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Foreword

Wind power is a rapidly growing source of renewable energy in many parts
of the globe. Building wind farms and maintaining turbine assets also pro-
vide numerous job opportunities. As a result, the wind energy sector plays
an increasingly important role in the new economy. While being scaled up,
efficiency and reliability become the key to making wind energy competitive.
With the arrival of the data science and machine learning era, a lot of discus-
sions are being made in the related research community and wind industry,
contemplating strategies to take full advantage of the potentials and oppor-
tunities unleashed by the large amount of data to address the efficiency and
reliability challenges.

Data Science for Wind Energy arrives at the right time, becoming one
of the first dedicated volumes to bridge the gap, and provides expositions of
relevant data science methods and abundant case studies, tailored to address
research and practical challenges in wind energy applications.

This book of eleven technical chapters is divided into three parts, unified
by a general data science formulation presented in Chapter 1. The overar-
ching formulation entails the modeling and solution of a set of probability
density functions, conditional or otherwise, not only to account for the mean
estimation or prediction, but also to allow for uncertainty quantification. The
first part of the book embodies the modeling of a spatio-temporal random
wind field and uses that as a springboard for better forecasting. Chapter 2
recaps the existing methods for modeling data in a univariate time series,
and Chapters 3 and 4 bring to the readers many new data science concepts
and methods. The asymmetry quantification and asymmetric spatio-temporal
modeling introduced in Chapter 3 and the regime-switching methods discussed
in Chapter 4 are particularly interesting. The second part of the book con-
centrates on the system-level, power production-oriented turbine performance
assessment. This part starts off with a power curve analysis (Chapter 5), fol-
lowed by adding physically informed constraints to power curve modeling for
devising productive efficiency metrics (Chapter 6). Chapters 7 and 8 further
discuss, respectively, the circumstances when a turbine’s performance can be
enhanced by a purposeful action or diminished due to the wake effect. The
third part of the book focuses on reliability management and load analysis
for wind turbines, nested within an integrative framework combining models,
simulations and data (Chapter 9). The load analysis for reliability assessment
involves heavily statistical sampling techniques, as detailed in Chapters 10 and

xv



xvi � Foreword

11, and those methods are useful to general reliability engineering purposes—
my own research on electrical power system reliability has been benefited by
these data science methodologies. I am pleased to see the anomaly detection
and fault diagnosis methods presented in Chapter 12, borrowing experiences
and successes from other industries for the benefit of wind energy practice.

One of the reasons I am fond of this book is the author’s diligence and
generosity in collecting, arranging, and releasing ten important wind farm
datasets, more than 150 megabytes in volume, plus another 440 megabytes
of simulated data used in reliability verification. On top of that, the author
provides computer codes for all eleven technical chapters, most of them in R

while some are in MATLAB R©, either for reproducing figures and tables in the
book or implementing some major algorithm. I am sure that those data and
codes will immensely help both academic researchers and practitioners.

To appreciate a book, it is helpful to understand the author. I had the good
fortune to get to know Dr. Yu Ding shortly after he joined Texas A&M faculty
in 2001. There was a university-wide event celebrating the 125th anniversary
of Texas A&M University. Yu and I happened to sit next to each other at the
same table, and at that moment, I had been with the university for 23 years,
while Yu had been for about 25 days. In the ensuing years, Yu’s path and mine
have crossed often. We served on the committees of each other’s students, co-
authored papers and co-directed research projects, and because of these, I am
reasonably familiar with most of the materials presented in this book. I have
witnessed Yu’s quick ascent to a leading and authoritative researcher on the
intersection of data science and wind energy. Yu’s unique multidisciplinary
training and penetrating insights allow him and his research team to produce
many influential works, contributing to methodology development and ben-
efiting practices. Yu’s work on turbine performance assessment in particular
leads to large-scale fleet-wide implementations, rendering multi-million-dollar
extra revenues. Not surprisingly, Yu was recognized with a Research Impact
Award by Texas A&M College of Engineering in May 2018 “for innovations
in data and quality science impacting the wind energy industry.”

It is thus a great pleasure for me to introduce this unique and timely book
and a dear colleague to the academia and practitioners who want to know
more about data science for wind energy.

Chanan Singh
Regents Professor and Irma Runyon Chair Professor
Electrical & Computer Engineering Department
Texas A&M University, College Station, Texas

June 2019



Preface

All models are wrong but some are useful.

— George E. P. Box

My introduction to the field of wind energy started from a phone call taking
place sometime in 2004. Dr. Jiong Tang of the University of Connecticut called
and asked if I would be interested in tackling some wind turbine reliability
problems.

I got to know Jiong when we were both mechanical engineering gradu-
ate students at the Pennsylvania State University. I later left Penn State for
my doctoral study at the University of Michigan. My doctoral research was
oriented towards a specialty area of data science—the quality science, which
employs and develops statistical models and methods for quality improvement
purpose. Prior to that phone call, my quality science applications were exclu-
sively in manufacturing. I reminded Jiong that I knew almost nothing about
wind turbines and wondered how I could be of any help. Jiong believed that
data available from turbine operations had not been taken full advantage of
and thought my data science expertise could be valuable. I was intrigued by
the research challenges and decided to jump at the opportunity.

The first several years of my wind energy research, however, involved lit-
tle data. Although the industry had gathered a large amount of operational
data through the supervisory control and data acquisition systems of turbines,
we had a hard time persuading any turbine manufacturer or owner/opera-
tor to share their data. Our luck turned around a few years later, after we
aligned ourselves with national labs and several wind companies. Through
the academia-government-industry partnership, my research group was able
to collect over 100 gigabytes wind turbine testing data and wind farm oper-
ational data. Working with the vast amount of real-world data enabled me
to build a rewarding career that developed data science methods to address
wind energy challenges and it is still going strong.

While working in the wind energy area, I benefited from having a mechan-
ical engineering background. The majority of wind energy research is carried
out, for understandable reasons, by domain experts in aerospace, mechanical,
civil, or electrical engineering. My engineering training allows me to commu-
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nicate with domain experts with ease. Maybe this is why Jiong thought of
involving me in his wind turbine project in the first place.

As I got involved more and more in the field of wind energy, I observed a
disconnection between this typical engineering field and the emerging field of
data science. Wind engineers or wind engineering researchers routinely handle
data, but most of the domain experts are not exposed to systematic data
science training while in schools because the engineering curricula, until very
recently, offered only basic engineering statistics. This did not keep pace with
the fast development of new ideas and methods introduced by data science
in the past twenty years. On the other hand, wind engineering, like most
other substantial engineering fields, finds a relatively small number of trained
data scientists from computer science or statistics disciplines working in the
area, probably because the entry barrier associated with mastering domain
knowledge appears intimidating. This may explain that while there are plenty
of generic data science and machine learning books, books that can bridge the
two distinctive fields and offer specific and sophisticated data science solutions
to wind energy problems are, in fact, scarce.

I had been thinking of writing a book filling precisely this void. I came
to realize in early 2017 that I may have enough materials when I was leading
a research team and preparing a National Science Foundation proposal to
its BIG DATA program. In fact, the structure of this book closely mirrors
the structure of that proposal, as it embodies three main parts discussing,
respectively, wind field analysis, wind turbine performance analysis, and wind
turbine load and reliability management. The 2017 NSF proposal was funded
at the end of the summer, and, I decided to submit the book proposal to
Chapman & Hall/CRC Press later in 2017.

I am grateful for the opportunities and privilege to work with many tal-
ented individuals on a problem of national importance. A few of those indi-
viduals played pivotal roles in my wind energy research career. The first is
obviously Dr. Jiong Tang—without him, I wouldn’t be writing this preface.
Then, there is Dr. Eunshin Byon, a former Ph.D. student of mine and now
a faculty member at the University of Michigan. Eunshin was the first stu-
dent who worked with me on wind energy research. She came to my group
during that aforementioned “data-light” period. Understandably, it was a dif-
ficult time for those of us who work with data. Eunshin was instrumental in
sustaining our research at that time, finding data through public sources and
testing innovative ideas that lay the foundation for the subsequent collabo-
rations with several industry members. I am delighted to see that Eunshin
becomes a recognized expert herself in the intersecting area of data science
and wind energy.

I appreciate immensely Mr. Brian Hayes, Executive Vice President of EDP
Renewables, North America, for his vision in starting the Texas A&M-EDP
Renewables partnership and his generous support in funding our research
and sharing their wind farm operational data. I am deeply grateful to Dr.
Shuangwen (Shawn) Sheng at the National Renewable Energy Laboratory



Preface � xix

for engaging my research team at the national or international level and for
countless hours of stimulating discussions that drive my research to new levels.
Of course, I am indebted to my Ph.D. advisor, Dr. Jianjun Shi, then at the
University of Michigan and now with the Georgia Institute of Technology,
for bringing me to the data science world and for teaching me how to be an
independent researcher.

Last but not least, I would like to thank my wife, Ying Li, and our daugh-
ter, Alexandra, for their love and support.

Yu Ding
Texas A&M University
College Station, Texas

June 2019
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C H A P T E R 1

Introduction

W
ind energy has been used as far back as Roman Egypt [51] (or even ear-
lier [194]). The well-preserved windmills that dotted the Dutch coast-

line or along the Rhine River have become symbols of usage before the modern
age. Although outdated, those windmills are top tourist attractions nowadays.
As widespread as those windmills were, wind energy played a rather minor role
in commercial electricity generation until the end of the last century. In 2000,
the wind power generation in the United States was 5.59 billion kilowatt-hours
(kWh), accounting for about 0.15% of the total electricity generated by the
US in that year [219]. In the past decade, however, wind energy witnessed
a rapid development and deployment. By the end of 2016, the annual wind
power production increased 40-fold relative to the amount of wind power in
2000, to nearly 227 billion kWh, and accounted for 5.6% of the total electricity
generation in that year [220]. The US Department of Energy even contem-
plates scenarios in which wind may generate 10% of the nation’s electricity
by 2020, 20% by 2030, and 35% by 2050 [217].

Remarkable progress has been made in wind turbine technology, which en-
ables the design and installation of larger turbines and allows wind farms to
be built at locations where wind is more intermittent and maintenance equip-
ment is less accessible. All these brought new challenges to operational relia-
bility. In an effort to maintain high reliability, with the help of advancement
in micro-electronics, modern wind farms are equipped with a large number
and variety of sensors, including, at the turbine level, anemometers, tachome-
ters, accelerometers, thermometers, strain sensors, and power meters, and at
the farm level, anemometers, vanes, sonars, thermometers, humidity meters,
pressure meters, among others. These sensors churn out a lot of data at a
fast pace, presenting unprecedented opportunities for data science to play a
crucial role in addressing technical challenges in wind energy.

Like solar energy, wind energy faces an intermittent nature of its source.
People commonly refer to wind and solar energy as variable renewable energy
sources. The intermittency makes wind and solar power different from most
other types of energy, even hydropower, as reservoirs built for hydropower

1
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plants smooth out the impact of irregularity and variability in precipitation
on hydropower production.

The intermittency in wind presents a number of challenges to wind energy
operations. The non-steady mechanical load yields excessive wear in a tur-
bine’s drive train, especially the gearbox and bearings, and makes the wind
turbines prone to fatigue failures—wind turbines operate just like a car be-
ing driven in a busy city with plenty of traffic lights and rarely any freeway.
Meanwhile, the randomness in wind power output makes it difficult to accom-
modate a substantial level of wind power in the power grid. All these lead to
an increased cost and a decreased market competitiveness for wind energy. No
wonder that as of 2016, the federal production tax credit (PTC) for wind was
still valued at 23 cents per kWh, roughly 30% of the levelized cost of energy
for onshore wind. Undoubtedly, this tax credit considerably boosts the mar-
ketability of wind energy, but without it, the competitiveness of wind energy
will be called into question.

As data continues to be accumulated, data science innovations, providing
profound understanding of wind stochasticity and enabling the design of coun-
termeasures, have the potential of generating ground-breaking advancements
in the wind industry. The commercial competitiveness of wind energy can
benefit a great deal from a good understanding of its production reliability,
which is affected by the unpredictability of wind and the productivity of wind
turbines. The latter, furthermore, depends on a turbine’s ability to convert
wind into power during its operation and the availability or reliability of wind
turbines. Data science solutions are needed in all of these aspects.

1.1 WIND ENERGY BACKGROUND
The focus of this book is data analytics at the wind turbine and wind farm
level. A thorough coverage of such a scope entails a wide variety of data and a
broad array of research issues. While data analytics at the power grid level is
also an important part of wind energy research, the author’s research has yet
to be extended to that area. Hence, the scope of this book does not include
data analytics at the power grid level. Nevertheless, a great deal of the turbine-
level and farm-level data analytics is related to grid-level data analytics. For
example, power predictions have a significant impact on grid integration.

The wind turbines considered here are the utility-scale, horizontal axis
turbines. As illustrated in Fig. 1.1, a turbine, comprising thousands of parts,
has three main, visible components: the blades, the nacelle, and the tower.
The drive train and control system, including the gearbox and the generator,
are inside the nacelle. While the vast majority of horizontal axis wind turbines
use a gearbox to speed up the rotor speed inside the generator, there are also
direct drive wind turbines in which the gearbox is absent and the rotor directly
drives the generator. An anemometer or a pair of them can be found sitting
on top of the nacelle, towards its rear end, to measure wind speed, whereas
a vane is for the measurement of wind direction. Responding to changes in
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wind direction, yaw control is to rotate and point the nacelle to where the
wind comes from. Responding to changes in wind speed, pitch control turns
the blades in relation to the direction of the incoming air flow, adjusting
the capability of the turbine to absorb the kinetic energy in the wind or the
turbine’s efficiency in doing so.
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FIGURE 1.1 Schematic of major parts in a wind turbine.

A commercial wind farm can house several hundred wind turbines. For
instance, the Roscoe Wind Farm, the largest wind farm in Texas as of this
writing, houses 627 wind turbines. Other than turbines, meteorological masts
are installed on a wind farm, known as the met towers or met masts. A number
of instruments and sensors are installed on the met towers, measuring addi-
tional environmental conditions, such as temperature, air pressure, humidity,
precipitation, among others. Anemometers and vanes are usually installed at
multiple heights of a met tower. The multi-height measurements allow the cal-
culation of vertical wind shear, which characterizes the change in wind speed
with height, as well as the calculation of vertical wind veer, which character-
izes the change in wind direction with height. The wind speed and direction
measured at the nacelle during a commercial operation are typically only at
the hub height.

Throughout the book, denote by x the input vector whose elements are the
environmental variables, which obviously include wind speed, V , in the unit
of meters per second (m/s), and wind direction, D, in degrees (◦). The zero
degree corresponds to due north. Sometimes analysts combine the speed and
direction information of wind and express them in two wind velocities along
the longitudinal and latitudinal directions, respectively. Other environmental
variables include air density, ρ, humidity, H, turbulence intensity, I, and wind
shear, S. Not all of these environmental variables are directly measured. Some
of them are computed, such as,
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• Turbulence intensity, I: first compute the standard deviation of the wind
speeds in a short duration and denote it as σ̂. Then, I = σ̂/V̄ , where
V̄ is the average wind speed of the same duration. It is worth noting
that the concept of turbulence intensity in air dynamics is similar to the
coefficient of variation concept in statistics [58].

• Wind shear, S: wind speeds, V1 and V2, are measured at heights h1 and
h2, respectively. Then, the vertical wind shear between the two heights
is S = ln(V2/V1)/ln(h2/h1) [175]. When anemometers are installed at
locations both above and below the rotor hub, then two wind shears,
the above-hub wind shear, Sa, and the below-hub wind shear, Sb, can
be calculated.

• Air density, ρ, in the unit of kilograms per cubic meter (kg/m3): given
air temperature, T , expressed in Kelvin and air pressure, P , expressed
in Newtons per square meter (N/m2), ρ = P/(% · T ), where % = 287
Joule/(kg·Kelvin) is the gas constant [216].

Using the above notation, the input vector to a turbine can be expressed
as x = (V,D, ρ,H, I, Sa, Sb)

T . But the input vector is not limited to the afore-
mentioned variables. The hours in a day when a measurement is recorded, the
power output of a nearby turbine, wind directional variation and wind veer if
either or both are available, could also be included in the input vector, x. On
the other hand, while the wind speed, wind direction, and temperature mea-
surements are commonly available on commercial wind farms, the availability
of other measurements may not be.

Two types of output of a wind turbine are used in this book: one is the
active power measured at a turbine, denoted by y and in the unit of kilo-
watts (kW) or megawatts (MW), and the other one is the bending moment,
a type of mechanical load, measured at critical structural spots, denoted by z
and in the unit of kiloNewtons-meter (kN-m) or million Newtons-meter (MN-
m). The power output measures a turbine’s power production capability, while
the bending moment measurements are pertinent to a turbine’s reliability and
failure management. The power measurement is available for each and every
turbine. Analysts may also aggregate the power outputs of all turbines in an
entire wind farm when the whole farm is treated as a single power production
unit. The bending moment measurements are currently not available on com-
mercially operated turbines. They are more commonly collected on testing
turbines and used for design purposes.

The input and output data can be paired into a data record. For the power
response, it is the pair of (x, y), whereas for the mechanical load response, it
is (x, z).

Turbine manufacturers provide a wind speed versus power functional
curve, referred to as the power curve. Fig. 1.2 presents such a power curve. As
shown in the power curve, a turbine starts to produce power after the wind
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reaches the cut-in speed, Vci. A nonlinear relation between y and V then en-
sues, until the wind reaches the rated wind speed, Vr. When the wind speed
is beyond Vr, the turbine’s power output will be capped at the rated power
output, yr, also known as the nominal power capacity of the turbine, using
control mechanisms such as pitch control and rotor speed regulation. The tur-
bine will be halted when the wind reaches the cut-out speed, Vco, because high
wind is deemed harmful to the safety of a turbine. The power curve shown
here is an ideal power curve, also known as the nominal power curve. When
the actual measurements of wind speed and power output are used, the V -
versus-y plot will not appear as slim and smooth as the nominal power curve;
rather, it will be a data scattering plot, showing considerable amount of noise
and variability.

In order to protect the confidentiality of the data providers, the wind power
data used in this book are normalized by the rated power, yr, and expressed
as a standardized value between 0 and 1.
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FIGURE 1.2 Nominal power curve of a wind turbine. (Reprinted with

permission from Lee et al. [132].)

The raw data on wind turbines are recorded in a relatively fast frequency,
in the range of a couple of data points per second to a data point per a
couple of seconds. The raw data are stored in a database, referred to as the
data historian. When the data are used in the turbine’s supervisory control
and data acquisition (SCADA) system, the current convention in the wind
industry is to average the measurements over 10-minute time blocks because
wind speed is assumed stationary over this 10-min duration and other envi-
ronmental variables are assumed nearly constant. These assumptions are, of
course, not always true. In this book, however, we choose to follow this indus-
trial standard practice. With 10-min blocks, a year’s worth of data has about
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52,560 data pairs if there is no missing data at all. In reality, even with auto-
mated measurement devices, missing data is common, almost always making
the actual data amount fewer than 50,000 for a year.

Even though the wind speed used is mostly a 10-min average, we decide
to drop the overline while representing this average, for the sake of notational
simplicity. That is to say, we use V , instead of V̄ , to denote the average wind
speed in a 10-min block. When V̄ is used, it refers to the average of 10-min
averaged wind speeds.

Fig. 1.3 shows the arrangement of the multi-turbine, multi-year data for a
wind farm. In the top panel, the whole dataset is shown as a cube, in which
each cross section represents the spatial layout of turbines on a farm and the
horizontal axis represents the time. The longitudinal data are the time-series
of a turbine’s power output, y, and environmental measurements, x. The
cross-sectional data, or the snapshot data, are of multiple turbines but are for
a particular point in time. A cross section could be a short time period, for
instance, a couple of days or weeks, during which the turbine’s innate condition
can be assumed unchanged. The power curve of a turbine is visualized as the
light-colored (yellow) curve in the bottom panel (see also Color eBook), with
the actual measurements in the background. As mentioned earlier, the actual
measurements are noisy, and the nominal power curve averages out the noise.

1.2 ORGANIZATION OF THIS BOOK
We organize this book based on a fundamental data science formulation for
wind power production:

ft(y) =

∫
x

ft(y|x)ft(x)dx, (1.1)

where f(·) denotes a probability density function and the subscript t, the time
indicator, signifies the dynamic, time-varying aspect of the function.

This formulation implies that in order to understand ft(y), namely the
stochasticity of power output y, it is necessary to understand the distribution
of wind and other environmental variables, ft(x), as well as the turbine’s power
production conditioned on a given wind and environmental condition x. We
use a conditional density function, ft(y|x), to characterize the conditional
distribution.

When the power output, y, is replaced by the mechanical load response
(namely the bending moment), z, the above formulation is still meaningful,
with f(z|x) representing the conditional load response for a given environ-
mental condition.

The use of conditional density functions is a natural result of wind inter-
mittency. When the driving force to a turbine changes constantly, the turbine’s
response, regardless of being the power or the load, ought to be characterized
under a given wind and environmental condition.

This book aims to address three aspects related to the aforementioned
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general formulation of wind power production. Thus, we divide the rest of
this book into three parts:

1. The first part consists of three chapters. It is about the modeling of
ft(x), which begets an analysis of the wind field. Based on the modeling
and analysis of the wind field, a wind forecast can be made. If a whole
wind farm is simplified as a single location, or the forecast at a single
turbine is of concern, the need for a temporal analysis arises. If multiple
turbines at different sites are to be studied, or multiple wind farms at dif-
ferent geographic locations are involved, the modeling of ft(x) becomes
a spatio-temporal analysis. Both temporal and spatio-temporal methods
will be described but the focus is on the spatio-temporal analysis.

2. The second part consists of four chapters. It discusses power response
modeling and shows how the power response model can be used for per-
formance evaluation of wind turbines. The general expression, f(y|x),
depicts a multivariate, probabilistic power response surface. The power
curve is in fact the conditional expectation, E(y|x), when x is reduced
to a univariate input, the wind speed, V . The modeling of f(y|x) or
E(y|x) falls into the area of density regression or nonparametric regres-
sion analysis.

3. The third part consists of four chapters. It provides a reliability and
load analysis of wind turbines. Using Eq. 1.1 to assess power produc-
tion assumes, implicitly, an up-running wind turbine, namely a non-zero
ft(y|x). But wind turbines, under non-steady wind forces, are prone
to failures and downtime. To factor in a turbine’s reliability impact,
it is important to assess a turbine’s load response under various wind
conditions. The statistical learning underlying the analysis in this part
is related to sampling techniques, including importance sampling and
Markov chain Monte Carlo sampling.

1.2.1 Who Should Use This Book
The book is intended to be a research monograph, but it can be used for teach-
ing purposes as well. We expect our readers to have basic statistics and proba-
bility knowledge, and preferably a bachelor’s degree in STEM (Science, Tech-
nology, Engineering, and Math). This book provides an in-depth discussion of
how data science methods can improve decision making in several aspects of
wind energy applications, from near-ground wind field analysis and wind fore-
cast, turbine power curve fitting and performance analysis, turbine reliability
assessment, to maintenance optimization for wind turbines and wind farms. A
broad set of data science methods are covered, including time series models,
spatio-temporal analysis, kernel regression, decision trees, splines, Bayesian
inference, and random sampling. The data science methods are described in
the context of wind energy applications with examples and case studies. Real
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data and case studies from wind energy research and industrial practices are
used in this book. Readers who may benefit from reading this book include
practitioners in the wind industry who look for data science solutions and
faculty members and students who may be interested in the research of data
science for wind energy in departments such as industrial and systems engi-
neering, statistics, and power engineering.

There are a few books on renewable energy forecasting [117], which overlap,
to a certain degree, with the content of Part I. A topic related to wind energy
but left out in the book is about grid integration, for which interested readers
can refer to the book by Morales et al. [148].

1.2.2 Note for Instructors
This book can be used as the textbook for a stand-alone course, with the
course title the same as or similar to the title of this book. It can also be used
to as a reference book that provides supplementary materials for certain seg-
ments of either a data science course (supplementing wind energy application
examples) or a power engineering course (supplementing data science meth-
ods). These courses can come from the offerings of a broad set of departments,
including Industrial Engineering, Electrical Engineering, Statistics, Aerospace
Engineering, or Computer Science.

We recommend that the first chapter be read before later chapters are
covered. The three parts after the first chapter are more or less independent
of each other. It does not matter in which sequence the three parts are read
or taught. Within each part, however, we recommend following the order of
the chapters. It will take two semesters to teach the whole book. One can,
nevertheless, sample one or two chapters from each part to form the basis for
a one-semester course.

Most of the examples are solved using the R programming language, while
some are solved using the MATLAB R© programming language. At the end of
a chapter, acronyms and abbreviations used in that chapter are summarized
and explained in the Glossary section.

1.2.3 Datasets Used in the Book
In this book, the following datasets are used:

1. Wind Time Series Dataset. This dataset comes from a single turbine
on an inland wind farm. The dataset covers the duration of one year, but
data at some of the time instances are missing. Two time resolutions are
included in the dataset: the 10-min data and the hourly data; the latter
is the further average of the former. For each temporal resolution, the
data is arranged in three columns. The first column is the time stamp,
the second column is the wind speed, and the third column is the wind
power.
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2. Wind Spatial Dataset. This dataset comes from ten turbines in an
offshore wind farm. Only the hourly wind speed data are included. The
duration of the data covers two months. The longitudinal and latitudinal
coordinates of each turbine are given, but those coordinates are shifted
by an arbitrary constant, so that the actual locations of these turbines
are protected. The relative positions of the turbines, however, remain
truthful to the physical layout. The data is arranged in the following
fashion. Under the header row, the next two rows are the coordinates
of each turbine. The third row under the header is purposely left blank.
From the fourth row onwards are the wind speed data. The first column
is the time stamp. Columns 2-11 are the wind speed values measured in
meters per second.

3. Wind Spatio-Temporal Dataset1. This dataset comprises the average
and standard deviation of wind speed, collected from 120 turbines in
an inland wind farm, for the years of 2009 and 2010. Missing data in
the original dataset are imputed by using the iterative singular value
decomposition [139]. Two data files are associated with each year—one
contains the hourly average wind speed, used in Eq. 3.18, and the other
contains the hourly standard deviation of wind speed, used in Eq. 3.25.
The naming convention makes it clear which year a file is associated with
and whether it is for the average speed (Ave) or for the standard devia-
tion (Stdev). The data arrangement in these four files is as follows—the
columns are the 120 turbines and the rows are times, starting from 12
a.m. on January 1 of a respective year as the first data row, followed by
the subsequent hours in that year. The fifth file in this dataset contains
the coordinates of the 120 turbines. To protect the wind farm’s identity,
the coordinates have been transformed by an undisclosed mapping, so
that their absolute values are no longer meaningful but the turbine-to-
turbine relative distances are maintained.

4. Wind Spatio-Temporal Dataset2. The data used in this study consists
of one year of spatio-temporal measurements at 200 randomly selected
turbines on a flat terrain inland wind farm, between 2010 and 2011. The
data consists of turbine-specific hourly wind speeds measured by the
anenometers mounted on each turbine. In addition, one year of hourly
wind speed and direction measurements are available at three met masts
on the same wind farm. Columns B through OK are the wind speed
and wind power associated with each turbine, followed by Columns OL

through OQ, which are for wind speed and wind direction associated
with each mast. The coordinates of the turbines and masts are listed in
the top rows, preceding the wind speed, direction, and power data. The
coordinates are shifted by a constant, so that while the relative positions
of the turbines and the met masts remain faithful to the actual layout,
their true geographic information is kept confidential. This anemometer
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network provides a coverage of a spatial resolution of one mile and a
temporal resolution of one hour.

5. Inland Wind Farm Dataset1 and Offshore Wind Farm Dataset1.
Data included in these two datasets are generated from six wind turbines
and three met masts and are arranged in six files, each of which is asso-
ciated with a turbine. The six turbines are named WT1 through WT6,
respectively. The layout of the turbines and the met masts is shown in
Fig. 5.6. On the offshore wind farm, all seven environmental variables
as mentioned above are available, namely x = (V,D, ρ,H, I, Sa, Sb),
whereas on the inland wind farm, the humidity measurements are
not available, nor is the above-hub wind shear, meaning that x =
(V,D, ρ, I, Sb). Variables in x were measured by sensors on the met
mast, whereas y was measured at the wind turbines. Each met mast has
two wind turbines associated with it, meaning that the x’s measured
at a met mast are paired with the y’s of two associated turbines. For
WT1 and WT2, the data were collected from July 30, 2010 through July
31, 2011 and for WT3 and WT4, the data were collected from April 29,
2010 through April 30, 2011. For WT5 and WT6, the data were collected
from January 1, 2009 through December 31, 2009.

6. Inland Wind Farm Dataset2 and Offshore Wind Farm Dataset2. The
wind turbine data in these two datasets include observations during the
first four years of the turbines’ operations. The inland turbine data are
from 2008 to 2011, whereas the offshore data are from 2007 to 2010.
The measurements for the inland wind farm include the same x’s as in
the Inland Wind Farm Dataset1 and those for the offshore wind farm
include the same x’s as in the Offshore Wind Farm Dataset1. Most of
the environmental measurements x are taken from the met mast closest
to the turbine, with the exception of wind speed and turbulence inten-
sity which are measured on the wind turbine. The mast measurements
are used either because some variables are only measured at the mast
(such as air pressure and ambient temperature, which are used to calcu-
late air density) or because the mast measurements are considered more
reliable (such as wind direction).

7. Turbine Upgrade Dataset. This dataset includes two sets, correspond-
ing, respectively, to an actual vortex generator installation and an arti-
ficial pitch angle adjustment. Two pairs of wind turbines from the same
inland wind farm, as used in Chapter 5, are chosen to provide the data,
each pair consisting of two wind turbines, together with a nearby met
mast. The turbine that undergoes an upgrade in a pair is referred to
as the experimental turbine, the reference turbine, or the test turbine,
whereas the one that does not have the upgrade is referred to as the
control turbine. In both pairs, the test turbine and the control turbine
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are practically identical and were put into service at the same time. This
wind farm is on a reasonably flat terrain.

The power output, y, is measured on individual turbines, whereas
the environmental variables in x (i.e., the weather covariates) are mea-
sured by sensors at the nearby mast. For this dataset, there are five
variables in x and they are the same as those in the Inland Wind

Farm Dataset1. For the vortex generator installation pair, there are
14 months’ worth of data in the period before the upgrade and around
eight weeks of data after the upgrade. For the pitch angle adjustment
pair, there are about eight months of data before the upgrade and eight
and a half weeks after the upgrade.

Note that the pitch angle adjustment is not physically carried out,
but rather simulated on the respective test turbine. The following data
modification is done to the test turbine data. The actual test turbine
data, including both power production data and environmental mea-
surements, are taken from the actual turbine pair operation. Then, the
power production from the designated test turbine on the range of wind
speed over 9 m/s is increased by 5%, namely multiplied by a factor of
1.05, while all other variables are kept the same. No data modification
of any kind is done to the data affiliated with the control turbine in the
pitch angle adjustment pair.

The third column of a respective dataset is the upgrade status

variable, of which a zero means the test turbine is not modified yet, while
a one means that the test turbine is modified. The upgrade status

has no impact on the control turbine, as the control turbine remains
unmodified throughout. The vortex generator installation takes effect
on June 20, 2011, and the pitch angle adjustment takes effect on April
25, 2011.

8. Wake Effect Dataset. This dataset includes data from six pairs of wind
turbines (or, 12 wind turbines in total) and three met masts. The turbine
pairs are chosen such that no other turbines except the pair are located
within 10 times the turbine’s rotor diameter. Such arrangement is to
find a pair of turbines that are free of other turbines’ wake, so that the
wake analysis result can be reasonably attributed to the wake of its pair
turbine. The operational data for the six pairs of turbines are taken
during roughly a yearlong period between 2010 and 2011. The datasets
include wind power output, wind speed, wind direction, air pressure,
and temperature, of which air pressure and temperature data are used
to calculate air density. The wind power outputs and wind speeds are
measured on the turbine, and all other variables are measured at the met
masts. The data from Mast 1 are associated with the data for Turbine
Pairs 1 and 2, Mast 2 with Pairs 3 and 4, and Mast 3 with Pairs 5 and
6. Fig. 8.6 shows the relative locations of the six pairs of turbines and
three met masts.
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9. Turbine Bending Moment Dataset. This dataset includes two parts.
The first part is three sets of physically measured blade-root flapwise
bending moments on three respective turbines, courtesy of Risø-DTU
(Technical University of Denmark) [180]. The basic characteristics of the
three turbines can be found in Table 10.1. These datasets include three
columns. The first column is the 10-min average wind speed, the second
column is the standard deviation of wind speed within a 10-min block,
and the third column is the maximum bending moment, in the unit of
MN-m, recorded in a 10-min block. The second part of the dataset is the
simulated load data used in Section 10.6.5. This part has two sets. The
first set is the training data that has 1,000 observations and is used to fit
an extreme load model. The second set is the test data that consists of
100 subsets, each of which has 100,000 observations. In other words, the
second dataset for testing has a total of 10,000,000 observations, which
are used to verify the extreme load extrapolation made by a respective
model. Both simulated datasets have two columns: the first is the 10-min
average wind speed and the second is the maximum bending moment
in the corresponding 10-min block. While all other datasets are saved
in CSV file format, this simulated test dataset is saved in a text file
format, due to its large size. The data simulation procedure is explained
in Section 10.6.5.

10. Simulated Bending Moment Dataset. This dataset includes two sets.
One set has 600 data records, corresponding to the training set referred
to in Section 11.4.1, whereas the other set has 10,000 data records, which
are used to produce Fig. 11.1. Each set has three columns of data (other
than the serial number). The first column is the wind speed, simulated
using a Rayleigh distribution, and the second and third columns are, re-
spectively, the simulated flapwise and edgewise bending moments, in the
unit of kN-m. The flapwise and edgewise bending moments are simulated
from TurbSim [112] and FAST [113], following the procedure discussed
in [149]. TurbSim and FAST are simulators developed at the National
Renewable Energy Laboratory (NREL) of the United States.

GLOSSARY
CSV: Comma-separated values Excel file format

DTU: Technical University of Denmark

NREL: National Renewable Energy Laboratory

PTC: Production tax credit

SCADA: Supervisory control and data acquisition

STEM: Science, technology, engineering, and mathematics

US: United States of America
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C H A P T E R 2

A Single Time Series
Model

P
art I of this book is to model ft(x). The focus is on wind speed, V ,
because wind speed is much more volatile and difficult to predict than

other environmental variables such as air density or humidity. In light of this
thought, ft(x) is simplified to ft(V ).

A principal purpose of modeling ft(V ) is to forecast wind speed or wind
power. Because it is impossible to control wind, forecasting becomes an essen-
tial tool in turbine control and wind power production planning. Modeling the
time-varying probability density function ft(V ) directly, however, is difficult.
In practice, what is typically done is to make a point forecast first and then
assess the forecasting uncertainty, which is to attach a confidence interval to
the point forecast. The point forecast is a single value used to represent the
likely wind speed or power at a future time, corresponding, ideally but not
necessarily, to the mean, median, or mode of the probability distribution of
wind speed or power at that future time.

The forecasting can be performed either on wind speed or on wind power.
Wind power forecasting can be done by forecasting wind speed first and then
converting a speed forecast to a power forecast through the use of a simple
power curve, as explained in Chapter 1, or the use of a more advanced power
curve model, to be explained in Chapter 5. Wind power forecasting can also
be done based purely on the historical observations of power output, without
necessarily accounting for wind speed information. In the latter approach, the
methods developed to forecast wind speed can be used, almost without any
changes, to forecast wind power, so long as the wind speed data are replaced
with the wind power data. For this reason, while our discussion in this chapter
mainly refers to wind speed, please bear in mind its direct applicability to wind
power forecast.

In Chapter 2, we consider models that ignore the spatial information and

17
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are purely based on the time series data. In Chapters 3 and 4, we discuss
various types of spatial or spatio-temporal models.

2.1 TIME SCALE IN SHORT-TERM FORECASTING
One essential question in forecasting is concerning the time-scale requirements
of forecast horizons. Turbine control typically requires an instantaneous re-
sponse in seconds or sub-seconds. Production planning for grid integration
and market response is in a longer time scale. Two energy markets, the real-
time market and the day-ahead market, demand different response times. The
real-time market updates every five minutes, requiring a response in the level
of minutes, whereas the day-ahead market is for trading on the next day, re-
quiring forecasting up to 24 hours ahead. Between these two time scales, there
are other planning actions that may request a forecast from a few minutes to
a few hours ahead. For instance, when the wind power supply is insufficient
to meet the demand, the system operators would bring up reserve powers.
The spinning reserve, which has been synchronized to the grid system, can
be ready for dispatch within 10 minutes, whereas the delivery of contingency
reserves may encounter a delay, up to an hour or more, thereby needing a
longer lead time for notification. For various planning and scheduling pur-
poses, a common practice for wind owners/operators is to create forecasts, for
every hour looking ahead up to 24 hours, and then update that hourly ahead
forecast at the next hour for the subsequent 24 hours, using the new set of
data collected in between.

When it comes to wind forecasting, there are two major schools of thought.
One is the physical model-based approach, collectively known as the Numerical
Weather Prediction (NWP) [138], which is the same scientific method used
behind our daily weather forecast, and the second is the data-driven, statistical
modeling-based approach. By calling the second approach “data-driven,” we
do not want to leave readers with the impression that NWP is data free; both
approaches use weather measurement data. The difference between the two
approaches is that NWP involves physical atmospheric models, while the pure
data-driven models do not.

Because NWP is based on physical models, it has, on the one hand, the
capability to forecast into a relatively longer time horizon, from a few hours
ahead to several days ahead. On the other hand, the intensive computation
required to solve the complicated weather models limits the temporal and
spatial resolutions for NWP, making analysts tend to believe that for a short-
term forecast on a local wind field, the data-driven models are advantageous.
There is, however, no precise definition of how short is a “short term.” Giebel
et al. [71] deem six hours as the partition, shorter than which, the data-
driven models perform better, while longer than that, NWP ought to be used.
Analysts do sometimes push the boundary of data-driven models and make
forecasting over a longer horizon, but still, the horizon is generally shorter
than 12 hours.
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In this book, our interest is to make short-term forecasting on local wind
fields. We follow the same limits for short-term as established in the literature,
which is usually a few hours ahead and no more than 12 hours ahead.

2.2 SIMPLE FORECASTING MODELS
We first consider the situation that the historical wind data is arranged in a
single time series, from time 1 to time t, denoted by Vi, i = 1, . . . , t. The single
time series is appropriate to describe the following application scenarios:

• The wind speed or power data measured on a single turbine is used to
forecast future wind speed or power on the same turbine.

• The wind speed on a single met tower is used to forecast wind speed,
and used as the representation of wind speed for a wind farm.

• The aggregated wind power of a wind farm, namely the summation of
wind power output of all individual turbines on the farm, is used to
forecast the future aggregated power output of the wind farm.

• Although wind speed is measured at multiple locations, the average wind
speed over the locations is used to forecast the future average wind speed.

2.2.1 Forecasting Based on Persistence Model
The simplest point forecasting is based on the persistence (PER) model, which
says the wind speed or power at any future time, t + h, h > 0, is simply the
same as what is observed at the current time, t, namely,

V̂t+h = Vt, h > 0, (2.1)

where the hat notation (̂ ) is used to indicate a forecast (or an estimate). The
persistence forecast should, and can easily, be updated when a new observation
of V arrives at the next time point.

When the persistence model is used, there is no uncertainty quantifica-
tion procedure directly associated with it. In order to associate a confidence
interval, one needs to establish a probability distribution for wind speed.

2.2.2 Weibull Distribution
Wind speeds are nonnegative and their distribution is right skewed. They do
not strictly follow a normal distribution. Understandably, probability densi-
ties that are right skewed with nonnegative domain, such as Weibull, trun-
cated normal, or Rayleigh distributions, are common choices for modeling
wind speed; for a comprehensive list of distributions, please refer to a survey
paper on this topic [32].

There is no consensus on which distribution best describes the data of
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wind speed, although Weibull distribution is arguably the most popular one.
Analysts can try a few of the widely used distributions and test which one fits
the data the best. This practice entails addressing two statistical problems—
one is to estimate the parameters in the chosen distribution and the other is
to assess the goodness-of-fit of the chosen distribution and see if the chosen
distribution provides a satisfactory fit to the data.

Consider the Weibull distribution as an example. Its probability density
function (pdf) is expressed as

f(x) =

{(
β
η

)(
x
η

)β−1
exp

{
−
(
x
η

)β}
x ≥ 0,

0 x < 0,
(2.2)

where β > 0 is the shape parameter, affecting the skewness of the distribution,
and η > 0 is the scale parameter, affecting the concentration of the distribu-
tion. When β ≤ 1, the Weibull density is a decaying function, monotonically
going downwards from the origin. When β > 1, the Weibull density first rises
up, passes a peak and then goes down. For commercial wind farms, it makes
no practical sense to expect its wind speed to follow a Weibull distribution
of β ≤ 1, as what it suggests is that most frequent winds are all low-speed
winds. If a wind farm planner does a reasonable job in selecting the farm’s
location, it is expected to see β > 1.

The probability density function in Eq. 2.2 is known as the two-parameter
Weibull distribution, whose density curve starts at the origin on the x-axis. A
more general version, the three-parameter Weibull distribution, is to replace
x by x− ν in Eq. 2.2, where ν is the location parameter, deciding the starting
point of the density function on the x-axis. When ν = 0, the three-parameter
Weibull density simplifies to the two-parameter Weibull density. The two-
parameter Weibull is the default choice, unless one finds that there is an
empty gap in the low wind speed measurements close to the origin.

2.2.3 Estimation of Parameters in Weibull Distribution
To estimate the parameters in the Weibull distribution, a popular method
is the maximum likelihood estimation (MLE). Given a set of n wind speed
measurements, Vi, i = 1, . . . , n, the log-likelihood function, L(β, η|V ), can be
expressed as:

L(β, η|V ) = n lnβ − βn ln η + (β − 1)
n∑
i=1

lnVi −
n∑
i=1

(
Vi
η

)β
. (2.3)

Maximizing the log-likelihood function can be done by using an optimization
solver in a commercial software, such as nlm in R. Because nlm is for min-
imization, one should multiply a (−1) to the returned values of the above
log-likelihood function while using nlm or a similar minimization routine in
other software packages. With the availability of the MASS package in R, fitting
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FIGURE 2.1 Fit a Weibell distribution to the wind speed data in the

Wind Time Series Dataset. The left panel is the fit to the hourly

data. The estimated parameters are: η̂ = 7.60, β̂ = 3.40, mean = 6.84,

median = 6.69, mode = 6.5, and the standard deviation = 2.09. The

right panel is the fit to the 10-min data. The estimated parameters

are: η̂ = 7.61, β̂ = 3.41, mean = 6.86, median = 6.67, mode = 6.5, and

the standard deviation = 2.06. The values of mean, median, mode and

standard deviation are estimated directly from the data, rather than

calculated using η̂ and β̂.

a Weibull distribution can be done more directly by using the fitdistr func-
tion. Suppose that the wind speed data is stored in the vector named wsdata.
The following R command can be used for fitting a Weibull distribution,

fitdistr(wsdata, "weibull").

Fig. 2.1 presents an example of using a Weibull distribution to fit the
wind speed data in the Wind Time Series Dataset. The Weibull distribution
parameters are estimated by using the MLE. Fig. 2.1 presents the Weibull fit to
the wind speed data of two time resolutions: the 10-min data and the hourly
data. The estimates of the shape and scale parameters are rather similar
despite the difference in time resolution.

2.2.4 Goodness of Fit
Once a Weibull distribution is fit to a set of data, how can we tell whether or
not it is a good fit? This question is answered through a goodness-of-fit test,
such as the χ2 test. The idea of the χ2 test is simple. It first bins the observed
data, like in a histogram. For the j-th bin, one can count the number of actual
observations falling into that bin; denote this as Oj . Should the data follow a
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specific type of distribution, the expected amount of data points in the same
bin can be computed from the cumulative distribution function (cdf) of that
distribution; denote this quantity as Ej . Suppose that we have a total of B
bins. Then, the test statistic, defined below, follows a χ2 distribution with a
degree of freedom of B − p− 1, i.e.,

χ2 :=

B∑
j=1

(Oj − Ej)2

Ej
∼ χ2

B−p−1, (2.4)

where p is the number of parameters associated with the distribution.
The Weibull distribution has a closed form cdf. The fitted Weibull distri-

bution function, by plugging in the estimated parameters, β̂ and η̂, is

Fβ̂,η̂(x) = 1− exp

{
−
(
x

η̂

)β̂}
. (2.5)

Of the j-th wind speed bin, the left boundary wind speed value is Vj−1 and
the right boundary value is Vj , so Ej can be calculated by

Ej = n[Fβ̂,η̂(Vj)− Fβ̂,η̂(Vj−1)]. (2.6)

Once the χ2 test statistic is calculated, one can compute the p-value of the test
by using, for example, the R command, 1−pchisq(χ2, B − p− 1). The null
hypothesis says that the distribution under test provides a good fit. When
the p-value is small enough, say, smaller than 0.05, analysts say that the
null hypothesis is rejected at the significance level of 95%, implying that the
theoretical distribution is less likely a good fit to the data. When the p-value
is not small enough and the null hypothesis cannot be rejected, then the test
implies a good fit.

We can apply the χ2 test to one month of data of the Wind Time Series

Dataset and the respective fitted Weibull distributions. The number of pa-
rameters in the two-parameter Weibull distribution is p = 2. While binning
the wind speed data, one needs to be careful about some of the tail bins in
which the expected data amount could be too few. The general guideline is
that Ej should be no fewer than five; otherwise, several bins should be grouped
into a single bin.

The test statistic and the corresponding p-values are shown in Table 2.1.
As shown in the table, it looks like using the Weibull distribution to fit the
wind speed data does not pass the goodness-of-fit test. This is particularly
true when the data amount increases, as in the case of using the 10-min data.
Nonetheless, the Weibull distribution still stays as one of the most popular
distributions for modeling wind speed data. The visual inspection of Fig. 2.1
leaves analysts with the feeling of a reasonable fit. Passing the formal statisti-
cal test in the presence of abundant data appears tough. Analysts interested
in a distribution alternative can refer to [32] for more choices.
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TABLE 2.1 Goodness-of-fit test statistics and
p-values.

Hourly data 10-min data

Month selected February November
Data amount, n 455 3,192
Bin size 0.2 m/s 0.1 m/s
Number of bins, B 66 100
Test statistic 62.7 329.8
p-value 0.012 almost 0

2.2.5 Forecasting Based on Weibull Distribution
Assuming that the distribution of wind speed stays the same for the next
time period, i.e., the underlying process is assumed stationary, analysts can
use the mean as a point forecast, and then use the distribution to assess the
uncertainty of the point forecast. We want to note that such approach is, in
spirit, also a persistence forecasting, but it is conducted in the sense of an
unchanging probability distribution.

The mean and the standard deviation of a Weibull distribution, if using
the estimated distribution parameters, areµ̂ = η̂Γ(1 + 1

β̂
),

σ̂ = η̂
√

Γ(1 + 2
β̂

)− (Γ(1 + 1
β̂

))2,
(2.7)

where Γ(·) is the gamma function, defined such as Γ(x) =
∫∞

0
tx−1e−tdt.

While the mean µ̂ is used as the point forecast, one can employ a normal
approximation to obtain the 100(1 − α)% confidence interval of the point
forecast, as

[µ̂− zα/2 · σ̂, µ̂+ zα/2 · σ̂], (2.8)

where zα is the α-quantile point of a standard normal distribution. When
α = 0.05, z0.05/2 = 1.96.

Sometimes analysts think that using the mean may not make a good fore-
cast, due to the skewness in the Weibull distribution. Alternatively, median
and mode can be used. Their formulas, still using the estimated parameters,
are median = η̂(ln 2)1/β̂ ,

mode = η̂
(

1− 1
β̂

)1/β̂

for β̂ > 1.
(2.9)

The mode of a Weibull distribution when β ≤ 1 is zero. As mentioned earlier,
the circumstances under which β ≤ 1 are of little practical relevance in wind
speed modeling at commercial wind farms.

Analysts may worry that using the normal approximation to obtain the
confidence interval may not be accurate enough. If one has a sufficiently large
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TABLE 2.2 Estimate of mean and 95% confidence interval of wind speed
data. The total data amount is 7,265 for the hourly data and 39,195 for the
10-min data.

Based on Eq. 2.8 Directly from sample statistics

Mean C.I. Mean C.I.

Hourly data 6.83 [2.48, 11.47] 6.84 [3.54, 11.33]
10-min data 6.84 [2.50, 11.18] 6.86 [3.62, 11.49]

amount of wind speed data, say more than 1,000 data points, a simple way
is to estimate the mean and its confidence interval directly from the data,
following the two steps below.

1. Compute the sample average wind speed, V̄ ,

V̄ =
1

n

n∑
i=1

Vi,

and use it as the point forecast.

2. Order the wind speed data from the smallest to the largest. Denote the
ordered sequence as V(1), V(2), . . . , V(n). Then, the 100(1−α)% confidence
interval is estimated to be [V[nα/2], V[n(1−α/2)]], where [·] returns the
nearest integer number.

Table 2.2 presents the estimates of mean and confidence interval, either based
on the Weibull distribution or directly from the data. One observes that the
point forecasts are rather close, but the lower confidence intervals are notice-
ably different.

2.3 DATA TRANSFORMATION AND STANDARDIZATION
Before the wind speed data is fed into time series models, many of which
assume Gaussianity, data preprocessing may be needed. Two common pre-
processing tasks are: (1) normalizing the wind data, so that the transformed
data behaves closer to a normal distribution, and (2) removing the diurnal
nonstationarity or other seasonalities from the data.

A general power transformation is used [23] for the purpose of normaliza-
tion, such as

V ′t = V mt ,∀i, (2.10)

where V ′t is the transformed wind speed, and m is the power coefficient, with
the convention that m = 0 refers to the logarithm transformation. Apparently,
m = 1 means no transformation.

Suppose that the wind data indeed follow a Weibull distribution. A nice
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property of Weibull distribution is that a Weibull random variable remains
Weibull when it is raised to a power m 6= 0, with its parameters becoming β/m
and ηm, respectively. Dubey [52] points out that when the shape parameter is
close to 3.6, a Weibull distribution is closer in shape to a normal distribution.
The general advice is to estimate the shape parameter from the original wind
data and then solve for m in the power transformation in Eq. 2.10 as

m =
β̂

3.6
. (2.11)

Alternatively, Hinkley [93] suggests checking the following measure of sym-
metry, based on sample statistics,

sym =
sample mean− sample median

sample scale
, (2.12)

where the sample scale can be the sample standard deviation or the sample
inter-quartile range; Hinkley himself prefers the latter. Given this symmetry
measure, one could first choose a candidate set of m values (including m = 0)
and apply the respective transformation on the wind data. Then, calculate
the corresponding symmetry measure. To approximate the symmetric normal
distribution, the symmetry value is desired to be zero. Whichever m produces
a zero sym value is thus chosen as the power in the transformation. If no m
in the candidate set produces a sym close to zero, then one can interpolate
the computed (m, sym) points and find the m leading to a zero sym. One
convenience allowed by Eq. 2.12 is that the logarithm transformation can be
tested, together with other power transformations, whereas in using Eq. 2.11,
m = 0 is not allowed.

Torres et al. [214] show that using Eq. 2.11 on wind data from multiple
sites for every month in a whole year, the resulting m values are in the range
of [0.39, 0.70], but many of them are close to 0.5. Brown et al. [23] apply
both aforementioned approaches on one set of wind data—Eq. 2.11 produces
an m = 0.45, while the sym measure in Eq. 2.12 selects m = 1/2, implying
a square-root transformation. It seems that the resulting m values are often
not too far from 1/2. But this may not always be the case. When applying
Eq. 2.11 to the data of each month in the Wind Time Series Dataset (see
Table 2.3 for the corresponding m values), we find that most m’s are around
one. This is not surprising. The shape of the density curves in Fig. 2.1 looks
rather normal-like, and the corresponding β̂’s are close to 3.6. For the sake of
convenience, analysts still use m = 1/2 as the default setting. This square-
root transformation is in fact one of the popular normalizing transformations
and applying it reduces the right skewness to make the resulting data closer
to a normal distribution. When applied to wind data, the square-root trans-
formation can take any wind speed values, since wind speed is supposedly
non-negative. In contrast, if one applies the logarithm transformation, the
zero wind speed values need to be removed first.
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TABLE 2.3 Monthly values of m using Eq. 2.11.

Jan Feb Mar Apr May Jun

Hourly data 0.74 1.00 1.00 1.04 1.10 1.02
10-min data 0.74 0.94 1.02 1.05 1.10 0.98

Jul Aug Sep Oct Nov Dec

Hourly data 1.01 1.14 1.06 0.98 1.02 0.99
10-min data 1.01 1.13 1.06 0.99 1.03 1.00

Wind exhibits diurnal and seasonal nonstationarity. The seasonality is typ-
ically handled by carefully choosing the training period, making sure that the
seasonal pattern of the training period is consistent with that in the forecast-
ing period. This can be done by using the wind data in a short period of
time immediately prior to the forecasting period, say, a few days or a couple
of weeks, but usually no more than one month. To remove the diurnal non-
stationarity, a simple treatment is to standardize the wind data by using its
hourly average and standard deviation.

We show how this is done using the transformed wind data, V ′t , but obvi-
ously the same procedure can be applied to the original wind data. We first
arrange the data such that the time index t is in an hourly increment. If the
raw data is in the 10-min format, then, one can get the hourly data by av-
eraging the six 10-min wind data points within the same hourly block. For
notational convenience, let us deem that t = 0 coincides with 12 a.m. (mid-
night) of the first day, t = 1 with one a.m., and so on. The time repeats itself
as the same time on a different day in an increment of 24. We compute 24
hourly averages and standard deviations by pooling the data from the same
time on different days in the training period. Suppose that there are a total
of d days. Then, we can compute them as{

V̄ ′` = 1
d

∑d−1
j=0 V

′
24j+`,

s` =
√

1
d−1

∑d−1
j=0(V ′24j+` − V̄ ′` )2.

` = 0, . . . , 23. (2.13)

The standardization of wind speed data is then carried out by

V ′′t =
V ′t − V̄ ′(t mod 24)

s(t mod 24)
, (2.14)

where mod means a modulo operation, so that (t mod 24) returns the remainder
when t is divided by 24.

Fig. 2.2 presents the original hourly wind speed data and the standard-
ized hourly data. Although the standardization is conducted for the whole
year hourly data in the Wind Time Series Dataset, Fig. 2.2 plots only three
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FIGURE 2.2 Left panel: original hourly wind speed data. Right panel:

standardized hourly wind speed data. The data amount of the three

months is n = 1, 811. Eq. 2.10, with m = 1/2, and Eq. 2.14 are used

for standardization.

months (October to December) for a good visualization effect. The difference
between the two subplots is not very striking, because the original data, as
we explained above, is already close to a normal distribution.

Gneiting et al. [75] introduce a trigonometric function to model the diurnal
pattern, as in the following,

∆t = c0+c1 sin

(
2πt

24

)
+c2 cos

(
2πt

24

)
+c3 sin

(
4πt

24

)
+c4 cos

(
4πt

24

)
, (2.15)

where c0, c1, . . . , c4 are the coefficients to be estimated from the data. The es-
timation is to assume V ′t = ∆t+εt, and then, use a least squares estimation to
estimate the coefficients from the wind data. Subtracting the diurnal pattern
from the original wind data produces the standardized wind speed,

V ′′t = V ′t −∆t. (2.16)

2.4 AUTOREGRESSIVE MOVING AVERAGE MODELS
In this section, we apply a time series model like the autoregressive moving
average (ARMA) model to the normalized and standardized wind data. For
notational simplicity, we return to the original notation of wind speed, Vt,
without the primes.

An autoregressive (AR) model of order p is to regress the wind variable
on its own past values, up to p steps in the history, such as

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt, (2.17)
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where ai, i = 1, . . . , p, are the AR coefficients and εt is the residual error,
assumed to be a zero mean, identically, independently distributed (i.i.d) noise.
Specifically, εt ∼ N (0, σ2

ε).
The autoregressive mechanism makes intuitive sense, as the inertia in air

movement suggests that the wind speed at the present time is related to
its immediate past. The actual relationship, however, may not necessarily
be linear. The linear structure assumed in the AR model is for the sake of
simplicity, making the model readily solvable.

A general ARMA model is to add a moving average (MA) part to the
AR model, which is to model the residual as a linear combination of the i.i.d
noises, going back in history for up to q steps. Including the MA part, the
ARMA model reads

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt + b1εt−1 + . . .+ bqεt−q

= a0 +

p∑
i=1

aiVt−i + εt +

q∑
j=1

bjεt−j ,
(2.18)

where bj , j = 1, . . . , q, are the MA coefficients. The overall model in Eq. 2.18
is referred to as ARMA(p, q), where p is the AR order and q is the MA order.

2.4.1 Parameter Estimation
For the model in Eq. 2.17, the AR parameters can be estimated through a
least squares estimation, expressed in a closed form. Suppose that we have the
historical data going back n steps. For each step in the past, one can write
down an AR model. The following are the n equations,

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt,

Vt−1 = a0 + a1Vt−2 + . . .+ apVt−1−p + εt−1,

. . . . . . . . . . . .

Vt−n = a0 + a1Vt−n−1 + . . .+ apVt−n−p + εt−n.

(2.19)

Express V = (Vt, Vt−1, . . . , Vt−n)Tn×1, a = (a0, a1, . . . , ap)
T
(p+1)×1, ε =

(εt, . . . , εt−n)Tn×1, and

W =


1 Vt−1 · · · Vt−p
1 Vt−2 · · · Vt−1−p
...

...
. . .

...
1 Vt−n · · · Vt−n−p


n×(p+1)

.

Then, Eq. 2.19 can be written in a matrix form, such as

V = W · a + ε. (2.20)

As such, the least squares estimate of the parameter vector, a, is

â = (WTW)−1WTV.
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The fitted wind speed value, V̂, is therefore V̂ = Wâ. The variance of the
residual error term can be estimated by

σ̂2
ε =

(V − V̂)T (V − V̂)

n− p− 1
=

(V −Wâ)T (V −Wâ)

n− p− 1
. (2.21)

With the MA part included in a general ARMA(p, q) model, the least
squares estimation of both AR and MA coefficients does not have a closed form
expression anymore. The estimation problem needs to be solved iteratively
through a numerical procedure. Analysts use the maximum likelihood estima-
tion method to estimate the parameters. Denote by b = (b1, b2, . . . , bq)

T
q×1.

The log-likelihood function of an ARMA model, denoted as L(a,b, σ2
ε |V), is a

bit involved. We choose not to write down its expression here. In practice, it is
advised to use the arima function in R’s stats package to carry out the esti-
mation task. The arima function is named after the autoregressive integrated
moving average model, considered as a generalization of the ARMA model and
expressed as ARIMA(p, k, q), which has one extra parameter than an ARMA
model has. To handle an ARMA(p, q) model using the three-parameter arima
function, one can simply set k = 0. By default, the arima uses the maximum
likelihood method for parameter estimation.

To use the arima function, one needs to specify p and q. For instance, the
command,

fit<-arima(wsdata, order = c(3,0,1)),

fits an ARMA(3,1) model. Typing fit in the R program displays the values of

â0, â1, â2, â3, b̂1, the standard deviations of the respective estimates, as well
as σ̂2

ε . It also displays a few other things, such as the log-likelihood value and
AIC, which we explain next.

2.4.2 Decide Model Order
When using the arima function, the model orders p and q need to be specified.
In the forecast package, there is an auto.arima function, which can decide
the model order on its own. If one is curious about how auto.arima selects
its model order or wants to have more control on model selection by oneself,
this section explains the thought process.

Popular model selection criteria used for time series models include the
Akaike Information Criterion (AIC) [7] and Bayesian Information Criterion
(BIC) [197]. Both criteria follow the same philosophy, which is to trade off
between a model’s training error and its complexity, in order to select a simple
enough model that in the meanwhile fits well enough to the training data. The
difference between AIC and BIC is in the specific weighting used to trade off
the two objectives, which is going to be clear below.

The AIC is defined as

AIC = 2× number of parameters− 2L̂, (2.22)
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where L̂ is the log-likelihood value of the ARMA model, evaluated at the
estimated parameters. The log-likelihood value is one of the outputs from
the arima function. The number of parameters in an ARMA(p, q) model is
p+ q + 1. Hence, AIC = 2(p+ q + 1)− 2L̂ for an ARMA(p, q) model.

The BIC is defined as

BIC = ln(n)× number of parameters− 2L̂
= ln(n) · (p+ q + 1)− 2L̂.

(2.23)

Using AIC or BIC, one would select the model that minimizes either of the
criteria.

The log-likelihood value indicates how well an ARMA model fits the train-
ing data—the greater, the better. Because the data are noisy, a model that fits
too well to the training data could have read too much into the noise part, a
problem known as overfitting [86]. An overfit model loses its predictive ability
and has actually a worse forecasting accuracy. Analysts come to realize that
an effective way to avoid overfitting is to select a simpler model. The number
of parameters in an ARMA model measures its model complexity—the fewer
the parameters, the simpler a model is.

AIC deems that one unit increase in the model complexity, namely one
more parameter included in the model, is equivalent to one unit decrease in the
log-likelihood. In using AIC, this trade-off is independent of the data amount,
n. BIC, instead, considers the weighting coefficient to be dependent on the
data amount. Specifically, it uses ln(n) to quantify the model complexity.
When n = 7.4, meaning the training data points are seven or eight, ln(n) =
2, making AIC and BIC equivalent. When n ≥ 8, BIC tends to choose a
simpler model than AIC. In practical situations, n is much greater than eight,
suggesting that BIC yields a simpler ARMA model that tends to forecast more
accurately on future data.

Aware of the shortcoming of the original AIC, analysts propose a corrected
AIC [34], referred to as AICc and defined in the context of ARMA(p, q) as

AICc = AIC + 2× (p+ q + 1)2 + (p+ q + 1)

n− p− q
. (2.24)

AICc is virtually AIC with an extra penalty term for model complexity. When
n is far greater than the square of the number of parameters in a model, AIC
and AICc behave almost the same.

The arima function returns the values of AIC. One can use the BIC function
to compute the BIC value, and use the formula in Eq. 2.24 to calculate AICc.
When using auto.arima, one can set its argument ic to be either aicc, aic,
or bic, so that the respective information criterion is used in selecting p and
q in the model. For instance,

fit<-auto.arima(wsdata, ic=c(‘bic’))

uses the BIC for model selection. The default setting in auto.arima is AICc.
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TABLE 2.4 The log-likelihood, BIC, AIC, and AICc values
of 18 candidate models, up to ARMA(6, 3), based on the
hourly data of April in the Wind Time Series Dataset,
where n = 433. Boldface values are either the largest
log-likelihood or the smallest values of a respective
information criterion.

Model Log-likelihood BIC AIC AICc

ARMA ( 1 , 1 ) −293.7 605.5 593.3 593.4
ARMA ( 1 , 2 ) −293.0 610.4 594.1 594.2
ARMA ( 1 , 3 ) −292.9 616.1 595.8 595.9
ARMA ( 2 , 1 ) −293.3 610.9 594.7 594.7
ARMA ( 2 , 2 ) −292.7 615.8 595.4 595.6
ARMA ( 2 , 3 ) −292.8 622.0 597.6 597.8
ARMA ( 3 , 1 ) −292.7 615.8 595.4 595.6
ARMA ( 3 , 2 ) −290.5 617.3 593.0 593.2
ARMA ( 3 , 3 ) −289.7 622.0 593.5 593.8
ARMA ( 4 , 1 ) −293.0 622.3 597.9 598.1
ARMA ( 4 , 2 ) −289.8 622.0 593.5 593.8
ARMA ( 4 , 3 ) −289.7 628.0 595.5 595.8
ARMA ( 5 , 1 ) −293.0 628.4 599.9 600.2
ARMA ( 5 , 2 ) −289.7 627.9 595.4 595.7
ARMA ( 5 , 3 ) −289.1 632.9 596.2 596.7
ARMA ( 6 , 1 ) −290.7 630.1 597.5 597.8
ARMA ( 6 , 2 ) −289.0 632.7 596.1 596.5
ARMA ( 6 , 3 ) −288.6 638.0 597.3 597.8

We want to note that certain software packages, like these in R, count the vari-
ance estimate, σ̂2

ε , as a parameter estimated. Hence, the number of parameters
in an ARMA(p, q) model becomes p + q + 2. Using this parameter number
does change the AIC and BIC values but they do not change the model selec-
tion outcome, as all AIC’s or BIC’s are basically offset by a constant. When
this new number of parameters is used with AICc, however, it could end up
choosing a different model.

When applying to one month (April) of hourly data in the Wind Time

Series Dataset, the BIC produces the simplest ARMA model, which is
ARMA(1,1), namely p = q = 1. Had AIC or AICc been used on the same set
of data, ARMA(3,2) would have been chosen, which is more complicated than
ARMA(1,1). For the detailed information, please refer to Table 2.4. The esti-
mated parameters for this ARMA(1,1) model are: â0 = 0.0727, â1 = 0.8496,

b̂1 = 0.0871, and σ̂2
ε = 0.2265.

2.4.3 Model Diagnostics
In addition to using the information criteria, described above, to choose an
appropriate time series model, analysts are encouraged to use graphical plots
to check the model’s fitting quality—this is referred to as model diagnostics or
diagnostic checking. For ARMA models, the two most commonly used plots
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are the autocorrelation function (ACF) plot and the partial autocorrelation
function (PACF) plot.

The model diagnostics is performed on the residuals after a model is fitted.
The purpose is to check whether the model assumptions regarding the error
term hold. The plots are supposed to show that the residuals, after the model
part is removed from the data, appear random and contain no systematic
patterns; otherwise, it suggests the model fitting is not properly done. Some
diagnostics also tests if the residual follows a normal distribution.

Based on Eq. 2.18, we can compute the residuals recursively, using the
estimated parameters, such as

ε̂t =Vt − â0 −
p∑
i=1

âiVt−i −
q∑
j=1

b̂j ε̂t−j , t = 1, . . . , n,

V` = 0, ε̂` = 0, ∀` ≤ 0.

(2.25)

The autocorrelation function of εt is just the correlation function of the
random variable with its own past. Denote by Cov(X,Y ) the covariance of
two random variables, X and Y . Then, the autocovariance function between
two time points, t and t − h, in the stochastic process of εt, is denoted as
Cov(εt, εt−h). When h = 0, Cov(εt, εt) = σ2

ε is the variance of the underlying
process. Define by ρ(X,Y ) the correlation between two random variables, X
and Y . Then, the autocorrelation function of εt is

ρ(εt, εt−h) =
Cov(εt, εt−h)

Cov(εt, εt)
=
Cov(εt, εt−h)

σ2
ε

.

Considering that the residuals should be stationary (after all these modeling
steps), then the autocorrelation function does not depend on the starting point
in time but only on the time lag h. As such, its notation can be simplified as
ρh. With the residuals computed in Eq. 2.25, the sample autocorrelation can
be computed through

ρ̂h =

∑n
t=h+1(ε̂t − ¯̂ε)(ε̂t−h − ¯̂ε)∑n

t=1(ε̂t − ¯̂ε)2
≈
∑n
t=h+1 ε̂tε̂t−h∑n

t=1 ε̂
2
t

, (2.26)

where ¯̂ε is the sample mean of the residuals, which is supposed to be zero (or
near zero), so that they can be omitted from the equation. Applying Bartlett’s
formula [20, Eq. 6.2.2], the standard error (se) for testing the significance of
ρ̂h is approximated by

seρ =

√
1 + 2

∑h−1
i=1 ρ̂

2
i

n
.

The 95% confidence interval for ρ̂h is approximated by ±1.96 · seρ. Under the
null hypothesis that the residuals are uncorrelated, meaning ρ̂h = 0,∀h > 0,
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the standard error is then simplified to seρ =
√

1/n, and correspondingly, the
95% confidence interval becomes simply ±1.96/

√
n.

One could plot ρ̂h against a series of time lags, h, and observe how much,
if any at all, the residuals are still correlated with their own past. This can be
done by using the R function acf in the forecast package. The default setting
in acf draws an autocorrelation plot, on which there are two dashed lines (blue
in color print). These lines correspond to the 95% confidence interval under
the null hypothesis, which are at the values of ±1.96/

√
n, as explained above.

With an autocorrelation plot, analysts can quickly inspect if there is any ρ̂h
exceeding the line of ±1.96/

√
n, and if yes, that suggests still strong enough

autocorrelation.
The autocorrelation between εt and εt−2 presumably comes from two

sources—one is a lag-1 propagation via the correlation between εt and εt−1

and then the correlation between εt−1 and εt−2, while the other is the corre-
lation directly between εt and εt−2. The autocorrelation, ρ2, as defined and
computed above, is the summation of the two sources. When one sees a large
ρ2, one may wonder if its large value is caused by a large lag-1 autocorrelation
and its propagation or if it is caused by the direct correlation. The concept of
partial autocorrelation is therefore introduced to quantify this direct correla-
tion, which is the amount of correlation between a variable and a lag of itself
that is not explained by correlations at all lower-order lags.

Consider the AR model of order p in Eq. 2.17. Applying the correlation
operation with Vt−1 on each term in both sides gives us the following equation,
where we replace the coefficient, ai, in Eq. 2.17 by φpi, such as

ρ1 = φp1 + φp2ρ1 + . . .+ φppρp−1. (2.27)

In the above equation, we replace ρ0 by its value, which is one. Here we use a
double index subscript on φ to signify that this set of coefficients is obtained
when we use an AR model of order p. Do the correlation operation with Vt−j ,
for j = 1, . . . , p. We end up with the set of Yule-Walker equations [20] as,

ρ1

ρ2

...
ρp


︸ ︷︷ ︸
ρ

=


1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · 1


︸ ︷︷ ︸

R


φp1
φp2

...
φpp


︸ ︷︷ ︸

φ

, (2.28)

or in the matrix format,
ρ = Rφ.

Because R is a full-rank and symmetric matrix, we can solve for φ as

φ̂ = R−1ρ.

The partial autocorrelation function is estimated by the sequence of
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φ̂11, φ̂22, . . ., which can be obtained by solving the Yule-Walker equations for
p = 1, 2, . . .. Here it becomes apparent why we replace the single index co-
efficient, ai, in the AR model with the double index coefficient, φpi, in the
Yule-Walker equations; it is otherwise difficult to express the partial autocor-
relation function.

The Yule-Walker equations can be solved recursively using the Levinson-
Durbin formula [54],

φ̂pp =
ρ̂p −

∑p−1
j=1 φ̂(p−1)j ρ̂p−j

1−
∑p−1
j=1 φ̂(p−1)j ρ̂j

, p = 2, 3, . . .

φ̂pj = φ̂(p−1)j − φ̂ppφ̂(p−1)(p−j),

φ̂11 = ρ̂1.

(2.29)

Using the above equations, we figure out that the partial autocorrelation of
lag 2, φ̂22, is

φ̂22 =
ρ̂2 − ρ̂2

1

1− ρ̂2
1

. (2.30)

Recall the example mentioned earlier about the autocorrelation between εt
and εt−2. The two-step sequential propagation of the lag-1 autocorrelation is
ρ̂2

1, whereas ρ̂2 is the full lag-2 autocorrelation. If ρ̂2 = ρ̂2
1, the correlation

between εt and εt−2 that is not explained by correlations at the lower lag-1
order is zero. As such, it is reflected in the partial autocorrelation function as
φ̂22 = 0, according to Eq. 2.30. If ρ̂2 6= ρ̂2

1, their difference, scaled by 1− ρ̂2
1, is

the partial autocorrelation of lag 2, or the direct correlation between εt and
εt−2.

The partial autocorrelation function is useful in identifying the model order
of an autoregressive process. If the original process is autoregressive of order
k, then for p > k, we should have φpp = 0. This can again be done in a partial
autocorrelation function plot by inspecting, up to which order, PACF becomes
zero or near zero. By setting type=c(‘partial’) in one of its arguments, the
acf function computes PACF values and draws a PACF plot. Alternatively,
the pacf function in the tseries package can do the same. The dashed line
on a PACF plot bears the same value as the same line on an ACF plot.

Fig. 2.3 presents the ACF and PACF plots using the April data in the
Wind Time Series Dataset. The ARMA(1,1) model is fit to the set of data,
and the model residuals are thus computed. The ACF and PACF plots of the
residuals are presented in Fig. 2.3 as well.

2.4.4 Forecasting Based on ARMA Model
Suppose that our final model selected is an ARMA(p, q) and their parame-
ters are estimated using the training data. Then, for the h-step ahead point
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FIGURE 2.3 Top panel: ACF and PACF plots of the original hourly wind

data; bottom panel: ACF and PACF plots of the residuals after an

ARMA(1,1) model is fit.
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forecasting, which is to obtain V̂t+h, we use the following formula,

V̂t+h := E(Vt+h|V1, V2, . . . , Vn)

= â0 +

p∑
i=1

âiV̂t−i+h +

q∑
j=1

b̂j ε̂t−j+h.
(2.31)

In the above equation, when the time index on a V̂ is prior to t, meaning that
the wind data has been observed, then V̂ is replaced by its observed value at
that time and ε̂ is estimated in Eq. 2.25, whereas when the time index on a
V̂ is posterior to t, then V̂ is the forecasted value at that time and E(ε̂) = 0.

To assess the uncertainty of the forecast, we need to calculate the variance
of the forecasting error. For that, we use the Wold decomposition [8]. The
Wold decomposition says that the ARMA model in Eq. 2.18 can be expressed
as an infinite summation of all the error terms, such as

Vt+h = a0 + εt+h +ψ1εt+h−1 + . . . ψh−1εt+1 +ψhεt +ψh+1εt−1 + . . . , (2.32)

where ψi’s can be decided from ai’s and bj ’s in Eq. 2.18. We here omit the
detailed expression for ψi’s.

With the expression in Eq. 2.32, the h-step ahead forecast is

V̂t+h := E(Vt+h|V1, V2, . . . , Vn) = â0 + ψhε̂t + ψh+1ε̂t−1 + . . . . (2.33)

Therefore, the h-step ahead forecast error at time t, denoted by et(h), can be
expressed as

et(h) = Vt+h − V̂t+h = εt+h + ψ1εt+h−1 + . . .+ ψh−1εt+1. (2.34)

The expectation of et(h) is zero, namely E(et(h)) = 0, and its variance is
expressed as

V ar(et(h)) = V ar

(
h−1∑
`=0

ψ`εt+h−`

)
= σ2

ε

h−1∑
`=0

ψ2
` , (2.35)

where we define ψ0 = 1. Combining the point forecast and the variance, the
100(1− α)% prediction interval for the h-step ahead forecasting is

V̂t+h ± zα/2 ·
√
V ar(et(h)) = V̂t+h ± zα/2 · σε ·

√√√√h−1∑
`=0

ψ2
` . (2.36)

From the above formula, it is apparent that farther in the future the forecast
is, the greater the forecasting variance becomes.

In R, one can use the function forecast in the forecast package to make
forecasting. The basic syntax is forecast(wsdata, h, model = fit), which
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FIGURE 2.4 Wind speed forecasting based on the ARMA(1,1) model.

h = 1, 2, . . . , 6.

makes an h-step ahead forecasting using the fitted ARMA model whose pa-
rameters are stored in fit. The forecast function plots both the point fore-
cast and the confidence intervals. By default, the forecast function draws
two confidence intervals, which are the 80% and 95% confidence intervals.
The confidence levels can be adjusted by setting the input argument level

to other values. For example, level = c(95, 99) sets the two confidence
intervals at 95% and 99%, respectively.

Fig. 2.4 presents the forecasting outcome based on the ARMA(1,1) model
estimated in the previous subsections and using the hourly data of April. The
solid line is the h-hour ahead forecast, assuming that the data is available
only up to time t. The solid dots represent a one-hour ahead rolling forward
forecasting by using the new wind speed observation, at t+ 1, t+ 2, . . ., t+ 5,
respectively. For the rolling forward forecasting, the ARMA(1,1) model is refit
every time. It is understandable that the two forecasts are the same at t + 1
but they differ starting from t + 2 when the one-hour ahead rolling forward
forecasting uses the actual wind speed observations Vt+h at h > 0, while the
h-hour ahead forecasting uses the forecasted wind speed V̂t+h at h > 0.
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2.5 OTHER METHODS
Several other methods, some of machine learning flavor, have been developed
for short-term forecasting. In this section, we discuss the use of the Kalman fil-
ter (KF), support vector machine (SVM) and artificial neural network (ANN).
We defer discussion on regime switching techniques [6, 75] to Chapter 4.

2.5.1 Kalman Filter
The Kalman filter [116] was initially developed for linear dynamic systems de-
scribed by a state space model. Using the notations introduced in this chapter,
the state space model for wind speed forecasting can be expressed as,

state equation at = Φat−1 + ωt−1,

observation equation Vt = hTt at + εt,
(2.37)

where Φ is known as the state matrix, at = (a1,t, . . . , ap,t)
T is the state vector,

ht = (Vt−1, . . . , Vt−p)
T is the observation vector, and, εt and ωt are random

noises. The first equation is referred to as the state equation, whereas the
second equation is referred to as the observation equation. The observation
equation is essentially an AR model, which is to predict the future wind speed
(or power) as a linear combination of its past observations. Unlike the AR
model, the Kalman filter model treats the coefficients, at, as variables rather
than constants, and updates them as new observations arrive, so as to catch
up with the dynamics in the wind data. The two noise terms are often assumed
to be normal variables, namely εt ∼ N (0, (σ2

ε)t) and ωt ∼ N (0,Qt), where
(σ2
ε)t is the time-varying variance of εt and Qt is the time-varying covariance

matrix of ωt. The state vector, at, is a random vector. It also has a covariance
matrix, which we define by Pt.

In the wind application, the observation vector, as expressed in Eq. 2.37, is
the past n observations of wind speed, immediately before the current time t.
But some analysts use the output from an NWP [44, 136] as their observation
vector, and in this way, the Kalman filter serves to enhance the predictive
resolution and accuracy of the heavy-computing, slow-running NWP.

The state matrix, Φ, is often assumed an identity matrix, namely Φ = I,
unless the underlying process dictates a different evolution dynamics of the
state vector, at. A further simplification is to assume that Qt is a diagonal
matrix—random variables in ωt are uncorrelated—and has an equal variance.
As such, we can express Qt = (σ2

ω)t ·I, where (σ2
ω)t is known as the variance of

the system noise, whereas the (σ2
ε)t is known as the variance of the observation

noise.
Before introducing the Kalman filter prediction and updating mechanism,

we need to articulate the meaning of time instance t here. When we say “at
time t,” we mean that we have observed the wind data at that time. The
Kalman filter has an update step between two time instances, t− 1 and t, or
more specifically, after the wind data at t − 1 has been observed but before
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the observation at t. To denote this update step, analysts use the notation,
t|t− 1. For example, at|t−1 is the predicted value of the state vector after the
observations up to t− 1 but before the observation at t.

The Kalman filter runs through two major steps in iteration—prediction
and update. Suppose that we stand between t−1 and t, and have the historical
observations in ht as well as previous estimations, ât−1 and Pt−1. At this
moment, before we observe Vt, we can predict

ât|t−1 = Φât−1, (2.38)

Pt|t−1 = ΦPt−1Φ
T + (σ2

ω)t−1 · I, (2.39)

V̂t|t−1 = hTt ât|t−1, (2.40)

(σ̂2
V )t|t−1 = hTt Pt|t−1ht + (σ2

ε)t. (2.41)

The last two equations are used to make a one-step ahead forecasting. The
100(1− α)% predictive confidence interval for Vt, before Vt is observed, is

[V̂t|t−1 − zα/2 · (σ̂2
V )t|t−1, V̂t|t−1 + zα/2 · (σ̂2

V )t|t−1].

If the desire is to make multiple-hour ahead forecasting, then the state space
model should be built on a coarse temporal granularity. The default temporal
resolution is an hour, meaning that one hour passes from t − 1 to t. If we
increase the temporal granularity to two hours, meaning that two hours pass
from t − 1 to t, then, the above one-step ahead forecasting makes a 2-hour
ahead forecast. The downside is that the historical data is thinned and the
data point between the two chosen time instances for the Kalman filter are
ignored—this apparently is a drawback.

At time t, after Vt is observed, ât and Pt get an update through the
following steps,

Kt =
1

(σ̂2
V )t|t−1

Pt|t−1ht, (2.42)

ât = ât|t−1 + Kt(Vt − V̂t|t−1), (2.43)

Pt = (I−Kth
T
t )Pt|t−1, (2.44)

where Kt is known as the Kalman gain. To start the process, analysts can set
the initial values for ât and Pt as

a0 = (1, 0, . . . , 0)T and P0 =

(
1 0
0 1

)
.

The above a0 means that at the beginning, the prediction uses only the im-
mediate past observation. Another parameter to be decided in the Kalman
filter is p, the size of the state vector. This p can be decided by fitting an AR
model and choosing the best p based on BIC.

To run the above Kalman filter, the variances of the observation noise and
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system noise are also needed. Crochet [44] suggests using the Smith algorithm
and Jazwinski algorithm to dynamically estimate (σ2

ε)t and (σ2
ω)t, respectively.

The basic idea for estimating the observation noise, (σ2
ε)t, is to treat it as the

product of a nominal value, (σ2
ε)0, and a coefficient, ζt, where ζt is further

assumed to follow an inverse gamma distribution with a shape parameter κt.
Then, the Smith algorithm [199] updates the observation noise variance by

(σ2
ε)t = ζt−1 · (σ2

ε)0,

ζt =
ζt−1

κt−1 + 1

(
κt−1 +

(Vt − V̂t|t−1)2

(σ2
V )t|t−1

)
,

κt = κt−1 + 1.

(2.45)

The variance of the system noise, (σ2
ω)t, can be estimated through the Jazwin-

ski algorithm [107] as

(σ2
ω)t =

(
(Vt − V̂t|t−1)2 − hTt ΦPt−1Φ

Tht − (σ2
ε)t

hTt ht

)
+

, (2.46)

where (·)+ returns the value in the parenthesis if it is positive, or zero oth-
erwise. The initial values used in Eq. 2.45 are set as (σ2

ε)0 = 1, ζ0 = 1, and
κ0 = 0. The initial value, (σ2

ω)0, is also set to zero.
Fig. 2.5 presents an illustrative example, which compares the Kalman fil-

ter forecast with AR(1) model forecast, when both are applied to the hourly
data of April. The order of the AR model is chosen based on BIC. The best
order, corresponding to the smallest BIC, is p = 1. Because the Kalman filter
updates its one-hour ahead forecast with the new observation, to make a fair
comparison, we use the AR(1) model to conduct a one-hour ahead forecast on
a rolling forward basis from t+1 to t+6, the same as what is done for the solid
dots in Fig. 2.4. The difference is that the model used then is ARMA(1,1),
whereas the model used here is AR(1). The actual difference is, however, negli-

gible, because b̂1 = 0.0871 in the ARMA(1,1) model, and as such, ARMA(1,1)
behaves nearly identically to AR(1) with the same autoregressive coefficient.
The point forecast of both methods are similar here, but the confidence inter-
val of the Kalman filter is narrowing as more data are accumulated, while the
confidence interval of the AR(1) one-hour ahead forecast stays much flatter.

2.5.2 Support Vector Machine
Support vector machine is one of the machine learning methods that are em-
ployed in wind speed forecasting. Support vector machine was initially de-
veloped for the purpose of classification, following and extending the work of
optimal separating hyperplane. Its development is largely credited to Vladimir
Vapnik [221].

Two important ideas are employed in a support vector machine. The first
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FIGURE 2.5 One-hour ahead forecasting plots from t+1 to t+6: Kalman

filter (left panel) and AR(1) model (right panel).

is to use a small subset of the training data, rather than the whole set, in the
task of learning. This subset of data points was called the support vector by its
original developers, namely Vapnik and his co-authors. This is where the name
Support Vector Machine comes from. In the case of a two-class classification,
the data points constituting the support vector are those close to the boundary
separating the two competing classes. The data points that are more interior
to a data class and farther away from the separating boundary do not affect
the classification outcome.

The second idea is to transform the data from its original data space to
a potentially high-dimensional space for a better modeling ability. This type
of transformation is nonlinear, so that a complicated response surface or a
complex feature in the original space may become simpler and easier to model
in the transformed space. The theoretical foundation for such transformation
lies in the theory of reproducing kernel Hilbert space (RKHS) [86].

The use of the first idea helps the use of the second idea. One key reason
for SVM to do well in a higher dimensional space without imposing too much
computational burden is because the actual number of data points involved
in its learning task, which is the size of the support vector, is relatively small.

The application of SVM to wind speed data is to solve a regression prob-
lem, in which the response is a real value, albeit nonnegative, instead of a
categorical value. SVM is applicable to regression problems but a different
loss function ought to be used. We will discuss those next.

Support vector machine falls into the class of supervised machine learning
methods, in which a set of data pairs, {xi, yi}ni=1, is collected and used to
train a model (model training is the same as to decide the model order and
estimate the model parameters). In the data pairs, xi is the input and yi
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is the corresponding output. In the context of wind speed forecasting, what
analysts use to forecast a future value is the historical observations. At time
t, the input vector comprises the wind speed data p-step back in the history,
and the response y is the h-step ahead to be forecasted. In other words, xt
and yt can be expressed as

xt = (Vt, . . . , Vt−p+1)T and yt = Vt+h.

This xt is essentially the same as the observation coefficient vector, ht+1, in
the Kalman filter. We group the data in the collection of historical observations
running from time 1 to time n+ h and label them as x’s and y’s accordingly.
Wind speed V` for ` ≤ 0 is set to zero. Like in the Kalman filter, p can be
chosen by fitting an AR model to the wind data.

SVM finds the relationship between x and y, so that a forecast can be
made for h-step ahead whenever a new set of wind speed observations are
available. Unlike in AR models and the Kalman filter, the y-to-x relationship
found by SVM is not necessarily linear. In fact, it is generally nonlinear.
Analysts believe that a nonlinear functional relationship is more flexible and
capable, and could hence lead to an enhanced forecasting capability. When
using SVM, for a different h, a different SVM predictive model needs to be
built, or needs to be trained. This aspect appears different from the recursive
updating nature of the Kalman filter or the ARMA model.

The general learning problem of SVM can be formulated as

α̂ = arg min
{
L(y,Kα) +

γ

2
αTKα

}
, (2.47)

where L(·, ·) is a loss function that can take different forms, depending
on whether this is a regression problem or a classification problem, y =
(y1, . . . , yn)T is the output vector, K is the Gram matrix (or the kernel ma-
trix), to be explained below, α is the model parameters to be learned in the
training period, using the training dataset, {xi, yi}ni=1, and γ is the penalty
constant to regulate the complexity of the learned functional relationship. A
large γ forces a simpler, smooth function, while a small γ allows a complicated,
more wiggly function. Recall the overfitting issue discussed in Section 2.4.2.
An overly complicated function leads to overfitting, which in turn harms a
model’s predictive capability. The inclusion of γ is to help select a simple
enough model that has good predictive performances.

The above formulation appears to be different from many of the SVM
formulations presented in the literature. This is because the above SVM for-
mulation is expressed under the reproducing kernel Hilbert space framework.
The RKHS theory is too involved to be included here—after all, the main
purpose of this book is not machine learning fundamentals. The benefit to
invoke this RKHS framework is that doing so allows the SVM formulation
to be presented in a clean and unified way and also be connected easily with
other learning methods, such as Gaussian process regression [173] or smooth-
ing splines [86].
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In the kernel space formulation, one key element is the Gram matrix K,
which is created by a kernel function K(·, ·), such that the (i, j)-th element
of K is (K)i,j = K(xi,xj). This is how the input vector information x’s get
incorporated in the learning equation of Eq. 2.47; otherwise, it may appear
strange that SVM learns α by using y only, as on the surface, x does not
appear in Eq. 2.47.

There are several commonly used kernel functions in SVM. A popular one
is the radial basis function kernel, defined as

K(xi,xj) = exp
{
−φ‖xi − xj‖22

}
, (2.48)

where ‖·‖2 defines a 2-norm; for more discussions on norm, please refer to
Section 12.3.1. The radial basis kernel is also known as the Gaussian kernel,
as its function form resembles the density function of a Gaussian (normal)
distribution. Using the radial basis kernel, it introduces one extra parameter,
φ, which will be decided in a similar fashion as how γ in Eq. 2.47 is decided.
This is to be discussed later.

Once the parameters in α are learned, analysts can use the resulting
SVM to make forecasting. For instance, we train an SVM using data from
1 to n. Then, with a new observation, Vn+1, we would like to make a
forecast of Vn+h+1. We first form a new input vector, denoted by xnew =
(Vn+1, Vn, . . . , Vn−p+2)T . Then, the forecasting model is

V̂n+h+1(xnew) =
n∑
i=1

α̂iK(xnew,xi). (2.49)

For a general h-step ahead forecasting where h > 1, it is important to make
sure that xnew properly includes the new observations that matter to the
forecasting. Then, the same formula can be used to obtain a general h-step
ahead forecast V̂t+h.

SVM for classification and SVM for regression use different loss functions.
First, let us define a general prediction function for SVM as g(x). Similar to
the prediction expressed in Eq. 2.49, the general prediction function takes the
form of

g(x) =

n∑
i=1

αiK(x,xi). (2.50)

The loss function can be denoted by L(y, g(x)). For classification, a hinge loss
function,

L(y, g(x)) =
n∑
i=1

(1− yig(xi))+ , (2.51)

is used. As illustrated in Fig. 2.6, left panel, this loss function, expressed in yg,
looks like a hinge comprising two straight lines. For regression, an ε-sensitive
error loss function,

L(y, g(x)) =
n∑
i=1

(|yi − g(xi)| − ε)+ , (2.52)
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FIGURE 2.6 The loss functions used by support vector machine in clas-

sification (left panel) and in regression (right panel).

is used, which is illustrated in Fig. 2.6, right panel.
SVM regression can be made equivalent to Gaussian process regression,

if (a) the loss function uses a squared error loss function, (b) γ/2 is set to
σ2
ε , which is the variance of the i.i.d noise term, (c) when the kernel function,
K(·, ·), is set to be a covariance function. This connection becomes clearer
after we discuss the Gaussian process regression in Section 3.1.3 (see also
Exercise 3.2).

To run an SVM regression, the needed input is the training dataset
{xi, yi}ni=1 and three exogenous parameters, γ in Eq. 2.47, φ in Eq. 2.48,
and ε in Eq. 2.52 (not to confuse this ε with the i.i.d noise term ε). These
exogenous parameters can be decided by using a cross-validation strategy [86].
A five-fold cross validation is carried out through the steps in Algorithm 2.1.

In R’s e1071 package, a number of functions can help execute the SVM re-
gression and make forecast. The svm function performs both classification and
regression. It performs a regression, if it detects real values in y. By default,
the svm uses a radial basis function and sets γ = 1, φ = 1/p, and ε = 0.1.
Please note that γ in our formulation is the reciprocal of the cost argument
used in the standard SVM package in R, and the radial kernel coefficient, φ,
is called gamma in the SVM package.

The following command can be used to perform a model training,

svm.model <- svm(Y~ X, data = trainset).

To apply the SVM to the test dataset,

svm.pred <- predict(svm.model, testset).

To select the exogenous parameters, analysts can use the tune function to
run a grid search. Suppose that we have fixed φ = 1 but want to see which
combination of γ and ε produces a better model, we may use

outcome<-tune(svm, Y~ X, data = trainset, ranges =

list(epsilon = seq(0,1,0.1), cost = 10^ (-4:4)).
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Algorithm 2.1 A five-fold cross-validation procedure.

1. Choose a value for γ, φ, and ε, respectively.

2. Split the whole training dataset into five subsets of nearly equal data
amount.

3. Use four subsets of the data to train an SVM regression model.

4. Use the remaining unused data subset to evaluate the performance of
the model, using one of the performance metrics that are to be discussed
in Section 2.6.

5. Repeat Steps 3 and 4 five times. Each time, always use four subsets to
train a model and use the unused fifth subset to evaluate the model’s
forecasting performance.

6. Use the average of the performance metric values as the final model
performance.

7. Repeat from Step 1 by trying other combinations of γ, φ, and ε. Select
whichever combination produces the best forecasting model.

Because the tune function runs an exhaustive search, it could take a long time,
especially if all three parameters are to be optimized. To speed up, analysts
can optimize one factor at a time or employ a meta-heuristic optimization
routine such as the genetic algorithm.

Using the same April wind data as used in the previous subsections, we
explore which parameter combination produces the best SVM. Here, a radial
basis kernel is used, p = 1 as in the Kalman filter example, and φ = 1. To ease
the computation, we use a greedy search strategy, which is to fix the value of
ε = 0.1, vary cost in a broad range. It turns out that cost = 1 is preferred.
Then, fix cost = 1 and vary ε from 0 to 1. This process chooses ε = 0.2.

2.5.3 Artificial Neural Network
Artificial neural network is another machine learning method that is widely
employed in wind speed forecasting. ANN can be used for both classification
and regression, too. Like in the case of SVM, the application of ANN to wind
speed forecasting is a regression problem. The problem setting is similar to
that described in the SVM section:

• A set of training data points, {xi, yi}ni=1, is collected, where xi and yi
are defined likewise as in SVM.

• ANN aims to find the relationship between x and y, and the resulting



46 � Data Science for Wind Energy

relationship is nonlinear, as in the case of SVM and unlike the linear
relationship assumed in AR models and the Kalman filter.

• To make a forecast at t + h, one chooses Vt+h as the corresponding yi.
ANN can train a model with multiple outputs, meaning that the outputs
of an ANN can make forecasts, all at once, at a number of h-step ahead
times with different h’s. This is, at least conceptually, a convenience
provided by ANN. On the flip side, training a multi-output model takes
more care than training a single-output model.

Neural networks consist of an input layer and an output layer, which are
connected through one or many hidden layers in between. Fig. 2.7, left panel,
presents a multiple-input and single-output neural network, which has only
one hidden layer. Each layer comprises a number of nodes. The nodes on the
input layer are basically the input variables, whereas the nodes on the output
layer are the response variables, namely the forecast to be made in the wind
applications. By letting y = Vt+h, the neural net in Fig. 2.7 is to make an h-
step ahead forecast for the given h. As mentioned above, it is straightforward
for an ANN to have multiple outputs, so as to make simultaneous forecasts at
multiple future time instances.

The information flow in an ANN goes as follows. The input layer takes
in the input data. The connection between the input nodes and a node on
the hidden layer feeds a linear combination of the inputs to the hidden node
and outputs a value after a nonlinear transformation. The final output of the
network is a linear combination of the values of the hidden nodes. Denote by
Z the node on the hidden layer and assume that there are M hidden nodes,
i.e., Z1, . . . , ZM . As such, a neural net is described mathematically as,

Zm(x) = σ(α0m +αTmx),m = 1, . . . ,M, (2.53)

ŷ = g(x) = β0 +
M∑
m=1

βmZm(x), (2.54)

where α0m, αm, and βi, i = 0, 1, . . . ,M are the model parameters to be learned
from the training data, and σ(·) is the sigmoid function, taking the form
σ(x) = 1/(1 + e−x). For an illustration, please take a look at Fig. 2.6, right
panel. This sigmoid function is the nonlinear transformation, referred to a
short while ago, that takes place at the hidden nodes. Because of this nonlinear
transformation, the resulting ANN model is inherently nonlinear. This sigmoid
function is called an activation function, as what it does is to tame an input
if its value is negative, but let the input pass if its value is positive. This
function is adopted to mimic the activation of a biological neuron responding
to a stimulus—this analogy earns the method its name. In Eq. 2.53, analysts
sometimes use the radial basis function as the σ(·) function, instead of a
sigmoid function. If so, the resulting ANN is referred to as a radial basis
function neural net.

If we choose an identity function as σ(·), namely σ(x) = x, then the ANN
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FIGURE 2.7 Left panel: a single hidden layer, a single-output neural net-

work. Right panel: a sigmoid function.

model simplifies to a linear model. In this way, an ANN can be thought of
as a two-stage, nonlinear generalization of the linear model. A general ANN
also has multiple layers. It has been long believed that having multiple lay-
ers increases the data modeling capability of the resulting neural net, but
the difficulty surrounding the optimization for parameter estimation made a
multiple-layer neural net initially less practical. This optimization problem
was addressed about a decade ago, and consequently, the many-layered neu-
ral nets become popular nowadays. The many-layered neural nets are referred
to as deep neural nets, or commonly, deep learning models. The single layer
one, by contrast, is called a shallow neural net.

An ANN is parameterized by α0m, αm, and βi, i = 0, 1, . . . ,M , known
as the weights in the language of neural nets, as they can be viewed as the
weights associated with the links between an input node and a hidden node, or
between a hidden node and an output node. For regression, the loss function
used in an ANN training is the squared error loss, i.e.,

∑n
i=1(yi − g(xi))

2.
For a single-layer, single-output ANN, the number of inputs and that of

the hidden nodes need to be decided before the training stage. Concerning
the number of inputs, we recommend using the same number of inputs as in
the Kalman filter or the support vector machine, for which the choice of p
can be hinted by fitting an AR model. Please be aware that the inputs to
an ANN can be easily expanded. Analysts have included wind power, time
in a day, temperature, among other things, as inputs. Due to the flexibility
of an ANN, the training is supposed to take care of the y-to-x relationship,
depending much less on the nature of the inputs. Concerning the number of
hidden nodes, Hastie et al. [86] recommend the range of 5 to 100 and using
more hidden nodes if there are more input nodes, and offer the following rule of
thumb—“Generally speaking it is better to have too many hidden units [nodes]
than too few.”

When training a neural net, the starting values of the parameters are
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typically chosen to be random values near zero [86]. When inputs of different
physical units are used, it is advised to standardize the inputs to have a zero
mean and a standard deviation of one.

The R package neuralnet can facilitate the process of building a neural
net. Suppose that we choose to have 10 hidden nodes on a single hidden layer.
The following R command can be used,

nn <- neuralnet(Y~ X,data=trainset, hidden=10, linear.output=T),

where linear.output=T means that this is a regression problem. By default,
the neuralnet function uses the resilient back-propagation with weight back-
tracking algorithm [178] to solve the optimization problem and estimate the
parameters. If one chooses a multi-layer neural net, then the hidden ar-
gument needs to be set accordingly. For instance, setting hidden = c(5,

4, 3) means that the resulting ANN has three hidden layers, having 5, 4,
and 3 nodes, respectively. To visualize the resulting neural net, one can use
plot(nn). To test the resulting ANN on a set of test data, one can use

test.nn <- compute(nn, testset).

Using the April wind data and p = 1, we test a single hidden layer ANN
with four different choices for the number of the hidden nodes, which are 5,
10, 15, and 30. A ten-fold cross validation settles at five hidden nodes.

2.6 PERFORMANCE METRICS
In order to assess the forecasting quality, a number of performance metrics
are used. Consider the case that we have a set of ntest test data points, Vi,
i = 1, . . . , ntest, the corresponding forecast of each of which is V̂i. The most
popular two metrics are the root mean squared error (RMSE) and the mean
absolute error (MAE), defined, respectively, as

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(V̂i − Vi)2, and (2.55)

MAE =
1

ntest

ntest∑
i=1

|V̂i − Vi|. (2.56)

Both metrics evaluate the performance of a point forecast. RMSE is based on
the squared error loss function, and thus sensitive to the existence of outliers,
whereas MAE is based on the absolute error loss, and thus less sensitive to
outliers.

Both RMSE and MAE count the absolute amount of forecasting error,
regardless of the base value to be predicted. Some may argue that an error of
1 m/s, when predicting at the base wind speed of 3 m/s versus predicting at 15
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m/s, has different impacts. To measure the relative error, the mean absolute
percentage error (MAPE) is used. MAPE is defined as

MAPE =
100

ntest

ntest∑
i=1

∣∣∣∣∣ V̂i − ViVi

∣∣∣∣∣ . (2.57)

Note that MAPE is given as a percentage quantity but its value can exceed
100%.

We want to point out that in some literature, for instance, in [75], MAE is
called the mean absolute prediction error, the acronym of which is also MAPE.
This confusion can be cleared in the context by looking at the spelled-out
version of the acronym or the definition.

Hering and Genton [91] favor measuring the impact on the final power
response affected by wind speed forecast. This is because the impact of a
forecast error in wind speed on wind power is not uniform. Recall the power
curve in Fig. 1.2. For a wind speed smaller than the cut-in wind speed or
larger than the rated wind speed, an error in wind speed forecast has a smaller
impact on wind power than the same amount of forecasting error has when
the wind speed is between the cut-in speed and the rated speed, where the
power curve has a steeper slope. To factor in the impact on a turbine’s power
response, Hering and Genton [91] propose the following power curve error
(PCE), defined as

PCEi =

ξ
(
g(Vi)− g(V̂i)

)
if V̂i ≤ V,

(1− ξ)
(
g(V̂i)− g(Vi)

)
if V̂i > V,

(2.58)

PCE =
1

ntest

ntest∑
i=1

PCEi, (2.59)

where g(·) is the power curve function and ξ ∈ (0, 1) is introduced to penalize
underestimation and overestimation differently. In practice, underestimating
incurs more cost than overestimating. Therefore, for practical purposes ξ >
0.5. Hering and Genton [91] recommend setting ξ = 0.73. Generally speaking,
using the PCE ensures that the optimal forecast is a ξ-quantile [73]. If ξ = 0.5,
PCE is the same as MAE.

The above metrics all measure the quality of a point forecast. If the fore-
casting is a probability density, to measure the quality of a density esti-
mation or prediction, we use the mean continuous ranked probability score
(CRPS) [76]. CRPS compares the estimated cumulative distribution function
with the observations, and it is computed as

CRPS =
1

ntest

ntest∑
i=1

∫ (
F̂ (V )− 1(V > Vi)

)2

dV, (2.60)

where F̂ (V ) is the estimated cdf and 1(·) is an indicator function, such that
1(logic) = 1 if logic is true and zero otherwise. When the cdf, F (·), is
replaced by a point forecast, CRPS reduces to MAE [75].
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TABLE 2.5 Model parameters of SVM and ANN
selected by cross validation. The φ parameter in SVM
is set to be the reciprocal of p.

SVM ANN

h p cost ε p # of hidden nodes

1 1 100 0.3 1 10
2 1 10 0.4 1 5
3 4 1 0.5 1 5
4 4 1 0.6 1 10
5 3 1 0.3 1 5
6 3 1 0.5 1 5

2.7 COMPARING WIND FORECASTING METHODS
In this section, we conduct a comparison study using the yearlong hourly data
in the Wind Time Series Dataset and see how individual forecasting models
work.

For each month, we split the wind speed data into two portions as follows.
We reserve the last six hours of data points as one of the test sets and take the
remaining data in that month as one of the training datasets. We then group
all 12 monthly training sets into an aggregated training set for the whole year.

Five different forecasting methods are considered—the persistence model,
forecasting based on Weibull distribution (WEB), ARMA model, SVM, and
ANN. For ARMA, BIC is used to decide the best model order. When training
SVM and ANN, the cross-validation strategy is used to decide the exogenous
parameters. For the first four models, the training data in the yearlong dataset
are used to find the best model order, if applicable, and estimate the respective
model parameters. For ANN, the convergence of the R package while using the
yearlong dataset is very slow. We instead use only one month of data (April)
in a cross validation to decide the number of hidden nodes for a single-layer
neural net. Once that is decided, the remaining parameters in the ANN model
are estimated still based on the yearlong training data.

For WEB, the mean of the estimated distribution is used as the forecast
for all six h-hour ahead forecasts. For ARMA, an ARMA(2,2) model is chosen
for making h-hour ahead forecasts at h = 1, 2, . . . , 6. For SVM and ANN, six
different models of each kind are trained to cover all six h values. For instance,
when h = 1, we train an SVM and an ANN for one-hour ahead forecasting;
when h = 2, we will train another SVM or ANN model for two-hour ahead
forecasting; and so forth. Recall that this is a feature of the machine learning
methods mentioned on page 42. The parameters of the selected SVM and
ANN models are presented in Table 2.5.

The trained models are used to make forecasts at each month’s test data.
For each h, there are 12 test data points, i.e., ntest = 12, one per month. The
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TABLE 2.6 RMSE (m/s) of five different forecasting methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 0.826 1.597 2.055 2.336 2.659 3.005
WEB 3.237 3.439 3.177 3.474 2.703 2.322
ARMA(2,2) 0.984 1.541 1.777 2.394 2.348 2.488
SVM 1.065 1.504 2.661 2.487 2.154 2.905
ANN 1.074 1.727 1.857 2.666 2.595 2.429

TABLE 2.7 MAE (m/s) of five different forecasting methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 0.631 1.194 1.626 1.744 2.227 2.442
WEB 2.405 2.452 2.457 2.839 2.099 1.813
ARMA(2,2) 0.769 1.163 1.303 1.962 2.055 2.024
SVM 0.864 1.258 2.007 1.959 1.780 2.235
ANN 0.856 1.452 1.441 2.125 2.148 2.010

12 test data points are used to compute three performance metrics—RMSE,
MAE, and MAPE—for each forecasting method.

Tables 2.6–2.8 present the three metrics for the five methods. We observe
the following:

1. For very short terms, like h = 1 or h = 2, the persistence model and
ARMA model are clear winners. The method based on Weibull distri-
bution is the worst by a noticeable margin.

2. Despite the bad performance for very near-term forecasting, WEB holds
steady its performance as the forecasting horizon projects into the fu-
ture, while the performances of all other methods deteriorate quickly.
Eventually, WEB becomes the best forecasting at h = 6. PER suffers
the greatest performance degradation when h increases from one hour
to six hours.

3. The two machine learning methods, SVM and a single-layer ANN in this
comparison, perform rather similarly. It is difficult to conclude which
method is better. A many-layered ANN, or a deep neural net might,
however, win over SVM. That remains to be studied.

4. If this study is used as a guide, then analysts are advised to use PER
for one-hour or two-hour ahead forecasting, WEB for six-hour ahead or
longer forecasting (before switching to NWP), and use ARMA models
or machine learning methods for forecasting in between.
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TABLE 2.8 MAPE (percentage) of five different forecasting
methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 8.2 16.0 21.4 19.4 27.9 30.3
WEB 26.6 27.0 29.8 29.4 24.6 21.7
ARMA(2,2) 9.3 16.2 18.1 20.9 25.6 27.0
SVM 9.8 16.5 23.7 20.7 23.0 26.8
ANN 9.6 18.1 19.1 21.9 26.0 26.6

GLOSSARY
ACF: Autocorrelation function

AIC: Akaike information criterion

AICc: Akaike information criterion corrected

ANN: Artificial neural network

AR: Autoregressive

ARMA: Autoregressive moving average

BIC: Bayesian information criterion

cdf: Cumulative distribution function

CRPS: Continuous ranked probability score

i.i.d: Identically, independently distributed

KF: Kalman filter

MA: Moving average

MAE: Mean absolute error

MAPE: Mean absolute percentage error

MLE: Maximum likelihood estimation

NWP: Numeric weather prediction

PACF: Partial autocorrelation function

PCE: Power curve error

pdf: Probability density function

PER: Persistence model or forecasting

RKHS: Reproducing kernel Hilbert space
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RMSE: Root mean squared error

SVM: Support vector machine

WEB: Weibull distribution-based forecasting

EXERCISES
2.1 Find the probability density function for a three-parameter Weibull dis-

tribution.

a. Derive the corresponding log-likelihood function.

b. Use the three-parameter Weibull distribution to fit the hourly data
in the Wind Time Series Dataset and report the estimated param-
eters.

c. Suppose the turbine cut-in speed is 4 m/s. Remove the wind speed
data below the cut-in speed and fit both the two-parameter Weibull
distribution and the three-parameter distribution. Please discuss the
differences in your estimation outcomes.

2.2 Evaluate what impact different bin widths may have on the χ2 goodness-
of-fit test.

a. Use one month of the hourly data in the Wind Time Series Dataset

and try the following bin widths: 0.2, 0.5, 1, 2 m/s.

b. Switch to one week of the 10-min data and try the same set of bin
widths.

2.3 Use Hinkley’s method to select the power transformation coefficient, m.

a. Try this on the hourly data in the Wind Time Series Dataset and
try the following m values: 0, 0.5, 1, 2. Which m produces a sym = 0?
Interpolation may be needed.

b. Switch to the 10-min data and try the same set of m values.

2.4 Remove the diurnal trend in the hourly data in the Wind Time Series

Dataset by using Gneiting’s trigonometric function in Eq. 2.15. Plot
the original time series and the standardized time series. Compare them
with the standardization using Eq. 2.14 and note any difference that
you may have observed.

2.5 For the linear model in Eq. 2.20, the objective function leading to a
least-squares estimation is

min
{

(V − V̂)T (V − V̂) = (V −Wâ)T (V −Wâ)
}
.
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The least-squares estimation can be attained by taking the first deriva-
tive of this objective function, with respect to â, and setting it to zero.
Please derive the least-squares estimation formula.

2.6 Use the hourly data in the Wind Time Series Dataset and conduct an
ARMA modeling exercise. First, select the data from one of its months,
and use this specific month data and do the following.

a. Fit a series of AR models, with p = 1, 2, . . . , 6, respectively. When
applying the three information criteria, do they select the same model
order? Which criterion selects the simplest model?

b. Use the simplest AR model order selected in (a) and denote it as p0.
Compare the model AR(p0) with ARMA(p0, q) for q = 1, 2, 3, and
select the model order q in a similar fashion as in (a) that selects p0.
Denote the resulting MA model order as q0.

c. Conduct some model diagnostics of this ARMA(p0, q0) model by
plotting its ACF and PACF. Do the ACF and PACF plots confirm
a good model fit?

2.7 Derive Eq. 2.27 and Eq. 2.28 from Eq. 2.17.

2.8 When the loss function is a squared error loss function in Eq. 2.47, find
the closed-form expression for the optimal α̂.

2.9 Take the January hourly data from the Wind Time Series Dataset

and use that as the historical training data. In the presence of miss-
ing data, please simply skip time stamps where data are missing and
continue with the next available data.

a. Fit a series of AR models, with p = 1, 2, . . . , 6, respectively. Use BIC
to select the best model order p.

b. Use the resulting AR model to do an h-hour ahead forecast, for
h = 1, 2, . . . , 100. One hundred hours is a little bit over four days.
Call this forecast 1.

c. Use the resulting AR model in (a) to do a one-hour ahead forecast.
Shift the data sequence in (a) by one hour, namely that adding one
new observation and dropping the oldest observation. Repeat, for
the next 100 time instances, both the model fitting (including the
determination of p) and the forecasting. Call this forecast 2.

d. Use a Kalman filter to do the one-hour forecasting but continue run-
ning the Kalman filter for the next 100 time instances. Set the p in
the Kalman filter as that found in (a). Call this forecast 3.
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e. For each forecasting, record both the forecasting result and the cor-
responding wind speed observation at every time instance. Compute
RMSE and MAE for each forecast. Compare the performance metrics
for all three forecasts and discuss pros and cons of each approach.

2.10 For the hourly data in the Wind Time Series Dataset, take wind
power data, instead of wind speed data, and repeat the comparison
study conducted in Section 2.7. Compute the three performance met-
rics for five different methods for each h = 1, 2, . . . , 6.
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C H A P T E R 3

Spatio-temporal Models

W
hen building predictive models for short-term wind forecast, spatial
information is less frequently used than temporal information. Chap-

ter 2 uses data obtained from a single turbine on a wind farm, which can
also be applied to a single time-series data aggregating wind power outputs
from the whole farm. Analysts have noticed that valuable information may be
elicited by considering spatial measurements in a local region, as wind char-
acteristics at a site may resemble those at neighboring sites. This gives rise
to the idea of developing spatio-temporal methods to model the random wind
field evolving through space and time.

Recall that we denote the wind speed data in Chapter 2 by Vt, which has
only the time index. To model a spatio-temporal process, we expand the input
variable set to include both the location variable, denoted by s ∈ R2, and the
time variable, denoted still by t ∈ R, so that the spatio-temporal random wind
field is represented by V (s, t). In this chapter, unless otherwise noted, N is
used to denote the number of sites, whereas n is used to denote the number
of time instances in the training set.

One of the key aspects in spatio-temporal modeling is to model the covari-
ance structure of V through a positive-definite parametric covariance function,
Cov[V (s, t), V (s′, t′)].

3.1 COVARIANCE FUNCTIONS AND KRIGING
In this section, we focus on spatial covariance. For the time being, V (s, t)
is simplified to be V (s). Recall that the temporal covariance, also known as
autocovariance, is discussed in Section 2.4.3.

We use C(s, s′; t, t′) to represent a covariance function, namely

C(s, s′; t, t′) := Cov[V (s, t), V (s′, t′)].

When the time is held still and only the spatial covariance is concerned, the co-
variance function C(s, s′; t, t′) can be simplified to C(s, s′) := Cov[V (s), V (s′)],
after dropping the time index.

57



58 � Data Science for Wind Energy

Given a set of N locations, s1, . . . , sN , we can compute the corresponding
covariance matrix C, whose (i, j)-th entry is Cij = C(si, sj). The covariance
matrix is positive definite if all its eigenvalues are strictly positive, or positive
semidefinite if some of its eigenvalues are zeros while the rest are positive. It
is not difficult to notice that the covariance function is related to the kernel
function mentioned in Section 2.5.2 and the covariance matrix is related to
the Gram matrix (or the kernel matrix). A covariance function is referred to
as a covariance kernel in a general machine learning context, and it can be
shown that a positive definite kernel can be obtained as a covariance kernel
in which the distribution has a particular form [94].

3.1.1 Properties of Covariance Functions
We start with the discussion of some general properties of the covariance
functions.

Stationarity. A covariance function can be used to characterize both
stationary and nonstationary stochastic processes. We primarily consider the
stationary covariance function in this book, which has the property

C(s, s′) = g(s− s′), (3.1)

where g(·) is a function to be specified. The stationarity means that the co-
variance does not depend on the start location of a stochastic process but only
depends on the distance and orientation between two points in that process.
The variance of a stationary stochastic process can be expressed as

V ar[V (s)] = g(0) = σ2
V . (3.2)

For a stationary function, σ2
V is a constant, so that the stationary covariance

matrix can be further factorized as

C = σ2
V ·R, (3.3)

where R is a correlation matrix whose (i, j)-th entry is ρij = Cij/σ
2
V .

The concept of stationarity extends to the spatio-temporal covariance func-
tions. By assuming stationarity, the covariance function only depends on the
spatial lag, u = s − s′, and the time lag, h = t − t′, such that the general
function form C(s, s′; t, t′) can be expressed as C(u;h).

Isotropy: A stationary covariance function is isotropic, provided that

C(s, s′) = g(‖s− s′‖2), (3.4)

where ‖s − s′‖2 is the Euclidean distance between the two locations s and
s′. When it does not cause any ambiguity, the subscript “2” is dropped here-
inafter. Isotropy is to require invariance under rotation. This is to say, every
pair of data points at s and s′, respectively, having a common interpoint
distance, must have the same covariance regardless of their orientation. Ap-
parently, isotropy is a stronger condition than stationarity.
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Smoothness: Smoothness (continuity and differentiability) is a property
associated with sample functions, which are the realization of the stochastic
process under a specified covariance function. The smoothness requirement
is an important consideration in choosing a covariance function. The general
relationship between the smoothness of sample functions and the covariance
function is not straightforward. It is easier to talk about smoothness of sample
functions when a specific covariance function is considered.

3.1.2 Power Exponential Covariance Function
A popular family of covariance functions is the power exponential function,

C(s, s′) = σ2
V exp

−1

2

d∑
j=1

∣∣∣∣sj − s′jθj

∣∣∣∣pj
 , (3.5)

where d is the dimension of s, 0 < pj ≤ 2 is the shape parameter, and θj is
the scale parameter. Usually d = 2 in spatial statistics.

A special form of the power exponential covariance function is the isotropic
squared exponential (SE) covariance function (the phrase “isotropic” is often
omitted), whose parameters are θ1 = · · · = θd = θ, and p1 = · · · = pd = p = 2,
so that

CSE(u) = σ2
V exp

{
− u2

2θ2

}
, (3.6)

where u = ‖u‖ = ‖s − s′‖ =
√∑d

j=1(sj − s′j)2. This function is also called

the Gaussian covariance function. Recall the radial basis kernel in Eq. 2.48.
The CSE(·) is the same as K(·, ·) if φ = 1/2θ2 and σ2

V = 1.
An anisotropic form of the squared exponential covariance function is

where the scale parameters are different along different input directions while
its shape parameter is fixed at 2, namely p1 = · · · = pd = p = 2. This
anisotropic form is also known as the automatic relevance determination
(ARD). The corresponding covariance function reads as,

CSE-ARD(s, s′) = σ2
V exp

−1

2

d∑
j=1

∣∣∣∣sj − s′jθj

∣∣∣∣2
 . (3.7)

The impact of the three types of parameters in the power exponential
covariance function can be understood as follows, and Fig. 3.1 presents a few
examples of the sample function under different parameter combinations.

• The variance term, σ2
V , is referred to as the amplitude, because it is

related to the amplitude of a sample function.

• The shape parameter, p, determines the smoothness of the sample func-
tions. In the above two special cases of the power exponential function,
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p = 2. Analysts like this choice because the corresponding sample func-
tions are infinitely differentiable, meaning that the sample paths are
smooth. For the power exponential family, p = 2 is the only shape
parameter choice under which the sample functions are differentiable.
When p = 1, the corresponding covariance function is known as the
exponential covariance function. This choice is less popular because its
sample functions are not smooth.

• The scale parameter, θ, referred to as the length scale, determines how
quickly the correlation decays as the between-point distance increases.
When θ decreases, the correlation between a pair of points of a fixed
distance decreases, and thus, the sample functions have an increasing
number of local optima. As a result, the sample function exhibits fast
changing patterns and a short wavelength, where as θ increases, the cor-
relation between a fixed pair of points increases, and the sample function
hence exhibits slow changing patterns and a long wavelength.

Another popular family of the covariance function is the Matérn covariance
function, which has a smoothness parameter, υ, that can control the smooth-
ness of sample functions more precisely. Specifically, the sample functions are
almost surely continuously differentiable of order dυe − 1, where d·e rounds
up to the next integer. We choose to omit the presentation of the Matérn
covariance function because we do not use it in this book. Interested readers
can refer to [173] for more information.

3.1.3 Kriging
Kriging is the method commonly used to make spatial predictions. The
method is named after the South African mining engineer, D. G. Krige. In
spatial statistics and machine learning, kriging is generally referred to as the
Gaussian process regression [41, 173]. The problem setting is as follows. Con-
sider sites, s1, . . . , sN , and the wind speeds at these locations, denoted by
V (s1), . . . , V (sN ).The N sites can be the turbine sites in a wind farm, and
the wind speeds at {s1, . . . , sN} can be the wind speed measurements obtained
by the respective nacelle anemometers. Analysts express the sites and respec-
tive measurements as data pairs, such as {si, V (si)}Ni=1. The objective is to
make a prediction at a site, say, s0, where no measurements are taken.

Two popular versions of kriging are the ordinary kriging and universal
kriging. The ordinary kriging uses the following model,

V (si) = β0 + δ(si) + εi, i = 1, ..., N, (3.8)

where β0 is an unknown constant, δ(·) is the term modeling the underlying
random field via the spatial correlation among sites, and ε is the zero mean,
i.i.d Gaussian noise, such that εi ∼ N (0, σ2

ε). The i.i.d Gaussian noise, ε, is
also known as the nugget effect.
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FIGURE 3.1 Three sample functions using a squared exponential covari-

ance function with different parameter choices.
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The random field term δ(·) is assumed to be a zero-mean Gaussian process
whose covariance structure is characterized, for instance, by a power expo-
nential covariance function (other covariance functions can be used, too, but
the power exponential family is a popular choice). Suppose that the squared
exponential covariance function in Eq. 3.6 is used. It means that

C(δ(s), δ(s′)) = σ2
δ exp

{
−‖s− s′‖2

2θ2

}
, (3.9)

where σ2
δ is the variance term associated with the random field function δ(·).

As such, the variance of wind speed is the summation of the variance as-
sociated with the random field and that of the i.i.d random noise, namely
σ2
V = σ2

δ + σ2
ε .

What the ordinary kriging model implies is that the wind speed over a
spatial field is centered around a grand average, β0. The random fluctuation
consists of two portions—the first depends on specific sites and is characterized
by the spatial correlation between site s0 and the sites where observations are
made or measurements are taken, and the second is the pure random noise,
resulting from, for instance, the measurement errors.

Re-write Eq. 3.8 into a matrix form, i.e.,
V (s1)
V (s2)

...
V (sN )


︸ ︷︷ ︸

V

= β0 · 1N +


δ(s1)
δ(s2)

...
δ(sN )


︸ ︷︷ ︸

δ

+


ε1

ε2

...
εN


︸ ︷︷ ︸

ε

, (3.10)

where 1N is an N × 1 vector of all ones. Denote the covariance matrix of
δ by CNN = (Cij)N×N , where the subscript “NN” means that this is a
covariance matrix for the N sites. Recall that δ and ε are two normal random
variables having different covariance structures. This suggests that V follows
a multivariate normal distribution, such as,

f(V) = N (β0 · 1N ,CNN + σ2
εI). (3.11)

For the new site s0, the wind speed to be measured there, whose notation is
simplified to V0, has covariances with the existing N sites. The covariances can
be characterized using the same covariance function, such as C0j = C(s0, sj),
for j = 1, . . . , N . Introduce a new 1×N row vector,

c0N := (C01, . . . , C0N ).

Then, the multivariate joint distribution of (V0,V
T )T is

f

([
V0

V

])
= N

(
β0 · 1N+1,

[
σ2
δ + σ2

ε c0N

cT0N CNN + σ2
εI

])
, (3.12)
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where σ2
δ + σ2

ε is the variance of V0, namely σ2
V , which is also known as

the prior variance at the unseen site s0 before the prediction. Invoke the
conditional Gaussian distribution formula, which says that if x and y are
jointly Gaussian, i.e.,(

x
y

)
∼ N

([
µx
µy

]
,

[
A D

DT B

])
,

then, the condition distribution f(x|y) is

f(x|y) = N (µx + DB−1(y − µy),A−DB−1DT ). (3.13)

By using this conditional Gaussian distribution formula, we can express

f(V0|V) = N (β0 + c0N (σ2
εI + CNN )−1(V − β0 · 1),

σ2
V − c0N (σ2

εI + CNN )−1cT0N ).
(3.14)

This conditional distribution leads to the predictive distribution of V0, once the
observations on the existing N sites are obtained. We can write the predictive
mean and predictive variance, respectively, as

V̂0 := µ̂0 = β̂0 + c0N (σ̂2
εI + CNN )−1(V − β̂0 · 1),

V ar(V̂0) := σ̂2
0 = σ2

V − c0N (σ̂2
εI + CNN )−1cT0N .

(3.15)

The first equation is the kriging predictor, which is a linear combination of
the observed wind speeds in V. The linear coefficients (the weights) depend
on the correlation between the unseen site, s0, and the N training sites as
well as the variance in the training data. The coefficients are bigger, namely
the weights are greater, if the correlation is strong and the training data have
small variances. The predictive variance is reduced from the prior variance
σ2
V at the unseen site. The reduced amount depends also on the correlation

between the unseen site and the training sites as well as the variance in the
training data. The 100(1 − α)% confidence interval for the prediction at s0

can be obtained as

[V̂0 − zα/2σ̂0, V̂0 + zα/2σ̂0].

In the ordinary kriging model, Eq. 3.8, where an SE covariance function is
used, there are four parameters, {β0, σ

2
δ , θ, σ

2
ε}. These parameters can be esti-

mated by maximizing a log-likelihood function, which is the density function
in Eq. 3.11. Specifically, the log-likelihood function reads

L(V|β0, σ
2
δ , θ, σ

2
ε) = −1

2
(V − β0 · 1)T

(
σ2
εI + CNN

)−1
(V − β0 · 1)

− 1

2
log
∣∣σ2
εI + CNN

∣∣− N

2
log(2π).

(3.16)
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Alternatively, one can first estimate β0 by using the average of {Vi}Ni=1 and
then center the raw wind speed data by subtracting its average. After that, one
can use the centered wind speed data and the maximum likelihood estimation
to estimate the remaining three parameters (replace β0 by V̄ in Eq. 3.16).

Conceptually, the universal kriging is not much different from the ordinary
kriging. The main extension is to make the mean component in Eq. 3.8 and
Eq. 3.11 more flexible. In the ordinary kriging, the mean component is assumed
a constant, β0. In the universal kriging, the mean component is assumed as
a polynomial model, β0 + gT (s)β, so that the universal kriging model can be
expressed as

V (si) = β0 + gT (si)β + δ(si) + εi, i = 1, ..., N, (3.17)

where g(·) = (g1(·), . . . , gq(·))T is a set of basis functions, β = (β1, . . . , βq)
T is

the coefficient vector, and q is the number of terms in the polynomial model
in addition to the grand average, β0. There are many different choices for the
basis function g(·) but it can be simply that g1(s) = s1 and g2(s) = s2 (in
this case, q = d = 2). By expanding the mean component, the parameters in a
universal kriging are {β0, β1, . . . , βq, σ

2
δ , θ, σ

2
ε}, and the number of parameters

is q + 4, which is q more than that in the ordinary kriging. Nonetheless, the
maximum likelihood estimation can still be used to estimate all the parameters
after adjusting the log-likelihood function properly.

Kriging can be assisted by using the geoR package in R. Using the likfit

function to estimate the parameters, such as

para <- likfit(spatialdata, ini.cov.pars = c(1,1), nugget =

0.5).

Here, spatialdata is the wind spatial data object holding the {si, Vi}Ni=1

data pairs, ini.cov.pars provides the initial value for σ2
δ and θ, respectively,

nugget provides the initial value for σ2
ε . By default, the likfit uses the SE

covariance function and estimates the parameters by the maximum likelihood
estimation in an ordinary kriging. To make a prediction at s0, one can use

V0 <- krige.conv(spatialdata, locations = s0, krige =

krige.control(obj.model = para)),

where obj.model = para in the krige.control function passes the param-
eters just estimated to the prediction function. The default setting is an ordi-
nary kriging.

Fig. 3.2 presents an example of applying the ordinary kriging predictor
to the wind speed data from ten turbines in the Wind Spatial Dataset. An
ordinary kriging model is established based on the wind speed data collected
in July at ten turbine sites. Then the kriging model is used to predict the wind
speed at site #6 using the observed wind speed at the other nine sites for the
month of August. Fig. 3.2, right panel, shows that the spatially predicted wind
speed at site #6 closely matches the observed wind speed at the same site.
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FIGURE 3.2 Left panel: the layout of the ten turbines. Right panel: the

predicted and observed wind speeds of the first ten days in August at

site #6.

3.2 SPATIO-TEMPORAL AUTOREGRESSIVE MODELS
The previous section considers purely the spatial correlation. This section
presents a method that combines the spatial model feature and time series
model feature in a method known as the Gaussian spatio-temporal autore-
gressive model (GSTAR) [166].

3.2.1 Gaussian Spatio-temporal Autoregressive Model
The wind speed in GSTAR model is assumed to follow a truncated normal
distribution, a distribution choice as popular as Weibull used for modeling
wind speed [75]. For notational simplicity, the site notation, si, is shortened
as site i, and consequently, V (si; t) is simplified to Vi(t). To handle the wind
speed nonstationarity over time, the time in a day is split into a number of
epochs, during which the wind speed is assumed stationary [88]. For instance,
6 a.m. to 12 p.m. in a day can be treated as one epoch. With these notations,
Pourhabib et al. [166] express Vi(t) ∼ N+(µi(et), σ

2
i (et)), where i = 1, . . . , N ,

and et denotes the “epoch” at time t.
The GSTAR model assumes that the mean of wind speed at site i is a

function of the past wind speeds at not only the target site but also other
sites in its neighborhood, such that

µi(et) = β0 +

p∑
`=1

∑
j∈Ji

aij`Vj(t− `), for i = 1, 2, . . . , N, (3.18)

where β0 is an unknown constant, p is the autoregressive model order, Ji ⊂
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{1, 2, . . . , N} denotes the set of neighborhood sites whose wind speeds have a
strong enough correlation with the wind speed at the target site i, and aij`
are the coefficients that quantify the spatio-temporal dependency. Note that
Eq. 3.18 is a model for the expectation, so that the zero-mean, i.i.d noise term,
ε, disappears.

GSTAR relies on one important assumption, which is to assume the spatio-
temporal parameters, aij`, can be factorized into the respective spatial and
temporal parts, such that

aij` = asija
t
i` for i = 1, 2, . . . , N, j ∈ Ji, ` = 1, 2, . . . , p, (3.19)

and GSTAR models the spatial part, asij , and the temporal part, ati`, indi-
vidually. GSTAR models its spatial dependency coefficient, asij , through a
Gaussian kernel,

asij = exp
{
− (si − sj)

T
Λi (si − sj)

}
, i = 1, 2, . . . , N, j ∈ Ji, (3.20)

where Λi = diag{λi1, λi2}, and λi1 and λi2 characterize the spatial decay in
the longitudinal and latitudinal directions, respectively. Differing from that in
Eq. 2.48, the Gaussian kernel in Eq. 3.20 has different scale parameters along
the two spatial directions, whereas Eq. 2.48 has a single scale parameter φ
for all directions. In this sense, this Gaussian kernel is the counterpart of the
CSE-ARD covariance function in Eq. 3.7, whereas Eq. 2.48 is the counterpart
of the CSE covariance function in Eq. 3.6.

GSTAR models its temporal dependency, ati`, through an exponential de-
cay in terms of time distance, such as

ati` = exp {−λi3`} , i = 1, 2, . . . , N, ` = 1, . . . , p (3.21)

where λi3 characterizes the temporal decay. Using Eq. 3.19–3.21, the otherwise
large number of spatio-temporal parameters for site i is reduced to the three
parameters, λi1, λi2, and λi3.

Let Ai denote an N × p matrix of spatial dependency for site i, of which
the (j, `)-th entry, (Ai)j`, is asij . Because asij does not have the ` index, all
the entries are the same for the j-th row. For instance, the elements in the
first row are all asi1. If j /∈ Ji, the corresponding row of Ai is entirely zero. Let
Di denote a p × p diagonal matrix whose (`, `)-th entry is ati`. Let Vi(t) =
(Vi(t− 1), . . . , Vi(t− p))T be the time series data vector at site i, and V(t) be
the N × p time series data matrix for all sites, namely

V(t) =


VT

1 (t)
VT

2 (t)
...

VT
N (t)


N×p

. (3.22)

With the above notations, Eq. 3.18 can be expressed in a matrix form as,

µi(et) = β0 + tr
(
AiDiVT (t)

)
, i = 1, 2, . . . , N. (3.23)
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This model is referred to as the GSTAR of order p, or, simply GSTAR(p).
To estimate the parameters in Eq. 3.23, GSTAR uses a regularized least-

squares estimation procedure as,

min
λi1,λi2,λi3

n∑
`=1

{
L
[
Vi(`+ h)− V̄i, tr

(
AiDiVT (`)

)]
+ γPen (Ai)

}
, (3.24)

where h is the look-ahead time at which the GSTAR model is trained for
making a forecast, n is the number of time stamps in the training set,
V̄i = 1

n

∑n
`=1 Vi(`), L[·, ·] is a loss function (see Section 2.6 for various choices),

γ is the penalty coefficient, and Pen (Ai) is the penalty term that controls the
size of the neighborhood, to be discussed in the next section. This optimiza-
tion problem is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [64], which belongs to the class of quasi-Newton methods.

Following the approach in [75], GSTAR models the standard deviation of
wind speed as a linear combination of volatility, which measures the magnitude
of recent changes in wind speed, such as,

σ̂i(et) = b0 + b1ν̂i(t), i = 1, 2, . . . , N, (3.25)

where

ν̂i(t) =

 1

2|Ji|
∑
j∈Ji

1∑
`=0

{
(Vj(t− `)− Vj(t− `− 1))

2
} 1

2

, (3.26)

and |Ji| is the number of elements in Ji. In the above equation, only the
immediately past two moving range values, i.e., the difference between wind
speed at t and at t − 1 and that between wind speed at t − 1 and at t − 2,
are used to estimate the volatility, ν̂. The two coefficients, b0 and b1, can be
estimated by regressing the sample standard deviation in the left-hand side of
Eq. 3.25 on ν̂i(t).

GSTAR makes an h-step ahead forecast at site i based on the α-quantile
of the truncated normal distribution, such as

V̂i(t+ h) = µ̂i(t+ h) + σ̂i(t+ h) ·Φ−1

[
α+ (1− α)Φ

(
− µ̂i(t+ h)

σ̂i(t+ h)

)]
, (3.27)

where Φ(·) is the cdf of the standard normal distribution, µ̂i(·) is the estimated
mean found through Eq. 3.23, in which t+ h denotes a forecasting time that
falls in the epoch et, and σ̂i(·) is the estimated standard deviation, decided
through Eq. 3.25. The value of α should be decided based on the choice of the
loss function. Using MAE or RMSE, α = 0.5. Using PCE, α should be chosen
consistently with ξ in Eq. 2.58.
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3.2.2 Informative Neighborhood
GSTAR only uses the sites within a neighborhood to make forecasts at the
target site. This neighborhood of site i, denoted by Ji, is much smaller than
the whole wind farm. The rationale of this treatment is that not every single
site on the farm has strong enough correlation with the target site to provide
meaningful information and hence facilitate forecasting. The use of the Gaus-
sian kernel essentially means that when the distance grows to a certain extent,
the turbine sites lying beyond would have very little impact. For this reason,
this neighborhood is referred to as an informative neighborhood for the pur-
pose of forecasting. An obvious benefit of using an informative neighborhood
is the reduced computational burden in the solution procedure.

Unlike the traditional wisdom that uses a time-invariant distance-based
criterion [88, 128], leading to a disc-like neighborhood with a fixed radius,
GSTAR uses the correlation among the rate of change in wind speed to de-
termine the spatial dependency. Pourhabib et al. [166] discover through their
analysis that two locations are informative to each other if the two sites have
similar rates of change in wind speed for a given period, which explains why
a pure distance-based criterion alone could be ineffective. Employing this cri-
terion to find the informative neighborhood is done by designing a special
penalty term in Eq. 3.24.

Denote by Zi(t) = dV ′i (t)/dt ≈ V ′i (t) − V ′i (t − 1) the first derivative
of wind speed (the change rate), where V ′i = Vi/max{Vi(t)} is the wind
speed normalized by the maximum wind speed for the whole farm during
the training period. Then, compute the N ×N sample covariance matrix for
Z(`) = [Z1(`), Z2(`), . . . , ZN (`)]T as,

CZ =
1

n

n∑
`=1

(
Z(`)− Z̄

) (
Z(`)− Z̄

)T
, (3.28)

where Z̄ =
∑n
`=1 Z(`)/n. To create the penalty term, Pen (Ai), it goes through

three steps of action:

(a) Set an entry in CZ to zero if its value is smaller than a prescribed
threshold κ ∈ [0, 1];

(b) Create a new matrix whose entries are the element-wise inverse of the
entries of the matrix obtained in step (a) (with the convention that the
inverse of zero is ∞); and

(c) Calculate the Frobenius norm of the product between the matrix ob-
tained after step (b) and Ai in Eq. 3.24, with the convention that
0×∞ = 0.

The specific mathematical steps are as follows. Let Cκ
Z denote the matrix after

CZ is truncated using κ, i.e.,

CκZ,jk = CZ,jk if CZ,jk ≥ κ, otherwise CκZ,jk = 0, (3.29)
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where CκZ,jk and CZ,jk are the (j, k)-th entry of Cκ
Z and CZ , respectively.

Then, let (Cκ
Z)− denote the entry-wise inverse of Cκ

Z . As such, the penalty
term is defined as,

Pen (Ai) = ‖AT
i (Cκ

Z)−‖F , (3.30)

where ‖·‖F represents the Frobenius norm and, inside Pen (Ai), one uses the
notational convention that 0×∞ = 0.

What this penalty term does is to associate each spatial dependency term,
asij , with the inverse of a CκZ,jk, in a fashion that can be loosely expressed as
asij/C

κ
Z,jk. To reduce the cost resulting from the penalty term, one apparently

wants to keep asij/C
κ
Z,jk as small as possible. If CκZ,jk = 0, meaning that the

sample covariance of the first derivative of wind speed is smaller than the
threshold, κ, then the corresponding asij is forced to zero. If CκZ,jk is not zero
but small, indicating a weak correlation between the two first derivatives, then
the corresponding asij is penalized more, whereas if CκZ,jk is large, indicating
a strong correlation, then asij is penalized less. The informative neighborhood
Ji = {j : CκZ,ij 6= 0} is then selected through this penalizing scheme.

Fig. 3.3 presents an example of the informative neighborhoods selected for
three different target sites. Note that informative neighborhoods are irregu-
larly shaped, rather than disc-like, and they are different when the target site
is at a different location. The shape and size of the informative neighborhoods
are time varying, and they will be updated through the learning process as the
new wind data arrives. This informative neighborhood concept and method is
more flexible and versatile in terms of capturing the spatial relevance.

Concerning the choice for the threshold, κ, the general understanding is
that a smaller κ leads to a larger neighborhood, because it causes Cκ

Z to have
fewer zero entries, whereas a large κ creates a smaller informative neighbor-
hood, because the resulting Cκ

Z has more zero entries. Here GSTAR sets the κ
value at 0.85 for all forecast horizons. Analysts can certainly conduct fine-scale
adjustments by, say, setting a lower and an upper threshold for the size of an
informative neighborhood. If the number of turbines in the neighborhood is
below the lower threshold, the κ value is to be reduced, which in turn makes
the neighborhood bigger to accommodate more turbines. If the number of
turbines is above the upper threshold, then the κ is to be increased, to make
the neighborhood smaller. In the numerical analysis in Section 3.2.3, the lower
and upper bounds are set as 2 and 15, respectively.

3.2.3 Forecasting and Comparison
This section applies the GSTAR method to the Wind Spatial-Temporal

Dataset1. In this application, GSTAR defines four epochs for each day in
a calendar month: (1) 12:00 am to 6:00 am, (2) 6:00 am to 12:00 pm, (3) 12:00
pm to 6:00 pm, and (4) 6:00 pm to 12:00 am. Consequently, an individual
GSTAR model for each epoch is fit, which is used to make forecasts for the
horizon belonging to the same epoch. Each GSTAR model is trained using one
month of data and then makes h-hour ahead forecasts for h = 2, 3, 4, and 5.
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Turbines Informative Neighborhood Target Sites

FIGURE 3.3 Neighborhoods selected by GSTAR based on one month of

data in the Wind Spatio-Temporal Dataset1. Top-left: three turbine

sites and the surrounding turbines; top-right, bottom-left and bottom-

right: informative neighborhood selected for each site.
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Pourhabib et al. [166] choose the PCE loss function as L[·, ·] in Eq. 3.24.
When using PCE, a power curve function is needed as g(·) in Eq. 2.58. Using a
nonlinear power curve function complicates the optimization in Eq. 3.24. Be-
cause of that, Pourhabib et al. simplify the power curve function to a piecewise
linear function, such that

g(V ) =


0, V ≤ 3.5;

0.1053(V − 3.5), 3.5 < V ≤ 13;

1, 13 < V.

This piecewise linear power curve function does not differ that much from the
nonlinear power curve function. The ξ parameter used in PCE is set to 0.73.
To ease the computational burden to go through the sizeable combinations of
turbines, months, and epochs, each of the N = 120 turbine cases is randomly
assigned to evaluate one of the epochs for a given month. The forecast error
for a given month, averaged over roughly 30 evaluation cases, is then reported.

The competing models used in this comparison are ARMA(p, q),
ARMA∗(p, q), and the persistence model. ARMA∗(p, q) is the same as
ARMA(p, q), except that the analysis is performed on the residuals after
removing a diurnal trend using Eq. 2.15. As seen in Chapter 2, a small time
lag usually suffices to capture the temporal dependency. For the datasets used
in this section, the partial autocorrelation of lag 1 is dominant, suggesting
p = 1. Using BIC would select p = 1 and q = 2 for most of the cases. So the
model order in the ARMA model is set as p = 1 and q = 2. When evaluating
the ARMA models, another random sampling is applied to the 30 evaluation
cases mentioned above, further reducing the number of runs to about 25% of
what is used for GSTAR.

Table 3.1 presents the forecasting results of GSTAR and the comparison
with the two versions of ARMA models and the persistence model. GSTAR,
on average, outperforms the other three methods, indicating the benefit of
incorporating the spatial dependency information. Interestingly, in this com-
parison, the persistence model wins over the ARMA models.

Table 3.2 shows some results using CRPS to give a sense of the quality
of predictive distribution. Forty turbines are randomly chosen, to which the
GSTAR and ARMA(1,2) are applied. Please note that here CRPS is computed
for power response, meaning that the integration is conducted over y; please
refer to Eq. 5.23.

In practice, the optimal value of ξ used in PCE may change over time
and a variation of ξ around 0.73 can be expected. A sensitivity analysis is
conducted, which is to change ξ between 0.6 and 0.8, and then average the
PCE over this range. One hundred turbines are randomly chosen and the 2009
data are used in this analysis. Table 3.3 shows that the performance of the
GSTAR model is reasonably robust when ξ is around 0.73.
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TABLE 3.1 Forecasting results for 2009 and 2010 using PCE. The values in
parentheses are the standard deviations of the corresponding forecasting. The row
of “Imp. over PER” shows the improvement of GSTAR over PER in percentage.

2-hour 3-hour 4-hour 5-hour

2009

PER 0.0614(0.0159) 0.0741(0.0184) 0.0857(0.0215) 0.0943(0.0212)
ARMA(1,2) 0.0663(0.0375) 0.0826(0.0386) 0.0844(0.0473) 0.0991(0.0463)
ARMA∗(1,2) 0.0752(0.0366) 0.0917(0.0421) 0.1002(0.0485) 0.1038(0.0486)
GSTAR(1) 0.0608(0.0297) 0.0716(0.0318) 0.0816(0.0327) 0.0884(0.0321)
Imp. over PER 1.1% 3.3% 4.8% 6.3%

2010

PER 0.0484(0.0137) 0.0572(0.0160) 0.0644(0.0185) 0.0698(0.0208)
ARMA(1,2) 0.0650(0.0398) 0.0779(0.0437) 0.0783(0.0394) 0.0794(0.0400)
ARMA∗(1,2) 0.0690(0.0386) 0.0823(0.0418) 0.0838(0.0460) 0.0857(0.0380)
GSTAR(1) 0.0477(0.0212) 0.0569(0.0231) 0.0630(0.0260) 0.0692(0.0277)
Imp. over PER 1.5% 0.5% 2.1% 0.8%

TABLE 3.2 CRPS values using forty randomly selected
turbines and 2009 data.

2-hour 3-hour 4-hour 5-hour

ARMA(1,2) 0.1538 0.1452 0.1496 0.1559
GSTAR 0.1243 0.1299 0.1378 0.1467

TABLE 3.3 Average PCE while ξ varying in [0.6, 0.8] for 100 turbines using the
data of 2009. The values in parentheses are the standard deviations.

2-hour 3-hour 4-hour 5-hour

PER 0.0616(0.0122) 0.0731(0.0220) 0.0855(0.0327) 0.0937(0.0286)
GSTAR 0.0628(0.0235) 0.0723(0.0332) 0.0835(0.0364) 0.0900(0.0357)
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3.3 SPATIO-TEMPORAL ASYMMETRY AND SEPARABILITY
3.3.1 Definition and Quantification
One of the key assumptions made in the GSTAR model is that the spatio-
temporal dependency structure, aij`, can be expressed as the product of a
spatial part and a temporal part; please refer to Eq. 3.19. Generally, a co-
variance structure is said to be separable if its covariance function can be
factored into the product of purely spatial and purely temporal components
such that C(u, h) = Cs(u) · Ct(h). This assumption of spatio-temporal sep-
arability is in fact rather common in spatio-temporal analysis [43] because
separable spatio-temporal models are easier to be dealt with mathematically.

Assuming separability suggests the lack of interaction between the spatial
and temporal components and implies full symmetry in the spatio-temporal
covariance structure, which brings up the concept of spatio-temporal symme-
try. A covariance structure is symmetric if

C(s1, s2; t1, t2) = C(s1, s2; t2, t1). (3.31)

This is to say that the correlation between sites s1 and s2 at times t1 and t2
is the same as that between s1 and s2 at times t2 and t1. For a stationary
covariance function, this can be written as C(u, h) = C(−u, h) = C(u,−h) =
C(−u,−h) [72]. Separability is a stronger condition. It can be shown that
a separable spatio-temporal covariance structure must have symmetry but
the converse is not necessarily true, meaning that a symmetric covariance
structure may or may not be separable [74].

To quantify asymmetry, Stein [204] proposes a metric in terms of spatio-
temporal semi-variograms. The spatio-temporal empirical semi-variogram of
Vi(t) between site s1 and site s2 at time lag h is defined as,

$(s1, s2;h) =
1

2(n− h− 1)

n−h−1∑
j=1

[V1(tj + h)− V2(tj)]
2. (3.32)

Then, introduce two semi-variograms between s1 and s2: $(s1, s2, h) and
$(s2, s1, h). Both of them represent the dissimilarity between the two spa-
tial sites, but $(s1, s2, h) means that measurements taken at s2 are h time
lag behind that at s1, whereas $(s2, s1, h) means that measurements at s1 are
behind those at s2. A quantitative asymmetry metric can be thus defined as
the difference between the two semi-variograms, namely

asym(s1, s2, h) := $(s1, s2, h)−$(s2, s1, h). (3.33)

When the two semi-variograms are the same, the wind field is said to be
symmetric. But when there is a dominant wind blowing from s1 towards s2,
the propagation of wind from s1 towards s2 would generate a significantly
positive value for asym, indicating a lack of symmetry. To signify the dominant
wind direction, denoted by ϑ, the asymmetric metric is also expressed as
asym(s1, s2, h, ϑ).
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3.3.2 Asymmetry of Local Wind Field
The space-time symmetry assumption is not universally valid, and it is espe-
cially not true in many geophysical processes, such as wind fields, in which the
prevailing air flow, if existing, causes the correlation in space and time stronger
in one direction than other directions, thus invalidating the symmetry assump-
tion. To see this, let us look at Fig. 3.4, left panel. Consider two sites and a
wind flow primarily from s1 to s2. Let t1 = t and t2 = t+k, k > 0. Were the as-
sumption of symmetry true, it meant that C(s1, s2; t, t+k) = C(s1, s2; t+k, t).
The left-hand side covariance, C(s1, s2; t, t + k), dictates how much informa-
tion at s1 and t is there to help make predictions at a down-wind site s2 and
a future time t+ k. A significant C(s1, s2; t, t+ k) suggests that the upstream
wind measurements at t help with the downstream wind prediction at t + k.
This makes perfect sense, considering that wind goes from s1 to s2. The as-
sumption of symmetry, were it true, says that the right-hand side covariance,
C(s1, s2; t + k, t), is equally significant, meaning that the downstream wind
measurements at t could help with the upstream prediction at t+ k, as much
as the upstream helps the downstream. This no longer makes sense.

Site 𝐬1 Site 𝐬2

Prevailing 
wind direction

𝑡 𝑡 + 𝑘

𝑡 + 𝑘 𝑡

Time lag (hours)
0 3 6 9 12 15 18 21 24
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FIGURE 3.4 Under a dominant air flow, the covariance structure of the

underlying wind field may become asymmetric. (Right panel reprinted

with permission from Ezzat et al. [59].)

While studying large-scale atmospheric processes, analysts have in fact
noted that when there exists a dominant air or water flow in the processes,
the resulting random field does not have a symmetric covariance structure [42,
72, 114, 204, 225]. The question is—does this lack of symmetry phenomenon
also take place on a small-scale wind field as compact as a wind farm?

Ezzat et al. [59] set out to investigate this question for the wind field on
a farm. In their analysis, the diurnal trend for wind speed is first fitted us-
ing Eq. 2.15 to remove nonstationarity in the wind data. The fitted trend is
then subtracted from the actual wind speed data and the residuals are sub-
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sequently used for quantifying asymmetry. Using the Wind Spatio-Temporal

Dataset2, the yearly average wind direction is estimated as ϑ̄ = 264.24◦ (due
west is 270◦). Because of this, for every pair of turbines i and j such that si is
west of sj , Ezzat et al. compute $(si, sj , h)−$(sj , si, h) using the residuals in
place of V in Eq. 3.32. This computation is repeated for every pair of turbines
and for different time lags ranging from 0 to 24 hours. All of the computed
quantities are then transformed into the correlation scale. For the `-th pair of
turbines, the resulting quantity at each temporal lag h is the spatio-temporal
asymmetry, asym`(si, sj , h, ϑ̄).

Denote the collection of asymmetry values at each temporal lag by
A(s, h) = {asym`(si, sj , h, ϑ̄)}L`=1, where L is the total number of turbine
pairs. Represent by Ā(s, h) the 50-th percentile of this collection. Fig. 3.4,
right panel, presents the 25-th, 50-th and 75-th percentiles of A(s, h) for
h ∈ {0, . . . , 24} with a three-hour increment. On the one hand, all median
asymmetry values in Fig. 3.4, right panel, are slightly positive, indicating a
potential tendency towards spatio-temporal asymmetry. On the other hand,
the largest median occurs at h∗ = 12 and is approximately 0.024 on the cor-
relation scale. To put this value in perspective, please note that Gneiting [72]
reports a value of 0.12 for asymmetric large-scale wind flow over Ireland. The
values of asymmetry reported in [74] range between 0.04 and 0.14, and are
averaged at 0.11. Relative to those levels, an asymmetry of 0.024 appears to be
rather weak to justify the existence of asymmetry in the local wind field. An-
alysts would understandably trade such weak asymmetry for computational
efficiency and model simplicity gained by making the symmetry assumption.
This may explain why separable, symmetric models are dominant in the wind
application literature.

On the surface, the above analysis appears to indicate that there does not
exist significant asymmetry in a local wind field within an area as compact
as a wind farm. Ezzat et al. [59] believe that the weak asymmetry is due to
the non-optimal handling of wind farm data, especially in terms of its tem-
poral handling. When producing the right panel of Fig 3.4, the wind data is
grouped for the whole year. Ezzat et al. test different temporal resolutions
like monthly or weekly. Under the finer temporal resolutions, the asymmet-
ric level indeed increases but still not much. Ezzat et al. hypothesize that a
special spatio-temporal “lens” is needed to observe the wind data in order to
detect strong degrees of asymmetry in a local wind field. This makes intuitive
sense. In a large-scale atmospheric process, a dominant wind can persist for
a sustained period of time and travel a substantial distance. These patterns
can be pre-identified through climatological expertise over a region of interest,
and as such, regular calendar decompositions, like weekly, monthly, seasonal,
or yearly, appear to be reasonable choices. For a local wind field, however,
observational data suggest that alternations in local winds occur at a rela-
tively high rate, resulting in several distinct wind characteristics at each wind
alternation. In such settings, regular calendar periods rarely contain a single
dominant wind scenario. Rather, they contain various dominant winds that
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create multiple asymmetries having distinct directions and magnitudes. Con-
sequently, aggregating the heterogeneous, and perhaps opposite, asymmetries
leads to an underestimation of the true asymmetry level.

3.3.3 Asymmetry Quantification
The physical differences between local wind fields and large-scale atmospheric
processes require special adjustments to the spatio-temporal resolution used
to analyze wind measurements, in order to reveal the underlying asymmetry
pattern. Ezzat et al. [59] devise a special lens consisting of two components—a
temporal adjustment and a spatial adjustment.

The main reason that temporal aggregations based purely on calendar
periods are not going to be effective is because such decomposition intervals are
created arbitrarily. Hence, one key step for a successful temporal adjustment
is to isolate the time intervals in which a unique dominant wind persists—
such intervals are referred to as the prevailing periods, and detecting them is
basically solving a change-point detection problem.

A binary segmentation version of the circular change-point detection [106]
is used to detect the change points in wind direction. The R package circular
is used to facilitate the task. The change-point detection method is applied
to the wind direction data measured at one of the masts. Fig. 3.5 presents
the detected change points for two weeks of the wind direction data, for the
sake of illustration. For the whole year, a dominant wind direction lasts, on
average, for 3.04 days with a standard deviation of 2.46 days. For 50% of the
prevailing periods, the wind direction alternates in less than 2.27 days. The
maximum interval of time in which a dominant wind direction is found to be
persistent is 15.5 days, while the shortest length of a prevailing period is found
to be 6 hours. These statistics indicate a fast dynamics and unpredictable
nature in wind direction change, explaining why a typical calendar period-
based approach is ineffective. A total of 119 change points are detected in
the yearlong wind direction data, leading to 120 prevailing periods identified
over the year. For the `-th prevailing period, the dominant wind direction is
denoted by ϑ`.

On the spatial level, the relative position of the turbines on a wind farm
is another factor that affects the asymmetry level at a given time. Physi-
cally, asymmetry exists when wind propagates from an upstream turbine to a
downstream one, implying that the latter is in the along-wind direction with
respect to the former. Therefore, the spatial adjustment is to select only the
along-wind turbines for asymmetry quantification.

A spatial bandwidth, denoted by b`, is to be selected for the `-th prevailing
period. The specific procedure is executed as follows: vary the bandwidth
in the range [2.5◦, 45◦] in increments of 2.5◦ and then select the bandwidth
that maximizes the median asymmetry and denote that choice as the optimal
bandwidth b∗` . With the spatial adjustment, the asymmetry metric, asym(·),
is now denoted as asym(s1, s2, h`, ϑ`, b`). Finally, an optimal time lag h∗` is
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FIGURE 3.5 Change points detected in the first two weeks of wind di-

rection data. The vertical dashed lines indicate the change points.

(Reprinted with permission from Ezzat et al. [59].)

chosen to maximize the median asymmetry level in each prevailing period
when spatial and temporal parameters are set at b∗` and ϑ`, respectively.

Under the parameter setting, h∗` , ϑ`, b
∗
` , the asymmetric metric asym(·) is

computed using the Wind Spatio-Temporal Dataset2. Fig. 3.6 presents the
25-th, 50-th and 75-th percentiles of the asymmetry level versus the sepa-
rating distance subgroups for the different scenarios thus considered: yearly,
seasonal, monthly, weekly, temporal-only lens scenario, and spatio-temporal
lens scenario. It is apparent that applying the spatio-temporal lens detects
much higher asymmetry levels. For instance, at separating distances greater
than 20 km, all of the turbine pairs exhibit positive asymmetry and 50% of
them exhibit an asymmetry level higher than 0.2 on the correlation scale, a
level considered significant in the past study [72] and nearly an order of mag-
nitude greater than the median asymmetry of 0.024 detected earlier on the
yearly data.

Table 3.4 classifies the median asymmetry values of all distance subgroups,
where 93% of the prevailing periods exhibit positive median asymmetry, nearly
a quarter of them exhibit a greater than 0.2 median asymmetry, and more
than 41% of them exhibit a median asymmetry larger than 0.1, the level of
asymmetry previously reported in [72, 74] for signaling the existence of ap-
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ues of different scenarios versus separating distance in kilometers.

“T-lens” means temporal adjustment only, whereas “ST-lens” means

spatio-temporal adjustments. (Reprinted with permission from Ezzat

et al. [59].)

preciable asymmetric behavior in the large-scale atmospheric processes. The
findings suggest that not only does strong asymmetry exist in local wind fields,
but also the discovered asymmetry appears to fluctuate spatially and tempo-
rally in both magnitude and direction. Each prevailing period appears to have
a unique asymmetry pattern, creating a temporal fluctuation of asymmetry
throughout the year.

3.3.4 Asymmetry and Wake Effect
The implication of capturing the asymmetry in a local wind field can enrich
the understanding of complex physical phenomena on a wind farm such as the
wake effect. The spatio-temporal dynamics within a wind farm are affected
by the wake effect because the rotating turbine blades cause changes in the
speed, direction and turbulence intensity of the propagating wind [40]. For
each prevailing period, Ezzat et al. [59] divide the whole farm, based on the
wind direction, into two regions having approximately the same number of
turbines. The first region is the set of wake-free wind turbines that receive



Spatio-temporal Models � 79

TABLE 3.4 Classification of prevailing periods according to
the median asymmetry level.

Group Range Percentage

1. Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) ≤ 0 7%

2. 0 < Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.05 27%

3. 0.05 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.1 25%

4. 0.1 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.2 20%

5. 0.2 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) 21%

Source: Ezzat et al. [59]. With permission.

less turbulent wind, whereas the second region is the set of wind turbines
which are in the wake of other turbines and receive the disturbed, turbulent
wind. Fig. 3.7 plots the medians of the asymmetry for each region. The wake-
free region appears to exhibit stronger asymmetry, which is consistent with
the physical understanding since the less-turbulent wind is the driving force
creating the asymmetry. This analysis indicates that the asymmetry level
spatially varies on a wind farm due to the wake effect. Incorporating such
patterns in a spatio-temporal model could benefit modeling and prediction,
as well as aid research in wake characterization.

3.4 ASYMMETRIC SPATIO-TEMPORAL MODELS
3.4.1 Asymmetric Non-separable Spatio-temporal Model
Consider a simple spatio-temporal model, the counterpart of the ordinary
kriging in Eq. 3.8, such as

Vi(`) = β0 + δi(`), i = 1, . . . , N, and ` = t, t− 1, . . . , t− n, (3.34)

where β0 is the unknown constant, like in Eq. 3.8. Unlike Eq. 3.8, which has
two random terms, the i.i.d noise term ε is absorbed into the spatio-temporal
random field term δi(`) here.

The key in spatio-temporal modeling, as mentioned at the beginning of this
chapter, is to specify the covariance function for the spatio-temporal random
field term, δi(`). The specific asymmetric non-separable spatio-temporal model
presented here is a modified version of that proposed in [74], in which the
asymmetric, non-separable covariance function is expressed as follows,

CASYM(u, h) = σ2
ST

{
(1− ϕ)ρNS(u, h) + ϕρA(u, h)

}
+ η1{‖u‖=|h|=0}, (3.35)

where ρA is an asymmetric correlation function to be given below and ρNS is
a non-separable symmetric correlation function such that

ρNS(u, h) =
1− τ

1 + ζ|h|2

(
exp

[
− φ‖u‖

(1 + ζ|h|2)
β
2

]
+

τ

1− τ
1{‖u‖=0}

)
. (3.36)
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FIGURE 3.7 Wake effect and its implication on spatio-temporal asymme-

try. (Reprinted with permission from Ezzat et al. [59].)

In Eq. 3.35 and Eq. 3.36,

• ζ and φ are, respectively, the temporal and spatial scale parameters,

• τ and η are, respectively, the spatial and spatio-temporal nugget effects
(i.e., i.i.d random noise),

• σ2
ST is the spatio-temporal variance,

• β is the non-separability parameter, characterizing the strength of the
spatio-temporal interaction, and

• ϕ is the asymmetry parameter, characterizing the lack of symmetry.

• The valid ranges of these parameters are: τ ∈ [0, 1), β ∈ [0, 1], ϕ ∈ [0, 1],
σ2

ST > 0, and φ, ζ and η are all non-negative.

The ρA(·, ·) defined in [74] is a Lagrangian compactly supported function,

ρA(u, h) =

(
1− 1

2‖U‖
‖u−Uh‖

)
+

, (3.37)

where U = (U1, U2)T is the two-dimensional velocity vector having a longi-
tudinal component and a latitudinal component and to be defined based on
the knowledge of the weather system. For example, if the dominant wind is
known to be strictly westerly, then U is chosen to be (U1, 0)T , namely a non-
zero longitudinal wind velocity reflecting the traveling of the wind along the
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longitudinal axis. A generalized version of ρA is proposed by Schlater in [195].
Instead of using a constant vector, Schlater defines U as a random variable
that follows a multivariate normal distribution, i.e., U ∼ N (µµµ, D2 ). As such,
ρA is defined as,

ρA(u, h) =
1√

|12×2 + h2D|
exp

{
−(u−µµµh)T (12×2+h2D)−1(u−µµµh)

}
, (3.38)

where | · | denotes the matrix determinant.
The asymmetric non-separable model used by Ezzat et al. [59] consists of

the modeling components in Eq. 3.35, Eq. 3.36, and Eq. 3.38, and it is referred
to hereinafter as ASYM.

3.4.2 Separable Spatio-temporal Models
By setting β = ϕ = 0 in ASYM, the asymmetric, non-separable model is re-
duced to a symmetric, separable model. Analysts could entertain two variants
of the symmetric, separable model. The first variant is to take the parameters
of ASYM after all of them are estimated but simply reset β = ϕ = 0. The
second variant is to first set β = ϕ = 0 before parameter estimation and then
freely estimate the remaining parameters from the data. Understandably, the
second variant generally works better and is what is used in Section 3.5. This
symmetric, separable model is referred to as SEP.

3.4.3 Forecasting Using Spatio-temporal Model
The short-term wind forecasting may benefit from using an asymmetric, sep-
arable spatio-temporal covariance structure. Once the covariance function is
specified, the forecasting is conducted similarly as in the kriging method of
Section 3.1.3.

Let us arrange the spatio-temporal wind speed, Vi(t), into anNn×1 vector,
such as

V = (V1(t), · · · , VN (t), V1(t−1), · · · , VN (t−1), · · · , V1(t−n), · · · , VN (t−n))T .

The objective is to make a forecast at site s0 and time t + h, denoted by
V0(t+ h), which is an h-hour ahead forecast at s0.

A covariance matrix corresponding to V can be constructed by using the
covariance function CASYM and is hence denoted by CASYM. A covariance
row vector, c0, can be constructed by treating its i-th element (c0)i as the
covariance between V0(t+ h) with the i-th element in V. The notation of c0

bears the same meaning as the notation of c0N used earlier in Section 3.1.3.
Here we drop the subscript “N” because the size of V for this spatio-temporal
process is no longer N × 1 but Nn × 1. Denote by σ2

0 := CASYM(0, 0) the
prior variance of the underlying spatio-temporal process. Similar to the kriging
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forecasting in Eq. 3.15, the forecast of V0(t+ h) can be obtained as

V̂0(t+ h) = β̂0 + c0C
−1
ASYM(V − β̂0 · 1),

V ar(V̂0(t+ h)) = σ2
0 − c0C

−1
ASYMcT0 .

(3.39)

The flowchart in Fig. 3.8 presents the steps of the forecasting procedure.
To perform an h-hour ahead forecast, only the data in the preceding pre-
vailing period that share similar wind asymmetry characteristics are used for
model training. This implies that a small subset of data relevant to the current
prevailing period is used in the model training stage. The benefit of such an
approach is two-fold. First, it eliminates the computational burden in fitting
a complicated asymmetric, non-separable spatio-temporal model, because the
data in the preceding prevailing period are usually limited to from a few hours
to a few tens of hours, rather than weeks or months. Second, this approach
makes use of a local informative spatio-temporal neighborhood that is most
relevant to the short-term forecasting horizon. In this sense, it bears the simi-
larity with the spatial informative neighborhood discussed in Section 3.2.2 or
the temporal neighborhood used in [231].

Circular change-point 
detection for wind direction 

Model training

Short-term 
forecasting

End

Start

Data preprocessing and 
missing data imputation

Extract speed and direction data of the 
most recent prevailing period

Compute average 
wind direction  

Non-separable asymmetric model fitting 
using Maximum Likelihood Estimation

Spatio-temporal 
speed and 

direction data

Speed data

FIGURE 3.8 A flowchart that outlines the short-term forecasting based

on a spatio-temporal model. (Reprinted with permission from Ezzat et

al. [59].)
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3.4.4 Hybrid of Asymmetric Model and SVM
A spatio-temporal model can be used together with some machine learning
models to improve further the forecasting capability. Here, an ASYM is fit to
the spatio-temporal wind training data, and then an SVM model is fit to the
residuals obtained by ASYM, in order to capture any nonlinearities that are
not covered by the base ASYM model. The final hybrid model has an additive
form as

Vi(t) = V ASYM
i (t) + ESVM

i (t) + ε̃i(t), (3.40)

where V ASYM
i (t) is the ASYM model fit, ESVM

i (t) represents the SVM model
fit to the spatio-temporal residuals after the ASYM model fit, and ε̃i(t) is the
final residual term. This hybrid forecasting model is referred to as HYB.

3.5 CASE STUDY
In contrast to the situations where wind measurements come from a small
number of locations spread over large areas, as in [75, 91, 208], the within-
farm local wind field is much denser. Recall that the spatial and temporal
resolutions of wind data in the Wind Spatio-Temporal Dataset2 are one
mile and one hour, respectively. The purpose of this case study is to demon-
strate the existence of an asymmetric wind pattern in certain time periods
and the benefit that a non-separable model may render in terms of short-term
wind forecasting on such a compact wind field.

Four periods are chosen from different times in the Wind Spatio-Temporal

Dataset2. For each of the four periods, six hours of data are used for model
training. The choice for this short training period is motivated by observ-
ing that the shortest prevailing period length, as shown in Section 3.3.3, is
about six hours. As such, a training period of six hours ensures temporal ho-
mogeneity and stationarity in the training data, allowing for reliable model
estimation. Furthermore, for short-term wind forecasting, using a longer his-
tory of wind measurements is not necessarily helpful, as evident by the low
time lag order used in the time series models in Chapter 2 or in the GSTAR
model in Section 3.2.3.

In this study, forecasting is made for up to four hours ahead, i.e., h=
1, 2, 3, or 4. A variety of forecasting models are studied and compared, in-
cluding ASYM, SEP, the persistence model, a time-series model chosen as
ARMA(1,1), an SVM model using a radial basis kernel function and the wind
speeds measured at t− 1, as well as an HYB that combines ASYM and SVM.

Although we by and large follow the numerical analysis conducted in Ezzat
et al. [59], there are a couple of differences in treatment here leading to dif-
ferent numerical outcomes. But the main messages stay consistent with those
advocated in Ezzat et al. [59].

This section employs a missing data imputation procedure, and as a result,
the Wind Spatio-Temporal Dataset2 does not have any missing data for
wind speed. The power curve used here is a turbine-specific power curve,
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TABLE 3.5 Log-likelihoods of asymmetric versus
separable spatio-temporal models.

Period ASYM SEP

1. −2090.900 −2091.294
2. −2033.135 −2033.140
3. −1800.352 −1800.702
4. −2181.999 −2185.815

rather than a single power curve averaged for all the turbines. To specify µµµ
and D in ASYM, the most recent period is used as the training dataset. The
speed and direction time-series data, recorded at one of the masts, is used
to compute a time-series vector of wind velocities, along the longitudinal and
latitudinal directions, respectively. The estimate of µµµ is the sample average of
the wind velocity vector, whereas the estimate of 2×2 matrix D is the sample
covariance matrix of the horizontal and vertical velocities. This estimate of D
is different from that in Ezzat et al. [59] but is the same as what is used in
Chapter 4. This new estimate of D is used so that the ASYM model and its
parameter estimation are consistent between Chapter 3 and Chapter 4.

The rest of the parameters in ASYM are estimated through a maximum
likelihood estimation, implemented in R using the routine nlm. To appreciate
the space-time coupling and asymmetry, take the prevailing period in Jan-
uary 2011 as an example. The non-separability parameter, β̂ = 0.840, and the
asymmetry parameter, ϕ̂ = 0.102. These estimated values suggest that the
underlying spatio-temporal process has space and time coupling and is asym-
metric. When fitting the asymmetric model and its separable counterpart, i.e.,
ASYM and SEP, analysts can compare the respective log-likelihood values and
observe which modeling option provides a better fit. Table 3.5 presents the
log-likelihood values for ASYM and SEP model fits for all four periods. The
numerical results show that ASYM has a higher log-likelihood value, albeit
sometimes marginally so, than that of SEP.

In this study, two performance metrics are used—RMSE and MAE; for
their definitions, please refer to Section 2.6. Tables 3.6 and 3.7 present the
RMSE and MAE values for up to a 4-hour ahead forecast using the aforemen-
tioned temporal or spatio-temporal models. The aggregate measure reported
is the average over all 4-hour ahead forecasts.

The results presented in Tables 3.6 and 3.7 show that the forecasts based
on the asymmetric non-separable model outperform the competing methods
considered in the study. The improvement of ASYM over the separable models
is due to ASYM’s capturing of the strong asymmetries, whereas its improve-
ment over ARMA and SVM is mostly due to the characterization of spatial
correlations as well as asymmetry, both of which the ARMA and SVM models
fail to capture. Hybridizing ASYM with SVM (the HYB model) appears to
achieve a further enhancement in forecasting accuracy over the ASYM only
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TABLE 3.6 RMSE of wind speed forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.993 1.441 2.853 3.122 2.289 3%
SEP 1.070 1.727 3.242 3.469 2.582 14%
PER 1.287 1.719 2.984 3.161 2.424 8%
ARMA(1,1) 1.627 2.056 3.480 3.622 2.833 22%
SVM 1.611 1.912 3.335 3.437 2.701 18%
HYB 1.019 1.441 2.784 2.981 2.222

2 ASYM 1.618 2.747 2.573 2.093 2.300 5%
SEP 1.616 2.743 2.569 2.090 2.297 5%
PER 1.832 2.877 2.569 2.075 2.374 8%
ARMA(1,1) 1.986 3.054 2.781 2.222 2.547 14%
SVM 2.543 3.777 3.531 2.977 3.243 33%
HYB 1.585 2.667 2.438 1.874 2.184

3 ASYM 0.897 0.946 1.078 1.390 1.095 0.2%
SEP 0.900 1.184 1.269 1.654 1.281 15%
PER 1.007 1.067 1.358 1.510 1.253 13%
ARMA(1,1) 1.114 1.316 1.303 1.648 1.359 20%
SVM 1.035 1.155 1.340 1.683 1.326 18%
HYB 0.894 0.944 1.077 1.388 1.093

4 ASYM 1.319 1.521 1.934 3.745 2.336 6%
SEP 1.415 1.630 2.028 3.681 2.362 7%
PER 1.880 2.096 2.526 5.281 3.248 33%
ARMA(1,1) 2.070 1.769 2.144 3.809 2.575 15%
SVM 1.806 1.859 2.392 4.375 2.810 22%
HYB 1.239 1.422 1.942 3.446 2.191

approach, demonstrating the additional benefit brought by the machine learn-
ing method. The improvements of HYB over ASYM for wind speed forecast
range from 0.2% to 6%, and on average, 3.6%. Combining the strength of the
asymmetrical modeling and machine learning, in terms of wind speed fore-
cast, HYB improves, based on the average of the four periods, 10% in RMSE
(12% in MAE, same below) over SEP, 16% (14%) over PER, 18% (20%) over
ARMA(1,1), and 23% (24%) over SVM.

Measuring the performance metrics in terms of wind power, analysts can
first make a wind speed forecast and then convert the wind speed to wind
power, using the power curve as explained in Fig. 1.2. The nominal power
curve is usually provided by the turbine manufacturer. To get more accurate
representation of the actual power curve, the site-specific wind speed and wind
power data can be used to estimate the turbine-specific power curve. The topic
of estimating a power curve is the focus of Chapter 5. The specific procedure
used here for power curve estimation is the binning method, the standard
nonparametric method used in the wind industry [102]; for more details about
the binning method, please refer to Chapter 5. Using the estimated power
curves of individual turbines, analysts can predict the wind power generated
at each turbine given the wind speed forecasts.
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TABLE 3.7 MAE of wind speed forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.846 1.248 2.636 2.912 1.911 4%
SEP 0.919 1.540 3.046 3.273 2.194 16%
PER 1.048 1.491 2.803 2.901 2.061 11%
ARMA(1,1) 1.379 1.833 3.292 3.395 2.475 26%
SVM 1.404 1.694 3.142 3.175 2.354 22%
HYB 0.879 1.236 2.533 2.712 1.840

2 ASYM 1.268 2.526 2.379 1.813 1.997 6%
SEP 1.266 2.522 2.375 1.810 1.993 6%
PER 1.489 2.552 2.265 1.749 2.013 7%
ARMA(1,1) 1.615 2.806 2.520 1.894 2.209 15%
SVM 2.308 3.485 3.211 2.610 2.904 35%
HYB 1.232 2.442 2.240 1.599 1.878

3 ASYM 0.729 0.773 0.906 1.224 0.908 0.4%
SEP 0.736 1.017 1.110 1.476 1.085 17%
PER 0.807 0.840 1.054 1.203 0.976 7%
ARMA(1,1) 0.930 1.151 1.136 1.429 1.161 22%
SVM 0.835 0.937 1.065 1.403 1.060 15%
HYB 0.722 0.771 0.904 1.222 0.905

4 ASYM 1.049 1.267 1.578 3.538 1.858 7%
SEP 1.129 1.361 1.671 3.470 1.908 9%
PER 1.488 1.711 2.060 4.782 2.510 31%
ARMA(1,1) 1.668 1.437 1.757 3.503 2.091 17%
SVM 1.469 1.525 1.934 3.968 2.224 22%
HYB 0.968 1.180 1.566 3.226 1.735
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TABLE 3.8 RMSE of wind power forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.090 0.140 0.326 0.383 0.265 3%
SEP 0.092 0.171 0.372 0.415 0.295 13%
PER 0.111 0.161 0.333 0.370 0.267 4%
ARMA(1,1) 0.138 0.201 0.396 0.430 0.317 19%
SVM 0.133 0.186 0.376 0.405 0.299 14%
HYB 0.090 0.142 0.321 0.363 0.256

2 ASYM 0.221 0.354 0.356 0.312 0.315 6%
SEP 0.221 0.353 0.355 0.310 0.314 6%
PER 0.252 0.368 0.346 0.293 0.318 7%
ARMA(1,1) 0.282 0.404 0.387 0.325 0.353 16%
SVM 0.389 0.525 0.509 0.450 0.471 37%
HYB 0.216 0.341 0.332 0.276 0.295

3 ASYM 0.116 0.094 0.105 0.146 0.117 1%
SEP 0.102 0.116 0.124 0.177 0.133 13%
PER 0.137 0.122 0.155 0.172 0.148 21%
ARMA(1,1) 0.126 0.127 0.130 0.170 0.140 17%
SVM 0.111 0.115 0.135 0.176 0.137 15%
HYB 0.114 0.092 0.105 0.146 0.116

4 ASYM 0.168 0.171 0.212 0.442 0.255 −0.3%
SEP 0.170 0.175 0.226 0.431 0.256 0%
PER 0.255 0.279 0.331 0.660 0.389 34%
ARMA(1,1) 0.251 0.205 0.248 0.482 0.299 14%
SVM 0.225 0.239 0.298 0.568 0.339 24%
HYB 0.193 0.175 0.216 0.425 0.256

Table 3.8 compares the competing models in terms of the RMSE of wind
power prediction. Similar degrees of improvement of using the asymmetric,
nonseparable model are observed in wind power prediction as in wind speed
forecast. Specifically, the improvement of HYB over ASYM is up to 6%, and
on average, 2.4%. Compared to other methods, HYB on average improves,
in terms of reduction in RMSE, 8% over SEP, 17% over PER, 17% over
ARMA(1,1), and 23% over SVM. These results are aligned with the findings
made in Section 3.3 that local wind fields can be strongly asymmetric at the
fine-scale spatio-temporal resolutions. Spatio-temporal models that capture
such physical phenomena are expected to enhance short-term forecasting.

GLOSSARY
ARD: Automatic relevance determination

ARMA: Autoregressive moving average

ASYM: Asymmetric, non-separable spatio-temporal model

BFGS: Broyden-Fletcher-Goldfarb-Shanno optimization algorithm

cdf: Cumulative distribution function
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CRPS: Continuous ranked probability score

GSTAR: Gaussian spatio-temporal autoregressive model

HYB: Hybrid model combining ASYM and support vector machine

i.i.d: Identically, independently distributed

MAE: Mean absolute error

PCE: Power curve error

PER: Persistence forecasting

RMSE: Root mean squared error

SE: Squared exponential covariance function

SEP: Separable spatio-temporal model

SVM: Support vector machine

EXERCISES
3.1 In the machine learning literature, if a prediction mechanism can be

expressed as V̂ = SV, it is called a linear smoother, where S is the
smoother matrix. It is also established that the effective number of pa-
rameters in a linear smoother is tr(S). In the following, to make things
simpler, assume β0 = 0. Consider a total of N data pairs in the training
set:

a. Show that the kriging predictor in Eq. 3.15 is a linear smoother.

b. Show that the effective number of parameters in a kriging predictor
is

N∑
i=1

λi
λi + σ̂2

ε

,

where λi’s, i = 1, . . . , N , are the eigenvalues of CNN .

c. Show that for a kriging predictor without the nugget effect, its effec-
tive number of parameters is N , the same as that of the data points
in the training set. What does this tell you about the difference be-
tween a linear regression predictor and a kriging predictor (i.e., a
Gaussian process regression)?

3.2 When we discuss the support vector machine formulation (2.47), we
state (page 44) that “SVM regression can be made equivalent to Gaus-
sian process regression, if (a) the loss function uses a squared error loss
function, (b) γ/2 is set to σ2

ε , which is the variance of the i.i.d noise term,
(c) when the kernel function, K(·, ·), is set to be a covariance function.”
Please show that this is true.
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3.3 When the kriging model in Eq. 3.8 has no nugget effect term, then it
is said that the process has noise-free observations. Under that circum-
stance, the kriging predictor has an interpolation property, which means
V̂ (si) = V (si), if si is in the training set.

a. Prove the interpolation property.

b. Suppose that an underlying true function is g(x) = e−1.4x cos(7πx/2),
and seven training data pairs {x, y} are taken from the curve, which
are, respectively,

{0.069, 0.659}, {0.212,−0.512}, {0.355,−0.440}, {0.498, 0.344},
{0.641, 0.294}, {0.783,−0.229}, {0.926,−0.199}.

Please use this set of data and the ordinary kriging model without
the nugget effect to construct the predictive function ĝ(x). Plot both
g(x) and ĝ(x) with the seven data points marked. Observe whether
the kriging predictor interpolates the training data points.

3.4 Take one month of 10-min wind speed data and wind power data from
the Wind Time Series Dataset. Treat the wind speed data as x and
the wind power data as y. Fit an ordinary kriging model. Use the squared
exponential covariance function. Please generate a plot with the original
data points, the mean prediction line, and the two standard deviation
lines.

3.5 Please generate one-dimensional sample functions using a power expo-
nential function for the following parameter combinations:

a. θ = 5, σ2
V = 1, p = 2.

b. θ = 1, σ2
V = 0.1, p = 2.

c. θ = 5, σ2
V = 1, p = 1.

d. θ = 1, σ2
V = 0.1, p = 1.

e. θ = 5, σ2
V = 1, p = 1.5.

f. θ = 1, σ2
V = 0.1, p = 1.5.

3.6 Complete the following:

a. Derive Eq. 3.12.

b. Derive Eq. 3.14.

c. Derive the log-likelihood function in Eq. 3.16.

d. Given the universal kriging model in Eq. 3.17, find its log-likelihood
function.
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3.7 Use the 2009 data in the Wind Spatio-Temporal Dataset1 and com-
pute the pairwise sample correlation between any two turbines. Then
plot the correlation against the distance between the two turbines, in
which the horizontal axis is the between-turbine distance and the verti-
cal axis is the correlation in its absolute value in [0, 1].

3.8 Derive Eq. 3.23.

3.9 Use the data of January 2009 from the Wind Spatio-Temporal

Dataset1 and select a target site. Try different values of κ and see
how it affects the resulting informative neighborhood.

3.10 Derive the α-quantile of the truncated normal distribution in Eq. 3.27.

3.11 Use the Wind Spatio-Temporal Dataset2 and group the data for a
month. Compute the asymmetry level for any pair of turbines for that
month under its specific average wind direction. Repeat this for each
month in the yearlong dataset and group the asymmetry values based
on their corresponding time lags. Create a plot similar to the right panel
of Fig. 3.4.

3.12 In Eq. 3.5, when p = 1, we say that the resulting covariance function is
an exponential covariance function, which reads, if assuming isotropy,

CExp(u) = σ2
V exp

{
−‖u‖1

2θ

}
= σ2

V exp

{
−|u1|+ · · ·+ |ud|

2θ

}
,

where u is assumed to have d elements. But there is another definition
of the exponential covariance function, which uses a 2-norm inside the
exponential to measure distances, namely

CExp(u) = σ2
V exp

{
−‖u‖2

2θ

}
= σ2

V exp

{
−
√
u2

1 + · · ·+ u2
d

2θ

}
.

a. Explain under what condition the covariance function, CASYM(u, h),
is the same as CExp(u) with the 2-norm distance.

b. Consider a separable spatio-temporal covariance function, C(u, h),
that is constructed by the product of exponential covariance func-
tions for both the spatial and temporal components, i.e.,

C(u, h) = CExp(u) · CExp(h).

How is this separable covariance function, C(u, h), different from
CASYM(u, h) when β, ϕ, and τ are set to zero?

3.13 Use the Wind Spatio-Temporal Dataset2 to conduct the following
studies.
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a. Use the circular package to conduct a change-point detection on
the yearlong wind direction measured on one of the met masts, and
see how many change points you detect. Suppose that k change points
are detected, then it leads to k + 1 prevailing periods.

b. Calculate the asymmetry level for each one of the prevailing periods
and tabulate the results in a fashion similar to Table 3.4.

c. Select a period in which the asymmetry is weak (smaller than 0.05)
and make sure that its overall duration is longer than ten hours.
Then, fit an ASYM model and an SEP model using the first six
hours of data. Compare the common model parameters and the log-
likelihood of the two models.

d. Use the next four hours of data to conduct an h-hour ahead forecast-
ing for h = 1, 2, 3, 4. Compare ASYM and SEP using both RMSE
and MAE.
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C H A P T E R 4

Regime-switching
Methods for Forecasting

O
ne particular class of wind forecasting methods worth special attention
is the regime-switching approach. We hence dedicate this chapter to the

discussion of regime-switching methods.
The motivation behind the regime-switching approach is to deal with non-

stationarity in wind dynamics—in wind speed, in wind direction, or in spatial
correlation. Recall that the spatio-temporal covariance structures introduced
in Chapter 3 are all stationary in nature. While nonstationary covariance
structures do exist, using them is not easy. Analysts find that a simpler ap-
proach is to compartmentalize the nonstationary variables into a finite number
of disjoint intervals, each of which is referred to as a regime. Within a regime,
the underlying wind process is assumed stationary. To account for the overall
nonstationarity, a mechanism is needed for the forecasting model to transition
from one regime to another, as the underlying wind process is progressing. The
resulting approach is called regime-switching. In essence, a regime-switching
method is a collection of distinct, and most often linear, models.

The regime-switching mechanism can be used with a temporal only pro-
cess, considering only nonstationarity in time, or with a spatio-temporal pro-
cess, considering nonstationarity in both space and time.

4.1 REGIME-SWITCHING AUTOREGRESSIVE MODEL
Suppose that analysts pre-define a number of regimes, indexed from 1 to R,
and denote the wind regime at time t by r(t) ∈ {1, ..., R}, which is known as
the regime variable. The regime-switching autoregressive (RSAR) model [234]
is a collection of R autoregressive models, each of which is associated with
a wind regime and thus uses a set of parameters peculiar to that regime to
produce regime-dependent forecasts.

In an RSAR, the wind speed, V (t), at time t and in regime r(t) is modeled

93
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as an AR model of order pr(t) using a set of regime-dependent parameters

{ar(t)0 , a
r(t)
1 , . . . , a

r(t)
j , . . . }, such as

V (t) = a
r(t)
0 +

pr(t)∑
j=1

a
r(t)
j V (t− j) + ε(t), (4.1)

where ε(t) is a zero-mean, normally distributed, i.i.d random noise whose
variance can be regime-dependent. In this section, the value of regime variable,
r(t), is determined based on the observed values of wind speed. Be aware
that r(t) can be decided using other explanatory variables, including, but not
limited to, wind direction or temperature [75, 176].

Estimating the parameters for a regime-switching autoregressive model is
usually conducted for each individual AR model separately. The procedure,
model selection criteria, and model diagnostics, as explained in Section 2.4,
can be used here without much modification. Zwiers and von Storch [234]
note a number of differences in handling a bunch of AR models, as opposed
to handling a single AR model, summarized below.

• One word of caution is on ensuring that each regime should have a
sufficient amount of data for parameter estimation. This aspect is less
problematic nowadays with much advanced data collection capability
in commercial wind operations. Data appear to be more than enough
even after being divided into a number of regimes. The data amount
sufficiency could have been an issue 30 years ago.

• An analyst can choose to use an aggregated AIC to decide the overall
model order for the regime-switching method. This practice becomes less
popular, as analysts nowadays rely more on computational procedures
that split the data into training and test sets, like in cross validation,
to test on a model’s forecasting performance and to adjust respective
modeling decisions.

• As mentioned above, ε(t) could have different variances in different
regimes. An implication is that analysts should pay attention to the
heteroscedasticity issue (i.e., different variances) when devising a statis-
tical test. For more discussion, please refer to page 1351 in [234].

The use of an RSAR for forecasting is fairly straightforward. Analysts
first identify either the current wind regime, per definition given below, or
the regime anticipated in the forecasting horizon, select the AR model corre-
sponding to the target regime, and then make forecasts using the selected AR
model, as one would have while using a single AR model.

4.1.1 Physically Motivated Regime Definition
In a regime-switching method, here as well as in the methods introduced in
the sequel, one crucial question is how to decide the number of wind regimes



Regime-switching Methods for Forecasting � 95

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 W
in

d 
Po

w
er

Wind Speed (m/s)
Vci Vr VcoV in

FIGURE 4.1 Normalized wind power versus wind speed. Vci: cut-in speed,

Vin: inflection point, Vr: rated speed and Vco: cut-out speed. On the

top and right sides are the histograms of wind speed and power, respec-

tively. The circle dots are raw wind data. (Reprinted with permission

from Ezzat et al. [60].)

and the boundaries dividing these regimes. Consider R disjoint wind speed
regimes, denoted by {r1, r2, . . . , rR}, such that V (t) belongs to one and only
one of the R wind regimes. Each regime, rk, is defined by an interval [uk, vk),
such that uk and vk are the boundary values for rk, with u1 = 0 and uk+1 = vk.

One approach is to pre-define the wind regimes based on physical under-
standing. We guide the selection of wind speed regimes in light of the regions
associated with a wind power curve. Fig. 4.1 plots the wind speed against the
normalized wind power recorded at one of the turbines for one year’s worth
of data in the Wind Spatio-Temporal Dataset2. The power curve is esti-
mated by using the binning method [102] as mentioned in Chapter 3 and to
be detailed in Chapter 5. The binning estimates are shown in Fig. 4.1 as the
triangles.

Four physically meaningful values of wind speed are critical to defining
a wind power curve, which are—the cut-in speed, Vci, the inflection point,
Vin, the rated speed, Vr, and the cut-out speed, Vco. We have explained in
Section 1.1 the meanings of the cut-in speed, the rated speed, and the cut-out
speed. A turbine manufacturer provides the values of Vci, Vr, and Vco for a
specific turbine. Their typical values are, respectively, 3.5, 13.5, and 25 m/s,
although some turbines have their cut-out speed at 20 m/s. Between Vci and
Vr, the power curve follows a nonlinear relationship, with an inflection point
separating the convex and concave regions. This inflection point, denoted by
Vin, marks the start when the turbine control mechanism is used to regulate
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the power production. Hwangbo et al. [96] estimate Vin for modern wind
turbines to be around 9.5 m/s. These physically meaningful values induced
by the power curve motivate analysts to define a total of R = 4 regimes, with
the regime boundaries set at Vci, Vin, Vr, and Vco. We advocate using these
values as a starting point and make necessary adjustment when needed.

For the Wind Spatio-Temporal Dataset2 specifically, only around 3% of
wind speed data are higher than Vr. It makes sense to merge the last two wind
speed regimes by eliminating the threshold at Vr. Moreover, Vco is in fact 20
m/s for the Wind Spatio-Temporal Dataset2, and adjusting the end point
of the wind speed spectrum from 25 m/s to 20 m/s does not affect the above
wind speed regime definition.

Wind regimes can also be defined by using wind direction, to be seen in
Section 4.2, or by using the combination of wind speed regimes and wind
direction regimes, to be seen in Section 4.4, where we define three wind speed
regimes and two wind direction regimes, the combination of which produces
a total of six wind regimes.

4.1.2 Data-driven Regime Determination
Another approach to identify the number of wind regimes is data-driven. Ka-
zor and Hering [119] present a regime determination approach based on the
Gaussian mixture model (GMM). The idea is to use a GMM to model the wind
variable from the R regimes, each of which is treated as a stationary random
process. Kazor and Hering use the 2× 1 wind velocity vector, v = (V1, V2)T ,
where V1 and V2 are, respectively, the wind velocity along the longitudinal and
latitudinal directions. Each regime is modeled as a bivariate normal density,
i.e., v ∼ N (µµµk,ΣΣΣk), k = 1, . . . , R. Denote by τk the proportion of observations
available under the k-th regime. Then, the Gaussian mixture density function
of the R regimes is expressed as

f(v|Θ) =
R∑
k=1

τkN (v|µµµk,ΣΣΣk), (4.2)

where Θ := {τ1, . . . , τR;µµµ1, . . . ,µµµR;ΣΣΣ1, . . . ,ΣΣΣR} is the set of parameters in
this GMM. Kazor and Hering further simplify the covariance matrices by as-
suming their off-diagonal elements all zeros, leaving only two variance terms
per covariance matrix to be estimated for this bivariate distribution. This
assumption implies that the two wind velocity variables are uncorrelated. Un-
der this assumption, there are five parameters per regime—one τ , two mean
terms, and two variance terms—or a total of 5R parameters for R regimes.
The parameters can be estimated by using a maximum likelihood estimation.

To determine the number of regimes, R, Kazor and Hering suggest com-
puting the BIC for the GMM for a range of regime numbers. They specifically
recommend computing the BIC for models with between one and five regimes.
Recall the definition of BIC in Eq. 2.23, it can be expressed for this GMM
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model as
BIC(R) = ln(n) · (5R)− 2 ln(f̂(v|Θ̂)),

where n is the amount of data used to estimate the parameters, 5R is the
number of parameters with the presence of R regimes, and ln(f̂(v|Θ̂)) is the
log-likelihood evaluated at the estimated parameters. For selecting the num-
ber of regimes, one can plot the BIC values against the number of regimes
and then choose the elbow point and its corresponding number of regimes,
similar to how analysts select the significant principal components using a
scree plot [111].

This GMM approach does not need to define the boundaries of the regimes
explicitly. Each regime is represented by its mean and variance parameters,
which are in turn estimated from the data. Upon a new wind observation,
vnew, analysts can compute the likelihood of each individual regime, which is
τ̂kN (vnew|µ̂µµk, Σ̂ΣΣk), for k = 1, . . . , R, and then select the regime corresponding
to the largest likelihood. This treatment is called hard thresholding, implying
that one regime is chosen while all other regimes are discarded. By contrast,
the soft thresholding treatment is to compute the normalized weighting to be
given to each regime model as

wk =
τ̂kN (vnew|µ̂µµk, Σ̂ΣΣk)∑R
i=1 τ̂iN (vnew|µ̂µµi, Σ̂ΣΣi)

, k = 1, . . . , R, (4.3)

and then the forecasting is made by using all R models and by associating
each model with the corresponding weight wk.

4.1.3 Smooth Transition between Regimes
Analysts recognize that abrupt changes between regimes may not be desirable.
The concept of smooth transition between regimes is therefore introduced.
The soft-thresholding GMM is a type of smooth transition approach, as there
are no rigid boundaries between regimes, and for each forecast, all regime-
dependent models are used with their respective weights.

Pinson et al. [164] introduce another smooth transition autoregressive
model (STAR, not to be confused with GSTAR in Section 3.2). The model
takes the form of

V (t) =
R−1∑
i=1

(ari0 +

pri∑
j=1

arij Vt−j

 G̃i(V̂ r(t))
+

ari+1

0 +

pri+1∑
j=1

a
ri+1

j Vt−j

Gi(V̂ r(t)))+ ε(t),

(4.4)

where G̃i(·) = 1−Gi(·) is the smooth transition function that assigns weights
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to the AR models associated with the i-th and (i + 1)-th regimes, and V̂ r(t)

is the estimated wind speed corresponding to the regime at time t. Pinson et
al. suggest using the d-step lagged wind speed, V (t − d), as V̂ r(t), and then,
using a logistic function to create a soft-thresholding transition, such as

Gk(V (t− d)) =
1

1 + exp{−ϕk(V (t− d)− ck)}
, k = 1, . . . , R, (4.5)

where ϕk > 0 and ck are the parameters in the transition function. The set of
parameters in the smooth transition model includes those of the AR models as
well as these for the transition functions. Typically, the AR model parameters
can be estimated separately for each regime, following the approach outlined
for ARMA models in Section 2.4. Then, the parameters for the transition
functions, {ϕk, ck}, are decided by using a cross-validation approach.

4.1.4 Markov Switching between Regimes
A Markov-switching autoregressive (MSAR) model [6, 164, 201] uses a group
of AR models, similar to those expressed in Eq. 4.1, but MSAR assumes
that the switch between the regimes is triggered by a Markov chain and thus
employs a transition probability matrix to govern regime changes.

The one-step ahead transition probability matrix, ΠΠΠR×R, is expressed as

ΠΠΠR×R =


π11 π12 · · · π1R

π21 π22 · · · π2R

...
...

. . .
...

πR1 πR2 · · · πRR

 , (4.6)

where the (i, j)-th element, πij , is defined as

πij = P [r(t+ 1) = rj |r(t) = ri].

In the above definition, the Markovian property is invoked, which says that the
probability of a regime at time t+ 1 only depends on the regime status at the
previous time, t, rather than on the entire history of regimes. Mathematically,
what this means is

P [r(t+ 1)|r(t), r(t− 1), . . . , r(1)] = P [r(t+ 1)|r(t)]. (4.7)

The transition matrix provides the probabilistic information for switch-
ing between regimes for one step ahead. The i-th row in ΠΠΠ represents the
probabilities for the i-th regime to switch to other regimes, including itself
(unchanged). The summation of all the probabilities per row should be one,

i.e.,
∑R
j=1 πij = 1,∀i. The transition matrix can be estimated by using the

data in a training period, namely that each π is estimated by the empirical
probability based on the training data.

Once the one-step ahead transition matrix is estimated, its use mirrors that
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in the GMM-based approach described in Section 4.1.2. Individual AR models
are fit using the data peculiar to specific regimes. The forecast at time t+ 1 is
the weighted average of the forecasts made by individual AR models. Suppose
that the forecast at t + 1 made by the AR model in regime rk is denoted by
V̂ (rk)(t+1). The weights to be used with V̂ (rk)(t+1) come from the transition
matrix. Here, again, analysts can use either the hard thresholding approach
or the soft thresholding approach. Assuming the current regime is rk, the final
forecast while using the soft thresholding is

V̂ (t+ 1) =
R∑
j=1

π̂kj V̂
(rj)(t+ 1). (4.8)

For the hard thresholding, one identifies the largest π̂kj for j = 1, . . . , R, and
suppose it is π̂kj∗ . Then the final forecast is simply to use the AR model

corresponding to regime j∗, namely V̂ (t+ 1) = V̂ (rj∗ )(t+ 1).
For h-step ahead forecasts, h > 1, a formula similar to Eq. 4.8 can be

used, but one needs to replace π̂kj with an h-step ahead transition probability

and replace V̂ (rj)(t + 1) with the raw forecast at t + h, V̂ (rk)(t + h), which
can be made by the regime-specific AR model for h steps ahead. The h-step
transition probability is denoted as

π
(h)
ij = P [r(t+ h) = rj |r(t) = ri],

which can be recursively computed using the one-step ahead transition matrix,

ΠΠΠ, once per step. Apparently, π
(1)
ij = πij . Using the soft thresholding approach,

the h-step ahead can be made by

V̂ (t+ h) =
R∑
j=1

π̂
(h)
kj V̂

(rj)(t+ h).

The hard thresholding forecast can be attained similarly.

4.2 REGIME-SWITCHING SPACE-TIME MODEL
The previous section discusses how the regime-switching mechanism works
with time series data or temporal only models. This section discusses the
regime-switching space-time models, primarily based on the work reported
in [75].

For a spatio-temporal wind process, the wind speed is denoted by Vi(t), fol-
lowing the same notational convention used in Chapter 3, where the subscript
i is the site index and t is the time index. Recall that we use n to indicate the
data amount along the time axis and N to represent the number of sites. A
generic spatio-temporal regime-dependent model [163] can be expressed as

V∗(t) = a
r(t)
0 +

N∑
i=1

pr(t)∑
`=1

a
r(t)
i` Vi(t− `) + ε∗(t), (4.9)
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FIGURE 4.2 Geographic layout of the three sites in the border area of
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where a
r(t)
i` is the spatio-temporal coefficient peculiar to the regime represented

by r(t) and ‘∗’ indicates the target site.
Gneiting et al. [75] consider a specific regime-switching spatio-temporal

model. The setting in their study includes three geographical locations in
the border area of the states of Washington and Oregon—see Fig. 4.2 for an
illustration. The three sites are more or less on the same latitude but spread
along a west-east line. The westernmost site is about 146 km from the middle
site, which is in turn 39 km west of the easternmost site. The easternmost site
is in the vicinity of the Stateline wind energy center, which is the target site for
wind forecasting. The three sites are labeled as #1, #2, and #3, respectively,
from the westernmost to the easternmost.

The regime is determined by the observed wind direction. The prevailing
wind in that area, due to the pressure difference between the Pacific Ocean
and the continental interior, is largely west-eastward. Gneiting et al. [75] pre-
define their space-time regimes based on this physical understanding. They
define two regimes—the westerly regime when the wind blows from the west
and the easterly regime when the wind blows from the east, and then fit a
space-time model for each regime.

The model used in [75] assumes a truncated normal predictive distribution
at time t + h and the target site, i.e., N+(µ3(t + h), σ2

3(t + h)), where the
subscript “3” indicates site #3, the target site for forecasting. This treatment
resembles what is used in the GSTAR model in Section 3.2. In fact, the GSTAR
model borrows this approach from [75], as [75] was published earlier, but their
presentation order in this book may have left the readers with the opposite
impression.

Gneiting et al. [75] propose a space-time model specific for each of the two
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regimes. For the westerly regime, the mean forecasting model is

µ3(t+ h) = aW
0 + aW

1 V3(t) + aW
2 V3(t− 1)

+ aW
3 V2(t) + aW

4 V2(t− 1) + aW
5 V1(t),

(4.10)

where aW
i , i = 0, 1, . . . , 5, are the model coefficients to be estimated by using

the data in the westerly regime. Note that in the above model, a low temporal
order is used, only going back in history for two steps, i.e., t and t − 1. For
the westernmost site (site #1), Gneiting et al. find that it is only beneficial
enough to include the time history at t, not even that at t− 1.

For the easterly regime, the mean forecasting model is

µ3(t+ h) = aE
0 + aE

1 V3(t) + aE
2 V2(t). (4.11)

Here, Gneiting et al. [75] find that it is not beneficial to use the wind speed
measurements at site #1 (westernmost) to make forecasts at site #3 (eastern-
most), because while the westerly wind creates a much stronger correlation
between the two sites, the correlation is multi-fold weaker under the east-
erly wind. Another difference of the model in the easterly regime is that its
temporal order is one lower than that used in the westerly regime.

The predictive standard deviation at t+ h, σ3(t+ h), is modeled similarly
to that in Eq. 3.25, i.e.,

σ3(t+ h) = b0 + b1ν3(t), (4.12)

where in this specific case,

ν3(t) =

√√√√1

6

3∑
i=1

1∑
`=0

(Vi(t− `)− Vi(t− `− 1))2,

and b0, b1 take different values in the two different regimes, although we drop
the regime-indicating superscript for a clean presentation.

Gneiting et al. [75] further suggest removing the diurnal pattern from
the data using Eq. 2.15 and then fitting the above space-time model to the
residuals, corresponding to V ′′ in Eq. 2.16. But Gneiting et al. only recommend
doing so for the westerly regime while leaving the easterly regime to use the
original data. The dominant westerly wind, from the ocean to land, creates a
special pattern causing all these differences in the above treatments.

The aforementioned models are supposed to be established for the re-
spective regimes using the data collected in the corresponding regime. When
making forecasts, the wind direction measured at site #1 is used to invoke
one of the regimes and hence the corresponding AR model. In [75], Gneiting
et al. are only concerned with making a forecast at h = 2, i.e., a two-hour
ahead forecast, but the model above can be used for other h’s in its current
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form. If the mean of the predictive distribution is used as the point forecast
at h = 2 and site #3, then

V̂3(t+ 2) = µ̂3(t+ 2) + σ̂3(t+ 2)
φ
(
µ̂3(t+2)
σ̂3(t+2)

)
Φ
(
µ̂3(t+2)
σ̂3(t+2)

) ,
where φ(·) is the pdf of the standard normal distribution. If the median, or
more generally, the α-quantile of the predictive distribution is used as the
point forecast, then Eq. 3.27 is to be used; for median, i.e., the 0.5-quantile,
set α = 0.5.

For parameter estimation, Gneiting et al. [75] use the CRPS criterion, to be
consistent with their probabilistic modeling approach. For a truncated normal
distribution with its distribution parameter estimated as µ̂ and σ̂, Gneiting
et al. show that the CRPS can be expressed as

CRPSTN =
1

n

n∑
t=1

σ̂·Φ
(
µ̂

σ̂

)−2
{
V3(t)− µ̂

σ̂
Φ

(
µ̂

σ̂

)
×
[
2Φ

(
V3(t)− µ̂

σ̂

)
+ Φ

(
µ̂

σ̂

)
− 2

]
+ 2φ

(
V3(t)− µ̂

σ̂

)
Φ

(
µ̂

σ̂

)
− 1√

π
Φ

(√
2
µ̂

σ̂

)}
,

(4.13)

where π is the circumference constant, not to be confused with the transition
probability variable used in Eq. 4.6. The smaller the CRPS, the better. Min-
imizing the CRPS may run into numerical issues, especially as µ̂/σ̂ → −∞.
Gneiting et al. recommend setting the CRPS to a large positive number when
µ̂/σ̂ ≤ −4 to resolve this issue.

Gneiting et al. [75] admit that the characteristics of this geographical area
make the choice of regimes easier. Under other circumstances, the identifi-
cation of forecast regimes may not be so obvious. Motivated to extend the
regime-switching space-time model to a general setting, Hering and Gen-
ton [91] propose to include the wind direction as a circular variable in the
model formulation to relax the model’s dependence on arbitrary regime selec-
tions. Denote ϑi(t) as the wind direction measured at site i and time t, and
the model in Eq. 4.10 now becomes

µ3(t+ h) = a0 + a1V3(t) + a2V3(t− 1) + a3V2(t) + a4V2(t− 1) + a5V1(t)

+ a6 sin(ϑ3(t)) + a7 cos(ϑ3(t)) + a8 sin(ϑ2(t)) + a9 cos(ϑ2(t))

+ a10 sin(ϑ1(t)) + a11 cos(ϑ1(t)).

(4.14)

Hering and Genton [91] recommend fitting the model in Eq. 4.14 to the residu-
als after removing the diurnal pattern using Eq. 2.15 and refer to the resulting
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TABLE 4.1 RMSE for 2-hour ahead point forecasts for wind
speed at site #3 in May to November 2003. Boldface values
indicate the best performance.

May Jun Jul Aug Sep Oct Nov

PER 2.14 1.97 2.37 2.27 2.17 2.38 2.11
AR-N 2.04 1.92 2.19 2.13 2.10 2.31 2.08
AR-D 2.01 1.85 2.00 2.03 2.03 2.30 2.08
RST-N 1.76 1.58 1.78 1.83 1.81 2.08 1.87
RST-D 1.73 1.56 1.69 1.78 1.77 2.07 1.87

Source: Gneiting et al. [75]. With permission.

TABLE 4.2 CRPS for probabilistic 2-hour ahead forecasts for
wind speed at site #3 in May to November 2003. Boldface
values indicate the best performance.

May Jun Jul Aug Sep Oct Nov

AR-N 1.12 1.04 1.19 1.16 1.13 1.22 1.10
AR-D 1.11 1.01 1.10 1.11 1.10 1.22 1.10
RST-N 0.97 0.86 0.99 0.99 0.99 1.08 1.00
RST-D 0.95 0.85 0.94 0.95 0.96 1.08 1.00

Source: Gneiting et al. [75]. With permission.

method the trigonometric direction diurnal (TDD) model. For TDD, analysts
do not need to estimate the model coefficients, a0, . . . , a11, separately for the
respective pre-defined regimes. The wind direction variable, ϑ, is supposed to
adjust the model automatically based on the prevailing wind direction ob-
served at the relevant sites. Pourhabib et al. [166] combine this regime switch-
ing idea with their GSTAR model and create a regime-switching version of the
GSTAR model, which is called RSGSTAR. But the numerical results in [166]
show that RSGSTAR produces only a marginal benefit as compared to the
plain version of GSTAR.

Table 4.1 presents the comparison between the regime-switching space-
time model with the AR model and the persistence model in terms of RMSE,
whereas Table 4.2 presents the comparison in terms of CRPS. The persistence
model is not included in Table 4.2 because it only provides point forecasts
and no probabilistic forecasts. Here the regime-switching space-time model
uses the pre-defined two regimes, i.e., the models in Eq. 4.10 and Eq. 4.11.

In the tables, the autoregressive model uses the acronym AR and the
regime-switching space-time model uses the acronym RST. The suffix ‘-N’
means that the respective model is fit to the original data, where the suffix
‘-D’ means that the model is fit to the residual data after removing the diurnal
pattern.
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FIGURE 4.3 Wind speed at one of the turbines for a 36-hour duration.

Two regime changes are identified: one in-sample and the other out-of-

sample.

4.3 CALIBRATION IN REGIME-SWITCHING METHOD
The regime-switching autoregressive model and the regime-switching space-
time method can be perceived as a “reactive” approach. Plainly speaking,
a reactive model observes a regime change or a manifestation of it, and then
adapts itself accordingly to accommodate it. In other words, the regime switch-
ing reacts to the regime observed and uses the forecasting model peculiar to the
current wind regime to produce regime-dependent forecasts. The GMM-based
approach, the smooth transition, and the Markov switching add flexibility to
account for multiple possible wind regimes in the upcoming forecast period.

Ezzat et al. [60] argue that one key shortcoming of the reactive regime-
switching approaches is their lack of anticipation of the upcoming regime
changes in the forecast horizon. Fig. 4.3 plots the wind speeds recorded at
one of the turbines in the Wind Spatio-Temporal Dataset2 for a 36-hour
duration. In practice, forecasting is often carried out in a rolling forward fash-
ion. One could run into a situation where the goal is to obtain predictions
for the next 12 hours, based on the past 24-hour data. Assume the num-
ber of regimes and regime boundaries have been pre-specified as shown in
Fig. 4.3. Two regime changes are identified in the 36-hour duration, one of
which takes place in the unobserved forecasting horizon. Reactive approaches
may have the ability to deal with the in-sample change, but do not in their
current treatment handle the unobserved, out-of-sample change. Extrapolat-
ing the characteristics learned from the training data, which are obviously not
representative of the near future, could lead to negative learning and poor
predictive performance. Note that the in-sample change in Fig. 4.3 is from
Regime 1 to Regime 2, while the out-of-sample change is the opposite.

In the near ground wind fields like those on a wind farm, wind patterns
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can change rather frequently. Standing at any time point, an out-of-sample
regime change could be imminent. Our analysis using the first 30 days of data
in the Wind Spatio-Temporal Dataset2 shows that the minimum-time-to-
change and the median-time-to-change in wind speed are 5 hours and 15
hours, respectively, while those in wind direction are 11 hours and 33 hours,
respectively. On average, a change in wind speed or wind direction takes place
every 10 hours. Ignoring the occurrence of out-of-sample regime changes can
seriously undermine the extrapolation ability of a regime-switching forecasting
model.

Fig. 4.4 illustrates the change points detected in both wind speed and
wind direction, using the first 30 days of data in the Wind Spatio-Temporal

Dataset2. The wind direction data are from one of the met masts on the
wind farm. The wind speed data are from the turbine anemometers but to
facilitate a univariate detection, the wind speeds at all 200 turbines are spa-
tially averaged to produce a single time series. Given that the hourly data
are used, both wind speed and wind direction data vectors for one month
are of the size 720 × 1. One may have noticed that the first half portion of
the change points in the wind direction plot (bottom panel) is the same as
that in Fig. 3.5. The specific change-point detection methods used are: for
wind speed, a binary segmentation for multiple change detection based on the
package changepoint in R [122], while for wind direction, a binary segmenta-
tion version of the circular change-point detection [106] based on the package
circular. Recall that the circular change-point detection method is also used
in Section 3.3.3 when producing Fig. 3.5.

Prompted by this observation, Ezzat et al. [60] contemplate a more proac-
tive approach for short-term wind forecasting, which involves an action of
wind speed calibration, referred to as the calibrated regime-switching (CRS)
method. The CRS approach distinguishes between the in-sample regime
changes taking place in the observed portion of the data and the out-of-sample
regime changes occurring in the unobserved forecasting horizon. Next we take
a closer look at the two types of changes. Hereinafter in this chapter, un-
less otherwise noted, the time index, t, is used to indicate the present time,
while ` denotes an arbitrary time index. A forecast is to be made at t+ h for
h = 1, 2, . . . ,H, i.e., the forecast horizon could be as far as H hours ahead of
the present time.

4.3.1 Observed Regime Changes
An observed, in-sample regime change takes place in the observed portion of
the data. Formally, an in-sample regime change occurs at time `∗ ∈ (1, t], when
r(`∗ − 1) = rk, while r(`∗) = rk′ , such that k 6= k′ and k, k′ ∈ {1, · · · , R}.
The CRS method signals an observed change in wind regimes by monitoring
the most recent history of wind speed and wind direction. In practice, the
retrospective searching for a regime change usually goes no further back than
one month.
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FIGURE 4.4 Top panel: change points in one month of spatially aggre-

gated wind speed data. Bottom panel: change points in one month of

wind direction data. The span of the x-axis is a month, or 720 hours.

(Reprinted with permission from Ezzat et al. [60].)

4.3.2 Unobserved Regime Changes
An unobserved, out-of-sample regime change takes place in the forecasting
horizon, [t + 1, t + H]. In other words, a future regime change may occur at
t + h, where r(t + h − 1) = rk, while r(t + h) = rk′ , such that k 6= k′ and
k, k′ ∈ {1, · · · , R}.

Anticipating the out-of-sample regime changes is understandably much
more challenging. It is important to identify certain change indicator variables
that are thought to be able predictors of out-of-sample changes and whose
values can be extracted from the observed data. Ezzat et al. [60] identify two
principal change indicators: the current observed wind regime, i.e., r(t), and
the runlength, denoted by x(t+ h), which is to be explained below.

The current wind regime, r(t), is naturally a useful indicator of upcoming
wind regimes at t + h. For instance, in windy seasons, it is more likely to
transit from low-speed to high-speed regimes, and the converse holds true
for calmer seasons. This, in fact, is the essence of using Markov switching
autoregressive models which translate the current regime information into
transition probabilities for connections with the upcoming regimes.

Given the frequent changes in wind speed and direction as observed in
Fig. 4.4, the current regime information alone is not sufficient to confidently
inform about when and how out-of-sample changes occur. An additional in-
put is required to make a good inference. Ezzat et al. [60] conclude that the
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runlength, which is the time elapsed since the most recent change point in
the response of interest, is a far more potent indicator of upcoming changes
than many other alternatives—other alternatives include the rate of change
in wind speed, or that in wind direction, turbulence intensity and volatility
measures. The use of runlength is first proposed in the online change-point
detection literature [188].

The value of the runlength at any arbitrary time index ` is defined as
x(`) = ` − `∗, where `∗ is the time at which the most recent regime change
is observed such that `∗ < min(`, t). For a time point in the forecast horizon,
i.e., ` = t+ h, Ezzat et al. [60] define the runlength in the forecast horizon as
x(t+ h) = t+ h− `∗.

To appreciate the relevance of the runlength variable more intuitively, let
us run a simple analysis using the change test results on the first 30 days of
wind speed data, as shown in Fig. 4.4. Understandably, the change points in
Fig. 4.4 are not exactly the regime change points, because the regime change
points are defined using a set of prescribed wind speed or wind direction
thresholds, whereas the change points in Fig. 4.4 are identified through a
statistical significance test. Nevertheless, both types of changes serve a similar
purpose, which is to identify a segment of time series data for which either the
wind speed or the wind direction or both can be assumed relatively stationary.
If the runlength is relevant to one, it ought to be relevant to the other.

The change test results in Fig. 4.4 suggest that there exist 43 change points
in wind speed out of the 720 data points. For each of the 720 observations, one
can compute the corresponding runlength, forming a 720 × 1 vector, namely
[x(1), . . . , x(720)]T , where x(1) = 0. For instance, if the first change point
was observed at ` = 16, then x(15) = 15, x(16) = 16, but x(17) = 1, and
so forth. Fig. 4.5, left panel, illustrates the runlength values for the first 100
points, where change points are marked by the crosses. Note how the runlength
grows linearly with time, reaches its peak at change points, and then resets
to one right after the change.

The 720 data points are subsequently grouped into two classes: the time
points deemed as “not a change point,” like at ` = 15 and ` = 17 as mentioned
above, versus the “change points,” like at ` = 16. Fig. 4.5, right panel, presents
the boxplots of the runlength values associated, respectively, with the two
classes. The difference is remarkable: the median runlengths are 8.0 and 16.0
hours for the two classes, respectively. This means that for a given time point,
which could be in the forecasting horizon, say at t+h, the larger its runlength
x(t+h), the more likely a change will occur. On the contrary, a small runlength
makes it more likely that the wind follows the most recently observed pattern.

4.3.3 Framework of Calibrated Regime-switching
The basic idea of the CRS approach is as follows. Assume that a base model,
M, can produce a spatio-temporal forecast, V̂i(t + h), at the i-th site and
time t + h. This base model, M, could be a spatio-temporal model yield-
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FIGURE 4.5 Left panel: runlength as a function of time. Right panel:

boxplots of the runlengths for data points at which no change was

observed versus those for data points at which a change was observed.

ing kriging-based forecasts, as we discuss in Chapter 3. Admittedly, this base
model produces reactive, albeit regime-specific, forecasts. CRS seeks to cal-
ibrate the reactive forecasts to safeguard against upcoming, out-of-sample

regime changes, by adding a regime-dependent term, c
r(t)
i (t + h) ∈ R, to the

raw forecast, V̂i(t+ h). This additional term, c
r(t)
i (t+ h), is referred to as the

regime-dependent forecast calibration, and the quantity V̂i(t+h) + c
r(t)
i (t+h)

as the calibrated forecast. The idea behind CRS is illustrated in Fig. 4.6, where
the goal of the calibration is to adjust the forecast at t+ h in anticipation of
a regime change.

Determining the sign and magnitude of c
r(t)
i (t + h) is arguably the most

critical aspect of the CRS approach. Ezzat et al. [60] assume that the sign and

magnitude of the forecasting calibration, c
r(t)
i (t+ h), can be informed by the

observed data up to time t, denoted by Dt. The dependence on Dt is signified

by the notation, c
r(t)
i (t+h|Dt). For simplicity, c

r(t)
i (t+h|Dt) is assumed to only

vary over time but be fixed across space, that is, c
r(t)
i (t+h|Dt) = cr(t)(t+h|Dt),

for i = 1, · · · , N . A general formulation to infer cr(t)(·) can be expressed as

min
cr(t)∈C

L
[
V̂i(t+ h) + cr(t)(t+ h|Dt), Vi(t+ h)

]
, (4.15)

where C is some class of functions to which cr(t)(·) belongs, and L[·, ·] is a
loss function that defines a discrepancy measure. To solve Eq. 4.15, cr(t)(·|Dt)
ought to be parameterized.

Based on the discussion in Section 4.3.2, the sign and magnitude of a
forecasting calibration is determined through the observed values of the two
change indicators, r(t) and x(t + h). Ezzat et al. [60] further propose to use
a log-normal cdf to characterize cr(t)(·)’s relationship with the two inputs.
The choice of the lognormal cdf as a calibration function is motivated by
its flexibility to model a wide spectrum of regime-switching behavior, ranging
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from abrupt shifts to gradual drifts, depending on the values of its parameters
that are learned from the data.

Given R pre-defined wind regimes, cr(t)(·) is modeled individually in each
of them. The current regime information, r(t), is then implicitly incorpo-
rated by the regime partition, as cr(t)(·) uses the parameters specific to that
particular regime. Consequently, the characterization of cr(t)(·) has only the
runlength variable, x(t + h), as an explicit input. For the k-th regime, let us
denote the regime-dependent parameters by Ψk = {ψk1 , ψk2 , ψk3}, so that the
regime-specific calibration function can be denoted as c(x(t+ h); Ψk|Dt) and
the superscript r(t) is dropped. The log-normal cdf has the form of

c(x(t+ h); Ψk) = ψk1 Φ

(
ln(x(t+ h))− ψk2

ψk3

)
.

CRS aims to learn Ψk for each regime using the historical training data and
continuously update them during the rolling forward forecasting.

The estimation procedure goes as follows. Assume that an analyst has at
hand a sequence of forecasts obtained via a base model, M, and their corre-
sponding true observations. These forecasts are obtained in a rolling forward
fashion, such that for the `-th roll, the data observed up to time t` are used
to obtain forecasts from t` + 1 till t` + H. Then, the window is slid by a
specified interval, say s, so that the “present time” for the next forecasting
roll is t`+1 = t` + s. Suppose that there are L forecasting rolls in the training
set. For the `-th forecasting roll, ` = 1, . . . ,L, the following information is
saved—the observed wind regime at the time of forecasting, r(t), the associ-
ated runlength, x`(t + h), the raw forecast via M, V̂ `i (t + h), and the actual
observation at t + h, V `i (t + h). By employing a squared error loss function,
the optimization problem of Eq. 4.15 can be re-written as,

min
Ψk

1
Lk×N×H

Lk∑̀
=1

N∑
i=1

H∑
h=1

[
V̂ `i (t+ h) + c(x`(t+ h); Ψk)− V `i (t+ h)

]2

(4.16)
where Lk denotes the number of forecasting rolls relevant to regime k. Solving
Eq. 4.16 for each regime individually, i.e., for k = 1, . . . , R, gives the least-
squared estimate of the parameters in {Ψk}Rk=1.

Table 4.3 presents the features of various forecasting models. A checkmark
“X” means the presence of that feature, whereas a cross “X” means absence.
The last column indicates the piece of information on which a method is ac-
tively invoked as a forecasting indicator. Please note that methods like ASYM,
SEP and PER do not explicitly consider a wind regime and they are usually
not included as a regime-switching approach. Nevertheless, they can be con-
sidered as a special case of reactive regime-switching, which has always a single
regime and assume that the same regime continues in the forecast horizon.
For this reason, ASYM, SEP, PER, RSAR, and RST are collectively referred
to as the reactive methods.
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TABLE 4.3 Features of various forecasting models.

Method Temporal Spatial Asym- In Out of Regime

metry sample sample indicators

PER X X X X X X
SEP X X X X X X
ASYM X X X X X X
RSAR X X X X X r(t)
MSAR X X X X X {r(t),ΠΠΠ}
RST X X X X X r(t)
CRS X X X X X {r(t), x(t+ h)}

4.3.4 Implementation Procedure
To run a CRS comprises three sequential phases: (1) Phase I: generating the
raw forecasts (via the base modelM) in the initialization period, (2) Phase II:
learning the forecasting calibration function based on the raw forecasts and the
actual observations solicited in the initialization period, (3) Phase III: making
continuous rolling-forward forecasting and updating. Phases I and II use a
subset of the data, say, the first month of data, to set up the CRS model. In
Phase III, the actual forecasting and testing are carried out on the remaining
months in the dataset. Fig. 4.7 presents a diagram for understanding the
implementation of CRS.

Phases I and II are the training stage. Without loss of generality, the
base spatio-temporal model, M, is assumed to be parameterized by a set of
parameters in Θ and thus denoted as M(Θ).

The rolling mechanism in Phase I goes as follows. The first roll of training
data is the first 12-hour data. Using the 12-hour data, the model parameters
Θ are estimated and the raw forecasts from t + 1 till t + H are made. The
regime information, r(t), and the forecasts, V̂i(t+ h), h = 1, . . . ,H, are saved
for subsequent training. Then, the window is slid by a pre-specified interval
s and all data points within that sliding interval are revealed, so that the
runlength, x(t + h), and the actual wind speed, Vi(t + h), can be recorded
and saved, too. Next, one is ready to make a new forecast, and for that, one
needs to re-estimate Θ using the newly revealed data. One thing to bear in
mind is that if the sliding interval contains any change points, one should use
only the “relevant” data for estimating Θ. The “relevant” data refer to those
from the most recent stationary data segment leading to the present time. For
instance, Ezzat et al. [60] consider temporal lags for up to 4 hours into history.
If the immediate past regime change happens within four time lags from the
present time, Ezzat et al. use data with an even shorter time history, which is
since the immediate past regime change. This rolling mechanism is continued
until all data in the initialization period is exhausted, supposedly resulting in
L rolls.

Once Phase I is finished, the goal of Phase II is to learn the calibration
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FIGURE 4.7 Steps and notations in the execution of the calibrated

regime-switching approach.

function, c(x(t+ h); Ψk), using the Phase I data, where Eq. 4.16 is solved for
each regime individually to estimate the regime-dependent parameters Ψk.

Then, proceed to Phase III, where rolling forecasts are performed. At the
present time t, one should first look back and search for the most recent in-
sample change point. Again, only the “relevant data,” defined the same as
before, are used to estimate the base model parameters in Θ. The base model
is used to make the raw forecasts. The c(x(t + h); Ψk), h = {1, . . . ,H}, is
calculated based on the knowledge of the current wind regime, the runlength,
and Ψk. The resulting c(x(t+ h); Ψk) is used to calibrate the raw forecasts.

The window is then slid by s. At t+ s, first use the last 30 days of data to
update Ψk by re-solving Eq. 4.16 for k = 1, . . . , R, given the newly revealed
observations, then estimate the base model parameters in Θ using the “rele-
vant data,” and finally, make forecasts for t+ s+ h, h = 1, . . . ,H. The cycle
is repeated until the forecasts for all the remaining months are produced.
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4.4 CASE STUDY
This section applies the calibrated regime-switching method, together with
a few alternatives, to the yearlong Wind Spatio-Temporal Dataset2. The
performances of the respective methods are illustrated and compared.

4.4.1 Modeling Choices and Practical Considerations
In this analysis, the forecast horizon is up to H = 12. The sliding interval
is set to s = 6 hours, meaning that after each roll, the first six hours of the
forecast horizon are revealed, and the horizon is shifted by another six hours.
This value appears reasonable considering the frequency at which forecasts
are updated in practice.

The base model used in CRS is the non-separable, asymmetric spatio-
temporal model presented in Section 3.4.1 and the corresponding forecasting
model is the kriging method presented in Section 3.4.3. Same as in Section 3.4,
by setting the asymmetry and separability parameters to zero, a separable
version of the general spatio-temporal model can be obtained.

The base spatio-temporal model used is stationary, but wind fields have
been reported to exhibit signs of nonstationarity [69, 166]. By considering
only the most recent history of wind speed and direction for model training,
it helps overcome the temporal nonstationarity, as the assumption of temporal
stationarity is sufficiently reasonable in the short time window since the latest
change point. Ezzat et al. [60] account for spatial nonstationarity by assuming
local spatial stationarity within a subregion on the wind farm. Three subre-
gions of wind turbines based on their proximity to the three masts are defined,
and a region-specific stationary spatio-temporal model is fit and subsequently
used for forecasting.

The physically motivated regime definition, as explained in Section 4.1.1, is
used here for defining three wind speed regimes. Ezzat et al. [60] also define two
wind direction regimes upon observing a dominant east-westward directional
wind in the dataset. The combination of the wind speed regimes and wind
direction regimes produces a total of R = 6 wind regimes.

A further fine-tuning is conducted to adjust the boundaries of the resulting
regimes for boosting the performance of the CRS approach. Using the first
month of data, the fine-tuning is conducted on 112 different combinations of
regime thresholds, chosen as follows: u1 = 0, vary v1 from Vci to Vci+1.5 with
increments of 0.5 m/s, v2 from Vin−1.5 to Vin with increments of 0.5 m/s, D1

from 180◦ − 45◦ to 180◦ + 45◦ with 15◦ increments, and set D2 = 360◦ −D1,
where D1 and D2 are the wind direction thresholds. The fine-tuning based
on the Wind Spatio-Temporal Dataset2 yields the final regime thresholds
at 4.5 and 9.0 m/s for wind speed and 45◦ and 225◦ for wind direction.

Fig. 4.8 illustrates the learned calibration functions for the six regimes
as functions of the runlength. It appears that the wind speed variable is the
main factor alluding to the upcoming out-of-sample changes. For instance,
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FIGURE 4.8 Learned forecasting calibration functions, c(x(t + h); Ψk),

using Phase I data for the six regimes. (Reprinted with permission

from Ezzat et al. [60].)

the first two regimes (top row), which share the same wind speed profile
(low wind speeds), both transit to higher wind speed regimes. Regimes 3 and
4, both with moderate wind speeds, and regimes 5 and 6, both with high
wind speeds, likewise have a calibration function of the same pattern to their
respective group. The wind direction appears to have a secondary, yet still
important, relationship with the magnitude of the out-of-sample change, as
well as its timing. For instance, it appears that the magnitude of change is
larger in regime 2 (westerly) than in regime 1 (easterly), and larger in regime
4 (westerly) than in regime 3 (easterly). The opposite happens in regimes 5
(easterly) and 6 (westerly). The switching behavior difference between gradual
shifts like in regimes 1, 2, 3, and 6 and abrupt shifts like in regimes 4 and
5 also implies a certain degree of interaction between the two factors. These
functions may change with time and they are continuously re-estimated in
Phase III.

Finally, during the actual testing in Phase III, Ezzat et al. [60] decide to im-
pose maximal and minimal thresholds on the magnitude of forecast calibration
to avoid over-calibrating the forecasts when extrapolating. Some numerical ex-
periments indicate that restricting the magnitude of the calibration quantities
to the range (−3, 3) m/s yields satisfactory performance. Empirical evidence
also suggests that, on average, forecast calibration does not offer much bene-
fit in the very short-term horizon, like less than three hours ahead. For this
reason, CRS only calibrates the forecasting for more than three hours ahead
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(three hours ahead included). This is understandable, since at very short time
horizons, wind conditions are more likely to persist than to change drastically.

4.4.2 Forecasting Results
This subsection presents the numerical results comparing CRS with the fol-
lowing approaches: persistence forecast, the asymmetric model, the sepa-
rable model, the regime-switching autoregressive model, a soft-thresholding
Markov-switching model, and a Markov-switch vector autoregressive model
(MSVAR) [119]. MSVAR generalizes the MSAR model to further account for
the spatial dependence. The temporal order used in RSAR and MSAR (both
versions) is one, i.e., p = 1.

The aforementioned models are compared in terms of both wind speed
and wind power forecasting performances. The forecast accuracy is evaluated
using MAE for each h. Specifically, the MAE used in this comparison study
is expressed as

MAE(h) =
1

L×N

L∑
`=1

N∑
i=1

∣∣V̂ `i (t+ h)− V `i (t+ h)
∣∣, (4.17)

where V `i (t+ h) and V̂ `i (t+ h) are, respectively, the observed and forecasted
responses from a forecasting model, obtained at the i-th site and for h-hour
ahead forecasting during the `-th forecasting roll, ` = 1, ...,L. For each h,
MAE is computed as an average over all turbines and forecasting rolls for the
eleven-month test data. The MAE values are presented in Tables 4.4 and 4.5,
for wind speed and power, respectively. Please note that when computing the
MAE for CRS (as well as the PCE below), V̂i(t + h) is substituted by the
calibrated forecast, i.e., V̂i(t+ h) + c(x(t+ h); Ψk).

The results in Table 4.4 demonstrate that, in terms of wind speed, CRS
outperforms the competing models in most forecasting horizons. For h ≥ 2,
the CRS approach renders the best performance among all competing models.
This improvement is mainly due to the use of regime-specific calibration func-
tions, which help anticipate the out-of-sample regime changes hinted by run-
length. Additional benefits over temporal-only and separable spatio-temporal
models come from the incorporation of comprehensive spatio-temporal cor-
relations and flow-dependent asymmetries. For the very short-term horizon,
h = 1, PER offers the best performance, with CRS slightly behind, but still
enjoying a competitive performance.

Fig. 4.9, upper panel, presents the percentage improvements, in terms of
MAE and wind speed forecast, that the CRS approach has over the compet-
ing models at different forecast horizons. The percentage improvement over
reactive methods such as ASYM, SEP, RSAR and PER is more substantial as
the look-ahead horizon increases. This does not come as a surprise since the
farther the look-ahead horizon is, the more likely a change will occur in that
horizon, and hence, the benefit of using CRS is more pronounced.
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FIGURE 4.9 Percentage improvements in terms of MAE that CRS has

over the competing approaches in wind speed (upper panel) and in

wind power (lower panel). (Reprinted with permission from Ezzat et

al. [60].)
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TABLE 4.4 MAE for wind speed forecasting for h-hour
ahead, h = 1, 2, . . . , 12. Bold-faced values indicate best
performance.

Method 1 2 3 4 5 6

ASYM 1.12 1.45 1.72 1.96 2.15 2.27
SEP 1.15 1.47 1.74 1.97 2.15 2.27
PER 1.11 1.46 1.73 1.97 2.16 2.31
RSAR 1.16 1.53 1.79 2.03 2.21 2.36
MSAR 1.23 1.64 1.92 2.14 2.28 2.38
MSVAR 1.21 1.60 1.87 2.09 2.23 2.33
CRS 1.12 1.45 1.71 1.89 2.06 2.15

7 8 9 10 11 12

ASYM 2.39 2.51 2.68 2.77 2.83 2.87
SEP 2.40 2.52 2.68 2.77 2.84 2.87
PER 2.44 2.57 2.74 2.84 2.92 2.96
RSAR 2.46 2.56 2.73 2.82 2.89 2.93
MSAR 2.45 2.48 2.54 2.59 2.62 2.63
MSVAR 2.40 2.45 2.52 2.57 2.60 2.61
CRS 2.25 2.29 2.37 2.44 2.52 2.56

Source: Ezzat et al. [60]. With permission.

The trend of the improvement of CRS over the Markov-switching ap-
proaches, i.e., MSAR and MSVAR, is different. The Markov-switching ap-
proaches anticipate regime changes in the look-ahead forecast horizon, too,
but use a different mechanism (the transition probabilities). For short-term
horizons, the performance of CRS is remarkably better than the Markov-
switching approaches. As the look-ahead horizon increases, the advantage of
CRS over the Markov-switching models reaches a peak around h = 4 hours,
and after that, the performance of the Markov-switching approaches gradually
catches up with that of CRS. The difference between CRS and the Markov-
switching approaches highlights the merit of using the runlength to anticipate
the out-of-sample changes. The inclusion of runlength and regime informa-
tion in CRS appears to offer higher sensitivity, and thus more proactivity, to
out-of-sample changes than that offered by the transition probabilities in the
Markov-switching approaches.

Similar findings are extended to the power prediction results in Table 4.5,
in which CRS is shown to outperform the competing models for most fore-
casting horizons. Its improvement over the reactive methods is also higher as
the look-ahead horizon increases, whereas its improvement over the Markov-
switching approaches is best in the shorter forecast horizons. The percentage
improvements shown in Fig. 4.9, lower panel, are somewhat different from
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TABLE 4.5 MAE values for wind power forecasting for h-hour
ahead, h = 1, 2, . . . , 12. Bold-faced values indicate best
performance.

Method 1 2 3 4 5 6

ASYM 0.121 0.156 0.184 0.212 0.227 0.236
SEP 0.123 0.158 0.185 0.212 0.227 0.236
PER 0.125 0.161 0.189 0.215 0.230 0.241
RSAR 0.129 0.169 0.199 0.226 0.241 0.253
MSAR 0.132 0.171 0.200 0.220 0.233 0.242
MSVAR 0.131 0.170 0.198 0.217 0.228 0.238
CRS 0.121 0.156 0.186 0.207 0.220 0.229

7 8 9 10 11 12

ASYM 0.247 0.261 0.280 0.291 0.294 0.296
SEP 0.247 0.261 0.280 0.292 0.295 0.296
PER 0.253 0.268 0.286 0.299 0.303 0.304
RSAR 0.264 0.278 0.297 0.309 0.314 0.314
MSAR 0.249 0.258 0.263 0.267 0.268 .269
MSVAR 0.245 0.256 0.262 0.266 0.267 0.267
CRS 0.239 0.244 0.254 0.263 0.268 0.271

Source: Ezzat et al. [60]. With permission.

their counterparts in the upper panel. The difference is mainly due to the
nonlinear speed-power conversion used in computing wind power.

In addition to MAE, Table 4.6 presents the average PCE errors across
all forecasting horizons, for values of ξ ranging between 0.5 and 0.8 with a
0.1 increment, as well as ξ = 0.73, which is the value recommended in [91].
It appears that the improvement of CRS over the competing models is also
realizable in terms of PCE. The CRS approach performs well when under-
estimation is penalized more severely than over-estimation (namely ξ > 0.5),
which describes the more realistic cost trade-off in power systems.

TABLE 4.6 Average PCE for competing models across all
horizons. Bold-faced values indicate best performance.

Method ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.73∗ ξ = 0.8

ASYM 0.116 0.117 0.114 0.111 0.104
SEP 0.116 0.118 0.114 0.112 0.105
PER 0.118 0.121 0.124 0.125 0.127
RSAR 0.123 0.123 0.120 0.117 0.110
MSAR 0.113 0.123 0.127 0.124 0.126
MSVAR 0.112 0.118 0.122 0.118 0.119
CRS 0.109 0.110 0.107 0.105 0.097

Source: Ezzat et al. [60]. With permission.
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GLOSSARY
AR: Autoregressive model

AR-D: Autoregressive model fit after the diurnal pattern is removed

AR-N: Autoregressive model fit to the original data

ARMA: Autoregressive moving average

BIC: Bayesian information criterion

cdf: Cumulative distribution function

CRPS: Continuous ranked probability score

CRS: Calibrated regime switching

GMM: Gaussian mixture model

GSTAR: Gaussian spatio-temporal autoregressive model

MAE: Mean absolute error

MSAR: Markov-switching autoregressive model

MSVAR: Markov-switching vector autoregressive model

PCE: Power curve error

pdf: Probability density function

PER: Persistence forecasting

RMSE: Root mean squared error

RSAR: Regime-switching autoregressive model

RSGSTAR: Regime-switching Gaussian spatio-temporal autoregressive model

RST: Regime-switching space time model

RST-D: Regime-switching space time model fit after the diurnal pattern is removed

RST-N: Regime-switching space time model fit to the original data

SEP: Separable spatio-temporal model

STAR: Smooth transition autoregressive model

TDD: Trigonometric direction diurnal model
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EXERCISES
4.1 Use the Wind Time Series Dataset and conduct the following exer-

cise.

a. Use the three pre-defined wind speed regimes, [0, 4.5), [4.5, 9.0) and
[9.0, 20), and fit three AR models to the hourly data of April and
May. To select the model order for the AR models, please use BIC.

b. Use the hourly data of April and May to fit a single AR model. Still
use BIC to decide the model order. Compare the AR model in (b)
with the three AR models in (a).

c. Use the AR models in (a) to make one-hour ahead rolling forward
forecasts for the next ten hours. The regime for one hour ahead is
assumed the same as the current regime. Compute the MAE of the
ten one-hour ahead forecasts.

d. Use the AR models in (b) to make one-hour ahead rolling forward
forecasts for the next ten hours. Compute the MAE of the ten one-
hour ahead forecasts. Compare the MAEs obtained in (c) and (d).
What do you observe?

4.2 Use the Wind Time Series Dataset and fit a Gaussian mixture model
to the yearlong hourly data. Here you do not have the wind direc-
tion data. So instead of fitting a bivariate Gaussian distribution, like
in Eq. 4.2, you will fit a univariate Gaussian distribution.

a. Explore the number of regimes between one and five. Use the BIC
to decide the best number of regimes.

b. Using the R decided in (a) and the associated GMM parameters,
compute the weight wk in Eq. 4.3 for wind speed between 0 m/s
and 20 m/s with an increment of 1 m/s. Do this for k = 1, . . . , R and
make a plot of wk to demonstrate how each regime model is weighted
differently as the wind speed changes.

4.3 Use the hourly data in Wind Time Series Dataset and assume three
pre-defined wind speed regimes, [0, 4.5), [4.5, 9.0) and [9.0, 20). Conduct
the following exercise.

a. Go through the first half year’s data, i.e., January through June. At
any data point, label the wind speed’s current regime (namely, at t)
as well as the regime at the next hour (namely, at t+1). For the entire
half year of data, count the regime switching numbers between the
three regimes, including the case of remaining in the same regime.
Note that the regime switching from 1 to 2 and that from 2 to 1
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are counted as different regime switchings. Then, divide each count
by the total number of switchings. The relative frequency provides
the empirical estimate of πij . Please write down the 3× 3 transition
probability matrix ΠΠΠ. Verify if each row sums to one.

b. Do the same for the second half year’s data, i.e., July through De-
cember. Compare the new ΠΠΠ with that obtained in (a). Do you find
any noticeable difference between the two ΠΠΠ’s?

4.4 If F (·) is the predictive cdf and V is the materialized wind speed, the
continuous ranked probability score is defined as

crps(F, V ) =

∫ ∞
−∞

(F (x)− 1(x ≥ V ))
2
dx.

The expression in Eq. 2.60 is the sample average based on ntest obser-
vations, namely

CRPS =
1

ntest

ntest∑
i=1

crps(F̂ , Vi).

Please derive the closed-form expression of crps(F, V ) when F (·) is a
normal distribution.

4.5 The cdf of the truncated normal distribution, N+(µ, σ2), is

F (x) =
Φ(x−µσ )− Φ(−µσ )

1− Φ(−µσ )
(P4.1)

when x ≥ 0, and F (x) = 0 when x < 0. Please drive the closed-form
expression of crps(F, V ) for the truncated normal distribution, which is
the expression inside the summation in Eq. 4.13.

4.6 Use the wind speed data in Wind Spatio-Temporal Dataset2. Select
three turbines from the wind farm, the west-most turbine, the east-most
turbine, and a turbine roughly halfway from the two turbines on the pe-
riphery. If possible, try to select the turbines on a similar latitude. Use
the average of the wind directions measured on the three met masts
to represent the wind direction for the wind farm. Create four wind
regimes—the easterly, southerly, westerly, northerly regimes of which
the wind direction ranges are, respectively, (45◦, 135◦), (135◦, 225◦),
(225◦, 315◦), and (315◦, 45◦). Use the first two months of data asso-
ciated with the three turbines to fit four separate AR models, each of
which has the same structure as in Eq. 4.10. Doing this yields a four-
regime RST method. Use this RST method to make forecasts at the
east-most turbine for h = 2. Shift the data by one month and repeat
the above actions, and then, repeat for the whole year. One gets eleven
2-hour ahead forecasts. Compute the MAE and RMSE for these h = 2
forecasts.
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4.7 Take the first month of wind direction data from a met mast and im-
plement the circular variable detection algorithm to detect the change
points. How many change points are there? Are the minimum-time-to-
change and median-time-to-change different from those values reported
on page 105?

4.8 Use the change-point detection results from the previous problem and
produce boxplots similar to that in Fig. 4.5, right panel. Is there a
noticeable difference between the two resulting boxplots? How do you
feel using the runlength as a change indicator for a wind direction-based
regime-switching method?

4.9 Test the sensitivity of the CRS approach by comparing the following
competing alternatives:

a. No forecasting calibration for h = 1 and h = 2 versus conducting
calibration for h = 1 and h = 2.

b. Cap the magnitude of the calibration quantities to the range [−3, 3]
versus [−2, 2], or [−5, 5], or no restriction at all.

c. Three wind speed regimes, with boundary values at 4.5 and 9.0 m/s,
versus four wind speed regimes, with boundary values at 3.5, 9.5,
and 13.5 m/s.
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C H A P T E R 5

Power Curve Modeling
and Analysis

P
art II of this book focuses on modeling ft(y|x), where y is the wind
power output and x is the vector of environmental variables, including

wind speed. A common list of elements in x is given in Section 1.1. The
variables in x are also called covariates, especially in the statistical literature.
The dynamics of ft(y|x), which speaks to the innate change in a turbine’s
aerodynamic characteristics, is much slower as compared with the dynamics of
the environmental covariates, particularly that of wind speed. For this reason,
analysts often drop the subscript t and express the aforementioned conditional
density as f(y|x). This notation does not mean that f(y|x) is a constant
function over time; rather, it means that modeling the dynamics is not the
focus here.

Modeling f(y|x) embodies the power curve analysis. As explained in Sec-
tion 1.2, f(y|x) depicts a probabilistic power response surface, and the cor-
responding conditional expectation, E(y|x), is the power curve, when x is
reduced to wind speed, V . In practice, E(y|x) is used more frequently than
f(y|x), as it is easier to model and to use. But modeling the conditional
density, f(y|x), is also beneficial, as doing so lays the basis for uncertainty
quantification.

The importance of power curve modeling goes without saying. Two pri-
mary areas of impact are, respectively, for wind power forecasting and for
turbine performance assessment. In Chapter 2, we note that wind power fore-
casting can be done by forecasting wind speed first and then converting a
speed forecast to a power forecast through the use of a power curve. In the
three chapters comprising Part I of this book, the use of the power curve is
repeatedly mentioned. The second principal use of the power curve is for tur-
bine performance assessment and turbine health monitoring [133, 205, 216], in
which a power curve is used to characterize a turbine’s power production effi-

125
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ciency. In both applications, accurate modeling of the power curve is essential,
as it entrusts subsequent decision making.

In Chapter 5, we dedicate ourselves to various methods for power curve
modeling and analysis. Chapter 6 discusses the relevance of power curves in
turbine efficiency quantification. Chapter 7 focuses on one particular type of
turbine change, known as turbine upgrade via retrofitting, and shows how
data science methods can help quantify the change in power production due
to an upgrade. Chapter 8 presents a study concerning how the wake effect
affects a turbine’s production performance.

5.1 IEC BINNING: SINGLE-DIMENSIONAL POWER CURVE
The current industrial practice of estimating the power curve relies on a non-
parametric approach, known as the binning method, recommended by the
International Electrotechnical Commission (IEC) [102]. The basic idea of the
binning method is to discretize the domain of wind speed into a finite number
of bins, say, using a bin width of 0.5 m/s. Then, the value to be used for
representing the power output for a given bin is simply the sample average of
all the data points falling within that specific bin, i.e.,

yi =
1

ni

ni∑
j=1

yi,j , (5.1)

where yi,j is the power output of the jth data point in bin i, and ni is the
number of data points in bin i.

The physical law of wind power generation [1, 15] states that:

y =
1

2
· Cp · ρ · πR2 · V 3, (5.2)

where R is the radius of the rotor and Cp is the power coefficient, which is
believed to be a function of (at least) the blade pitch angle and the turbine’s tip
speed ratio. What else might affect Cp is still a matter under debate. Currently
no formula exists to express Cp analytically in terms of its influencing factors.
Cp is therefore empirically estimated. Turbine manufacturers provide for a
specific turbine its nominal power curve with the corresponding Cp values
under different combinations of wind speed, V , and air density, ρ. The above
expression also provides the rationale why temperature, T , and air pressure,
P , are converted into air density, ρ, to explain wind power, rather than used
individually.

Even though the expression in Eq. 5.2 on the surface suggests that the
electrical power that a wind turbine extracts from the wind is proportional to
V 3, an actual power curve may exhibit a different nonlinear relationship. This
happens because the tip speed ratio is a function of wind speed, V , making
Cp also a function of V and adding complexity to the functional relationship
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between wind speed and wind power. Another complexity is brought by tur-
bine controls. The power law in Eq. 5.2 governs the wind power generation
before the rated wind speed, Vr. The use of the pitch control mechanism levels
off, and ultimately caps, the power output when it reaches the rated power
output, yr. Recall the shape of the power curve shown in Fig. 1.2. The power
curve has an inflection point somewhere near the rated wind speed, so that
the whole curve consists of a convex segment, between Vci and the inflection
point and a concave segment, between the inflection point and Vco.

Given the physical relation expressed in Eq. 5.2, the wind industry rec-
ognizes the need to include air density as a factor in calculating the power
output, and does so through a formula known as the air density correction. If
V is the raw average wind speed measured in a 10-minute duration, the air
density correction is to adjust the wind speed based on the measured average
air density, ρ, in the same 10-minute duration, namely

V ′ = V
( ρ
ρ0

) 1
3

, (5.3)

where ρ0 is the sea-level dry air density (=1.225 kg/m3) per the International
Organization for Standardization’s atmosphere standard. The binning method
with air density correction uses this corrected wind speed, V ′, and the power
output, y, to establish a power curve. In the subsequent numerical analysis,
by “binning method” we refer to this air density corrected version, unless
otherwise noted. To make the notation simpler, we continue using V to denote
the wind speed even after the air density adjustment.

Another adjustment analysts practice in the wind industry is to identify the
free sectors for a wind turbine. A free sector is a subset of wind directions under
which a wind turbine is supposedly free of wake effect from its neighboring
turbines. The use of a free sector is effectively a filtering action, which often
removes as many as two-thirds of the raw data.

Please note that the IEC binning method only provides the estimation of
the average power curve, not that of the conditional density. One simple way
to get the conditional density is to assume a distribution type for a given bin,
say, Gaussian, and use the data in that bin to estimate the parameters in the
assumed distribution. In this way, the density estimation for the whole input
region is the collection of a bunch of bin-based individual density estimations.

5.2 KERNEL-BASED MULTI-DIMENSIONAL POWER CURVE
Wind power production is apparently affected by more than just wind speed.
The current IEC method, explained above, primarily considers wind speed,
while using the air density information in an ad hoc manner. The IEC method
does not actually use the wind direction information—it simply controls for
that condition. The power curve established under the free sector has a poor
predictive capability for wind power production under general wind condi-
tions. In this sense, the IEC method is not created for power prediction or
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turbine performance assessment purposes. Rather, the IEC’s intention is to
create a standardized condition when a turbine’s power production can be
compared and verified. Accomplishing this is important for activities like con-
tracting, in which a manufacturer’s claim of its wind turbine’s production
ability ought to be verified at the time of a transaction, under a condition
agreed upon by both parties.

For the purposes of wind power prediction, turbine control, and turbine
performance assessment, all under general wind directions, it is more desirable
to have a multi-dimensional power curve that can account for the effects of as
many environmental variables as possible. Some works [17, 109, 165, 191] study
the impact of having wind direction incorporated as one of the input variables,
or as an additional covariate, and find that much can be gained by this inclu-
sion. Bessa et al. [17] also include in their power curve a third covariate, in
addition to wind speed and wind direction, which is either the time of the day
or a look-ahead time step. Lee et al. [132] present one of the first truly multi-
dimensional power curve models, referred to as the additive-multiplicative
kernel (AMK) method, for both mean estimation, namely E(y|x), and for
the density estimation, namely f(y|x). The AMK power curve model can, in
principle, take as many inputs as possible, although the test cases included
in [132] use up to seven covariates.

5.2.1 Need for Nonparametric Modeling Approach
The underlying physics of wind power generation expressed in Eq. 5.2 pro-
vides some clues concerning a preferable power curve model. The following
summarizes the observations:

1. There appear to be at least three important factors that affect wind
power generation: wind speed, V , wind direction, D, and air density, ρ.
This does not exclude the possibility that other environmental factors
may also influence the power output.

2. The functional relationships between the environmental factors and the
power response are generally nonlinear. The complexity partially comes
from the lack of understanding of Cp, which is affected by many en-
vironmental factors (V , D, and ρ included). As there is no analytical
expression linking Cp to any of the influencing factors, the functional
form of the power curve is unknown.

3. The environmental factors appear in a multiplicative relationship in the
power law equation, Eq. 5.2, indicating interactions among the factors.

The lack of precise physical understanding in power curve modeling
presents an opportunity for data science methods. While developing data-
driven power curve models, the second observation above makes it a com-
pelling case for needing a nonparametric modeling approach to model a power
curve, because the specific functional form of power curves is not known and
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FIGURE 5.1 Scatter plots of the power output versus three environmen-

tal factors for 3.5 < V < 20, 0◦ < D < 360◦. Left panel: power ver-

sus air density; middle panel: power versus turbulence intensity; right

panel: power versus wind shear. (Reprinted with permission from Lee

et al. [132].)

can be rather different under various circumstances. A parametric approach,
by contrast, is to assume a function of a known form with a set of unknown
parameters, say, a polynomial function to some degree, and then estimate
the unknown parameters using the data. The major shortcoming of the para-
metric approaches is its lack of flexibility, as there is no guarantee that the
assumed functional form captures the true relationship between the power and
the environmental inputs. The nonparametric approach, on the other hand,
follows the philosophy of “let the data speak for itself ” and can be much more
adaptive without making too many assumptions. The IEC binning method is
in and by itself a nonparametric method.

The third observation above touches upon the issue of factor interactions.
To see this aspect more pointedly, consider the scatter plots in Figs. 5.1
and 5.2. Fig. 5.1 presents the scatter plots between wind power and three
environmental variables. These scatter plots are unconditional on wind speed
and wind direction. Under this setting, these environmental factors show no
obvious effect on the power output. Fig. 5.2 presents the scatter plots be-
tween the same variables but instead under different wind speeds and wind
directions. One does observe nonlinear relationships in the conditional plots,
and the relationships appear to be different depending on the wind condi-
tions. This implies that interaction effects do exist among wind speed, wind
direction, and other environmental factors. A power curve model should hence
characterize not only the nonlinear effects of wind speed and wind direction,
but also the interaction effects among the environmental factors. The existence
of interaction effects suggests that purely additive models or generalized ad-
ditive models (GAM) are unlikely to work well in modeling a power curve.
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FIGURE 5.2 Scatter plots of power output versus environmental factors

under specific wind speeds and wind directions. Top panel: 6.1 < V <

6.2, 270◦ < D < 300◦; middle panel: 9.1 < V < 9.2, 270◦ < D < 300◦;

and bottom panel: 11.1 < V < 11.2, 270◦ < D < 300◦. (Reprinted with

permission from Lee et al. [132].)
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5.2.2 Kernel Regression and Kernel Density Estimation
Kernel regression or kernel density estimation methods have been used for
modeling power curves [17, 109, 132]. The kernel-based methods appear to be
a capable statistical modeling tool, not only capturing the complicated higher-
order interaction effects but also avoiding the need to specify a functional form
of the power curve relationship.

A kernel regression [86] is a type of localized regression method, which is
to make an estimation, ŷ, at a target input value, x0, by using observed data
points close to x0. This can be accomplished by a weighted average of the
data points falling into a local neighborhood, such as

ŷ(x0) =
∑

xi∈N(x0)

wiyi,

and
∑
i

wi = 1,
(5.4)

where N(x0) is the neighborhood of x0, however it is defined, yi is the observed
response corresponding to input xi, wi is the weighting coefficient associated
with yi, and the constraint,

∑
i wi = 1, is to ensure that the magnitude of ŷ

is consistent with that of y.
In the kernel regression, the localization is achieved by employing a weight-

ing function symmetric with respect to x0, known as the kernel function and
denoted by K(x0, xi). A kernel function is supposed to be integrable to one,
following the same rationale above of requiring the summation of wi’s to be
one. The kernel function has a bandwidth parameter λ that controls how
fast the function decays from its peak towards zero and effectively defines the
neighborhood, N(x0). Consider the one-dimensional Gaussian kernel function,
taking the form of a normal probability density function,

Kλ(x0, xi) =
1√

2πλ2
exp

(
−‖x0 − xi‖2

2λ2

)
, (5.5)

where λ is equivalent to the standard deviation in a normal pdf. This ker-
nel function is mathematically equivalent to the kernel function used in the
support vector machine in Section 2.5.2. The term, 1/

√
2πλ2, in the above

equation is the normalization constant to ensure that Kλ(x0, x) is integrable
to one. When K(·, ·) is used to define the weighting coefficient, wi, the nor-
malization constant appears in both the numerator and denominator, so that
it is cancelled out. For this reason, analysts have practically omitted the nor-
malization constant and simply write the Gaussian kernel as

Kλ(x0, xi) = exp

(
−‖x0 − xi‖2

2λ2

)
. (5.6)

This expression looks the same as that in Eq. 2.48 if one lets φ = 1/(2λ2).
What matters in the kernel function is the difference, or the distance,
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between x0 and xi, just like in a stationary covariance function. Therefore,
analysts choose to simplify the input arguments in K(·, ·) to be a single vari-
able, say, u = x0 − xi. As such, the kernel function in kernel regression is
often denoted by one of the following interchangeable expressions: Kλ(u) or
Kλ(‖x0 − xi‖) or Kλ(x0, xi).

Another way, arguably more common, to write the Gaussian kernel func-
tion is to first express it with a unit bandwidth, namely λ = 1, as

K(u) =
1√
2π

exp

(
−‖u‖

2

2

)
. (5.7)

This K(u) is integrable to one. It is then used as the building block for kernel
function, Kλ(u), with an arbitrary bandwidth λ—Kλ(u) is referred to as the
scaled kernel. Using K(u), Kλ(u) is written as

Kλ(u) =
1

λ
K
(u
λ

)
, (5.8)

which gives back the expression in Eq. 5.5. The Gaussian kernel expression in
Eq. 5.7 and Eq. 5.8 is used throughout the book when a kernel regression or
a kernel density estimation is concerned.

Fig. 5.3, left panel, presents an illustration of a Gaussian kernel function.
Suppose that one only has three data points, marked as #1, #2, and #3,
respectively, and the corresponding data pair is {xi, yi}, i = 1, 2, 3. One wants
to assess the response, ŷ(x0), at x0. The weighting coefficient associated with
each one of the data points is decided through the kernel function. Specifically,

wi(x0) =
Kλ(‖x0 − xi‖)∑3
j=1Kλ(‖x0 − xj‖)

, i = 1, 2, 3,

and using this weighting coefficient function, one has

ŷ(x0) = w1(x0)y1 + w2(x0)y2 + w3(x0)y3.

In this example, as illustrated in Fig. 5.3, left panel, points #1 and #2 have
positive weights associated with them, whereas point #3 has a virtually zero
weight, so that ŷ(x0) is effectively the weighted average of y1 and y2 at points
#1 and #2, respectively. Other data points that are even farther away from
x0 than #3 hardly affect the estimation of ŷ(x0) at all. One may consider
that the neighborhood of x0, N(x0), covers a certain distance from x0 on
either side and contains #1 and #2 but not #3. Eq. 5.4, once factoring in the
neighborhood constraint for this three-point case, can be expressed as

ŷ(x0) = w1(x0)y1 + w2(x0)y2, w1(x0) + w2(x0) = 1.

If one moves x0 continuously from one end of the input domain to the other
end and estimates ŷ(x0) at every x0 using the same kernel-based localized



Power Curve Modeling and Analysis � 133

𝑥

𝐾

𝑥

𝐾

𝑥0 𝑥0

(a) Gaussian kernel (b) Equal weighting

#1

#2

#3
#1 #2

#3

2𝜆

FIGURE 5.3 Gaussian kernel function versus rectangular window func-

tion used in IEC binning. (Reprinted with permission from Ding et

al. [50].)

regression, one practically estimates the input-output functional relationship
between x and y. Let us drop the subscript “0” from the input variable, as
it is now a generic input variable. The estimated relationship is denoted by
ŷ(x). The kernel regression leading to ŷ(x), based on n pairs of data points,
{(x1, y1), . . . , (xn, yn)}, is

ŷ(x) =
n∑
i=1

wi(x)yi,

where wi(x) =
Kλ(‖x− xi‖)∑n
j=1Kλ(‖x− xj‖)

.

(5.9)

This estimator in Eq. 5.9 is in fact the Nadaraya-Watson kernel regression
estimator [152, 226]. The kernel function used therein does not have to be
always the Gaussian kernel. The Gaussian kernel function does not go exactly
to zero unless ‖x − xi‖ → ∞. There are other kernel functions, for instance,
the Epanechnikov kernel function, that defines a window, so that the kernel
function value is precisely zero outside the window.

The kernel regression is considered a nonparametric approach not because
the kernel function does not have parameters or not use a functional form; in
fact it does have a parameter, which is the bandwidth. Being a nonparametric
approach, the kernel function is different from the target function, y(x), that it
aims at estimating. While the target functions may vary drastically from one
application to another, the kernel function used in the estimation can remain
more or less the same. The non-changing kernel regression is able to adapt
to the ever-changing target functions, as long as there are enough data. The
parameter in the kernel function serves a role differing substantially from the
coefficients in a linear regression. The coefficients in a linear regression play a
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direct role in connecting an input x to the response y, while the bandwidth
parameter in kernel functions, by contrast, defines the neighborhood and plays
a rather indirect role in connecting x to y.

Comparing the kernel regression with the binning method, one notices that
the binning method can be considered as a special kernel regression that uses a
uniform kernel function; see the illustration in Fig. 5.3, right panel. A uniform
kernel function is a rectangular window function, giving equal weights to all
data points within the window, regardless of how far away they are from x0.
Once a data point is outside the function window (point #1), its weight is
zero. The final estimate at x0 is a simple average of all y’s associated with the
data points within the window (points #2 and #3 in this case). Of course, the
IEC binning method is not really a kernel model due to another important
reason: in the kernel regression, the kernel function moves continuously along
the x-axis, producing a continuous, smooth curve, while the window functions
in the binning method are disjoint, so that the resulting function response
from the binning method, if magnified enough, is discretized.

When analysts use the weighted average of y values of the data points
falling under the kernel function, the resulting outcome is a point estimate
of the function value at a given input x. The kernel method, nonetheless,
is capable of producing the estimate of a probability density function of y,
conditioned on x, namely f(y|x). The way of doing this is very similar to that
in Eq. 5.9 but notice a different requirement here—for a density estimation,
the left-hand side is supposed to be a density function, rather than a point
estimate. One idea is to replace yi with a density function, centered at yi, so
that the weighted averaging acts now on a series of density functions and thus
results in a density function as well. Recall that the Gaussian kernel function
is in fact a density function, and as such, a conditional density estimation [99,
184] can be obtained through a formula like

f̂(y|x) =
n∑
i=1

wi(x)Kλy (y − yi), (5.10)

where wi(x) is likewise defined as in Eq. 5.9, but λ is to be replaced with λx,
as the bandwidth parameters associated with x may differ from that with y.

5.2.3 Additive Multiplicative Kernel Model
The AMK method [132] is a kernel-based approach. Prior to AMK, a bivariate
conditional kernel density including wind speed and direction is used in [109]
and a trivariate kernel density is used in [17]. AMK goes beyond the plain
version of a kernel density estimation or a kernel regression and employs a
special model structure that allows it to handle the multi-dimensional inputs
in power curve modeling.

Recall the conditional density estimate f̂(y|x) in Eq. 5.10. For a multivari-
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ate input, denoted by x, let us re-write Eq. 5.10 as

f̂(y|x) =
n∑
i=1

wi(x)Kλy (y − yi), (5.11)

where

wi(x) =
Kλλλx(‖x− xi‖)∑n
j=1Kλλλx(‖x− xj‖)

, (5.12)

λλλx = (λ1, . . . , λq) is the vector of the bandwidth parameters associated with
the environmental factors in x, and q is the number of explanatory variables
in x. In the above formulation, Kλλλx(‖u‖), where u = x−xi, is a multivariate
kernel function and is composed of a product kernel that is a multiplication
of univariate kernel functions, such as

Kλλλx(||u||) := Kλ1(u1)Kλ2(u2) · · ·Kλq (uq). (5.13)

Here Kλj (uj) is generally a univariate Gaussian kernel, except for wind direc-
tion, D. The kernel function for D is chosen to be the von Mises kernel [212],
because D is a circular variable that may cause trouble in numerical compu-
tation, had a Gaussian kernel been used. For more discussion regarding the
handling of circular variables, please refer to [143, 144, 145]. The von Mises
kernel function can characterize the directionality of a circular variable and
takes the form of

Kν(D −Di) =
exp{ν cos(D −Di)}

2πI0(ν)
, (5.14)

where I0(·) is the modified Bessel function of order 0, and ν is the concentra-
tion parameter of the von Mises kernel, which has now taken the role of the
inverse of the bandwidth parameter λD.

In addition, the mean of the conditional density estimator in Eq. 5.11
provides an estimation of the conditional expectation, ŷ(x) := E(y|x), as

ŷ(x) =

∫
yf̂(y|x)dy. (5.15)

Hydman et al. [99] note that the estimator in Eq. 5.15 is equivalent to the
Nadaraya-Watson regression estimator in Eq. 5.9 with the input variable in
Eq. 5.9 replaced by its multivariate counterpart, x.

The AMK method [132] does not simply use the multivariate kernel as is.
The reason is two-fold. One is concerning data scarcity in a multi-dimensional
space. With wind data arranged in 10-minute blocks, one year’s worth of data
translates to slightly over 52,000 data pairs, which could still become scarce
in a multi-dimensional factor space. The dimensionality of the input space,
if using the list of elements in x given in Section 1.1, is seven. When 52,000
data points are dispersed into the seven-dimensional space, certain combi-
nations of environmental conditions could have very little data or even no
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data at all, thereby deteriorating the performance of the resulting multivari-
ate kernel model. In the future, technology innovation will almost surely make
additional measurements available, so that a truly multi-dimensional power
curve model should be able to entertain as many input variables as realisti-
cally possible. The scalability issue is also the reason why the IEC binning
is not used for multi-dimensional cases. The second difficulty is that running
a multi-dimensional kernel-based conditional density estimation takes longer
computational times than analysts typically prefer. It is thus desirable to use
fewer input variables to form the multivariate product kernels if possible.

Lee et al. [132] tailor the power curve modeling to an additive-multivariate
model structure, which gives their kernel model the name AMK. The idea is
to form a series of product kernel functions taking three input variables each,
allowing up to three-factor interactions to be modeled. The use of trivariate
kernels helps alleviate the data scarcity concern, as a trivariate kernel only
needs to handle a three-dimensional space, low enough to avoid the curse
of dimensionality. For high-dimensional covariates (more than three), AMK
pools multiple trivariate product kernels together in an additive structure.

For notation simplicity, let us designate the first two elements of x, namely
x1 and x2, as V and D, respectively. Other environmental variables are de-
noted by xj , j = 3, ..., q. AMK employs the following model structure,

f̂(y|x) =
n∑
i=1

1

(q − 2)
[wi(x1, x2, x3) + · · ·+ wi(x1, x2, xq)]Kλy (y − yi),

ŷ(x) =
1

(q − 2)
[ŷ(x1, x2, x3) + · · ·+ ŷ(x1, x2, xq)] .

(5.16)

In the above expression, AMK keeps the multivariate kernels but limits them
to be product kernels of three inputs. Based on the observations from Fig. 5.2,
it is believed that it is important to include V and D, incorporating wind
speed and direction information, in every multivariate kernel so that the tri-
avarite kernels can capture the interaction effect between the third environ-
mental factor with wind speed and wind direction. AMK can be used for
high-dimensional data without causing computational or data sparsity prob-
lems. When additional explanatory variables become available, AMK would
include extra additive terms, each of which has the same structure as the
current terms, namely a trivariate kernel having inputs of V , D, and a third
explanatory variable.

5.2.4 Bandwidth Selection
The key parameters in AMK are the bandwidth parameters, λy and λλλx. Lee
et al. [132] employ a data-driven selection criterion, known as the integrated
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squared error (ISE) criterion [61, 83], as follows,

ISE(λλλx, λy) =

∫ ∫ (
f(y|x)− f̂(y|x)

)2

f(x)dydx

=

∫ ∫
f̂(y|x)2f(x)dydx− 2

∫ ∫
f̂(y|x)f(y|x)f(x)dydx

+

∫ ∫
f(y|x)2f(x)dydx

= I1 − 2I2 + I3.

(5.17)

With this criterion, one would choose the bandwidths that minimize the ISE.
Because I3 in the ISE expression does not depend on the bandwidth selection,
it can be omitted during the minimization of ISE. For I1 and I2, Fan and
Yim [61] suggest using a leave-one-out cross-validation estimator as

Î1 =
1

n

n∑
i=1

∫ (
f̂−i(y|xi)

)2

dy, and

Î2 =
1

n

n∑
i=1

f̂−i(yi|xi),
(5.18)

where f̂−i(y|xi) is the estimator f̂(y|xi) with the i-th data pair {xi, yi} omit-
ted. The data-driven bandwidth selection is simply to choose the bandwidths
λλλx and λy that minimize Î1 − 2Î2.

Using this cross-validation algorithm could, however, take a long time.
In order to have a faster bandwidth selection for practical purposes, Lee et
al. choose to employ a simpler, greedy procedure to select the bandwidth
parameters one at a time, as described in Algorithm 5.1.

In the algorithm, to handle the von Mises kernel, Lee et al. [132] follow
an approach suggested in [212] that ties the concentration parameter ν to the
bandwidth parameter λ2 as ν = 1/λ2

2. Then, λ2 can be selected together with
other bandwidth parameters for the Gaussian kernels.

In R, the package kernplus implements the kernel regression, i.e., the mean
function estimation ŷ(x) in Eq. 5.16. Suppose that wind data is stored in the
matrix windpw. The syntax to fit a multi-dimensional power curve is

pc.est <- kp.pwcurv(windpw$y, windpw[, c(‘V’, ‘D’, ‘rho’, ‘I’,

‘Sb’)], id.spd = 1, id.dir = 2),

where the two arguments, id.spd=1 and id.dir=2, indicate the first two
columns in the data matrix are, respectively, the wind speed and wind direc-
tion data. Five covariates are included in this example, i.e., x = (V,D, ρ, I, Sb).

5.3 OTHER DATA SCIENCE METHODS
Addressing the multi-dimensional power curve problem is essentially a regres-
sion problem. For this matter, other data science methods, especially those
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Algorithm 5.1 Greedy kernel bandwidth selection.

1. Consider only a simple univariate kernel regression corresponding to
individual environmental variables in x.

2. Calculate the bandwidth for each univariate kernel following the direct
plug-in (DPI) approach suggested in [187]. This DPI estimator can be
obtained by using the dpill function in the KernSmooth package and
performing it on one input variable at a time, such as

λ̂j <- dpill(xj, y).

3. Denote the resulting bandwidths as (λ̂1, λ̂2, . . . , λ̂q);

4. Use a basic power curve model that includes only the wind speed, V
and wind direction, D as inputs, and fix the bandwidths for the two
univariate kernels corresponding to V and D as λ̂1 and λ̂2, respectively.
Then, estimate the bandwidth λ̂y that minimizes Î1 − 2Î2.

of semi-parametric or nonparametric nature, can be employed as well. Two
methods introduced previously, the support vector machine in Section 2.5.2
and artificial neural network in Section 2.5.3, can certainly be applicable. As
argued in Section 5.2.1, parametric regression methods are less effective and
not robust in power curve modeling.

In this section, we would like to introduce three more data science methods:
k-nearest neighborhood (kNN), tree-based methods, and spline-based meth-
ods; please also refer to [86] for the basics about these methods. Most of the
methods produce only the mean estimation, ŷ(x), but Bayesian additive re-
gression trees (BART) [36], being a Bayesian method, naturally produces the

posterior distribution, leading to the density estimation, f̂(y|x).

5.3.1 k-Nearest Neighborhood Regression
The idea of kNN is fairly simple. For a prediction at any target site, the
method uses the average of the closest k data points. Suppose that we have
n data points in the training set and want to make a prediction at x0. Then,
the kNN regression at x0 is

ŷ(x0) =
1

k

∑
xi∈Nk(x0)

yi, (5.19)

where the subscript k in the neighborhood notation, Nk, signifies that this
neighborhood contains exactly k data points. The parameter in kNN is the
neighborhood size, k, which needs to be selected a priori, usually through
cross validations. In the power curve modeling, kNN is used for regression.
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It can also be used for classification in other applications. For classification,
a data instance will be assigned to the class to which the majority of data
instances belong in the neighborhood.

One may notice that the kNN above looks awfully similar to the kernel
regression in Eq. 5.4, especially once letting wi = 1/k for all i’s. But there
are a couple of differences. The kNN regression uses a simple average of all
data points in its neighborhood, whereas the kernel regression uses a weighted
average. In the terms of averaging, kNN is the same as the binning method
that uses the uniform kernel.

A more important difference between kNN and kernel regression is in the
definition of the neighborhood. The neighborhood in the kernel regression
is decided through the use of a specific kernel function and its bandwidth
parameter λ. Kernel regression does not directly control the number of data
points in its neighborhood but once λ is chosen, the size of the neighborhood is
more or less decided. By contrast, the kNN regression decides its neighborhood
through setting a specific amount on the data points closest to the target site.
The closeness metric used in kNN is usually based on the Euclidean distance,
although it could be other distance alternatives.

To appreciate the difference of neighborhood definition between kNN and
kernel regression, consider the following analogy. Pretend that two kids in
a kindergarten want to decide who can be their friends. Alexandra declares
whoever is similar enough to her (based on her definition of similarity) is
her friends, and that it does not matter how many friends she ends up with.
Nicholas says that he wants precisely k friends and those k kids who live
closest in distance to him are his friends, regardless of how different they
may be from each other. Alexandra uses the same approach as in the kernel
regression, whereas Nicholas uses the kNN approach.

To use kNN for regression, analysts can call the knn.reg function in the
FNN package. The syntax is

knn.reg(training inputs, test inputs, y, k).

If k is not specified, the default value is three.

5.3.2 Tree-based Regression
A tree-based model is commonly known as the Classification and Regression
Trees (CART) [86]. Consider the objective of regression. Recall the learn-
ing formulation of SVM in Eq. 2.47. In fact, that formulation is extendable
to a general class of learning problems, known as machine learning through
regularization, which entails three key components: a loss function, L(·, ·),
a penalty function, Penalty(·), and the structure of the hypothesis space,
H, in which the optimization is conducted. Given a set of training data,
{(x1, y1), (x2, y2), . . . , (xn, yn)}, the learning problem can be loosely formu-
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lated as,

ĝ = argmin
g∈H

[ n∑
i=1

L(yi, g(xi)) + γ · Penalty(g)
]
, (5.20)

where γ is the penalty coefficient, trading off between the loss function and
the penalty function. Note that Eq. 2.47 uses γ/2 as the penalty coefficient
but the inclusion of the constant, “2,” is for mathematical convenience and
does not fundamentally change the learning outcome.

The learned function, ĝ(·), is used to make a prediction at a target site,
say, x∗, such that ŷ(x∗) = ĝ(x∗). In the SVM regression, the loss function is
the ε-sensitive error loss function, the penalty is a squared function, and H
is the reproducing kernel Hilbert space, so that g(x) =

∑n
i=1 αiK(x,xi). In

CART, the loss function is a squared error loss function, the penalty function
is the tree size, and the most important difference is that the hypothesis space,
H, is piecewise constant.

Basically, a CART partitions the input data space into J regions, each
of them denoted by Rj , j = 1, . . . , J . For each region, CART uses a single
constant, cj , to represent it. As such, a CART model is represented by the
following parameters: {J ;R1, . . . , RJ ; c1, . . . , cJ}. Then, the prediction using
CART can be expressed as

ŷ(x) =

J∑
j=1

cj · 1(x ∈ Rj).

Since CART uses a squared error loss function, the representation for each
region is the sample average of all data points falling into that region, meaning
that the estimate of cj is ȳj for Rj .

Practically, a CART is built through a greedy algorithm, which is to per-
form a binary splitting on a variable, one at a time. The action every time
splits an input domain into subregions. Once a splitting is carried out, it will
not be revisited, even if it may not be the optimal splitting in hindsight. This
greedy algorithm runs efficiently, in the complexity of O(pn log n), where p is
the dimension of the input space and n is the data amount.

If one carries out this binary partition process, the process can be visualized
through the growing of a binary tree—this is how the method gets its name.
One such example in a two-dimensional space is presented in Fig. 5.4. In the
tree, the whole region corresponds to the root node and the final subregions
correspond to the terminal nodes. When one region is split to two subregions,
the two subregions correspond to the two children nodes of the same parent
node. Two nodes sharing the same parent node are called sibling nodes. The
tree size is decided by the number of terminal nodes. Once a tree is established,
the data points scattered in the original space, i.e., in the root node, are now
dispersed into the respective terminal nodes.

The tree growing process starts with all the data. At each step, it considers
a splitting variable j and split point s and defines the pair of the half-planes
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FIGURE 5.4 The two-dimensional example of binary splitting in the cre-

ation of a tree model.

as,
R1(j, s) = {x|xj ≤ s} and R2(j, s) = {x|xj > s}.

Note that R1 and R2 are the generic notations for any half planes at a splitting
action and do not correspond to those same symbols used in Fig. 5.4. The
tree model is built by searching all p elements in x, one at a time, and decide
the best splitting variable and the corresponding split point at each step, by
minimizing the following objective function,

min
j,s

 ∑
xi∈R1(j,s)

(yi − ĉ1)2 +
∑

xi∈R2(j,s)

(yi − ĉ2)2

 (5.21)

where ĉj is the sample average of all data points in Rj .
The above is done by treating that the tree size, J , is fixed. The tree

size represents the model complexity of CART. If the resulting tree is too
small (too simple a model), the piecewise constant approximation is crude,
causing a high bias in prediction, whereas if the resulting tree is too large
(too complicated a model), then it fits the training data too hard, causing
overfitting and again leading to poor prediction. Selecting an appropriate tree
size is therefore important. A practical procedure of deciding the tree size is
the bottom-up pruning. The basic idea is to build the largest possible tree
first and then prune the large tree to an appropriate size. Pruning is the
action of merging terminal nodes to reduce the size of the tree, as outlined in
Algorithm 5.2.
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Algorithm 5.2 Tree pruning procedure.

1. Start with the largest possible tree (split until some pre-specified mini-
mum node size is reached);

2. Identify terminal siblings, which are sibling terminal nodes having the
same parent node;

3. Provisionally merge each terminal sibling pair making the respective
parent a terminal node (i.e., remove split);

4. Find the pair that, when merged, increases the fitting error of tree on
training data the least;

5. Remove the corresponding split, making the parent node terminal, and
creating a tree with one fewer terminal node;

6. Go to Step 2 until no splits left (i.e., only one root node).

The final tree size is chosen as J∗ that minimizes the estimate of the test
error using either an independent validation dataset or the cross-validation
method.

Suppose that a tree method is applied to wind power data with a single
input (wind speed). It could produce an outcome that looks like from the
binning method. Using a tree, the final multi-bin result comes out of the iter-
ations of binary splitting. One thing different, though, is that unlike the IEC
binning using bins of equal width, the tree-based method less likely produces
bins of equal size, because the actual split points depend on the solution to
the optimization problem in Eq. 5.21.

According to Hastie et al. [86], Table 10.1, despite many appealing char-
acteristics, CART has a relatively poor predictive power. This understanding
motivates analysts to enhance the predictive power of a tree-based method
through ensembling a set of trees. The general thought process is that a weak
base learner like CART can be made much capable, or appreciably stronger,
when many weak learners are made to work together. Specific ensembling
mechanisms used include bagging, leading to bagged trees or the random forest
(RF), or boosting, leading to the multiple additive regression trees (MART).
Bayesian additive regression trees [36], or BART, a Bayesian version of sum of
trees, is also an ensemble of trees, each of which explains a small and different
portion of the predictive function. Conceptually, BART is closer to boosting
than to bagging.

The technical details in BART are rather involved. For practitioners, it is
advised to use the bart function in the BayesTree package. The syntax of
using BART is

output<-bart(x.train, y.train, x.test),
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where output is an R object and output$yhat.test contains the samples from
the estimated conditional density function, f̂(y|x). Each column is a vector

of samples drawn from f̂(y|x) for a specific x corresponding to a row in the
input argument x.test, and the average of all the samples in that column is
the corresponding conditional expectation, namely the point estimation, ŷ(x).

5.3.3 Spline-based Regression
The spline-based regression is to use piecewise polynomials to model a nonlin-
ear response. One of the popular spline functions used is the cubic spline [86];
see Fig. 5.5, middle panel, for an illustration. A cubic spline partitions the
input domain into a few segments, which is in fact an action of binning, and
models each segment using a cubic polynomial. In order to produce a smooth,
coherent model for the whole domain, a cubic spline imposes continuity and
smoothness constraints at the partition points, known as knots. In Fig. 5.5,
two knots are used and denoted as ξ1 and ξ2, respectively. Although ξ1 and ξ2
partition the input domain in Fig. 5.5 into three roughly equal parts, knots in
general do not have to be evenly spaced. Each cubic polynomial is specified
by four parameters, producing a total of 12 parameters for the three piecewise
cubic polynomials. The constraints imposed at the partition points, however,
reduce the number of actual parameters that need to be estimated. For the
cubic spline in Fig. 5.5, there are three constraints at each knot, which require,
respectively, the equality of the function value, that of its first-order deriva-
tive and that of the second-order derivative, at each of the partition points.
With the six constraints considered, the number of actual parameters to be
estimated for the cubic spline is six.

One may have noticed that the spline method in fact injects the idea of
binning into its action of modeling. If only using the idea of binning with-
out the boundary constraints, however, the response looks like the plot in the
right-most panel of Fig. 5.5. The three unconstrained piecewise cubic poly-
nomials need a total of 12 parameters to specify. When a single global cubic
polynomial is used to model a response, it uses four parameters, but its mod-
eling adaptivity to local features is far worse than the other two alternatives.
With only a slight increase in model complexity (measured by the number of
parameters), the cubic spline is endowed with the level of modeling adaptivity
as a binning method allows.

Analysts may argue that the binning method can use a single constant
for each bin, so that the number of parameters for the right-most example in
Fig. 5.5 can be three, instead of 12. The problem of this argument is that when
using a constant to model a bin, the bin width needs to be much smaller, or
equivalently, the number of bins needs to be much greater, so that a piecewise
constant function can approximate a nonlinear response with sufficient accu-
racy. It is not unusual that with one single input variable such as wind speed,
analysts need to use 20 bins to model the whole response. With 20 bins, the
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Global cubic polynomial Cubic spline Local cubic polynomial

FIGURE 5.5 Global cubic polynomial, cubic spline, and local cubic poly-

nomials. (Reprinted with permission from Ding et al. [50].)

number of parameters cannot be fewer than 20, already producing a model
that is unnecessarily complicated.

To use spline-based regression on actual applications, there are a few tech-
nical problems to be resolved. One of the problems is that the behavior of
polynomial fit to data tends to be erratic near the boundaries. To fix the
problem, analysts introduce the natural cubic spline, which postulates that
the response function be linear beyond the boundary knots. This constraint
translates to the continuous and continuous first derivative requirements at
each boundary knot but it no longer requires continuous second derivatives,
because the linear function outside the boundary knot does not have a second
derivative.

Another technical problem is how many knots one should choose and where
to position them. For addressing the knot selection problem, analysts intro-
duce the smoothing spline. The smoothing spline finds a function that mini-
mizes the following objective function,

ĝ = argmin

{
n∑
i=1

[yi − g(xi)]
2

+ γ

∫
t

{g′′(t)}2dt

}
. (5.22)

This optimization formulation is consistent with the general regularization
learning problem expressed in Eq. 5.20. Here the loss function is a squared
error loss, the penalty function is the integration of the second derivative
on g(·), and the hypothesis space H is that g(·) should have two continuous
derivatives. When γ = 0, then g can be any function that interpolates the
training data points, making the loss function zero, while when γ = ∞, it
forces g′′(t) = 0 ∀t, resulting a simple least squares line fit.

The solution of the above optimization formulation is that the smoothing
spline is a natural cubic spline with knots at the unique values of every xi in
the training dataset. At the face value, a natural cubic spline with knots at
each and every xi implies that the spline may have as many as n knots and
may cause over-parametrization and overfitting. In actuality, when γ > 0, the
number of effective knot positions, or the effective number of parameters in
the resulting model, can be much smaller than n. Which one of the xi’s to be
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selected as a knot, or which other to stay away, depends on the outcome of
the optimization in Eq. 5.22.

In Exercise 3.1, we mention that for a linear smoother with a smoother
matrix S, the effective number of parameters is tr(S). The spline regression
can in fact be expressed as a linear smoother, so that the effective number
of knots or the effective number of parameters can be decided by the trace
of the smoother matrix (see Exercise 5.4). The resulting effective number of
parameters apparently depends on the choice of γ, the cost coefficient trading
off between the loss function and the penalty function.

One may have noticed that we use a scalar xi in Eq. 5.22, implying a
univariate regression and smoothing. This is because the spline-based regres-
sion, in its most general form, is not particularly scalable. When it comes to
handling multivariate covariates like in the circumstance of building a multi-
dimensional power curve, the plain version of smoothing splines is difficult
to use. There are two popular multivariate extensions of the spline methods.
One is the smoothing spline ANOVA (SSANOVA) [79] and the other one is
the multivariate adaptive regression splines (MARS) [68]. MARS is used in
Chapter 10 for extreme load analysis. The smoothing spline ANOVA is used
here to be one of the alternatives for multi-dimensional power curve modeling.

SSANOVA employs a functional ANOVA (analysis of variance) decompo-
sition that limits the interactions to the two-way interactions and ignores the
higher-order terms, so as to help rein in the curse of dimensionality. A higher-
order interaction can be included but through a recursive two-way interaction
mechanism. For instance, a four-way interaction is modeled as adding one ex-
tra factor to an already existing three-way interaction term. This strategy is in
fact similar to what is used in MARS, as MARS accomplishes the scalability
also through a hierarchical inclusion of interaction terms.

Analysts can use the ssanova function from the gss package in R for
implementing the smoothing spline ANOVA method.

5.4 CASE STUDY
Two datasets are used in this case study, the Inland Wind Farm Dataset1

and Offshore Wind Farm Dataset1. Table 5.1 summarizes the specifications
of the datasets; for certain entries an approximation rather than the accurate
value is given for the protection of the identities of the turbine manufacturers
and wind farms. Fig. 5.6 presents the turbines/masts layout and turbine-to-
mast distances.

5.4.1 Model Parameter Estimation
The quality of point estimation is to be evaluated using RMSE, while that
of the density estimation is to be evaluated using CRPS. An out-of-sample
test is to be conducted based on a five-fold cross validation. In each iteration
of the five-fold cross validation, a dataset is divided into a partition of 80%
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TABLE 5.1 Specifications of turbines in the two wind farms.

Wind farm Inland Offshore

Number of met masts Multiple Single
Number of wind turbines 200+ 30+
Hub height (m) 80 70
Rotor diameter (m) about 80 about 90
Cut-in wind speed (m/s) 3.5 3.5
Cut-out wind speed (m/s) 20 25
Rated wind speed (m/s) around 13 around 15
Rated power (MW) 1.5–2.0 around 3
Location Inland, U.S. Offshore, Europe

Source: Lee et al. [132]. With permission.

ILWF OSWF 

0.271km 

WT2 WT1 

WT3 

WT4 

MAST1 

MAST2 

0.365km 

MAST3 

WT5 

WT6 

FIGURE 5.6 Layout of the turbines and masts and turbine-to-mast

distances. ILWF: inland wind farm; OSWF: offshore wind farm.

(Reprinted with permission from Lee et al. [132].)
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for training and 20% for testing. Then, the average of the five error values
is reported to represent a method’s performance. Note that in Part II of the
book, the performance metrics are computed in terms of wind power, requiring
a change in notation to be made to the formulas of the performance metrics
presented in Section 2.6. Specifically, we use

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(ŷ(xi)− yi)2
, and

CRPS =
1

ntest

ntest∑
i=1

∫ (
F̂ (y|xi)− 1(y > yi)

)2

dy.

(5.23)

Algorithm 5.1 works well for estimating the bandwidth parameters. For
point estimation, Lee et al. [132] are able to use all the training data for
bandwidth selection and the computational time is of no concern at all. But
for density estimation, even with the greedy algorithm, the last step (Step 4 in
Algorithm 5.1) that finds the bandwidth for y would still take a long running
time, had all the training data been used. In the end, Lee et al. decide to
randomly select 25% of the training data for estimating the bandwidth used
in density estimation.

For the out-of-sample testing, Lee et al. are able to use all the testing data
points for computing the out-of-sample RMSEs. But for computing the CRPS
values, using all the testing data again requires a long time. Lee et al. find
that using 1,000 randomly sampled data points to calculate the CRPS values
remains reasonably stable over different random sampling. As such, the CRPS
values reported here are based on 1,000 test data points.

Note that the RMSE values of the same method in this section may differ
slightly in different studies because of the random split of the training and test
datasets. The RMSE values here see a more noticeable difference from those
presented in [132] because of two reasons: (a) the RMSE values associated
with AMK are computed using the kernplus package. Although based on the
algorithm originally developed in [132], the implementation in the kernplus

package made small changes to deal with certain application complexities. (b)
What is reported here is the average of a five-fold cross validation, whereas
what was reported in [132] was based on a one-time 80-20 random split. De-
spite the numerical differences, the main message from the numerical studies
stays the same as in [132].

5.4.2 Important Environmental Factors Affecting Power Output
Based on the physical understanding hinted by the power generation law in
Eq. 5.2, it is apparent that wind speed, direction, and air density are important
factors to be included in a power curve model. The question is what else may
also need to be included.

To address that question, the first set of results is to show the RMSEs when
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AMK includes a single additive term from x = (x1, x2, x3) to x = (x1, x2, xq),
where q = 5 in the Inland Wind Farm Dataset1 and q = 7 in the Offshore

Wind Farm Dataset1. Recall that each additive term is a trivariate kernel
with the first two of the variables always being the wind speed, V , and wind
direction, D.

The baseline model for comparison is chosen to be the kernel model that
has only the wind speed and wind direction (V,D) in a product kernel, which
is in fact the same as the one used in [109]. This bivariate kernel model is
referred to as BVK.

The results are shown in Table 5.2, in which the notation of (·, ·, ρ) means
that the additive term included in the model has the wind speed, V , and
wind direction, D, and air density, ρ, as its inputs, where the wind speed and
wind direction are shorthanded as two dots. Other notations follow the same
convention. These results lead to the following observations:

1. In both the inland wind farm and offshore wind farm, air density, ρ, is
indeed, after the wind speed and wind direction, the most significant
factor in wind power generation. Including ρ in the model delivers re-
ductions in RMSE from 9% to 17% across the board. This outcome is
consistent with the physical understanding expressed earlier.

2. For the offshore wind turbines, humidity, H, appears to be another im-
portant factor in explaining variations in power outputs. Because humid-
ity measurements are not available in the Inland Wind Farm Dataset1,
it is unknown whether humidity is also a significant factor there.

3. The remaining three factors, namely turbulence intensity and the two
wind shears, which each represents some other aspects of wind dynamics,
show also positive impact, except for the case of WT5. The impact of
turbulence intensity is rather pronounced for the inland turbines, nearly
as significant as humidity on the offshore turbines. The impact of the
below-hub wind shear is noticeably positive, although not as much as
turbulence intensity. Both factors have shown more obvious effects for
the inland turbines than for the offshore ones, but the significance of
their impact is definitely after that of ρ.

The next step undertaken is to determine which other factors may im-
pact the power output when AMK includes more than one additive term,
conditional on the factors that have already been included. Based on the ob-
servations expressed above, for both inland and offshore turbines, the first
additive term included is always (V,D, ρ). For the inland turbines, in addition
to this first term, there are two more terms that have either turbulence inten-
sity, I, or the below-hub wind shear, Sb. For the offshore turbines, a second
additive term, (V,D,H), is also always included. In addition to the first two
terms, there are three more terms that have either the two wind shears, Sa,
Sb, or turbulence intensity, I. The two wind shears are always included or ex-
cluded together in the numerical analysis to keep the total number of model
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TABLE 5.2 Impact on RMSE when including different environmental
factors. The percentages in the parentheses are the reduction in terms
of RMSE when the corresponding model’s point estimation is
compared with that of BVK.

WT BVK (·, ·, ρ) (·, ·, I) (·, ·, Sb) (·, ·, Sa) (·, ·, H)

WT1 0.0884
0.0748 0.0856 0.0869 · ·

(15.3%) (3.1%) (1.7%) · ·
WT2 0.0921

0.0814 0.0887 0.0894 · ·
(11.6%) (3.8%) (3.0%) · ·

WT3 0.0817
0.0681 0.0755 0.0747 · ·

(16.7%) (7.6%) (8.6%) · ·
WT4 0.1163

0.1030 0.1093 0.1109 · ·
(11.4%) (6.0%) (4.6%) · ·

WT5 0.0907
0.0824 0.0928 0.0917 0.0922 0.0858
(9.1%) (−2.2%) (−1.1%) (−1.6%) (5.4%)

WT6 0.0944
0.0815 0.0939 0.0918 0.0927 0.0873

(13.6%) (0.5%) (2.7%) (1.7%) (7.5%)

TABLE 5.3 Model comparison using data in the Inland

Wind Farm Dataset1. RMSE values are reported in the
table. Boldface values are the smallest RSME in the
row.

WT (·, ·, ρ) (·, ·, ρ, I) (·, ·, ρ, Sb) (·, ·, ρ, I, Sb)

WT1 0.0747 0.0743 0.0742 0.0751
WT2 0.0816 0.0800 0.0802 0.0802
WT3 0.0680 0.0651 0.0645 0.0646
WT4 0.1028 0.1001 0.1010 0.1004

comparisons manageable. Tables 5.3 and 5.4 present the model comparison
results.

For some of the inland turbines, the best AMK explaining their power
output includes the input factors of the wind speed and wind direction (V and
D), air density (ρ), and turbulence intensity (I), while some others include the
wind speed and wind direction (V and D), air density (ρ), and wind shear (Sb).
These versions differ marginally. For the offshore turbines, it is rather clear
that the model with the wind speed (V ), wind direction (D), air density (ρ),
and humidity (H) produces the lowest RMSE. Including other environmental
factors in the model could instead increase the RMSE. The increase in RMSE
is consistent and can be as much as 5.1% for WT6. If the above analysis is
repeated using CRPS, the insights remain the same, but the presentation of
the CRPS results is omitted.
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TABLE 5.4 Model comparison using data in the Offshore Wind Farm

Dataset1. RMSE values are reported in the table. Boldface values are the
smallest RSME in the row.

WT (·, ·, ρ,H) (·, ·, ρ,H, I) (·, ·, ρ,H, Sa, Sb) (·, ·, ρ,H, I, Sa, Sb)

WT5 0.0790 0.0801 0.0810 0.0818
WT6 0.0800 0.0816 0.0822 0.0832

5.4.3 Estimation Accuracy of Different Models
In this subsection, we compare various power curve methods. In the compar-
isons, AMK is selected based on the best subset of variables revealed in the
previous section. Other methods use the same subset of variables to level the
playground.

Let us first take a look at the prediction errors of IEC binning method and
AMK. The binning method used here is the air density corrected version. Only
the RMSE values are presented, because the IEC binning does not produce a
density estimation.

Table 5.5 presents the comparison. The reduction in terms of RMSE made
by AMK over IEC is astonishing, but it may not be that surprising. Recall that
we mention earlier in this chapter that the IEC method’s intention is to provide
a benchmark for verification purpose, rather than providing a method for real-
life performance assessment or wind power prediction. Consider the following
analogy in the context of vehicle fuel economy. At the time of sale, a new car
is displayed with a published fuel economy, in the unit of miles per gallon. The
published fuel economy value is obtained under a standardized, ideal testing
condition, which cannot be replicated in real-life driving. A car’s real-life fuel
economy based on someone’s actual driving is almost always worse than the
published one. In the wind power production, engineers observe something
similar—using the IEC binning power curve often leads to a conclusion of
under performance, which is to say that the actual power production falls
short of the prediction.

Still, car buyers and car manufacturers feel that the fuel economy obtained
under the ideal condition provides a reasonable benchmark, offering some
ballpark ideas of how fast a car consumes its fuel. However, for consumers
who care very much about the real-life fuel economy, such as in commercial
driving, they are not advised to use the published fuel economy value, as using
the published value will surely lead to biased estimations. The same conclusion
should have been extended to the IEC method, but in actuality, in the vacuum
of robust, reliable, and capable power curve models, the IEC binning method
is routinely used in the tasks or for the missions it is not designed for.

We would also like to articulate one important limitation of the IEC bin-
ning method. From the wind power production law in Eq. 5.2, we understand
that the inclusion of air density is important. That is the reason why the IEC
binning uses the air density correction. The same piece of information (air
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TABLE 5.5 Compare the RMSE between the IEC binning
method and AMK.

Wind Farm Turbine IEC AMK Error reduction

rate over IEC

Inland

WT1 0.1305 0.0742 43%
WT2 0.1158 0.0800 31%
WT3 0.1217 0.0645 47%
WT4 0.1567 0.1001 36%

Offshore
WT5 0.0970 0.0790 19%
WT6 0.1089 0.0800 27%

density) can be included in AMK as well. We wonder—by making use of the
same covariate, which method will benefit more? The benefit of including air
density can be discerned by comparing the same method with and without us-
ing air density while making wind power prediction. For the IEC binning, this
is between the plain version of binning and the air density adjusted binning.
For AMK, this is between the AMK with only wind speed and wind direction
(which is in fact BVK) and the AMK with wind speed, wind direction, and
air density.

Table 5.6 presents the comparison using the four inland turbines, but the
same conclusion is extendable to the offshore turbine data as well. The per-
centage values reported in parentheses are the reductions in terms of RMSE
between the two versions of the same method, rather than the reduction be-
tween the two different methods. Take WT1 as an example. The −0.1% in the
fourth column means a very slight increase in RMSE when using the air den-
sity adjusted binning method, as compared to the plain version of the binning
method, whereas the 15.3% in the sixth column is the reduction in RMSE
when using the AMK with inputs (V,D, ρ), as compared to AMK with inputs
(V,D).

The comparison makes it clear that while air density is an important factor
to be included in a power curve model, the air density adjustment used in the
IEC binning is not optimal. It does help reduce 1 − 2% in RMSE in fitting
the wind power. But on the other hand, the potential benefit of having air
density in a power curve model is much greater. When used in AMK, it can
help reduce RMSE as much as 17%. This example demonstrates the power of
data science methods over a pure engineering heuristics.

Table 5.7 further compares the point estimation, in terms of RMSE, among
the four data science-based multi-dimensional power curve methods: kNN,
SSANOVA, BART, and AMK. In this comparative study, kNN uses the nor-
malized covariates, i.e., each covariate is normalized by its standard deviation,
while the other methods use the raw measurements. The action of normaliza-
tion has a profound impact on kNN but not so much on other methods. When
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TABLE 5.6 Impact of air density on IEC binning and on AMK. Reported
below are the RMSE values.

Wind Farm Turbine IEC Binning AMK

Plain Adjusted BVK BVK + air density

Inland

WT1 0.1303
0.1305

0.0884
0.0748

(−0.1%) (15.3%)

WT2 0.1180
0.1158

0.0921
0.0814

(1.9%) (11.6%)

WT3 0.1237
0.1217

0.0817
0.0681

(1.6%) (16.7%)

WT4 0.1592
0.1567

0.1163
0.1030

(1.6%) (11.4%)

using SSANOVA, a full model considering all possible interactions takes too
long to run. Instead, the main effects and selected interactions are included.
For WT5 and WT6, V , D, ρ, H, V × D, V × ρ, V × H, V × D × ρ, and
V ×D ×H are included in the SSANOVA model. For WT1 and WT3, H in
the aforementioned terms is replaced by Sb, whereas for WT2 and WT4, H
in the aforementioned terms is replaced by I.

The comparison shows that AMK overall performs the best, with kNN
as a close second. BART performs slightly better than kNN on WT1–WT3
cases and slightly worse than AMK, but it does slightly worse than kNN for
WT4 and noticeably worse for WT5–WT6. SSANOVA is the worst performer
among the four. In fact, SSANOVA performs closer to what BVK does, as
shown in Table 5.6 (the fifth column). One closer look reveals that the data
associated with WT4 have the largest variation among the four inland turbine
datasets, as evident by its large RMSE values. This large variation could be
due to the fact that WT4 is located the farthest away from its companion mast
so that the wind measurements taken at the mast are less representative of the
wind condition at the turbine site. For WT5 and WT6, the RMSE in terms
of the normalized power is slightly higher than that of WT1 to WT3, but
because WT5 and WT6 have a higher rated power, almost double that of the
inland turbines, the absolute value of the noises are greater. This observation
appears to suggest that BART is sensitive to the noise level in a dataset and
its performance suffers when the data noise level is elevated.

Next, let us take a look at the density estimation based on CRPS. Note
that the IEC binning method and kNN can produce only point estimation,
while BVK, BART and AMK produce both point and density estimations.
SSANOVA is supposed to produce density estimation as well, but doing so
takes way too long. Therefore, in the CRPS-based comparison, only BVK,
AMK and BART are included, and the baseline model is BVK.

The CRPS-based comparison is presented in Table 5.8, in which the per-
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TABLE 5.7 Comparing various data science-based power curve methods. Reported
below are the RMSE values. The boldface font indicates the best performance.

kNN SSANOVA BART AMK AMK improvement over

kNN SSANOVA BART

WT1 0.0766 0.0870 0.0762 0.0741 3% 15% 3%
WT2 0.0828 0.0907 0.0817 0.0799 4% 12% 2%
WT3 0.0669 0.0766 0.0667 0.0645 4% 16% 3%
WT4 0.1035 0.1118 0.1039 0.1000 3% 11% 4%
WT5 0.0810 0.0947 0.0876 0.0792 2% 16% 10%
WT6 0.0830 0.1039 0.0906 0.0804 2% 23% 11%

TABLE 5.8 Comparing CRPS among BVK, AMK, and BART. Boldface font
indicates the best performance.

Turbine BVK
AMK BART

three inputs four inputs three inputs four inputs

WT1 0.0432
0.0377 0.0370 0.0487 0.0475

(12.7%) (14.3%) (−12.7%) (−9.9%)

WT2 0.0456
0.0413 0.0400 0.0539 0.0518
(9.4%) (14.0%) (−18.2%) (−13.6%)

WT3 0.0378
0.0337 0.0311 0.0419 0.0385

(10.8%) (17.7%) (−10.8%) (−1.8%)

WT4 0.0571
0.0498 0.0473 0.0693 0.0631

(12.8%) (17.2%) (−21.4%) (−10.5%)

WT5 0.0461
0.0408 0.0388 0.0565 0.0553

(11.5%) (15.8%) (−22.5%) (−19.9%)

WT6 0.0462
0.0378 0.0375 0.0561 0.0550

(18.2%) (18.8%) (−21.4%) (−19.0%)

centage values in the parentheses are the reductions in CRPS a method makes
relative to BVK. A negative value suggests an increase, rather than a reduc-
tion, in the respective CRPS. There are two versions of AMK and BART that
are included: the three-input version uses (V,D, ρ) for both inland and off-
shore turbines, and the four-input version uses (V,D, ρ, I) for inland turbines
but (V,D, ρ,H) for offshore turbines.

BART turns out to be the worst performer for predicting the conditional
density among the three models and AMK the best. AMK is 14%–18% better
than BVK, which is in turn 2%–20% better than BART. AMK appears to
exhibit competitiveness and robustness, thanks in part to its model structure
being advised by the physical understanding of wind power production.

To facilitate an intuitive understanding how AMK improves the density
estimation, we present in Fig. 5.7 an illustration of density estimations using
BVK and AMK. To produce the result in Fig. 5.7, WT5 data are used. A
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(a) Two models produce similar CRPS (b) Two models produce different CRPS

FIGURE 5.7 Comparison of the predictive distributions of power output

when BVK and AMK produce similar CRPS values versus when they

produce different CRPS values.

four-input AMK is employed, with input variables as (V,D, ρ,H). The left
panel of Fig. 5.7 shows the predictive distributions of the power output from
the two models, when their CRPS values are not much different. The two
distributions are similar and either model produces a good estimate. The
right panel of Fig. 5.7 presents the predictive distributions of the two models,
when their CRPS values differ considerably. One can see that the distribution
from the BVK model is centered incorrectly.

GLOSSARY
AMK: Additive multiplicative kernel method

ANOVA: Analysis of variance

BART: Bayesian additive regression trees

BVK: Bivariate kernel method

CART: Classification and regression tree

CKD: Conditional kernel density

CRPS: Continuous ranked probability score

DPI: Direct plug-in estimator

GAM: Generalized additive model

IEC: International Electrotechnical Commission
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ILWF: Inland wind farm

ISE: Integrated squared error criterion

kNN: k nearest neighborhood

MARS: Multivariate adaptive regression splines

MART: Multiple additive regression trees

OSWF: Offshore wind farm

pdf: Probability density function

RF: Random forest

RMSE: Root mean squared error

SSANOVA: Smoothing spline ANOVA

SVM: Support vector machine

WT: Wind turbine

EXERCISES
5.1 Use the 10-min data in the Wind Time Series Dataset and treat the

wind power as y and the wind speed as x. Conduct the following exercise.

a. Random split the data into 80% for training and 20% for testing.
Use the training data to build a power curve model, following the
IEC binning method. Select the bin width as 0.5 m/s.

b. Use the 20% test data to calculate the RMSE.

c. Change the bin width to 1 m/s, 1.5 m/s, and 2 m/s, respectively,
and for each one of them, build a respective power curve model and
calculate its corresponding RMSE. Observe how the bin width affects
the quality of the power curve method.

5.2 Suppose that the number of bins used in Exercise 5.1 under different bin
widths are denoted as B(0.5), B(1), B(1.5), and B(2), respectively. Still
use the 10-min data in the Wind Time Series Dataset.

a. Build a CART model with the number of terminal nodes set to be
B(0.5), B(1), B(1.5), and B(2), respectively.

b. Visualize the partition on wind speed by the CART model for each of
the terminal node choices, and compare the partition outcome with
the respective partition used in the IEC binning.
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c. Conduct an out-of-sample test through, again, the 80-20 random
split. Compute the RMSE for each of the choices and compare with
the respective binning outcome.

5.3 Again use the 10-min data in the Wind Time Series Dataset.

a. Build a one-dimensional kernel regression using the Gaussian kernel
function. Set the bandwidth parameter λ to 0.5 m/s, 1 m/s, 1.5 m/s,
and 2 m/s, respectively. Use the 80-20 random split, conduct the
out-of-sample test, and report the corresponding RMSE.

b. Use five-fold cross validations to search for the optimal λ. Is the
optimal λ different from the above prescribed choices?

c. Compare the RMSE of the kernel regression under the optimal λ, the
best binning outcome in Exercise 5.1, and the best CART outcome
in Exercise 5.2. How much are they different? If they do not differ a
lot, does that surprise you? Why or why not? If they do differ a lot,
can you explain why?

5.4 Because the smoothing spline is a natural cubic spline with knots at
every data point xj , j = 1, . . . , n, we can write the smoothing spline
function as

g(x) =

n∑
j=1

hj(x)βj ,

where hj(x)’s are the basis functions used in the natural cubic spline and
n is the number of data points in the training set. For the natural cubic
splines, the first two basis functions are h1(x) = 1 and h2(x) = x. The
other basis functions take the form of a third-order polynomial function
but the detailed expressions are omitted here. Please derive the smoother
matrix S in terms of hj(·) and βj . Show that the degree of freedom of
the smoothing splines, or the effective number of knots, equals n when
γ = 0 and equals two when γ → ∞. Do the two extreme values make
intuitive sense? What this means is that the degree of freedom of the
smoothing splines, or its effective number of knots, is between two and
n, as γ goes from 0 to infinity.

5.5 Rasmussen and Williams [173, pages 138-141] state that if one chooses
a particular type of covariance function (i.e., a kernel function), the
smoothing spline and the one-dimensional Gaussian process regression
(namely kriging) can be made equivalent. To appreciate this understand-
ing, please generate a set of one-dimensional data and do a simple nu-
merical test.

a. Let y = e−1.4x cos(7πx/2) + ε and ε ∼ N (0, 0.5). Use this function
to simulate 200 data pairs, i.e., {(x1, y1), (x2, y2), . . . , (x200, y200)}.
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b. First fit an ordinary kriging model to the simulated one-dimensional
data, and then, fit a smoothing spline using the R function
smoothing.spline in the stat package. Adjust the penalty coef-
ficient used in the smoothing spline fit and see if you could produce
a spline fit close to the kriging fit.

5.6 Use the 10-min data in the Wind Time Series Dataset, and build a
kNN-based power curve model. Test different choices of k, the neighbor-
hood size in kNN. Use the 80-20 random split and conduct an out-of-
sample test. Observe what choice of k produces a model whose RMSE is
close to, respectively, that of the best binning outcome in Exercise 5.1,
that of the best CART outcome in Exercise 5.2, and that of the best
kernel regression in Exercise 5.3.

5.7 Use the WT5 data in the Offshore Wind Farm Dataset1, and build a
CART and a BART, respectively, using all seven covariates. Conduct
an out-of-sample test based on a 80-20 random split and compare their
RMSEs. Does BART outperform CART? Is that what you anticipated?

5.8 Use the WT1 data in the Inland Wind Farm Dataset1, and build an
SVM, an ANN, and an AMK, respectively, using all five covariates. Con-
duct an out-of-sample test based on a 80-20 random split and compare
their RMSEs. How do their performances compare to each other?

5.9 To select the best subset of variables to be included in the final model,
two versions of a greedy strategy are used and referred to, respectively,
as the forward stepwise selection and backward stepwise selection [86,
Section 3.3.2].

• The forward stepwise selection is to screen through all the candi-
date variables, one at a time, and select the one whose addition to
the model reduces the out-of-sample RMSE the greatest. Once cho-
sen, remove the variable from the candidate set and select the next
variable from the remaining candidates, until the addition of a new
variable no longer reduces the out-of-sample RMSE.

• The backward stepwise selection starts off with the whole set of can-
didate variables in the model. Remove one at a time, and select the
one that reduces the out-of-sample RMSE the greatest and remove
it. Screen the remaining variables in the model following the same
fashion and stop when the deletion of an existing variable no longer
reduces the out-of-sample RMSE.

Use the AMK as the power curve model and the WT6 data in the
Offshore Wind Farm Dataset2. Test both the forward stepwise selec-
tion strategy and the backward stepwise selection strategy and see what
subset of variables they select.
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5.10 Take the BVK model, which is the same as AMK with two inputs (V,D),
and the WT1 data in the Inland Wind Farm Dataset1. Build a BVK
model using the original wind speed and then build another BVK model
using the air-density-corrected wind speed, while all other things are
kept the same. Denote the latter BVK model by BVKa, with the sub-
script indicating air density correction. Conduct an out-of-sample test on
BVK and BVKa and observe what type of effect the air density correc-
tion has on the kernel regression. Also compare the RMSE of BVKa with
that of AMK(V,D, ρ) in Table 5.6, i.e., the column under “BVK+air
density,” and see which one performs better. If AMK(V,D, ρ) performs
better, what does that tell us?



C H A P T E R 6

Production Efficiency
Analysis and Power
Curve

T
he use of efficiency metrics for wind turbines is important for evaluating
their productivity and quantifying the effectiveness of actions that are

meant to improve their energy production. The IEC [102] recommends using
(1) annual energy production (AEP), (2) the power curve, or (3) the power
coefficient, for the purpose of performance evaluation of wind turbines. The
drawback of using power output directly, as in the case of AEP, is obvious,
because wind power output is affected by wind input conditions, which are
variable and not controllable. While the total output does matter in an own-
er/operator’s decisions, a wind turbine’s efficiency should be evaluated while
the input conditions are controlled for or set to comparable levels. Generally
speaking, productive efficiency metrics used in the wind industry take the
form of a ratio, which is often the observed wind power production normal-
ized by a benchmark denominator. Different metrics apparently use different
denominators. Power curves as we discuss in Chapter 5 are useful in producing
some of the denominators.

6.1 THREE EFFICIENCY METRICS
We describe three efficiency metrics commonly used for wind power
production—availability, power generation ratio (PGR), and power coefficient.
Please be reminded that the wind speed used is adjusted through the air den-
sity correction in Eq. 5.3, unless otherwise noted.

The efficiency of a wind turbine is usually measured for a specific time
duration, be it a week, a month, or a year, in which the turbine’s efficiency
is assumed constant. Consider the weekly resolution as an example. Analysts

159
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calculate a single value for the chosen efficiency metric for every single week
and evaluate the time series of that metric. The same calculation can be
easily extended to other time resolutions. Denote by (Vt, ρt, yt), t = 1, . . . , n,
the data pairs of wind speed, air density, and wind power, observed during a
unit period under the given resolution.

6.1.1 Availability
One of the efficiency metrics used broadly in the wind industry is availabil-
ity [39, 209] described in the industry standard IEC Technical Specifications
(TS) 61400-26-1 [103]. The availability tracks the amount of time in which
power is produced by a turbine and then compares it to the amount of time
when the turbine could have produced power. A wind turbine is supposed to
produce power when the wind speed is between the cut-in and cut-out wind
speeds, the two design characteristics of a turbine as described in connection
with Fig. 1.2. Turbines are expected to produce power at all times when the
recorded wind speed is within these two limits. If a turbine does not produce
power when the wind conditions allow, the turbine is then deemed unavailable.
The availability is thus defined as

Availability =
#{(Vt, ρt, yt) s.t. yt > 0, Vci ≤ Vt ≤ Vco}

#{(Vt, ρt, yt) s. t. Vci ≤ Vt ≤ Vco}
, (6.1)

where s.t. means such that and #{·} counts the number of elements in the set
defined by the brackets. The denominator in Eq. 6.1 approximates the total
time, in terms of the number of 10-min intervals, that a turbine is expected
to produce power, whereas the numerator approximates the total time that a
turbine does produce power.

6.1.2 Power Generation Ratio
While the availability calculates a ratio in terms of the amount of up run-
ning time, the power generation ratio defines a ratio relevant to the amount
of power output. The idea is similar to that of production-based availability,
recently advocated by the industry standard IEC TS 61400-26-2 [105]. By con-
trast, the availability discussed in Section 6.1.1 is referred to as the time-based
availability. The production-based availability calculates the ratio of actual
energy production relative to the potential energy production, where the po-
tential energy production is the sum of the actual energy production and the
lost production caused by an abnormal operational status of a turbine (e.g.,
downtime, curtailment). The lost production needs to be estimated and its
estimation requires detailed information about a turbine’s operating status,
not something easily accessible to anyone outside the immediate operator of
a wind turbine or a wind farm.

Instead of estimating the lost production, let us make a revision so that
the assessment is easier to carry out. The revision is to use a power curve to
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provide the value of potential energy production under a given wind or weather
condition. The power curve used could be the turbine manufacturer’s nominal
power curve for its simplicity, or the advanced multi-dimensional power curves
as described in Chapter 5 for better accuracy. The resulting ratio is referred
to as PGR, which is in spirit similar to the production-based availability.

Let ŷ(x) denote the potential energy production under input condition x
and y(x) denote the actual energy production under the same condition. In
fact, y(xt) = yt. The PGR of a given time duration (including n observations)
can then be computed as

PGR =

∑n
t=1 y(xt)∑n
t=1 ŷ(xt)

=

∑n
t=1 yt∑n

t=1 ŷ(xt)
. (6.2)

If only the wind speed is considered, then x = (V ) and the potential and
actual energy production are, respectively, ŷ(Vt) and y(Vt).

6.1.3 Power Coefficient
Different from the availability and PGR, the power coefficient explicitly re-
flects the law of wind energy production, as described in Eq. 5.2, and measures
the aerodynamic efficiency of a wind turbine. Power coefficient, Cp, refers to
the ratio of actual energy production to the energy available in the ambi-
ent wind flowing into the turbine blades [229]. Based on Eq. 5.2, Cp can be
expressed as

Cp(t) =
2yt

ρt · πR2 · Vt3
, (6.3)

for any given observation t. Note here that the Cp calculation uses the wind
speed without the air density correction since the calculation itself involves
air density.

Power coefficient, Cp, is typically modeled as a function of the tip speed
ratio (i.e., the ratio of the tangential speed of the tip of a blade and the
hub height wind speed), attack angle (related to wind direction), and air
density. This dependency of Cp on weather-related inputs makes the power
coefficient a functional curve, often plotted against the tip speed ratio. Like
in the binning-based estimation of power curves, analysts bin individual Cp
values by groups of one meter per second according to their respective wind
speed and average the power coefficients in each bin to produce a Cp curve. In
practice, the largest power coefficient on the curve, as the representative of the
whole curve, is used for quantification of the aerodynamic efficiency [123, 126].
The peak power coefficient is a popular efficiency measure used to evaluate
wind turbine designs and various control schemes including pitch and torque
controls. The theoretical upper limit for the power coefficient is known as the
Betz limit (=0.593) [18].

Fig. 6.1 presents a plot of two power curves and a power coefficient curve.
In the left panel, the relative position of a power curve suggests relative pro-
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FIGURE 6.1 Left panel: two power curves indicating relative efficiencies of

wind turbines, in which curve B suggests a higher productive efficiency;

right panel: power coefficient curve and the Betz limit. (Reprinted with

permission from Hwangbo. et al. [96].)

ductive efficiency, whereas in the right panel, point C corresponds to the peak
power coefficient, used to represent a turbine’s efficiency.

6.2 COMPARISON OF EFFICIENCY METRICS
When evaluating the efficiency based on multiple metrics, an immediate ques-
tion to be addressed is whether or not the evaluation from each metric draws
the same conclusion. If the metrics do not always agree with one another (they
indeed do not), then subsequent questions are how consistent the results are
based on the different metrics and which metric provides a better insight into
turbine efficiency.

Niu et al. [155] compare the metrics described in the previous section by
using the Offshore Wind Farm Dataset2. The layout of the offshore wind
farm is sketched in Fig. 6.2.

The wind power data in all datasets associated with the book are nor-
malized by a turbine’s rated power. But to compute the power coefficient, the
actual power output is needed. For the offshore wind turbines in the Offshore
Wind Farm Dataset2, their characteristics follow what is presented in Ta-
ble 5.1, meaning that the rated power of these offshore turbines is around 3
MW. So, we use 3 MW as the rated power to recover the actual power output
in the subsequent calculation.

Temporal resolutions that are examined include weekly, monthly, quar-
terly, and yearly resolutions, with a primary focus on weekly and monthly as
they provide greater numbers of data points and details.

For each temporal resolution, Niu et al. [155] calculate the three metrics of
availability, PGR, and power coefficient as described in Section 6.1; hereafter
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FIGURE 6.2 Basic layout of the offshore wind farm used in the study. Pe-

ripheral turbines are located along the black lines and interior turbines

along the gray lines. A meteorological mast is indicated by a point

along the left edge of the farm. (Reprinted with permission from Niu

et al. [155].)

denoted as M1, M2, and M3, respectively. While the averages of M1 and
those of M2 calculated for each turbine are within a similar range (0.75–1),
the averages of M3 are noticeably lower, at the 0.35–0.5 range, about half the
values of M1 and M2. This is understandable as the power coefficient (M3) is
limited by the Betz limit to a theoretical maximum of 0.593, and commercial
turbines realistically operate around 0.45 [19, page 16]. To make all three
metrics comparable in magnitude, Niu et al. multiply M3 by two and use the
rescaled metric (2×M3) for the subsequent analysis.

Fig. 6.3, left panel, presents the time-series plots of the three metrics at
the monthly resolution over a four-year span. The figure demonstrates that
the metrics follow similar overall trends, with peaks and troughs at similar
periods of time. The level of variation associated with the three metrics looks
similar. In fact, all the three metrics have similar coefficients of variation,
though the one for M2 tends to be slightly higher—on average, 0.264 for M2
compared to 0.254 and 0.252 for M1 and 2×M3, respectively. These patterns
and characteristics are consistently observed in the other turbines on the wind
farm. Similar insights can be drawn for the weekly resolution.

Table 6.1 presents the correlation coefficients between the metrics for the
peripheral turbine. As shown in the first two rows, the correlation coefficients
are above 0.9, indicating strong correlations between the metrics. By consider-
ing the well-aligned time-series and the high correlation coefficients, one may
impetuously conclude that the three metrics are consistent with each other
and they can substitute for one another when evaluating turbine efficiency.
However, if we eliminate some periods of nearly zero power production (for
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FIGURE 6.3 All three metrics plotted at monthly time resolution for

one of the peripheral turbines closest to the meteorological mast. Left

panel: for the full period; right panel: after eliminating the periods in

which the turbine does not operate for most of the time (dashed line).

(Reprinted with permission from Niu et al. [155].)

TABLE 6.1 Correlation between metrics for a peripheral turbine. Weekly and
monthly temporal resolutions are shown below.

M1 vs. M2 M1 vs. 2×M3 M2 vs. 2×M3

Weekly resolution (full) 0.975 0.946 0.959
Monthly resolution (full) 0.986 0.966 0.978

Weekly resolution (reduced) 0.843 0.661 0.785
Monthly resolution (reduced) 0.956 0.876 0.929

Source: Niu et al. [155]. With permission.

example, a period for which any metric is below 0.2; see Fig. 6.3, right panel),
the metrics based on such a reduced period produce significantly lower cor-
relation coefficients—for this particular turbine, as low as 0.661 between M1
and 2×M3 at the weekly time resolution. This implies that the original high
correlation derived from the full period data could be contributed to sub-
stantially by the non-operating periods of the turbine. The lower correlation
based on the reduced period further suggests possible disparity between the
metrics under typical operating conditions. In the following subsections, the
metric values presented are calculated for the reduced period only, for better
differentiating the metrics’ capability in quantifying turbine efficiency.

6.2.1 Distributions
Fig. 6.4 demonstrates the distributions of the calculated metrics for a single
turbine, but it is representative of the other turbines as they all show similar
distribution spreads. While M2 and 2×M3 both have relatively broad spreads
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FIGURE 6.4 Histograms and probability density curves of the metric val-

ues at the weekly time resolution for the peripheral wind turbine. Top-

left panel: availability (M1), top-right panel: power generation ratio

(M2), bottom-middle panel: power coefficient (2×M3). (Reprinted with

permission from Niu et al. [155].)

of data, M1 has a much narrower range. A significant portion of its density is
concentrated near one at which the distribution is truncated with a steep taper
to lower values. In contrast, M2 and 2×M3 both take a shape similar to the
bell-shaped curve with smoother tapers in both directions. M1’s concentration
of values makes it difficult to differentiate between the turbine efficiency at
different time periods, because as more values are within the same range, the
variations in turbine performance are concealed. This can potentially mislead
turbine operators into a conclusion that the turbines operate at a similar
efficiency level, even though the underlying turbine efficiencies differ.

Such a unique distributional characteristic of M1 can be inferred by its
calculation procedure. As expressed in Eq. 6.1, the numerator of M1 counts
the number of elements in a set that is a subset of the one associated with
the denominator, so it has a maximum value of one at all points in time. This
is a desired property for an efficiency metric, which is not observed in M2
or 2×M3. M2 can exceed one because a power curve displays the expected
power values as an averaged measure but particular instances of wind power
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production could exceed the expected productions. The power coefficient itself
is smaller than one, but doubling the power coefficient value, namely 2×M3,
is bounded from above by twice the Betz limit at 1.186, which itself is greater
than one. It is interesting to observe that M2 appears to be bounded by a
value similar to 1.186.

The unique property of M1 when combined with its binary quantification
of whether or not power was generated, however, adversely affects its quan-
tification capability. As long as a turbine is generating power at a point in
time, that point would be counted as a one. Even the cases when the power
production is significantly lower than expected would still be counted as ones.
Averaging over these counts produces the metric weighted heavily towards
one. Using the availability metric, M1, periods with high actual efficiency,
in terms of the amount of actual power production, look the same as low
efficiency periods as long as the power produced exceeds a low threshold.

The methods calculating M2 and M3, on the other hand, allow for a sliding
scale measure of power production so that they account for how much power
is produced. Values of M2 and 2×M3 thus have greater spread and do not
concentrate around any particular value as narrowly as M1 does. This ability
to better distinguish between time periods of differing performance as well as
the distributional features render M2 and 2×M3 stronger metrics than M1.
They allow for a fuller portrayal of a turbine’s efficiency over time as opposed
to M1’s more general overview of whether or not the turbine is in operation.

6.2.2 Pairwise Differences
Fig. 6.5 illustrates the absolute difference between the calculated metrics on a
weekly basis. Darker bars indicate the periods of significantly large differences,
whereas lighter bars are the periods of smaller differences.

Fig. 6.5, bottom panel, shows that the large differences between M2 and
2×M3 are sparsely distributed through the four years. In contrast, as shown in
Fig. 6.5, top and middle panels, there are significantly more instances of large
value differences between M1 and either of the other metrics, especially be-
tween M1 and 2×M3. This implies that both M1 and 2×M3 are more similar
to M2 than to each other. M1 and M2 calculate a ratio of the actual perfor-
mance over the expected performance, although M1 focuses on the amount of
time and M2 examines the amount of power. This sets 2×M3 apart from M1
and M2. On the other hand, M2 and 2×M3 quantify turbine efficiency with
respect to the amount of power production, whereas M1 concerns the amount
of operational time, which makes M1 distinct from the other two.

In Fig. 6.5, the large or medium differences tend to be heavily concentrated
within some specific periods, notably in the second half of 2007 and the first
half of 2010. In fact, these periods represent those in which turbines’ true
efficiencies are relatively low. There are two different aspects describing this
phenomenon.

First, recall from Fig. 6.4 that M1 tends to be heavily weighted towards
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FIGURE 6.5 Magnitudes of absolute pairwise difference between metric

values at weekly resolution for the peripheral wind turbine. Top panel:

availability (M1) versus PGR (M2), middle panel: availability (M1) ver-

sus power coefficient (2×M3), bottom panel: PGR (M2) versus power

coefficient (2×M3). The dashed line in each plot is the average of the

absolute differences in that plot. An absolute difference is considered as

a small difference, if its value is smaller than 0.05, as a large difference,

if its value is greater than 0.15, and as a medium difference, if its value

is in between. (Reprinted with permission from Niu et al. [155].)
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its maximum, overestimating the turbine’s efficiency in the relative scale. If a
turbine produces some power for most time instances within a given period,
its availability should be close to one. The large differences between M1 and
the other two metrics then imply that the turbine is producing some power
for most of the times but the amount of the power production is considerably
lower relative to the expectation. If one refers to Fig. 6.3, one may notice that
M1 is higher than the other two in the later part of 2007.

Secondly, recall that M3 represents a maximum effect (on the Cp curve),
whereas M2 is an integration effect. For a functional response, the two effects
can be understandably different. The large differences between M2 and 2×M3
suggest that a turbine produces a sufficient amount of power only for a small
portion of the given time period. In this case, the turbine’s maximum efficiency
measured by 2×M3 is relatively high, but M2 is relatively low because the
turbine does not produce much power on average during the same period (see
the middle of 2007 and the beginning of 2010 in Fig. 6.3). M1 also measures
an integration effect, but in terms of the operational time, so that the same
argument is applicable to explaining the difference between M1 and 2×M3.
Most of the time when there is a large difference between M2 and 2×M3, a
large difference between M1 and 2×M3 is also observed (see Fig. 6.5, middle
and bottom panels).

All of these observations can be found in the cases of other turbines as well.
Although the concentration periods of large and medium differences vary, all
turbines display the clustering pattern, and such clusters are closely related
to different characteristics of the metrics.

When comparing the mean of the absolute differences between the metrics,
indicated by the dashed horizontal lines in Fig. 6.5, the disparity between the
metrics becomes less pronounced. While a metric pair with the smallest mean
difference varies by different turbines, the metric pair of the largest mean
difference is consistently observed as between M1 and 2×M3. This suggests
that M2 has comparably closer values to M1 and 2×M3. As such, M2 is more
consistent in value with either of M1 and 2×M3 and its values are a better
reflection of all three metrics.

6.2.3 Correlations and Linear Relationships
Table 6.1 shows that the correlation calculated using the reduced period is the
highest between M1 and M2 for most turbines. The correlations between M2
and 2×M3 (or equivalently, between M2 and M3) are also relatively high. For
most turbines, the correlation coefficients between M1 and M2 remain within
the 0.8 range at weekly resolution, whereas those between M2 and M3 are
generally in the 0.7 range.

The lowest correlations are found between M1 and M3 for all turbines and
time resolutions, with the correlation coefficient values usually around 0.5–0.6
but dipping sometimes into the 0.4 range. The values displayed in Table 6.1 are
among the higher values of M1–M3 correlation of turbines. Another turbine
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has an M1–M3 correlation of just 0.417 for the reduced weekly data. This
indicates that the relationship between these two metrics is much weaker,
highlighting the strength of M2 for its much stronger relationship with either
of the other metrics.

Weekly time resolution is best for highlighting differences in correlation
between metrics. Correlations rise as the time resolution becomes coarse;
monthly, quarterly, and yearly resolutions in general return a correlation in
the range of 0.9. Niu et al. [155] state that the averaging effect when using a
coarse time resolution irons out a certain degree of details, making the metrics
based on the coarse time resolutions less differentiating.

To analyze the consistency of the metrics, Niu et al. [155] also evaluate
the linearity between any pair of the metrics around the y = x line. Let us
generate data points (x, y) paired by the values of two selected metrics. If the
data points perfectly fit to the y = x line, an increase in one metric implies the
same amount of increase in the other metric. As such, their ability to capture
change in efficiency is identical, or equivalently, they are consistent.

However, as noted earlier, the scales of the metrics are not the same, e.g.,
M1 and M2 are about twice the unscaled M3. To assess the extent of linearity
around the y = x line requires us to estimate the exact scale between the
metrics.

To align the scales, Niu et al. [155] perform a linear regression upon the
different metric pairs. For example, for the M1–M2 pair, fit a linear model of
M1 = β ·M2 + ε to estimate β, where ε is the random noise. Let β̂ denote
the coefficient estimate. Then, the estimate, β̂, is used to rescale the values
of M2, generating the scale-adjusted data points (M1, β̂·M2). With the scale
adjustment, the data points should be centered about the y = x line. If they
show strong linearity around the y = x line, one can conclude that the metrics
for the corresponding pair are consistent with each other. To determine the
extent of linearity, the average magnitude of the data points’ vertical distance
from the y = x line (in an absolute value) is computed.

Fig. 6.6 presents the scatter plots of the scale-adjusted metrics and the
y = x line. For illustration purposes, two scatter plots are presented, one for
the peripheral turbine used previously and the other is an interior turbine.
For the metrics calculated for the peripheral turbine, the scale adjustment
coefficients (β̂) are 0.97, 1.93, and 1.99 for M1–M2, M1–M3, and M2–M3
pairs, respectively. The coefficient of 0.97 for the M1–M2 pair, for instance,
implies that M2 will have the same scale with M1 after multiplying it by 0.97.
For the interior turbine, the scale adjustment coefficients are 0.98, 2.01, and
2.06, for the three pairs of metrics in the same order, respectively.

In the figure, points are more concentrated near where x and y equal one.
Whenever x refers to M1, there is a very apparent clustering of points at
x = 1 due to the truncation of the distribution of M1 at one. On the other
hand, the data points for the M2–M3 pair are well spread around the region,
a characteristic reminiscent of the metrics distributions examined earlier.

After the scale-adjustment, whenever the y-axis represents a rescaled M3
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TABLE 6.2 Linearity between a pair of performance metrics measured
by the average absolute vertical distances from the y = x line.

M1 vs β̂·M2 M1 vs β̂·M3 M2 vs β̂·M3

A peripheral turbine 0.050 0.068 0.055
An interior turbine 0.046 0.068 0.052

Source: Niu et al. [155]. With permission.

(triangles and diamonds), the data points tend to be placed above the y = x
line for relatively low x values, e.g., less than 0.8. This confirms the difference
between the maximum effect (for M3) and the integration effect (for M1 and
M2) discussed earlier.

As shown in Table 6.2, the average distances between the points and the
y = x line is the greatest for the M1–M3 pair for both turbines, suggesting
that the M1–M3 pair has the weakest extent of linearity. This reinforces the
understanding from the analysis of absolute differences that M1 and M3 are
the least consistent metrics, while M2 has a stronger relationship with both
other metrics.

6.2.4 Overall Insight
According to the previous analyses, while all metrics display some level of
consistency, PGR (M2) is the most consistent with the other metrics. The ab-
solute differences in metric values demonstrate that PGR produces values that
are more representative of the three metrics. Correlations between the metrics
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also suggest that changes in turbine performance mapped by PGR are illus-
trative of such trends displayed by other metrics. Moreover, evaluation of the
linearity between the metrics shows that availability (M1) or power coefficient
(M3) has a stronger relation with PGR (M2) than with each other. It is not
too far fetched to reach the conclusion that PGR better represents all three
metrics. Various aspects of the analysis have shown availability’s deficiency in
discriminating changes in turbine performance. Practitioners are well aware
of availability’s deficiency, which becomes the chief reason for adopting the
production-based availability measure recently.

6.3 A SHAPE-CONSTRAINED POWER CURVE MODEL
As said earlier in this chapter, efficiency metrics used in the wind industry take
the form of a ratio, which is often the observed wind power production nor-
malized by a benchmark denominator. Availability, albeit a ratio, does not use
power output in either numerator or denominator. The metric that resembles
availability and does use power output in both numerator and denominator
is the capacity factor (CF). We did not include the capacity factor in the
discussion of the previous section, because it is typically used for wind farms
and much less often used for individual wind turbines. Its concept, however,
is indeed applicable to wind turbines.

The capacity factor of a turbine is the ratio of the observed power output
over the turbine’s maximum production capacity at the rated power. When
calculating the capacity factor, one assumes that the turbine is operating at
its full capacity all the time. The use of the capacity factor entirely ignores
the wind condition, so much so that its denominator calculates the absolute
maximally possible wind power that can be produced for a given period for
the specific design of the said wind turbine. In this sense, the capacity factor’s
denominator is even more aggressive than that used in availability, as avail-
ability only counts the time when the wind speed is between the cut-in and
cut-out speeds.

Nevertheless, if analysts put all the metrics that use powers in their numer-
ator and denominator side by side, as shown in Fig. 6.7, one can notice that
they indeed have the same numerator, which is the observed power output.
But the denominators are different, meaning that different benchmarks are
used in computing the respective ratio. This in fact raises a question—what
should be used as a performance benchmark? Hwangbo et al. [96] argue that
to quantify a turbine’s productive efficiency, one would need to estimate the
best achievable performance as a benchmark, so that the ratio of the current
performance to the best achievable performance quantifies the degree to which
the turbine has performed relative to its full potential. In order to estimate
the best achievable performance of a wind turbine, Hwangbo et al. look into
the field of production economics [81], which refers to the “best achievable
performance” as an efficient frontier. To facilitate this line of discussion, we
start with some background on production economics.
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FIGURE 6.7 Capacity factor, power coefficient, and the production-based

availability or power production ratio.

6.3.1 Background of Production Economics
Efficiency analysis is a primary focus in production economics. Efficiency
quantification is based on the estimation of a production function and the
explicit modeling of systematic inefficiency, using input and output data for
a set of production units, be it firms, factories, hospitals or power plants.
Consider a set of production units (e.g., a wind farm) using x input (e.g., in-
vestment in a wind energy project) and producing y output (e.g., revenue from
power generation). Analysts can create a scatter plot of many x-y data pairs
coming from different production units or the same production unit but over
different periods; see Fig. 6.8. Assuming no measurement errors associated
with x and y, a common estimator in production economics—data envelop-
ment analysis (DEA) [11]—estimates the efficient frontier enveloping all the
observations.

The concept of an efficient frontier is understood as follows—a production
unit whose input-output is on the frontier is more efficient than the produc-
tion units whose input-output is being enveloped by the frontier. Consider
observation D. Using the same input, the production unit associated with D
produces less output than the production unit associated with point E; while
to produce the same output, the production unit associated with D needs
more input than the production unit associated with point F. For this reason,
the production unit associated with D must be inefficient.

The efficient frontier is also called the production function, denoted by
Q(x). The production function characterizes producible output given input x
in the absence of inefficiency. Using the production function, the output of the
inefficient production unit D can be expressed as

yD = Q(xD)− uD, (6.4)

where uD ≥ 0 denotes the systematic inefficiency.
To estimate the production function Q(x), certain assumptions are made

restricting the shape of the frontier. The most common assumption is that
the frontier forms a monotone increasing concave function consistent with
basic stylized characteristics of production [222]. When the data are assumed
noise free, the tightest boundary enveloping all observations and maintaining
monotonicity and concavity is a piecewise linear function.

Let us consider the context of power production of a wind turbine, in
which a wind turbine is a power production unit, wind speed is the dominating
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input driving power production, and the generated power is the output. When
applied to the wind turbine data, the use of convex or concave piecewise linear
methods assuming noise-free data encounter some problems.

The first is the noise-free assumption. The frontier analysis approaches as-
suming noise-free observations are referred to as deterministic. But the wind
turbine data, like all other physical measurements, are inevitably contami-
nated by noises. The problem with applying a deterministic approach to noisy
wind production data is that it tends to overestimate the best performance
benchmark because every observation is assumed to be achievable.

The second difference is that the shape of the wind-power scatter plot is
not concave. When discussing Fig. 1.2, we show that the wind-power data ap-
pears to follow an S-shape, comprising a convex region, followed by a concave
region, and the two segments of curves are connected at an inflection point.
Fig. 6.9 makes this point clearer with its right panel illustrating the meaning
of convexity and concavity.

In production economics, the need to model noise is established, promoting
the stochastic frontier analysis (SFA) [5], which adds a random noise term ε
to Eq. 6.4. When applying the SFA modeling idea to wind turbine data and
replacing the generic input variable x with wind speed variable V , Hwangbo
et al. [96] define their production function as

y = Q(V )− u(V ) + ε, (6.5)

where ε is assumed having a zero mean, while the systematic inefficiency term
u(V ) is a non-negative random variable with positive mean, i.e., µ(V ) :=
E[u(V )] > 0. Note that u(V ) is a function of V , meaning that the amount of
inefficiency varies as the input changes, known as a heteroskedastic inefficiency
term.

While the SFA research considers the noise effect in observational data,
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analysts still need to address the second challenge mentioned above, namely,
the S-shaped curve exhibited in the wind turbine data. In the vernacular
of economists, the S-shape constraint is known as the regular ultra passum
(RUP) law [81], which is motivated by production units having an increasing
marginal rate of productivity followed by a decreasing rate of marginal pro-
ductivity. Olesen and Ruggiero [156] develop a RUP law satisfying frontier
analysis but their production function estimator is a deterministic DEA-type
estimator, enveloping all observations from above, and consequently suffers
from the overestimation problem that all other deterministic production func-
tion estimators suffer.

We want to note that methods from production economics have recently
been used in wind energy applications [33, 96, 97, 162]. Two of them are deter-
ministic, with one being a DEA type estimator [33] and the other called a free
disposal hall estimator [162]. The production function estimator proposed by
Hwangbo et al. [96, 97] is stochastic and attempting to be RUP law satisfying,
subject to a rigorous proof in terms of consistency.

6.3.2 Average Performance Curve
The basic production function model in Eq. 6.5 can be re-written as,

yi = [Q(Vi)− µ(Vi)] + [µ(Vi)− u(Vi) + εi]

= g(Vi) + ei, i = 1, . . . , n,
(6.6)

by letting g(Vi) := Q(Vi)−µ(Vi) and ei := µ(Vi)− u(Vi) + εi. The error term
e is a redefinition of the error term with expectation zero. The above expres-
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sion connects the power curve with the production function because g(V ) is
effectively the power curve. As the power curve passes through the middle
of the wind-power data, it is a curve representing the average performance
of a turbine, also known as the average-practice function in the production
economics literature. Understandably, the production frontier function, Q(V ),
differs from the power curve, g(V ), by the mean of the inefficiency varying by
V .

This connection helps lay out the intuition behind the procedure of esti-
mating the production frontier function, Q(V ). One would start with a power
curve from the wind turbine data. Then estimate the mean function of the
inefficiency and use it to rotate the average performance curve to the new
position to be the production frontier function.

Hwangbo et al. [96] note that because the final Q(V ) needs to satisfy
the RUP law, i.e., the S-shape constraint, the average performance power
curve, g(V ), that comes before the production function must, too, satisfy
the same shape constraint. This requirement makes this specific power curve
estimation procedure different from those currently used in practice, including
all discussed in Chapter 5 because none of them imposes the S-shape constraint
explicitly.

Estimating the shape-constrained power curve, g(V ), requires imposing
convexity and concavity in the low and high wind speed regions, respectively.
The convex segment should connect to the concave segment at the inflection
point, which itself needs to be estimated from the data. Hwangbo et al. [97]
formulate the estimation of the average performance curve as a constrained
least squares estimation problem, which is to minimize the residual sum of
squares,

∑n
i=1 (yi − g(xi))

2
, subject to the constraints imposing monotonicity

and S-shape on g(·).
In the absence of prior knowledge of the location of the inflection point,

x∗, Hwangbo et al. [97] make use of a set of grid points and treat each of
the grid points as a potential inflection point location. Provided a grid point,
Hwangbo et al. [97] partition the functional domain left of the grid point as
the convex region and the domain right of the grid point as the concave region
and then construct a function g, minimizing the aforementioned residual sum
of squares, while satisfying the sets of constraints applicable to the partitioned
regions. The estimation of the convex segment or the concave segment can be
done individually by using the method of convex nonparametric least squares
(CNLS) [127]. Then, Hwangbo et al. [97] choose the grid point resulting in the
smallest residual sum of squares as the estimate of the inflection point and
the corresponding g as the estimator of the average performance power curve.

Suppose that m grid points, t1, . . . , tm, are given. Also, assume that xi’s
are distinct (no duplicated values) and arranged in a non-decreasing order for
a given n, i.e., xi ≤ xj whenever i < j. For each tk for k = 1, . . . ,m, let V(tk)

and C(tk) be the sets of input points that belong to the (imposed) convex and



176 � Data Science for Wind Energy

concave regions, respectively, i.e.,

V(tk) = {xi | xi < tk, i = 1, . . . , n},

and
C(tk) = {xi | xi ≥ tk, i = 1, . . . , n}.

Then, for each tk, solve the following quadratic programming with respect to
g = (g(x1), . . . , g(xn)) and β = (β1, . . . , βn):

min
g,β

z(tk) =
n∑
i=1

(yi − g(xi))
2

(6.7a)

s.t. βi =
g(xi+1)− g(xi)

xi+1 − xi
, ∀i such that xi ∈ V(tk), (6.7b)

βi ≤ βi+1, ∀i such that xi+1 ∈ V(tk), (6.7c)

βi =
g(xi)− g(xi−1)

xi − xi−1
, ∀i such that xi ∈ C(tk), (6.7d)

βi−1 ≥ βi, ∀i such that xi−1 ∈ C(tk), (6.7e)

βi ≥ 0, ∀i = 1, . . . , n. (6.7f)

The constraints in Eq. 6.7d–6.7e, together with the objective function in
Eq. 6.7a, are equivalent to the Hildreth type estimator [92] of a function that
is concave over [maxxi∈V(tk) xi, xn], the constraints in Eq. 6.7b–6.7c, together
with the objective function in Eq. 6.7a, describe the estimator for a convex
function defined over [x1,minxi∈C(tk) xi], and the inequalities in Eq. 6.7f ensure
the monotonicity of g.

Let the minimizer of Eq. 6.7a for a given tk be g(tk) = (g(tk)(x1), . . . ,

g(tk)(xn)) and β(tk) = (β
(tk)
1 , . . . , β

(tk)
n ), and let the corresponding optimal

objective function value be z(tk). The vector, g(tk), provides estimates only
at the given locations, i.e., the g-values at xi’s. For the functional estimator
over the interval between two observational data points, xi and xj , Hwangbo
et al. [97] use a hyperplane to interpolate between the two locations, i.e., they
define ĝ(tk)(x) as

ĝ(tk)(x) =

{
max{α(tk)

i + β
(tk)
i x | ∀i such that xi ∈ V(tk)}, if x < tk

min{α(tk)
i + β

(tk)
i x | ∀i such that xi ∈ C(tk)}, if x ≥ tk,

(6.8)

where α
(tk)
i := g(tk)(xi) − β

(tk)
i xi for i = 1, . . . , n. Apparently, ĝ(tk) is

a piecewise linear function, connecting two adjacent points in the set of

{(xi, g(tk)(xi)), ∀i = 1, . . . , n} and extending the hyperplanes, α
(tk)
1 +

β
(tk)
1 x and α

(tk)
n + β

(tk)
n x, each toward the adjacent boundary of the in-

put domain. As such, ĝ(tk) is convex on [min x,maxxi∈V(tk) xi], concave on
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FIGURE 6.10 Illustration of shape-constrained and unconstrained power

curves. Left panel: shaped-constrained power curve compared to the

IEC binning power curve, right panel: a zoomed view at the wind

speed from 3 m/s to 9 m/s. (Reprinted with permission from Hwangbo

et al. [96].)

[minxi∈C(tk) xi,max x], and linear within [maxxi∈V(tk) xi,minxi∈C(tk) xi]. By

letting t∗ = argmintkz
(tk), the final average performance curve is simply

ĝ(t∗)(x). Fig. 6.10 presents a comparison between the shape-constrained power
curve versus its unconstrained counterpart using the IEC binning method.

6.3.3 Production Frontier Function and Efficiency Metric
After the average performance power curve, g(V ), is estimated, one can take
differences between the fitted power curve and the output y. According to
the relationship in Eq. 6.6, the resulting residuals are the summation of two
random components: µ−u and ε. The modeling assumption used here is that
u is non-negative and ε is symmetrically distributed with respect to a zero
mean. As such, one can expect to see a significant decrease at the value of µ
in the density curve of the residuals. This understanding is used to estimate
µ—if one can locate where the greatest decrease in the residual distribution
occurs, it provides an estimate of µ. Hwangbo et al. [96] use the technique
in [84] for this estimation. An illustration is given in Fig. 6.11, but we skip
the procedure and refer interested readers to [97] for technical details.

The following summarizes the steps in estimating the shape-constrained
stochastic production function, Q(V ):

1. Use the wind turbine data (wind speed and power) to estimate g(V )
while imposing the shape constraints and the continuity requirement at
the inflection point. Denote the estimated power curve by ĝ(V ).

2. Estimate µ(V ), the mean function of the inefficiency term.
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FIGURE 6.11 Estimation of the mean function of the inefficiency term µ.

Left panel: density curve of µ − u, middle panel: density curve of ε,

right panel: density curve of the residual e.

3. Estimate the production function, Q(V ), based on the relationship of
Q(V ) = g(V ) + µ(V ). Denote the estimated frontier curve by Q̂(V ).

The estimated production frontier function, Q̂(V ), provides a performance
benchmark for wind turbines. Hwangbo et al. [96] propose to quantify the
productive efficiency of a wind turbine by using the estimated performance
benchmark curve and the average performance power curve. Specifically, they
propose the following production efficiency measure, PE, which is the ratio
of the energy produced under the average performance curve over that un-
der the performance benchmark curve, integrated over the whole wind speed
spectrum,

PE =

∫ Vco
Vci

ĝ(V )dV∫ Vco
Vci

Q̂(V )dV
. (6.9)

Apparently, PE takes a value between zero and one; the closer a PE is to one,
the closer the wind turbine performs to its full potential.

One may have noticed that the discussion above treats the production
functions, both the frontier function and the average performance function,
as univariate. This is because a multivariate production function satisfying
the RUP law is still not fully developed. On the other hand, however, besides
wind speed, air density and several other environmental variables, including
wind direction, humidity, turbulence intensity and wind shear, all potentially
affect wind power production, as seen in the analysis in Chapter 5. These
environmental influences are not controllable but their existence does play a
role affecting the inefficiency estimated from the power output data. Conse-
quently, when comparing the productive efficiency of different turbines or the
same turbine over different operational periods, analysts may need to control
for the influence of these environmental factors; otherwise, one may wonder
what part of inefficiency is due to a turbine’s intrinsic differences and what
part of inefficiency comes from differences in environmental characteristics
such as air density.

This sort of ambiguity can be alleviated if the comparison periods have
comparable environmental profiles. The environmental variables are referred



Production Efficiency Analysis and Power Curve � 179

to as covariates in the statistical literature. Hwangbo et al. [96] use a co-
variate matching procedure to select a subset of the data, in order to make
the environmental profiles across different time periods as similar as possible,
thus removing the effect of environmental influences from the efficiency anal-
ysis. The detail of the matching process is described in Section 7.2. One thing
worth noting is that the covariate matching does not produce an exact match
but a good match instead, subject to the degree of dissimilarity allowed by a
prescribed threshold, $. To confirm the quality of the matches, Hwangbo et
al. suggest plotting the pdfs of each environmental variable, empirically esti-
mated from the data and visually inspected for assessing how well the pdfs
match across the comparison periods.

6.4 CASE STUDY
In this case study, data from two wind turbines in the Inland Wind Farm

Dataset2 and two turbines from the Offshore Wind Farm Dataset2 are
used. The two inland turbines are referred to as WT1 and WT2, respectively,
and the two offshore ones as WT3 and WT4, respectively. These turbine names
do not imply relationship with the turbines of the same names in Chapter 5.
But they do come from the same wind farms, so that the characteristics in
Table 5.1 can be referenced for respective turbines. Table 5.1 states that the
rated power for the offshore turbines is around 3 MW and that for the inland
turbines is between 1.5 MW and 2 MW. In the following numerical analysis,
in order to compute the power coefficient, we use 3 MW as the rated power for
the offshore turbines and 1.65 MW as the rated power for the inland turbines.

Hwangbo et al. [96] analyze the wind turbine data on an annual basis,
which means that they divide the four-year data into four consecutive annual
periods. The number of periods is denoted by T = 4 and the period index is
t = 1, 2, 3, 4. Hwangbo et al. evaluate turbine efficiency for each year.

The first step of data processing is to control for the influence of envi-
ronmental factors, which is to select the subset of data with comparable
environmental profiles through the covariate matching method described in
Section 7.2. For inland wind turbines, the covariates to be matched include
x = (V,D, ρ, I, S)T , whereas for offshore wind turbines, x = (V,D, ρ,H, I)T .
The wind shear, S, is left out in the offshore cases because the study in Chap-
ter 5 suggest that conditioned on the inclusion of (V,D, ρ,H, I), the effect
of the two-height vertical wind shear on the offshore turbine’s power output
appears weak. For all turbine cases, Hwangbo et al. [96] set the similarity
threshold as $ = 0.25. Before the covariate matching, the number of ob-
servations in each annual dataset ranges from 14,000 to 37,000, and these
numbers reduce to 1,400–2,300 after the matching. The matched dataset in-
cludes thousands of observations which is still large enough for estimating the
performance benchmark function curve as well as the average performance
curve.

Figs. 6.12 and 6.13 present, for inland turbine WT1 and offshore turbine
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FIGURE 6.12 Probability density function plots of the matched covariates

over the four comparison periods for inland turbine WT1. (Reprinted

with permission from Hwangbo et al. [96].)
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FIGURE 6.13 Probability density function plots of the matched covariates

over the four comparison periods for offshore turbine WT3. (Reprinted

with permission from Hwangbo et al. [96].)

WT3, respectively, the pdfs of each environmental variable across the four
comparison periods after the covariate matching. The same plots for WT2 and
WT4 are omitted because they convey similar messages. One can notice that
the choice of $ = 0.25 leads to sufficiently good matching as demonstrated in
the pdf plots.

Subsequently, Hwangbo et al. [96] use the matched subset of data to es-
timate the productive efficiency measure for each comparison period, as de-
fined in Eq. 6.9. To add a confidence interval, 100 bootstrapping samples are
randomly drawn from a respective original dataset, and for each resampled
dataset, the efficiency metric is computed once. Doing this 100 times allows
the calculation of the 90% confidence intervals for the productive efficiency
metric. The bootstrap procedure can be performed on any other performance
metrics as well; for more details about the bootstrap technique, please refer
to [55].

Fig. 6.14 shows the PEs and its confidence intervals for the four compari-
son periods, which happen to be the first four years of a turbine’s operation.
Interestingly, one can notice that for all four turbines, their productive effi-
ciency appears to have increased slightly, rather than deteriorated, during the
early stage of operation. This pattern is more obvious for offshore turbines.
This initial increase in efficiency was also recognized by Staffell and Green
(2014) [203, Figure 9b]. Staffell and Green plot the fleet-level performance
degradation of wind turbines over a twenty-year period using the fleet’s load
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FIGURE 6.14 Productive efficiency, PEt, t = 1, 2, 3, 4. The bars represent

90% confidence intervals and the dots denote the mean values of the

efficiency. For offshore wind turbines, some of the confidence intervals

are very narrow and are thus not visible. (Adapted with permission

from Hwangbo et al. [96].)

factor as the performance measure. Staffell and Green’s study appears to sug-
gest an initial period of four to five years before any noticeable degradation is
witnessed, as well as an increase in turbine performance for the first one and
one-half years, which is rather consistent with what is observed here.

This increasing efficiency phenomenon, however slight, is perhaps counter-
intuitive. Hwangbo et al. [96] theorize that this could be due to the rational
behavior of the operator when faced with initial start-up risk. Recall the typi-
cal bathtub curve used in reliability engineering [90], in which there is a short
“infant mortality” period at the beginning of a system’s operation. In this
period, the failure rate of a system appears to be higher than that in the
subsequent stable operation period but the failure rate declines rapidly as the
components in the system break in with each other. Flipping the bathtub
curve upside down shows the reverse effect of failures, or rather, the effective
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production of a system. On the flipped curve, one expects to see an increase
in production efficiency in the initial period; see Fig. 6.15.

Aware of the existence of this period of increased risk of failure, engi-
neers and operators take proactive actions to reduce risk in their operational
policies. One typical action is called “burn-in,” in which the manufacturers
break in key components before the final system is put together and shipped
off to the end users, so that a system installed at a user’s site can skip the
rapid ascending phase of the initial period. But a system after burn-in can
still experience the tail portion of the initial period, seeing a slight increase in
efficiency.

Another common recommendation is for operators to ramp up the produc-
tion of a system slowly in its initial operation period. Wind turbine operators
may have operated the turbines following a similar ramping-up strategy. Con-
sequently, the initial increase in production efficiency could be the combined
effect of components breaking in and a strategic ramping up.

An interesting observation of Staffell and Green’s Figure 9b is that for a
wind turbine fleet, there is a noticeable decline even during its stable operation
period (until around 18 years in service). This differs apparently from the
typical bathtub curve which has a flat stable operation period. Analysts indeed
have been arguing [27] that wind turbines, subject to non-steady loads as a
result of the uncontrollable nature of wind, degrade faster than a turbine
machinery operating under relatively long periods of steady loads (such as
the gas turbines in fossil fuel power plants). This tilted stable operation line
may be a testimonial to this faster degradation argument.

Hwangbo et al. [96] compare their productive efficiency metric, PE, and
power coefficient, Cp. Table 6.3 presents the power coefficient values and the
PE values for the four turbines in the four periods. The values in the paren-
theses are the respective confidence intervals.

As mentioned before, the theoretical maximum of power coefficient is the
Betz limit. One could divide a power coefficient by the Betz limit to get an
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TABLE 6.3 Comparison between the productive efficiency and the
(peak) power coefficient.

Year 1 Year 2 Year 3 Year 4

Power coefficient Cp

WT1 0.374 0.390 0.394 0.393
(0.369, 0.380) (0.387, 0.394) (0.390, 0.399) (0.390, 0.398)

WT2 0.442 0.463 0.463 0.461
(0.436, 0.449) (0.459, 0.468) (0.458, 0.473) (0.456, 0.468)

WT3 0.419 0.464 0.482 0.506
(0.417, 0.422) (0.460, 0.470) (0.479, 0.489) (0.498, 0.515)

WT4 0.418 0.467 0.483 0.504
(0.415, 0.422) (0.461, 0.474) (0.477, 0.491) (0.497, 0.511)

Productive efficiency PE

WT1 0.957 0.974 0.978 0.974
(0.955, 0.960) (0.972, 0.976) (0.976, 0.979) (0.971, 0.976)

WT2 0.969 0.978 0.978 0.976
(0.968, 0.971) (0.977, 0.980) (0.976, 0.980) (0.973, 0.978)

WT3 0.965 0.976 0.981 0.985
(0.964, 0.966) (0.975, 0.976) (0.981, 0.982) (0.984, 0.986)

WT4 0.962 0.976 0.982 0.985
(0.961, 0.964) (0.974, 0.977) (0.981, 0.983) (0.984, 0.986)

interpretation of how much the turbine performs relative to its potential, sim-
ilar to what the productive efficiency attempts to do. But the Betz limit is
not practically achievable, so that power coefficients are generally below 0.45.
When normalizing by the Betz limit, the resulting power coefficient-based
efficiency measure never approaches one. Considering the yearly power coeffi-
cient in Table 6.3, ranging from 0.371 to 0.506, the relative power coefficient
efficiency is therefore between 63% and 85%. These low percentages should
not be interpreted as saying that power production of the wind turbines is
inefficient. Looking at the PE values, the wind turbine operations are actually
reasonably efficient, relative to their full potentials.

Using the power coefficient values, one also notices a general upward trend
and a leveling off. This message appears to reinforce what is observed using
the PE measure. In fact, there appears a fairly obvious positive correlation
between the two metrics. Using all the average values in Table 6.3 yields a
correlation of 0.75 between Cp and PE values. This positive correlation sug-
gests that the productive efficiency metric measures a turbine’s performance
on a broad common ground with the power coefficient.

GLOSSARY
AEP: Annual energy production
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CF: Capacity factor

CNLS: Convex nonparametric least squares

DEA: Data envelope analysis

IEC: International Electrotechnical Commission

pdf: Probability density distribution

PE: Productive efficiency

PGR: Power generation ratio

RUP: Regular ultra passum

SFA: Stochastic frontier analysis

s.t.: Such that

TS: Technical specifications

EXERCISES
6.1 Use the Offshore Wind Farm Dataset2, select one of the turbines, and

conduct the following exercise.

a. Calculate the capacity factor for this wind turbine on the weekly
time resolution, and let us call this capacity factor M4.

b. Plot the histogram and the empirically estimated density curve of
M4. Compare M4 with the other three metrics in Fig. 6.4.

c. Replicate the results in Table 6.1 but now it is M4 versus M1, M2,
and M3, respectively.

6.2 Use the Inland Wind Farm Dataset2, select one of the turbines, and
replicate the analysis in Section 6.2 but for this inland turbine. Are the
overall insights concerning the three performance metrics still valid?

6.3 Generate a plot like Fig. 6.14 but using the data of the (peak) power
coefficient in Table 6.3.

6.4 The power coefficient computed in Section 6.2 is the peak power coeffi-
cient, i.e., that the largest value on a power coefficient curve is used to
represent the whole curve. Let us compute the average power coefficient
instead, i.e., the average of all values on the power coefficient curve.
Then, use the average power coefficient to re-do the analysis in Ta-
bles 6.1 and 6.2 and Figs. 6.4–6.6. Is the average power coefficient closer
to the other two performance metrics than the peak power coefficient?
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6.5 Khalfallah and Koliub [121] study the effect of dust accumulation on tur-
bine blades on power production performance of the affected turbine.
They reckon that the power production, in the presence of dust accumu-
lation, deteriorates more significantly for wind speed higher than 9 m/s
than the lower wind speeds. They estimate the annual loss is around
3%.

a. Take the WT1’s 2008 data and modify it by decreasing the power
output value by 3% for those power outputs corresponding to wind
speed of 9 m/s or higher. Treat this as the 2009 data. Then, reduce
the 2008 power data by 6% and 9% and use them as the substitute
of 2010 and 2011 power data, respectively. This gives us a set of
simulated wind-power data, mimicking the dust accumulation effect
over four years. This data simulation is first suggested by Hwangbo
et al. [96].

b. Compute the (peak) power coefficient for the four years on an annual
basis.

c. Use 100 bootstrap samples to compute the 90% confidence interval
for each of the point estimates of power coefficient obtained in (b).

d. Plot the point estimates and the associated 90% confidence intervals
in the fashion similar to Fig. 6.14. What do you observe? Does it tell
you certain limitation of using the power coefficient as a performance
metric?

6.6 Find some other real-life examples, if possible, supporting or illustrating
the flipped bathtub curve. Do any of your examples have an accelerated
deterioration even during its supposedly stable operation period, like
the curve in the right panel of Fig. 6.15?

6.7 The details of the covariate matching procedure can be found in [96,
Section 3] or in Chapter 7 of this book. Please read the material and
understand how it works. Choose different $ values and see how it
affects the matching quality and the resulting data amount. Choices of
$ can be 0.1, 0.15, 0.2, 0.3 or 0.5.

6.8 Use the 10-min resolution data in the Wind Time Series Dataset and
split the data into 80% for training and 20% for testing. Conduct the
following exercise.

a. Use the training data to construct a V -versus-y power curve using
the IEC binning method.

b. Use the same training data to construct a shape-constrained power
curve using the method outlined in Section 6.3.2.
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c. Use the test data to perform an out-of-sample test on the two power
curves. Please compare the two power curve estimates in terms of
both RMSE and MAE.



C H A P T E R 7

Quantification of
Turbine Upgrade

T
urbine performance assessment, as discussed in Chapter 6, plays an im-
portant role in wind turbine maintenance, equipment procurement and

wind energy planning. Over time, a wind turbine naturally degrades, losing
efficiency in power generation. To maintain the production efficiency of a wind
turbine, the owners or operators sometimes perform a retrofit to an existing
wind turbine, also known as an upgrade, in the hope to restore or enhance
the production efficiency of the existing asset. But upgrading can be costly.
Owners or operators of wind farms understandably wonder whether the per-
formance of a wind turbine is improved enough to justify the cost of upgrading.
This chapter presents several data science methods aiming at addressing this
issue.

7.1 PASSIVE DEVICE INSTALLATION UPGRADE
Power output from a wind turbine is driven by wind input. It therefore makes
little sense to compare, without controlling for the input conditions, the differ-
ence in wind power production before and after an upgrade. The output-only
difference, even if present, would not reveal whether the difference comes from
upgrading the turbine or from the occurrence of a strong wind after the up-
grade.

The output-only comparison could be effective for some of the upgrades
that change the control logic without necessarily installing or adjusting phys-
ical devices on a turbine. For these cases, analysts suggest switching back and
forth between two operational options in 30-second intervals and recording the
power production under each option, respectively. Conducting such test for a
long enough duration and under a broad variety of environmental conditions,
and comparing the power outputs under respective operational options sheds
light on which option leads to better power production. The assumption here

187
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is that the environmental conditions as well as the turbine’s own conditions,
besides the operational option under test, are unlikely different in a duration
as short as 30 seconds apart. The difference between the power output, if
existing, must thus be attributed to the difference in the operational options.

Not all the upgrades can be tested in the aforementioned manner. Many
upgrades involve installing a passive device to the existing turbine or adjust-
ing existing turbine components physically. One such upgrade is the vortex
generator (VG) installation. The wind industry has long been aware of the
VG technology and the potential benefit that VG installation may bring to
wind power production, as past studies [151, 157, 224] claim that having VGs
could improve the lift characteristics of the blades. Installing vortex generators
requires retrofitting turbine blades, incurs material and labor costs, and halts
energy production during installation. Once installed, owners and operators
would rather not take them off, as doing so incurs even more costs. Turbine
upgrades like VG installation are definitely not candidates for conducting the
aforementioned 30-second operational switching test.

Although the precise magnitude of the benefit from VG installation is un-
known, the general feeling in the industry is that it would be moderate, likely
resulting in 1–5% extra wind energy production under the same wind and en-
vironmental conditions. Detecting this moderate improvement in the turbine
operational data, with the presence of large amounts of noise, is not a trivial
task. The IEC binning method for power curve modeling, as explained in Sec-
tion 5.1, is probably the most widely used approach in the wind industry for
estimating and quantifying a turbine’s performance before and after VG in-
stallation. The IEC standard method is, however, ineffective in this endeavor,
which has been noticed by industrial practitioners and documented in previ-
ous studies [50, 133]. The IEC admits that “Depending on site conditions and
climate, the uncertainty may amount to several percent” [102].

A second difficulty in quantifying the benefit of a turbine upgrade lies
in the lack of a good method to validate the estimated effect. In order to
validate the estimated VG effect, one ought to know the ground truth of
the actual effect. For that purpose, one would ideally conduct a controlled
experiment, in which all environmental conditions are set the same before
and after VGs are installed, so that the difference in power outputs before
and after the installation signifies the VG effect. The problem is that such
a controlled experiment is impractical and will probably never be feasible,
considering the sheer physical size of commercial wind turbine generators.
Analysts could conduct small-scale experiments in a wind tunnel, but the
amount of uncertainty encountered in the extrapolation of the small-scale wind
tunnel test to commercial operations makes such results much less credible to
use.

We want to caution readers that our purpose here is not to advocate a
specific type of turbine upgrade or retrofit option but to present some options
that may better serve the purpose of upgrade quantification. When a quan-
tification method, for example, the IEC binning method, indicates that there
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is no difference in a turbine’s power output before and after an upgrade, a
question remains: Is there really no benefit to have that type of upgrade for
this particular turbine, or is it possible that the method used is incapable of
detecting small to moderate changes due to the method’s inherent limitations?

7.2 COVARIATE MATCHING-BASED APPROACH
The IEC method’s ineffectiveness is rooted in its lack of control of the influ-
ence of multiple environmental factors other than wind speed. Shin et al. [198]
present a covariate matching approach to select a subset of data from datasets
before and after an action of upgrade and to ensure the environmental co-
variates of the selected subset to have comparable distribution profiles. Recall
from Chapter 5 that x denotes the vector of environmental variables, including
wind speed, and the variables in x are called covariates. Once the covariates
are matched, Shin et al. then quantify the benefit of the upgrade by taking
the difference of power outputs under the matched environmental condition
and apply a paired t-test for testing the significance of the upgrade effect.

Covariate matching methods are rooted in the statistical literature [206]. In
stabilizing the non-experimental discrepancy between non-treated and treated
subjects of observational data, Rubin [185] adjusts covariate distributions by
selecting non-treated subjects that have a similar covariate condition as that
of treated ones. Through the process of matching, non-treated and treated
groups become only randomly different on all background covariates, as if
these covariates were designed by experimenters. As a result, the outcomes
of the matched non-treated and treated groups, which keep the originally
observed values, are comparable under the matched covariate conditions.

Fig. 7.1 demonstrates the discrepancy of the covariate distributions of
the un-matched or non-treated data in the Turbine Upgrade Dataset. It
presents for each covariate the difference between the pre-upgrade and post-
upgrade periods using the empirically estimated density functions. The last
subplot in both the upper and lower panels is the density function of the
power output of the respective control turbine. For the control turbine, as it
is not modified, the distribution of its power output is supposed to be compa-
rable, should the environmental conditions be maintained the same. But the
data show otherwise, signifying the impact of the confounding environmental
influence.

7.2.1 Hierarchical Subgrouping
In the context of wind turbine upgrade, the data records collected before the
upgrade form the non-treated data group, whereas those collected after the
upgrade form the treated group. Let Qbef and Qaft be the index set of the data
records in the non-treated and treated group, respectively. Let xQ denote the
values of a covariate x for data indices in Q. For example, VQbef

is the vector
of all wind speed values that are observed before the upgrade.
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FIGURE 7.1 Overlaid density functions of the unmatched covariates and

the density functions of control turbine power output. Solid line = be-

fore upgrade (non-treated) and dashed line = after upgrade (treated).

(Reprinted with permission from Shin et al. [198].)
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The first action of preprocessing is to narrow down the dataset and create
a subset on which one subsequently performs the data records matching. The
reason for this preprocessing is to alleviate a computational demand arising
from too many pairwise combinations when comparing two large size datasets.
This goal is fulfilled through a procedure labeled as hierarchical subgrouping.
The idea is summarized in Algorithm 7.1.

Algorithm 7.1 Hierarchical subgrouping procedure to match covariates.

1. Locate a data record in the treated group, Qaft, and label it by the index
j.

2. Select one of the covariates, for instance, wind speed, V , and designate
it as the variable of which the similarity between two data records is
computed.

3. Go through the data records in the non-treated group, Qbef, by select-
ing the subset of data records such that the difference, in terms of the
designated covariate, between the data record j in Qaft and any one of
the records in Qbef is smaller than a pre-specified threshold, $. When
V is in fact the one designated in Step 2, the resulting subset is then
labeled by placing V as the subscript to Q, namely QV .

4. Next, designate another covariate and use it to prune QV in the same
way as one prunes Qbef into QV in Step 3. Doing so produces a smaller
subset nested within QV . Then continue with another covariate until all
covariates are used.

The order of the covariates in the above hierarchical subgrouping proce-
dure is based on the importance of them in affecting wind power outputs.
According to the analysis in Chapter 5, V , D, and ρ are more important,
whereas S and I are less so. Shin et al. [198] use the order, V , D, ρ, S, and
I. While it is generally a good idea to follow the physically meaningful order
when conducting the hierarchical subgrouping, Shin et al. present a numerical
analysis based on the reserve order, i.e., I, S, ρ, D, and V , and find that using
the reserve order hardly affects the downstream analysis outcome, suggesting
a certain degree of robustness in the overall analysis procedure. The robust-
ness appears to be a result of the checks and diagnostics included in the later
stage of procedure and to be explained in the sequel. If a priority order of the
covariates is unknown, it is recommended to perform some statistical analysis
using, for example, random forests [21], which can measure the importance of
covariates before applying the matching method.

Note that wind direction, D, is a circular variable, so that an absolute
difference between two angular degrees is between 0 and 180◦. The circular
variable formula, 180◦−|180◦−(|Di−Dj |)|, is used to calculate the difference
between two D values.
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The above process can also be written in set representation. For a data
record j in Qaft, define subsets of data records in Qbef, hierarchically chosen,
as

QV := {i ∈ Qbef : |Vi − Vj | < $ · σ(VQbef
)},

QD := {i ∈ QV : 180◦ − |180◦ − (|Di −Dj |)| < $ · σ(DQV )},
Qρ := {i ∈ QD : |ρi − ρj | < $ · σ(ρQD )},
QS := {i ∈ Qρ : |Si − Sj | < $ · σ(SQρ)},
QI := {i ∈ QS : |Ii − Ij | < $ · σ(IQS )},

(7.1)

where σ(x) is the standard deviation of x in the specified dataset. The thresh-
olding coefficient, $, can be different at each layer but to make thing sim-
ple, analysts usually select a single constant threshold for the whole proce-
dure. This hierarchical subgrouping establishes the subsets nested as such:
QI ⊂ QS ⊂ Qρ ⊂ QD ⊂ QV ⊂ Qbef. Consequently, the data records in the
last hierarchical set, QI , have the closest environmental conditions as com-
pared with the data record j in Qaft.

There could be other conditions, in addition to the five variables men-
tioned above, which may affect wind power production while not measured.
The possible existence of unmeasured factors presents the risk of causing a
distortion in comparison, even when the aforementioned measured environ-
mental factors are matched between the treated and non-treated groups. In
order to alleviate this risk, Shin et al. [198] make use of the power output,
yctrl, of the control turbine in each turbine pair. The idea is to further narrow
down from the most nested subset, produced above, by taking the following
action—select records from QI whose yctrl values are comparable to the yctrl

value of a data record j in Qaft. Doing this actually amounts to continuing
the hierarchical subgrouping action to produce a Qy, a subset of QI , based
on yctrl, such that

Qy := {i ∈ QI : |yctrl
i − yctrl

j | < $σ(yctrl
QI )}. (7.2)

Shin et al. [198] perform this procedure for all data records in the treated
group so that each record j in Qaft has its matched set, which is denoted by
Qy,j . The set of Qy,j is in fact the set of data records in the non-treated group
matched to the data record j in the treated group. In the case that Qy,j is an
empty set, one should then discard the respective index j from Qaft. Because
of this, Qaft may shrink after the subgrouping steps.

7.2.2 One-to-One Matching
The next action is to choose a data record in Qy,j that is the closest to
the data record j. For this purpose, analysts need to define a dissimilarity
measure to quantify the closeness between two data records. Shin et al. [198]
decided to use the Mahalanobis distance [140] as the dissimilarity measure,
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which is popularly used in the context of multivariate analysis. A Mahalanobis
distance re-weighs the Euclidean distance between two covariate vectors with
the reciprocal of a variance-covariance matrix. Before presenting the definition
of the Mahalanobis distance between two wind turbine data records, Shin et
al. first transform x into x∗, such that

x∗ := (V cosD,V sinD, ρ, S, I)T .

Using x∗ makes it easier to deal with the circular wind direction variable, D.
The Mahalanobis distance, MDij , between a data record j in Qaft and a data
record i in Qy,j , is defined as

MDij :=
√

(x∗i − x∗j )TΣ−1(x∗i − x∗j ), (7.3)

where Σ is the covariance matrix of x∗. Obviously, the larger an MD value,
the less similar the two data records.

With the Mahalanobis distance defined, one can simply select the data
record ij in Qy,j that has the smallest Mahalanobis distance as the best match
to data record j in Qaft. In other words, ij is found such that

ij = arg min
i∈Qy,j

MDij ,

for each j in Qaft. In case two or more are tied for the smallest value, Shin et
al. [198] choose one of them randomly.

After this step, each data record j in the treated group is matched to
a non-treated counterpart ij , with the exception of those already discarded
during the subgrouping step. Let us define the index set of the matched data
records from the non-treated group as

Q∗bef := {ij ∈ Qbef | j ∈ Qaft}.

It should be noted that Shin et al. [198] allow replacement in the matching
procedure. In other words, ij is not eliminated from the candidate set Qbef,
even though it has matched to j once. When the next data record j + 1 is
selected from Qaft, the same non-treated data i is possible to be matched
again.

7.2.3 Diagnostics
After performing the matching procedure, it is important to diagnose how
much of the discrepancy in the covariate distributions has been removed.
Only after the diagnostics signifies a sufficient improvement, can an outcome
analysis be performed in the next step.

Shin et al. [198] measure the discrepancy of distributions in two ways,
numerically and graphically. For the numerical diagnostics, the standardized
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TABLE 7.1 SDM values serve as the numerical diagnostics for
covariate matching.

VG installation pair

V D ρ S I yctrl

Unmatched 0.6685 0.0803 3.2715 0.2312 0.1382 0.8132
Matched 0.0142 0.0026 0.0589 0.0721 0.0003 0.0083

Pitch angle adjustment pair

V D ρ S I yctrl

Unmatched 0.0605 0.1647 1.6060 0.2759 0.4141 0.0798
Matched 0.0077 0.0029 0.0263 0.0158 0.0111 0.0036

Source: Shin et al. [198]. With permission.

difference of means (SDM) is used as a measure of dissimilarity of a covariate
between the treated and non-treated groups, i.e.,

SDM :=
xQaft

− xQbef

σ(xQaft
)

, (7.4)

where x is one of the covariates and xQ denotes the average of x in the
set of Q. The SDM decreases if the matching procedure indeed reduces the
discrepancy between the two groups. As shown in Table 7.1, SDM decreases
significantly for all covariates after matching. A previous study [186] suggests
that SDM should be less than 0.25 to render the two distributions in question
comparable.

The graphical diagnostics uses the pdf plots just like in Figs. 6.12 and 6.13,
in which the empirical density functions before and after the upgrade are over-
laid on top of each other. Then, a visual inspection is conducted to check and
verify that the two respective density functions are similar enough. Fig. 7.2
presents the well-matched distributions of covariates after the matching pro-
cess. The improvements in terms of distribution similarity are apparent when
compared to Fig. 7.1.

It should also be noted that, if the size of Qaft after the matching loses too
many data records, and this can happen when too small $’s are applied, Shin
et al. [198] suggest to enlarge the size of the original Qaft prior to the match-
ing process, in order to secure a sufficient amount of representative weather
conditions in the matched Qaft. Enlarging Qaft can be done by extending the
post-upgrade data collection period, for instance.

7.2.4 Paired t-tests and Upgrade Quantification
The matching procedure produces a set of paired data records of the two
groups, each pair denoted by (ij , j), where ij ∈ Q∗bef and j ∈ Qaft. Using
these paired indices, Shin et al. [198] retrieve the paired power outputs for
the test turbine, i.e., (ytest

ij
, ytest
j ). The power output pair can be interpreted
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FIGURE 7.2 Overlaid density functions of the matched covariates and the

density functions of the matched control turbine power output. Solid

line = before upgrade (non-treated) and dashed line = after upgrade

(treated). (Reprinted with permission from Shin et al. [198].)
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TABLE 7.2 The results of paired t-tests and upgrade
quantification.

VG installation pair Pitch angle adjustment pair

t-stat p-value UPG t-stat p-value UPG
3.015 0.003 1.13% 7.447 < 0.0001 3.16%

Source: Shin et al. [198]. With permission.

as repeated measurements under comparable environmental conditions, thus
making the power outputs also comparable. One can apply a t-test to analyze
the difference of the paired power outputs, computed as δj = ytest

j −ytest
ij

. The
null hypothesis is that the expected mean of the difference is zero, that is,
H0 : E(δ) = 0, where δ is the sample mean of {δj : j ∈ Qaft}. Accordingly, the
test statistic is

t-stat :=
δ

sδ/
√
nδ
, (7.5)

where sδ and nδ are the sample standard deviation and the sample size of
{δj : j ∈ Qaft}, respectively. If the test concludes a significant positive mean
difference, the upgrade on the test turbine is deemed effective. Table 7.2
presents the results from the paired t-test of both datasets, which show a
significant upgrade effect at the 0.05 level.

Shin et al. [198] quantify the upgrade effect, denoted by UPG, by comput-
ing

UPG :=

∑
j∈Qaft

(ytest
j − ytest

ij
)∑

j∈Qaft
ytest
ij

× 100. (7.6)

The quantification results are shown in Table 7.2 as well. Recall that in the
pitch angel adjustment pair, the test turbine’s power is increased by 5% for
wind speeds of 9 m/s and above, which translates to a 3.11% increase for the
whole wind spectrum. The quantification outcome shows an improvement of
3.16% overall, which appears to present a fair agreement with the simulated
amount.

7.2.5 Sensitivity Analysis
The pitch angle adjustment pair is analyzed for the purpose of getting a sense
of how well a proposed method can estimate a power production change. Re-
call that the upgrade in the pitch angle adjustment pair is simulated, so we
know the true upgrade amount and can use that as a reference for compar-
ison. In Section 7.2.4, however, only a single simulated improvement value
(5%) is used. To have a fuller sense, this section conducts the matching-based
quantification on various degrees of the simulated improvement.

Denote by r the nominal power increase rate. Because the nominal power
increase rate is applied only to the partial range of wind power corresponding
to wind speed higher than 9 m/s, the effective power increase rate for the
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TABLE 7.3 Sensitivity analysis of covariate matching-based turbine upgrade
quantification.

r 2% 3% 4% 5% 6% 7% 8% 9%

r′ 1.25% 1.87% 2.49% 3.11% 3.74% 4.36% 4.98% 5.60%
UPG 1.74% 2.21% 2.68% 3.16% 3.63% 4.11% 4.58% 5.05%
UPG/r′ 1.39 1.18 1.08 1.02 0.97 0.94 0.92 0.90

Source: Shin et al. [198]. With permission.

whole wind spectrum, denoted by r′, is different. When it comes to verifying
the upgrade effect for the simulated case, the effective power increase rate r′

is computed through

r′ :=

∑
j∈Qaft

ytest
j {1 + r · 1(V test

j > 9)} −
∑
j∈Qaft

ytest
j∑

j∈Qaft
ytest
j

. (7.7)

Shown in Table 7.3, as r changes from 2% to 9%, r′ changes from 1.25%
to 5.6%. This range of power increases is practical for the detection purpose.
If an improvement is smaller than 1%, it is going to be considerably hard to
detect. On the other hand, when an improvement is greater than 6%, it is
possible that even the IEC binning method can detect that level of change.

Table 7.3 presents the UPGs corresponding to the respective r′. One can
observe that UPG noticeably overestimates r′ when r′ is small (smaller than
2%)—the overestimation is as much as 40% for the smallest change in the
table. But the quantification quality using UPG gets stabilized as r′ increases.
For the last six cases in Table 7.3, the differences between UPG and r′ are
within 10%.

7.3 POWER CURVE-BASED APPROACH
The multi-dimensional power curve methods, explained in Chapter 5, can
account for the influence of environmental variables on power output. It is thus
not surprising that upgrade quantification approaches are developed based on
power curve models.

The basic idea is as follows. Once a power curve model is established
using the pre-upgrade data, it captures the power production characteristics
of the old turbine before the upgrade. Feeding the post-upgrade wind and
environmental data to the power curve model is analogous to running the old,
unmodified turbine under the new conditions. Comparing the model outputs
with the actual physical outputs under the same input conditions is supposed
to reveal the difference that an upgrade makes.

Using the IEC binning method to quantify the benefit of an upgrade is in
fact a power curve-based approach. The drawback of that specific approach
lies in the fact that IEC binning controls for practically only the wind speed
effect, which accounts for roughly 85% of the variation in the power data.
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FIGURE 7.3 Dataset partition used in Kernel Plus for quantifying a tur-

bine upgrade. (Reprinted with permission from Lee et al. [133].)

The remaining unaccounted variation is still too much relative to the typi-
cal upgrade effect, and without accounting for that, the resulting method is
rendered ineffective, which is what happens to the IEC binning-based quan-
tification method [50].

Lee et al. [133] present a turbine upgrade quantification method based
on the additive-multiplicative kernel power curve model, introduced in Sec-
tion 5.2.3. The resulting method is nicknamed Kernel Plus.

7.3.1 The Kernel Plus Method
The central element in Kernel Plus is the AMK model in Eq. 5.16. In the
context of upgrade quantification, only the mean prediction equation, ŷ(x),
is used. To make it explicit that the power curve model is from AMK, let us
denote it with an AMK superscript, namely ŷAMK(x).

In its procedure to quantify a turbine upgrade, Kernel Plus involves three
datasets, as illustrated in Fig. 7.3. The three datasets include a training
dataset of historical observations of (x, y) pairs and two test datasets be-
fore and after an upgrade. The training dataset is referred to as “Data0” and
is used to fit the power curve model. Data0 should be collected from a reason-
able duration of a turbine’s operation, for instance, one year, such that the
seasonal weather effects are well represented in the data. The two test sets,
referred to as “Data1” and “Data2,” respectively, are collected for the same
length of duration before and after the upgrade. They are used to detect and
quantify the upgrade. Their corresponding data duration can be much shorter
than that of Data0; a few weeks to a few months may be sufficient.

In the Kernel Plus method, Lee et al. [133] introduce a self-calibration
procedure to alleviate the bias associated with a Nadaraya-Watson kernel es-
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timator when it is used on a new dataset. The existence of bias based on finite
samples is a common problem in statistical prediction. Hastie et al. present a
full illustration of biases and variances involved in statistical prediction [86,
Figure 7.2].

The self-calibration procedure is done by using subsets of the training data
in Data0. To select a calibration set of data that has similar weather conditions
to those in Data1 and Data2, Lee et al. [133] define a distance measure, which
is in spirit similar to the Mahalanobis distance—recall that the Mahalanobis
distance is used in the covariate matching procedure in Section 7.2.2. Like a
Mahalanobis distance, the distance measure in the self-calibration procedure
is a weighted distance but unlike a Mahalanobis distance, it is not weighted
by the reciprocal of the corresponding variance-covariance matrix. Instead,
the weighting matrix is a diagonal matrix whose diagonal elements are from
the bandwidth vector λ. Let us denote this diagonal matrix by Λ, such that
Λi,i = λi and Λi,j = 0 ∀i 6= j. The resulting distance measure between a
training data point, xi ∈ Data0, and a test data point, xj , in either Data1 or
Data2, is

D(xi,xj) =
√

(xi − xj)TΛ−1(xi − xj). (7.8)

Lee et al. [133] elaborate that the reason to choose this distance measure
is because a simple Euclidean distance does not reflect well the similarity be-
tween the x’s, as different elements in x have different physical units, leading
to different value ranges. To define a sensible similarity measure, a key issue
is to weigh different elements in x consistently with their relative importance
pertinent to the power output. The original Mahalanobis distance does not
serve this purpose because the squared distance associated with an input vari-
able is weighted by the inverse of its variance. In a power curve model, wind
speed is arguably the most important variable, yet it has a large variance.
Because of this large variance, using the Mahalanobis distance will in fact
diminish the importance of wind speed relative to other variables that have a
smaller variance. The choice in Eq. 7.8 that uses the kernel bandwidth param-
eters as the weighting coefficients in Λ is consistent with the goal of weighting
each element according to its relative importance, because the bandwidth pa-
rameters are selected based on how sensitive the power output is to a unit
change in the corresponding input variable. If an input variable has a small
bandwidth, it means that the power output could produce an appreciable
difference with a small change in the corresponding input, suggesting that
this variable is relatively important. On the other hand, a large bandwidth
indicates a less important input variable.

For any test data point xj , one can choose a calibration data point, xcal
i ,

from Data0, which has the minimum D(xcal
i ,xj). The calibration procedure

proceeds as described in Algorithm 7.2.
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Algorithm 7.2 Self-calibration procedure in Kernel Plus.

1. For xcal
i ∈ Data0, compute ŷAMK(xcal

i ).

2. Compute the calibration value Rcal(xj) = y(xcal
i )− ŷAMK(xcal

i ), where
xj is paired to the calibration data point xcal

i .

3. For any test data point xj , the final, calibrated power estimate from the
Kernel Plus method is ŷKP(xj) = ŷAMK(xj) + Rcal(xj).
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FIGURE 7.4 Diagram of quantifying a turbine upgrade using the Kernel

Plus method. (Reprinted with permission from Lee et al. [133].)
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7.3.2 Kernel Plus Quantification Procedure
Fig. 7.4 outlines the procedure for detecting and quantifying an upgrade using
the Kernel Plus method and the three sets of data. To start, one establishes
the Kernel Plus model, which includes both AMK and self-calibration. Then,
this Kernel Plus model, representing the “old” turbine, is used to make a pre-
diction/estimation of power output under a new weather profile x in either
Data1 or Data2—the result is denoted as ŷ(x(1)) and ŷ(x(2)), respectively.
Here ŷ(x(1)) and ŷ(x(2)) are ŷKP(·) but for notational simplicity and without
ambiguity, the superscript, KP, is dropped. Consequently, the corresponding
power output residuals can be computed. Had a turbine undergone an up-
grade, one would expect the residuals before and after the upgrade to be
different. A t-test is used to detect a potential difference in the residuals.
Suppose that n1 and n2 are the number of data points in Data1 and Data2,
respectively. The statistical test procedure is presented in Algorithm 7.3.

Algorithm 7.3 Statistical test procedure for upgrade detection.

1. Compute the residuals before and after an upgrade. For Data1,
R(x(1)) := y(x(1))−ŷ(x(1)), and for Data2, R(x(2)) := y(x(2))−ŷ(x(2));

2. Compute the two sample means and the corresponding standard devia-
tions by using the following formula,

R̄k =

∑nk
j=1 R(x

(k)
j )

nk
, k = 1, 2, and,

sk =

√∑nk
j=1(R(x

(k)
j )− R̄k)2

nk − 1
, k = 1, 2.

(7.9)

3. Then, calculate the pooled estimate of standard deviation, σ̂r, by

σ̂r =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
. (7.10)

4. The t statistic is calculated by

t =
R̄2 − R̄1

σ̂r ·
√

1
n1

+ 1
n2

. (7.11)

5. Finally, calculate the p-value of the t statistic. The smaller the p-value,
the more significant the difference.

The procedure in Algorithm 7.3 is devised to confirm any detectable dif-
ference resulting from an upgrade. The output is binary: either the upgrade
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produces a statistically significant difference in a turbine’s performance or it
does not.

If the t-test above does indicate a significant difference, how much differ-
ence in terms of power generation does the upgrade produce? To answer this
question, Lee et al. [133] define a quantifier as follows,

DIFF(x) =

∑
x∈Dtest

(
y(x)− ŷ(x)

)∑
x∈Dtest y(x)

× 100%, (7.12)

where Dtest is a test dataset and can be either Data1 or Data2, so that x can
accordingly be either x(1) or x(2). Similar to the residual analysis described
above, comparing DIFF(x(2)) with DIFF(x(1)) for the test turbine, i.e.,
DIFFtest = DIFF(x(2))−DIFF(x(1)), produces the difference demonstrated in
the test turbine before and after the upgrade. If one conducts the same anal-
ysis to the control turbine, it produces a DIFFcrtl. The final quantification is
the difference between the two turbines, i.e., DIFF = DIFFtest −DIFFcrtl.

7.3.3 Upgrade Detection
Using the Turbine Upgrade Dataset but just two weeks’ worth of data for
Data1 and Data2, Lee et al. [133] apply both the Kernel Plus method and
the binning method to the two pairs of turbines and conduct a residual anal-
ysis. When using the binning method for upgrade quantification, one simply
replaces the dashed-line rectangle in Fig. 7.4 with the binning method (the
version with air density adjustment).

For an upgraded turbine, a method is supposed to produce a large t-
statistic (in its absolute value), which further leads to a small p-value that
signifies the difference between the residuals, whereas for a turbine without
upgrade, a small t statistic, or equivalently, a large p-value is expected. The
commonly used threshold of a p-value to indicate significance is 0.05, which
is what Lee et al. [133] use in their analysis.

Table 7.4 presents the outcomes from the residual analysis of both pairs
of turbines. The Kernel Plus method has significant outcomes consistent with
the upgrade action while the binning method does not.

The outcome of the binning method is attributable to the still large amount
of uncertainty unaccounted for in its residuals. To intuitively understand the
outcomes of the statistical tests, Lee et al. [133] present the residual plots
using data from the test turbine in the VG installation pair when applying
the binning method and the Kernel Plus method, respectively. The residual
plots are presented in Fig. 7.5. The residuals of the binning method exhibit
an obvious pattern (leading to bias) and have a large dispersion, suggesting a
poor model fit and large uncertainty, whereas the residuals of the Kernel Plus
method have a considerably smaller dispersion and exhibit a random pattern,
indicating an adequate model fit and reduced uncertainty.
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TABLE 7.4 Comparing the Kernel Plus and binning methods on their ability to
detect turbine upgrade.

Turbine
Binning Kernel Plus

t statistic p-value t statistic p-value

VG Test −0.46 0.65 2.24 0.025
installation pair Control −2.54 0.01 −0.14 0.89

Pitch angle Test 5.09 3.89× 10−7 3.18 0.002
adjustment pair Control 4.51 6.84× 10−6 −1.71 0.09

Source: Lee et al. [133]. With permission.

FIGURE 7.5 Residual plots. Left panel: after IEC binning is applied; right

panel: after Kernel Plus is applied. The vertical dashed line indicates

the rated wind speed. (Reprinted with permission from Lee et al. [133].)
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TABLE 7.5 Sensitivity analysis of Kernel Plus-based turbine upgrade
quantification.

r 2% 3% 4% 5% 6% 7% 8% 9%

r′ 1.25% 1.87% 2.49% 3.11% 3.74% 4.36% 4.98% 5.60%
DIFF 1.97% 2.56% 3.15% 3.73% 4.30% 4.86% 5.42% 5.97%
DIFF/r′ 1.58 1.37 1.27 1.20 1.15 1.11 1.09 1.07

Source: Shin et al. [198]. With permission.

7.3.4 Upgrade Quantification
As it is done for the covariate matching in Table 7.3, let us conduct a sensitivity
analysis for the Kernel Plus-based method, again using the data from the pitch
angle adjustment pair. The outcome is presented in Table 7.5. One can see
that the Kernel Plus method does an adequate job, but performs slightly worse
than the covariate matching on this simulated case.

When applying to the VG installation pair, the DIFF value is 1.48%. Recall
that the quantification from the covariate matching is UPG = 1.13%. It seems
that the Kernel Plus method tends to over-estimate the upgrade effect. Please
note that the DIFF values reported here are different from those reported
in [133], because of the difference in data. Lee et al. [133] use two weeks’ worth
of data in the post-upgrade period, whereas the results above are obtained
using eight weeks of data. Should the post-upgrade period be shortened to
two weeks, the DIFF value is 1.81%.

To visualize a multi-dimensional response surface, like the response from
the Kernel Plus method, analysts can condition some of the covariates on a
constant value and average the others over all possible values. Lee et al. [133]
produce a series of one-dimensional power curves under different combinations
of ρ and I. Three settings each are chosen for ρ and I, respectively, which are
ρ = (1.15, 1.18, 1.21) and I = (0.08, 0.12, 0.16). Altogether, there are nine
combinations. The power curves presented in Fig. 7.6 are produced based on
the data from the test turbine in the VG installation pair and include those
produced by using both the Kernel Plus method and the binning method.

When using the Kernel Plus method, there are observable differences in
several subplots between the power curves before and after the upgrade. The
difference is pronounced around the rated wind speed. By comparison, the
binning method produces power curves with no visually detectable difference.
This result is consistent with the message of the previous subsections.

7.4 AN ACADEMIA-INDUSTRY CASE STUDY
In Section 7.1, we mention that one difficulty in quantifying the benefit of a
turbine upgrade is due to the lack of a good method to validate the estimated
effect. Currently, it appears that a viable way to address this issue, yet still
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FIGURE 7.6 Power curves conditioned on air density and turbulence in-

tensity and averaged across wind directions. BIN BF: binning method

before upgrade; BIN AF: binning method after upgrade; KP BF: Ker-

nel Plus method before upgrade; KP AF: Kernel Plus method after

upgrade. (Reprinted with permission from Lee et al. [133].)
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indirect, is to use two different methods to cross validate each other. Com-
parison between the covariate matching method and the Kernel Plus method
serves that purpose.

Hwangbo et al. [95] present an academia-industry joint case study, in which
an academic institution and a wind technology company use their respective
method to analyze eight pairs of turbines from two wind farms, four pairs per
farm. The academic institution’s method is the Kernel Plus method described
in Section 7.3, whereas the company’s method uses high-frequency data via
primarily a direct power comparison approach that relies less on the envi-
ronmental data. The company method is referred to as the power-vs-power
method.

In the next subsections, we briefly explain, based on the materials in [95],
the power-vs-power method and then present the joint case study. The data
used in this joint study is proprietary, and is therefore not included as one of
the datasets associated with the book.

7.4.1 The Power-vs-Power Method
The basic idea behind the power-vs-power approach is similar in spirit to
that of the covariate matching. The difference is that the company’s specific
method used in the joint study relies on the high-frequency historian data,
usually a data point per a few seconds to a few data points per second. By
contrast, the covariate matching in Section 7.2 and Kernel Plus in Section 7.3
both use the 10-min data. The amount of the high-frequency data could be
as much as 600 times more than the 10-min data for the same time duration.
The power-vs-power method uses additional mechanisms to control for the
environmental influence—the controlling mechanisms are often called filters
in industry practice.

The power-vs-power approach entails five main steps, outlined in Algo-
rithm 7.4.

Step 1 is to ensure the validity of the assumption that when two tur-
bines are close enough in space, it is likely that the wind and environmental
conditions they are subject to are comparable. This assumption may not be
reasonable for the situation when one turbine is in the wake of the other one.
Step 1 is to identify the free wind sectors in the turbine operational data and
then use only the free sector data in the subsequent analysis.

Step 2 performs an air density normalization. The thought behind this is
similar to that of using the density-normalized wind speed, as recommended
by the IEC [102]. In the case of the power-vs-power approach, no wind speed
measurements are involved in the latter power comparison steps. For this
reason, density normalization must be accomplished by direct normalization
of the power values for the below rated region.

Step 3 is another step designed to verify and uphold the assumption that
both turbines must “see” the same conditions and must operate similarly.
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Algorithm 7.4 Five main steps in the power-vs-power approach.

1. Determine the valid wind sectors and eliminate the wind and power
measurements taken under wake conditions. Also apply all other data
filters (Status.Flag, Yaw.Error, etc.).

2. Apply a power density normalization, namely, normalize the wind power
output through y × ρ/ρ0, where ρ0 is the sea-level dry air density. Use
the density-normalized power in the subsequent analysis.

3. If necessary, verify whether there is any other source of variation sig-
nificantly affecting the power difference between the pre-upgrade and
post-upgrade periods. If such a source of variation is identified, further
reduce the dataset so that its effect is controlled for.

4. Compute the bin-wise power difference, namely, calculate the power pro-
duction difference of the test turbine, relative to that of the control tur-
bine, for each of the power output bins, for both the pre-upgrade and
post-upgrade periods.

5. Compute the power difference produced by the VG installation over the
whole power output spectrum.

When there are obvious sources of variation, additional filters may be needed
to split the data into sets of equal conditions.

After completion of the pre-processing steps that filter, clean, and nor-
malize the data, Step 4 of the power-vs-power approach is to compute the
bin-wise power difference between the two turbines. Specifically,

• Take the high-frequency power output data of the control turbine and
partition the data into B bins by using a bin width of, say, 100 kW. The
bin width can be adjusted for other applications, but, for megawatts
capacity turbines, 100 kW appears to be a reasonable default number.

• For each bin, calculate the median of the power difference between the
test turbine and the control turbine.

• Conduct the above two steps for the pre-upgrade and post-upgrade pe-
riods individually. Denote the resulting power differences by ∆ȳPREb and
∆ȳPOSTb , respectively, for b = 1, . . . , B.

• Conduct a bin-wise comparison between the control and test turbine for
the pre-upgrade period to verify the performance similarities between
the pair of turbines.

• Calculate the bin-wise power difference as ∆ȳb = ∆ȳPOSTb − ∆ȳPREb , for
b = 1, . . . , B.



208 � Data Science for Wind Energy

Finally, Step 5 of the power-vs-power approach combines all the bin-wise
power differences by using the weights derived from the power distribution
over a given year; the resulting metric serves as the estimate of the upgrade
effect. The detailed procedure is:

• Compute a power curve as a function of wind speed using the measure-
ments taken from the control turbine. Alternatively, one can use the
turbine manufacturer’s certified reference power curve.

• Using the power curve, find the specific wind speeds, Vb,left and Vb,right,
that correspond, respectively, to the lower and upper bound of the b-th
power bin. Convert the wind speed distribution into a power distribution
through

P (yb) = FV (Vb,right)− FV (Vb,left),

where yb is the midpoint of the b-th power bin, FV (·) is the cumulative
distribution function of wind speed, and P (yb) is the probability of the
b-th power bin or, intuitively, the relative occurrence frequency of that
particular power bin in the period of evaluation (i.e., a given year).

• Estimate the overall upgrade effect as

∆upgrade =

∑B
b=1 ∆ȳb · P (yb)∑B
b=1 yb · P (yb)

× 100%. (7.13)

7.4.2 Joint Case Study
In this case study, the upgrade action is VG installation. Four turbine pairs
are taken from each of two wind farms, making a total of eight pairs. Both
wind farms are inland but of different terrain complexity. The historian data
is collected in high temporal resolution (about one Hertz) with no averaging
applied; this is the high-frequency data referred to earlier. The 10-min data
is produced from the historian data. Periods that are known to be under
curtailment are manually excluded prior to the analysis.

Wind Farm #1
The layout of the four turbine pairs on the first wind farm is illustrated in
Fig. 7.7. The wind farm is on a terrain of medium complexity. The turbines on
the farm belong to the general 2 MW turbine class. The VG installation took
place in a summer month of 2014, but it was conducted on different days for
each of the four VG turbines. There are six months of turbine data, including
wind speed and wind power, in the pre-upgrade period and 13 months of the
data in the post-upgrade period. Several of the environmental measurements,
such as air density and humidity, are taken from the mast. Missing data is
common in all datasets and in both periods. Other details of the datasets and
turbines are withheld due to the confidentiality agreement in place.

The estimated VG effect on the four pairs of turbines is presented in
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FIGURE 7.7 Layout of the four turbine pairs on wind farm #1. The

distance among the turbines are not scaled precisely, but their relative

positions, as well as their locations on the farm, reflect the reality.

The between-turbine distances are expressed as multiples of the rotor

radius, R, as follows: Pair 1, 14R; Pair 2, 11R; Pair 3, 6R; and Pair 4,

9R. The met mast is directly north of all turbine pairs. Its distance to

the turbine pairs are: Pair 1 & Pair 2, 11 km; Pair 3, 8.8 km; and Pair

4, 6 km. (Reprinted with permission from Hwangbo et al. [95].)
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FIGURE 7.8 Estimates of the VG effect, together with the respective

90% confidence intervals, on the four pairs of turbines on wind farm

#1. (Reprinted with permission from Hwangbo et al. [95].)

Fig. 7.8. Uncertainty quantification is conducted via the bootstrap resam-
pling method, so that the 90% confidence intervals are added in the plot on
top of the respective mean estimates. Understandably, the two sets of esti-
mates are not exactly the same, but they are reasonably consistent, especially
in terms of the relative significance of the VG effect on a specific turbine. The
difference between the two sets of estimates are within the margin of error,
and the overall difference between the two methods, averaged over the four
pairs of turbines, is about 0.86%, with the Kernel Plus slightly overestimating
relative to the power-vs-power approach.

Wind Farm #2
The layout of the four turbine pairs on the second wind farm is illustrated
in Fig. 7.9. The wind farm is in a coastal area and on relatively flat terrain.
The turbines on the second farm belong also to the general 2 MW turbine
class. The VG installation took place in December of 2015 and was also con-
ducted on different days for each of the four VG turbines. The duration of the
common period where both the turbine data and mast data are available is
3.5 months in the pre-upgrade period and one month in the post-upgrade pe-
riod. In this analysis, because the mast is close to the turbines, the wind speed
measurements, together with the rest of the environmental measurements, are
taken from the mast. Humidity is not measured on site. The average of the
humidity measurements from two nearby weather stations is thus used, one
located at 10 km north of the wind farm and the other at 10 km east of the
farm. Missing data is also common in all datasets and in both periods. Other
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FIGURE 7.9 Layout of the four turbine pairs on wind farm #2. The

between-turbine distances are: Pair 1, 6R; Pair 2, 6.6R; Pair 3, 6.6R;

and Pair 4, 7.4R. The met mast’s distance to the turbine pairs are:

Pair 1, 0.2 km, Pair 2, 1.3 km; Pair 3, 3.6 km; and Pair 4, 1.3 km.

(Reprinted with permission from Hwangbo et al. [95].)

details of the datasets and turbines are withheld due to the confidentiality
agreement in place.

The estimated VG effect on the four pairs of turbines is presented in
Fig. 7.10. Again, one can observe consistent outcomes from the two methods:
the overall difference between the two methods, averaged over the four pairs
of turbines, is about 0.15%, with the Kernel Plus still slightly overestimating
relative to the power-vs-power approach.

7.4.3 Discussion
This academia-industry joint exercise presents a pair of upgrade quantification
methods that are profoundly different in their respective underlying design and
data usage. The profound difference in these two methods in fact lends more
credibility in cross validation when they are employed to evaluate the same
upgrade cases. The upgrade effects estimated by the two respective methods
differ, on average, 0.86% and 0.15%, respectively, suggesting a good degree of
consistence between them.

The power-vs-power method is simple to understand. But the data filtering
procedure appears to be ad hoc and relies heavily on domain expertise and
field judgment. By using the high-frequency data and having a larger sample
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FIGURE 7.10 Estimates of the VG effects, together with the respective

90% confidence intervals, on the four pairs of turbines on wind farm

#2. (Reprinted with permission from Hwangbo et al. [95].)

size, the power-vs-power approach enjoys the benefit of producing upgrade
effect estimates with tighter confidence intervals.

The Kernel Plus method can possibly be applied to a single turbine when
a control turbine does not exist. This explains why the Kernel Plus passed a
blind test [50] in which no prior knowledge of control and VG turbines was
given and no turbine pairs were provided. Yet, it is always beneficial to have
a control turbine, whenever possible, as an additional reference. The premise
of Kernel Plus is that it controls for the influence of the environmental factors
through the learning of a multi-dimensional power curve model, but the in-
puts currently included in the power curve model may not be comprehensive
enough. It is possible, of course, that measurements of certain important envi-
ronmental factors are not available on a wind farm or analysts may not have
realized yet the importance of certain other environmental factors. Improving
the capability and accuracy of the underlying power curve method is always
desirable.

While the general understanding of the VG effect is an extra 1–5% wind
power production, it is a bit surprising to see that the quantification of Pair #3
on Farm #1 yields a greater than 7% improvement. As noted before, Wind
Farm #1 is a medium complexity site that makes the wind inflow condi-
tions complicated. Hwangbo et al. [95] believe that the VG effect tends to
be greater when the wind inflow condition is more turbulent on a complex
terrain. Whether this is accurate needs future studies.

It is generally a good idea to test on more than one pair of turbines and
get a site average to represent the turbine upgrade effect for a specific farm.
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The averaged upgrade effect from a few turbine pairs on the same farm is
more stable, as the farm-level averaging irons out potential biases and reduces
variability. The decision for wind farm owners/operators is not whether to
install VGs on a particular turbine, but rather, whether to install VGs on the
tens or even hundreds of turbines on their wind farm. For that purpose, the
site-specific average is a more indicative metric. On Farm #1, the site average
of VG effect is about 2.80% based on the power-vs-power approach and 3.66%
based on the Kernel Plus. As for the performance on Farm #2, which is flat
and at which wind inflow conditions are simpler and measured with higher
confidence, the VG effects fall into a narrower range, with the site average
at 1.60% based on the power-vs-power approach and at 1.75% based on the
Kernel Plus method. The range of the site-averaged VG effects is consistent
with what is anticipated in industrial practice.

7.5 COMPLEXITIES IN UPGRADE QUANTIFICATION
To conclude this chapter, we would like to discuss a few general issues en-
countered in the upgrade quantification effort. Most of the issues do not have
a perfect solution yet, making the continuous effort in solving the upgrade
quantification problem still much appreciated.

Bias Correction
One reason that the Kernel Plus uses a self-calibration procedure is to correct
potential biases in upgrade effect estimation. It turns out that the bias issue
is not only limited to the model-based approach like Kernel Plus. It happens
also to the covariate matching approach and the power-vs-power approach.
After years of research, it becomes clearer to us that whichever method can
correct the bias in upgrade effect estimation outperforms the peer methods
that do not do so very well.

When applying a quantification method to the control turbine data, one
would ideally expect a zero upgrade effect, since the turbine undergoes no
change. Apparently, this is not achieved by most of the existing methods,
and because of this, a control turbine is needed as the datum to adjust the
estimation of upgrade effect for the test turbine. Consider a simple case in
which the data is taken from a control turbine and then duplicated and treated
as the data for the test turbine. In this fashion, one in fact has two identical
datasets. When an upgrade quantification method is applied to these two sets
of data, it should presumably yield a zero upgrade effect. To much a surprise,
many of the methods still do not. While it is easy to see the existence of the
bias, how best to correct the bias eludes the analysts. The self-calibration
procedure plus the control/test difference used in the Kernel Plus method
provides certain degrees of safeguard.

Wind Speed Adjustment
When building the Kernel Plus model or aligning the covariates in the match-
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ing approach, wind speed measurements are used. The wind speed measure-
ments may be from either a nearby mast or the nacelle. The wind measure-
ment, if from the nacelle, is in the wake of the rotor. Installation of vortex
generators alters wind flow separation behind the rotor, so much so that for
the same free inflow wind in front of the rotor, the wind speed measurements
taken by the nacelle anemometer before and after the VG installation are most
likely different. This difference could introduce a degree of inaccuracy if left
unaddressed.

IEC 61400-12-2 [104] deals with nacelle measurements through a nacelle
transfer function (NTF), which is the relation between the free inflow wind
speed and that measured at the nacelle anemometer. Typically an NTF can
be obtained by comparing the nacelle measurements with that on a nearby
mast or with a nacelle mounted LIDAR (light detection and ranging) sensor.
Some operators establish an NTF for a VG turbine, so that the wind speed
after the VG installation can be adjusted using the NTF. In practice, however,
an NTF is rarely available, because obtaining it and continuously calibrating
it are costly.

In the absence of a nacelle transfer function, Hwangbo et al. [95] introduce
a wind speed adjustment procedure, acting similarly as an NTF. The short-
coming of the procedure in [95] is that the adjustment quality and accuracy
is not yet verified with actual physical measurements.

Another idea to address the wind speed measurement issue is to avoid
using the wind speed measured on the test turbine when building a power
curve model. If wind speed measurements are available on a met mast in its
physical vicinity, that would be the best. Even without a met mast nearby,
analysts can consider using the wind speed measured on a neutral turbine in
its vicinity, which is not affected by the VG installation as much as the wind
speed measured on the test turbine.

Annualization
When an upgrade quantification is conducted, wind farm owners or operators
would like to know the benefit in terms of annual energy production. As
one has seen in the examples presented earlier, there are not always a full
year’s worth of data available in the post-upgrade period for conducting such
comparison. For the Kernel Plus method, having a full year of data in the post-
upgrade period poses another problem. The post-upgrade period is known as
Data2 in the Kernel Plus method, which is supposedly of the same length as
that of Data1. If Data2 is one year’s worth, then the total amount of data
needed, combining Data0 through Data2, would have been three years’ worth.
This data amount requirement is too demanding. On top of that, as we see in
Chapter 6, a turbine’s own production efficiency characteristics may change
in the span of three years even in the absence of any upgrade action, adding
additional confounding effect to be shielded off in the already difficult task of
estimating the upgrade benefit.

When using data from a shorter period, or a subset of data from one year
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span, one may extrapolate the estimated upgrade effect to the whole year.
This process is called annualization. The process of annualization is actually
explained in Steps 4 and 5 of the power-vs-power approach. The idea is that
when estimating the upgrade effect, conduct the estimation for a set of power
bins. Assuming that the bin-wise upgrade effect stay more or less the same
for the whole year, analysts extrapolate the estimated upgrade effect to AEP
by re-weighting the bin-wise upgrade effect with the empirical distribution of
wind power. For the re-weighting formula, please see Eq. 7.13.

GLOSSARY
AEP: Annual energy production

AMK: Additive-multiplicative kernel method

BIN: Binning method

BIN AF: Binning method, after upgrade

BIN BF: Binning method, before upgrade

DIFF: Upgrade effect quantification when using Kernel Plus

IEC: International Electrotechnical Commission

KP: Kernel Plus

KP AF: Kernel Plus, after upgrade

KP BF: Kernel Plus, before upgrade

LIDAR: Light detection and ranging

MD: Mahalanobis distance

NTF: Nacelle transfer function

pdf: Probability density function

SDM: Standardized difference of means

UPG: Upgrade effect

VG: Vortex generator

EXERCISES
7.1 Using the Turbine Upgrade Dataset, please present the boxplots of

ytest for the pre-upgrade and post-upgrade periods, respectively. Please
do this for the unmatched data and matched data and for the respective
test turbine in both turbine pairs. What do you observe?
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7.2 The current quantification outcome of the covariate matching is not an-
nualized. To get an AEP, we need to go through the following procedure.

a. Conduct the covariate matching analysis using the same parameters
as used in this chapter, but compute the bin-wise upgrade effect. Use
the bin width of 100 kW. Do this only for the VG installation pair.

b. Take the Inland Wind Farm Dataset1, which has more than one
year’s worth of data of four turbines from the same wind farm, and
estimate the distribution of wind power output by pooling the data
from the four turbines. Still use the bin width of 100 kW.

c. Use the re-weighting formula to compute the AEP effect due to the
VG installation. How much is it different from the eight-week out-
come?

7.3 Conduct the covariate matching analysis using the pitch angle adjust-
ment pair.

a. Estimate the upgrade effect by using, respectively, two weeks’, five
weeks’, or eight weeks’ worth of post-upgrade data. Observe how
sensitive the method is to the length of the post-upgrade period.

b. Conduct annualization using the power distribution estimated in
Exercise 7.2(b). Apply the annualization to the above three post-
upgrade period choices. Are the differences in the AEPs greater than
that in the upgrade effect estimation in (a)?

7.4 Conduct the covariate matching analysis using the pitch angle adjust-
ment pair, but use the reverse priority order among the covariates, i.e.,
yctrl, I, S, ρ, D, and V . Compute the SDMs and present them in a table
similar to the lower half of Table 7.1. Does the matching procedure still
significantly reduce the SDM? Go ahead and estimate the UPG again.
How much is the new UPG different from what was estimated in this
chapter (which is 3.16%)?

7.5 The current quantification outcome of the Kernel Plus is not annualized.
To get an AEP, we need to go through the following procedure.

a. Conduct the Kernel Plus, but compute the bin-wise upgrade effect.
Again, use the bin width of 100 kW and do this only for the VG
installation pair.

b. Take the power distribution estimated in Exercise 7.2(b) and use the
re-weighting formula to compute the AEP of the VG installation.
How much is it different from the eight-week outcome?
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7.6 Conduct the Kernel Plus-based analysis using the pitch angle adjust-
ment pair.

a. Estimate the upgrade effect by using, respectively, two weeks’, five
weeks’, or eight weeks’ worth of post-upgrade data. Observe how
sensitive the method is to the length of the post-upgrade period.

b. Conduct annualization using the power distribution estimated in
Exercise 7.2(b). Apply the annualization to the above three post-
upgrade period choices. Are the differences in the AEPs greater than
that in the upgrade effect estimation in (a)?

7.7 Replace Eq. 7.8 with the Mahalanobis distance and conduct the Kernel
Plus-based analysis using the pitch angle adjustment pair. What differ-
ence does it make when this distance measure is changed? What if you
use a simple Euclidean distance (unweighted)?

7.8 Use the binning method to replace the dashed-line rectangular box in
Fig. 7.4 and treat that as a binning-based quantification method. Apply
the binning-based quantification method to the two pairs of turbines
and estimate the respective upgrade effect. How much are they different
from the covariate matching and Kernel Plus?

7.9 Conduct the sensitivity analysis for the binning-based quantification, as
it is done in Tables 7.3 and 7.5. Compare your results with those in
Tables 7.3 and 7.5.

7.10 Take the control turbine data from the pitch angle adjustment pair,
duplicate the data and treat it as if it were the test turbine data. Now,
you have two identical datasets.

a. Multiply the test turbine power by r (for all power values), for r =
0, 1, 2, 3, 4, and 5%.

b. For each r, employ, respectively, the covariate matching, Kernel Plus,
and binning methods to estimate the upgrade effect. Tabulate the
outcomes similar to the presentation in Table 7.3.

c. For each original power value in the test turbine set (before being
multiplied by an r in (a)), multiply it by a random number, drawn
uniformly from the range [0, 5%]. Compute the effective power in-
crease rate for the test turbine power data. Employ, respectively, the
covariate matching, Kernel Plus, and binning methods to estimate
the upgrade effect. Compare the estimated upgrade effect and the
effective power increase rate.
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Wake Effect Analysis

W
hile a wind turbine is operating, the rotating blades disturb the natural
flow of wind and create turbulence for the downstream turbines. Dur-

ing this process, the turbine absorbs kinetic energy in wind and converts the
energy into electricity. As a result, the wind loses some of its original kinetic
energy after the rotor, exhibiting reduction in its speed. Such a phenomenon
differentiating the after-rotor wind flow from the free-stream one (before the
rotor) is referred to as wake effect.

Understanding and quantifying the wake effect plays an important role in
improving wind turbine designs and operations as well as wind farm layout
planning. Being a physical phenomenon, the majority of the wake effect models
are understandably physics based. Modelers resort in particular to sophisti-
cated, computational fluid dynamics (CFD) models that can achieve a higher
accuracy [129]. However, using the CFD models entails significant computa-
tional challenges. For example, running a large eddy simulation, one of the
popular CFD methods, requires days or even weeks of computation on super-
computers for analyzing a single-wake situation [192]. The abundance of wind
farm operational data motivates the development of data science methods for
analyzing and estimating wake effect, which is the focus of this chapter.

8.1 CHARACTERISTICS OF WAKE EFFECT
The wake of a turbine propagates with a certain range of angles, and its
impact remains effective up to a certain distance from the turbine. Fig. 8.1
illustrates a snapshot of a single-wake situation. A single wake refers to the
circumstance in which two operating turbines are involved and one is in the
wake of the other for a given wind direction. In the figure, θ denotes an acute
angle between the wind direction and the line connecting the two turbines.
For the wind direction shown in Fig. 8.1, left panel, the wind passes through
Turbine 1 along the center line. The wake caused by Turbine 1 affects the
downstream region with a range of angles (the shaded area). The wind speed
loss due to the wake is greater for locations closer to the upstream turbine

219
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FIGURE 8.1 Characteristics of wind turbine wake effect. Left panel: wake

region and θ; right panel: wake depth and wake width. (Reprinted with

permission from Hwangbo et al. [98].)

(Turbine 1) and closer to the center line. Turbine 2, its position fixed, is subject
to the greatest power loss when θ = 0. The power loss amount decreases as θ
deviates from zero. After θ exceeds a certain value, Turbine 2 is no longer in
the wake of Turbine 1. The maximum power loss when θ = 0 is referred to as
the wake depth, whereas the range of θ for which a turbine is in the wake of
another turbine (with positive power losses) is referred to as the wake width.
Wake depth and width are expected to remain constant when the relative
positions between two turbines are fixed.

Fig. 8.2 illustrates power output of a wind turbine when it is wake free
versus when it is in the wake of another turbine.

Knowledge of wake characteristics is crucial for improving power genera-
tion performance on wind farms. As wake width and depth strongly depend on
the relative positions of turbines, characterizing the turbine specific wake ef-
fect facilitates the layout planning [56, 128], particularly when using the same
turbine model in future wind projects. Understanding the wake characteristics
also supports effective operational control of wind turbines through pitch and
yaw controls [70, 146]. The pitch control can regulate the magnitude of wind
speed loss in a downstream region by adjusting the energy absorption level
of an upstream turbine. The yaw control can change the amount of the wind
speed loss by tilting the downstream wake region. By carefully controlling the
yaw of Turbine 1, Turbine 2 may be as nearly wake free as possible for a given
wind direction.

8.2 JENSEN’S MODEL
As mentioned earlier in this chapter, sophisticated CFD wake models take long
computational time to run and their use is less practical for commercial wind
farm operation. A widely used, physics-based model is Jensen’s model [108],
due to its simplicity and easiness to compute. Jensen’s model is derived by



Wake Effect Analysis � 221

5 10 15 20

0
20

40
60

80
10

0

Freestream Wind Speed (m/s)

N
or

m
al

iz
ed

 P
ow

er
 (%

)

Wake−free
In the wake

FIGURE 8.2 Power output in the wake versus that under a free-stream

condition. (Reprinted with permission from Hwangbo et al. [98].)

solving an equation based on the balance of momentum. The resulting wake
effect, in terms of wind speed, is expressed as

Vwake =

{
1− 2

3

(
R

R+ κ · d

)2
}
· V, (8.1)

where R is the rotor radius of a wind turbine, d is the down-wind distance
from the rotor, and κ is known as the entrainment constant. For wake effect,
the entrainment constant, κ, is approximately 0.1. Based on Eq. 8.1, the wind
speed immediately after the rotor where d = 0, is one-third of the free-stream
wind speed. On the other hand, the wind speed at the down-wind distance of
ten rotor diameters, i.e., d = 20R, is about 0.926V . This is part of the reason
that analysts deem 20R a safe boundary beyond which the wake effect by and
large weans off.

Eq. 8.1 can be simplified to Vwake = (1 − κdeficit) · V [232, Eq. 23], where
κdeficit depends generally on the down-wind distance. Some analysts further
simplify κdeficit to be a constant of 0.075, which, according to Eq. 8.1, corre-
sponds roughly to d = 20R.

Apparently, Jensen’s model does not directly estimate the power loss. In
fact, nearly all other physics-based wake effect models do not do so, either. In-
stead, they primarily focus on estimating the reduced wind speed due to wake.
To quantify wake power loss, these models then require an additional layer
of converting the wind speed estimates into a corresponding power output—
a conversion can be done by using a simple power curve model such as the
IEC binning method or more complicated power curve models as presented in
Chapter 5. Data science methods, on the other hand, can connect the wind
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speed data directly to the power output in a single step; see Fig. 8.3. In the
case study section, the data-driven models are compared with the two-step
approach that has Jensen’s model as its first step.

8.3 A DATA BINNING APPROACH
The binning approach is rather popular in industrial practice, acting as a
robust, nonparametric method, easy to understand and easy to use. Not sur-
prisingly, it is used for estimating the wake characteristics as well. A common
data binning approach for wake effect estimation is presented in Algorithm 8.1.

Algorithm 8.1 Data binning approach.

1. Gather the power output data from two turbines.

2. Choose a specific range of wind speed where the maximum power loss is
expected, e.g., 8.0 ± 0.5 m/s [14], or extend the coverage of wind speed
to a wider range, e.g., 5.0–11.0 m/s [146] or even to the whole wind
spectrum, which is the choice used in Section 8.6.1.

3. Plot the power difference between the two turbines under the above-
specified wind speeds against the wind direction (0 degree means due
north)

4. To smooth out the noise, apply the action of binning, namely, partition
the wind direction by a bin width, say 5◦, and then average all the
power difference data in a specific bin. Use the bin-wise averages as the
representative of the original data.

In Fig. 8.4, the dark dots constitute a scatter plot of the power differences
against wind direction. Once applying the data binning approach to the raw
power differences, it produces the solid line passing through the data cloud.
The solid line is the estimated wake effect. The wake depth can be read from
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FIGURE 8.4 Data binning approach for estimating the wake effect be-

tween a pair of turbines. The between-turbine distance is four times

the rotor diameter. The distance from this pair to other turbines is

more than 20R. (Reprinted with permission from Hwangbo et al. [98].)

the plot by observing the two peaks around 120◦ and 300◦, respectively. As one
moves along the wind direction from 0◦ to 360◦, the roles of the two turbines,
i.e., which one is wake free and which one is in the wake, are reversed. That
is why one observes that one of the peaks is downward. In Fig. 8.4, the wake
width is not immediately obvious. Analysts usually impose a large enough
angle coverage, say, θ ∈ (−25◦, 25◦), and then verify with the estimated curve
if the angle range is broad enough to represent the wake width [146]. To refine
the estimation, analysts sometimes find a wind direction value on each side of
the center line at which the power loss estimate is within a certain level, for
example, ±5% of the free-stream power, and use the angle coverage formed
by these wind direction values as the estimate of wake width [14]. When using
this data binning approach, the power difference from the wake-free turbine to
the in-the-wake turbine, which estimates wake power loss, is not guaranteed
to be positive. As a matter of fact, previous studies [169, 215] often show that
some of the bin-wise estimates of the power difference is negative even after
θ moves beyond the obvious wake width region—this phenomenon is indeed
evident in Fig. 8.4.

8.4 SPLINE-BASED SINGLE-WAKE MODEL
Hwangbo et al. [98] develop a wake effect model based on splines. Their
model is intended to estimate wake effect characteristics, such as wake width
and wake depth, under single-wake situations arising between two turbines
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of which modeling assumptions are easier to justify. To facilitate a successful
transition from physics-based models to data-driven modeling, Hwangbo et al.
incorporate certain physical understandings and considerations as constraints
in the model fitting process. Because of this, the resulting single-wake model
is a physics-constrained, rather than a purely, data-driven model.

8.4.1 Baseline Power Production Model
Hwangbo et al. [98] start with the production economics model in Eq. 6.5 but
make some changes to it. Recall that Eq. 6.5 reads as,

y(V ) = Q(V )− u(V ) + ε, (8.2)

where Q(·) is the production frontier function and u(·) is the systematic in-
efficiency term. Eq. 6.5 is expressed as a univariate function of wind speed,
V .

The baseline power production model used for wake effect modeling reads
as,

yt(x) = Qt(x)− ηt(x)− ωt(x) + εt, t = 1, . . . , N, (8.3)

where t is the turbine index and N is the number of turbines. In the above
model, the inefficiency term, u(·), is split into two terms—ηt(·) and ωt(·)—
such that ηt(·) represents a turbine’s inherent inefficiency independent of wake,
whereas ωt(·) represents the turbine’s power loss due to wake. Also, the input
variable is now a vector rather than wind speed only. Furthermore, Hwangbo
et al. [98] postulate that both power loss terms in the above model are non-
negative, i.e., ηt(·) ≥ 0 and ωt(·) ≥ 0, ∀t = 1, . . . , N , to be consistent with the
physical understanding of the phenomenon.

We said in Chapter 6 that estimating Qt(·) under a multivariate setting
while satisfying the S-shape constraint is not trivial. Luckily, for the single-
wake situation, Qt(·) does not have to be estimated explicitly. For a pair of
turbines, one can pool together the two turbines’ power production data and
estimate a common production frontier. As it will become clear in the next
section, Hwangbo et al. [98] establish a power difference model, which takes
the power difference between a pair of turbines, and in doing so, the common
frontier function cancels each other in the resulting model. This is to say, the
production frontier function, Qt(·), does not appear in the final wake effect
model.

8.4.2 Power Difference Model for Two Turbines
For a single-wake situation with two turbines, two angle variables, θ1 and θ2,
are used and associated, respectively, with the two turbines. Specifically, θ1 is
related to the wind direction causing power loss on Turbine 1 and θ2 is with
the wind direction under which Turbine 2 endures power loss. As illustrated
in Fig. 8.5, the wind directions associated with θ1 and θ2 can take any value
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FIGURE 8.5 Notations of wind direction in wake analysis. The union

of D1 and D2 covers the entire 360◦ wind direction. (Reprinted with

permission from Hwangbo et al. [98].)

in the sets, D1 and D2, respectively, given the definition of these sets stated
below. For the purpose of analyzing the wake effect, θ1 and θ2 only need to
vary in the 180◦ outer hemisphere surrounding their respective turbine. Note
that θ1 is actually on the side of Turbine 2, whereas θ2 is on the side of
Turbine 1. If one positions the zero degree of θ1 and θ2 at the line connecting
the two turbines, then θ1, θ2 ∈ (−90◦, 90◦). Denote by D1 the set of wind
directions corresponding to the support of θ1, and likewise, by D2 the set of
directions in which θ2 is defined.

With this notation, applying the baseline power production model in
Eq. 8.3 individually to the two turbines yields

y1(x) = Q(x)− η1(x)− ω1(x) · 1D1(x) + ε1,

y2(x) = Q(x)− η2(x)− ω2(x) · 1D2(x) + ε2,
(8.4)

where 1Dt(x) is an indicator function taking the values of one, if the wind
direction belongs to Dt, or zero otherwise. Here, the production frontier func-
tion, Q(x), is assumed to be common to the same type of turbines, and for
this reason, it does not use a turbine-differentiating subscript. Taking the
difference between the two equations in Eq. 8.4 leads to

ỹ1-2(x) = η̃2-1(x)− ω1(x) · 1D1
(x) + ω2(x) · 1D2

(x) + ε̃, (8.5)

where the tilde indicates a turbine difference term and the subscripts 1-2 and
2-1 signify the specific order of the difference. The above model is interpreted
as follows: the power difference of Turbine 1 over Turbine 2 is due to the inher-
ent production difference between the two turbines, η̃2-1(·), and the power loss
caused by the wake effect, characterized by either ω1(·) or ω2(·), both depend-
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ing on specific wind conditions. Because the sets, D1 and D2, are mutually
exclusive, ω1(·) and ω2(·) do not appear at the same time.

It is well known that the dominating input factors for wind power pro-
duction are wind speed, V , and wind direction, D. The analysis in Chapter 5
shows that environmental factors other than wind speed and direction, such as
air density, turbulence, and humidity, may also have an impact on wind power
output. One advantage of using the power difference model in Eq. 8.5 is that
one no longer needs to consider other environmental factors because once the
power difference is taken of the two turbines, the impact of the environmental
factors other than that of the wind is neutralized. Still, to be consistent with
the IEC standard procedure and to further neutralize the effect of air density,
Hwangbo et al. [98] decided to use the normalized wind speed, following the
air density correction formula in Eq. 5.3.

For the turbine difference term and the indicator function terms in Eq. 8.5,
either wind speed or wind direction, but not both, is needed as an input. The
input to the indicator function 1D1

(·) or 1D2
(·) is wind direction. The turbine

difference term, η̃2-1(·), represents the between-turbine production difference
independent of wake. Hwangbo et al. [98] thereby assume that it is only a
function of wind speed, not of wind direction, as the portion of the power
difference, ỹ1-2 or ỹ2-1, related to wind direction should be included in the
wake related term ω.

As such, the power difference model can be expressed as:

ỹ1-2(V,D) = η̃2-1(V )− ω1(V,D) · 1D1
(D) + ω2(V,D) · 1D2

(D) + ε̃, (8.6)

where ε̃ is still an i.i.d. noise, assumed to follow a normal distribution.

8.4.3 Spline Model with Non-negativity Constraint
In order to empirically estimate the power difference model in Eq. 8.6,
Hwangbo et al. [98] assume the following model structure for the three func-
tional terms: (a) η̃ is modeled by a univariate cubic smoothing spline and (b)
the two wake power loss terms, ω1 and ω2, are modeled by bivariate thin plate
splines [228], a multidimensional generalization of the smoothing splines. Re-
call that when Eq. 8.3 is presented, non-negativity constraints are imposed
on the power loss terms, which state that η(·) ≥ 0 and ω(·) ≥ 0. After taking
the power difference, the turbine difference term, η̃2-1(·), no longer needs to
be non-negative; in fact, it can be positive, zero, or negative. But the wake
power loss terms, ω1 and ω2, are still supposed to be non-negative. As such,
the power difference model in Eq. 8.6 becomes a spline model with the non-
negativity constraint imposed on ω1 and ω2. The resulting model is referred
to as the thin plate regression spline model with non-negativity (TPRS-N).

To estimate the spline-based power difference model, Hwangbo et al. [98]
follow the generalized additive model (GAM) scheme [87]. GAMs represent
a univariate response as an additive sum of multiple smooth functions, each
having its own predictor variables. Estimation of GAMs can be performed



Wake Effect Analysis � 227

by implementing the backfitting algorithm for which each smooth function is
fitted for the residuals of all the others, iteratively one at a time until the
fitted functions converge.

The learning formulas for smoothing spline and thin plate splines follow
the regularized learning formulation in Eq. 5.20. Because of the use of the
iterative backfitting algorithm, y is replaced by the residual variable r in
that formulation. When the algorithm starts, the residual r is the same as
y (differing by the average of y). When the algorithm proceeds, the residual
from the preceding steps is used in the learning formulation, instead of the
original y.

Consider n data pairs for which a residual r is paired with x, i.e., (xi, ri)
for i = 1, . . . , n. The formula for the smoothing spline can be found in Eq. 5.22
in which yi is replaced by ri. For thin plate splines with two predictors, x1 and
x2, the first part of the loss function is the same as in the smoothing spline,
but the penalty function reads as

Penalty(g) =

∫ ∫
R2

[(
∂2g(x)

∂x21

)2

+ 2

(
∂2g(x)

∂x1∂x2

)2

+

(
∂2g(x)

∂x22

)2 ]
dx1 dx2. (8.7)

For the smoothing splines, let us express the corresponding g(x) as (recall
Exercise 5.4)

g(x) =

n∑
j=1

hj(x)βj , (8.8)

where hj(x) is the jth basis function of a natural cubic spline and βj is the
corresponding coefficient. Then, Eq. 5.22 can be expressed as

argmin
β

(r−Hβ)T (r−Hβ) + γβTΩhβ, (8.9)

where H is a matrix whose (i, j)th element is hj(xi) and Ωh is a matrix derived
from h(·) (therefore the subscript) whose (j, k)th element is

∫
h′′j (t)h′′k(t)dt.

The solution is
β̂ = (HTH + γΩh)−1HT r. (8.10)

Different from the smoothing splines, the g(x) of the thin plate splines is
expressed as

g(x) = Xβ(tp) +
n∑
i=1

δiφ(‖x− xi‖),

where the n× 3 matrix X = [1n;x1;x2] includes the unit vector of size n as
its first column and the n observations for the two covariates as its second
and third columns, and φ(‖x−xi‖) is a radial basis function. Here the radial
basis function is involved because analysts find that thin plate splines have
a natural representation in terms of radial basis functions [228]. The three-
dimensional vector β(tp) and the n-dimensional vector δ = (δ1, . . . , δn)T are,
respectively, the coefficients associated with X and those associated with the
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radial basis functions, and both sets of coefficients need to be estimated. The
superscript “tp” is added to β to differentiate this vector in the thin plate
splines from that in the smoothing splines.

Using the thin plate spline’s g(x) and its penalty function (as in Eq. 8.7)
in a regularized learning formulation, like in Eq. 5.22, leads to the estimation
of the model coefficients in the thin plate spline. It turns out (details skipped)
that the solution is equivalent to solving

min ‖r−Xβ(tp) −Φδ‖2 + γδTΦδ, subject to XT δ = 0, (8.11)

where Φ is the radial basis matrix, defined by Φji = φ(‖xj − xi‖) = ‖xj −
xi‖2 log‖xj − xi‖ for i, j = 1, . . . , n.

Different from the univariate spline problem that can be solved by O(n)
operations, the computations for the thin plate splines require O(n3) opera-
tions [87]. To overcome the computational problem, Wood [228] proposes the
thin plate regression splines (TPRS), which uses only k eigenbasis functions
(k � n) corresponding to the largest k eigenvalues of the basis matrix Φ.
Doing so reduces the rank of the basis matrix significantly.

TPRS can be fitted as follows. First, applying the eigen decomposition
of Φ leads to Φ = UΛUT where Λ is a diagonal matrix whose diagonal
elements are the eigenvalues of Φ and arranged in a non-increasing order, i.e.,
Λi,i ≥ Λi+1,i+1 for i = 1, . . . , n− 1. Matrix U is an orthogonal matrix whose
columns are the eigenvectors ordered accordingly. Then, TPRS considers the
first k columns of U, denoted by Uk, and uses them to construct a rank k
eigenbasis matrix Φk = UkΛkU

T
k , where Λk is a k×k diagonal matrix taking

the first k rows and columns of Λ.
By restricting δ in the column space of Uk, i.e., let δ = Ukδk, Eq. 8.11

becomes

min ‖r−Xβ(tp) −UkΛkδk‖2 + γδTk Λkδk subject to XTUkδk = 0.

In expressing the above equation, one needs UT
kUk = I, which is true, due to

the fact that columns in Uk are orthogonal by construction.
The constrained problem can be replaced by an unconstrained problem

through the QR decomposition of UT
kX. Specifically, form a Zk that takes the

last k − 3 columns of the orthogonal factor of the decomposition. Restricting
δk to the column space of Zk by letting δk = Zkδ̃ renders the constraint
satisfied. Then, the rank-k approximation can be used to fit TPRS by solving

min ‖r−Xβ(tp) −UkΛkZkδ̃‖2 + γδ̃TZTkΛkZkδ̃, (8.12)

for the unknown β(tp) and δ̃. The prediction for any given x can be achieved
by calculating δ̂ = UkZkδ̃ and plugging δ̂ and β̂(tp) into

ĝ(x) = Xβ̂(tp) +
n∑
i=1

δ̂iφ(‖x− xi‖). (8.13)
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Recall that the wake power loss term, ωt, is assumed non-negative to be
consistent with the physical understanding of the wake effect, but the modeling
procedure of TPRS does not guarantee non-negativity. In order to make sure
the wake power loss is indeed non-negative, Hwangbo et al. [98] apply an
exponential transformation on top of the conventional TPRS estimation in
Eq. 8.13, i.e., let

ω̂(x) = exp

{
Xβ̂(tp) +

n∑
i=1

δ̂iφ(‖x− xi‖)

}
. (8.14)

Because of this change, instead of solving Eq. 8.12, one now aims at solving

min
∥∥∥r− exp

{
Xβ(tp) + UkΛkZkδ̃k

}∥∥∥2

+ γδ̃Tk ZTkΛkZkδ̃k, (8.15)

with respect to β(tp) and δ̃k.
When estimating a GAM, a constant term generally precedes the func-

tional terms, and is estimated by using the global mean. In other words, the
global mean is calculated and subtracted from the response in advance, before
implementing the backfitting algorithm that estimates the rest of the func-
tional terms. In the power difference model in Eq. 8.6, this constant term
should be part of the turbine-difference term, η̃(·), meaning that a portion of
the turbine difference is constant regardless of the wind conditions, while the
other portion may change with the wind speed. For the implementation of the
backfitting algorithm, Eq. 8.6 is re-expressed as

ỹ = α+ [η̃(V )− α]− ω1(V,D) · 1D1
(D) + ω2(V,D) · 1D2

(D) + ε̃. (8.16)

One proceeds to estimate α using the global mean and estimate [η̃(V )− α]
using a cubic smoothing spline (and the wake loss terms using TPRS-N). Once
all the functional terms are estimated, η̃(V ) is restored by α̂ + η̂(V ) where
η̂(V ) is the estimate of [η̃(V )− α].

Before implementing the backfitting algorithm, some tuning parameters
need to be set, including the smoothing parameter γ and the value of the
reduced rank k used for improving the computational efficiency of TPRS-N.
There are in fact three γ parameters, one each for the three smooth function
estimations, associated, respectively, with η̃(·) and ω(·)’s. They are chosen
based on a 10-fold cross validation while applying grid search. For the reduced
rank k, Wood [228] states that the choice of k is not so critical as long as it
is larger than the degrees of freedom required for the estimation. Hwangbo
et al. [98] set k = 30 which turns out to be large enough for the wake effect
analysis application. Finally, Hwangbo et al. set a threshold, ε0 = 0.1, which
determines the convergence of the model fitting. The choice of 0.1 is believed
to be sufficiently small considering the magnitude of the functional estimates
changing exponentially due to the imposition of non-negativity.

The backfitting algorithm for the power difference model is summarized in
Algorithm 8.2.
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Algorithm 8.2 Backfitting algorithm for wake power loss estimation.

1: Initialize:
m← 0; α̂←

∑n
i=1 yi/n; η̂m ← 0; ω̂m1 ← 0; ω̂m2 ← 0

2: repeat
3: Set m← m+ 1.
4: Estimation of η̂

5: Calculate partial residuals: rη ← y − α̂+ ω̂m−1
1 − ω̂m−1

2 .
6: Set η̂m by fitting smoothing spline to rη with respect to V.

7: Estimation of ω̂1

8: Calculate partial residuals: rω1
← −(y − α̂− η̂m − ω̂m−1

2 ).
9: Set ω̂m1 by fitting thin plate regression spline with non-negativity

to rω1
with respect to V and D for the data whose D ∈ D1.

10: Estimation of ω̂2

11: Calculate partial residuals: rω2 ← y − α̂− η̂m + ω̂m1 .
12: Set ω̂m2 by fitting thin plate regression spline with non-negativity

to rω2
with respect to V and D for the data whose D ∈ D2.

13: Computation of convergence criterion

14: ∆← ||η̂
m − η̂m−1||+ ||ω̂m1 − ω̂m−1

1 ||+ ||ω̂m2 − ω̂m−1
2 ||

||η̂m−1||+ ||ω̂m−1
1 ||+ ||ω̂m−1

2 ||
.

15: until ∆ ≤ ε0 where ε0 is a prescribed threshold.

8.5 GAUSSIAN MARKOV RANDOM FIELD MODEL
The spline-based wake model in the preceding section is a single-wake model.
You et al. [232] present a Gaussian Markov random field (GMRF) model that
makes use of the spatial correlations among multiple turbines located close to
one another and estimates simultaneously the heterogeneous power outputs
from multiple turbines and the wake interactions. Apparently, this GMRF
model is capable of modeling circumstances involving more than single wakes.

You et al. [232] do not directly model the wake loss, but model the power
output with both a global term and a local term. The global term charac-
terizes the average power production behavior of the turbines on a farm, as
a function of environmental covariates, x, similar to the power curve models
presented in Chapter 5, whereas the local term characterizes the turbine-to-
turbine variability unique to that specific turbine location and its neighboring
turbines. The global term is not exactly the same as the power curve model.
The difference is that the global term uses the same coefficient vector, β, for all
turbines on a farm, whereas the power curve model in Chapter 5 is supposed
to be turbine specific; see also Exercise 8.2.

The GMRF model could be used to estimate the wake power loss indirectly
by taking the difference of the maximum fitted value among all turbines and
the power output fitted to a specific turbine. Please note that the GMRF
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model does not impose the constraint that the wake power loss should be
non-negative.

The GMRF model takes the model structure as

yt = G(x,β) + L(x, ζt) + εt, t = 1, . . . , N, (8.17)

where G(·, ·) and L(·, ·) are the global and local terms, referred to, respectively,
in the preceding paragraph. Consider q input variables in x = (x1, . . . , xq)

T .
You et al. [232] model G(·, ·) as an additive model of q terms, each of which
is a set of univariate B-spline functions taking one of the input variables in x
as its input. Specifically, You et al. express

G(x,β) = G1(x1,β
(1)) + · · ·Gj(xj ,β(j)) + · · ·Gq(xq,β(q)), (8.18)

where Gj(xj ,β
(j)) is further written as

Gj(xj ,β
(j)) =

K(j)∑
k=1

β
(j)
k g

(j)
k (xj),

and the superscript, (j), is used to indicate that the B-spline basis functions
are for the j-th input variable xj , K

(j) is the number of the basis functions,

g
(j)
k (·) is the k-th univariate, global-term B-spline basis, as a function of xj ,

and β
(j)
k is the k-th spline regression coefficient.

The local term is likewise modeled as

L(x, ζt) = L1(x1, ζ
(1)
t ) + · · ·Lj(xj , ζ(j)

t ) + · · ·Lq(xq, ζ(q)
t ), (8.19)

where Lj(xj , ζ
(j)
t ) is further expressed as

Lj(xj , ζ
(j)
t ) =

K(j)∑
k=1

ζ
(j)
t,k l

(j)
k (xj),

and l
(j)
k (·) is the k-th univariate, local-term B-spline basis, and ζ

(j)
t,k is the k-th

spline regression coefficient but specific to turbine t.

You et al. [232] treat ζ
(j)
t as a random effect term and model it using

GMRF. To reduce the modeling complexity, they further decompose ζ
(j)
t into

ζ
(j)
t = η

(j)
t ζ(j),

where the scalar term, η
(j)
t , captures the variations among individual turbines,

while the vector term, ζ(j), becomes turbine-independent. With this decom-

position, ζ
(j)
t,k in Eq. 8.19 can be expressed as ζ

(j)
t,k = η

(j)
t · ζ

(j)
k . The scalar

random effect term, η
(j)
t , is modeled by

η
(j)
t |{η

(j)
t′ : t′ ∈ Nt} ∼ N

(∑
t′∈Nt

ct,t′η
(j)
t′ , τ

2
j

)
, (8.20)
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where Nt denotes the neighborhood of turbine t, ct,t′ captures inter-
dependence between turbines t and t′, and τ2

j is the variance for this condi-
tional normal distribution, associated with the j-th input variable. Following
the approach proposed in [115], You et al. [232] use the directional spatial
dependence intensity to model ct,t′ as

ct,t′ = α1 sin2(θt,t′)

(
1

dt,t′

)h
+ α2 cos2(θt,t′)

(
1

dt,t′

)h
, (8.21)

where dt,t′ is the distance between the two turbines in question, θt,t′ is the
angle between the wind direction and the line connecting turbine t and turbine
t′, α1 and α2 are the coefficients to be estimated by data, and h is a shape
parameter, set to 0.5 by You et al. in their applications.

While implementing the method for wind applications, You et al. [232]
include two primary inputs, wind speed and turbulence intensity. The global
term in their GMRF model uses a B-spline function with degree 2 or higher
for the wind speed input and a B-spline function of degree 1 or 2 for the
turbulence intensity input. The local term uses B-spline functions of degree
equaling to or smaller than their counterparts in the global term. In defining
the knots for wind speeds, You et al. set five equal-distanced knots between 5
m/s and 17.5 m/s, resulting in four internal knots, respectively, at 7.5 m/s, 10
m/s, 12.5 m/s, and 15 m/s. In defining the knots for turbulence intensity, You
et al. set two internal knots, with equal distance, in the turbulence intensity
data range observed in their dataset. The turbulence intensity data range is
[0.2, 1.5], which yields two knots at 0.63 and 1.07, respectively.

The GMRF also needs to define a neighborhood, Nt, for each turbine t.
You et al. [232] primarily use the first-order neighborhood turbines, which are
defined as the eight nearest turbines surrounding turbine t.

You et al. [232] estimate the model parameters through a Bayesian hier-
archical inference framework that is numerically solved by a Markov chain
Monte Carlo (MCMC) sampling procedure. We will discuss MCMC more in
Chapter 10.

8.6 CASE STUDY
8.6.1 Performance Comparison of Wake Models
In this section, a few wake models are compared in terms of their prediction
performance of the power difference. Because directly measuring the actual
wake power loss is difficult, the prediction or estimation of the power dif-
ference becomes an important proxy alluding to a model’s capability of ac-
counting for the wake effect in wind power production. Furthermore, power
difference prediction could be in and by itself useful in a number of wind en-
ergy applications—for instance, the turbine upgrade quantification discussed
in Chapter 7.
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FIGURE 8.6 Locations of the six pairs of wind turbines and three met

masts. The distances along both axes are expressed as a multiple of

the rotor diameter of the turbines. All turbines have the same rotor

diameter. (Reprinted with permission from Hwangbo et al. [98].)

TABLE 8.1 Between-turbine distances and relative positions of the six pairs
of turbines. Bearing 1 to 2 indicates a relative direction of Turbine 1 to the
location of Turbine 2, and Bearing 2 to 1 is similarly defined.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Between-turbine

6.8R 7.6R 8.4R 8.2R 8.2R 7.8R
distance
Bearing 1 to 2 (◦) 307.1 308.7 302.6 325.0 288.3 294.2
Bearing 2 to 1 (◦) 127.1 128.7 122.6 145.0 108.3 114.2

Source: Hwangbo et al. [98]. With permission.

This study uses the Wake Effect Dataset. Fig. 8.6 shows the relative lo-
cations of the six pairs of turbines and three met masts. The circle around each
turbine is the 20R radius from, or the ten times rotor diameter centering at,
the turbine. All turbine pairs happen to have the northwestern-to-southeastern
orientation. Hwangbo et al. [98] designate, for all turbine pairs, the turbine
on the northwestern side as Turbine 1 and the one on the southeastern side
as Turbine 2.

Table 8.1 provides the between-turbine distances, in terms of a multiple of
the rotor radius, and the relative positional angles between a pair of turbines.
Based on the specific relative positions between a pair of turbines and the
notations illustrated in Fig. 8.5, one can divide wind direction into two distinct
sectors of D1 and D2 for each turbine pair. For a wind direction D ∈ D2,
Turbine 1 is wake free and Turbine 2 is in the wake, whereas for D ∈ D1,
Turbine 2 is wake free and Turbine 1 is in the wake.
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TABLE 8.2 Comparison of prediction error in terms of RMSE. The value in the
table is the power difference relative to the maximum power of the turbine. The
boldface values are the smallest in each column.

RMSE
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

Jensen’s model 0.1103 0.0887 0.1109 0.0971 0.0956 0.1020
GMRF 0.0846 0.0752 0.0888 0.0797 0.0798 0.0877
Binning 0.0778 0.0667 0.0818 0.0800 0.0706 0.0751
TPRS-N 0.0668 0.0627 0.0802 0.0758 0.0683 0.0699

Source: Hwangbo et al. [98]. With permission.

TABLE 8.3 Comparison of prediction error in terms of MAE. The value in the
table is the power difference relative to the maximum power of the turbine. The
boldface values are the smallest in each column.

MAE
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

Jensen’s model 0.0544 0.0530 0.0673 0.0570 0.0631 0.0565
GMRF 0.0484 0.0469 0.0568 0.0470 0.0497 0.0544
Binning 0.0434 0.0435 0.0532 0.0504 0.0489 0.0457
TPRS-N 0.0375 0.0408 0.0523 0.0477 0.0447 0.0434

Source: Hwangbo et al. [98]. With permission.

Hwangbo et al. [98] evaluate the performance of a model with respect to
its out-of-sample prediction errors. For this, each turbine pair’s annual data
are split into training and test subsets by a ratio of 80:20. In other words, 80%
of a given dataset are randomly selected to train the model and the remaining
20% are used to calculate the prediction error. To measure the prediction
error, Hwangbo et al. use both RMSE and MAE.

This section presents a performance comparison of four methods: Jensen’s
model, the data binning approach, the GMRF model, and the TPRS-N wake
model, all under the single-wake situations.

Tables 8.2 and 8.3, respectively, present the RMSE and MAE values for the
four methods and six turbine pairs. Relative to the Jensen’s model, three data-
driven methods significantly reduce the level of uncertainty by accounting for
the variation observed in the data.

Recall that GMRF is not specifically developed for the single-wake situa-
tion. By construction, GMRF is designed to perform well with more turbines
since it benefits from the spatial modeling of multiple turbines at different
locations. Understandably, the method loses some of the benefits when being
applied to a single pair of turbines. Still, the method shows significant im-
provement with, on average, an 18% reduction in RMSE and 14% in MAE as
compared to Jensen’s model.

The data binning approach, while fitting the trend of data without any
restriction, in fact attains competitive prediction errors. This should not come
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as a surprise, as the binning approach is nonparametric and can adapt to local
data features, as long as one uses a small enough binning resolution and there
are dense enough data points to fit the binning model. The data binning
approach is competitive in terms of out-of-sample prediction when compared
with GMRF. The fact that its RMSE and MAE are larger than those of the
TPRS-N model suggests, however, that the data binning approach overfits the
(training) data. Another shortcoming of the data binning approach is that it
is less insightful at providing wake characteristics.

The TPRS-N wake model, having incorporated physical constraints on
wake power losses, demonstrates its superiority over other alternatives in terms
of the prediction error of the power difference. It yields the smallest RMSE
values across all six turbine pairs and the smallest MAE values for five among
the six pairs. Its RMSE (MAE) is, on average, 30% (24%) smaller than that
of Jensen’s model, 15% (12%) smaller than GMRF, and 6% (7%) smaller than
the data binning approach.

8.6.2 Analysis of Turbine Wake Effect
This section presents a study that quantifies annual wake power loss in actual
wind turbine operations. Quantification of the wake power loss based on an
annual period supports economic assessment of wake effect in terms of AEP.
Doing so also provides practical insights into the economic impact of decisions
and actions attempting to alleviate the wake power loss.

Fig. 8.7 illustrates the estimated wake characteristics using the Wake

Effect Dataset. The wake loss is supposed to be strictly positive. What
is shown in the plot is actually −ω̂1(V,D) · 1D1

(D) + ω̂2(V,D) · 1D2
(D), so

that one sees both positive and negative portions. The raw power differences
of some pairs of turbines, when plotted against wind direction, exhibit large
variation with several peaks and troughs. Even under such a noisy circum-
stance, the TPRS-N wake model captures the wake power loss signals well, by
focusing on where the wake power loss is expected. In the figure, the vertical
dashed lines indicate the bearings, i.e., θ1 = 0 or θ2 = 0.

Comparing Fig 8.7, bottom-left panel, to Fig. 8.4 (both generated from
Pair 5), it is obvious that the TPRS-N wake loss estimation method captures
the signals much better than the data binning approach could, making the
subsequent derivation of the wake characteristics more convincing. One may
also observe from Fig. 8.7 that the wind direction associated with the highest
power loss is not exactly aligned with the bearings of the turbine pairs. This
implies that there are measurement errors in wind direction. When applying
the data binning approach, analysts typically generate angle bins starting
from a bearing by making it the midpoint of an angle bin (and propagate
with a resolution of 5 degrees, for example) and then regard the wake loss
estimate of this specific bin as the wake depth. It turns out that, in the
presence of measurements errors in wind direction, such a practice has an
obvious disadvantage and will likely underestimate the wake depth due to the
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Observations
Fitted wake effects
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Observations
Fitted wake effects
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Observations
Fitted wake effects
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Observations
Fitted wake effects
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Observations
Fitted wake effects
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FIGURE 8.7 Estimates of the wake effect using the TPRS-N model. From

top-left to bottom-right are, respectively, the estimation for Pair 1

through Pair 6. The shaded areas represent the fitted wake loss in

terms of −ω̂1(V,D) · 1D1
(D) + ω̂2(V,D) · 1D2

(D). Two dashed vertical

lines indicate wind direction that is parallel to the line connecting the

pair of turbines. (Reprinted with permission from Hwangbo et al. [98].)
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TABLE 8.4 Wake depth and width for the six pairs of turbines.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

Depth: Turbine 1
41.6% 35.4% 26.6% 26.3% 40.0% 39.1%

(60.2%) (41.8%) (36.8%) (41.1%) (43.8%) (44.3%)

Depth: Turbine 2
50.9% 29.2% 43.5% 33.5% 31.1% 42.1%

(56.2%) (33.6%) (44.8%) (44.8%) (44.5%) (47.9%)

Width: Turbine 1 40.1◦ 42.7◦ 57.8◦ 51.6◦ 41.6◦ 57.5◦

Width: Turbine 2 57.0◦ 52.8◦ 44.7◦ 45.6◦ 47.0◦ 49.9◦

discrepancy between a bearing and the actual wind direction with the highest
wake loss—see Fig. 8.7, middle-right panel, for an extreme example.

Table 8.4 shows the wake characteristics for the six turbine pairs. The
first two rows are the estimates of wake depth, namely the magnitude of the
wake power losses. The last two rows are the estimates of wake width. The
wake depth is identified as the peak of the wake loss estimate representing the
maximum power loss. The wake width is supposed to be determined by the
angles around the bearings at which the power loss eventually becomes zero.
However, given noisy signals spreading over a large range of wind directions,
the fitted wake power loss is not completely zero even in the regions where it
is unquestionably wake free. To estimate the wake width, Hwangbo et al. [98]
use the range of wind direction for which loss is greater than 1% of the rated
power of the turbine. For the wake depth, Table 8.4 presents two percentage
values for each turbine. The one outside the parenthesis is the wake power
loss relative to the rated power of that turbine, whereas the one inside the
parenthesis is the loss relative to the free-stream equivalent power output.

In the literature, the wake power loss is often expressed as the ratio of the
loss over the free-stream equivalent power output [2, 13, 85], which can be
computed by

ω̂t(Vi, Di)

ŷt(Vi, Di) + ω̂t(Vi, Di)
, t = 1, 2, i = 1, . . . , n, (8.22)

where ŷt(Vi, Di) denotes the expected power generation given (Vi, Di). De-
pending on (Vi, Di), ŷt(Vi, Di) could be the expected power in the wake of
another turbine, so that the free-stream equivalent power output is to be re-
covered by adding ŷt(Vi, Di) and ω̂t(Vi, Di). To calculate ŷt(Vi, Di), Hwangbo
et al. [98] define a neighborhood of (Vi, Di), i.e., Ni = {(V,D) : V ∈
(Vi − εV , Vi + εV ], D ∈ (Di − εD, Di + εD]}, and compute ŷt(Vi, Di) by taking
the average of the power outputs whose corresponding wind speed and direc-
tion is a member of Ni. This is a two-dimensional binning with 2εV and 2εD
as the respective bin width, where εV and εD are predetermined constants. In
this application, Hwangbo et al. set εV = 0.25 m/s and εD = 2.5◦. The second
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TABLE 8.5 Annual power loss for the six turbine pairs.

Percentage measure (%)
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

Turbine
0.26 1.10 0.21 -1.40 3.41 0.94

difference (η̃2-1)

Wake loss: 0.85 0.78 0.51 0.64 0.59 0.66
Turbine 1 (ω1) (1.67) (1.62) (1.13) (1.42) (1.27) (1.33)

Wake loss: 2.00 1.24 1.39 1.11 1.01 1.75
Turbine 2 (ω2) (4.04) (2.69) (3.15) (2.40) (2.36) (3.68)

Average wake loss 1.43 1.01 0.95 0.88 0.80 1.20
for the pair (2.84) (2.14) (2.13) (1.92) (1.19) (2.48)

percentage values in Table 8.4, i.e., the ones inside the parentheses, are the
wake power loss expressed in this conventional fashion.

The peak power loss relative to the free-stream equivalent (the value inside
the parenthesis) ranges from 34% to 60%. The wake width for the 12 turbines
ranges from 40◦ to 58◦ with concentration around 40◦–53◦. The wake depth
commonly stated in the literature is in the range of 30%–40% [12, 14, 192],
which appears to be at the lower side of the spline wake model-based estimates.
In addition, the new wake width estimates are noticeably larger than the 25◦

to 40◦ range stated previously [14, 146, 215]. The difference can be attributed
to two major factors. The first one is that the new estimation can identify
the wake region more accurately, producing better estimates of the two main
characteristics, whereas the methods in the literature rely on ad hoc data
segmentation and partition and often use a partial set of data based on a pre-
selected range of wind direction. Consequently, the previous wake power loss
estimates do not capture the characteristics as well as the new estimator does.
The second factor is that the historical estimates are usually the averages over
multiple turbines, understandably leading to a narrower range.

Table 8.5 shows how each term in the power difference model of Eq. 8.6
affects the power generation of a turbine pair in an annual period, namely
the AEP power difference or AEP loss. The first row is the between-turbine
power production difference independent of wake effect, expressed relative to
the rated power. The second and third rows present the wake loss. Similar to
Table 8.4, the values outside the parentheses is the loss relative to the rated
power, whereas the values inside the parentheses is the loss relative to the
free-stream equivalent. Both percentages represent the AEP wake loss but use
different baselines.

The wake loss relative to the rated power is in fact related to the capacity
factor of a wind turbine. Recall that the capacity factor is the ratio of the
actual power production of a turbine for a selected period of time, say, one
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year, over the supposed power production the turbine could have produced,
had it operated at its maximum capacity (i.e., at the rated power) all the time;
the typical range of the capacity factor is 25%–35%. The wake loss relative to
the rated power, therefore, can be seen as the direct reduction to a turbine’s
capacity factor. Hwangbo et al. [98] refer to the corresponding AEP loss as the
capacity factor AEP loss and refer to the AEP loss relative to the free-stream
equivalent as the traditional AEP loss. The traditional AEP loss is computed,
if using Turbine 1 group as an example, by∑n

i=1 ω̂1(Vi, Di)∑n
i=1 {ŷ1(Vi, Di) + ω̂1(Vi, Di)}

. (8.23)

The fourth row is the average AEP wake loss for a pair of turbines. The
average is weighted by the number of data points in the respective wake regions
to account for the annual distribution of the AEP loss for the turbine pairs.
For this reason, the values in the fourth row may be slightly different from
the simple average of the two individual losses. The average traditional AEP
loss for a pair is computed by∑n

i=1 {ω̂1(Vi, Di) + ω̂2(Vi, Di)}∑n
i=1 {ŷ1(Vi, Di) + ω̂1(Vi, Di) + ŷ2(Vi, Di) + ω̂2(Vi, Di)}

. (8.24)

The average capacity factor AEP loss is computed by setting the denomi-
nator in the above equation to be

∑n
i=1 {(rated power) + (rated power)} =

2n · (rated power).
From Table 8.5, one may notice that the magnitude of the between-turbine

difference is sizeable, sometimes even larger than that of the wake effect. This
result suggests that modeling of the between-turbine difference as a separate
term in the power difference model is important to the mission of estimat-
ing the wake effect; otherwise, the estimate of the wake effect can be biased
considerably.

One can immediately observe that the AEP losses are much smaller than
the peak power loss (wake depth). This is expected because the annual loss
is the average over all kinds of wind speed and direction conditions in an
entire year. Under many circumstances, the wake loss is much smaller than
the peak loss. The capacity factor AEP loss is between 0.5–2.0%, meaning that
if the turbine’s actual capacity factor is 25%, then its ideal capacity factor, if
the turbine always operated wake free, could have been 25.5% to 27%. This
difference, while appearing as a small percentage, should not be taken lightly.
Consider a wind farm housing 200 turbines all in the 2 MW turbine class.
A 1% capacity factor AEP loss for the whole farm translates to $1.3 million
annual loss in revenue at the wholesale price of $37 per MWh.

One may also notice that the wake loss endured by Turbine 2 in a pair is
always greater than that of Turbine 1. This can be explained by the relative
positions of the turbines and the prevailing wind direction over this farm dur-
ing that particular year. Fig. 8.8 presents the wind rose plots for three pairs of
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FIGURE 8.8 Wind rose plots illustrating the relative frequency of incom-

ing wind for different direction sectors and for different speed ranges.

Top-left panel for Pairs 1 and 2; top-right panel for Pairs 3 and 4;

and bottom panel for Pairs 5 and 6. (Reprinted with permission from

Hwangbo et al. [98].)
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FIGURE 8.9 Relation between AEP losses and turbine spacing. Left

panel: for the capacity factor AEP loss; right panel: for the traditional

AEP loss. The between turbine distance is expressed as a multiple

of the rotor diameter. (Adapted with permission from Hwangbo et

al. [98].)

the turbines. The plots show that the northwestern wind, for which Turbine 2
of each pair endures power loss, is more frequent and stronger than the south-
eastern wind for which Turbine 1 experiences power loss. Unsurprisingly, the
AEP loss of Turbine 1 group is usually less than 0.85% (1.67%), whereas the
AEP loss for Turbine 2 group is greater than 1.01% (2.36%) and can be as
high as 2% (4.04%).

In the literature, it is well known that turbine spacing is a decisive factor
affecting the magnitude of wake power loss [13, 129, 192]. Hwangbo et al. [98]
conjecture that the variation of the annual power loss between the individual
turbine pairs can be explained by the between-turbine distance of each pair.
Using the average AEP loss for the six turbine pairs (the fourth row in Ta-
ble 8.5) and the corresponding between-turbine distances, they fit a simple
linear regression model as has been done in [13].

Fig. 8.9 shows the scatter plots and the regression line fitting a respective
AEP loss. For the capacity factor AEP loss, the p-values of the intercept and
slope estimate are 0.005 and 0.013, respectively. For the traditional AEP loss,
the corresponding p-values are 0.006 and 0.022. These results confirm that
the turbine spacing indeed by and large explains the pair-wise difference in
the AEP losses. An extrapolation based on the fitted regression lines suggests
that the wake loss would diminish after the turbine spacing reaches either
5.3 or 5.7 times the rotor diameter, depending on which AEP loss is used in
the analysis. Nevertheless, in either circumstance, the 10 times rotor diameter
separation used in this study to isolate a particular turbine pair from the rest
of turbines appears safe enough to render the turbine pairs free of wake of any
other turbines on the wind farm.
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Regressing the turbines’ inherent production difference (the first row in
Table 8.5) on the between-turbine distance, on the other hand, suggests that
there is no significant correlation between them. The p-values of the intercept
and slope estimate in this case are 0.81 and 0.77, respectively. Unlike the wake
effect, the between-turbine production difference does not seem to be affected
by the between-turbine distance, much as expected.

GLOSSARY
AEP: Annual energy production

CFD: Computational fluid dynamics

GAM: Generalized additive model

GMRF: Gaussian Markov random field

IEC: International Electrotechnical Commission

MAE: Mean absolute error

MCMC: Markov chain Monte Carlo

RMSE: Root mean squared error

TPRS: Thin plate regression spline

TPRS-N: Thin plate regression spline model with non-negativity constraint

EXERCISES
8.1 In Section 8.6.1, Jensen’s model is used in the form of Vwake = (1 −

κdeficit) · V with κdeficit being set to 0.075. What if Jensen’s model used
in the comparison follows Eq. 8.1 instead? Can you update the power
difference prediction result in Tables 8.2 and 8.3?

8.2 One modeling strategy mentioned and compared with by both Hwangbo
et al. [98] and You et al. [232] is the individual turbine power production
model, very much like the power curve model introduced in Chapter 5.
The individual turbine model in Hwangbo et al. [98] and You et al. [232]
is referred to as IND and follows the model structure of

yt = G(x,βt) + εt,

which appears similar to the global term in Eq. 8.17 but here βt is
no longer the same for all turbines but tailored to individual turbines.
For model performance comparison with IND, please refer to [98, Table
3]. In this exercise, please use the AMK model (Section 5.2.3) as the
individual turbine power production model. This is to say, fit the AMK
model to two turbines in a pair, respectively, and then compute the
power difference. Compare this AMK-based IND model performance
with other methods in Tables 8.2 and 8.3.
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8.3 In Section 8.6.1, when the data binning approach is applied, the wind
speed range used in Step 2 is the whole wind speed spectrum. Please
use a narrower wind speed range instead and see what difference this
change makes in terms of the power difference prediction errors. Two
narrower wind speed range options mentioned in Section 8.3 are: (a) 8.0
± 0.5 m/s and (b) 5.0–11.0 m/s. Furthermore, please investigate the
sensitivity of the data binning approach to the width of wind direction
bins. Try and compare the bin-width options of 2.5◦, 5◦ (the current
option), 10◦, and 15◦, in terms of power difference prediction errors.

8.4 In Section 8.6.1, Jensen’s model is paired with the IEC binning power
curve model to compute the power output. What if the IEC binning
power curve model is replaced with the AMK-based power curve model
(Section 5.2.3)? Conduct the numerical analysis and see how much it
affects the power difference prediction errors.

8.5 In Section 8.6.2, a linear regression model is built to regress the average
wake power loss on the between-turbine distances. It was also men-
tioned there that one can regress the between-turbine difference, η̃, on
the between-turbine distances and would not find significant correlation
between the input and output. Please build the linear regression model
and present the scatter plot and the line fit like those in Fig. 8.9.

8.6 Use the Wake Effect Dataset and the spline-based single-wake model
to investigate the sensitivity of parameter k in that model. Try five
different k values: 10, 20, 30, 40, and 50. Please present a plot displaying
how the RMSE and MAE values vary with different k values. What
conclusion do you draw from the plots?

8.7 Chapter 6 considers the problem of shape-constrained curve fitting, in
which an S-shape constraint is imposed. Chapter 8 considers the problem
of sign-constrained curve fitting, in which a non-negativity constraint is
imposed. In some circumstances, a shape constraint can be expressed
as a sign constraint under a functional transformation, and vice versa.
Please show that shape constraints like monotonicity, convexity, or con-
cavity can be expressed as a sign constraint of non-negativity or non-
positivity. Please state clearly what type of functional transformation is
used to make such equivalence possible.
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C H A P T E R 9

Overview of Wind
Turbine Maintenance
Optimization

P
art III of this book discusses a few issues related to turbine reliabil-
ity management. In this part, the data science problem often concerns

modeling and estimating f(z|x), where z is the mechanical load measured at
certain critical spots on a turbine component, such as at the root of the turbine
blades. While the conditional density, f(z|x), resembles that of f(y|x), one
unique aspect in Part III is that reliability analysis focuses much more on the
tail of f(z|x), rather than on the middle region surrounding its mode. In this
sense, reliability analysis concentrates on rare events, which take place with
a rather small probability. One important branch of data science methodolo-
gies pertinent to reliability analysis is random sampling. Chapters 10 and 11
discuss, respectively, the use of Markov chain Monte Carlo methods and im-
portance sampling methods in the context of turbine blade load analysis.

Chapter 12, however, touches upon a different topic relevant to the general
theme of reliability management—anomaly detection and fault diagnosis. The
data science problem of anomaly detection and fault diagnosis falls into the
category of unsupervised learning, in which the class label of a data record is
not available. The very purpose of anomaly detection or fault diagnosis is to
recover as accurately as possible the class label for that data record, based on
observations of explanatory covariates in x. While research has been progress-
ing on anomaly detection and fault diagnosis, specialized methods targeting
wind turbines are still in great demand. One thing hindering the development
on this front, more so than the other data science aspects discussed in this
book, is the lack of availability of fault event data resulting from commercial
operations to the research community at large. The reason is rather under-
standable. Whoever owns the reliability or fault event data tends to guard
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those data diligently, as the implication of liability through reliability data is
much more direct than through environmental data (x) or power production
data (y). Sometimes, the real owner of this type of data, be it the owner/op-
erator or the turbine’s manufacturer, can also become debatable. Even if one
party may be willing to share the data with a data science research third party,
the other party may not want to divulge. The hydropower plant data used in
Chapter 12 is in fact subject to a confidentiality agreement and therefore does
not appear among the shared datasets.

Before we proceed with load analysis and anomaly detection in the latter
chapters, we start off Part III in the present chapter with a discussion of
wind turbine operations and maintenance (O&M), which is in and of itself an
important part of reliability management.

9.1 COST-EFFECTIVE MAINTENANCE
Wind turbine O&M plays an important role and accounts for a major portion
in the total cost of energy in wind power production. The US Department
of Energy’s 20%-Wind-Energy-by-2030 report [218, Figure 2-15] shows that
while the O&M cost may be as low as 0.5–0.6 cents/kWh in the early years of
a turbine’s service, it escalates to 1.8–2.3 cents/kWh after 20 years’ service.
Analysts have also realized that some early estimates of the wind’s O&M cost
may have been considerably underestimated. In 2011’s second issue of the
Wind Stats Report, William Manganaro, project manager of NAES Corpora-
tion, draws a contrast between the 2010 American Wind Energy Association
(AWEA)’s estimate of O&M cost at 2.5 cents/kWh and AWEA’s initial esti-
mate of 0.5 cents/kWh [181]. Generally speaking, the O&M cost is estimated
to account for 20–30 % of the total energy cost in the land-based, utility-scale
wind power generation [48], and for offshore wind, the cost portion of O&M
is considerably higher. Dr. Fort Felker, former Director of the National Wind
Technology Center, stated in a 2009 speech, under the heading of Critical Ele-
ments for 20% Scenario, that one such critical element is to reduce the O&M
costs by 35% from that year’s level [62]. Progresses have been made since then
but the 35% reduction is still a long way off.

Reducing the cost of O&M for wind power generation appears to be chal-
lenging. Under nonstationary loadings due to wind’s stochastic nature, a tur-
bine’s drive train, especially the gearbox, is prone to failure. Current O&M
practice is reactive in nature and depends heavily on what is commonly known
as condition-based monitoring or condition-based maintenance (CBM). The
concept of CBM is to collect the online monitoring data, and upon diagnosing
a turbine’s condition, decide whether and when maintenances are needed. A
CBM system may ignore the uncertainty in sensory information and respond
aggressively to any potential failure signals as is. Doing so of course triggers
some of the maintenance actions prematurely. Premature maintenance does
not benefit the bottom line of wind operations, and because of that, rarely is
such an overconfident approach taken in industrial practices.
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On the other side of the spectrum, due to the imperfection of current diag-
nosis and reliability assessment, compounded with the high cost to undertake
a maintenance action, there is always reluctance to take actions until perhaps
when it is too late. Scheduled maintenances are rather popular in the wind
industry, meaning that the maintenance schedules are fixed a priori, e.g., once
every six months. Scheduled maintenances are too rigid, so that it either al-
lows too many failures, if the schedules are infrequent, or costs too much, if
the schedules are too frequent. The reality is that rigid and reactive mainte-
nance approaches lead to “a prevalence of unscheduled maintenance” [182]. It
is apparent that neither the overconfident nor the overcautious approach can
produce the optimal cost structure for turbine maintenance.

A key in devising a cost-effective maintenance strategy is to handle the un-
certainty in sensory information properly and decide the course of action with-
out over-trusting, nor discrediting altogether, the information dynamically
collected. In order to compensate for the uncertainty in sensory information,
decision makers resort to crew’s on-site investigations as well as simulations of
wind farm operations, both of which are more expensive, either economically
or computationally, than just using online sensors with intermittent analysis.
A relevant question in a dynamic maintenance scheduling system is when an
on-site investigation should be triggered and how simulation outcomes can be
used together with the sensory data.

With this objective in mind, a dynamic, data-driven approach provides a
useful school of thought and points to a close coupling between modeling and
information-gathering. A data-driven approach could trigger the expensive
on-site investigations adaptively, only as needed, and dynamically update the
mathematical models by injecting the newly collected data, as appropriate.
This chapter discusses, in such a context, two turbine maintenance optimiza-
tion models, one wind farm simulator, and an approximation strategy allowing
optimization and simulation to work together in real time.

Fig. 9.1 illustrates the need for cost-effective maintenance and highlights
the pursuit of a better balance in decision making in the presence of uncer-
tainty.

9.2 UNIQUE CHALLENGES IN TURBINE MAINTENANCE
The challenges in wind turbine maintenance are primarily caused by the
stochastic nature of turbine operation conditions and the uncertainties in the
decision variables induced by the stochasticity. Because of the stochasticity,
the condition-based monitoring for wind turbine systems runs into difficulties
while attempting to pin down the occurrence and severity of a potential fault
or failure. Complicating the matter further are the weather constraints and
disruptions, as well as the logistic difficulties such as long lead time and long
service time. Not surprisingly, a poorly planned maintenance job contributes
substantially to the escalation of O&M costs of wind turbine systems.

Weather does constrain maintenance activities. To maximize power gener-
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ation potential, wind farms are built at locations with high wind. But climbing
a turbine is not allowed, due to safety concerns, when wind speed is more than
20 m/s. When the speed is higher than 30 m/s, the site becomes inaccessible.
The combination of higher failure rates and low accessibility for repairs dur-
ing windy periods exacerbates the revenue loss because that is the time when
wind turbines are supposedly to generate most of its power.

The sheer size of wind turbine components makes it difficult to store
spare parts in a warehouse waiting for repairs or replacements. Rather, the
large parts are likely ordered and shipped directly from a manufacturer when
needed. Doing so leads to long lead time in obtaining parts and can result in
costly delays in performing repairs. Pacot et al. [158] state that it may take
several weeks for critical parts, such as a gearbox, to be delivered.

The logistic difficulty in turbine maintenance is also caused by the long
distances of wind farms from their operation centers, as well as that major
repairs require heavy duty equipment, such as a crane or a helicopter, to access
the turbine. It certainly takes quite an effort to assemble the maintenance
crews and prepare for a major repair. Logistic costs may escalate substantially,
depending on the accessibility to the turbine’s site, the maintenance strategy,
and equipment availability.

The three factors, weather, component size, and distance, can become
intertwining with one another, making the already challenging situation even
more difficult. For instance, major repair of turbines usually takes weeks to



Overview of Wind Turbine Maintenance Optimization � 251

complete due to the physical difficulties of the job (size and distance). The
long duration of a repair session in fact increases the likelihood of disruption
by adverse weather.

Besides the effect of wind, as mentioned above, other environmental factors
can adversely impact a turbine’s reliability, such as extreme low temperature,
icing, and lighting strikes, or wave and corrosion for offshore turbines. A com-
prehensive discussion on this topic can be found in [27].

9.3 COMMON PRACTICES
The methods of wind turbine maintenance commence rather naturally with
analyzing the historical failure data to elucidate a component’s failure proba-
bility and then plan maintenance accordingly. These are referred to as the fail-
ure statistics-based approaches. In the meanwhile, there have been attempts
to establish reliability models, based on first principles and/or stochastic pro-
cess theories, to provide an understanding of the stochastic aging behavior
of turbine components. The recent rapid advancements in microelectronics
and sensing technology have allowed real-time measurements and analyses of
various characteristics of wind turbines during their operations—this line of
approaches is collectively referred to as condition-based maintenance.

9.3.1 Failure Statistics-Based Approaches
Failure statistics-based approaches are purely data-driven. Although often ap-
plied to individual components, this type of approach can actually be used
for the whole turbine as well. The idea is to use the historical failure data to
fit certain probability distributions, which then yield a number of commonly
used statistics such as the mean time to failure (MTTF) [82, 227]. The popular
distribution here, as in reliability analysis in general, is the Weibull distribu-
tion, which has been described in detail in Chapter 2 (Sections 2.2.2–2.2.4).
In Chapter 2, the Weibull distribution is used to model the wind speed dis-
tribution. It turns out that the Weibull distribution is also a common choice
in reliability analysis, because like wind speed, the time to failure is positive
and right skewed in distribution. In addition to Weibull distributions, ana-
lysts also use the non-homogeneous Poisson process to handle the cases where
the number of failures is provided but the time when a failure takes place is
missing [80, 210, 211]. Analysts build and run Monte Carlo-based simulation
models by making use of the statistics and distributions obtained above in
order to study or visualize the stochastic behavior of a turbine’s failures. Sim-
ulations are furthermore conducted for evaluating the effectiveness of mainte-
nance actions, assessing the impact of turbine reliability on power generation,
comparing turbine siting choices, and validating operational strategies [28].
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9.3.2 Physical Load-Based Reliability Analysis
It is desirable that a physical relationship between loads and component
failures can be established [131], a topic to be discussed in more detail in
Chapters 10 and 11. The load-based reliability analysis refers to the studies
concerning the fatigue load or extreme load, or the characterization of wake
effect. In Chapter 8, we discuss the impact of wake effect on power produc-
tion. The wake effect also has an adverse impact on turbines in the form of
an increased mechanical load. The load-based analysis has mainly concen-
trated on the structural components of a turbine, i.e., blades and the tower,
and are generally carried out offline. National Renewable Energy Laboratory
in the US and Risø National Lab in Denmark, the two leading government
organizations in wind technology, have developed their respective structural
aeroelastic codes and tools to assess the structural loads using computer-based
simulations [112, 113, 130]. The IEC publishes design standards [101] for the
structural components of a turbine.

9.3.3 Condition-Based Monitoring or Maintenance
CBM involves two necessary analyses: (a) failure modes analysis to understand
how the likely failure patterns are associated with the major components in
a turbine [177], and (b) analysis of the turbine’s operational data acquired
by in situ sensors for diagnosis and prognosis [230]. Different from the fail-
ure statistics-based approach that is done offline, CBM is conducted on a
continual, online basis. With the accumulation of online data and advance-
ment in signal analysis, the concept of prognostics and health management
has emerged, which is nonetheless within the broad scope of CBM. Although
CBM may be used for any components in a wind turbine, the current practice
mainly focuses on the drive train, where vibratory responses, acoustic emis-
sions, temperature, and lubrication oil particulate content are the common
measurements monitored. Addressing gearbox reliability is one of the major
efforts of NREL, who released the Gearbox Reliability Council’s report in
June 2011 [135].

9.4 DYNAMIC TURBINE MAINTENANCE OPTIMIZATION
The imperfection of today’s diagnosis tools is due to the fundamental limita-
tions in our knowledge of the engineering systems, sensing technologies, and
data science methods. Uncertainties are not going to disappear from diagnosis
and prognosis anytime soon, and as a consequence, analysts need to systemat-
ically address the issue of uncertainties in maintenance decision making. Gen-
eral methodologies enabling decision making under uncertainties have seen
advancements. One of them is the Markov decision process (MDP) [170], in-
cluding the partially observable MDP (POMDP) [137, 141] or hidden Markov
process [57], for handling the cases when a system’s state is not perfectly ob-
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servable due to data or model uncertainties. These methods have been used
in traditional power system reliability analysis, like for transformers [110] as
well as for wind turbines [25, 26]. The resulting dynamic models consider the
stochastic weather constraints and logistic uncertainties as mentioned earlier,
and work in an integrated framework with a wind farm simulator to guide
model updates and measurement in-taking. A general dynamic maintenance
optimization framework is illustrated in Fig. 9.2.

The dynamic maintenance optimization framework includes three impor-
tant models—two optimization models [25, 26] and a simulation model [28,
161]. The two optimization models come with different flavors: one is a static
model whose parameters stay constant, whereas the other is a dynamic model
whose parameters are adjusted responding to different seasonal weather pat-
terns. The merit of having both optimization models is that the dynamic
model, despite desirable in terms of adaptivity, is expensive to solve, because
it is difficult to extract a solution structure due to the complexity of the
model. The static model, albeit a simplification of reality, does reveal a solu-
tion structure that facilitates solving for maintenance decisions efficiently. The
wind farm simulation model is a discrete event-based model, mimicking the
operation of a wind farm with hundreds of wind turbines that may degrade
along different paths and thus need service at different times. The simulator
is specially designed to handle a large number of unorganized random events
(e.g., waiting for parts or weather disruptions) and reflect in the simulator’s
outputs the stochasticity from the operations. The dynamic maintenance op-
timization framework integrates the optimization models, the simulator, and
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the data, in a closed loop where sensor data are used to improve the modeling
analysis and prediction.

9.4.1 Partially Observable Markov Decision Process
Byon et al. [25, 26] develop maintenance optimization models based on par-
tially observable Markov decision processes. Part of the reason motivating the
use of POMDP is that a turbine’s SCADA data are noisy and the SCADA
data can, at best, provide partial information of the turbine’s health status.
In the POMDP setting, the system’s degrading condition can only be assessed
in a probabilistic sense, represented by the information state π. Suppose that
the turbine health condition can be discretized into M levels, with Level 1 be-
ing the best condition like a new turbine and M being the most deteriorated
condition right before failure. Then, the information state can be expressed as
π = [π1, . . . , πM ], and each element in the π-vector is a probability, indicating
the likelihood of the turbine being at that level. This π-vector is used as an
important input to the subsequent POMDP model, so that any decision made
is based on a probabilistic assessment, rather than the assumption of knowing
to which level the turbine has degraded.

Byon et al. [25, 26] consider L number of failure modes. Combining with
the M degradation levels, this POMDP model has a total of M+L states. Out
of the M + L states, M of them are working states and L of them are failing
states. A turbine transitions through the working states and ultimately arrives
at one of the failing states, unless some kind of intervention takes place prior to
failure. A turbine does not have to exhaust all working states before it fails—
it is possible that a turbine can fail at any working state. Once it arrives at
one of the failing states, it stays there and will not transition further to other
failing states. A turbine can only go from a failing state back to a working
state when a repair or replacement operation is carried out.

Transitions between those states are illustrated in the state transition
graph in Fig. 9.3, left panel, where Pij is the transition probability from state
i to state j. One may notice that there is no state transition between the L
failing states but there is a link between any working state to a failing state,
per discussion in the earlier paragraph.

Cost-effective maintenance trades multiple choices of action. Besides the
options of preventive maintenance (PMT) or continue with SCADA monitor-
ing, i.e., do-it-later (DIL), a possible intermediate action is to conduct on-site
visit/investigation (OVI), to find out more certainly how a turbine is oper-
ating. This on-site action is much more expensive than purely SCADA-based
monitoring, considering the long distance between a service center and a wind
farm, but less expensive than a fully blown repair job, which employs expen-
sive heavy-duty equipment and a larger crew. Other than the three options,
corrective maintenance (CMT), i.e., the reactive action once a failure has al-
ready happened, always needs to be considered. Understandably, corrective
maintenance is the most expensive among all options.
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The POMDP model takes a dynamic programming form. At time t, let
Ct(πt) denote the cost for maintenance until a terminal time (e.g., when the
turbine is decommissioned), given that its current state is πt, and let at denote
the action options at t. If one considers the three options mentioned earlier,
then at is chosen from the set of {PMT,OVI,DIL}. According to the theoret-
ical framework of POMDP [141, 170], the optimal solution regarding which
action to take can be decided based on the following optimization problem:

Ct(πt) = min
at

ct(πt, at) + γ ·
∑

πt+1∈S
P (πt+1|πt, at) · Ct+1(πt+1)

 , (9.1)

where at is the decision variable to be optimized, ct is the immediate cost
incurred by taking action at, γ is the cost discount factor due to the monetary
depreciation over time, and

S := {[π1, · · · , πM+L], s.t.
∑
i

πi = 1, πi > 0 ∀i}

is the set of information states.
The above optimization formulation is in recursive form, because the min-

imum value of Ct depends on that of Ct+1. Modeling Ct(·) and ct(·) for each
decision period involves the considerations outlined earlier, such as which ac-
tion to take and its corresponding cost, when such an action is permissible,
and how much revenue loss is incurred due to a turbine’s downtime. The so-
lution of the POMDP formulation typically starts from the terminal time,
say, at T , when CT (πT ) can be decided since the turbine is supposed to have
arrived at one of the failing states. Then the action at T − 1 can be solved,
which gives the value of CT−1(πT−1). Going further back in time solves for
the rest of actions in the turbine’s maintenance history.

Byon et al. [25, 26] consider the stochasticity resulting from waiting for
permissible weather windows and from repairing, all of which manifest as ran-
dom events to be included in the decision model; see Fig. 9.3, right panel.
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The adverse weather conditions are modeled using two prohibiting probabil-
ities: WCMT(l) as the probability that the prevailing weather conditions are

so adverse that the corrective maintenance required for the lth failure mode,
l ∈ {1, . . . , L}, is not allowed, and WPMT(m) likewise defined for a preventive

maintenance that is supposed to restore the system back to the mth degra-
dation level, m ∈ {1, . . . ,M}. The waiting periods and repair jobs are char-
acterized through a queuing model having its processing rate, respectively, of
λ(l), µCMT(l), and µPMT(m).

The costs of different actions are denoted as cOVI for on-site visit/investiga-
tion, cPMT(m) for the mth mode of preventive maintenance repair, and cCMT(l)

for corrective repair upon the lth mode of failure. During the downtime until
a repair is completed, a revenue in the amount of τt is lost.

With these parameters and settings, the cost and probability items in the
dynamic programming formulation in Eq. 9.1 can be uniquely specified. For
instance, the consequence associated with PMT(m) at time t can be expressed
as

PMTt(m) = WPMT(m)(τt + PMTt+1(m))+

(1−WPMT(m))[τt + cPMT(m) + Ct+1(em)],
(9.2)

where em is one of the extreme states of which themth element in [π1, ..., πM ] is
one and all other elements are zeros. The notation, PMT(m), denotes the cost
associated with the preventive maintenance action restoring a more degraded
turbine system to the state em. The interpretation of the above equation is
that the preventive maintenance cost at t to restore the turbine to state em
is affected by the weather condition. When the weather condition is not per-
mitting for this type of action, with a probability of WPMT(m), the preventive
maintenance action will then have to wait until the next period. While wait-
ing, the turbine incurs a production loss of τt. If the weather condition is
permitting, with a probability of 1 −WPMT(m), and the preventive mainte-
nance action is in fact completed, then the costs incurred are the production
lost during the repair period, the cost associated with the specific repair ac-
tion PMT(m), and the cost of operation for the next period with the turbine
in the state of em.

9.4.2 Maintenance Optimization Solutions
If one assumes that all the weather-associated parameters in the dynamic
programming model in Eq. 9.1 are constant over time, the solution of the
dynamic programming model then corresponds to a static maintenance sys-
tem. One may solve the optimization model offline using the value iteration or
policy iteration method [170]. The solution outcome is a decision map, allow-
ing analysts to trade off the three major maintenance actions, namely PMT,
DIL, and OVI, based on an online estimation of a turbine’s degradation status
(coded in π). This maintenance decision process is labeled static, because the
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decision map stays the same, even though the estimation of π changes (move
from πt to πt+1 over time). Fig. 9.4 illustrates how the offline optimization
and online sensory information work together.

Albeit a simplification of the reality, the static maintenance model does
allow analysts to understand the structure of the maintenance policy with
clarity. Fig. 9.5 depicts how a maintenance action is selected. Simply put, it
depends on the relative costs of the respective actions. The aging status of
the turbine system is one of the primary forces driving the cost structure.
When a turbine system is relatively new, the cost associated with DIL option
is low, as the chance that the system has a catastrophic failure is low in the
near future. As a turbine system ages, the chance of failing gets higher, and
the consequence of a failure becomes more serious. The choice between doing
an on-site investigation versus doing a fully blown maintenance depends on
the cost difference between the two options. For older turbines, the choice of
full-blown maintenance action is taken most seriously.

The decision maps, as shown in Fig. 9.6, have three action zones. The
decision boundary between two decision zones corresponds to the boundary
point in Fig. 9.5 between a pair of actions. The two plots in the upper panel of
Fig. 9.6 are decision maps produced by a static maintenance model in which
the model parameters are kept constant for the entire decision horizon. Under
the static model structure, analysts can decide the decision boundaries analyt-
ically and populate a decision zone with its respective decision. The difference
between the two upper-panel plots is due to the use of different prevailing
weather parameters, namely that WPMT and WCMT are under different val-
ues. In the left column, WPMT = 0.1 and WCMT = 0.3, whereas in the right
column, WPMT = 0.5 and WCMT = 0.5. Apparently, the resulting decision
map changes when the weather becomes more prohibiting, as the weather
conditions in the left figure turn into that in the right figure. The right figure
has a higher probability that an ongoing maintenance may be disrupted, and
accordingly, the decision zones of PMT and OVI shrink, whereas the zone
of DIL expands, suggesting that one needs a higher confidence of potential
failures to undertake more expensive actions.

When the maintenance model uses time-varying parameters, it becomes a
dynamic model, which is a better reflection of the reality, as the actual system
and the environment constantly change. The difficulty of handling a dynamic
model is that the exact solutions will have to be found through iterative nu-
merical procedures. Understandably, these iterative numerical procedures are
not computationally cheap to use. The two plots in the lower panel of Fig. 9.6
are decision maps from a dynamic model. As seen in the plots, the dynamic
model can produce a path of maintenance policies, rather than identify the
decision boundaries delineating the decision zones. To solve for the path of a
maintenance policy, Byon and Ding [25] use the backward dynamic program-
ming procedure, as outlined in Algorithm 9.1.

If one looks at the plots in the upper and lower panels of Fig. 9.6, it is not
difficult to notice that the policy structure implied by the static maintenance
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Together they produce the cost-effective maintenance decision.
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Algorithm 9.1 Backward dynamic programming solution procedure.

1. Construct a sample path emanating from π, as well as the extreme
sample paths originating from the extreme states em, m = 1, · · · ,M .

2. Set the turbine’s decommission time as T and the decommission value
as CT (π), based on a specific system preference.

3. Set t = T − 1.

(a) Update parameters such as WCMT(l),t, WPMT(m),t and τt, l =
1, · · · , L, m = 1, · · · ,M − 1.

(b) Find the optimal decision rule and optimal value at extreme points
ei, i = 1, · · · ,M .

(c) Compute CMTt(l) and PMTt(m) for each corrective maintenance
and preventive maintenance option, as well as that for DILt(π) and
OVIt(π), respectively.

(d) Compute the optimal value function, Ct(π), and the corresponding
optimal decision rule.

(e) Set t = t− 1, and go back to (a).
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FIGURE 9.6 Static and dynamic maintenance model solutions. Upper

panel: static model solutions; lower panel: dynamic model solutions.

The two plots in the left column are under the weather condition with

WPMT = 0.1 and WCMT = 0.3, whereas the two plots in the right

column are under WPMT = 0.5 and WCMT = 0.5.

model are more or less preserved in the dynamic model outputs, although
the precise decision boundary would have almost surely shifted to a certain
extent, as the model parameters are not exactly the same under the static and
dynamic circumstances. Upon this revelation, Byon [24] deems it a sensible
approach to solve the dynamic model faster and in real time through the
following approach: derive useful approximations in the maintenance policy
structure based on the static model, employ the resulting structure to pre-
partition the decision map, and invoke the numerical solution procedure only
when a decision gets close to the prescribed boundary line.

9.4.3 Integration of Optimization and Simulation
One merit of the POMDP-based maintenance models presented in the preced-
ing sections is that they explicitly model the external environmental conditions
under which a turbine system is being operated. The static model, because
of its stronger assumptions, may be useful for wind farms that operate in
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relatively stationary weather conditions, whereas the dynamic model is more
adaptive even when there are strong seasonal variations.

Both models nonetheless focus on a single turbine. To the best of our
knowledge, using the single-turbine models is the case for the majority of
turbine maintenance research [27]. This is not surprising, as building and
solving an optimization model for a single turbine is already challenging work,
and doing so for a commercial size wind farm housing one hundred plus wind
turbines could be analytically intractable.

Maintenance strategies devised based on a single turbine may still be useful
to advising operations and decisions on a wind farm. The potential problem
is that the randomness in turbine degradation processes cause different tur-
bines to follow different degrading paths, thereby creating a need to adjust
maintenance actions accordingly and to resolve the conflicts caused by the
multi-turbine environment.

To address this issue, Byon et al. [28] and Pérez et al. [161] develop a
discrete event system specification (DEVS) [233]-based simulation platform
for a wind farm housing many wind turbines. The specific simulation frame-
work, DEVS, is selected because using it enables an easier modeling of multi-
scale (time, space and decisions) complex systems. DEVS is a formal model-
ing and simulation framework based on dynamical systems theory, providing
well-defined concepts for coupling atomic and coupled models, hierarchical
and modular model construction, and an object-oriented substrate support-
ing repository reuse. Under the DEVS framework, each turbine is treated as a
duplicable module, so that the simulation can be scaled up without difficulty
to more than one hundred turbines for a farm. Each turbine module includes
a turbine components sub-module, degradation sub-module, power genera-
tion sub-module, sensing and maintenance scheduling sub-module. Fig. 9.7
presents a high-level diagram of the DEVS-based wind farm simulation.

After the turbine module is built, one also needs to define the logic that
interconnects components in a wind turbine system and mimics the execution
and operation in a virtual, cyberspace environment. The simulator is designed
to handle a large number of unorganized random events (turbine failures,
waiting for parts, weather disruptions) and reflect in the simulator’s outputs
the stochasticity from the operations.

On the one hand, there are two turbine-based optimization models that
can advise on optimal maintenance actions for a single, specific turbine, while
on the other hand, there is a wind farm simulator used to evaluate the effec-
tiveness of the resulting maintenance decisions on multiple turbines following
different degradation paths, to suggest update and adjustments if necessary. It
becomes apparent that one would need to integrate the optimization models
and the simulation model in order to materialize the dynamic turbine opti-
mization framework, as highlighted in Fig. 9.2.

Integrating the dynamic MDP model with the wind farm simulator is not
trivial, as it creates a computational challenge. Recall that the optimal policy
in the dynamic model is solved through a backward dynamic programming
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FIGURE 9.7 The hierarchical structure and operation of the DEVS-based

wind farm simulator. Each turbine is treated as a duplicable module,

which includes sub-modules such as turbine components, degradation,

power generation, sensing and maintenance scheduling.

algorithm that is computationally demanding for large-scale problems. When
every turbine needs to run this computational procedure in the wind farm
simulator for its decision on maintenance, the simulator creeps to a halt.

To alleviate this problem, Byon [24] proposes an approximation approach,
taking advantage of an observation made in the previous section, i.e., the de-
cision map from the dynamic model preserves the structure of optimal main-
tenance policy revealed by the static model. Byon further conjectures that a
set of similar decision rules established from a static model may be used to
closely approximate a dynamic policy. Because this set of rules is rooted in
the static policy, they can be expressed in closed form, and their computation
leading to decision boundaries can be done in real time.

Fig. 9.8 illustrates how to approximate the dynamic policy based on a
set of decision rules derived from a static model. Firstly, Byon [24] adjusts
the cost component associated with a maintenance action and makes it up-
dateable with real-time information on weather (characterized by parameters
WPMT and WCMT), logistics (characterized by λ), and revenue loss (charac-
terized by τ). Note that for a variable energy source like wind, its revenue
loss due to downtime also depends on wind input and may vary over time.
Secondly, Byon updates the static decision boundary by plugging in the new
dynamic cost obtained. This plug-in is the part of approximation. When an
action mismatches with the theoretical optima, the maintenance cost elevates,
as compared to the theoretically optimal level. Numerical studies conducted
in [24] show, however, that the mismatch rates are around 5% of the decision
regions. When costs over different scenarios are considered, the impact of this
5% mismatch is translated to less than 1% increase in terms of maintenance
cost. The benefit of using this simple set of approximations reduces the com-
putation remarkably, a 98% reduction as compared to the use of the dynamic
programming solution procedure [24]. On balance, Byon states that this ap-
proximation approach produces significant benefits and allows the integration
of the optimization models and the wind farm simulator in an online decision
support fashion.
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𝜏−𝜑

1−𝑊𝐶𝑀𝑇
+ static cost

FIGURE 9.8 Approximating the maintenance policy and making it real-

time executable. The variable ϕ indicates the average cost per period.

When executing the integrated framework, real-time weather information
or its forecasts in near future are to be used to update the decision boundaries
as the simulator runs. This is where wind field analysis and wind forecasting
methods in Part I of this book can chime in and benefit the overall wind
engineering decision making.

Byon [24] implements this dynamic condition-based maintenance policy
for a prototypical wind farm and compares the outcomes with those using
scheduled maintenance, a popular practice in industry. The numerical study
in [24] shows that using a well-devised dynamic policy leads to a 45% reduction
in the annualized failure rate and the number of preventive repairs, and a
23% reduction in the overall maintenance cost. These comparison outcomes
are charted in Fig. 9.9.

9.5 DISCUSSION
This chapter presents an overview of a dynamic maintenance optimization
paradigm for wind turbine systems. One great challenge in wind turbine main-
tenance is the non-steady loading and stochasticity in the environment con-
ditions under which turbines operate. These factors drive wind turbines to a
fast degradation process, cause the fault diagnosis and condition monitoring to
have low specificities, and render any rigid maintenance paradigms costly—all
hurt wind energy’s market competitiveness. The dynamic, data-driven main-
tenance approach, with its adaptiveness to a varying environment, strikes a
cost-effective balance among different competing cost factors and optimizes
for the long-run benefit in the presence of data and model uncertainty.
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FIGURE 9.9 Benefit of the dynamic turbine maintenance optimization as

compared to scheduled maintenance. Shown in the plot is the reduction

in terms of the failure rate, number of maintenance actions, and overall

O&M cost.

The virtue of a dynamic maintenance framework can be understood in
three aspects: (a) It incorporates real-time measurements, learns what the
data reveals, and updates the models as needed; (b) it pays full attention
to the uncertainty of information, and promotes the use of multi-accuracy
information sources (SCADA versus on-site investigation) to compensate for
the adverse effect resulting from information uncertainty; and (c) it combines
multi-fidelity models (static, dynamic, and simulation) in an integrative fash-
ion, which enables decisions to be made both efficiently and effectively.

Presenting this framework at the beginning of Part III serves as a bridge
connecting the wind forecasting work in Part I, the turbine performance anal-
ysis work in Part II, and the load analysis and anomaly detection work to be
covered in the remaining chapters in Part III.

GLOSSARY
AWEA: American Wind Energy Association

CBM: Condition-based monitoring or condition-based maintenance

CMT: Corrective maintenance

DEVS: Discrete event system specification

DIL: Do it later

IEC: International Electrotechnical Commission
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MCMC: Markov chain Monte Carlo

MDP: Markov decision process

MTTF: Mean time to failure

NREL: National Renewable Energy Laboratory

O&M: Operations and maintenance

OVI: On-site visit and investigation

PMT: Preventive maintenance

POMDP: Partially observable Markov decision process

SCADA: Supervisory control and data acquisition

s.t.: Such that

US: United States

EXERCISES
9.1 Consider a turbine system which has only two states, up (operating

state) and down (failure state).

a. What are the values of M and L? What is the dimension of the
transition probability matrix P = (Pij)? Recall that the transition
probability matrix is denoted by ΠΠΠ in Eq. 4.6. Here P is used in the
place of ΠΠΠ because π in this chapter is used to denote the information
state, rather than the transition probability.

b. Can you draw the state transition diagram like in Fig. 9.3, left panel?

c. Let λ denote the failure rate, which is the probability that the turbine
fails and let µ denote the probability with which a failing system can
be restored to the operating state. Write down the corresponding
transition probability matrix P.

d. What are the mean time to failure and the mean time to repair for
this system?

9.2 Can you write down the costs associated with other action options, i.e.,
OVI, DIL, and CMT, like what was done for PMT in Eq. 9.2?

9.3 The probability that a system will still operate until the next de-
cision point is called the reliability of the system and denoted by
Υ(π) =

∑M
i=1

∑M
j=1 πiPij . Express the information state after the next

transition, π′, in terms of the current state, π, and the reliability of the
system, provided that the system has not yet failed.
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9.4 The preventive maintenance cost expressed in Eq. 9.2 is for a major re-
pair action. For a minor repair, there are at least two differences. When
the weather condition is not permitting, a minor repair can wait, with-
out affecting the power production of the turbine. When the weather
condition is permitting, the action of a minor repair is usually assumed
to take place fast enough, so that the production loss it causes can be
neglected. Given these understandings, how would you write the pre-
ventive maintenance cost function for a minor repair?

9.5 Byon [24] identifies that the mismatches between the optimal mainte-
nance policy and the approximating maintenance policy often happen
when there is a rapid transition of weather conditions from severe (a
higher WPMT) to mild (a lower WPMT). Let us deem 12 m/s the wind
speed limit, above which a major preventive maintenance is severely
restricted.

a. Use the 10-min data in the Wind Time Series Dataset. Compute
the probability of W as the portion of periods that wind speed is
above the aforementioned limit in a week.

b. Plot W versus the weeks in a year.

c. Do you observe any time intervals where there is a noticeable tran-
sition from a severe weather condition to a mild weather condition?
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Extreme Load Analysis

W
ind turbines operate under various loading conditions in stochastic
weather environments. The increasing size and weight of components

of utility-scale wind turbines escalate the loads and thus the stresses imposed
on the structure. As a result, modern wind turbines are prone to experienc-
ing structural failures. Of particular interest in a wind turbine system are
the extreme events under which loads exceed a threshold, called a nominal
design load or extreme load. Upon the occurrence of a load higher than the
nominal design load, a wind turbine could experience catastrophic structural
failures. To assess the extreme load, turbine structural responses are eval-
uated by conducting physical field measurements or performing aeroelastic
simulation studies. In general, data obtained in either case are not sufficient
to represent various loading responses under all possible weather conditions.
An appropriate extrapolation is necessary to characterize the structural loads
in a turbine’s service life. This chapter focuses on the extreme load analysis
based on physical bending moment measurements. Chapter 11 discusses load
analysis based on aeroelastic simulations.

10.1 FORMULATION FOR EXTREME LOAD ANALYSIS
Fig. 10.1 presents examples of mechanical loads at different components in
a turbine system. The flapwise bending moments measure the loads at the
blade roots that are perpendicular to the rotor plane, whereas the edgewise
bending moments measure the loads that are parallel to the plane. Shaft- and
tower-bending moments measure, in two directions, respectively, the loads on
the main shaft connected to the rotor and on the tower supporting the wind
power generation system (i.e., blades, rotor, generator etc.).

Same as in the treatment of power response analysis, load response data
are arranged in 10-minute intervals in the structural reliability analysis of
wind turbines. The basic characteristics of the three inland turbines (ILT)
in the Turbine Bending Moment Dataset can be found in Table 10.1. The

267
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Edge-wise bending moment Flap-wise bending moment 

Tower bending moment 

Tower  torsion 

Sha ng moment Shaft torque 

FIGURE 10.1 Illustration of structural loads at different wind turbine

components. (Reprinted with permission from Lee et al. [131].)

TABLE 10.1 Specifications of wind turbines in the Turbine Bending Moment

Dataset.

Turbine model NEG-Micon/2750 Vestas V39 Nordtank 500
(Name of dataset) (ILT1) (ILT2) (ILT3)
Hub height (m) 80 40 35
Rotor diameter (m) 92 39 41
Cut-in speed (m/s) 4 4.5 3.5
Cut-out speed (m/s) 25 25 25
Rated speed (m/s) 14 16 12
Nominal power (kW) 2,750 500 500
Control system Pitch Pitch Stall
Location Alborg, Tehachapi Pass, Roskilde,

Denmark California Denmark
Terrain Coastal Bushes Coastal

Source: Lee et al. [131]. With permission.
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original data are recorded at a much higher frequencies on the three ILTs, as
follows:

• ILT1: 25 Hz = 15,000 measurements/10-min;

• ILT2: 32 Hz = 19,200 measurements/10-min;

• ILT3: 35.7 Hz = 21,420 measurements/10-min.

Consider the raw measured variables, which are wind speed, Vij , and load
response, zij , where i = 1, . . . , n is the index of the 10-minute data blocks
and j = 1, . . . ,m is the index of the measurements within a 10-minute block.
The load response, zij , is the bending moment, in millions of Newton-meters,
measured at designated locations. Here, m is used to represent the number
of measurements in a 10-minute block, equal to 15,000, 19,200, and 21,420
for ILT1, ILT2, and ILT3, respectively, and n is used to represent the total
number of the 10-minute intervals in each dataset, taking the value of 1,154,
595, and 5,688, respectively, for ILT1, ILT2, and ILT3. The statistics of the
observations in each 10-minute block are calculated as

Vi =
1

m

m∑
j=1

Vij , (10.1a)

si =

√√√√ 1

m− 1

m∑
j=1

(Vij − Vi)2, and (10.1b)

zi = max {zi1, zi2, . . . , zim} . (10.1c)

After this data transformation, zi denotes the maximum load in the i-th
10-minute block. In this study, we consider only the flapwise bending moments
measured at the root of blades. In other words, z in this study is the 10-minute
maximum blade-root flapwise bending moment.

Mathematically, an extreme load is defined as an extreme quantile value in
a load distribution corresponding to a turbine’s service time of T years [202].
Then, the load exceedance probability is defined as

PT = P [z > lT ], (10.2)

where PT is the target probability of exceeding the load level lT (in the same
unit as that of z). The unconditional distribution of z, f(z), is referred to as
the long-term load distribution and is used to calculate P [z > lT ] in Eq. 10.2.

In Eq. 10.2, the extreme event, {z > lT }, takes place with the probability
of exceedance (POE), PT . The waiting time until this event happens should be
longer than, or equal to, the service time. Therefore, the exceedance probabil-
ity, PT , given the service life T , can be decided via the following way [101, 160]:

PT =
10

T × 365.25× 24× 60
. (10.3)
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Intuitively, PT is the reciprocal of the number of 10-minute intervals in T
years. For example, when T is 50, PT becomes 3.8× 10−7.

Estimating the extreme load implies finding an extreme quantile lT in the
10-minute maximum load distribution, given a target service period T , such
that Eq. 10.2 is satisfied. Wind turbines should be designed to resist the lT
load level to avoid structural failures during its desired service life.

Since loads are highly affected by wind profiles, analysts consider the
marginal distribution of z obtained by using the distribution of z conditional
on a wind profile, i.e.,

f(z) =

∫
x

f(z|x)f(x)dx. (10.4)

This expression is almost identical to that in Eq. 1.1, except that the power
response, y, is replaced by the load response, z. The conditional distribution of
z given x, f(z|x), is referred to as the short-term load distribution. The long-
term load distribution can be computed by integrating out wind characteristics
in the short-term load distribution.

The conditional distribution modeling in Eq. 10.4 is a necessary practice
in the wind industry. A turbine needs to be assessed for its ability to resist the
extreme loads under the specific wind profile at the site where it is installed.
Turbine manufacturers usually test a small number of representative turbines
at their own testing site, producing f(z|x). When a turbine is to be installed
at a commercial wind farm, the wind profile at the proposed installation site
can be collected and substituted into Eq. 10.4 as f(x), so that the site-specific
extreme load can be assessed. Without the conditional distribution model, a
turbine test would have to be done for virtually every new wind farm; doing
so is very costly and hence impractical.

For inland turbines, the wind characteristic vector x in general comprises
two elements: a steady-state mean of wind speed and the stochastic variability
of wind speed [142, 183]. The first element can be measured by the average
wind speed during a 10-minute interval, and the second element can be rep-
resented by the standard deviation of wind speed, or the turbulence intensity,
also during a 10-minute interval. For offshore turbines, weather characteristics
other than wind may be needed, such as wave height [3]. Since the data in
the Turbine Bending Moment Dataset are all from inland turbines, what is
included in x in this chapter is the average wind speed V and the standard
deviation of wind speed, s, namely x := (V, s).

10.2 GENERALIZED EXTREME VALUE DISTRIBUTIONS
The 2nd edition of the IEC 61400-1 standard, published in 1999, offers a
set of design load cases with deterministic wind conditions such as annual
average wind speeds, higher and lower turbulence intensities, and extreme
wind speeds [100]. In other words, the loads in IEC 61400-1, 2nd edition,
are specified as discrete events based on design experiences and empirical
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models. Veers and Butterfield [223] point out that these deterministic models
do not represent the stochastic nature of structural responses, and suggest
instead using statistical modeling to improve design load estimates. Moriarty
et al. [150] examine the effect of varying turbulence levels on the statistical
behavior of a wind turbine’s extreme load. They conclude that the loading on
a turbine is stochastic at high turbulence levels, significantly influencing the
tail of the load distribution.

In response to these developments, the 3rd edition of IEC 61400-1 stan-
dard, published in 2005 [101], replaces the deterministic load cases with
stochastic models, and recommends the use of statistical approaches for de-
termining the extreme load level in the design stage. Freudenreich and Argyr-
iadis [67] compare the deterministic load cases in IEC61400-1, 2nd edition,
with the stochastic cases in IEC61400-1, 3rd edition, and observe that when
statistical approaches are applied, higher extreme load estimates are obtained
in some structural responses, such as the blade tip deflection and flapwise
bending moment. After the 3rd edition of IEC 61400-1 is published, several
research groups devise and recommend statistical approaches for extreme load
analysis [3, 65, 67, 149, 153, 174].

According to the classical extreme value theory [38, 200], the short-term
distribution, f(z|x), can be approximated by a generalized extreme value
(GEV) distribution. The pdf of the GEV is

f(z) =

{
1
σ exp

[
−
(
1 + ξ

(
z−µ
σ

))− 1
ξ

] (
1 + ξ

(
z−µ
σ

))−1− 1
ξ , ξ 6= 0,

1
σ exp

[
− z−µσ − exp

(
− z−µσ

)]
, ξ = 0,

(10.5)

for {z : 1 + ξ(z − µ)/σ > 0}, where µ is the location parameter, σ > 0 is the
scale parameter, and ξ is the shape parameter that determines the weight of
the tail of the distribution. When ξ > 0, the GEV corresponds to the Fréchet
distribution family with a heavy upper tail, ξ < 0 to the Weibull distribution
family with a short upper tail and light lower tail, and ξ = 0 (or, ξ → 0) to
the Gumbel distribution family with a light upper tail.

The cdf of the GEV distribution is

F (z) =

{
exp

[
−
(
1 + ξ( z−µσ )

)− 1
ξ

]
, ξ 6= 0,

exp
[
− exp

(
− z−µσ

)]
, ξ = 0.

(10.6)

Recall the cdf of Weibull distribution in Eq. 2.5. If modified to be a three-
parameter Weibull distribution with a location parameter µ, the cdf reads

F (z) = 1− exp

[
−
(
z − µ
η

)β]
.

Although one can discern that β here is related to ξ in the GEV distribution
and η to σ, the two distributions do not appear the same for ξ 6= 0. One may
wonder why when ξ < 0, the GEV distribution is said to be corresponding



272 � Data Science for Wind Energy

to the Weibull distribution family. The reason behind the disconnect is that
the GEV distribution of ξ < 0 corresponds actually to the reverse Weibull
distribution, which is the negative of the ordinary Weibull distribution. Recall
that a Weibull distribution is used to describe a non-negative random variable
with a right-side skewness, like wind speed. The ordinary Weibull distribution
deals with the minimum and has a lower bound. The GEV distribution when
ξ < 0 deals instead with the maximum and sets an upper bound, so that the
distribution looks like the mirror image of the ordinary Weibull distribution.
The cdf of a reserve Weibull is

F (z′) =

{
exp[−(−z′)β ], z′ < 0,

1, z′ ≥ 0.
(10.7)

If we let β = −1/ξ and z′ = −(1 + ξ(z − µ)/σ), then one sees that the cdf
expression in Eq. 10.6 for ξ < 0 and that in Eq. 10.7 are the same.

One of the main focuses of interest in the extreme value theory is to derive
the quantile value, given a target probability PT . The extreme quantile value
based on a GEV distribution of z is in fact the design load threshold, lT , in
Eq. 10.2. Given a PT , lT can be expressed as a function of the distribution
parameters as

lT =

{
µ− σ

ξ

[
1− (− log (1− PT ))

−ξ
]
, ξ 6= 0,

µ− σ log [− log (1− PT )] , ξ = 0.
(10.8)

10.3 BINNING METHOD FOR NONSTATIONARY GEV DISTRI-
BUTION

When using a GEV distribution to model z, one difficulty is that z appears
to be a function of input x. Using the three datasets, Lee et al. [131] present
a number of scatter plots to illustrate this point. Fig. 10.2 shows the scat-
ter plots between the 10-minute maximum loads and 10-minute average wind
speeds. One observes nonlinear patterns between the load and the average
wind speed in all three scatter plots, while individual turbines exhibit differ-
ent response patterns. ILT1 and ILT2 are two pitch-controlled turbines, so
when the wind speed reaches or exceeds the rated wind speed, the blades
are adjusted to reduce the absorption of wind energy. As a result, the load
shows a downward trend after the rated speed. Different from that of ILT1,
the load response of ILT2 has a large variation beyond the rated wind speed.
This large variation can be attributed to its less capable control system since
ILT2 is one of the early turbine models using a pitch control system. ILT3 is
a stall controlled turbine, and its load pattern in Fig. 10.2(c) does not have
an obvious downward trend beyond the rated speed.

Fig. 10.3 presents the scatter plots between the 10-minute maximum loads
and the standard deviations of wind speed during the 10-minute intervals. One
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.2 Scatter plots of 10-minute maximum load versus 10-minute

average wind speed. (Reprinted with permission from Lee et al. [131].)

(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.3 Scatter plots of 10-minute maximum load versus 10-minute

standard deviations of wind speed. (Reprinted with permission from

Lee et al. [131].)

also observes nonlinear relationships between them, especially for the newer
pitch-controlled ILT1.

Fig. 10.4 shows scatter plots of 10-minute standard deviation versus 10-
minute average wind speed. Previous studies [63, 150] suggest that the stan-
dard deviation of wind speed varies with the average wind speed, which ap-
pears consistent with what is observed in Fig. 10.4.

This type of load response, varying with the input conditions, is known
as inhomogeneous or nonstationary response. If a set of constant parameters,
{µ, σ, ξ}, is used in modeling a GEV distribution, the resulting distribution is
homogenous or stationary for the entire input domain, which does not match
the inhomogeneous reality of the turbine load condition. To address this issue,
analysts in the aforementioned extreme load analysis adopt a common frame-
work, referred to as the binning approach [131]. The basic idea of the binning
method is the same as that used for power curve analysis in Chapter 5, but
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.4 Scatter plots of 10-minute average wind speed versus 10-

minute standard deviations of wind speed. (Reprinted with permission

from Lee et al. [131].)

unlike power curve analysis in which a simple sample average is used to model
the data in a bin, a GEV distribution is established in each bin in extreme
load analysis.

Specifically, the binning approach discretizes the domain of a wind profile
vector x into a finite number of bins. One can divide the range of wind speed,
from the cut-in speed to the cut-out speed, into multiple bins and set the
width of each bin to, say, 2 m/s. Then, in each bin, the conditional short-term
distribution, f(z|x), is approximated by a stationary GEV distribution, with
the parameters of the distribution fixed at certain constants and estimated
by the maximum likelihood method, using the data specific to that bin. The
contribution from each bin is summed over all possible bins to determine the
final long-term extreme load. In other words, the integration in Eq. 10.4 for
calculating the long-term distribution is approximated by the summation of
finite elements. The idea of binning is illustrated in Fig. 10.5.

The virtue of the binning method is that by modeling the short-term dis-
tribution with a homogeneous GEV distribution, i.e., keeping the GEV distri-
bution parameters constant for a given bin, it provides a simple way to handle
the overall nonstationary, inhomogeneous load response across different wind
covariates. Assuming the load response stationary or homogenous in a nar-
row range within a wind speed bin is much more reasonable than assuming
stationarity or homogeneity for the entire wind spectrum.

The common binning approach, as Agarwal and Manuel [3] use it to esti-
mate the extreme loads for a 2MW offshore wind turbine, is to use the Gumbel
distribution to model the probabilistic behavior of bending moments at critical
spots on a turbine structure. To estimate the model parameters, experimental
data are collected but only for a short period, say one or two years. As a result,
most bins have a small number of data, or sometimes, no data at all. For the
bins without data, Agarwal and Manuel estimate the short-term distribution
parameters by using a weighted average of all non-empty bins with the weight
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FIGURE 10.5 Binning approach to combine bin-based homogenous GEV

distributions for extreme load analysis over the entire wind spectrum.

In implementation, ξi, i = 1, . . . , Nb, is chosen to be the same constant

for all bins.

related to the inverse squared distance between bins. They quantify the un-
certainty of the estimated extreme loads using bootstrapping and report the
95% confidence interval for the short-term extreme load given specific weather
conditions (i.e., weather bins). Because bootstrapping resamples the existing
data for a given weather bin, it cannot precisely capture the uncertainty for
those bins with limited data or without data.

Lee et al. [131] present explicit steps to calculate the confidence interval
for the binning method. First, they fix ξ to be a constant across all bins. The
typical choice of ξ is zero, meaning that a Gumbel distribution is used. But ξ
can also be estimated a priori and then remains fixed while other parameters
are being estimated. After ξ is fixed, the resulting GEV distribution has then
two bin-specific parameters, µ and σ. Denote by Φc the collection of parame-
ters associated with all local GEV distributions, i.e., {µ1, σ1, . . . µNb , σNb , ξ},
where Nb is the number of bins, and by DV and Ds the datasets of the ob-
served average wind speeds and the standard deviations. The sampling process
is elaborated in Algorithm 10.1.

Despite its popularity, the binning method has obvious shortcomings in
estimating extreme loads. A major limitation is that the short-term load dis-
tribution in one bin is constructed separately from the short-term distributions
in other bins. This approach requires an enormous amount of data to define
the tail of each short-term distribution. In reality, the field data can only be
collected in a short duration (e.g., one year out of 50 years of service), and
consequently, some bins do not have enough data. Then, the binning method
may end up with inaccuracy or high uncertainty in the estimates of extreme
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Algorithm 10.1 Sampling procedure to construct the confidence interval for
the binning method. Set Mw = 1, 000, Ml = 10, 000, Nw = 100, and Nl = 100.

1. Draw Mw × Nw samples from the joint distribution f(Ṽ , s̃|DV ,Ds) of
wind characteristics (Ṽ , s̃), where the tilde notation indicates a sampled
quantity. Please cross reference Algorithm 10.4 for specific models and
steps to draw samples for wind characteristics (Ṽ , s̃).

2. Using the data in a bin, employ an MLE method to estimate µ and σ in
the GEV, while fixing ξ. Draw a sample of µ and σ for that specific bin
from a multivariate normal distributions taking the MLE as its mean and
the inverse of the negative of Hessian matrix as its covariance matrix.
Not all the bins have data. For those which do not have data, its µ and
σ are a weighted average of all non-empty bins with the weight related
to the inverse squared distance between bins. Collectively, Φc contains
the µ’s and σ’s from all the bins.

3. Decide which bins the wind characteristic samples (Ṽ , s̃)’s fall into.
Based on the specific bin in which a sample of (Ṽ , s̃) falls, the cor-
responding µ and σ in Φc is chosen. Doing so yields the short-term
distribution f(z̃|Ṽ , s̃,Φc) for that specific bin.

4. Draw Nl samples of z̃ from f(z̃|Ṽ , s̃,Φc) for each of the total Mw ×Nw
samples of (Ṽ , s̃). This produces a total of Mw ×Nw ×Nl samples of z̃.

5. One can then compute the quantile value lT [Φc] corresponding to PT .

6. Repeat the above procedure Ml times to get the median and confidence
interval of lT .
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load. In practice, how many bins to use is also under debate, and there is not
yet a consensus. The answer to the action of binning sometimes depends on
the amount of data—if an analyst has more data, he/she affords to use more
bins; otherwise, fewer bins.

The popularity of the binning method in industrial practice is due to the
simplicity of its idea and procedure. However, simplicity of a procedure should
not be mistaken as simplicity of the resulting model. Suppose that one uses
a 6× 10 grid to bin the two-dimensional wind covariates and fixes the shape
parameter ξ across the bins (a common practice in the industry). The binning
method yields 60 local GEV distributions, each of which has two parameters,
translating to a total of 121 parameters for the overall model (counting the
fixed ξ as well). A model having 121 parameters is not a simple model. The
combination of the rigidity of compartmentalization and the unintended high
model complexity renders the binning method not scalable and less effective.

10.4 BAYESIAN SPLINE-BASED GEV MODEL
Lee et al. [131] present a Bayesian spline method for estimating the extreme
load on wind turbines. The spline method is essentially a method supporting
an inhomogeneous GEV distribution to capture the nonlinear relationship
between the load response and the wind-related covariates. Such treatment
avoids binning the data. The underlying spline model connect all the bins
across the whole wind profile, so that load and wind data are pooled together
to produce better estimates. The merit of the spline model is demonstrated
in Section 10.6 by applying it to three sets of turbine load response data and
making comparisons with the binning method.

10.4.1 Conditional Load Model
Recall that in the binning method, a homogeneous GEV distribution is used
to model the short-term load distribution in a bin, for it appears reasonable
to assume stationarity if the chosen weather bin is narrow enough. A finite
number of the homogeneous GEV distributions are then stitched together to
represent the nonstationary nature across the entire wind profile; see Fig. 10.5.
What Lee et al. [131] propose is to abandon the bins and instead use an inho-
mogeneous GEV distribution whose parameters are not constant but depend
on weather conditions.

Consider 10-minute maximum loads, z1, . . . , zn, with corresponding covari-
ate variables x1 = (V1, s1), . . ., xn = (Vn, sn), as defined in Eq. 10.1. Let us
consider modeling zi conditional on x, such that

zi|xi ∼ GEV(µ(xi), σ(xi), ξ), σ(·) > 0, (10.9)

where the location parameter µ and scale parameter σ in this GEV distribu-
tion are a nonlinear function of wind characteristics x. The shape parameter
ξ is fixed across the wind profile, while its value will still be estimated using
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the data from a specific wind turbine. The reason behind the fixed ξ is to
keep the final model from becoming overly flexible. Too much flexibility could
cause complexity in model fitting and parameter estimation.

Let us denote µ(xi) and σ(xi) by

µ(xi) = q(xi), (10.10)

σ(xi) = exp(g(xi)), (10.11)

where an exponential function is used in Eq. 10.11 to ensure the positivity of
the scale parameter. To capture the nonlinearity between the load response
and the wind-related covariates, Lee et al. [131] model q(·) and g(·) using a
Bayesian MARS model [46, 47]. Recall the discussion about splines in Sec-
tion 5.3.3. A shortcoming of the spline methods is its lack of scalability to
model multivariate inputs. One of the methods that addresses this issue is the
MARS model [68], which uses an additive model structure, allowing factor
interactions to be added through a hierarchical inclusion of interaction terms
for the purpose of accomplishing scalability. The Bayesian MARS model is
basically a MARS model but includes the number and locations of knots as
part of its model parameters and determines these from observed data.

Lee at al. [131] state that they explore simple approaches based on polyno-
mial models for modeling µ(x) and σ(x). It turns out that polynomial-based
approaches lack the flexibility of adapting to the datasets from different types
of turbines. Due to the nonlinearity around the rated wind speed and the
limited amount of data under high wind speeds, polynomial-based approaches
perform poorly in those regions that are generally important for capturing
the maximum load. Spline models, on the other hand, appear to work better
than a global polynomial model, because they have more supporting points
spreading over the input region.

The Bayesian MARS models, i.e., q(x) for the location parameter µ and
g(x) for the scale parameter σ, are represented as a linear combination of the
basis functions Bµk (x) and Bσk (x), respectively, such that

q(x) =

Kµ∑
k=1

βkB
µ
k (x), and (10.12)

g(x) =

Kσ∑
k=1

θkB
σ
k (x), (10.13)

where βk, k = 1, . . . ,Kµ and θk, k = 1, . . . ,Kσ are the coefficients of the basis
functions Bµk (·) and Bσk (·), respectively, and Kµ and Kσ are the number of
the respective basis functions. According to Denison et al. [47] who propose
the Bayesian MARS method, the basis functions should be specified as

Bk(x) =

{
1, k = 1,∏Jk
j=1

[
hjk · (xr(j,k) − tjk)

]
+
, k = 2, 3, . . . ,Kµ orKσ.

(10.14)
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Here, [·]+ = max(0, ·), Jk is the degree of interaction modeled by the basis
function Bk(x), hjk is the sign indicator, taking the value of either −1 or +1,
r(j, k) produces the index of the predictor variable which is being split on tjk,
whereas tjk is commonly referred to as the knot points.

Lee et al. [131] introduce an integer variable Tk to represent the types
of basis functions used in Eq. 10.14. Since two input variables, V and s, are
considered for the three inland turbines, there could be three types of basis
functions, namely [±(V −∗)]+ or [±(s−∗)]+ for the main effect of a respective
explanatory variable and [±(V −∗)]+[±(s−∗)]+ for the interactions between
them. Let Tk take the integer value of 1, 2, or 3, to represent the three types
of basis functions. That is, [±(V − ∗)]+ is represented by Tk = 1, [±(s− ∗)]+
represented by Tk = 2, and [±(V − ∗)]+[±(s− ∗)]+ by Tk = 3.

To model the location parameter µ for ILT1 and ILT3 data, Lee et al. [131]
set Tk ∈ {1, 2, 3}, allowing Jk to take either 1 or 2. For ILT2, however, due
to its relatively smaller data amount, a model setting Jk = 2 produces un-
stable and unreasonably wide credible intervals. Consequently, Lee et al. set
Tk ∈ {1, 2}, restricting Jk = 1 for ILT2’s location parameter µ. For the scale
parameter σ, Jk = 1 is used for all three datasets. For ITL1 and ILT3, Jk = 1
is resulted when setting Tk ∈ {1, 2}. For ILT2, again due to its data scarcity,
Lee et al. include V as the only input variable in the corresponding scale
parameter model; this means Tk = {1}.

Let Ψa = (Ψµ,Ψσ, ξ) denote all the parameters used in the GEV model
in Eq. 10.9, where Ψµ and Ψσ include the parameters in q(·) and g(·), respec-
tively. These parameters are grouped into two sets: (1) the coefficients of the
basis functions in β = (β1, . . . , βKµ) or θ = (θ1, . . . , θKσ ), and (2) the number
of knots, the locations of the knots, and the types of basis function in φµ or
φσ, as follows,

φµ =
(
Kµ,Λ

µ
2 , . . . ,Λ

µ
Kµ

)
, (10.15)

where

Λµ
k =

{
(Tµk , h

µ
1k, t

µ
1k), when Tµk = 1, 2,

(Tµk , h
µ
1k, h

µ
2k, t

µ
1k, t

µ
2k), when Tµk = 3,

and
φσ =

(
Kσ,Λ

σ
2 , . . . ,Λ

σ
Kσ

)
, (10.16)

where

Λσ
k = (Tσk , h

σ
1k, t

σ
1k), when Tσk = 1, 2.

Using the above notations, one can express Ψµ = (β,φµ) and Ψσ = (θ,φσ).
To complete the Bayesian formulation for the model in Eq. 10.9, priors

of the parameters should be specified. Lee et al. [131] use uniform priors on
φµ and φσ. In the following expressions, we drop the subscript or superscript
indicating the association with µ or σ for the sake of notational simplicity,
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since the priors for both cases are the same. The following priors are used for
variables in φ:

f(K) =
1

n
, K ∈ {1, . . . , n}

f(Tk) =


1, Tk ∈ {1} for φσ in ILT2,

1
2 , Tk ∈ {1, 2} for φµ in ILT2 and all other φ′σs,

1
3 , Tk ∈ {1, 2, 3} for φµ in ILT1 and ILT3,

f(h·k) =
1

2
, h·k ∈ {+1,−1} ,

f(t·k) =
1

n
, t·k ∈ {V1, . . . , Vn} or {s1, . . . , sn} .

In the above, the dot notation in the expressions of h·k and t·k denotes either
1 or 2.

Given φµ and φσ, Lee et al. [131] specify the prior distribution for (β,θ, ξ)
as the unit information prior (UIP) [118], which is defined by setting the cor-
responding covariance matrix to be equal to the Fisher information of one
observation. This is accomplished by using a multivariate normal prior distri-
bution with its mean set at the maximum likelihood estimate and its covari-
ance matrix as the inverse of the negative of Hessian matrix.

10.4.2 Posterior Distribution of Parameters
The Bayesian MARS model treats the number and locations of the knots as
random quantities. When the number of knots changes, the dimension of the
parameter space changes with it. To handle a varying dimensionality in the
probability distributions in a random sampling procedure, analysts use a re-
versible jump Markov chain Monte Carlo (RJMCMC) algorithm developed by
Green [78]. The acceptance probability for an RJMCMC algorithm includes a
Jacobian term, which accounts for the change in dimension. However, under
the assumption that the model space for parameters of varying dimension is
discrete, there is no need for a Jacobian. In the turbine extreme load analysis,
this assumption is satisfied since only are the probable models over possi-
ble knot locations and numbers considered. Instead of using the RJMCMC
algorithm, Lee et al. [131] use the reversible jump sampler (RJS) algorithm
proposed in [46]. Because the RJS algorithm does not require new parameters
to match dimensions between models nor the corresponding Jacobian term in
the acceptance probability, it is simpler and more efficient to execute.

To allow for dimensional changes, there are three actions in an RJS al-
gorithm [46, page 53]: BIRTH, DEATH and MOVE, which adds, deletes, or
alters a basis function, respectively. Accordingly, the number of knots as well
as the locations of some knots change. Denison et al. [46] suggest using equal
probability, i.e., 1/3, to propose any of the three moves, and then, use the
following acceptance probability, α, while executing a proposed move from a
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model having k basis functions to a model having kc basis functions:

α = min {1, the ratio of marginal likelihood×R} , (10.17)

where R is a ratio of probabilities defined as:

• For a BIRTH action, R =
probability of DEATH in model kc

probability of BIRTH in model k
;

• For a DEATH action, R =
probability of BIRTH in model kc

probability of DEATH in model k
;

• For a MOVE action, R =
probability of MOVE in model kc

probability of MOVE in model k
.

Lee et al. [131] state that they have R = 1 for most cases, because the prob-
abilities in the denominator and numerator are equal, except when k reaches
either the upper or the lower bound.

The marginal likelihood in Eq. 10.17 is expressed as

f (Dz|φµ,φσ) =

∫
f (Dz|β,θ, ξ,φµ,φσ) f (β,θ, ξ|φµ,φσ) dβdθdξ, (10.18)

where Dz = (z1, . . . , zn) represents a set of observed load data. Since it is dif-
ficult to calculate the above marginal likelihood analytically, Lee et al. [131]
consider an approximation of f (Dz|φµ,φσ). Kass and Wasserman [118] and
Raftery [171] show that when UIPs are used, the marginal log-likelihood, i.e.,
log (f (Dz|φµ,φσ)), can be reasonably approximated by the Schwarz informa-
tion criterion (SIC) [197], also known as BIC; please refer to Eq. 2.23.

The SIC is expressed as

SICφµ,φσ = log
(
f(Dz|β̂, θ̂, ξ̂,φµ,φσ)

)
− 1

2
dk log(n), (10.19)

where β̂, θ̂, ξ̂ are the MLEs of the corresponding parameters obtained condi-
tional on φµ and φσ, and dk is the total number of parameters to be estimated.
In this case, dk = Kµ +Kσ + 1 (the inclusion of the last 1 is due to ξ).

Comparing Eq. 10.19 with Eq. 2.23, one may notice that the two expres-
sions are indeed equivalent but differ by a constant of −2. Note that in Chap-
ter 2, a smaller BIC implies a better model fit to data. Here, a larger SIC
suggests a better model fit, because of this −2 difference.

There are two dimension-varying states, φµ and φσ, in the RJS algorithm.
Consequently, two marginal log-likelihood ratios are needed. They are approx-
imated by the corresponding SICs, such as

log
f
(
Dz|φcµ,φσ

)
f (Dz|φµ,φσ)

w SICφcµ,φσ − SICφµ,φσ , (10.20)

and

log
f (Dz|φµ,φcσ)

f (Dz|φµ,φσ)
w SICφµ,φcσ − SICφµ,φσ . (10.21)
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Then, one uses two acceptance probabilities αµ and ασ for accepting or
rejecting a new state in φµ and φσ, respectively. Using the SICs, αµ and ασ
are expressed as:

αµ = min
{

1, exp
(

SICφcµ,φσ − SICφµ,φσ

)
×R

}
, (10.22)

and
ασ = min

{
1, exp

(
SICφµ,φcσ − SICφµ,φσ

)
×R

}
. (10.23)

In order to produce the samples from the posterior distribution of param-
eters in Ψa, Lee et al. [131] sequentially draw samples for φµ and φσ by using
the two acceptance probabilities while marginalizing out (β, θ, ξ), and then,
conditional on the sampled φµ and φσ, draw samples for (β, θ, ξ) using a
normal approximation based on the maximum likelihood estimates and the
observed information matrix.

10.4.3 Wind Characteristics Model
To find a site-specific load distribution, the distribution of wind characteristics
f(x) in Eq. 10.4 needs to be specified. Since a statistical correlation is noticed
in Fig. 10.4 between the 10-minute average wind speed, V , and the standard
deviation of wind speed, s, the distribution of wind characteristics f(x) can
be written as a product of the average wind speed distribution f(V ) and the
conditional wind standard deviation distribution f(s|V ).

The probabilistic distribution of wind speed, f(V ), is discussed in Chap-
ter 2. At that time, the discussion concentrates on Weibull distribution. The
three-parameter Weibull distribution fits the three wind turbine datasets well,
as one will see in Section 10.6.1, and is in fact the one used in the case study.

For modeling the 10-minute average wind speed V , the IEC standard sug-
gests using a two-parameter Weibull distribution (W2) or a Rayleigh distri-
bution (RAY) [101]. These two distributions are arguably the most widely
used ones for this purpose. But analysts [31, 134] note that under different
wind regimes other distributions may fit wind speed data better, including
the three-parameter Weibull distribution (W3), three-parameter log-normal
distribution (LN3), three-parameter Gamma distribution (G3), and three-
parameter inverse-Gaussian distribution (IG3).

What Lee et al. [131] suggest to do is to take the total of six candidate
distribution models for average wind speed (W2, W3, RAY, LN3, G3, IG3)
and conduct a Bayesian model selection to choose the best distribution fitting
a given average wind speed dataset. Lee et al. assume UIP for the parame-
ters involved in the aforementioned models, and as such, the Bayesian model
selection is again based on maximizing the SIC. The chosen best wind speed
model is denoted by MV . Then, the distribution of 10-minute average wind
speed V is expressed as

Vi ∼MV (ν), (10.24)

where ν is the set of parameters specifying MV . For instance, if MV is W3,
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then ν = (ν1, ν2, ν3), where ν1, ν2, and ν3 represent, respectively, the location,
scale, and shape parameter of the three-parameter Weibull distribution.

For modeling the standard deviation of wind speed s, given the average
wind speed V , the IEC standard [101] recommends using a two-parameter
truncated normal distribution (TN2), which appears to be what analysts have
commonly used [63]. The distribution is characterized by a location parameter
η and a scale parameter δ. In the literature, both η and δ are treated as a
constant. But Lee et al. [131] observe that datasets measured at different
sites have different relationships between the average wind speed V and the
standard deviation s. Some of the V -versus-s scatter plots show nonlinear
patterns.

Motivated by this observation, Lee et al. [131] employ a Bayesian MARS
model for modeling η and δ, similar to what is done in Section 10.4.1 for the
conditional load model. The standard deviation of wind speed s, conditional
on the average wind speed V , can then be expressed as

si|Vi ∼ TN2(η(Vi), δ(Vi)), (10.25)

where η(Vi) = qη(Vi) and δ(Vi) = exp(gδ(Vi)), like their counterparts in
Eq. 10.10 to Eq. 10.13, are linear combinations of the basis functions tak-
ing the general form as in Eq. 10.14. Notice that both of the functions have
only one input variable, which is the average wind speed.

Let Ψη = (βη,φη) and Ψδ = (θδ,φδ) denote the parameters in qη(·) and
gδ(·). Since the basis functions for qη and gδ have a single input variable, only
one type of basis function is needed, i.e., Tk = 1. For this reason, φη and
φδ are much simpler than φµ and φσ, their counterparts in Eq. 10.15 and
Eq. 10.16, and are expressed as follows:

φη =
(
Kη,Λ

η
2 , . . . ,Λ

η
Kη

)
,

where Λη
k = (T ηk , h

η
1k, t

η
1k) and T ηk = 1; (10.26)

and

φδ =
(
Kδ,Λ

δ
2, . . . ,Λ

δ
Kδ

)
,

where Λδ
k = (T δk , h

δ
1k, t

δ
1k) and T δk = 1. (10.27)

Lee et al. [131] choose the prior distribution for (βη,θδ) as UIP, the prior
for (φη,φδ) as uniform distribution, and set f(Tk) = 1 because Tk is always
1. They solve this Bayesian MARS model using an RJS algorithm, as in the
preceding two sections.

The predictive distributions of the average wind speed Ṽ and the standard
deviation s̃ are

f(Ṽ |DV ) =

∫
f(Ṽ |ν,DV )f(ν|DV )dν, (10.28)

and

f(s̃|Ṽ ,DV ,Ds) =

∫ ∫
f(s̃|Ṽ ,Ψη,Ψδ,DV ,Ds)f(Ψη,Ψδ|DV ,Ds)dΨηdΨδ. (10.29)
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10.4.4 Posterior Predictive Distribution
Analysts are interested in getting the posterior predictive distribution of
the quantile value lT , based on the observed load and wind data D :=
(Dz,DV ,Ds). Under a Bayesian framework, one draws samples, z̃’s, from the
predictive distribution of the maximum load, f (z̃|D,Ψa), which is

f (z̃|D,Ψa) =

∫ ∫
f(z̃|Ṽ , s̃,Ψa,D)f(Ṽ , s̃|DV ,Ds)dṼ ds̃, (10.30)

where f(Ṽ , s̃|DV ,Ds) can be expressed as the product of Eq. 10.28 and
Eq. 10.29.

To calculate a quantile value of the load for a given PT , one goes through
the steps in Algorithm 10.2. The predictive mean and Bayesian credible inter-
val of the extreme load level, lT , are obtained when running the RJS algorithm.
The RJS runs through Ml iterations, and at each iteration, one obtains a set
of samples of the model parameters, Ψa, and calculates an lT [Ψa]. Once the
Ml values of lT [Ψa] are obtained, the mean and credible interval of lT can
then be numerically computed.

Algorithm 10.2 Sampling procedure to obtain the posterior predictive dis-
tribution of load response z. Set Mw = 1, 000, Ml = 10, 000, Nw = 100, and
Nl = 100.

1. Draw Mw × Nw samples from the joint posterior predictive distribu-

tion f
(
Ṽ , s̃|DV ,Ds

)
of wind characteristics (Ṽ , s̃). This is realized by

employing Algorithm 10.4;

2. Draw a set of samples from the posterior distribution of model parame-
ters Ψa = (Ψµ,Ψσ, ξ). This is realized by employing the RJS algorithm
in Section 10.4.2 (or Steps 1–11 of Algorithm 10.3);

3. Given the above samples of wind characteristics and model parameters,
one calculates (µ, σ, ξ) that are needed in a GEV distribution. This yields

a short-term distribution f
(
z̃|Ṽ , s̃,Ψa

)
;

4. Integrate out the wind characteristics (Ṽ , s̃), as implied in Eq. 10.30, to
obtain the long-term distribution f (z̃|D,Ψa).

5. Draw Nl×Mw×Nw samples from f (z̃|D,Ψa) and compute the quantile
value lT [Ψa] corresponding to PT .

6. Repeat the above procedure Ml times to get the median and confidence
interval of lT .
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10.5 ALGORITHMS USED IN BAYESIAN INFERENCE
In this section, more details of the implementation procedures are provided
to facilitate the Bayesian inference.

The procedure consists of two main parts: Algorithm 10.3, which is to
construct the posterior predictive distribution of the extreme load level lT ,
and Algorithm 10.4, which is to obtain the posterior predictive distribution of
wind characteristics (V, s). The main algorithms use the RJS subroutine for
the location parameter µ and the scale parameter σ. These two subroutines
are separately listed in Algorithms 10.5 and 10.6. The two subroutines look
the same but differ in terms of the specific variables and parameters used
therein.

Algorithm 10.2 in Section 10.4.4 carries out the same task as Algo-
rithm 10.3 does. The difference is that Algorithm 10.2 outlines the main steps,
whereas Algorithm 10.3 presents more detailed steps.

10.6 CASE STUDY
This section presents numerical analysis of extreme loads recorded in the
Turbine Bending Moment Dataset and discusses the difference between the
spline-based approach and the binning-based approach.

10.6.1 Selection of Wind Speed Model
The first task is to select a model, out of the six candidate models mentioned
in Section 10.4.3, for the average wind speed. This model selection is done
using the SIC.

Table 10.2 presents the SIC values of the six candidate average wind speed
models using a respective ILT dataset. The boldfaced values indicate the
largest SIC for a given dataset, and accordingly, the corresponding model
is chosen for that dataset.

Regarding the average wind speed model, all candidate distributions ex-
cept RAY provide generally a good model fit for ILT1 with a similar level of
fitting quality, but W3 outperforms others slightly. For the ILT2 data, W2,
W3, LN3 and G3 produce similar SIC values. In the ILT3 data, W3, LN3, G3
and IG3 perform similarly. Again W3 is slightly better. For this reason, W3
is chosen as the average wind speed model.

10.6.2 Pointwise Credible Intervals
As a form of checking the conditional maximum load model, Lee et al. [131]
produce the 95% pointwise credible intervals of the load response under dif-
ferent wind speeds and standard deviations. The resulting credible intervals
are presented in Figs. 10.6 and 10.7.

To generate these figures, Lee et al. [131] take a dataset and fix V or s at
one specific speed or standard deviation at a time and then draw the posterior
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Algorithm 10.3 Construct the posterior predictive distribution of the ex-
treme load level using the Bayesian spline models. Set Mw = 1, 000, Ml =
10, 000, Nw = 100, and Nl = 100.

1. Set t = 0 and the initial φ
(t)
µ and φ

(t)
σ both to be a constant scalar.

2. At iteration t, Kµ and Kσ are equal to the number of basis functions specified

in φ
(t)
µ and φ

(t)
σ . Find the MLEs of β(t), θ(t), ξ(t) and the inverse of the negative

of Hessian matrix, given φ
(t)
µ and φ

(t)
σ .

3. Generate u1
µ uniformly on [0, 1] and choose a move in the RJS procedure.

Denote by bKµ , rKµ ,mKµ the proposal probabilities associated with a move
type; they are all set as 1

3
. Call Algorithm 10.5 to execute the RJS procedure.

4. Find the MLEs (β∗, θ∗, ξ∗) and the inverse of the negative of Hessian matrix,

given φ∗
µ and φ

(t)
σ .

5. Generate u2
µ uniformly on [0, 1] and compute the acceptance ratio αµ in

Eq. 10.22, using the results from Step 2 and Step 4.

6. Accept φ∗
µ as φ

(t+1)
µ with probability min(αµ, 1). If φ∗

µ is not accepted, let

φ
(t+1)
µ = φ

(t)
µ .

7. Generate u1
σ uniformly on [0, 1] and choose a move in the RJS procedure.

Denote by bKσ , rKσ ,mKσ the proposal probabilities associated with a move
type; they are all set as 1

3
. Call Algorithm 10.6 to execute the RJS procedure.

8. Find the MLEs (β∗, θ∗, ξ∗) and the inverse of the negative of Hessian matrix,

given φ
(t+1)
µ and φ∗

σ.

9. Generate u2
σ uniformly on [0, 1] and compute the acceptance ratio ασ in

Eq. 10.23, using the results from Step 4 and Step 8.

10. Accept φ∗
σ as φ

(t+1)
σ with probability min(ασ, 1). If φ∗

σ is not accepted, let

φ
(t+1)
σ = φ

(t)
σ .

11. After initial burn-ins (set to 1,000 samples), draw a posterior sample of
(β(t+1), θ(t+1), ξ(t+1)) from the approximated multivariate normal distribu-
tion at the maximum likelihood estimates and the inverse of the negative of
Hessian matrix. Depending on the acceptance or rejection that happened in
Step 6 and Step 10, the MLEs to be used are obtained from either Step 2,
Step 4, or Step 8.

12. Take the posterior sample of Ψa, obtained in Step 6, Step 10, and Step 11,
and calculate a sample of µ and σ using Eq. 10.10 and Eq. 10.11, respectively,
for each pair of the Mw × Nw samples of (V, s) obtained in Algorithm 10.4.
This generates Mw ×Nw samples of µ and σ.

13. Draw Nl samples for the 10-minute maximum load z̃ from each GEV distri-
bution with µi, σi, and ξi, i = 1, . . . ,Mw × Nw, where µi and σi are among
Mw ×Nw samples obtained in Step 12, and ξi is always set as ξ(t+1).

14. Get the quantile value (that is, the extreme load level lT [Ψa]) corresponding
to 1− PT from the Mw ×Nw ×Nl samples of z̃.

15. To obtain a credible interval for lT , repeat Step 2 through Step 14 Ml times.
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Algorithm 10.4 Obtain the posterior predictive distribution of wind char-
acteristics (V, s). Set Mw = 1, 000 and Nw = 100.

1. Find the MLEs of ν for all candidate distributions listed in Sec-
tion 10.4.3.

2. Use the SIC to select the “best” distribution model for the average wind
speed V . The chosen distribution model is used in the subsequent steps
to draw posterior samples.

3. Draw a posterior sample of ν from the approximated multivariate nor-
mal distribution at the MLEs and the inverse of the negative of Hessian
matrix.

4. Draw Nw samples of Ṽ using the distribution chosen in Step 2 with the
parameter sampled in Step 3.

5. Implement the RJS algorithm again, namely Step 1 through Step 11
in Algorithm 10.3, to get one posterior sample of Ψη = (βη,φη) and
Ψδ = (θδ,φδ).

6. Take the posterior sample of Ψη and Ψδ, obtained in Step 5, and cal-

culate a sample of η and δ using Eq. 10.25 for each sample of Ṽ . This
generates Nw samples of η and δ.

7. Draw a sample for the standard deviation of wind speed s̃ from each
truncated normal distribution with ηi, δi, i = 1, . . . , Nw. Using the Nw
samples of η and δ obtained in Step 6, one obtains Nw samples of s̃.

8. To get Mw ×Nw samples of Ṽ and s̃, repeat Step 3 through Step 7 Mw

times.

Algorithm 10.5 Three types of move in the RJS for location parameter µ.

1. If u1
µ ≤ bKµ , then go to BIRTH step, denoted by φ∗µ = BIRTH-

proposal(φ
(t)
µ ), which is to augment φ

(t)
µ with a Λµ

Kµ+1 that is selected
uniformly at random;

2. Else if bKµ ≤ u1
µ ≤ bKµ + rKµ ,

then go to DEATH step, denoted by φ∗µ = DEATH-proposal(φ
(t)
µ ),

which is to remove from φ
(t)
µ with a Λµ

k where 2 ≤ k ≤ Kµ that is
selected uniformly at random;

3. Else go to MOVE step, denoted by φ∗µ =MOVE-proposal(φ
(t)
µ ), which

first do φ†µ = DEATH-proposal(φ
(t)
µ ) and then do φ∗µ = BIRTH-

proposal(φ†µ).
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Algorithm 10.6 Three types of move in the RJS for scale parameter σ.

1. If u1
σ ≤ bKσ , then go to BIRTH step, denoted by φ∗σ = BIRTH-

proposal(φ
(t)
σ ), which is to augment φ

(t)
σ with a Λσ

Kσ+1 that is selected
uniformly at random;

2. Else if bKσ ≤ u1
σ ≤ bKσ + rKσ ,

then go to DEATH step, denoted by φ∗σ = DEATH-proposal(φ
(t)
σ ),

which is to remove from φ(t) with a Λσ
k where 2 ≤ k ≤ Kσ that is

selected uniformly at random;

3. Else go to MOVE step, denoted by φ∗σ =MOVE-proposal(φ
(t)
σ ), which

first do φ†σ = DEATH-proposal(φ
(t)
σ ) and then do φ∗σ = BIRTH-

proposal(φ†σ).

TABLE 10.2 SIC for the average wind speed
models.

Distributions ILT1 ILT2 ILT3
W2 -2,984 -1,667 -12,287
W3 -2,941 -1,663 -11,242
RAY -3,120 -1,779 -13,396
LN3 -2,989 -1,666 -11,444
G3 -2,974 -1,666 -11,290
IG3 -2,986 -2,313 -11,410

Source: Lee et al. [131]. With permission.
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.6 The 95% pointwise credible intervals of the load response

against wind speeds. (Reprinted with permission from Lee et al. [131].)

samples for z̃ from the posterior predictive distribution of conditional maxi-
mum load, f(z̃|x). Suppose that one wants to generate the credible interval at
wind speed V∗ or standard deviation s∗. The posterior predictive distributions
are computed as follows:

f(z̃|(V, s) ∈ DV∗ ,Dz) =

∫
f(z̃|(V, s) ∈ DV∗ ,Ψa)f(Ψa|Dz)dΨa, (10.31)

and

f(z̃|(V, s) ∈ Ds∗ ,Dz) =

∫
f(z̃|(V, s) ∈ Ds∗ ,Ψa)f(Ψa|Dz)dΨa, (10.32)

where DV∗ and Ds∗ are subsets of the observed data such that DV∗ = {(Vi, si) :
V∗−0.5 < Vi < V∗+0.5, and, (Vi, si) ∈ DV,s} and Ds∗ = {(Vi, si) : s∗−0.05 <
si < s∗ + 0.05, and, (Vi, si) ∈ DV,s}. Given these distributions, samples for
z̃ are drawn to construct the 95% credible interval at V∗ or s∗. The result
is shown as one vertical bar in either a V -plot in Fig. 10.6 or an s-plot in
Fig. 10.7. To complete these figures, the process is repeated in the V -domain
with 1 m/s increment and in the s-domain with 0.2 m/s increment. These
figures show that the variability in data are reasonably captured by the spline
method.

10.6.3 Binning versus Spline Methods
In the procedure of estimating the extreme load level, two different distri-
butions of maximum load z are involved—one is the conditional maximum
load distribution f(z|x), namely the short-term distribution, and the other
is the unconditional maximum load distribution f(z), namely the long-term
distribution. Using the observed field data, it is difficult to assess the es-
timation accuracy of the extreme load levels in the long-term distribution,
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.7 The 95% pointwise credible intervals of the load response

against standard deviations. (Reprinted with permission from Lee et

al. [131].)

because of the relatively small amount of observation records. For this rea-
son, this section evaluates a method’s performance of estimating the tail of
the short-term distribution f(z|x). Doing so makes sense, as the short-term
distribution underlies the difference between the Bayesian spline method and
the IEC standard procedure based on binning. In Section 10.6.5, a simula-
tion is employed to generate a much larger dataset, allowing to compare the
performance of the two methods in estimating the extreme load level in the
long-term distribution.

To evaluate the tail part of a conditional maximum load distribution, Lee et
al. [131] compute a set of upper quantile estimators and assess their estimation
qualities using the generalized piecewise linear (GPL) loss function [73]. A
GPL is defined as follows:

Sτ,b(l̂(xi), z(xi)) =
(
1(l̂(xi) ≥ z(xi))− τ

)
1
|b| ([l̂(xi)]

b − [z(xi)]
b), for b 6= 0,(

1(l̂(xi) ≥ z(xi))− τ
)

log
(
l̂(xi)
z(xi)

)
, for b = 0,

(10.33)

where l̂(xi) is the τ -quantile estimation of f(z|xi) for a given xi, z(xi) is the
observed maximum load in the test dataset, given the same xi, b is a power
parameter, and 1 is the indicator function. The power parameter b usually
ranges between 0 and 2.5. When b = 1, the GPL loss function is the same as
the piecewise linear (PL) loss function.

For the above empirical evaluation, Lee et al. [131] randomly divide a
dataset into a partition of 80% for training and 20% for testing. They use the
training set to establish a short-term distribution f(z|x). For any xi in the

test set, the τ -quantile estimation l̂(xi) can be computed using f(z|x). And
then, the GPL loss function value is taken as the average of all Sτ,b values
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.8 Comparison of piecewise linear loss function: the left verti-

cal axis represents the mean score values and the right vertical axis

represents a percentage value, which is the reduction in the mean

scores when the spline method is compared with the binning method.

(Reprinted with permission from Lee et al. [131].)

over the test set, as follows:

Sτ,b =
1

nt

nt∑
i=1

Sτ,b(l̂(xi), zi), (10.34)

where nt is the number of data points in a test set, and zi is the same as z(xi).
Apparently, Sτ,b is a mean score. The training/test procedure is repeated 10
times, and the final mean score is the average of the ten mean scores. For
notational simplicity, this final mean score is still called the mean score and
represented by Sτ,b, as long as its meaning is clear in the context.

In this comparison, two methods are used to establish the short-term distri-
bution: the binning method and the Bayesian spline method. In the sampling
algorithms outlined in Sections 10.3 and 10.5, Nl = 100 samples are drawn
from the short-term distribution. As such, one can evaluate the quality of
quantile estimations of the short-term distribution for a τ up to 0.99.

First, let us take a look at the comparisons in Fig. 10.8, which compares
the PL loss (i.e., b = 1) of both methods as τ varies in the above-mentioned
range. The left vertical axis shows the values of the mean score of the PL loss,
whereas the right axis is the percentage value of the reduction in mean scores
when the spline method is compared with the binning method. For all three
datasets, the spline method maintains lower mean scores than the binning
method.

When τ is approaching 0.99 in Fig. 10.8, it looks like that the PL losses
of the spline and binning methods are getting closer to each other. This is
largely due to the fact that the PL loss values are smaller at a higher τ , so
that their differences are compressed in the figure. If one looks at the solid
line in the plots, which represents the percentage of reduction in the mean
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TABLE 10.3 Mean scores of GPL/PL for the 0.9-quantile estimators.

Power parameter
ILT1 ILT2 ILT3

Binning Spline Binning Spline Binning Spline

b = 0 0.0185 0.0108 0.0129 0.0103 0.0256 0.0171
b = 1 0.0455 0.0265 0.0040 0.0031 0.0042 0.0028
b = 2 0.1318 0.0782 0.0013 0.0010 0.0008 0.0005

Source: Lee et al. [131]. With permission.

TABLE 10.4 Mean scores of GPL/PL for the 0.99-quantile estimators.

Power parameter
ILT1 ILT2 ILT3

Binning Spline Binning Spline Binning Spline

b = 0 0.0031 0.0018 0.0022 0.0020 0.0045 0.0027
b = 1 0.0086 0.0045 0.0007 0.0006 0.0008 0.0005
b = 2 0.0270 0.0135 0.0003 0.0002 0.0002 0.0001

Source: Lee et al. [131]. With permission.

score, the spline method’s advantage over the binning method is more evident
in the cases of ILT1 and ILT3 datasets. When τ gets larger, the spline method
produces a significant improvement over the binning method, with a reduction
of PL loss ranging from 33% to 50%. The trend is different when using the
ILT2 dataset. But still, the spline method can reduce the mean scores of the
PL loss from the binning method by 8% to 20%. Please note that ILT2 dataset
is the smallest set, having slightly fewer than 600 data records. The difference
observed over the ILT2 case is likely attributable to the scarcity of data.

Lee et al. [131] compute the mean scores of the GPL loss under three
different power parameters b = 0, 1, 2 for each method. Table 10.3 presents
the results under τ = 0.9, whereas Table 10.4 is for τ = 0.99. In Table 10.3, the
spline method has a mean score 20% to 42% lower than the binning method.
In Table 10.4, the reductions in mean scores are in a similar range.

In order to understand the difference between the spline method and bin-
ning method, Lee et al. [131] compare the 0.99 quantiles of the 10-minute
maximum load conditional on a specific wind condition. This is done by com-
puting the difference in the quantile values of conditional maximum load from
the two methods for different weather bins. The wind condition of each bin is
approximated by the median values of V and s in that bin. Fig. 10.9 shows
the standardized difference of the two 0.99 quantile values in each bin. The
darker the color is, the bigger the difference. Lee et al. exclude comparisons in
the weather bins with very low likelihood, which is the bins of low wind speed
and high standard deviation or high wind speed and low standard deviation.

One can observe that the two methods produce similar results at the bins
having a sufficient number of data points, which are mostly weather bins in the
central area. The results are different when the data are scarce—this tends to
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(a) ILT1 (b) ILT2 (c) ILT3

FIGURE 10.9 Comparison of the 0.99-quantiles between binning method

and spline method. (Reprinted with permission from Lee et al. [131].)

TABLE 10.5 Estimates of extreme load levels (lT , T = 20
years), unit: MN-m.

Datasets Binning method Spline method

ILT1 6.455 (6.063, 7.092) 4.750 (4.579, 4.955)
ILT2 0.752 (0.658, 0.903) 0.576 (0.538, 0.627)
ILT3 0.505 (0.465, 0.584) 0.428 (0.398, 0.463)

Source: Lee et al. [131]. With permission.

happen at the two ends of the average wind speed and standard deviation. This
echoes the point made earlier that without binning the weather conditions, the
spline method is able to make better use of the available data and overcome
the problem of limited data for rare weather events.

Lee et al. [131] also note that the spline method, although conceptually and
procedurally more involved, produces an overall model with fewer parameters.
To see this, consider the following—for the three ILT datasets, the average
(Kµ+Kσ) from the RJS algorithm is between 12 and 18. The number of model
parameters dk in Eq. 10.19 is generally less than 20, a number far smaller
than the number of parameters used in the binning method. As explained in
Section 10.3, when one uses a 6 × 10 grid to bin the two-dimensional wind
covariates, the binning method in fact uses a total of 121 parameters for the
overall model. Evidently, the spline method uses a sophisticated procedure to
find a simpler model that is more capable.

10.6.4 Estimation of Extreme Load
Tables 10.5 and 10.6 show the estimates of the extreme load levels lT , corre-
sponding to T = 20 and T = 50 years, respectively. The values in parentheses
are the 95% credible (or confidence) intervals.

One can observe that the extreme load levels, lT , obtained by the binning
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TABLE 10.6 Estimates of extreme load level (lT , T = 50
years), unit: MN-m.

Datasets Binning method Spline method

ILT1 6.711 (6.240, 7.485) 4.800 (4.611, 5.019)
ILT2 0.786 (0.682, 0.957) 0.589 (0.547, 0.646)
ILT3 0.527 (0.480, 0.621) 0.438 (0.405, 0.476)

Source: Lee et al. [131]. With permission.

method are generally higher than those obtained by the spline method. This
should not come as a surprise. As one pushes for a high quantile, more data
would be needed in each weather bin but the amounts in reality are limited due
to the binning method’s compartmentalization of data. The binning method
also produces a wider confidence interval than the spline method, as a result
of the same rigidity in data handling. The procedure of computing the binning
method’s confidence interval is explained in Algorithm 10.1.

10.6.5 Simulation of Extreme Load
In this section, a simulation study is undertaken to assess the estimation
accuracy of extreme load level in the long-term distribution. The simulations
use one single covariate x, mimicking the wind speed, and a dependent variable
z, corresponding to the maximum load. Algorithm 10.7 is used to generate
the simulated data. A set of simulated data thus generated is included in the
Turbine Bending Moment Dataset and ready to use, but interested readers
are welcome to generate the simulated load response data by themselves.

Once the training dataset DTR is simulated, both the binning method and
spline method are used to estimate the extreme load levels lT corresponding
to two probabilities: 0.0001 and 0.00001. This estimation is based on drawing
samples from the long-term distribution of z, as described in Section 10.4.4,
which produces the posterior predictive distribution of lT . To assess the esti-
mation accuracy of the extreme quantile values, Lee et al. [131] also generate
100 additional simulated datasets, by repeating Step 1 through Step 3 in Al-
gorithm 10.7, each of which consists of 100, 000 data points. For each dataset,
one can compute the observed quantile values l0.0001 and l0.00001. Using the
100 simulated datasets, one can obtain 100 different samples of these quantiles.

Fig. 10.10(a) shows a scatter plot of the simulated x’s and z’s in DTR,
which resembles the load responses observed. Figs. 10.10(b) and (c) present,
under the two selected probabilities, the extreme load levels estimated by the
two methods as well as the observed extreme quantile values. One notices
that the binning method tends to overestimate the extreme quantile values
and yields wider confidence intervals than the spline method. Furthermore, the
degree of overestimation appears to increase as the probability corresponding
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Algorithm 10.7 Simulated data generation to mimic wind speed and load
response for assessing the long-term distribution.

1. Generate a sample xi from a three-parameter Weibull distribution. Then
sample xij , j = 1, . . . , 1, 000, from a normal distribution having xi as its
mean and a unit variance. The set of xij ’s represents the different wind
speeds within a bin.

2. Draw samples, zij , from a normal distribution with its mean as µsij and
its standard deviation as σsij , which are expressed as follows:

µsij =

{
1.5

[1+48×exp(−0.3×xij)] , if xi < 17,
1.5

[1+48×exp(−0.3×xij)] + [0.5− 0.0016× (xi + x2
i )], if xi ≥ 17,

(10.35)

σsij = 0.1× log(xij). (10.36)

The above set of equations is used to create a z response resembling
the load data. The parameters used in the equations are chosen through
trials so that the simulated z looks like the actual mechanical load re-
sponse. While many of the parameters used above do not have any phys-
ical meaning, some of them do; for instance, the “17” in “xi < 17” bears
the meaning of the rated wind speed.

3. Find the maximum value zi = max{zi,1, . . . , zi,1000} and treat zi as the
maximum load response corresponding to xi.

4. Repeat Step 1 through Step 3 for i = 1, ..., 1, 000 to produce the training
dataset with n = 1, 000 data pairs, and denote this dataset by DTR =
{(x1, z1), . . . , (x1000, z1000)}.



296 � Data Science for Wind Energy

(a) Simulation dataset

(b) l0.0001 (c) l0.00001

FIGURE 10.10 Simulation dataset, estimated and observed extreme quan-

tile values: (a) an example of the simulated dataset, (b) and (c) box-

plots of the binning estimate, of the Bayesian spline estimate, and of the

respective sample quantile across 100 simulated datasets. (Reprinted

with permission from Lee et al. [131].)

to an extreme quantile value becomes smaller. This observation confirms what
is observed in Section 10.6.4 using the field data.

GLOSSARY
BIC: Bayesian information criterion

cdf: Cumulative distribution function

G3: Three-parameter Gamma distribution

GEV: Generalized extreme value

GPD: Generalized Pareto distribution
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GPL: Generalized piecewise linear (loss function)

IEC: International Electrotechnical Commission

IG3: Three-parameter inverse-Gaussian distribution

ILT: Inland turbine

LN3: Three-parameter log-normal distribution

MARS: Multivariate adaptive regression spline

MCMC: Markov chain Monte Carlo

MLE: Maximum likelihood estimation

pdf: Probability density function

PL: Piecewise linear (loss function)

POE: Probability of exceedance

POT: Peak over threshold

RAY: Rayleigh distribution

RJMCMC: Reserve jump Markov chain Monte Carlo

RJS: Reserve jump sampler

SIC: Schwarz information criterion

TN2: Two-parameter truncated normal distribution

UIP: Unit information prior

W2: Two-parameter Weibull distribution

W3: Three-parameter Weibull distribution

EXERCISES
10.1 In R, the package evd has a set of functions related to the reverse Weibull

distribution. To generate values for the probability density function of
reverse Weibull distribution, one can use the function drweibull(x,

loc, scale, shape, log = FALSE), where loc, scale, and shape are
the three parameters to be specified. Their default values are 0, 1, and 1,
respectively. Please use this function to plot a pdf curve for the reverse
Weibull distribution by setting loc = 0. Compare the reverse Weibull
pdf curve with the Weibull distribution pdf plot under the same values of
their respective scale and shape parameters. For computing the Weibull
pdf, please use the dweibull function in the stats package.
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10.2 Plot the cdf and pdf curves for GEV distribution when, respectively,
ξ = 1, ξ = 0, and ξ = −1. Make a note of the pattern of upper and
lower tails under respective ξ values.

10.3 Understand the sensitivity of design load, lT , to the parameters in a
GEV distribution. Let z ∼ GEV(µ, σ, ξ), where µ = 0, σ = 1, and
ξ = 1.

a. Compute lT in Eq. 10.8 for PT = 3.8× 10−7.

b. Keeping σ = 1 and ξ = 1, change the location parameter such that
the change in lT is doubled (or halved). Quantify the change in the
location parameter.

c. Keeping µ = 0 and ξ = 1, change the scale parameter such that the
change in lT is doubled (or halved). Quantify the change in the scale
parameter.

d. Keeping µ = 0 and σ = 1, change the shape parameter such that
the change in lT is doubled (or halved). Quantify the change in the
shape parameter.

e. Repeat the same exercise when the initial GEV distribution has the
same µ and σ but ξ = −1.

f. Repeat the same exercise when the initial GEV distribution has the
same µ and σ but ξ = 0 .

10.4 To understand the binning method’s lack of scalability, consider the
following scenarios. Suppose that one has a full year of 10-minute data
pairs, {xi, zi}, with no missing data at all.

a. How many data pairs are there in this one-year dataset?

b. If x is one dimensional, and analysts use 10 bins for this variable,
how many data points are there, on average, per bin?

c. What if x is three dimensional and each variable uses 10 bins, how
many data points are there, on average, per bin? What if x is six
dimensional?

d. Suppose that in order to adequately fit a GEV distribution with
three constant parameters, one would need 25 data points. If we
want to have sufficient amount of data points per bin to fit a GEV
distribution for every single bin, what is the highest dimensionality
of the input space that the binning method can serve?

10.5 Using ILT1 data in the Turbine Bending Moment Dataset and the bin-
ning method to estimate lT corresponding to PT of both 20-year service
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and 50-year service. This time, instead of fixing the bin-based GEV
distribution as the Gumbel distribution, please treat ξ as the third pa-
rameter in each bin and estimate based on the data. For the bins that do
not have data or sufficient amount of data, follow the treatment in Algo-
rithm 10.1. Compare the estimated l20-yr and l50-yr with its counterpart
in Tables 10.5 and 10.6.

10.6 Suppose that we use a two-parameter Weibull distribution, instead of the
three-parameter Weibull distribution, to model the average wind speed
(recall that we used the two-parameter Weibull distribution to model
the wind speed in Chapter 2). Reproduce the 95% credible interval plots
in Fig. 10.6 and see if there is any noticeable difference.

10.7 Consider a TN2 model with constant η and δ, and, a LN2 model (two-
parameter log-normal distribution) with constant distribution parame-
ters, as alternatives for modeling wind speed standard deviation s. Use
the SIC as the criterion to select the modeling option that produces the
best model fit to the three turbines in the Turbine Bending Moment

Dataset. Is the best model the TN2 with functional η and δ, TN2 with
constant η and δ, or LN2 with constant parameters?

10.8 An alternative method to evaluate Eq. 10.2 is through a peak-over-
threshold (POT) approach. The POT approach is to model the uncon-
ditional distribution of z directly without accounting for the effect of
wind covariates in x. First, select a threshold u for the z values in a
dataset. Use the z data points above this threshold (that is where the
name comes from) to estimate a generalized Pareto distribution (GPD).
Assume that the extreme load z follows this GPD and estimate lT for
the corresponding PT based on the estimated GPD. For the three tur-
bine datasets, use this POT approach to estimate their 20-year and
50-year lT and compare the outcome with those in Tables 10.5 and 10.6.
When using the POT approach, set u as the 95-percentile value of the
respective dataset.

10.9 Apply the POT method to the simulated training dataset, again with
the threshold, u, set as the 95-percentile value of that dataset. Estimate
l0.0001 and l0.00001, as what has been done while using the binning and
spline methods. Compare the POT outcome with those in Fig. 10.10.
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Computer
Simulator-Based Load
Analysis

T
he principal challenge in reliability assessment of wind turbines is rooted
in the fact that a small tail probability, f(z > lT ), in the order of 10−7

for T = 50 years, needs to be estimated. To accurately estimate this type of
small probability requires a sufficient number of high-z load response values.
If one opts to collect enough high-z values from physical turbine systems, it
takes tens of years, as the high-z values, by definition, are rare events. Adding
to the challenge is that hardly have any commercial wind turbines been in-
stalled with strain sensors, due to cost concerns. Physically measured bending
moments are typically obtained on a few test turbines and only for a short
duration of time, which is the reason behind the need for an extrapolation
and the modeling of the conditional load density, as explained in Chapter 10.
Wind engineers have been developing aeroelastic simulators that can produce
reasonably trustworthy bending moments response under a wind force input.
The availability of these simulators lends a degree of convenience to load anal-
ysis, as a simulator can be steered, at least in principle, towards the region of
high load responses so as to produce more high-z data points. For this reason,
using the aeroelastic simulators could expedite and enhance the estimation
of extreme load distribution and facilitate the reliability assessment of wind
turbines. Of course, running aeroelastic turbine load simulators can be com-
putationally expensive. Data science methods are much needed to make the
simulator-based load analysis efficient and practical.

301
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11.1 TURBINE LOAD COMPUTER SIMULATION
11.1.1 NREL Simulators
Two NREL simulators are popularly used in the study to generate the struc-
tural load response on a turbine—one is TurbSim [112] and the other is
FAST [113]. To simulate the structural load response on a turbine, it takes two
steps: first, TurbSim generates an inflow wind profile in front of a wind turbine,
and second, FAST takes the inflow profile as input and simulates structural
and mechanical load responses at multiple turbine components. Please refer
to Fig. 10.1 for an illustration of load responses on turbine components.

More than a single-point turbulence computed based on the hub height
wind speed, TurbSim simulates a full-field stochastic inflow turbulence envi-
ronment in front of a turbine, “reflect[ing] the proper spatiotemporal turbu-
lent velocity field relationships seen in instabilities associated with nocturnal
boundary layer flows” [120]. The input to TurbSim is the hub height wind
speed, either measured or simulated, and the output is the full-field inflow
environments to be used to drive a downstream load simulator. FAST is the
aeroelastic dynamic load simulator, and uses wind inflow data and solves for
the rotor wake effects and blade-element loads.

The data in the Simulated Bending Moment Dataset are simulated us-
ing the two simulators [37]. According to Choe et al. [37], the 10-minute av-
erage wind speed is simulated using a Rayleigh distribution. Recall that as
mentioned in Section 10.4.3, the IEC standard recommends using a Rayleigh
distribution to model the 10-minute average wind speed, although the nu-
merical studies in Section 10.6.1 show that other distributions may fit the
actual wind speed data better. TurbSim and FAST are used to simulate a
turbine’s 10-minute operations, given the average wind speed. The maximum
load responses at a blade root are recorded as the output. Two load types,
the edgewise and flapwise bending moments, are simulated and their respec-
tive maximum values in a 10-minute interval are recorded in the Simulated

Bending Moment Dataset. Choe et al. [37] define a simulation replication or
one simulator run as a single execution of the 10-minute turbine operation
simulation that generates a 10-minute maximum edgewise and flapwise load.
The simulated maximum load is still denoted by z, same as the notation used
for the physical maximum load.

Fig. 11.1 illustrates the load responses simulated from TurbSim and FAST,
following the procedure discussed in [149].

11.1.2 Deterministic and Stochastic Simulators
Not only does the wind industry use computer simulators to complement
physical experiments or make up data deficiency in physical measurements, the
use of computer simulators, sometimes referred to as computer experiments,
is popular and common in many other engineering applications [124, 193].

Many computer simulators used in engineering applications are based on
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(a) Edgewise bending moments
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(b) Flapwise bending moments

FIGURE 11.1 Simulated blade root load responses. (Reprinted with per-

mission from Choe et al. [37].)

solving a set of partial differential equations, or a mix of differential and al-
gebraic equations, derived from physical laws and principles. Finite element
analysis in mechanics is a frequently mentioned example of this type of com-
puter simulators. These computer simulators are referred to as deterministic
computer simulators, and numerical analyses run on such simulators are called
deterministic computer experiments. They are called “deterministic” because
for the same given input, the simulator’s output remains the same, no matter
how many times one re-runs the same simulator. Let us denote by g(·) the
function of the black-box simulator, and by z(x) := g(x) the output of the
simulator, given the input at x. Note that z here refers to a generic output, al-
though it could be, but not necessarily, the load response. For a deterministic
computer simulator, z(x) does not change, as long as x stays the same.

The development of turbine load simulators is indeed based on aerody-
namic and aeroelastic physical principles. But TurbSim and FAST are not
deterministic simulators, because for a given input, x, the load response is
not guaranteed to be the same. Rather, the simulator response exhibits ran-
domness, resembling the characteristics of noisy physical measurements. This
is because the turbine load simulators embed a large number of uncontrollable
variables inside the black-box simulator. These variables take different values,
produced from certain random number generators, at individual runs of the
same simulator, so that even if the input, x, remains the same, the output, z,
could be, and is almost surely different. The turbine load simulators are there-
fore known as the stochastic computer simulators, and numerical analyses run
on them are stochastic simulations or stochastic computer experiments, mim-
icking physical experiments. For the stochastic simulators, their g function
should include two types of inputs—x that can be set prior to running the
simulator and ε that is not controlled explicitly but takes its values from ran-
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dom number generators. In other words, the simulator response z is such that
z(x) = g(x, ε).

When simulating the turbine load response, x is considered a stochastic
input, and its marginal distribution, f(x), is either known a priori, or prac-
tically, estimated from the historical data. Random samples of x are drawn
from f(x) and used to drive TurbSim and FAST simulators. For a determin-
istic simulator, its inputs can be stochastic and drawn from its own marginal
distribution. Analysts may question whether a stochastic simulator may be-
come deterministic, if one treats the combined set of variables, (x, ε), as a new
input. This is to say, let us specify the joint probability distribution, f(x, ε),
for both x and ε and then draw samples from f(x, ε) to drive the stochastic
simulator. Given a specific value of (x, ε), the simulator response, g(x, ε), re-
mains the same, no matter how many times the same value of (x, ε) is used
to re-run the same simulator.

Technically, this is correct. In fact, nothing is exactly uncontrolled in com-
puter simulations—even the random numbers generated are, rigorously speak-
ing, pseudo random numbers. But practically, there are too many random
variables embedded inside the load response simulators to be specified with a
joint probability distribution. According to Choe et al. [37], ε in the NREL
simulators has over eight million elements. By contrast, elements in x are far
fewer—its number is generally in a single digit. It is thus practical to specify
a joint distribution only for x and draw samples from it, while leaving ε to
be individually handled by its own random number generator. A computer
simulator is stochastic in the sense that ε is left uncontrolled.

Another branch of stochastic simulators are commonly found in discrete
event simulations. One of such simulations is mentioned in Section 9.4.3, which
is the DEVS-based simulation platform for a wind farm. In that wind farm
simulator, a number of inputs or parameters, such as the number and locations
of wind turbines, can be specified by analysts running the simulation, but
there are many more random variables left to be individually handled by
a respective random number generator, such as the degradation path for a
turbine component. In the end, even under a fixed x, the wind farm simulator
changes its response when it is re-run.

11.1.3 Simulator versus Emulator
Running computer simulators is to reduce cost by not conducting too many
physical experiments, either too expensive, or too time consuming, or unre-
alistic. But running computer simulators incurs its own cost, in the form of
computational expense. Depending on the fidelity of a computer simulator,
the time to run one simulation replication ranges from a couple of minutes
(low-fidelity ones) to hours or even days (high-fidelity ones).

Analysts therefore develop efficient, or computationally cheap, mathemat-
ical surrogates of computer simulators and hope to rein in the computational
expense by running a small number of computer simulations but a large num-
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ber of the surrogate models. The surrogate models are models of models,
because computer simulators are themselves mathematical models of a physi-
cal reality, rather than the physical reality itself. For this reason, a surrogate
model is known as a meta-model. They are also called emulators, to be differ-
entiated from the simulators, and the surrogate models do mean to emulate
the behavior of a respective simulator.

A popular branch of emulators is based on Gaussian process regression,
or the kriging model, as introduced in Section 3.1.3. To model simulator re-
sponses, the location input, s, used in the spatial modeling in Section 3.1.3, is
to be replaced by a generic input, x. While Gaussian process regression used
in Section 3.1.3 for spatial modeling has an input dimension of two, the same
modeling approach can be easily extended to general applications of more
than two inputs, without changing much of the formulations and solution
procedures as outlined in Section 3.1.3.

When modeling a stochastic simulator response, Eq. 3.8 or Eq. 3.17 can
be directly used, as the simulator response is treated as if it were a physical
response. A training dataset, collected from running the stochastic simulators
at different x’s, is needed to estimate the parameters in the Gaussian process
model. The resulting model, if we express it by ĝ(x), is a meta-model or an
emulator.

When modeling a deterministic simulator response, the main difference
is to use Eq. 3.8 or Eq. 3.17 without the nugget effect, i.e., remove ε in the
respective equation. This is because a deterministic simulator returns the same
response for the same input, so that an emulator is supposed to produce the
precise response at the same input value of x. It can be shown that a Gaussian
regression model without the nugget effect interpolates precisely through the
training data points, known as its interpolating property (see Exercise 3.3).

The popularity of the Gaussian process model as an emulator arises from
its modeling of deterministic computer simulators. When deterministic com-
puter simulators become common, analysts realize its difference from phys-
ical experiments, particularly the aspect of having noise-free responses, and
therefore seek a different modeling approach. Sacks and his co-authors adopt
the Gaussian process model from spatial statistics to model computer experi-
ments [189, 190] and note the interpolating property; their effort launched the
field of design and analysis of computer experiments.

But Gaussian process models are not the only emulator choice, especially
when it comes to modeling the stochastic computer simulators. Recall that
the response of a stochastic computer simulator looks more like physical mea-
surements. Many data science methods introduced in this book, employed to
model various types of physical responses, can be used to model the response
of a stochastic computer simulator and hence be an emulator. As we will see in
Section 11.4, the emulator used in the turbine load analysis is not a Gaussian
process model.
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11.2 IMPORTANCE SAMPLING
Let us first consider the use of deterministic computer simulator in reliabil-
ity analysis. Given a wind condition x, the deterministic computer simulator
produces a load response, z = g(x). This output can be compared with the
design load, or a turbine system’s resistance level, l, to see if the turbine struc-
ture may fail under the simulated load response z. For reliability assessment,
analysts are interested in knowing the failure probability P (z > l), which was
expressed in Eq. 10.1 with a subscript T . Here we drop the subscript for the
simplicity of notation. Relying on the response of a deterministic computer
simulator, this failure probability can be expressed as

P (z > l) =

∫
1(g(x) > l)f(x)dx = E[1(g(x) > l)], (11.1)

where 1(·) is the indicator function.

11.2.1 Random Sampling for Reliability Analysis
Computer simulators, including the turbine load simulators, are considered
black boxes because an output is numerically computed by going through
thousands of lines of computer codes. It is impractical to analytically evaluate
the failure probability P (z > l) in Eq. 11.1. It is, however, rather straight-
forward to evaluate the failure probability empirically through random sam-
pling. The simplest method is the plain version Monte Carlo method, also
known as the crude Monte Carlo (CMC), which is to draw random samples,
{x1, . . . ,xNT }, from f(x), where NT is the number of the random samples.
Each one of the samples is used to drive the computer simulator and produce
a corresponding load output. As such, NT is also the number of simulation
runs.

The simulated load response is then compared with l. If g(x) > l, a failure
occurs and the indicator function, 1(g(xi) > l), returns a one; otherwise, no
failure occurs and the indicator function, 1(g(xi) > l), returns a zero. The
failure probability is empirically estimated by

P̂ (z > l) =
1

NT

NT∑
i=1

1(g(xi) > l). (11.2)

The estimate is simply counting how many times, among the NT runs, the
simulator output exceeds the design load level l.

The crude Monte Carlo method is easy to use and applies to almost any
applications. Its main shortcoming is the inefficiency for reliability assessment.
Heidelberger [89] presents the following example to stress the point. Let us
denote the probability in Eq. 11.1 by P and the estimate in Eq. 11.2 by P̂CMC.
It is not difficult to show (see Exercise 11.1) that the expectation and variance
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of P̂CMC are, respectively,

E[P̂CMC] = P, and

V ar[P̂CMC] =
1

NT
P (1− P ).

(11.3)

If using a normal approximation, the 100(1 − α)% confidence interval for P
is P̂CMC ± zα/2

√
P (1− P )/NT . A similar treatment is used in Eq. 2.8. The

expectation expression in Eq. 11.3 also means that the crude Monte Carlo
estimate is unbiased.

Heidelberger [89] asks that how many random samples, or equivalently, how
many simulator runs, are required in order to estimate the 99% confidence
interval of P to be within 10% of the true probability. To accomplish the
desired estimation accuracy, it requires that zα/2

√
P (1− P )/NT ≤ 0.1P for

α = 0.01, or equivalently,

2.58

√
(1− P )

P
· 1

NT
≤ 0.1,

so that

NT ≥ 666× 1− P
P

. (11.4)

For a well-designed product, its failure probability P is small, suggesting 1−
P ≈ 1, so that NT is roughly of 666/P , which is going to be large for a small
P . Suppose the target failure probability is at the level of P = 10−5. To have
an accurate enough estimate of this small probability, the sample size or the
number of simulation runs required is 6.7 × 107. Even if a single run of the
computer simulator takes only one second, 6.7× 107 seconds still translate to
more than two years. The essence of reliability assessment is to capture and
characterize the behavior of rare events. While attempting to come up with
enough samples of the rare events, the inefficiency of the crude Monte Carlo
leads to a high computational demand.

11.2.2 Importance Sampling Using Deterministic Simulator
Importance sampling is to introduce another density function, q(x), to draw
samples of x, where q(x) is referred to as the importance sampling density.
We explain later where the name comes from.

While using q(x), the failure probability expression in Eq. 11.1 can be
written differently, i.e.,

P (z > l) =

∫
1(g(x) > l)

f(x)

q(x)
q(x)dx = E

[
1(g(x) > l)

f(x)

q(x)

]
. (11.5)

By multiplying and dividing q(x) in the integrand, the above probability ex-
pression remains equivalent to that in Eq. 11.1.
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Denote by

L(x) =
f(x)

q(x)

the likelihood ratio between the two density functions. Eq. 11.5 can be ex-
pressed as

P (z > l) = E[1(g(x) > l)L(x)].

The empirically estimated failure probability based on importance sampling
(IS) density is then

P̂IS(z > l) =
1

NT

NT∑
i=1

1(g(xi) > l)L(xi), (11.6)

where the samples, {x1, . . . ,xNT }, are drawn from q(x).
Technically, any valid density function can be used as q(x) in importance

sampling, and P̂IS is an unbiased estimator of P , as long as q(x) = 0 implies
that 1(g(x) > l)f(x) = 0 for any x, which means that a non-zero feasible sam-
ple under the old density f(·) with g(x) > l must also be a non-zero feasible
sample under the new density q(·). However, this does not mean that an arbi-
trary choice of q(x) can help address the computational inefficiency problem
of the crude Monte Carlo method. To understand the choice for an optimal
importance sampling density, we first provide an intuitive understanding how
importance sampling works.

The condition to be verified for failures, g(x) > l, defines the events of
interest (EOI) for a reliability assessment. But the concentration of f(x) does
not coincide with the EOI. The region of x, whose corresponding response
belongs to the EOI, is referred to as the critical region. By the nature that the
EOI in reliability analysis are rare, random sampling from f(·) has a low hit
rate on the critical region. An importance sampling can help if the density so
chosen, q(·), steers the sample concentration towards the critical region. This
means that while f(·) is small over the critical region, q(·) needs to be large on
that region, so as to make the EOI likely to occur. The name, “importance,” is
given to the sampling approach because the new density is supposed to place
the right importance on the critical region, or the new density concentrates
on the region of importance.

This intuition is realized through variance reduction in random sampling.
To see this, consider the following. The variance of the importance sampling
estimator in Eq. 11.6 can be expressed as

V ar[P̂IS] =
1

N2
T

NT∑
i=1

Eq
[
(1(g(xi) > l)L(xi))

2
]

+ C

=
1

NT
Ef [1(g(x) > l)L(x)] + C,

(11.7)

where the subscript placed on the expectation operator is to make explicit
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which probability measure the expectation is taken with respect to and C is
a constant not depending on the sampling action. The first equality in the
above question means that reducing the variance of the importance sampling
estimator corresponds to selecting a q(x) that reduces the second moment of
1(g(x) > l)L(x).

Let us take a look at the likelihood ratio, which is L(x) = f(x)/q(x).
For importance sampling, following the intuition above, f(x) is small in the
critical region where 1(g(xi) > l) = 1, while q(x) should be large. As such, the
likelihood ratio, L(x), is small. Consequently, the variance of the importance
sampling is small, according to Eq. 11.7. A proper choice of the importance
sampling density is thereby to reduce the likelihood ratio, which in turn makes
the samples less spread out (small variance). Together with the unbiasedness
property of P̂IS, a variance-reduced importance sampling is able to concentrate
on the critical region to sample. For the derivation of Eq. 11.7, please see
Exercise 11.2.

The theoretically optimal importance sampling density is

q∗IS =
1(g(x) > l)f(x)

P (z > l)
, (11.8)

because this q∗IS leads to a failure probability estimate that has a zero (and
hence the smallest) variance, and one sample from it gives us the uncondi-
tional POE, P (z > l), exactly. Practically, this q∗IS is not implementable. The
probability P (z > l) is unknown and precisely what analysts want to esti-
mate using the simulators and random samples. Moreover, the critical region,
implied by g(x) > l, is not known, either, before the simulator is run on the
random samples of x.

De Boer et al. [45] present a cross-entropy-based approximation to im-
plement the idea of importance sampling. Consider the case that the density
function, f(x), can be parameterized by a vector u. To make this parametriza-
tion explicit, let us express it as f(x;u). Suppose that the importance sam-
pling density takes the same function form but uses different parameters, i.e.,
q(x) := f(x;v). The likelihood ratio can be expressed as

L(x;u,v) =
f(x)

q(x)
=
f(x;u)

f(x;v)
. (11.9)

The cross-entropy algorithm is iterative in nature. When the algorithm
starts, it attempts to find an event not so rare, by setting a probability, say
κ = 0.01, so that there are almost surely EOI produced from the simulator. Let
t be the iteration index and Nt be the sample size at the t-th iteration. When
the Nt samples are evaluated using the simulator at the t-th iteration, the

responses are labeled as {g(t)
1 , . . . , g

(t)
Nt
}. Without ambiguity, the superscript

(t) is often dropped. We order the simulator response from smallest to largest,
such that g(1) ≤ g(2) ≤ . . . ≤ g(Nt), where g(j) is the j-th order-statistic of the
sequence {g(x1), . . . , g(xNt)}.
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The iterative cross-entropy algorithm constructs a sequence of reference
parameters {vt, t ≥ 0} and design load thresholds {lt, t ≥ 1}. It starts with
v0 = u and updates both vt and lt by steering the sampling action towards the
critical region. The specific steps are outlined in Algorithm 11.1. The optimiza-
tion formulation in Step 3 is based on the minimization of the Kullback-Leibler
distance between the optimal importance sampling density, q∗IS in Eq. 11.8,
and the actual importance sampling density to be used for the next iteration,
q(t+1)(x) := f(x;vt). The Kullback-Leibler distance is also termed the cross
entropy between the two density functions of interest (see Exercise 11.3).

Algorithm 11.1 Iterative cross-entropy approximation for importance sam-
pling.

1. Set v̂0 = u and t = 1.

2. Draw samples, {x1, . . . ,xNt}, from the density q(t)(x) := f(x;vt−1).
Compute the (1−κ)Nt-th order-statistic of {g(x1), . . . , g(xNt)} and set
that as the estimate of lt, i.e.,

l̂t = g(d(1−κ)Nte).

If l̂t ≥ l, then let l̂t = l.

3. Use the same samples drawn in Step 2, {x1, . . . ,xNt}, to solve the
following optimization problem and get an update of vt. Denote the
solution by v̂t.

max
v

1

Nt

Nt∑
i=1

1(g(xi ≥ l̂t))L(xi;u, v̂t−1) ln f(xi;v). (11.10)

4. If l̂t < l, set t = t+ 1 and reiterate from Step 2. Else proceed to Step 5.

5. Estimate the failure probability by using Eq. 11.6, re-written below as

P̂IS(z > l) =
1

NT

NT∑
i=1

1(g(xi) > l)L(xi;u, v̂T ).

where T is the final number of iterations.

Dubourg et al. [53] present a different approximation approach, which is
based on the use of a meta-model. The idea is simple. First, draw a small
number of samples of x, say a couple of hundreds, and use the computer sim-
ulator to generate the corresponding structural responses. Using this small set
of simulator-generated samples, Dubourg et al. [53] build a Gaussian process
emulator, which can run more efficiently and be used to generate a much larger
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sample set, say several thousands or even tens of thousands. The importance
sampling estimate in Eq. 11.6, instead of relying on the simulator function
g(·), now uses the emulator function, ĝ(·).

One challenge faced by this meta-model-based approach is that with the
initial small number of samples, the chance of having a sufficient number of
EOI is low. The subsequent Gaussian process emulator is therefore unlikely
able to gain a good accuracy in the tail probability estimation when there
are very few quality samples to build the meta-model in the first place. Like
the cross-entropy approach, an iterative procedure appears unavoidable for
the meta-model-based approach, which gradually steers the sampling action
towards the critical region.

11.3 IMPORTANCE SAMPLING USING STOCHASTIC SIMULA-
TORS

The importance sampling described in Section 11.2 relies on the use of a
deterministic computer simulator. This is reflected in the failure verification
function, 1(g(x) > l). Due to the deterministic nature of the simulator used,
g(x) is a constant for a given x, so that g(x) > l is either true or false,
meaning 1(g(x) > l) is either one or zero, once x is fixed. This is no longer
true for stochastic simulators, because g(x) varies even for the same x. The
verification condition, g(x) > l, compares in fact a random variable with a
threshold, and for this reason, the indicator function is no longer appropriate
to be used to capture the failure verification outcome. Rather, a probability
should be assessed of this condition, namely P (g(x) > l).

In the context of stochastic simulators, the crude Monte Carlo estimate is
changed to

P̂CMC(z > l) =
1

M

M∑
i=1

P̂ (g(xi) > l)

=
1

M

M∑
i=1

 1

Ni

Ni∑
j=1

1(gj(xi) > l)

 ,

(11.11)

where {x1, . . . ,xM} are M random samples from f(·) and M is called the
input sample size. At each input xi, the simulator is run Ni times to produce
Ni outputs, g1(xi), . . . , gNi(xi), each of which is a realization of a stochastic
process and can then be compared with the design threshold l in a determin-
istic manner. The number of simulations per input, Ni, is called the allocation
size. The total number of simulator runs is then NT =

∑M
i=1Ni.

Apparently, the inclusion of the inner summation in Eq. 11.11 is the major
difference between the failure probability estimate using a stochastic simulator
and that using a deterministic simulator. When using a deterministic simula-
tor, Ni is set simply one, so that NT = M . When using a stochastic simulator,
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the sample average of Ni simulator responses under the same xi is used to
approximate the probability, P̂ (g(xi) > l).

Importance sampling based on deterministic simulators can be explicitly
referred to as the deterministic importance sampling (DIS), whereas impor-
tance sampling based on stochastic simulators is referred to as the stochastic
importance sampling (SIS). In the sequel, some of the “IS” subscripts used
previously is replaced by “DIS.” For instance, q∗IS in Eq. 11.8 is expressed as
q∗DIS from this point onwards.

Choe et al. [37] develop two versions of the stochastic importance sampling
method, referred to as SIS1 and SIS2, respectively, which are to be explained
in the sequel.

11.3.1 Stochastic Importance Sampling Method 1
Noticing the difference between Eq. 11.2 and Eq. 11.11, when introducing an
importance sampling density to the stochastic simulators, Eq. 11.6 should be
written as

P̂SIS1(z > l) =
1

M

M∑
i=1

P̂ (g(xi) > l)L(xi) =
1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

1(gj(xi) > l)

)
L(xi),

(11.12)

where the samples, {x1, . . . ,xM}, are drawn from q(x). Here, P (g(xi) > l)
is the probability of exceedance, conditioned on input xi. Let us denote this
conditional POE by

S(x) := P (g(x) > l). (11.13)

In Eq. 11.12, the conditional POE is estimated by the sample mean of suc-
cesses.

In SIS1, Choe et al. [37] state that NT and M are assumed given and
the goal is to find the optimal allocation, Ni, and the optimal importance
sampling density function, qSIS1(·).

Recall the intuition behind importance sampling described in Sec-
tion 11.2.2. The optimal importance sampling density is supposed to mini-
mize the variance of the failure probability estimate. For P̂SIS1(z > l), Choe
et al. [37] obtain

V ar[P̂SIS1] = V ar

[
1

M

M∑
i=1

Ŝ(xi)L(xi)

]

=
1

M2
E

[
V ar

{
M∑
i=1

Ŝ(xi)L(xi)

}]
+

1

M2
V ar

[
E

{
M∑
i=1

Ŝ(xi)L(xi)

}]

=
1

M2
E

[
M∑
i=1

1

Ni
S(xi)(1− S(xi))(L(xi))

2

]
+

1

M
V ar [S(x)L(x)] .

(11.14)

Choe et al. further prove that the following allocation sizes and importance
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sampling density function make P̂SIS1 an unbiased estimator and minimize
the variance of the failure probability estimate in Eq. 11.14:

q∗SIS1(x) =
1

Cq1
f(x)

√
1

NT
S(x)(1− S(x)) + S(x)2, (11.15a)

N∗i =
NT

√
NT (1−S(xi))

1+(NT−1)S(xi)∑M
j=1

√
NT (1−S(xj))

1+(NT−1)S(xj)

, (11.15b)

where Cq1 is a normalizing constant such that

Cq1 =

∫
f(x)

√
1

NT
S(x)(1− S(x)) + S(x)2 dx.

When using the above formula for Ni, Ni is rounded to the nearest integer. If
the rounding yields a zero, Choe et al. suggest using one in its place in order
to ensure unbiasedness in the failure probability estimation.

The importance sampling density is a re-weighted version of the original
density for x. It gives more weight to the critical region when EOI are more
likely to occur, and less weight to the region when EOI do not happen as
often, so as to refocus the sampling effort on the critical region.

The allocation size is roughly proportional to
√

1− S(xi), after we ap-
proximate 1 + (NT − 1)S(xi) by one for a small S(xi). This allocation policy
says that for a smaller failure probability, one needs a larger size of samples.
This result may sound counter-intuitive at first, because one would expect
the smaller failure probability area to be accompanied by a smaller sample
size. While sampling from the critical region where EOI are more likely to
occur, the optimal importance sampling density, q∗SIS1, concentrates more re-
sources on the region where g(·) is close to l, rather than on the region where
g(·) is much greater than l. This turns out to be a good strategy because for
the region where g(·) is much greater than l, the certainty is high, foreclos-
ing the need for large sample sizes. In summary, among the important input
conditions under which a system can possibly fail, SIS1’s allocation strategy
finds it a more judicious use of the simulation resources by allocating a larger
(smaller) number of replications in the region with a relatively small (large)
S(x).

The q∗SIS1 reduces to q∗DIS in Eq. 11.8 (where it was called q∗IS then) when
the stochastic simulator is replaced by a deterministic simulator. Under a
deterministic simulator, Ni = 1, NT = M , and S(x) = 1(g(x) > l). The
last expression means that under a deterministic simulator, the conditional
POE deteriorates to an indicator function, taking either zero or one. As such,
S(x)(1− S(x)) = 0, so that the density function becomes

q∗SIS1 =
S(x)f(x)∫
S(x)f(x)dx

=
1(g(x) > l)f(x)∫
1(g(x) > l)f(x)dx

=
1(g(x) > l)f(x)

P (z > l)
.
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11.3.2 Stochastic Importance Sampling Method 2
Choe et al. [37] propose an alternative stochastic importance sampling-based
estimator that restricts Ni to one, such that

P̂SIS2(z > l) =
1

NT

NT∑
i=1

1(g(xi) > l)L(xi). (11.16)

Although the right-hand side of Eq. 11.16 looks the same as that in Eq. 11.6, a
profound difference is that g(·) function here is not deterministic. As a result,
qDIS cannot be used as qSIS2. Choe et al. [37] present the optimal density
function as

q∗SIS2(x) =
1

Cq2
f(x)

√
S(x), (11.17)

where Cq2 is another normalizing constant such that

Cq2 =

∫
f(x)

√
S(x)dx.

The importance sampling density, q∗SIS2, also reduces to q∗DIS when the
stochastic simulator is replaced by a deterministic simulator. Again, under a
deterministic simulator, S(x) = 1(g(x) > l), i.e., an indicator function taking
either zero or one. Therefore,

√
S(x) = S(x), so that the density function

becomes

q∗SIS2 =
f(x)S(x)∫
f(x)S(x)dx

=
1(g(x) > l)f(x)

P (z > l)
.

11.3.3 Benchmark Importance Sampling Method
Choe et al. [37] mimic the deterministic importance sampling density func-
tion by replacing the failure-verifying indicator function in Eq. 11.6 with the
conditional POE, and call the resulting importance sampling density function
the benchmark importance sampling (BIS) density, i.e.,

q∗BIS(x) =
S(x)f(x)

P (z > l)
=

S(x)f(x)∫
S(x)f(x)dx

,

and use Eq. 11.6 as the failure probability estimator. To be consistent with the
notations used in q∗SIS1 and q∗SIS2, we denote by CqB the normalizing constant
in the above density function, i.e.,

q∗BIS(x) =
1

CqB
f(x)S(x), (11.18)

where,

CqB =

∫
f(x)S(x)dx.
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11.4 IMPLEMENTING STOCHASTIC IMPORTANCE SAMPLING
In the stochastic importance sampling densities, described in the preceding
section, two pieces of detail need to be sought out for their implementation.
The first is about modeling the conditional POE, S(x), and the other is how
to sample from a resulting importance sampling density without necessarily
computing the normalized constant in the denominator.

11.4.1 Modeling the Conditional POE
Choe et al. [37] suggest using a meta-modeling approach to establish an ap-
proximation for S(x), but argue that using the Gaussian process model is
appropriate when the modeling focus is on the part around the mode of a
probability density function. For extreme load and failure probability analy-
sis, the focus is instead on the extreme quantiles and the tail probability of a
skewed distribution. Unlike Dubourg et al. [53] who use the Gaussian process-
based approach, Choe et al. use a generalize additive model for location, scale,
and shape (GAMLSS) [179].

In Chapter 10, a GEV distribution is used to model the extreme load on
critical turbine components. The GEV distribution has three distribution pa-
rameters: location, scale, and shape. Section 10.4 presents an inhomogeneous
GEV distribution, in which the location parameter and the scale parameter
are modeled as a function of the input x using MARS models. The approach
in Section 10.4 falls under the broad umbrella of GAMLSS.

In [37], Choe et al. still use a GEV distribution and also model its location
and shape parameter as a function of the input, while keeping the shape pa-
rameter fixed, the same approach as used in Section 10.4. Choe et al. choose
to include only the wind speed in x, so that the functions for the location and
shape parameters are univariate. For this reason, Choe et al. use a smooth-
ing spline to model both functions, rather than the MARS function used in
Section 10.4. Recall that a smoothing spline handles a univariate input well
but does not scale very well in higher input dimensions. MARS is one popular
multivariate spline-based models handling multi-dimensional inputs. Please
visit Section 5.3.3 for more details on smoothing splines and spline-based re-
gression.

Choe et al. [37] obtain a training dataset using the NREL simulators. The
training dataset consists of 600 observation pairs of {xi, yi}, i = 1, 2, . . . , 600.
The x is the wind speed sampled from a Rayleigh distribution but trun-
cated between the cut-in wind speed at 3 m/s and the cut-out wind speed
at 25 m/s. The y is the corresponding load response obtained by running the
NREL simulators. Slightly different from the smoothing spline formulation in
Eq. 5.22, here are two smoothing splines, one for the location parameter and
the other for the scale parameter, to be estimated simultaneously. Following
the GAMLSS framework, Choe et al. maximize an objective function regu-
larized by both smoothing splines. Let µ(x) be the location function, σ(x) be
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FIGURE 11.2 Location and scale parameter functions for both bending

moments responses. (Reprinted with permission from Choe et al. [37].)

the scale function, and γµ and γσ be the two respective penalty parameters.
The objective function is then

min

{
log-lik− γµ

∫
µ′′(t)2dt− γσ

∫
(log σ(t)′′)2dt

}
, (11.19)

where log-lik refers to the log-likelihood function using the training dataset.
Fig. 11.2 presents the estimated functions for the location and scale pa-

rameters using the 600 data pairs in the training set. The shape parameter,
kept constant in the above modeling process, is estimated at −0.0359 for the
edgewise bending moments response and at −0.0529 for the flapwise bending
moments response. In both cases, the resulting GEV distribution exhibits the
pattern of a reverse Weibull distribution.

11.4.2 Sampling from Importance Sampling Densities
The three importance sampling densities, q∗SIS1, q∗SIS2, and q∗BIS in Section 11.3,
all have a normalizing constant in the denominator of their respective expres-
sion. Let us refer to this normalizing constant generically as Cq. Specifically,
Cq = Cq1 in q∗SIS1, Cq = Cq2 in q∗SIS2, and Cq = CqB in q∗BIS. In order to
compute the failure probability estimate using Eq. 11.12 or Eq. 11.16, these
constants need to be numerically evaluated. All the constants involve the in-
tegration of one known function, f(x), and a meta-model function, S(x), so
that a numerical integration routine can compute these constants. In their
study [37], Choe et al. use the MATLAB function quadgk for the numerical in-
tegration whose input is the univariate wind speed. If one has multiple inputs
in x and needs to use a numerical integrator for multivariate inputs, Choe et
al. recommend using mcint.

For drawing samples from the importance density functions, Choe et
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(a) Edgewise moments with l = 9, 300 kNm (b) Flapwise moments with l = 14, 300 kNm

FIGURE 11.3 Empirical SIS1 importance sampling density for both bend-

ing moments responses, overlaid on top of the density function of wind

speed f(x). (Reprinted with permission from Choe et al. [37].)

al. [37] skip the computing of these normalizing constant. They advocate
using an acceptance-rejection algorithm to sample from the respective im-
portance sampling density. The acceptance-rejection algorithm samples a u
from a uniform distribution over the interval of [0, f(x)] and then compares
u with Cq · q∗(x). If u is smaller, then accept x as a valid sample; otherwise,
reject this sample and repeat the sampling action and check again.

Note that the acceptance-rejection condition, u ≤ Cq · q∗(x), does not
involve computing Cq, because Cq · q∗(x) can be determined based on f(x)
and S(x), according to Eqs. 11.15a, 11.17, and 11.18.

11.4.3 The Algorithm
Choe et al.’s algorithm to execute the importance sampling using stochastic
simulators is summarized in Algorithm 11.2. Fig. 11.3 presents the empirical
importance sampling densities of both bending moments responses, overlaid on
top of the original wind speed density f(x). The importance sampling densities
in Fig. 11.3 are obtained by using q∗SIS1. Similar results can be obtained by
using either q∗SIS2 or q∗BIS. One can observe from Fig. 11.3 that the distribution
of samples over the wind spectrum is different under the importance sampling
density versus that under the original wind distribution. Where the high mass
of samples appears depends on the physical mechanism governing the bending
moments response and exhibits close correlation with the trend shown in the
respective plot in Fig. 11.1.
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Algorithm 11.2 Importance sampling algorithm using stochastic simulators.

1. Approximate the conditional POE, S(x), with a meta-model. In the case
of turbine load response, estimate S(x) using a small training dataset
and fit an inhomogeneous GEV distribution model.

2. Select one of the stochastic importance sampling densities and obtain the
set of samples, {xi, i = 1, . . . ,M}, based on the following acceptance-
rejection procedure:

(a) Sample x from the original input distribution, f(x).

(b) Sample a u from the uniform distribution over [0, f(x)].

(c) If u ≤ Cq · q∗(x), return x as an sample drawn from the respective
importance sampling density; otherwise, discard the sample and
draw a new sample of x from f(·).

(d) Repeat the acceptance-rejection check and sampling action until
the prescribed sample size M is reached.

3. For SIS1, determine the allocation size, N∗i , using Eq. 11.15b, for each
xi. For SIS2 and BIS, N∗i = 1.

4. Run the stochastic simulator N∗i times at each xi, i = 1, 2, . . . ,M .

5. Estimate the failure probability using Eq. 11.12 or Eq. 11.16.
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11.5 CASE STUDY
Choe et al. [37] present both a numerical analysis, illustrating various aspects
of the stochastic importance sampling method, and a case study, using the
NREL simulator’s responses to estimate the failure probability and to demon-
strate the computational benefit of using the importance sampling method.

11.5.1 Numerical Analysis
In the numerical analysis, Choe et al. [37] use the following data generating
mechanism

x ∼ N (0, 1),

y|x ∼ N (µ(x), σ2(x)),
(11.20)

where µ(x) and σ(x) in the distribution of y are functions of input x. Specifi-
cally, µ(x) and σ(x) are chosen as

µ(x) = 0.95δx2(1 + 0.5 cos(5x) + 0.5 cos(10x)), and

σ2(x) = 1 + 0.7|x|+ 0.4 cos(x) + 0.3 cos(14x).
(11.21)

To use the stochastic importance sampling densities in Section 11.3, Choe
et al. [37] specify the meta-models used for µ(x) and σ(x), respectively, as

µ̂(x) = 0.95δx2(1 + 0.5ρ cos(5x) + 0.5ρ cos(10x)), and

σ̂(x) = 1 + 0.7|x|+ 0.4ρ cos(x) + 0.3ρ cos(14x),
(11.22)

which are nearly the same as the location and scale functions in Eq. 11.21
but with a ρ inserted to control the accuracy of meta-modeling between µ(x)
and µ̂(x) and between σ(x) and σ̂(x). Both µ(x) and µ̂(x) also include a δ
to control the similarity between the importance sampling density and the
original density function of x.

The simulation parameters are set asNT = 1, 000 andM = 300 when using
SIS1 or simply NT = 1, 000 for using SIS2 and BIS. To assess the uncertainty
of the failure probability estimates, the numerical experiment is repeated 500
times so as to compute the standard error of a failure probability estimate.
The computational efficiency is measured by the relative computational ratio

of NT /N
(CMC)
T , where N

(CMC)
T is the total number of simulation runs required

by a crude Monte Carlo method to achieve a standard error comparable to
that achieved by using the importance sampling method.

The first numerical analysis sets ρ = 1, while choosing δ = 1 or δ =
−1, and running for three failure probabilities, P = 0.1, 0.05, or 0.01. The
analysis outcome is presented in Table 11.1. Choe et al. [37] observe that
the computational benefit of using the stochastic importance sampling, as
indicated by a small relative computational ratio, is more pronounced when
the target probability is smaller, which is a desired property for the importance
sampling method.
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FIGURE 11.4 Sample scatter plots under different δ’s. (Reprinted with

permission from Choe et al. [37].)

The parameter δ affects the critical region where the importance sampling
density function is supposed to draw its samples. In this simulation study,
the critical region is where the large positive y values can be found. When
δ = 1, the critical region is where |x| is large, i.e., at both ends of the input
area and far away from the origin. This choice of δ thus makes the importance
sampling density different from the original density of x, as the original density
centers at zero. The choice of δ = −1 flips the spread of samples vertically.
Consequently, the critical region under δ = −1 is around the origin, so that the
resulting importance sampling density function has a great overlap with the
original density function of x. In other words, δ = −1 makes the importance
sampling density less different from the original density. To appreciate this
effect, please see the sample scatter plots in Fig. 11.4, drawn with δ = 1 and
δ = −1, respectively. Note how much in each case, or how much less, the
positive tails overlap with the area around the origin.

When the importance sampling density is different from the original den-
sity, the computational gain by using the importance sampling method is
supposed to be more substantial. This is confirmed by the analysis outcome
in Table 11.1, where the computational benefit is greater when δ = 1 than
that when δ = −1.

In the second analysis, Choe et al. [37] vary ρ in µ̂(x) and σ̂(x) so that the
meta-model may deviate from the respective true function. Table 11.2 presents
the analysis result for ρ = 1, 0.50, and 0. The standard error of the failure
probability estimate does increase as ρ decreases, but the rate of increase for
SIS1 and SIS2 is slower than that for BIS. The slowest increase is witnessed
in the case of SIS2, whose standard error increases about 67% from a perfect
meta-model (when ρ = 1) to a meta-model substantially different from the
original model (when ρ = 0), whereas the standard error increases three times
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TABLE 11.1 Estimates of the failure probability and the
associated standard errors (ρ = 1).

δ = 1

P = 0.10 P = 0.05 P = 0.01

SIS1
Average estimate 0.1004 0.0502 0.0100
Standard error 0.0068 0.0039 0.0005

NT /N
(CMC)
T 51% 32% 2.5%

SIS2
Average estimate 0.0999 0.0501 0.0100
Standard error 0.0069 0.0042 0.0006

NT /N
(CMC)
T 53% 37% 3.6%

BIS
Average estimate 0.1002 0.0505 0.0101
Standard error 0.0089 0.0068 0.0014

NT /N
(CMC)
T 88% 97% 20%

CMC
Average estimate 0.1005 0.0506 0.0100
Standard error 0.0092 0.0070 0.0030

δ = −1

P = 0.10 P = 0.05 P = 0.01

SIS1
Average estimate 0.1001 0.0500 0.0100
Standard error 0.0090 0.0062 0.0026

NT /N
(CMC)
T 90% 81% 68%

SIS2
Average estimate 0.1001 0.0500 0.0099
Standard error 0.0086 0.0064 0.0028

NT /N
(CMC)
T 82% 86% 79%

BIS
Average estimate 0.1009 0.0503 0.0101
Standard error 0.0095 0.0067 0.0031

NT /N
(CMC)
T 100% 95% 97%

CMC
Average estimate 0.1005 0.0498 0.0100
Standard error 0.0096 0.0071 0.0031

Source: Choe et al. [37]. With permission.
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TABLE 11.2 Effect of ρ on failure probability estimate
(δ = 1 and P = 0.01).

ρ

1.00 0.50 0

SIS1
Average estimate 0.0100 0.0100 0.0101
Standard error 0.0005 0.0008 0.0017

SIS2
Average estimate 0.0100 0.0101 0.0100
Standard error 0.0006 0.0007 0.0010

BIS
Average estimate 0.0101 0.0100 0.0102
Standard error 0.0014 0.0018 0.0063

CMC
Average estimate 0.0099 0.0099 0.0099
Standard error 0.0030 0.0030 0.0030

Source: Choe et al. [37]. With permission.

in the case of SIS1 and four and a half times in the case of BIS. Choe et al.
state that SIS2 is less sensitive to the quality of meta-modeling, making SIS2
a robust, and thus favored, choice in the applications of importance sampling.
While the standard errors of SIS1 and SIS2 remain substantially smaller than
that of CMC even when ρ = 0, the standard error of BIS grows exceeding,
and in fact, more than doubling, that of CMC at ρ = 0, indicating that the
approach disregarding the stochasticity in a stochastic simulator’s response
has serious drawbacks.

Recall that the deterministic importance sampling density in Eq. 11.8 leads
to a failure probability estimate of zero variance. It is also mentioned in Sec-
tions 11.3.1 and 11.3.2 that when the response of a stochastic simulator be-
comes less variable under a given input, the two stochastic importance sam-
pling densities reduce to a deterministic importance sampling density. Putting
the two pieces of information together, one expects to see failure probability
estimates of much smaller standard errors when SIS1 and SIS2 are used on
less variable stochastic simulators.

To show this effect, Choe et al. [37] devise a numerical experiment in their
third analysis, in which they change σ(x) in Eq. 11.21 to

σ2(x) = τ2, (11.23)

while keeping µ(x) unchanged. Choe et al. vary τ to control the variability in
the response of the simulator. Fig. 11.5 visualizes the variability in response
under three values of τ . Comparing the spread of data samples for a given x
value demonstrates that the variability in the response when τ = 0.5 is much
smaller than that when τ = 8.

Table 11.3 presents the failure probability estimates and the associated
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FIGURE 11.5 Sample scatter plots under different τ ’s. (Reprinted with

permission from Choe et al. [37].)

TABLE 11.3 Effect of randomness in the simulator’s response on the
failure probability estimate (ρ = 1, δ = 1 and P = 0.01).

τ

0.50 1.00 2.00 4.00 8.00

SIS1
Average estimate 0.0102 0.0101 0.0101 0.0102 0.0100
Standard error 0.0001 0.0001 0.0005 0.0021 0.0028

SIS2
Average estimate 0.0102 0.0101 0.0101 0.0104 0.0100
Standard error 0.0001 0.0002 0.0006 0.0023 0.0028

Source: Choe et al. [37]. With permission.

standard errors. It is evident that when τ gets smaller, the standard errors of
the failure probability estimates, resulting from both stochastic importance
sampling methods, get close to zero quickly.

11.5.2 NREL Simulator Analysis
Choe et al. [37] employ the stochastic importance sampling method to estimate
the failure probability using the NREL simulators. Both edgewise bending
moments and flapwise bending moments are studied. There are two design load
levels used, which are l = 8, 600 kNm and l = 9, 300 kNm for edgewise bending
moments, and l = 13, 800 kNm and l = 14, 300 kNm for flapwise bending
moments. The two load levels are chosen so that they correspond roughly
to the failure probability of P = 0.05 and P = 0.01, respectively. The total
computational runs set for the two design levels are, respectively, NT = 1, 000
and NT = 3, 000 for the edgewise bending moments response and NT = 2, 000
and NT = 9, 000 for the flapwise bending moments response. When using
the same number of computational runs, the average estimates of the failure
probability by the three importance sampling methods are comparable but
their standard errors are different. Using SIS1 leads to the smallest standard
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error, whereas using BIS sees a sizeable increase in the resulting standard
error.

To assess the computation required for the crude Monte Carlo method
to attain the same level of estimation accuracy, one could run the simula-
tors a sufficient number of times, as one has run the simulator under the
importance sampling method. Running the NREL simulator takes about one
minute, not much for a single run. The difficulty is that a crude Monte Carlo
method needs sometimes more than 60,000 runs of simulation to attain the
same level of estimation accuracy as the importance sampling method does.
Sixty thousand NREL simulator runs would take more 40 days to complete,

too time consuming to be practical. For this reason, N
(CMC)
T is computed by

using Eq. 11.3 without actually running the NREL simulators under CMC.
To compute NT , one plugs in the standard error attained by the importance
sampling method and the target probability value, P (note that in Eq. 11.3,
V ar[P̂CMC] is the square of the standard error). Taking the edgewise bending
moments as an example, CMC needs about 11,000 runs to attain the same
estimation accuracy attained in 1,000 runs for l = 8, 600 kNm by the impor-
tance sampling method using SIS2, or about 51,000 runs for l = 9, 300 kNm,
as compared to 3,000 runs needed by the importance sampling method using
SIS2. When compared with the importance sampling method using SIS1, the
two run numbers become 18, 000 and 61, 000, respectively.

Tables 11.4 and 11.5 present, respectively, the failure probability estimates
for edgewise and flapwise bending moments. In the tables, the standard er-
ror is computed by repeating the computer experiments 50 times. The 95%
confidence intervals of the standard error are obtained by running a boot-
strap resampling and using the bootstrap percentile interval [55]. In general,
SIS1 performs the best but SIS2 performs rather comparably. Both SIS1 and
SIS2 outperform BIS by a noticeable margin. Both SIS1 and SIS2 use only
a fraction of simulation runs that would be needed by CMC in the case of
estimating the failure probability for edgewise bending moments. The compu-
tational benefit in the case of flapwise bending moments is not as pronounced
as in the case of edgewise bending moments, primarily because the impor-
tance sampling densities are not as much different from the original density
f(·) in the case of flapwise bending moments. Still, even for flapwise bending
moments, the computation needed by SIS1 is only about one-third of what is
needed for CMC.

It is interesting to observe the appreciable difference between the stochastic
importance sampling methods and BIS, especially between SIS2 and BIS.
Looking at Eqs. 11.17 and 11.18, one notices that the density functions are
rather similar. The normalizing constants are different, but that difference
does not affect the sampling process outlined in Algorithm 11.2. The essential
difference is in the numerator, where SIS2 uses a

√
S(x), while BIS uses

S(x) without taking the square root. That simple action apparently makes
a profound difference, as SIS2 is more efficient and requires fewer simulation
runs than BIS does, for achieving a comparable standard error. Comparisons
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TABLE 11.4 Estimates of the failure probability and the
associated standard errors for edgewise bending moments.

Method
l = 8, 600, NT = 1, 000

Average Standard error
NT /N

(CMC)
Testimate (95% bootstrap CI)

SIS1 0.0486 0.0016 5.5%
(0.0012, 0.0020)

SIS2 0.0485 0.0020 8.7%
(0.0016, 0.0024)

BIS 0.0488 0.0029 18%
(0.0020, 0.0037)

Method
l = 9, 300, NT = 3, 000

Average Standard error
NT /N

(CMC)
Testimate (95% bootstrap CI)

SIS1 0.00992 0.00040 4.9%
(0.00032, 0.00047)

SIS2 0.01005 0.00044 5.9%
(0.00036, 0.00051)

BIS 0.00995 0.00056 9.6%
(0.00042, 0.00068)

Source: Choe et al. [37]. With permission.
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TABLE 11.5 Estimates of the failure probability and the
associated standard errors for flapwise bending moments.

Method
l = 13, 800, NT = 2, 000

Average Standard error
NT /N

(CMC)
Testimate (95% bootstrap CI)

SIS1 0.0514 0.0028 32%
(0.0022, 0.0033)

SIS2 0.0527 0.0032 42%
(0.0025, 0.0038)

BIS 0.0528 0.0038 59%
(0.0030, 0.0044)

Method
l = 14, 300, NT = 9, 000

Average Standard error
NT /N

(CMC)
Testimate (95% bootstrap CI)

SIS1 0.01070 0.00061 32%
(0.00047, 0.00074)

SIS2 0.01037 0.00063 34%
(0.00046, 0.00078)

BIS 0.01054 0.00083 59%
(0.00055, 0.00110)

Source: Choe et al. [37]. With permission.
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FIGURE 11.6 Comparison of three density functions: the original density

function of wind speed, f(·), the SIS2 density function, and the BIS

density function.

presented in Table 11.2 also show that SIS2 is more robust than BIS against,
or less sensitive to, the meta-model’s misspecification.

Fig. 11.6 presents a comparison of the two density functions. The original
density function of wind speed, f(·), is also shown in Fig. 11.6. Not surpris-
ingly, the concentration of f(·) does not coincide with the critical region. It
turns out that BIS is able to focus on the correct sampling region. As com-
pared with SIS2, however, BIS’s focus is a bit too narrow and that action
back fires. The square-root operation used in SIS2 appears crucial to attain
the right balance in the bias (where to focus) versus variance (how narrowly
to focus) tradeoff.

One more note is regarding the level of the target failure probability used
in the case study. In Section 11.2.1, we cite a target failure probability at
the level of 10−5, but in the case study, the target probability is at or larger
than 0.01. The reason that a smaller probability is not used is because doing so
demands many more simulation runs than a numerical analysis could tolerate.
Consider an importance sampling method that uses one percent of the runs
required by CMC, for achieving the desired estimation accuracy for a target
failure probability of P = 10−5. As calculated in Section 11.2.1, CMC would
need 6.7× 107 simulation runs, and one percent of the CMC simulations is to
run the simulator 6.7×105 times. When each simulator run takes one minute,
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as opposed to one second, it takes more than a year to run the simulator that
many times. In practice, in order to estimate the small failure probability for
a turbine’s 20-year or 50-year service, an iterative procedure, in the spirit
of Algorithm 11.1, together with parallel computation taking advantage of
multiple CPU cores, is inevitable. These solution approaches are in fact being
actively pursued in ongoing research.

GLOSSARY
BIS: Benchmark importance sampling

CI: Confidence interval

CMC: Crude Monte Carlo

CPU: Central processing unit

DEVS: Discrete event system specification

DIS: Deterministic importance sampling

EOI: Events of interest

GAMLSS: Generalized additive model for location, scale, and shape

GEV: Generalized extreme value

IEC: International Electrotechnical Commission

IS: Importance sampling

MARS: Multivariate adaptive regression splines

NREL: National renewable energy laboratory

POE: Probability of exceedance

SIS: Stochastic importance sampling

EXERCISES
11.1 Prove the expectation and variance formulas in Eq. 11.3, which are about

a crude Monte Carlo method’s ability to estimate a failure probability.

11.2 Derive Eq. 11.7, the variance expression for the importance sampling
method using a deterministic computer simulator.

11.3 The Kullback-Leibler distance between a pair of density functions, g(·)
and h(·), is defined as

D(g, h) = Eg
[
ln
g(x)

h(x)

]
=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx.

(P11.1)
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The cross-entropy between the same two density functions is defined as

H(g, h) = Eg [− lnh(x)] = −
∫
g(x) lnh(x)dx. (P11.2)

The entropy function of g(·) is the cross-entropy between g(·) and itself,
i.e., H(g, g).

a. Express the Kullback-Leibler distance using an entropy and a cross-
entropy.

b. In Algorithm 11.1, our objective is to minimize the distance between
q∗(x) and f(x,v), in order to choose v, where q∗ is the optimal
importance sampling density to be solved for. Show that the mini-
mization of D(q∗, f) is the same as maximizing −H(q∗, f), the neg-
ative cross-entropy between the two density functions. This is why
the algorithm is referred to as a cross-entropy method.

c. Prove that Eq. 11.10 is meant to minimize the D(q∗, f) or maximize
−H(q∗, f) (through their empirical counterparts).

11.4 Derive Eq. 11.14, the variance expression of the failure probability esti-
mate, P̂SIS1.

11.5 Derive the optimal density, q∗SIS1, and the optimal allocation, N∗i , in
Eq. 11.15.

11.6 Prove that the variance of P̂SIS2 takes the following expression.

V ar
[
P̂SIS2

]
=

1

NT

(
Ef [S(x)L(x)]− P (z > l)2

)
. (P11.3)

11.7 Derive the optimal density, q∗SIS2, in Eq. 11.17.

11.8 Using the data pairs in the training set, build a kriging-based meta-
model, S(x). For this purpose, please use the ordinary kriging model in
Eq. 3.8 without the nugget effect. Establish a kriging meta-model for
the edgewise bending moments response and another for the flapwise
bending moments response.

11.9 Using the meta-models created in Exercise 11.8 and draw wind speed
samples using the importance sampling density functions. Plot the em-
pirical distribution of the resulting samples and overlay them on top of
the original wind speed samples; the same is done in Fig. 11.3. Observe
the empirical distributions and compare them with their counterparts
in Fig. 11.3.
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11.10 Let us modify the location function and the associated meta-model in
Eqs. 11.21 and 11.22 to the following:

µ(x) = 0.95x2(1 + 0.5 cos(10νx) + 0.5 cos(20νx)), and

µ̂(x) = 0.95βx2(1 + 0.5 cos(10νx) + 0.5 cos(20νx)),
(P11.4)

where β is the scaling difference between the two functions, while ν
controls the roughness of the location function. When ν = 0, the location
function and its meta-model reduce to a quadratic function of x.

a. Set the target failure probability P = 0.01 and the roughness pa-
rameter ν = 0.5. Investigate the effect of β on the failure probability
estimate. Try for β = 0.90, 0.95, 1.00, 1.05, and 1.10. For each of the
β values, produce the average and standard error of the failure prob-
ability estimate for four methods, SIS1, SIS2, BIS, and CMC.

b. Set P = 0.01 and β = 1. Investigate the effect of ν on the failure
probability estimate. Try for ν = 0, 0.50, and 1.00. Same as in part
(a), produce the average and standard error of the failure probability
estimate for four methods, SIS1, SIS2, BIS, and CMC.



C H A P T E R 12

Anomaly Detection and
Fault Diagnosis

L
oad assessment, as introduced in Chapters 10 and 11, definitely plays an
important role in wind turbine reliability management. But load assess-

ment addresses a specialized category of problems and faults, which happen
as a result of excessive mechanical load. A wind turbine generator is a com-
plex system, comprising a large number of electro-mechanical elements. Many
other types of operational anomalies and faults could happen and do take
place. This is the reason that we dedicate the last chapter to the general topic
of anomaly detection and fault diagnosis. Anomaly detection techniques are
supposed to identify anomalies from loads of seemingly homogeneous data and
lead analysts and decision makers to timely, pivotal and actionable informa-
tion. It bears a high relevance with the mission of reliability management for
wind turbines.

In this chapter, we could not run the case study using wind turbine fault
data. Instead, the methods introduced in the chapter are demonstrated using
a group of publicly accessible benchmark datasets, plus a hydropower plant
dataset.

12.1 BASICS OF ANOMALY DETECTION
12.1.1 Types of Anomalies
Loosely speaking, anomalies, also referred to as outliers, are data points or a
cluster of data points which lie away from the neighboring points or clusters
and are inconsistent with the overall pattern of the data. A universal defini-
tion of anomaly is difficult to come by, as what constitutes an anomaly often
depends on the context.

Goldstein and Uchida [77] illustrate a few different types of anomalies;
please see Fig. 12.1. Points A1 and A2 are referred to as the global point-

331
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FIGURE 12.1 Illustration of different types of anomalies. (Source: Gold-

stein and Uchida [77].)

wise anomalies, as they are far away from the existing data points and data
clusters. Point A3 is referred to as a local pointwise anomaly, because, globally,
this point is closer to the data cluster C2 than to many other data points
and data clusters, but locally and relative to C2, it is away from the rest of
data points in that cluster. The data clusters, C2 (including A3) and C3, are
considered as the collective anomalies or anomalous clusters, referring to the
situation when a whole set of data behaves differently from the other regular
clusters or data points. Of course, one can argue that should we deem C2 to
represent the normal operation conditions, the cluster, C1, is the anomalous
cluster. That is certainly possible. Absent strong prior knowledge suggesting
otherwise, however, the anomalies are always treated as the minority cases
in a dataset. Such treatment makes intuitive sense for especially engineering
systems, because if the faults and anomalies become more numerous than the
supposedly normal operation conditions, the said system is definitely in need
of a redesign or an overhaul.

The complexity in defining anomalies translates to the challenges faced in
anomaly detection. Methods for detecting anomalous clusters have a strong
connection with the research in the field of clustering [86, Section 14.3] and
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community detection [66, 154]. But in this chapter, our main focus is on the
pointwise anomalies.

A branch of research relevant to anomaly detection is the field of statis-
tical process control (SPC) or statistical quality control (SQC) [147]. SPC
considers a time series response from a process that has a natural, under-
lying randomness and aims to detect a change that is deemed substantially
greater than the inherent fluctuation of the underlying process. SPC methods
are usually manifested in a control chart, a run chart with the horizontal axis
representing the time and the vertical axis representing the response or a test
statistic computed out of the response.

Fig. 12.2 presents two types of anomalies often encountered in the SPC
literature. The left-hand plot of Fig. 12.2 shows a spike type of change. The
right-hand plot shows a sustained mean shift—in this particular case, the
process response increases substantially at time t0 and stays there for the
next period of time, until a new change happens in the future. This time
instance, t0, is called a change point, and for this reason, SPC methods are
part of the change-point detection methods.

The two types of changes correspond naturally to the pointwise anoma-
lies and the clustered anomalies. Apparently, the spike type of change is a
pointwise anomaly, whereas the sustained mean shift partitions the dataset
into two clusters of different operational conditions, one being normal and the
other being anomalous. To represent both types of change detection, the term
anomaly detection, also labeled as novelty detection or outlier detection, is
often used together with the term change detection, creating the expression
change and anomaly detection. The subtle difference between change detec-
tion and anomaly detection lies in the different types of changes or anomalies
to be detected.

To detect a change or an anomaly, the SPC approaches rely on a statistical
hypothesis test to decide if a mean shift or a spike comes from a statistically
different distribution. The distribution in question is typically assumed to be,
or approximated by, a Gaussian distribution. The detection mission can thus
be reduced to detecting whether the key distribution parameter, either the
mean or the variance (or both), is different, with a degree of statistical signif-
icance, from that of the baseline process. A control chart runs this statistical
hypothesis test repeatedly or iteratively over time, comparing the newly ar-
rived observations with the control limits, i.e., the decision limits, that are
established according to the chosen degree of statistical significance, and trig-
gering an anomaly alarm when something exceeds the control limits.

12.1.2 Categories of Anomaly Detection Approaches
Goldstein and Uchida [77] categorize anomaly detection approaches in three
broad branches, depending on the availability and labeling of the data in a
training set.

The first category is supervised anomaly detection, when one has appropri-
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FIGURE 12.2 Control charts, change-point detection, and two types of

anomalies.

ately labeled training data in advance, both normal and anomalous instances,
so that analysts can train a model based on these labeled data and use the
model to decide the labels of future data. This is in fact the classical two-class
classification approach, and many of the data science methods introduced in
the early part of this book can be used for this purpose, including SVM, ANN,
kernel regression and classification, MARS, CART, among others. While using
the two-class approaches for anomaly detection, analysts need to be mindful
of the imbalance nature of the data instances in the training set. Understand-
ably, the anomalies are far fewer than the normal instances. This data imbal-
ance issue has received considerable attention and is still an active research
topic [29, 35, 167].

The second category is known as semi-supervised anomaly detection, in
which one has only the normal instances and no anomalous data. The idea
is to employ the normal data to train a model and create a decision bound-
ary enclosing the normal data. The approach classifies future observations as
anomalies if they fall outside the decision boundaries. In other words, the
semi-supervised anomaly detection is to define what constitutes the normalcy
and treats anything that deviates from the normalcy as anomalies. One-class
SVM [196] falls under this category. Park et al. [159] develop a non-parametric
semi-supervised anomaly detection method which is proven to be asymptoti-
cally optimal. Park et al. show that under the Gaussianity assumption, their
optimal detection method reduces to a Hotelling’s T 2, a popular method used
in SPC [147, Section 11.3].

The most difficult scenario is the absence of any labels for the data or
the inability to assume that all data points are normal. As a result, it is not
possible to conduct a supervised training. One therefore has to rely entirely
on the structure of the dataset and to detect the anomalies in an unsupervised
manner. This last category is known as unsupervised anomaly detection.

The SPC methods are commonly considered as a method of semi-
supervised anomaly detection, as the control limits used in the control charts
are based on the normal condition data, known as the in-control data in
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the SPC vernacular. But an SPC procedure usually starts with a dataset for
which one cannot guarantee all data instances are normal. This creates the
desire of separating change and anomaly detection into two stages: Phase I
and Phase II. Phase I is to separate the anomalous cases from the normal
majority, whereas Phase II uses the normal majority to establish a decision
boundary, or control limits, to flag an incoming observation if it is deemed
anomalous. In this sense, Phase I in an SPC procedure is unsupervised, while
Phase II is semi-supervised.

Our focus in this chapter is unsupervised anomaly detection. The relevance
of an unsupervised anomaly detection is evident not only to the wind industry
but to many engineering systems, instrumented with various types of sensors
on many components or subsystems. When a service and maintenance engineer
suspects that there is a malfunction in a turbine, she/he extracts a dataset
from the control system that contains the collected sensor data for that turbine
for a selected period of time (weeks, months, or even years), and then stores
the data in a relational database or simply in a CSV file for further analysis.
Staring at the spreadsheet of data, a service and maintenance engineer often
wonders if there is an automated, efficient way to isolate the anomalies from
the rest of the data. The historical data in the spreadsheet have almost surely
both normal condition data and anomalies. It is just that the service and
maintenance engineers do not know which is which. An unsupervised anomaly
detection is meant to answer the call.

12.1.3 Performance Metrics and Decision Process
To assess the performance of an anomaly detection method, the usual type-I
error versus type-II error trade-off applies. The type-I error, also known as
false alarms or false positives, is when the underlying truth of the instance
is normal, but the method nonetheless flags it as an anomaly. The type-II
error, on the other hand, is when the underlying truth of the instance is an
anomaly, but the method fails to flag it. The type-II error is also referred to
as missed detections or false negatives. The trade-off between the two types of
error says that with all other conditions and parameters held unchanged, one
type of error can only be reduced at the expense of increasing the other type
of error. Of course, it is possible to reduce both types of errors, but doing so
calls for more capable methods or more resources like a larger sample size.

In the mission of anomaly detection, the desire to have a higher detection
capability, or equivalently, a smaller type-II error, often triumphs a small type-
I error. The fundamental reason is because an anomaly detection method is
useful only if it can detect something. A method that rarely detects is utterly
useless no matter how nice a property it has in terms of the false positive rate.
In the meanwhile, if a detection method triggers too many false alarms, it will
eventually become a nuisance and will be turned off in practice.

One common practice in maintaining a healthy trade-off between these two
errors for anomaly detection is to set a cut-off threshold, say, No, and let an
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anomaly detection method rank the data from being most likely anomalous to
being least likely so. The top No ranked data instances are flagged as anoma-
lies, whereas the rest are treated as normal. Once No is given, a commonly
used performance metric is the precision at No (P@No) [30], defined as the
proportion of correct anomalies identified in the top No ranks, such as

P@No =
#{oi ∈ O | rank(oi) ≤ No}

No
, (12.1)

where O is the set of true anomalies and oi is the i-th element in the ranked
dataset, according to their likelihood of being an anomaly. A small rank value
implies a higher likelihood, so the most likely instance has a rank(oi) = 1.

Under a given No, the goal is to have as high a P@No as possible. When
No is the number of true anomalies, the number of false positives or false
alarms is simply No − No × P@No. In reality, the number of true anomalies
is not known. Still, a high detection rate at No strongly implies a lower false
positive rate. For this reason, one does not always present the false positive
rate separately.

Without knowing the number of true anomalies, one practical problem is
how to set the cut-off threshold No. A good practice is to set No to be larger
than the perceived number of anomalies but small enough to make the subse-
quent identification operations feasible. The rationale behind this choice lies
in the fact that the false positive rate for anomaly detection problems is gen-
erally high, especially compared to the standard used for supervised learning
methods. Despite a relatively high proportion of false positives, anomaly de-
tection methods can still be useful, particularly used as a pre-screening tool.
By narrowing down the candidate anomalies, it helps human experts a great
deal to follow up with each circumstance and decide how to take a proper
action or deploy a countermeasure. A fully automated anomaly detection is
not yet realistic, due to the challenging nature of the problem. Therefore, a
useful pre-screening tool, as the current anomaly detection offers, is valuable
in filling the void, while analysts strive for the ultimate, full automation goal.

Not only is the number of true anomalies not known in practice, which
data instance is a genuine anomaly is also unknown, as the dataset itself
is unlabeled and finding out the anomalous instances is precisely what the
method intends to do. Verifying the detection accuracy has to rely on another
layer of heightened scrutiny, be it a more expensive and thus more capable
detection instrument or method or a laborious and time-consuming human
examination. In Section 12.6, we use a group of 20 benchmark datasets for
which the true anomalies are known, plus a hydropower data for which the
anomalies are verified manually by domain experts.

12.2 BASICS OF FAULT DIAGNOSIS
Detecting an anomaly is an important first step to inform proper actions to
respond. Sometimes, the response or countermeasure needed could be obvious,
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once the nature of the anomaly is revealed, but oftentimes, the anomaly just
reveals the symptom of the problem. Yet multiple root causes may lead to the
same symptom, so that a diagnostic follow-up is inevitable. This is very much
analogous to medical diagnosis. A high body temperature and sore throat are
anomalous symptoms on a healthy person. But a large number of diseases can
cause these symptoms. Deciding what specific pathogen causes the symptoms
is necessary before a proper medicine can be administrated to cure the illness.

Diagnosis of engineering systems relies heavily on the knowledge of the
systems and know-how of their operations. The diagnostic process can hardly
be fully automatic. Rather it is almost always human experts driven and
could be labor intensive. But data science methods can facilitate the diag-
nostic process. For instance, a data science method can help find out which
variables contribute to the anomalies and provide a pointed interpretation of
each anomaly, thus aiding the domain expert to verify the root causes and fix
them, if genuine. In this section, we present two commonly used diagnosis-
aiding approaches: diagnosis based on supervised learning and visualization,
and diagnosis based on signature matching.

12.2.1 Tree-Based Diagnosis
One immediate benefit of anomaly detection is that the outcomes of the de-
tection can be used to convert the original unsupervised learning problem into
a supervised learning problem. Suppose that the anomaly detection method
does an adequate job, analysts can then label the data instances in the training
set, according to their respective detection outcome. With the labeled dataset,
many supervised learning methods can be used to extract rules or find out
process variable combinations leading to the anomalous conditions.

The application of supervised learning methods is rather straightforward.
While various methods can be used for this purpose, tree-based methods, like
CART, are popular, due to its ability to visualize what leads to the anomalous
outcomes. CART produces the learning outcomes in the fashion of mimick-
ing a human-style decision-making process, which is another reason behind
engineers’ fondness of using this tool.

In the hydropower plant case, to be discussed in Section 12.6.2, after the
anomalies are detected, a CART is built to facilitate the diagnosis process.
While the bulk detail of that case study is to be discussed later, let us present
the CART’s learning outcome in Fig. 12.3.

From the resulting tree in Fig. 12.3, one can see that using the variables
Oil Temperature of Bearing 4, Air Pressure, Turbine Vertical Vibration and
Delta Oil temp - Air Temp of Bearing 1 can correctly classify 25 anomalies
based on the proper combination of their conditions. One such condition is
when the oil temperature of bearing 4 is less than 27.216 degrees Celsius,
the turbine generator almost surely behaves strangely. This condition consis-
tently leads to eleven anomalous observations. Such specific information can
certainly help domain experts go to the right components and subsystems
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FIGURE 12.3 CART model based on anomaly detection and to be used

to facilitate the diagnostic process. (Reprinted with permission from

Ahmed et al. [4].)

to perform a follow-up and authenticate the root cause. The pertinent pro-
cess conditions revealed by the CART model expedite the diagnostic process
because the domain experts or the maintenance engineers save the effort of
sifting through the large number of variables and data records to find and
locate such conditions.

12.2.2 Signature-Based Diagnosis
The idea of signature-based diagnosis is intuitive. A signature library is built
to store unique signatures of certain forms that have been associated with
specific root causes or faults. If the data collected from ongoing operations
can reveal the fault signature lurking in the current process, comparing the
estimated signature with the ones in the signature library leads naturally
to the identification of the responsible root cause, fulfilling the task of fault
diagnosis.

While an intuitive idea, the specifics behind how to build the signature
library and how to estimate the signature for ongoing operations can become
involved. There is no universal definition of what constitutes a signature. A
particular harmonics in the vibration signal resulting from gearbox rotations
or the trace of a type of metallic ingredient in the lubricant oil can be signa-
tures sought after. On the other hand, a signature may not be in plain sight
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but needs to be worked out by building a mathematical model first. Invariably,
the signature library building process is performed offline, while the signature
estimation is conducted online, in a fashion similar to Fig. 9.4, in which one
can replace “offline optimization” with “offline signature library” and “online
control” by “online signature estimation.”

The signature-based diagnosis approach has been successfully applied in
many other industries, such as in the automotive assembly process [49]. The
approach is general enough. With a similar model built for a wind turbine
system, the method is applicable to the wind energy applications.

Let us briefly explain how the model-based signature matching works. For
the sake of simplicity, let us consider a system whose input and output can
be linked through a linear model, such as

y = Hx+ ε, (12.2)

where y and x are the outputs and inputs, ε is assumed to be a Gaussian
noise, and H is the system matrix capturing the input-output relationship.
This equation in fact looks similar to the observation equation in Eq. 2.37,
except that the one in Eq. 2.37 has a univariate output, whereas the model
above has a multivariate response.

Assume ε ∼ N (0, σ2
εI). Then, taking the variance of both sides of Eq. 12.2

and furthermore assuming independence between x and ε, one has

Σy = HΣxHT + σ2
εI. (12.3)

Suppose that one of the elements in x, say, xi, is malfunctioning. As a result,
xi creates a substantially large variation source of the magnitude of σ2

i . As-
sume that all other elements in x are properly functioning and thus have zero
variance, or a variance so small relative to σ2

i that it can be approximated by
zero. As such,

Σx =



0
. . .

σ2
i

. . .

0

 . (12.4)

Substituting the above Σx into Eq. 12.3, one gets

Σy = σ2
i hih

T
i + σ2

εI, (12.5)

where hi is the i-th column of H.
With the presence of a systematic fault, the magnitude of the background

noise, measured by σ2
ε , is supposed to be much smaller than that of the fault,

σ2
i ; otherwise, the fault may not be a real fault, or it may not be detectable.

Aware of this, let us approximate Eq. 12.5 by dropping the term of the back-
ground noise. So the approximation reads

Σy ' σ2
i hih

T
i . (12.6)
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What Eq. 12.6 implies is that hi is an eigenvector of Σy. To see this,
applying Σy to hi, one gets

Σyhi = σ2
i hih

T
i hi = λihi, (12.7)

where λi is the corresponding eigenvalue, taking the value of λi = σ2
i ‖hi‖22. Of

course, when there exists background noise, the noise’s presence may create
some perturbation to the eigenvector pattern. In the special case of having an
uncorrelated noise (so that the noise covariance matrix is of the form σ2

εI),
the eigenvector pattern will not be affected; just that the magnitudes of the
eigenvalues change (see Exercise 12.2).

The above analysis leads to the signature-based diagnosis procedure sum-
marized in Algorithm 12.1. In an eigenvalue analysis, most commercial soft-
ware produces the set of eigenvectors in Step 5 to be unit vectors. To facilitate
the comparison in Step 7, it is a good idea to normalize the column vectors
in H while creating the signature library.

Algorithm 12.1 Linear modeling and signature-based fault diagnosis.

1. Establish a linear model as in Eq. 12.2 for the engineering system of
interest.

2. The library of the fault signatures can be formed by taking the column
vectors of the system matrix H. This modeling process is conducted
offline and based on physical and engineering principles governing the
said system.

3. During the online process, collect the data of the response, y.

4. Calculate its sample covariance matrix Sy and use it as the estimation
of Σy.

5. Compute the eigenvalues and eigenvectors of Sy.

6. Locate the eigenvector corresponding to the largest eigenvalue. This
eigenvector is the estimated fault signature.

7. Compare the eigenvector located in Step 6 with the column vectors in the
signature library. A statistical test is usually necessary, due to the pres-
ence of background noise and the use of the sample covariance matrix
Sy. Identify the fault source based on a signature matching criterion.

12.3 SIMILARITY METRICS
In both anomaly detection and fault diagnosis, a central question is how to
define the similarity (or dissimilarity) between data instances. It is evident
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that without a similarity metric, it is impossible to entertain the concept
of anomaly, as being anomalous means different, and a data instance is an
anomaly because it is so substantially different from the rest of instances in
a group. The similarity metric is equally crucial in the mission of diagnosis.
For the supervised learning-based approach, the similarity metric is embedded
in the loss functions. For the signature-based approach, a similarity metric is
used explicitly to decide the outcome in the matching and comparison step.
We discuss in this section a few schools of thoughts concerning the similarity
metrics.

12.3.1 Norm and Distance Metrics
In an n-dimensional vector space, Hn×1, the length of a vector or the distance
between two points is defined through the concept of norm, which is a function
mapping from the vector space to the nonnegative half of the real axis, i.e.,

Hn×1 7−→ [0,+∞).

Consider a vector x. Its p-norm, p ≥ 1, is defined as

‖x‖p := (|x1|p + |x2|p + . . .+ |xn|p)
1
p . (12.8)

When p = 2, the above definition is the 2-norm, also known as the Euclidean
distance, that we use repeatedly throughout the book. When p = 1, the above
definition gives the 1-norm, also nicknamed the Manhattan distance. The
definition of a p-norm is valid when p =∞, known as the ∞-norm, defined as

‖x‖∞ := max{|x1|, |x2|, . . . , |xn|}. (12.9)

When 0 < p < 1, the expression in Eq. 12.8 is no longer a norm, because
the triangular inequality condition, required in the definition of a valid norm,
is not satisfied. When p = 0, the expression in Eq. 12.8 is called the 0-norm,
which is also not a valid norm. Nevertheless, analysts use the 0-norm as a
convenient notation to denote the number of non-zero elements in a vector.

The norm, ‖x‖p, is the length of vector x and can be considered as the
distance between the point, x, and the origin. For two points in the vector
space, xi and xj , the distance between them follows the same definition as in
Eq. 12.8 or Eq. 12.9 after replacing x by xi − xj .

The p-norm has a nice geometric interpretation. Fig. 12.4 illustrates the
boundaries defined by ‖x‖p = 1 in a 2-dimensional space. The boundary of
the 1-norm, ‖x‖1 = 1, is the diamond shape, that of the 2-norm, ‖x‖2 = 1, is
the circle, and that of the∞-norm, ‖x‖∞ = 1, is the square. When p > 2, the
boundary is a convex shape between the circle and the square. When p < 1,
even though ‖x‖p is no longer a proper norm, the boundary of ‖x‖p = 1 can
be visualized on the same plot, as the concave shapes inside the diamond.

The 2-norm, corresponding to the Euclidean distance, is the shortest dis-
tance between two points in a Euclidean space. This 2-norm metric measures
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FIGURE 12.4 Boundaries defined by ‖x‖p = 1.

the distance in our daily sense. It is widely used in many machine learning and
data science methods as the metric defining the loss functions. It is arguably
the most widely used similarity metric in anomaly detection.

12.3.2 Inner Product and Angle-Based Metrics
A similarity metric can also be defined as the angle between two vectors.
This angle-based metric is particularly popular in the signature-based fault
diagnosis.

To define the angle, the concept of inner product needs to be added to a
vector space. In an n-dimensional vector space, Hn×1, the inner product of
two vectors, x and y, is defined as

〈x,y〉 := xTy =
n∑
i=1

xiyi, (12.10)

where 〈·, ·〉 is the notation used to denote an inner product. Given this defini-
tion, it is established that 〈x,x〉 = ‖x‖22.

In a Euclidean space, the angle, θ, formed by a pair of vectors can be
defined by using the inner product, such that

θ = arccos

(
〈x,y〉
‖x‖2‖y‖2

)
. (12.11)

See Fig. 12.5, left panel, for an illustration.
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FIGURE 12.5 Angle-based similarity metric. Left panel: θ between two

vectors; middle panel: three angular relationships; right panel: two data

points on the same line in a vector space.

This angle, θ, can be used as a measure of similarity between two vectors.
Take a look at Fig. 12.5, middle panel. If θ = 0◦, meaning that the two vectors
are parallel and they point to the same direction, then these two vectors are
considered the same, subject possibly to a difference in magnitude. If θ = 90◦,
then the two vectors are said to be orthogonal to each other and they bear no
similarity. If θ = 180◦, meaning that the two vectors are parallel but they point
to the opposite directions, these vectors could still be considered the same, if
the pointing direction does not matter in the context of an application. For
this reason, some of the angle-based similarity criteria considers only the acute
angles formed by two vectors.

The distance-based similarity metric and the angle-based similarity metric
may serve different purposes in detection and diagnosis. The distance between
two vectors depends on the lengths of them, but the angle does not. Look at
the two data points in Fig. 12.5, right panel, which are on the same line but
at different locations. The elements in x are proportional to those in y, so
that the angle between x and y is zero. If the two data points are consid-
ered different, then, the angle-based metric cannot signal such difference; the
distance-based metric must be used instead. In some applications, such as in
the signature-based diagnosis, however, what matters is the pattern exhibited
by the relative magnitudes among the elements in a vector, rather than the ab-
solute magnitudes. Recall that in the signature-based diagnosis, eigenvectors
are normalized to be unit vectors, so that the vector lengths are neutralized. In
that circumstance, the angle-based measure is a better metric. The distance-
based metric can still be used if the vectors involved are normalized before
comparison.

One advantage of using the angle-based similarity metric is its robustness
in a high-dimensional space, as compared to the distance-based metric. When
comparing two vectors, x and y, in an n-dimensional space, the Euclidean
distance, ‖x−y‖2, is affected more by the background noise embedded in the
two vectors than the angle between them.

The distance-based and angle-based metrics can be connected. Recall the
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kernel function K(xi,xj) used in the formulation of SVM—revisit Eqs. 2.47
and 2.48. Note that the kernel function is the exponential of the Euclidean dis-
tance between xi and xj . Consider a reproducing kernel Hilbert space induced
by the defined kernel function, K(·, ·). This RKHS is spanned by a possibly in-
finite set of basis functions, denoted as φ(x) = (φ1(x), φ2(x), . . . , φ`(x), . . .).
The theory of RKHS [86] tells us that

K(xi,xj) = 〈φ(xi),φ(xj)〉,

which connects the distance-based metric in the left-hand side with the angle-
based metric in the right-hand side. This above result underlies the well-known
kernel trick. The RKHS basis functions on the right-hand side provides theo-
retical foundation for how an unknown function is reconstructed by learning
through the training data. But the basis functions themselves are difficult to
express analytically in closed forms. On the other hand, the kernel functions,
such as the radial basis kernel in Eq. 2.48, can be easily expressed in sim-
ple, closed forms. With the equality above, one does not have to worry about
the RKHS basis function, φ(·), but can simply use the corresponding kernel
function, K(·, ·), instead. This substitute is the trick referred to as the kernel
trick.

12.3.3 Statistical Distance
The Mahalanobis distance [140] used in Chapter 7 is also known as the statis-
tical distance. A statistical distance is to measure the distance between a data
point from a distribution or two data points in a vector space by accounting
for the variance structure associated with the vector space.

Consider an x and a y from the multivariate normal distribution,N (µ,Σ).
The statistical distance between them is defined as

MD(x,y) :=
√

(x− y)TΣ−1(x− y). (12.12)

This expression is equivalent to Eq. 7.3.
The statistical distance, MD(x,µ), measures the distance between the

observation of x and the distribution, N (µ,Σ). Its interpretation is that the
likelihood of obtaining x as an observation from N (µ,Σ) can be quantified
by this statistical distance—the smaller the distance is, more likely that x will
be observed (or the larger the likelihood of the observation).

The statistical distance between two samples is a weighted distance,
whereas the Euclidean distance is an un-weighted distance. Given the same
Euclidean distance between two points, their respective statistical distance
could be different and is in fact re-scaled by the variance along the direction
of the distance in question. Intuitively speaking, variance implies uncertainty.
The vector space embodying the data are re-shaped by the level of uncer-
tainty. Along the axis of low uncertainty, the scale is magnified (an old one
mile could count as ten), whereas along the axis of high uncertainty, the scale
is suppressed (an old ten miles may count only as one).
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FIGURE 12.6 Statistical distance versus Euclidean distance. The elliptic

contour is the 99% probability contour of a bivariate normal distribu-

tion.

As illustrated in Fig. 12.6, points A and B have the same Euclidean dis-
tance from the distribution center, C, but the respective statistical distances
are very different. MD(A,C) is a whole lot greater than MD(B,C), because
the vector, AC, aligns with the direction of a much smaller variance than the
vector, BC. The distance between any point on the 99% probability contour
and C is the same, although the respective Euclidean distance varies.

12.3.4 Geodesic Distance
When a vector space is unstructured, so that any pair of points in the space
can reach each other in a straight line, that straight line is the shortest path
between the pair of points, and the distance between them is measured by the
corresponding Euclidean distance. But when a space is structured or curved,
meaning that certain pathways are no longer possible, then, the shortest path
between two points may not be a straight line anymore. One example is the
shortest flight route between two cities on the surface of the earth. Because
the flight route is constrained by the earth’s surface and the shortest route
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sociated with the short hops.

between two cities is a curved line, not a straight line. The distance in a
structured space is measured by a geodesic distance.

Fig. 12.7 presents an example, inspired by the Swiss roll example presented
by Tenenbaum et al. [213, Fig. 3]. Suppose that the data are constrained along
the swirl structure in the space. Given this structural constraint, the distance
between D and F is shorter than that between D and E, because along the
curve and going from D, one reaches F first before reaching E. The distance
between D and F along the curve, or that between D and E, is the geodesic
distance between them. Should the space is unstructured, then the straight line
linking D and E is shorter than that linking D and F . The implication is that
using the pairwise Euclidean distance in all circumstances could mislead a data
science algorithm to wrongly rank the similarity between data instances—in
this case, using the Euclidean distance deems E more similar to D, in spite of
the fact that the opposite is true. Tenenbaum et al. [213] raise the awareness of
the existence of structures in data spaces and its impact on machine learning
tasks.

Computing the geodesic distance can be complicated. This distance is usu-
ally approximated by the summation of the short hops using a series of inter-
mediate points in between; see Fig. 12.7, right panel. The distance of any of
the short hops is still calculated using a Euclidean distance. But the summa-
tion is no longer Euclidean. In Section 12.5, a minimum spanning tree (MST)
is used to capture the structure of the underlying data space. The geodesic
distance between any two points is approximated by the shortest path linking
them through the MST.



Anomaly Detection and Fault Diagnosis � 347

12.4 DISTANCE-BASED METHODS
In this section, a few methods focusing on detecting local, pointwise anomalies
are introduced.

12.4.1 Nearest Neighborhood-based Method
The concept of k-nearest neighborhood is explained in Section 5.3.1. Ra-
maswamy et al. [172] base their definition of anomaly on the distance of a
point’s k-th nearest neighbor.

Denote by Dk(xi) the distance between the k-th nearest neighbor of xi
and xi itself. Ramaswamy et al.’s method is to compute Dk(xi) for every data
point in a dataset, rank them from the largest to the smallest, and declare
the first No data instances as anomalies. In this method, the neighborhood
size, k, and the anomaly cut-off, No, are prescribed. The resulting method is
referred to as the kNN anomaly detection.

Angiulli and Pizzuti [9] follow this kNN idea but argue that instead of using
the distance between the k-th nearest neighbor and the target data point, one
should use the summation of all distances from the most nearest neighbor to
the k-th nearest neighbor. Angiulli and Pizzuti call this summation the weight
of data point xi. Same as in the kNN anomaly detection, this weight is used to
rank all data points and classify the top No points as anomalies. This revised
nearest neighborhood-based method is referred to as kNNW, with the “W”
implying “weight.”

12.4.2 Local Outlier Factor
Breunig et al. [22] introduce a local outlier factor (LOF) method that makes
use of the k-th nearest neighbor distance. First, for a given neighborhood size
k, Breunig et al. introduce the concept of a reachability distance. Denoted
by RDk, the reachability distance of the data point, x∗, with respect to an
arbitrary point in the dataset, xi, is

RDk(x∗,xi) = max{Dk(xi), D(x∗,xi)}, (12.13)

where D(x∗,xi) is the Euclidean distance between the two data points. Ba-
sically, the reachability distance is a lower bound truncated distance. When
the two points are too close, their reachability distance is no smaller than
the k-th nearest neighbor distance, whereas when the two data points are far
away enough, their reachability distance is the actual distance between them.
In a sense, the concept of reachability distance is like putting a shield on xi.
The point x∗ can reach to xi up to its k-th nearest neighbor but not nearer.
Breunig et al. state that using the reachability distance reduces the statistical
fluctuation of the actual distance and exerts a smoothing effect.

Next, Breunig et al. [22] want to quantify the reachability density of points
in the neighborhood of x∗. Points that have a lower reachability density than
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its neighbors are deemed anomalies. Note that here the term “density” does
not mean a probability density but rather the number of data points per unit
volume.

A local reachability density (LRD) is defined as

LRD(x∗) =
1(∑

xi∈ Nk(x∗)
RDk(x∗,xi)

)
/|Nk(x∗)|

, (12.14)

where Nk(x∗) is the k-nearest neighborhood of x∗ and |·| takes the cardinality
of a set. LRD of x∗ is the inverse of the average reachability distance using
data points in the k-nearest neighborhood of the same point. When the average
reachability distance is large, the density is low.

Finally, Breunig et al. [22] define their anomaly score as the ratio of the
average local reachability density of x∗’s k-nearest neighbors over the local
rechability density of x∗ and label it as LOF, such as

LOF(x∗) =

(∑
xi∈ Nk(x∗)

LRD(xi)
)
/|Nk(x∗)|

LRD(x∗)
. (12.15)

The smaller the local density of x∗, the higher its LOF, and more likely it is
an anomaly. The LOF scores, once computed for all data points, are used to
rank the data instances. The tope No instances are declared anomalies.

12.4.3 Connectivity-based Outlier Factor
Tang et al. [207] argue that the reachability density proposed by Breunig et
al. [22] only considers the distances but does not consider the connectivity
among neighborhood points. Yet, a low density does not always imply an
anomaly. Rather, one should look at the degree of isolation of the said data
point, which can be measured by the lack of connectivity. In other words, a
data point that is less connected to other data points in a neighborhood is
more likely an anomaly. Tang et al. state that “isolation can imply low density,
but the other direction is not always true.”

Tang et al. [207] introduce a connectivity-based outlier factor (COF) score,
which is in spirit similar to the LRD ratio used in Eq. 12.15, but the respective
LRD is replaced with a connectivity-based distance metric.

Tang et al. [207] first define the distance between two non-empty sets, X
and Y, that are also disjoint, i.e., X

⋂
Y = ∅, such that

D(X ,Y) = min{D(x,y) : ∀x ∈ X and y ∈ Y}. (12.16)

Consider a target point, x∗, to be evaluated. Tang et al. [207] iteratively
build a k-nearest neighborhood for x∗ and establish the sequence of connec-
tion. The procedure is outlined in Algorithm 12.2. In this algorithm, Gt records
all the neighbor points and Et records the local, pairwise connection steps link-
ing x∗ from the nearest point to the farthest point in the neighborhood. This
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neighborhood, Gt, is different from Nk(x∗) in principle, as Nk(x∗) is decided
based purely on pairwise distances without considering the sequence of con-
nection. This sequence of connection information is what Tang et al. argue
makes all the difference between COF and LOF.

Algorithm 12.2 Build the locally connected k-nearest neighborhood for x∗.
Let D = {xi}Ni=1 be the original dataset and k be the prescribed neighborhood
size.

1. Let t = 1, Gt = {x∗}, x(0) = x∗, Dt = D\x(0), and Et = ∅.

2. Find x(t) ∈ Dt, such that D(Gt,x(t)) is minimized.

3. Augment Gt such that Gt = Gt ∪ {x(t)}.

4. Let Et = Et ∪ {(x(t−1),x(t))}.

5. Let Dt = Dt\x(t).

6. Let t = t + 1, and repeat from Step 2 until there are k + 1 elements in
Gt (or k elements besides x∗).

Once the neighborhood and its connectivity are established, Tang et
al. [207] introduce the following connectivity-based distance, or as they call
it, the chaining distance, denoted by CDG(x∗), such that

CDG(x∗) =
1

k

k∑
i=1

2(k + 1− i)
k + 1

D(x(i−1),x(i)), (12.17)

where (x(i−1),x(i)) is the i-th element in E . Obviously, CD above is a weighted
average distance, with a higher weight given to the connections closer to x∗
and a lower weight given to the connections farther away from x∗. Tang et al.
choose the weight such that when D(x(i−1),x(i)) is the same for all i’s, the
weight coefficients are summed to one (see Exercise 12.9).

Tang et al. [207] define their COF score, under a given k, as

COF(x∗) =
CDG(x∗)∑

xi∈G(x∗)
CDG(xi)/|G(x∗)|

. (12.18)

The use of COF follows that of LOF. The larger a COF, the more likely
the corresponding data instance is deemed an anomaly.

12.4.4 Subspace Outlying Degree
To deal with high-dimensional data problems, analysts choose to consider a
subset of the original features, an action commonly known as dimension re-
duction. The potential benefit of looking into a subspace is that data points
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distributed indistinguishably in the full dimensional space could deviate sig-
nificantly from others when examined in a proper subspace. On the other
hand, the danger of using a subspace approach is that if not chosen properly,
the difference between a potential anomaly and normal points may disappear
altogether in the subspace. It is obvious that the tricky part of a subspace
approach is how to find the right subspace.

Kriegel et al. [125] present a subspace outlying degree (SOD) method. The
method works as follows. First, Kriegel et al. compute the variance of the set
of the reference points in D as

VAR =
1

|D|
∑
x∗∈D

D(x∗,µ)2, (12.19)

where µ is the average position of the points in D. Similarly, compute the
variance along the i-th attribute as

VARi =
1

|D|
∑
x∗∈D

D((x∗)i,µi)
2, (12.20)

where (x∗)i and µi are, respectively, the i-th element in x∗ and µ.
Then, create a subspace vector based on the following criterion, where n

is the dimension of the original data space and α is a constant,

νi =

{
1, if VARi < α · VAR

n ,

0, otherwise.
(12.21)

Kriegel et al. [125] suggest setting α = 0.8. When νi in Eq. 12.21 is one, the
corresponding variable is selected to construct the subspace; otherwise, the
corresponding variable is skipped over. Denote the resulting subspace by S,
which is represented by the vector ν = (ν1, ν2, . . . , νn). In a three-dimensional
space, for instance, ν = (1, 0, 1) indicates that the selected subspace is spanned
by the first and third axes.

To measure the deviation of a data point, x∗, from a subspace, Kriegel et
al. [125] use the following formula,

D(x∗,S) :=

√√√√ n∑
i=1

νi((x∗)i − µi)2. (12.22)

Kriegel et al. further define their SOD score as

SOD(x∗) :=
D(x∗,S)

‖ν‖1
, (12.23)

where ‖ν‖1 is the number of dimensions of the selected subspace. A higher
SOD score means that x∗ deviates from the selected subspace a lot and is
thus likely an anomaly.
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12.5 GEODESIC DISTANCE-BASED METHOD
As explained in Section 12.3.4, the Euclidean-based similarity metric works
well in an unstructured data space but could mislead a learning method when
there are intrinsic structures in a data space restricting certain pathways con-
necting data points. In the circumstances of structured data spaces, a geodesic
distance ought to be used. The methods introduced in Section 12.4 rely heav-
ily on the use of Euclidean distance to define similarity, with the exception
of COF. COF, through the use of the connection sequence, bears certain
characteristics of the geodesic distance. In the benchmark case study of Sec-
tion 12.6.1, COF does perform rather competitively. More recently, Ahmed et
al. [4] develop an MST-based unsupervised anomaly detection method that
takes full advantage of a geodesic distance-based similarity metric.

12.5.1 Graph Model of Data
The MST-based anomaly detection method employs a minimum spanning tree
to approximate the geodesic distances between data points in a structured
space and then uses the distance approximation as the similarity metric. The
data are modeled as a network of nodes through a graph. Consider a connected
undirected graph G = (U,E), where U denotes the collection of vertices or
nodes and E represents the collection of edges connecting these nodes as pairs.
For each edge e ∈ E, there is a weight associated with it. It could be either
the distance between the chosen pair of nodes or the cost to connect them.

A minimum spanning tree is a subset of the edges in E that connects all
the nodes together, without any cycles and with the minimum possible total
edge weight. This total edge weight, also known as the total length or total
cost of the MST, is the summation of the weights of the individual edges. If
one uses the Euclidean distance between a pair of nodes as the edge weight,
the resulting spanning tree is called a Euclidean MST.

Consider the example in Fig. 12.8, where U={1, 2, 3, 4} and E ={e12, e13,
e14, e23, e24, e34}. All edges in E are all different in length and the edge length
order is specified in the left panel of Fig. 12.8. If one wants to connect all the
nodes in U without forming a cycle, there could be 16 such combinations with
only one having the minimum total edge length. That one is the MST for
this connected graph, shown in the right panel of Fig. 12.8. Note that some
of the edges in Fig. 12.8 look like having the same length. The edge e13 looks
even longer than e34 and e23. One way to imagine a layout satisfying the edge
length order specified in Fig. 12.8 is to envision node #3 not in the same plane
formed by node #1, #2, and #4, but hovering in the space and being close
to node #1.

Ahmed et al. [4] consider data instances as nodes and the Euclidean dis-
tance between any pairs of data points as the edge weight and then construct
an MST to connect all the nodes. Specifically, they use the algorithm in [168]
to construct an MST. Although the distance between a pair of immediately
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FIGURE 12.8 Formation of a minimum spanning tree. Left panel: the

complete graph; right panel: the minimum spanning tree. (Reprinted

with permission from Ahmed et al. [4].)

connected nodes is still Euclidean, the distance between a general pair of nodes
(i.e., data points) is not. Rather, it is the summation of many small-step, lo-
calized Euclidean distances hopping from one data point to another point.
The MST reflects the connectedness among data points in a structured space
and the MST-based distance approximates the geodesic distance between two
data points.

12.5.2 MST Score
Ahmed et al.’s method [4] focuses on detecting the local, pointwise anomalies.
But the MST nature enables the method to incorporate a preprocessing step
that can identify potential anomalous clusters. The idea is simple. First, build
a global MST using all the data points. After the formation of the global MST,
one can look for an unusual long edge and deem it as the connecting edge
between an anomalous cluster and the rest of the MST. Once the long edge is
disconnected, it separates the MST into two groups, and the smaller group is
considered an anomalous cluster. The “unusual” aspect can be verified through
a statistical test, say, longer than the 99th percentile of all edge lengths in
the original MST. This preprocessing step can be iteratively applied to the
remaining larger group, until no more splitting.

For detecting the local anomalies, one needs to go into the neighborhood
level. Same as the local anomaly detection methods introduced in Section 12.4,
two parameters are prescribed for the MST-based approach: the neighborhood
size, k, and the cut-off threshold, No, for declaring anomalies.

Denote by D the set of data points to be examined, where D could be
the whole original dataset or could be the remaining set of data after the
anomalous cluster is removed. For a given data point in D, first isolate its
k nearest neighbors and treat them as this data point’s neighborhood. Then,
build an MST in this neighborhood. The localized, neighborhood-based MSTs
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FIGURE 12.9 Local MST and LoMST score. The total edge weight of the

local MST for x0 is its LoMST score, i.e., Wx0 = e01 + e12 + e23 +e36

+ e04 +e45 . (Reprinted with permission from Ahmed et al. [4].)

are referred to as local MSTs (LoMST). The total edge length of the LoMST
associated a data point is called the LoMST score for this data point and is
considered the metric measuring its connectedness with the rest of the points
in the neighborhood as well as how far away it is from its neighbors. The
LoMST is then used as the differentiating metric to signal the possibility that
the said data point may be an anomaly.

Consider the illustrating example in Fig. 12.9. Suppose that one has chosen
k = 6 and start with data point x0. Then, one can locate its neighbors as x1,
x2, x3, x4, x5 and x6. The MST construction algorithm connects x0 to its
neighbors in the way as shown in Fig. 12.9. For x0, the total edge weight is
Wx0

= e01 + e12 + e23 + e36 + e04 +e45, which is used as the LoMST score
for x0. This procedure will be repeated for other data points. Fig. 12.9 does
show another MST, which is for x5 in the dotted edges.

The LoMST score for a selected data instance is compared with its neigh-
bor’s score. The steps of comparison are to be repeated to cover all nodes in
D. Then the comparison scores are normalized to be between zero and one.
The resulting normalized scores are also referred to as the LoMST scores, as
long as there is no ambiguity in the context. The normalized LoMST scores
are sorted in decreasing order, so that the top No instances are flagged as
anomalies. The method is summarized in Algorithm 12.3.



354 � Data Science for Wind Energy

Algorithm 12.3 MST-based anomaly detection method. Input: dataset D,
rows represent observations and columns represent attributes, the neighbor-
hood size, k, and the cut-off level for identifying anomalies, No. Output: the
anomaly index set, Ô.

1. Preprocess to remove obvious anomalous clusters, if necessary.

2. Set T = ∅, Ô = ∅, i = 1.

3. For xi ∈ D, determine its k nearest neighbors and save them in Ui.

4. Construct a complete graph using nodes in Ui. The resulting edges are
in the set, Ei.

5. Construct a local MST using the edges in Ei.

6. Calculate the total length of xi’s local MST and denote it as Wxi .

7. Calculate the average of the total length of the LoMSTs associated with
all nodes in Ui, and denote the average as W i.

8. Calculate the LoMST score for xi as Ti = Wxi −W i.

9. Let T = T ∪ {Ti} and i = i + 1. Re-iterate from Step 3 until all data
points in D are visited.

10. Normalize the scores stored in T to be between 0 and 1.

11. Rank the normalized scores in T in descending order.

12. Identify the top No scores and store the corresponding observations as
point anomalies in Ô.
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12.5.3 Determine Neighborhood Size
For the neighborhood-based methods, including LoMST, an important pa-
rameter to be specified prior to the execution of a respective algorithm is the
neighborhood size k. The difficulty in choosing k in an unsupervised setting
is that methods like cross validation that work for supervised learning do not
apply here. Ahmed et al. [4] advocate an approach based on the following
observations, illustrated in Fig. 12.10 using two benchmark datasets.

When Ahmed et al. [4] plot the average LoMST scores for a broad range of
k (here 1–100), they observe that at small k values, the average LoMST score
tends to fluctuate, but as they keep increasing k, the average LoMST score
tends to become stable at certain point. This leads to the understanding that
when a proper k is chosen and the structure of the data is revealed, the label
of the instances become fixed; such stability is reflected in a less fluctuating
LoMST score. If one keeps increasing k, there is the possibility that the data
structure becomes mismatch with the assigned number of clusters, so that the
current assignments of anomalies and normal instances become destabilized.
Consequently, the average LoMST score could fluctuate again. Based on this
observation, a sensible strategy in choosing k is to select a range of k where
the average LoMST scores are stable. If there are more than one stable ranges,
analysts are advised to select the first one.

Let us look at the examples in Fig. 12.10. For the Cardiotocography

dataset, Ahmed et al. [4] choose a k ranging from 27–47 and for the Glass

dataset, they choose a k ranging from 70–95. Within the identified stable
range, which k to choose matters less. What Ahmed et al. suggest is to select
the k value that returns the maximum standard deviation of the LoMST
scores, because by maximizing the standard deviation among the LoMST
scores, it increases the separation between the normal instances and anomalous
instances and facilitates the detection mission.

12.6 CASE STUDY
12.6.1 Benchmark Cases
As mentioned early in this chapter, one profound difficulty in assessing the
performance of anomaly detection method is due to the lack of knowledge
of the ground truth. Luckily, Campos et al. [30] published a comprehensive
survey on the topic of anomaly detection and collected and shared 20 bench-
mark datasets of wide varieties, for each of which the anomalies are known.
Readers are directed to the following website to retrieve the datasets, i.e.,
http://www.dbs.ifi.lmu.de/research/outlier-evaluation/, that hosts
the supplemental material and online repository of [30]. Several versions of
these datasets are available. These versions mainly differ in terms of the pre-
processing steps used. What is used in this section is the normalized version
of the datasets in which all the missing values are removed and categorical
variables are converted into numerical format.

http://www.dbs.ifi.lmu.de
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FIGURE 12.10 Selection of the neighborhood size k. Top panel:

the Cardiotocography dataset; bottom panel: the Glass dataset.

(Reprinted with permission from Ahmed et al. [4].)
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TABLE 12.1 Benchmark datasets and the performance of LoMST under different
data-to-attribute ratios.

Dataset N/n N n |O| Rank Rank
(Best k) (Practical k)

Arrhythmia 2 450 259 12 1 1
SpamBase 81 4,601 57 280 1 1
KDDcup99 1,479 60,632 41 200 3 2
WPBC 6 198 33 47 1 3
Ionosphere 11 351 32 126 2 3
WBC 51 367 30 10 1 1
ALOI 1,852 50,000 27 1,508 7 7
Parkinson 9 195 22 5 1 1
Annthyroid 343 7,200 21 347 11 10
Waveform 164 3,443 21 100 1 1
Cardiotocography 102 2,126 21 86 2 3
Lymphography 8 148 19 6 1 1
Pendigits 617 9,868 16 20 1 2
HeartDisease 21 270 13 7 1 1
PageBlocks 548 5,473 10 99 4 7
Stamps 38 340 9 16 1 6
Shuttle 113 1,013 9 13 1 1
WDBC 13 454 9 10 2 2
Pima 96 768 8 26 1 1
Glass 31 214 7 9 1 1

Source: Ahmed et al. [4]. With permission.

Table 12.1 summarizes the basic characteristics of the 20 benchmark
datasets, for each of which N is the total number of data amount, n is the
number of attributes, and |O| is the number of anomalies. Table 12.1 also
presents the data-to-attribute ratio, N/n, which is rounded to the nearest in-
teger. The two columns under the “Rank” headings in Table 12.1 are to be
explained later.

Ahmed et al. [4] focus on the neighborhood-based approaches. These ap-
proaches include LoMST, a few others introduced in Section 12.4, and ad-
ditional approaches that are not explained in this chapter but their details
can be found in [30]. All these methods have a common parameter, which
is the neighborhood size, k. Since the SPC method can also be used for the
purpose of anomaly detection, it is included in the study as well. The specific
SPC technique used is the Hotelling T 2 control chart. In total, 14 compet-
itive methods are evaluated in this benchmark case study. The unexplained
acronyms used in the subsequent tables are: local density factor (LDF), out-
lier detection using indegree number (ODIN), simplified local outlier factor
(SLOF), local outlier probabilities (LoOP), influenced outlierness (INFLO),
local distance-based outlier factor (LDOF), fast angle-based outlier detection
(FABOD), and kernel density estimation outlier score (KDEOS).
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TABLE 12.2 Performance comparison based on the best k value.

LoMST COF LDF kNN ODIN LOF kNNW
Better 6 0 3 1 1 0 1
Equal 7 5 5 2 1 3 2
Close 5 10 6 7 8 8 7
Worse 2 5 6 10 10 9 10
Rank 2.2 3.3 3.8 5.0 7.7 5.1 4.5

SLOF LoOP INFLO LDOF FABOD KDEOS SPC
Better 0 0 0 0 0 0 1
Equal 2 2 2 1 2 2 0
Close 6 6 5 7 5 1 1
Worse 12 12 13 12 13 17 18
Rank 5.9 5.8 6.2 7.9 7.0 8.9 11.7

Source: Ahmed et al. [4]. With permission.

Campos et al. [30] do not specify how to select k. They try a range of k
values (from 1 to 100) to obtain all the results and then choose the best k
value for each method. In the first comparison, Ahmed et al. [4] follow the
same approach and label this as the “best k” comparison. The performance
criterion used here is the precision at No, P@No, explained in Section 12.1.3.
The results are presented in Table 12.2. Please note that the best k value
in Table 12.2 may be different for respective methods. To better reflect the
detection capability as they are compared to one another, Ahmed et al. break
down the comparative performance into four major categories, namely Better,
Equal, Close and Worse. Their meanings are as follows:

• Better, if a method is uniquely the best among all candidates.

• Equal, if a method ties with other methods for being the best.

• Close, if a method’s correct detections are within 20% of the best alter-
native(s).

• Worse, if a method’s correct detections are more than 20% lower than
that of the best alternative(s).

If analysts rank each of the 14 methods in a scale of 1 to 14 according to
its actual performance in relative to others, then an average relative rank
can be calculated for each method. The average ranks are reported in the
row below the four categories—the smaller, the better. The LoMST method’s
average rank is 2.2, with some closest competitors being COF (3.3), LDF
(3.8), kNNW (4.5), kNN (5.0) and LOF (5.1).

Understandably, the “best k” is not practical, as analysts in reality do
not know the anomalies while selecting k. Using the strategy devised in Sec-
tion 12.5.3 to select a practical value of k for LoMST, Ahmed et al. [4] apply
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TABLE 12.3 Performance comparison based on the practical k value.

LoMST COF LDF kNN ODIN LOF kNNW
Better 5 2 1 1 2 0 0
Equal 5 1 4 5 1 3 4
Close 7 11 4 6 8 7 9
Worse 3 6 11 8 9 10 7
Rank 2.8 4.2 5.7 5.3 6.7 6.1 4.3

SLOF LoOP INFLO LDOF FABOD KDEOS SPC
Better 0 0 0 0 2 0 1
Equal 1 1 2 1 2 0 0
Close 8 7 7 6 6 3 3
Worse 11 12 11 13 10 17 16
Rank 6.5 5.6 5.8 7.6 4.9 11.7 8.7

Source: Ahmed et al. [4]. With permission.

the same k to the other 12 alternative methods that need this value (SPC does
not need to know k). The performance comparison based on the practical k is
presented in Table 12.3, arranged in the same way as Table 12.2. Under the
“practical k,” the average rank of LoMST is 2.8, with some closest competitors
being COF(4.2), kNNW (4.3), FABOD(4.9), kNN (5.3), and LDF (5.7).

Ahmed et al. [4] summarize LoMST’s performance with respect to the data
size and report the values under the last two columns in Table 12.1. Looking at
the two extremes, the case of the highest number of observations (N = 60, 632,
KDDcup99), which is the one having the second highest N/n ratio, versus the
case of the highest number of attributes (n = 259, Arrhythmia), which is also
the one having the lowest N/n ratio, LoMST performs on top in both cases. It
can also be noticed that on two of the datasets when the number of anomalies
are too numerous (over a few hundreds to more than one thousand), LoMST
does not do well enough. In hindsight, it makes intuitive sense, as LoMST is
designed to find the local, pointwise anomalies, which, when existing, should
be of a relatively small amount.

Another note is about the computational complexity of LoMST, which
comes from two major sources. First, one needs to conduct the k-nearest
neighbor search based on the chosen k. Then, for each observation, one needs
to build a local MST using its k-nearest neighbors. For the first step, Ahmed
et al. [4] use the fast approximate nearest neighbor searching approach [10, 16]
with a time complexity of O(nN logN) + O(kn logN). The first time com-
plexity component, O(nN logN), represents the time to build the tree struc-
ture, whereas the second component, O(kn logN), represents the k-nearest
neighborhood query time for a single observation. In the second step, building
the local MST has the time complexity of O(|U | log |E|). Because LoMST is
a localized, neighborhood-based MST, the values of |U | and |E| depend on k
but usually remain small. The neighborhood search and the local MST step
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are repeated N times, whereas the tree structure building is a one-time ac-
tion. As such, the total complexity of the LoMST algorithm is approximately
O(nN logN)+ O(N [kn logN + |U | log |E|]).

12.6.2 Hydropower Plant Case
The hydropower data initially received are time-stamped for a duration of
seven months. The data are collected from different functional areas in the
plant, such as the turbines, generators, bearings, and so on. The data records
are collected at 10-minute intervals. Missing data are common. There are a
total of 9,508 observations (rows in a data table) and 222 attribute variables
(columns in a data table). Each row has a time stamp assigned to it. Attribute
variables are primarily temperatures, vibrations, pressure, harmonic values,
active power, etc. Before applying the anomaly detection method, some basic
preprocessing and statistical analysis are performed in order to clean the data.
To maintain the similarity with the 20 benchmark datasets, the hydropower
data are normalized. After the preprocessing, the total number of observations
comes down to 9,219. In summary, for the hydropower plant dataset, N =
9, 219, n = 222, and |O| is unknown. The details of data preprocessing can be
found in [4].

Besides LoMST, Ahmed et al. [4] apply two other popular anomaly de-
tection methods to the same hydropower data. The two other methods are
LOF [22] and SOD [125]. Here, LOF is used as a representative of the
neighborhood-based methods, while SOD is a representative of the subspace
methods. Note that SOD is not included in the benchmark case study, because
the methods included in Section 12.6.1 are primarily neighborhood based. Had
SOD been included in the benchmark study, under the practical k setting,
SOD would have an average rank of 6.7 and the number of instances of its
detection in the four categories would be 0, 0, 8, and 12, respectively.

For all three methods, one needs to specify the value of the nearest neigh-
bors k. In this case, it would be great to get some suggestions from the domain
experts about the possible size of an anomaly cluster based on their knowledge
of the system. Ahmed et al. [4] indeed receive advice from their industrial col-
laborators, consider the value of k in a range of 10–20, and find the anomaly
scores for each k in the range. Then they take the average of the resulting
anomaly scores as the final anomaly score for each of the data instances. For
SOD, one needs to select two parameters instead of one—one parameter is k,
while the other one is the number of reference points for forming the subspace.
To maintain the comparability with LoMST and LOF, Ahmed et al. choose
k = 15 for SOD, which is the middle point of the above-suggested range.
Concerning the number of reference points, it should be smaller than k but
not too small, because an overly small number of reference points may render
instability in SOD. Ahmed et al. explore a few options and finally settle on
ten. Below ten, the SOD method becomes unstable.

By applying the three methods, the top 100 anomalies identified are shown
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in Table 12.4. It can be observed that after the top 30 time stamps, no
new anomaly-prone days emerge. Rather similar data patterns keep repeating
themselves with slight differences in the time stamps. We therefore skip some
rows after the top 30 stamps in Table 12.4.

The performance of the three methods are reasonably consistent, as 14 out
of the top 30 probable anomalies identified by these methods are common,
represented by an asterisk (*) in Table 12.4. This similarity continues even if
one goes beyond the top 30 time stamps. By looking closely at these top 100
time stamps, one may find that there are some particular days and certain
time chunks on these days which are more prone to anomaly. Such a pattern
makes sense, as for most of engineering systems, random anomalies happen
sparsely, while systematic anomalies take place in a cluster.

These three methods work differently, especially since SOD is from another
family of methods. In spite of their differences, they have returned similar
results for the hydropower dataset. This serves as a way to cross validate the
detection outcomes while the true anomalies are unknown.

The three methods do have differences in their detection outcomes. The
LOF method completely misses the 4th of July time stamps, although almost
half of the 100 top anomaly-prone time stamps returned by both SOD and
LoMST methods belong to that day. Ahmed et al. [4] investigate the issue
and find that most of the time stamps in July correspond to low active power,
whereas the time stamps from the 4th of July are marked with abnormally
high active power. The rest of the attributes behave almost identically as other
days of July. When the number of attributes increases, the nearest neighbor-
hood methods usually fall short of detecting anomalies if abnormal values only
happen to one or a few dimensions. This is where the subspaces method can do
better (assuming that the abnormal value subspace is successfully identified).
It is therefore not surprising to see that SOD detects these anomalies cor-
rectly. It is also encouraging to see that LoMST is capable of detecting these
anomalies as well, even though LoMST is a neighborhood-based method. On
the other hand, LOF and LoMST, being local methods, successfully identified
point anomalies on the 16th of April, whereas the SOD method fails to identify
them. In a nutshell, the LoMST method attains the merit of subspace-based
methods without losing the benefits of local neighborhood-based methods.

Anomaly detection does not immediately reveal the root causes of the
anomalies. Finding out which variables contribute to the anomalies helps the
domain expert to verify the root causes and then fix them. This calls for
a diagnostic follow-up. As presented in Section 12.2.1, after the anomalies
are identified, the original unsupervised learning problem is translated into
a supervised learning problem. While doing so, Ahmed et al. [4] discard the
July 4th time stamps from the top 100 time stamps, as the reason for that
happening is straightforward. They proceed with the remaining of the top 100
time stamps and assign them a response value of one (meaning an anomaly),
and all other data records outside the top 100 time stamps a response value of
zero (meaning a normal condition). Ahmed et al. then build a CART using the
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TABLE 12.4 Summary of the top 100 anomalies in
the hydropower dataset. Events followed by asterisk
(*) are the common ones identified by all three
methods in the top 30 time stamps.

LoMST LOF SOD
1/12/2016 11:20* 1/12/2016 11:30* 9/14/2015 8:00
9/14/2015 1:00* 9/14/2015 1:00* 1/12/2016 11:30*
1/2/2016 9:10* 9/14/2015 1:10* 9/13/2015 7:00*
1/11/2016 12:00* 1/12/2016 11:20* 7/4/2015 8:30
1/2/2016 9:30* 1/9/2016 6:50* 7/4/2015 8:20
7/4/2015 11:20 1/2/2016 9:10* 9/14/2015 1:50
7/4/2015 11:10 9/14/2015 8:00 7/4/2015 5:40
7/4/2015 11:30 1/2/2016 9:20* 1/11/2016 12:00*
1/9/2016 6:50* 1/9/2016 18:30 9/14/2015 1:00*
7/4/2015 10:40 9/14/2015 8:10* 10/3/2015 14:40
1/2/2016 9:20* 9/13/2015 7:00* 7/4/2015 5:50
7/4/2015 9:40 9/14/2015 2:00 10/13/2015 8:15*
9/13/2015 7:00* 1/11/2016 14:40 9/14/2015 1:10*
1/11/2016 1:30* 1/11/2016 13:50 11/2/2015 9:56
7/4/2015 9:50 1/11/2016 12:00* 7/4/2015 6:30
9/16/2015 10:50* 1/11/2016 13:00 7/4/2015 4:30
9/14/2015 14:10 9/16/2015 10:50* 1/2/2016 9:20*
9/14/2015 13:50 9/17/2015 11:30 9/14/2015 2:00
7/4/2015 5:20 10/3/2015 14:40 9/14/2015 8:10*
9/14/2015 1:10* 1/2/2016 21:40 7/4/2015 4:20
1/12/2016 11:40 4/16/2015 23:10 1/11/2016 1:30*
1/12/2016 11:30* 10/4/2015 3:10 1/2/2016 21:40
9/14/2015 13:20 10/13/2015 8:15* 7/4/2015 4:40
7/4/2015 4:50 10/14/2015 23:35 9/16/2015 10:50*
9/14/2015 8:10* 10/14/2015 23:15 1/2/2016 1:30*
4/16/2015 23:10 1/2/2016 9:30* 1/11/2016 14:40
4/16/2015 16:00 4/16/2015 16:00 1/2/2016 9:10*
10/13/2015 8:15* 11/2/2015 9:56 1/12/2016 11:20*
7/4/2015 5:30 1/11/2016 1:30* 1/9/2016 6:50*
7/4/2015 9:10 1/11/2016 11:50 9/14/2015 13:05
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
9/13/2015 19:10 10/13/2015 5:45 7/4/2015 0:00
7/4/2015 4:40 1/2/2016 21:00 7/4/2015 5:30
7/4/2015 6:20 1/9/2016 18:20 7/4/2015 6:20
7/4/2015 5:00 1/9/2016 18:40 7/4/2015 6:50
7/4/2015 13:50 9/14/2015 0:40 7/4/2015 7:00
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
9/14/2015 8:00 9/14/2015 2:10 7/4/2015 7:50
1/9/2016 18:30 9/14/2015 8:20 10/13/2015 5:45
1/11/2016 13:00 9/14/2015 8:30 9/16/2015 11:00
1/11/2016 11:50 9/14/2015 8:40 10/13/2015 6:35
7/4/2015 9:30 10/14/2015 8:15 10/13/2015 8:25
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
10/14/2015 7:25 1/9/2016 18:00 10/4/2015 4:30
10/14/2015 7:35 1/11/2016 11:40 10/4/2015 4:20
7/4/2015 10:10 10/13/2015 6:35 1/2/2016 21:50
7/4/2015 10:20 10/4/2015 23:10 1/11/2016 13:50
7/4/2015 10:30 9/13/2015 19:30 9/13/2015 21:40
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
7/4/2015 10:50 1/9/2016 18:10 1/11/2016 12:10
1/11/2016 13:40 1/11/2016 13:40 1/9/2016 18:30
1/11/2016 13:50 9/13/2015 19:40 10/4/2015 3:10
10/4/2015 3:10 10/14/2015 7:55 1/11/2016 11:30
1/9/2016 18:40 1/11/2016 11:30 10/14/2015 7:25

Source: Ahmed et al. [4]. With permission.
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R package rpart with the package’s default parameter values. The resulting
CART is in fact presented in Fig. 12.3, and the interpretation of the tree
model and how it helps with fault diagnosis is discussed in Section 12.2.1.

GLOSSARY
ANN: Artificial neural network

CART: Classification and regression tree

CD: Connectivity-based distance, or chaining distance

COF: Connectivity-based outlier factor

CSV: Comma-separated values Excel file format

FABOD: Fast angle-based outlier detection

INFLO: Influenced outlierness

KDEOS: Kernel density estimation outlier score

kNN: k-th nearest neighbor distance-based anomaly detection

kNNW: k nearest neighborhood distances summation

LDF: Local density factor

LDOF: Local distance-based outlier factor

LOF: Local outlier factor

LoMST: Local minimum spanning tree

LoOP: Local outlier probabilities

LRD: Local reachability density

MARS: Multivariate adaptive regression splines

MD: Mahalanobis distance or statistical distance

MST: Minimum spanning tree

ODIN: Outlier detection using indegree number

PCA: Principal component analysis

RD: Reachability distance

RKHS: Reproducing kernel Hilbert space

SLOF: Simplified local outlier factor

SOD: Subspace outlying degree

SPC: Statistical process control

SQC: Statistical quality control

SVM: Support vector machine
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EXERCISES
12.1 Speaking of the types of anomaly, one type of anomaly is called the

contextual anomaly, meaning that an observation may be an anomaly
when its covariates take certain values, but the same observation may
not be an anomaly when its covariates are under a different condition.
Please come up with some examples explaining the contextual anomaly.

12.2 Given Eq. 12.4, derive the expression of Eq. 12.5. Also prove that the
eigenvector of Σy remains hi if the covariance matrix of ε is σ2

εI.

12.3 Consider the p-norm in Section 12.3.1.

a. Recall that ‖x‖0 is used to represent the number of nonzero elements
in x. Show that the 0-norm is not a valid norm. Which requirement
for a valid norm is not satisfied by the 0-norm?

b. Prove that

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞,

where n is the dimension of x.

12.4 One kernel function used in SVM or other machine learning methods is
the dth-degree polynomial kernel, defined as

K(x,x′) = (1 + 〈x,x′〉)d.

For the polynomial kernel, it is possible to write down the mapping
functions, φ(x), explicitly and in a closed form, so that the relationship,

K(x,x′) = 〈φ(x),φ(x′)〉,

can be proven. Please do this for d = 2 by writing explicitly the expres-
sion of K(x,x′) and that of φ(x), thereby showing and confirming the
equality in the above equation.

12.5 To construct the plot of Fig. 12.6, consider a bivariate Gaussian distri-
bution, N (µ,Σ), where

µ =

(
5
5

)
, and

Σ =

(
1 0.45

0.45 0.25

)
.

The position of point A is xA = (4, 7)T and that of point B is xB =
(7, 6)T . The mean of the Gaussian distribution is represented by point
C, whose position is µ = (5, 5)T .



Anomaly Detection and Fault Diagnosis � 365

a. Please compute both the Euclidean and statistical distances of AC
and BC. Do your results confirm the statement in Section 12.3.3?

b. Please compute the statistical distance between any point on the 99%
probability contour to point C.

c. Can you drive the general formula for the statistical distance between
any point on the 100(1− α)% probability contour and point C for a
given α ∈ [0, 1]?

12.6 Can you please come up with an example illustrating a circumstance for
which the kNN anomaly detection cannot correctly identify the anomaly
but kNNW could?

12.7 Consider the anomaly examples presented in Fig. 12.1. Let us remove
points, A1 and A2, and the cluster of C3 for the moment. Then, imag-
ine that the points in C2 are clustered more tightly than those in C1.
Suppose that the points in both C1 and C2 are uniformly scattered.
The nearest neighbor distance in C1 is five (whatever unit it may be),
whereas the nearest neighbor distance in C2 is one. The distance be-
tween A3 and its nearest neighbor in C2 is three. Consider k = 1 and
k = 2.

a. Use this example to show that both kNN and kNNW anomaly de-
tection methods are ineffective to flag A3 as an anomaly.

b. Show that LOF is capable of detecting A3 as an anomaly.

12.8 Consider an example presented by Tang et al. [207]. Figure 3 in [207] is
modified and then presented below, where the distance between points
#1 and #2 is five, that between #2 and #7 is three, that between #4
and #5 is six, and the distance between any other two adjacent points
on the line is one.

1

2

7 1110983 4 5 6 1213

a. Let k = 10, and use this example to compute the chaining distance
for point #1. Please show explicitly the sets of G and E associated
with point #1.

b. Select a k and show that G could be different from N for point #1.
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12.9 Prove that in Eq. 12.17, the coefficients are summed to one when
D(x(i−1),x(i)) is the same for all i’s.

12.10 In Section 12.4.4, we state that “[T]he danger of using a subspace ap-
proach is that if not chosen properly, the difference between a poten-
tial anomaly and normal points may disappear altogether in the sub-
space.” One popular method to select a subspace is principal compo-
nent analysis (PCA). PCA is to find the subspaces that account for
the largest variance in data. Please come up with an example in a two-
dimensional space, such that once the one-dimensional subspace of the
largest variance is selected and data projected onto that space, the in-
trinsic structure existing in the original data disappears. In other words,
the otherwise distinguishable two classes of data in the original two-
dimensional data space are no longer separable in the wrongly selected
one-dimensional subspace.

12.11 In Fig. 12.8, there are sixteen options of spanning trees that can connect
all nodes without forming a cycle. Please list all sixteen choices and
show that the one presented in the right panel is indeed the minimum
spanning tree.
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ability: Should it be time or energy based? A case study in Ireland.
Renewable Energy, 36(11):2967–2971, 2011.

[40] A. Crespo, J. Hernández, and S. Frandsen. Survey of modelling methods
for wind turbine wakes and wind farms. Wind Energy, 2(1):1–24, 1999.

[41] N. A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, New
York, 1991.

[42] N. A. C. Cressie, S. Burden, W. Davis, P. Krivitsky, P. Mokhtarian,
T. Suesse, and A. Zammit-Mangion. Capturing multivariate spatial
dependence: Model, estimate and then predict. Statistical Science,
30(2):170–175, 2015.

[43] N. A. C. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data.
John Wiley & Sons, New York, 2011.

[44] P. Crochet. Adaptive Kalman filtering of 2-metre temperature and
10-metre wind-speed forecasts in Iceland. Meteorological Applications,
11(2):173–187, 2004.

[45] P. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial
on the cross-entropy method. Annals of Operations Research, 134:19–67,
2005.

[46] D. G. T. Denison, C. C. Holmes, B. K. Mallick, and A. F. M. Smith.
Bayesian Methods for Nonlinear Classification and Regression. John
Wiley & Sons, New York, 2002.

[47] D. G. T. Denison, B. K. Mallick, and A. F. M Smith. Bayesian MARS.
Statistics and Computing, 8:337–346, 1998.

[48] M. Derby. DOE’s perspective. In The 2011 National Renewable Energy
Laboratory Workshop on Wind Turbine Condition Monitoring, Broom-
field, CO, 2011. September 19.



Bibliography � 371

[49] Y. Ding, D. Ceglarek, and J. Shi. Fault diagnosis of multi-station man-
ufacturing processes by using state space approach. Transactions of
ASME, Journal of Manufacturing Science and Engineering, 124:313–
322, 2002.

[50] Y. Ding, J. Tang, and J. Z. Huang. Data analytics methods for wind
energy applications. In Proceedings of ASME Turbo Expo 2015: Tur-
bine Technical Conference and Exposition, GT2015-43286, pages 1–9,
Montreal, Canada, 2015. June 15–19.

[51] A. G. Drachmann. Heron’s windmill. Centaurus, 7:145–151, 1961.

[52] S. D. Dubey. Normal and Weibull distributions. Naval Research Logistics
Quarterly, 14:69–79, 1967.

[53] V. Dubourg, B. Sudret, and F. Deheeger. Metamodel-based importance
sampling for structural reliability analysis. Probabilistic Engineering
Mechanics, 33:47–57, 2013.

[54] J. Durbin. The fitting of time-series models. Review of the International
Statistical Institute, 28(3):233–244, 1960.

[55] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall/CRC Press, New York, 1993.

[56] A. Emami and P. Noghreh. New approach on optimization in placement
of wind turbines within wind farm by genetic algorithms. Renewable
Energy, 35(7):1559–1564, 2010.

[57] Y. Ephraim and N. Merhav. Hidden Markov processes. IEEE Transac-
tions on Information Theory, 48:1518–1569, 2002.

[58] B. Everitt. The Cambridge Dictionary of Statistics. Cambridge Univer-
sity Press, Cambridge, UK, 1998.

[59] A. A. Ezzat, M. Jun, and Y. Ding. Spatio-temporal asymmetry of lo-
cal wind fields and its impact on short-term wind forecasting. IEEE
Transactions on Sustainable Energy, 9(3):1437–1447, 2018.

[60] A. A. Ezzat, M. Jun, and Y. Ding. Spatio-temporal short-term wind
forecast: A calibrated regime-switching method. The Annals of Applied
Statistics, in press, 2019.

[61] J. Fan and T. H. Yim. A cross-validation method for estimating condi-
tional densities. Biometrika, 91:819–834, 2004.

[62] F. Felker. The status and future of wind energy. Technical report,
National Wind Technology Center, Boulder, CO, 2009. Available at
http://www.ncsl.org/documents/energy/Felker0609.pdf.

http://www.ncsl.org


372 � Bibliography

[63] L. M. Fitzwater, C. A. Cornell, and P. S. Veers. Using environmental
contours to predict extreme events on wind turbines. In Proceedings of
the 2003 ASME Wind Energy Symposium, WIND2003-865, pages 244–
285, 2003. Reno, Nevada.

[64] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
New York, 2th edition, 1987.

[65] J. Fogle, P. Agarwal, and L. Manuel. Towards an improved understand-
ing of statistical extrapolation for wind turbine extreme loads. Wind
Energy, 11:613–635, 2008.

[66] S. Fortunato. Community detection in graphs. Physics Reports, 486:75–
174, 2010.

[67] K. Freudenreich and K. Argyriadis. Wind turbine load level based on
extrapolation and simplified methods. Wind Energy, 11:589–600, 2008.

[68] J. Friedman. Multivariate adaptive regression splines. Annals of Statis-
tics, 19(1):1–67, 1991.

[69] M. Fuentes. A high frequency kriging approach for non-stationary en-
vironmental processes. Environmetrics, 12(5):469–483, 2001.

[70] P. M. O. Gebraad, F. W. Teeuwisse, J. W. Wingerden, P. A. Fleming,
S. D. Ruben, J. R. Marden, and L. Y. Pao. Wind plant power optimiza-
tion through yaw control using a parametric model for wake effects—a
CFD simulation study. Wind Energy, 19(1):95–114, 2016.

[71] G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl.
The state-of-the-art in short-term prediction of wind power: A literature
overview. Technical report, Risø National Laboratory, Roskilde, Den-
mark, 2011. Available at http://www.anemos-plus.eu/images/pubs/
deliverables/aplus.deliverable\_d1.2.stp\_sota\_v1.1.pdf.

[72] T. Gneiting. Nonseparable, stationary covariance functions for space-
time data. Journal of the American Statistical Association, 97(458):590–
600, 2002.

[73] T. Gneiting. Making and evaluating point forecasts. Journal of the
American Statistical Association, 106:746–762, 2011.

[74] T. Gneiting, M. Genton, and P. Guttorp. Geostatistical space-time mod-
els, stationarity, separability and full symmetry. In B. Finkenstadt,
L. Held, and V. Isham, editors, Statistical Methods for Spatio-Temporal
Systems, chapter 4. Chapman & Hall/CRC, 2007.

[75] T. Gneiting, K. Larson, K. Westrick, M. G. Genton, and E. Aldrich.
Calibrated probabilistic forecasting at the Stateline wind energy cen-
ter: The regime-switching space-time method. Journal of the American
Statistical Association, 101:968–979, 2006.

http://www.anemos-plus.eu
http://www.anemos-plus.eu


Bibliography � 373

[76] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, predic-
tion, and estimation. Journal of the American Statistical Association,
102:359–378, 2007.

[77] M. Goldstein and S. Uchida. A comparative evaluation of unsuper-
vised anomaly detection algorithms for multivariate data. PLoS ONE,
11(4):e0152173:1–31, 2016.

[78] P. J. Green. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika, 82:711–732, 1995.

[79] C. Gu. Smoothing Spline ANOVA. Springer-Verlag, New York, 2013.

[80] H. Guo, S. Watson, P. Tavner, and J. Xiang. Reliability analysis for wind
turbines with incomplete failure data collected from after the date of
initial installation. Reliability Engineering and System Safety, 94:1057–
1063, 2009.

[81] S. T. Hackman. Production Economics: Integrating the Microeconomic
and Engineering Perspectives. Springer-Verlag, Heidelberg, 2008.

[82] B. Hahn, M. Durstewitz, and K. Rohrig. Reliability of wind turbines—
experiences of 15 years with 1,500 WTs. In J. Peinke, P. Schaumann,
and S. Barth, editors, Wind Energy: Proceedings of the Euromech Col-
loquium, pages 329–332. Springer, 2007.

[83] P. Hall, J. Racine, and Q. Li. Cross-validation and the estimation of
conditional probability. Journal of the American Statistical Association,
99:154–163, 2004.

[84] P. Hall and L. Simar. Estimating a changepoint, boundary, or frontier
in the presence of observation error. Journal of the American Statistical
Association, 97(458):523–534, 2002.

[85] K. S. Hansen, R. J. Barthelmie, L. E. Jensen, and A. Sommer. The im-
pact of turbulence intensity and atmospheric stability on power deficits
due to wind turbine wakes at Horns Rev wind farm. Wind Energy,
15(1):183–196, 2012.

[86] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, New York,
2nd edition, 2009.

[87] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chap-
man & Hall/CRC, 1990.

[88] M. He, L. Yang, J. Zhang, and V. Vittal. A spatio-temporal analysis
approach for short-term forecast of wind farm generation. IEEE Trans-
actions on Power Systems, 29(4):1611–1622, 2014.



374 � Bibliography

[89] P. Heidelberger. Fast simulation of rare events in queueing and reliabil-
ity models. ACM Transactions on Modeling and Computer Simulation,
5:43–85, 1995.

[90] E. J. Henley and H. Kumamoto. Reliability Engineering and Risk As-
sessment. Prentice-Hall, 1981.

[91] A. S. Hering and M. G. Genton. Powering up with space-time wind
forecasting. Journal of the American Statistical Association, 105:92–
104, 2010.

[92] C. Hildreth. Point estimates of ordinates of concave functions. Journal
of the American Statistical Association, 49(267):598–619, 1954.

[93] D. Hinkley. On quick choice of power transformation. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 26(1):67–69,
1977.

[94] T. Hofmann, B. Schlkopf, and A. J. Smola. Kernel methods in machine
learning. Annals of Statistics, 36(3):1171–1220, 2008.

[95] H. Hwangbo, Y. Ding, O. Eisele, G. Weinzierl, U. Lang, and G. Pech-
livanoglou. Quantifying the effect of vortex generator installation on
wind power production: An academia-industry case study. Renewable
Energy, 113:1589–1597, 2017.

[96] H. Hwangbo, A. L. Johnson, and Y. Ding. A production economics
analysis for quantifying the efficiency of wind turbines. Wind Energy,
20:1501–1513, 2017.

[97] H. Hwangbo, A. L. Johnson, and Y. Ding. Power curve estimation:
Functional estimation imposing the regular ultra passum law. Working
Paper, 2018. Available at SSRN: http://ssrn.com/abstract=2621033.

[98] H. Hwangbo, A. L. Johnson, and Y. Ding. Spline model for wake effect
analysis: Characteristics of single wake and its impacts on wind turbine
power generation. IISE Transactions, 50(2):112–125, 2018.

[99] B. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald. Estimating
and visualizing conditional densities. Journal of Computational and
Graphical Statistics, 5:315–336, 1996.

[100] International Electrotechnical Commission (IEC). IEC TS 61400-1
Ed. 2: Wind Turbines – Part 1: Design Requirements. IEC, Geneva,
Switzerland, 1999.

[101] International Electrotechnical Commission (IEC). IEC TS 61400-1
Ed. 3, Wind Turbines – Part 1: Design Requirements. IEC, Geneva,
Switzerland, 2005.

http://ssrn.com


Bibliography � 375

[102] International Electrotechnical Commission (IEC). IEC TS 61400-12-1
Ed. 1, Wind Turbines – Part 12-1: Power Performance Measurements of
Electricity Producing Wind Turbines. IEC, Geneva, Switzerland, 2005.

[103] International Electrotechnical Commission (IEC). IEC TS 61400-26-1
Ed. 1, Wind Turbines – Part 26-1: Time-based Availability for Wind
Turbine Generating Systems. IEC, Geneva, Switzerland, 2011.

[104] International Electrotechnical Commission (IEC). IEC TS 61400-12-
2 Ed. 1, Wind Turbines – Part 12-2: Power Performance of Electricity
Producing Wind Turbines Based on Nacelle Anemometry. IEC, Geneva,
Switzerland, 2013.

[105] International Electrotechnical Commission (IEC). IEC TS 61400-26-
2 Ed. 1, Wind Turbines – Part 26-2: Production-based Availability for
Wind Turbines. IEC, Geneva, Switzerland, 2014.

[106] S. R. Jammalamadaka and A. SenGupta. Topics in Circular Statistics.
World Scientific, 2001.

[107] A. H. Jazwinski. Adaptive filtering. Automatica, 5:475–485, 1969.

[108] N. O. Jensen. A note on wind generator interaction. Technical re-
port Risø-M, No. 2411, Risø National Laboratory, Roskilde, Denmark,
1983. Available at http://orbit.dtu.dk/files/55857682/ris_m_

2411.pdf.

[109] J. Jeon and J. W. Taylor. Using conditional kernel density estimation
for wind power density forecasting. Journal of the American Statistical
Association, 107:66–79, 2012.

[110] P. Jirutitijaroen and C. Singh. The effect of transformer maintenance
parameters on reliability and cost: A probabilistic model. Electric Power
System Research, 72:213–234, 2004.

[111] I. T. Jolliffe. Principal Component Analysis. Springer, New York, 2nd
edition, 2002.

[112] B. J. Jonkman. TurbSim User’s Guide: Version 1.50. National Renew-
able Energy Laboratory, Golden, CO, 2009.

[113] B. J. Jonkman and M. L. Buhl Jr. FAST User’s Guide. National
Renewable Energy Laboratory, Golden, CO, 2005.

[114] M. Jun and M. Stein. An approach to producing space-time covariance
functions on spheres. Technometrics, 49(4):468–479, 2007.

[115] M. S. Kaiser, M. J. Daniels, K. Furakawa, and P. Dixon. Analysis of
particulate matter air pollution using Markov random field models of
spatial dependence. Environmetrics, 13:615–628, 2002.

http://orbit.dtu.dk
http://orbit.dtu.dk


376 � Bibliography

[116] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of ASME, Journal of Basic Engineering, 82(1):35–
45, 1960.

[117] G. Kariniotakis. Renewable Energy Forecasting: From Models to Appli-
cations. Woodhead Publishing, 2017.

[118] R. E. Kass and L. Wasserman. A reference Bayesian test for nested
hypotheses and its relationship to the Schwarz criterion. Journal of the
American Statistical Association, 90:928–934, 1995.

[119] K. Kazor and A. S. Hering. The role of regimes in short-term wind
speed forecasting at multiple wind farms. Stat, 4(1):271–290, 2015.

[120] N. D. Kelley and B. J. Jonkman. Overview of the TurbSim stochastic in-
flow turbulence simulator. NREL/TP-500-41137, Version 1.21, National
Renewable Energy Laboratory, Golden, Colorado, 2003. Available at
https://nwtc.nrel.gov/system/files/TurbSimOverview.pdf.

[121] M. G. Khalfallah and A. M. Koliub. Effect of dust on the performance
of wind turbines. Desalination, 209(1):209–220, 2007.

[122] R. Killick and I. Eckley. Changepoint: An R package for changepoint
analysis. Journal of Statistical Software, 58(3):1–19, 2014.
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