Amal Ahmed (Ed.)

ARCoSS

Programming
Languages
and Systems

27th European Symposium on Programming, ESOP 2018
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14-20, 2018, Proceedings

/‘\ ETAPS

LNCS 10801

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

-

Lecture Notes in Computer Science 10801

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Amal Ahmed (Ed.)

Programming
LLanguages
and Systems

277th European Symposium on Programming, ESOP 2018
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14-20, 2018

Proceedings

@ Springer Open

Editor
Amal Ahmed

Northeastern University
Boston, MA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89883-4 ISBN 978-3-319-89884-1 (eBook)

https://doi.org/10.1007/978-3-319-89884-1
Library of Congress Control Number: 2018940640
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7424-572X

ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), loannis Stamelos,

VI ETAPS Foreword

Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hihnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Kiisters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Gdoteborg),
Don Sannella (Edinburgh), Andy Schiirr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen

Preface

This volume contains the papers presented at the 27th European Symposium on Pro-
gramming (ESOP 2018) held April 16-19, 2018, in Thessaloniki, Greece. ESOP is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS). It is
devoted to fundamental issues in the specification, design, analysis, and implementa-
tion of programming languages and systems.

The 36 papers in this volume were selected from 114 submissions based on origi-
nality and quality. Each submission was reviewed by three to six Program Committee
(PC) members and external reviewers, with an average of 3.3 reviews per paper.
Authors were given a chance to respond to these reviews during the rebuttal period
from December 6 to 8, 2017. All submissions, reviews, and author responses were
considered during the online discussion, which identified 74 submissions to be dis-
cussed further at the physical PC meeting held at Inria Paris, December 13—14, 2017.
Each paper was assigned a guardian, who was responsible for making sure that external
reviews were solicited if there was not enough non-conflicted expertise among the PC,
and for presenting a summary of the reviews and author responses at the PC meeting.
All non-conflicted PC members participated in the discussion of a paper’s merits. PC
members wrote reactions to author responses, including summaries of online discus-
sions and discussions during the physical PC meeting, so as to help the authors
understand decisions. Papers co-authored by members of the PC were held to a higher
standard and discussed toward the end of the physical PC meeting. There were ten such
submissions and five were accepted. Papers for which the program chair had a conflict
of interest were kindly handled by Fritz Henglein.

My sincere thanks to all who contributed to the success of the conference. This
includes the authors who submitted papers for consideration; the external reviewers,
who provided timely expert reviews, sometimes on short notice; and the PC, who
worked hard to provide extensive reviews, engaged in high-quality discussions about
the submissions, and added detailed comments to help authors understand the PC
discussion and decisions. I am grateful to the past ESOP PC chairs, particularly Jan
Vitek and Hongseok Yang, and to the ESOP SC chairs, Giuseppe Castagna and Peter
Thiemann, who helped with numerous procedural matters. I would like to thank the
ETAPS SC chair, Joost-Pieter Katoen, for his amazing work and his responsiveness.
HotCRP was used to handle submissions and online discussion, and helped smoothly
run the physical PC meeting. Finally, I would like to thank Catélin Hritcu for spon-
soring the physical PC meeting through ERC grant SECOMP, Mathieu Mourey and the
Inria Paris staff for their help organizing the meeting, and William Bowman for
assisting with the PC meeting.

February 2018 Amal Ahmed

Organization

Program Committee

Amal Ahmed

Nick Benton

Josh Berdine
Viviana Bono
Dominique Devriese
Marco Gaboardi
Roberto Giacobazzi

Philipp Haller
Matthew Hammer
Fritz Henglein

Jan Hoffmann
Catalin Hritcu
Suresh Jagannathan
Limin Jia

Naoki Kobayashi
Xavier Leroy
Aleksandar Nanevski
Michael Norrish
Andreas Rossberg
Davide Sangiorgi
Peter Sewell

Eric Tanter

Niki Vazou

Steve Zdancewic

Northeastern University, USA and Inria, France
Facebook, UK

Facebook, UK

Universita di Torino, Italy

KU Leuven, Belgium

University at Buffalo, SUNY, USA

Universita di Verona, Italy and IMDEA Software Institute,

Spain
KTH Royal Institute of Technology, Sweden
University of Colorado Boulder, USA
University of Copenhagen, Denmark
Carnegie Mellon University, USA
Inria Paris, France
Purdue University, USA
Carnegie Mellon University, USA
University of Tokyo, Japan
Inria Paris, France
IMDEA Software Institute, Spain
Data61 and CSIRO, Australia
Google, Germany
Universita di Bologna, Italy and Inria, France
University of Cambridge, UK
University of Chile, Chile
University of Maryland, USA
University of Pennsylvania, USA

Additional Reviewers

Danel Ahman

S. Akshay

Aws Albarghouthi
Jade Alglave
Vincenzo Arceri
Samik Basu
Gavin Bierman
Filippo Bonchi
Thierry Coquand

Mariangiola Dezani
Derek Dreyer
Ronald Garcia
Deepak Garg
Samir Genaim
Victor Gomes
Peter Habermehl
Matthew Hague
Justin Hsu

X Organization

Zhenjiang Hu
Peter Jipsen
Shin-ya Katsumata
Andrew Kennedy
Heidy Khlaaf
Neelakantan Krishnaswami
César Kunz

Ugo Dal Lago
Paul Levy

Kenji Maillard
Roman Manevich
Paulo Mateus
Antoine Miné
Stefan Monnier
Andrzej Murawski
Anders Moller
Vivek Notani

Andreas Nuyts
Paulo Oliva
Dominic Orchard
Luca Padovani
Brigitte Pientka
Benjamin C. Pierce
Andreas Podelski
Chris Poskitt
Francesco Ranzato
Andrey Rybalchenko
Sriram Sankaranarayanan
Tetsuya Sato

Sandro Stucki
Zachary Tatlock
Bernardo Toninho
Viktor Vafeiadis

RustBelt: Logical Foundations for the Future
of Safe Systems Programming

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS), Germany
dreyer@mpi-sws.org

Abstract. Rust is a new systems programming language, developed at Mozilla,
that promises to overcome the seemingly fundamental tradeoff in language
design between high-level safety guarantees and low-level control over resource
management. Unfortunately, none of Rust’s safety claims have been formally
proven, and there is good reason to question whether they actually hold.
Specifically, Rust employs a strong, ownership-based type system, but then
extends the expressive power of this core type system through libraries that
internally use unsafe features.

In this talk, I will present RustBelt (http://plv.mpi-sws.org/rustbelt), the first
formal (and machine-checked) safety proof for a language representing a real-
istic subset of Rust. Our proof is extensible in the sense that, for each new Rust
library that uses unsafe features, we can say what verification condition it must
satisfy in order for it to be deemed a safe extension to the language. We have
carried out this verification for some of the most important libraries that are used
throughout the Rust ecosystem.

After reviewing some essential features of the Rust language, I will describe
the high-level structure of the RustBelt verification and then delve into detail
about the secret weapon that makes RustBelt possible: the Iris framework for
higher-order concurrent separation logic in Coq (http://iris-project.org). I will
explain by example how Iris generalizes the expressive power of O’Hearn’s
original concurrent separation logic in ways that are essential for verifying the
safety of Rust libraries. I will not assume any prior familiarity with concurrent
separation logic or Rust.

This is joint work with Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and the rest of the Iris team.

Contents

Language Design

Consistent Subtyping for AIl 3
Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira

HOBIT: Programming Lenses Without Using Lens Combinators. 31
Kazutaka Matsuda and Meng Wang

Dualizing Generalized Algebraic Data Types by Matrix Transposition.. 60
Klaus Ostermann and Julian Jabs

Deterministic Concurrency: A Clock-Synchronised Shared

Memory Approach 86
Joaquin Aguado, Michael Mendler, Marc Pouzet, Partha Roop,
and Reinhard von Hanxleden

Probabilistic Programming

An Assertion-Based Program Logic for Probabilistic Programs 117
Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire,
Justin Hsu, and Pierre-Yves Strub

Fine-Grained Semantics for Probabilistic Programs 145
Benjamin Bichsel, Timon Gehr, and Martin Vechev

How long, O Bayesian network, will I sample thee? A program

analysis perspective on expected sampling times. 186
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja

Relational Reasoning for Markov Chains in a Probabilistic Guarded

Lambda Calculus e 214
Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak,
Marco Gaboardi, and Deepak Garg

Types and Effects

Failure is Not an Option: An Exceptional Type Theory 245
Pierre-Marie Pédrot and Nicolas Tabareau

Let Arguments Go First. 272
Ningning Xie and Bruno C. d. S. Oliveira

X1V Contents

Behavioural Equivalence via Modalities for Algebraic Effects. 300
Alex Simpson and Niels Voorneveld

Explicit Effect Subtyping. 327
Amr Hany Saleh, Georgios Karachalias, Matija Pretnar,
and Tom Schrijvers

Concurrency

A Separation Logic for a Promising Semantics 357
Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav,
and Viktor Vafeiadis

Logical Reasoning for Disjoint Permissions 385
Xuan-Bach Le and Aquinas Hobor

Deadlock-Free Monitors.ttt 415
Jafar Hamin and Bart Jacobs

Fragment Abstraction for Concurrent Shape Analysis 442
Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh

Security

Reasoning About a Machine with Local Capabilities: Provably Safe
Stack and Return Pointer Management. 475
Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

Modular Product Programs. 502
Marco Eilers, Peter Miiller, and Samuel Hitz

Program Verification

A Fistful of Dollars: Formalizing Asymptotic Complexity Claims
via Deductive Program Verification. 533
Armaél Guéneau, Arthur Charguéraud, and Francgois Pottier

Verified Learning Without Regret: From Algorithmic Game Theory
to Distributed Systems with Mechanized Complexity Guarantees 561
Samuel Merten, Alexander Bagnall, and Gordon Stewart

Program Verification by Coinduction. 589
Brandon Moore, Lucas Peiia, and Grigore Rosu

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq 619
Vincent Rahli, Ivana Vukotic, Marcus Vélp,
and Paulo Esteves-Verissimo

Contents

Program Analysis and Automated Verification

Evaluating Design Tradeoffs in Numeric Static Analysis for Java
Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster,
and Michael Hicks

An Abstract Interpretation Framework for Input Data Usage.
Caterina Urban and Peter Miiller

Higher-Order Program Verification via HFL Model Checking.
Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe

Quantitative Analysis of Smart Contracts
Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner

Session Types and Concurrency

Session-Typed Concurrent Contractso v vn e ..
Hannah Gommerstadt, Limin Jia, and Frank Pfenning

A Typing Discipline for Statically Verified Crash Failure Handling

in Distributed Systems.
Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu,
and Lukasz Ziarek

On Polymorphic Sessions and Functions: A Tale of Two
(Fully Abstract) Encodings.
Bernardo Toninho and Nobuko Yoshida

Concurrent Kleene Algebra: Free Model and Completeness
Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi

Concurrency and Distribution

Correctness of a Concurrent Object Collector for Actor Languages
Juliana Franco, Sylvan Clebsch, Sophia Drossopoulou, Jan Vitek,
and Tobias Wrigstad

Paxos Consensus, Deconstructed and Abstracted.
Alvaro Garcia-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey

On Parallel Snapshot Isolation and Release/Acquire Consistency.
Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Eventual Consistency for CRDTs
Radha Jagadeesan and James Riely

XV

XVI Contents

Compiler Verification

A Verified Compiler from Isabelle/HOL to CakeML 999
Lars Hupel and Tobias Nipkow

Compositional Verification of Compiler Optimisations
on Relaxed Memory 1027
Mike Dodds, Mark Batty, and Alexey Gotsman

Author Index e 1057

Language Design

®

Check for
updates

Consistent Subtyping for All

Ningning Xie(®) Xuan Bi, and Bruno C. d. S. Oliveira

The University of Hong Kong, Pokfulam, Hong Kong
{nnxie,xbi,bruno}@cs.hku.hk

Abstract. Consistent subtyping is employed in some gradual type sys-
tems to validate type conversions. The original definition by Siek and
Taha serves as a guideline for designing gradual type systems with
subtyping. Polymorphic types a la System F also induce a subtyping
relation that relates polymorphic types to their instantiations. However
Siek and Taha’s definition is not adequate for polymorphic subtyping.
The first goal of this paper is to propose a generalization of consistent
subtyping that is adequate for polymorphic subtyping, and subsumes
the original definition by Siek and Taha. The new definition of consis-
tent subtyping provides novel insights with respect to previous polymor-
phic gradual type systems, which did not employ consistent subtyping.
The second goal of this paper is to present a gradually typed calcu-
lus for implicit (higher-rank) polymorphism that uses our new notion
of consistent subtyping. We develop both declarative and (bidirectional)
algorithmic versions for the type system. We prove that the new calculus
satisfies all static aspects of the refined criteria for gradual typing, which
are mechanically formalized using the Coq proof assistant.

1 Introduction

Gradual typing [21] is an increasingly popular topic in both programming
language practice and theory. On the practical side there is a growing num-
ber of programming languages adopting gradual typing. Those languages include
Clojure [6], Python [27], TypeScript [5], Hack [26], and the addition of Dynamic to
C# [4], to cite a few. On the theoretical side, recent years have seen a large body of
research that defines the foundations of gradual typing [8,9,13], explores their use
for both functional and object-oriented programming [21,22], as well as its appli-
cations to many other areas [3,24].

A key concept in gradual type systems is consistency [21]. Consistency weak-
ens type equality to allow for the presence of unknown types. In some gradual
type systems with subtyping, consistency is combined with subtyping to give
rise to the notion of consistent subtyping [22]. Consistent subtyping is employed
by gradual type systems to validate type conversions arising from conventional
subtyping. One nice feature of consistent subtyping is that it is derivable from
the more primitive notions of consistency and subtyping. As Siek and Taha [22]
put it this shows that “gradual typing and subtyping are orthogonal and can be
combined in a principled fashion”. Thus consistent subtyping is often used as a
guideline for designing gradual type systems with subtyping.
© The Author(s) 2018

A. Ahmed (Ed.); ESOP 2018, LNCS 10801, pp. 3-30, 2018.
https://doi.org/10.1007/978-3-319-89884-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_1&domain=pdf

4 N. Xie et al.

Unfortunately, as noted by Garcia et al. [13], notions of consistency and/or
consistent subtyping “become more difficult to adapt as type systems get more
complex”. In particular, for the case of type systems with subtyping, certain
kinds of subtyping do not fit well with the original definition of consistent sub-
typing by Siek and Taha [22]. One important case where such mismatch happens
is in type systems supporting implicit (higher-rank) polymorphism [11,18]. It is
well-known that polymorphic types a la System F induce a subtyping relation
that relates polymorphic types to their instantiations [16,17]. However Siek and
Taha’s [22] definition is not adequate for this kind of subtyping. Moreover the
current framework for Abstracting Gradual Typing (AGT) [13] also does not
account for polymorphism, with the authors acknowledging that this is one of
the interesting avenues for future work.

Existing work on gradual type systems with polymorphism does not use
consistent subtyping. The Polymorphic Blame Calculus (AB) [1] is an explic-
itly polymorphic calculus with explicit casts, which is often used as a target
language for gradual type systems with polymorphism. In AB a notion of com-
patibility is employed to validate conversions allowed by casts. Interestingly AB
allows conversions from polymorphic types to their instantiations. For exam-
ple, it is possible to cast a value with type Va.a — a into Int — Int. Thus
an important remark here is that while AB is explicitly polymorphic, casting
and conversions are closer to implicit polymorphism. That is, in a conventional
explicitly polymorphic calculus (such as System F), the primary notion is type
equality, where instantiation is not taken into account. Thus the types Va.a — a
and Int — Int are deemed incompatible. However in implicitly polymorphic cal-
culi [11,18] Va.a — a and Int — Int are deemed compatible, since the latter type
is an instantiation of the former. Therefore AB is in a sense a hybrid between
implicit and explicit polymorphism, utilizing type equality (& la System F) for
validating applications, and compatibility for validating casts.

An alternative approach to polymorphism has recently been proposed by
Igarashi et al. [14]. Like AB their calculus is explicitly polymorphic. However,
in that work they employ type consistency to validate cast conversions, and
forbid conversions from Va.a — a to Int — Int. This makes their casts closer
to explicit polymorphism, in contrast to AB. Nonetheless, there is still same
flavour of implicit polymorphism in their calculus when it comes to interactions
between dynamically typed and polymorphically typed code. For example, in
their calculus type consistency allows types such as Va.a — Int to be related to
* — Int, where some sort of (implicit) polymorphic subtyping is involved.

The first goal of this paper is to study the gradually typed subtyping and con-
sistent subtyping relations for predicative implicit polymorphism. To accomplish
this, we first show how to reconcile consistent subtyping with polymorphism
by generalizing the original consistent subtyping definition by Siek and Taha
[22]. The new definition of consistent subtyping can deal with polymorphism,

Consistent Subtyping for All 5

and preserves the orthogonality between consistency and subtyping. To slightly
rephrase Siek and Taha [22], the motto of our paper is that:

Gradual typing and polymorphism are orthogonal and can be combined
in a principled fashion.!

With the insights gained from our work, we argue that, for implicit polymor-
phism, Ahmed et al.’s [1] notion of compatibility is too permissive (i.e. too many
programs are allowed to type-check), and that Igarashi et al.’s [14] notion of type
consistency is too conservative. As a step towards an algorithmic version of con-
sistent subtyping, we present a syntax-directed version of consistent subtyping
that is sound and complete with respect to our formal definition of consistent
subtyping. The syntax-directed version of consistent subtyping is remarkably
simple and well-behaved, without the ad-hoc restriction operator [22]. More-
over, to further illustrate the generality of our consistent subtyping definition,
we show that it can also account for top types, which cannot be dealt with by
Siek and Taha’s [22] definition either.

The second goal of this paper is to present a (source-level) gradually typed
calculus for (predicative) implicit higher-rank polymorphism that uses our new
notion of consistent subtyping. As far as we are aware, there is no work on
bridging the gap between implicit higher-rank polymorphism and gradual typing,
which is interesting for two reasons. On one hand, modern functional languages
(such as Haskell) employ sophisticated type-inference algorithms that, aided by
type annotations, can deal with implicit higher-rank polymorphism. So a natural
question is how gradual typing can be integrated in such languages. On the other
hand, there is several existing work on integrating explicit polymorphism into
gradual typing [1,14]. Yet no work investigates how to move such expressive
power into a source language with implicit polymorphism. Therefore as a step
towards gradualizing such type systems, this paper develops both declarative
and algorithmic versions for a gradual type system with implicit higher-rank
polymorphism. The new calculus brings the expressive power of full implicit
higher-rank polymorphic into a gradually typed source language. We prove that
our calculus satisfies all of the static aspects of the refined criteria for gradual
typing [25], while discussing some issues related with the dynamic guarantee.

In summary, the contributions of this paper are:

— We define a framework for consistent subtyping with:
e anew definition of consistent subtyping that subsumes and generalizes that
of Siek and Taha [22], and can deal with polymorphism and top types.
e a syntax-directed version of consistent subtyping that is sound and com-
plete with respect to our definition of consistent subtyping, but still
guesses polymorphic instantiations.

! Note here that we borrow Siek and Taha’s [22] motto mostly to talk about the
static semantics. As Ahmed et al. [1] show there are several non-trivial interactions
between polymorphism and casts at the level of the dynamic semantics.

6 N. Xie et al.

A<:B
Int <: Int Bool <: Bool Float <: Float Int <: Float
By <: Al A2 <: B> . .
li . Az.elu.n#»m . lz . A;el...n <:
A= A< B B, (i - A <tz A=) * <k
A~B
Al ~ By As ~ By A; ~ B;
A~ A A~ % *~ A
A1—>A2NBl—>BQ [llAL]N[lsz}

Fig. 1. Subtyping and type consistency in FOb~,

— Based on consistent subtyping, we present a declarative gradual type system
with predicative implicit higher-rank polymorphism. We prove that our cal-
culus satisfies the static aspects of the refined criteria for gradual typing [25],
and is type-safe by a type-directed translation to AB, and thus hereditarily
preserves parametricity [2].

— We present a complete and sound bidirectional algorithm for implementing
the declarative system based on the design principle of Garcia and Cimini
[12] and the approach of Dunfield and Krishnaswami [11].

— All of the metatheory of this paper, except some manual proofs for the algo-
rithmic type system, has been mechanically formalized in Coq?.

2 Background and Motivation

In this section we review a simple gradually typed language with objects [22],
to introduce the concept of consistency subtyping. We also briefly talk about
the Odersky-Laufer type system for higher-rank types [17], which serves as the
original language on which our gradually typed calculus with implicit higher-
rank polymorphism is based.

2.1 Gradual Subtyping

Siek and Taha [22] developed a gradual typed system for object-oriented lan-
guages that they call FOb?<:. Central to gradual typing is the concept of con-
sistency (written ~) between gradual types, which are types that may involve
the unknown type . The intuition is that consistency relaxes the structure of a
type system to tolerate unknown positions in a gradual type. They also defined
the subtyping relation in a way that static type safety is preserved. Their key

2 All supplementary materials are available at https://bitbucket.org/xieningning/
consistent-subtyping.

https://bitbucket.org/xieningning/consistent-subtyping
https://bitbucket.org/xieningning/consistent-subtyping

Consistent Subtyping for All 7

insight is that the unknown type x is neutral to subtyping, with only x <: *.
Both relations are found in Fig. 1.

A primary contribution of their work is to show that consistency and subtyp-
ing are orthogonal. To compose subtyping and consistency, Siek and Taha [22]
defined consistent subtyping (written <) in two equivalent ways:

Definition 1 (Consistent Subtyping & la Siek and Taha [22])

- A< B ifand only if A~ C and C <: B for some C.
- A< B ifand only if A<:C and C ~ B for some C.

Both definitions are non-deterministic because of the intermediate type C. To
remove non-determinism, they proposed a so-called restriction operator, written
Alp that masks off the parts of a type A that are unknown in a type B.

Alp =case A,B of | (—,*) = %
| A1 — Ag, B1 — B2 = Ai|B, — A2|B,
| [l s Ary ooyl s Al [l s By ooyl 2 B] if n <m = [l1 : A1y, oy ln : An|B,,]
| [l1: Ary ooyl c Aply [l Biy ooy bt B if n>m =
1 A1lBys oo lm t A By ooy bn t Ap]
| otherwise = A

With the restriction operator, consistent subtyping is simply defined as A < B =
Alp <: B|a. Then they proved that this definition is equivalent to Definition 1.

2.2 The Odersky-Laufer Type System

The calculus we are combining gradual typing with is the well-established pred-
icative type system for higher-rank types proposed by Odersky and Léufer [17].
One difference is that, for simplicity, we do not account for a let expression,
as there is already existing work about gradual type systems with let expres-
sions and let generalization (for example, see Garcia and Cimini [12]). Similar
techniques can be applied to our calculus to enable let generalization.

The syntax of the type system, along with the typing and subtyping judg-
ments is given in Fig. 2. An implicit assumption throughout the paper is that
variables in contexts are distinct. We save the explanations for the static seman-
tics to Sect. 4, where we present our gradually typed version of the calculus.

2.3 Motivation: Gradually Typed Higher-Rank Polymorphism

Our work combines implicit (higher-rank) polymorphism with gradual typing.
As is well known, a gradually typed language supports both fully static and fully
dynamic checking of program properties, as well as the continuum between these
two extremes. It also offers programmers fine-grained control over the static-to-
dynamic spectrum, i.e., a program can be evolved by introducing more or less
precise types as needed [13].

8 N. Xie et al.

Expressions eux=z|n|Xx:A. e|Xz.e|ee
Types A,B:=Int|a|A— B|Va.A
Monotypes 7,0 :=Int|a|T— 0
Contexts UVi=0 |V,x:A|¥,a
x:AELPV N V,z:ArY e B LA
———=7 — VAR — =7 NAT AMANN
%z A U int % z:A e:A— B
UE%e i Al — Ay WE% ey A e Ay WEA < A
oL APP oL Sus
UETerex: Ay e A,
W,x:TI—OLe:B W,aI—OLe:AG
Lam —F— GEN
% Nz e:7— B Ul e va. A
vH-A<:B
acVv VT Uk Aa—T1]<:B
— CS-TVar —— CS-InT FORALLL
Uhka<:a ¥ FInt <:Int ¥ FVa.A<: B
V.akFA<: B Uk B <: A Uk Ay <: By
——— FORALLR CS-Fun
U+ A<:Va.B UkA — Ay <: By — B>

Fig. 2. Syntax and static semantics of the Odersky-Laufer type system.

Haskell is a language that supports implicit higher-rank polymorphism, but
no gradual typing. Therefore some programs that are safe at run-time may be
rejected due to the conservativity of the type system. For example, consider the
following Haskell program adapted from Jones et al. [18]:

foo :: ([Int], [Char])
foo=1let fz=(x[1,2],z[d, V] in freverse

This program is rejected by Haskell’s type checker because Haskell imple-
ments the Damas-Milner rule that a lambda-bound argument (such as z) can only
have a monotype, i.e., the type checker can only assign z the type [Int] — [Int],
or [Char| — [Char], but not Va.[a] — [a]. Finding such manual polymorphic
annotations can be non-trivial. Instead of rejecting the program outright, due to
missing type annotations, gradual typing provides a simple alternative by giving
2 the unknown type (denoted *). With such typing the same program type-checks
and produces ([2,1],['?’,/ @']). By running the program, programmers can gain
some additional insight about the run-time behaviour. Then, with such insight,
they can also give a more precise type (Va.[a] — [a]) a posteriori so that
the program continues to type-check via implicit polymorphism and also grants

Consistent Subtyping for All 9

Types A,B:=Int|a|A— B|Va.A|*
Monotypes 7,0 :=Int|a|T— 0
Contexts Ui=g |V,x:A|V¥,a

A~B
A1~ B As ~ B A~B
A~ A A~ x *~ A Lo ER
A1 — AQ ~ B1 — Bz Va.A ~VYa.B
A< B
V,ak A< B UhkT Ut Ala— 7] <: B ac?
————————— S-FOrALLR S-FORALLL ————— S-TVAR
¥k A<:Va.B VU FVaA<:B Uhta<:a
UEF B <A U Ay <: By

— S-INT S-Fun —— S-UNKNOWN
¥k Int <: Int Uk A — Ay <: By — Bs Uk % <:%

Fig. 3. Syntax of types, consistency, and subtyping in the declarative system.

more static safety. In this paper, we envision such a language that combines the
benefits of both implicit higher-rank polymorphism and gradual typing.

3 Revisiting Consistent Subtyping

In this section we explore the design space of consistent subtyping. We start
with the definitions of consistency and subtyping for polymorphic types, and
compare with some relevant work. We then discuss the design decisions involved
towards our new definition of consistent subtyping, and justify the new definition
by demonstrating its equivalence with that of Siek and Taha [22] and the AGT
approach [13] on simple types.

The syntax of types is given at the top of Fig.3. We write A, B for types.
Types are either the integer type Int, type variables a, functions types A — B,
universal quantification Ya.A, or the unknown type . Though we only have one
base type Int, we also use Bool for the purpose of illustration. Note that mono-
types 7 contain all types other than the universal quantifier and the unknown
type x. We will discuss this restriction when we present the subtyping rules.
Contexts ¥ are ordered lists of type variable declarations and term variables.

3.1 Consistency and Subtyping

We start by giving the definitions of consistency and subtyping for polymorphic
types, and comparing our definitions with the compatibility relation by Ahmed
et al. [1] and type consistency by Igarashi et al. [14].

10 N. Xie et al.

Consistency. The key observation here is that consistency is mostly a structural
relation, except that the unknown type % can be regarded as any type. Following
this observation, we naturally extend the definition from Fig. 1 with polymorphic
types, as shown at the middle of Fig. 3. In particular a polymorphic type Va.A
is consistent with another polymorphic type Va.B if A is consistent with B.

Subtyping. We express the fact that one type is a polymorphic generalization
of another by means of the subtyping judgment ¥ - A <: B. Compared with
the subtyping rules of Odersky and Laufer [17] in Fig.2, the only addition is
the neutral subtyping of x. Notice that, in the rule S-FORALLL, the universal
quantifier is only allowed to be instantiated with a monotype. The judgment
¥ = 7 checks all the type variables in 7 are bound in the context ¥. For space
reasons, we omit the definition. According to the syntax in Fig.3, monotypes
do not include the unknown type %. This is because if we were to allow the
unknown type to be used for instantiation, we could have Va.a — a <: ¥ — *
by instantiating a with *. Since x — * is consistent with any functions A — B,
for instance, Int — Bool, this means that we could provide an expression of
type Ya.a — a to a function where the input type is supposed to be Int —
Bool. However, as we might expect, Va.a — a is definitely not compatible with
Int — Bool. This does not hold in any polymorphic type systems without gradual
typing. So the gradual type system should not accept it either. (This is the so-
called conservative extension property that will be made precise in Sect.4.3.)
Importantly there is a subtle but crucial distinction between a type variable
and the unknown type, although they all represent a kind of “arbitrary” type.
The unknown type stands for the absence of type information: it could be any
type at any instance. Therefore, the unknown type is consistent with any type,
and additional type-checks have to be performed at runtime. On the other hand,
a type variable indicates parametricity. In other words, a type variable can only
be instantiated to a single type. For example, in the type Va.a — a, the two
occurrences of a represent an arbitrary but single type (e.g., Int — Int, Bool —
Bool), while x — * could be an arbitrary function (e.g., Int — Bool) at runtime.

Comparison with Other Relations. In other polymorphic gradual calculi, consis-
tency and subtyping are often mixed up to some extent. In AB [1], the compat-
ibility relation for polymorphic types is defined as follows:

A=<B AX — | < B
— X ComP-ALLR —————— CompP-ALLL
A<VX.B VX.A<B

Notice that, in rule CoMP-ALLL, the universal quantifier is always instantiated
to x. However, this way, AB allows Va.a — a < Int — Bool, which as we discussed
before might not be what we expect. Indeed AB relies on sophisticated runtime
checks to rule out such instances of the compatibility relation a posteriori.

Consistent Subtyping for All 11

L (x = Int) — Int Int — Int ———— Int — %
<:T <:T <:T <:T
(Va.a — Int) — Int ———— (VYa.x — Int) — Int Ya.a —— |
(a) (b)
L = (((* — Int) — Int) — Bool) — (Int —)
<:T <:T
(((Va.a — Int) — Int) — Bool) — (Va.a) = L
(c)

Fig. 4. Examples that break the original definition of consistent subtyping.

Igarashi et al. [14] introduced the so-called quasi-polymorphic types for types
that may be used where a V-type is expected, which is important for their pur-
pose of conservativity over System F. Their type consistency relation, involving
polymorphism, is defined as follows>:

A~B A~ B B #Va.B' * € Types(B)
Va.A ~ Va.B Va.A ~ B

Compared with our consistency definition in Fig. 3, their first rule is the same
as ours. The second rule says that a non V-type can be consistent with a V-type
only if it contains . In this way, their type system is able to reject Va.a — a ~
Int — Bool. However, in order to keep conservativity, they also reject Va.a — a ~
Int — Int, which is perfectly sensible in their setting (i.e., explicit polymorphism).
However with implicit polymorphism, we would expect Va.a — a to be related
with Int — Int, since a can be instantiated to Int.

Nonetheless, when it comes to interactions between dynamically typed and
polymorphically typed terms, both relations allow Va.a — Int to be related with
* — Int for example, which in our view, is some sort of (implicit) polymorphic
subtyping combined with type consistency, and that should be derivable by the
more primitive notions in the type system (instead of inventing new relations).
One of our design principles is that subtyping and consistency is orthogonal, and
can be naturally superimposed, echoing the same opinion of Siek and Taha [22].

3.2 Towards Consistent Subtyping

With the definitions of consistency and subtyping, the question now is how to
compose these two relations so that two types can be compared in a way that
takes these two relations into account.

3 This is a simplified version.

12 N. Xie et al.

Unfortunately, the original definition of Siek and Taha [22] (Definition 1) does
not work well with our definitions of consistency and subtyping for polymorphic
types. Consider two types: (Va.a — Int) — Int, and (x — Int) — Int. The first
type can only reach the second type in one way (first by applying consistency,
then subtyping), but not the other way, as shown in Fig. 4a. We use L to mean
that we cannot find such a type. Similarly, there are situations where the first
type can only reach the second type by the other way (first applying subtyping,
and then consistency), as shown in Fig. 4b.

What is worse, if those two examples are composed in a way that those types
all appear co-variantly, then the resulting types cannot reach each other in either
way. For example, Fig. 4c shows such two types by putting a Bool type in the
middle, and neither definition of consistent subtyping works.

Observations on Consistent Subtyping Based on Information Propagation. In
order to develop the correct definition of consistent subtyping for polymorphic
types, we need to understand how consistent subtyping works. We first review
two important properties of subtyping: (1) subtyping induces the subsumption
rule: if A <: B, then an expression of type A can be used where B is expected;
(2) subtyping is transitive: if A <: B, and B <: C, then A <: C. Though con-
sistent subtyping takes the unknown type into consideration, the subsumption
rule should also apply: if A < B, then an expression of type A can also be used
where B is expected, given that there might be some information lost by con-
sistency. A crucial difference from subtyping is that consistent subtyping is not
transitive because information can only be lost once (otherwise, any two types
are a consistent subtype of each other). Now consider a situation where we have
both A <: B, and B < C, this means that A can be used where B is expected,
and B can be used where C' is expected, with possibly some loss of information.
In other words, we should expect that A can be used where C is expected, since
there is at most one-time loss of information.

Observation 1. If A <: B, and B < C, then A S C.
This is reflected in Fig. ba. A symmetrical observation is given in Fig. 5b:
Observation 2. If C < B, and B <: A, then C < A.

From the above observations, we see what the problem is with the original
definition. In Fig. 5a, if B can reach C by T3, then by subtyping transitivity, A
can reach C' by T7. However, if B can only reach C' by T5, then A cannot reach
C through the original definition. A similar problem is shown in Fig. 5b.

However, it turns out that those two problems can be fixed using the same
strategy: instead of taking one-step subtyping and one-step consistency, our def-
inition of consistent subtyping allows types to take one-step subtyping, one-step
consistency, and one more step subtyping. Specifically, A <: B ~ Ty <: C' (in
Fig.5a) and C <: T} ~ B <: A (in Fig.5b) have the same relation chain:
subtyping, consistency, and subtyping.

Consistent Subtyping for All 13

Ty C «--_ -7 A
< 7 N .7
<;T > <ﬂ | < 4
e / | ~
B T /< ' T B
~ . \ <
<:T //// \\<I /:\J/ <T
A----7" C = T
(a) (b)

Fig. 5. Observations of consistent subtyping

Ay — 43 Ay = (((Ya.a — Int) — Int) — Bool) — (Va.a)
< T <:l Az = ((Va.a — Int) — Int) — Bool) — (Int — Int)
A, - A Az = ((Vax — Int) — Int) — Bool) — (Int — %)
Seeo T A4 = (((x* = Int) — Int) — Bool) — (Int — %)

Fig. 6. Example that is fixed by the new definition of consistent subtyping.

Definition of Consistent Subtyping. From the above discussion, we are ready to
modify Definition 1, and adapt it to our notation:

Definition 2 (Consistent Subtyping)

vHA< C C~D vFD<:B
vH-AS<SB

With Definition 2, Fig.6 illustrates the correct relation chain for the broken
example shown in Fig. 4c. At first sight, Definition 2 seems worse than the origi-
nal: we need to guess two types! It turns out that Definition 2 is a generalization
of Definition1, and they are equivalent in the system of Siek and Taha [22].
However, more generally, Definition 2 is compatible with polymorphic types.

Proposition 1 (Generalization of Consistent Subtyping)

— Definition 2 subsumes Definition 1.
— Definition 1 is equivalent to Definition 2 in the system of Siek and Taha [22].

3.3 Abstracting Gradual Typing

Garcia et al. [13] presented a new foundation for gradual typing that they
call the Abstracting Gradual Typing (AGT) approach. In the AGT approach,
gradual types are interpreted as sets of static types, where static types refer
to types containing no unknown types. In this interpretation, predicates and

14 N. Xie et al.

functions on static types can then be lifted to apply to gradual types. Central
to their approach is the so-called concretization function. For simple types, a
concretization + from gradual types to a set of static types?® is defined as follows:

Definition 3 (Concretization)
~(Int) = {Int} v(A — B) =+(4) — ~(B) ~v(x) = {All static types}

Based on the concretization function, subtyping between static types can be
lifted to gradual types, resulting in the consistent subtyping relation:

Definition 4 (Consistent Subtyping in AGT). A <: B if and only if A; <:
By for some Ay € v(A), By € y(B).

Later they proved that this definition of consistent subtyping coincides with
that of Siek and Taha [22] (Definition 1). By Proposition 1, we can directly con-
clude that our definition coincides with AGT:

Proposition 2 (Equivalence to AGT on Simple Types). A < B iff
A< B.

However, AGT does not show how to deal with polymorphism (e.g. the inter-
pretation of type variables) yet. Still, as noted by Garcia et al. [13], it is a promis-
ing line of future work for AGT, and the question remains whether our definition
would coincide with it.

Another note related to AGT is that the definition is later adopted by
Castagna and Lanvin [7], where the static types A;, By in Definition4 can be
algorithmically computed by also accounting for top and bottom types.

3.4 Directed Consistency
Directed consistency [15] is defined in terms of precision and static subtyping:

ACA A<:B B'CB
A< B

The judgment A C B isread “A is less precise than B”. In their setting, precision
is defined for type constructors and subtyping for static types. If we interpret
this definition from AGT’s point of view, finding a more precise static type®
has the same effect as concretization. Namely, A’ C A implies A € v(A’) and
B’ C B implies B € «(B’). Therefore we consider this definition as AGT-style.
From this perspective, this definition naturally coincides with Definition 2.

The value of their definition is that consistent subtyping is derived composi-
tionally from static subtyping and precision. These are two more atomic relations.
At first sight, their definition looks very similar to Definition 2 (replacing C by
<:and <: by ~). Then a question arises as to which one is more fundamental. To
answer this, we need to discuss the relation between consistency and precision.

4 For simplification, we directly regard type constructor — as a set-level operator.
5 The definition of precision of types is given in appendix.

Consistent Subtyping for All 15

Relating Consistency and Precision. Precision is a partial order (anti-symmetric
and transitive), while consistency is symmetric but not transitive. Nonetheless,
precision and consistency are related by the following proposition:

Proposition 3 (Consistency and Precision)

- If A ~ B, then there exists (static) C, such that AC C, and BE C.
— If for some (static) C, we have AC C, and B C C, then we have A ~ B.

It may seem that precision is a more atomic relation, since consistency can be
derived from precision. However, recall that consistency is in fact an equivalence
relation lifted from static types to gradual types. Therefore defining consistency
independently is straightforward, and it is theoretically viable to validate the
definition of consistency directly. On the other hand, precision is usually con-
nected with the gradual criteria [25], and finding a correct partial order that
adheres to the criteria is not always an easy task. For example, Igarashi et al.
[14] argued that term precision for System Fg is actually nontrivial, leaving
the gradual guarantee of the semantics as a conjecture. Thus precision can be
difficult to extend to more sophisticated type systems, e.g. dependent types.

Still, it is interesting that those two definitions illustrate the correspondence
of different foundations (on simple types): one is defined directly on gradual
types, and the other stems from AGT, which is based on static subtyping.

3.5 Consistent Subtyping Without Existentials

Definition 2 serves as a fine specification of how consistent subtyping should
behave in general. But it is inherently non-deterministic because of the two
intermediate types C' and D. As with Definition 1, we need a combined relation to
directly compare two types. A natural attempt is to try to extend the restriction
operator for polymorphic types. Unfortunately, as we show below, this does not
work. However it is possible to devise an equivalent inductive definition instead.

Attempt to Extend the Restriction Operator. Suppose that we try to extend the
restriction operator to account for polymorphic types. The original restriction
operator is structural, meaning that it works for types of similar structures.
But for polymorphic types, two input types could have different structures due
to universal quantifiers, e.g., Va.a — Int and (Int — %) — Int. If we try to
mask the first type using the second, it seems hard to maintain the information
that a should be instantiated to a function while ensuring that the return type is
masked. There seems to be no satisfactory way to extend the restriction operator
in order to support this kind of non-structural masking.

Interpretation of the Restriction Operator and Consistent Subtyping. If the
restriction operator cannot be extended naturally, it is useful to take a step
back and revisit what the restriction operator actually does. For consistent sub-
typing, two input types could have unknown types in different positions, but we
only care about the known parts. What the restriction operator does is (1) erase

16 N. Xie et al.

U,a-A<B k1 WUk Ala—71]<B

——————————— CS-ForALLR CS-FORALLL

U+ A<Va.B UEVYa.ASB

’I’"B1§A1 Q'/}_AQSBQ acv
CS-FunN — CS-TVar ——— CS-INT
UEFA — A < By — B UtaS<la ¥ FInt < Int

————— CS-UNKNOWNL ———— CS-UNKNOWNR
UEx< A UEA<«

Fig. 7. Consistent Subtyping for implicit polymorphism.

the type information in one type if the corresponding position in the other type is
the unknown type; and (2) compare the resulting types using the normal subtyp-
ing relation. The example below shows the masking-off procedure for the types
Int — x — Bool and Int — Int — *. Since the known parts have the relation that
Int — * — x <: Int = * — %, we conclude that Int — x — Bool < Int — Int — *.

Int —| x | — | Bool| |mt—mt— « :Int—>*—>*>
<

Int—|Int| —=| % | |m=x—8 =Int — % — %

Here differences of the types in boxes are erased because of the restriction oper-
ator. Now if we compare the types in boxes directly instead of through the lens
of the restriction operator, we can observe that the consistent subtyping relation
always holds between the unknown type and an arbitrary type. We can interpret
this observation directly from Definition 2: the unknown type is neutral to sub-
typing (x <: %), the unknown type is consistent with any type (x ~ A), and
subtyping is reflexive (A <: A). Therefore, the unknown type is a consistent
subtype of any type (x S A), and vice versa (A <). Note that this interpre-
tation provides a general recipe on how to lift a (static) subtyping relation to a
(gradual) consistent subtyping relation, as discussed below.

Defining Consistent Subtyping Directly. From the above discussion, we can define
the consistent subtyping relation directly, without resorting to subtyping or con-
sistency at all. The key idea is that we replace <: with < in Fig.3, get rid
of rule S-UNKNOWN and add two extra rules concerning *, resulting in the
rules of consistent subtyping in Fig.7. Of particular interest are the rules CS-
UNKNOWNL and CS-UNKNOWNR, both of which correspond to what we just
said: the unknown type is a consistent subtype of any type, and vice versa.
From now on, we use the symbol < to refer to the consistent subtyping relation
in Fig. 7. What is more, we can prove that those two are equivalent®:

Theorem1l. VFASB&sUYFA<:C,C~D,¥tF D<:B for someC,D.

5 Theorems with 7 are those proved in Coq. The same applies to Lemmas.

Consistent Subtyping for All 17

r:Aevw Uabe: A~ s
—— VAR ——————— NAT GEN
Uhbzx: A~z Uhkn:lnt~n Uk e:Va. A~ Aa.s

Vr:AFe:B~s Vr:ThHe:B~s
LAMANN Lam
UhbX:A. e:A— B~ Xx:A. s UhkM.e:T— B~ Ax:7. s

EPF612AW81 SPFADA1—>A2 &[/FCQZA:;WSQ WFA3§A1
Wl—el EQZAQ W((A‘—>A1—>A2> 81) (<A3%A1> 82)

Aprp

”Pl—ADAlﬂAQ‘

Uk UEAla— 1]> A — Ay
Wl‘VCL.ADAlﬂAQ

M-FORALL

M-ARR ———— M-UNKNOWN

g"‘(A1—>A2)I>(A1—>A2) Uk x>k — %

Fig. 8. Declarative typing

4 Gradually Typed Implicit Polymorphism

In Sect.3 we introduced the consistent subtyping relation that accommodates
polymorphic types. In this section we continue with the development by giving a
declarative type system for predicative implicit polymorphism that employs the
consistent subtyping relation. The declarative system itself is already quite inter-
esting as it is equipped with both higher-rank polymorphism and the unknown
type. The syntax of expressions in the declarative system is given below:

Expressions ex=x |n| x:A. e|Ar.e|ee

4.1 Typing in Detail

Figure 8 gives the typing rules for our declarative system (the reader is advised to
ignore the gray-shaded parts for now). Rule VAR extracts the type of the variable
from the typing context. Rule NAT always infers integer types. Rule LAMANN
puts x with type annotation A into the context, and continues type checking the
body e. Rule LAM assigns a monotype 7 to x, and continues type checking the
body e. Gradual types and polymorphic types are introduced via annotations
explicitly. Rule GEN puts a fresh type variable a into the type context and
generalizes the typing result A to Va.A. Rule APP first infers the type of ey,
then the matching judgment ¥ = A A; — As extracts the domain type A; and
the codomain type As from type A. The type A3 of the argument ey is then
compared with A; using the consistent subtyping judgment.

18 N. Xie et al.

Matching. The matching judgment of Siek et al. [25] can be extended to polymor-
phic types naturally, resulting in ¥ + A> A; — As. In M-FORALL, a monotype
7 is guessed to instantiate the universal quantifier a. This rule is inspired by the
application judgment &+ A e e = C [11], which says that if we apply a term of
type A to an argument e, we get something of type C. If A is a polymorphic type,
the judgment works by guessing instantiations until it reaches an arrow type.
Matching further simplifies the application judgment, since it is independent of
typing. Rule M-ARR and M-UNKNOWN are the same as Siek et al. [25]. M-ARR
returns the domain type A; and range type Ao as expected. If the input is *,
then M-UNKNOWN returns x as both the type for the domain and the range.

Note that matching saves us from having a subsumption rule (SUB in Fig. 2).
the subsumption rule is incompatible with consistent subtyping, since the latter
is not transitive. A discussion of a subsumption rule based on normal subtyping
can be found in the appendix.

4.2 Type-Directed Translation

We give the dynamic semantics of our language by translating it to AB. Below
we show a subset of the terms in AB that are used in the translation:

Terms s:=x|n|lx: A s|Aa.s| sy s2|{(A— B) s

A cast (A — B) s converts the value of term s from type A to type B. A cast
from A to B is permitted only if the types are compatible, written A < B, as
briefly mentioned in Sect. 3.1. The syntax of types in AB is the same as ours.

The translation is given in the gray-shaded parts in Fig. 8. The only interest-
ing case here is to insert explicit casts in the application rule. Note that there
is no need to translate matching or consistent subtyping, instead we insert the
source and target types of a cast directly in the translated expressions, thanks
to the following two lemmas:

Lemmal (>to <). IfUF A> A — As, then A < A — As.
Lemma 2 (S to <). Ifv+ASB, then A< B.

In order to show the correctness of the translation, we prove that our trans-
lation always produces well-typed expressions in AB. By Lammas 1 and 2, we
have the following theorem:

Theorem 2 (Type Safety). IfUFe: A~ s, thenW B s: A

Parametricity. An important semantic property of polymorphic types is rela-
tional parametricity [19]. The parametricity property says that all instances of
a polymorphic function should behave uniformly. A classic example is a func-
tion with the type Va.a — a. The parametricity property guarantees that a
value of this type must be either the identity function (i.e., Az.x) or the unde-
fined function (one which never returns a value). However, with the addition of
the unknown type *, careful measures are to be taken to ensure parametricity.
This is exactly the circumstance that AB was designed to address. Ahmed et al.
[2] proved that AB satisfies relational parametricity. Based on their result, and
by 7 heorem 2, parametricity is preserved in our system.

Consistent Subtyping for All 19

Ambiguity from Casts. The translation does not always produce a unique target
expression. This is because when we guess a monotype 7 in rule M-FORALL and
CS-ForaLLL, we could have different choices, which inevitably leads to differ-
ent types. Unlike (non-gradual) polymorphic type systems [11,18], the choice
of monotypes could affect runtime behaviour of the translated programs, since
they could appear inside the explicit casts. For example, the following shows two
possible translations for the same source expression Ax : x. f z, where the type
of f is instantiated to Int — Int and Bool — Bool, respectively:

f:Vaa—ab (Ax:* fz):x—Int

~ (Az i+ ((Va.a — a = Int = Int) f) ((x = Int) z))
f:Va.a—at (Ax:* fx):x— Bool

~ (Az : *. ((Va.a — a — Bool — Bool) f) ((x — Bool) =z))

If we apply Az : x. f x to 3, which is fine since the function can take any input,
the first translation runs smoothly in AB, while the second one will raise a cast
error (Int cannot be cast to Bool). Similarly, if we apply it to true, then the second
succeeds while the first fails. The culprit lies in the highlighted parts where any
instantiation of a would be put inside the explicit cast. More generally, any
choice introduces an explicit cast to that type in the translation, which causes
a runtime cast error if the function is applied to a value whose type does not
match the guessed type. Note that this does not compromise the type safety of
the translated expressions, since cast errors are part of the type safety guarantees.

Coherence. The ambiguity of translation seems to imply that the declarative
system is incoherent. A semantics is coherent if distinct typing derivations of
the same typing judgment possess the same meaning [20]. We argue that the
declarative system is “coherent up to cast errors” in the sense that a well-typed
program produces a unique value, or results in a cast error. In the above example,
whatever the translation might be, applying Ax : . f x to 3 either results in a
cast error, or produces 3, nothing else.

This discrepancy is due to the guessing nature of the declarative system. As
far as the declarative system is concerned, both Int — Int and Bool — Bool
are equally acceptable. But this is not the case at runtime. The acute reader
may have found that the only appropriate choice is to instantiate f to x — *.
However, as specified by rule M-FORALL in Fig. 8, we can only instantiate type
variables to monotypes, but x is not a monotype! We will get back to this issue
in Sect. 6.2 after we present the corresponding algorithmic system in Sect. 5.

4.3 Correctness Criteria

Siek et al. [25] present a set of properties that a well-designed gradual typing
calculus must have, which they call the refined criteria. Among all the crite-
ria, those related to the static aspects of gradual typing are well summarized

20 N. Xie et al.

by Cimini and Siek [8]. Here we review those criteria and adapt them to our
notation. We have proved in Coq that our type system satisfies all these criteria.

Lemma 3 (Correctness Criteria)

— Conservative extension: for all static ¥, e, and A,
o if W FOLe: A, then there exists B, such that W e: B, and W+ B <: A.
o ifUle:A thenWhF%¢: A
— Momnotonicity w.r.t. precision: for allW,e,e’, A, if Uk e: A, and e’ C e,
then W e’ : B, and BC A for some B.
— Type Preservation of cast insertion: for all W,e, A, if U e : A, then
Uhke:A~s and¥ 8 s: A for some s.
— Monotonicity of cast insertion: for allW, e, eq,e),eh, A if Uk ey : A~
e, and Wk ey: A~ ehy and ey C ey, then W W e} CF el

The first criterion states that the gradual type system should be a conser-
vative extension of the original system. In other words, a static program that is
typeable in the Odersky-Laufer type system if and only if it is typeable in the
gradual type system. A static program is one that does not contain any type x".
However since our gradual type system does not have the subsumption rule, it
produces more general types.

The second criterion states that if a typeable expression loses some type
information, it remains typeable. This criterion depends on the definition of the
precision relation, written A C B, which is given in the appendix. The relation
intuitively captures a notion of types containing more or less unknown types (x).
The precision relation over types lifts to programs, i.e., e; C es means that e;
and ey are the same program except that es has more unknown types.

The first two criteria are fundamental to gradual typing. They explain for
example why these two programs (Az : Int. z+1) and (Ax : . x+1) are
typeable, as the former is typeable in the Odersky-Laufer type system and the
latter is a less-precise version of it.

The last two criteria relate the compilation to the cast calculus. The third
criterion is essentially the same as 7 heorem 2, given that a target expression
should always exist, which can be easily seen from Fig.8. The last criterion
ensures that the translation must be monotonic over the precision relation LC.

As for the dynamic guarantee, things become a bit murky for two reasons: (1)
as we discussed before, our declarative system is incoherent in that the runtime
behaviour of the same source program can vary depending on the particular
translation; (2) it is still unknown whether dynamic guarantee holds in AB. We
will have more discussion on the dynamic guarantee in Sect. 6.3.

5 Algorithmic Type System

In this section we give a bidirectional account of the algorithmic type system that
implements the declarative specification. The algorithm is largely inspired by the

" Note that the term static has appeared several times with different meanings.

Consistent Subtyping for All 21

Expressions ex=z|n|lx:A e|llx.e|lee|e: A
Types A,Bu=Int|a|a|A— B|Va.A|x
Monotypes Tou=lInt|ala|T— o0

Contexts INAOe:=g|le:A|lLa|lNa|a=T1
Complete Contexts Ru=0 | x:A|2,a|a=T1

Fig. 9. Syntax of the algorithmic system

I'FA<BHA

ACS-TVAr — ———— — ACS-EXVAR
I'lalFa<adTa I'lalFa <a-dIal
————— ACS-INT —————— ACS-UNKNOWNL ~————— ACS-UNKNOWNR
'Fint<Int4I FFx<AAT I'tA<«Hrl
I'tBi <A 40 OF[0)A2 <[O]BsH A
ACS-Fun
I'FA - A SBi—B4A
IaFA<BAAa6O rakAa—a <B-A
ACS-FOrRALLR ACS-FORALLL
I'-A<va.BHA I'VYa.A<BAHA
a A I'alFag A+ A a A I'alFAga-dA
agful)A — arax ACS-INSTL ag)A [a]A ~ ¢ ACS-INSTR
I'alFa<AH4A I'slFA<a+A

Fig. 10. Algorithmic consistent subtyping

algorithmic bidirectional system of Dunfield and Krishnaswami [11] (henceforth
DK system). However our algorithmic system differs from theirs in three aspects:
(1) the addition of the unknown type %; (2) the use of the matching judgment;
and (3) the approach of gradual inference only producing static types [12]. We
then prove that our algorithm is both sound and complete with respect to the
declarative type system. Full proofs can be found in the appendix.

Algorithmic Contexts. The algorithmic context I is an ordered list containing
declarations of type variables a and term variables x : A. Unlike declarative con-
texts, algorithmic contexts also contain declarations of existential type variables
a, which can be either unsolved (written @) or solved to some monotype (writ-
ten @ = 7). Complete contexts {2 are those that contain no unsolved existential
type variables. Figure 9 shows the syntax of the algorithmic system. Apart from
expressions in the declarative system, we have annotated expressions e : A.

5.1 Algorithmic Consistent Subtyping and Instantiation

Figure 10 shows the algorithmic consistent subtyping rules. The first five rules
do not manipulate contexts. Rule ACS-FUN is a natural extension of its declar-
ative counterpart. The output context of the first premise is used by the second

22 N. Xie et al.

FrFagA4A

7 INSTLSOLVE = = INsTLREACH

)bl -a<b-Calp=a

'+~
F,&,F’I—’déT%F,E:T,F

R . F[ﬁ},bk&éB#A,le'I LALR
Talrag«dr@ = oo0" TaraswB4a 7

IMaz,d1,a =01 G2l F A S@ 10 OFa S[O]d A
TAlFa< A — Az 1A

INSTLARR
Fig. 11. Algorithmic instantiation

premise, and the output context of the second premise is the output context
of the conclusion. Note that we do not simply check As < Bs, but apply © to
both types (e.g., [©]A3). This is to maintain an important invariant that types
are fully applied under input context I' (they contain no existential variables
already solved in I'). The same invariant applies to every algorithmic judgment.
Rule ACS-FORALLR looks similar to its declarative counterpart, except that
we need to drop the trailing context a,@ from the concluding output context
since they become out of scope. Rule ACS-FORALLL generates a fresh existen-
tial variable @, and replaces a with @ in the body A. The new existential variable
a is then added to the premise’s input context. As a side note, when both types
are quantifiers, then either ACS-FORALLR or ACS-FORALLR could be tried.
In practice, one can apply ACS-FORALLR, eagerly. The last two rules together
check consistent subtyping with an unsolved existential variable on one side and
an arbitrary type on the other side by the help of the instantiation judgment.

The judgment I' @ $ A 4 A defined in Fig. 11 instantiates unsolved exis-
tential variables. Judgment @ < A reads “instantiate @ to a consistent subtype
of A”. For space reasons, we omit its symmetric judgement I' - A 5 a 4 A.
Rule INSTLSOLVE and rule INSTLREACH set @ to 7 and b in the output context,
respectively. Rule INSTLSOLVEU is similar to ACS-UNKNOWNR in that we put
no constraint on @ when it meets the unknown type *. This design decision
reflects the point that type inference only produces static types [12]. We will get
back to this point in Sect.6.2. Rule INSTLALLR is the instantiation version of
rule ACS-FoRALLR. The last rule INSTLARR applies when @ meets a function
type. It follows that the solution must also be a function type. That is why, in
the first premise, we generate two fresh existential variables a; and @2, and insert
them just before @ in the input context, so that the solution of @ can mention
them. Note that Ay < @; switches to the other instantiation judgment.

5.2 Algorithmic Typing

We now turn to the algorithmic typing rules in Fig.12. The algorithmic sys-
tem uses bidirectional type checking to accommodate polymorphism. Most of

Consistent Subtyping for All 23

I'Fe=AHA

(z:A)erl
——————— AVaR ————— ANar
I'rx=AAT I'Fn=Intd I
Ia,br:ake<b-4Ax:a,06 INec:Ate=BdAzxz:A6
— ALAMU ALAMANNA
I'FXxx.e=a—b4dA I'FXx:A.e=>A—BHA

I'+A I'Fe<=A-A
I'Fe:A=>AHA

AANNO

FF61:>A4@1 (‘91%[@1}AI>A1—>A2492 @2F62<:[@2]A14A

App
I'tel 62=>A2—|A
I'Fe<=A-d4A
INe:Are<=BHdAx: A6 Fakte<=A+4A a6
ALAM AGEN
I'EX.e<=A—-BHA I'Fe<=VYa A4 A
Fe=Ad0 orfplAsEBAA
I're=BAA o
IFAv A — A HA]
F,ﬁl—A[a;—>&]>A1—>Ag—|A
AM-FORALL AM-ARR
FFVG.ADA1—>A24A FF(A1—>A2)\>(A1—>A2)%F
———————— AM-UNKNOWN = = — AM-VAR
I'Fxpx— -1 I'elkeva—b-I'[a,bc=a— b

Fig. 12. Algorithmic typing

them are quite standard. Perhaps rule AApp (which differs significantly from
that in the DK system) deserves attention. It relies on the algorithmic match-
ing judgment I' F A> A; — Ay 4 A. Rule AM-FORALLL replaces a with
a fresh existential variable @, thus eliminating guessing. Rule AM-ARR AND
AM-UNKNOWN correspond directly to the declarative rules. Rule AM-
VAR, which has no correspondlng _declarative version, is similar to
INSTRARR/INSTLARR: we create @ and band add ¢=a — b to the context.

5.3 Completeness and Soundness

We prove that the algorithmic rules are sound and complete with respect to the
declarative specifications. We need an auxiliary judgment I" — A that captures
a notion of information increase from input contexts I" to output contexts A [11].

24 N. Xie et al.

Soundness. Roughly speaking, soundness of the algorithmic system says that
given an expression e that type checks in the algorithmic system, there exists a
corresponding expression ¢’ that type checks in the declarative system. However
there is one complication: e does not necessarily have more annotations than e’.
For example, by ALAM we have A\z. x < (Va.a) — (Va.a), but Az. z itself cannot
have type (Va.a) — (Va.a) in the declarative system. To circumvent that, we add
an annotation to the lambda abstraction, resulting in Az : (Va.a). z, which is
typeable in the declarative system with the same type. To relate Az. z and
Az @ (Va.a). z, we erase all annotations on both expressions. The definition of
erasure |-] is standard and thus omitted.

Theorem 1 (Soundness of Algorithmic Typing). Given A — (2,

1. IfT'+e= A+ A then 3¢’ such that [Q]AF € : [2]A and |e] = |€¢'].
2. IfT'+e< A+ A then 3e’ such that [2]AF € : [2|A and |e] = |€].

Completeness. Completeness of the algorithmic system is the reverse of sound-
ness: given a declarative judgment of the form [Q]I" F [2]..., we want to get
an algorithmic derivation of I' F - -+ 4 A. It turns out that completeness is a bit
trickier to state in that the algorithmic rules generate existential variables on
the fly, so A could contain unsolved existential variables that are not found in
I, nor in {2. Therefore the completeness proof must produce another complete
context {2’ that extends both the output context A, and the given complete
context 2. As with soundness, we need erasure to relate both expressions.

Theorem 2 (Completeness of Algorithmic Typing). Given I' — (2 and
' A, if [Q)'Fe: A then there exist A, 2, A" and €' such that A — 2" and
N— Q2 andI'+e = A 4A and A=A and |e] = |€].

6 Discussion

6.1 Top Types

To demonstrate that our definition of consistent subtyping (Definition 2) is appli-
cable to other features, we show how to extend our approach to Top types with
all the desired properties preserved.

In order to preserve the orthogonality between subtyping and consistency,
we require T to be a common supertype of all static types, as shown in rule
S-Top. This rule might seem strange at first glance, since even if we remove the
requirement A static, the rule seems reasonable. However, an important point
is that because of the orthogonality between subtyping and consistency, subtyp-
ing itself should not contain a potential information loss! Therefore, subtyping
instances such as x <: T are not allowed. For consistency, we add the rule that
T is consistent with T, which is actually included in the original reflexive rule

Consistent Subtyping for All 25

A ~ A. For consistent subtyping, every type is a consistent subtype of T, for
example, Int — x < T.

A static T
—_ ST ~ —— CS-T
A< T vFA<T

It is easy to verify that Definition 2 is still equivalent to that in Fig. 7 extended
with rule CS-Top. That is, 7 heorem 1 holds:

Proposition 4 (Extension with T). V- A< B ¥+ A< C,C ~ D,
U+ D <: B, for some C,D.

We extend the definition of concretization (Definition3) with T by adding
another equation v(T) = {T}. Note that Castagna and Lanvin [7] also have this
equation in their calculus. It is easy to verify that Proposition 2 still holds:

Proposition 5 (Equivalent to AGT on T). A< B if only if A <: B.

Siek and Taha’s [22] Definition of Consistent Subtyping Does Not Work for T. As
the analysis in Sect. 3.2, Int — x < T only holds when we first apply consistency,
then subtyping. However we cannot find a type A such that Int — x <: A and
A ~ T. Also we have a similar problem in extending the restriction operator:
non-structural masking between Int — x and T cannot be easily achieved.

6.2 Interpretation of the Dynamic Semantics

In Sect. 4.2 we have seen an example where a source expression could produce two
different target expressions with different runtime behaviour. As we explained,
this is due to the guessing nature of the declarative system, and from the typing
point of view, no type is particularly better than others. However, in practice,
this is not desirable. Let us revisit the same example, now from the algorithmic
point of view (we omit the translation for space reasons):

f:Vaa—at(Mr:x fz)=*—a-f:Vaa—a,a

Compared with declarative typing, which produces many types (* — Int, x —
Bool, and so on), the algorithm computes the type x — @ with @ unsolved in the
output context. What can we know from the output context? The only thing we
know is that @ is not constrained at alll However, it is possible to make a more
refined distinction between different kinds of existential variables. The first kind
of existential variables are those that indeed have no constraints at all, as they
do not affect the dynamic semantics. The second kind of existential variables
(as in this example) are those where the only constraint is that the variable was
once compared with an unknown type [12].

To emphasize the difference and have better support for dynamic semantics,
we could have gradual variables in addition to existential variables, with the dif-
ference that only unsolved gradual variables are allowed to be unified with the
unknown type. An irreversible transition from existential variables to gradual

26 N. Xie et al.

variables occurs when an existential variable is compared with x. After the algo-
rithm terminates, we can set all unsolved existential variables to be any (static)
type (or more precisely, as Garcia and Cimini [12], with static type parameters),
and all unsolved gradual variables to be * (or gradual type parameters). How-
ever, this approach requires a more sophisticated declarative/algorithmic type
system than the ones presented in this paper, where we only produce static
monotypes in type inference. We believe this is a typical trade-off in existing
gradual type systems with inference [12,23]. Here we suppress the complexity of
dynamic semantics in favour of the conciseness of static typing.

6.3 The Dynamic Guarantee

In Sect. 4.3 we mentioned that the dynamic guarantee is closely related to the
coherence issue. To aid discussion, we first give the definition of dynamic guar-
antee as follows:

Definition 5 (Dynamic guarantee). Suppose ¢/ C e, 0 e : A ~ s and
OFe A~ s, ifslv, thens | v and v’ C .

The dynamic guarantee says that if a gradually typed program evaluates to a
value, then removing type annotations always produces a program that evaluates
to an equivalent value (modulo type annotations). Now apparently the coherence
issue of the declarative system breaks the dynamic guarantee. For instance:

(Af:Va.a —a. Ax:Int. f) (Az.2)3 (A :Va.a—a. Az :* fz)(A\.xz)3

The left one evaluates to 3, whereas its less precise version (right) will give a
cast error if @ is instantiated to Bool for example.

As discussed in Sect. 6.2, we could design a more sophisticated declarative/al-
gorithmic type system where coherence is retained. However, even with a coher-
ent source language, the dynamic guarantee is still a question. Currently, the
dynamic guarantee for our target language AB is still an open question. Accord-
ing to Igarashi et al. [14], the difficulty lies in the definition of term precision
that preserves the semantics.

7 Related Work

Along the way we discussed some of the most relevant work to motivate, compare
and promote our gradual typing design. In what follows, we briefly discuss related
work on gradual typing and polymorphism.

Gradual Typing. The seminal paper by Siek and Taha [21] is the first to pro-
pose gradual typing. The original proposal extends the simply typed lambda
calculus by introducing the unknown type * and replacing type equality with
type consistency. Later Siek and Taha [22] incorporated gradual typing into a

Consistent Subtyping for All 27

simple object oriented language, and showed that subtyping and consistency are
orthogonal — an insight that partly inspired our work. We show that subtyping
and consistency are orthogonal in a much richer type system with higher-rank
polymorphism. Siek et al. [25] proposed a set of criteria that provides impor-
tant guidelines for designers of gradually typed languages. Cimini and Siek [§]
introduced the Gradualizer, a general methodology for generating gradual type
systems from static type systems. Later they also develop an algorithm to gen-
erate dynamic semantics [9]. Garcia et al. [13] introduced the AGT approach
based on abstract interpretation.

Gradual Type Systems with Explicit Polymorphism. Ahmed et al. [1] proposed
AB that extends the blame calculus [29] to incorporate polymorphism. The key
novelty of their work is to use dynamic sealing to enforce parametricity. Devriese
et al. [10] proved that embedding of System F terms into AB is not fully abstract.
Igarashi et al. [14] also studied integrating gradual typing with parametric poly-
morphism. They proposed System F, a gradually typed extension of System F,
and System F¢, a new polymorphic blame calculus. As has been discussed exten-
sively, their definition of type consistency does not apply to our setting (implicit
polymorphism). All of these approaches mix consistency with subtyping to some
extent, which we argue should be orthogonal.

Gradual Type Inference. Siek and Vachharajani [23] studied unification-based
type inference for gradual typing, where they show why three straightforward
approaches fail to meet their design goals. Their type system infers gradual types,
which results in a complicated type system and inference algorithm. Garcia
and Cimini [12] presented a new approach where gradual type inference only
produces static types, which is adopted in our type system. They also deal with
let-polymorphism (rank 1 types). However none of these works deals with higher-
ranked implicit polymorphism.

Higher-Rank Implicit Polymorphism. Odersky and Laufer [17] introduced a type
system for higher-rank types. Based on that, Peyton Jones et al. [18] developed
an approach for type checking higher-rank predicative polymorphism. Dunfield
and Krishnaswami [11] proposed a bidirectional account of higher-rank polymor-
phism, and an algorithm for implementing the declarative system, which serves
as a sole inspiration for our algorithmic system. The key difference, however, is
the integration of gradual typing. Vytiniotis et al. [28] defers static type errors to
runtime, which is fundamentally different from gradual typing, where program-
mers can control over static or runtime checks by precision of the annotations.

28

8

N. Xie et al.

Conclusion

In this paper, we present a generalized definition of consistent subtyping, which
is proved to be applicable to both polymorphic and top types. Based on the
new definition of consistent subtyping, we have developed a gradually typed
calculus with predicative implicit higher-rank polymorphism, and an algorithm
to implement it. As future work, we are interested to investigate if our results
can scale to real world languages and other programming language features.

Acknowledgements. We thank Ronald Garcia and the anonymous reviewers for their
helpful comments. This work has been sponsored by the Hong Kong Research Grant
Council projects number 17210617 and 17258816.

References

10.

11.

12.

13.

. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proceedings of

the 38th Symposium on Principles of Programming Languages (2011)

Ahmed, A., Jamner, D., Siek, J.G., Wadler, P.: Theorems for free for free: para-
metricity, with and without types. In: Proceedings of the 22nd International Con-
ference on Functional Programming (2017)

Schwerter, F.B., Garcia, R., Tanter, E: A theory of gradual effect systems. In: Pro-
ceedings of the 19th International Conference on Functional Programming (2014)

. Bierman, G., Meijer, E., Torgersen, M.: Adding dynamic types to C*. In: D’Hondst,

T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 76-100. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2_5

Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 257-281. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9_11

Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68-94.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_4

. Castagna, G., Lanvin, V.: Gradual typing with union and intersection types. Proc.

ACM Program. Lang. 1(ICFP), 41:1-41:28 (2017)

Cimini, M., Siek, J.G.: The gradualizer: a methodology and algorithm for gener-
ating gradual type systems. In: Proceedings of the 43rd Symposium on Principles
of Programming Languages (2016)

Cimini, M., Siek, J.G.: Automatically generating the dynamic semantics of grad-
ually typed languages. In: Proceedings of the 44th Symposium on Principles of
Programming Languages (2017)

Devriese, D., Patrignani, M., Piessens, F.: Parametricity versus the universal type.
Proc. ACM Program. Lang. 2(POPL), 38 (2017)

Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. In: International Conference on Functional Pro-
gramming (2013)

Garcia, R., Cimini, M.: Principal type schemes for gradual programs. In: Proceed-
ings of the 42nd Symposium on Principles of Programming Languages (2015)
Garcia, R., Clark, A.M., Tanter, E.: Abstracting gradual typing. In: Proceedings
of the 43rd Symposium on Principles of Programming Languages (2016)

https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-49498-1_4

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Consistent Subtyping for All 29

Igarashi, Y., Sekiyama, T., Igarashi, A.: On polymorphic gradual typing. In: Pro-
ceedings of the 22nd International Conference on Functional Programming (2017)
Jafery, K.A., Dunfield, J.: Sums of uncertainty: refinements go gradual. In: Pro-
ceedings of the 44th Symposium on Principles of Programming Languages (2017)
Mitchell, J.C.: Polymorphic type inference and containment. In: Logical Founda-
tions of Functional Programming (1990)

Odersky, M., Laufer, K.: Putting type annotations to work. In: Proceedings of the
23rd Symposium on Principles of Programming Languages (1996)

Jones, S.P., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for
arbitrary-rank types. J. Funct. Program. 17(1), 1-82 (2007)

Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Proceedings
of the IFIP 9th World Computer Congress (1983)

Reynolds, J.C.: The coherence of languages with intersection types. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 675-700. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54415-1_70

Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proceedings of
the 2006 Scheme and Functional Programming Workshop (2006)

Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2-27. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73589-2_2

Siek, J.G., Vachharajani, M.: Gradual typing with unification-based inference. In:
Proceedings of the 2008 Symposium on Dynamic Languages (2008)

Siek, J.G., Wadler, P.: The key to blame: gradual typing meets cryptography (draft)
(2016)

Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual
typing. In: LIPIcs-Leibniz International Proceedings in Informatics (2015)
Verlaguet, J.: Facebook: analyzing PHP statically. In: Proceedings of Commercial
Users of Functional Programming (2013)

Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proceedings of the 10th Symposium on Dynamic Languages
(2014)

Vytiniotis, D., Jones, S.P., Magalhaes, J.P.: Equality proofs and deferred type
errors: a compiler pearl. In: Proceedings of the 17th International Conference on
Functional Programming, ICFP 2012, New York (2012)

Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1-16. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9_1

https://doi.org/10.1007/3-540-54415-1_70
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1

30 N. Xie et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

HOBIT: Programming Lenses Without
Using Lens Combinators

Kazutaka Matsuda'®) and Meng Wang?

1 Tohoku University, Sendai 980-8579, Japan
kztkQ@ecei.tohoku.ac. jp
2 University of Bristol, Bristol BS8 1TH, UK

Abstract. We propose HOBIT, a higher-order bidirectional program-
ming language, in which users can write bidirectional programs in the
familiar style of conventional functional programming, while enjoying the
full expressiveness of lenses. A bidirectional transformation, or a lens, is
a pair of mappings between source and view data objects, one in each
direction. When the view is modified, the source is updated accordingly
with respect to some laws—a pattern that is found in databases, model-
driven development, compiler construction, and so on. The most common
way of programming lenses is with lens combinators, which are lens-to-
lens functions that compose simpler lenses to form more complex ones.
Lens combinators preserve the bidirectionality of lenses and are expres-
sive; but they compel programmers to a specialised point-free style—i.e.,
no naming of intermediate computation results—limiting the scalability
of bidirectional programming. To address this issue, we propose a new
bidirectional programming language HOBiT, in which lenses are repre-
sented as standard functions, and combinators are mapped to language
constructs with binders. This design transforms bidirectional program-
ming, enabling programmers to write bidirectional programs in a flexible
functional style and at the same time access the full expressiveness of
lenses. We formally define the syntax, type system, and the semantics
of the language, and then show that programs in HOBIT satisfy bidirec-
tionality. Additionally, we demonstrate HOBiT’s programmability with
examples.

1 Introduction

Transforming data from one format to another is a common task of program-
ming: compilers transform program texts into syntax trees, manipulate the trees
and then generate low-level code; database queries transform base relations into
views; model transformations generate lower-level implementations from higher-
level models; and so on. Very often, such transformations will benefit from being
bidirectional, allowing changes to the targets to be mapped back to the sources
too. For example, if one can run a compiler front-end (preprocessing, parsing,
desugaring, etc.) backwards, then all sorts of program analysis tools will be
able to focus on a much smaller core language, without sacrificing usability, as

© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 31-59, 2018.
https://doi.org/10.1007/978-3-319-89884-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_2&domain=pdf

32 K. Matsuda and M. Wang

their outputs in term of the core language will be transformed backwards to the
source language. In the same way, such needs arise in databases (the view-update
problem [1,6,12]) and model-driven engineering (bidirectional model transforma-
tion) [28,33,35].

As a response to this challenge, programming language researchers have
started to design languages that execute deterministically in both directions, and
the lens framework is the most prominent among all. In the lens framework, a
bidirectional transformation (or a lens) £ € Lens S V', consists of get £ € S — V|
and put £ € S — V — S [3,7,8]. (When clear from the context, or unimpor-
tant, we sometimes omit the lens name and write simply get/put.) Function get
extracts a view from a source, and put takes both an updated view and the orig-
inal source as inputs to produce an updated source. The additional parameter
of put makes it possible to recover some of the source data that is not present
in the view. In other words, get needs not to be injective to have a put. Not all
pairs of get/put are considered correct lenses. The following round-triping laws
of a lens / are generally required to establish bidirectionality:

put Lsv=s if getls=w (Acceptability)
get s =v if putlsv=3s (Consistency)

for all s, s’ and v. (In this paper we write e = ¢/ with the assumption that
neither e nor €’ is undefined. Stronger variants of the laws enforcing totality
exist elsewhere, for example in [7].) Here consistency ensures that all updates on
a view are captured by the updated source, and acceptability prohibits changes
to the source if no update has been made on the view. Collectively, the two laws
defines well-behavedness [1,7,12].

The most common way of programming lenses is with lens combinators [3,7,8],
which are basically a selection of lens-to-lens functions that compose simpler lenses
to form more complex ones. This combinator-based approach follows the long his-
tory of lightweight language development in functional programming. The dis-
tinctive advantage of this approach is that by restricting the lens language to a
few selected combinators, well-behavedness can be more easily preserved in pro-
gramming, and therefore given well-behaved lenses as inputs, the combinators are
guaranteed to produce well-behaved lenses. This idea of lens combinators is very
influential academically, and various designs and implementations have been pro-
posed [2,3,7-9,16,17,27,32] over the years.

1.1 The Challenge of Programmability

The complexity of a piece of software can be classified as either intrinsic or
accidental. Intrinsic complexity reflects the inherent difficulty of the problem
at hand, whereas accidental complexity arises from the particular programming
language, design or tools used to implement the solution. This work aims at
reducing the accidental complexity of bidirectional programming by contribut-
ing to the design of bidirectional languages. In particularly, we identify a lan-
guage restriction—i.e., no naming of intermediate computation results—which
complicates lens programming, and propose a new design that removes it.

HOBIT: Programming Lenses Without Using Lens Combinators 33

As a teaser to demonstrate the problem, let us consider the list append
function. In standard unidirectional programming, it can be defined simply as
append x y = case xz of {[] = y; a: 2’ — a: append =’ y}. Astute readers may
have already noticed that append is defined by structural recursion on x, which
can be made explicit by using foldr as in append z y = foldr (;) y .

But in a lens language based on combinators, things are more difficult. Specif-
ically, append now requires a more complicated recursion pattern, as below.

appendL :: Lens ([A], [A]) [A]
appendL =
cond idL (A_.True) (A_.A_.[]) (consL 6 (idL x appendL)) (not o null) (A_.A_.L)
& rearr 6 (outListL x idL)
where outListL:: Lens [A] (Either () (4, [A4]))
rearr :: Lens (Either () (a,b),c) (Either ¢ (a, (b,c)))
8) ::Lensbc— Lens ab— Lens ac
cond :Lensac— ...— Lensbc— ... — Lens (Fither ab) c

It is beyond the scope of this paper to explain how exactly the definition of
appendL works, as its obscurity is what this work aims to remove. Instead, we
informally describe its behaviour and the various components of the code. The
above code defines a lens: forwards, it behaves as the standard append, and
backwards, it splits the updated view list, and when the length of the list changes,
this definition implements (with the grayed part) the bias of keeping the length
of the first source list whenever possible (to disambiguate multiple candidate
source changes). Here, cond, (6), etc. are lens combinators and outListL and rearr
are auxiliary lenses, as can be seen from their types. Unlike its unidirectional
counterpart, appendL can no longer be defined as a structural recursion on list;
instead it traverses a pair of lists with rather complex rearrangement rearr.

Intuitively, the additional grayed parts is intrinsic complexity, as they are
needed for directing backwards execution. However, the complicated recursion
scheme, which is a direct result of the underlying limitation of lens languages,
is certainly accidental. Recall that in the definition of append, we were able to
use the variable y, which is bound outside of the recursion pattern, inside the
body of foldr. But the same is not possible with lens combinators which are
strictly ‘pointfree’. Moreover, even if one could name such variables (points),
their usage with lens combinators will be very restricted in order to guarantee
well-behavedness [21,23]. This problem is specific to opaque non-function objects
such as lenses, and goes well beyond the traditional issues associated with the
pointfree programming style.

In this paper, we design a new bidirectional language HOBIT, which aims
to remove much of the accidental difficulty found in combinator-based lens pro-
gramming, and reduces the gap between bidirectional programming and stan-
dard functional programming. For example, the following definition in HOBiT
implements the same lens as appendL.

34 K. Matsuda and M. Wang

appendB :: B[A] — B[A] — B[A]
appendB z y = case z of [] -y with A_.True by (A_._.[])
)

a:x — a: appendB ' y with not o null E (A

As expected, the above code shares the grayed part with the definition of appendL
as the two implement the same backwards behaviour. The difference is that
appendB uses structural recursion in the same way as the standard unidirec-
tional append, greatly simplifying programming. This is made possible by the
HOBIT’s type system and semantics, allowing unrestricted use of free variables.
This difference in approach is also reflected in the types: appendB is a proper
function (instead of the abstract lens type of appendL), which readily lends itself
to conventional functional programming. At the same time, appendB is also a
proper lens, which when executed by the HOBiT interpreter behave exactly like
appendL. A major technical challenge in the design of HOBIT is to guarantee
this duality, so that functions like appendB are well-behaved by construction
despite the flexibility in their construction.

1.2 Contributions

As we can already see from the very simple example above, the use of HOBIT
simplifies bidirectional programming by removing much of the accidental com-
plexity. Specifically, HOBiT stands out from existing bidirectional languages in
two ways:

1. It supports the conventional programming style that is used in unidirectional
programming. As a result, a program in HOBIiT can be defined in a way
similar to how one would define only its get component. For example, appendB
is defined in the same way as the unidirectional append.

2. It supports incremental improvement. Given the very often close resemblance
of a bidirectional-program definition and that of its get component, it becomes
possible to write an initial version of a bidirectional program almost identical
to its get component and then to adjust the backwards behaviour gradually,
without having to significantly restructure the existing definition.

Thanks to these distinctive advantages, HOBIT for the first time allows us to
construct realistically-sized bidirectional programs with relative ease. Of course,
this does not mean free lunch: the ability to control backwards behaviours will
not magically come without additional code (for example the grayed part above).
What HOBIT achieves is that programming effort may now focus on the pro-
ductive part of specifying backwards behaviours, instead of being consumed by
circumventing language restrictions.
In summary, we make the following contributions in this paper.

— We design a higher-order bidirectional programming language HOBIT,
which supports convenient bidirectional programming with control of back-
wards behaviours (Sect.3). We also discuss several extensions to the
language (Sect. 5).

HOBIT: Programming Lenses Without Using Lens Combinators 35

— We present the semantics of HOBIT inspired by the idea of staging [5],
and prove the well-behavedness property using Kripke logical relations [18]
(Sect. 4).

— We demonstrate the programmability of HOBiT with examples such as desug-
aring/resugaring [26] (Sect. 6). Additional examples including a bidirectional
evaluator for A-calculus [21,23], a parser/printer for S-expressions, and book-
mark extraction for Netscape [7] can be found at https://bitbucket.org/kztk/
hibx together with a prototype implementation of HOBIT.

2 Overview: Bidirectional Programming Without
Combinators

In this section, we informally introduce the essential constructs of HOBiT and
demonstrate their use by a few small examples. Recall that, as seen in the
appendB example, the strength of HOBIT lies in allowing programmers to access
A-abstractions without restrictions on the use of A-bound variables.

2.1 The case Construct

The most important language construct in HOBIT is case (pronounced as bidi-

rectional case), which provides pattern matching and easy access to bidirectional

branching, and also importantly, allows unrestricted use of A-bound variables.
In general, a case expression has the following form.

case e of {p; — e; with ¢; by p1;...;p, — e, with ¢, by p,}

(Like Haskell, we shall omit “{”, “}” and “” if they are clear from the layout.)
In the type system of HOBIT, a case-expression has type BB, if e and e; have
types BA and BB, and ¢; and p; have types B — Bool and A — B — A, where
A and B contains neither (—) nor B. The type BA can be understood intuitively
as “updatable A”. Typically, the source and view data are given such B-types,
and a function of type BA — BB is the HOBiT equivalent of Lens A B.

The pattern matching part of case performs two implicit operations: it first
unwraps the B-typed value, exposing its content for normal pattern matching,
and then it wraps the variables bound by the pattern matching, turning them
into ‘updatable’ B-typed values to be used in the bodies. For example, in the
second branch of appendB, a and z’ can be seen as having types A and [A] in the
pattern, but BA and B[A] types in the body; and the bidirectional constructor
(:)::BA — B[A] — B[A] combines them to produce a B-typed list.

In addition to the standard conditional branches, case-expression has two
unique components ¢; and p; called ezit conditions and reconciliation functions
respectively, which are used in backwards executions. Exit condition ¢; is an
over-approximation of the forwards-execution results of the expressions e;. In
other words, if branch i is choosen, then ¢; e; must evaluate to True. This asser-
tion is checked dynamically in HOBIT, though could be checked statically with

https://bitbucket.org/kztk/hibx
https://bitbucket.org/kztk/hibx

36 K. Matsuda and M. Wang

a sophisticated type system [7]. In the backwards direction the exit condition is
used for deciding branching: the branch with its exit condition satisfied by the
updated view (when more than one match, the original branch used in the for-
wards direction has higher priority) will be picked for execution. The idea is that
due to the update in the view, the branch taken in the backwards direction may
be different from the one taken in the original forwards execution, a feature that
is commonly supported by lens languages [7] which we call branch switching.

Branch switching is crucial to put’s robustness, i.e., the ability to handle
a wide range of view updates (including those affect the branching decisions)
without failing. We explain its working in details in the following.

Branch Switching. Being able to choose a different branch in the backwards
direction only solves part of the problem. Let us consider the case where a
forward execution chooses the n'™ branch, and the backwards execution, based
on the updated view, chooses the m'™ (m # n) branch. In this case, the original
value of the pattern-matched expression e, which is the reason for the nt" branch
being chosen, is not compatible with the put of the m'™ branch.

As an example, let us consider a simple function that pattern-matches on an
FEither structure and returns an list. Note that we have purposely omitted the
reconciliation functions.

[B(Either [A] (A, [4])) — B[A]
f x = case x of Left ys —ys with A_True {- no by here -}
Right (v, ys) — y : ys with not o null

We have said that functions of type BA — BB are also fully functioning lenses of
type Lens A B. In HOBIT, the above code runs as follows, where HOBiT> is the
prompt of HOBiT’s read-eval-print loop, and :get and :put are meta-language
operations to perform get and put respectively.

HOBiT> :get f (Left [1,2,3])

[1,2,3]

HOBiT> :get f (Right (1,[2,3]))

[1,2,3]

HOBiT> :put f (Left [1,2,3]) [4, 5] -- The view [1,2, 3] is updated to [4, 5].
Left [4, 5] -- Both exit conditions are true with [4, 5],

-- so the original branch (Left) is taken.
HOBiT> :put f (Right (1,[2,3])) [4, 5]

Right (4, [5]) -- Similar, but the original branch is Right.
HOBiT> :put f (Right (1,[2,3])) []
1 -- Branch switches, but computation fails.

As we have explained above, exit conditions are used to decide which branch
will be used in the backwards direction. For the first and second evaluations
of put, the exit conditions corresponding to the original branches were true for
the updated view. For the last evaluation of put, since the exit condition of

HOBIT: Programming Lenses Without Using Lens Combinators 37

get::A—B et::A— B
am . bm am o bm,
get::A—B Y
H/ > Pn Qm by,) >bn.
Fail put::A—>B—A bn an put::A—B—A bn

Fig. 1. Reconciliation function: assuming exit conditions ¢,, and ¢, where ¢,, b, =
False but ¢, b, = True, and reconciliation functions p,, and p,.

the original branch was false but that of the other branch was true, branch
switching is required here. However, a direct put-execution of f with the inputs
(Right (1,[2,3])) and [] crashes (represented by L above), for a good reason, as
the two inputs are in an inconsistent state with respect to f.

This is where reconciliation functions come into the picture. For the Left
branch above, a sensible reconciliation function will be (A_.A_.Left []), which
when applied turns the conflicting source (Right (1,[2,3])) into Left [], and
consequently the put-execution may succeed with the new inputs and returns
Left []. It is not difficult to verify that the “reconciled” put-execution still sat-
isfies well-behavedness. Note that despite the similarity in types, reconciliation
functions are not put; they merely provide a default source value to allow stuck
put-executions to proceed. We visualise the effect of reconciliation functions in
Fig. 1. The left-hand side is bidirectional execution without successful branch-
switching, and since ¢,, by, is false (indicating that b,, is not in the range of the
m!" branch) the execution of put must (rightfully) fail in order to guarantee
well-behavedness. On the right-hand side, reconciliation function p, produces
a suitable source from a,, and b, (where ¢, (get (pn am b)) is True), and
put executes with b,, and the new source p,, a,, b,. It is worth mentioning that
branch switching with reconciliation functions does not compromise correctness:
though the quality of the user-defined reconciliation functions affects robustness
as they may or may not be able to resolve conflicts, successful put-executions
always guarantee well-behavedness, regardless the involvement of reconciliation
functions.

Revisiting appendB. Recall appendB from Sect. 1.1 (reproduced below).

appendB :: B[A] — B[A] — B[A]
appendBrzy=casezof []| —vy with A_True by (A_.A_.[])
a:xz’ — a: appendB x' y with not o null by (A_.A_.L)

The exit condition for the nil case always returns true as there is no restriction
on the value of y, and for the cons case it requires the returned list to be non-
empty. In the backwards direction, when the updated view is non-empty, both
exit conditions will be true, and then the original branch will be taken. This
means that since appendB is defined as a recursion on x, the backwards execution
will try to unroll the original recursion step by step (i.e., the cons branch will be
taken for a number of times that is the same as the length of z) as long as the
view remains non-empty. If an updated view list is shorter than x, then notonull

38 K. Matsuda and M. Wang

will become false before the unrolling finishes, and the nil branch will be taken
(branch-switching) and the reconciliation function will be called.

The definition of appendB is curried; straightforward uncurrying turns it into
the standard form BA — BB that can be interpreted by HOBIT as a lens. The
following HOBIT program is the bidirectional variant of uncurry.

uncurryB :: (BA — BB — BC) — B(4, B) — BC
uncurryB f z = let (¢,y) = z in f o y

Here, let p = e in ¢’ is syntactic sugar for case e of {p — ¢’ with (A_.True) by
(As.A_.s)}, in which the reconciliation function is never called as there is only
one branch. Let appendB’ = uncurryB appendB, then we can run appendB’ as:

HOBiT> :get appendB’ ([1,2],[3,4,5])

[1,2,3,4,5]

HOBiT> :put appendB’ ([1,2],[3,4,5]) [6,7,8,9,10]

([6,7],[8,9,10]) -- No structural change, no branch switching.

HOBiT> :put appendB’ ([1,2],[3,4,5]) [6,7]

(6,71, 1) -- No branch switching, still.

HOBiT> :put appendB’ ([1,2],[3,4,5]) [6]

(e1,m -- Branch-switching happens and the recursion terminates early.

Difference from Lens Combinators. As mentioned above, the idea of branch
switching can be traced back to lens languages. In particular, the design of case
is inspired by the combinator cond [7]. Despite the similarities, it is important to
recognise that case is not only a more convenient syntax for cond, but also cru-
cially supports the unrestricted use of A-bound variables. This more fundamental
difference is the reason why we could define appendB in the conventional functional
style as the variables = and y are used freely in the body of case. In other words,
the novelty of HOBIT is its ability to combine the traditional (higher-order) func-
tional programming and the bidirectional constructs as found in lens combinators,
effectively establishing a new way of bidirectional programming.

2.2 A More Elaborate Example: linesB

In addition to supporting convenient programming and robustness in put exe-
cution, the case constructs can also be used to express intricate details of
backwards behaviours. Let us consider the lines function in Haskell as an
example, which splits a string into a list of strings by newlines, for example,
lines "AA\nBB\n" = ["AA","BB"], except that the last newline character in its
input is optional. For example, lines returns ["AA", "BB"] for both "AA\nBB\n"
and "AA\nBB". Suppose that we want the backwards transformation of lines to
exhibit a behaviour that depends on the original source:

HOBIT: Programming Lenses Without Using Lens Combinators 39

linesB :: BString — B[String]
linesB str =
let (f,b) = breakNLB str
incasebof '\n’:x:r — f:linesB (z:7)
with (> 1) o length by (Ab.A_.>\n’ : > ’ : b)
b — [:[] with (== 1) o length by (Ab.A_.lastNL b)
where {lastNL [| = []; lastNL [>\n’] = [’\n’]; lastNL (a :) = lastNL x}
breakNLB :: BString — B(String, String)
breakNLB str = case str of

o~

(] = ([I,[]) with p1 by (A~ A-.[])
An’ s — ([],’\n’ 2 s) with pz by (A_.A_."\n")
c:s — let (f,r) = breakNLB s in (c: f,r) with p3 by (A_.A_." ")

where {pi(z,y) = null y; p2(x,y) = null x && not (null y); ps(z,y) = not (null z)}

Fig. 2. linesB and breakNLB

HOBiT> :put linesB "AA\nBB" ["a","b"]

"a\nb"

HOBiT> :put linesB "AA\nBB" ["a", "b", "c"]
"a\nb\nc"

HOBiT> :put linesB "AA\nBB" ["a"]

ngn

HOBiT> :put linesB "AA\nBB\n" ["a","b", "c"]
"a\nb\nc\n"

HOBiT> :put linesB "AA\nBB\n" ["a"]

Ila\nll

This behaviour is achieved by the definition in Fig. 2, which makes good use of
reconciliation functions. Note that we do not consider the contrived corner case
where the string ends with duplicated newlines such as in "A\n\n". The function
breakNLB splits a string at the first newline; since breakNLB is injective, its exit
conditions and reconciliation functions are of little interest. The interesting part
is in the definition of linesB, particularly its use of reconciliation functions to
track the existence of a last newline character. We firstly explain the branching
structure of the program. On the top level, when the first line is removed from the
input, the remaining string b may contain more lines, or be the end (represented
by either the empty list or the singleton list [>\n’]). If the first branch is taken,
the returned result will be a list of more than one element. In the second branch
when it is the end of the text, b could contain a newline or simply be empty. We do
not explicitly give patterns for the two cases as they have the same body f:[], but
the reconciliation function distinguishes the two in order to preserve the original
source structure in the backwards execution. Note that we intentionally use
the same variable name b in the case analysis and the reconciliation function, to
signify that the two represent the same source data. The use of argument b in the
reconciliation functions serves the purpose of remembering the (non)existence of
the last newline in the original source, which is then preserved in the new source.

40 K. Matsuda and M. Wang

eu=ux|Ax.e|eies| True|False|[]|e1: ez |case e of {p; = e }i=1,2 | fix (Af.e€)
| True| False | []|e1:e2|case e of {p; — e; with e; by e} }iz1,2
p = | True | False | [] | p1 : p2

Fig. 3. Syntax of HOBiT Core

It is worth noting that just like the other examples we have seen, this defini-
tion in HOBIT shares a similar structure with a definition of lines in Haskell.!
The notable difference is that a Haskell definition is likely to have a different
grouping of the three cases of lines into two branches, as there is no need to
keep track of the last newline for backwards execution. Recall that reconcilia-
tion functions are called after branches are chosen by exit conditions; in the case
of linesB, the reconciliation function is used to decide the reconciled value of b’
to be "\n" or "". This, however, means that we cannot separate the pattern b’
into two "\n" and "" with copying its branch body and exit condition, because
then we lose a chance to choose a reconciled value of b based on its original value.

3 Syntax and Type System of HOBiT Core

In this section, we describe the syntax and the type system of the core of HOBiT.

3.1 Syntax

The syntax of HOBIiT Core is given in Fig. 3. For simplicity, we only consider
booleans and lists. The syntax is almost the same as the standard A-calculus with
the fixed-point combinator (fix), lists and booleans. For data constructors and
case expressions, there are in addition bidirectional versions that are underlined.
We allow the body of fix to be non-As to make our semantics simple (Sect.4),
though such a definition like fix(Az.True : x) can diverge.

Although in examples we used case/case-expressions with an arbitrary num-
ber of branches having overlapping patterns under the first-match principle, we
assume for simplicity that in HOBiT Core case/case-expressions must have
exactly two branches whose patterns do not overlap; extensions to support these
features are straightforward. As in Haskell, we sometimes omit the braces and
semicolons if they are clear from the layout.

! Haskell’s lines’s behaviour is a bit more complicated as it returns [] if and only if the
input is "". This behaviour can be achieved by calling linesB only when the input
list is nonempty.

HOBIT: Programming Lenses Without Using Lens Combinators 41

I'z)y=A Alzx) =0 I'c:A;A+e: B I''Abe1:A—B I';Alkez: A
I'Arz: A I'AbFxz:Bo [IiAFAXre: A— B I'sAkejex: B
If:A;AFe: A
I';AFfix(Af.e): A TI'; AF True: Bool I'; Ab False: Bool I'; Al []:[A]
I'NAtei: A T3 Abeg:[A]

I'sAbep:es: [A] I'; AF True: BBool I'; At False: BBool I';Al[]:B[o]
I'sAbe;:Bo I'5Abes:Blo] ITAFe: A Inbpi:A Ly;Abe;:B (i=1,2)
F;Al—elieg:B[U] F;Al—caseeof{pi—>ei}i:1,2:B

I'yAre:Bo A;jbpi:o TI';AA;Fe;:Br
I'sAve):7— Bool I'5iAbell:o—717—0 (i=1,2)

I'; At case e of {p; — e; with e/ by e//};—1 2 : BT

INtFer: A Inbes:[A]

z:AFxz: A QOF True: Bool (OF False: Bool 0F []:[A] I, Iy ke :ex: [A]

Fig. 4. Typing rules: A F p: o is similar to I' - p : A but asserts that the resulting
environment is actually a bidirectional environment.

3.2 Type System
The types in HOBIT Core are defined as follows.

A, B :=Bo | A— B|[A]| Bool

We use the metavariable o, 7, ... for types that do not contain — nor B, We call
o-types pure datatypes, which are used for sources and views of lenses. Intuitively,
Bo represents “updatable ¢”—data subject to update in bidirectional transfor-
mation. We keep the type system of HOBiIT Core simple, though it is possible
to include polymorphic types or intersection types to unify unidirectional and
bidirectional constructors.

The typing judgment I'; A F e : A, which reads that under environments
I' and A, expression e has type A, is defined by the typing rules in Fig.4. We
use two environments: A (the bidirectional type environment) is for variables
introduced by pattern-matching through case, and I' for everything else. It is
interesting to observe that A only holds pure datatypes, as the pattern variables
of case have pure datatypes, while I" holds any types. We assume that the
variables in I" and those in A are disjoint, and appropriate a-renaming has been
done to ensure this. This separation of A from I' does not affect typeability,
but is key to our semantics and correctness proof (Sect.4). Most of the rules
are standard except case; recall that we only use unidirectional constructors in
patterns which have pure types, while the variables bound in the patterns are
used as B-typed values in branch bodies.

42 K. Matsuda and M. Wang

4 Semantics of HOBIT Core

Recall that the unique strength of HOBIT is its ability to mix higher-order uni-
directional programming with bidirectional programming. A consequence of this
mixture is that we can no longer specify its semantics in the same way as other
first-order bidirectional languages such as [13], where two semantics—one for get
and the other for put—suffice. This is because the category of lenses is believed
to have no exponential objects [27] (and thus does not permit As).

4.1 Basic Idea: Staging

Our solution to this problem is staging [5], which separates evaluation into
two stages: the unidirectional parts is evaluated first to make way for a bidi-
rectional semantics, which only has to deal with the residual first-order pro-
grams. As a simple example, consider the expression (Az.2) (z : (Aw.w) y) = [])-
The first-stage evaluation, e |y FE, eliminates As from the expression as in
(Az.2) (x : (Qw.w) y) : []) bu 2y : []. Then, our bidirectional semantics will
be able to treat the residual expression as a lens between value environments
and values, following [13,20]. Specifically, we have the get evaluation relation
u Fe E = v, which computes the value v of E' under environment p as usual,
and the put evaluation relation p Fp v < E - p/, which computes an updated
environment g’ for E from the updated view v and the original environment .
In pseudo syntax, it can be understood as put F p v = p’, where u represents
the original source and y’ the new source.

It is worth mentioning that a complete separation of the stages is not possible
due to the combination of fix and case, as an attempt to fully evaluate them in
the first stage will result in divergence. Thus, we delay the unidirectional eval-
uation inside case to allow fix, and consequently the three evaluation relations
(uni-directional, get, and put) are mutually dependent.

4.2 Three Evaluation Relations: Unidirectional, get and put

First, we formally define the set of residual expressions:

E == True|False | [] | E1 : E2 | Az.e

| | True|False|[] | E;: Ey | case Ey of {p; — e; with E; by Ej}i—1 2
They are treated as values in the unidirectional evaluation, and as expressions in
the get and put evaluations. Notice that e or e; appear under A\ or case, meaning
that their evaluations are delayed.

The set of (first-order) values is defined as below.

v = True | False | [] | v1 : v2

Accordingly, we define a (first-order) value environment u as a finite mapping
from variables to first-order values.

HOBIT: Programming Lenses Without Using Lens Combinators 43

e1lu Az.e exu B2 e[Ex/z] yu E effix(\f.e)/fl v E
v erexJu B Az.e lu A\z.e fix(\f.e) Ju FE

eodu Eo e Yu E; e Ju Ef (i=12)
case eg Oif {pi — €; with e;- bl 6;-/}7;:1,2 l}U case EO Oif {pi — €5 with Ez, bl E;l}i:LQ

Fig. 5. Evaluation rules for unidirectional parts (excerpt)

Unidirectional Evaluation Relation. The rules for the unidirectional eval-
uation relation is rather standard, as excerpted in Fig.5. The bidirectional con-
structs (i.e., bidirectional constructors and case) are frozen, i.e., behave just like
ordinary constructors in this evaluation. Notice that we can evaluate an expres-
sion containing free variables; then the resulting residual expression may contain
the free variables.

Bidirectional (get and put) Evaluation Relations. The get and put evalu-
ation relations, y F¢ E = v and p Fp v < E - 1/, are defined so that they
together form a lens.

Weakening of Environment. Before we lay out the semantics, it is worth explain-
ing a subtlety in environment handling. In conventional evaluation semantics, a
larger than necessary environment does no harm, as long as there is no name
clashes. For example, whether the expression x is evaluated under the environ-
ment {z =1} or {x = 1,y = 2} does not matter. However, the same is not true
for bidirectional evaluation. Let us consider a residual expression E =z : y : [],

and a value environment y = {x = 1,y = 2} as the original source. We expect
to have p g E = 1:2:[], which may be derived as:

pFexz=1 ptgy:[]=2:]]

pher y:[]=1:2:]]

In the put direction, for an updated view say 3 : 4 : [], we expect to have
pkp3:4:[] < E - {x =3,y =4} with the corresponding derivation:

,ul—p3<:m—|?1 ,U/|_P4:H<:yi[]_|?2

pkp3:d:[]<x y:[]1{z=3y=4}

What shall the environments 7; and 79 be? One way is to have p Fp 3 <«
rA{z=3,y=2},and pkp 4:[] < y:[] 4 {z =1,y =4}, where the vari-
ables do not appear free in the residual expression takes their values from the
original source environment y. However, the evaluation will get stuck here, as
there is no reasonable way to produce the expected result {z =3,y = 4} from
7y ={x=3,y=2} and 73 = {z = 1,y = 4}. In other words, the redundancy in
environment is harmful as it may cause conflicts downstream.

44 K. Matsuda and M. Wang

Our solution to this problem, which follows from [21-23,29], is to allow put
to return value environments containing only bindings that are relevant for the
residual expressions under evaluation. For example, we have u Fp 3 <« o -
{r=3},and ptp4:[] <y:[]d{y=4}. Then, we can merge the two value
environments ?; = {z =3} and ?; = {y =4} to obtain the expected result
{z =3,y = 4}. As a remark, this seemingly simple solution actually has a non-
trivial effect on the reasoning of well-behavedness. We defer a detailed discussion
on this to Sect. 4.3.

Now we are ready to define get and put evaluation rules for each bidirectional
constructs. For variables, we just lookup or update environments. Recall that
is a mapping (i.e., function) from variables to (first-order) values, while we use
a record-like notation such as {z = v}.

nhe = p(r) phkpv <z 4{z=uv}

For constants ¢ where ¢ = False, True, [], the evaluation rules are straightforward.

ukFgc=c pukpc<=c—H0

The above-mentioned behaviour of the bidirectional cons expression Ey : Fs is
formally given as:

ﬂFgE1=>’U1 MFgE2:>’L}2 MFPU1<:E1—|/,L/1 /L}—p’l)2<:E2—|/,L/2
(Fa Bi: By = vy vy pbp vy vy <= By z By A Y i

(Note that the variable rules guarantee that only free variables in the residual
expressions end up in the resulting environments.) Here, Y is the merging oper-
ator defined as: p Y p/ = p U g if there is no x such that u(x) # p'(z). For
example, {t =3} Y {y =4} = {z=3,y=4}, and {x =3,y =4} Y {y =4} =
{z =3,y =4}, but {z =3,y =2} ¥ {y = 4} is undefined.

The most interesting rules are for case. In the get direction, it is not different
from the ordinary case except that exit conditions are asserted, as shown in
Fig. 6. We use the following predicate for pattern matching.

match(pr, vo, k) = (et = vo) A (dom(uy) = fv(pr))

Here, we abuse the notation to write pguy for the value obtained from pg by
replacing the free variables x in pj with pg(x). One might notice that we have
the disjoint union W u; in Fig. 6 where p; holds the values of the variables in p;,
as we assume a-renaming of bound variables that is consistent in get and put.
Recall that p; and py are assumed not to overlap, and hence the evaluation is
deterministic. Note that the reconciliation functions E!" are untouched by the
rule.

The put evaluation rule of case shown in Fig. 6 is more involved. In addition
to checking which branch should be chosen by using exit conditions, we need
two rules to handle the cases with and without branch switching. Basically,

HOBIT: Programming Lenses Without Using Lens Combinators 45

phra Eo = vo match(pi,vo, ;) e du By pWpitbe Bi=v E,v{u True

i

phc case Ey of {p; — e; with E; by E;'} =

phra Eo = vo match(pi,vo, ;) Eivlu True e; Ju E;
pdpi bp v << B A Waom(u),dom(uy) i V0 = pi(pi <Api) pbp vo < Eo 4 po

php v < case Ey of {p; — e; with E; by Eg/}i:1 , 1o Y

pha Eo = vo match(pi,vo, i) EjvluFalse j=3—1i EjvluTrue e; Ju Ej
E} vov v ue match(pj,uo, py)
pW i e v <= Ej A p Waom(u),domuy) 15 V0 = Pi(p5 <p;) pbe vo <= Eo H po

php v < case Ey of {p; — e; with E] by E;’}Z_:1 , T Ho Y

Fig. 6. get- and put-Evaluation of case: we write pWx,y 1’ to ensure that dom(u) C X
and dom(p') CY.

the branch to be taken in the backwards direction is decided first, by the get-
evaluation of the case condition Ey and the checking of the exit condition E
against the updated view v. After that, the body of the chosen branch e; is firstly
uni-directionally evaluated, and then its residual expression E; is put-evaluated.
The last step is put-evaluation of the case-condition Ey. When branch switching
happens, there is the additional step of applying the reconciliation function E7.
Note the use of operator < in computing the updated case condition vy.

,) (z) if x € dom(p)
(W ap)le) = {p(m) otherwise

Recall that in the beginning of this subsection, we discussed our approach of
avoiding conflicts by producing environments with only relevant variables. This
means the) above contains only variables that appear free in E;, which may or
may not be all the variables in p;. Since this is the point where these variables
are introduced, we need to supplement p; with p; from the original pattern
matching so that p; can be properly instantiated.

Construction of Lens. Let us write Lo[E] for a lens between value environ-
ments and values, defined as:

get Lo[E] p=wv ifubg E=wv
put Lo[El pv=p" fprpv<=E-y

Then, we can define the lens L[e] induced from e (a closed function expression),
where e x |}y E for some fresh variable z.

get Lle] s = get Lo[E] {x = s}
put Le] sv= (' <{x =s})(x) where p/ = put Lo[E] {z =5} v

Actually, :get and :put in Sect. 2 are realised by get L]e] and put L[e].

46 K. Matsuda and M. Wang

4.3 Correctness

We establish the correctness of HOBIT Core: L]e] € Lens [o] [] is well-behaved
for closed e of type Bo — Br. Recall that Lens S V is a set of lenses ¢, where
get £ €S —Vand put £ € S—V — S. We only provide proof sketches in this
subsection due to space limitation.

<-well-behavedness. Recall that in the previous subsection, we allow environ-
ments to be weakened during put-evaluation. Since not all variables in a source
may appear in the view, during some intermediate evaluation steps (for example
within case-branches) the weakened environment may not be sufficient to fully
construct a new source. Recall that, in pbp v < e 4 i/, dom(’) can be smaller
than dom(u), a gap that is fixed at a later stage of evaluation by merging (Y)
and defaulting (<) with other environments. This technique reduces conflicts, but
at the same time complicates the compositional reasoning of correctness. Specif-
ically, due to the potentially missing information in the intermediate environ-
ments, well-behavedness may be temporally broken during evaluation. Instead,
we use a variant of well-behavedness that is weakening aware, which will then
be used to establish the standard well-behavedness for the final result.

Definition 1 (=-well-behavedness). Let (5,=<) and (V,=) be partially-
ordered sets. A lens £ € Lens S V is called <-well-behaved if it satisfies

get £ s =v = v is maximal A (Vo'.v' 2 v = put £ s v’ < s)
(=2-Acceptability)

put lsv=s = (Vs".§ 2" = v =< get £s") (=-Consistency)
for any s,s’ € S and v € V, where s is maximal. |

We write Lens="? S V for the set of lenses in Lens S V that are =<-well-
behaved. In this section, we only consider the case where S and V are value
environments and first-order values, where value environments are ordered by
weakening (u < p' if p(z) = p/(z) for all x € dom(u)), and (X) = (=) for
first-order values. In Sect. 5.2 we consider a slightly more general situation.

The =<-well-behavedness is a generalisation of the ordinary well-behavedness,
as it coincides with the ordinary well-behavedness when (<) = (=).

Theorem 1. For S and V with (X) = (=), a lens £ € Lens SV is <-well-
behaved iff it is well-behaved. O

Kripke Logical Relation. The key step to prove the correctness of HOBiT
Core is to prove that Lo[E] is always =<-well-behaved if F is an evaluation result
of a well-typed expression e. The basic idea is to prove this by logical relation
that expression e of type Bo under the context A is evaluated to F, assuming
termination, such that £o[E] is a <-well-behaved lens between [A] and [o].
Usually a logical relation is defined only by induction on the type. In our
case, as we need to consider A in the interpretation of Bo, the relation should
be indexed by A too. However, naive indexing does not work due to substitutions.

HOBIT: Programming Lenses Without Using Lens Combinators 47

For example, we could define a (unary) relation E4(Bo) as a set of expressions
that evaluate to “good” (i.e., <-well-behaved) lenses between (the semantics of)
A and o, and Ea(Bo — Br) as a set of expressions that evaluate to “good”
functions that map good lenses between A and o to those between A and 7.
This naive relation, however, does not respect substitution, which can substitute
a value obtained from an expression typed under A to a variable typed under
A’ such that A C A’, where A and A’ need not be the same. With the naive
definition, good functions at A need not be good functions at A’, as a good lens
between A’ and o is not always a good lens between A and o.

To remedy the situation, inspired by the denotation semantics in [24], we use
Kripke logical relations [18] where worlds are As.

Definition 2. We define the set Ea[A] of expressions, the set R A[A] of residual
expressions, the set [o] of values and the set [A] of value environments as below.
Ea[A] ={e|VE.e Ju E implies E € Ra[A]}
Ra[Bool] = {True, False}
RA[[A]] = List Ra[A]
Ra[Bo] = {E | YA". A C A’ implies Ly[E] € Lens="" [A'] [o]}
Ra[A — B] ={F |VA". A C A’ implies (VE € Ra/[A]. F E € Ea/[B])}
[Bool] = {True, False}
[le]] = List [o]
[A] = {u | dom(p) € dom(A) and Vz € dom(u).u(z) € [A(z)]}

Here, for a set S, List S is inductively defined as: [| € List S, and s : ¢t € List S
for all s € S and t € List S. O

The notable difference from ordinary logical relations is the definition of

RAa[A — B] where we consider an arbitrary A’ such that A C A’. This is the

key to state Ra[A] C Ra/[4] if A C A’. Notice that [o] = Ra[o] for any A.
We have the following lemmas.

Lemma 1. IfA C A, v € Ra[A] impliesv € Ra[A]. O
Lemma 2. © € Ra[Bo] for any A such that A(z) = o. O
Lemma 3. For any o and A, True, False € RA[BBool] and [] € Ra[Blo]]. O
Lemma 4. If E; € Ra[Bo] and Ex € Ra[B[o]], then E1 : Es € Ra[Blo]]. O

Lemma 5. Let o and T be pure types and A a pure type environment. Suppose
that e; € Eawn,[[7] for Ai b pi i o (i =1,2), and that Ey € Ra[Bo], Ef, Ey €
Ralr — Bool] and EY,EY € Ralo — 1 — o]. Then, case Ey of {p; —
e; with E} by E}'}i—12 € Ra[B7].

48 K. Matsuda and M. Wang

Proof (Sketch). The proof itself is straightforward by case analysis. The key prop-
erty is that get and put use the same branches in both proofs of <-Acceptability
and =<-Consistency. Slight care is required for unidirectional evaluations of e;
and ey, and applications of E1, B}, EY and EY. However, the semantics is care-
fully designed so that in the proof of =<-Acceptability, unidirectional evalua-
tions that happen in put have already happened in the evaluation of get, and a
similar discussion applies to <-Consistency. O

As a remark, recall that we assumed a-renaming of p; so that the disjoint unions
(W) in Fig. 6 succeed. This renaming depends on the us received in get and put
evaluations, and can be realised by using de Bruijn levels.

Lemma 6 (Fundamental Lemma). For I'; AF e: A, for any A" with A C A’
and E, € Ra [I'(2)], we have e[E, /x|, € Ea[A].

Proof (Sketch). We prove the lemma by induction on typing derivation. For
bidirectional constructs, we just apply the above lemmas appropriately. The
other parts are rather routine. a

Now we are ready to state the correctness of our construction of lenses.

Corollary 1. Ife;et-e: Bo — B, then e x € £f,.51[B7]. O

Lemma 7. Ife € £,.,}[BT], L[e] (if defined) is in Lens="" [o] [7] (and thus
well-behaved by Theorem 1). O

Theorem 2. Ife;e e : Bo — BT, then L[e] € Lens [o] [7] (if defined) is well-
behaved. O

5 Extensions

Before presenting a larger example, we discuss a few extensions of HOBiT Core
which facilitate programming.

5.1 In-Language Lens Definition

In HOBIT programming, it is still sometimes useful to allow manually defined
primitive lenses (i.e., lenses constructed from independently specified get/put
functions), for backwards compatibility and also for programs with relatively
simple computation logic but complicated backwards behaviours. This feature
is supported by the construct appLens e; es e3 in HOBIT. For example, we
can write incB x = appLens (As.s+1) (A_.Av.v — 1) x to define a bidirectional
increment function incB:: BInt — BlInt. Note that for simplicity we require the

HOBIT: Programming Lenses Without Using Lens Combinators 49

additional expression x (represented by es in the general case) to convert between
normal functions and lenses. The typing rule for appLens e; e; e3 is as below.

I''Avre:0—717 I'’Abes:0—717—0 [;AFe3:Bo
I'; A+ appLens e e e3 : BT

Accordingly, we add the following unidirectional evaluation rule.

€; ‘UU El (Z: 172a3)
appLens e; e; e3 ||y appLens E; Fs E3

Also, we add the following get/put evaluation rules for appLens.

,uF(;Egév FEivluu wha Es=v EQ’UuIl}UU/ ,ul—pvl<:E3—|u’
1 bg appLens Ey Fs B3 = u uhtpu < appLens Ey Es E3 -1/

Notice that appLens e e5 e3 is “good” if e3 is so, i.e., appLens e; e e3 €
EA[BT] if e3 € EA[Bo], provided that the get/put pair (e1, eq) is well-behaved.

5.2 Lens Combinators as Language Constructs

In this paper, we have focused on the case construct, which is inspired by the
cond combinator [7]. Although cond is certainly an important lens combina-
tor, it is not the only one worth considering. Actually, we can obtain language
constructs from a number of lens combinators including those that take care
of alignment [2]. For the sake of demonstration, we outline the derivation of a
simpler example comb € Lens [o] [r] — Lens [o] [7']. As the construction
depends solely on types, we purposely leave the combinator abstract.

A naive way of lifting combinators can already be found in [21,23]. For exam-
ple, for comb, we might prepare the construct comb, ., with the following typing
rule (where ¢ is the empty environment):

g;etbe:Bo—Br I';Ake€ :Br
I's Ak comb, 4 ee : BT’

Notice that in this version e is required to be closed so that we can turn the
function directly into a lens by £]—], and the evaluation of comb, .4 can then be
based on standard lens composition: Lo[comb,,4 E E'] = comb L[E] é Lo[E']
(we omit the straightforward concrete evaluation rules), where E and E’ is the
unidirectional evaluation results of e and e’ (notice that a residual expression is
also an expression), and & is the lens composition combinator [7] defined by:

(6) € Lens BC — Lens AB — Lens AC
get (b2 6l1)a = get by (get £y a)
put (b2 641) a ¢’ = put {1 a (put L2 (get {1 a))

The combinator preserves =<-well-behavedness, and thus comb, , guarantees
correctness. However, as discussed extensively in the case of case, this “closed-
ness” requirements prevents flexible use of variables and creates a major obstacle
in programming.

50 K. Matsuda and M. Wang

So instead of the plain comb, we shall assume a parameterised version
pcomb € Lens (T x [o]) [r] — Lens (T x [o']) [7'] that allows each source
to have an extra component 7', which is expected to be kept track of by the
combinator without modification. Here T' is assumed to have a partial merging
operator (Y) € T — T — T and a minimum element, and pcomb may use these
facts in its definition. By using pcomb, we can give a corresponding language
construct comb with a binder, typed as follows.

I'Az:obe:Br I'’tAke€ :Bo’
I'; AF comb (z.e) ¢ : BT/

We give its unidirectional evaluation rule as

€ *UU E ¢ U’U E’
comb (z.e) ¢’ |y comb E FE’

We omit the get/put evaluation rules, which are straightforwardly obtained from
the following equation.

Lo[comb E E'] = pcomb (unEnv, Lo[E]) 6 (idL, Lo[E'])

where unEnv, € Lens ([AW{x : o}]) [7] — Lens ([4] x [o]) [7] and {(—, —) €
Lens [A] A — Lens [A] B — Lens [A] (A x B) are lens combinators defined
for any A as:

get (unEnvy £) (p,v) = get £ (p W {x =v})
put (unEnv, €) (p,v) u = (g, v)
where ¢/ W{z =0} = (put £ (pW{x =v})v)<{z =v}

get ((1,02) p = (get €1 p, get L2 pu)
put (l1,02) p (a,b) = put by pa Y put lo u'b

Both combinators preserve =-well-behavedness, where we assume the
component-wise ordering on pairs. No “closedness” requirement is imposed on
e in this version. From the construct, we can construct a higher-order function
AfAz.comb (x.f z) z : (Bo — Br) — Bo’ — B7’. That is, in HOBIT, lens
combinators are just higher-order functions, as long as they permit the above-
mentioned parameterisation. This observation means that we are able to system-
atically derive language constructs from lens combinators; as a matter of fact,
the semantics of case is derived from a variant of the cond combinator [7].

Even better, the parametrised pcomb can be systematically constructed from
the definition of comb. For comb, it is typical that get (comb £) only uses get ¢,
and put (comb £) uses put ¢; that is, comb essentially consists of two functions
of types ([o] — [7]) — ([o'] — []) and ([o] — [7] — [o]) — (o] — ['] —
[¢']). Then, we can obtain pcomb of the above type merely by “monad”ifying the
two functions: using the reader monad 7" — — for the former and the composition
of the reader and writer monads T'— (—,T') backwards for the latter suffice to
construct pcomb.

HOBIT: Programming Lenses Without Using Lens Combinators 51

A remaining issue is to ensure that pcomb preserves =<-well-behavedness,
which ensures comb (z.¢) ¢ € Ea[B7] under the assumptions e €
EAwiz:0}[BT] and €' € Ea[Bo’]. Currently, such a proof has to be done manu-
ally, even though comb preserves well-behavedness and pcomb is systematically
constructed. Whether we can lift the correctness proof for comb to pcomb in a
systematic way will be an interesting future exploration.

5.3 Guards

Guards used for branching are merely syntactic sugar in ordinary unidirectional
languages such as Haskell. But interestingly, they actually increase the expressive
power of HOBIT, by enabling inspection of updatable values without making the
inspection functions bidirectional.

For example, Gliick and Kawabe’s reversible equivalence check [10] can be
implemented in HOBIT as follows.

eqCheck :: Bo — Bo — B(Either (0,0) o)
eqCheck x y = case (z,y) of

(«',y') |2’ ==vy" — Righta’ with isRight by (A_.A(Right z).(z, z))
(«',y") | otherwise — Left (2',y") with isLeft by (A_.\(Left (z,y)).(z,y))

Here, (—, —) is the bidirectional version of the pair constructor. The exit con-
dition isRight checks whether a value is headed by the constructor Right, and
isLeft by Left. Notice that the backwards transformation of eqCheck fails when
the updated view is Left (v, v) for some v.

5.4 Syntax Sugar for Reconciliation Functions

In the general form, reconciliation functions take in two arguments for the com-
putation of the new source. But as we have seen, very often the arguments are
not used in the definition and therefore redundant. This observation motivates
the following syntax sugar.

p — e with ¢’ default {z; =¢;...;2, =€
Here, z1,...,x, are the free variables in p. This syntax sugar is translated as:
p — e with ' by A_A_plef/x1,... e, /x,]

Furthermore, it is also possible to automatically derive some default values
from their types. This idea can be effectively implemented if we extend HOBiT
with type classes.

52 K. Matsuda and M. Wang

5.5 Inference of Exit Conditions

It is possible to infer exit conditions from their surrounding contexts; an idea
that has been studied in the literature of invertible programming [11,20], and
may benefit from range analysis.

Our prototype implementation adopts a very simple inference that constructs
an exit condition A\z.case x of {p. — True; _ — False} for each branch, where p,
is the skeleton of the branch body e, constructed by replacing bidirectional con-
structors with the unidirectional counterparts, and non-constructor expressions
with _. For example, from a : appendB x’ y, we obtain the pattern _ : _. This
embarrassingly simple inference has proven to be handy for developing larger
HOBIT programs as we will see in Sect. 6.

6 An Involved Example: Desugaring

In this section, we demonstrate the programmability of HOBiT using the exam-
ple of bidirectional desugaring [26]. Desugaring is a standard process for most
programming languages, and making it bidirectional allows information in desug-
ared form to be propagated back to the surface programs. It is argued convinc-
ingly in [26] that such bidirectional propagation (coined resugaring) is effective
in mapping reduction sequences of desugared programs into those of the surface
programs.

Let us consider a small programming language that consists of let, if,
Boolean constants, and predefined operators.

data E = ElLet E E | EVar Int | EIf E E E | ETrue | EFalse | EOp Name [E]
type Name = String

Variables are represented as de Bruijn indices.
Some operators in this language are syntactic sugar. For example, we may
want to desugar

EOp "not" [e] as Elf e EFalse ETrue.

Also, eq | | e5 can be transformed to let x = ey in if x then x else ey, which in
our mini-language is the following.

EOp "or" [e1, €3] as ELet e; (EIf (EVar 0) (EVar 0) (shift 0 e3)

Here, shift n is the standard shifting operator for de Brujin indexed-term that
increments the variables that have indices greater than n (these variables are
“free” in the given expression). We will program a bidirectional version of the
above desugaring process in Figs.7 and 8, with the particular goal of keeping
the result of a backward execution as close as possible to the original sugared
form (so that it is not merely a “decompilation” in the sense that the original
source has to be consulted).

HOBIT: Programming Lenses Without Using Lens Combinators 53

composB :: (BE — BE) - BE — BE recE:E—E—FE
composB f x = case x of recE e (EIf — __) = EIf ETrueee
Elf e1 ex e3 — EIf (fe1) (fe2) (fes) by recE recEl e (ELet — _) = ELet e (shift 0 e)
ElLet e; e2 — ELet (f e1) (f e2) by recE recE e (EOpn_) =toOpne
EVar n — EVarn by recE recE e e’ =e'
ETrue — ETrue toOp :: Name - E — E
EFalse — EFalse toOp n e =
EOpnes — EOpn (mapB ETrue f es) by reck let k = fromJust (lookup n arities)
mapB :: a — (Ba — Bb) — Bla] — B[b] in EOp (replicate k e)
mapB def z = case z of
b =0

a:x —>?aimapB def « default {a = def;z =[]}

Fig. 7. composB: a useful building block

shiftB :: Int - BE — BE
shiftB n e = case e of

ELet e; €2 — Elet (shiftB n e1) (shiftB (n+1) e2) default {e; = ETrue; e2 = EFalse}
EVarm | m <n — EVarm with varLT n default m =0

EVar m | m > n — EVar (incB m) with varGT n default m =n+1

e’ — composB (shiftB n) ¢’ with nonLetVar by recE

desugarB :: BE — BE
desugarB e = case e of
EOp "or" [e1, e2] — ELet (desugarB e1) (EIf (EVar 0) (EVar 0) (desugarB (shiftB 0 e2)))
by (As.A_.toOp "or" s)
EOp "not" [¢] — EIf e EFalse ETrue by (As.A_.toOp "not" s)

e’ — composB desugarB ¢’ by recE
varLT n (EVarm) =m <n nonLetVar (ELet _ _) = False
varLT n _ = False nonLetVar (EVar _) = False
varGT n (EVarm) =m >n nonLetVar e = True
varGT n _ = False

Fig. 8. desugarB: bidirectional desugring

We start with an auxiliary function compos [4] in Fig.7, which is a use-
ful building block for defining shifting and desugaring. We have omitted the
straightforward exit conditions; they will be inferred as explained in Sect.5.5.
The function mapB is the bidirectional map. The reconciliation function recE
tries to preserves as much source structure as possible by reusing the origi-
nal source e. Here, arities:: [(Name, Int)] maps operator names to their ari-
ties (i.e. arities = [("or",2),("not",1)]). The function shift is the standard
uni-directional shifting function. We omit its definition as it is similar to the
bidirectional version in Fig. 8. Note that default is syntactic sugar for reconcili-
ation function introduced in Sect.5.4. Here, incB is the bidirectional increment
function defined in Sect.5.1. Thanks to composB, we only need to define the
interesting parts in the definitions of shiftB and desugarB. The reconciliation

54 K. Matsuda and M. Wang

functions recFE and toOp try to keep as much source information as possible,
which enables the behaviour that the backwards execution produces “not” and
“or” in the sugared form only if the original expression has the sugar.

Consider a sugared expression EOp "or" [EOp "not" [ETrue],EOp "not"
[EFalse]] as a source source.

HOBiT> :get desugarB source
ELet (EIf ETrue EFalse ETrue) (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)
{- let x = (if True then False else True)

in if then z else (if False then False else True) -}

The following updated views may be obtained by reductions from the view.

{- view; = let z = False in if z then z else (if False then False else True) -}
view; = ELet EFalse (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)

{- viewy = if False then False else (if False then False else True) -}
views = EIf EFalse EFalse (EIf EFalse EFalse ETrue)

{- views = if False then False else True -}
views = EIf EFalse EFalse ETrue

The following are the corresponding backward transformation results.

HOBiT> :put desugarB source view:
EOp "or" [EFalse, EOp "not" [EFalse]]
HOBiT> :put desugarB source views
Elf EFalse EFalse (EOp "not" [EFalse]
HOBiT> :put desugarB source views
EOp "not" [False]

As the AST structure of the view is changed, all of the three cases require branch-
switching in the backwards executions; our program handles it with ease. For
views, the top-level expression Elf EFalse EFalse ... does not have a corresponding
sugared form. Our program keeps the top level unchanged, and proceeds to the
subexpression with correct resugaring, a behaviour enabled by the appropriate
use of reconciliation function (the first line of recE for this particular case) in
composB.

If we were to present the above results as the evaluation steps in the surface
language, one may argue that the second result above does not correspond to
a valid evaluation step in the surface language. In [26], AST nodes introduced
in desugaring are marked with the information of the original sugared syntax,
and resugaring results containing the marked nodes will be skipped, as they do
not correspond to any reduction step in the surface language. The marking also
makes the backwards behaviour more predictable and stable for drastic changes
on the view, as the desugaring becomes injective with this change. This technique
is orthogonal to our exploration here, and may be combined with our approach.

HOBIT: Programming Lenses Without Using Lens Combinators 55

7 Related Work

Controlling Backwards Behaviour. In addition to put € S — V — S, many lens
languages [3] supply a create € V' — S (which is in essence a right-inverse of
get) to be used when the original source data is unavailable. This happens when
new data is inserted in the view, which does not have any corresponding source
for put to execute, or when branch-switching happens but with no reconciliation
function available. Being a right-inverse, create does not fail (assuming it ter-
minates), but since it is not guided by the original source, the results are more
arbitrary. We do not include create in HOBiT, as it complicates the system
without offering obvious benefits. Our branch-switching facilities are perfectly
capable of handling missing source data via reconciliation functions.

Using exit conditions in branching constructs for backwards evaluation can
be found in a number of related fields: bidirectional transformation [7], reversible
computation [34] and program inversion [11,20]. Our design of case is inspired by
the cond combinator in the lens framework [7] and the if-statement in Janus [34].
A similar combinator is Case in BiGUL [16], where a branch has a function
performing a similar role as an exit condition, but taking the original source in
addition. This difference makes Case more expressive than cond; for example,
Case can implement matching lenses [2]. Our design of case follows cond for its
relative simplicity, but the same underlying technique can be applied to Case
as mentioned in Sect. 5.2. In the context of bidirectionalization [19,29,30] there
is the idea of “Plug-ins” [31] that are similar to reconciliation functions in the
sense that source values can be adapted to direct backwards execution.

Applicative Lenses. The applicative lens framework [21,23] provides a way to use
A-abstraction and function application as in normal functional programming to
compose lenses. Note that this use of “applicative” refers to the classical applica-
tive (functional) programming style, and is not directly related to Applicative
functor in Haskell. In this sense, it shares a similar goal to us. But crucially, applica-
tive lens lacks HOBIT’s ability to allow A-bound variables to be used freely, and as
a result suffers from the same limitation of lens languages. There are also a couple
of technical differences between applicative lens and our work: applicative lens is
based on Yoneda embedding while ours is based on separating I" and A and hav-
ing three semantics (Sect. 4); and applicative lens is implemented as an embedded
DSL, while HOBIT is given as a standalone language. Embedded implementation
of HOBIT is possible, but a type-correct embedding would expose the handling of
environment A to programmers, which is undesirable.

Lenses and Their Extensions. As mentioned in Sect. 1, the most common way
to construct lenses is by using combinators [3,7,8], in which lenses are treated
as opaque objects and composed by using lens combinators. Our goal in this
paper is to enhance the programmability of lens programming, while keeping its
expressive power as possible. In HOBiT, primitive lenses can be represented as
functions on B-typed values (Sect.5.1), and lens combinators satisfying certain
conditions can be represented as language construct with binders (Sect.5.2),
which is at least enough to express the original lenses in [7].

56 K. Matsuda and M. Wang

Among extensions of the lens language [2,3,7-9,16,17,27,32], there exists a
few that extend the classical lens model [7], namely quotient lenses [8], symmetric
lenses [14], and edit-based lenses [15]. A natural question to ask is whether our
development, which is based on the classical lenses, can be extended to them.
The answer depends on treatment of value environments p in get and put. In
our semantics, we assume a non-linear system as we can use the same variable
in g any number of times. This requires us to extend the classical lens to allow
merging (Y) and defaulting (<) operations in put with <-well-behavedness, but
makes the syntax and type system of HOBIT simple, and HOBIT free from
the design issues of linear programming languages [25]. Such extension of lenses
would be applicable to some kinds of lens models, including quotient lenses and
symmetric lenses, but its applicability is not clear in general. Also, we want to
mention that allowing duplications in bidirectional transformation is still open,
as it essentially entails multiple views and the synchronization among them.

8 Conclusion

We have designed HOBIT, a higher-order bidirectional programming language in
which lenses are represented as functions and lens combinators are represented
as language constructs with binders. The main advantage of HOBIT is that users
can program in a style similar to conventional functional programming, while still
enjoying the benefits of lenses (i.e., the expressive power and well-behavedness
guarantee). This has allowed us to program realistic examples with relative ease.
HOBIT for the first time introduces a truly “functional” way of construct-
ing bidirectional programs, which opens up a new area of future explorations.
Particularly, we have just started to look at programming techniques in HOBiT.
Moreover, given the resemblance of HOBIiT code to that in conventional lan-
guages, the application of existing programming tools becomes plausible.

Acknowledgements. We thank Shin-ya Katsumata, Makoto Hamana and Kazuyuki
Asada for their helpful comments on the category theory and denotational semantics,
from which our formal discussions originate. The work was partially supported by JSPS
KAKENHI Grant Numbers 24700020, 15K15966, and 15H02681.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557-575 (1981). https://doi.org/10.1145/319628.319634

2. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: Hudak, P., Weirich, S. (eds.) ICFP, pp.
193-204. ACM (2010). https://doi.org/10.1145/1863543.1863572

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Necula, G.C., Wadler, P. (eds.) POPL, pp.
407-419. ACM (2008). https://doi.org/10.1145/1328438.1328487

4. Bringert, B., Ranta, A.: A pattern for almost compositional functions. J. Funct.
Program. 18(5-6), 567-598 (2008). https://doi.org/10.1017/S0956796808006898

https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1017/S0956796808006898

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

HOBIT: Programming Lenses Without Using Lens Combinators 57

Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555-604 (2001). https://doi.org/10.1145/382780.382785

Fegaras, L.: Propagating updates through XML views using lineage tracing. In:
Li, F., Moro, M.M., Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey, M.J.,
Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal, U., Tsotras, V.J. (eds.)
ICDE, pp. 309-320. IEEE (2010). https://doi.org/10.1109/ICDE.2010.5447896
Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3) (2007). https://doi.org/10.1145/
1232420.1232424

Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: Hook, J., Thie-
mann, P. (eds.) ICFP, pp. 383-396. ACM (2008). https://doi.org/10.1145/1411204.
1411257

Foster, N., Matsuda, K., Voigtlander, J.: Three complementary approaches to bidi-
rectional programming. In: Gibbons, J. (ed.) Generic and Indexed Programming.
LNCS, vol. 7470, pp. 1-46. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32202-0-1

Gliick, R., Kawabe, M.: A program inverter for a functional language with equality
and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246-264.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40018-9_17
Gliick, R., Kawabe, M.: Revisiting an automatic program inverter for lisp. SIG-
PLAN Not. 40(5), 8-17 (2005). https://doi.org/10.1145/1071221.1071222
Hegner, S.J.: Foundations of canonical update support for closed database views.
In: Abiteboul, S., Kanellakis, P.C. (eds.) ICDT 1990. LNCS, vol. 470, pp. 422-436.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53507-1_93

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 205-216. ACM
(2010). https://doi.org/10.1145/1863543.1863573

Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Ball, T., Sagiv, M.
(eds.) POPL, pp. 371-384. ACM (2011). https://doi.org/10.1145/1926385.1926428
Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
POPL, pp. 495-508. ACM (2012). https://doi.org/10.1145/2103656.2103715

Hu, Z., Ko, H.S.: Principles and practice of bidirectional programming in BiGUL.
Oxford Summer School on Bidirectional Transformations (2017). https://bitbucket.
org/prl_tokyo/bigul/raw/master/SSBX16/tutorial.pdf. Accessed 18 Oct 2017

Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: Heintze, N., Sestoft, P. (eds.)
PEPM, pp. 178-189. ACM (2004). https://doi.org/10.1145/1014007.1014025
Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245-257. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037110

Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
Hinze, R., Ramsey, N. (eds.) ICFP, pp. 47-58. ACM (2007). https://doi.org/10.
1145/1291151.1291162

Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A grammar-based approach to invert-
ible programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 448-467.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_24
Matsuda, K., Wang, M.: Applicative bidirectional programming: mixing lenses and
semantic bidirectionalization. J. Funct. Program. Accepted 14 Feb 2018

https://doi.org/10.1145/382780.382785
https://doi.org/10.1109/ICDE.2010.5447896
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-540-40018-9_17
https://doi.org/10.1145/1071221.1071222
https://doi.org/10.1007/3-540-53507-1_93
https://doi.org/10.1145/1863543.1863573
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/2103656.2103715
https://bitbucket.org/prl_tokyo/bigul/raw/master/SSBX16/tutorial.pdf
https://bitbucket.org/prl_tokyo/bigul/raw/master/SSBX16/tutorial.pdf
https://doi.org/10.1145/1014007.1014025
https://doi.org/10.1007/BFb0037110
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1007/978-3-642-11957-6_24

58

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

K. Matsuda and M. Wang

Matsuda, K., Wang, M.: “Bidirectionalization for free” for monomorphic transfor-
mations. Sci. Comput. Program. 111(1), 79-109 (2014). https://doi.org/10.1016/
j-scico.2014.07.008

Matsuda, K., Wang, M.: Applicative bidirectional programming with lenses. In:
Fisher, K., Reppy, J.H. (eds.) ICFP, pp. 62-74. ACM (2015). https://doi.org/10.
1145/2784731.2784750

Moggi, E.: Functor categories and two-level languages. In: Nivat, M. (ed.) FoSSaCS
1998. LNCS, vol. 1378, pp. 211-225. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053552

Morris, J.G.: The best of both worlds: linear functional programming without
compromise. In: Garrigue, J., Keller, G., Sumii, E. (eds.) ICFP, pp. 448-461. ACM
(2016). https://doi.org/10.1145/2951913.2951925

Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences through
syntactic sugar. In: O’Boyle, M.F.P., Pingali, K. (eds.) PLDI, pp. 361-371. ACM
(2014). https://doi.org/10.1145/2594291.2594319

Rajkumar, R., Foster, N., Lindley, S., Cheney, J.: Lenses for web data. ECEASST
57 (2013). https://doi.org/10.14279/tuj.eceasst.57.879

Stevens, P.: A landscape of bidirectional model transformations. In: Ladmmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408-424. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3_10

Voigtlander, J.: Bidirectionalization for free! (pearl). In: Shao, Z., Pierce, B.C.
(eds.) POPL, pp. 165-176. ACM (2009). https://doi.org/10.1145/1480881.1480904
Voigtléander, J., Hu, Z., Matsuda, K., Wang, M.: Combining syntactic and semantic
bidirectionalization. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 181-192. ACM
(2010). https://doi.org/10.1145/1863543.1863571

Voigtlander, J., Hu, Z., Matsuda, K., Wang, M.: Enhancing semantic bidirection-
alization via shape bidirectionalizer plug-ins. J. Funct. Program. 23(5), 515-551
(2013). https://doi.org/10.1017/S0956796813000130

Wang, M., Gibbons, J., Matsuda, K., Hu, Z.: Refactoring pattern matching. Sci.
Comput. Program. 78(11), 2216-2242 (2013). https://doi.org/10.1016/j.scico.2012.
07.014

Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Stirewalt, R.E.K., Egyed,
A., Fischer, B. (eds.) ASE, pp. 164-173. ACM (2007). https://doi.org/10.1145/
1321631.1321657

Yokoyama, T., Axelsen, H.B., Gliick, R.: Principles of a reversible programming
language. In: Ramirez, A., Bilardi, G., Gschwind, M. (eds.) CF, pp. 43-54. ACM
(2008). https://doi.org/10.1145/1366230.1366239

Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., Montrieux, L.: Maintaining invariant
traceability through bidirectional transformations. In: Glinz, M., Murphy, G.C.,
Pezze, M. (eds.) ICSE, pp. 540-550. IEEE (2012). https://doi.org/10.1109/ICSE.
2012.6227162

https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1007/BFb0053552
https://doi.org/10.1007/BFb0053552
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.14279/tuj.eceasst.57.879
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1863543.1863571
https://doi.org/10.1017/S0956796813000130
https://doi.org/10.1016/j.scico.2012.07.014
https://doi.org/10.1016/j.scico.2012.07.014
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1109/ICSE.2012.6227162
https://doi.org/10.1109/ICSE.2012.6227162

HOBIT: Programming Lenses Without Using Lens Combinators 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Dualizing Generalized Algebraic Data
Types by Matrix Transposition

Klaus Ostermann®) and Julian Jabs

University of Tiibingen, Tiibingen, Germany
{klaus.ostermann, julian. jabs}@uni-tuebingen.de

Abstract. We characterize the relation between generalized algebraic
datatypes (GADTSs) with pattern matching on their constructors one
hand, and generalized algebraic co-datatypes (GAcoDTs) with copattern
matching on their destructors on the other hand: GADTSs can be con-
verted mechanically to GAcoDTs by refunctionalization, GAcoDTs can
be converted mechanically to GADTs by defunctionalization, and both
defunctionalization and refunctionalization correspond to a transposition
of the matrix in which the equations for each constructor/destructor pair
of the (co-)datatype are organized. We have defined a calculus, GADTT,
which unifies GADTs and GAcoDTs in such a way that GADTs and
GAcoDTs are merely different ways to partition the program.

We have formalized the type system and operational semantics of
GADT7T in the Coq proof assistant and have mechanically verified the
following results: (1) The type system of GADTT is sound, (2) defunc-
tionalization and refunctionalization can translate GADTs to GAcoDTs
and back, (3) both transformations are type- and semantics-preserving
and are inverses of each other, (4) (co-)datatypes can be represented by
matrices in such a way the aforementioned transformations correspond
to matrix transposition, (5) GADTs are extensible in an exactly dual way
to GAcoDTs; we thereby clarify folklore knowledge about the “expres-
sion problem”.

We believe that the identification of this relationship can guide future
language design of “dual features” for data and codata.

1 Introduction

The duality between data and codata, between construction and destruction,
between smallest and largest fixed points, is a long-standing topic in the PL
community. While some languages, such as Haskell, do not distinguish explicitly
between data and codata, there has been a “growing consensus” [1] that the two
should not be mixed up. Many ideas that are well-known from the data world
have counterparts in the codata world. One work that is particularly relevant
for this paper are copatterns, also proposed by Abel et al. [1]. Using copatterns,
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-89884-1_3) contains supplementary material, which is
available to authorized users.
© The Author(s) 2018

A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 60-85, 2018.
https://doi.org/10.1007/978-3-319-89884-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_3&domain=pdf
https://doi.org/10.1007/978-3-319-89884-1_3
https://doi.org/10.1007/978-3-319-89884-1_3

Dualizing Generalized Algebraic Data Types by Matrix Transposition 61

the language support for codata is very symmetrical to that for data: Data
types are defined in terms of constructors, functions consuming data are defined
using pattern matching on constructors; codata types are defined in terms of
destructors, functions producing codata are defined using copattern matching
on destructors.

Another example of designing dual features for codata is the recently pro-
posed codata version of inductive data types [36]. However, coming up with these
counterparts requires ingenuity. The overarching goal of this work is to replace
the required ingenuity by a mechanical derivation. A key idea towards this goal
has been proposed by Rendel et al. [31], namely to relate the data and codata
worlds by refunctionalization [16] and defunctionalization [17,32].

Defunctionalization is a global program transformation to transform higher-
order programs into first-order programs. By defunctionalizing a program,
higher-order function types are replaced by sum types with one variant per func-
tion that exists in the program. For instance, if a program contains two functions
of type Nat — Nat, then these functions are represented by a sum type with
two variants, one for each function, whereby the type components of each variant
store the content of the free variables that show up in the function definition.
Defunctionalized function calls become calls to a special first-order apply func-
tion which pattern-matches on the aforementioned sum type to dispatch the call
to the right function body.

Refunctionalization is the inverse transformation, but traditionally it only
works (easily) on programs that are in the image of defunctionalization [16]. In
particular, it is not clear how to refunctionalize programs when there is more
than one function (like apply) that pattern-matches on the same data type.
Rendel et al. [31] have shown that this problem goes away when functions are
generalized to arbitrary codata (with functions being the special codata type
with only one apply destructor), because then every pattern-matching function
in a program to be refunctionalized can be expressed as another destructor.

The main goal of this work is to extend the de- and refunctionalization corre-
spondence between data and codata to generalized algebraic datatypes (GADTSs)
[8,40] and their codata counterpart, which we call Generalized Algebraic Codata
types (GAcoDTs). More concretely, this paper makes the following contributions.

— We present the syntax, operational semantics, and type system of a language,
GADTT, that can express both GADTs and GAcoDTs. In this language,
GADTs and GAcoDTs are unified in such a way that they are merely two
different representations of an abstract “matrix” interface.

— We show that the type system is sound by proving progress and preservation
[39].

— We formally define defunctionalization and refunctionalization, observe that
they correspond to matrix transposition, and prove that GADTs and
GAcoDTs are indistinguishable after hiding them behind the aforementioned
matrix interface. We conclude that defunctionalization and refunctionalization
preserve both operational semantics and typing.

62 K. Ostermann and J. Jabs

— We prove that both GADTs and GAcoDTs can be extended in a modular way
(with separate type checking) by “adding rows” to the corresponding matrix.
Due to their matrix transposition relation, this means that the extensibil-
ity is exactly dual, which clarifies earlier informal results on the “expression
problem” [11,33,37].

— The language and all results have been formalized and mechanically verified
in the Coq proof assistant. The Coq sources are available in the supplemental
material that accompanies this submission.

— As a small side contribution, if one considers only the GADT part of the
language, this is to the best of our knowledge the first mechanically verified
formalization of GADTs. It is also simpler than previous formalizations of
GADTs because it is explicitly typed and hence avoids the complications of
type inference.

The remainder of this paper is structured as follows. In Sect.2 we give
an informal overview of our main contributions by means of an example and
using conventional concrete syntax. In Sect. 3 we present the syntax, operational
semantics, and type system of GADT?. Section4 presents the aforementioned
mechanically verified properties of GADTT. In Sect. 5, we discuss applications
and limitations of GADTT, talk about termination/productivity and directions
for future work, and describe how we formalized GADT™ in Coq. Finally, Sect. 6
discusses related work and Sect. 7 concludes.

2 Informal Overview

Figure1 illustrates the language design of GADTT in terms of an example.
The left-hand side shows an example using GADTs and functions that pattern-
match on GADT constructors. The right-hand side shows the same example
using GAcoDTs and functions that copattern-match on GAcoDT destructors.
The right-hand side is the refunctionalization of the left hand side; the left-hand
side is the defunctionalization of the right-hand side.

Simply-Typed (Co)Datatypes. Let us first look at the Nat (co)datatype. Every
data or codata type has an arity: The number of type arguments it receives. Since
GADTT does only feature types of kind *, we simply state the number of type
arguments in the (co)data type declaration. Nat receives zero type arguments,
hence Nat illustrates the simply-typed setting with no type parameters. Func-
tions in GADTT, like add on the left-hand side, are first-order only; higher-order
functions can be encoded as codata instead. Functions always (co)pattern-match
on their first argument. (Co)pattern matching on multiple argument as well as
nested and deep (co)pattern matching are not supported directly and must be
encoded via auxiliary functions. We see that the refunctionalized version of Nat
on the right-hand side turns constructors into functions, functions into destruc-
tors, and pattern matching into copattern matching. Abel et al. [1] use “dot
notation” for copattern matching and destructor application; for instance, they

Dualizing Generalized Algebraic Data Types by Matrix Transposition

data Nat[0] where
zero(): Nat
succ(Nat) : Nat

function add(Nat,Nat): Nat where
add(zero(), x) = x
add(succ(y),x) = succ(add(y,x))

data List[1] where
nil[A](): List[A]
cons[A] (A, List[A]): List[A]

function length[A] (List[A]): Nat w..
length[_J(nil[_]) =0
length[B] (cons[_](x,xs)) =
succ(length[B] (xs))

function sum(List[Nat]): Nat
sum(nil[_]) = 0
sum(cons[_](x,xs)) = x + sum(xs)

data Tree[1] where
node(Nat): Tree[Nat]
branch[A] (List [Tree[A]l])
: Tree[List[A]]

function unwrap(Tree[Nat]): Nat w..
unwrap(node(n)) = n
unwrap (branch[_] (xs)) = impossible

function width[A] (Tree[A]): Nat w..
width[_] (node(n)) = 0
width[_] (branch[C] (xs)) =
length[C] (xs)

codata Nat[0] where
add(Nat,Nat) : Nat

function zero(): Nat where
add(zero(),x) = x

function succ(Nat): Nat where
add(succ(y),x) = succ(add(y,x))

codata List[1] where
length[A] (List[A]): Nat
sum(List [Nat]): Nat

function nil[A] (): List[A] where
length[_1(nil[_]) = 0
sum(nil[_]) = 0

63

function cons[A] (A, List[A]): List[A] w..

length[B] (cons[_](x,xs)) =
succ(length[B] (xs))
sum(cons[_] (x,xs)) = x + sum(xs)

codata Tree[1] where
unwrap(Tree[Nat]) : Nat
width[A] (Tree[A]): Nat

function node(Nat): Tree[Nat] where
unwrap(node(n)) = n
width[_] (node(n)) = 0

function branch[A] (List[Tree[A]])

: Tree [List[A]] where
unwrap (branch[_] (xs)) = impossible
width[_] (branch[C] (xs)) =
length[C] (xs)

Fig. 1. The same example in the data fragment (left) and codata fragment (right)

List[1]

nil[A]1 (): List[A]

cons[A] (A, List[A]): List[A]

length[A] (List[A]): Nat|length[_](nil[_]) = 0

length[B] (cons[_](x,xs)) =
succ(length[B] (xs))

sum(List[Nat]): Nat

sum(nil[_]) =

0 sum(cons[_] (x,x8)) = x + sum(xs)

Fig. 2. Matrix representation of List GADT from Fig. 1 (left)

List[1]

length[A] (List[A]): Nat

sum(List [Nat]): Nat

nil[A](): List[A]

length[_](nil[_]) = 0

sum(nill[_]) = 0

cons[A] (A, List[A]): List[A]

length[B] (cons[_] (x,xs)) =
succ(length[B] (xs))

x + sum(xs)

sum(cons[_] (x,x8)) =

Fig. 3. Matrix representation of List GAcoDT from Fig.1 (right). This matrix is the

transposition of Fig. 2

64 K. Ostermann and J. Jabs

would write succ(y) .add(x) = succ(y.add(x)) instead of add(succ(y),x) =
succ(add(y,x)) on the right-hand side of Fig. 1. We use the same syntax for
constructor calls, function calls, and destructor calls because then the equations
are not affected by de- and refunctionalization.

Parametric (Co)Datatypes. The List datatype illustrates the classical special
case of GADTs with no indexing. Type arguments of constructors, functions, and
destructors are both declared and passed via rectangular brackets [...] (loosely
like in Scala). Like System F, GADTT has no type inference; all type annotations
and type applications must be given explicitly. GADTT has a redundant way of
binding type parameters. When defining an equation of a polymorphic function
with a polymorphic first argument, we use square brackets to bind both the
type parameters of the function and of the constructor/destructor on which we
(co)pattern-match. For instance, in the equation length[B] (cons[.] (x,xs)) =

. on the left hand side, B is the type parameter of the length function,
whereas the underscore (which we use if the type argument is not relevant,
we could replace it by a proper type variable name) binds the type argument
of the constructor with which the list was created. In this example, we could
have also written the equation as length[.] (cons[B] (x,xs)) = ... because
both type parameters must necessarily be the same, but in the general case we
need access to both sets of type variables (as the next example will illustrate).
It is important that we do not (co)pattern-match on type arguments, since this
would destroy parametricity; rather, the [...] notation on the left hand side of
an equation is only a binding construct for type variables.

Codatatypes also serve as a generalization of first-class functions. The code
below shows how a definition of a general function type together with a spe-
cific family of first-class function addn (that can be passed as an argument and
returned as a result), defined by a codata generator function with return type
Function[Nat,Nat].

codata Function[2] where
apply[A,B] (Function[A,B], A): B

function addn(Nat): Function[Nat,Nat] where
apply(addn(n) ,m) = add(n,m)

Type Parameter Binding. Of those two sets of type parameter bindings, the one
for functions is in a way always redundant because we could use the type variable
declaration inside the function declaration instead. For instance, in the equation
length[B] (cons[.] (x,xs)) = succ(length[B] (xs)) on the left hand side we
could use the type parameter A of the enclosing function declaration instead.
However, in GADTT the scope of the type variables in the function declaration
does not extend to the equations and the type arguments must be bound anew
in every equation. The reason for that is that we want to design the equations
in such a way that they do not need to be touched when de/refunctionalizing
a (co)datatype. For instance, when refunctionalizing a datatype, a function

Dualizing Generalized Algebraic Data Types by Matrix Transposition 65

declaration is turned into a destructor declaration and what used to be a type
argument that was bound in the enclosing function declaration becomes a type
argument that is bound in a remote destructor declaration; to make type-
checking modular we hence need a local binding construct. Our main goal in
designing GADTT was not to make it convenient for programmers but to make
the relation between GADTs and GAcoDTs as simple as possible; furthermore,
a less verbose surface syntax could easily be added on top.

If we look at the corresponding List codatatype on the right-hand side,
we see that the sum function from the left-hand side, which accepts only a list
of numbers, turns into a destructor that is only applicable to those instances
of List whose type parameter is Nat. This is similar to methods in object-
oriented programming whose availability depends on type parameters [28], but
here we see that this feature arises “mechanically” by the de/refunctionalization
correspondence.

GA(co)DTs. The Tree (co)datatype illustrates a usage of GA(co)DTs that can-
not be expressed with traditional parametric data types. We can see that by
looking at the return type of the constructors of the Tree datatype; they are
Tree[Nat] and Tree[List[A]] instead of Tree[A]. The Tree codatatype is also
using the power of GAcoDTs in the unwrap destructor! because its first argu-
ment is different from Tree [A]. The GADT constructor node (Nat) : Tree[Nat]
turns into a function that returns a Tree [Nat] on the right hand side. The Tree
example illustrates two additional issues that did not show up in the earlier
examples.

First, it illustrates that type unification may make some pattern matches
impossible, as illustrated by the unwrap(branch([_] (xs)) = impossible equa-
tion on the left hand side. The equation is impossible, because the function
argument type Tree[Nat] cannot be unified with the constructor return type
Tree[List[A]].? In GADT™, we require that pattern matching is always com-
plete, but impossible equations are not type-checked; the right-hand side can
hence be filled with any dummy term. Second, the equation width[_] (branch [C]
(xs)) = length[C] (xs) illustrates the case where it is essential that we can
bind constructor type arguments; otherwise we would have no name for the type
argument we need to pass to length. Such type arguments are sometimes called
existential or phantom [8] because if we have a branch of type Tree[A], we only
know that there exists some type that was used in the invocation of the branch
constructor, but that type does not show up in the structure of Tree[A].

We see again how both impossible equations and the need to access construc-
tor type arguments translate naturally into corresponding features in the codata
world. For impossible equations, we need to check whether the first destructor
argument type can be unified with the function return type. Access to existential

! The unwrap destructor is meant to be used to extract the number from a tree that
directly contains a number, i.e., a tree constructed with constructor node.

2 This fits with our intention that unwrap should only work on a node (which directly
contains a number).

66 K. Ostermann and J. Jabs

constructor type arguments turns into access to local function types; conversely,
access to existential destructor type arguments in the codata world turns into
access to local function type arguments.

GADT = GAcoDT". We can see that the relation between GADTs and
GAcoDTs is as promised when looking at Figs. 2 and 3. These two figures show
a slightly different representation of the List (co)datatype and associated func-
tions from Fig. 1. In this presentation, we have dropped all keywords from the
language, such as function, data and codata. The reason for dropping these
keywords is that now function signatures in the data fragment look the same
as destructor signatures in the codata fragment, and constructor signatures in
the data fragment look the same as function signatures in the codata fragment.
Figure 2 organizes the datatype in the form of a matrix: the first row lists the
datatype and its constructor signatures, the first column lists the signatures
of the functions that pattern-match on the datatype, the inner cells represent
the equations for each combination of constructor and function. Figure 3 does
the same for the List codatatype: The first row lists the codatatype and its
destructor signatures, the first column lists the signatures of functions that
copattern-match on the codatatype, the inner cells represent the equations for
each combination of function and destructor. We can now see that the relation
between GADTs and GAcoDTs is now indeed rather simple: It is just matrix
transposition.

An essential property of this transformation is that other (co)datatypes and
functions are completely unaffected by the transformation. For instance, the Tree
datatype (or codatatype, regardless of which version we use) looks the same,
regardless of whether we encode List in data or in codata style. Defunctional-
ization and refunctionalization are still global transformations in that we need
to find all functions that pattern-match on a datatype (for refunctionalization)
or find all functions that copattern-match on a codatatype (for defunctionaliza-
tion), but the rest of the program, including all clients of those (co)datatypes
and functions, remain the same.

Infinite Codata, Termination, Productivity. The semantics of codata is usually
defined via greatest fixed point constructions that include the possibility to rep-
resent “infinite” structures, such as streams. This is not the focus of this work,
but since our examples so far did not feature such “infinite” structures but we
do not want to give the impression that our codata types do somehow lack the
expressiveness to express streams and the like, hence we show here an example
of how to encode a stream of zeros, both in the codata representation (left) and,
defunctionalized, in the data representation (right).

Dualizing Generalized Algebraic Data Types by Matrix Transposition 67

data Stream where

codata Stream where
zeros() : Stream

head(Stream) : Nat

tail(St . St
ail(Stream) ream function head(Stream) : Nat

head =
function zeros() : Stream ead(zeros()) zeroO)

head(zeros()) = zero()

tail(zeros()) = zeros() function tail(Stream) : Stream

tail(zeros()) = zeros()

Codata is also often associated with guarded corecursion to ensure productivity.
In the copattern formulation of codata, productivity and termination coincide
[2]. Due to our unified treatment of data and codata, a single check is sufficient
for both termination/productivity of programs. In Sect.5.3, we discuss a sim-
ple syntactic check that corresponds to both structural recursion and guarded
corecursion.

Properties of GADTT . In the remainder of this paper, we formalize GADT” in
a style similar to the matrix representation of (co)datatypes we have just seen.
We define typing rules and a small-step operational semantics and prove formal
versions of the following informal theorems: (1) The type system of GADTT
is sound (progress and preservation), (2) Defunctionalization and refunctional-
ization (that is, matrix transposition) of (co)datatypes preserves well-typedness
and operational semantics, (3) Both types of matrices are modularly extensible
in one dimension, namely by adding more rows to the matrix. This means that
we can modularly add constructors or destructors and their respective equa-
tions without breaking type soundness as long as the new equations are sound
themselves.

3 Formal Semantics

We have formalized GADT” and all associated theorems and proofs in Coq?>.
Here we present a traditional representation of the formal syntax using context-
free grammars, a small-step operational semantics, and a type system.

We have formalized the language in such a way that we abstract over the
physical representation of matrices as described in the previous section, hence
we do not need to distinguish between GADTs and GAcoDTs. In the following,
we say constructor to denote either a constructor of a datatype, or a function
that copattern-matches on a codatatype. We say destructor to denote either a
function that pattern-matches on a datatype, or a destructor of a codatatype.
The language is defined in terms of constructors and destructors; we will later
see that GADTs and GAcoDTs are merely different organizations of destructors
and constructors.

3.1 Language Design Rationale

Our main goal in the formalization is to clarify the relation between GADTs
and GAcoDTs, and not to design a calculus that is convenient to use as a

3 Full Coq sources are available in the supplemental material.

68 K. Ostermann and J. Jabs

programming language. Hence we have left out many standard features of pro-
gramming calculi that would have made the description of that relation more
complicated. In particular:

— Like System F, GADTT requires explicit type annotations and explicit type
application. Type inference could be added on top of the calculus, but this is
not in the scope of this work.

— (Co)pattern matching is restricted in that every function must necessarily
(co)pattern-match on its first argument, hence (co)pattern-matching on mul-
tiple arguments or “deep” (co)pattern matching must be encoded by aux-
iliary functions. Pattern matching is only supported for top-level function
definitions; there is no “case” or “match” construct. Functions that are not
supposed to (co)pattern-match (like the polymorphic identity function) must
be encoded by a function that (co)pattern-matches on a dummy argument of
type Unit.

— First-class functions are supported in the form of codata, but anonymous
local first-class functions must be encoded via lambda lifting [3,25], that is,
they must be encoded as top-level functions where the bindings for the free
variables are passed as an extra parameter.

— Due to the abstraction over the physical representation of matrices we have
not fixed the physical modular structure (a linearization of the matrix as
text) of programs. Type checking of matrices simply iterates over all cells
in an unspecified order. However, later on we will characterize GADTs and
GAcoDTs as two physical renderings of matrices and formally prove the way
in which those program organizations are extensible.

3.2 Notational Conventions

As usual, we use the same letters for both non-terminal symbols and meta-
variables, e.g., t stands both for the non-terminal in the grammar for terms
but inside inference rules it is a meta-variable that stands for any term. We
use the notation ¢ to denote a list tq,tq, ... L where |¢| is the length of the

list. We also use list notation to denote iteration, e.g., P,I" + ¥ : T means
PI't+ti:Ty,...,P, I+ b T\fl' To keep the notation readable, we write T : T
instead of : T to denote 1 : T4, ..., %y : Th.

We use the notation [z := t] to denote the substitution of all free occurrences
of z in ¢t by ¢, and similarly T[X := T’] and t[X := T"] for the substitution of
type variables in types and terms, respectively.

3.3 Syntax

The syntax of GADTT is defined in Fig. 4. Types have the form m[T)|, where m is
the name of a GADT or GAcoDT (in the following referred to as matriz name),
and square brackets to denote type application. Types can contain type variables
X. In the syntax of terms ¢, 2 denotes parameters that are bound by (co)pattern

matching and y denotes other parameters. A constructor call ¢[T(¢) takes zero or

Dualizing Generalized Algebraic Data Types by Matrix Transposition 69

S, T ==m[T] | X Types
t =z |y | [T)t) | d[T)(t,t) Terms
C == c[X|(T): m[T] Constructor Signature
D = d[X|(m[T),T) : Destructor Signature
e = d[Y](c[X](z),7) =t Equations
M = (a,y€C,6 €D,y —=65—e) Matrices
P = mrpn M Programs
m € Matrix names
d € Destructor names
c € Constructor names
T € Pattern Variable Names
Y € Variable Names
X,Y € Type Variables
a € N Arities
’ Operational Semantics : P+t — ¢/
u,v == c[T](v) Values
E = T|w,[,t) | d[T)(",[,t) Evaluation Context
Pttt
SRS (E-C1X)
P+ E[t] = E[t']
m — (a,C, D, lookup) € P
DeD D=d[..](m[...],...)
cecC C=cl.](...)
_low(CD V@D =ty
PHd[S|(c[T](v),n) = t[X :=85,Y :=T][x :=7,7 := 1l

Fig. 4. Syntax and operational semantics of GADT™

more arguments, whereas a destructor call d[T|(t,) takes at least one argument
(namely the one to be destructed). Both destructors and constructors can have
type parameters, which must be passed via square brackets.

A constructor signature