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1. Introduction  

Surface texture is one of the most critical factors and important functionality indicators in 
the performance of high precision and nanoscale devices and components. The functions 
that have been identified in various studies include wear, friction, lubrication, corrosion, 
fatigue, coating, paintability, etc. [1-3]. It is also reported that the wear rates of surfaces in 
operational service is determined by roughness, waviness and the multi-scalar topographic 
features of a surface, such as random peaks/pits and ridges/valleys. These functional 
topographical features will impact directly on wear mechanics and physical properties of a 
whole system, such as hip joint replacement system in bioengineering [4-9]. For example, 
during functional operation of interacting surfaces, peaks and ridges will act as sites of high 
contact stresses and abrasion; consequently wear particles and debris will be generated by 
such surface topographical features, whereas the pits and valleys will affect the lubrication 
and fluid retention properties. In this situation, a vitally important consideration for 
functional characterisation must be the appropriate separation of the different components 
of surfaces, which is not only to extract roughness, waviness and form error, but should also 
be extended to all multi-scalar topographical events over surfaces.  
Effectively surface characterization can help to: (1) Judge whether the manufacturing 
process or manufacturing conditions are effective or out of control, i.e. whether specific 
events in the manufacturing processes have occurred; (2) Interpret functional properties of 
macro, micro and nano geometry, which reflect product properties, such as optical quality, 
tribological properties, service life, safety, reliability, etc. 
Random process techniques have been applied to surface analysis in which the surface 
topography is assumed as a stationary random system. However, the disadvantage of 
random analysis is that significant events involved in a surface, such as large peaks/pits, or 
ridges/valleys will be smoothed over in the Fourier space of a signal, without indicating the 
location of the frequency events. The early studies of morphology features of surface 
topography only considered the roughness component of the surface texture. 
Comprehensive studies of surface characterisation have nearly always concentrated on 
roughness assessment and have mainly developed evaluation techniques based on 
parameters and filtration techniques. This is normally accomplished by using Fourier 
Transform based filtering techniques, especially Gaussian filtering. These techniques are 
employed to isolate the roughness/waviness frequency bands relevant to the surface, by 
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breaking down a surface signal into a series of harmonics waves. In fact, Gaussian filtering, 
used to extract the roughness and waviness components, is based on two presuppositions. 
One presupposition is that before filtering, the irrelevant form and translation errors have 
been removed from the measured data set. The other is that the residual surface, obtained 
according to the first assumption, can be broken down into a series of harmonic 
components. If surfaces conform to these assumptions, the roughness and waviness can be 
identified well and extracted from the original surfaces with a modified amplitude resulting 
from the transmission characteristics of a Gaussian function. These types of filtering 
techniques only considered the frequency information and do not consider the spatial 
information of the features.  
The Fourier transform has a very good localization property in the frequency domain, 
however, it lacks the ability to localize in the time/space domain. Figure 1 gives a typical 
example of the Fourier transform of two different signals with the same sine wave 
components, while one is stationary and the other is non-stationary. The two signals have 
the same Fourier transform spectrum. To distinguish between these two signals, the analysis 
tools need the time/space-frequency localization property.   
There are two functions that link the time/space-frequency domain, the ambiguity function 
(in radar applications) and the Wigner distribution (in quantum mechanics). Both have been 
introduced to identify the topographic features of engineering surfaces by Whitehouse and 
Zheng [10, 11]. Among these tools, the Wigner distribution are more suitable as it preserves 
the absolute space and frequency parameters [10]. The energy distribution in the space-
frequency plane, offered by the Wigner transform, can be used to identify the variation in 
surface topography. The result is that the information about the frequencies and their 
locations in a surface signal has been used to monitor and adjust the manufacturing 
processing. However, it is also well known that although the Wigner transform can offer an 
analysis of the energy distribution of a signal, it only yields an imperfect description of the 
energy distribution, due to its substantial interference terms.  
During the last decade, novel filtering techniques based on robust Gaussian regression and 
multi-scale techniques have been developed. Robust filtering has been designed to eliminate 
problems in the evaluation of the roughness of multi-process surfaces such as plateau honed 
cylinder bores and is critical to the implementation of areal surface analysis techniques.  
As previously stated, analysis of multi-scalar properties of a surface topography needs to 
not only provide both the frequencies of the signal and their location, but also to accurately 
recover and perfectly reconstruct these topographic features. Considering these needs of 
surface assessment, wavelet analysis has been applied to surface characterization [12-16]. 
Wavelet analysis employs time-frequency windows and offers the relevant time/space-
frequency analysis. The Wavelet transform has been proved to be a powerful tool for 
various applications, for example, the Wavelet series expansions, developed for applied 
mathematics and signal processing. Multi-scalar features have been used in capturing, 
identifying and analyzing local, non-stationary processes; Sub-band coding used in 
encoding, compressing, reconstructing and modelling signals and images [17-20]. 
In this chapter three generations of biorthogonal wavelet transforms, for the extraction of 
morphological structures from micro/nano scalar surfaces in the field of bioengineering, 
will be introduced. The chapter’s aim is to create a “tool box” of wavelet techniques capable 
of complex analysis and interpretation of surface topography data; leading to the extraction 
of functionally critical morphological features from micro/nano scalar surfaces of 
orthopaedic joints for in-vitro and clinically retrieved applications. 
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(a) a stationary signal composed of sine waves 30 ,45 ,60Hz Hz Hz  

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time/Seconds

A
m

p
li
tu

d
e

(b) a nonstationary signal composed of sinewaves 30 ,45 ,60Hz Hz Hz  
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(c) Same Fourier spectrum of (a) and (b) 

Fig. 1. Fourier transform of two different signals with the same sin components 
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2. Wavelet 

A Wavelet ( )t  is a waveform that has compact support in both the space and frequency 

domains and whose integral is zero. Compare wavelets with sine waves, which are the basis 

of Fourier analysis. Sinusoids do not have limited duration — they extend from minus to 

plus infinity, where sinusoids are smooth and predictable, early wavelets tended to be 

irregular and asymmetric. The wavelet ( )t  function must satisfy the admissibility 

condition:  

 

2
ˆ ( )

C d
  




    (1) 

which guarantees the existence of the inverse wavelet transform. 
In wavelet analysis the signal is broken down into rescaled and shifted versions of the 

original waveform. This transfers space based information into scale based information, 

which represents the frequency and location properties of the original signal. The wavelet 

transform can be defined as [17-18]: 

 *

,

1
( ) ( ) ( )

a b

t b
W f f t dt

aa



   (2) 

where, ( )f t is the signal, a  and b  are the dilation and translation parameters for the 

function ( )t , which is a wavelet function or mother function. The wavelets, ,
( )

a b
t , (basis 

functions) can be obtained by dilation and translation of the mother wavelet ( )t . The 

parameter a  can be used to illustrate dynamic transmission bandwidths or cover different 

frequency ranges, and b  is the translation parameter that can be used to define the location 

of signal events. Typically one-dimensional continuous wavelets are expressed by [17-18]: 

 
,

1
( ) ( )

a b

x b
x

aa
    (3) 

In the real world, most signals are discrete and the dilation and translation parameters both 

taking only discrete values. The rescaled wavelets, ,0( ) ( )j

j
t a t   are dilated by the 

factor ja , this is illustrated in figure 2(a) where the parameter a takes the discrete value of 

two. j  is the scalar parameter that can be used to illustrate dynamic transmission 

bandwidths or cover different frequency ranges. The shifted wavelets 
0 ,

( ) ( )
k

t t k    are 

translated by k (translation parameter) as shown in figure 2(b). By changing k , the time 

location centre has been moved. Typical one-dimensional wavelets 
,
( )

j k
x  are dilated j  

times and shifted k  times. The discrete wavelets are expressed by: 

 
,

2( ) ( )j

j k

j

x a a x k     (4) 

Thus a signal can be divided into different scales and different locations, with the signal 
data now being represented on a 'time-scalar plane'. Multi-resolution divides the 

frequencies into octave bands, from   to 2 . Frequencies shift upward by an octave when 
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(a) the rescaled wavelets 1

1,0
(2 )t   

 
(b) the shifted wavelets 

1,0
( )t k   

Fig. 2. Example of a discrete wavelet 

time is rescaled by two. Figure 3(c) shows how the time-frequency plane is partitioned 
naturally into rectangles of constant area.  

For a discrete signal 2( ) ( )z x L Z , its discrete wavelet transform can be expressed by: 

 /2

, ,
,

( ) ( ), ( ) 2 ( ) (2 )j j

j k j k
j k

W f f x x f x x k      (5) 

The signal ( )z x  can be recovered with the following equation: 

 
, ,

( ) ( ), ( ) ( )
j k j k

z x z x x x   (6) 

where, the 1

, ,
( * )

j k j k
F F   . 

A basic idea behind wavelet analysis is the transfer of a complex frequency analysis into a 
simple scalar analysis. Wavelet analysis employs time-frequency windows and offers the 
relevant time-frequency analysis, which uses long windows at low frequencies and short 
windows at high frequencies (as shown in figure 3c). Wavelet mathematics provides a 
mathematical microscope that “can divide functions into different frequency components, 
and then study each component with a resolution that is matched to its scale” [17-18]. The 
wavelet transform is an update of the classical Short-Time Fourier Transform (STFT) or 
Gabor Transform as well as the Wigner distribution [21-22]. In contrast, STFT uses a single 
size analysis window (shown in figure 3b), and offers the same accuracy of analysis in the 
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whole time-frequency plane. The Wavelet transform is related to space-frequency analysis 
and is similar to the Wigner-Ville distribution, but is better able than the STFT to “zoom in” 
on very short-lived high frequency phenomena, such as transients in signals or singularities 
in functions. A point to be noted is that wavelet analysis takes the signal decomposition to a 
space-scalar (time-frequency) plane and separates then reconstructs these components in the 
space domain. In contrast, Wigner analysis also decomposes a signal into the space-
frequency plane, then studies the energy distribution of these components but cannot 
reconstruct the modified signal perfectly.  
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(a) FFT (b) STFT (c) Wavelet 

Fig. 3. The different windows of the FFT, STFT and WT 

The Wavelet technique includes many different wavelet functions: each has its own 
properties and applications. Linear phase (symmetric wavelet) and finite pulse filtering are 
basic properties in surface analysis, only the Haar wavelet and the biorthogonal wavelet 
have both characteristics. Due to the fact that the Haar wavelet is binary and a 
discontinuous function makes it not suitable for surface analysis, only the biorthogonal 
wavelet are useful tools for surface decomposition.  

3. The Bi-orthogonal wavelet for surface analysis 

The main approach to the discrete wavelet transform is to use a two-channel filter bank. The 
dilation equations of the basis wavelets and the corresponding scaling functions have 

associated lowpass 
0

H  and highpass 
1

H  filter coefficients.  

The basic property of the discrete wavelet function and the scale function for multi-scale 
analysis are their two-scale difference function [17-19]: 

 
0

1

( ) 2 ( ) (2 )

( ) 2 ( ) (2 )
k

k

x h k x k

x h k x k

 
 
    


  (7) 

where, (.)  is the wavelet and (.)  is the scale function. The two-scale difference functional 

relationships means that the wavelet function and the scale function at scale j can be 

represented as a linear combination of the scale functions at scale j+1. Here, the weighting 

coefficients 0
( )h k , 1

( )h k are the impulse response of the lowpass filter 0
H  and highpass 1

H  

respectively. For orthogonal wavelet transforms 0
H  and 1

H  are orthogonal. However, the 

frequency responses of the two-channel filters, the so-called analysing filters, are not ideal 

brick wall filters since normally there are overlaps that would lead to aliasing, amplitude 

modifications and phase distortions. 
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3.1 The first generation biorthogonal wavelets 

The biorthogonal wavelet overcomes some of the defects of the orthogonal wavelet and 

other two-channel filters. In a biorthogonal wavelet the forward ( 0
H  and 1

H ) and inverse 

filters ( 0
G and 1

G  ) are different. The inverse filters 0
G and 1

G  (the so-called synthesis 

filters), are specially designed to compensate for these errors of the analysing filters 0
H  

and 1
H . When the frequency responses of the synthesis filters, 0

G , 1
G , are the inverses of 

the analysis filters, 0
H  , 1

H  they satisfy [23]:  

 0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

lG z H z G z H z z

G z H z G z H z

 
     (8) 

the errors in this analysis bank are cancelled. Where, l  is time delay, the distortion term 

must be lz , and the aliasing term must be zero.  

In the biorthogonal case, abandoning the orthogonal relationship between the lowpass 

analysis filters 0
( )H z  and the highpass analysis filter 1

( )H z , while keeping the biorthogonal 

conditions between 0 1
( ), ( )H z G z , and 1 0

( ), ( )H z G z . The biorthogonal condition can be 

expressed by the impulse responses, 0
( )h k , 1

( )h k , 0
( )g k , 1

( )g k ,of 0 1 0 1
( ), ( ), ( ), ( )H z H z G z G z , 

as: 

 
0 1

1 0

( ) ( 2 ) 0

( ) ( 2 ) 0

k

k

h k g k n

h k g k n

 
 







 (9) 

Where, 0
g and 1

g are the time reverse of 0
g and 1

g respectively. Formulae (9) means 0
( )h k is 

orthogonal to 1
( 2 )g k n  and 1

( )h k is orthogonal to 0
( 2 )g k n . Here, 0

( 2 )g k n and 

1
( 2 )g k n are the even shift 2n  of 0

( )g k and 1
( )g k  respectively. 

According to Wavelet theory [17-18], the dilation equations of the analysis wavelet equation, 

( )x , and synthesis wavelet function, ( )x  can be constructed from the impulse responses 

of the analysis and synthesis highpass filters respectively [23]: 

 
1

0

1
0

( ) 2 ( ) (2 )

( ) 2 ( ) (2 )

N

N

x h l x l

x g k x k

 
 

    




 
 (10) 

the scale equation are given by: 

 
0

0

0
0

( ) 2 ( ) (2 )

( ) 2 ( ) (2 )

N

N

x h l x l

x g k x k

 
 

    






 
 (11) 

The ( )x , ( )x , ( )x , ( )x  are constructed as a biorthogonal wavelet pair, their limit 

functions would inherit biorthogonality.  

For areal surface, the analysis and synthesis scale functions, ( , )x y  and ( , )x y  can be 

expressed by : 
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( , ) ( ) ( )

( , ) ( ) ( )

x y x y

x y x y

  
  




  
 (12) 

Using the scale function pair, the analysis wavelets and synthesis wavelets are built by [27]: 

 

( , ) ( ) ( )

( , ) ( , ) ( ) ( )

( , ) ( ) ( )

h

v

d

x y x y

x y x y x y

x y x y

  
   

  
  

  
   

  
 

( , ) ( ) ( )

( , ) ( , ) ( ) ( )

( , ) ( ) ( )

h

v

d

x y x y

x y x y x y

x y x y

  
   

  
  

 (13) 

where, ( , )h x y , ( , )v x y  and ( , )d x y  give the analysis wavelets in the horizontal, vertical 

and diagonal directions, respectively. ( , )h x y , ( , )v x y  and ( , )d x y  give the synthesis 

wavelets of the other three directions. 

By employing a 2D biorthogonal wavelet pair, an N N points areal discrete surface signal 

( , )z x y  can be transformed to a wavelet series by decomposing the signal data ( , )z x y  on the 

2D biorthogonal wavelets basis: 

 
, , 1 , 1 , ,
( ) ( , ), ( , ) ( ,... , )

j k j k k J k J kJ J
W z z x y x y d d a   (14) 

The
,J kJ

a  are approximation coefficients of the signal ( , )z x y at the scale 2 J , and the 

1, 1 ,
,...

k J kJ
d d  are a group of detail coefficients of ( , )z x y at the scalar range of 2 j ( 1 ~j J , J is 

the maximal wavelet decomposition Level., and 
j

k refers to a subset (1 : )
2 j

N
 ). The 

,j k
a  are 

generated by the set of inner products [27]: 

 
, 1 ,

( , ), ( , )
j k j j k

a A x y x y   (15) 

1
( , )

j
A x y  is called a discrete scalar approximation of ( , )z x y  at the scale ( 1)2 j  , and 

represents the low frequency components of ( , )z x y  at the scale ( 1)2 j  . When the scale j is 

set to zero, the scalar approximation 
0
( , )A x y  equals ( , )z x y . ( , )

j
A x y at the scale 2 j can be 

reconstructed by using the set 
,j k

a  ( 1 ~j J , (1 : )
2 j

N
k ), and applying the inverse wavelet 

transform:  

 
, , 1 , ,

( , ) ( , ) ( , ), ( , ) ( , )
j j k j k j j k j k

k k

A x y a x y A x y x y x y         (16) 

The detail coefficient, 
,j k

d , is a combination of three directional detail parts:  

 
, 1 ,

, , 1 ,

, 1 ,

( , ), ( , )

( , ), ( , )

( , ), ( , )

h h

j k j j k

v v

j k j k j j k

d d

j k j j k

d A x y x y

d d A x y x y

d A x y x y









      





 (17) 

Similarly, the inverse wavelet transform of the detail coefficient 
,j k

d ( 1 ~j J , (1 : )
2 j

N
k ) 

gives the high frequency components of ( , )z x y  at the scale 2 j  and it is called a discrete 
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detail ( , )
j

D x y  of ( , )z x y  at the scale 2 j : 

 
, , , , , ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

h v d

j j j j

h h v v d d

j k j k j k j k j k j k
k k k

D x y D x y D x y D x y

d x y d x y d x y  
  
      (18) 

The equations show that in the two-dimensional case, the approximation and detail 

coefficients are computed by separate filtering of the signal ( , )z x y  along the abscissa and 

ordinate. The wavelet decomposition can thus be interpreted as a signal decomposition in a 
set of independent, spatially oriented frequency channels. The approximation coefficient 

1,j k
a   is decomposed into 

,j k
a , ,

h

j k
d , ,

v

j k
d  and ,

d

j k
d . The coefficients 

,j k
a corresponds to the 

lower frequencies, the coefficients
,

h

j k
d  correspond to the vertical high frequencies (horizontal 

edges), the coefficients 
,

v

j k
d  the horizontal high frequencies (vertical edges) and the 

coefficients 
,

d

j k
d  the high frequencies in both directions. Consequently, the areal surface 

( , )z x y  can be reconstructed using: 

 
1 1 2 2 1

1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

...... ( , ) ( , ) ( , ) .... ( , )
j j j

z x y A x y D x y A x y D x y D x y

A x y D x y D x y D x y

    
       (19) 

3.2 The second generation biorthogonal wavelet 
The fundamental idea behind the use of Biorthogonal wavelet filtering for surface analysis is 
to break down areal surface raw data set into a rescaled and shifted version of the original 
waveforms in a ‘scalar space’, extract the waveforms carrying different information and 
then reconstruct directly these components. The main advantage of using a biorthogonal 
wavelet is that it has a linear phase (leading to real output without aliasing and phase 
distortion) and a traceably located property so that the different component surfaces 
obtained can more naturally record the real surface. However due to the fact that wavelets 
(basic functions) are built by dilation and translation of the prototype wavelet which relied 
on the Fourier transform, and the fact that the Wavelet transform needs to be applied along 
three directions, horizontal, vertical, and diagonal, the theory and corresponding algorithm 
are very complex. Furthermore, there is still the boundary destruction inherent when using 
the Fourier transform. 
For engineering application purposes the method used for surface characterisation must be 
simple and natural. In other words, the method of the separation and reconstruction of 
different components of the surface should have both the ‘simplicity’ of general surface filter 
and ‘naturalness’ of a biorthognal wavelet filter, as result of this, the second generation of 
biorthogonal wavelet, originally developed at Bell Laboratory [24-26], was introduced into 
surface analysis. The wavelet and scalar coefficients are only dependant on the measured 
raw data of a surface and the filtering and lifting factors calculated by a cubic spline 
interpolation in an interval (Dyn et al. 1987; Flowers 1995; and Stoer 1980). Compared to the 
first generation of Wavelet representation, the new model does not take the Fourier 
transform as a prerequisite. The Wavelet transform only embraces three stages, splitting, 
prediction and updating. The other advantage derived from this model is that there is no 
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boundary destruction. Although the implementation of the lifting wavelet is completely 
different from the former model, it is much easier to understand and perform. 
In the lifting scheme, the splitting procedure is to divide an original signal into even and 
odd subsets. The even subset is obtained by subsample the input signal at the even 
positions, and it can be seen as the initial approximation of the input signal. The odd subset 
is obtained by subsample the input signal at the odd positions. The lost information of the 
initial approximation is contained in the odd subsets. In the prediction step: the even subset 
is used to approximate the odd subset at the corresponding position by using interpolation 
on the neighbouring data. Then the difference between the odd subset and the 
approximated subset can be regarded as the output of the high pass filter, or the wavelet 
coefficients at this specified level. Finally, in the updating step: the final approximation of 
the input signal can be calculated by updating the even subset (initial approximation of the 
input signal) with the help of neighbouring wavelet coefficients obtained from last step. The 
output of this step is the approximation coefficients of low-pass filter. The benefit of using 
the lifting scheme is: (1) the lifting scheme allows a fully in-place calculation of the wavelet 
transform; (2) it is very simple as the inverse wavelet transform with the lifting scheme is 
only a reversal of the operations of the forward transform. 

In this implementation, the analysis highpass filter, 
1

H , and synthesis lowpass filter, 
0

G , of 

the initial finite biorthogonal wavelet filter set, 
0 1 0 1

{ ,  , ,   }H H G G  within the first generation 

are transferred to '

1
H , '

0
G  which can be found by the lifting scheme as[24-26]: 

 
' 2

1 1 1

' 2

0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H z H z G z S z

G z G z H z S z
     (20) 

where the ( )S z  is a Laurent polynomial. Substituting this new set to the equation (7), in 

order to perfectly reconstruct the signal, the frequency responses of analysis and synthesis 
filters of the second algorithm should also satisfy [24-26]:  

 
2 2 2 2

1 0

2 2

1 1 0 0

( ) ( ) ( ) ( ) 0

G ( ) ( ) ( ) ( ) ( ) ( ) 0

G z S z H z S z

z G z S z H z H z S z




 
     (21) 

In this case, 2 2( ) ( )S z S z . After lifting has been performed, the new biorthogonal wavelet 

pair can be found as: 

 0

0
1

( ) ( ) ( ) ( )

( ) 2 ( ) '(2 )

N

N

x x s l x l

x g k x k

  
 

       








  
 (22) 

and 

 
0

0

0 0
0

( ) 2 ( ) (2 )                              

( ) 2 ( ) '(2 ) ( ) '( )

N

N N

x h l x l

x g k x k s k x k

 
  

       


 





 
 (23) 
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where the coefficients, (  )s  , are from the Laurent polynomial ( )S z , the order is based on 

how many neighbouring coefficients are chosen to interpolate in the prediction and 

updating steps. The power behind the lifting scheme is that (  )s   can be used to fully 

control all wavelets and synthesis scaling functions.  

The simplest wavelet transform using lifting scheme is when 0N N   , which means in 

the predict and updating step, no neighbouring coefficients are used to interpolate and 

update. In this case, the wavelet transform does nothing but separates the input data into 

even and odd subset, which is called lazy wavelet. 

In the lifting wavelet transform with 2N   the coefficients, 
1 1

( ) ,
2 2

s l
     , the wavelet 

coefficient 
1,k

d  encodes the difference between the exact sample 
0 ,2 1k

A   and its linear 

prediction of two even neighbours 0 ,2 k
A , 0 ,2 2k

A  . The wavelet coefficients can be written as: 

 
, 1 ,2 1 1,2 1,2 1

: 1 / 2( )
j k j k j k j k

d A A A        (24) 

Employing the dual lifting scheme, 2N  , that is, the coefficient 
1 1

'( ) ,
4 4

s k
     , the scalar 

coefficients 1,k
a  of 0 ,2 k

A would be updated by wavelet coefficients 1,k
d  and 1, 1k

d  . The scalar 

coefficients can be expressed as [24-26]: 

 
, 1 ,2 , , 1

1 / 4( )
j k j k j k j k

a A d d     (25) 

3.3 The lifting wavelet algorithm 

Cubic spline interpolation has been used and verified as an appropriate Laurent 

polynomial, ( )S z in the prediction stage since the resulting wavelet satisfies the 

requirements of surface analysis: excellent refinement accuracy, perfect reconstruction, 

minimum sampling condition (measured area) and a minimum computation.  
The three stages of the Wavelet transform by the lifting scheme are depicted in figure 4. The 

fast lifting wavelet transform algorithm is simplified to [24-26]: 

 
,2 ,2 1

1, ,2 1 ,2

1, ,2 1,

, ( )

( )

( )

j k j k j

j k j k j k

j k j k j k

A A Split A

d A A

a A d





 
 

     
 (26) 

With this implementation of the forward Wavelet transform, ( )z x has been driven to 

subsets, 
1j

d  and 
1j

a  which records high and low frequency events at the scale ( 1)2 j   of ( )z x . 

The whole decomposition of ( )z x  is a simple repetitive scheme through rows and columns 

and all computations are carried out in-place. After the jth step of decomposition in the 

scalar domain, an original surface signal ( )z x  is replaced with the wavelet series 

1
,    ,   ,

j j
d d a . It can be expressed by [27]: 

 
1 2 2 1

, 1 1

1
[ ( )] ( , ) ( , , )

                 ( , , , ,  )

j

j j j

W z x a d a d d

a d d d

 
 

 (27) 
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The above equation is Mallat’s format arrangement of the wavelet transform coefficients. In 
practice, due to the lifting scheme’s in-place calculation property, the coefficients are 

organised in-place. Let input data ( )z i with length 0... 1i N  , the output of the transform 

will also has length N, then 
,j

a is the subset with index 2 jn  , where (0,..., 1)
2 j

N
n   ; 

j
d is 

the subset with index 12 2j jn   , where (0,..., 1)
2 j

N
n   .  

 

 
(a) the diagram of the lifting scheme 

 

 

--- Aj,2k Aj,2k+2 Aj,2k+1 --- 

--- Aj,2k Aj,2k+2 dj+1,k --- 

-1/2-1/2-1/2-1/2

--- aj+1,k aj+1,k+1 dj+1,k --- 

1/41/41/41/4

 
(b) the scheme of lifting Lazy wavelet 

Fig. 4. Wavelet transform using the Lifting scheme  

Figure 5 illustrates this schedule where j  is the decomposed level of Wavelet transform in 

scalar domain [27]. 

3.4 Separation and extraction of frequency components of a surface 

If a surface, ( , )z x y is assumed to consist of a series of superimposed frequency components: 

 ( , ) ( , ) '( , ) "( , )z x y x y x y x y      (28) 
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Fig. 5. Wavelet transform  

These surface components can be separated in the scalar domain by band pass filters. The 
transmission bands are based on different cut-off wavelengths for different frequency 

components. The wavelet coefficients, 
1
,  ,  

Jr
d d  can be considered outputs of a high 

frequency band, 1 / ~ 1 /
s c
  , and referred to as the roughness component, ( , )x y . 1 /

s
  

indicates the high frequency limited by the sampling interval, and 1 /
c
  is the roughness 

frequency limitation. The 
1
,   ... ,   

Jr Jw
d d  represents the output (waviness, '( , )x y ) of a sub-

lowpass filter band 1 / ~ 1 /
c wc
  . 1 /

wc
  is the waviness frequency limitation. 

Jw
a  are scalar 

coefficients that represent the output (form error, "( , )x y ) of a lowpass filter band, 

1 / ~ 1 /
wc

l ; where l is the sample length when  
x y

l l or l . Using an inverse Wavelet 

transform, these surfaces can be recovered flexibly and immediately in the different 
transmission bands in terms of functional analysis requirements. The inverse Wavelet lifting 
Transform is performed simply by reversing the order of the operations and toggling 
negative to positive for all operations [27]. The relationship between the cutoff frequency 
and the wavelet scale is shown in table 1.  

 
1

1

Roughness: ( , ) ( ,  ,   )

Waviness: '( , ) ( ,  ,   )

Form:  "( , ) (  )

Jr

Jr Jw

Jw

x y IW d d

x y IW d d

x y IW a




 

   


  (29) 

Where,  2
int log ( / ) 1

c
Jr x    2

int log ( / ) 1
wc

Jw x   . Table 1 gives the relationship 

between the decomposition level and the cutoff wavelength. 

In order to obtain ( , )x y and '( , )x y , the appropriate scalar coefficients, 
Jw

a , are set to zero 

and then the inverse transform is applied, and vice versa for ''( , )x y . In a similar way, a 

flexible reference surface can be obtained: 

 
1

( , ) ( , ) ( , ) ( , ) ( , , )
J

m x y z x y x y z x y IW d d      (30) 

where J  is a flexible selected decomposition level according to the cutoff wavelength of the 

reference surface. If a functional evaluation of surfaces is needed to cover all of the 
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topographical information from roughness, through multi-scalar events, to waviness, a 

functional surface can be built by: 

 
1

( , ) '( , ) ( ,   ,   )
Jw

x y x y IW d d     (31) 

Cut-off 
wavelength 

 

The decomposition level of wavelet filter 

3 
(2*23=16) 

4 
(2*24=32) 

5 
(2*25=64) 

6 
(2*26=128) 

7 
(2*27=256) 

S
am

p
li

n
g

 

in
te

rv
al

 (
µ

m
) 4 0.064 (0.08) 0.128 0.256 (0.25) 0.512 1.024 

8 0.128 0.256 (0.25) 0.512 1.024 2.048 

12 0.192 0.384 0.768 (0.8) 1.536 3.072 

16 0.256 (0.25) 0.512 1.024 2.048 4.096 

20 0.320 0.64 1.28 2.56 (2.5) 5.12 

24 0.384 0.768 (0.8) 1.536 3.072 6.144 

Table 1. The relationship between the level of the wavelet decomposition and sampling 
interval 

The identification of multi-scalar events in the roughness and waviness bands is important 

in order to study the functional performance of the areal surface topography. These multi-

scalar topographical events, ( , )x y , such as peaks/pits and rings/valleys, hide in the 

roughness and waviness bands, and their wavelengths can cover a wide frequency range 

( 1 / ~ 1 /
s wc
  ). Wavelet coefficient sets over the transmission bands “naturally” record the 

information concerning their amplitude and location. These events can be easily captured by 

using an amplitude threshold, 
j

T , to pick out the roughness and waviness. 
j

T  is the value of 

an intersection of the probability curve of the cumulative amplitude distribution of each 

wavelet coefficient set. This process is based on an assessment that the amplitude 

distribution of each wavelet coefficient set, 
,j k

d , belonging to the roughness and waviness 

components, would obey a normal distribution. If the absolute value of the amplitude is 

equal to or larger than 
j

T , a thresholding estimator is applied.  

 
,'

,

, ,

0               

           

j k j

j k

j k j k j

d T
d

d d T

   
 (32) 

Where, j is the decomposition level , 12 2j jk n     with (0,..., 1)
2 j

N
n   are the indices of the 

coefficients. The absolute value of the peak amplitude is smaller than 
j

T , the coefficient should 

be replaced by a zero. In the case of a detail coefficient being larger than or equal to 
j

T  the 

coefficient should be retained. As a consequence, detail coefficients that represent only the 
information of the topographical events are obtained. From the experiments carried out, the 
threshold approaches the standard deviation of each wavelet coefficient set. The multi-scalar 
topographic features can then be built by using the 2D inverse discrete wavelet transform:  

   
1

( , ) ( ' ,   ,   ' )
j

x y IW d d  (33) 

Where 'd represent the thresholded wavelet coefficients. 
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3.5 Case studies on the bioengineering surfaces 
Typical examples of much finer bioengineering surfaces from hip joint systems have been 
selected to show the behaviour of the spline wavelet filtering. During the Total Hip 

Replacement, a prosthetic head as shown in Figure 6a will replace the head of a bad or dead 
human femur. For the femoral heads of the hip joint system, it needs not only to support 
most of the body weight, but also to resist long term wear in service. The wear property of 

the femoral head surface is crucial for the lifetime of the whole hip joint system. The 
topographies of the femoral heads of the hip joint system were obtained by using a phase-

shifting interferometer with a sampling area of 228 203 m . The illustrations in Figure 7 

show different topographies in polar and equatorial regions of worn heads.  
 

 
(a) hip joint (b) femoral head 

Fig. 6. A typical artificial hip joint  

 

 
(a) in the polar region (b) in the equatorial region 

Fig. 7. The typical bearing surfaces of worn metallic femoral heads 
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(a) in the polar region (b) in the equatorial region 

Fig. 8. Rough surfaces of worn metallic femoral heads with cut-off length 0.05
c

mm   

 
(a) in the polar region (b) in the equatorial region 

Fig. 9. Waviness surfaces of worn metallic femoral heads with cut-off length 0.10
f

mm   

 
(a) in the polar region (b) in the equatorial region 

Fig. 10. Form error surfaces of worn metallic femoral heads 

Whatever region the surface is measured, it is part of a ball, and so contains a very smooth 
spherical form. It also has two different kinds of scratches: regular and shallow scratches, 
possibly produced by the manufacturing processing; and random deeper scratches, 
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resulting from functional performance in service. The latter scratches have a wider 
frequency band and higher amplitude, some with arc structures.  

Using only one operation of wavelet filtering, the surface contents, roughness, waviness and 

form error can be detected and recognised. The outcomes of this are that rough, wavy and 

corresponding form error surfaces can be immediately separated and perfectly 

reconstructed within a flexible transmission bank. For instance, in order to indicate this 

transmission flexibility, the cut-off wavelengths of roughness may be selected as 

0.05
c

mm  . The cut-off length of waviness is limited by practical applications, in the above 

examples, 0.10
f

mm   is for the worn heads. From Figures 7-10 , it can be seen that the 

accuracy of the surfaces of these components cover the levels from micrometers to 

nanometers. There are no distortions caused by peaks/pits and scratches and boundaries, 

which can often be found in normal surface filtering.  

The identification of the morphological features of surface topography of orthopaedic joint 

prostheses has been carried out in light of the Wavelet model outlined above. In the first set 

 

 
(a) a raw measured surface (b) a morphological surface 

Fig. 11. The measured and morphological surfaces of a worn ceramic head  

 

 
(a) a raw measured surface (b) a morphological surface 

Fig. 12. The measured and morphological surfaces of a worn metallic head  
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(a) a raw measured surface (b) a morphological surface 

Fig. 13. The measured and morphological surfaces of an unworn DLC head 

 of specimens, measurement datums of ceramic and metallic femoral heads were originally 
obtained by using a phase-shifting interferometer, with a 20X lens. The datum of the 
Diamond Like Carbon (DLC) specimen was obtained by employing a vertical-scanning 
interferometer using a 10X lens. 
Figures 11-13(a) show lapped topographies in both the worn ceramic and metallic femoral 

heads with sampling area 300 240 m . The worn ceramic surfaces look smooth and have 

some deep scratches. The worn metallic surfaces have two different kinds of scratches, 
regular shallow scratches, possibly produced by manufacturing processing and the random 
deeper scratches, resulting from functional performance in service. The latter scratches have 
a wider frequency band and higher amplitude, some with arc structures. The following 
Figure 13a is DLC surface with a morphological structure consisting of relatively large pits.  
Figures 11-13(b) show how the Wavelet model has removed roughness, waviness and form 
deviation, revealing morphological surfaces. As illustrated, the morphological features are 
the dominant factors of the bearing surface structure of the new or wear heads, and 
roughness and waviness do not seem to heavily influence the functional performance of the 
head in service due to their relatively low levels. Examining these different surfaces 
(Figure.11-13), it can be seen that: (1) the components of waveforms of traces resemble each 
other with no relative phase shift in the sampling area; (2) the morphological information on 
the 3D bearing surfaces, conveyed by the wavelet model, is recorded completely and (3) 
with no running-in and running-out lengths. These morphological surfaces therefore have 
excellent refinement accuracy, which is suited to the need for assessment of a range of 
functional properties of the components and study of functional performance of bearing 
surfaces. The information and revealing the presence of these outliers, provided by Wavelet 
analysis can then be fed back to monitor manufacturing processes or study tribology and 
wear; or to study actual contact stress, loaded area and asperity volume, and additionally 
lubrication regimes occurring during the initial stages of wear.   

4. The third generation complex wavelet model for surface feature extraction 

The extraction of morphological features such as linear/curved scratches and plateaux with 
direction/objective properties require more consideration of how wavelets are used, for 
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example: (1) Automotive. Plateau honed surfaces are produced by two machining processes. 
The final surface always includes the rough machining information (deep valleys). (2) 
Biomedical engineering. Surface topographies in different material heads are normally 

combined with morphological features from different wear stage in service, such as regular 
shallow scratches, random deeper scratches, arc scratches. 
Morphological features in surface texture are not always of a large-amplitude and isolated. 

In many cases, morphological features have direction properties; they mix with the 

harmonic roughness and waviness and have similar amplitude scales and frequency bands. 

The first and second generation wavelet methods for extraction of such events in the surface 

texture is less effective at extracting these features. The reason is that the first and second 

generation wavelet models are used in there maximally decimated real discrete wavelet 

transform form, and lack the shift invariance property. This means that small shifts of 

surface signal (step height, linear and curve-like features) can cause large variations in the 

distribution of energy between real wavelet transform coefficients at different scales. The 

directional morphological features from these wavelet techniques are also destroyed by 

edge artifacts. Consequently, under the first two generation wavelet models, the accurate 

extraction of direction/objective morphological features is not efficient 

A new method for extraction of direction/objective morphological features of surfaces has 
been proposed using a biorthogonal dual tree complex wavelet transform (DTCWT) [30,31]. 
It attempts to give affine invariance, with independence of the reference frame for the 
measurements, and also perfect reconstruction, limit redundancy and have efficient 
computation.  

4.1 Theory of DT-CWT  
For the extraction of direction/objective morphological features of surfaces, the DT-CWT 
attempts to give affined invariance, with independence from the reference frame for the 
measurements, and also perfect reconstruction, limit redundancy and efficient 
computation. 
The complex wavelet model is based on the Z-transform theory of linear time invariant 

sampled systems. The main approach of DT-CWT operation is to use two-channel filter 

banks in the real and imaginary parts as shown in Figure 14. A Q-shift filter design 

technique is used to construct the lowpass FIR filter to satisfy a linear-phase and perfect 

reconstruction condition, as is demonstrated below [28-29]: 

 
2 1 2

2

1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) 2
L L L

L L L L

H z H z z H z

H z H z H z H z

 
 
       (34) 

The one-dimensional complex wavelet decomposes a signal  f x  in terms of a complex 

shifted and dilated mother wavelet: 

      , , , ,J l J l j l j l
l Z j J l Z

f t a x d x 
  

    (35) 

where 
, , ,

1r i

J l J l J l
     ,

, , ,
1r i

j l j l j l
     . J denotes the coarsest scale can be calculated by:  2

int log ( / ) 1
c

J x   , where 
c
 is the cut-ff wavelength, and x is the sampling spacing. 

The 
,

r

j l
  and 

,

i

j l
 are real wavelets. 

,J l
a  and 

,j l
d  refer to the smooth coefficients at level J  
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and the detail components of coefficients at the level j , respectively. The complex wavelet 

transform is essentially a combination of two different real wavelet transforms, in one 

dimension, the , , . ,
{ , , , }r i r i

j l j l j l j l
     can be interpreted as a wavelet tight frame with a 

redundancy factor of two. The real and imaginary parts of the complex wavelet transform 

are computed using separate filter bank structures in different trees. 
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Fig. 14. Framework of the dual tree complex wavelet transform (DT-CWT) 

For two dimensions, the decomposition of complex wavelet transform can be represented by 

the dilations and translations of a complex scaling function and six complex wavelet 

functions:  

      1 2 , 1 2 , , 1 2,0
2 2

, , ,b b

J k j k j kj k
b B j J

k Z k Z

f s s a s s d s s 
  

    (36) 

where,  15 , 45 , 75B       for six subbands’ directions. For the separable two dimensional 

complex wavelet transform based on one dimensional complex ,  , we have [28-30]:  

 

15 15

1 2 1 2

45 45
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75 75
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s s s s

s s s s

s s s s

     
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     

 

 

 

      
 (37) 

where ,  is the complex conjugate of ,  . Similar to the multi-resolution analysis of real 

wavelets, the above decomposition can be summarized as a decomposition of 2L space into a 

series of subspaces  1 2
, , , ,

J J
W W W V , here 

j
W  and 

j
V  respectively denote the wavelet 

bandpass subspace and the scale lowpass subspace at level j . They satisfy [28-30]: 

 
1 1

  ,    ,
j j j j j j

V V V W W W j j        (38) 
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4.2 Transmission characteristics of DT-CWT 
To extract different frequency components such as the roughness, waviness, form and form 

error accurately, the surface filter requires a near ideal transmission characteristics which 

include the zero or linear phase transmission and a ‘steep transmission curve’ amplitude 

transmission.  

4.2.1 Phase transmission characteristics 

A zero phase filter tends to preserve the shape of the surface components in the pass band 

region of the filter. This is very important for applications, as surface topographies are often 

composed of a wide range of frequency components. Zero or linear phase transmission 

ensures that the filtering results have no phase distortion and ensures the proper 

registration of different frequency components that make up these features. A digital filter 

has zero phase when its frequency response ( )H   is a real function so that *( ) ( )H H  . 

From the symmetry property of the Fourier transform and considering that only real 

impulse response ( )h n  is applied to real input to obtain real output, the necessary and 

sufficient condition for a zero phase filter is: ( ) ( )h n h n  . 

 

 
(a) Odd position impulse response (b) Even position impulse response 

Fig. 15. DT-CWT impulse response with 2 levels of decomposition 

The difference between zero phase and linear phase property of filter lies only in the shift of 
the co-ordinate system origin which has no practical significance. From Eq.8 we know that to 
get zero or linear phase property, the filter impulse response or the filter weighting function 
should be symmetric. Figure 15 shows the impulse response of a DT-CWT low pass and high 
pass filter. From the figures it is clear that both the odd position and the even position impulse 
response have symmetrical shape, and the odd and even position impulse responses are very 
similar. For the real DWT filter, the odd and even position impulse responses are different. 
Therefore, the DT-CWT can produce the shift-invariance property with zero/linear phase, 
whereas the DWT can not produce the shift-invariance property [31]. 

4.2.2 Amplitude transmission characteristics 
For surface analysis, filters need a ‘steep transmission curve’, which requires that the low-
pass filter with a steep cut-off such that a negligible amount of higher frequency information 
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passes and vice versa for high-pass filter. The “steep transmission curve” property is good 
for separation of different frequency components with a sharp attenuation at the cut-off 
wavelength, which leads to more precise separation of roughness, waviness and form 
components with no aliasing, and leads to the good feature location property. 
The Gaussian filter is designed to have 50% transmission at the cutoff frequency. The high 
pass filter and low pass filter have complementary relations, which allow the calculation of 
waviness by simply subtracting the roughness from the form removed raw profile. 
The DT-CWT also has very good amplitude transmission characteristics compared to the 
Gaussian filter. Figure 16 shows the highpass and lowpass amplitude transmission 
characteristics and the subband transmission characteristics of the first four decomposition 
levels. Figure 16(a) is the inverse transform of the level one DT-CWT transform of an impulse 
signal, and shows that the highpass and lowpass filter are intersected at the normalised 
frequency (frequency divided by the maximum frequency so it is normailised to the range 
(0,1)) 0.5 with 50% amplitude transmission. Accordingly, for an original input bandpass signal, 
similar to the Gaussian filter, 50% transmission at the cutoff frequency allows the calculation of 
waviness by simply subtracting the roughness from the raw profile. The DT-CWT has the 
“steep transmission curve” property so that it can separate out different frequency 
components effectively. Figure 16(b) shows the transmission characteristics of each of the four 
subbands levels from the DT-CWT decomposition. This shows that every adjacent subband 
has 50% transmission rate at the intersection frequency [31]. 
 

 
(a) Transmission characteristics (b) Subband transmission characteristics 

Fig. 16. Transmission characteristics of a DT-CWT (using normalized frequency) 

Figure 17 compares the transmission characteristics of the DT-CWT and ISO Standard 
Gaussian filter using the same cutoff frequency. The continuous lines are the results from 
the DT-CWT and the dashed lines are the results from the Gaussian filter. Although there 
exists some very little and negligible ripples in the pass band, it is clear that the DT-CWT 
always have a steeper transmission curve than the Gaussian filter near the cutoff frequency. 
Therefore the DT-CWT has a better frequency resolution than the Gaussian filter. 
Considering both the zero/linear phase property and the ‘steep transmission curve’ of the 
amplitude transmission characteristic, the DT-CWTs are suitable for the separation of 
different surface topographical features. Besides the separation of linear/curve-like features, 
the DT-CWT is also very good for the separation of roughness, waviness, form and form 
error such surface frequency components. 
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(a) normalized cutoff frequency 0.5 (b) normalized cutoff frequency 0.25 

 
(c) normalized cutoff frequency 0.125 (d) normalized cutoff frequency 0.0625 

Fig. 17. Comparison of the high pass and low pass transmission characteristics of the CWT 
and the Gaussian filter (continuous line: DT-CWT filter; dashed line: Gaussian filter) 

4.2.3 Shift-invariant property 
A linear feature and a circular feature have been simulated, as shown in Figure 18 and 
Figure 19. Figure 18(a) is a simulated 3D groove feature that is neither parallel nor vertical to 
the measurement direction. Figure 18(b) and (c) shows the results processed by a complex 
wavelet transform and a real wavelet transform respectively. From left to right in Figure 4.2, 
the decomposed components of the input signal are reconstructed by the complex wavelet 
coefficients at scalar level 1, 2 and 3 and the scaling function coefficients at scalar level 3 
correspondingly. From the results, it can be seen that in each scale, the extracted feature 
from the input signal using the complex wavelet has a very smooth edge along the groove 
and the same amplitude energy distribution in every position. Comparison with Figure 
18(b), the extracted features using the real wavelet as shown in Figure 18(c) have a 
significant shift aliasing, with irregular edges along the groove feature [28-31]. 
From new the wavelet model shown in the above section, it can be seen that the dual tree 
complex wavelet offers six bandpass components of complex coefficients at each level, 

which are strongly oriented at angles of 015 , 045  and 045 . The special point of this kind 

of complex wavelet is that it provides a true directional selectivity for curve-like features. 
Figure 19(a) is a simulated 3D circular valley feature, and Figure 19(b) and (c) 6 shows the 
outcomes as reconstructed from complex wavelet and real wavelet coefficients respectively 
at scalar levels 1, 2 and 3. 
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(a) A simulated groove feature 

 
(b) Wavelets (level 1) Wavelets (level 2) Wavelets (level 3) Scaling (level 3) 

 
(c) Wavelets (level 1) Wavelets (level 2) Wavelets (level 3) Scaling (level 3) 

Fig. 18. Decomposition by using the real wavelet (UP: DTCWT, Down: Real DWT) 

 

(a) A simulated 3D circular valley feature 

 
(b) Wavelets (level 1) Wavelets (level 2) Wavelets (level 3) Scaling (level 3) 

 
(c) Wavelets (level 1) Wavelets (level 2) Wavelets (level 3) Scaling (level 3) 

Fig. 19. Decomposition by using the real wavelet (UP: DTCWT, Down: Real DWT) 
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4.3 Case studies 
A group of typical examples of surfaces from engineering manufacture have been selected 
to show the metrological characteristics of the DT-CWT.  
Figure 20 shows a typical peripheral milling surface profile filtered by the DT-CWT and the 
Gaussian filter with different cutoff wavelengths (0.64mm, 2.56mm). Both the DT-CWT and 
the Gaussian filter can extract the roughness mean line very well with no phase distortion. 
But the DT-CWT filtering results are smoother than the Gaussian filtering results, which 
shows that the DT-CWT filter has a steeper amplitude transmission characteristic than the 
Gaussian filter. Thus the DT-CWT has a better ability to separate different frequency 
components. Figure 21 and Figure 22 are grinding and turning surface profiles respectively. 
From the filtering results they also illustrate the good transmission characteristics including 
phase and amplitude properties of the DT-CWT.  
The metrological characteristics of the DT-CWT investigated above can also be extended to 
areal surface analysis. Figure 23 is a worn hip joint prosthesis surface, the measured raw  
 

 
(a) cutoff 0.64mm (b) cutoff 2.56m 

Fig. 20. Milling surface profile filtered by DT-CWT and Gaussian filter 

 

 
(a) cutoff 0.16mm (b) cutoff 0.64mm 

Fig. 21. Grinding surface profile filtered by DT-CWT and Gaussian 
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data includes waviness and form/form error that was introduced by designed shape and 
measurement error. By using DT-CWT the form, waviness and roughness have been 
successfully extracted and separated. It is also very clear that the roughness and waviness 
surfaces have no distortion. 
 

 
(a) cutoff 0.16mm (b) cutoff 0.64mm 

Fig. 22. Turning surface profile filtered by DT-CWT and Gaussian filter  

 
(a) Measured raw data (b) Extracted Form 

 
(c) Extracted Waviness (d) Extracted Roughness 

Fig. 23. Separation of the different surface components  
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The above research has shown that shift-invariance is a very important property. In general, 
the shift-invariance is independent of the reference frame for a surface measurement. In 
particular it is important for many approximation and filtering methods.  
To verify the special properties of the third generation wavelet model, a group of typical 
examples of engineering and bioengineering surfaces are shown in Figures 4.7a ~ 4.10a, in 
which some significant features have been selected. These will be used to demonstrate the 
performance of the dual tree complex wavelet transform. 
The first example shows two measured surface from different positions of the same worn 
hip-joint. Figure 24(a) (b) are raw measured surfaces, including the form, form deviation, 
waviness and roughness components. Figure 24(c) and (d) are the reconstroned feature 
surface from (a) and (b) respectively. the deep valleys are reconstructed using complex 
wavelets in which not only the form and some harmonic components are removed very 
 

effectively, but also the shape of the scratches are retained very well. There is no affine 
aliasing, no new artifacts and the edge of the deep vallys are preserved perfectly. The 
filtering results help to evaluate the worn rate of the hip joint at different position and 
further can help to improve the design. 
 

 
(a) slightly worn (b) heavily worn 

 
(c) feature surface of (d) feature surface of 

Fig. 24. Cylinder surface analysis using the complex wavelet 

www.intechopen.com



Progress in Molecular and Environmental Bioengineering  
– From Analysis and Modeling to Technology Applications 

 

72 

The following examples in Figure 25(a) to Figure 27(a) are a series of surfaces from different 
material femoral heads. Figure 25(a) shows a lapped topography surface in a worn metallic 
femoral heads. The worn metallic surfaces have two different kinds of scratches, regular 
shallow scratches, possibly produced by manufacturing processing and the random deeper 
scratches, resulting from functional performance in service. The latter scratches have a 
wider frequency band and higher amplitude, some with arc structures. Figure 26(a) is a 
surface topography from a diamond-like-carbon head with a morphological structure 
consisting of relatively large pits and a deep scratch. Figure 27(a) is a new ceramic surface 
which looks smooth and has some shorter and deeper scratches. 
Looking at these surfaces, it must be noted that the most important factors that affect the life of 
the femoral head are the isolated peaks/pits and scratches rather than the nano-scalar 
roughness. From the function assessment point of view, the isolated peaks/pits and scratches 
will significantly interfere with the wear mechanics and tribological properties[6-9,27].  
Using the complex wavelet, all the isolated features are extracted precisely as shown in 
Figure 25(b) to Figure 27(b), and the shape of the features are reconstructed very well and all 
the features’ edges are preserve perfectly. 
 

 
(a) A raw measured surface (b) An extracted feature surface 

Fig. 25. Worn metallic surface analysis using the complex wavelet  

 
 

(a) A raw measured surface (b) An extracted feature surface 

Fig. 26. Diamond like carbon surface analysis using the complex wavelet  
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(a) A raw measured surface (b) An extracted feature surface 

Fig. 27. Ceramic surface analysis using the complex wavelet   

5. Complex ridgelet transform 

Wavelets have the good performance for piecewise smooth functions in one dimension, i.e., 

fully efficient at representing point-like isolated morphological features. Unfortunately, such 

is not the case for higher dimensional features because wavelets ignore the geometric 

properties of objects. So the function of wavelet techniques for extracting line/curve features 

is limited. 

To extend the directional sensitivity for wavelet analysis, an approach based on a 

combination of the wavelet and Radon transform is used. This was initially developed for 

edge detection and compression in the field of signal processing.  

Ridgelets were introduced by Candès and Donoho to deal effectively with line singularities 

by mapping a line singularity into a point singularity through the Radon transform, and 

then using the wavelet transform on each projection in the Radon transform domain [32-34]. 

The weakness of the traditional ridgelets transform is the lack of shift invariance due to the 

real DWT used.  

5.1 Complex ridgelet transform 

A bivariate complex ridgelet 
, ,

c

a b   in 2R  can be defined as [32-37]: 

     1 2

, , 1 2
cos sinc c

a b
x a x x b a       (39) 

Here, 0a   is a scale parameter,   is an orientation parameter, and b  is a location scalar 

parameter. This function is constant along lines
1 2
cos sinx x const   , while its transverse 

is a complex wavelet 1c r i     . Here, r and i are themselves real wavelets. If the 

real and imaginary part of complex wavelet can be viewed as two ‘fat’ points, then the 

complex ridgelet can be interpreted as two ‘fat’ lines so that it is specially adaptive to 

analysis the line ridge/valleys of surface topography. Figure 28 shows a real ridgelet 

function. 

The continuous Complex Ridgelet Transform (CRIT) for an integrable bivariate function    2 2f x L R  is defined as: 
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      , ,
, , c

f a b
a b x f x dx     (40) 

The reconstruction formula is given as: 

      2

, , 30 0
, ,

4
c

f a b

da d
f x a b x db

a




  
 
     (41) 

Point and line singularities are related by the Radon transform. By applying the 1-D DT-
CWT on the projections of the Radon transform the complex ridgelet transform can be 
rewritten as: 

       1 2, , , c

f f
a b R t a t b a dt      (42) 

The Radon transform is denoted as: 

      1 2 1 2 1 2
, , cos sin

f
R t f x x x x t dx dx       (43) 

Where,   is the Dirac delta function. 

 

 

Fig. 28. A typical ridgelet function 
, ,

( , )
a b

x y  

5.2 Digital complex ridgelet transform 

From above equations, one can see that the basic strategy for computing the CRIT is to first 

calculate the Radon transform  ,
f

R t , then to calculate the 1D-CWT of the projections  ,  
f

R   . For the calculation of the Radon transform, numerous digital methods have been 

devised. However, most of them were not designed to be invertible transforms for digital 

surfaces or images. Alternatively, the finite Radon transform (FRAT) theory provided an 

interesting solution for finite length signals. According to the practical requirements of 

surface characterisation, we use the digital form of the CRIT based on the FRAT and DT-

CWT. 
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5.2.1 Finite Radon Transform [34,38-39] 

The FRAT is defined as summations of surface pixels over a certain set of lines. These lines 

are defined by a finite geometry in a similar way as the lines for the continuous Radon 

transform in Euclidean geometry. Denote the group 2

p
G Z  to be the Cartesian product 

p p
Z Z  of two exemplars from the cyclic group  0,1, , 1

p
Z p   with addition modulo p , 

where p  is a prime number, and let  0,1, ,N p  . 

This group has 1p   nontrivial subgroups 

 
    
  

, ;     mod ,    0

,0 ;   ,

i

p p

H k l G li k p i p

H k G k Z

    
    (44) 

The cosets of the factor group 
i

G H  are indexed by 
p

j Z in the following way 

 
    
  

, ;     mod ,    0

, ;   .

j

i

j

p p

H k l G li j k p i p

H k j G k Z

     
    (45) 

The Radon projection of a function f  on G  is given by 

       1 1

0 0

1
, , ,           ,

p p
j

i i j i p
k l

f H f k l k l i N j Z
p

  

 
     (46) 

Here, the function 
i

  is a variance of the factor mapping of G  on 
i

G H . We have 

 
   
 

,   mod ,    0

,

i

p

k l k li p i p

k l l




   
  (47) 

For surface topography or for an image, the coset j

i
H denotes the set of points that make up 

a line on the lattice G . Particularly 
0

jH  and j

p
H  denote the horizontal and vertical lines 

respectively. 
i

  denotes the set of lines that go through a point  ,k l G . As in the 

Euclidean geometry, the line j

i
H  on the affine plane G  is uniquely represented by its slope 

i N  and its intercept 
p

j Z . H  has 2p  points, 2p p  lines, every point  ,k l G  lies on 

1p   lines, every line contains p  points. Moreover, any two distinct points on G  lie on just 

one line. For any given slope i N , there are p  parallel lines to provide a complete cover of 

the plane G . 
From the finite geometry property, for zero-average functions, the forward and inverse 
formula can be written as: 

 

 
 

   
 

    
 

    

 
 

   

,
,

, , , ,
,

,

1 1 1
,    , ,    ,

1 1
,  ,  

1
, , ,

i
H Hk l G

k l H

i
i j k l i j k l

k l H

k l G

j j
j i i
i

ji i
i

F f f k l f k l k l f
p p p

f VF F i j f k l
pp

f k l f k l f k l
p

 

 


    

  

    

   

   

 
  


 (48)  
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Where :
H

j
i

G R   is the Dirac delta function, defined as:  

    1     ,
,

0     elsewhere

j

i

H
j
i

k l H
k l     

The inverse FRAT algorithm has the same structure and is symmetric with the algorithm of 
the forward FRAT.  

5.2.2 Digital Ridgelet Transform 
The complex wavelet basis is defined as: 

   ,    ,    i

m p
w m Z i N   (49) 

The digital FRIT can be integrated as: 

            1 1
, , , ,i i i

f i m m m
H Hj Z j Z

j j
p pi i

CFRIT i m f w w j f f w j
p p
 

 
      (50) 

Therefore the basis functions of the discrete complex ridgelet transform can be written as 

    ,

1 i

i m m
Hj Z

j
p i

w j
p

 


   (51) 

Here, although the 
1

H
j
ip

       is not an orthonormal system, if we take the 1p   

 

orthonormal bases for  2

p
l Z ,   ,    i

m p
w m Z  with  

0

iw const , the system    , 0
: 0, , ; 1, , 1

i m
i p m p       is an orthonormal base for  2

p
l Z  where    0

, 1 , ,k l p k l G    .  
Figure 29 gives the basic procedure when using the proposed CFRIT to analysis surface.  

5.3 Case studies 
Figure 30 shows 16 shifted versions of the image (at the top) and their subspace 

reconstructed components in turn from the coefficients at levels 
0

4j j   using the CFRIT 

(left) and real FRIT (right). In order to see the effects clearly, only the centre of the profiles of 
these images is shown. Each shift is displaced down a little to give a waterfall style display. 
The output of CFRIT is the modulus of the complex coefficients. Note that summing these 
components the input image can be reconstructed perfectly. Good shift invariance is seen 
from the fact that the shape and amplitude of each of the reconstructed components by 
CFRIT hardly varies as the input is shifted. In contrast, the reconstructed components using 
FRIT vary considerable with each shift. 
Our next test shows the good performance of CFRIT for denoising an image with line 
singularities. We consider an artificial image with a deep scratch that is contaminated by an 

additive zero-mean Gaussian white noise of variance 2 . The denoising includes the 

following steps: (1) Transform the noisy image using CFRIT; (2) Hard-thresholding of the 
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Fig. 29. Directional feature extraction 

 

 

Fig. 30. The reconstructed components (centre profiles) at levels 1 to 4 of 16 shifted image 
with a stepped edge using the CFRIT (left) and real FRIT (right). Each shift is displaced 
down a little to give a waterfall style of display. 
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Fig. 31. Denoising an image with line singularities using the DWT (upper right), DT-CWT 
(lower left), and CFRIT (lower right). The upper left image is a noisy image.  

 

 

Fig. 32. Feature extraction of hone surface using the DWT (upper right), FRIT (lower left), 
and CFRIT (lower right). The upper left image is the original data (form removed). 
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coefficients using the universal threshold 2 logT N  (where N  is the number of pixels). 

(3) Reconstructing the thresholded coefficients. For comparison, the same uniform threshold 

value is also applied to the DWT and DT-CWT based algorithms. 
It can be seen from Figure 31 that the CFRIT is effective in recovering straight edges, as well 
as in terms of the signal to noise ratio (SNR). The CFRIT reconstruction does not contain the 
undesirable artefacts along edge that one finds in the wavelet reconstruction. The simple 
thresholding scheme for CFRIT is effective in denoising the piecewise smooth image with 
line singularities. This is because the linear singularities are represented by a few significant 
coefficients in the CFRIT domain, whereas random noisy singularities are unlikely to 
produce the similar amplitude coefficients. The DT-CWT is relatively superior to the DWT 
in reducing the artefacts due to its shift invariance and good directional selectively. From 
the view of the hybrid approach, the CFRIT just combines the multiresolution analysis of 
DT-CWT with the anisotropy of the Radon transform.  
Figure 32 shows a honed surface from an engine cylinder. As is well know, the most 

important features that influence the performance of cylinders are the deep scratches, the 

distribution and amplitude will considerably influence the flow of gas or air in the pressure 

balance of an engine. It can be seen that the DWT still exhibits numerical embedded 

blemishes (i.e., pits/peaks) in the extracted honed surface. Setting higher thresholds to 

remove these would cause even more of the intrinsic linear scratches to be destroyed or 

missed. In addition, the non-smooth aliasing along the scratches is clearly visible. In the 

FRIT result, although the pits/peaks have been removed efficiently, the edges of the linear 

scratches are not very smooth with aliasing due to the lack of the shift invariance property. 

In the CFRIT result, not only are the peaks/pits in the honed surface removed effectively, 

but also the shapes of the extracted scratches are well retained. There is also no affine 

aliasing, and the edges of the deep valleys are preserved perfectly. 

 

 

 
(a) surface topography (b) feature extracted DWT (c)surface extracted by CFRIT 

Fig. 33. Comparison of the general wavelet, FRIT and block FRIT thresholding for the 
feature extraction on a metallic hip joint head surface with line and curve features 

To compare the FRIT with the general wavelet thresholding for line and curve feature 
extraction, the above form removed surface was shown in Figure 33(a) as a grey topview 
image. The feature extraction results of the general wavelet thresholding, CFRIT are shown in 
Figures 33(b) and (c) respectively. Comparing the results of the general wavelet thresholding 
and the CFRIT, the features from the wavelet thresholding have blur margin and are 
discontinuous in some change points while those from CFRIT are smooth and continuous. 
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6. Conclusions 

In this chapter, the early families of orthogonal wavelets and the three generations of 

biorthogonal wavelet transforms, developed later, for the extraction of morphological 

structures from micro/nano scalar surfaces in the field of bioengineering, have been 

introduced. The chapter’s aim is to create a “tool box” of wavelet techniques capable of 

complex analysis and interpretation of surface topography data; leading to the extraction of 

functionally critical morphological features from micro/nano scalar surfaces of orthopaedic 

joints for in-vitro and clinically retrieved applications.  

The orthogonal wavelets have been used for analysis of multi-scalar surfaces in engineering 

in which the phase distortions were neglected. The main advantages of biorthogonal 

wavelets are that they are projections (into an associated wavelet scale space) with linear 

phase (leading to real outputs without frequency aliasing and phase distortion) and a 

traceable location property).  

The first generation biorthogonal wavelet transform overcame the phase distortion 

disadvantage of orthogonal wavelet transform, thus were suitable for surface filtering. The 

first generation model was successfully applied in de-noising areal surface stylus 

instruments. 

The second generation model was built using the lifting scheme, which does not use the 

Fourier transform as a prerequisite, and can be implemented in three easy stages namely, 

splitting, prediction and updating. The models for second generation wavelets have helped 

the Bio-engineering industry in successful separation, extraction and reconstruction of 

isolated morphological features. For example, large peaks/pits in hip joint heads. The 

accuracy of the bearing surfaces of these medical components is from micrometers to 

nanometers. The reconstruction of morphological features has helped friction, contact stress 

and load area (which are evident during the initial stages of wear) to be more accurately 

assessed. 

The first/second generation wavelet models were built by the real discrete wavelet 

transform that is less effective in the extraction of certain morphological features, such as 

linear/curved scratches and plateaux with direction/objective properties in micro-

structured surfaces, for example, plateau honed surface, steel and stainless steel sheets, bio-

engineered surfaces. Real discrete wavelet transforms have a lack of shift-invariance and 

have less sensitivity to direction and anisotropy, as a result, they have good performance at 

representing sparse zero-dimensional or point singularities, but not higher dimensional 

objects such as linear/curved scratches. 

The third generation wavelet models are based on novel mathematics – the Complex 

Wavelet Transform (CWT). It is then proposed to explore in detail two types of tools: 1) The 

DT-CWT for shift-invariant extraction of point-like morphological features; and 2) The 

Complex Finite Ridglet transform (CFRIT) for linear/curve morphological features.  
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