorithm, we should always try
to offer the algorithm as a Matlab function, applicable to as wide a problem domain
as possible. The function should take f and an associated interval Œa; b� as input, as
well as a number of points (n), and return a list of all the roots in Œa; b�. Here is our
candidate for a good implementation of the brute force rooting finding algorithm:

function all_roots = brute_force_root_finder(f, a, b, n)

x = linspace(a, b, n);

y = f(x);

roots = [];

for i = 1:(n-1)

if y(i)*y(i+1) < 0

root = x(i) - (x(i+1) - x(i))/(y(i+1) - y(i))*y(i);

roots = [roots; root];

end

end

all_roots = roots;

end

This function is found in the file brute_force_root_finder.m.
This time we use another elegant technique to indicate if roots were found or not:

roots is empty (an array of length zero) if the root finding was unsuccessful, oth-
erwise it contains all the roots. Application of the function to the previous example
can be coded as (demo_brute_force_root_finder.m):

function demo_brute_force_root_finder()

roots = brute_force_root_finder(

@(x) exp(-x.^2).*cos(4*x), 0, 4, 1001);

https://github.com/hplgit/prog4comp/tree/master/src/m/brute_force_root_finder_flat.m
https://github.com/hplgit/prog4comp/tree/master/src/m/brute_force_root_finder.m
https://github.com/hplgit/prog4comp/tree/master/src/m/demo_brute_force_root_finder.m
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if length(roots) > 0

roots

else

fprintf(’Could not find any roots’);

end

end

6.1.2 Brute Force Optimization

Numerical algorithm We realize that xi corresponds to a maximum point if
yi�1 < yi > yiC1. Similarly, xi corresponds to a minimum if yi�1 > yi < yiC1.
We can do this test for all “inner” points i D 1; : : : ; n � 1 to find all local minima
and maxima. In addition, we need to add an end point, i D 0 or i D n, if the
corresponding yi is a global maximum or minimum.

Implementation The algorithm above can be translated to the following Matlab
function (file brute_force_optimizer.m):

function [xy_minima, xy_maxima] = brute_force_optimizer(f, a, b, n)

x = linspace(a, b, n);

y = f(x);

% Let maxima and minima hold the indices corresponding

% to (local) maxima and minima points

minima = [];

maxima = [];

for i = 2:(n-1)

if y(i-1) < y(i) && y(i) > y(i+1)

maxima = [maxima; i];

end

if y(i-1) > y(i) && y(i) < y(i+1)

minima = [minima; i];

end

end

% What about the end points?

y_min_inner = y(minima(1)); % Initialize

for i = 1:length(minima)

if y(minima(i)) < y_min_inner

y_min_inner = y(minima(i));

end

end

y_max_inner = y(maxima(1)); % Initialize

for i = 1:length(maxima)

if y(maxima(i)) > y_max_inner

y_max_inner = y(maxima(i));

end

end

if y(1) > y_max_inner

maxima = [maxima; 1];

end

https://github.com/hplgit/prog4comp/tree/master/src/m/brute_force_optimizer.m
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if y(length(x)) > y_max_inner

maxima = [maxima; length(x)];

end

if y(1) < y_min_inner

minima = [minima; 1];

end

if y(length(x)) < y_min_inner

minima = [minima; length(x)];

end

% Compose return values

xy_minima = [];

for i = 1:length(minima)

xy_minima = [xy_minima; [x(minima(i)) y(minima(i))]];

end

xy_maxima = [];

for i = 1:length(maxima)

xy_maxima = [xy_maxima; [x(maxima(i)) y(maxima(i))]];

end

end

An application to f .x/ D e�x2
cos.4x/ looks like

function demo_brute_force_optimizer

[xy_minima, xy_maxima] = brute_force_optimizer(

@(x) exp(-x.^2).*cos(4*x), 0, 4, 1001);

xy_minima

xy_maxima

end

6.1.3 Model Problem for Algebraic Equations

We shall consider the very simple problem of finding the square root of 9, which
is the positive solution of x2 D 9. The nice feature of solving an equation whose
solution is known beforehand is that we can easily investigate how the numerical
method and the implementation perform in the search for the solution. The f .x/

function corresponding to the equation x2 D 9 is

f .x/ D x2 � 9 :

Our interval of interest for solutions will be Œ0; 1000� (the upper limit here is chosen
somewhat arbitrarily).

In the following, we will present several efficient and accurate methods for solv-
ing nonlinear algebraic equations, both single equation and systems of equations.
The methods all have in common that they search for approximate solutions. The
methods differ, however, in the way they perform the search for solutions. The idea
for the search influences the efficiency of the search and the reliability of actually
finding a solution. For example, Newton’s method is very fast, but not reliable,
while the bisection method is the slowest, but absolutely reliable. No method is
best at all problems, so we need different methods for different problems.
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What is the difference between linear and nonlinear equations?
You know how to solve linear equations ax C b D 0: x D �b=a. All other
types of equations f .x/ D 0, i.e., when f .x/ is not a linear function of x, are
called nonlinear. A typical way of recognizing a nonlinear equation is to observe
that x is “not alone” as in ax, but involved in a product with itself, such as in
x3 C 2x2 � 9 D 0. We say that x3 and 2x2 are nonlinear terms. An equation like
sin x C ex cosx D 0 is also nonlinear although x is not explicitly multiplied by
itself, but the Taylor series of sin x, ex , and cosx all involve polynomials of x

where x is multiplied by itself.

6.2 Newton’s Method

Newton’s method, also known as Newton-Raphson’s method, is a very famous and
widely used method for solving nonlinear algebraic equations. Compared to the
other methods we will consider, it is generally the fastest one (usually by far). It
does not guarantee that an existing solution will be found, however.

A fundamental idea of numerical methods for nonlinear equations is to construct
a series of linear equations (since we know how to solve linear equations) and hope
that the solutions of these linear equations bring us closer and closer to the solution
of the nonlinear equation. The idea will be clearer when we present Newton’s
method and the secant method.

6.2.1 Deriving and Implementing Newton’sMethod

Figure 6.1 shows the f .x/ function in our model equation x2 � 9 D 0. Numer-
ical methods for algebraic equations require us to guess at a solution first. Here,
this guess is called x0. The fundamental idea of Newton’s method is to approxi-
mate the original function f .x/ by a straight line, i.e., a linear function, since it
is straightforward to solve linear equations. There are infinitely many choices of
how to approximate f .x/ by a straight line. Newton’s method applies the tangent
of f .x/ at x0, see the rightmost tangent in Fig. 6.1. This linear tangent function
crosses the x axis at a point we call x1. This is (hopefully) a better approximation
to the solution of f .x/ D 0 than x0. The next fundamental idea is to repeat this
process. We find the tangent of f at x1, compute where it crosses the x axis, at
a point called x2, and repeat the process again. Figure 6.1 shows that the process
brings us closer and closer to the left. It remains, however, to see if we hit x D 3 or
come sufficiently close to this solution.

How do we compute the tangent of a function f .x/ at a point x0? The tangent
function, here called Qf .x/, is linear and has two properties:

1. the slope equals to f 0.x0/

2. the tangent touches the f .x/ curve at x0
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Fig. 6.1 Illustrates the idea of Newton’s method with f .x/ D x2 � 9, repeatedly solving for
crossing of tangent lines with the x axis

So, if we write the tangent function as Qf .x/ D ax C b, we must require Qf 0.x0/ D
f 0.x0/ and Qf .x0/ D f .x0/, resulting in

Qf .x/ D f .x0/ C f 0.x0/.x � x0/ :

The key step in Newton’s method is to find where the tangent crosses the x axis,
which means solving Qf .x/ D 0:

Qf .x/ D 0 ) x D x0 � f .x0/

f 0.x0/
:

This is our new candidate point, which we call x1:

x1 D x0 � f .x0/

f 0.x0/
:

With x0 D 1000, we get x1 � 500, which is in accordance with the graph in
Fig. 6.1. Repeating the process, we get

x2 D x1 � f .x1/

f 0.x1/
� 250 :

The general scheme of Newton’s method may be written as

xnC1 D xn � f .xn/

f 0.xn/
; n D 0; 1; 2; : : : (6.1)
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The computation in (6.1) is repeated until f .xn/ is close enough to zero. More
precisely, we test if jf .xn/j < �, with � being a small number.

We moved from 1000 to 250 in two iterations, so it is exciting to see how
fast we can approach the solution x D 3. A computer program can automate
the calculations. Our first try at implementing Newton’s method is in a function
naive_Newton:

function result = naive_Newton(f,dfdx,starting_value,eps)

x = starting_value;

while abs(f(x)) > eps

x = x - f(x)/dfdx(x);

end

result = x;

end

The argument x is the starting value, called x0 in our previous description. To
solve the problem x2 D 9 we also need to implement

function result = f(x)

result = x^2 - 9;

end

function result = dfdx(x)

result = 2*x;

end

Why not use an array for the x approximations?
Newton’s method is normally formulated with an iteration index n,

xnC1 D xn � f .xn/

f 0.xn/
:

Seeing such an index, many would implement this as

x(n+1) = x(x) - f(x(n))/dfdx(x(n));

Such an array is fine, but requires storage of all the approximations. In large
industrial applications, where Newton’s method solves millions of equations at
once, one cannot afford to store all the intermediate approximations in memory,
so then it is important to understand that the algorithm in Newton’s method has
no more need for xn when xnC1 is computed. Therefore, we can work with one
variable x and overwrite the previous value:

x = x - f(x)/dfdx(x)

Running naive_Newton(f, dfdx, 1000, eps=0.001) results in the ap-
proximate solution 3.000027639. A smaller value of eps will produce a more
accurate solution. Unfortunately, the plain naive_Newton function does not re-
turn how many iterations it used, nor does it print out all the approximations



186 6 Solving Nonlinear Algebraic Equations

x0; x1; x2; : : :, which would indeed be a nice feature. If we insert such a printout,
a rerun results in

500.0045

250.011249919

125.02362415

62.5478052723

31.3458476066

15.816483488

8.1927550496

4.64564330569

3.2914711388

3.01290538807

3.00002763928

We clearly see that the iterations approach the solution quickly. This speed of the
search for the solution is the primary strength of Newton’s method compared to
other methods.

6.2.2 Making aMore Efficient and Robust Implementation

The naive_Newton function works fine for the example we are considering here.
However, for more general use, there are some pitfalls that should be fixed in an
improved version of the code. An example may illustrate what the problem is: let
us solve tanh.x/ D 0, which has solution x D 0. With jx0j � 1:08 everything
works fine. For example, x0 leads to six iterations if � D 0:001:

-1.05895313436

0.989404207298

-0.784566773086

0.36399816111

-0.0330146961372

2.3995252668e-05

Adjusting x0 slightly to 1.09 gives division by zero! The approximations computed
by Newton’s method become

-1.09331618202

1.10490354324

-1.14615550788

1.30303261823

-2.06492300238

13.4731428006

-1.26055913647e+11

The division by zero is caused by x7 D �1:26055913647 � 1011, because tanh.x7/

is 1.0 to machine precision, and then f 0.x/ D 1 � tanh.x/2 becomes zero in the
denominator in Newton’s method.

The underlying problem, leading to the division by zero in the above example,
is that Newton’s method diverges: the approximations move further and further
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away from x D 0. If it had not been for the division by zero, the condition in
the while loop would always be true and the loop would run forever. Divergence
of Newton’s method occasionally happens, and the remedy is to abort the method
when a maximum number of iterations is reached.

Another disadvantage of the naive_Newton function is that it calls the f .x/

function twice as many times as necessary. This extra work is of no concern when
f .x/ is fast to evaluate, but in large-scale industrial software, one call to f .x/ might
take hours or days, and then removing unnecessary calls is important. The solution
in our function is to store the call f(x) in a variable (f_value) and reuse the value
instead of making a new call f(x).

To summarize, we want to write an improved function for implementing New-
ton’s method where we

� avoid division by zero
� allow a maximum number of iterations
� avoid the extra evaluation of f .x/

A more robust and efficient version of the function, inserted in a complete program
Newtons_method.m for solving x2 � 9 D 0, is listed below.

function Newtons_method()

f = @(x) x^2 - 9;

dfdx = @(x) 2*x;

eps = 1e-6;

x0 = 1000;

[solution,no_iterations] = Newton(f, dfdx, x0, eps);

if no_iterations > 0 % Solution found

fprintf(’Number of function calls: %d\n’, 1 + 2*no_iterations);

fprintf(’A solution is: %f\n’, solution)

else

fprintf(’Abort execution.\n’)

end

end

function [solution, no_iterations] = Newton(f, dfdx, x0, eps)

x = x0;

f_value = f(x);

iteration_counter = 0;

while abs(f_value) > eps && iteration_counter < 100

try

x = x - (f_value)/dfdx(x);

catch

fprintf(’Error! - derivative zero for x = \n’, x)

exit(1)

end

f_value = f(x);

iteration_counter = iteration_counter + 1;

end

% Here, either a solution is found, or too many iterations

if abs(f_value) > eps

iteration_counter = -1;

end

https://github.com/hplgit/prog4comp/tree/master/src/m/Newtons_method.m
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solution = x;

no_iterations = iteration_counter;

end

Handling of the potential division by zero is done by a try-catch construction,
which works as follows. First, Matlab tries to execute the code in the try block,
but if something goes wrong there, the catch block is executed instead and the
execution is terminated by exit.

The division by zero will always be detected and the program will be stopped.
The main purpose of our way of treating the division by zero is to give the user
a more informative error message and stop the program in a gentler way.

Calling exit with an argument different from zero (here 1) signifies that the
program stopped because of an error. It is a good habit to supply the value 1,
because tools in the operating system can then be used by other programs to detect
that our program failed.

To prevent an infinite loop because of divergent iterations, we have introduced
the integer variable iteration_counter to count the number of iterations in New-
ton’s method. With iteration_counterwe can easily extend the condition in the
while such that no more iterations take place when the number of iterations reaches
100. We could easily let this limit be an argument to the function rather than a fixed
constant.

The Newton function returns the approximate solution and the number of itera-
tions. The latter equals �1 if the convergence criterion jf .x/j < � was not reached
within the maximum number of iterations. In the calling code, we print out the
solution and the number of function calls. The main cost of a method for solving
f .x/ D 0 equations is usually the evaluation of f .x/ and f 0.x/, so the total num-
ber of calls to these functions is an interesting measure of the computational work.
Note that in function Newton there is an initial call to f .x/ and then one call to f

and one to f 0 in each iteration.
Running Newtons_method.m, we get the following printout on the screen:

Number of function calls: 25

A solution is: 3.000000

As we did with the integration methods in Chap. 3, we will place our solvers for
nonlinear algebraic equations in separate files for easy use by other programs. So,
we place Newton in the file Newton.m

The Newton scheme will work better if the starting value is close to the solution.
A good starting value may often make the difference as to whether the code actually
finds a solution or not. Because of its speed, Newton’s method is often the method
of first choice for solving nonlinear algebraic equations, even if the scheme is not
guaranteed to work. In cases where the initial guess may be far from the solution,
a good strategy is to run a few iterations with the bisection method (see Sect. 6.4)
to narrow down the region where f is close to zero and then switch to Newton’s
method for fast convergence to the solution.

Newton’s method requires the analytical expression for the derivative f 0.x/.
Derivation of f 0.x/ is not always a reliable process by hand if f .x/ is a complicated
function. However, Matlab has the Symbolic Math Toolbox, which we may use to
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create the required dfdx function (Octave does not (yet) offer the same possibilities
for symbolic computations as Matlab. However, there is work in progress, e.g. on
using SymPy (from Python) from Octave). In our sample problem, the recipe goes
as follows:

syms x; % define x as a mathematical symbol

f_expr = x^2 - 9; % symbolic expression for f(x)

dfdx_expr = diff(f_expr) % compute f’(x) symbolically

% Turn f_expr and dfdx_expr into plain Matlab functions

f = matlabFunction(f_expr);

dfdx = matlabFunction(dfdx_expr);

dfdx(5) % will print 10

The nice feature of this code snippet is that dfdx_expr is the exact analytical ex-
pression for the derivative, 2*x, if you print it out. This is a symbolic expression
so we cannot do numerical computing with it, but the matlabFunction turns sym-
bolic expressions into callable Matlab functions.

The next method is the secant method, which is usually slower than Newton’s
method, but it does not require an expression for f 0.x/, and it has only one function
call per iteration.

6.3 The Secant Method

When finding the derivative f 0.x/ in Newton’s method is problematic, or when
function evaluations take too long; we may adjust the method slightly. Instead of
using tangent lines to the graph we may use secants1. The approach is referred to as
the secant method, and the idea is illustrated graphically in Fig. 6.2 for our example
problem x2 � 9 D 0.

The idea of the secant method is to think as in Newton’s method, but instead
of using f 0.xn/, we approximate this derivative by a finite difference or the se-
cant, i.e., the slope of the straight line that goes through the points .xn; f .xn// and
.xn�1; f .xn�1// on the graph, given by the two most recent approximations xn and
xn�1. This slope reads

f .xn/ � f .xn�1/

xn � xn�1

: (6.2)

Inserting this expression for f 0.xn/ in Newton’s method simply gives us the secant
method:

xnC1 D xn � f .xn/
f .xn/�f .xn�1/

xn�xn�1

;

or
xnC1 D xn � f .xn/

xn � xn�1

f .xn/ � f .xn�1/
: (6.3)

Comparing (6.3) to the graph in Fig. 6.2, we see how two chosen starting points
(x0 D 1000, x1 D 700, and corresponding function values) are used to compute
x2. Once we have x2, we similarly use x1 and x2 to compute x3. As with Newton’s

1 https://en.wikipedia.org/wiki/Secant_line

https://en.wikipedia.org/wiki/Secant_line
https://en.wikipedia.org/wiki/Secant_line
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Fig. 6.2 Illustrates the use of secants in the secant method when solving x2�9 D 0; x 2 Œ0; 1000�.
From two chosen starting values, x0 D 1000 and x1 D 700 the crossing x2 of the corresponding
secant with the x axis is computed, followed by a similar computation of x3 from x1 and x2

method, the procedure is repeated until f .xn/ is below some chosen limit value,
or some limit on the number of iterations has been reached. We use an iteration
counter here too, based on the same thinking as in the implementation of Newton’s
method.

We can store the approximations xn in an array, but as in Newton’s method,
we notice that the computation of xnC1 only needs knowledge of xn and xn�1, not
“older” approximations. Therefore, we can make use of only three variables: x for
xnC1, x1 for xn, and x0 for xn�1. Note that x0 and x1 must be given (guessed) for
the algorithm to start.

A program secant_method.m that solves our example problem may be written
as:

function secant_method()

f = @(x) x^2 - 9;

eps = 1e-6;

x0 = 1000; x1 = x0 - 1;

[solution,no_iterations] = secant(f, x0, x1, eps);

if no_iterations > 0 % Solution found

fprintf(’Number of function calls: %d\n’, 2 + no_iterations);

fprintf(’A solution is: %f\n’, solution)

else

fprintf(’Abort execution.\n’)

end

end

https://github.com/hplgit/prog4comp/tree/master/src/m/secant_method.m
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function [solution,no_iterations] = secant(f, x0, x1, eps)

f_x0 = f(x0);

f_x1 = f(x1);

iteration_counter = 0;

while abs(f_x1) > eps && iteration_counter < 100

try

denominator = (f_x1 - f_x0)/(x1 - x0);

x = x1 - (f_x1)/denominator;

catch

fprintf(’Error! - denominator zero for x = \n’, x1)

break

end

x0 = x1;

x1 = x;

f_x0 = f_x1;

f_x1 = f(x1);

iteration_counter = iteration_counter + 1;

end

% Here, either a solution is found, or too many iterations

if abs(f_x1) > eps

iteration_counter = -1;

end

solution = x1;

no_iterations = iteration_counter;

end

The number of function calls is now related to no_iterations, i.e., the number
of iterations, as 2 + no_iterations, since we need two function calls before en-
tering the while loop, and then one function call per loop iteration. Note that, even
though we need two points on the graph to compute each updated estimate, only
a single function call (f(x1)) is required in each iteration since f(x0) becomes the
“old” f(x1) and may simply be copied as f_x0 = f_x1 (the exception is the very
first iteration where two function evaluations are needed).

Running secant_method.m, gives the following printout on the screen:

Number of function calls: 19

A solution is: 3.000000

As with the function Newton, we place secant in a separate file secant.m for
easy use later.

6.4 The BisectionMethod

Neither Newton’s method nor the secant method can guarantee that an existing so-
lution will be found (see Exercises 6.1 and 6.2). The bisection method, however,
does that. However, if there are several solutions present, it finds only one of them,
just as Newton’s method and the secant method. The bisection method is slower
than the other two methods, so reliability comes with a cost of speed.

To solve x2 � 9 D 0, x 2 Œ0; 1000�, with the bisection method, we reason as
follows. The first key idea is that if f .x/ D x2 �9 is continuous on the interval and
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the function values for the interval endpoints (xL D 0, xR D 1000) have opposite
signs, f .x/ must cross the x axis at least once on the interval. That is, we know
there is at least one solution.

The second key idea comes from dividing the interval in two equal parts, one
to the left and one to the right of the midpoint xM D 500. By evaluating the sign
of f .xM /, we will immediately know whether a solution must exist to the left or
right of xM . This is so, since if f .xM / � 0, we know that f .x/ has to cross the x

axis between xL and xM at least once (using the same argument as for the original
interval). Likewise, if instead f .xM / � 0, we know that f .x/ has to cross the x

axis between xM and xR at least once.
In any case, we may proceed with half the interval only. The exception is if

f .xM / � 0, in which case a solution is found. Such interval halving can be
continued until a solution is found. A “solution” in this case, is when jf .xM /j
is sufficiently close to zero, more precisely (as before): jf .xM /j < �, where � is
a small number specified by the user.

The sketched strategy seems reasonable, so let us write a reusable function that
can solve a general algebraic equation f .x/ D 0 (bisection_method.m):

function bisection_method()

f = @(x) x^2 - 9;

eps = 1e-6;

a = 0; b = 1000;

[solution, no_iterations] = bisection(f, a, b, eps);

if solution <= b % Solution found

fprintf(’Number of function calls: %d\n’, 1+2*no_iterations);

fprintf(’A solution is: %f\n’, solution);

else

fprintf(’Abort execution.\n’);

end

end

function [result1, result2] = bisection(f, x_L, x_R, eps)

if f(x_L)*f(x_R) > 0

fprintf(’Error! Function does not have opposite\n’);

fprintf(’signs at interval endpoints!’)

exit(1)

end

x_M = (x_L + x_R)/2.0;

f_M = f(x_M);

iteration_counter = 1;

while abs(f_M) > eps

left_f = f(x_L);

right_f = f(x_R);

if left_f*f_M > 0 % i.e., same sign

x_L = x_M;

else

x_R = x_M;

end

x_M = (x_L + x_R)/2;

f_M = f(x_M);

iteration_counter = iteration_counter + 2;

end

https://github.com/hplgit/prog4comp/tree/master/src/m/bisection_method.m
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result1 = x_M;

result2 = iteration_counter;

end

Note that we first check if f changes sign in Œa; b�, because that is a requirement
for the algorithm to work. The algorithm also relies on a continuous f .x/ function,
but this is very challenging for a computer code to check.

We get the following printout to the screen when bisection_method.m is run:

Number of function calls: 61

A solution is: 3.000000

We notice that the number of function calls is much higher than with the previous
methods.

Required work in the bisection method
If the starting interval of the bisection method is bounded by a and b, and the
solution at step n is taken to be the middle value, the error is bounded as

jb � aj
2n

; (6.4)

because the initial interval has been halved n times. Therefore, to meet a toler-
ance �, we need n iterations such that the length of the current interval equals
�: jb � aj

2n
D � ) n D ln..b � a/=�/

ln 2
:

This is a great advantage of the bisection method: we know beforehand how
many iterations n it takes to meet a certain accuracy � in the solution.

As with the two previous methods, the function bisection is stored as a sepa-
rate file bisection.m for easy use by other programs.

6.5 Rate of Convergence

With the methods above, we noticed that the number of iterations or function calls
could differ quite substantially. The number of iterations needed to find a solution
is closely related to the rate of convergence, which dictates the speed of error re-
duction as we approach the root. More precisely, we introduce the error in iteration
n as en D jx � xnj, and define the convergence rate q as

enC1 D Ceq
n; (6.5)

where C is a constant. The exponent q measures how fast the error is reduced from
one iteration to the next. The larger q is, the faster the error goes to zero, and the
fewer iterations we need to meet the stopping criterion jf .x/j < �.
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A single q in (6.5) is defined in the limit n ! 1. For finite n, and especially
smaller n, q will vary with n. To estimate q, we can compute all the errors en and
set up (6.5) for three consecutive experiments n � 1, n, and n C 1:

en D Ce
q
n�1;

enC1 D Ceq
n :

Dividing these two equations by each other and solving with respect to q gives

q D ln.enC1=en/

ln.en=en�1/
:

Since this q will vary somewhat with n, we call it qn. As n grows, we expect qn

to approach a limit (qn ! q). To compute all the qn values, we need all the xn

approximations. However, our previous implementations of Newton’s method, the
secant method, and the bisection method returned just the final approximation.

Therefore, we have extended those previous implementations such that the user
can choose whether the final value or the whole history of solutions is to be returned.
The extended implementations are named Newton_solver, secant_solver and
bisection_solver. Compared to the previous implementations, each of these
now takes an extra parameter return_x_list. This parameter is a boolean, set to
true if the function is supposed to return all the root approximations, or false, if
the function should only return the final approximation. As an example, let us take
a closer look at Newton_solver:

function [sol, no_it] = Newton_solver(f, dfdx, x, eps, return_x_list)

f_value = f(x);

iteration_counter = 0;

if return_x_list

x_list = [];

end

while abs(f_value) > eps && iteration_counter < 100

try

x = x - (f_value)/dfdx(x);

catch

fprintf(’Error! - derivative zero for x = \n’, x)

break

end

f_value = f(x);

iteration_counter = iteration_counter + 1;

if return_x_list

x_list = [x_list x];

end

end

% Here, either a solution is found, or too many iterations

if abs(f_value) > eps

iteration_counter = -1; % i.e., lack of convergence

end

if return_x_list

sol = x_list;

no_it = iteration_counter;
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else

sol = x;

no_it = iteration_counter;

end

end

The function is found in the file Newton_solver.m.
We can now make a call

[x, iter] = Newton_solver(f, dfdx, 1000, 1e-6, true);

and get an array x returned. With knowledge of the exact solution x of f .x/ D 0,
we can compute all the errors en and associated qn values with the compact function

function q = rate(x, x_exact)

e = abs(x - x_exact);

q = zeros(length(e)-2,1);

for n = 2:(length(e)-1)

q(n-1) = log(e(n+1)/e(n))/log(e(n)/e(n-1));

end

end

The error model (6.5) works well for Newton’s method and the secant method.
For the bisection method, however, it works well in the beginning, but not when the
solution is approached.

We can compute the rates qn and print them nicely,

function print_rates(method, x, x_exact)

q = rate(x, x_exact);

fprintf(’%s:\n’, method)

for i = 1:length(q)

fprintf(’%.2f ’, q(i));

end

fprintf(’\n’)

end

The result for print_rates(’Newton’, x, 3) is

Newton:

1.01 1.02 1.03 1.07 1.14 1.27 1.51 1.80 1.97 2.00

indicating that q D 2 is the rate for Newton’s method. A similar computation using
the secant method, gives the rates

secant:

1.26 0.93 1.05 1.01 1.04 1.05 1.08 1.13 1.20 1.30 1.43

1.54 1.60 1.62 1.62

Here it seems that q � 1:6 is the limit.

https://github.com/hplgit/prog4comp/tree/master/src/m/Newton_solver.m
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Remark If we in the bisection method think of the length of the current interval
containing the solution as the error en, then (6.5) works perfectly since enC1 D
1
2
en, i.e., q D 1 and C D 1

2
, but if en is the true error jx � xnj, it is easily seen

from a sketch that this error can oscillate between the current interval length and
a potentially very small value as we approach the exact solution. The corresponding
rates qn fluctuate widely and are of no interest.

6.6 Solving Multiple Nonlinear Algebraic Equations

So far in this chapter, we have considered a single nonlinear algebraic equation.
However, systems of such equations arise in a number of applications, foremost
nonlinear ordinary and partial differential equations. Of the previous algorithms,
only Newton’s method is suitable for extension to systems of nonlinear equations.

6.6.1 Abstract Notation

Suppose we have n nonlinear equations, written in the following abstract form:

F0.x0; x1; : : : ; xn/ D 0; (6.6)

F1.x0; x1; : : : ; xn/ D 0; (6.7)

::: D ::: (6.8)

Fn.x0; x1; : : : ; xn/ D 0 : (6.9)

(6.10)

It will be convenient to introduce a vector notation

F D .F0; : : : ; F1/; x D .x0; : : : ; xn/ :

The system can now be written as F .x/ D 0.
As a specific example on the notation above, the system

x2 D y � x cos.�x/ (6.11)

yx C e�y D x�1 (6.12)

can be written in our abstract form by introducing x0 D x and x1 D y. Then

F0.x0; x1/ D x2 � y C x cos.�x/ D 0;

F1.x0; x1/ D yx C e�y � x�1 D 0 :

6.6.2 Taylor Expansions for Multi-Variable Functions

We follow the ideas of Newton’s method for one equation in one variable: approxi-
mate the nonlinear f by a linear function and find the root of that function. When
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n variables are involved, we need to approximate a vector function F .x/ by some
linear function QF D Jx C c, where J is an n � n matrix and c is some vector of
length n.

The technique for approximating F by a linear function is to use the first two
terms in a Taylor series expansion. Given the value of F and its partial derivatives
with respect to x at some point xi , we can approximate the value at some point
xiC1 by the two first term in a Taylor series expansion around xi :

F .xiC1/ � F .xi / C rF .xi /.xiC1 � xi / :

The next terms in the expansions are omitted here and of size jjxiC1 � xi jj2, which
are assumed to be small compared with the two terms above.

The expression rF is the matrix of all the partial derivatives of F . Component
.i; j / in rF is

@Fi

@xj

:

For example, in our 2 � 2 system (6.11)–(6.12) we can use SymPy to compute the
Jacobian:

>>> from sympy import *

>>> x0, x1 = symbols(’x0 x1’)

>>> F0 = x0**2 - x1 + x0*cos(pi*x0)

>>> F1 = x0*x1 + exp(-x1) - x0**(-1)

>>> diff(F0, x0)

-pi*x0*sin(pi*x0) + 2*x0 + cos(pi*x0)

>>> diff(F0, x1)

-1

>>> diff(F1, x0)

x1 + x0**(-2)

>>> diff(F1, x1)

x0 - exp(-x1)

We can then write

rF D
 

@F0

@x0

@F0

@x1
@F1

@x0

@F1

@x1

!

D
 

2x0 C cos.�x0/ � �x0 sin.�x0/ �1

x1 C x�2
0 x0 � e�x1

!

The matrix rF is called the Jacobian of F and often denoted by J .

6.6.3 Newton’sMethod

The idea of Newton’s method is that we have some approximation xi to the root and
seek a new (and hopefully better) approximation xiC1 by approximating F .xiC1/

by a linear function and solve the corresponding linear system of algebraic equa-
tions. We approximate the nonlinear problem F .xiC1/ D 0 by the linear problem

F .xi / C J .xi /.xiC1 � xi / D 0; (6.13)
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where J .xi / is just another notation for rF .xi /. The equation (6.13) is a linear
system with coefficient matrix J and right-hand side vector F .xi /. We therefore
write this system in the more familiar form

J .xi /ı D �F .xi /;

where we have introduce a symbol ı for the unknown vector xiC1 � xi that multi-
plies the Jacobian J .

The i-th iteration of Newton’s method for systems of algebraic equations con-
sists of two steps:

1. Solve the linear system J .xi /ı D �F .xi / with respect to ı.
2. Set xiC1 D xi C ı.

Solving systems of linear equations must make use of appropriate software. Gaus-
sian elimination is the most common, and in general the most robust, method for this
purpose. Matlab interfaces the well-known LAPACK package with high-quality
and very well tested subroutines for linear algebra. The backslash operator solves
a linear system Ax D b by x = A\b by a method based on Gaussian elimination.

When nonlinear systems of algebraic equations arise from discretization of par-
tial differential equations, the Jacobian is very often sparse, i.e., most of its elements
are zero. In such cases it is important to use algorithms that can take advantage of
the many zeros. Gaussian elimination is then a slow method, and (much) faster
methods are based on iterative techniques.

6.6.4 Implementation

Here is a very simple implementation of Newton’s method for systems of nonlinear
algebraic equations:

% Use Newton’s method to solve systems of nonlinear algebraic equations.

function [x, iteration_counter] = Newton_system(F, J, x, eps)

% Solve nonlinear system F=0 by Newton’s method.

% J is the Jacobian of F. Both F and J must be functions of x.

% At input, x holds the start value. The iteration continues

% until ||F|| < eps.

F_value = F(x);

F_norm = norm(F_value); % l2 norm of vector

iteration_counter = 0;

while abs(F_norm) > eps && iteration_counter < 100

delta = J(x)\-F_value;

x = x + delta;

F_value = F(x);

F_norm = norm(F_value);

iteration_counter = iteration_counter + 1;

end
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% Here, either a solution is found, or too many iterations

if abs(F_norm) > eps

iteration_counter = -1;

end

end

We can test the function Newton_systemwith the 2 � 2 system (6.11)–(6.12):

function test_Newton_system1()

expected = [1; 0];

tol = 1e-4;

[x, n] = Newton_system(@F, @J, [2; -1], 0.0001);

error = abs(expected - x);

assert(norm(error) < tol, ’err=%g’, error);

end

function F_vector = F(x)

F_vector = [x(1)^2 - x(2) + x(1)*cos(pi*x(1));...

x(1)*x(2) + exp(-x(2)) - x(1)^(-1)];

end

function J_matrix = J(x)

J_matrix = [2*x(1) + cos(pi*x(1)) - pi*x(1)*sin(pi*x(1)) -1;...

x(2) + x(1)^(-2) x(1) - exp(-x(2))];

end

Here, the testing is based on the L2 norm of the error vector. Alternatively, we could
test against the values of x that the algorithm finds, with appropriate tolerances. For
example, as chosen for the error norm, if eps=0.0001, a tolerance of 10�4 can be
used for x[0] and x[1].

6.7 Exercises

Exercise 6.1: Understand why Newton’s method can fail
The purpose of this exercise is to understand when Newton’s method works and
fails. To this end, solve tanhx D 0 by Newton’s method and study the intermediate
details of the algorithm. Start with x0 D 1:08. Plot the tangent in each iteration of
Newton’s method. Then repeat the calculations and the plotting when x0 D 1:09.
Explain what you observe.
Filename: Newton_failure.*.

Exercise 6.2: See if the secant method fails
Does the secant method behave better than Newton’s method in the problem de-
scribed in Exercise 6.1? Try the initial guesses

1. x0 D 1:08 and x1 D 1:09

2. x0 D 1:09 and x1 D 1:1
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3. x0 D 1 and x1 D 2:3

4. x0 D 1 and x1 D 2:4

Filename: secant_failure.*.

Exercise 6.3: Understand why the bisection method cannot fail
Solve the same problem as in Exercise 6.1, using the bisection method, but let the
initial interval be Œ�5; 3�. Report how the interval containing the solution evolves
during the iterations.
Filename: bisection_nonfailure.*.

Exercise 6.4: Combine the bisection method with Newton’s method
An attractive idea is to combine the reliability of the bisection method with the
speed of Newton’s method. Such a combination is implemented by running the
bisection method until we have a narrow interval, and then switch to Newton’s
method for speed.

Write a function that implements this idea. Start with an interval Œa; b� and
switch to Newton’s method when the current interval in the bisection method is
a fraction s of the initial interval (i.e., when the interval has length s.b � a/). Po-
tential divergence of Newton’s method is still an issue, so if the approximate root
jumps out of the narrowed interval (where the solution is known to lie), one can
switch back to the bisection method. The value of s must be given as an argument
to the function, but it may have a default value of 0.1.

Try the new method on tanh.x/ D 0 with an initial interval Œ�10; 15�.
Filename: bisection_Newton.m.

Exercise 6.5: Write a test function for Newton’s method
The purpose of this function is to verify the implementation of Newton’s method
in the Newton function in the file Newton.m Construct an algebraic equation and
perform two iterations of Newton’s method by hand. Find the corresponding size of
jf .x/j and use this as value for eps when calling Newton. The function should
then also perform two iterations and return the same approximation to the root
as you calculated manually. Implement this idea for a unit test as a test function
test_Newton().
Filename: test_Newton.m.

Exercise 6.6: Solve nonlinear equation for a vibrating beam
An important engineering problem that arises in a lot of applications is the vibra-
tions of a clamped beam where the other end is free. This problem can be analyzed
analytically, but the calculations boil down to solving the following nonlinear alge-
braic equation:

coshˇ cosˇ D �1;

where ˇ is related to important beam parameters through

ˇ4 D !2 %A

EI
;
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where % is the density of the beam, A is the area of the cross section, E is Young’s
modulus, and I is the moment of the inertia of the cross section. The most important
parameter of interest is !, which is the frequency of the beam. We want to compute
the frequencies of a vibrating steel beam with a rectangular cross section having
width b D 25mm and height h D 8mm. The density of steel is 7850 kg=m3, and
E D 2�1011 Pa. The moment of inertia of a rectangular cross section is I D bh3=12.

a) Plot the equation to be solved so that one can inspect where the zero crossings
occur.

Hint When writing the equation as f .ˇ/ D 0, the f function increases its ampli-
tude dramatically with ˇ. It is therefore wise to look at an equation with damped
amplitude, g.ˇ/ D e�ˇf .ˇ/ D 0. Plot g instead.

b) Compute the first three frequencies.

Filename: beam_vib.m.
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C
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computer program, 1
convergence rate, 61
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D
debugger, 18
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asymptotic, 61
function (erf), 56
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rounding, 63
tolerance, 63

Euler
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Euler’s method, 93
exception handling, 18
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F
false (0), 25
fast code, 21
finite difference method, 91
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flat program, 54
float, 11
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for loop, 32
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Fortran, 2
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anonymous, 32
assert, 64
call, 8
definition, 27
global, 32
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Gauss quadrature, 59
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graph, 15

H
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heat equation, 153
Heun’s method, 122
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I
if, 25
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implementation
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integer, 11
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analytically, 47
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exact, 47
numerically, 47
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points, 49
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K
keyboard
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L
language

computer, 2
programming, 2

Laplace equation, 174
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legend (plot), 17
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pi, 41
linear algebra, 17, 34
linear interpolation, 42
linspace, 8
logistic model

carrying capacity, 99
long lines (splitting of), 21
loop
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main program, 28
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type conversion, 11
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variable, 5

assignment, 11
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vector ODE, 108
vectorization, 67, 165
verification, 18
Verlet integration, 142
Vim, 6

W
while loop, 35
WolframAlpha, 20
write (to file), 36

X
xlabel, 9

Y
ylabel, 9

Z
zeros, 14



Editorial Policy

§1. Textbooks on topics in the field of computational science and engineering will
be considered. They should be written for courses in CSE education. Both graduate
and undergraduate textbooks will be published in TCSE. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

§2. Format: Only works in English will be considered. For evaluation pur-
poses, manuscripts may be submitted in print or electronic form, in the latter case,
preferably as pdf- or zipped ps-files. Authors are requested to use the LaTeX style
files available fromSpringer at: https://www.springer.com/gp/authors-editors/book-
authors-editors/manuscript-preparation/5636 (Click on �! Templates �! LaTeX
�! monographs)
Electronic material can be included if appropriate. Please contact the publisher.

§3. Those considering a book which might be suitable for the series are strongly
advised to contact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics
textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer
books for their personal use, at a discount of 33.3% directly from Springer-Verlag.

https://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
https://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636


Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com



Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with Python.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

www.springer.com/series/5151
www.springer.com/series/7417


Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.),Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E.Quak (eds.),Advances in Software Tools for Scientific Comput-
ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory, Com-
putation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.



25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing – CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.),Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation: Ap-
plications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.



53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II – Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insur-
ance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.



81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis – Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W.Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media – Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic Differ-
entiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs – HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints – OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications – ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering – CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations – ICOSAHOM’14.



107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H.P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527

	Preface
	Contents
	List of Exercises
	1 The First Few Steps
	1.1 What Is a Program? And What Is Programming?
	1.2 A Matlab Program with Variables
	1.3 A Matlab Program with a Library Function
	1.4 A Matlab Program with Vectorization and Plotting
	1.5 More Basic Concepts
	1.6 Exercises

	2 Basic Constructions
	2.1 If Tests
	2.2 Functions
	2.3 For Loops
	2.4 While Loops
	2.5 Reading from and Writing to Files
	2.6 Exercises

	3 Computing Integrals
	3.1 Basic Ideas of Numerical Integration
	3.2 The Composite Trapezoidal Rule
	3.3 The Composite Midpoint Method
	3.4 Testing
	3.5 Vectorization
	3.6 Measuring Computational Speed
	3.7 Double and Triple Integrals
	3.8 Exercises

	4 Solving Ordinary Differential Equations
	4.1 Population Growth
	4.2 Spreading of Diseases
	4.3 Oscillating One-Dimensional Systems
	4.4 Exercises

	5 Solving Partial Differential Equations
	5.1 Finite Difference Methods
	5.2 Exercises

	6 Solving Nonlinear Algebraic Equations
	6.1 Brute Force Methods
	6.2 Newton's Method
	6.3 The Secant Method
	6.4 The Bisection Method
	6.5 Rate of Convergence
	6.6 Solving Multiple Nonlinear Algebraic Equations
	6.7 Exercises

	References
	Index

