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Foreword

Wind power is a rapidly growing source of renewable energy in many parts
of the globe. Building wind farms and maintaining turbine assets also pro-
vide numerous job opportunities. As a result, the wind energy sector plays
an increasingly important role in the new economy. While being scaled up,
efficiency and reliability become the key to making wind energy competitive.
With the arrival of the data science and machine learning era, a lot of discus-
sions are being made in the related research community and wind industry,
contemplating strategies to take full advantage of the potentials and oppor-
tunities unleashed by the large amount of data to address the efficiency and
reliability challenges.

Data Science for Wind Energy arrives at the right time, becoming one
of the first dedicated volumes to bridge the gap, and provides expositions of
relevant data science methods and abundant case studies, tailored to address
research and practical challenges in wind energy applications.

This book of eleven technical chapters is divided into three parts, unified
by a general data science formulation presented in Chapter 1. The overar-
ching formulation entails the modeling and solution of a set of probability
density functions, conditional or otherwise, not only to account for the mean
estimation or prediction, but also to allow for uncertainty quantification. The
first part of the book embodies the modeling of a spatio-temporal random
wind field and uses that as a springboard for better forecasting. Chapter 2
recaps the existing methods for modeling data in a univariate time series,
and Chapters 3 and 4 bring to the readers many new data science concepts
and methods. The asymmetry quantification and asymmetric spatio-temporal
modeling introduced in Chapter 3 and the regime-switching methods discussed
in Chapter 4 are particularly interesting. The second part of the book con-
centrates on the system-level, power production-oriented turbine performance
assessment. This part starts off with a power curve analysis (Chapter 5), fol-
lowed by adding physically informed constraints to power curve modeling for
devising productive efficiency metrics (Chapter 6). Chapters 7 and 8 further
discuss, respectively, the circumstances when a turbine’s performance can be
enhanced by a purposeful action or diminished due to the wake effect. The
third part of the book focuses on reliability management and load analysis
for wind turbines, nested within an integrative framework combining models,
simulations and data (Chapter 9). The load analysis for reliability assessment
involves heavily statistical sampling techniques, as detailed in Chapters 10 and

XV
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11, and those methods are useful to general reliability engineering purposes—
my own research on electrical power system reliability has been benefited by
these data science methodologies. I am pleased to see the anomaly detection
and fault diagnosis methods presented in Chapter 12, borrowing experiences
and successes from other industries for the benefit of wind energy practice.

One of the reasons I am fond of this book is the author’s diligence and
generosity in collecting, arranging, and releasing ten important wind farm
datasets, more than 150 megabytes in volume, plus another 440 megabytes
of simulated data used in reliability verification. On top of that, the author
provides computer codes for all eleven technical chapters, most of them in R
while some are in MATLAB® | either for reproducing figures and tables in the
book or implementing some major algorithm. I am sure that those data and
codes will immensely help both academic researchers and practitioners.

To appreciate a book, it is helpful to understand the author. I had the good
fortune to get to know Dr. Yu Ding shortly after he joined Texas A&M faculty
in 2001. There was a university-wide event celebrating the 125th anniversary
of Texas A&M University. Yu and I happened to sit next to each other at the
same table, and at that moment, I had been with the university for 23 years,
while Yu had been for about 25 days. In the ensuing years, Yu’s path and mine
have crossed often. We served on the committees of each other’s students, co-
authored papers and co-directed research projects, and because of these, I am
reasonably familiar with most of the materials presented in this book. I have
witnessed Yu’s quick ascent to a leading and authoritative researcher on the
intersection of data science and wind energy. Yu’s unique multidisciplinary
training and penetrating insights allow him and his research team to produce
many influential works, contributing to methodology development and ben-
efiting practices. Yu’s work on turbine performance assessment in particular
leads to large-scale fleet-wide implementations, rendering multi-million-dollar
extra revenues. Not surprisingly, Yu was recognized with a Research Impact
Award by Texas A&M College of Engineering in May 2018 “for innovations
in data and quality science impacting the wind energy industry.”

It is thus a great pleasure for me to introduce this unique and timely book
and a dear colleague to the academia and practitioners who want to know
more about data science for wind energy.

Chanan Singh

Regents Professor and Irma Runyon Chair Professor
Electrical & Computer Engineering Department
Texas A&M University, College Station, Texas

June 2019



Preface

All models are wrong but some are useful.
— George E. P. Box

My introduction to the field of wind energy started from a phone call taking
place sometime in 2004. Dr. Jiong Tang of the University of Connecticut called
and asked if T would be interested in tackling some wind turbine reliability
problems.

I got to know Jiong when we were both mechanical engineering gradu-
ate students at the Pennsylvania State University. I later left Penn State for
my doctoral study at the University of Michigan. My doctoral research was
oriented towards a specialty area of data science—the quality science, which
employs and develops statistical models and methods for quality improvement
purpose. Prior to that phone call, my quality science applications were exclu-
sively in manufacturing. I reminded Jiong that I knew almost nothing about
wind turbines and wondered how I could be of any help. Jiong believed that
data available from turbine operations had not been taken full advantage of
and thought my data science expertise could be valuable. I was intrigued by
the research challenges and decided to jump at the opportunity.

The first several years of my wind energy research, however, involved lit-
tle data. Although the industry had gathered a large amount of operational
data through the supervisory control and data acquisition systems of turbines,
we had a hard time persuading any turbine manufacturer or owner/opera-
tor to share their data. Our luck turned around a few years later, after we
aligned ourselves with national labs and several wind companies. Through
the academia-government-industry partnership, my research group was able
to collect over 100 gigabytes wind turbine testing data and wind farm oper-
ational data. Working with the vast amount of real-world data enabled me
to build a rewarding career that developed data science methods to address
wind energy challenges and it is still going strong.

While working in the wind energy area, I benefited from having a mechan-
ical engineering background. The majority of wind energy research is carried
out, for understandable reasons, by domain experts in aerospace, mechanical,
civil, or electrical engineering. My engineering training allows me to commu-
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nicate with domain experts with ease. Maybe this is why Jiong thought of
involving me in his wind turbine project in the first place.

As T got involved more and more in the field of wind energy, I observed a
disconnection between this typical engineering field and the emerging field of
data science. Wind engineers or wind engineering researchers routinely handle
data, but most of the domain experts are not exposed to systematic data
science training while in schools because the engineering curricula, until very
recently, offered only basic engineering statistics. This did not keep pace with
the fast development of new ideas and methods introduced by data science
in the past twenty years. On the other hand, wind engineering, like most
other substantial engineering fields, finds a relatively small number of trained
data scientists from computer science or statistics disciplines working in the
area, probably because the entry barrier associated with mastering domain
knowledge appears intimidating. This may explain that while there are plenty
of generic data science and machine learning books, books that can bridge the
two distinctive fields and offer specific and sophisticated data science solutions
to wind energy problems are, in fact, scarce.

I had been thinking of writing a book filling precisely this void. I came
to realize in early 2017 that I may have enough materials when I was leading
a research team and preparing a National Science Foundation proposal to
its BIG DATA program. In fact, the structure of this book closely mirrors
the structure of that proposal, as it embodies three main parts discussing,
respectively, wind field analysis, wind turbine performance analysis, and wind
turbine load and reliability management. The 2017 NSF proposal was funded
at the end of the summer, and, I decided to submit the book proposal to
Chapman & Hall/CRC Press later in 2017.

I am grateful for the opportunities and privilege to work with many tal-
ented individuals on a problem of national importance. A few of those indi-
viduals played pivotal roles in my wind energy research career. The first is
obviously Dr. Jiong Tang—without him, I wouldn’t be writing this preface.
Then, there is Dr. Eunshin Byon, a former Ph.D. student of mine and now
a faculty member at the University of Michigan. Eunshin was the first stu-
dent who worked with me on wind energy research. She came to my group
during that aforementioned “data-light” period. Understandably, it was a dif-
ficult time for those of us who work with data. Eunshin was instrumental in
sustaining our research at that time, finding data through public sources and
testing innovative ideas that lay the foundation for the subsequent collabo-
rations with several industry members. I am delighted to see that Eunshin
becomes a recognized expert herself in the intersecting area of data science
and wind energy.

I appreciate immensely Mr. Brian Hayes, Executive Vice President of EDP
Renewables, North America, for his vision in starting the Texas A&M-EDP
Renewables partnership and his generous support in funding our research
and sharing their wind farm operational data. I am deeply grateful to Dr.
Shuangwen (Shawn) Sheng at the National Renewable Energy Laboratory
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for engaging my research team at the national or international level and for
countless hours of stimulating discussions that drive my research to new levels.
Of course, I am indebted to my Ph.D. advisor, Dr. Jianjun Shi, then at the
University of Michigan and now with the Georgia Institute of Technology,
for bringing me to the data science world and for teaching me how to be an
independent researcher.

Last but not least, I would like to thank my wife, Ying Li, and our daugh-
ter, Alexandra, for their love and support.

Yu Ding
Texas A&M University
College Station, Texas

June 2019



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Acknowledgments

Special thanks goes to the following former and current students who help
arrange the datasets and provide computer codes for producing many tables
and figures or implementing certain algorithms:

Hoon Hwangbo helped arrange most of the datasets used in this
book, except the Wind Spatial-Temporal Datasetl, Wind Spatial-
Temporal Dataset2, and Simulated Bending Moment Dataset, which
were prepared by others. Hoon also provided the code for generating
Tables 6.1-6.3, Table 7.4, Tables 8.2-8.5, and Tables 10.2-10.6, and for
generating Figures 6.3-6.6, Figures 6.12-6.14, Figure 7.5, Figure 8.4,
Figure 8.7, Figure 8.9, Figures 10.2-10.4, and Figures 10.6-10.10. Fur-
thermore, Hoon created the illustrations in Figures 6.7, 6.9, and 6.11.

Abhinav Prakash provided the code for generating Tables 2.1-2.8 and
Tables 5.2-5.8, and for generating Figures 2.1-2.5, Figure 3.1 and
Figure 3.2. Additionally, Abhinav created the illustrations in Fig-
ures 12.2, 12.4, and 12.6.

Arash Pourhabib arranged the Wind Spatial-Temporal Datasetl and
provided the code for generating Tables 3.1-3.3 and Figure 3.3.

Ahmed Avziz Ezzat arranged the Wind Spatial-Temporal Dataset2
and provided the code for generating Tables 3.4-3.8, Tables 4.4-4.6,
and for generating Figures 3.4-3.7, Figure 4.4, and Figure 4.9. Aziz also
created the illustrations in Figure 4.3 and Figures 4.5-4.7.

Giwhyun Lee developed the original code for implementing the methods
in Section 5.2, Section 7.3, and Chapter 10. Giwhyun also created the
illustration in Figure 5.7.

Eunshin Byon provided the Simulated Bending Moment Dataset, the
code for Algorithm 9.1 (generating Figure 9.6), and the code for estab-
lishing the generalized additive model in Section 11.4.1 as the conditional
probability of exceedance function. Eunshin also created the illustrations
in Figures 9.2, 9.3, 9.7, 9.8, 10.5, and 11.6.

Imtiaz Ahmed provided the code for Algorithm 12.3.

XXi



xxii B Acknowledgments

I would like to acknowledge the contribution of many people to the research
work that forms the backbone of this book. Marc Genton, Jianhua Huang, An-
drew Johnson, Mikyoung Jun, Bani K. Mallick, Lewis Ntaimo, Chanan Singh,
Le Xie, and Li Zeng are faculty members who collaborated with me on wind
energy research topics. Mithun P. Acharya, Daniel Cabezon-Martinez, Andrew
Cordes, Aldo Dagnino, Oliver Eisele, Travis Galoppo, Ron Grife, Jaimeet Gu-
lati, Ulrich Lang, Georgios Pechlivanoglou, and Guido Weinzierl were our
industrial collaborators. Many of the former and current students, in addition
to those mentioned above, contributed to various aspect of my wind energy
research: Jason Lawley, Briana Niu, David Pérez, Eduardo Pérez, and Yei-Eun
Shin. Randi Cohen and the team at Chapman & Hall/CRC Press have done
a fantastic job in managing the book project and assisted me in numerous
occasions. I also gratefully acknowledge NSF for its support of this work and
Mike and Sugar Barnes for their generous endowment.

The author’s following publications are reused, in part or in whole, in the
respective chapters.

e Chapter 3
Pourhabib, Huang, and Ding. “Short-term wind speed forecast using
measurements from multiple turbines in a wind farm.” Technometrics,
58:138-147, 2016.

Ezzat, Jun, and Ding. “Spatio-temporal asymmetry of local wind fields
and its impact on short-term wind forecasting.” IFEE Transactions on
Sustainable Energy, 9:1437-1447, 2018.

e Chapter 4
Ezzat, Jun, and Ding. “Spatio-temporal short-term wind forecast: A
calibrated regime-switching method.” The Annals of Applied Statistics,
in press, 2019.

e Chapter 5
Lee, Ding, Genton, and Xie. “Power curve estimation with multivariate
environmental factors for inland and offshore wind farms.” Journal of
the American Statistical Association, 110:56—67, 2015.

e Chapter 6
Hwangbo, Johnson, and Ding. “A production economics analysis for
quantifying the efficiency of wind turbines.” Wind Energy, 20:1501-1513,
2017.

Niu, Hwangbo, Zeng, and Ding. “Evaluation of alternative efficiency
metrics for offshore wind turbines and farms.” Renewable Energy,
128:81-90, 2018.



Acknowledgments B xxiii

Hwangbo, Johnson, and Ding. “Power curve estimation: Functional es-
timation imposing the regular ultra passum law.” Working Paper, 2018.
Available at SSRN:http://ssrn.com/abstract=2621033.

Chapter 7
Lee, Ding, Xie, and Genton. “Kernel Plus method for quantifying wind
turbine upgrades.” Wind Energy, 18:1207-1219, 2015.

Hwangbo, Ding, Eisele, Weinzierl, Lang, and Pechlivanoglou. “Quantify-
ing the effect of vortex generator installation on wind power production:
An academia-industry case study.” Renewable Energy, 113:1589-1597,
2017.

Shin, Ding, and Huang. “Covariate matching methods for testing and
quantifying wind turbine upgrades.” The Annals of Applied Statistics,
12:1271-1292, 2018.

Chapter 8

Hwangbo, Johnson, and Ding. “Spline model for wake effect analysis:
Characteristics of single wake and its impacts on wind turbine power
generation.” IISE Transactions, 50:112-125, 2018.

Chapter 9

Byon and Ding. “Season-dependent condition-based maintenance for a
wind turbine using a partially observed Markov decision process.” IEEE
Transactions on Power Systems, 25:1823-1834, 2010.

Byon, Ntaimo, and Ding. “Optimal maintenance strategies for wind tur-
bine systems under stochastic weather conditions.” IEEE Transactions
on Reliability, 59:393-404, 2010.

Byon, Pérez, Ding, and Ntaimo. “Simulation of wind farm operations
and maintenance using DEVS.” Simulation—Transactions of the Society
for Modeling and Sitmulation International, 87:1093-1117, 2011.

Chapter 10

Lee, Byon, Ntaimo, and Ding. “Bayesian spline method for assessing ex-
treme loads on wind turbines.” The Annals of Applied Statistics, 7:2034—
2061, 2013.

Chapter 12

Ahmed, Dagnino, and Ding. “Unsupervised anomaly detection based
on minimum spanning tree approximated distance measures and its ap-
plication to hydropower turbines.” IEEE Transactions on Automation
Science and Engineering, 16: 654667, 2019.


http://ssrn.com

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

CHAPTER 1

Introduction

ind energy has been used as far back as Roman Egypt [51] (or even ear-

lier [194]). The well-preserved windmills that dotted the Dutch coast-
line or along the Rhine River have become symbols of usage before the modern
age. Although outdated, those windmills are top tourist attractions nowadays.
As widespread as those windmills were, wind energy played a rather minor role
in commercial electricity generation until the end of the last century. In 2000,
the wind power generation in the United States was 5.59 billion kilowatt-hours
(kWh), accounting for about 0.15% of the total electricity generated by the
US in that year [219]. In the past decade, however, wind energy witnessed
a rapid development and deployment. By the end of 2016, the annual wind
power production increased 40-fold relative to the amount of wind power in
2000, to nearly 227 billion kWh, and accounted for 5.6% of the total electricity
generation in that year [220]. The US Department of Energy even contem-
plates scenarios in which wind may generate 10% of the nation’s electricity
by 2020, 20% by 2030, and 35% by 2050 [217].

Remarkable progress has been made in wind turbine technology, which en-
ables the design and installation of larger turbines and allows wind farms to
be built at locations where wind is more intermittent and maintenance equip-
ment is less accessible. All these brought new challenges to operational relia-
bility. In an effort to maintain high reliability, with the help of advancement
in micro-electronics, modern wind farms are equipped with a large number
and variety of sensors, including, at the turbine level, anemometers, tachome-
ters, accelerometers, thermometers, strain sensors, and power meters, and at
the farm level, anemometers, vanes, sonars, thermometers, humidity meters,
pressure meters, among others. These sensors churn out a lot of data at a
fast pace, presenting unprecedented opportunities for data science to play a
crucial role in addressing technical challenges in wind energy.

Like solar energy, wind energy faces an intermittent nature of its source.
People commonly refer to wind and solar energy as variable renewable energy
sources. The intermittency makes wind and solar power different from most
other types of energy, even hydropower, as reservoirs built for hydropower
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plants smooth out the impact of irregularity and variability in precipitation
on hydropower production.

The intermittency in wind presents a number of challenges to wind energy
operations. The non-steady mechanical load yields excessive wear in a tur-
bine’s drive train, especially the gearbox and bearings, and makes the wind
turbines prone to fatigue failures—wind turbines operate just like a car be-
ing driven in a busy city with plenty of traffic lights and rarely any freeway.
Meanwhile, the randomness in wind power output makes it difficult to accom-
modate a substantial level of wind power in the power grid. All these lead to
an increased cost and a decreased market competitiveness for wind energy. No
wonder that as of 2016, the federal production tax credit (PTC) for wind was
still valued at 23 cents per kWh, roughly 30% of the levelized cost of energy
for onshore wind. Undoubtedly, this tax credit considerably boosts the mar-
ketability of wind energy, but without it, the competitiveness of wind energy
will be called into question.

As data continues to be accumulated, data science innovations, providing
profound understanding of wind stochasticity and enabling the design of coun-
termeasures, have the potential of generating ground-breaking advancements
in the wind industry. The commercial competitiveness of wind energy can
benefit a great deal from a good understanding of its production reliability,
which is affected by the unpredictability of wind and the productivity of wind
turbines. The latter, furthermore, depends on a turbine’s ability to convert
wind into power during its operation and the availability or reliability of wind
turbines. Data science solutions are needed in all of these aspects.

1.1 WIND ENERGY BACKGROUND

The focus of this book is data analytics at the wind turbine and wind farm
level. A thorough coverage of such a scope entails a wide variety of data and a
broad array of research issues. While data analytics at the power grid level is
also an important part of wind energy research, the author’s research has yet
to be extended to that area. Hence, the scope of this book does not include
data analytics at the power grid level. Nevertheless, a great deal of the turbine-
level and farm-level data analytics is related to grid-level data analytics. For
example, power predictions have a significant impact on grid integration.
The wind turbines considered here are the utility-scale, horizontal axis
turbines. As illustrated in Fig. 1.1, a turbine, comprising thousands of parts,
has three main, visible components: the blades, the nacelle, and the tower.
The drive train and control system, including the gearbox and the generator,
are inside the nacelle. While the vast majority of horizontal axis wind turbines
use a gearbox to speed up the rotor speed inside the generator, there are also
direct drive wind turbines in which the gearbox is absent and the rotor directly
drives the generator. An anemometer or a pair of them can be found sitting
on top of the nacelle, towards its rear end, to measure wind speed, whereas
a vane is for the measurement of wind direction. Responding to changes in
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wind direction, yaw control is to rotate and point the nacelle to where the
wind comes from. Responding to changes in wind speed, pitch control turns
the blades in relation to the direction of the incoming air flow, adjusting
the capability of the turbine to absorb the kinetic energy in the wind or the
turbine’s efficiency in doing so.

Anemometer
Nacelle

5
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n
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T
Controller

L Generator

Pitch/Yaw

control

Hub height

Tower

FIGURE 1.1 Schematic of major parts in a wind turbine.

A commercial wind farm can house several hundred wind turbines. For
instance, the Roscoe Wind Farm, the largest wind farm in Texas as of this
writing, houses 627 wind turbines. Other than turbines, meteorological masts
are installed on a wind farm, known as the met towers or met masts. A number
of instruments and sensors are installed on the met towers, measuring addi-
tional environmental conditions, such as temperature, air pressure, humidity,
precipitation, among others. Anemometers and vanes are usually installed at
multiple heights of a met tower. The multi-height measurements allow the cal-
culation of vertical wind shear, which characterizes the change in wind speed
with height, as well as the calculation of vertical wind veer, which character-
izes the change in wind direction with height. The wind speed and direction
measured at the nacelle during a commercial operation are typically only at
the hub height.

Throughout the book, denote by « the input vector whose elements are the
environmental variables, which obviously include wind speed, V', in the unit
of meters per second (m/s), and wind direction, D, in degrees (°). The zero
degree corresponds to due north. Sometimes analysts combine the speed and
direction information of wind and express them in two wind velocities along
the longitudinal and latitudinal directions, respectively. Other environmental
variables include air density, p, humidity, H, turbulence intensity, I, and wind
shear, S. Not all of these environmental variables are directly measured. Some
of them are computed, such as,
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e Turbulence intensity, I: first compute the standard deviation of the wind
speeds in a short duration and denote it as 6. Then, I = &/V, where
V is the average wind speed of the same duration. It is worth noting
that the concept of turbulence intensity in air dynamics is similar to the
coefficient of variation concept in statistics [58].

e Wind shear, S: wind speeds, V; and V5, are measured at heights h; and
ha, respectively. Then, the vertical wind shear between the two heights
is S = In(Va/V1)/In(ha/hy) [175]. When anemometers are installed at
locations both above and below the rotor hub, then two wind shears,
the above-hub wind shear, S,, and the below-hub wind shear, S;, can
be calculated.

e Air density, p, in the unit of kilograms per cubic meter (kg/m?): given
air temperature, T, expressed in Kelvin and air pressure, P, expressed
in Newtons per square meter (N/m?), p = P/(o-T), where o = 287
Joule/(kg-Kelvin) is the gas constant [216].

Using the above notation, the input vector to a turbine can be expressed
asx = (V,D,p,H,I,S,,Sy)T. But the input vector is not limited to the afore-
mentioned variables. The hours in a day when a measurement is recorded, the
power output of a nearby turbine, wind directional variation and wind veer if
either or both are available, could also be included in the input vector, . On
the other hand, while the wind speed, wind direction, and temperature mea-
surements are commonly available on commercial wind farms, the availability
of other measurements may not be.

Two types of output of a wind turbine are used in this book: one is the
active power measured at a turbine, denoted by y and in the unit of kilo-
watts (kW) or megawatts (MW), and the other one is the bending moment,
a type of mechanical load, measured at critical structural spots, denoted by z
and in the unit of kiloNewtons-meter (kN-m) or million Newtons-meter (MN-
m). The power output measures a turbine’s power production capability, while
the bending moment measurements are pertinent to a turbine’s reliability and
failure management. The power measurement is available for each and every
turbine. Analysts may also aggregate the power outputs of all turbines in an
entire wind farm when the whole farm is treated as a single power production
unit. The bending moment measurements are currently not available on com-
mercially operated turbines. They are more commonly collected on testing
turbines and used for design purposes.

The input and output data can be paired into a data record. For the power
response, it is the pair of (x,y), whereas for the mechanical load response, it
is (@, 2).

Turbine manufacturers provide a wind speed versus power functional
curve, referred to as the power curve. Fig. 1.2 presents such a power curve. As
shown in the power curve, a turbine starts to produce power after the wind
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reaches the cut-in speed, V,;. A nonlinear relation between y and V then en-
sues, until the wind reaches the rated wind speed, V,.. When the wind speed
is beyond V., the turbine’s power output will be capped at the rated power
output, ., also known as the nominal power capacity of the turbine, using
control mechanisms such as pitch control and rotor speed regulation. The tur-
bine will be halted when the wind reaches the cut-out speed, V,,, because high
wind is deemed harmful to the safety of a turbine. The power curve shown
here is an ideal power curve, also known as the nominal power curve. When
the actual measurements of wind speed and power output are used, the V-
versus-y plot will not appear as slim and smooth as the nominal power curve;
rather, it will be a data scattering plot, showing considerable amount of noise
and variability.

In order to protect the confidentiality of the data providers, the wind power
data used in this book are normalized by the rated power, y,, and expressed
as a standardized value between 0 and 1.
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FIGURE 1.2 Nominal power curve of a wind turbine. (Reprinted with
permission from Lee et al. [132].)

The raw data on wind turbines are recorded in a relatively fast frequency,
in the range of a couple of data points per second to a data point per a
couple of seconds. The raw data are stored in a database, referred to as the
data historian. When the data are used in the turbine’s supervisory control
and data acquisition (SCADA) system, the current convention in the wind
industry is to average the measurements over 10-minute time blocks because
wind speed is assumed stationary over this 10-min duration and other envi-
ronmental variables are assumed nearly constant. These assumptions are, of
course, not always true. In this book, however, we choose to follow this indus-
trial standard practice. With 10-min blocks, a year’s worth of data has about
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52,560 data pairs if there is no missing data at all. In reality, even with auto-
mated measurement devices, missing data is common, almost always making
the actual data amount fewer than 50,000 for a year.

Even though the wind speed used is mostly a 10-min average, we decide
to drop the overline while representing this average, for the sake of notational
simplicity. That is to say, we use V, instead of V, to denote the average wind
speed in a 10-min block. When V is used, it refers to the average of 10-min
averaged wind speeds.

Fig. 1.3 shows the arrangement of the multi-turbine, multi-year data for a
wind farm. In the top panel, the whole dataset is shown as a cube, in which
each cross section represents the spatial layout of turbines on a farm and the
horizontal axis represents the time. The longitudinal data are the time-series
of a turbine’s power output, y, and environmental measurements, x. The
cross-sectional data, or the snapshot data, are of multiple turbines but are for
a particular point in time. A cross section could be a short time period, for
instance, a couple of days or weeks, during which the turbine’s innate condition
can be assumed unchanged. The power curve of a turbine is visualized as the
light-colored (yellow) curve in the bottom panel (see also Color eBook), with
the actual measurements in the background. As mentioned earlier, the actual
measurements are noisy, and the nominal power curve averages out the noise.

1.2 ORGANIZATION OF THIS BOOK

We organize this book based on a fundamental data science formulation for
wind power production:

Mw:/ﬁM@M@M, (11)

where f(-) denotes a probability density function and the subscript ¢, the time
indicator, signifies the dynamic, time-varying aspect of the function.

This formulation implies that in order to understand f;(y), namely the
stochasticity of power output y, it is necessary to understand the distribution
of wind and other environmental variables, f;(x), as well as the turbine’s power
production conditioned on a given wind and environmental condition . We
use a conditional density function, fi(y|z), to characterize the conditional
distribution.

When the power output, y, is replaced by the mechanical load response
(namely the bending moment), z, the above formulation is still meaningful,
with f(z|x) representing the conditional load response for a given environ-
mental condition.

The use of conditional density functions is a natural result of wind inter-
mittency. When the driving force to a turbine changes constantly, the turbine’s
response, regardless of being the power or the load, ought to be characterized
under a given wind and environmental condition.

This book aims to address three aspects related to the aforementioned
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FIGURE 1.3 Arrangement of wind farm data. The top panel shows the
spatio-temporal arrangement of wind farm data; the middle panel
shows the layout of a wind farm, where the small dots are wind turbines
and the big dots are the met towers; and the bottom panel presents
the data from a single turbine, where the light-colored (yellow) curve
(see Color eBook) is the nominal power curve and the circles in the
background are the actual power measurements.
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general formulation of wind power production. Thus, we divide the rest of
this book into three parts:

1. The first part consists of three chapters. It is about the modeling of
fi(x), which begets an analysis of the wind field. Based on the modeling
and analysis of the wind field, a wind forecast can be made. If a whole
wind farm is simplified as a single location, or the forecast at a single
turbine is of concern, the need for a temporal analysis arises. If multiple
turbines at different sites are to be studied, or multiple wind farms at dif-
ferent geographic locations are involved, the modeling of f;(x) becomes
a spatio-temporal analysis. Both temporal and spatio-temporal methods
will be described but the focus is on the spatio-temporal analysis.

2. The second part consists of four chapters. It discusses power response
modeling and shows how the power response model can be used for per-
formance evaluation of wind turbines. The general expression, f(y|x),
depicts a multivariate, probabilistic power response surface. The power
curve is in fact the conditional expectation, E(y|x), when @ is reduced
to a univariate input, the wind speed, V. The modeling of f(y|x) or
E(y|x) falls into the area of density regression or nonparametric regres-
sion analysis.

3. The third part consists of four chapters. It provides a reliability and
load analysis of wind turbines. Using Eq. 1.1 to assess power produc-
tion assumes, implicitly, an up-running wind turbine, namely a non-zero
fi(y|x). But wind turbines, under non-steady wind forces, are prone
to failures and downtime. To factor in a turbine’s reliability impact,
it is important to assess a turbine’s load response under various wind
conditions. The statistical learning underlying the analysis in this part
is related to sampling techniques, including importance sampling and
Markov chain Monte Carlo sampling.

1.2.1  Who Should Use This Book

The book is intended to be a research monograph, but it can be used for teach-
ing purposes as well. We expect our readers to have basic statistics and proba-
bility knowledge, and preferably a bachelor’s degree in STEM (Science, Tech-
nology, Engineering, and Math). This book provides an in-depth discussion of
how data science methods can improve decision making in several aspects of
wind energy applications, from near-ground wind field analysis and wind fore-
cast, turbine power curve fitting and performance analysis, turbine reliability
assessment, to maintenance optimization for wind turbines and wind farms. A
broad set of data science methods are covered, including time series models,
spatio-temporal analysis, kernel regression, decision trees, splines, Bayesian
inference, and random sampling. The data science methods are described in
the context of wind energy applications with examples and case studies. Real
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data and case studies from wind energy research and industrial practices are
used in this book. Readers who may benefit from reading this book include
practitioners in the wind industry who look for data science solutions and
faculty members and students who may be interested in the research of data
science for wind energy in departments such as industrial and systems engi-
neering, statistics, and power engineering.

There are a few books on renewable energy forecasting [117], which overlap,
to a certain degree, with the content of Part I. A topic related to wind energy
but left out in the book is about grid integration, for which interested readers
can refer to the book by Morales et al. [148].

1.2.2 Note for Instructors

This book can be used as the textbook for a stand-alone course, with the
course title the same as or similar to the title of this book. It can also be used
to as a reference book that provides supplementary materials for certain seg-
ments of either a data science course (supplementing wind energy application
examples) or a power engineering course (supplementing data science meth-
ods). These courses can come from the offerings of a broad set of departments,
including Industrial Engineering, Electrical Engineering, Statistics, Aerospace
Engineering, or Computer Science.

We recommend that the first chapter be read before later chapters are
covered. The three parts after the first chapter are more or less independent
of each other. It does not matter in which sequence the three parts are read
or taught. Within each part, however, we recommend following the order of
the chapters. It will take two semesters to teach the whole book. One can,
nevertheless, sample one or two chapters from each part to form the basis for
a one-semester course.

Most of the examples are solved using the R programming language, while
some are solved using the MATLAB® programming language. At the end of
a chapter, acronyms and abbreviations used in that chapter are summarized
and explained in the Glossary section.

1.2.3 Datasets Used in the Book

In this book, the following datasets are used:

1. Wind Time Series Dataset. This dataset comes from a single turbine
on an inland wind farm. The dataset covers the duration of one year, but
data at some of the time instances are missing. Two time resolutions are
included in the dataset: the 10-min data and the hourly data; the latter
is the further average of the former. For each temporal resolution, the
data is arranged in three columns. The first column is the time stamp,
the second column is the wind speed, and the third column is the wind
power.
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2. Wind Spatial Dataset. This dataset comes from ten turbines in an
offshore wind farm. Only the hourly wind speed data are included. The
duration of the data covers two months. The longitudinal and latitudinal
coordinates of each turbine are given, but those coordinates are shifted
by an arbitrary constant, so that the actual locations of these turbines
are protected. The relative positions of the turbines, however, remain
truthful to the physical layout. The data is arranged in the following
fashion. Under the header row, the next two rows are the coordinates
of each turbine. The third row under the header is purposely left blank.
From the fourth row onwards are the wind speed data. The first column
is the time stamp. Columns 2-11 are the wind speed values measured in
meters per second.

3. Wind Spatio-Temporal Datasetl. This dataset comprises the average
and standard deviation of wind speed, collected from 120 turbines in
an inland wind farm, for the years of 2009 and 2010. Missing data in
the original dataset are imputed by using the iterative singular value
decomposition [139]. Two data files are associated with each year—one
contains the hourly average wind speed, used in Eq. 3.18, and the other
contains the hourly standard deviation of wind speed, used in Eq. 3.25.
The naming convention makes it clear which year a file is associated with
and whether it is for the average speed (Ave) or for the standard devia-
tion (Stdev). The data arrangement in these four files is as follows—the
columns are the 120 turbines and the rows are times, starting from 12
a.m. on January 1 of a respective year as the first data row, followed by
the subsequent hours in that year. The fifth file in this dataset contains
the coordinates of the 120 turbines. To protect the wind farm’s identity,
the coordinates have been transformed by an undisclosed mapping, so
that their absolute values are no longer meaningful but the turbine-to-
turbine relative distances are maintained.

4. Wind Spatio-Temporal Dataset2. The data used in this study consists
of one year of spatio-temporal measurements at 200 randomly selected
turbines on a flat terrain inland wind farm, between 2010 and 2011. The
data consists of turbine-specific hourly wind speeds measured by the
anenometers mounted on each turbine. In addition, one year of hourly
wind speed and direction measurements are available at three met masts
on the same wind farm. Columns B through OK are the wind speed
and wind power associated with each turbine, followed by Columns OL
through 0Q, which are for wind speed and wind direction associated
with each mast. The coordinates of the turbines and masts are listed in
the top rows, preceding the wind speed, direction, and power data. The
coordinates are shifted by a constant, so that while the relative positions
of the turbines and the met masts remain faithful to the actual layout,
their true geographic information is kept confidential. This anemometer
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network provides a coverage of a spatial resolution of one mile and a
temporal resolution of one hour.

. Inland Wind Farm Datasetl and Offshore Wind Farm Datasetl.
Data included in these two datasets are generated from six wind turbines
and three met masts and are arranged in six files, each of which is asso-
ciated with a turbine. The six turbines are named WT1 through WT6,
respectively. The layout of the turbines and the met masts is shown in
Fig. 5.6. On the offshore wind farm, all seven environmental variables
as mentioned above are available, namely ® = (V,D,p,H,1,5,,S}),
whereas on the inland wind farm, the humidity measurements are
not available, nor is the above-hub wind shear, meaning that x* =
(V,D,p,I,Sy). Variables in & were measured by sensors on the met
mast, whereas y was measured at the wind turbines. Each met mast has
two wind turbines associated with it, meaning that the a’s measured
at a met mast are paired with the y’s of two associated turbines. For
WT1 and WT2, the data were collected from July 30, 2010 through July
31, 2011 and for WT3 and WT4, the data were collected from April 29,
2010 through April 30, 2011. For WT5 and WT6, the data were collected
from January 1, 2009 through December 31, 2009.

. Inland Wind Farm Dataset2 and Offshore Wind Farm Dataset2. The
wind turbine data in these two datasets include observations during the
first four years of the turbines’ operations. The inland turbine data are
from 2008 to 2011, whereas the offshore data are from 2007 to 2010.
The measurements for the inland wind farm include the same x’s as in
the Inland Wind Farm Datasetl and those for the offshore wind farm
include the same «’s as in the 0ffshore Wind Farm Datasetl. Most of
the environmental measurements x are taken from the met mast closest
to the turbine, with the exception of wind speed and turbulence inten-
sity which are measured on the wind turbine. The mast measurements
are used either because some variables are only measured at the mast
(such as air pressure and ambient temperature, which are used to calcu-
late air density) or because the mast measurements are considered more
reliable (such as wind direction).

. Turbine Upgrade Dataset. This dataset includes two sets, correspond-
ing, respectively, to an actual vortex generator installation and an arti-
ficial pitch angle adjustment. Two pairs of wind turbines from the same
inland wind farm, as used in Chapter 5, are chosen to provide the data,
each pair consisting of two wind turbines, together with a nearby met
mast. The turbine that undergoes an upgrade in a pair is referred to
as the experimental turbine, the reference turbine, or the test turbine,
whereas the one that does not have the upgrade is referred to as the
control turbine. In both pairs, the test turbine and the control turbine
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are practically identical and were put into service at the same time. This
wind farm is on a reasonably flat terrain.

The power output, ¥y, is measured on individual turbines, whereas
the environmental variables in « (i.e., the weather covariates) are mea-
sured by sensors at the nearby mast. For this dataset, there are five
variables in @ and they are the same as those in the Inland Wind
Farm Datasetl. For the vortex generator installation pair, there are
14 months’ worth of data in the period before the upgrade and around
eight weeks of data after the upgrade. For the pitch angle adjustment
pair, there are about eight months of data before the upgrade and eight
and a half weeks after the upgrade.

Note that the pitch angle adjustment is not physically carried out,
but rather simulated on the respective test turbine. The following data
modification is done to the test turbine data. The actual test turbine
data, including both power production data and environmental mea-
surements, are taken from the actual turbine pair operation. Then, the
power production from the designated test turbine on the range of wind
speed over 9 m/s is increased by 5%, namely multiplied by a factor of
1.05, while all other variables are kept the same. No data modification
of any kind is done to the data affiliated with the control turbine in the
pitch angle adjustment pair.

The third column of a respective dataset is the upgrade status
variable, of which a zero means the test turbine is not modified yet, while
a one means that the test turbine is modified. The upgrade status
has no impact on the control turbine, as the control turbine remains
unmodified throughout. The vortex generator installation takes effect
on June 20, 2011, and the pitch angle adjustment takes effect on April
25, 2011.

8. Wake Effect Dataset. This dataset includes data from six pairs of wind
turbines (or, 12 wind turbines in total) and three met masts. The turbine
pairs are chosen such that no other turbines except the pair are located
within 10 times the turbine’s rotor diameter. Such arrangement is to
find a pair of turbines that are free of other turbines’ wake, so that the
wake analysis result can be reasonably attributed to the wake of its pair
turbine. The operational data for the six pairs of turbines are taken
during roughly a yearlong period between 2010 and 2011. The datasets
include wind power output, wind speed, wind direction, air pressure,
and temperature, of which air pressure and temperature data are used
to calculate air density. The wind power outputs and wind speeds are
measured on the turbine, and all other variables are measured at the met
masts. The data from Mast 1 are associated with the data for Turbine
Pairs 1 and 2, Mast 2 with Pairs 3 and 4, and Mast 3 with Pairs 5 and
6. Fig. 8.6 shows the relative locations of the six pairs of turbines and
three met masts.
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9. Turbine Bending Moment Dataset. This dataset includes two parts.
The first part is three sets of physically measured blade-root flapwise
bending moments on three respective turbines, courtesy of Risg-DTU
(Technical University of Denmark) [180]. The basic characteristics of the
three turbines can be found in Table 10.1. These datasets include three
columns. The first column is the 10-min average wind speed, the second
column is the standard deviation of wind speed within a 10-min block,
and the third column is the maximum bending moment, in the unit of
MN-m, recorded in a 10-min block. The second part of the dataset is the
simulated load data used in Section 10.6.5. This part has two sets. The
first set is the training data that has 1,000 observations and is used to fit
an extreme load model. The second set is the test data that consists of
100 subsets, each of which has 100,000 observations. In other words, the
second dataset for testing has a total of 10,000,000 observations, which
are used to verify the extreme load extrapolation made by a respective
model. Both simulated datasets have two columns: the first is the 10-min
average wind speed and the second is the maximum bending moment
in the corresponding 10-min block. While all other datasets are saved
in CSV file format, this simulated test dataset is saved in a text file
format, due to its large size. The data simulation procedure is explained
in Section 10.6.5.

10. Simulated Bending Moment Dataset. This dataset includes two sets.
One set has 600 data records, corresponding to the training set referred
to in Section 11.4.1, whereas the other set has 10,000 data records, which
are used to produce Fig. 11.1. Each set has three columns of data (other
than the serial number). The first column is the wind speed, simulated
using a Rayleigh distribution, and the second and third columns are, re-
spectively, the simulated flapwise and edgewise bending moments, in the
unit of kN-m. The flapwise and edgewise bending moments are simulated
from TurbSim [112] and FAST [113], following the procedure discussed
in [149]. TurbSim and FAST are simulators developed at the National
Renewable Energy Laboratory (NREL) of the United States.

GLOSSARY

CSV: Comma-separated values Excel file format

DTU: Technical University of Denmark

NREL: National Renewable Energy Laboratory

PTC: Production tax credit

SCADA: Supervisory control and data acquisition
STEM: Science, technology, engineering, and mathematics

US: United States of America
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