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Preface

This book was based on a set of lecture notes originally written for the book A
Primer on Scientific Programming with Python by Hans Petter Langtangen
[14], mainly covering topics from Appendices A, C, and E. To provide a more
comprehensive overview of state-of-the art solvers for ordinary differential
equations (ODEs), the notes have been extended with additional material on
implicit solvers and automatic time-stepping methods. The main purpose of
the notes is to serve as a concise and gentle introduction to solving differential
equations in Python, specifically for the course Introduction to programming
for scientific applications (IN1900, 10 ETCS credits) at the University of
Oslo. These notes will be most useful for readers with a basic knowledge
of Python and NumPy, see for instance [16], and it is also useful to have a
fundamental understanding of ODEs.

One may question the usefulness of learning how to write your own ODE
solvers in Python when there are already multiple solvers available, such as
those in the SciPy library. However, no single ODE solver is universally opti-
mal and efficient for all ODE problems, and the choice of solver should always
be based on the specific characteristics of the problem at hand. To make the
right choice, it is extremely beneficial to understand the strengths and weak-
nesses of different solvers, and the best way to gain this knowledge is by
programming your own collection of ODE solvers. Different ODE solvers are
conveniently grouped into families and hierarchies, offering an excellent ex-
ample of how object-oriented programming (OOP) can maximize code reuse
and minimize duplication.

The book’s presentation style is compact and pragmatic, incorporating
numerous code examples to illustrate how various ODE solvers can be imple-
mented and applied in practice. The complete source code for all examples,
as well as Jupyter notebooks for each chapter, are provided in the accom-
panying online resources. The programs and code examples are written in
a simple and compact Python style, avoiding the use of advanced tools and
features. Experienced Python programmers may find more elegant and mod-
ern solutions to many of the examples, utilizing abstract base classes, type

vii



viii Preface

hints, data classes, and other advanced features. However, the book’s main
goal is to introduce the fundamentals of ODE solvers and OOP as part of an
introductory programming course, and we believe this purpose is best served
by focusing on the basics.

Readers familiar with scientific computing or numerical software may also
miss a discussion of computational performance. While performance is cer-
tainly relevant when solving ODEs, optimizing the performance of a Python-
based solver easily becomes quite technical, and requires features like just-in-
time compilers (e.g., Numba) or mixed-language programming. The solvers
in this book use fairly basic features of Python and NumPy, sacrificing some
performance in favor of enhancing understanding of solver properties and
implementation.1

The book is organized as follows: Chapter 1 introduces the forward Euler
method, serving as a foundation for understanding the principles underlying
all the methods covered later. It introduces the notation and mathematical
formulation used throughout the book for scalar ODEs and systems of ODEs,
and is essential reading for those with limited prior experience with ODEs and
ODE solvers. Additionally, it briefly explains how to use the ODE solvers from
the SciPy library. Readers already familiar with the fundamentals of the for-
ward Euler method and its implementation may consider proceeding straight
to Chapter 2, which presents explicit Runge-Kutta methods. The chapter
introduces the fundamental ideas of these methods, but the main focus is
on the implementation and how a collection of ODE solvers is conveniently
implemented as a class hierarchy. Chapter 3 introduces stiff ODEs, presents
techniques for performing simple stability analysis of Runge-Kutta methods,
and introduces implicit Runge-Kutta methods. The majority of the chapter is
dedicated to the programming of these solvers, which exhibit better stability
properties than explicit methods and are therefore more suitable for solving
stiff ODEs. Chapter 4 concludes the presentation of ODE solvers by introduc-
ing methods for adaptive time step control, which is an essential component
of all modern ODE software. Chapter 5 takes a different approach from the
preceding chapters, as it focuses on a specific class of ODE models rather than
a set of solvers. While the simpler ODE problems discussed in earlier chap-
ters serve the purpose of introducing and testing the solvers, it is valuable to
explore more complex ODE models in order to appreciate both the potential
and the challenges of modeling with ODEs. As an example, the chapter exam-
ines the famous Kermack-McKendrick SIR (Susceptible-Infected-Recovered)
model from epidemiology. These classic models were developed in the early
1900s (see [12]) and remain fundamental for predicting and understanding
the spread of infectious diseases. We describe the derivation of the models
from a set of fundamental assumptions, and discuss the implications and lim-
itations resulting from these assumptions. The main focus of the chapter is
then on modifying and extending the models to capture new phenomena, and

1Complete source code for all the solvers and examples in the book can be found
here: https://sundnes.github.io/solving_odes_in_python/
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demonstrating how these changes can be implemented and explored using the
solvers developed in preceding chapters.

Finally, while the main focus of the text is on differential equations, Ap-
pendix A is dedicated to the related topic of difference equations. Differ-
ence equations have important applications on their own and may serve as
a stepping stone towards understanding and solving ODEs, since numerical
methods for ODEs essentially involve transforming differential equations into
difference equations. The standard formulation of difference equations found
in mathematical textbooks is already well-suited for computer implemen-
tation, using for-loops and arrays. Some students find difference equations
easier to grasp than differential equations, making Appendix A a useful re-
source to begin with. However, others may prefer to dive straight into ODEs
and explore Appendix A at a later stage.

July 2023 Joakim Sundnes
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Chapter 1
Programming a Simple ODE Solver

Ordinary differential equations (ODEs) are widely used in science and en-
gineering, particularly when it comes to modeling dynamic processes. Al-
though analytical methods can be employed to solve simple ODEs, nonlinear
ODEs typically require numerical methods for solutions. In this chapter we
demonstrate how to program general numerical solvers capable of handling
any ODE. Initially we will focus on scalar ODEs, which consist of a single
equation and a single unknown. Subsequently, in Section 1.3, we will extend
these concepts to systems of coupled ODEs. Acquiring a solid grasp of the
concepts presented in this chapter will not only help you with programming
your own ODE solvers but also in using a diverse range of readily available,
general-purpose ODE solvers in Python or other programming languages.

1.1 Creating a General-Purpose ODE Solver

When solving ODEs analytically, one typically considers a specific ODE or a
class of ODEs and attempts to derive a formula for the solution. However, in
this chapter, our goal is to implement numerical solvers that can be applied
to any ODE, without being limited to a single example or a specific class
of equations. To achieve this, we need a general abstract notation for an
arbitrary ODE. We will write the ODEs on the following form:

u′(t) = f(t,u(t)), (1.1)

which means that the ODE is fully specified by the definition of the right-
hand side function f(t,u). Examples of this function may be:

1© The Author(s) 2024
J. Sundnes, Solving Ordinary Differential Equations in Python,
Simula SpringerBriefs on Computing 15,
https://doi.org/10.1007/978-3-031-46768-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46768-4_1&domain=pdf


2 1 Programming a Simple ODE Solver

f(t,u) = αu, exponential growth

f(t,u) = αu
(

1− u

R

)
, logistic growth

f(t,u) =−b|u|u+g, falling body in a fluid

Notice that, for the sake of generality, we write all the right-hand sides of
the ODEs as functions of both t and u, even though the mathematical for-
mulations only involve u. This general formulation is not strictly necessary
in the mathematical equations, but it proves to be highly convenient when
we start programming and want to use the same solver for a diverse range of
ODE models. We will delve into this topic in greater detail later. Now, our
objective is to write functions and classes that accept the function f as input
and solve the corresponding ODE to generate the output u.

To ensure a unique solution for (1.1), it is necessary to specify the initial
condition for u. This initial condition corresponds to the value of the solution
at a specific time t= t0. The resulting mathematical problem can be expressed
as

u′(t) = f(t,u(t)),
u(t0) = u0,

and is commonly referred to as an initial value problem, or simply an IVP.
Every ODE problem discussed in this book is an initial value problem. To
illustrate, let us consider the very simple ODE

u′ = u.

This general solution of this equation is given by u(t) =Cet for any constant
C, implying that there exist an infinite number of solutions. However, by
specifying an initial condition u(t0) = u0, we get C = u0 and the unique
solution u(t) = u0e

t. When solving the equation numerically, it is necessary
to define the initial condition u0 in order to start our method and compute
a solution at all.

A Simple and General Solver: the Forward Euler Method. A numer-
ical method for (1.1) can be derived by using a finite difference approximation
for the derivative in the equation u′ = f(t,u). To introduce this idea, let us
assume that we have already computed u at discrete time points t0, t1, . . . , tn.
At time tn we have the ODE

u′(tn) = f(tn,u(tn)),

and we can now approximate u′(tn) with a forward finite difference:

u′(tn)≈ u(tn+1)−u(tn)
∆t

.
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By inserting this approximation into the ODE at t = tn, we obtain the fol-
lowing equation

u(tn+1)−u(tn)
∆t

= f(tn,u(tn)),

and we can rearrange the terms to obtain an explicit formula for u(tn+1):

u(tn+1) = u(tn)+∆tf(tn,u(tn)).

This method, known as the Forward Euler (FE) method or the Explicit Euler
method, is the simplest numerical method for solving an ODE. The terms
forward and explicit refer to the fact that we have an explicit update formula
for u(tn+1) that only involves known quantities at time tn. In contrast, an
implicit ODE solver would have an update formula that includes terms like
f(tn+1,u(tn+1)), requiring the solution of a generally nonlinear equation to
determine the unknown u(tn+1). We will explore other explicit ODE solvers
in Chapter 2 and implicit solvers in Chapter 3.

To simplify the formula, we introduce the notation un = u(tn), i.e., we let
un represent the numerical approximation to the exact solution u(t) at t= tn.
With this notation, the update formula reads

un+1 = un+∆tf(tn,un), (1.2)

which, if we know the u0 at time t0, can be applied repeatedly to u1, u2, u3
and so forth. If we again consider the very simple ODE given by u′ = u (i.e.,
f(t,u) = u), we have

u1 = u0 +∆tu0,

u2 = u1 +∆tu1,

u3 = u2 + . . . ,

and the general update formula

un+1 = un+∆tun = (1+∆t)un.

In a Python program, the repeated application of the same formula can be
conveniently implemented using a for-loop, and the solution can be stored
in a list or a NumPy array. If you are unfamiliar with NumPy arrays and
their usage, we recommend referring to [16], which provides an introduction
to NumPy arrays and tools that will be extensively used through this book.
To solve the ODE numerically, given a final time T and the number of time
steps N , we can follow these steps:

1. Create arrays t and u of length N +11

2. Set initial condition: u[0] = u0, t[0] = 0

1For N time steps, the length of the arrays needs to be N +1 since we need to store
both end points, i.e., t0, t1, . . . , tn and u0,u1, . . . ,un.
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3. Compute the time step ∆t dt = T/N
4. For n= 0,1,2, . . . ,N −1:

• t[n + 1] = t[n] + dt
• u[n + 1] = (1 + dt) * u[n]

A complete Python implementation of this algorithm may look like

import numpy as np
import matplotlib.pyplot as plt

N = 20
T = 4
dt = T/N
u0 = 1

t = np.zeros(N + 1)
u = np.zeros(N + 1)

u[0] = u0
for n in range(N):

t[n + 1] = t[n] + dt
u[n + 1] = (1 + dt) * u[n]

plt.plot(t, u)
plt.show()

Notice that there is no need to set t[0]= 0 when t is created in this way,
but it is important to update u[0]. Forgetting to do so is a common error
in ODE programming, so it is worth taking note of the line u[0] = u0. The
solution is shown in Figure 1.1 for two different choices of the time step ∆t.
As observed, the approximate solution improves as ∆t is reduced, although
both the solutions deviate from the exact solution. However, reducing the
time step further would easily yield a solution that is indistinguishable from
the exact solution.

The for-loop in the aforementioned example could also be implemented
differently, for instance

for n in range(1, N+1):
t[n] = t[n - 1] + dt
u[n] = (1 + dt) * u[n - 1]

Here, the index n runs from 1 to N, and all the indices inside the loop have
been decreased by one to achieve the same outcome. In this simple case, it
is easy to verify that both loop formulations give the same result. However,
mixing up the two formulations can easily lead to errors, such as a loop that
exceeds the array bounds (resulting in an IndexError) or a loop where the
last elements of t and u are not computed. Although these errors may appear
trivial, they are common pitfalls when working with for-loops and it is good
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practice to always examine the loop formulation to ensure consistent use of
indices and bounds.

Fig. 1.1 Solution of u′ = u,u(0) = 1 with ∆t= 0.4 (N = 10) and ∆t= 0.2 (N = 20).

Extending the Solver to the General ODE. As mentioned earlier, the
goal of this chapter is to develop general-purpose ODE solvers capable of
solving any ODE expressed in the form u′ = f(t,u). Achieving this requires
only a slight modification of the algorithm presented above:

1. Create arrays t and u of length N +1
2. Set initial condition: u[0] = u0, t[0]=0
3. For n= 0,1,2, . . . ,N −1:

• t[n + 1] = t[n] + dt
• u[n + 1] = u[n] + dt * f(t[n], u[n])

The modified version of the algorithm only requires a small change in the
formula for computing u[n+1] from u[n]. In the previous case we had
f(t,u) = u, and to create a general-purpose ODE solver we simply replace
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u[n] with the more general f(t[n],u[n]). The following Python function
implements this generic version of the FE method:2

import numpy as np

def forward_euler(f, u0, T, N):
"""Solve u’=f(t, u), u(0)=u0, with n steps until t=T."""
t = np.zeros(N + 1)
u = np.zeros(N + 1) # u[n] is the solution at time t[n]

u[0] = u0
dt = T / N

for n in range(N):
t[n + 1] = t[n] + dt
u[n + 1] = u[n] + dt * f(t[n], u[n])

return t, u

This simple function can solve any ODE expressed in the form (1.1). The
right-hand side function f(t,u) must be implemented as a Python function,
which is then passed as an argument to forward_euler, along with the initial
condition u0, the stop time T and the number of time steps N. Inside the
function, the time step dt is calculated using T and N.

To illustrate the usage of the forward_euler function, let us apply it to
solve the same problem as before: u′ = u, with the initial condition u(0) = 1,
for t ∈ [0,4]. The following code uses the forward_euler function to solve
this problem:

def f(t, u):
return u

u0 = 1
T = 4
N = 30
t, u = forward_euler(f, u0, T, N)

The forward_euler function returns two arrays, t and u, which can be fur-
ther processed or plotted as desired. An important aspect to note in this code
is the definition of the right-hand side function f. As mentioned earlier, this
function should always be written with two arguments, t and u, although in
this case only u is used inside the function. The inclusion of both arguments
is necessary because we want our solver to be applicable for all ODEs in the
form u′ = f(t,u). Therefore, inside the forward_euler function, the f func-
tion is called as f(t[n], u[n]). If the right-hand side function were defined
as a function of u only, i.e., using def f(u):, an error would occur when

2The source code for this function, as well as all subsequent solvers and examples,
can be found here: https://sundnes.github.io/solving_odes_in_python/
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calling the function inside forward_euler. To avoid this issue, we simply
write def f(t,u): even if t is not used inside the function.3

For being only 15 lines of code, the capabilities of the forward_euler
function are quite remarkable. Using this function, we can solve any kind of
linear or nonlinear ODE, most of which would be impossible to solve using
analytical techniques. To use this function, follow these general steps:

1. Identify f(t,u) in your ODE
2. Make sure you have an initial condition u0
3. Implement the f(t,u) formula in a Python function f(t, u)
4. Choose the number of time steps N
5. Call t, u = forward_euler(f, u0, T, N)
6. Plot the solution

It is important to note that the FE method is the simplest of all ODE solvers,
and many will argue that it is not very good. This is partly true, there
exist other methods that offer greater accuracy and stability when applied to
challenging ODEs. As we will see later, numerical solutions obtained using
the FE method may not only be inaccurate, as depicted in Figure 1.1, but
can also diverge or exhibit instability. In Chapter 3, we will explore solvers
that address such issues by providing improved stability. However, the FE
method is quite suitable for solving a wide range of interesting ODEs. If we
are not happy with the accuracy we can simply reduce the time step, and in
most cases this will give the accuracy we need with a negligible increase in
computational time.

1.2 The ODE Solver Implemented as a Class

We can increase the flexibility of the forward_euler solver function by im-
plementing it as a class. There are many ways to implement such a class, but
one possible usage can be as follows:

method = ForwardEuler_v0(f)
method.set_initial_condition(u0)
t, u = method.solve(t_span=(0, 10), N=100)
plot(t, u)

The benefits of using a class instead of a function may not be obvious at this
point, but it will become clear when we introduce different ODE solvers later.
For now, let us just look at how such a solver class can be implemented to
support the specified use case:

3This way of defining the right-hand side is a standard used by most available ODE
solver libraries, both in Python and other languages. The right-hand side function always
takes two arguments t and u, but, annoyingly, the order of the two arguments varies
between different solver libraries. Some expect the t argument first, while others expect
u first.
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• The class should have a constructor (__init__) that accepts a single ar-
gument, the right-hand side function f, and stores it as an attribute.

• A method called set_initial_condition is required, which takes the
initial condition as argument and stores it.

• The class should have a solve-method that takes the time interval t_span
and number of time steps N as arguments. This method implements the
for-loop for solving the ODE and returns the solution, similar to the
forward_euler function we presented earlier.

• The time step ∆t and the sequences tn, un must be initialized in one of the
methods, and it may also be convenient to store these as attributes. Since
the time interval and the number of steps are arguments to the solve
method, it is natural to perform these operations there.

In addition to the mentioned methods, it can be convenient to implement
a separate method, for instance called advance, for advancing the solution
one time step. This approach simplifies the implementation of new numerical
methods, as we often only need to modify the advance method. A first version
of the solver class can be implemented as follows:

import numpy as np
class ForwardEuler_v0:

def __init__(self, f):
self.f = f

def set_initial_condition(self, u0):
self.u0 = u0

def solve(self, t_span, N):
"""Compute solution for t_span[0] <= t <= t_span[1],
using N steps."""
t0, T = t_span
self.dt = T / N
self.t = np.zeros(N + 1) # N steps ~ N+1 time points
self.u = np.zeros(N + 1)

msg = "Please set initial condition before calling solve"
assert hasattr(self, "u0"), msg

self.t[0] = t0
self.u[0] = self.u0

for n in range(N):
self.n = n
self.t[n + 1] = self.t[n] + self.dt
self.u[n + 1] = self.advance()

return self.t, self.u

def advance(self):
"""Advance the solution one time step."""
# Create local variables to get rid of "self." in
# the numerical formula
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u, dt, f, n, t = self.u, self.dt, self.f, self.n, self.t
return u[n] + dt * f(t[n], u[n])

This class performs the same tasks as the forward_euler function mentioned
earlier, with the main advantage of the class implementation being the en-
hanced flexibility provided by the advance method. As we shall see later,
implementing a different numerical method typically only requires imple-
menting a new version of this method, leaving the rest of the code unchanged.
An additional improvement in the class implementation is the inclusion of an
assert statement within the solve method. This statement verifies that the
user has called set_initial_condition before calling solve. Forgetting to
do so is a common mistake, and the assert statement ensures that a useful
error message is raised rather than a less informative AttributeError.

We can also use a class to represent the right-hand side function f(t,u),
which is particularly convenient for functions with parameters. Consider, for
instance, the model for logistic growth:

u′(t) = αu(t)
(

1− u(t)
R

)
, u(0) = u0, t ∈ [0,40],

which is typically used to model self-limiting growth of a biological pop-
ulation, i.e., growth that is constrained by limited resources. Initially, the
growth follows an approximately exponential pattern with growth rate α.
As the population size approaches the carrying capacity R, the population
curve flattens out, see Figure 1.2 for an example solution. The right-hand
side function includes two parameters α and R, but if we want to solve this
model using the FE function or class, the function must be implemented as
a function of t and u only. There are several ways to achieve this in Python,
but a convenient approach is to implement the function as a class with a call
method.4 We can then define the parameters as attributes in the constructor
and use them within the __call__ method:

class Logistic:
def __init__(self, alpha, R):

self.alpha, self.R = alpha, float(R)

def __call__(self, t, u):
return self.alpha * u * (1 - u / self.R)

The main program for solving the logistic growth problem may now look like:

problem = Logistic(alpha=0.2, R=1.0)
solver = ForwardEuler_v0(problem)
u0 = 0.1
solver.set_initial_condition(u0)
t, u = solver.solve(t_span=(0, 40), N=400)

4Recall that if we equip a class with a special method named __call__, instances of
the class will be callable and will behave like regular Python functions. See, for instance,
Chapter 8 of [16] for a brief introduction to __call__ and other special methods.
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Fig. 1.2 Solution of the logistic growth model.

1.3 Systems of ODEs

Up until now, our focus has been on solving ODEs with a single solution
component, commonly know as scalar ODEs. However, many interesting pro-
cesses can be described by systems of ODEs, which consist of multiple ODEs
where the right-hand side of one equation depends on the solution of the oth-
ers. Such equation systems are also referred to as vector ODEs. One simple
example is

u′ = v, u(0) = 1
v′ =−u, v(0) = 0.

The solution of this particular system is u = cos t,v = sin t, which can be
easily verified by inserting the solution into the equations and the initial
conditions. For more general cases, it is usually even more difficult to find
analytical solutions of ODE systems than of scalar ODEs, and numerical
methods are usually necessary. In this section we will extend the solvers



1.3 Systems of ODEs 11

introduced in sections 1.1-1.2 to handle systems of ODEs. We shall see that
such an extension requires relatively small modifications of the code.

Our goal is to develop general software capable of solving any vector ODE
or scalar ODE. To achieve this, it is helpful to introduce some general math-
ematical notation. We have m unknowns

u(0)(t),u(1)(t), . . . ,u(m−1)(t)

in a system of m ODEs:

d

dt
u(0) = f (0)(t,u(0),u(1), . . . ,u(m−1)),

d

dt
u(1) = f (1)(t,u(0),u(1), . . . ,u(m−1)),

... =
...

d

dt
u(m−1) = f (m−1)(t,u(0),u(1), . . . ,u(m−1)).

To simplify the notation (and later the implementation), we can collect both
the solutions u(i)(t) and right-hand side functions f (i) into vectors;

u= (u(0),u(1), . . . ,u(m−1)),

and
f = (f (0),f (1), . . . ,f (m−1)).

Note that f is now a vector-valued function. It takes m+1 input arguments
(t and the m components of u) and returns a vector of m values. Using this
notation, the ODE system can be written

u′ = f(t,u), u(t0) = u0,

where u and f are now vectors and u0 is a vector of initial conditions. We ob-
serve that the notation used for scalar ODEs remains the same, and whether
we are solving a scalar or system of ODEs is determined by how we define
f and the initial condition u0. This general notation is commonly employed
in ODE textbooks, and we can easily make the Python implementation just
as general. The use of NumPy arrays and vectorized computations greatly
simplifies the generalization process and enhances the efficiency of our ODE
solvers.
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1.4 A ForwardEuler Class for Systems of ODEs

The ForwardEuler_v0 class above was written for scalar ODEs, and we now
want to modify it to handle a system of equations: u′ = f , u(0) = u0, where u,
f and u0 are vectors (arrays). To identify how the code needs to be changed,
let us first revisit the underlying numerical method. Using the general nota-
tion introduced earlier, when we apply the FE method to a system of ODEs,
the update formula looks exactly the same as in the scalar case, but with all
the terms being vectors:

uk+1︸ ︷︷ ︸
vector

= uk︸︷︷︸
vector

+∆t f(uk, tk)︸ ︷︷ ︸
vector

.

We could also write this formula in terms of the individual components, as
in

u
(i)
k+1 = u

(i)
k +∆tf (i)(tk,uk), for i= 0, . . . ,m−1,

but the compact vector notation is more readable. Fortunately, the way we
write the vector version of the formula is also how NumPy arrays are used
in calculations. The Python code for the formula above may therefore look
identical to the version for scalar ODEs:

u[k + 1] = u[k] + dt * f(t[k], u[k])

with the crucial difference that both u[k], u[k+1], and f(t[k], u[k]) are
now arrays.5 Since these are arrays, the solution u must be a two-dimensional
array, and u[k],u[k+1], etc. are the rows of this array. The function f expects
an array as its second argument, and must return a one-dimensional array
containing all the right-hand sides f (0), . . . ,f (n−1). To gain a better feel for
how these arrays look and how they are used, let us compare the array holding
the solution of a scalar ODE with that of a system of two ODEs. For the scalar
equation, both t and u are one-dimensional NumPy arrays, and indexing into
u gives us numbers representing the solution at each time step. For instance,
in an interactive Python session we may have arrays t and u with the following
contents:

>>> t
array([0. , 0.4, 0.8, 1.2, ... ])
>>> u
array([1. , 1.4, 1.96, 2.744, ... ])

and indexing into u then gives

>>> u[0]
1.0

5This compact notation requires that the solution vector u is represented by a NumPy
array. We could, in principle, use lists to hold the solution components, but the resulting
code would need to loop over the components and would be far less elegant and readable.
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>>> u[1]
1.4

In the case of a system of two ODEs, the array t remains one-dimensional,
but the solution array u becomes two-dimensional, with one column for each
solution component. We can index it in the same way as described earlier,
and the result is a one-dimensional array of length two, containing the two
solution components at a specific time step:

>>> u
array([[1.0, 0.8],

[1.4, 1.1],
[1.9, 2.7],
... ])

>>> u[0]
array([1.0, 0.8])
>>> u[1]
array([1.4, 1.1])

Equivalently, we could write

>>> u[0,:]
array([1.0, 0.8])
>>> u[1,:]
array([1.4, 1.1])

to make explicit which of the two array dimensions (or axes) that we are
indexing into.

The similarity between the generic mathematical notation for vector and
scalar ODEs, as well as the convenient algebra of NumPy arrays, suggests
that the implementation of the solver for scalar and system ODEs can be very
similar. Indeed, this is true, and the ForwardEuler_v0 class introduced earlier
can be modified with a few minor adjustments to work for ODE systems:

• Ensure that f(t,u) always returns an array.
• Inspect the initial condition u0 to determine if it is a single number (scalar)

or a list/array/tuple. Based on this, create the array u as either a one-
dimensional or two-dimensional array.6

If these two aspects are handled and initialized correctly, the remaining code
from Section 1.2 will work without any modifications.

The extended class implementation may look like:

import numpy as np

class ForwardEuler:
def __init__(self, f):

self.f = lambda t, u: np.asarray(f(t, u), float)

6This step is not strictly needed, since we could use a two-dimensional array with
shape (N + 1, 1) for scalar ODEs. However, using a one-dimensional array for scalar
ODEs gives simpler and more intuitive indexing.
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def set_initial_condition(self, u0):
if np.isscalar(u0): # scalar ODE

self.neq = 1 # no of equations
u0 = float(u0)

else: # system of ODEs
self.neq = u0.size # no of equations
u0 = np.asarray(u0)

self.u0 = u0

def solve(self, t_span, N):
"""Compute solution for
t_span[0] <= t <= t_span[1],
using N steps."""
t0, T = t_span
self.dt = (T - t0) / N
self.t = np.zeros(N + 1)
if self.neq == 1:

self.u = np.zeros(N + 1)
else:

self.u = np.zeros((N + 1, self.neq))

msg = "Please set initial condition before calling solve"
assert hasattr(self, "u0"), msg

self.t[0] = t0
self.u[0] = self.u0

for n in range(N):
self.n = n
self.t[n + 1] = self.t[n] + self.dt
self.u[n + 1] = self.advance()

return self.t, self.u

def advance(self):
"""Advance the solution one time step."""
u, dt, f, n, t = self.u, self.dt, self.f, self.n, self.t
return u[n] + dt * f(t[n], u[n])

It is worth commenting on certain parts of this code. First, the constructor
is almost identical to the scalar case, but we use a lambda function and the
convenient np.asarray function to convert any f that returns a list or tuple
into a function that returns a NumPy array. If f already returns an array,
np.asarray will simply return this array with no changes. This modification
is not strictly necessary, since we could just assume that the user implements
f to return an array. However, it enhances the robustness and flexibility of
the class. We have also used the function isscalar from NumPy in the
set_initial_condition method, to check if u0 is a single number or a
NumPy array. This allows us to determine the number of equations self.neq
and ensures the class can handle both scalar and system ODEs. The final
modification can be observed in the solve method, where the self.neq
attribute is inspected. Depending on its value, u is initialized as a one- or
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two-dimensional array with the appropriate size. The actual for-loop and the
advance method remain unchanged from the previous version of the class.

Example: ODE Model for a Pendulum. As an example, let us consider a
system of ODEs that models the motion of a simple pendulum, as illustrated
in Figure 1.3. This nonlinear system is a classic physics problem, and despite
its simplicity, it is not possible to find an exact analytical solution. The
system is formulated in terms of two main variables; the angle θ and the
angular velocity ω, see Figure 1.3. For a simple pendulum with no friction,
the dynamics of these variables are governed by

dθ

dt
= ω, (1.3)

dω

dt
=− g

L
sin(θ), (1.4)

where L denotes the length of the pendulum and g represents the gravi-
tational constant. Eq. (1.3) follows directly from the definition of angular
velocity, while (1.4) follows from Newton’s second law, where dω/dt is the
acceleration and the right-hand side is the tangential component of the grav-
itational force acting on the pendulum, divided by its mass. To solve the
system we need to define initial conditions for θ and ω, i.e., we need to know
the initial position and velocity of the pendulum.

Fig. 1.3 Illustration of the pendulum problem. The main variables of interest are the
angle θ and its derivative ω (the angular velocity).

Since the right-hand side defined by (1.3)-(1.4) includes the parameters L
and g, it is convenient to implement it as a class, similar to the logistic growth
model discussed earlier. A possible implementation may look like this:

from math import sin

class Pendulum:
def __init__(self, L, g=9.81):

self.L = L
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self.g = g

def __call__(self, t, u):
theta, omega = u
dtheta = omega
domega = -self.g / self.L * sin(theta)
return [dtheta, domega]

We observe that the function returns a list. However, this list will be auto-
matically wrapped into a function returning an array by the constructor of
the solver class, as mentioned above. The main program remains quite sim-
ilar to the examples presented earlier, with the exception that we now need
to define an initial condition with two components. Assuming that this class
definition as well as the ForwardEuler exist in the same file, the code to solve
the pendulum problem can look like this:

import matplotlib.pyplot as plt

problem = Pendulum(L=1)
solver = ForwardEuler(problem)
solver.set_initial_condition([np.pi / 4, 0])
T = 10
N = 1000
t, u = solver.solve(t_span=(0, T), N=N)

plt.plot(t, u[:, 0], label=r’$\theta$’)
plt.plot(t, u[:, 1], label=r’$\omega$’)
plt.xlabel(’t’)
plt.ylabel(r’Angle ($\theta$) and angular velocity ($\omega$)’)
plt.legend()
plt.show()

Notice that in order to extract and plot each solution component, we need to
index into the second dimension of u, using array slicing. If we were to use
the first index, such as u[0] or u[0,:], it would return an array of length two
containing the solution components at the first time point. In this specific
example, a call like plt.plot(t, u) would also work and would plot both
solution components. However, there are cases where we are interested in
plotting specific components of the solution, and in such cases, array slicing
becomes necessary. The resulting plot is shown in Figure 1.4. Additionally,
it is worth mentioning the use of Python’s raw string format for the labels,
indicated by the r in front of the string. Raw strings treat the backslash (\)
as a regular character and are often needed when using LaTeX encoding for
mathematical symbols. Furthermore, an observant reader may notice that
the amplitude of the pendulum motion appears to increase over time, which
is clearly not physically accurate. In reality, for an undamped pendulum
problem defined by equations (1.3)-(1.4), the energy is conserved, and the
amplitude should remain constant. The increasing amplitude is a numerical
artifact introduced by the FE method, and the solution may be improved by
reducing the time step or using a different numerical method.
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Fig. 1.4 Solution of the simple pendulum problem, computed with the forward Euler
method.

1.5 Checking the Error in the Numerical
Solution

Recall from Section 1.1 that we derived the FE method by approximating
the derivative using a finite difference formula:

u′(tn)≈ u(tn+1)−u(tn)
∆t

. (1.5)

This approximation obviously introduces an error, and since we approach
the true derivative as ∆t→ 0, it is intuitive that the error depends on the
size of ∆t. We visually demonstrated this relationship in Figure 1.1, but it
would be valuable to have a way of more precisely quantifying how the error
depends on the time step. Analyzing the error in numerical methods is a
broad field within applied mathematics, which we will not cover in detail
here, and the interested reader is referred to, for instance, [8]. However, when
implementing a numerical method it is very useful to know its theoretical
accuracy, and in particular to be able to compute the error and verify that
the method performs as expected.
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The Taylor expansion, which is also discussed briefly in Appendix A.4, is
an essential tool for estimating the error in numerical methods for ODEs.
For a smooth function û(t), if we can compute the function value and its
derivatives at time tn, we can approximate the value at tn +∆t using the
following series:

û(tn+∆t) = û(tn)+∆tû′(tn)+ ∆t2

2 û′′(tn)+ ∆t3

6 û′′′(tn)+O(∆t4).

We can include as many terms as we like, and since ∆t is small we always
have ∆t(n+1)�∆tn, so the error in the approximation is dominated by the
first neglected term. The update formula for the FE method, derived from
(1.5), is

un+1 = u(tn)+∆tu′(tn),

We can recognize this formula as a Taylor series truncated after the first order
term, and we expect the error |un+1− ûn+1| to be proportional to ∆x2. Since
this is the error for a single time step, the accumulated error after N ∼ 1/∆t
steps is proportional to ∆t, and the FE method is hence a first order method.
As we will see in Chapter 2, more accurate methods can be constructed by
deriving update formulas that make more terms in the Taylor expansion of
the error cancel. This process is fairly straightforward for low-order methods,
e.g., of second or third order, but it quickly gets complicated for high order
solvers, see, for instance [8] for details.

Knowing the theoretical accuracy of an ODE solver is important for a
number of reasons, including the verification of the solver implementation.
If we can solve a given problem and demonstrate that the error behaves as
predicted by the theory, we gain confidence in the correctness of our solver.
To illustrate this procedure, let us consider the simple initial value problem
introduced earlier:

u′ = u, u(0) = 1.

As stated above, the analytical solution to this problem is u= et, and we can
use this to compute the error in our numerical solution. But how should the
error be defined? There is no unique answer to this question. For practical
applications, common error measures include the root-mean-square (RMS)
or relative-root-mean-square (RRMS), which are defined by

RMSE =

√√√√ 1
N

N∑
n=0

(un− û(tn))2,

RRMSE =

√√√√ 1
N

N∑
n=0

(un− û(tn))2

û(tn)2 ,
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respectively. Here, un is the numerical solution at time step n and û(tn)
the corresponding exact solution. In more mathematically oriented texts, the
errors are usually defined in terms of norms, for instance the discrete l1, l2,
and l∞ norms:

el1 =
N∑
i=0

(|ui− û(ti)|),

el2 =
N∑
i=0

(ui− û(ti)2),

el∞ = Nmax
i=0

(ûi−u(ti)).

While the choice of error norm may be important for certain cases, it is usually
not crucial for practical applications, and all the different error measures can
generally be expected to behave as predicted by the theory. For simplicity, we
will use an even simpler error measure in our example, where we compute the
error at the final time T , given by e= |uN − û(tN )|. Using the ForwardEuler
class introduced above, the complete code for checking the convergence can
be written as follows:

from forward_euler_class_v1 import ForwardEuler
import numpy as np

def rhs(t, u):
return u

def exact(t):
return np.exp(t)

solver = ForwardEuler(rhs)
solver.set_initial_condition(1.0)

T = 3.0
t_span = (0,T)
N = 30

print(’Time step (dt) Error (e) e/dt’)
for _ in range(10):

t, u = solver.solve(t_span, N)
dt = T / N
e = abs(u[-1] - exact(T))
print(f’{dt:<14.7f} {e:<12.7f} {e/dt:5.4f}’)
N = N * 2

Most of the lines in the code are identical to the previous programs. How-
ever, we have enclosed the call to the solve method within a for loop, and
the last line ensures that the number of time steps N is doubled for each
iteration of the loop. Also, note the f-string format specifiers used, such as
{dt:<14.7f}, which specifies that the output should be a left-aligned deci-
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mal number with seven decimals, occupying a total of 14 characters. These
format specifiers ensure that the numbers are displayed as vertically aligned
columns, improving readability, which may be important for visually inspect-
ing the convergence. See, for instance, [16] for a brief introduction to f-strings
and format specifiers. The program will produce the following output:

Time step (dt) Error (e) e/dt
0.1000000 2.6361347 26.3613
0.0500000 1.4063510 28.1270
0.0250000 0.7273871 29.0955
0.0125000 0.3700434 29.6035
0.0062500 0.1866483 29.8637
0.0031250 0.0937359 29.9955
0.0015625 0.0469715 30.0618
0.0007813 0.0235117 30.0950
0.0003906 0.0117624 30.1116
0.0001953 0.0058828 30.1200

In the rightmost column we observe that the ratio of the error to the time step
remains approximately constant. This observation supports the theoretical
result that the error is proportional to ∆t. In the upcoming chapters, we will
perform similar calculations for higher order methods to verify that the error
is proportional to ∆tr, where r is the theoretical order of convergence for the
method.

To compute the error in our numerical solution, we need to determine the
true solution to our initial value problem. This task was straightforward for
the simple example above because we knew the analytical solution to the
equation. However, for more complex ODE problems, estimating the error
and the order of convergence requires a different approach. Several alter-
natives exist, including methods like the method of manufactured solutions,
where we choose a solution function u(t) and compute its derivative analyti-
cally to determine the right-hand side of the ODE. An even simpler approach,
which usually yields good results, involves computing a highly accurate nu-
merical solution using a high-order solver and small time steps. This solution
then serves as the reference for computing the error. To obtain accurate er-
ror estimates it is essential that the reference solution is significantly more
accurate than the numerical solution we want to evaluate. Generating the
reference solution typically requires very small time steps and can take some
time to compute, but in most cases the computation time for the reference
solution is not a significant issue.

1.6 Using ODE Solvers from SciPy

As mentioned in the book’s preface, there exist many ODE solvers available
for direct use, and it can be argued that there is no need to implement our
own solvers. While there is some truth to this, as we have emphasized, it can



1.6 Using ODE Solvers from SciPy 21

be beneficial to understand the inner workings of these solvers, in order to
apply and use them correctly, and the best way to obtain this knowledge is
to implement the solvers ourselves. However, when we have a specific ODE
model that we need to solve as efficiently as possible, there are several existing
solvers to choose from. For Python programmers, a natural choice may be
the solvers provided by SciPy, which have evolved into a robust and fairly
efficient suite of ODE solvers. SciPy is a comprehensive scientific software
package for Python that includes various tools for tasks such as linear algebra,
optimization, integration, and more.7 To solve initial value problems, the
recommended tool is the solve_ivp function from the integrate module
in SciPy. The following code demonstrates the use of solve_ivp with the
Pendulum class presented above to solve the simple pendulum problem defined
by (1.3)-(1.4). We here assume that the Pendulum class is stored in a separate
file named pendulum.py.

from scipy.integrate import solve_ivp
import numpy as np
import matplotlib.pyplot as plt
from pendulum import Pendulum

problem = Pendulum(L = 1)
t_span = (0, 10.0)
u0 = (np.pi/4, 0)

solution = solve_ivp(problem, t_span, u0)

plt.plot(solution.t, solution.y[0,:])
plt.plot(solution.t, solution.y[1,:])
plt.legend([r’$\theta$’,r’$\omega$’])
plt.show()

Running this code will generate a plot similar to Figure 1.5, and we ob-
serve that the solution does not appear as smooth as the one obtained from
the ForwardEuler solver introduced earlier. This seeming discrepency is due
to the nature of the solve_ivp solver, which is an adaptive solver that au-
tomatically selects the time step to meet a specified error tolerance. The
default value of this tolerance is relatively large, leading to the solver using
very few time steps and resulting in jagged-looking solution plots. Comparing
the plot with a highly accurate numerical solution, represented by the two
dotted curves in Figure 1.5, we notice that the solution at the specified time
points tn is fairly accurate. However, the visual appearance is compromised
by the linear interpolation between these time points. To obtain a more vi-
sually appealing solution, there are several approaches we can take. We may,
for instance, pass the function an additional argument t_eval, which is a
NumPy array containing the desired time points for evaluating the solution:

t_eval = np.linspace(0, 10.0, 1001)

7See https://scipy.org/

https://scipy.org/
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Fig. 1.5 Solution of the simple pendulum problem, computed with the SciPy
solve_ivp function and the default tolerance.

solution = solve_ivp(problem, t_span, u0, t_eval=t_eval)

Alternatively, we can reduce the error tolerance of the solver, for instance,
by setting

rtol = 1e-6
solution = solve_ivp(problem, t_span, u0, rtol=rtol)

This latter call will reduce the relative tolerance rtol from its default value
of 1e-3 (0.001). We could also adjust the absolute tolerance using the param-
eter atol. We will not cover all the possible arguments and options to the
solve_ivp function here, but it is worth mentioning that we can also change
the numerical method used by the function, by passing in a parameter named
method. For instance, a call like

rtol = 1e-6
solution = solve_ivp(problem, t_span, u0, method=’Radau’)

will replace the default solver (called rk45) with an implicit Radau ODE
solver, which we will cover in Chapter 3. For a complete description of pa-
rameters accepted by the solve_ivp function we recommend referring to the
online documentation available on the SciPy website.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 2
Improving the Accuracy

As mentioned previously, the FE method derived in Chapter 1 is not the
most sophisticated ODE solver. Although it provides sufficient accuracy for
most of the applications covered in this book, there are alternative methods
available that offer improved accuracy and stability, making them better
suited for solving challenging ODE systems. In this chapter, we will focus
on enhancing accuracy, and thus we will primarily explore explicit methods.
Implicit methods, which exhibit superior stability properties and are better
suited for solving stiff ODEs, will be discussed in Chapter 3.

In Chapter 1 we demonstrated that the FE method is a first-order accurate
method, meaning that the error in the numerical solution is proportional to
the size of the time step ∆t. In this chapter, we will derive solvers of higher
order, where the numerical error is proportional to a higher power of ∆t. To
explain the derivation of such higher order ODE solvers, we will revisit the
general formulation of the ODE system:

u′ = f(t,u), u(t0) = u0.

Instead of simply replacing the derivative with a finite difference approxima-
tion, as done in the derivation of the FE method, we will adopt a slightly
different approach in this chapter. Assuming that we know the solution un
at time tn, we can find the solution at time tn+1 by integrating both sides of
the equation. We have∫ tn+1

tn

du

dt
dt=

∫ tn+1

tn

f(t,u(t))dt,

which gives us the exact solution at time tn+1 as

u(tn+1) = u(tn)+
∫ tn+1

tn

f(t,u(t))dt. (2.1)
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In general, it is not feasible to compute the integral on the right-hand side
of the equation analytically, as the function f is often nonlinear and the
function u(t) is unknown. However, we can approximate the integral using
various numerical integration techniques. The simplest approximation is to
set

f(t,u(t))≈ f(tn,un), for tn < t < tn+1,

meaning that we approximate the integrand as a constant over the inter-
val from tn to tn+∆t. Substituting this choice into (2.1) yields the update
formula:

un+1 = un+∆tf(tn,un),

which is recognized as the FE method introduced in Chapter 1. Approxi-
mating the function f(tn,un) as constant over the interval tn < t < tn+1 is
obviously not the most accurate choice, and we will explore more accurate
approximations that lead to higher-order ODE solvers.

The classical approach for approximating the integral of a general non-
linear function is to approximate the function with a polynomial and then
integrate this polynomial analytically. This technique forms the basis for
standard quadrature rules in numerical integration, and has also been used
to derive accurate ODE solvers. Two main ideas have been explored for con-
structing the polynomial approximation of f(t,u), resulting in two impor-
tant classes of ODE solvers. The first approach is to approximate f(t,u)
with a polynomial that interpolates f at previous time points, such as
f(tn−1,un−1),f(tn−2,un−2), . . .. This method gives rise to multistep meth-
ods, which are widely used for solving ODEs. We will not cover multistep
methods in this book, but interested readers can refer to references [1, 8] for
further details. The second approach entails computing a number of inter-
mediate approximations of f(t,u) on the interval tn < t < tn+1, and using
these values to define the polynomial approximation of f . This approach is
analogous to the derivation of classical quadrature rules in numerical inte-
gration, and leads to a class of ODE solvers known as Runge-Kutta methods.
These methods come in many forms, exhibiting different accuracy and sta-
bility properties, and will be the main focus of Chapters 2-4.

2.1 Explicit Runge-Kutta Methods

As mentioned earlier, an intuitive way to improve the accuracy of the approx-
imate integral in (2.1) is to calculate several intermediate approximations of
f(t∗,u∗) for tn ≤ t∗ ≤ tn+1, and calculate the integral as a weighted sum
of these values. This approach builds upon standard numerical integration
techniques and gives rise to a widely used class of ODE solvers called Runge-
Kutta (RK) methods. The simplest example of an RK method is in fact the
FE method discussed earlier, which is a one-stage, first-order, explicit RK
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method. An alternative formulation of the FE method is

k1 = f(tn,un),
un+1 = un+∆tk1.

It can be observed that this is the same formula as introduced earlier, and
there is no real advantage in writing the formula in two lines instead of one.
However, this alternative formulation aligns with the typical representation
of RK methods and facilitates understanding the relationship between the
FE method and more advanced solvers. The intermediate value k1 is often
referred to as a stage derivative in the ODE literature.

To enhance the accuracy of the FE method to second order, i.e., with
error proportional to ∆t2, we can employ more accurate approximations of
the integral in (2.1). One option is to maintain the assumption that f(t,u(t))
is constant over tn ≤ t∗ ≤ tn+1, but to approximate it at the midpoint of the
interval instead of the left end. This approach requires one additional stage:

k1 = f(tn,un), (2.2)

k2 = f(tn+ ∆t

2 ,un+ ∆t

2 k1), (2.3)

un+1 = un+∆tk2. (2.4)

This method is known as the explicit midpoint method or the modified Euler
method. The first step is identical to that of the FE method, but instead of
using the stage derivative k1 to advance the solution to the next step, we use
it to calculate an intermediate midpoint solution

un+1/2 = un+ ∆t

2 k1.

This solution is then used to compute the corresponding stage derivative k2,
which serves as an approximation to the derivative of u at time tn+∆t/2.
Finally, we use this midpoint derivative to advance the solution to tn+1.

Another second-order method is Heun’s method, also known as the explicit
trapezoidal method, which can be derived by approximating the integral in
equation (2.1) using the trapezoidal rule:

k1 = f(tn,un), (2.5)
k2 = f(tn+∆t,un+∆tk1), (2.6)

un+1 = un+ ∆t

2 (k1 +k2). (2.7)

This method also computes two stage derivatives k1 and k2. However, note
that the formula for k2 approximates the derivative at tn+1 rather than at
the midpoint tn+∆t/2. The solution is then advanced from tn to tn+1 using
the mean value of k1 and k2.
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All RK methods follow the same recipe as the two second-order methods
considered above; we calculate one or more intermediate values (i.e., stage
derivatives) and then advance the solution using a combination of these stage
derivatives. The method’s accuracy can be improved by adding more stages.
A general RK method with s stages can be written as

ki = f(tn+ ci∆t,un+∆t

s∑
j=1

aijkj), for i= 1, . . . ,s (2.8)

un+1 = un+∆t

s∑
i=1

biki. (2.9)

Here ci, bi,aij , for i, j,= 1, . . . ,s are coefficients specific to the method. Every
RK method can be written in this form, and a method is uniquely determined
by the number of stages, s, and the values of the coefficients.

As mentioned earlier, there exists a wide variety of RK methods, where
the coefficients are typically chosen to optimize the accuracy for a given
number of stages. While we will not delve into the details of how the methods
are constructed here, it can be useful to mention some of the underlying
principles. For instance, it can be shown that the bi coefficients must satisfy∑s
i=1 bi = 1 in order to ensure convergence. This condition naturally arises

from the motivation for RK methods as numerical integrators applied to
equation (2.1). When approximating the integral as a weighted sum, the
sum of the weights must be equal to one. Another common constraint on
the coefficients is to set ci =

∑s
j=1 aij . While not strictly necessary, this

constraint can simplify the derivation of the methods and aligns with our
interpretation of the stage derivative ki as approximations of the right-hand
side f(t,u) at time tn + ci∆t. When implementing a new solver it is easy
to introduce errors in the coefficient values, and it may be useful to include
tests to verify that the most fundamental conditions on the coefficients are
satisfied. It is possible to derive general order conditions that the coefficients
must satisfy for a method to achieve a given order, see, for instance, [1,8] for
details. In this chapter we exclusively consider explicit Runge-Kutta (ERK)
methods, which means that aij = 0 for j ≥ i. It can be shown that the order
p of an ERK method with s stages satisfies p≤ s, and for p≥ 5, the bound is
p ≤ s−1. However, it remains unknown whether this latter bound is sharp,
and it may be even stricter for methods of very high order. For instance, all
known methods with p = 8 have at least eleven stages, and it is not known
whether eight-order methods with nine or ten stages exist.

In the ODE literature, method coefficients are often specified in the form of
a Butcher tableau, which provides a concise representation of any RK method.
The Butcher tableau is simply a specification of all the method coefficients,
and for a general RK method it is written as
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ci a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

The Butcher tableaus of the three methods discussed above: FE, explicit
midpoint, and Heun’s method, are

0 0
1 ,

0 0 0
1/2 1/2 0

0 1
,

0 0 0
1 1 0

1/2 1/2
,

respectively. To grasp the concept of Butcher tableaus, it is beneficial to
practice inserting the coefficients from these three tableaus into equations
(2.8)-(2.9) and verifying that the correct formulas for the respective methods
are obtained. As an example of a higher order method, we may consider the
"original" Runge-Kutta method, which is a fourth-order, four-stage method
defined by

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

,

which gives the formulas

k1 = f(tn,un), (2.10)

k2 = f(tn+ ∆t

2 ,un+ ∆t

2 k1), (2.11)

k3 = f(tn+ ∆t

2 ,un+ ∆t

2 k2), (2.12)

k4 = f(tn+∆t,un+∆tk3), (2.13)

un+1 = un+ ∆t

6 (k1 +2k2 +2k3 +k4) . (2.14)

As mentioned earlier, all the methods discussed in this chapter are explicit
methods, meaning that aij = 0 for j ≥ i. Examining equations (2.10)-(2.14)
or the general formula (2.8) more closely, we observe that this conditions
implies that each stage derivative ki only depends on previously computed
stage derivatives. Consequently, all ki can be computed sequentially using
explicit formulas. In contrast, for implicit RK methods, aij 6= 0 for some j ≥ i.
As seen in equation (2.8), the formula for computing ki will then include ki
on the right-hand side, as part of the argument to the function f . Therefore,
equations need to be solved to compute the stage derivatives, and since f
is typically nonlinear, we need to solve these equations with an iterative
solver such as Newton’s method. These steps make implicit RK methods
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more complex to implement and more computationally expensive per time
step, but they are also more stable than explicit methods and perform much
better for certain classes of ODEs. We will cover implicit RK methods in
Chapter 3.

2.2 A Class Hierarchy of Runge-Kutta Methods

We now want to implement RK methods as classes, similar to the FE classes
introduced above. Upon examining the ForwardEuler class, we may notice
that most of the code is common to all ODE solvers and is not specific to
the FE method. For instance, we always need to create an array to store
the solution, and the general solution method using a for-loop remains the
same for all methods. The only difference among the methods lies in how the
solution is advanced from one time step to the next. Recalling the ideas of
Object-Oriented Programming, it becomes apparent that a class hierarchy is
a suitable structure for implementing such a collection of ODE solvers. This
approach allows us to consolidate common code in a superclass (base class),
and use inheritance to avoid code duplication. The superclass can handle
most of the administrative steps of the ODE solver, such as

• Storing the solution un and the time points tn, k = 0,1,2, . . . ,n
• Storing the right-hand side function f(t,u)
• Storing and applying the initial condition
• Running the loop over all time steps

To address these aspects, we can introduce a superclass called ODESolver
and implement the method-specific details in subclasses. This is precisely
why we isolated the code to perform a single step in the advance method, as
it becomes the only method that needs to be implemented in the subclasses.
The implementation of the superclass can closely resemble the ForwardEuler
class introduced earlier:

import numpy as np

class ODESolver:
def __init__(self, f):

# Wrap user’s f in a new function that always
# converts list/tuple to array (or let array be array)
self.model = f
self.f = lambda t, u: np.asarray(f(t, u), float)

def set_initial_condition(self, u0):
if np.isscalar(u0): # scalar ODE

self.neq = 1 # no of equations
u0 = float(u0)

else: # system of ODEs
u0 = np.asarray(u0)
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self.neq = u0.size # no of equations
self.u0 = u0

def solve(self, t_span, N):
"""Compute solution for t_span[0] <= t <= t_span[1],
using N steps."""
t0, T = t_span
self.dt = (T - t0) / N
self.t = np.zeros(N + 1) # N steps ~ N+1 time points
if self.neq == 1:

self.u = np.zeros(N + 1)
else:

self.u = np.zeros((N + 1, self.neq))

msg = "Please set initial condition before calling solve"
assert hasattr(self, "u0"), msg

self.t[0] = t0
self.u[0] = self.u0

for n in range(N):
self.n = n
self.t[n + 1] = self.t[n] + self.dt
self.u[n + 1] = self.advance()

return self.t, self.u

def advance(self):
raise NotImplementedError(

"Advance method is not implemented in the base class")

It is important to note that the ODESolver is designed to be a pure superclass,
and the implementation of the advance method is left for subclasses. To
clearly convey this abstract nature of the class, we have included an advance
method that raises a NotImplementedError when it is called. If an attempt
is made to create an instance of ODESolver and use it as a standalone solver,
an error will occur in the line self.u[n + 1] = self.advance(). Omitting
the definition of advance entirely would lead to an error in the same line,
but in this case it would be a less informative AttributeError. By raising
the NotImplementedError, it explicitly indicates to anyone reading or using
the code that this behavior is intentional and that the specific functionality
is meant to be implemented in subclasses. It is worth mentioning that there
are alternative approaches in Python to make explicit the abstract nature of
the ODESolver class, for instance using the module abc, for "Abstract Base
Class". However, while this solution may be considered more modern, we
have decided to not use it here, in the interest of keeping the code simple and
compact.

With the superclass at hand, the implementation of a ForwardEuler sub-
class becomes very simple:

class ForwardEuler(ODESolver):
def advance(self):
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u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
return u[n] + dt * f(t[n], u[n])

Similarly, the explicit midpoint method and the fourth-order RK method can
be subclasses, each implementing a single method:

class ExplicitMidpoint(ODESolver):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
dt2 = dt / 2.0
k1 = f(t[n], u[n])
k2 = f(t[n] + dt2, u[n] + dt2 * k1)
return u[n] + dt * k2

class RungeKutta4(ODESolver):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
dt2 = dt / 2.0
k1 = f(t[n], u[n],)
k2 = f(t[n] + dt2, u[n] + dt2 * k1, )
k3 = f(t[n] + dt2, u[n] + dt2 * k2, )
k4 = f(t[n] + dt, u[n] + dt * k3, )
return u[n] + (dt / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)

The use of these classes is nearly identical to the FE class introduced in
Section 1.3. Considering the same simple ODE used above; u′ = u, u(0) = 1,
t ∈ [0,3], ∆t= 0.5, the code looks like:

import numpy as np
import matplotlib.pyplot as plt
from ODESolver import ForwardEuler, ExplicitMidpoint, RungeKutta4

def f(t, u):
return u

t_span = (0, 3)
N = 6

fe = ForwardEuler(f)
fe.set_initial_condition(u0=1)
t1, u1 = fe.solve(t_span, N)
plt.plot(t1, u1, label=’Forward Euler’)

em = ExplicitMidpoint(f)
em.set_initial_condition(u0=1)
t2, u2 = em.solve(t_span, N)
plt.plot(t2, u2, label=’Explicit Midpoint’)

rk4 = RungeKutta4(f)
rk4.set_initial_condition(u0=1)
t3, u3 = rk4.solve(t_span, N)
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plt.plot(t3, u3, label=’Runge-Kutta 4’)

# plot the exact solution in the same plot
time_exact = np.linspace(0, 3, 301)
plt.plot(time_exact, np.exp(time_exact), label=’Exact’)
plt.title(’RK solvers for exponential growth, $\\Delta t = 0.5$’)
plt.xlabel(’$t$’)
plt.ylabel(’$u(t)$’)
plt.legend()
plt.show()

This code will solve the same simple equation using three different methods,
and plot the solutions in the same window, as shown in Figure 2.1. To em-
phasize the disparity in accuracy between the methods, we have set N = 6,
resulting in a very large time step (∆t= 0.5).

Fig. 2.1 Numerical solutions of the exponential growth problem, computed with
ForwardEuler, ImplicitMidpoint and RungeKutta4. All the solvers use ∆t = 0.5, to
highlight the difference in accuracy.
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2.3 Testing the Solvers

In Chapter 1 we demonstrated how to compute the error in the numerical
solution, and in particular how we could verify that the error behaved as
predicted by the theoretical convergence of the applied solvers. Such tests
are extremely valuable for verifying that we have implemented the ODE
solvers correctly, and can easily be extended to the higher order solvers. As
an example, the following code defines a dictionary containing three different
solver classes and their theoretical order, and solves the simple exponential
ODE using all three solvers.

from ODESolver import *
import numpy as np

def rhs(t, u):
return u

def exact(t):
return np.exp(t)

solver_classes = [(ForwardEuler,1), (Heun,2),
(ExplicitMidpoint,2), (RungeKutta4,4)]

for solver_class, order in solver_classes:
solver = solver_class(rhs)
solver.set_initial_condition(1.0)

T = 3.0
t_span = (0, T)
N = 30
print(f’{solver_class.__name__}, order = {order}’)
print(f’Time step (dt) Error (e) e/dt**{order}’)
for _ in range(10):

t, u = solver.solve(t_span, N)
dt = T / N
e = abs(u[-1] - exact(T))
if e < 1e-13: # break if error is close to machine precision

break
print(f’{dt:<14.7f} {e:<12.7f} {e/dt**order:5.4f}’)
N = N * 2

The code is nearly identical to the FE convergence test in Section 1.5, with
the only difference being that we loop over a list of tuples containing the four
method classes and their corresponding orders. The output is also similar
to the previous version, but now repeated for all four solvers. The built-in
class attribute __name__ is used to extract and print the name of each solver.
Three columns are displayed, representing the time step ∆t, the error e at
time t= 3.0, and finally e/∆tp, where p is the order of the method. The output
matches the expected values for the first two methods, as the numbers in the
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rightmost column are approximately constant, confirming that the error is in
fact proportional to ∆tp. However, the last part of the output, for the forth
order RK method, looks like this:

RungeKutta4 order = 4
Time step (dt) Error (e) e/dt**4
0.1000000 0.0000462 0.4620
0.0500000 0.0000030 0.4817
0.0250000 0.0000002 0.4918
0.0125000 0.0000000 0.4969
0.0062500 0.0000000 0.4995
0.0031250 0.0000000 0.5006
0.0015625 0.0000000 0.5025
0.0007813 0.0000000 0.5436
0.0003906 0.0000000 5.1880
0.0001953 0.0000000 102.5391

We see that the e/∆tp numbers remain approximately constant for a while,
consistent with the convergence order of the method. However, for very small
values of ∆t, these values start to increase. This behavior is not uncommon
in convergence tests, especially for high-order methods, and is caused by the
finite accuracy of number representation on computers. As the numerical er-
rors become smaller and approach the machine precision (≈ 10−16), roundoff
errors start to dominate the overall error, leading to a loss of convergence.

There are many alternative ways to check the implementation of ODE
solvers. One approach is to consider an even simpler ODE where the right-
hand side is a constant, i.e., u′(t) = f(t,u) = C. The solution to this simple
ODE is given by u(t) =Ct+u0, where u0 is the initial condition. All the nu-
merical methods discussed in this book will capture this solution to machine
precision, and we can write a general test function that takes advantage of
this:

def test_exact_numerical_solution():
solver_classes = [ForwardEuler, Heun,

ExplicitMidpoint, RungeKutta4]
a = 0.2
b = 3

def f(t, u):
return a

def u_exact(t):
"""Exact u(t) corresponding to f above."""
return a * t + b

u0 = u_exact(0)
T = 8
N = 10
tol = 1E-14
t_span = (0, T)
for solver_class in solver_classes:

solver = solver_class(f)
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solver.set_initial_condition(u0)
t, u = solver.solve(t_span, N)
u_e = u_exact(t)
max_error = abs((u_e - u)).max()
msg = f’{solver_class.__name__} failed, error={max_error}’
assert max_error < tol, msg

Similar to the convergence check illustrated below, this code will loop through
all the solver classes, solve the simple ODE, and check that the resulting error
falls within the specified tolerance.

Both of the methods shown here for verifying the implementation of our
solvers have certain limitations. The most important one is that they both
solve very simple ODEs, and it is possible to introduce errors in the code that
may only manifest themselves when dealing with more complex problems.
However, the methods presented here offer the advantages of simplicity and
generality, and they can be applied to any newly implemented ODE solver
class. Many common implementation errors, such as incorrectly specifying a
single parameter in an RK method, will often become apparent even when
solving these simple problems. Therefore, these methods can provide an initial
indication of whether the implementation is correct, which can be followed
by more extensive tests if needed.
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Chapter 3
Stable Solvers for Stiff ODE Systems

In the previous chapter, we introduced explicit Runge-Kutta (ERK) methods
and demonstrated how they can be implemented as a hierarchy of Python
classes. For most ODE systems, replacing the simple forward Euler method
with a higher-order ERK method will significantly reduce the number of time
steps needed to reach a specified accuracy. Furthermore, it often leads to re-
duced computation time, since the additional cost per time step is outweighed
by the reduced number of steps. However, there exists a class of ODEs known
as stiff systems, where all the ERK methods require very small time steps,
and any attempt to increase the time step leads to spurious oscillations and
possible divergence of the solution. Stiff ODE systems pose a challenge for
explicit methods, and they are better addressed by implicit solvers such as
implicit Runge-Kutta (IRK) methods. IRK methods are well-suited for stiff
problems and can offer substantial reductions in computation time when
tackling challenging problems.

3.1 Stiff ODE Systems and Stability

One well-known example of a stiff ODE system is the Van der Pol equation,
which can be written as an initial value problem on the form

y′1 = y2, y1(0) = 1, (3.1)
y′2 = µ(1−y2

1)y2−y1, y2(0) = 0. (3.2)

Here, the parameter µ represents a constant that determines the properties of
the system, including its "stiffness". When µ= 0 the problem is a simple os-
cillator with analytical solution y1 = cos(t),y2 = sin(t). However, for non-zero
values of µ, the solution exhibits far more complex behavior. The following
code implements this system and solves it with the ForwardEuler subclass
from the ODESolver class hierarchy.
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from ODESolver import *
import numpy as np
import matplotlib.pyplot as plt

class VanderPol:
def __init__(self, mu):

self.mu = mu

def __call__(self, t, u):
du0 = u[1]
du1 = self.mu * (1 - u[0]**2) * u[1] - u[0]
return du0, du1

model = VanderPol(mu=1)

solver = ForwardEuler(model)
solver.set_initial_condition([1, 0])

t,u = solver.solve(t_span=(0, 20), N=1000)

plt.plot(t, u)
plt.show()

Figure 3.1 shows the solutions of the Van der Pol equation for µ = 0,1 and
5. When the parameter µ is set even higher, such as µ = 50, the solution
diverges (becomes unstable) with the given time step (∆t= 0.02). Although
using a more accurate ERK method instead of the FE method may provide
some improvement, it does not resolve the issue significantly. It does help
to reduce the time step considerably, but the resulting computation time
may be substantial. In this problem, the time step is determined by stability
requirements rather than the desired accuracy, and opting for a solver that is
more stable than the previously discussed ERK methods may yield significant
benefits.

Before introducing more stable solvers, it is useful to examine the observed
stability problems in more detail. Why does the solution of the Van der Pol
model deteriorate significantly for large values of µ? More generally, what
are the properties of an ODE system that make it stiff? To address these
questions, it is useful to start with a simpler problem than the Van der Pol
model. Consider, for instance, a simple IVP known as the Dahlquist test
equation:

u′ = λu, u(0) = 1, (3.3)

where λ can be a complex number.1 When λ= 1, it corresponds to the simple
exponential growth problem we discussed earlier. However, in this chapter

1Note that the implementation of the solvers in this book does not support solving
this ODE for complex λ. However, considering complex values in the stability analysis
is still important because, for systems of ODEs, the relevant values are the eigenvalues
of the right-hand side, and these may be complex.
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Fig. 3.1 Solutions of the Van der Pol model for different values of µ.

we primarily focus on λ values with a negative real part, i.e., either real or
complex λ values that satisfy <(λ)< 0. In such cases, the solution of equation
(3.3) decays over time and remains stable. However, we will discover that the
numerical solutions may not always preserve this stability.

Following the definition in [1], we classify problem (3.3) as stiff for an
interval [0, b] if the real part of λ satisfies

b<(λ)�−1.

For more general nonlinear problems, such as the Van der Pol model in (3.1)-
(3.2), the stiffness of the system is determined by the eigenvalues λi of the
local Jacobian matrix J , which is the matrix of partial derivatives of the
right-hand side function f . The Jacobian is defined by

Jij = ∂fi(t,y)
∂yj

,

and the problem is considered stiff for an interval [0, b] if

bmin
i
<(λi)�−1.
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These definitions highlight that the stiffness of a problem depends not only
on the ODE itself, but also on the length of the solution interval (b), which
may seem somewhat surprising. To understand why the interval of interest
is important, let us consider the equation (3.3). If λ is large and negative, we
need to choose a small ∆t to maintain stability of explicit solvers, as we will
discuss in more detail later. However, if our goal is to solve the equation over a
very small time interval, i.e., b is small, using a small ∆t is not a problem, and
according to the definition above the problem will no longer be considered
stiff. In addition to these definitions, the ODE literature also provides more
pragmatic definitions of stiffness. For example, an equation is often classified
as stiff if the time step needed to maintain stability of an explicit method is
much smaller than the time step dictated by the accuracy requirements [1,2].
For a more comprehensive discussion of stiff ODE systems, refer to [1, 9].

Equation (3.3) serves as the foundation for linear stability analysis, a valu-
able technique for analyzing and understanding the stability of ODE solvers.
The solution to this equation is given by u(t) = eλt, which grows rapidly if
λ has a positive real part. Therefore, our primary interest lies in the case
where <(λ)< 0, for which the analytical solution is stable, but our choice of
solver may introduce numerical instabilities. When the FE method is applied
to (3.3), we obtain the update formula

un+1 = un+∆tλun = un(1+∆tλ),

and for the first step, with the initial condition u(0) = 1, we have

u1 = 1+∆tλ. (3.4)

The analytical solution decays exponentially for <(λ)< 0, and it is natural to
require that the numerical solution decreases monotonically. This leads to the
requirement |1 +∆tλ| ≤ 1. When λ is a negative real number, the time step
must satisfy ∆t≤−2/λ to ensure stability. It is important to note that meet-
ing this stability criterion does not necessarily guarantee a highly accurate
solution; the numerical solution may exhibit oscillate and differ substantially
from the exact solution. Nevertheless, by selecting ∆t to satisfy the stability
criterion, we ensure that the solution, along with any spurious oscillations or
other numerical artifacts, decays with time.

We have observed that the right-hand side of (3.4) contains critical infor-
mation about the stability of the FE method. This expression is commonly
referred to as the stability function or amplification factor of the method,
and is often written as

R(z) = 1+ z.

For the FE method to be stable, all values of λ∆t must satisfy |R(λ∆t)|< 1.
This region of λ∆t values in the complex plane is referred to as the method’s
region of absolute stability or its stability region. The stability region for the
FE method is shown in the left panel of Figure 3.2, taking the form of a circle
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with center at (−1,1) and a radius of one. It is evident that if λ� 0, the
requirement for λ∆t to lie within this circle is quite restrictive for the choice
of ∆t.

Fig. 3.2 Stability regions for explicit Runge-Kutta methods. From left: forward Euler,
explicit midpoint, and the fourth order method given by (2.10)-(2.14).

We can easily extend the linear stability analysis to the other explicit RK
methods introduced in Chapter 2. For instance, applying a single step of the
explicit midpoint method given by (2.2)-(2.4) to (3.3) gives

u(∆t) = 1+λ∆t+ (∆tλ)2

2 ,

and we identify the stability function for this method as

R(z) = 1+ z+ z2

2 .

The corresponding stability region is shown in the middle panel of Figure 3.2.
For the fourth-order RK method defined in (2.10)-(2.14), the same steps yield
the stability function

R(z) = 1+ z+ z2

2 + z3

6 + z4

24 ,
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and the stability region is shown in the right panel of Figure 3.2. We ob-
serve that the stability regions of these higher-order RK methods are slightly
larger than that of the FE method. However, the difference is not very large,
and when also considering the computational cost of each time step, the FE
method is usually superior for problems where the time step is governed by
stability.

It can be shown that the stability function for an s-stage explicit RK
method is always a polynomial of degree ≤ s, and it can easily be verified
that the stability region defined by such a polynomial will never be very large.
To obtain a significant improvement of this situation, we need to replace the
explicit methods discussed so far with implicit RK methods.

3.2 Implicit methods for stability

Given that equation (3.3) is stable for all values of λ with a negative real part,
it is natural to look for numerical methods with the same stability property.
This implies that the stability domain of the method covers the entire left half
of the complex plane, or in other words, that its stability function |R(z)| ≤
1 whenever <(z) ≤ 0. This property is called A-stability. As noted above,
the stability function of an explicit RK method is always a polynomial, and
no polynomial can satisfy |R(z)| < 1 for all z < 0. Hence, there are no A-
stable explicit RK methods. An even stronger stability requirement can be
motivated by the fact that for λ� 0, the solution to (3.3) decays very rapidly.
It is reasonable to expect the same behavior from the numerical solution,
which leads to the requirement that |R(z)| → 0 as z→−∞. This property is
referred to as stiff decay, and an A-stable method that exhibits stiff decay is
known as an L-stable method. For further detail, readers can refer to [1, 9].

The simplest implicit RK method is the backward Euler (BE) method,
which can be derived in exactly the same way as the FE method, by approxi-
mating the derivative with a simple finite difference. The only difference from
the FE method is that the right-hand side is evaluated at step n+ 1 rather
than step n. For a general ODE, we have

un+1−un
∆t

= f(tn+1,un+1),

and if we rearrange the terms we get

un+1−∆tf(tn+1,un+1) = un. (3.5)

Although the derivation is similar to the FE method, there is a fundamental
difference. In the BE method, the unknown variable un+1 occurs as an argu-
ment in the right-hand side function f(t,u). Therefore, for nonlinear f , (3.5)
becomes a nonlinear algebraic equation that must be solved to determine
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un+1, instead of having an explicit update formula as in the FE method.
This requirement makes implicit methods more complex to implement than
explicit methods, and they tend to require more computations per time step.
However, as we will demonstrate later, the superior stability properties of
implicit solvers still make them better suited for stiff problems.

We will consider the implementation of implicit solvers in Section 3.3 be-
low, but let us first examine the stability of the BE method and other implicit
RK solvers using the linear stability analysis introduced earlier. Applying the
BE method to (3.3) yields

un+1(1−∆tλ) = un,

and for the first time step, with u(0) = 1, we get

u1 = 1
1−∆tλ.

The stability function of the BE method is therefore R(z) = 1/(1− z), and
its corresponding stability domain is shown in the left panel of Figure 3.3.
The method is stable for all choices of λ∆t outside the circle with a radius of
one and centered at (1,0) in the complex plane. This confirms that the BE
method is a highly stable method. It is both A-stable, as its stability domain
covers the entire left half of the complex plane, and L-stable, as the stability
function satisfies R(z)→ 0 as <(z)→−∞.

The BE method fits into the general RK framework defined by (2.8)-(2.9)
in Chapter 2, with a single stage (s= 1), and a11 = b1 = c1 = 1. Similar to the
FE method discussed in Chapter 2, we can reformulate the method slightly to
introduce a stage derivative and emphasize its connection to the RK family:

k1 = f(tn+∆t,un+∆tk1), (3.6)
un+1 = un+∆tk1. (3.7)

The explicit midpoint and trapezoidal methods mentioned earlier also have
their implicit counterparts. The implicit midpoint method is given by

k1 = f(tn+∆t/2,un+k1∆t/2), (3.8)
un+1 = un+∆tk1, (3.9)

while the implicit trapezoidal rule, or Crank-Nicolson method, is given by

k1 = f(tn,un), (3.10)
k2 = f(tn+∆t,un+∆tk2), (3.11)

un+1 = un+ ∆t

2 (k1 +k2). (3.12)
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Fig. 3.3 Stability regions for the backward Euler method (left) and the implicit mid-
point method and trapezoidal method (right).

Note that this formulation of the Crank-Nicolson is not very common, and
it can be simplified by eliminating the stage derivatives and defining the
method in terms of un and un+1. However, the given formulation in (3.10)-
(3.12) highlights its implicit RK nature. The implicit nature of these methods
is apparent from the formulas, as one of the stage derivatives must be found
by solving an equation involving the nonlinear function f instead of using
an explicit update formula. The Butcher tableaus of the three methods are
given by

1 1
1 ,

1/2 1/2
1 ,

0
1 0 1

1/2 1/2
, (3.13)

from left to right for backward Euler, implicit midpoint and the implicit
trapezoidal method.

The implicit midpoint method and the implicit trapezoidal method share
the same stability function, given by R(z) = (2+z)/(2−z). The correspond-
ing stability domain covers the entire left half-plane of the complex plane, as
shown in the right panel of Figure 3.3. Both the implicit midpoint method
and the trapezoidal method are therefore A-stable methods. However, since
R(z)→ 1 as z→−∞, these methods lack stiff decay and are therefore not L-
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stable. In general, the stability functions of implicit RK methods are rational
functions, i.e., given by

R(z) = P (z)
Q(z) ,

where P,Q are polynomials of degree at most s. This is in contrast to the
stability functions of explicit methods, which are always polynomials of degree
at most s, as mentioned in Section 3.1 above.

The accuracy of the implicit methods mentioned can be easily determined
using a Taylor series expansion, as outlined in Section 1.5, to confirm that
the backward Euler method is a first-order accurate method, while the im-
plicit midpoint and trapezoidial methods are both second-order accurate. It
is worth noting that while explicit Runge-Kutta methods with s stages have
an order of accuracy p≤ s, implicit methods offer more flexibility in choosing
the coefficients aij , potentially leading to higher accuracy for a given number
of stages. In fact, the maximum order achievable for an implicit RK method
is p= 2s, which is the case for the implicit midpoint method with s= 1 and
p= 2. More advanced implicit RK methods will be explored later, but first,
let us examine the implementation of the methods introduced so far.

3.3 Implementing Implicit Runge-Kutta
Methods

In the previous section, we highlighted the superior stability and generally
higher accuracy of the implicit methods. Following this discussion, one might
question why IRK solvers are not the default choice for all ODE problems.
The answer lies in the fact that they are implicit, so the stage derivatives
are defined in terms of nonlinear equations rather than explicit formulae.
This fact complicates the implementation of the methods and increases the
computational cost of each time step. Due to this computational overhead,
explicit solvers are usually more efficient for non-stiff problems, while implicit
solvers are primarily suited for stiff ODEs.

For scalar ODEs, solving equations such as (3.5) or (3.8) using Newton’s
method is usually not overly challenging. However, when dealing with systems
of ODEs, the task becomes more complex as we need to solve a system
of coupled nonlinear equations. Applying Newton’s method to a system of
equations involves solving a system of linear equations at each iteration,
which opens up a range of possible methods for solving these systems, as
well as other solver choices and parameters that can be tuned to optimize
the performance. In this text, our focus is primarily on understanding the
fundamental concepts of IRK solvers, and we will not delve into the details
of performance optimization. Therefore, we will base our implementation
on built-in equation solvers from SciPy. We will start with the backward
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Euler method, which is the simplest implicit method, but we will keep the
implementation sufficiently general to be easily extendable to more advanced
implicit methods. For a more detailed discussion on solver optimization and
choices to enhance computational performance, interested readers can refer
to references [1, 9].

When examining the ODESolver class introduced in Chapter 2, we can ob-
serve that many administrative tasks involved in RK methods are the same
for both implicit and explicit methods. Specifically, the initialization of so-
lution arrays and the for-loop that advances the solution remain unchanged.
However, advancing the solution from one step to the next differs signifi-
cantly. Therefore, it is convenient to implement implicit solvers within the
existing class hierarchy and let the ODESolver superclass handle the tasks of
initializing the solver and the main solver loop. The different explicit meth-
ods introduced in Chapter 2 were realized through different implementations
of the advance method. We can use the same approach for implicit methods,
but since each step in implicit methods involves a few more operations it is
useful to introduce a couple of additional methods. For instance, a concise
implementation of the backward Euler method could appear as follows:

from ODESolver import *
from scipy.optimize import root

class BackwardEuler(ODESolver):
def stage_eq(self, k):

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
return k - f(t[n] + dt, u[n] + dt * k)

def solve_stage(self):
u, f, n, t = self.u, self.f, self.n, self.t
k0 = f(t[n], u[n])
sol = root(self.stage_eq, k0)
return sol.x

def advance(self):
u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
k1 = self.solve_stage()
return u[n] + dt * k1

Compared with the explicit solvers presented in Chapter 2, we have intro-
duced two additional methods in our BackwardEuler class. The first method,
stage_eq(self, k), is a Python implementation of (3.6), which defines the
nonlinear equation for the stage derivative. The method takes the stage
derivative k as input and returns the residual of (3.6). This formulation allows
us to use SciPy’s nonlinear equation solvers effectively. The actual solution
of the stage derivative equation is handled in the solve_stage method. This
method first computes an initial guess k0 for the stage derivative, and then
passes this guess and the function stage_eq to SciPy’s root function to
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solve the equation. The root function is a general tool for solving nonlinear
equations of the form g(x) = 0, and we apply it to solve the stage equa-
tion k1− f(tn +∆t,un +∆tk1) = 0. The function returns an object of the
OptimizeResult class, which includes the solution as an attribute x, along
with numerous other attributes containing information about the solution
process. For further details on the OptimizeResult and the root function,
we refer to the SciPy documentation.

Fig. 3.4 Solutions of the Van der Pol model for µ= 10, using the forward and backward
Euler methods with ∆t= 0.04.

We can demonstrate the superior stability of the BE method by revisit-
ing the Van der Pol equation discussed earlier. Setting, for instance, µ= 10,
and solving the model using the FE and BE methods gives the plots shown
in Figure 3.4. The top panel shows a reference solution computed with the
SciPy solve_ivp solver using very low tolerance (rtol=1e-10). The middle
panel shows the solution produced by FE with ∆t = 0.04, showing visible
oscillations in one of the solution components. Attempting to increase the
time step further for this method leads to a divergent solution. On the other
hand, the lower panel presents the solution obtained with BE, which is sub-
stantially more stable but still deviates from the reference solution in the top
panel. With the BE method, increasing the time step further will still yield a
stable solution, although it will deviate further from the exact solution. This
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simple experiment highlights the importance of considering both accuracy
and stability when solving challenging systems of ODEs.2

Just as we did for the explicit methods in Chapter 2, it is possible to reuse
code from the BackwardEuler class to implement other solvers. To facilitate
extensive code reuse for a large range of implicit solvers, a slight modification
of the code is required, which will be discussed in the next section. However,
it is worth noting that a simple solver like the Crank-Nicolson method can
be implemented with minimal changes to the BackwardEuler class. The class
implementation could resemble the following:

class CrankNicolson(BackwardEuler):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
k1 = f(t[n], u[n])
k2 = self.solve_stage()
return u[n] + dt / 2 * (k1 + k2)

In this implementation, we leverage the fact that the stage k1 in the Crank-
Nicolson is explicit and does not require solving an equation. On the other
hand, while the definition of k2 is identical to that of k1 in the backward
Euler method. Consequently, We can directly reuse both the stage_eq and
solve_stage methods, with only the advance method needing to be reimple-
mented. While this compact implementation of the Crank-Nicolson method
allows for code reuse, it can be argued that it violates a common principle of
object-oriented programming. Subclassing and inheritance represent an "is-a"
relationship, implying that an instance of the Crank-Nicolson class is also
an instance of the BackwardEuler class. While this works fine in the pro-
gram, and is convenient for code reuse, it is not a correct representation of
the relationship between the two numerical methods. Both methods belong
to the group of implicit RK solvers, but the Crank-Nicolson method is not
a special case of BackwardEuler. In the following sections, we will introduce
an alternative class hierarchy that reflects this relationship and enables a
compact implementation of RK methods using the general formulation in
(2.8)-(2.9).

3.4 Implicit Methods of Higher Order

Similar to the ERK methods discussed in Chapter 2, the accuracy of IRK
methods can be enhanced by increasing the number of stages. However, for
implicit methods, we have more flexibility in selecting the parameters aij ,

2Note that the accompanying source code includes a script to generate Figure 3.4, as
well as many other figures featured in the book. It is recommended to run these scripts
independently and experiment with different time steps and parameters. Doing so will
provide a better understanding of how the solvers work.
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and this choice affects both the accuracy and computational complexity of
the methods. In this section, we will explore two main branches of IRK meth-
ods: fully implicit methods and diagonally implicit methods. Both classes of
methods are widely used and both have their advantages and drawbacks.

3.4.1 Fully Implicit RK Methods

The most general form of RK methods is known as fully implicit methods
or FIRK methods. These solvers are defined by (2.8)-(2.9), with all coeffi-
cients aij (potentially) non-zero. When a method has more than one stage,
this formulation implies that all stage derivatives depend on all other stage
derivatives, so we need to determine them all at once by solving a single sys-
tem of nonlinear equations. This operation is quite expensive, but the reward
is that the FIRK methods have superior stability and accuracy for a given
number of stages. A FIRK method with s stages can have order at most 2s,
which was the case for the implicit midpoint method in (3.8)-(3.9).

Many popular FIRK methods are based on combining standard numer-
ical integration quadrature methods with the idea of collocation. Here, we
present a brief overview of the derivation to illustrate the foundation shared
by many important methods. For a comprehensive understanding, we rec-
ommend referring to references such as [9]. Recall from Chapter 2 that all
RK methods can be viewed as approximations of equation (2.1), where the
integral is approximated by a weighted sum. We set

u(tn+1) = u(tn)+
∫ tn+1

tn

f(t,u(t))≈ u(tn)+
s∑
i=1

biki, (3.14)

where bi are the weights and ki are the stage derivatives, which could be in-
terpreted as approximations of the right-hand side function f(t,u) at distinct
time points tn+∆tci.

Numerical integration is a well-established field in numerical analysis, and
it is natural to choose the integration points ci and weights bi in (3.14)
based on standard quadrature rules with known properties. Such quadrature
rules are often derived by approximating the integrand with a polynomial
which interpolates the function f at distinct points, and then integrating the
polynomial exactly. A similar approach can be employed in deriving implicit
RK methods. We approximate the solution u on the interval tn < t ≤ tn+1
using a polynomial P (t) of degree up to s, and require that P (t) satisfies the
ODE exactly at distinct points tn+ ci∆t. This requirement, expressed as

P ′(ti) = f(ti,P (ti)), ti = tn+ ci∆t,i= 1, . . . ,s. (3.15)
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is known as collocation, and is a widely used concept in numerical analysis.
It can be shown that, given a choice of quadrature points ci, the collocation
equations (3.15) uniquely determine the remaining coefficients aij and bi of
the method, see [1] for details.

A convenient approach to deriving FIRK methods is to choose a set of
collocation points ci, typically chosen from standard quadrature rules, and
solve (3.15) to determine the remaining parameters. This strategy has led
to families of FIRK methods based on common numerical integration rules.
For instance, choosing ci as Gauss points gives rise to the Gauss methods,
which are the most accurate methods for a given number of stages, achieving
order 2s. The single-stage Gauss method corresponds to the implicit midpoint
method introduced earlier, while the fourth-order Gauss method with s = 2
is defined by the Butcher tableau

3−
√

3
6

1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

1
2

.

The Gauss methods are A-stable but not L-stable. Since FIRK methods
are primarily used for challenging stiff problems where stability is crucial,
another family of FIRK methods, known as Radau IIA methods, is more
commonly employed. These methods are based on Radau quadrature points,
which include the right end of the integration interval (i.e., cs = 1). The one-
stage Radau IIA method is the backward Euler method, while the two- and
three-stage versions are given by
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The Radau IIA methods exhibit order 2s− 1, and their stability functions
are (s− 1,s) Padé approximations of the exponential function, as described
in [9]. For the two- and three-stage methods mentioned earlier, the stability
functions are given by

R(z) = 1+ z/3
1−2z/3+ z2/6 ,

R(z) = 1+2z/5+ z2/20
1−3z/5+3z2/20− z2/60 ,

respectively. The stability domains of these methods are depicted in Fig-
ure 3.5. Due to their L-stability, the Radau IIA methods are commonly used
for solving stiff ODE systems. However, as noted above, the fact that all
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aij 6= 0 complicates the implementation of the methods and makes each time
step computationally expensive. All the s equations of (2.8) become fully
coupled and need to be solved simultaneously. In the case of an ODE system
comprising m equations, we must solve a system of ms nonlinear equations
for each time step. We will come back the implementation of FIRK methods
in Section 3.5, but let us first introduce a slightly simpler class of implicit
RK solvers.

Fig. 3.5 The shaded area represents the stability region for two of the RadauIIA
methods, with s= 2 (left) and s= 3 (right).

3.4.2 Diagonally Implicit RK Methods

Diagonally implicit RK (DIRK) methods, also known as semi-explicit meth-
ods, are a subclass of implicit RK methods. For DIRK methods, we have
aij = 0 for all j > i. (Notice the small but important difference from the
explicit methods, where we have aij = 0 for j ≥ i.) The consequence of this
choice is that the equation for a single stage derivative ki does not involve
stages ki+1,ki+2, and so on, and we can sequentially solve for the stage
derivatives one by one. We still need to solve nonlinear equations to deter-
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mine each ki, but we can solve s systems of m equations rather than solving
one large system to compute all stages simultaneously. This simplifies the
implementation and reduces the computational cost per time step. However,
the restriction on the method coefficients also reduces the accuracy and sta-
bility compared with FIRK methods. A general DIRK method with s stages
has a maximum order of s+1, and methods optimized for stability typically
have even lower order.

It is worth nothing that the implicit midpoint method discussed earlier
technically falls under the category of DIRK methods. However, it is also
a fully implicit Gauss method, and is not commonly referred to as a DIRK
method. The distinction between FIRK and DIRK methods is meaningful
only for s > 1. The Crank-Nicolson (implicit trapezoidal) method given by
(3.10)-(3.12) is another example of a DIRK method, evident from the right-
most Butcher tableau in (3.13). These methods are, however, only A-stable,
and it is possible to derive DIRK methods with better stability properties.
An example of an L-stable, two-stage DIRK method of order two is given by

γ γ 0
1 1−γ γ

1−γ γ
, (3.16)

with stability function
R(z) = 1+ z(1−2γ)

(1− zγ)2 .

This method is A-stable for γ > 1/4, and for γ = 1±
√

2/2 the method is
L-stable and second-order accurate. Note that choosing γ > 1 means that
we estimate the stage derivatives outside the interval (tn, tn+1), and for the
last step beyond the time interval of interest. While this does not affect the
stability or accuracy of the method, it may not be suitable for all ODE prob-
lems, and the most popular choice is therefore γ = 1−

√
2/2 (≈ 0.293). Notice

also that in this method the two diagonal entries of aij are identical, with
a11 = a22 = γ. This choice is very common in DIRK methods, and methods
of this kind are known as singly diagonally implicit RK (SDIRK) methods.
The main benefit of this structure is that the nonlinear equations for each
stage derivative become very similar, which can be utilized when solving the
equations using quasi-Newton methods. This benefit may not be very obvious
for the examples in this book, since we rely on the generic root function from
scipy.optimize to solve the nonlinear equations. However, if we wanted to
improve the computational performance of the solvers, a natural place to
start would be to implement a custom quasi-Newton solver that exploits the
particular structure of the nonlinear equations. We will not go into the details
of such an implementation here, but it is worth commenting on some aspects
in order to understand why SDIRK methods are so widely used.

The central point is that when applying Newton’s method to solve a gen-
eral nonlinear system g(u) = 0, each iteration involves solving linear systems
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of the form Jg∆u = −g(uk), where ∆u is the increment to the solution, uk
is the solution value at the previous iteration, and Jg is the Jacobian matrix
of g, defined by

Jg = ∂gi
∂uj

.

For a general DIRK method, the nonlinear equation to compute stage deriva-
tive ki is given by

ki = f(tn+ ci∆t,un+∆

i∑
j=1

aijkj),

which can be written in the form g(ki) = 0, with

g(ki) = ki−f(tn+ ci∆t,un+∆

i−1∑
j=1

aijkj +aiiki)

 .
Note that we have split the sum over the stage derivatives, highlighting that
when solving for ki, the values kj for j < i are already known. The Jacobian
matrix Jg is found by differentiating g with respect to ki, resulting in

Jg = I−∆taiiJf ,

where Jf is the Jacobian of the right-hand side function f . If we have aii = γ
for all stages, the Jacobian matrices Jg will also be identical, which can be
exploited to optimize the solution of the linear systems. For more detailed
information on solving nonlinear equations arising in SDIRK methods, refer
to references such as [9].

Although we do not aim to present a complete overview of all subcategories
of RK methods, one additional method class is worth mentioning. These are
the so called ESDIRK (explicit singly diagonally implicit RK) methods, which
are simply SDIRK methods where the first stage is explicit. The motivation
behind these methods is that the nonlinear algebraic equations involved in
the implicit methods are always solved with iterative methods, requiring an
initial guess for the solution. For SDIRK methods, it is convenient to use the
previous stage derivate as initial guess for the next one, which will usually
provide a good initial guess. This approach is obviously not possible for the
first stage, but an explicit formula for the first stage solves this problem.
The simplest ESDIRK method is the implicit trapezoidal (Crank-Nicolson)
method introduced above. A popular extension of this method is given by
the following Butcher tableau:
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0 0
2γ γ γ 0
1 β β γ

β β γ

, (3.17)

with γ = 1−
√

2/2 and β =
√

2/4. The resulting equations for each time step
are

k1 = f(tn,un),
k2 = f(tn+2γ∆t,un+∆t(γk1 +γk2)),
k3 = f(tn+∆t,un+∆t(βk1 +βk2 +γk3)),

un+1 = un+∆t(βk1 +βk2 +γk3).

This method can be interpreted as the sequential application of the trape-
zoidal method and a popular multistep solver called BDF2 (backward differ-
entiation formula of order 2), and it is commonly known as the TR-BDF2
method. It is second order accurate, like the trapezoidal rule, but it is also
L-stable, making it suitable for stiff problems.

3.5 Implementing Higher Order IRK Methods

In Section 3.3 we implemented two of the simplest implicit RK methods by a
relatively small extension of the ODEsolver class hierarchy. We could easily
continue this idea for the more complex IRK methods, and all the different
methods could be realized by separate implementations of the three methods
solve_stage, stage_eq, and advance. However, these three methods essen-
tially implement the equations given by (2.8)-(2.9), which are common for
all RK solvers. It is natural to look for an implementation that allows even
more code reuse between the various methods, and we shall see that such a
general implementation is indeed possible. However, it is still useful to treat
the fully implicit methods and SDIRK methods separately, since the stage
calculations of these two method classes are fundamentally different.

3.5.1 A Base Class for Fully Implicit Methods

One approach to implementing the fully implicit RK methods is to rewrite
the solve_stage, stage_eq, and advance methods of the BackwardEuler
class in a more general manner that can handle any number of stages and
method parameters aij , bi, and ci. By adopting this approach, new methods
can easily be implemented by specifying the number of stages and defining
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the parameter values. In the methods we have discussed so far, the method
coefficients have been hard-coded within the mathematical expressions, often
inside the advance methods. However, with the generic approach, it is more
natural to define these coefficients as class attributes in the constructor. Fol-
lowing this general approach, a base class for implicit RK methods can be
defined as follows:

from ODESolver import *
from scipy.optimize import root

class ImplicitRK(ODESolver):
def solve_stages(self):

u, f, n, t = self.u, self.f, self.n, self.t
s = self.stages
k0 = f(t[n], u[n])
k0 = np.tile(k0,s)

sol = root(self.stage_eq, k0)

return np.split(sol.x, s)

def stage_eq(self, k_all):
a, c = self.a, self.c
s, neq = self.stages, self.neq

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt

res = np.zeros_like(k_all)
k = np.split(k_all, s)
for i in range(s):

fi = f(t[n] + c[i] * dt, u[n] + dt *
sum([a[i, j] * k[j] for j in range(s)]))

res[i * neq:(i + 1) * neq] = k[i] - fi

return res

def advance(self):
b = self.b
u, n, t = self.u, self.n, self.t
dt = self.dt
k = self.solve_stages()

return u[n] + dt * sum(b_ * k_ for b_, k_ in zip(b, k))

Note that we assume that the method parameters are stored in NumPy ar-
rays self.a, self.b, self.c, which need to be defined in subclasses. It
is important to note that, just as the ODESolver class discussed earlier, the
ImplicitRK class is intended as a pure base class for holding common code.
It is not meant to be used as a standalone solver class. In accordance with
the principles described in Section 2.2, we could make the abstract nature of
this class explicit by using the abc module, but for the present text we focus
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on the fundamentals of the solvers and the class structure, keeping the code
as simple and compact as possible.

The three methods of the ImplicitRK class are generalizations of the
corresponding methods in the BackwardEuler class. They perform the same
tasks but at a higher abstraction level and they rely on a bit of NumPy magic:

• The solve_stages method is a generalization of the solve_stage method
above. Most of the lines are similar and should be self-explanatory. How-
ever, it is important to note that we are now implementing a general IRK
method with s stages. Instead of solving a system of nonlinear equations
for a single stage derivative, we solve a larger system to determine all s
stage derivatives at once. The solution of this system is a one-dimensional
array of length self.stages * self.neq, which contains all the stage
derivatives. The line k0 = np.tile(k0,s) takes an initial guess k0 for a
single stage, and stacks it after itself s times to create the initial guess for
all the stages, using NumPy’s tile function.

• The stage_eq method is also a pure generalization of its BackwardEuler
counterpart and performs the same tasks. The initial lines of this method
are self-explanatory, while the res = np.zeros_like(k_all) creates an
array of the appropriate length to hold the residual of the equation. For
convenience, the line k = np.split(k_all,s) splits the array k_all into
a list k that contains individual stage derivatives. This list is then used
in the subsequent for loop on the next four lines. This loop, which forms
the core of the method, implements equation (2.8), expressed as Python
code and split over several lines for improved readability. The method
returns the residual as a single array of length self.stages * self.neq,
as expected by the SciPy root function.

• Finally, the advance method calls the solve_stages to compute all the
stage derivatives, and then advances the solution using a general imple-
mentation of (2.9).

With the general base class in place, it becomes straightforward to implement
new solvers by writing constructors that define the method coefficients. The
following code implements the implicit midpoint and the two- and three-stage
Radau methods:

class ImplicitMidpoint(ImplicitRK):
def __init__(self, f):

super().__init__(f)
self.stages = 1
self.a = np.array([[1 / 2]])
self.c = np.array([1 / 2])
self.b = np.array([1])

class Radau2(ImplicitRK):
def __init__(self, f):

super().__init__(f)
self.stages = 2
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self.a = np.array([[5 / 12, -1 / 12], [3 / 4, 1 / 4]])
self.c = np.array([1 / 3, 1])
self.b = np.array([3 / 4, 1 / 4])

class Radau3(ImplicitRK):
def __init__(self, f):

super().__init__(f)
self.stages = 3
sq6 = np.sqrt(6)
self.a = np.array([[(88 - 7 * sq6) / 360,

(296 - 169 * sq6) / 1800,
(-2 + 3 * sq6) / (225)],

[(296 + 169 * sq6) / 1800,
(88 + 7 * sq6) / 360,
(-2 - 3 * sq6) / (225)],

[(16 - sq6) / 36, (16 + sq6) / 36, 1 / 9]])
self.c = np.array([(4 - sq6) / 10, (4 + sq6) / 10, 1])
self.b = np.array([(16 - sq6) / 36, (16 + sq6) / 36, 1 / 9])

Notice that we always define the method coefficients as NumPy arrays, even
for the implicit midpoint method where they only contain a single number.
This definition is necessary for the generic methods of the ImplicitRK class
to work.

3.5.2 Base Classes for SDIRK and ESDIRK Methods

We could, in principle, implement both the SDIRK and ESDIRK methods in
the same manner as the FIRK methods, by defining the method coefficients
in the constructor and using the generic methods from the ImplicitRK base
class. These generic methods would handle the cases where aij = 0 for j > i.
However, the motivation behind the diagonally implicit methods is to avoid
solving large systems of nonlinear equations, so it does not make much sense
to implement them in this way. Instead, we should take advantage of the
specific structure of the method coefficients and solve for the stage variables
sequentially. This requires rewriting solve_stages and stage_eq methods
from the base class. However, the advance method, which advances the so-
lution to the next step, can remain unchanged as it is common to all RK
methods.

Considering first the SDIRK methods, we can implement these as sub-
classes of the ImplicitRK class, which allows for some moderate code reuse
and reflects the fact that SDIRK methods are special cases of implicit RK
methods. To illustrate this implementation, let us first consider the two-stage
SDIRK method defined by (3.16), and write out the equations for the stage
derivatives to get a better view of the tasks involved. Inserting the coefficients
from (3.16) into (2.8)-(2.9) gives
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k1 = f(tn+γ∆t,un+γ∆tk1), (3.18)
k2 = f(tn+∆t,un+∆t((1−γ)k1 +γk2)), (3.19)

un+1 = un+∆t((1−γ)k1 +γk2). (3.20)

Here, (3.18) is nearly identical to the equation defining the stage derivative
in the backward Euler method, with the only difference being that ∆t is
replaced with γ∆t. Similarly, the only difference between (3.18) and (3.19)
is the additional term ∆t(1− γ)k1 inside the function call. In general, any
stage equation for any DIRK method can be written as

ki = f(tn+ ci∆t,un+∆t(
i−1∑
j=0

aijkj +γki)), (3.21)

where the sum inside the function call only includes previously computed
stages.

Given the similarity of (3.21) with the stage equation from the backward
Euler method, it is natural to implement the SDIRK stage equation as a
generalization of the stage_eq method from the BackwardEuler class. To
achieve this, we can create an SDIRK base class that contains the general
versions of both the stage_eq and solve_stages methods. This base class
can then be used as a foundation for deriving specific SDIRK solver classes.
By writing the stage equations in this general form, it becomes straightfor-
ward to generalize the algorithm for looping through the stages and comput-
ing the individual stage derivatives. The complete base class implementation
may appear as follows.

class SDIRK(ImplicitRK):
def stage_eq(self, k, c_i, k_sum):

u, f, n, t = self.u, self.f, self.n, self.t
dt = self.dt
gamma = self.gamma

return k - f(t[n] + c_i * dt, u[n] + dt * (k_sum + gamma * k))

def solve_stages(self):
u, f, n, t = self.u, self.f, self.n, self.t
a, c = self.a, self.c
s = self.stages

k = f(t[n], u[n]) # initial guess for first stage
k_sum = np.zeros_like(k)
k_all = []
for i in range(s):

k_sum = sum(a_ * k_ for a_, k_ in zip(a[i, :i], k_all))
k = root(self.stage_eq, k, args=(c[i], k_sum)).x
k_all.append(k)

return k_all
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The modified stage_eq method takes two additional parameters: the coef-
ficient c_i, corresponding to the current stage, and the array k_sum, which
holds the sum

∑i−1
j=1 aijkj . These arguments need to be initialized correctly

for each stage and passed as additional arguments to the SciPy root func-
tion. For convenience, we also assume that the method parameter γ has been
stored as a separate class attribute. With the stage_eq method implemented
in this general way, the solve_stages method simply needs to update the
weighted sum of previous stages (k_sum), and pass this and the correct c
value as additional arguments to the SciPy root function. The implementa-
tion uses a for loop to compute the stage derivatives sequentially and returns
them as a list k_all.

As for the FIRK method classes, the only method we need to implement
specifically for each solver class is the constructor, in which we define the
number of stages and the method coefficients. A class implementation of the
method in (3.16) may look as follows.

class SDIRK2(SDIRK):
def __init__(self, f):

super().__init__(f)
self.stages = 2
gamma = (2 - np.sqrt(2)) / 2
self.gamma = gamma
self.a = np.array([[gamma, 0],

[1 - gamma, gamma]])
self.c = np.array([gamma, 1])
self.b = np.array([1 - gamma, gamma])

Shifting our attention to the ESDIRK methods, they are identical to the
SDIRK methods except for the first stage, and the potential for code reuse
is obvious. The stage_eq method from the SDIRK base class can be di-
rectly reused in an ESDIRK solver class, since the equations to be solved
for each stage are identical for SDIRK and ESDIRK solvers. However, the
solve_stages method needs to be modified, since there is no need to solve a
nonlinear equation for k1. Nevertheless, the modifications required are min-
imal since all stages i > 1 are identical. A possible implementation of the
ESDIRK class can look as follows:

class ESDIRK(SDIRK):
def solve_stages(self):

u, f, n, t = self.u, self.f, self.n, self.t
a, c = self.a, self.c
s = self.stages
k = f(t[n], u[n]) # initial guess for first stage
k_sum = np.zeros_like(k)
k_all = [k]
for i in range(1, s):

k_sum = sum(a_ * k_ for a_, k_ in zip(a[i, :i], k_all))
k = root(self.stage_eq, k, args=(c[i], k_sum)).x
k_all.append(k)

return k_all
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Fig. 3.6 Solutions of the Van der Pol model for µ = 10 and ∆t = 0.1, using implicit
RK solvers of different accuracy.

Comparing with the SDIRK base class defined earlier, there are two small but
important differences in the implementation of the solve_stages method.
First, the result of the first function evaluation k = f(t[n],u[n]) is used
directly as the first stage, by setting k_all = [k], instead of just serving
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as an initial guess for the nonlinear equation solver. Second, the for-loop for
computing the remaining stages starts at i=1 rather than i=0.

With the ESDIRK base class at hand, individual ESDIRK methods can
be implemented easily by defining the constructor, for instance:

class TR_BDF2(ESDIRK):
def __init__(self, f):

super().__init__(f)
self.stages = 3
gamma = 1 - np.sqrt(2) / 2
beta = np.sqrt(2) / 4
self.gamma = gamma
self.a = np.array([[0, 0, 0],

[gamma, gamma, 0],
[beta, beta, gamma]])

self.c = np.array([0, 2 * gamma, 1])
self.b = np.array([beta, beta, gamma])

It should be noted that these class implementations have some potential
weaknesses. One is that the solve_stages methods in the SDIRK and ES-
DIRK classes are nearly identical, and most of the code is duplicated. Part
of the purpose of implementing the solvers in a class hierarchy is to avoid
code duplication, so this is clearly not optimal. However, avoiding duplicated
code completely would require refactoring the classes a bit, to split the tasks
performed in solve_stages into several methods. Since these tasks belong
quite naturally together, splitting them up could make the code less readable
and potentially less computationally efficient. Efficiency should always be a
consideration when implementing numerical methods, although it is not a
strong focus of this text. In the ESDIRK class, another choice that could be
questioned is retaining the dimensions of the self.a coefficient array, and
setting the entire first row to zero. Storing these zeros is unnecessary, and we
could have omitted them and adjusted the for-loop in solve_stages accord-
ingly. However, keeping the dimensions as they are helps maintain the link
between the code and the mathematical formulation of RK methods.

Figure 3.6 illustrates the difference in accuracy between several IRK
solvers. The chosen time step ∆t= 0.1 is obviously too large for the backward
Euler method, and the solution is not even close to the reference solution.
The other solvers are the three-stage SDIRK method of order two, the two-
stage Radau method of order three, and three-stage Radau method of order
five. Further examples of SDIRK methods will be presented in Chapter 4,
when we introduce RK methods with adaptive time step.
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Chapter 4
Adaptive Time Step Methods

In practical computations, one seeks to achieve a desired accuracy with the
minimum computational effort. For a given method, this requires finding the
largest possible value of the time step ∆t. In the previous chapters we kept
the step size constant through the solution interval, but this is rarely the
most efficient approach, since the error depends on the characteristics of the
solution in addition to the step size. In smooth regions, larger time steps
can be used without introducing significant error, while smaller time steps
are needed in regions where the solution has rapid variations. This chapter
extends the Runge-Kutta methods from the previous chapters to methods
that select the time step automatically to control the error in the solution.

4.1 A Motivating Example

Many ODE models of dynamic systems have solutions that exhibit rapid vari-
ations in some intervals and remain nearly constant in others. A motivating
example is a class of ODE models that describe the action potential of ex-
citable cells, initially introduced by Hodgkin and Huxley [10]. These models
play a crucial role in studying the electrophysiology of cells, including neu-
rons and different types of muscle cells. The transmembrane potential, which
is the difference in electrical potential between a cell’s interior and its sur-
roundings, is often the primary variable of interest. When an excitable cell,
such as a neuron or muscle cell, undergoes electrical stimulation, it triggers
a cascade of processes in the cell membrane, including to the opening and
closing of various ion channels. The resulting flux of ions causes the mem-
brane potential to transition from its resting negative state to approximately
zero or slightly positive, before returning to its resting value. This process
of depolarization followed by repolarization is called the action potential (see
Figure 4.1). For a comprehensive overview of the Hodgkin-Huxley model and
action potential models in general, refer to [11].
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The potential value of adaptive time step methods becomes apparent
when examining Figure 4.1. During the action potential, the solution changes
rapidly whereas during periods of rest, it remains relatively constant over long
time intervals. Similar behavior is observed in many types of ODE models
and motivates the development of methods that can adjust the time step to
match the solution’s properties. These methods, commonly known as adap-
tive methods or methods with automatic time step control, are important
components of all modern ODE software.

Fig. 4.1 Solution of the Hodgkin-Huxley model. The left panel shows a single action
potential, while the right panel shows the result of stimulating the cell multiple times
with a fixed period.

There are many possible approaches for automatically selecting the time
step in numerical simulations. One intuitive strategy is to estimate the time
step estimate based on the solution’s dynamics, opting for a smaller time
step during periods of rapid variations. This approach is commonly applied
in adaptive solvers for partial differential equations (PDEs), where both the
time step and space step can be chosen adaptively. It has also proven effec-
tive in specialized solvers for action potential models, as discussed in [15],
where the time step is determined by the fluctuations in the transmembrane
voltage. However, it is important to note that this method may not be univer-
sally applicable, and the criteria for choosing the time step must be carefully
selected based on the characteristics of the problem at hand.

4.2 Choosing the Time Step Based on the Local
Error

Adaptive time stepping methods aim to control the error in the solution, and
it is natural to base the step selection on some form of error estimate. In
Section 1.5 we computed the error at the end of the solution interval, and
used it to confirm the theoretical convergence of the method. In principle,
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this global error could also be useful for selecting the time step, since we
can simply redo the calculation with a smaller time step if the error is too
large. However, for interesting ODE problems where the analytical solution is
unavailable, this method of error estimation becomes complicated. Further-
more, the goal of adaptive time step methods is to dynamically select the
time step as the solution progresses, to ensure that the final solution meets
a specified error tolerance. This goal requires a different approach, which is
based on estimating the local error for each step rather than relaying on the
global error.

Assuming that we can estimate the local error for a given step, en, the
goal is to choose the time step ∆tn so that the inequality

en < tol (4.1)

is satisfied for all steps. The process of choosing ∆tn to ensure the satisfaction
of (4.1) consists of two essential parts. First, we always check the inequality
after performing a step. If it is satisfied, we accept the step and proceed with
step n+ 1 as usual. If it is not satisfied, we reject the step and try again
with a smaller ∆tn. The second part of the procedure involves choosing the
next time step, ∆tn+1, if the current step was accepted, or a making a new
guess for ∆tn if it was rejected. Interestingly, we will discover that the same
formula, derived from our knowledge of the local error, can be applied in both
cases.

For simplicity of notation, let us assume that step n was accepted with a
time step ∆tn and a local error estimate en < tol. Our aim is now to choose
∆tn+1 so that (4.1) is satisfied as sharply as possible, to avoid unnecessary
computations. Hence, we aim to choose ∆tn+1 such that en+1 / tol. Recall
from 1.5 that for a method of global order p, the local error is of order p+1,
so we have

en ≈ C(∆tn)p+1 (4.2)
en+1 ≈ C(∆tn+1)p+1 (4.3)

where we assume that the error constant C remains constant from one step
to the next. Using (4.2), we can express C as

C = en
(∆tn)p+1 ,

and by inserting this expression into (4.3), we obtain

en+1 ≈
en

(∆tn)p+1 (∆tn+1)p+1.

To achieve en+1 ≈ tol, we set
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tol = en+1 = en

∆tp+1
n

∆tp+1
n+1

and rearrange to get the standard formula for time step selection

∆tn+1 =
(
tol

en
∆tp+1

n

)1/(p+1)
.

We see that if en� tol, the formula will select a larger step size for the next
step, while if en ≈ tol we get ∆tn+1 ≈∆tn. In practice, the formula is usually
modified with a safety factor, i.e., we set

∆tn+1 = η

(
tol

en
∆tp+1

n

)1/(p+1)
. (4.4)

for some η < 1. The same formula can be used to choose a new step size ∆tn
if the previous step was rejected, i.e., if en > tol.

Although (4.4) provides a simple formula for the step size and works well
for our example problems, more sophisticated methods have been derived.
The task of choosing the time step to control the error is an optimal control
problem, and successful methods based on control theory have been derived to
control the error while avoiding abrupt changes in the step size. For detailed
information and examples of such methods, refer to [9].

4.3 Estimating the Local Error

The inequality (4.1) and formula (4.4) provide the necessary tools to select
the time step based on the local error en, and the remaining challenge is
to develop a method for estimating this error. Since the analytical solution
is unavailable, direct computation of the error is not feasible, but it can be
estimated by comparing two numerical solutions of different accuracy. The
general idea is to advance the solution from tn−1 to tn using two methods of
different accuracy, resulting in the regular solution, un, and a more accurate
solution, ûn. The difference |ûn−un| can then be used to estimate the local
error for the solution un. The more accurate solution ûn can be computed in
two ways: either by taking several "internal" time steps to advance from tn
to tn+1, or by using a method with a higher order of accuracy. The former
approach forms the basis of a technique referred to as step doubling, where
the solution ûn+1 is computed with the same method used for un+1, but with
two steps of length ∆t/2 instead of one step ∆t. This naturally improves the
accuracy of ûn+1 compared with un+1, but the difference |ûn+1−un+1| is
not large enough to be directly used as an error estimate. However, by com-
bining this difference with the known order of the method, an error estimate
can be derived. For further details, refer to [1]. The step doubling method



4.3 Estimating the Local Error 65

is generally applicable and can provide a local error estimate for all ODE
solvers. However, it is computationally expensive, and most modern ODE
software relies on other techniques. The second approach for computing ûn,
to use a method with a higher order of accuracy, turns out to be particularly
advantageous for RK methods. We shall see in the next section that it is pos-
sible to construct embedded methods, which provides an error estimate with
very little additional computation.

4.3.1 Error Estimates from Embedded Methods

For a numerical method of order p, an estimate of the local error can be
obtained by comparing the solution computed with a higher-order method
(e.g., p+1), to the original solution. Since ∆t is small, we have ∆tp+1�∆tp,
and we can directly estimate the error as en = |un− ûn|. Computing these two
solutions using two entirely different methods would be expensive. However,
a more efficient approach is to use embedded methods, which are variations
of a given RK method that achieve a different order of accuracy. Embedded
methods use the same stage computations as the original method, making
them relatively inexpensive to evaluate.

To introduce an embedded method for error estimation in the general RK
method defined by (2.8)-(2.9), we define a separate set of weights b̂i, which
advance the solution using the same ki as the main method:

ki = f(tn+ ci∆t,yn+∆t

s∑
j=1

aijkj) for i= 1, . . . ,s (4.5)

un+1 = un+∆t

s∑
i=1

biki, (4.6)

ûn+1 = un+∆t

s∑
i=1

b̂iki. (4.7)

Although the main idea is to reuse the same stage computations to compute
both ûn+1 and un+1, it is not uncommon to introduce one additional stage in
the method to obtain the error estimate. An RK method with an embedded
method for error estimation is often referred to as an RK pair of order n(m),
where n is the order of the main method and m the order of the method
used for error estimation. Butcher tableaus for RK pairs are written exactly
as before, but with an extra line for the additional coefficients b̂:
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ci a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs
b̂1 · · · b̂s

.

As an example, let us consider the simplest possible embedded RK pair,
which is obtained by combining Heun’s method with the forward Euler
method. The method is defined by the Butcher Tableau

0 0
1 1

1 0
1/2 1/2

, (4.8)

which translates to the following formulas for advancing the two solutions:

k1 = f(tn,un),
k2 = f(tn+∆t,un+∆tk1),

un+1 = un+∆tk1,

ûn+1 = un+∆t/2(k1 +k2).

In the next section, we will see how this method pair can be implemented as
an extension of the ODESolver hierarchy discussed earlier, before we introduce
more advanced embedded RK methods in Section 4.5.

4.4 Implementing an Adaptive Solver

In the previous chapters we have successfully reused significant parts of the
original ODESolver base class for a variety RK methods. The explicit RK
methods only required reimplementing the advance method in subclasses,
while the implicit methods needed a few additional methods and a minor
redesign of the class structure. However, the solve method which contained
the main solver loop, could be reused by all the subclasses. A closer inspec-
tion of this method reveals that the assumption of a fixed number of time
steps is fundamental to the implementation, as it relies on a for-loop and
fixed-size NumPy arrays. With the introduction of an adaptive step size, the
number of steps is no longer fixed, necessitating significant changes to the
solve method. In fact, the only part of the original ODESolver class that can
be directly reused is the set_initial_condition method, providing only a
modest benefit. Nevertheless, it still makes sense to implement the adaptive
methods as subclasses of ODESolver, to benefit from this tiny code reuse and
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to highlight that an adaptive solver is a specialized case of a general ODE
solver. Since most of the additional functionality needed by adaptive solvers
is applicable to all adaptive methods, it makes sense to implement them in a
generic base class. The following changes and additions are needed:

• A complete rewrite of the solve method, replacing the for-loop and
NumPy arrays with lists and a while loop. Although lists are usually not
preferred for computational tasks, their flexible size makes them suitable
for adaptive time step methods. Additionally, it is natural to include more
parameters in the solve function, allowing users to specify the tolerance,
maximum step size and minimum step size.

• The advance method should be updated to return both the updated so-
lution and the error estimate.

• The step selection formula in (4.4) must be implemented as a separate
method.

• Adaptive methods usually include additional parameters, such as the
safety factor η and the order p used in (4.4). These parameters can con-
veniently be defined as attributes in the constructor.

An implementation of the adaptive base class may look as follows:

from ODESolver import *
from math import isnan, isinf

class AdaptiveODESolver(ODESolver):
def __init__(self, f, eta=0.9):

super().__init__(f)
self.eta = eta

def new_step_size(self, dt, loc_error):
eta = self.eta
tol = self.tol
p = self.order
if isnan(loc_error) or isinf(loc_error):

return self.min_dt

new_dt = eta * (tol / loc_error)**(1 / (p + 1)) * dt
new_dt = max(new_dt, self.min_dt)
return min(new_dt, self.max_dt)

def solve(self, t_span, tol=1e-3, max_dt=np.inf, min_dt=1e-5):
"""Compute solution for t_span[0] <= t <= t_span[1],
using N steps."""
t0, T = t_span
self.tol = tol
self.min_dt = min_dt
self.max_dt = max_dt
self.t = [t0]

if self.neq == 1:
self.u = [np.asarray(self.u0).reshape(1)]
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else:
self.u = [self.u0]

self.n = 0
self.dt = 0.1 / np.linalg.norm(self.f(t0, self.u0))

loc_t = t0
while loc_t < T:

u_new, loc_error = self.advance()
if loc_error < tol or self.dt < self.min_dt:

loc_t += self.dt
self.t.append(loc_t)
self.u.append(u_new)
self.dt = self.new_step_size(self.dt, loc_error)
self.dt = min(self.dt, T - loc_t, max_dt)
self.n += 1

else:
self.dt = self.new_step_size(self.dt, loc_error)

return np.array(self.t), np.array(self.u)

The constructor should be self-explanatory, but let us provide a few com-
ments on the other two methods. The new_step_size method essentially
implements (4.4) in Python, including tests to ensure that the selected step
size falls within the user-defined range. We have also added a check to au-
tomatically set the new step size to the minimum step size if the computed
error is infinity or not a number (inf or nan). This test is important for the
solver’s robustness because explicit methods will often diverge and return
inf or nan values when applied to very stiff problems. By checking for these
values and setting a low step size if they occur, we reduce the risk of complete
solver failure. Although the computation may become inefficient with a small
step size, it is preferable to unexpected failure.

The solve method has undergone significant changes compared to the
ODESolver version. First, the parameter list has been expanded to include
the tolerance, maximum time step and minimum time step. These values are
stored as attributes and used in the main loop. The most notable changes
start with the initialization of the self.t and self.u attributes, which are
now lists of length one rather than fixed-size NumPy arrays. Note the some-
what cumbersome initialization of self.u, which includes an if-test to deter-
mine if we are solving a scalar ODE or a system. This initialization ensures
that for scalar equations, self.u[0] is a one-dimensional array of length
one, rather than a zero-dimensional array. The actual contents of these two
data structures are the same, i.e., a single number, but they are treated dif-
ferently by some NumPy tools, and it is useful to ensure that self.u[0],
self.u[1], and so forth all have the same dimensions. The first step size
is then calculated using a simplified version of the algorithm outlined in [8].
The for-loop has been replaced with a while-loop, since the number of steps
is initially unknown. The call to the advance-method provides the updated
solution and the estimated local error, after which we check if the local er-
ror is lower than the tolerance. If it is, the new time point and solution are
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appended to the corresponding lists, and the next time step is chosen based
on the current step and the local error. The min and max operations ensure
that the time step remains within the selected bounds and that the simulation
ends at the final time T. If the constraint loc_error < tol is not satisfied,
we simply compute a new time step and try again without updating the lists
for the time and solution.

While the solve loop in the AdaptiveODESolver class is undoubtedly
more complex than earlier versions, it is important to note that it still rep-
resents a simplifed version of an adaptive ODE solver. The aim here is to
present the fundamental ideas and foster a general understanding of how
these solvers are implemented. Consequently, we have included only the most
essential components, and certain limitations and simplifications should be
acknowledged:

• The step size selection formula in (4.4), implemented in the method
new_step_size, could be replaced with more sophisticated algorithms.
For more details, refer to sources such as [3, 9].

• The formula for selecting the initial step is quite basic and primarily aims
to prevent extremely poor initial choices. More advanced algorithms have
been developed, and for additional information, consult references like [8,9]
for details.

• The initial if-test within the solver loop is not the most robust, since it
will proceed and move forward if the minimum step size is reached, even if
the error is excessively large. A robust solver should provide a warning to
the user in such cases where the requested tolerance cannot be achieved.

Despite these and other limitations, the adaptive solver class works as in-
tended and captures the essential behavior of adaptive ODE solvers.

With the AdaptiveODESolver base class available, specific solvers can be
implemented by creating tailored versions of the advance method and the
constructor. The order of the method is used in the time step selection and
therefore needs to be defined as an attribute. For example, an implementation
of the Euler-Heun method pair mentioned earlier could appear as follows:

class EulerHeun(AdaptiveODESolver):
def __init__(self, f, eta=0.9):

super().__init__(f, eta)
self.order = 1

def advance(self):
u, f, t = self.u, self.f, self.t
dt = self.dt
k1 = f(t[-1], u[-1])
k2 = f(t[-1] + dt, u[-1] + dt * k1)
high = dt / 2 * (k1 + k2)
low = dt * k1
unew = u[-1] + low
error = np.linalg.norm(high - low)
return unew, error
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After calculating the derivatives k1 and k2 for the two stages, the method
proceeds to compute the updates for both the high and low order solutions.
The low order solution is used to advance the overall solution, while the
difference between the high and low order solutions serves as the error esti-
mate. The method then returns the updated solution and the error, which
are needed by the solve method implemented in the base class described
earlier.

Since we have two methods with different levels of accuracy, one might
wonder whether it would be better to advance the solution using the more
accurate method rather than the less accurate one. This choice would cer-
tainly yield a reduced local error, but the drawback is that we would no
longer have a proper error estimate for the method used to integrate the
solution. We can use the more accurate solution to estimate the error of the
less accurate, but not the other way around. Nevertheless, this approach,
known as local extrapolation [8], is still used by many popular RK pairs, as
we will observe in the examples below. Even though the error estimate may
not be precise for the method used to integrate the solution, it still works
well as a tool for selecting the time step. In the implementation above, it is
straightforward to experiment with this choice by replacing low with high
when assigning the value to unew. By doing so, we can observe the impact
on the error and the number of time steps.

4.5 More Advanced Embedded RK Methods

There are numerous examples of explicit RK pairs of higher order than the
1(2) pair defined by (4.8). We will not provide an exhaustive list here, but
mention two particularly popular methods that have been implemented in
various software packages. The first method, known as the Fehlberg 4(5) or
RKF45 method [5] is defined by the following Butcher tableau:
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1
4

3
8

3
32

9
32

12
13

1932
2197 −

7200
2197

7296
2197
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216 −8 3680

513 − 845
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1
2 −

8
27 2 −3544

2565
1859
4104 −

11
40

25
216 0 1408

2565
2197
4104 −1

5 0
16

135 0 6656
12825

28561
56430 −

9
50

2
55

. (4.9)

In this tableau, the coefficients in the first line (bi) correspond to a fourth-
order method, while the coefficients in the last line (b̂i) correspond to a fifth-
order method. The implementation of the RKF45 method is similar to the
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Euler-Heun pair, but due to the increased number of stages and coefficients,
the advance method becomes more complex:

class RKF45(AdaptiveODESolver):
def __init__(self, f, eta=0.9):

super().__init__(f, eta)
self.order = 4

def advance(self):
u, f, t = self.u, self.f, self.t
dt = self.dt
c2 = 1/4; a21 = 1/4;
c3 = 3/8; a31 = 3/32; a32 = 9/32
c4 = 12/13; a41 = 1932/2197; a42 = -7200/2197; a43 = 7296/2197
c5 = 1; a51 = 439/216; a52 = -8; a53 = 3680/513;
a54 = -845/4104
c6 = 1/2; a61 = -8/27; a62 = 2; a63 = -3544/2565;
a64 = 1859/4104; a65 = -11/40
b1 = 25/216; b2 = 0; b3 = 1408/2565; b4 = 2197/4104;
b5 = -1/5; b6 = 0
bh1 = 16/135; bh2 = 0; bh3 = 6656/12825; bh4 = 28561/56430;
bh5 = -9/50; bh6 = 2/55

k1 = f(t[-1], u[-1])
k2 = f(t[-1] + c2 * dt, u[-1] + dt * (a21 * k1))
k3 = f(t[-1] + c3 * dt, u[-1] + dt * (a31 * k1 + a32 * k2))
k4 = f(t[-1] + c4 * dt, u[-1] + dt *

(a41 * k1 + a42 * k2 + a43 * k3))
k5 = f(t[-1] + c5 * dt, u[-1] + dt *

(a51 * k1 + a52 * k2 + a53 * k3 + a54 * k4))
k6 = f(t[-1] + c6 * dt, u[-1] +

dt * (a61 * k1 + a62 * k2 + a63 * k3
+ a64 * k4 + a65 * k5))

low = dt * (b1 * k1 + b3 * k3 + b4 * k4 + b5 * k5)
high = dt * (bh1 * k1 + bh3 * k3 + bh4 * k4

+ bh5 * k5 + bh6 * k6)
unew = u[-1] + low
error = np.linalg.norm(high - low)

return unew, error

return unew, error

The advance method could be written more concisely, but we have chosen
to maintain the structure of the explicit RK methods introduced earlier.

Another well-known and widely used pair of ERKmethods is the Dormand-
Prince method [4], which is a seven-stage method with the following coeffi-
cients:
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This method has been optimized for the local extrapolation approach men-
tioned above, where the higher order method is used for advancing the solu-
tion and the less accurate method is used for step size selection. The imple-
mentation is otherwise similar to the RKF45 method. The Dormand-Prince
method has been implemented in many software tools, including the popular
ode45 function in Matlab (The Math Works, Inc. MATLAB. Version 2023a).

Implicit RK methods can also incorporate embedded methods. The un-
derlying idea is the same as for explicit methods, although step size selection
tends to be more challenging for stiff problems. A crucial requirement for
stiff problems is that both the main method and the error estimator must
have good stability properties. Stiff problems pose challenges for error con-
trol algorithms, and simple algorithms such as (4.4) often experience large
fluctuations in step size and local error. For a detailed discussion of these
challenges, refer to [1, 9].

As an example of an implicit method with error control, we can extend
the TR-BDF2 method in (3.17) to include a third order method for error
estimation. The extended Butcher tableau is

0 0
2γ γ γ 0
1 β β γ

β β γ
1−β

3
3β+1

3
γ
3

, (4.10)

where γ = 1−
√

2/2, β =
√

2/4, and the bottom line of coefficients defines the
third-order method. This third-order method is not L-stable, so for stiff prob-
lems it is preferable to advance the solution using the second-order method
and use the more accurate one for time step control. Achieving L-stability
for both methods of an embedded RK pair is ideal but often impossible,
and we need to accept somewhat weaker stability requirements for the error
estimator, as discussed in [13].

When implementing the adaptive TR-BDF2 and other implicit methods,
we need to combine features from the AdaptiveODESolver class mentioned
earlier with the tools from the ImplicitRK hierarchy introduced in Chap-
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ter 3. Specifically, an adaptive implicit RK method requires the solve and
new_step_size methods from AdaptiveODESolver, while all the code for
computing the stage derivatives can be reused directly from the ImplicitRK
classes. A convenient approach to reuse functionality from two different
classes is to use multiple inheritance, where we define a new class as a subclass
of two different base classes. For instance, a base class for adaptive ESDIRK
methods may be implemented as follows:

class AdaptiveESDIRK(AdaptiveODESolver,ESDIRK):

This simply states that the new class inherits all the methods from both
the AdaptiveODESolver class and the ImplicitRK class. The general de-
sign of the ImplicitRK class mentioned earlier was to define the method
coefficients in the constructor and use a generic advance method, making it
convenient to use the same method for adaptive implicit methods. However,
the advance method needs to be overridden in our AdaptiveImplicitRK base
class from ImplicitRK as we need the method to return the error in addition
to the updated solution. All other methods can be reused directly from either
AdaptiveODESolver or ImplicitRK. Therefore, a suitable implementation of
the new class may look like:

class AdaptiveESDIRK(AdaptiveODESolver, ESDIRK):
def advance(self):

b = self.b
e = self.e
u = self.u
dt = self.dt
k = self.solve_stages()
u_step = dt * sum(b_ * k_ for b_, k_ in zip(b, k))
error = dt * sum(e_ * k_ for e_, k_ in zip(e, k))

u_new = u[-1] + u_step
error_norm = np.linalg.norm(error)
return u_new, error_norm

In this implementation, we assume that the constructor defines all the RK
method parameters used earlier, as well as a set of parameters self.e, de-
fined by ei = bi− b̂i, for i = 1, . . . ,n, which are used in error calculations.
Except for the two lines computing the error, the method is identical to the
generic advance method from the ImplicitRK class used by all the previ-
ous subclasses. Consequently, one might wonder whether this method should
have been placed in a general base class for implicit RK methods, such as
AdaptiveImplicitRK, so that it could be used in adaptive versions of the
SDIRK, ESDIRK, and Radau classes. However, adaptive versions of the
Radau methods use a slightly different calculation of the error, since it is
not possible to construct an embedded method of order p− 1 for a Radau
method of order p. Thus, for the adaptive solvers, the advance method is
slightly less general, and it is more convenient to implement it separately
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for the ESDIRK methods. Further details on adaptive versions of the Radau
methods may be found in [9].

Although multiple inheritance provides a convenient way to reuse the
functionality of our existing classes, it comes with the risk of somewhat
complex and confusing class hierarchies. In particular, the fact that our
AdaptiveESDIRK class inherits from AdaptiveODESolver and ESDIRK, which
are both subclasses of ODESolver, may give rise to a well-known ambigu-
ity referred to as the diamond problem. The problem would arise if, for in-
stance, we were to define a method in ODESolver, override it with special
versions in both AdaptiveODESolver and ESDIRK, and then call it from an
instance of AdaptiveESDIRK. Would we then call the version implemented
in AdaptiveODESolver or the one in ESDIRK? The answer is determined
by Python’s so-called method resolution order (MRO), which decides which
method to inherit first based on its "closeness" in the class hierarchy and
then on the order of the base classes in the class definition. In our particular
example the AdaptiveESDIRK class is equally close to AdaptiveODESolver
and ESDIRK, since it is a direct subclass of both. The method called would
therefore be the version from AdaptiveODESolver, since this is listed first
in the class definition. In our relatively simple class hierarchy there are no
such ambiguities, and even if we use multiple inheritance it should not be
too challenging to determine which methods are called, but it is a potential
source of confusion that is worth being aware of.

Now that we have the AdaptiveESDIRK base class available, we can im-
plement an adaptive version of the TR-BDF2 method as follows:

class TR_BDF2_Adaptive(AdaptiveESDIRK):
def __init__(self, f, eta=0.9):

super().__init__(f, eta) # calls AdaptiveODESolver.__init__
self.stages = 3
self.order = 2
gamma = 1 - np.sqrt(2) / 2
beta = np.sqrt(2) / 4
self.gamma = gamma
self.a = np.array([[0, 0, 0],

[gamma, gamma, 0],
[beta, beta, gamma]])

self.c = np.array([0, 2 * gamma, 1])
self.b = np.array([beta, beta, gamma])
bh = np.array([(1 - beta) / 3, (3 * beta + 1) / 3, gamma / 3])
self.e = self.b - bh
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To illustrate the use of this solver class, we may return to the Hodgkin-Huxley
model introduced earlier in this chapter. Assuming the model is implemented
as a class in a file hodgkinhuxley.py, the following code solves the model
and plots the transmembrane potential:

from AdaptiveImplicitRK import TR_BDF2_Adaptive
from hodgkinhuxley import HodgkinHuxley
import matplotlib.pyplot as plt

model = HodgkinHuxley()
u0 = [-45, 0.31, 0.05, 0.59]
t_span = (0, 50)
tol = 0.01

solver = TR_BDF2_Adaptive(model)
solver.set_initial_condition(u0)

t, u = solver.solve(t_span, tol)

plt.plot(t, u[:, 0])
plt.show()

Fig. 4.2 Solution of the Hodgkin-Huxley model. The solid line is a reference solution
computed with SciPy solve_ivp, while the +-marks are the time steps chosen by the
adaptive TR-BDF2 solver.
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A plot of the solution is shown in Figure 4.2, where the +-marks repre-
sent the time steps chosen by the adaptive TR-BDF2 solver. It is apparent
that larger time steps are used in quiescent regions while smaller steps are
employed in regions with rapid solution variations. A more quantitative view
of the solver behavior, for three different solvers, is shown in the table below.
Each method was applied with three different tolerance values over a time
interval from 0 to 50ms, using default choices for the maximum and mini-
mum time steps. The "Error" column provides an estimate of the global error,
calculated based on a reference solution obtained using SciPy’s solve_ivp
function. The "Steps" column indicates the number of accepted time steps,
while "Rejected" indicates the total number of rejected steps. The last two
columns display the minimum and maximum time steps observed during the
computation.

Solver Tolerance Error Steps Rejected ∆tmax ∆tmin

TR-BDF2 1.000 0.0336961 24 9 10.533 0.00791
TR-BDF2 0.100 0.0175664 43 14 9.705 0.00791
TR-BDF2 0.010 0.0028838 83 22 5.328 0.00791

RKF45 1.000 0.6702536 192 113 2.204 1.0 · 10−5

RKF45 0.100 0.0934201 118 58 1.093 1.0 · 10−5

RKF45 0.010 0.0054336 123 34 1.297 0.00791

EulerHeun 1.000 0.7790353 158 35 1.849 0.00791
EulerHeun 0.100 0.0016577 220 40 0.836 0.00791
EulerHeun 0.010 0.0014654 432 36 0.918 0.00251

The numbers in this table illustrate several well-known properties and lim-
itations of adaptive ODE solvers. First, we observe that there is no close
relationship between the selected tolerance and the resulting error. The er-
ror gets smaller when we reduce the tolerance, and for this particular case
the error is always smaller than the specified tolerance, but the error varies
substantially between the different methods. As mentioned earlier, the time
step is selected to control the local error, and although we expect the global
error to decrease as we reduce the tolerance, we cannot guarantee that the
global error will be smaller than the tolerance. Second, the RKF45 and Euler-
Heun methods exhibit relatively poor performance and inconsistent behavior
as the tolerance is reduced. For instance, the RKF45 method requires the
highest number of steps, and also rejects the largest number of steps, when
the tolerance is set to the highest value. This behavior stems from the stiff
nature of Hodgkin-Huxley model, where the time step for explicit methods is
primarily determined by stability rather than accuracy. The minimum time
step ∆tmin of 1.0 · 10−5 is a result of divergence issues that automatically
set the time step to the specified lower bound. In most of the other combi-
nations of method and tolerance, the smallest observed time step is the first
one, selected by the simple formula within the solve method. There is room
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for improvement in this area, and the overall performance of RKF45 for stiff
problems could be improved with a more sophisticated step size controller.
However, it is important to note that for stiff problems, explicit solvers will
never achieve the same level of performance as implicit solvers.

The ideas and tools introduced in this chapter are fundamental to all
RK methods with error control and automatic time step selection. These
ideas are fairly simple, and, as illustrated in Figure 4.2, give rise to methods
that effectively adapt the time step to control the error. However, there are
many practical considerations in implementing these methods, and we have
only scratched the surface. For example, the time step control formula in
(4.4) could be refined using more sophisticated models derived from control
theory. [7] The initial time step selection, as indicated by the smallest step
∆tmin being the first one for most solvers in the table, could also be im-
proved. Furthermore, adjusted error estimates tailored for stiff systems have
been proposed [9]. For a comprehensive discussion and detailed exploration
of automatic time step control, we recommend referring to [1] and [8, 9].
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Chapter 5
Modeling Infectious Diseases

Throughout this book we have focused entirely on solving ODEs, without
delving deeply into their origins or applications. In the present chapter we
shift our attention tomodeling with ODEs, by exploring a widely studied class
of ODE models that describe the spread of infectious diseases. This group
of models serves as a good example of how a complex phenomenon can be
modeled using relatively simple systems of ODEs. We will derive these models
based on a set of fundamental assumptions and discuss the limitations that
arise from these assumptions. Although we consider a single application and
a single class of models, the fundamental steps of the modeling process are
applicable to a wide range of real-world phenomena.

5.1 Derivation of the SIR model

Our objective is to develop a model that captures the dynamics of infectious
disease transmission within a population. This subject is of great scientific
and societal interest and has been studied by scientists for centuries, gaining
even more attention in recent times for obvious reasons. In the early 1900s,
Kermack and McKendrick [12] introduced the classical model for predicting
epidemic dynamics, known as the SIR model. The name ’SIR’ derives from
the three categories it describes: Susceptible, Infected, and Recovered (or,
alternatively, Removed). However, it is important to note that the spread of
disease in a population is a very complex process, and to construct an ODE-
based model we need to make a number of simplifying assumptions. The
most important assumption is that we do not consider individuals as discrete
entities but focus solely on the total population and the flow of people among
the three aforementioned categories. We assume a perfectly mixed population
confined to a specific area, disregarding spatial movement of the disease, and
focusing solely on its temporal evolution. The first model we will derive is very
simple, but it can be easily extended to encompass models used worldwide
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by health authorities for predicting the spread of diseases such as Covid-19,
flu, Ebola, HIV, and others.

In the first version of the model we track the three categories of people
mentioned above:

• S: susceptibles - who can get the disease
• I: infected - who have developed the disease and can infect susceptibles
• R: recovered - who have recovered and gained immunity

Mathematically, we represent these categories as functions S(t), I(t), R(t),
which denote the number of people in each category. Our goal is now to
derive a set of equations for S(t), I(t), R(t), and then solve these equations
to predict the spread of the disease.

To derive the model equations, we first consider the dynamics over a time
interval ∆t, and our goal is to derive mathematical expressions for how many
people that transition between the three categories during this time interval.
The crucial aspect of the model lies in describing how individuals transition
from S to I, i.e., how susceptible individuals become infected by those already
infected. Since infectious diseases are primarily transmitted through direct
interactions, we need to establish mathematical descriptions of the number
of interactions between susceptible and infected individuals. We make the
following assumptions:

• An individual in the S category interacts with an approximately constant
number of people each day, making the number of interactions in a time
interval ∆t proportional to ∆t.

• The probability of one of these interactions involving an infected person
is proportional to the ratio of infected individuals to the total population,
i.e., to I/N , with N = S+ I+R.

Based on these assumptions, the probability of a single susceptible person
becoming infected is proportional to ∆tI/N . The total number of infections
can be expressed as βSI/N , where β is a constant representing the probability
of an infected person encountering and infecting a susceptible person. The
value of β depends on the infectiousness of the disease and the behavior of
the population, as further discussed below. Infections of new individuals lead
to a decrease in S and a corresponding gain in I, resulting in the following
equations:

S(t+∆t) = S(t)−∆tβS(t)I(t)
N

,

I(t+∆t) = I(t)+∆tβ
S(t)I(t)
N

.

These two equations represent the key component of all the models covered
in this chapter. They are formulated as difference equations, and they can
easily be transformed to ODEs. More advanced models are typically derived
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by adding more categories and more transitions between them, but the indi-
vidual transitions are very similar to those presented here.

S RI
Fig. 5.1 Graphical representation of the simplest SIR-model, where people move from
being susceptible (S) to being infected (I) and then reach the recovered (R) category
with immunity against the disease.

We also need to model the transition of people from the I to the R category.
Again considering a small time interval ∆t, it is reasonable to assume that a
fraction ∆tν of the infected individuals recover and move to the R category.
Here ν is a constant that describes the time dynamics of the disease. The
increase in R is given by:

R(t+∆t) =R(t)+∆tνI(t),

Additionally, we need to subtract the same term in the balance equation for
I, since individuals move from I to R. Therefore, we have:

I(t+∆t) = I(t)+∆tβS(t)I(t)−∆tνI(t).

We now have three equations for S, I, and R:

S(t+∆t) = S(t)−∆tβS(t)I(t)
N

, (5.1)

I(t+∆t) = I(t)+∆tβ
S(t)I(t)
N

−∆tνI(t), (5.2)

R(t+∆t) =R(t)+∆tνI(t). (5.3)

These equations form a system of difference equations, as discussed in more
detail in Appendix A. Although we could solve the equations in their current
form using techniques from Appendix A, it is more convenient to formulate
the model as a system of ODEs and apply the ODE solvers derived in previous
chapters.

To turn the difference equations into ODEs, we first divide all equations
by ∆t and rearrange, to get
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S(t+∆t)−S(t)
∆t

=−βS(t)I(t)
N

, (5.4)

I(t+∆t)− I(t)
∆t

= βt
S(t)I(t)
N

−νI(t), (5.5)

R(t+∆t)−R(t)
∆t

= νI(t). (5.6)

We see that by letting ∆t→ 0, we get derivatives on the left-hand side:

S′(t) =−βSI
N
, (5.7)

I ′(t) = β
SI

N
−νI, (5.8)

R′(t) = νI, (5.9)

where, as above, N = S+ I+R.1 If we add the three equations, we see that
N ′(t) = S′(t)+ I ′(t)+R′(t) = 0, which means the total population N is con-
stant. The equations (5.7)-(5.9) form a system of three ODEs, which we will
solve to find the unknown functions S(t), I(t), R(t). To solve these equations,
we need to specify the initial conditions S(0) (many), I(0) (few), and R(0)
(=0), as well as the parameters β and ν.

In practical applications of the model, estimating the parameters can be
a major challenge. We can estimate ν from the fact that 1/ν is the average
recovery time for the disease, which is usually possible to determine from
early cases. However, estimating the infection rate β is more challenging, as it
encompasses numerous biological and sociological factors into a single value.
It depends on the infectiousness of the disease and the interactions within
the population, and is usually challenging to estimate for a new disease. In
a global pandemic, the behavior of the population varies among different
countries and changes over time. Therefore, β often needs to be adapted to
different regions and phases of the disease outbreak.

Epidemiologists often refer to the basic reproduction number R0 of an
epidemic, which represents the average number of new individuals infected
by a single infected person. The critical value is R0 = 1, since an epidemic
will decline if R0< 1, and it will grow exponentially if R0> 1. In the simple
model we are considering here, the relationship between R0 and β is given by
R0 = β/ν, since β measures the number of disease transmissions per time, and
1/ν is the mean duration of the infectious period. Be aware of the potential
confusion between the R category in the SIR model, in particular its initial
value R(0), and the basic reproduction number R0. These quantities, R0 and

1A simpler version of the SIR model is also commonly used, where the disease trans-
mission term is not scaled with N . Eq. (5.8) then reads S′ = −βSI, and (5.8) is modified
similarly. Since N is constant the two models are equivalent, but the version in (5.7)-
(5.9) is more common in real-world applications and gives a closer relation between β
and common parameters such as the reproduction number.
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β, are not directly related, and the notation may not be optimal. However,
we use it here because it is widely established in the field of epidemiology.

Although the system (5.7)-(5.9) appears simple, it is not easy to derive
analytical solutions. For specific applications, simplifications can often be
made to allow for simple analytical solutions. For instance, when studying
the early phase of an epidemic, the focus is usually on the I category Since the
number of infected cases is low compared with the entire population during
this phase, it is reasonable to assume that S is approximately constant and
equal to N . By substituting S ≈ N into (5.8), we obtain a simple equation
describing exponential growth with the solution

I(t) = I0e
(β−ν). (5.10)

Such an approximate formula may be very useful, in particular for estimating
the model’s parameters. In the early phase of an epidemic, the number of
infected people typically follows an exponential curve, and we can fit the
model’s parameters so that (5.10) fits the observed dynamics. We can also
relate the behavior of this simple model to the basic reproduction number
R0 introduced above. With R0 = β/ν, R0> 1 results in a positive exponent
in (5.10), while R0 < 1 leads to a negative exponent and a decline in I(t).
However, to fully describe the dynamics of the epidemic, we need to solve
the complete system of ODEs, which requires numerical solvers like the ones
developed in the previous chapters.
Solving the SIR Model with the ODESystem Class Hierarchy. We can
easily solve the SIR model given (5.7)-(5.9) using the solver tools developed in
the previous chapters. For typical parameter values the models are not stiff,
and the explicit RK solvers work well. For instance, a simple code which
implements the SIR model as a function, and solves it using the fourth-order
RK method, may look as follows:

from ODESolver import RungeKutta4
import numpy as np
import matplotlib.pyplot as plt

def SIR_model(t, u):
beta = 0.001
nu = 1 / 7.0
S, I, R = u[0], u[1], u[2]
dS = -beta * S * I
dI = beta * S * I - nu * I
dR = nu * I
return [dS, dI, dR]

S0 = 1000
I0 = 1
R0 = 0

solver = RungeKutta4(SIR_model)
solver.set_initial_condition([S0, I0, R0])
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t_span = (0, 100)
t, u = solver.solve(t_span, N=101)
S = u[:, 0]
I = u[:, 1]
R = u[:, 2]

plt.plot(t, S, t, I, t, R)
plt.show()

The resulting plot is shown in Figure 5.2.

A Class Implementation of the SIR Model. As noted above, estimating
the parameters in the model is often challenging. In fact, one of the most
important applications of models like these is to predict the dynamics of
new and unknown diseases, such as during the global Covid-19 pandemic.
Accurate predictions of the number of disease cases are crucial for planning
an effective response to the epidemic. However, for a new disease most of the
model parameters are unknown, and the lack of data makes them challenging
to estimate. There are ways to estimate the parameters from the early disease
dynamics, but the estimates will contain a large degree of uncertainty, and
a common strategy to gain insight into the disease dynamics is to run the
model for multiple parameter sets, to explore different outbreak scenarios. We
can easily run the code above for multiple values of beta and nu. However,
it is inconvenient that both parameters are hardcoded as local variables in
the SIR_model function, since this requires us to manually edit the code
for each new parameter value we want to use. As we have seen earlier, it
is much better to represent such a parameterized function as a class. In a
class, the parameters can be set in the constructor, and the function itself is
implemented in a __call__ method. A class for the SIR model could look
like:

class SIR:
def __init__(self, beta, nu):

self.beta = beta
self.nu = nu

def __call__(self, t, u):
S, I, R = u[0], u[1], u[2]
dS = -self.beta * S * I
dI = self.beta * S * I - self.nu * I
dR = self.nu * I
return [dS, dI, dR]

As with the models discussed in earlier chapters, the use of the class is very
similar to that of the SIR_model function above. We create an instance of
the class with specific values of beta and nu, and then this instance can be
passed to the ODE solver just like any regular Python function.
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Fig. 5.2 Solution of the simplest version of the SIR model, showing how the number
of people in each category (S,I, and R) changes with time.

5.2 Extending the SIR Model

The SIR model itself, in its simplest form, is rarely used for predictive sim-
ulations of real-world diseases. However, various extensions of the model are
widely used to better capture the dynamics of different infectious diseases.
In this section, we will explore a few such extensions that are based on the
building blocks of the simple SIR model.

An SIR Model without Life-Long Immunity. One modification of the
model is to remove the assumption of life-long immunity. The original model
(5.7)-(5.9) describes a one-directional flow towards the R category, where
the entire population eventually transitions to R if the model is solved over
a sufficiently long time interval. However, this situation is not realistic for
many diseases, since immunity tends to diminish over time. In the model this
loss can be described by a leakage of people from the R category back to S.
If we introduce the parameter γ to describe this flux (1/γ being the mean
time for immunity), the modified equation system looks like

S′(t) =−βSI/N +γR,

I ′(t) = βSI/N −νI,
R′(t) = νI−γR.

Similar to the original model, the reduction in R is accompanied by an in-
crease in S of the same magnitude, maintaining a constant total population
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of S+I+R . The model can be implemented by a straightforward extension
of the SIR class shown above. We simply need to add an additional parameter
to the constructor and include the extra terms in the dS and dR equations.
By choosing different parameter values, the model may show far more inter-
esting dynamics than the simplest SIR model. An example solution is shown
in Figure 5.3. Here, we set β = 0.001,ν = 1/7.0, and γ = 1.0/50. These values
assume a mean duration of the disease of seven days and a mean duration of
immunity of 50 days.

Fig. 5.3 Illustration of a SIR model without lifelong immunity, where people move
from the R category back to S after a given time.

A SEIR Model to Capture the Incubation Period. A SEIR model can
be used to account for the incubation period observed in many important
infections. During this period, individuals have been infected but are not
yet infectious themselves. To incorporate this aspect into the model, we can
add an additional category, E (for exposed). When people are infected, they
move into the E category rather than directly transitioning to the infected (I)
state. They then gradually move over to the infected state, where they can
also infect others. The model for how susceptible people get infected remains
the same as in the ordinary SIR model. Such a SEIR model is illustrated in
Figure 5.4, and the ODEs may look like
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S′(t) =−βSI/N +γR,

E′(t) = βSI/N −µE,
I ′(t) = µE−νI,
R′(t) = νI−γR.

Note that the overall structure of the model remains the same. Since the
total population is conserved, all terms are balanced in the sense that they
occur twice in the model, with opposite signs. A decrease in one category is
always matched with an identical increase in another category. It is always
useful to be aware of such fundamental properties in a model, since they can
easily be checked in the computed solutions and may reveal errors in the
implementation.

S RIE

Fig. 5.4 Illustration of the SEIR model, without life-long immunity.

Again, this small extension of the model does not make it much more
difficult to solve. The following code shows an example of how the SEIR model
can be implemented as a class and solved with the ODESolver hierarchy:

from ODESolver import RungeKutta4
import numpy as np
import matplotlib.pyplot as plt

class SEIR:
def __init__(self, beta, mu, nu, gamma):

self.beta = beta
self.mu = mu
self.nu = nu
self.gamma = gamma

def __call__(self, t, u):
S, E, I, R = u
N = S + I + R + E
dS = -self.beta * S * I / N + self.gamma * R
dE = self.beta * S * I / N - self.mu * E
dI = self.mu * E - self.nu * I
dR = self.nu * I - self.gamma * R
return [dS, dE, dI, dR]

S0 = 1000
E0 = 0
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I0 = 1
R0 = 0
model = SEIR(beta=1.0, mu=1.0 / 5, nu=1.0 / 7, gamma=1.0 / 50)

solver = RungeKutta4(model)
solver.set_initial_condition([S0, E0, I0, R0])
t_span = (0, 100)
t, u = solver.solve(t_span, N=101)
S = u[:, 0]
E = u[:, 1]
I = u[:, 2]
R = u[:, 3]

plt.plot(t, S, t, E, t, I, t, R)
plt.show()

5.3 A Model of the Covid-19 Pandemic

The models mentioned earlier can be adapted to describe more complex dis-
ease behavior by introducing additional categories of people and possibly
more interactions between these categories. Now, we will explore an exten-
sion of the SEIR model, which was used by Norwegian health authorities
to predict the spread of the Covid-19 pandemic throughout 2020 and 2021.
In this case, we will derive the model as a system of ODEs, similar to the
models discussed earlier, while the actual model used for providing Covid-19
predictions to health authorities was a stochastic model.2 Stochastic models
offer greater flexibility than the deterministic ODE version since they ac-
count for the inherent randomness and variability in disease transmission. In
a stochastic SIR model, the disease transmission is considered a stochastic
process, meaning that the probability of an individual getting infected is not
fixed but depends on random events and chance encounters with infected
individuals. Instead of using deterministic equations to model the number
of individuals in each compartment and transitions between compartments,
stochastic models employ probability distributions and model transitions as
stochastic processes rather than a continuous flux described by ODEs. One
advantage of stochastic models is that they can more easily incorporate dy-
namics such as model parameters that vary with time after infection. For
example, the infectiousness (β) typically follows a bell-shaped curve, grad-
ually increasing after infection, reaching a peak after a few days, and then
declining. Such behavior is easier to incorporate in a stochastic model com-
pared with the deterministic ODE model considered here, which assumes a
constant β for all individuals in the I category. However, the overall struc-
ture and dynamics of the two model types are exactly the same, and under

2See https://github.com/folkehelseinstituttet/spread

https://github.com/folkehelseinstituttet/spread
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certain choices of model parameters, the stochastic and deterministic models
become equivalent. For a discussion on stochastic and deterministic epidemi-
ology models, refer to [6].

An important characteristic of Covid-19 is that people may be infected
and capable of infecting others, even if they exhibit no symptoms. This at-
tribute greatly impacts the spread of the disease since infected individuals are
unaware of their condition and therefore do not take precautions to prevent
transmission. There are two distinct groups of asymptomatic yet infectious
people: have been identified:

• A certain number of people are infected, but never develop any symptoms,
or the symptoms are so mild that they are mistaken for other mild respi-
ratory infections. These asymptomatic people can still infect others, but
with a lower infectiousness than the symptomatic group. Hence they need
to be treated as a separate category.

• The other group, which is potentially even more significant for disease
dynamics, consists of people who are infected and will develop symptoms,
but the symptoms have not yet surfaced. However, they are still capable
of infecting others, unlike the individuals in the exposed (E) category of
the simple SEIR model above.

To model these two groups, we introduce two new compartments to the SEIR
model presented earlier. We split the exposed category in two, E1 and E2,
where the former represents non-infectious individuals and the latter repre-
sents individuals capable of infecting others. Similarly, we divide the I cat-
egory into a symptomatic I and an asymptomatic Ia group. The transition
from S to E1 follows a similar pattern as in the SEIR model. However, from
E1, people can follow one of two possible trajectories: some move to E2, then
to I and finally to R, while others directly transition to Ia and then to R. The
model is illustrated in Figure 5.5. Since there are two different E-categories
and two different I-categories, we refer to the model as a SEEIIR model.

S R

I

E1

E2

Ia

Fig. 5.5 Illustration of the Covid-19 epidemic model, with two alternative disease
trajectories.

The derivation of the model equations for the SEEIR model is similar to
the simpler models discussed earlier, but there are more equations and more
terms involved. The most important extension in the SEEIR model is the
inclusion of three categories of infectious people; E2, I, and Ia. Each of these
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categories interacts with the S category to create new infections, which we
model in the same way as before. In a time interval ∆t, the flux from S to
E1 consists of three contributions:

• Infected by people in I: β∆tSI/N
• Infected by people in Ia: riaβ∆tSIa/N
• Infected by people in E2: re2β∆tSE2/N

We allow for different infectiousness levels among the three categories, in-
corporated through a main infectiousness parameter β and two parameters
ria, re2 that scale the infectiousness for the two respective groups. By con-
sidering all three contributions and following the same steps as before to
construct a difference equation and then an ODE, we obtain the following
equation for the S category:

S′(t) =−βSI
N
− riaβ

SIa
N
− re2β

SE2
N

. (5.11)

When people get infected they move from S to E1. Therefore, the same three
terms must appear in the equation for E1, with opposite signs. Additionally,
people in E1 will move either to E2 or Ia. Hence, we have

E′1(t) = β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1(1−pa)E1−λ1paE1

= β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1E1.

Here, pa is a parameter that describes the proportion of infected people who
never develop symptoms, while 1/λ1 represents the mean duration of the
non-infectious incubation period. The term λ1(1− pa)E1 represents people
moving to E2, and λ1paE1 are people moving to Ia. In the equation for E1 we
can combine these two fluxes into a single term, but they must be considered
separately in the equations for E2 and Ia.

Moving to the next step in Figure 5.5, we consider the two trajectories
separately. Starting with the people that develop symptoms, the E2 com-
partment receives an influx of people from E1, and experiences an outflux
as people move to the infected I category. Simultaneously, the I category
receives an influx from E2 and experiences an outflux to R. The ODEs for
these two categories become

E′2(t) = λ1(1−pa)E1−λ2E2,

I ′(t) = λ2E2−µI,

where 1/λ2 and 1/µ represent the mean durations of the E2 and I phases,
respectively. The model for the asymptomatic disease trajectory is somewhat
simpler, with Ia receiving an influx from E1 and losing people directly to R.
We have

I ′a(t) = λ1paE1−µIa,
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where we have assumed that the duration of the Ia period is the same as for
I, i.e., 1/µ. Finally, the dynamics of the recovered category are governed by

R′(t) = µI+µIa.

Note that we do not consider flow from the R category back to S, so we have
effectively assumed life-long immunity. This assumption is not correct for
Covid-19, but in the early phase of the pandemic, the duration of immunity
was largely unknown, and the loss of immunity was therefore not considered
in the models.

To summarize, the complete ODE system of the SEEIIR model can be
written as

S′(t) =−βSI
N
− riaβ

SIa
N
− re2β

SE2
N

,

E′1(t) = β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1E1,

E′2(t) = λ1(1−pa)E1−λ2E2,

I ′(t) = λ2E2−µI,
I ′a(t) = λ1paE1−µIa,
R′(t) = µ(I+ Ia).

A suitable choice of default parameters for the model can be as follows:

Parameter Value

β 0.33
ria 0.1
re2 1.25
λ1 0.33
λ2 0.5
pa 0.4
µ 0.2

These parameters are similar to the ones used by the health authorities to
model the early phase of the Covid-19 outbreak in Norway. During this time,
the behavior of the disease was largely unknown, and estimating the number
of cases in the population was challenging. Consequently, fitting the param-
eter values was difficult, and they carried considerable uncertainty. As men-
tioned earlier, the most challenging parameters to estimate are those related
to infectiousness and disease spread, which in this model are β,ria, and re2.
Throughout the course of the pandemic, these parameters have been updated
multiple times to reflect new knowledge about the disease and actual changes
in disease spread due to new mutations or shifts in population behavior.

It is worth noting that we have set re2 > 1, indicating that people in the E2
category are more infectious than the infected group in I. This assumption
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reflects the fact that the E2 group is asymptomatic, so people in this group
are likely to be more mobile and potentially infect more people than those
in the I group. On the other hand, the Ia group is also asymptomatic and
therefore likely to have normal social interactions, but it is assumed that
these people have a very low virus count. They are therefore less infectious
than the people that develop symptoms, which is reflected in the low value
of ria.

The parameters µ,λ1, and λ2 are given in units of days−1, Thus the
mean duration of the symptomatic disease period is five days (1/µ), the non-
infectious incubation period lasts three days on average (1/λ1), while the
mean duration of the infectious incubation period (E2) is two days (1/λ2).
In this model, with multiple infectious categories, the basic reproduction
number is calculated as

R0 = re2β/λ2 + riaβ/µ+β/µ,

since the mean duration of the E2 period is 1/λ2 and the mean duration of
both I and Ia is 1/µ. The parameter choices listed above yield R0 ≈ 2.62,
which is the value used by the Institute of Public Health (FHI) to model
the early stage of the outbreak in Norway, from mid-February to mid-March
2020.

Fig. 5.6 Solution of the SEEIIR model with the default parameter values, which are
similar to the values used by Norwegian health authorities during the early phase of the
Covid-19 pandemic.
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Although the present model is somewhat more complex than the previous
ones, the implementation is not very different. A class implementation may
look as follows:

class SEEIIR:
def __init__(self, beta=0.33, r_ia=0.1,

r_e2=1.25, lmbda_1=0.33,
lmbda_2=0.5, p_a=0.4, mu=0.2):

self.beta = beta
self.r_ia = r_ia
self.r_e2 = r_e2
self.lmbda_1 = lmbda_1
self.lmbda_2 = lmbda_2
self.p_a = p_a
self.mu = mu

def __call__(self, t, u):
beta = self.beta
r_ia = self.r_ia
r_e2 = self.r_e2
lmbda_1 = self.lmbda_1
lmbda_2 = self.lmbda_2
p_a = self.p_a
mu = self.mu

S, E1, E2, I, Ia, R = u
N = sum(u)
dS = -beta * S * I / N - r_ia * beta * S * Ia / N \

- r_e2 * beta * S * E2 / N
dE1 = beta * S * I / N + r_ia * beta * S * Ia / N \

+ r_e2 * beta * S * E2 / N - lmbda_1 * E1
dE2 = lmbda_1 * (1 - p_a) * E1 - lmbda_2 * E2
dI = lmbda_2 * E2 - mu * I
dIa = lmbda_1 * p_a * E1 - mu * Ia
dR = mu * (I + Ia)
return [dS, dE1, dE2, dI, dIa, dR]

The model can be solved with any of the methods available in the ODESolver
hierarchy, similar to the simpler models discussed earlier. An example solution
with the default parameter values is shown in Figure 5.6. It is important to
note that since the parameters listed above are based on the initial stage
of the pandemic when no restrictions were in place, this solution may be
interpreted as a potential worst case scenario for the pandemic in Norway if
no government-imposed restrictions were implemented.

While the plot for the I category may not appear too dramatic at first
glance, a closer inspection reveals that the peak reaches slightly above 140,000
people. Considering the limited knowledge available at that stage, particu-
larly regarding the severity of Covid-19, it is not surprising that a scenario of
140,000 people being infected simultaneously caused concern among health
authorities. Another interesting observation from the curve is that the S cat-
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egory flattens out well below the total population number. This behavior
exemplifies the concept of herd immunity, wherein when a sufficient number
of people are immune to the disease, it effectively stops spreading even if
many people remain susceptible. As we are aware, severe restrictions were
put in place in most countries during the early spring of 2020, making it
impossible to determine whether this worst case scenario would ever have
materialized. To accurately capture the actual dynamics of the pandemic in
Norway, we would need to incorporate the effect of societal changes and al-
tered infectiousness over time by making the β parameter a function of time.
For instance, we could define it as a piecewise constant function to match the
observed trends in the data.
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Appendix A
Programming of Difference Equations

Although the main focus of these notes is on solvers for differential equations,
we find it useful to include a chapter on the closely related class of problems
known as difference equations. The main motivation for including this topic
in a book on ODEs is to highlight the similarity between the two classes of
problems, and in particular, the similarity of the solution methods and their
implementation. Indeed, solving ODEs numerically can be seen as a two-step
procedure. First, a numerical method is applied to turn differential equations
into difference equations, and then these equations are solved using simple
for-loop. The standard formulation of difference equations is very easy to
translate into a computer program, and some readers may find it easier to
study these equations first, before moving on to ODEs. In the present chapter
we will also touch upon famous sequences and series, which have important
applications both in the numerical solution of ODEs and elsewhere.

A.1 Sequences and Difference Equations

Sequences is a central topic in mathematics with important applications in
numerical analysis and scientific computing. In the most general sense, a
sequence is simply a collection of numbers:

x0, x1, x2, . . . , xn, . . . .

For certain sequences, we can derive a formula that expresses the n-th number
xn as a function of n. For instance, consider the sequence of all odd numbers:

1,3,5,7, . . . .

For this sequence, we can write a simple formula for the n-th term

xn = 2n+1,
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and we can use this formula to represent the complete sequence in a compact
form;

(xn)∞n=0, xn = 2n+1.

Other examples of sequences include

1, 4, 9, 16, 25, . . . (xn)∞n=0, xn = n2,

1, 1
2 ,

1
3 ,

1
2 , . . . (xn)∞n=0, xn = 1

n+1 ,

1, 1, 2, 6, 24, . . . (xn)∞n=0, xn = n!,

1, 1+x, 1+x+ 1
2x

2, 1+x+ 1
2x

2 + 1
6x

3, . . . (xn)∞n=0, xn =
n∑
j=0

xj

j! .

These examples are all formulated as infinite sequences, which is common in
mathematics. However, in real-life applications, sequences are usually finite:
(xn)Nn=0. Some familiar examples include the annual value of a loan or an
investment.

In many cases, it is impossible to derive an explicit formula for the entire
sequence, and xn is instead defined by a relation involving xn−1 and possibly
earlier terms. Such equations are called difference equations, and they can be
challenging to solve with analytical methods, since computing the n-th term
requires calculating the entire sequence x0,x1, . . . ,xn−1. Performing these
compuations by hand or with a calculator can be tedious, but a computer can
easily solve the equation using a for-loop. Combining sequences and difference
equations with programming enables us to consider far more interesting and
useful cases.

A Difference Equation for Computing Interest. Let us first consider
a simple example of a difference equation for computing interest on an in-
vestment. In its simplest form, we put x0 money in a bank at year 0, with
an interest rate of p percent per year. What is the value after n years? If p is
constant, the solution to this problem is given by the simple formula

xn = x0(1+p/100)n,

so there is no need to formulate and solve the problem as a difference equa-
tion. However, simple generalizations, such as a non-constant interest rate,
make this formula difficult to apply, while a formulation based on a difference
equation remains applicable.

To formulate the problem as a difference equation, we observe that the
amount xn+1 at year n+1 is the amount at year n plus the interest for year
n. This gives the following relation between xn+1 and xn:

xn+1 = xn+ p

100xn.
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To compute xn, we can start with the known x0, and compute x1,x2, . . . ,xn.
The procedure involves repeating a simple calculation many times, which is
tedious to do by hand, but well suited for a computer. The complete program
for solving this difference equation may look like:

import numpy as np
import matplotlib.pyplot as plt
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N + 1)
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n - 1] + (p / 100.0) * x[n - 1]

plt.plot(index_set, x, ’ro’)
plt.xlabel(’years’)
plt.ylabel(’amount’)
plt.show()

The three lines starting with x[0] = x0 form the core of the program. Here,
we initialize the first element in our solution array with the known x0, and
then enter the for-loop to compute the rest. The loop variable n runs from 1
to N(= 4), and the formula inside the loop computes x[n] from the known
x[n-1].

Also note that we pass a single array as an argument to plt.plot, whereas
in most examples in this book we pass two arrays, typically representing time
on the x-axis and the solution on the y-axis. When only one array of numbers
is sent to plot, they are automatically interpreted as the y-coordinates of the
points, and the x-coordinates will be the indices of the array, in this case the
numbers from 0 to N .

Solving a Difference Equation without Using Arrays. The previous
program stored the sequence as an array, which is convenient for programming
the solver and allows us to plot the entire sequence. However, if we are only
interested in the solution at a single point, i.e., xn, there is no need to store
the entire sequence. Since each xn only depends on the previous value xn−1,
we only need to store the last two values in memory. A complete loop can
look like this:

x_old = x0
for n in index_set[1:]:

x_new = x_old + (p / 100.) * x_old
x_old = x_new # x_new becomes x_old at next step

print(’Final amount: ’, x_new)

For this simple case we can actually make the code even shorter, since x_old
is only used in a single line, and we can instead simply overwrite the old value
of x once it has been used:
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x = x0 #x is here a single number, not array
for n in index_set[1:]:

x = x + (p / 100.) * x
print(’Final amount: ’, x)

We can observe that these codes store just one or two numbers, and for
each iteration of the loop, we simply update and overwrite the values we no
longer need. While this approach is straightforward and saves memory by not
storing the complete array, programming with an array x[n] is usually safer,
and we are often interested in plotting the entire sequence. Therefore, in the
subsequent examples, we will mostly use arrays.
Extending the Solver for the Growth of Money. Suppose we want
to change our interest rate model to one where interest is added every day
instead of every year. The daily interest rate is r = p/D, where p is the
annual interest rate and D is the number of days in a year. A common model
in business applies D = 360, but n counts exact (all) days. The difference
equation that relates the amount on one day to the previous day remains the
same:

xn = xn−1 + r

100xn−1,

except that the yearly interest rate has been replaced by the daily (r). If we
want to determine the growth of money between two given dates, we also
need to find the number of days between those dates. This calculation can
be done manually, but Python offers a convenient module named datetime
for this purpose. The following session illustrates how it can be used:

>>> import datetime
>>> date1 = datetime.date(2017, 9, 29) # Sep 29, 2017
>>> date2 = datetime.date(2018, 8, 4) # Aug 4, 2018
>>> diff = date2 - date1
>>> print(diff.days)
309

Putting these tools together, a complete program for daily interest rates may
look like

import numpy as np
import matplotlib.pyplot as plt
import datetime

x0 = 100 # initial amount
p = 5 # annual interest rate
r = p / 360.0 # daily interest rate

date1 = datetime.date(2017, 9, 29)
date2 = datetime.date(2018, 8, 4)
diff = date2 - date1
N = diff.days
index_set = range(N + 1)
x = np.zeros(len(index_set))
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x[0] = x0
for n in index_set[1:]:

x[n] = x[n - 1] + (r / 100.0) * x[n - 1]

plt.plot(index_set, x)
plt.xlabel(’days’)
plt.ylabel(’amount’)
plt.show()

This program is slightly more sophisticated than the first one, but one may
still argue that solving this problem with a difference equation is unnecessarily
complex when we can simply apply the well-known formula xn = x0(1+ r

100 )n
to compute any xn we want. However, we know that interest rates change
quite often, and the formula is only valid for a constant r. On the other hand,
for the program based on solving the difference equation, we only need minor
modifications to handle a varying interest rate. The simplest approach is to
let p be an array of the same length as the number of days, and fill it with the
correct interest rates for each day. The modifications to the previous program
may look like this:

p = np.zeros(len(index_set))
# fill p[n] with correct values

r = p / 360.0 # daily interest rate
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1] / 100.0) * x[n-1]

The main difference from the previous example is that we initialize p as an
array, and then r = p/360.0 becomes an array of the same length. In the
formula inside the for-loop, we look up the correct value r[n-1] for each
iteration of the loop. Filling p with the correct values can be non-trivial, but
many cases can be handled quite easily. For instance, if the interest rate is
piecewise constant and increases from 4.0% to 5.0% on a given date, the code
for filling the array with values may look like this

date0 = datetime.date(2017, 9, 29)
date1 = datetime.date(2018, 2, 6)
date2 = datetime.date(2018, 8, 4)
Np = (date1 - date0).days
N = (date2 - date0).days

p = np.zeros(len(index_set))
p[:Np] = 4.0
p[Np:] = 5.0
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A.2 More Examples of Difference Equations

As noted above, sequences, series, and difference equations have countless
applications in mathematics, science, and engineering. Here we present a
selection of well known examples.

Fibonacci Numbers as a Difference Equation. The sequence defined
by the difference equation

xn = xn−1 +xn−2, x0 = 1, x1 = 1,

is called the Fibonacci numbers. Originally derived for modeling rat popu-
lations, the Fibonacci numbers possess a range of interesting mathematical
properties that have attracted considerable attention from mathematicians.
The equation for the Fibonacci numbers differs from the previous exam-
ples, since xn depends on the two previous values (n− 1, n− 2), making it
a second order difference equation. While this classification is important for
mathematical solution techniques, the distinction between first and second
order equations is minor in programming.

A complete code to solve the difference equation and generate the Fi-
bonacci numbers can be written as

import sys
from numpy import zeros

N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print(n, x[n])

In this code, we use the built-in list sys.argv from the sys model in order
to provide the input N as a command-line argument. See, for instance, [16]
for an explanation. It is important to note that we need to initialize both
x[0] and x[1] before starting the loop, since the update formula involves
both x[n-1] and x[n-2]. This is the main difference between this second
order equation and the programs for first order equations considered above.
The Fibonacci numbers grow quickly and running this program for large N
will lead to overflow issues (try for instance N = 100). The NumPy int type
supports up to 9223372036854775807, which is almost 1019, so overflow is
rarely a problem in practical applications. There are ways to avoid this issue,
for instance using the standard Python int type instead of NumPy arrays,
but we won’t delve into those details here.

Logistic Growth. Returning to the initial problem of calculating the growth
of money in a bank, we can write the classical solution formula more concisely
as
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xn = x0(1+p/100)n = x0C
n (= x0e

n lnC),

where C = (1+p/100). Since n represents years, this exemplifies exponential
growth in time, following the general formula x = x0e

λt. Similarly, popu-
lations of humans, animals, and other organisms exhibit the same type of
growth when resources (such as space and food) are unlimited, and the ex-
ponential growth model has many applications in biology.1 However, most
environments can only support a finite number R of individuals, whereas the
population continues to grow indefinitely in the exponential growth model.
How can we modify the equation to create a more realistic model for growing
populations?

Initially, when resources are abundant, we want the growth to be expo-
nential, i.e., to grow with a given rate r% per year according to the difference
equation:

xn = xn−1 +(r/100)xn−1.

To enforce the growth limit as xn→R, r must decay to zero as xn approaches
R. The simplest variation of r(n) is linear:

r(n) = %
(

1− xn
R

)
We observe that r(n)≈ % for small n, when xn�R, and r(n)→ 0 as n grows
and xn→R. This formulation of the growth rate leads to the logistic growth
model:

xn = xn−1 + %

100xn−1
(

1− xn−1
R

)
.

This is a nonlinear difference equation, while all the examples considered
earlier were linear. The distinction between linear and nonlinear equations
is crucial for the mathematical analysis of the equations, but it does not
make much difference when solving the equation in a program. To modify
the interest rate program mentioned above to describe logistic growth, we
can simply replace the line

x[n] = x[n-1] + (p / 100.0) * x[n-1]

by

x[n] = x[n-1] + (rho / 100) * x[n-1] * (1 - x[n-1] / R)

A complete program may look like

import numpy as np
import matplotlib.pyplot as plt
x0 = 100 # initial population
rho = 5 # growth rate in %
R = 500 # max population (carrying capacity)

1As discussed in Chapter 1, the formula x= x0e
λt is the solution of the differential

equation dx/dt = λx, which illustrates the close relation between difference equations
and differential equations.
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N = 200 # number of years

index_set = range(N+1)
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (rho / 100) * x[n-1] * (1 - x[n-1] / R)

plt.plot(index_set, x)
plt.xlabel(’years’)
plt.ylabel(’amount’)
plt.show()

Note that the logistic growth model is more commonly formulated as an
ODE, as we discussed in Chapter 1 For certain choices of numerical method
and discretization parameters, the program for solving the ODE is identical
to the program for the difference equation discussed here.

Fig. A.1 Solution of the logistic growth model for x0 = 100,ρ= 5.0,R= 500.

The Factorial as a Difference Equation. The factorial n! is defined as

n! = n(n−1)(n−2) · · ·1, 0! = 1 (A.1)

The following difference equation has xn = n! as solution and can be used to
compute the factorial:

xn = nxn−1, x0 = 1

Similar to the interest rate example discussed earlier, one might question
the usefulness of such a difference equation when we can simply use the
formula (A.1) to compute the factorial for any value of n. However, in many
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applications, some of which will be discussed below, we need to compute
the entire sequence of factorials xn = n! for n = 0, . . .N . Although we could
still apply (A.1) to compute each factor individually, it would involve many
redundant computations, since we perform n multiplications for each new
xn. On the other hand, when solving the difference equation, each new xn
requires only a single multiplication, which can significantly speed up the
program for large values of n.

Newton’s Method as a Difference Equation. Newton’s method is a
popular method for solving nonlinear equations on the form

f(x) = 0.

Starting from some initial guess x0, Newton’s method gradually improves the
approximation through iterations

xn = xn−1−
f(xn−1)
f ′(xn−1) .

We can recognize this as a nonlinear first-order difference equation. As n→∞,
we hope that xn→ xs, where xs is the solution to f(xs) = 0. In practice, we
solve the equation for n ≤ N , for some finite N , just as for the difference
equations considered earlier. But how do we choose N so that xN is suffi-
ciently close to the true solution xs? Since we want to solve f(x) = 0, the
best approach is to solve the equation until f(x)≤ ε, where ε is a small toler-
ance. In practice, Newton’s method usually converges rather quickly, or does
not converge at all, so setting an upper bound on the number of iterations
is a good idea. A simple implementation of Newton’s method as a Python
function may look like

def Newton(f, dfdx, x, epsilon=1.0E-7, max_n=100):
n = 0
while abs(f(x)) > epsilon and n <= max_n:

x = x - f(x) / dfdx(x)
n += 1

return x, n, f(x)

The arguments f and dfdx are Python functions implementing f(x) and its
derivative. Both of these arguments are called inside the function and must
therefore be callable. The x argument is the initial guess for the solution
x, and the two optional arguments at the end are the tolerance and the
maximum number of iterations. Although the method is implemented as a
while-loop rather than a for-loop, the main structure of the algorithm remains
the same as for the other difference equations considered earlier.
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A.3 Systems of Difference Equations

So far, all the examples we have considered have been scalar difference equa-
tions, which describe how a single quantity changes from one step to the
next. However, in many applications, it is necessary to track multiple vari-
ables simultaneously, and the dynamics of these variables may be coupled.
This means that the value of one variable at step n depends on the values of
multiple variables at step n−1. As an example, consider a simple extension
of the interest rate model we discussed earlier. Assume that we have a fortune
F invested with an annual interest rate of p percent, as before, but now we
also want to consume an amount cn every year. We can formulate a model
to compute our fortune xn at year n as a small extension of the previous
difference equation. Simple reasoning tells us that the fortune at year n is
equal to the fortune at year n− 1 plus the interest minus the amount we
spent in year n−1. Therefore, we have

xn = xn−1 + p

100xn−1− cn−1.

In the simplest case, we can assume that cn is constant, which would make
this model a trivial extension of the interest rate model considered earlier.
However, it is more natural to let cn increase due to inflation. In this case, we
obtain a system of difference equations describing the evolution of xn and cn.
For instance, we may assume that cn should grow with a rate of I percent per
year, and in the first year we want to consume q percent of interest earned.
The governing system of difference equations then becomes

xn = xn−1 + p

100xn−1− cn−1,

cn = cn−1 + I

100cn−1.

The initial conditions are x0 =F and c0 = (pF/100)(q/100) = pFq
10000 . This is a

coupled system of two first-order difference equations, but the programming
involved is not much more difficult than for the single equation we discussed
earlier. We simply create two arrays x and c, initialize x[0] and c[0] with
the given initial conditions, and then update x[n] and c[n] inside the loop.
A complete code may look like this:

import numpy as np
import matplotlib.pyplot as plt
F = 1e7 # initial amount
p = 5 # interest rate
I = 3
q = 75
N = 40 # number of years
index_set = range(N + 1)
x = np.zeros(len(index_set))
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c = np.zeros_like(x)

x[0] = F
c[0] = q * p * F * 1e-4

for n in index_set[1:]:
x[n] = x[n - 1] + (p / 100.0) * x[n - 1] - c[n - 1]
c[n] = c[n - 1] + (I / 100.0) * c[n - 1]

plt.plot(index_set, x, ’ro’, label=’Fortune’)
plt.plot(index_set, c, ’go’, label=’Yearly consume’)
plt.xlabel(’years’)
plt.ylabel(’amounts’)
plt.legend()
plt.show()

Another example of a system of difference equations is an extension of the
logistic growth model we discussed earlier. While the logistic model describes
the growth of a single population in the absence of predators, the famous
Lotke-Volterra model describes the interaction of two species, a predator and
a prey, in the same ecosystem. If we let xn be the number of prey and yn the
number of predators on day n, the model for the population dynamics can
be written as

xn = xn−1 +axn−1− bxn−1yn−1,

yn = yn−1 +dbxn−1yn−1− cyn−1.

Here, a is the natural growth rate of the prey in the absence of predators, b
is the death rate of prey per encounter of prey and predator, c is the natural
death rate of predators in the absence of food (prey), and d is the efficiency
of turning predated prey into predators. This is a system of two first-order
difference equations, similar to the previous example, and a complete solution
code may look as follows.

import numpy as np
import matplotlib.pyplot as plt

x0 = 100 # initial prey population
y0 = 8 # initial predator pop.
a = 0.0015
b = 0.0003
c = 0.006
d = 0.5
N = 10000 # number of time units (days)
index_set = range(N + 1)
x = np.zeros(len(index_set))
y = np.zeros_like(x)

x[0] = x0
y[0] = y0
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for n in index_set[1:]:
x[n] = x[n - 1] + a * x[n - 1] - b * x[n - 1] * y[n - 1]
y[n] = y[n - 1] + d * b * x[n - 1] * y[n - 1] - c * y[n - 1]

plt.plot(index_set, x, label=’Prey’)
plt.plot(index_set, y, label=’Predator’)
plt.xlabel(’Time’)
plt.ylabel(’Population’)
plt.legend()
plt.show()

A.4 Taylor Series and Approximations

Sequences and series are extremely useful for approximating functions. For
instance, commonly used functions like sinx, lnx, and ex have been defined
to have some desired mathematical properties, and we have an intuitive un-
derstanding of how they look, but we need an algorithm to evaluate the
function values. One convenient approach is to approximate these functions
using polynomials, since they are easy to calculate. Polynomial approxima-
tions have been used for centuries to compute exponentials, trigonometric
functions and others. The most famous and widely used series for such ap-
proximations are the Taylor series, discovered in 1715, and given by

f(x) =
∞∑
k=0

1
k! (

dkf(0)
dxk

)xk. (A.2)

Here, the notation dkf(0)/dxk means the k-th derivative of f evaluated at
x= 0. We can calculate a few of the terms in the sum to get

f(x) = f(0)+f ′(0)x+ 1
2f
′′(0)x2 + 1

6f
′′′(0)x3 . . . ,

which makes it obvious that the right-hand side of (A.2) is in fact a poly-
nomial in x. This means that for any function f(x), if we can compute the
function value and its derivatives for x= 0, we can approximate the function
value at any x by evaluating a polynomial. In practice, we always work with
a truncated version of the Taylor series:

f(x)≈
N∑
k=0

1
k! (

dkf(0)
dxk

)xk. (A.3)

The accuracy of the approximation improves as N is increased. However, the
most popular choice is N = 1, which provides a reasonable approximation
close to x = 0 and has been essential in developing physics and technology.
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We can also shift the variables to make these truncated Taylor series accurate
around any value x= a:

f(x)≈
N∑
k=0

1
k! (

dkf(a)
dxk

)(x−a)k.

One of many applications of truncated Taylor series is to derive numerical
methods for ODEs, and to analyze their accuracy, as we briefly introduced
in Chapter 2.

As an example, let us consider the exponential function. Since we know
that dkex/dxk = ex for all k, and e0 = 1, we can substitute these values into
(A.3) to get

ex =
∞∑
k=0

xk

k!

≈
N∑
k=0

xk

k! .

Choosing, for instance, N = 1 and N = 4, we get the approximations

ex ≈ 1+x,

ex ≈ 1+x+ 1
2x

2 + 1
6x

3.

These approximations are not very accurate for large x, but close to x = 0
they are sufficiently accurate for many applications. We can construct Tay-
lor series approximations for other functions using similar arguments. For
instance, consider sin(x), where the derivatives follow the repetitive pattern
sin′(x) = cos(x),sin′′(x) = −sin(x),sin′′′(x) = −cos(x), . . . .... We also have
sin(0) = 0,cos(0) = 1. In general, we have dk sin(0)/dxk = (−1)kmod(k,2),
where mod(k,2) is zero for k even and

sinx=
∞∑
k=0

(−1)k x2k+1

(2k+1)! .

Taylor Series Formulated as Difference Equations. We consider again
the Taylor series for ex around x= 0, given by

ex =
∞∑
k=0

xk

k! .

If we define en as the approximation with n terms, i.e. for k = 0, . . . ,n−1, we
can write



108 A Programming of Difference Equations

en =
n−1∑
k=0

xk

k! =
n−2∑
k=0

xk

k! + xn−1

(n−1)! ,

and we can formulate the sum in en as the difference equation

en = en−1 + xn−1

(n−1)! , e0 = 0. (A.4)

We see that this difference equation involves (n−1)!, which results in many
redundant multiplications when computing the complete factorial for every
iteration. However, we can use the idea of a difference equation for the fac-
torial to compute the Taylor polynomial more efficiently. We have

xn

n! = xn−1

(n−1)! ·
x

n
,

and if we let an = xn/n! it can be computed efficiently by solving

an = an−1
x

n
, a0 = 1.

Now we can formulate a system of two difference equations for the Taylor
polynomial, where we update each term using the an equation and sum the
terms via the en equation:

en = en−1 +an−1, e0 = 0,

an = x

n
an−1, a0 = 1.

Although we are solving a system of two difference equations, the computa-
tion is far more efficient than solving the single equation in (A.4) directly,
since we avoid the repeated multiplications involved in the factorial compu-
tation.

A complete Python code for solving the system of difference equations and
computing the approximation to the exponential function may look like

import numpy as np

x = 0.5 # approximate exp(x) for x = 0.5
N = 5
index_set = range(N + 1)
a = np.zeros(len(index_set))
e = np.zeros(len(index_set))
a[0] = 1

print(f’Exact: exp({x}) = {np.exp(x)}’)
for n in index_set[1:]:

e[n] = e[n - 1] + a[n - 1]
a[n] = x / n * a[n - 1]
print(f’n = {n}, appr. = {e[n]}, e = {np.abs(e[n]-np.exp(x)):4.5f}’)
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The output from this small program looks as follows:

Exact: exp(0.5) = 1.64872
n = 1, appr. = 1.00000, e = 0.64872
n = 2, appr. = 1.50000, e = 0.14872
n = 3, appr. = 1.62500, e = 0.02372
n = 4, appr. = 1.64583, e = 0.00289
n = 5, appr. = 1.64844, e = 0.00028

This program first prints the exact value ex for x= 0.5, and then the Taylor
approximation and associated error for n = 1 to n = 5. The Taylor series
approximation is most accurate close to x = 0. Choosing a larger value of x
would therefore lead to larger errors, and we would need to also increase n
for the approximation to be accurate.
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