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Foreword

Splines are piecewise polynomial functions and are ubiquitous in the sciences. They
play a prominent role in computer-aided geometric design, signal processing, data
analysis, visualization, numerical simulation, probability, and many more.

In one variable, splines are usually represented in terms of so-called B-splines.
B-splines turn out to be the most useful spline basis functions because they possess
several properties that are important from both theoretical and computational point
of view. Even though the concept of B-splines was already known before, themodern
B-spline theory roots in the seminal works by Isaac Jacob Schoenberg in the mid-
twentieth century and has many important developments ever since. When moving
to multiple variables, tensor-product B-spline representations are the most common
choice thanks to their simplicity of construction and the inheritance of all nice proper-
ties of the univariate representations. But they have limitations, and therefore, several
alternative spline technologies have been proposed more recently for dealing with
more general domains, unstructured partitions, and local refinement.

Oslo has a long-standing tradition in spline research, with several fundamental
contributions. The so-called Oslo algorithm (1980) is probably one of the most
famous outcomes of this research, a general method for inserting degrees of freedom
to a given B-spline curve. A recent contribution is the creation of “LR B-splines”
(2013), an elegant theory for performing local refinement on B-spline surfaces
or volumes. Tor Dokken and the Geometry Group at SINTEF are a driving force
behind the development and application of LR B-splines and their promotion within
both academia and industry. His endless enthusiasm and encouragement are a great
stimulus for all researchers who are working—or will work—on the topic.

This book will introduce you in the world of LR B-splines, with a particular
focus on their application to surface fitting. Finding a compact surface description
of scattered observations is an important problem. LR B-splines could provide an
excellent tool for this. Adaptive refinement allows for local updates of the LR B-
spline surface where the distance to the point cloud exceeds a prescribed tolerance,
without introducing a huge number of redundant degrees of freedom. The theoretical
framework is illustrated with practical examples of bathymetry and landslides GIS
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datasets. It is a comprehensive source for everyone interested in adaptive surface
fitting and splines.

Rome, Italy
April 2022

Hendrik Speleers
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Highlights of the SpringerBrief

1. Locally Refined B-splines surfaces approximate huge, scattered, and noisy point
clouds efficiently

2. The surface approximation is adaptive and allows for local refinement of various
point clouds as, e.g. LIDAR or sonar datasets

3. LR B-spline surfaces and volumes are ideal for spatio-temporal analysis with
geomorphological or geodetic applications

4. The format of LR B-spline surfaces can be made compatible with GIS software
to promote interoperability. The C++ functions are freely available
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About This Book

With the development of high-rate sensors based on light detection and ranging
technologies, geospatial data representing terrains and seabeds contains millions of
points. Performing a surface approximation is an efficient way to reduce, smooth,
and structure the recorded data. Prominent applications are the analysis of spatio-
temporal deformation, or the drawing of contour lines.

In this SpringerBrief,wedive into the concept ofLocallyRefined (LR)B-splines to
approximate point clouds.We describe both intuitively andmathematically how local
adaptive refinement is performed and highlight its advantages over other methods.
Various examples using datasets from a sonar, a terrestrial laser scanner, and a
hand-scanner illustrate the methodology. A suitable procedure to deal with outliers
and voids within the context of surface approximation is proposed. We conclude
by highlighting the potential of LR B-splines surfaces and volumes to perform
spatio-temporal geomorphological or geodetic deformation analysis, as promising
applications.

This SpringerBrief is written for a wide audience: from a practitioner wishing
to perform surface approximation of point clouds, to mathematicians interested in
understanding the concepts of local refinement and their potential applications.
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Chapter 1
Introduction

Abstract With the development of high rate sensors based on LIDAR (light detec-
tion and ranging) and sonar technology, geospatial data representing terrain or seabed
often contains millions of points. Performing a surface approximation of the point
clouds is an elegant way to reduce noisy and unorganized data to a mathematical
surface with just a few coefficients to estimate. Traditional spline surfaces are able
to compactly represent smooth shapes, but lack the ability to adapt the representa-
tion locally to the point clouds. Locally Refined (LR) B-spline surfaces address that
challenge as they have the nice property of being locally refinable. Their format can
be made compatible with most Geographic Information System (GIS) software, and
they facilitate various applications such as the drawing of contour lines or spatio-
temporal deformation analysis. This introduction aims to explain the need for surface
approximation, and present the state of the art in that domain. We compare the LR
B-spline approachwith different methods for surface approximation including raster,
and triangular irregular networks.

Keywords Geospatial data · LR B-Spline surfaces · Approximation · Surfaces in
GIS

1.1 The Why and How of Surface Approximation

The advance of contactless laser range scanners, either terrestrial, airborne or under-
water as well as sonars, enables to capture 3D data of large areas rapidly and with a
high accuracy [Weh99, Eno19]. The applications of such sensors are diverse, going
from forest inventory to agricultural monitoring, deformation analysis of bridges
and dams, underwater or seafloor shell fragment characterization but also cultural
heritage, to name only but a few (see, e.g., [Muk16] or [Wu22] for a review of appli-
cations). While working directly with the recorded point clouds may be adequate for
visualization, or animation purposes, the manipulation of millions of points is less
attractive as soon as shape analysis is needed [Flo02]. Within the context of geospa-
tial data approximation or reverse engineering [Raj08], it is favorable to convert
the observations to a mathematical surface. Here the latter are defined by parametric

© The Author(s) 2023
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2 1 Introduction

equations and approximate data byminimizing the distance between the point clouds
and the approximated surface.

Throughout the book, we define an “approximation” as a counterpart to mathe-
matical “interpolation” for which the resulting surface passes through all the data
points (see, e.g., [Fol86]). In the context of Geographic Information Systems (GIS),
the term “spatial interpolation” is given a more broad definition. It is the process of
using points with known values to estimate values at other points. Spatial interpo-
lation can further be divided into exact or inexact interpolation. We will reserve the
term “interpolation” to mean an exact fitting of a set of data points while inexact
fitting will be denoted “approximation”. Interpolation is unfavorable when a huge
number of points is available. The approximation of noisy, unstructured and scat-
tered point clouds transforms data to information: The resulting surfaces are less
redundant and complex than when interpolation is performed.

Rigorous statistical testing of the deformation of objects such as bridges, dams
or tunnels with underlying safety applications, can be best performed with math-
ematical surfaces. Within a geodetic context, they further make huge point clouds
easy to handle and manipulate. Unfortunately, many practitioners are hesitating to
use parametric surfaces to approximate their data, expressing concerns such as “is it
accurate enough?”, “is it time consuming?”, “I don’t understand formulas”. Thus,
the use of mathematical approximations of point clouds can only grow if easy-to-use
and easy-to-understand approximation methods are proposed. The following criteria
have to be considered:

1. Accuracy: The error between the fitted and original data set should be kept small.
2. Smoothness: Surface ripples due to the approximation of outliers or voids should

be avoided.
3. Conciseness: The resulting surface should contain as few parameters as possible.
4. Automaticity and interoperabilitywith existing GIS software: the format should

be flexible.
5. Computational time: The processing has to be fast. It is one of themajor requests

from a practitioner perspective, and slowness strongly deters the use of parametric
modelling.

The approach we follow in this SpringerBrief is to use Locally Refined B-spline
surfaces, abbreviated as LR B-spline surfaces, for approximating geospatial data
[Dok13, Sky15].

1.2 Surface Representation of Geospatial Data

There are many other data representations in addition to LR B-spline surfaces that
can be used to approximate point clouds. In the following sections, we present two
prominent examples: Raster representation and triangulated irregular network (TIN).
We provide a short comparison of these methods with LR B-spline surface fitting.
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Other representations such as radial basis functions used, e.g., for gravity field mod-
elization [Ten08] and trend surfaces are not directly applicable for approximation of
large datasets and therefore omitted.We note that in GIS the term “spline”most often
refers to splines in tension or regularized splines, which differ from tensor product
(TP) B-splines surfaces. In Computer Aided Design (CAD) a rational version of TP
B-spline surfaces is used, the so-called Non Uniform Rational B-splines (NURBS)
surfaces.

1.2.1 Raster Representation

The raster representation is the most frequently used data format in GIS, [Bis18].
The digital elevation model (DEM) is often represented as a raster. The raster is an
approximate representation as the scattered input data are not exactly fitted. A given
cell contains a single value, often the elevation, so that the level of detail is restricted
by the raster cell resolution. If this resolution is low compared to the variation in the
data, meaning that there is a large height difference between points in a cell, then
the result may be inaccurate. On the contrary, if the resolution is too high, the data
volume grows more than necessary. A trade-off between accuracy and data volume
must be made, and this is particularly mandatory when there are large differences
in the local variation of the data in different areas. However, the raster remains a
compact, highly structured and efficient representation. Proposals have been made
based on a compact data structure to access a given datum or portion of the data more
rapidly, [Sil21].

Figure 1.1a shows a cloud of 999,751 points consisting of classified ground points
andpoints from the sea surface.A raster representationwith 1mresolution is shown in
Fig. 1.1b. The raster is computed using inverse distance weighting (IDW, [She68]).
It has size 800× 600 and the average number of points used for estimating the

Fig. 1.1 Raster representation of terrain. a Point cloud from Fjøløy in Norway, b raster represen-
tation visualized with Python Rasterio
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Fig. 1.2 A small
triangulated point set. The
data points are red and the
triangulation edges are
shown in blue

raster points is 5676.79. The accuracy of this raster representation is addressed in
Sect. 1.2.5.1.

Several approaches are available to estimate values between the existing samples.
We mention the selection in the cell center or the bivariate evaluation. Alterna-
tively, the estimated value can be computed from a bivariate surface interpolating
the four surrounding sample values. Kriging or IDW can be also used in this context,
see [Oli90] or [She68]. The reader is referred to, e.g., [Wis11], [Mit05] or [Fis06]
for more details and specific comparisons between methods.

1.2.2 Triangulated Irregular Network (TIN)

ATIN is a continuous surface representation frequently used inGIS. This is a flexible
format for geospatial data that allows adaptation to local variations, and is highly
accurate. Similarly to raster representations and LR B-splines, an approximation is
required to restrict the data size. The nodes of a TIN are distributed variably to create
an accurate representation of the terrain. TINs can, thus, have a higher resolution in
areas where a surface is highly variable or where more detail is desired and a lower
resolution in areas that are less variable. They are typically used for high-precision
modelling of smaller areas. In [Nel94] a triangulated surface is used to represent
drainage-basins while hydrological similarity is used in the TIN creation in [Viv04].

TINs have a more complex data structure than raster surfaces and tend to be more
expensive to build and process. Points in-between the corner points in a triangle are
calculated by linear interpolation. This can give a jagged appearance of the surface.
The problem is especially visible at sharp or nearly sharp edges, but can be remedied
bymethods like constrained Delaunay triangulation. A comprehensive discussion on
various aspects with triangulation in terrain modelling is presented in [Li09].
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The triangulation shown in Fig. 1.2 is interpolating a sparse set of terrestrial data
points and created with unconstrained Delaunay triangulation. The data is fetched
from LIDAR measurements of the island Fjøløy in Norway and is subsampled to
improve visibility.

1.2.3 B-Spline Curves and Tensor Product Surfaces

B-spline curves are piecewise polynomial curves with continuity between adjacent
polynomial pieces embedded in the curve formulation. The joints between the poly-
nomial pieces are defined by the so-called knot vector. The polynomial degree can
be chosen but is often selected to be three. A B-spline curve is described as a linear
combination of a set of coefficients and corresponding B-splines basis functions,
see [Pie91]. The maximum possible continuity between the polynomial pieces is
equal to the polynomial degree minus one.

The B-spline basis functions are themselves piecewise polynomials and have
several attractive properties:

• Non-negativity
• Partition of unity (the B-splines in a given parameter always sum up to one)
• Linear independence
• Limited support, i.e., the values of the basis functions are different from zero in
a limited interval given by the knot vector, implying that a modification of one
surface coefficient will change the curve only locally.

The properties of the B-splines imply that the representation is numerically stable
and that a B-spline curve is bounded by its coefficients. The curve will always lie
inside the polygon described by its coefficients. A B-spline curve is locally refinable,
i.e., new knots can be inserted into the curve description as required.

A bivariate tensor product (TP) B-spline surface is constructed by taking the
tensor product of the basis functions defined over knot vectors in two parameter
directions, and defining appropriate coefficients. This construction carries over the
attractive properties of non-negativity, limited support of theB-spline basis functions,
partition of unity and linear independence. Unfortunately, the TP B-spline surface
formulation does not allow local refinement. If a new knot is entered in one of the
parameter directions, it will cover the entire parameter domain in the other direction.

1.2.4 Locally Refined B-Spline Surfaces

The LR B-spline surface [Dok13] is one approach to solve the problem of lack of
local refinability of TP B-spline surfaces. Other approaches include hierarchical
B-splines [For88, Bra18], its variation called Truncated Hierarchical B-splines
[Gia12], and T-splines [Sed03]. For LR B-splines, the starting point is always a
TP B-spline surface with a corresponding mesh of lines defined by the knots in the
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Fig. 1.3 TP and LR meshes. a The initial TP mesh with the support of one biquadratic B-spline
highlighted, b LR mesh after insertion of several meshlines with the support of one biquadratic
B-spline highlighted

two parameter directions (a TP mesh). The TP mesh is converted into an LR mesh
and new meshlines are inserted into the mesh to refine the surface. The surface coef-
ficients are updated accordingly. The new meshlines do not need to cover the entire
region, but must traverse the support of at least one B-spline. Each new meshline
leads to one or more B-splines being split to give rise to more B-splines and con-
sequently more approximation freedom. The TP mesh is a special case of an LR
mesh. Figure 1.3 illustrates how a TP mesh can be extended to an LR mesh through
multiple mesh refinements.

For LR B-spline surfaces the construction of the TP B-splines spanning the spline
space is similar to the construction of the TP B-splines spanning the spline space
of TP B-spline surfaces. In both cases they are TP B-splines that are defined from
a subset of the knot vectors in the two parameter directions. The TP B-splines are
regular except for possible variation in the width and height of mesh cells due to
varying intervals between adjacent knots. The LR B-splines can differ greatly both
in terms of the size of the support and the number of LR B-splines overlapping a
particular parameter point in the surface domain. The LRB-splines are non-negative,
have limited support, and possess the partition of unity property. The collection of
LR B-splines are not linearly independent by default, but possible occurrences of
linear dependency can be detected and removed.

Figure 1.4a shows a biquadratic LR B-spline surface approximating the point
cloud in Fig. 1.1 (tolerance 0.5 m and 5 iteration steps in an adaptive surface fitting
algorithm, see Chap. 3). Here the advantages of local refinement are highlighted:

1. The surface is locally refined by the algorithm where the accuracy requirement
is not met.

2. The final LR mesh in Fig. 1.4b is considerably more dense in the steep areas of
the data set than where the surface represents the sea surface.

The accuracy of this surface representation will be addressed in Sect. 1.2.5.1.
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Fig. 1.4 LR B-spline representation of the point cloud shown in Fig. 1.1. a The approximating
surface, b the associated LR mesh

1.2.5 Comparison Between Approximation Strategies

Table 1.1 provides an overview over the surface representations described previously.
TINs and LRB-spline surfaces are created by adaptive algorithms, so that the degrees
of freedom in the surface can be determined according to the need, and the accuracy of
the fit is directly available. The raster representation and the TP B-spline surfaces—a
generalization of the raster representation—are less flexible. The TPB-spline surface
description is more flexible than the raster due to the choice of polynomial bidegree
and/or variable knot vectors. However, the raster representation is slightly more
compact than the TP B-spline surface for the representation of a piecewise constant
or piecewise bilinear function. The TP B-spline and LR B-spline methods provide
smoother surfaces than the other methods. The lack of local refinement, however,
implies that the TP B-spline surface size grows much faster compared with LR B-
spline surfaces.

1.2.5.1 Comparison Raster/LR B-Spline Surfaces

Here we wish to point out the advantages of an LR B-spline surface approximation
with respect to the raster approximation. To that end, we come back to the point cloud
approximated in Sects. 1.2.1 and 1.2.4. Figure 1.5 shows the point cloud coloured
according to the distance to (a) the approximated raster surface, and (b) the LR B-
spline surface. The raster surfaces were created with IDW and evaluated by linear
interpolation. This is not necessarily the optimal approximation method, but it is a
method frequently used in GIS. Visually, the distance between the point cloud and
the surface is largest for the raster surface: The most distant points are concentrated
in areas with much shape variation in the terrain whereas the sea surface is accurately
represented in both cases. These results are summarized in Table 1.2. The file sizes
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Table 1.1 Summary of surface formats for representing terrain and seabed

Surface type Representation
and data structure

Algorithm and
control of
accuracy

Surface
smoothness

Restricting data
volume

Raster Values on regular
mesh

Spatial
interpolation to
define sample
values. Accuracy
checked after
creation

Depends on
interpolation
method for
evaluation
between mesh
points

Pre-set mesh
resolution
defining data
volume

B-spline surface Piecewise
polynomials on
regular mesh, any
bidegree

Coefficients
calculated by
local/global
approximation.
Accuracy
checked after
surface creation

Depends on
polynomial
bidegree and knot
multiplicity

Pre-set mesh
resolution
defining data
volume

TIN Triangulation Triangulate point
cloud + thinning
or adaptive
triangulation.
Accuracy can be
checked during
creation

Piecewise linear Pre-set
approximation
tolerance and/or
max allowed data
volume

LR B-spline
surface

Piecewise
polynomials on
LR axis-parallel
mesh, any
bidegree

Coefficients
calculated by
local/global
approximation.
Local adaption by
checking
accuracy during
construction and
refinement where
needed.

Depends on
polynomial
bidegree and knot
multiplicity

Pre-set
approximation
tolerance or
restrictions in
adaptive
algorithm

of the raster surfaces (GeoTIFF) are generally larger than for LR B-spline surface
(ASCII), so are the distances between the points and the surface. This data set favours
the LR B-spline surface with one part representing the horizontal sea surface and
one part a terrain with considerable height variations. The property to allow for
local variations is the main advantage of LR B-spline surface approximation, not to
mention the strong reduced data size of the final surface.

To summarize, LR B-spline surfaces:

1. Allow a smooth representation of point clouds,
2. Avoid the ragged appearance that can occur for TIN,
3. Are particularly advantageous in terms of the number of coefficients to estimate

for fitting huge terrain and seabed data.



1.2 Surface Representation of Geospatial Data 9

Fig. 1.5 The point cloud from Fig. 1.1, a coloured according to the distance to the raster surface
with 1 m resolution shown in Fig. 1.1, b the LR B-spline surface in Fig. 1.4. The size of the most
distant points is increased compared to points closer to the surface for improved visibility. White
points lie closer to the surface than 0.5 m, green points lie below the surface and red points above

Table 1.2 Comparison between raster representation and LR B-spline surface

Surface File (MB) Max |d| MAE |d| > 3 0.5 < |d| <
3 (%)

|d| < 0.5
(%)

Raster, 1 m 1.9 13.498 0.116 0.02% 4.1 95.9

Raster, 0.5
m

7.4 11.99 0.073 0.004% 1.3 98.7

LR, 5 steps 1.2 3.23 0.065 1 point 0.6 99.4

LR, 12 steps 3.1 0.5 0.055 0% 0 100

Raster surfaces are computed with 0.5 and 1 m resolution, LR B-spline surfaces with 5 and 12
iteration steps using a toleranceof 0.5m.Distances are given inmandpoint distribution in percentage
of the total number of points (1,643,865). MAE=average absolute value of distance, and |d| is the
absolute value of the distance between a point and the surface

We will highlight these properties in Chaps. 5 and 6.

1.2.5.2 Summary

Many applications can be derived from approximation of point clouds with math-
ematical surfaces, such as the drawing of contour lines, or rigorous deformation
analysis based on statistical tests. The result of the approximation and the choice
of the method depend on the characteristics of the data, the purpose of the surface
generation and user defined criteria, such as the computational time. For GIS appli-
cations, the LR B-spline surface with adaptive local refinement is favourable and
the principle intuitive and understandable ([Sky22] for some examples, [Ker21] for
geodetic applications). We point out that neither LR B-spline surfaces, nor raster nor
TIN is the most appropriate representation: This latter does not exist. The definition
of goodness of fit depends on the applications and the data at hand.



10 1 Introduction

1.3 Reminder of the Present SpringerBrief

In Chap. 2, we will present in details the concepts of LR B-splines and review alter-
native local approximation methods, such as hierarchical B-splines and T-splines.
In the LR B-spline surface approximation with adaptive refinement, parameters are
inserted locally, when needed. For geodetic objects such as a bridge or for landslides,
this approach is favourable as more details can be needed in domains where, e.g.,
strong deformations are likely to happen or the object has edges.

The procedure of adaptive refinementwill be developed inChap. 3. The algorithms
are optimized for a wide use within a GIS or geodetic context. For approximating
geospatial points, biquadratic surfaces have proven to be a good choice [Sky22]. They
provide a good balance between smoothness and flexibility. Once an LR B-spline
surface representation of some scattered data is obtained, terrain information can be
derived such as, e.g., contour curves, slope and aspect ratio. Deformation analysis and
statistical tests can be performed at the level of the surface approximation [Sky22,
Ker20, Ker21]. We will develop such applications in Chaps. 5 and 6 and present
how specific challenges such as data gaps and outliers can be handled efficiently.
The concept of LR B-splines volumes will be described. The optimal determination
of approximation parameters such as the tolerance with respect to the noise level of
the point cloud, is part of Chap. 4, which addresses how to choose less empirically
some refinement parameters or strategies.
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Chapter 2
Locally Refined B-Splines

Abstract The univariate minimal support B-spline basis (UMB) has been used in
Computer Aided Design (CAD) since the 1970s. Freeform curves use UMB, while
sculptured surfaces are represented using a tensor product of two UMBs. The coef-
ficients of a B-spline curve and surface are respectively represented in a vector and
a rectangular grid. In CAD-intersection algorithms for UMB represented objects, a
divide-and-conquer strategy is often used. Refinement by knot insertion is used to
split the objects intersected into objects of the same type with a smaller geometric
extent. In many cases the intersection of the resulting sub-objects has simpler topol-
ogy than the original problem. The sub-objects created are represented using their
parents’ UMB format and deleted when the sub-problem is solved. Consequently,
no global representations of the locally refined bases are needed. This is contrary
to when locally refined splines are used for approximation of large point sets. As
soon as a B-spline is locally refined, the regular structure of UMB objects in CAD
is no longer valid. In this chapter we discuss how Locally Refined B-splines (LR
B-splines) address this challenge and present the properties of LR B-splines.

Keywords Locally Refined B-splines · Minimal support basis · Refinement

2.1 Introduction

An introduction to B-splines, tensor product (TP) B-splines and the univariate min-
imal support B-spline basis (UMB) is provided in Sect. 2.2. LR B-splines are a
generalization of local refinement of curves represented in UMB to the multivari-
ate case, see Sect. 2.3 for details on refinement of B-spline curves. An overview
of B-spline based methods for local refinement is addressed in Sect. 2.4, with LR
B-splines described in more details in Sect. 2.5. To give a first motivation for the
approach of LR B-splines, we will now illustrate the LR B-spline representation for
the bivariate case, and introduce the notation used for describing LR B-splines.

© The Author(s) 2023
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We start from the traditional representation of a CAD-type TP B-spline surface.

F(u, v) =
N1−1∑

i=0

N2−1∑

j=0

ci, j Bi,p1(u)Bj,p2(v), (u, v) ∈ [u p1 , uN1 ] × [vp2 , vN2 ].

Here ci, j ∈ Rd , i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1 are the surface coefficients
and d is the dimension of the geometry space. Note that for parametric curves and
surfaces, when the geometry space has dimension larger than 1 (d > 1), i.e., when
we have a parametric curve or surface, the coefficients are frequently denoted con-
trol points. In this chapter we will use coefficients except for cases where the use of
control points is necessary to ensure clarity. We also have two UMBs, one in each
parameter direction: Bi,p1(u), i = 0, . . . , N1 is an UMB defined over the knot vector
{u0, . . . , uN1+d1}, and Bj,p2(v), j = 0, . . . , N2 is an UMB defined over the knot vec-
tor {v0, . . . , vN2+d2}. Note that the TP B-splines Bi, j,p1,p2(u, v) = Bi,p1(u)Bj,p2(v)

are implicitly defined in the equation above. Making the TP B-splines explicit, the
equation above can be reformulated to

F(u, v) =
N1−1∑

i=0

N2−1∑

j=0

ci, j Bi, j,p1,p2(u, v), (u, v) ∈ [u p1 , uN1 ] × [vp2 , vN2 ].

In the equation above, the grid structure of coefficients and TP B-splines is still
present. To prepare for LR B-splines we have to reformulate the above to a collection
of TP B-splines with corresponding coefficients. Now define

B0 = {B | B = Bi, j,p1,p2(u, v), i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1}.

This allows us to express F(u, v) as

F(u, v) =
∑

B∈B0

cBsB B(u, v).

The scaling factors sB are introduced to allow scaling of refinedB-splines to provide a
scaled partition of unity of a collection of LR B-splines. For a TB-surface all sB ≡ 1.
Note that we index the coefficients cB and the scaling factors sB by the TP B-spline
B that it corresponds to.
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2.2 B-Splines and Tensor Product B-Splines

Given a non-decreasing sequenceu = (u0, u1, . . . , u p+1)wedefine aB-spline B[u] :
R → R of degree p ≥ 0 recursively as follows [Sch81]

B[u](u) := u − u0
u p − u0

B[u0, . . . , u p](u) + u p+1 − u

u p+1 − u1
B[u1, . . . , u p+1](u), (2.1)

starting with

B[ui , ui+1](u) :=
{
1; if ui ≤ u < ui+1;
0; otherwise,

i = 0, . . . , p.

We define B[u] ≡ 0 if u p+1 = u0 and terms with zero denominator are defined to be
zero.

A univariate spline space can be defined by a polynomial degree p and a knot
vector u = {u0, u2, . . . , uN+p}, where the knots satisfy: ui+1 ≥ ui , i = 0, . . . , N +
p − 1, and ui+p+1 > ui , i = 0, . . . , N − 1, i.e, a knot value can be repeated p + 1
times. The number of times a knot value is repeated is called the multiplicitym of the
knot value. The continuity of the spline function across a knot value of multiplicity
m is C p−m .

A basis for the univariate spline space above can be defined in many ways. The
approachmost often used is the univariateminimal support B-spline basis. In this, the
B-splines are defined by selecting p + 2 consecutive knots from u, starting from the
first knot. So Bi,p(u) := B[ui , . . . , ui+p+1](u) is definedby theknotsui , . . . , ui+p+1,
i = 0, . . . , N − 1. The minimal support B-spline basis has useful properties that
ensure numeric stability such as local support, non-negativity and partition of unity
(the basis functions sum up to one in all parameter values in the interval [u p, uN ]).

Given two non-decreasing knot sequences u = {u0, u1, . . . , uN1+p1} and v =
{v0, v1, . . . , vN2+p2} where p1 ≥ 0 and p2 ≥ 0. We define a bivariate TP B-spline
Bi, j,p1,p2 : R2 → R from the two univariate B-splines Bi,p1(u) and Bj,p2(v) by

Bi, j,p1,p2(u, v) := Bi,p1(u)Bj,p2(v).

The support of B is given by the Cartesian product

supp(Bi, j,p1,p2) := [ui , ui+p1+1] × [v j , v j+p2+1].

A bivariate TP spline space is made by the tensor product of two univariate spline
spaces. Assuming that both univariate spline spaces have a minimal support B-spline
basis, the minimal support basis for the TP B-spline space is constructed by making
all tensor product combinations of the B-splines of the two bases. The minimal
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support basis for this spline space contains the TP B-splines Bi, j,p1,p2(u, v), i =
0, . . . , N1 − 1, j = 0, . . . , N2 − 1. As in the univariate case, the basis has useful
properties such as non-negativity and partition of unity.

2.3 Refinement of B-Spline Curves

Spline curves are frequently represented using a univariate minimal support B-spline
basis.

f (u) =
N−1∑

i=0

ci Bi,p(u), u ∈ [u p, uN ]. (2.2)

Here ci ∈ Rd , i = 0, . . . , N − 1 are the curve coefficients and d is the dimension of
the geometry space. The curve lies in the convex hull of its coefficients.

A B-spline curve can be locally refined. Figure 2.1a shows a quadratic curve with
knot vector {0, 0, 0, 1, 2, 3, 3, 3}. The curve coefficients and the control polygon
corresponding to the curve are included in Fig. 2.1, and the associated B-splines are
shown below. In Fig. 2.1b, a new knot with value 2 is added, thus increasing the
knot multiplicity in an already existing knot. The curve is not altered, but the control
polygon is enhanced with a new coefficient. The coefficient is marked with a circle
in Fig. 2.1b. The double knot at 2 allows creating a curve with C0 continuity. When
moving the coefficient marked with a square, we obtain a sharp corner as in Fig. 2.1c.
Note that only the last part of the curve is modified.

Fig. 2.1 Knot insertion into a quadratic B-spline curve. a Initial curve with basis functions, b curve
and basis functions after knot insertion, c curve and basis functions after re-positioning of one
coefficient
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2.4 B-Spline Based Locally Refined Surface Methods

As described in Sect. 2.3, adding an extra local degree of freedom to a univariate
B-spline basis just adds a knot, and an additional coefficient. However, adding an
extra degree of freedom in one of the univariate minimal support B-spline basis
of a TP B-spline represented surface adds an extra row or column of coefficients
in the coefficient grid, with a resulting large increase in the bulk of the surface
representation. Consequently, for application areas where it is desirable to add extra
degrees of freedom/representation power locally just where needed, TP B-spline
representations are not a good solution.

In some applications such as Isogeometric Analysis (IgA) [Hug05], and the rep-
resentation of terrain and seabed, the lack of local refinement is a severe restriction.
A TP B-spline surface covers a rectangular domain and the need for approximation
power will not in the general case be uniformly distributed throughout the domain. In
IgA the traditional shape functions local to each element in Finite Element Analysis
are replaced by B-splines that cross element boundaries and connect elements with
higher order continuity.

There are three main B-spline based approaches for extending spline surfaces to
support local refinement [Dok19].

• Hierarchical B-splines (HB) [For88, Kra98] and Truncated Hierarchical B-
splines (THB) [Gia12, Spl17] are based on a dyadic sequence of grids determined
by scaled lattices. On each level of the dyadic grids a spline space spanned by
uniform TP B-splines is defined. The refinement is performed one level at the
time. For HB, TP B-splines on the coarser level are removed and B-splines at
the finer level added in such a way that linear independence is guaranteed. The
sequence of spline spaces for HB will be nested. To ensure partition of unity of
the basis THB were introduced that truncate the TP B-splines of the hierarchical
basis by TP B-splines from the finer levels.

• T-splines [Sed03, Sed04] denote a class of locally refined splines, most often pre-
sented using bidegree (3, 3). In T-spline terminology control points are used rather
than coefficients. Thuswe stick to this terminologywhen addressingT-splines. The
starting point for T-spline refinement is a TP B-spline surface with control points
and meshlines (initial T-mesh) with assigned knot values. For bidegree (3, 3) T-
splines, the knot vectors of the TP B-spline corresponding to a control point are
determined by moving in the T-mesh outwards from the control point in all four
axis parallel parameter directions and picking in each direction knot values from
the two first T-mesh lines and/or control points intersected. The mid knot value in
each knot vector is copied from the start control point. The refinement is performed
by successively adding new control points in-between two adjacent control points
in the T-mesh. A new control point inherits one parameter value from the T-mesh
line. The other parameter is chosen so that the sequence of control point param-
eter values have a monotone evolution along the T-mesh line. Control points on
adjacent parallel T-mesh lines that have one shared parameter value are connected
with a new T-mesh line. The general formulation of T-splines does not guarantee
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a sequence of nested spline spaces. However, T-spline subtypes such as semi-
standard T-splines and Analysis Suitable T-splines do so by imposing restrictions
on how to refine, see Scott et al. [Sco11].

• Locally Refined (LR) B-splines [Dok13, Joh13] the refinement approach of this
book, starts (as T-splines, HB and THB) from a TP B-spline surface. The refine-
ment is performed successively by inserting axis parallel meshlines in the mesh
of knotlines (from here on denoted the mesh). Each meshline inserted has to split
the support of at at least one TP B-spline. The constant knot value of a meshline
inserted is used for performing univariate knot insertion. The refinement is per-
formed in the parameter direction orthogonal to the meshline in all TP B-splines
that have a support split by the meshline. This approach ensures that the spline
spaces produced are nested and that the polynomial space is spanned over all poly-
nomial elements. In Sect. 2.5, we provide further details on additional refinements
triggered and how the resulting TP B-splines can be scaled to achieve partition of
unity.

Note that a main distinction between T-spline algorithms on the one side, and LR
B-spline, HB and THB algorithms on the other side is that T-spline algorithms work
in the mesh of control points and find the collection of B-splines traversing the mesh
of control points, while LR B-spline, HB and THB algorithms directly refine the
spline space and thus automatically ensure nested spline spaces.

2.5 LR B-Spline Refinement Method

The process of Locally Refined B-splines is described in detail in [Dok13]. Please
consult the paper for formal proofs. Below a summary of the most important steps
is presented.

The refinement always starts from a TP B-spline space B0. The refinement pro-
ceeds with a sequence of meshline insertions producing a series of collections of
TP B-splines B0,B1, . . . ,Bk,Bk+1 spanning nested spline spaces each providing a
refined surface

F(u, v) =
∑

B∈Bi

cBsB B(u, v), i = 0, 1, . . . , k, k + 1. (2.3)

Above we end with k + 1, as we will now detail how to create Bk+1 from Bk .
Note that we require that all TP B-splines in these collections have minimal sup-

port. By this we mean that all meshlines that cross the support of a TP B-spline also
have to be a line in the mesh representing the knots of the TP B-splines counting
multiplicity.We denote these meshlines knotlines of the TP B-spline. Thus, to ensure
that all TP B-splines have this property, the process of going from Bk to Bk+1 fre-
quently includes a number of intermediate steps and a corresponding sequence of
intermediate LR B-spline collections.
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Assume that Eq. 2.3 represents F(u, v) using the collection Bk and we now want
to represent F(u, v) using a refined collection ofminimal support TPB-splinesBk+1.
The refinement process goes as follows:

• As long as there is a B ∈ Bk that does not have minimal support on the refined
mesh we proceed as follows. Let γ be a meshline that splits the support of B. This
means that either γ is not a knotline of B, or γ is a knotline of B but has higher
multiplicity than the knotline of B. Decompose B into its univariate component
B-splines B(u, v) = B(u)B(v). We now have two cases:

– If γ is parallel to second parameter direction then it has a constant parameter
value a in the first parameter direction. We insert a in the univariate B-spline
B(u) using Eq. 2.5 below and express B(u) as B(u) = α1B1(u) + α2B2(u).
Then we make two new TP B-splines B1(u, v) = B1(u)B(v) and B2(u, v) =
B2(u)B(v).

– If γ is parallel to first parameter direction then it has a constant parameter
value a in the second parameter direction. We insert a in the univariate B-spline
B(v) using Eq. 2.5 below and express B(v) as B(v) = α1B1(v) + α2B2(v).
Thenwemake the two newTPB-splines B1(u, v) = B(u)B1(v) and B2(u, v) =
B(u)B2(v).

B can be decomposed as follows, B(u, v) = α1B1(u, v) + α2B2(u, v). We can
now express F(u, v) by replacing B(u, v)with the two new TP B-splines. F(u, v) =
F(u, v) − cBsB B(u, v) + cBsB(α1B1(u, v) + α2B2(u, v)).We updateBk by remov-
ing B and adding the TP B-splines B1(u, v) and B2(u, v). In addition we have to
create/update both coefficients and scaling factors belonging to these two TP B-
splines. We must have in mind that B1(u, v) and B2(u, v) often will be duplicates of
B-splines already in B j . Now let Br , r = 1, 2

– In the case Br has no duplicate set sBr = sBαr and cBr = cB .
– In the case Br has a duplicate Bd set sBr = sBd + sBαr and cBr = (sBd cBd + sBαr

cB)/(sBr ), and remove the duplicate.

Note that sB , αr and sBd are all positive numbers, thus sBr will be positive.
When all B ∈ Bk have minimal support, we set Bk+1 = Bk .
To simplify notation as in Chap. 3, we now define the scaled TP B-splines

NB(u, v) = sB B(u, v) to provide a basis that is partition of unity for the spline
space spanned by B j . If F(x, y) ≡ 1 then all coefficients of the TP B-spline surface
we start from, are 1. In this case the coefficients cBr calculated above all remain 1,
duplicates or not. Consequently,

∑

B∈Bk

NB(u, v) =
∑

B∈Bk

sB B(u, v) =
∑

B∈B0

B(u, v) = 1. (2.4)

The process of inserting a knot a ∈ (u0, u p+1) into the local knot vector [u] =
{u0, . . . , u p+1} belonging to a univariate B-spline B[u], of degree p was first
described by Boehm [Boe80]. We organize the resulting sequence of knots as a
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Fig. 2.2 Parameter domain
of an LR B-spline surface
with indication on B-spline
support. The mesh is shown
as black lines. The support of
two overlapping B-splines
are shown in red and in blue

non-decreasing knot sequence {û0, . . . , û p+2}. From this we make two new B-
splines B1[u1] and B2[u2] with corresponding knot vectors [u1] = {û0, . . . , û p+1}
and [u2] = {û1, . . . , û p+2}. Then

B[u] = α1B1[u1] + α2B2[u2], (2.5)

where

α1 :=
{

a−u0
u p−u0

, u0 < a < u p,

1, u p ≤ a < u p+1,

α2 :=
{
1, u0 < a ≤ u1,
u p+1−a
u p+1−u1

, u1 < a < u p+1.

(2.6)

The incremental refinement by knot insertion used by LR B-splines ensures that
the spline spaces generated are nested. Figure 2.2 shows a parameter domain and
the segmentation into boxes corresponding to a biquadratic LR B-spline surface. In
addition the support of two TP B-splines is shown. We see that a meshline stops
inside the blue TP B-spline support. This meshline is excluded from the local knot
vectors defining the TP B-spline covering this support.

Linear independence of the resulting collection Bk+1 of LR B-splines is not guar-
anteed, but occurrences are rare for the constructions used in this book. The approx-
imation procedure outlined in Chap. 3 does not depend on linear independence. LR
B-spline linear dependency configurations can, however, be resolved, if needed by
an application, by insertion of extra meshlines. Linear dependence of LR B-splines
is addressed in detail in [Pat20].
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Chapter 3
Adaptive Surface Fitting with Local
Refinement: LR B-Spline Surfaces

Abstract A locally refined (LR) B-spline surface is a piecewise polynomial surface
for which the distribution of the surface coefficients can be locally adapted. Such
a mathematical representation is interesting for fitting scattered and noisy data, as
the local behaviour of a real point cloud may require more degrees of freedom only
locally. The number of redundant surface coefficients is minimized, which avoids the
fitting of the point cloud’s noise. The surface approximation is performed iteratively
either by solving a least squares system or by a local approximation method. This
procedure allows for mesh refinement in domains where the distance between a
current surface and the point cloud exceeds a prescribed tolerance. In this way,
parts of the LR B-spline surface obtained at previous steps may be kept unchanged.
This chapter aims at explaining the adaptive fitting using local refinement with LR
B-splines. We present two examples with simulated point clouds to illustrate the
methodology.

Keywords LR B-splines surface · Adaptive refinement · Surface fitting · Local
refinement · Least-squares · Multilevel B-spline Approximation (MBA)

3.1 Adaptive Local Refinement

In this chapter,wewill let the x- and y-coordinates of the points serve as the parameter
values while the surface (or function) approximates the z-component of the data. We
note that the algorithm handles parameterized points as well, for which each point
is given with a parameter pair and 3D coordinates, see [Flo05] for a review of the
different parameterization methods. In the following we will focus on elevation and
therefore denote the surface parameters x and y.
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3.1.1 General Principle of Adaptive Spline Refinement

We distinguish between two type of methods for fitting point clouds using local
refinement:

• Adaptive methods: Here the spline space used in the surface fitting is only changed
locally guided by the previous approximation result.

• Non-adaptive methods: the refinement of the spline space is performed indepen-
dently of previous results.

Adaptive local refinement procedures are favorable in terms of the number of coef-
ficients that defines the final surface. The proposed adaptive local refinement will be
performed as follows:

1. Initial step: The point cloud is approximated by a tensor product (TP) B-spline
surface which is a piecewise polynomial over a rectangular domain, see Chap. 2
for more details. A TPB-spline surface is a special case of an LRB-spline surface.
This initial surface is represented as an LR B-spline surface to start the iteration.

2. Following steps: As long as the distance between some points and the surface
is above the given tolerance in some subdomains of the surface, the surface is
refined in these parts only.
We address alternative refinement strategies in Sect. 3.2, while the technical
details of the refinement procedure is described in details in Chap. 2 and briefly in
Sect. 3.1.2. The principle of adaptive refinement is summarized in Algorithm 1.

3. Last step: A geospatial point cloud may represent a very rough terrain and contain
noise and possible outliers.Weusually stop the iteration before all points are closer
to the surface than the tolerance to avoid fitting the noise. The refinement process
can be stopped by the number of iterations or by statistical criteria as described
in Chap. 4.

Algorithm 1: Principle of adaptive surface approximation with LR B-spline sur-
faces.

Data: Point cloud, maximum number of iterations, tolerance
Result: Approximating surface, information on approximation accuracy
Generate initial surface;
Compute accuracy;
while there exist points with larger distance than the given tolerance and the maximum
number of iterations is not reached do

Refine the surface in areas where the tolerance is not reached;
Perform approximation in the current spline space;
Compute accuracy;

end
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3.1.2 Refining the LR B-Spline Surface

The initial surface is the starting point for the adaptive surface approximation. It is
a TP B-spline surface represented as an LR B-spline surface. The parameter domain
of such a surface is defined by a regular mesh of lines (the initial tensor mesh
represented as a LR mesh). The meshlines split the domain into rectangles (boxes),
each corresponding to a polynomial piece of the surface. Axis parallel meshline
segments are successively inserted into the surface where the accuracy requirements
are not met and have to satisfy:

• The meshline segment starts and ends at meshlines in the orthogonal parameter
direction.

• The meshline segment has to split the support of at least one existing LR B-spline.

The resulting mesh defines a collection of none overlapping boxes. A box can
touch but don’t overlap adjacent boxes. The union of the boxes corresponds to the
union of the boxes of the TP mesh. The B-splines spanning the spline spaces are
created in parallel to the refinement of the LR mesh by splitting existing B-splines
that no longer have minimal support. This way, the number of internal meshlines
traversing the entire support of the B-spline does not exceed the polynomial degree.
Note that meshline multiplicity has to be included in the count. Figure 3.1a shows an
initial TP mesh corresponding to a biquadratic surface prepared for local refinement.
The supports of two overlapping B-splines are shown with brown vertical lines and
green diagonal lines. A new meshline (black) is entered. Since it covers the support
of the brown B-spline, it is a legal refinement. In Fig. 3.1b, we see that the B-spline
corresponding to the brown support is split. The newsupports are depictedwith brown
vertical and brown horizontal lines, respectively. The line does not traverse the green
support, and this B-spline remain unchanged. The new line has been included in
the mesh, but not in the definition of the green B-spline. The line also leads to the

Fig. 3.1 Initial TP mesh (blue) with a meshline to insert (black). a The supports of two B-splines
are shown prior to insertion. b After insertion, the brown B-spline is split while the green B-spline
is unchanged. The black candidate line has become a part of the LR mesh and turned into blue
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splitting of twomore B-splines (not shown here for the sake of simplicity). Since two
pairs of the new B-splines are identical, the total increase in the number of B-splines,
and consequently the surface coefficients, is one.

3.1.3 Goodness of Fit of the Approximation

Following [Sky15], we define the performance indicators:

1. The root mean square error (RMSE) with respect to the approximated surface in
the z-direction defined as RMSE = 1√

nobs

∥
∥ẑ − z

∥
∥
2, where ẑ is the estimated z-

component of the point cloudobtained after the kth iteration. TheRMSE is a good
measure to estimate the standard deviation of a typical observed value from the
model’s prediction. Here we assume that the observed data can be decomposed
into the predicted value and random noise with mean zero. The RMSE does
not, however, take into account the spatial pattern of the error. Additionally, the
number of observations will influence its value. A thinned version of a point
cloud will give a smaller RMSE regardless of the accuracy in each single point.

2. The mean absolute error (MAE). To overcome the aforementioned limitation
of the RMSE, we introduce the MAE, which is less sensitive to outliers than
RMSE.

MAE = 1

nobs

nobs∑

i=1

|z j − ẑ j |, z = {z j }nobsj=1 and ẑ = {ẑ j }nobsj=1

We have MAE ≤ RMSE ≤ √
nobs × MAE .

3. The maximum error defined as Maxerr = max
∥
∥ẑ − z

∥
∥.

4. The number of points outside a given tolerance: nout .
5. The number of coefficients ncp estimated for a given iteration k of the refinement.
6. The computational time CT . The computations are performed on a stationary

desktop with 64 GB of DDR4-2666 RAM. It has a i9-9900 K CPU with 8 cores
and 16 threads, but a single core implementation is used in the examples.

3.2 Refinement Strategies

During the adaptive surface approximation, we maintain local information on the
approximation accuracy for each mesh cell. The cells with insufficient accuracy are
easily identified, but it is not obvious that every such cell should trigger refinement
at every iteration step in the adaptive algorithm.
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3.2.1 Isogeometric Analysis Versus Scattered Data
Approximation

Some studies on the properties of various refinement strategies for LR B-splines
and other LR splines exist, mostly in the context of Isogeometric Analysis (IgA).
Johannessen et al. [Joh13] apply the strategies theynamedFull span,Minimumspan
and Structured mesh combined with LR B-splines for IgA. Bracco et al. [Bra18]
also focus on IgA and study two classes of meshes for hierarchical B-splines. Hennig
et al. [Hen17] compare two refinement strategies for hierarchical B-splines and T-
splines. The refinement of LR B-spline surfaces from the perspective of maintaining
local linear independence has been addressed in [Bre15] and [Pat20], respectively.

The use of LR splines for scattered data approximation differs from the use in IgA
by the persistence of the surface. In the approximation setting, the computed surface
is the final result while in IgA, the surface (or volume) is an intermediate step in the
computations, i.e., the surface is not kept for further use.When approximating a point
cloud, the variation of the underlying surface represented by the data points can be
deduced during the approximation. A tailor-made selection of surface coefficients is
possible. In IgA it is only possible to know which degrees of freedom are necessary
first when the simulation is completed. An extensive introduction of new degrees of
freedom may be appropriate. We will focus on approximation accuracy related to
data size as in [Sky22].

3.2.2 Refinement Strategies in the Approximation Context

In the following, we focus on the approximation of geospatial data and present a
variety of refinement strategies. The approximation algorithm coincides with the one
presented in Sect. 3.1.1 and the iteration is pursued until the prescribed tolerance is
met or no further accuracy improvements are possible. Here we give a short overview
over the refinement strategies pursued in [Sky22], which are partly the same as
in [Joh13]. The methods will be applied to various data sets in Chaps. 5 and 6.

The strategies are:

Full span (F): All B-splines overlapping a mesh cell identified for refinement are
refined in their support. One new meshline for each selected parameter direction
is entered in the middle of the knot interval(s) corresponding to the identified cell.

Minimum span (M): Only one B-spline overlapping a mesh cell identified for
refinement is refined in its support. Several methods for selecting this B-spline
can be addressed. In this context, we consider only a choice that combines the
size of the B-spline support and the number of out-of-tolerance points situated in
this support (c).

Structured mesh (S): A B-spline is selected for refinement, and refined in its sup-
port by inserting new knots in the middle of all knot intervals of the B-spline.
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Restricted mesh (R): A B-spline is selected for refinement, and refined in its sup-
port by inserting new knots in a subset of the knot intervals of the B-spline. Knot
intervals towards the middle of the support, large intervals compared to the size
of the support, and intervals corresponding to cells with a high number of points
having a residual value larger than the tolerance are subject to knot insertion.

Given a mesh cell where the accuracy criteria are not met, the approximation flexi-
bility will increase locally if one B-spline containing the cell in its domain is split.
A good refinement strategy will insert enough new meshlines to resolve the criteria
in a substantial number of cells without starting to adapt to noise. A slow pace in
the introduction of meshlines in general gives surfaces with few coefficients, but
increases the computational time to some extent. On the other hand, a very restric-
tive introduction of lines may lead to a blocking meaning that the approximation
accuracy is not improved despite an introduction of new mesh lines in areas where
the tolerance is not met. The pace of the refinement can be reduced by selecting a
restrictive strategy (Mc or R), by refining in one parameter direction at a time (A) as
opposed to refining in both directions (B), or by applying some kind of threshold. The
latter means that not all candidate mesh cells or B-splines are refined at each iteration
level. The candidates are sorted according to selected criteria involving the number
of points outside the tolerance belt and the residual value in these points [Sky22].
Only the most significant candidate cells are refined.

To summarize, the full span strategy (F) shows the most stable behaviour for the
diversity of test cases investigated. Alternating parameter directions (A) gives fewer
coefficients than the full span strategy in general, with an acceptable increase in
computational time. Thresholding can be beneficial, but these results were slightly
less conclusive. Furthermore bidegree (2, 2) is preferred over bidegrees (1, 1) and
(3, 3). Bicubic polynomials generally produces more coefficients without delivering
better accuracy. Bilinear polynomials often results in lean surfaces, but the stability
suffers for some data sets and some refinement strategies.Wewill build on the results
from [Sky22] and complement themwith statistical considerations inChap. 4. Further
examples are given in Chaps. 5 and 6.

Figures 3.2 and 3.3 show the resulting mesh after refinement triggered by one
mesh cell or B-spline using different strategies. The initial surface is biquadratic
and defined on a uniform mesh with seven inner knots in each parameter direction.
Normally, a number of refinements is performed at every iteration step, but here only
one cell or B-spline support is selected for illustration purposes.
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Fig. 3.2 Refinement strategies. a Initial mesh, selected cell is yellow. b Full span in one parameter
direction at a time (FA). c Full span in both parameter directions (FB). d Minimum span in one
parameter direction at a time (McA). e Minimum span in both parameter directions (McB)

Fig. 3.3 Refinement strategies. a Initial mesh, selected B-spline support is yellow. b Structured
mesh in one parameter direction at a time (SA). c Structuredmesh in both parameter directions (SB).
d Restricted mesh in one parameter direction at a time (RA). e Restricted mesh in both parameter
directions (RB)
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3.3 Surface Approximation

At each step in the iterative surface fitting algorithm, the coefficients of the current
surface are computed to obtain the best fit to the point cloud. The approximation
is performed either using a least squares (LS) approach or the multilevel B-spline
approximation (MBA).

3.3.1 Least Squares Approximation

In this section, we introduce the concept of LS approximation within the framework
of surface fitting.We restrict ourselves to themain formulas for the sake of simplicity.
More details can be found in the references.

General Formulation

The LS approximation is a global method. The following expression is minimized
with respect to the surface coefficients cB over the entire surface domain:

min
c

[α1 J (F(x, y)) + α2

nobs∑

h=1

(F(xh, yh) − zh)
2]. (3.1)

x = (xh, yh, zh), h = 1, . . . , nobs are the data points. The surface is defined as
F(x, y) = ∑

B∈B j
cB NB(x, y), where NB , B ∈ Bk , are the scaled TP B-splines

defined as in Sect. 2.5. Note that we index by TP B-splines in the collection Bk .
Thus, the LS method minimizes a scaled version of RMSE. The expression is dif-
ferentiated and turned into a linear, sparse equation system in the number of surface
coefficients. The equation system is solved iteratively using a pre-conditioned con-
jugate gradient method. A pure LS approximation method will result in a singular
equation system if there exist B-splines with no data points in their support.

Smoothness Function

A typical point cloud has a non-rectangular outline and may contain voids. Parts of
the surface domain will frequently lie outside the domain of the point cloud. This
challenge is addressed by adding a smoothness term J (F(x, y)) to the minimization
functional. It allows to solve a non-singular equation system even if this situation
occurs. Thus the smoothness term approximates the minimization of curvature and
variations of curvature in the surface. These intrinsic measures are made parameter
dependent to give rise to a linear equation system after differentiation. The smooth-
ness term is expressed as:

J (F(x, y)) =
∫ ∫

�

π∫

0

3
∑

i=2

wi

(∂ i F(x0 + r cosφ, y0 + r sin φ)

∂r i

∣
∣
∣
r=0

)

dφdx0dy0.

(3.2)
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At each point (x0, y0) in the surface domain�, a weighted sum of the directional first
and second derivatives of the surface is integrated around the circle and the result
is integrated over the surface domain. The directional derivative is represented by
the polar coordinates φ and r . The two terms in J (F(x, y)) are given equal weight.
The weight on the smoothness term is kept low to emphasize the approximation
accuracy. In the examples of the next sections α1 = 1.0 × 10−9 and α2 = 1 − α1.
A more detailed description of the procedure can be found in [Meh97]. A suite of
alternative smoothness terms is presented in [Now98].

3.3.2 Multilevel B-Spline Approximation

MBA is a local, iterative approximation method, [Lee97]. It was originally devel-
oped for a hierarchy of TP B-spline functions. Given a current surface Fk(x, y),
the residuals corresponding to the data points are defined and a surface Gk(x, y)
approximating these residuals is computed. In the hierarchical B-spline setting, a
set of subdomains where a prescribed tolerance is not met is identified and resid-
ual surfaces are computed for these domains only, [Zha98]. A special construction
is applied to maintain continuity of the final hierarchical surface at the boundaries
between these subdomains and the remaining parts of the surface.

Computing the Coefficients of the Residual Surface

The coefficients qB of the residual surface Gk(x, y) = ∑

B∈B qBNB(x, y) are com-
puted individually for each scaled TP B-spline NB . Each coefficient qB is determined
from the collection of data points P = (xp, yp, z p) ∈ PB in the support of NB . Let
rp = z p − Fk(xp, yp) be the residual corresponding to the point (xp, yp, z p). The
coefficient is computed as

qB =
∑

P∈PB
NB(xp, yp)2φB,P

∑

P∈PB
NB(xp, yp)2

, (3.3)

where φB,P , addressed below, depends both on the residuals of the points in PB

and the collection, BT , of B-splines with a support overlapping at least one point in
PB . By default NB ∈ BT . For each of the residuals, we define an under-determined
equation system

rp =
∑

C∈BT

φC,P NC(xp, yp), P ∈ PB . (3.4)

whereφC,P are unknowns to be determined. There aremany solutions to this equation
system. For MBA, the solution is computed as a pseudo-inverse, see [Hsu92], giving

φC,P = NC(xp, yp)rp
∑

C ′∈BT
NC ′(xp, yp)2

, C ∈ BT , P ∈ PB . (3.5)
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This solution minimizes ∑

P∈PB

φ2
C,P (3.6)

in the LS sense.
Finally we select φB,P , P ∈ PB as the missing piece in Eq. 3.3. The process is

explained in more detail in [Zha98].

Updating the LR B-spline Surface

The current surface and the residual is represented by a collection of LR B-splines
following the procedure of Sect. 2.5. Thus the updated surface can be computed as

Fk+1(x, y) = Fk(x, y) + Gk(x, y) =
∑

B∈B
(cB + qB)NB(x, y). (3.7)

MBA is an iterative process. Experience indicates that repeated applications of the
approximation algorithm without adding more mesh lines improves the approxima-
tion accuracy. The improvement is stopped when the accuracy is restricted by the
potential in the current collection of B-splines.

In [Sky15], the two approximation algorithms are compared in various exam-
ples. In general, the LS algorithm has a better approximation order while the MBA-
algorithm is more stable when the spline space is less regular and/or the number of
points in each element is low. We will discuss this topic further in Chap. 5.

3.3.3 Summary of the Adaptive Refinement

The LS method provides the best approximation to the point cloud in the L2 norm.
Adding the smoothness term with a small weight maintains the good approximation
properties. However, some supports of the smallest B-splines can contain none or
few points in case of unevenly distributed scattered data points. Moreover, there is a
risk of overfitting with LS, leading to ripples in the surface, see [Bra20]. Thus, the
MBAmethod should be preferred after a few iterations with LS. As stated in Eq. 3.6,
the pseudo inverse tends to minimize the deviation of the residual surface from zero.
The procedure of local refinement combining LS and MBA is illustrated in Fig. 3.4
and can be summarized as follows:

1. The surface fitting algorithm starts with a LS approximation of the point cloud
at the coarser levels to benefit from the best approximation property.

2. The local refinement strategy for LR-splines is applied iteratively to cells on
which theL1-norm in the z-direction of the point-wise residuals exceeds a certain
tolerance.

3. The algorithm switches to MBA after a few iterations. The switch is triggered
either (i) by a prescribed iteration level being reached, (ii) if the convergence of
the conjugate gradient method used for LS slows down, or (iii) if the number of
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Fig. 3.4 Combination of MBA and LS for adaptive surface approximation with LR B-splines

surface coefficients and consequently the size of theLS equation systembecomes
large.

3.4 Example of Adaptive Refinement

In the following section, we will illustrate how adaptive fitting with local refinement
using LR B-splines works. To that end, two simulated point clouds are generated.
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Fig. 3.5 Visualization of the mathematical functions. a A Gaussian bell with a dam-like jump. b
Three peaks on a flat ground

3.4.1 Generation of Reference Point Clouds

The reference surfaces correspond to Fig. 3.5a: A smooth geometry and Fig. 3.5b: A
geometry with sharp edges. For each generated point cloud, we set (x, y) ∈ [−1, 1]2

with nobs = 40,000 scattered data points (xi , yi , zi ), i = 1...nobs . The z-component
is obtained from the proposed mathematical equations:

Point cloud (a): z = tanh (10y − 5x)

4
+ 1

5e(5x−2.5)2+(5y−2.5)2
. (3.8)

The point cloud is illustrated in Fig. 3.5a and corresponds to a Gaussian bell as
would be a mountain in real life, and a dam-like jump with a smooth transition.

Point cloud (b): z = 1

3e
√

(10x−3)2+(10y−3)2
+ 2

3e
√

(10x+3)2+(10y+3)2

+ 3

3e
√

(10x)2+(10y)2
. (3.9)

The surface represents three peaks with different levels of altitudes on a flat ground,
see Fig. 3.5b. We conjecture that the large gradient and the edges are challenging to
approximate with LR B-splines. We refer to Chap. 1 for a discussion on approxima-
tion methods.
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Level 0 Level 1 Level 2

Level 3 Level 4 Level 5

Fig. 3.6 Meshes at different level of approximation for point cloud (a). tolerance 0.007, refinement
strategy FA, polynomial bidegree (2,2)

3.4.2 Results of Simulations

To illustrate how adaptive surface fitting with LR B-splines performs, we use the
two point clouds (a) and (b). Following Algorithm 1, we set a maximum of 10 iter-
ations and use a tolerance of 0.007. We present the meshes and some corresponding
surfaces for point cloud (a) in Figs. 3.6 and 3.7, and in Fig. 3.8 for point cloud
(b). Additionally, we compute the MAE, the maximum error, the number of points
outside tolerance and the computational time at each iteration, see Tables 3.1 and
3.2 for point cloud (a) and (b), respectively. We focus on the full span refinement
strategies with alternating parameter directions (FA), as described in Sect. 3.2 and
choose the polynomial bidegree (2, 2) for the splines.

Point cloud (a)

After 4 iterations, the algorithm switches to the MBA strategy and stops after
the 6th iteration. Here the number of points outside tolerance nout reaches 0 and the
maximum error Maxerr is 0.0046. Approximately 1300 coefficients are needed to
approximate the 40,000 points in less than 0.21 s. These values highlight the potential
of surface fitting with LR B-splines to approximate in a short amount of time a high
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Fig. 3.7 Final fitted surface after 6 iterations for point cloud (a) with tolerance 0.007

Level 0 Level 10

Fig. 3.8 Top: Meshes at different iteration steps for point cloud (b). tolerance 0.007, refinement
strategy FA. Bottom: The fitted surface for level 0 and 10



3.4 Example of Adaptive Refinement 37

Table 3.1 Results of fitting point cloud (a)

Level CT (s) ncp Maxerr nout MAE

0 0.028 100 0.174 31,831 0.0409

1 0.055 180 0.173 27,144 0.0283

2 0.084 310 0.087 12,176 0.0085

3 0.116 473 0.092 11,209 0.0079

4 0.151 751 0.167 7201 0.00871

5 0.185 1105 0.020 1137 0.00095

6 0.203 1336 0.0046 0 0.00041

0 corresponds to first iteration (coarser level). The refinement stops after 6 iterations as nout = 0

number of observations. The MAE reaches 0.00041 at the last iteration level and
is close to the tolerance after the 3rd iteration (0.0085 vs. 0.007). Here only 473
coefficients have to be estimated, which is 400 times lower than the total number of
points. We point out that a lower tolerance would have led to a higher number of
coefficients and more iterations. The choice of the tolerance is often left to the user’s
convenience and will be discussed in Chap. 4 by means of statistical criteria.

Figure 3.7 provides a visualization of the LR B-spline surface at the 6th iteration.
This latter is close to the original one. At the 1st refinement level, the mesh is split
by series of vertical meshlines. After the 3rd iteration the refinement is performed
near the slope and the bell. As the number of iterations increases, the precision of
the refinement in this area is getting higher.

Point cloud (b)

Unlike the approximation of point cloud (a), 4 points are still outside tolerance
for fitting point cloud (b). They are located at the highest peak in the middle of
the surface. We use the same tolerance of 0.007 and a maximum of 10 iterations.
At that point, Maxerr reaches 0.017 and the MAE 0.00037. Although the size of
the two data sets is the same, the geometry of point cloud (b) is more challenging
to approximate with an LR B-spline surface. We further note that MAE saturates
at the 7th iterations. Increasing the levels of refinement from the 7th to the 10th
does not lead to a significant improvement in accuracy (0.00039 vs. 0.00037) for
92 additional coefficients (800 vs. 892). We note that the CT remains under 0.3 sec
after 10 iterations. This is a slightly higher CT than for point cloud (a) due to the
increase of iteration levels. The splitting of each B-spline becomes more costly as
the number of B-splines increases. From Fig. 3.8, the refinement leads to a mesh
having more meshlines in the domain corresponding to the three peaks, which is
expected from a local refinement strategy. The adaptive fitting with local refinement
using LR B-splines has a high performance regarding the geometry with sharp edges
and curvature changes (Table 3.2).
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Table 3.2 Results of fitting point cloud (b)

Level CT (s) ncp Maxerr nout MAE

0 0.028 100 0.604 24,921 0.0219

1 0.054 180 0.505 10,811 0.0118

2 0.083 258 0.335 3925 0.0034

3 0.111 337 0.286 2536 0.0022

4 0.136 438 0.315 4484 0.0038

5 0.165 651 0.147 529 0.00076

6 0.182 754 0.076 113 0.00043

7 0.196 800 0.047 58 0.00039

8 0.213 856 0.016 31 0.00038

9 0.227 881 0.016 5 0.00037

10 0.237 892 0.017 4 0.00037

0 corresponds to first iteration (coarser level). The maximum number of iterations was set to 10.
Tolerance 0.007

3.5 Conclusion

In this chapter, we have introduced the adaptive fitting with LR B-splines and
explained four refinement strategies. The latter can be performed either in one or
two directions; The choice of the method depends on the point clouds and the appli-
cations at hand, e.g., if the computational time or mesh regularity are important
criteria. We have described the LS method to perform surface approximation, to
which a smoothness term can be added. This approximation strategy is used in the
first iterations of the adaptive algorithm, starting from a coarsemesh. In a second step,
we described the MBA, which provides an explicit expression of the coefficients,
thus avoiding matrix inversion without losing goodness of fit. An example with sim-
ulated observations have shown both the simplicity, conciseness and accurateness of
the approximation method with local refinement.
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Chapter 4
A Statistical Criterion to Judge the
Goodness of Fit of LR B-Splines Surface
Approximation

Abstract The surface approximation obtained with adaptive strategies using locally
refined (LR) B-splines depends on the degrees of freedom of the spline space, the
tolerance from which the refinement is performed, the noise level of the scattered
observations, the refinement strategy and the bidegree of the spline space. The choice
of the best model is a challenging task that can be partially answered with statistical
criteria, such as the Akaike Information Criterion (AIC). Here we relax the assump-
tion that the approximation error should be normally distributed and with equal
variance and propose the use of the student distribution to compute the AIC. We
apply the AIC to decide which tolerance, refinement level, or polynomial bidegree
are the most adequate for an optimal fitting. We highlight how the resulting AIC
can be combined with more usual criteria to judge the goodness of fit of the surface
approximation.

Keywords Information criterion · AIC · Surface approximation · t-distribution ·
Locally Refined B-splines · Local refinement

4.1 Introduction

A surface approximation of a point cloud can be done either globally (non-adaptive
methods), or with locally adaptive methods. The adaptive surface fitting with LR
B-splines used in this SpringerBrief belongs to the latter category. LR B-splines can
be viewed as a generalization of univariate non-uniform B-splines, see [Dok13] for
more details. The approximation of point clouds is performed step by step and the
mathematical surface at each new iteration step depends on the result of the previous
one [Sky22]. Contrary to Non Uniform Rational B-splines (NURBS) surfaces, local
refinement is allowed. This method avoids overfitting in domains where no further
refinement is necessary. We summarize the principle of adaptive surface fitting as
follows:

• The starting point is a Tensor Product (TP) B-spline space. This is used for defining
the initial LR mesh and the first collection of TP B-splines.

© The Author(s) 2023
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• The LR mesh is successively refined by inserting new meshlines: The first time
in the initial LR mesh, later in the refined LR mesh. This insertion of meshlines
is triggered from mesh cells, where at least one observation is associated with an
error term higher than a given tolerance. The new meshline is extended to ensure
that the support of at least one B-spline is completely traversed. The choice of the
tolerance is linked with the level of accuracy needed, balanced by the computation
time and number of surface coefficients to be estimated.

• The point cloud is approximated and the result is an LR B-spline surface.
• After a given number of iteration steps or as soon as no error term exceeds the
tolerance, the final surface is computed.

The multilevel approximation (MBA) proposed in [Lee97] is often combined with a
least-squares (LS) approximation in the first steps, see Chap. 3 for more details on
the procedure.

The output surface depends on different parameters that are often chosen empir-
ically. In this chapter, we will introduce a statistical criterion called the Akaike
Information Criterion [Aka73] to judge the goodness of fit of the approximation, in
addition to more usual values, such as the number of point outside tolerance or the
mean absolute error (MAE). We further propose to investigate how the tolerance can
be chosen with respect to the level of noise in the point clouds.

The remainder of the chapter is as follows: In the first section, we will describe the
penalized model selection criteria within the context of surface approximation. The
student or t-distributionwill be introduced to face the challenge of outliers. Dedicated
examples will show the potential of AIC as a global indicator for the goodness of fit.

4.2 Surface Approximation and Penalized Model Selection
Criteria

To illustrate the challenges of choosing an optimal model in the sense of AIC, wewill
discuss two approaches: With and without a penalty term regarding the number of
coefficients. We start with a data set of size nobs , which we approximate with an LR
B-spline surface by setting, e.g., the tolerance, the maximum number of iterations,
the refinement strategy, and the polynomial bidegree of the spline. We call the result
of the fitting a model and consider k possible models. The vector ck contains the
estimated coefficients and has a length ncpk . Each model has its own likelihood
L (ck): This associates a numerical value to the question how “likely” the model is
to the observations. It is convenient to work with the log-likelihood function for the
model with the estimates ck , which is defined as l (ck) = log (L (ck)) . The likelihood
is a measure of goodness of fit and has a meaning only when it is compared with
another likelihood computed for another model.
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Approach 1 without penalty term: Case 1

When performing a surface approximation, one could search for the optimal
refinement level, i.e., the iteration step from which the algorithm should be stopped
because the optimal model has been found. Here we would call model 1 the approx-
imation at level 1, model 2 at level 2. To each model is associated a likelihood,
computed from the parameter vector of estimated coefficients. As the iteration step
increases, its length will increase accordingly, but the corresponding likelihood may
increase only slightly. Searching for the minimum of the likelihood without penal-
izing for the number of coefficients could lead to an overfitting and ripples in the
approximated surface.

Approach 1 without penalty term: Case 2

If wemake a first approximation of a scattered point cloudwith a tolerance of 0.01,
we obtain a parameter vector c1 of length ncp1; The approximation has a likelihood
L (c1). In parallel, we can compute a second model by changing the tolerance to
0.005. Its likelihood is L (c2), with c2 of length ncp2 � ncp1. For both models, we
stop the refinement after 5 iterations. Usually L (c1) �= L (c2) and we could state that
L (c1) < L (c2). This would lead to the conclusion that the second model is more
appropriate to fit the data as its likelihood is higher. This statement is partially true:
The number of coefficients for the secondmodel is much higher than for the first one.
This difference may be unfavorable (i) from a computational point of view, (ii) if
overfitting should be avoided due to the presence of noise in the data, or (iii) if a lean
model is preferred for storage or subsequent use. A too high number of coefficients
should be avoided as ripples and oscillations may occur in the fitted surface.

The penalized criteria address the drawbacks raised in the first approach. In their
simple form they are called the Bayesian Information Criterion (BIC) [Sch78] or the
Akaike Information Criterion (AIC) [Aka73]. The two criteria are defined as:

BICk = −2l (ck) + log (nobs) ncpk and (4.1)

AICk = −2 [l (ck)] + 2ncpk, (4.2)

respectively. They can be seen as statistical alternatives to more usual heuristic con-
siderations: The first term in Eqs. 4.1 and 4.2 is the log-likelihood, i.e., a measure of
the goodness of fit to the data. The second term is a penalty term, which accounts for
the increase in complexity. When k models are compared with each other, the model
with the smallest IC is chosen. Choosing the best model within the framework of IC
can be seen as finding a balance between these two quantities. The reader is referred
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to [Bur02] for the detailed derivation of the IC. In the following, we come back to
the two cases with the second approach which accounts for a penalty term.

Approach 2 with penalty term: Case 1

For case 1, we can assume that the likelihood will saturate after a given number
of iterations. At the same time, the number of coefficients will still strongly increase
with each iteration step. It is likely that a minimum of the BIC and/or the AIC occurs,
balancing both values.

Approach 2 with penalty term: Case 2

For case 2, only two models are compared with each other, the choice of the most
optimal model is easy to meet if both AIC2 > AIC1 and BIC2 > BIC1, i.e., it can
be concluded on the superiority of model 2 with respect to model 1: A tolerance
of 0.005 is more optimal than 0.01 for approximating the data at hand, within the
context of model selection with IC.

Potentially the BIC and the AIC may come to two different conclusions, i.e.,
AIC2 < AIC1 and BIC2 > BIC1. For case 1, this could be that the 3rd step is more
optimal for BIC and the 5th for AIC. It is often stated that the BIC underestimates the
optimal number of parameters to estimate. On the contrary, the assumption beyond
the AIC is that the true model is unknown and unknowable. AIC is good for making
asymptotically equivalent to cross-validation, and BIC for consistent estimation. In
case of disagreement of the two criteria, other measures of goodness of fit should
be added within the context of surface fitting, such as the MAE, the maximum error
Maxerrk , or noutk .

In the following, we skip the subscript k for the sake of readability. We refer to
Chap. 3 and recall that the following indicators to judge the goodness of fit will be
used additionally:

1. The mean absolute error (MAE) defined as MAE = 1
nobs

∑nobs
i=1 |z j − ẑ j |, z =

{z j }nobsj=1 and ẑ = {ẑ j }nobsj=1. We have ẑ is the estimated z-component of the point
cloud obtained after the kth iteration.

2. The maximum error is given by Maxerr = max
∥
∥ẑ − z

∥
∥,

3. The number of points outside a given tolerance: nout ,
4. The degree of freedom or number of control points ncp estimated for a given

iteration step of the refinement,
5. The computational time CT . We have used a stationary desktop with 64 GB of

DDR4-2666 RAM. It has a i9-9900 K CPU with 8 cores and 16 threads, but a
single core implementation is used in the experiments.



4.3 Improving Information Criterion for Surface Approximation 45

These indicators are described in Chap. 3. Here we propose to highlight how they
can be used in combination with the AIC to provide a weighted conclusion about the
goodness of fit of the surface approximation.

4.3 Improving Information Criterion for Surface
Approximation

Weconsider thatAIC is an adequate criterion formodel selection in thefieldof surface
approximation as the true underlying surface is unknown. The risk of underestimation
of the number of coefficients with the BIC should be avoided as details may not be
revealed properly. If theAICdoes not have aminimum, deeper investigations could be
needed by changing the setup of the surface approximation (bidegree of the splines,
refinement strategy, see Chap. 3). From now, we will only consider the AIC and
search for its minimum when comparing k models.

4.3.1 The Challenge of Normality

The likelihood function is often taken to the Gaussian one, assuming the residuals
of the surface approximation to be normally distributed. Unfortunately, this strong
belief, when violated, can lead to a biased AIC. This compromises the correct and
in-dubious determination of the AIC minimum and the choice of the most adequate
model among a set of candidates. We propose to use the t-distribution (also called
student’s distribution), which gives more probability to observations in the tails of
the distribution than the standard normal distribution [McN06]. This allows to give
different weights to points outside the tolerance in the surface approximation, such
as outliers. The t-distribution is defined by three parameters: μ its mean, σ its vari-
ance and νt the degree of freedom of the distribution. The normal distribution is a
special case of the t-distribution when the degree of freedom approaches infinity. The
parameters of the t-distribution θ = [μ, σ, νt ] cannot be expressed in a closed form.
A stable approach to estimate them is via the iterative two-steps EM (Expectation
Maximization) algorithm. In that case, we assume the observations to be indepen-
dently and identically distributed. The so-called E-step computes the expected value
of l (p) given the observed data whereas the M-step consists of maximizing the
expectation computed over the parameters to estimate. In most cases, the algorithm
converges to a local maximum [Liu95].

The log-likelihood of the density of r, with r = [
r1, ..., rnobs

]T
, the residuals

of the surface approximation, which are assumed to come from the t-distribution
t (μ, σ, νt ), is given by:
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log (L (r)) = nobs

(

log�

(
νt + 1

2

))

− nobs log�
(νt

2

)
− 1

2
nobs log σ 2

+1

2
nobsνt log (νt ) − νt + 1

2

nobs∑

i=1

log (νt + δ (ri ;μ, σ)) (4.3)

with� the Gamma function and δ (ri ;μ, σ) = (ri−μ)2

σ
, the standardizedMahalanobis

square distance, refer to [Mah36] for more details.
The proposed AIC depends on the statistical properties of the approximation

error of the fitted LR-surface: The size of the observation vector nobs , the number
of coefficients ncp, the refinement strategy, the bidegree of the spline space, and the
parameter of the t-distribution.

4.3.2 An Improved AIC for Surface Approximation

In real applications, the true model is unknown. It is easier to assess the potential
of statistical criteria such as the AIC within the framework of simulations. We have
chosen the two different point clouds presented in Chap. 3 to illustrate how the AIC
can be used to judge the goodness of fit, as an alternative to the usual indicators (ncp,
Maxerr , nout , or MAE). We will investigate the optimal:

1. number of iterations,
2. refinement strategy,
3. bidegree of the spline,
4. tolerance with respect to the noise level.

4.4 The AIC to Choose the Settings for Surface
Approximation of Scattered Data

The two reference surfaces used in the following correspond to (a): Smooth geometry
and (b): Geometry with sharp edges. For each generated point cloud, we simulated
nobs = 40,000 scattered data points (xi , yi , zi ), i = 1...nobs . Both are illustrated in
Fig. 4.1. In the following, all values will be given in m, if not specified differently in
the text. The z-component of point cloud (a) is given by

z = tanh (10y − 5x)

4
+ 1

5e(5x−2.5)2+(5y−2.5)2
. (4.4)

The point cloud (b) is generated by letting:
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Fig. 4.1 Visualization of the generated point clouds. a A gaussian bell with a dam-like jump. b
Three peaks on flat ground

z = 1

3e
√

(10x−3)2+(10y−3)2
+ 2

3e
√

(10x+3)2+(10y+3)2
+ 3

3e
√

(10x)2+(10y)2
. (4.5)

To mimic real data, we add a Gaussian noise of standard deviation 0.002 m in the
z-direction.

4.4.1 Number of Iteration Steps

Here we investigate the optimal level of refinement with the AIC. The results are
presented in Table 4.1 for point cloud (a) and Table 4.2 for point cloud (b).

For point cloud (a), the number of points outside tolerance nout was 0 after 15
iterations for a tolerance of 0.007 and a final MAE of 0.0016 m. The AIC has a
local minimum at level 7 and a new minimum at level 11. The minimum at level 7
corresponds to the stage where the MAE saturates. This highlights the coherence of
the different indicators for the smooth and homogeneous surface under consideration.

For point cloud (b), we found a minimum of the AIC at the 13th iteration level for
the tolerance 0.007. Here there was no point outside tolerance after 14 iteration steps
and the MAE reaches 0.0016. We note that at the 8th iteration, there is a turning
point and both the MAE and the AIC saturate. Increasing the number of level of
iterations leads to more coefficients (1650 at the 8th iteration step versus 2292 at the
14th) but not a strong improvement of the fitting. However, the improvement seems
significant enough so that the AIC, which balances ncp versus the likelihood, has a
weak minimum at the 13th iteration step. We link this findings with the challenging
geometry of the point cloudwith peaks. The results are presented inTable 4.2 together
with the other indicators for the sake of comparison.
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Table 4.1 Investigation on the AIC by varying the iteration level for a given tolerance of 0.007 for
point cloud (a)

Level ncp Maxerr nout AIC MAE

0 100 0.1797 30,765 − 185,812 0.0317

1 180 0.1777 25,805 − 198,156 0.0273

2 324 0.0946 11,095 − 306,991 0.0086

3 535 0.0937 10,612 − 310,462 0.0081

4 944 0.1638 9460 − 304,847 0.0111

5 1676 0.0247 1512 − 400,292 0.0022

6 2126 0.0154 242 − 418,056 0.0017

7 2467 0.0152 178 − 418,370 0.0017

8 2886 0.0168 136 − 418,208 0.0017

9 3247 0.0151 63 − 418,621 0.0017

10 3479 0.0103 38 − 419,037 0.0017

11 3619 0.0100 11 − 419,131 0.0016

12 3669 0.0088 10 − 419,091 0.0016

13 3712 0.0101 7 − 419,071 0.0016

14 3741 0.0081 2 − 419,127 0.0016

15 3752 0.0007 0 − 419,128 0.0016

The maximum Maxerr and MAE are given in m. FA strategy is used for refinement, bidegree (2,2)

Table 4.2 Investigation on the AIC by varying the iteration level for a given tolerance of 0.007 for
point cloud (b)

Level ncp Maxerr nout AIC MAE

0 100 0.6061 23,082 − 246,476 0.0205

1 180 0.5077 10,317 − 303,034 0.0121

2 291 0.6061 4193 − 369,168 0.0044

3 448 0.2994 2728 − 385,067 0.0033

4 628 0.2987 4899 − 363,989 0.0047

5 943 0.1483 722 − 411,889 0.0019

6 1198 0.0787 253 − 419,976 0.0017

7 1395 0.0521 194 − 420,539 0.0017

8 1650 0.0215 155 − 420,778 0.0016

9 1957 0.0197 79 − 421,697 0.0016

10 2206 0.0203 14 − 422,595 0.0016

11 2248 0.0172 7 − 422,613 0.0016

12 2271 0.0142 3 − 422,657 0.0016

13 2283 0.007 2 − 422,687 0.0016

14 2292 0.007 0 − 422,672 0.0016

The maximum Maxerr and MAE are given in m, respectively. FA strategy is used for refinement,
bidegree (2,2)
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4.4.2 Refinement Strategy

In Chap. 3, we presented a set of refinement strategies that can be implemented with
LR B-splines. We will here investigate two of them in the context of optimal surface
fitting using AIC to judge the goodness of fit.

1. FA for which the refinement is performed alternatively in one of the two para-
meter directions,

2. FB for which the refinement occurs in both parameter directions at each iteration
level.

The potential number of new coefficients at each iteration level ismuch less for FA
compared to FB. For FAmore iterations are expected to reach an acceptable accuracy.
However, Skytt et al. [Sky15] show that this reduced pace in the introduction of new
coefficients will lead to surfaces with fewer coefficients. Here the two refinement
strategies can be considered as two models within the AIC framework as they are
not equivalent, i.e., they lead to different residuals and likelihood. In the following,
we set the tolerance to 0.007, the bidegree of the spline to (3,3) and the maximum
iterations to 20. We compare two FA and FB refinement strategies to highlight the
flexibility of the setting.

Point cloud (a)

We found that FB has a minimum AIC at the 7th iteration step but this latter
starts to saturate at the turning point from which ncp begins to increase strongly (4th
iteration step), see Fig. 4.2. For FA, the ncp increases at a slower pace compared to
FB. The AIC has a weak minimum at the 15th iteration but saturates from the 6th
one, as shown in Fig. 4.2.

The MAE for FA is 0.0016 after 20 iterations and a CT of 7.7 s. For FB, after
9 iterations and 3.8 s, the MAE reaches a comparable value of 0.00157. For both
strategies, there is no point outside the tolerance at those iteration steps. Thus, FB is
more favorable from a CT perspective. The computation times include computing
the AIC. If AIC is omitted, the times are 1.10 and 0.95 s for FA and FB, respectively.
However, the number of coefficients ncp is much higher for the FB strategy (7024
vs. 4655 at the optimal iteration step). To compare, 4932 coefficients had to be
estimated at the 4th iteration step with the FB strategy, and 173 points were still
outside tolerance versus 2 points for the FA and 4655 coefficients.

We further note that the minimum of AIC for FB at the (from the AIC perspective)
optimal 7th iteration is higher than for FA (− 416,573 vs. − 419,125 for FA at the
optimal 15th iteration). This difference would indicate that FA is more optimal from
a statistical criterion perspective than FB. This choice has to be weighted from a
practitioner perspective, i.e., answering the question if more accuracy is needed or
not, if the CT is an important criterion or not, and taking into consideration the
challenge of overfitting. There is no definitive answer as the truth does not exist. It
is a question of interpretation.
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Fig. 4.2 Results of the approximation for the two refining strategies FA and FB, point cloud (a).
a AIC. b ncp

Point cloud (b)

For the point cloud (b), we find that FB has a minimum AIC at the 7th itera-
tion step. It starts to saturate at the turning point (5th iteration step) from which
ncp begins to increase strongly, see Fig. 4.3. As the MAE, the AIC for FA and FB
reaches a weak minimum, which indicates a fitting that can hardly be considered as
optimal. We found that the MAE and the AIC for FA reach slightly lower values than
for FB: for the MAE we found 0.0016 versus 0.0015 and for the AIC − 421,830
versus − 411,504 for FA and FB, respectively. The AIC can, thus, allow to con-
clude on the superiority of the FA strategy for point cloud (b) but the results differ
slightly if we only consider the MAE as a criterion to judge the goodness of fit. This
highlights the importance of accounting for ncp to balance the likelihood. However
the difference from a computational point of view for FA to reach the minimum is
significantly higher than for FB: 1.437 s for FB versus 4.523 s for FA. The recording
of the computational time includes computation of the AIC.

The previous results would tend to indicate that FA is more optimal than FB for
fitting point clouds with LR B-spline surfaces. This is partially true and has to be
weighted against CT . The the two examples clearly highlights that the fitting with
the FB strategy produces more coefficients than FA for a similar accuracy while FA
has a higher CT than FB. Still, this justifies our choice of using FA in the previous
(and following) sections without lack of generality. This highlights, also, that new
criterion should be found that also would also account for the CT to judge and
balance the goodness of fit.
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Fig. 4.3 Results of the approximation for the two strategies FA and FB, point cloud (b). a AIC.
b ncp

4.4.3 Tolerance

A proper tolerance is important for surface fitting: A large tolerance will make the
process faster but may lead to underfitting, a smaller tolerance will increase the
accuracy of the fitting result but costs more time, i.e., the fitting surface will be more
complex, not to speak of the risk of overfitting. Hence, we can useAIC as the criterion
to compare with the usual indicators and weight the number of parameters versus
global accuracy. The fitting with minimum AIC is the optimal tolerance in a global
sense.

In this section, we show the potential of AIC for investigating the tolerance.
Here the standard deviation of the noise is taken as previously to be 0.002 m in
the z direction. We vary the tolerance within a range from 0.005 to 0.011. We use
refinement strategy FA and polynomial bidegree (2,2) and focus on point cloud (a).
Similar conclusions could be drawn for point cloud (b) and are not presented here.
Table 4.3 gives the AIC, as well as the iteration level with no point outside tolerance.
For each tolerance, we set the number ofmaximum iteration steps to 20. For example,
when the tolerance is 0.01, the approximation will continue until 14th iteration step,
but theminimumAIC is reached at the 7th step. TheAIC decreases with the tolerance
and has a minimum for a tolerance of 0.007, which is illustrated in Fig. 4.4. This
value was the optimal tolerance chosen for Table 4.1. We further note that the MAE
stays around 0.0017 for all tolerances at the optimal number of iterations, and has
a weak minimum at a tolerance of 0.006. This result is compatible with the results
given by the AIC.
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Table 4.3 Investigation on the AIC by varying the tolerance

Tolerance Minimum AIC Level MAE

0.011 − 414,357 7 0.00183

0.01 − 415,525 7 0.00180

0.009 − 417,119 12 0.00174

0.008 − 418,927 19 0.00167

0.007 − 419,130 6 0.00169

0.006 − 418,508 10 0.00159

0.005 − 417,397 6 0.00162

Fig. 4.4 AIC with respect to
tolerance
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4.4.4 Polynomial Bidegree of the Splines

In this section, we vary the bidegree of the splines from (2, 2) (biquadratic) to (3, 3)
(bicubic), which are usual choices for performing surface fitting. This corresponds
to two different models within a model selection framework. We consider point
cloud (a) and (b) and use the FA strategy for refinement, as well as a tolerance of
0.007. For point cloud (a) and for the optimal refinement level, we found that the
biquadratic setting leads to a minimum of the AIC compared to the bicubic one
(− 419,130 vs. − 419,125). From the MAE perspective, we found a value of 0.0016
for both settings at the optimal iteration step for the AIC (11th for the biquadratic and
15th for the bicubic respectively). TheMAEdoes not decrease significantly for higher
iteration steps, and, thus, does not allow to conclude in favour of a biquadratic or
bicubic surface. Furthermore, a lowMAE can be risky, i.e., linkedwith an overfitting.
Here the AIC with its minimum, even if weak, has an evident advantage over the
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MAE to find an optimal iteration level, by weighting the likelihood with the number
of coefficients.

We have the same conclusion for point cloud (b). Here the minimum of the AIC
is smaller for the bidegree (2, 2) (− 422,672 vs. − 421,830) but the MAE is similar
for both optimal iteration steps corresponding to the minimum of the AIC (17 for
the bicubic and 14 for the biquadratic).

Skytt et al. [Sky15]mentioned that inmost cases a biquadratic surface will suffice,
which is in accordance with our results. Thus, in most cases a higher bidegree of the
polynomial doesn’t contribute to a better accuracy of fitting LR B-spline surfaces for
this type of data sets and noise levels.

4.4.5 Optimal Tolerance Versus Noise Level

Depending on the sensors and the conditions under which they are used, the noise
level will vary. For a terrestrial laser scanner, the noise level of the range is known to
depend on the intensity, i.e., the power of the backscattered laser signal recorded by
the instrument after reflection. Atmospheric effects may also act as correlating the
observations, i.e., decreasing the effective number of observations [Ker20]. The noise
is often characterized by its standard deviation, a quantity which can be provided
by the manufacturers. We can conjecture that a high noise level leads to a point
cloud that is more challenging to fit optimally, with a strong risk of overfitting. Here
we understand under overfitting “fitting the noise” instead of the true underlying
surface. This effect is unwanted as it can give surfaces with ripples and oscillations
[Bra20]. A wise choice of the tolerance can avoid or strongly mitigate the risk of
overfitting. Thus the tolerance is an important parameter which is usually fixed rather
empirically. Often, a low MAE is searched. Unfortunately, an artificially small error
is not automatically linkedwith a high accuracy for fitting the underlying point cloud:
In case of noise or outliers in the observations, even the contrary may happen.

We propose to investigate the choice of an optimal tolerance in the context of
model selection, searching for a minimum of the AIC. To that end, we simulated
different Gaussian noise vectors added to the reference point cloud. Their standard
deviation was varied in a range of values between 0.001 m (low level of noise) and
0.0045 m. The noised surfaces were fitted with an LR B-spline surface. We chose the
FA strategy and a biquadratic surface, following the results of the previous sections.

Here we vary the tolerance for a given noise level and search for the minimum
AIC. Each AIC is computed at the optimal iteration step. We place ourselves in the
framework of Monte Carlo simulations by simulating each time 100 noise vectors
and taking the mean over all indicators.

The results of the investigations for point cloud (a) are presented in Fig. 4.5.
Figure 4.5 highlights that the optimal tolerance found with the AIC depends on

the standard deviation of the noise level. As the noise level increases, the optimal
tolerance increases, and so the AIC. We found a linear dependency of the optimal
tolerance with respect to the noise level with a slope of 3 (left axis in Fig. 4.5a). This
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Fig. 4.5 Performance indicator versus noise level. a Optimal tolerance (left axis) and optimal AIC
(right axis) versus noise level (std in m). bMAE (m) versus noise level

slope is slightly lower (close to 2) as the noise level increases. A similar result was
found for point cloud (b) and is not presented here. The slope of 3 can be justified as
corresponding to 3 times the standard deviation of the noise, i.e., this is the interval
in which 68% of the measurements will fall assuming their normal distribution. We
found that the number of optimal iteration steps stays between 6 and 7 and decreases
as the noise level increases. This is an important finding as it is unnecessary -if not
risky- to continue the adaptive refinement for noisy point clouds. This is what theAIC
tells us. We further computed the MAE at the iteration step considered as optimal
from the AIC, see Fig. 4.5b. We found a linear dependency, with a slope of 0.78.
This latter is less predictable than the previous one regarding the noise level and will
depend on the point cloud under consideration.

Following these results, we propose to choose the optimal tolerance as being 2.5
times the noise level. This is a good compromise when the noise of the sensor is
unknown. Three times the noise level would be even more conservative and has to
be weighted against a potential loss of accuracy.

4.5 Conclusion

In this chapter, we have introduced a statistical criterion as a new tool to judge the
goodness of fit of the surface approximation. An information criterion is a weighted
measure between the quality of fitting and the number of coefficients that are to
be estimated. We showed how the AIC can come into play for determining the
optimal level of refinement, the optimal bidegree of the spline, or the choice of the
refinement strategy. Exemplary, we found that a biquadratic surface is optimal for a
smooth point cloud. The tolerance is often fixed empirically with the aim to have a
low RMSE or MAE. We found by investigating the AIC, that the optimal tolerance
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depends linearly on the noise level of the point cloud and can be fixed to 2.5 times the
standard deviation of the noise of the observations. This information is often given
by the manufacturers or can be guessed based on the residuals of the approximation
and/or previous investigations. Thus, we have provided an answer to the question of
the optimal tolerance with respect to the data at hand. These results will be used in
Chaps. 5 and 6.

The use of the AIC to judge the goodness of fit is beneficial when many coef-
ficients are needed to fit a point cloud: It avoids unnecessary steps and a possible
overfitting. The AIC remains a global statistical quantity which has to be combined
with other indicators, depending on what “optimality” should be for the application
under consideration. For point clouds with high variability and local changes, the
AIC only gives a global indication about the fitting.
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Chapter 5
LR B-Splines for Representation
of Terrain and Seabed: Data Fusion,
Outliers, and Voids

Abstract Performing surface approximation of geospatial point clouds with locally
refined (LR) B-splines comes with several challenges: (i) Point clouds have varying
data density, (ii) outliers should be eliminated without deleting features, (iii) voids,
also called holes, or data gaps should be treated specifically to avoid the drop of the
approximated surface in domains without points. These factors tend to be even more
challenging when point clouds acquired from different sensors having different noise
characteristics are fused together. The data set becomes non-uniform and the fusing
process itself involves a risk of an increased noise level. In this chapter, we provide
some tools to answer those specific challenges. We will use terrain and seabed data
and show didactically how to perform adaptive surface approximation with local
refinement and to select customized parameters. We will further address the problem
of choosing an appropriate tolerance for performing an adaptive fitting, and discuss
the refinement strategies within the context of LR B-splines. The latter is shown
to provide a promising framework for surface fitting of heterogeneous point clouds
from various sources.

Keywords Adaptive refinement · Surface fitting · Outliers · Voids · Trimming ·
Tolerance · Bathymetry · Data fusion · LR B-splines

5.1 Introduction

In this chapter, we will discuss a number of challenges that occur when working
with geospatial point clouds, e.g., outliers, data fusion or domains without points.
We will illustrate the discussion with a terrestrial LIDAR point cloud, or a seabed
sonar point cloud and the combination of both. We aim to represent the area covered
by both point clouds with a smooth parametric surface. The focus is on LR B-spline
surfaces, which were shown to be appropriate within this context, see Skytt and
Dokken [Sky22] for prominent examples.

The data acquisition of terrains and seabeds produces huge point clouds. The
structure—or lack of structure—in the point clouds depends on the technology used
to acquire them, i.e., on the sensor under consideration, may it be a terrestrial laser
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scanner, a single or multibeam sonar. An efficient downstream use of the acquired
data requires structured and compact data representations. Locally refined (LR) B-
spline surfaces are smooth and flexible surfaces: They provide amiddle road between
the rigid but effective regularity of raster surfaces, and the highly flexible triangulated
surfaces, see Chap. 1 for a detailed comparison. The LR B-spline surfaces are found
to be convenient for representation of terrains and seabeds [Sky15, Sky16], as they
accurately represent the smooth part of the data while having the flexibility to adapt
to local shape variations without globally increasing the data size of themathematical
surfaces.

An LR B-spline surface belongs to the class of locally refined spline surfaces.
It is a piecewise polynomial surface defined on a rectangular domain composed of
axes parallel rectangular boxes (a mesh). In contrast to a tensor product (TP) spline
surface, the boxes do not need to form a regular pattern. The concept of LR B-splines
is described in detail in Chap. 2, which also includes an overview of alternative B-
spline based locally refined surface methods.

The starting point for defining an LRB-spline surface is a TPB-spline surface.The
adaptive refinement procedure inserts new meshlines into the surface description
where the surface does not meet a prescribed accuracy requirement. The meshlines
must satisfy the rule:

A new meshline must split the support of at least one TP B-spline implying that
the refinement increases the number of TP B-splines with at least one.

Refinement is performed in an iterative algorithm described in Chap. 3. First, the
accuracy (L1 norm) of a current surface with respect to a given point cloud is com-
puted. In a second step, the surface is refined where the accuracy does not meet the
requirements. This process is repeated until the accuracy is found sufficient, which
means that it does not exceed a predefined tolerance. Alternatively, the algorithm
is stopped by some other constraint, normally the number of iterations. Figure 5.1
summarizes the surface approximation algorithm.
In the following, we propose to illustrate the fitting of a data set combining observa-
tions from terrains and seabeds. We will highlight how to solve different challenges
that arise in real cases, such as

1. Outliers (outlier detection methods)
2. Data voids (bounding of coefficients and trimming)
3. Noise (selection of tolerance and method for surface approximation).

Wewill describe in detail the methods used to guide the user throughmethodological
answers to real problems. More precisely, in a first section, we will present the data
set that will be approximated. Next, outlier detection procedures will be compared.
We will explain the concept of bounding the coefficients. Next the advantages of the
Multilevel B-spline Approximation (MBA) will be highlighted. We will conclude by
explaining the concept of trimming to deal with data voids. An appendix is dedicated
to the output format of the LR B-spline surfaces.
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Fig. 5.1 Approximation of a point cloud by an LR B-spline surface with adaptive local surface
refinement

Fig. 5.2 The island Fjøløy in Norway

5.2 Description of the Data Set

Fjøløy is a 2.1 km2 island in the municipality Stavanger at the south west coast of
Norway, see Fig. 5.2. In this area terrestrial and bathymetry data are both available
and represented in the same coordinate system.We select a set of corresponding land
and sea data from the Fjøløy area, see Fig. 5.3. The terrestrial data set was obtained
in 2016 with LIDAR. The bathymetry data was acquired in 2013 by a multibeam
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Fig. 5.3 Selected data sets from land (brown) and seabed (grey). a Terrestrial points, b bathymetry
points, and c both

sonar and released for public use in the context of the project “Marine grunnkart
pilot (Marine base map pilot)”. The boat with the sonar has no access at very shallow
water: There is a zone between land and sea where data is lacking (voids). In an
ongoing project, data from this zone are acquired with LIDAR bathymetry.

The terrestrial data set shown in Fig. 5.3a, consists of 2,579,974 points containing
both land and the sea surface. Several buildings, trees and stones can be found in
the covered area. The data set has been classified prior to reception. 73 points were
identified as outliers, 1,643,865 as ground points and 936,036 points are unclassified.
The outliers are quite distinct. We consider this set as the reference to which we
compare our outlier detection methods. The bathymetry data set, Fig. 5.3b, contains
25,107,199 unclassified points. Here no obvious outliers have been identified. The
point cloud covers an area of 800 × 600 m, and the height range of the terrestrial data
is [− 64.75, 156.32] m, including outliers. After the removal of outliers, the range
is [−0.74, 76.4] m. The height range of the bathymetry data is [−21.13,−1.2] m.
The total area covered by the combination of land and sea point clouds is just below
0.5 km2.

We want to compute one LR B-spline surface combining both land and seabed as
illustrated in Fig. 5.3c. To that aim:

1. We prepare the terrestrial data by removing the points from the sea surface.
2. We let the x- and y-values of the data points parametrize the surface, which

consequently corresponds to a function representing elevation.
3. We eliminate outliers. This step is described in detail in the next section.
4. We use biquadratic polynomials for the surface approximation with LR

B-splines. This choice balances the need for smoothness and flexibility.
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5.3 Outlier Detection

An outlier is defined as an observation that lies at an abnormal distance from other
values in a random sample from a population. Different strategies exist to eliminate
them.

5.3.1 Strategies for Outlier Detection

Outliers in a data set can come from contaminated data samples, incorrect sampling
methods, errors coming from the sensor during data collection or analysis [Haw80,
Cha17]. Outliers in large geospatial data set can largely influence the results of the
surface fitting, i.e., they will be adjusted as normal observations. If not excluded prior
to the approximation, ripples or non-smooth surfaces are likely to arise.

The outliers are categorized as sparse outliers, or can come in clusters [Wan15],
in which case they are more challenging to filter. Visual approaches are not suitable
for large point clouds and automatic detection should be preferred. Some of the most
popular methods for outlier detection for light detection and ranging (LIDAR) point
clouds are reviewed in, e.g., Sotoodeh [Sot06]:

1. Z-Score or Extreme Value Analysis, as used in Sect. 5.3.2.2.
2. Linear RegressionModels (Principal Component Analysis, LeastMean Square).
3. Probabilistic and statistical testing. Histogram, boxplot, Interquartile range (IQR

Sect. 5.3.2.1) or Median Absolute Deviation are well known methods. From a
statistical perspective, the Grubb’s test can be used to identify single outliers
as minimum or maximum value in a data set, or the Rosner’s test for multiple
outliers. The statistical tests are often limited to univariate data sets that follow
approximately a normal distribution.

4. Clustering techniques. They are used to group similar data values into clusters
having similar behaviour. Here it is assumed that outliers belong to any or only
small clusters. Classification of ground points from a geospatial point cloud is
related to outlier detection.

5. Deep learning based methods. We cite Pang [Pan21] for a review of different
possibilities.

6. Surface or slope based methods. Roberts et al. [Rob19] test a set of surface-
based and slope-based methods using some data sets known to be challenging
to classify. With surface based methods, the ground surface is approximated
iteratively. Ground points are identified using buffer zones defined from the
parametric surface. Slope based methods assume that variations in terrain are
gradual within a local neighbourhood.
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5.3.2 Comparison of Outlier Detection Methods for the
Selected Data Set

The terrestrial data set presented in Sect. 5.2 contains both outliers and unclassified
points representing houses, trees, low vegetation and similar objects. Our aim is to
identify outliers, but it is also interesting to see the extent to which outlier detec-
tion methods separate ground truth from vegetation and man-made objects. We will
investigate the IQR and Z-score methods, as well as a method for detecting single
outliers. The outlier detection is applied in the context of adaptive approximation of
height data, see Chap. 3. The selected methods do not require any apriori estimate
of the number of outliers. Moreover, they can be easily applied to a high number of
data points.

The three methods are integrated in the adaptive approximation algorithm and
applied at each iteration step in a regression setting. The distances between the
points and the current approximating surface are compared making it a regression
based method. The outlier detection is applied to subgroups of the data set identified
by selecting the points situated in one mesh cell. The group testing is intended to
reduce the computational effort in outlier detection. The point groups are subject for
testing only if:

• The maximum distance between the subset of the point cloud and the surface is
larger than a threshold, which depends on the maximum and the average distance
between the surface and all data points in the previous iteration step.

• The local maximum distance has not be decreased significantly since the last
iteration, which is an indication of the presence of at least one outlier.

The accuracy results from the last iteration step are obtained after outliers removal.
At the start of the computation, it is hard to distinguish between features and outliers.
As the surface is adapted to the point cloud, the distance in features will be smaller
than for outliers; the criterion for allowing an outlier test is gradually decreased at
each iteration step.

5.3.2.1 The IQR Test

Here the residuals correspond to a subset of the point cloud and the current surface are
sorted according to their values. We call Q1 the first quartile of the residuals and Q3,
the third one. Then I QR = Q3 − Q1 is the interquartile range of the residuals. We
further denote two fences f 1 = Q1 − f actor × I QR and f 2 = Q3 + f actor ×
I QR. An outlier is defined as a point with a residual value outside the range of
these fences. Often f actor = 1.5, justified by assuming that the residuals follow the
normal distribution. This factor gives fences at μ − 3σ and μ + 3σ , where μ is the
mean and σ the standard deviation. This way 0.28% of the points are expected to
be defined as outliers. Unfortunately there is no reason to believe that the residuals
are normally distributed. A student distribution with a heavier tail is more probable,
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Table 5.1 Outlier detection with IQR, various factors
Level Maxerr MAE ncell ntest foundtot Cell nlocal Maxerr,local f 1 f 2 foundlocal

IQR factor 1.5

1 100.45 0.902 64 32 9349 1 13,819 71.59 − 4.23 3.94 13

2 9288 93.99 − 0.55 0.25 1,268

2 13.06 0.565 254 72 14,273 3 3355 164 − 3.16 0.89 500

4 3109 4.71 − 6.133 7.092 0

3 6.60 0.334 827 169 5507 5 772 2.69 − 1.22 0.91 55

6 1273 5.34 − 7.72 8.47 0

IQR factor 3

1 100.45 0.902 64 32 1647 1 13,819 71.59 − 7.29 7.01 1

2 9288 93.99 − 0.85 0.55 970

2 13.06 0.563 254 72 4540 3 3355 10.16 − 4.68 2.41 369

4 3109 4.72 − 11.09 12.06 0

3 7.98 0.344 827 220 2202 5 738 2.61 − 1.17 1.70 27

6 1273 5.35 − 13.83 14. 59 0

IQR factor 5

1 100.45 0.902 64 32 695 1 13,819 71.59 − 11.38 11.10 1

2 9288 93.99 − 1.25 0.05 519

2 13.06 0.572 254 74 1395 3 3569 10.88 − 7.58 6.09 71

4 2944 4.90 − 5.53 4.84 1

3 11.82 0.250 827 130 525 5 755 5.25 − 2.43 2.08 26

6 1396 4.45 − 11.36 11.31 0

For each iteration step themaximumMaxerr and average distance (MAE) is reported alongwith the
total number of mesh cells ncell , the number of cells tested for outliers ntest and the total number of
identified (found) outliers foundtot . At each level, 2 example cells are selected reporting the number
of points, fences and the number of identified outliers in the cell

see Chap. 4. As an assumption of the student distribution implies a more demanding
computation to find the correct factor, we apply also the factors of 3 and 5 to our
outlier detection and study the effect of this factor on the selected data set.

Table 5.1 shows some results for outlier detection with the IQRmethod. The total
number of outliers identified is 29,129, 8,389 and 2,615 for an IQR factor of 1.5, 3
and 5, respectively. All obvious outliers are caught together with a certain amount
of vegetation and house points, depending on the factor under consideration. The
example cells at the first iteration step are the same for all factors, and we see that
the number of outliers found are reduced with increasing factor. Similar distances
between the subset of the point clouds and the surface lead to a very diverse number
of outliers. Fortunately, this is not necessarily a problem: Large distances can also be
synonymous with a low accuracy due to lack of freedom in the surface. This occurs
typically at the beginning of the adaptive process when the steepness and roughness
of the terrain varies in the selected area.

Figure 5.4 shows the result of the outlier classification. We see that much of
the vegetation, buildings and some points at the sea surface are also classified as
outliers for factor=1.5, in addition to the obvious outliers (which are always found).
In areas where the majority of the points belong to trees, see Fig. 5.4b, the position
of the surface is influenced by the vegetation points as well as the ground points.
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Fig. 5.4 The results of outlier detection with IQR, blue points are classified as outliers while the
remaining points are light blue. a IQR factor 1.5, b detail with factor 1.5, c factor 3, d factor 5

Ground points and vegetation points become equally likely to be classified as outliers.
When the IQR factor is increased, the part of the vegetation classified as outliers is
decreased, but not eradicated, as illustrated in Fig. 5.4c and d.

The IQR outlier detection method removes many points and badly assumes that
the data is normally distributed.Classification of points fromvegetation and buildings
should be done with more accurate methods. However, this method is simple and
can give useful results if applied with care.

5.3.2.2 Z-score

Similarly to the IQR algorithm, the Z-score method is based on the assumption that
the data are normally distributed. Zi = ri−μ

σ
where ri is residual number i , μ is the

residual mean and σ the standard deviation. If the size of the residual is outside the
range [−3, 3], it is considered as an outlier. In theory, this should give the same result
as the IQR test with factor 1.5 for a normally distributed data set. In this method the
mean and standard deviation are computed explicitly; this puts less assumption on
the distribution. Table 5.2 shows how outliers are detected with the Z-score method
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Table 5.2 Outlier detection with the Z-score method

Level Maxerr MAE ncell ntest std range foundtot

1 100.445 0.90226 64 32 [0.81277,
1.6298]

428

2 13.055 0.57182 254 72 [0.15208,
3.2431]

3370

3 7.9887 0.34347 827 216 [0.13425,
3.4679]

1689

The global maximum and average distance between the surface and the points are reported along
with the number of cells in the surface mesh and the number of cells tested for outliers. The standard
deviation range applies to the tested cells and the number of outliers found the current iteration is
reported in the last column

Fig. 5.5 Results of outlier detection with the Z-score method. Blue points are classified as outliers.
a The result after one iteration, b the result after three iterations

during the adaptive surface approximation. The method classifies fewer points as
outliers than the IQR method. The total number detected was 5487. In the first
iteration step, only 1 or 2 points are found to be outliers in 27 of the cells tested. A
point with a very large residual shadows for other points that may also be considered
to be an outlier. These points can be found only when the most extreme cases are
removed.

Figure 5.5 highlights that the evident outliers are detected in the first iteration step
togetherwith a fewpoints corresponding to vegetation or buildings. In later iterations,
more points close to the ground are added. Some points belonging to trees, bushes
and houses are classified as outliers. Unfortunately, some points from a tree may be
found to be outliers and some may not.

5.3.2.3 Detection Aimed at Single Outlier Points

The last outlier detection method to be investigated in this chapter is designed to
fit within the context of adaptive surface approximation with local refinement such
as, e.g., LR B-splines. It mainly aims at identifying single outlier points and has no
direct link to the aforementioned statistical methods.



66 5 LR B-Splines for Representation of Terrain and Seabed . . .

Table 5.3 Outlier detection aimed at single outliers

Level Maxerr MAE ncell ntest Threshold Foundtot

1 100.445 0.902264 64 32 25.788 34

2 13.055 0.571735 254 76 3.69255 14

3 11.8158 0.354466 827 139 3.2198 7

The global maximum and average distance between the point cloud and the surface are given along
with the total number of cells, the number of cells where outlier detection is applied, the threshold
for outlier detection and the found number of outliers

The points in a cell with a residual larger than the threshold are called candidate
outlier points. The threshold is used in a pre-processing step to check the cells for
possible outliers.

Each candidate outlier is compared to a group of nearby points not restricted by
the cell boundaries. The number of points in this group varies, but should be close
to 100. A set of characteristics is computed for the group of nearby points, both
including and excluding the candidate outliers, to decide if they should be excluded:

• Standard deviation: stdwi th and stdwi thout ,
• Average distance to the surface: MAEwi th and MAEwi thout ,
• The range between theirminimumand themaximumsigneddistance to the surface:

Rwi th and Rwi thout ,
• Number of points: nwi th and nwi thout .

For a candidate point to be classified as an outlier, the following rules must apply:
nwi th − nwi thout � nwi th , stdwi th � stdwi thout , MAEwi th � MAEwi thout and
Rwi th � Rwi thout . Furthermore, let zo be the elevation of the candidate outlier point
and z p of the closest neighbouring points and ro, and let rp be the residual sizes for
the two points. Then |zo − z p| > 2 × tol and |ro − rp| > 2 × tol where tol is the
approximation tolerance. Moreover, a steep slope between the candidate outlier and
the neighbouring point is required. The combination of these criteria implies that
groups of outliers will be detected only if the group contains few points and/or is
very deviant from other points in the neighbourhood.

Table 5.3 shows the number of points identified as outliers along with some
additional information. We note that the number of outliers is much lower compared
to the previous methods. After the most prominent outliers have been removed in the
first step, the outlier threshold is reduced significantly. In the first step, the number
of candidate outliers in the cell is one or two, and all candidates are classified as
outliers. In the second and third step, the number of candidates in a cell varies from
1 to 101 and in most cases no outliers are detected. Groups of points belonging to
houses, trees and other vegetation are tested and found not to be obvious outliers.

Figure 5.6 shows the location of the identified outliers. Mostly, the obvious cases
are detected although a few points related to vegetation are included. As mentioned
in the introduction, the data set contains 73 classified outliers, which were identified
in a preprocessing step. The algorithm found 55 outliers where 49 also belong to
the group of classified outliers. The current method is best adapted to the problem
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Fig. 5.6 Results of outlier detection with the method aimed at single outliers. Blue points are
classified as outliers. a The final result, b a detail

at hand (elimination of trees and vegetation), but it is complex and has a limited
theoretical background. Nevertheless, it seems that a tailor made outlier detection is
beneficial when combined with the adaptive method for surface generation.

5.4 Surface Approximation of the Selected Data Set

We use the points classified as ground from the terrestrial data set and remove the
data points at the sea surface. This means that only points with a positive height
component are included. The ground data is combinedwith the corresponding seabed
data set resulting in the point cloud shown in Fig. 5.7. We notice that there are some
shallow water areas where points are missing. Furthermore, the point cloud density
is considerably higher for the seabed part compared to the terrain one: There are
about 25 times more bathymetry points than terrestrial.

Fig. 5.7 Combination of terrain and sea data
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5.4.1 Selection of Methods and Parameters

Figure 5.1 gives an overview of the surface approximation algorithm. The process
starts from a TP B-spline surface, which is adaptively refined in areas where the
distancebetween the surface and the point cloud is larger than agiven tolerance.Given
a current LR B-spline surface, we can perform the actual approximation with a least-
square (LS) approach or multilevel B-spline approximation (MBA), see Sect. 3.3. LS
approximation is a global approach with some best fit properties while MBA is an
iterative explicit local approximationmethod. Themethod is to some extent expected
to smooth out extreme behaviour in the approximating surface. We normally apply
LS approximation for a number of iterations in the adaptive algorithm before turning
to MBA.

Data sets are subject to noise and may contain outliers. It is, thus, not obvious
that the approximation should be pursued until all points have a distance to the sur-
face smaller than a given tolerance. Normally, the process is stopped by a maximum
number of iteration steps, but the finding the optimal number of iterations is chal-
lenging. Computing the minimum of AIC is an alternative to find this optimum, but
the process is time consuming. Moreover, it is a global method that does not take
local variations in the point cloud into account, i.e., a minimum does not always exist.
A tolerance is applied to identify where the surface needs to be refined. This value
should be defined depending on the measurement accuracy, information that is not
always known. Also, the actual selection of new meshlines to insert influences the
accuracy and number of coefficients in the final surface. Various refinement strategies
are discussed in [Sky22] and a short resume is given in Sect. 3.2. In the remainder
of this section, we will discuss the selection of methods (MBA, LS, combination of
both, refinement strategy) and parameters (tolerance, number of iterations) for the
selected data set.

5.4.1.1 LS Approximation Versus MBA

Figures 5.8 and 5.9 compare (i) the approximation with LS until about 33,000 coef-
ficients are estimated, and switch to MBA, and (ii) MBA for the entire computation
using a tolerance of 0.5 m. We see that for the LS approximation, both the number
of unresolved points and the average distance in these points are lower than MBA
for the same number of coefficients. The difference is the largest for few coefficients
and diminishes when the number of coefficients increases.

Figure 5.10 shows the approximating surfaces using LS andMBA. The difference
is small, but looking at Fig. 5.11, it is clear that MBA offers a smoother transition in
areas with no point. LS approximation should be applied early in the approximation
process for data sets with relatively uniform density, a low noise level and no outliers.
For non-smooth data sets with voids, MBA should be the preferred choice.

When fitting point clouds with spline surfaces, an overshoot in areas with steep
gradients may arise, in particular with unevenly distributed data points. On the other
hand, the surface is bounded by its coefficients due to the property partition of unity.
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Fig. 5.8 Number of unresolved points with respect to the number of surface coefficients

Fig. 5.9 Accumulated distance in points with distance more than 0.5 m scaled with a factor of
1/10,000

Fig. 5.10 Results of surface generation, LS=green, MBA=brown. a The surfaces are roughly
similar, b the point set is included in the figure to emphasize the areas without points
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Fig. 5.11 Focus on areas without points. a Approximation with LS, b using MBA

By limiting the surface coefficients to a range slightly larger that the height range of
the data set, extreme overshoots can be avoided. Figure 5.12 focuses on a subset of
the point cloud covering a part of the area depicted in Fig. 5.11. The subset contains
1,494,242 points, which are shown in Fig. 5.12a. The area is rough, includes parts
without points and has steep climbs from the seabed to two islands. The adaptive
approximation procedure starts from a biquadratic surface without inner knots and
is allowed to continue for 12 iterations with refinement in alternating parameter
directions. Using MBA, the result is almost similar when the size of the coefficients
are bounded or not, see Fig. 5.12b and c. This is not the case for the LS approximation.
When the coefficients are bounded to a range slightly larger than the elevation range
of the data point, the resulting surface depicted in Fig. 5.12d is quite well behaved
in the areas without point although less smooth than the MBA surfaces. Without a
bound on the coefficients, the surface oscillates drastically in areas without points
(Fig. 5.12e).

The LS approximation is combined with a smoothing term to ensure a solution in
areas without points, see Chap. 3 for more details. The weights on the approxima-
tion term and the smoothing term sum up to one. Normally, the weight on this term
is kept low to emphasize approximation. We apply a higher weight (0.1) to study
the effect of smoothing in challenging configurations as shown in Fig. 5.12f. The
extreme behaviour in Fig. 5.12e is avoided, but the surface is generally less smooth
than the alternatives shown in Fig. 5.12b, c and d. The approximation accuracy is
lower when a high weight on the smoothing term is applied. It must be noted that the
approximation errors increase in the last iteration step in theses cases. Otherwise,
the accuracy does not differ much between the various approaches, see Table 5.4.
LS approximation may become less accurate when the LR mesh gets very unstruc-
tured. Then the algorithm switches to perform approximation with MBA. We stop
the iteration just before this situation occurs so the results are achieved with LS
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Fig. 5.12 Focus on areas without points. Approximation with different selections of approximation
method. aData points, b approximationwithMBA and bound on the coefficients, the surface is light
blue and the points can be glimpsed in clear blue, c approximation with MBA and no coefficient
bounds, d LS approximation with coefficient bounds, e LS approximation, no coefficient bounds,
f LS approximation with high weight on the smoothing term (0.1) and no coefficient bounds

Table 5.4 Accuracy of the subset of the point cloud with LS approximation and MBA

Method Maxerr MAE nout nout (%) ncp

LS, bounds 2.388 0.113 32,260 2.16 3255

LS, boundsa 3.228 0.145 57,764 3.87 3238

LS, no bounds 2.388 0.113 32,194 2.15 3255

LS, no
boundsa

5.454 0.146 58,869 3.94 3280

MBA, bounds 2.292 0.116 37,702 2.52 3203

MBA, no
bounds

2.292 0.116 37,699 2.52 3203

The weight on the smoothing term for LS is 1.0e−9 and 0.1. The tolerance is 0.5 m
aSmoothing term has weight 0.1

approximation or MBA, purely. We note that the bounds on the surface coefficients
do not hamper the approximation accuracy.
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5.4.1.2 When to Stop the Iteration

Figures 5.8 and 5.9 indicate that the gain in continuing the approximation after the
surface having 20,000–30,000 coefficients is small. For approximation with MBA,
the maximum distance decreases from 3.782 to 3.426 m, the average distance from
0.100 to 0.073 m and the fraction of points outside the tolerance from 1.9 to 0.57%
when the number of coefficients increases from21,572 to 76,110 and the computation
time from3min. 24 s to 4min 28 s.We refer to Table 5.5 for the accuracy development
for an increasing number of iterations.

When searching for an optimal surface approximation, a balance has to be found
between the number of iterations, the MAE and other performance indicators, i.e.,
the maximum distance and the computational time for a given tolerance. The choice
is let to the practitioner: This latter should judge the risk of fitting the noise as the
number of iterations increases. Here an indication can be provided by searching the
minimum of AIC, see Chap. 4. In our particular case, no minimum could be found:
We link the lack of minimum with the fact that the surface contains many details and
is not smooth enough, i.e., a global criterion on its own is not sufficient to judge the
goodness of fit.

5.4.1.3 Tolerance and Accuracy

A main concern regarding surface fitting is linked with the accuracy of the approx-
imation. This is especially important in areas like seabed shallows, while the noise
levelmay be high at shallows due to sea vegetation and a narrow sonarwidth resulting
in multiple traversals by the boat carrying the sonar. The surface should accurately
represent the main shape of the terrain, but not necessarily adapt to every little stone.
The tolerance is used to determine where the surface needs refinement and conse-
quently the achievable accuracy. It is a predetermined value that should reflect the
precision of the measurement. A level of 2–3 times the measurement error can be
considered appropriate as discussed in Chap. 4. This is a first indication as the real
error is normally larger than the precision of the measurement device, which is not
always known. Several scans are merged and arbitrary objects, like power lines and
fishes, may influence the result. Here we investigate the impact of the threshold on
the fitting.

The surface approximations in Figs. 5.8, 5.9, 5.10 and 5.11 were performed with
a tolerance of 0.5 m. The algorithm was allowed to run for 12 iterations, and all
mesh cells where the maximum distance between the surface and a point in that
cell exceeded the tolerance triggered refinement. All B-splines with the cell in its
support were refined in one parameter direction at the time, in the x-direction at odd
levels and the y-direction at even levels. This corresponds to the refinement strategy
called FA, see Chap. 3 for more details. The MAE dropped below the tolerance at
iteration level 2 for both LS approximation and MBA, and touched 0.1 m at level 9.
The tolerance of 0.5 m is selected somewhat arbitrary, but is found to balance surface
size and accuracy.
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Table 5.5 Tolerance, number of iteration steps, MAE, number of coefficients and percentages of
points with a distance to the surface in specified ranges

Tol Steps MAE ncp |d| < 0.4
(%)

0.4 <

|d| < 0.6
(%)

0.6 <

|d| < 1
(%)

|d| > 1
(%)

0.1 12 0.069 217,002 98.77 0.93 0.25 0.05

0.1 9 0.1 32,212 96.62 2.28 0.94 0.17

0.1 6 0.156 4322 91.20 5.12 2.76 0.92

0.4 12 0.071 104,171 98.77 0.94 0.25 0.05

0.4 9 0.1 25,565 96.62 2.28 0.94 0.17

0.4 6 0.156 4257 91.20 5.12 2.76 0.92

0.5 12 0.073 76,097 98.74 0.97 0.25 0.05

0.5 9 0.1 21,567 96.61 2.28 0.94 0.17

0.5 6 0.157 4086 91.19 5.12 2.76 0.92

0.6 12 0.077 57,564 98.64 1.06 0.25 0.05

0.6 9 0.1 19,042 96.59 2.30 0.94 0.17

0.6 6 0.157 3911 91.18 5.13 2.77 0.92

The applied refinement strategy is FA and surface approximation with MBA is applied. Distances
are given in m, and |d| denotes the absolute value of the distance between a point and the surface

Table 5.5 presents some accuracy results for a selection of tolerances and maxi-
mum iteration levels. The setup used in Figs. 5.8, 5.9, 5.10 and 5.11 is highlighted
with bold font. The difference in accuracy between the applied tolerances is remark-
ably small while the numbers of coefficients differ greatly when a high number of
iterations is applied. In the first iteration steps, the selected tolerance plays a limited
role. The approximation error indicates similar refinements for all applied tolerances.

Figure 5.13 shows that the configuration of points with a residual value smaller
than or larger than 0.4 m is relatively similar for the tolerances 0.1 and 0.6 m. Some
differences can be spotted mainly due to an increase in point size for the points with a

Fig. 5.13 Point cloud coloured according to the distance to the surface.White points are closer than
0.4 m, green points lie below the surface and red points above. More saturated colour means larger
distance. The size of the white points are reduced compared to the coloured points. a Tolerance 0.1
m, 12 iterations, b tolerance 0.6 m, 12 iterations
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distance larger than 0.4 m in the picture. The surface adapting to a tolerance of 0.1 m
has more points within this tolerance belt than the other surfaces, but the difference
is negligible compared to the difference in the number of surface coefficients. The
percentages of points within this small belt after 12 iterations is 79.3, 78.4, 77.4
and 75.8% for tolerances of 0.1, 0.4, 0.5 and 0.6, respectively. The roughness of the
data does not allow such a tight approximation with a smooth surface. The majority
of the points with a high distance to the surface belong to the seabed. This can be
caused by the number of bathymetry points beingmuch higher than terrestrial points,
but also from the bathymetry points being unclassified whereas terrestrial points are
classified as ground. The descent is most prominent in shallow seabed areas.

5.4.1.4 Refinement Strategies

In Sect. 5.4.1.3, we saw that a tighter tolerance increased the number of surface
coefficients considerably at later iteration levels without improving the accuracy
significantly. The effect of the extra refinement is low. Similar results were also
found in [Sky22].A rapid introduction of newmeshlines leads tomore coefficients for
similar accuracy, but also a lower computational time. A slower pace in introducing
new degrees of freedom often led to few coefficients and an acceptable computation
time,while a very restrictive introduction could block further accuracy improvements
and eventually lead to more surface coefficients that contribute little to an accurate
approximation.

Table 5.6 illustrates howdifferent refinement strategies for defining newmeshlines
influence the approximation results.We stop the iteration after the surface has reached
20,000 coefficients. The number of iterations required is reported in column two. For
the strategies whose name starts with F and Mc, the refinement is triggered by mesh
cells that contain points with a residual value larger than the tolerance. For strategies
starting with S and R, refinements are triggered for B-splines having such points
in their support. If the strategy is marked by “all”, all such occurrences will lead
to refinement while “tn” indicates that only mesh cells or B-spline supports with
a relatively high number of out-of-tolerance points combined with a large distance
to the surface will trigger refinement. Strategies marked with B will refine in both
parameter directions at each iteration step while strategies marked with A will refine
in alternating parameter directions. Strategies starting with F are full span strategies
meaning that all B-splines having the identified cell in its domain are split. Mc are
minimum span strategies. Here, only the one B-spline is defined to be refined and the
criterion is a combination of size and number of associated out-of-tolerance points.
For S strategies the identified B-spline is refined in all knot spans, while for R the
knot spans containing most out-of-tolerance points are refined. McA tn is the most
and SB the least restrictive refinement strategy in the list. We refer to Chap. 3 for
more details on each refinement strategy.

In Table 5.6, we compare the results for the different strategies after the last
iteration. We see that the “A” strategies always need a higher computational time
than the “B” since the refinement in “A” is performed in each direction separately
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Table 5.6 Refinement strategies and associated accuracy results

Strategy level Maxerr MAE nout ncp nin/ncp CT

FA all 9 3.78 0.1 498,528 21,567 1185.99 3 m 16 s

FA tn 11 3.49 0.089 278,282 22,024 1171.38 4 m 12 s

FB all 5 3.41 0.088 356,038 39,019 659.18 2 m 19 s

FB tn 6 3.42 0.082 189,155 35,025 739.12 2 m 44 s

McA all 10 3.41 0.09 351,166 27,159 947.22 3 m 52 s

McA tn 12 3.41 0.088 221,103 23,882 1082.64 5 m 4 s

McB all 5 3.4 0.09 361,776 30,157 852.7 2 m 24 s

McB tn 6 3.38 0.089 229,529 25,848 999.97 2 m 58 s

SA all 9 3.78 0.099 498,113 26,558 963.12 3 m 13 s

SB all 5 3.41 0.087 355,637 51,124 503.11 2 m 16 s

RA all 10 3.41 0.092 372,451 27,996 923.6 3 m 53 s

RA tn 12 3.42 0.088 219,545 23,683 1091.8 4 m 53 s

RB all 5 3.41 0.093 384,317 32,251 796.64 2 m 23 s

RB tn 6 3.36 0.085 210,713 30,666 843.47 2 m 55 s

The iteration is stopped after 20,000 surface coefficients (ncp) is reached. Distances are reported
in m and computational time in min and s. The approximation efficiency is computed as number
of points with a distance less than the tolerance (nin) divided by the number of coefficients (ncp).
Thus, a high efficiency number is beneficial. The tolerance is 0.5 m and the number of data points
is 26,076,683

implying that the number of coefficients to estimate is higher. However, the final
number of coefficients relative to the accuracy tends to be lower for the “A” methods
and the efficiency is higher. For this data set, SB has the lowest computational time
but a high number of coefficients and the poorest efficiency among the recorded
strategies. The best approximation efficiency is found for FA (marked with bold
font). However, the efficiency does not take the value of the residuals into account as
long as it is smaller than the prescribed tolerance; here the actual distance could be
considered as well. We see that some methods will have lower computational time
than FA. Thus, if the time is regarded as more important than the number of surface
coefficients, FB and McB are good alternatives, preferably with some restrictions on
the mesh cells that trigger refinement (tn). The results in this experiment fall well in
line with the conclusions in [Sky22]. The choice of the refinement strategy could be
also seen as a model selection problem, following the concept described in Chap. 4.

5.4.2 Dealing with Missing Points and Voids: Trimming

In Computer Aided Design (CAD), trimming is used to remove extra lines or extra
parts of an object, see, e.g., Marussig and Hugues [Mar18] for an overview of meth-
ods in Isogeometric Analysis (IgA). Trimming aims to optimize the modeling and
visualization of the approximated surface. Here we apply it to handle data gaps and



76 5 LR B-Splines for Representation of Terrain and Seabed . . .

“cut” the domains where no points were available for fitting. Often, this would have
led to unfavorable ripples or voids as the algorithm tries to approximate without data
support. We note that the parameterization and the mathematical description of the
surface remain unchanged after trimming.We summarized the principle of trimming
as follows:

1. We bound the points by curves in the xy-plane. These curves are often B-splines
curves or NURBS.

2. The curves are arranged in one loop for the outer boundary and one loop for each
hole and associated to the parameter domain (xy-plane for points parameterized
by their x- and y-values) of the surface.

3. The outer loop is counter clockwise oriented, while eventual inner loops are
clockwise oriented. By convention only the areas of the surface situated to the
left of such trimming loops are considered valid. Consecutively, the loops divide
the resulting trimmed patch into distinct parts where the direction of the curves
tells which parts of the domains are visible or not.

Figure 5.14 explains the computation of trimming loops and the trimmed surface.
A polygon of horizontal and vertical lines in the xy-plane surrounding the points is

Fig. 5.14 Computation of the trimmed surface. a The point cloud (in khaki green) is recursively
divided into subsets of the point cloud and bounded by polygons,b the composite polygons bounding
the entire point cloud, c the polygons are approximated by a set of spline curves, d the final trimmed
surface
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computed in a recursive procedure. Depending on the density of the point cloud, a
maximum recursion level is selected. A dense point cloud allows more recursions
and consequently a more accurate polygon. The point cloud is recursively divided
into blocks as shown in Fig. 5.14a. Here the maximum recursion level is two. The
boundary lines of the blocks containing points are collected, while removing lines
that occur twice. This happenswhen two adjacent blocks contain points. The resulting
lines are sorted to create one or more polygons, see Fig. 5.14b. In Fig. 5.14c, the
polygons are divided into pieces, each being approximated by a spline curve, and
finally, in Fig. 5.14d, the trimmed surface is shown.

5.5 Conclusion

Adaptive LR B-spline surface approximation is a flexible method to “transform data
into information”. Within a context of approximating geospatial data, huge, noisy
and scattered data set from terrains or seabeds can be represented in a compact way.
The surface approximation with LR B-splines has following advantages:

1. The computational time is manageable.
2. The data storage is strongly simplified: Millions of points are condensed into a

manageable number of coefficients to estimate.
3. The adaptive approximation method is flexible. TheMBA can be combined with

the LS approximation. Here the LS method is used in the first iterations, and the
smoothness term can be adapted to avoid fitting of noise. In the last iterations,
the MBA allows an explicit yet very accurate fitting. Because it has similarities
with the L1 noise, outliers and data gaps can be optimally handled to keep the
approximation smooth. This property is often needed for geospatial data set.

4. The refinement methods can be adapted depending on the data at hand (point
density, presence of noise or outliers). Different parameters such as the tolerance,
the polynomial degrees of the spline surface or the refinement strategies can be
chosen individually.

5. The fit of the approximation can be judged using simple statistical concepts such
as the mean absolute distance, the number of points outside tolerance or the
maximum error. Additional statistical quantities, such as information criterion
can provide orientation for optimizing the surface approximation.

6. The format is flexible and allows an export as TP B-spline surface in usual GIS
software.

7. The C++ functions are freely available to permit a wide usage of the LRB-spline
surface approximation, up to individual adaptation of the algorithms.

In this chapter, we have highlighted these properties and approximated a data set
composed of seabed and terrain data recorded from sensors having different noise
properties. More specifically:

1. We have compared different pre-processing strategies to eliminate outliers, and
found that the method identifying single outlier points with no direct link to
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statistical methods hits the target best: it reduced the risk of eliminating features
that need to be approximated but found real outliers.

2. We have developed the concept of adaptive approximation, starting from a coarse
mesh. A refinement is performed in cells where the error between the mathe-
matical surface and the points exceeds a predefined tolerance.

3. We have highlighted how to deal with data voids that are a common challenge for
manyGIS data set. Here the point densitymay be so low that no plausible surface
approximation can be performed. We have highlighted that MBA performs well
in such cases. It is a computational advantageous method as no minimization
has to be done.

4. We compared different parameters set up to achieve the best goodness of fit, e.g.,
the tolerance, the number of maximum iterations, or the refinement strategy. We
have investigated different refinement strategies and shown that the FA (full span
refinement in one direction at each iteration) was more favorable. We further
showed how the tolerance affects the noise fitting.

5. We explained how a trimming can be performed to cut domains without points
for which the fitting is unfavorable (ripples, oscillations).

The result of the surface approximation with LR B-splines is a mathematical
surface with few coefficients in comparison to the huge number of points to approxi-
mate. The surface describes the underlying ground with high accuracy, which can be
assessed by means of simple statistical quantities. Ongoing research tries to find the
most optimal surface with respect to the data at hand by setting, e.g., the tolerance
less empirically. To that aim, concepts developed in Chap. 4 can be used for smooth
and homogeneous point clouds. In Chap. 6, wewill present further applications of the
LR B-spline surface approximation, such as deformation analysis with LR B-spline
volume, or the drawing of contour lines from the mathematical model.

1 Appendix: Output Format and Source Code

An LR B-spline surface is stored in an ASCII file using doubles for the storage of
coefficients. It is also supported by Part 42 of ISO 10303 (the STEP standard). The
export of the LR B-splines surfaces to other formats is crucial for further processing
of the mathematical surfaces. Exemplary, raster is the standard representation for
terrains and seabed in current GIS software. Unfortunately, this representation does
not support the same level of detail as an LR B-spline surface of the same area in
general. To circumvent that challenge, different possibilities exist:

1. We compute a highly accurate LR B-spline surface, which gives rise to rasters
of different resolutions. Thus, the LR B-spline surface can serve as a master
representation to be harvested according to needs.

2. We extend the LR B-spline surface to a TP B-spline surface. Here the main
drawback is a potential large increase in data size. Furthermore, this conversion
contradicts the idea of LR splines.

3. We export the LR B-spline surface as a set of Bezier surfaces alternatively.
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4. A better option is to represent the LR B-spline surface by a collection of TP B-
spline surfacesmaintaining the feature of data size distributed according to needs.
To that aim, the LR B-spline surface can be divided into TP B-spline surfaces
by the means of dedicated knot line insertions. The division into TP B-surfaces
is performed by a recursive algorithm. This division is also an ingredient in the
computation of contour curves and somedetails are given inChap. 6,Appendix 1.

Please note that for all computation, we made use of the GoTools library module
LR Splines 2D. The source code is freelymade available by SINTEFDigital, Depart-
ment of Mathematics and Cybernetics for downloading at the link: https://github.
com/SINTEF-Geometry/GoTools/wiki/Module-LRSplines2D.Thehardware require-
ments areWindows, Linux orMacOS. The program language is C++. Following soft-
ware are required: Cmake, Boost, and Qt for the viewer, which is used to visualize
the approximated surfaces in this chapter.
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Chapter 6
LR B-Spline Surfaces and Volumes
for Deformation Analysis of Terrain Data

Abstract Geospatial data acquisition of terrains with contact-free sensors such as
Terrestrial or Airbone Laser Scanners generates scattered and noisy point clouds.
Performing a surface approximation is an efficient way to reduce and structure the
recorded point clouds. To that end, LR B-splines are attractive as they allow a local
refinement, on the contrary to the tensor product B-spline and raster surfaces. By
comparing the approximation error with a given tolerance, a local refinement is
performed. We apply this adaptive refinement strategy to landslides data sets from
Alpine terrain in Austria. We show how different epochs of the point clouds can be
analyzedwith LRB-spline volumes for spatio-temporal visualisation of deformation.
We highlight the potential of a time-differenced LR B-splines volume for analysing
geomorphological changes. A further application of this method is the drawing of
contour lines.

Keywords GIS data set · Geospatial data set · LR B-splines · Adaptive surface
fitting · Spatio-temporal deformation analysis · Contour lines · LR B-spline
volumes · Geomorphological analysis

6.1 Introduction

Terrestrial Laser Scanners (TLS) are contact-free measuring sensors. They record
dense point-clouds of objects or scenes by acquiring coordinates of points and an
intensity value; this latter depends, e.g., on the reflected surface or atmospheric
propagation, see Wujanz et al. [Wuj17]. TLS range measurements can be either
based on phase shift or time-of-flight. We refer to Vosselman and Maas [Vos10]
or Pfeifer and Briese [Phe07] for more details. Typically, the range measurement
in phase shift is more accurate than time-of-flight TLS but the maximum range is
smaller. Due to its high scanning rate, it is not uncommon that a point cloud contain
millions of points, which need to be processed in some way. Well-known software
are, e.g., the freely available CloudCompare [CC22], or MeshLab [Cig08]. Within
a geodetic context, prominent applications using TLS point clouds are deformation
analysis for objects such as tunnels [Jia21], dams [Gon08] or bridges [Zog08], see
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also Mukupa et al. [Muk16]. Because TLS enables fast and precise mapping, they
are currently used for monitoring forest canopy [Gri15] or landslides [Bar13].

The processing of huge point clouds can quickly become computationally
unfavourable. Parametric spline surface approximation techniques address the chal-
lenge by reducing “data” into “information”. The point clouds are efficiently com-
pacted into a a manageable number of coefficients that are often estimated by
least-squares (LS) adjustment. The mathematical modelization enables deformation
analysis and rigorous statistical testing based on the estimated surfaces rather than
on the original point clouds. Unfortunately, the Non Uniform Rational B-splines
(NURBS, [Pie95]) do not allow for local refinement. This approximation method is
unfavourable when the point clouds are scattered and noisy. Here the risk of overfit-
ting should not be undertaken as it leads to unwanted ripples and oscillations in the
approximated surface, see Bracco et al. [Bra18]. This latter may be confounded with
deformations.

Starting from a first approximation of the point cloud using a coarse NURBS
mesh, there exist three main approaches to perform an adaptive local refinement:

• HierarchicalB-splines (HB-splines)were introduced inForsey andBartels [For88].
The refinement is said to be dyadic and the cells of themesh to be refined are halved
at each iteration.

• T-splines are described, e.g., in Sederberg et al. [Sed03]. Here the refinement is per-
formed by successively adding new control points in-between two adjacent control
points in the T-mesh, Kermarrec and Morgenstern [Ker22] for an application to
sand dunes point clouds from TLS.

• LR B-splines were developed by Dokken et al. [Dok13]. They are based on the
concept of “splitting the B-splines”, i.e., introducing new meshlines. Each mesh-
line inserted has to split the support of at at least one tensor product (TP) B-spline.
They were shown to be advantageous within GIS context, Skytt et al. [Sky15].

The remainder of this chapter is as follows: in a first step, we will shortly review
the surface approximation with LR B-splines. The reader is referred to Chap. 2 and
Chap. 3 for more details. We will introduce LR-B-spline volume as a promising tool
for visualising and analysing spatio-temporal deformations. We will develop how
contour lines can be computed from LR B-spline surfaces in a dedicated appendix.
The chosen point cloud to illustrate the surface approximation is from the Alpine
region in Austria.

6.2 Description of the Data Set

In the context of climate changes and the expansion of areas of urban settlement,
e.g., in Alpine regions, early warning system for risk management necessitates high-
quality data sets that are both spatially and temporally detailed. In this chapter, we
perform spatio-temporal deformation analysis with mathematical approximations
from a data set recorded in Austria, which will be shortly described in the following
section.
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Fig. 6.1 Left: View of the region under consideration, Right: Visualization of one point cloud with
the software CloudCompare

6.2.1 Deformation Monitoring with a Terrestrial Laser
Scanner

The data set studied in this chapter was recorded in the Valsertal region in Austria as
part of HORIZON 2020 via the RFCS (Research Fund for Coal and Steel) funded
research project i2MON-“Integrated Impact MONitoring for the detection of ground
and surface displacements caused by coal mining”. Here we focus on the obser-
vations from the TLS (VZ-2000i, see http://www.riegl.com/nc/products/terrestrial-
scanning/produktdetail/product/scanner/58/), Further information about the experi-
ment can be found in dedicated publications, e.g., Schröder and Klonowski [Sch20].

The monitoring of the Valsertal aims to analyse deformation with the help of a
long-range TLS, for underlying safeguard applications. A continuous series of mea-
surements are available from August 13, 2020 up to and including September 8,
2020. In this contribution, we have selected a small excerpt from August 20, 2020
to August 22, 2020. We focus on an area in the lower part of an alpine slope where
some rearrangements of the facilities took place in this period. The measurements
were made in a refuge opposite an area affected by a rock fall as shown in Fig. 6.1. A
geodetic instrument called a total station was installed on one of the two measuring
pillars in the hut measuring 16 reflectors at a distance of approximately 250–800m
every hour. On the second pillar, a laser scanner was used for the permanent instal-
lation. One point cloud of the whole area was recorded every two hours resulting
in 36 point clouds in total. In order to separate the expected apparent deformations
within the time series from the influences of the georeferencing, the laser scanner
was expanded to include a platform with inclination sensors in the horizontal plane
of the local scanner coordinate system. The GNSS antenna on the scanner was used
for time synchronization. This set up allows us to highlight the potential of surface
approximation with LR B-splines from TLS observations with the aim to visualize
spatio-temporal deformation based on mathematical surfaces and volumes.

http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/58/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/58/
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August 20th 1 AM

August 22th 1 AM August 22th 11 PM

Fig. 6.2 Examples of the initial data sets

6.2.2 Data Set Preparation

The point clouds differ in size, depending on the epochs when they were recorded.
Figure6.2 illustrates the three different extensions of the selected point clouds. We
have harmonized the point clouds so that they all fitwith the smallest extension shown
at the bottom right. The long tail to the left is excluded from the approximation.
Obvious outliers are removed using the method of Chap. 5, Sect. 5.3.2.3. We note
that the data sets from the first epochs include a large tree that later disappeared.
In the later part of the period, the vegetation was filtered out to gain in accuracy.
Figure6.3 shows two examples of the point clouds processed for our study, with and
without the tree. The tree was intentionally kept in the first point clouds to spice
the spatio-temporal analysis. This way, we can show the potential of LR B-spline
volume to detect such changes, with applications in forestry inventory, see, e.g.,
Liang et al. [Lia6].
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August 20th 12tsuguAMA11 th 1 PM

Fig. 6.3 Examples of the processed data sets

6.3 Surface Approximation of the Selected Data Set

Approximating point clouds with tensor product (TP) B-spline surfaces does not
allow for local refinement. LR B-splines are a way to locally refine the spline space
and are shown to provide well-behaved mathematical surfaces for remote sensing
applications, Skytt et al. [Sky22]. More specifically, an adaptive surface fitting is
performed when the L1 norm—called in the following “error” or difference in abso-
lute value—between the mathematical surface and the points inside a cell of the
mesh exceeds a tolerance at a given step of the algorithm. The surface approxima-
tion obtained with LR B-splines depends on the tolerance from which the refinement
is performed, the refinement method itself and the bidegree of the spline space. We
have reviewed in Chap. 4 statistical methods to fix these parameters optimally.

6.3.1 General Principle of Adaptive Approximation
Combining Least Squares and Multilevel B-Spline
Approximation

We parameterize the data points by their x- and y-values, and approximate the z-
values by an LRB-spline surface (function). The starting point of the iterative surface
approximation with LR B-splines is a tensor product B-spline surface. Here a B-
spline surface grid (also called also mesh) corresponds to the initial setting of the
topology. Then an optimization is performed to compute the best LRB-spline surface
corresponding to the initial mesh for approximating the point cloud. Once the initial
surface is obtained, the error term between themathematical surface and the points in
the z-direction is computed.Weconsider theL1norm, seeAl-Subaihi et al. [AlS04]. If
this value exceeds a given tolerance, a refinement is performed in the cells containing
the corresponding points. The adaptive fitting is performed until a given number of
iterations is reached or until no more error terms exceed the tolerance.

Extra degrees of freedom are inserted in the LR B-spline surfaces locally, where
needed. The main advantage is that noise overfitting is avoided and the growth in
data volume is limited, on the contrary to global fitting strategies where all cells are
refined at every iteration steps. Clearly, with locally adaptive refinement methods,
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there will be cells that remain unchanged after a given iteration step because the error
term is smaller than the chosen tolerance or there is no point in the cell. Intuitively,
few cells are refined with a large tolerance whereas, all cells will be divided for a
very low tolerance.

In the first iteration steps, the fitting is made using the LS method, i.e., the L2
norm or Euclidean distance between the parametrized point cloud and the parametric
surface is minimised. As the number of refinement steps increases, it is favourable to
switch to the Multilevel B-spline Approximation (MBA) developed by [Lee97], see
also [Sky15] and Chap. 3 for more details on the procedure. For the MBA strategy,
no equation system is solved as the coefficients are computed locally and explicitly:
the residuals of the data points obtained from the last fitted surface are recursively
approximated using finer meshes.

6.3.2 Approximation of the Selected Data Set

In this section, we present the results of the approximation of the domain under
consideration, see Fig. 6.4.

6.3.2.1 Goodness of Fit

The goodness of fit is assessed using the usual criteria, as described in Chap. 3:

• The mean absolute distance abbreviated as MAE referring to the point cloud with
respect to the approximated surface

• The maximum error Maxerr
• The number of points outside tolerance nout
• The number of coefficients ncp
• The computational timeCT . We used an 64-bit operating system with 8 GB RAM
and an Intel(R) Core(TM) i5-63000U CPU @ 2.40 and 5.8GHz.

6.3.2.2 Dealing with Outliers and Voids

Voids and outliers are typical challenges related to geospatial data, which will be
shortly addressed in this section.

Voids

The point clouds contain voids which come from the scanning configuration and gen-
erate domains where no points are recorded. Data gaps challenge the approximation
as the surface will try to extrapolate the known information in these areas, creating
artificial oscillations. This drawback is particularly emphasized when LS approxi-
mation is used. MBA is more robust due to its explicit formulation and its similarity
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Fig. 6.4 Point cloud with about 1 million points acquired at 9 AM August 21st

with a L1 norm fitting, see Kermarrec and Morgenstern [Ker22] for a discussion. To
face that challenge, we apply a 2-steps procedure:

• Restricting the values of the coefficients to an interval depending on the height
range of the data points.

• Trimming: Trimming is a well known method within the context of Computed
Aided Design, Medland and Mullineux [Med88]. Here the points are bounded by
curves in the xy-plane. The curves are arranged in one loop for the outer boundary
and one curve for each hole and associated to the parameter domain (xy-plane for
points parameterized by their x- and y-values) of the surface. We refer to Chap. 5
for a detailed explanation.

Outliers

The point clouds under consideration contain noise and artifacts. These latter need to
be removed prior to the surface approximation in order to avoid the fitting of outliers,
which is unfavorable for further interpretation of the results.

Different methods exist to detect outliers. They are reviewed and applied in
Chap. 5, Sect. 5.3.2.

Following strategies can be applied besides eliminating outliers:

• A smoothing term can be added to the function to minimize in the first step of the
approximation [Sky15]. This way, smooth surfaces are obtained and ripples are
avoided. Additionally, the MBA is known to be robust against outliers due to the
use of the L1 norm of the error term to perform the adaptive refinement, Aigner
and Jüttler [Aig07].

• It is possible to perform a classification previous to the fitting, as, e.g., in [Che118],
Li et al. [Li16] or Xue et al. [Xue20] for a random forest classification algorithm.
This way, objects such as trees or cars can be eliminated and only points corre-
sponding to the ground approximated.
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The data sets used in this chapter is cleaned for obvious outliers using the last
procedure described in Chap. 5, Sect. 5.3.2.3.

6.3.3 Visualization of the Approximation at Different
Iteration Steps

In this section, we will present some results of the surface approximation with the
aim of being didactic and visual to improve the understanding of iterative surface
approximation with LR B-splines.

6.3.3.1 The Adaptive Surface Approximation, Step by Step

A tolerance of 0.5m is selected for the approximation of the selected point cloud. If
a smaller tolerance is used, the risk of overfitting increases, which is unfavorable for
a smooth and reliable surface fitting. A higher tolerance leads to a convergence after
only few iterations, without the advantages of local refinement being visible, i.e., the
approximation remains coarse.

We start the approximation with an initial biquadratic TP B-spline surface of 10
times 10 coefficients to approximate the point cloud. This corresponds to iteration 0
as shown in Fig. 6.5. Then the algorithm is allowed to run for 7 iterations, ending as
shown in Fig. 6.12. The final surface output is shown in Fig. 6.12. We additionally
draw the trimmed surface with respect to the point cloud domain (Fig. 6.13). Here the
domains with no point are “cut” so that no unwanted effects such as, e.g., oscillations
or drops occur in the domain without any observation.

6.3.3.2 Goodness of Fit

The results of the approximation are summarized in Table 6.1. Combined with
Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12, the impact of increasing the number
of iteration steps is visible: after 5 iterations, theMAE does not decrease significantly
(from 0.095 to 0.083m), but the maximum distance does (from 0.095 to 0.083m).
This difference highlights the main advantage of local refinement: only specific
domains are approximated locally with a higher accuracy by letting the main part
of the point cloud untouched. The meshes allow to visualize more clearly the prop-
erty of the iterative local refinement, although it is hardly possible to distinguish the
differences in the last two iterations. Here the increase in the number of coefficients
between iteration 5 and 7 (from 5700 to 14,000) is more descriptive (Table 6.1).

Figures6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 further highlight how the origi-
nal coarse mesh from the first iteration is refined at each step. The number of mesh-
lines, and so the number of coefficients, increases to account for local details only.
Figure6.13a shows where the points outside tolerance are located on the final surface
after 7 iterations. The underlying final mesh is depicted additionally. There remain
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Fig. 6.5 a Initial surface, b points coloured according to the distance to the surface, cell boundaries,
c LR mesh (TP mesh), d colour scheme used for coloured point clouds in this figure and the
subsequent figures

Fig. 6.6 a Surface after the first iteration, b points coloured according to the distance to the surface,
cell boundaries, c LR mesh
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Fig. 6.7 a Surface after the second iteration, b points coloured according to the distance to the
surface, cell boundaries, c LR mesh

Fig. 6.8 a Surface after the third iteration, b points coloured according to the distance to the surface
with cell boundaries, c LR mesh

domains where the approximation cannot be further improved: Table 6.1 shows that
increasing the number of iterations does not lead to a smaller MAE after the sixth
iterations. Indeed, the number of points outside tolerance decreases but in % of the
total number of points, the difference is irrelevant (99.3 vs. 99.1% between the sixth
and the sevenths iteration). At the same time, the number of coefficients increases
from 9000 to 14,000. The computational time increases as well, but remains at a
moderate level (a few sec). Thus, when searching for an optimal surface approxima-
tion, a balance has to be found between the number of iterations, the MAE and its
relevance, the maximum distance and the computational time for a given tolerance.
This choice is let to the practitioner which should judge the risk of fitting the noise as
the number of iterations increases. An indication can be provided by searching the
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Fig. 6.9 a Surface after the fourth iteration, b points coloured according to the distance to the
surface, cell boundaries, c LR mesh

Fig. 6.10 a Surface after the fifth iteration, b points coloured according to the distance to the
surface with cell boundaries, c LR mesh

minimum of AIC, as describe in Chap. 4. In our particular case, a minimum could be
found after the eighth iteration. We point out that the AIC gives an indication about
the turning point from which further refinement is not leading to a strong decrease of
the root mean square error with respect to the increase of coefficients. It is a global
criterion, that does not provide information about the local adjustment.
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Fig. 6.11 a Surface after the sixth iteration, b points coloured according to the distance to the
surface, cell boundaries, c LR mesh

Fig. 6.12 a Final surface,b points coloured according to the distance to the surface, cell boundaries,
c LR mesh

Fig. 6.13 a Points with a distance larger than the tolerance (0.5m), b surface trimmed with respect
to the point cloud domain (trimming with respect to the outer boundary only)
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Table 6.1 Adaptive approximation of the point set shown in Fig. 6.4

Level Maxerr MAE nout nin (%) ncp CT

0 6.367 0.705 490,476 53.1 100 0.9

1 4.635 0.447 305,912 70.1 279 1.8

2 4.126 0.224 126,796 87.9 714 2.6

3 4.340 0.140 45,034 95.7 1866 3.5

4 3.942 0.111 24,111 97.7 3627 5.2

5 4.486 0.095 14,030 98.7 5737 6.0

6 4.482 0.086 9555 99.1 9242 7.0

7 3.917 0.083 7303 99.3 13,992 8.1

The maximum and average distance for each iteration level is reported along with the number of
points with a distance larger than the tolerance, the percentage of resolved points and the number
of surface coefficients. Spatial units are m and computation time is given in s

6.4 LR Spline Volumes to Analyse Spatio-temporal
Deformation

The domain under consideration was scanned every two hours during three consec-
utive days. This leads to a large amount of point clouds, making the use of surface
and volume approximations relevant to visualize and analyze the deformations or
changes that may occur during that time. The main advantage is not having to work
with the noisy and scattered point clouds. This is computationally advantageous and
allows for a simpler interpretation.

6.4.1 Principle of Volume Approximation

To get an impression on the continuous development of the landscape in the selected
area, the time component is added as a third parameter direction in the data set
allowing an interval of 0.5 between each set in the time direction. Figure6.14 shows
the structure of the composed raw point clouds, before the volume approximation.
The block of point clouds is narrow in the time direction compared to the space
directions, and the time layers are distinguished by colour. The distances between
these layers are larger than the distances between points in the xy-plane, but still
small enough to control the behaviour of the spline volume approximation. The
height range corresponding to the different epochs is very dependent of the pres-
ence of the aforementioned tree, i.e., the data set shown in Fig. 6.3a has a range
of [−42.69, 17.77] while the range for the points in (b) is [−42.7, 8.55]. The total
height range in including all point sets is [−42.71, 17.89].

A point cloud assembled from all epochs is approximated by an LR B-spline
volume. Following Sect. 6.3.3, we apply a tolerance of 0.5m and perform 7 iterations.
Figure6.16 shows the correspondingLRvolume. The visualization is performedwith
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Fig. 6.14 The structure of the volume point cloud. The points are represented by their x-, y- and
time coordinates and points from different acquisitions are distinguished by colours

a dedicated viewer as proposed in [Fuc17]. The colours are linked with elevation.
Here we do not perform a surface approximation of each of the 36 point clouds
independently and individually, as shown in the previous section: we approximate
the block of point clouds as a whole.

The trivariate point cloud is approximated by an LR B-spline volume following
the same approach as for surface approximation explained in Chap. 3.

1. The starting point is a TP B-spline volume, which is refined in an adaptive
procedure.

2. The refinement is performed in a volumetricmesh cellwhen the distance between
the value of the trivariate point and the LR B-spline volume exceeds a specified
tolerance.

3. Then a mesh rectangle splitting at least one trivariate B-spline is inserted.

At each iteration step, an updated approximation using MBA is computed. The
iteration stops when the given tolerance is met or a maximum number of iteration
steps is applied. Figure6.15 shows a mesh corresponding to a triquadratic LR B-
spline volume with initially three inner knots in each parameter direction after one
iteration. The refinement is performed only in the first parameter direction and the
inserted mesh rectangles are highlighted with yellow colour.

We will refine in all three parameter directions simultaneously. The maximum
distance between the point cloud and the volume after 7 iterations is 29m. The most
distant points are associated to the tree, which cannot be well fitted by a smooth
surface. The average distance is 0.17m and 1,507,346 out of 37,785,650 points have
a distance to the volume larger than the tolerance of 0.5m, meaning that 96% of the
points are within the resolution. The maximum distance is kept at approximately the
same level throughout the computation indicating a feature unsuitable to be fitted
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Fig. 6.15 Simple LR volume mesh with mesh rectangles

Fig. 6.16 LR B-spline volume approximating the trivariate point cloud. The height field is repre-
sented with colours

with a smooth volume, while the average distance is gradually reduced. The final
number of coefficients is 93,829. The computational time is 10min and 7 s excluding
file operations, which is manageable from a practitioner perspective.

The domain of the LR B-spline volume approximation to the point cloud
corresponds to the axis parallel bounding box surrounding the parameter points
{xi , yi , ti }Ni=1 where N is the total number of points. As the boundaries of the point
cloud do not adapt to axis parallel lines, for some parts of the volume shown in
Fig. 6.16 there are no corresponding data points. The figure visualizes the height
field corresponding to the point cloud with colours. The volume is cut at the position
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Fig. 6.17 LR-spline volume. Cutting plane in the x-direction gives some indication of landscape
changes

of the tree, which is present in the point clouds at the beginning of the acquisition
period only. The tree can be recognized in the volume approximation and is marked
by a circle in the figure.

The presence or absence of the tree is the largest difference between the different
data sets and the transition from tree to no-tree is totally dominant in the LR volume
description of the landscape throughout the three days of acquisition. Some smaller
differences between the data sets can be distinguished in the volume, see the marked
area in Fig. 6.17. The corresponding marks is weak: to get clearer indications of
change, we turn to the derivative of the volume in the time direction.

6.4.2 Volume Changes in the Time Direction

A partial derivative of a polynomial TP B-spline volume is a polynomial TP B-spline
volume with the polynomial degree decreased by one in the direction of differen-
tiation, and very simple formulas exist for computing the derivative. As a spline
volume the partial derivative of an LR B-spline volume in some direction is also an
LR B-spline volume, but the local structure of the LR B-spline volume implies that
the differentiation procedure becomes complex. In the following, we represent, for
each cell, the field as a spline volume without inner knots and differentiate cell by
cell.

6.4.2.1 Partial Derivative of the Volume for Spatio-temporal Analysis

A non-zero derivative of the height field reveals changes in height: by focusing on
the time direction only, we exclude landscape formations that do not change over
time.

Figure6.18 shows changes in time revealed by the time derivative of the LR
B-spline volume. The visualization focuses on derivatives within a [−3, 3] range.
Higher values for the derivative field exist, but are not highlighted explicitly. The
field is hidden for derivatives close to zero. We see that changes in the height field
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Fig. 6.18 The derivative of the height field in the time direction represented as an LR B-spline
volume

Fig. 6.19 The derivative of the height field in the time direction just before August 20th at 11 PM
(left) and just before 5 AM the same day (right)

occurs as blobs in the total volume. The figure presents an overview of the volume
(top) and looks into it from the x-direction (bottom). The blobs of change are local
in the time direction. They corresponds to (i) an object that appears and disappears
or (ii) a modification of the landscape that is later left untouched. The spot marked
with “A” represents the tree that is present in the first part of the time line. “B” is
outside the point cloud and indicates that the height field is gradually decreased after
removal of the tree. “C” and “D” are areas of interest to be discussed in the following.

Figure6.19 focuses on the area marked with “C” in Fig. 6.18. Here it is marked
with a circle. Green colour means no change in time, red means that the height
increases while blue means that it decreases. The activities performed in period of
time in this area are discussed in further detail in Sect. 6.4.3.

In Fig. 6.20 the area “D” is marked with an ellipse. In the cut to the right, we
can see from the colours that the height field increases and then decreases again. In
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Fig. 6.20 The derivative of the height field in the time direction just after August 21st at 11 PM
(left) and a cut through the volume in y-direction hitting area “D” specified in Fig. 6.18

Fig. 6.21 The derivative of the height field in time direction at August 20th at 11 PM and corre-
sponding differences in the point elevation, raster view

between, there is a narrow green strip indicating that the observed object, probably
an excavator, is present. The incident to the right happens at an earlier point in time
than the one to the left (right picture). This indicates a movement of the excavator
from position “1” to position “2”.
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6.4.2.2 Spatio-temporal Changes Visualized as Medical Images

In Fig. 6.21, a visualization dedicated to medical images [ITK] is used to give an
alternative view of the height changes. The volume is represented as a 255 × 255 ×
255 raster and the values are computed by averaging a number of sample points in
the raster cells. The views in “a” and “d” show the same snapshot in time for different
features of the volume. The derivative of the height field in the time direction for
August 20th 11 PM is shown in Fig. 6.21, “a”. Views “b” and “c” show cuts through
thevolumewith constant y and constant x, respectively.The three views are connected
by the blue cross. In “d” the average difference in point elevation for each cell is
shown. The circle indicates the position of the tree in the views where it is present.
Views “a” and “d” indicates that two objects of significant size are situated close to
the blue cross and there are some smaller additional modifications of the elevation in
the vicinity of the cross. The duration of the elevation changes can be seen from view
“b” and “c” where the development in time is shown in the vertical direction. This
reveals that the highlighted elevation changes were temporary. Note that a permanent
change in elevation will appear only as a limited white spot in view “b” and “c”. View
“d” can be used to place an incidence in the landscape as the intensity map gives an
indication of the terrain. White indicates steep areas or rapid landscape changes in
time, while plains and areas without points are black.

Figure6.22 provides another visualization of the situation in Fig. 6.20. The descent
from the tree is completed as can be seen in view “b”. Note that the derivative has its
largest values when the volume adapts to a change and not when the peak or dump
is at its largest. The time of the ring is when the tree is no longer present. The two
positions of the excavator are shown in views “a” and “b”. Due to the position of the
cut, the appearance and disappearance of only one excavator are visible in “c”.

6.4.3 Difference of Surfaces

In this section, we propose to analyse more specifically changes in the point cloud
with LR B-splines surfaces. Here we look at the surface approximation of the point
clouds acquired at 11 PM and 5 AM at August 20th, see Fig. 6.23. The maximum
distance between the points and the surface is 28.58m for (a) and 28.30m for (b). The
average distances are 0.178 and 0.179m, and the number of points with a distance
larger then 0.5m is 25,583 and 24,801. The numbers of data points are 1,071,938
for (a) and 1,068,546 for (b). The main obstacle for an accurate approximation is
the tree in the upper left corner, but also some excavators in the right half of the
figures are impossible to represent exactly with a smooth surface. Some differences
between Fig. 6.23a and b can be identified, but the general impression is that there is
little difference in the landscape between the two epochs. Figure6.24 reveals some
more details. Here the difference surface between the two surfaces in Fig. 6.23 is
computed and represented as an LR B-spline surface, difference surface = surface b
- surface a. The surface is trimmed according to the point cloud at 11 PM. Contour
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Fig. 6.22 The derivative of the height field in time direction at August 21st at 11 PM and corre-
sponding differences in the point elevation, raster view

curves are computed for every 0.25m between −5 and 5m. Some details concerning
the computation of these curves are given in Appendix 1. The green curves visualize
material that is removed from (a) to (b) and red curves material that is added. The
black curves show the zero level for the difference surface. Most of the surface is
oscillating slightly below and slightly above zero. This is an effect of differences
in the point clouds and the approximation error and does not represent a change
in the landscape. The red and green curves in most cases represent change. At the
point marked with “A” is the aforementioned tree and the difference here is not due
to a real change. At “B”, an excavator is added an at “C” one is removed. Snow is
removed at “E” andmoved to “D”. Some local changes in the snow cover take place at
“F”. This short analysis highlights the potential of surface approximation to analyse
deformation with application for geomorphological analysis. We refer to [And21]
for an example based on the noisy and scattered point clouds.
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Fig. 6.23 The situation at 11 PM (a) and 5 AM (b) at August 20th visualized as surfaces

Fig. 6.24 The difference between the situation at 11 PM and 5 AM at August 20th visualized
as a surface with associated contour curves for every 25th cm between −5 and 5m, green curves
represent negative levels, red curves positive and black the zero level

6.5 Conclusion

We have presented a local adaptive refinement strategy to approximate efficiently
scattered and noisy point clouds from TLS. Prominent applications are deformation
analysis or monitoring, without having to manipulate or filter a huge amount of
data. To that end, we have used LR B-spline surfaces, which were shown to be
well adapted to fitting terrains and seabeds. This approach refines the point clouds
locally, avoiding the computation of unnecessary surface coefficients: the output
is a compact surface in a short amount of time. This mathematical representation is
favorable for further analysis of the point cloud; the noise is filtered out, and voids can
be handled efficiently with CAD techniques such as trimming. The approximation
method is based on a combination of LS, to which a smoothing term can be added in
the first iteration steps, and MBA. Outliers are to be eliminated prior to the surface
approximation. A classification can be performed in advance to eliminate, e.g., trees
or cars if only the ground is of interest for deformation analysis.
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We have applied the algorithm to TLS point clouds recorded in the Alpine region
in Austria. The domain under consideration was scanned every two hours during
three consecutive days. This large amount of data allows a visualization of change
pattern from the mathematical approximations, without having to manipulate the
original point clouds. To that end, we have introduced the LR B-spline volume
and its derivative as a possibility to visualize spatio-temporal changes. The story of
the point clouds could be guessed, paving the way for new applications of surface
approximation within a GIS context. We have used images inspired by medical
applications to visualize and analyse geomorphological changes. These examples
highlight the potential of combining different visualization techniques to extract
spatio-temporal information from a high number of point clouds.

The source codes to perform the approximation with bivariate (lrsplines2D) and
trivariate (lrsplines3D) LR B-splines are made available by SINTEF Digital, Depart-
ment of Mathematics and Cybernetics for downloading at the link:
https://github.com/SINTEF-Geometry/GoTools.

The hardware requirements are Windows, Linux or MacOS. The program lan-
guage is C++. Following software are required: Cmake, Boost, Qt for the viewer
used to visualize the approximated surfaces in this chapter.

1 Appendix: Contour Curves

In Fig. 6.24, we showed contour curves corresponding to the underlying surface.
The calculation of contour curves is supported in all GIS systems. For LR B-spline
surfaces, contour curves are curves where the value of the spline function is constant.

To compute the contour curves,we search for curves fa(t) = ( f1(t), f2(t))T ∈ R2

such that F( f1(t), f2(t)) = a for an LR B-spline surface F and an elevation value a.
To that end, we split the LR B-spline surface into a number of TP B-spline surfaces.
The division into TPB-spline surfaces is performed by a recursive algorithm. At each
level, we consider how the current surface can be split by extending one meshline to
cover the entire surface domain. The candidate meshline must contain T-joints, i.e.,
at least one meshline in the other parameter direction must end at this meshline. The
number of surface elements overlapping themeshline extension should beminimized
and at the same time the meshline should divide the current surface into two surfaces
with roughly the same number of knots. The balance between the two criteria varies
throughout the recursion levels. When an appropriate split is found, the algorithm
proceeds to look for splits in the two sub-surfaces. The splitting algorithm stopswhen
no sub-surface contains more meshlines that don’t traverse the surface domain than
a given threshold. Each sub-surface is expanded to a TP B-spline surface by adding
missing mesh line segments.

Figure6.25 illustrates the division of the difference surface presented in Sect. 6.4.3
into TP B-spline surfaces. Our aim is to study the computation of contour curves
with zero height with some detail.

We use the interrogation functionality of SINTEF’s spline library, SISL [Dok21]
on each sub surface after the LR B-spline surface is split into TP B-spline surfaces.

https://github.com/SINTEF-Geometry/GoTools
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Fig. 6.25 Division of LR B-spline surface into a set of TP B-spline surfaces. a the initial surface, b
the collection of TP B-spline surfaces distinguished by colour, the trimming curves corresponding
to the LR B-spline surface are shown in black, c the LR mesh corresponding to the surface in a, d
the mesh corresponding to the collection of TP B-spline surfaces
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Fig. 6.26 Computation of contour curves. a Complete set of contour curves with elevation zero
(blue curves), one TP B-spline surface is highlighted for further study, b guide points from the first
part of the computation (red) with connections between them, c points generated by tracing the
contour curves (green) and the final curves

The contouring problem corresponds to computation of intersections between a para-
metric spline surface and an algebraic surface, a problem that is discussed in [Pat02].

The applied algorithm can be divided into three parts:

1. Divide the LR B-spline surface into a set of TP B-spline surfaces
2. For each value a and each TP B-spline surface:

(a) Compute the topology of the contour curves using SISL. This is a recursive
algorithm that finds a set of “guide points” on each curve branch.

(b) Trace each identified curve branch starting from an identified “guidepoint”.
Represent the curves traced out as spline curves.

3. For each value a, combine sub curves from different TP B-spline surfaces into
contour curves for the entire LR B-spline surface.

An LR B-spline surface approximating an area with large shape variations will
contain many details, which again will lead to a complex pattern of contour curves.
Efficiency and robustness of the algorithm is reached through good interception
methods and a clever strategy for dividing the surface into subsets. A discussion on
subdivision strategies for surface intersections can be found in [Dok07]. A general
rule is to subdivide at singularities and internal in closed loops. A complex situation
leads to more subdivisions and consequently more guide points.

Figure6.26 illustrates the computation of the contour curves. The red guide points
in (b) are found at boundaries between sub surfaces. In such a complex situation,
several recursion levels are required to be able to separate the different branches
of the contours and ensure that no more closed contour curves exist. The last sub
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surface domain is shown in the upper right corner of the picture. All coefficients of
the corresponding TP B-spline surface are negative. Thus, there is no possibility of
a contour curve in this area and the computation can be finalized.

Given information about all contour curve branches in the area of interest, the
curves can be drawn. Here the objective is to describe the curve with sufficiently
accuracy, handle sharp turns in the curve and avoid jumping to a different contour
curve. A marching procedure is applied. Given one point on the curve, a guess for
the next point is made. The new point is moved to the contour curve and the segment
between the two points is checked for consistence. The distance between the points
is diminished if necessary. Figure6.26c shows the tracing results. The density of the
points is increased at sharp corners andwhen two curves pass within a small distance.
Fragments of the contour curves are computed separately for each sub surface and
the final step is to merge curve fragments across subset boundaries.
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Chapter 7
Conclusion

In this SpringerBrief, we went through the mathematical concepts of LR B-splines in
all its facets, explaining in details how the spline space can be refined and the different
strategies for adaptive approximation. Through detailed example with seabed and
terrain data sets, we have highlighted how adaptive surface approximation of various
noisy and scattered point clouds is performed concretely. We showed how to deal
with challenges raised when working with real data set such as voids or outliers.
We presented numerous applications that can be derived from ”transforming data to
information”. More specifically, we reviewed:

1. How adaptive local refinement can be performed by combining multi-level B-
spline approximation and least squares with a low computational burden,

2. How parameters such as tolerance, number of iterations of the algorithm, and
refinement strategies affect the surface approximation,

3. How statistical concepts can be used to judge the goodness of fit and determine
parameters of the surface approximation, such as the tolerance, or the bidegree
of the splines space,

4. How outliers can be removed efficiently and how to fuse data from different
sources to perform efficient surface approximation,

5. How voids can be handled by applying trimming,
6. The potential of LR volumes for spatio-temporal analysis of point clouds,
7. The computation of contour lines from the mathematical approximations as an

additional application.

We have illustrated the principle of surface approximation with various examples,
using data from terrestrial laser scanner, sonar, and terrain or seabed data set.We have
proposed the LR B-spline surface and volume as a new and promising format for
representing noisy and scattered point clouds in a compact form. This approximation
method provides a middle road between the rigid, but effective regularity of the
raster format and the large flexibility of triangulated surfaces. LR B-spline surfaces
are smooth and can, due to their adaptive potential, represent local detail without a
drastic increase in data size. For point clouds coming from sensors having a very
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high data rate and containingmillions of points, the computational time of the surface
approximation stays manageable: This is a strong argument for a wide acceptance of
the local iterative fitting to represent scattered and noisy data mathematically. The
surfaces can be exported as rasters in various resolutions as well as collections of
tensor product spline surfaces. All software are freely available to promote usage.

7.1 A Promising Application: The LR B-Spline Volume
for Spatio-temporal Analysis of Geomorphological
Changes

The analysis of spatio-temporal deformation is one of the most promising applica-
tions of LR B-spline surfaces and volumes. These latter will provide a framework
for analysing geomorphological changes without having to work on noisy and scat-
tered point clouds of different quality, coming from different sensors. Detecting and
analysing the movements of, e.g., sand dunes and snow masses is a potential use
of LR B-spline volumes to gain a better understanding in the underlying geophys-
ical processes. Similar applications are conceivable within the context of geodetic
deformation analysis of structures, such as tunnels or dams. Advanced methods
could take features such as extremal points, ridges and valleys into account. Outliers
should be efficiently identified during the computation of the approximating surface
and removed during the iterative algorithm presented. The outlier problematic is an
important topic for further work and has been addressed in the present SpringerBrief.

7.2 Ongoing Research

Ongoing research focuses on identifying themost optimal surface. New criteria could
be investigated to judge the quality of the approximation by accounting for the sen-
sor noise, setting a tolerance and a stop criterion for the number of iterations in the
approximation algorithm. We have introduced this challenge within the context of
model selection, but alternative strategies should be developed. They could depend
on the application at hand, as a balance between computational time, needed accuracy
of the surface and overfitting avoidance. The detection and analysis of deformation
or changes between two or more surface approximations or inside an LR B-spline
volume remain an open topic, for which the definition of distance between mathe-
matical surfaces should be further investigated. This latter should account for both
the uncertainty of the measurements and the surface/volume approximation.

Last but not least, we expect that the capacity of LIDAR and sonar type data
acquisition technology will continue to grow in the next decades. This makes in
even more urgent to turn the enormous more or less structured point clouds into
mathematically structured information that canbe efficient interrogated and analysed.
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We believe that representations that allow the granularity of the representation to
adapt to the local behaviour of the underlying information intrinsic in point clouds
are essential in this respect.
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