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Abstract

Cellular plasticity is modulated by protein posttranslational modifications, which act 
on most intracellular pathways. Ubiquitination is a versatile posttranslational modifi-
cation (PTM) that influences protein fate, controlling their degradation or modulating 
their activity and subcellular localization. The ubiquitin proteasome system, UPS, and 
the autophagic pathway are the main degradative intracellular machineries, which rely 
on ubiquitination for their activation and/or the selective recycling of proteins and organ-
elles. Recent findings indicate that the cross talk between UPS and autophagy plays a 
key role in controlling DNA repair pathways. Even being a cytoplasmic process, it is 
now clear that autophagy can directly impact on the correct activation of DNA repair. 
Of note, defects on autophagy are related to the impairment of homologous recombina-
tion repair and to an increase of the nonhomologous end joining repair activity. These 
evidences give new insights into the molecular processes underlying the DNA damage 
response and provide further explanation for the tumorigenesis associated with autoph-
agy impairment. Moreover, these findings introduce new examples of synthetic lethality 
between autophagy and DNA repair genes and lead to the possible development of tar-
get therapies for tumors with defective autophagy.

Keywords: autophagy, DNA repair, ubiquitination, ubiquitin proteasome system, p62

1. Introduction

In eukaryotic cells, protein homeostasis is essential to maintain cell survival and it occurs 
through two major pathways: the ubiquitin-proteasome system (UPS) and autophagy. The 
UPS is responsible for degradation of both cytosolic and nuclear short-lived or damaged pro-

teins, and it is involved in the removal of 80–90% of cellular proteins. It regulates several 
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processes, including maintenance of cellular quality control, transcription, cell cycle progres-

sion, DNA repair, receptor-mediated endocytosis, cell stress response, and apoptosis [1]. By 
contrast, autophagy mediates the degradation of long-lived proteins, entire organelles (e.g., 
mitochondria and peroxisomes), or pathogens and aggregates via the lysosome. On the one 
hand, autophagy is related to cell growth, survival, and development; on the other hand, it is 
involved in cell death and it has been implicated in human pathologies such as cancer, neuro-

degeneration, myopathies, and heart and liver diseases [2].

The ubiquitin-proteasome system and autophagy were long viewed as independent and par-

allel processes. However, it becomes increasingly clear that the UPS and autophagy crosstalk 
to each other [3]. The need for energetic homeostasis and protein balance requires that both 
these degradation systems are tightly controlled and coordinated during a cell life. In particu-

lar, the balance of cellular homeostasis needs to be carefully regulated and this is made pos-

sible by protein posttranslational modifications (PTMs) such as phosphorylation, acetylation, 
methylation, and ubiquitination [4–6]. PTMs, indeed, due to their reversible or irreversible 
nature, provide the necessary flexibility in order to adapt the cells rapidly to different envi-
ronmental stress.

Accumulating evidence indicates that ubiquitination regulates autophagy through at least 
two mechanisms [7]. One is controlling the stability of upstream autophagy-related (ATG) 
genes. In this context, many E3 ligase and deubiquitinase (DUBS) enzymes have been iden-

tified as crucial for autophagy induction, maturation, or termination [8–14]. The other one 
facilitates the recruitment of ubiquitinated substrates to the autophagy machinery [15]. In this 
case, ubiquitination plays an essential role in determining the selectivity of autophagy cargos.

There are different interfaces between autophagy and UPS. First, ubiquitin or ubiquitin-like 
proteins are common degradative tags; ubiquitin, indeed, is a very small molecule that can 
be attached to the substrate by several ways, generating a broad repertoire of signals. These 
degradative tags are then recognized by specific adaptor proteins, such as p62/sequestosome 1 
(SQSTM1) or neighbor of BRCA1 gene 1 (NBR1), that are molecules capable of directing ubiq-

uitinated target proteins to both systems [15]. They act through specific domains, such as the 
ubiquitin-associated domain (UBA) or the ubiquitin-binding domain (UBD), able to specifically 
recognize the substrate for mediating its degradation. The other point in common is the partici-
pation of these mechanisms to general cellular programs, such as the ER stress response [16] 

or the atrophy program [17]. Moreover, recent studies have revealed that autophagy and UPS 
participate together also in DNA damage response (DDR) [18, 19]. DDR is an essential mecha-

nism to maintain genome integrity; similar to protein homeostasis, maintenance of genomic 
integrity is essential for an organism’s survival. Although these mechanisms occur in spatially 
distinct cellular compartments, evidence has been accumulated about a strict cross talk among 
autophagy, ubiquitination, and DNA repair. When a DNA lesion occurs, chromatin undergoes 
a relaxed conformation through a series of histone PTMs, recruitment of DDR sensors, and 
additional proteins to further regulate DNA replication, cell cycle, repair, and cell survival 
versus cell death. In this context, a key role is played by p62 that has been recently found to be 
able to shuttle between cytoplasm and nucleus, where it is able to inhibit homologous recombi-
nation (HR) or the recruitment of DNA-binding factors [20–22]. In this chapter, we provide an 
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overview of the current knowledge about the coordination among autophagy, ubiquitination, 
and DNA repair pathways, and its importance to maintain cell homeostasis and survival.

2. Cross talk between autophagy and UPS

UPS and autophagy are two crucial mechanisms that are involved in cellular catabolism in 
normal physiology and development, but also in human pathologies such as cancer, neuro-
degeneration, and aging. By these processes, cells are able to recycle proteins, aggregates, or 
entire organelles to obtain energy. Although these pathways differ for specificity, kinetics, 
and substrates, it is increasingly clear that they are cooperative and complementary to ensure 
cellular homeostasis and survival.

2.1. Autophagy: an overview of its main actors and functions

Autophagy is a catabolic process occurring in all eukaryotic cells to maintain cellular via-
bility and homeostasis in basal conditions, by controlling long-lived proteins and damaged 
organelles. However, autophagy can also be stimulated in response to sublethal stresses, 
such as nutrient or growth factor deprivation, hypoxia, reactive oxygen species (ROS), or 
viral and pathogen invasion to maintain cell survival [23]. During autophagy, cells undergo 
rapid changes to adapt their metabolism and protect themselves against potential damages. 
Depending on the delivery route of cytoplasmic material to the lysosomal lumen, three dif-
ferent forms of autophagy are known: microautophagy, chaperone-mediated autophagy, 
and macroautophagy. In microautophagy, portions of cytosol are instantly engulfed by the 
lysosomal membrane. In chaperone-mediated autophagy, proteins characterized by a spe-
cific sequence signal are recognized by lysosomal receptors and then degraded by lysosomal 
proteases. During macroautophagy (hereafter, more simply, autophagy), cytoplasmic mate-
rial (e.g., proteins, lipids, and organelles) is sequestered by a cup-shaped membrane (called 
isolation membrane or phagophore), which expands while becoming spherical to urn into a 
double-membraned vesicle, termed autophagosome; this slides along cytoskeletal structures 
and fuses with lysosomes, thus forming a single vesicle called the autophagolysosome, in 
which both autophagosome membrane and contents are degraded by lytic enzymes [24].

Taking advantages from yeast genetics, more than 35 ATG genes have been identified and 
characterized, with most of them being well-conserved from yeast to mammals [25]. The 
autophagy process is divided into mechanistically distinct steps, including induction, 
autophagosome formation, and autophagosome-lysosome fusion, followed by the release of 
the degradation products back into the cytosol. Different sets of ATG proteins are involved in 
these steps and constitute the core autophagic machinery.

Indeed, the core pathway of mammalian autophagy involves at least five molecular com-

plexes including (1) the ULK1 complex, (2) the BECLIN 1/class III PI3K complex, (3) two 
transmembrane proteins: ATG9 and VMP1, (4) two ubiquitin-like protein (ATG12 and LC3) 
conjugation systems, and (5) proteins that mediate the formation of autophagolysosomes [24].
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The activation of this molecular machinery is extremely complicated and it involves multiple 
signaling inputs. According to current knowledge, the most important sensor of cellular stress 
is mammalian target of rapamycin complex 1 (mTORC1). This serine-threonine kinase shuts 
off autophagy in cells growing in the presence of nutrients and growth factors; in basal condi-
tions, mTORC1 negatively regulates the ULK1 complex, the early most important structural 
complex of the core autophagic machinery.

As a consequence of the autophagy role on cellular homeostasis, increasing evidence reveal 
that alteration in autophagy occurs in many human diseases, such as neurodegenera-

tions, myopathies, infectious disease, aging, and cancer, contributing to their pathogenesis. 
Autophagy results to be deregulated in many neurodegenerative diseases, causing the accu-

mulation of aggregates of mutated toxic proteins [26]. Autophagy has also been identified as 
a crucial process in oncogenesis and cancer progression [27, 28]. Many autophagy-related 
proteins are considered tumor suppressor genes and are mutated in cancer (Beclin 1, ATG5, 
Bif-1, ATG4C, and UVRAG), leading to an accumulation of DNA damage and genome insta-

bility [28]. Finally, the activity and recruitment of ATG proteins are important also for antigen 
presentation, innate immune signaling, and pathogen degradation.

2.2. UPS

Ubiquitin proteasome system (UPS) is the major pathway responsible for the degradation of 
cytosolic short-lived proteins and of proteins residing in the nucleus and the endoplasmic 
reticulum (ER) [29]. The tagging molecule is ubiquitin, a small protein of 76 amino acids that 
is covalently linked to thousands of different proteins by a bond between the glycine at the 
C-terminal end of ubiquitin and the side chains of lysine on proteins. The earmarked proteins 
are then degraded by the 26S proteasome, a highly conserved multicatalytic ATP-dependent 
protease complex. Conjugation of ubiquitin to a substrate is mediated by the action of three 
ubiquitin-activating enzymes called E1, E2, and E3. E1 binds ubiquitin and transfers it to the 
active site of E2; finally E3 enzyme transfers the ubiquitin molecule directly to the substrate. 
Regarding the selection of the substrates, many strategies could exist; in some cases, the E3 
enzyme recognizes and binds a signal in the protein sequence [30].

In the human genome, 2 E1s, 50 E2s, and 600 E3s have been identified [31]. The classification 
of ubiquitin ligases is based on their biochemical and structural features. The best known 
domain subclasses include HECT (homologous to E6-associated protein carboxy-terminus), 
RING-fingers (RING, really interesting new gene), and U-box domains (a modified RING 
motif without the full complement of Zn2 + −binding ligands).

Ubiquitination is a reversible, specific, and adaptable PTM, similar to phosphorylation; by 
means of seven lysine residues in ubiquitin (at positions 6, 11, 27, 29, 33, 48, and 63) that act as 
acceptors of other ubiquitin molecules, this PTM is considered very versatile.

2.3. Connections between autophagy and UPS

The different molecular machinery characterizing UPS and autophagy is just one of the dif-
ferences between these two processes; they are also responsible for the disposal of different  
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substrates. The proteasome is responsible for degradation of short-life proteins, while 
those with long-life, organelles and aggregates, are autophagic substrates. At variance with 
UPS, autophagy is restricted to the cytoplasm; moreover, the two processes differ in the 
time window in which they act, since autophagy is considered slower than UPS (Figure 1). 
However, several recent lines of evidence have suggested that UPS and autophagy are 
functionally connected [32]. Indeed, the need for energetic homeostasis and protein bal-
ance requires that both degradation systems are tightly controlled and coordinated during 
a cell life.

The first unifying factor linking UPS and autophagy is ubiquitin. Although autophagy was 
considered originally a nonspecific process, it has recently emerged as a selective mech-
anism that specifically removes damaged organelles, such as mitochondria, or defective 
proteins. This specificity may be accounted for by special proteins called autophagy recep-
tors and adaptors that are able to recognize and bind the ubiquitinated proteins listed for 
degradation by the autophagy machinery. They include p62/SQSTM1, neighbor of BRCA1 
gene 1(NBR1), histone deacetylase 6 (HDAC6), the BH3-only family protein BNIP3L/Nix, 
the ubiquitin receptor nuclear dot protein 52kd (Ndp52), and optineurin [15]. These recep-
tors recognize ubiquitin chains (including Lys-63-poly Ub and others) through their UBA 
domain on one side and directly bind LC3 or other ATG8 proteins via their LC3-interacting 
region (LIR). This allows the incorporation of autophagy substrates into the autophago-
some. Among them, p62 has been extensively studied. P62 molecules are distributed not 
only in the cytosol but also in the nucleus, as well as they localize with autophagosomes 
and lysosomes. Besides its role in macroautophagy and selective autophagy (such as 
mitophagy) that has been fully investigated, there are several evidence that p62 is the main 
actor in mediating the cross talk between autophagy and UPS. First, the proteasome is 
inhibited in autophagy-deficient cells due to accumulation of p62; second, pharmacological 
inhibition of the proteasome also increases p62 expression [33]; third, p62 silencing attenu-
ates the accumulation of proteasome substrates [34]. One explanation is that accumula-
tion of p62 sequesters ubiquitinated proteins that aggregate and become inaccessible to the 
proteasome.

Intriguingly, p62/SQSTM1 is also known as an inhibitor of proteasomal degradation of 
LC3 [35]. In linking proteasomal degradation and autophagy, an important role is also 
played by HDAC6, the enzyme that regulates the acetylation of γ-tubulin and facilitates 
the transport of polyubiquitinated protein aggregates to the nascent phagophore [36]. 
HDAC6 has been shown to be involved in both aggresome formation and the fusion of 
autophagosomes with lysosomes, thus making it an attractive target to regulate protein 
aggregation.

A second important link is that ubiquitination can affect stability and function of ATG pro-
teins and their upstream regulators. Many ubiquitin E3 ligases have been demonstrated to 
regulate autophagy: for instance, RNF5, which directly modulates the stability of ATG4B, or 
TRAF6, Nedd4 or NEDD4L, which mediate ubiquitination of Beclin 1 and ULK1, respectively 
[8]. Intriguingly, a catalytic activity–independent role for ubiquitin ligases such as TRIM13 
and c-Cbl in autophagy is emerging by regulating the recruitment of autophagy adaptors like 
LC3 and p62 [37].
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3. Autophagy and DNA repair

Genome integrity is preserved by an evolutionary conserved machinery named DNA dam-

age response (DDR). Upon DNA damage, molecular key players of DNA repair pathways 
induce arrest of cell cycle progression and enhance activation of DNA repair pathways [38]. 
Programmed cell death mechanisms are then activated if the DNA lesions are not repaired 
and, so far, defects in DNA repair and death processes are considered the major source of 

Figure 1. Overview of autophagy and the ubiquitin proteasome system (UPS). Autophagy and UPS are the main 
intracellular recycling processes. While autophagy degrades long-lived proteins, protein aggregates, and whole 
organelles (e.g. mitochondria), UPS is involved in degrading short-lived proteins. Proteins and organelles that need to be 
degraded are labeled by ubiquitin. Ubiquitin chains can be recognized by adapters, such as p62, that mediate the binding 
of the target with the proteasome (UPS) or with the protein LC3II (autophagy). Autophagy begins with the formation of 
the phagophore that embeds the material to be recycled and maturates into the autophagosome. The autolysosome is 
then formed through fusion with the lysosome, and hydrolases are responsible for the content degradation.
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genomic instability and malignant transformation [39]. Although autophagy is a cytoplas-
mic process, autophagy-deficient cells display genomic instability and accumulation of DNA 
damage [28]. To date, a range of mechanisms have been found to be involved in linking 
autophagy and DNA repair, this opening important questions that need to be addressed.

3.1. DNA damage response (DDR): an overview

The DDR is comprehensively a set of intracellular pathways and specialized molecules that 
are activated in response to different types of damage to facilitate repair and prevent cell 
transformation and death. This process has been widely investigated and well-reviewed else-
where [40–43]. We here provide only a brief overview of its function and components that is 
relevant to understand the cross talk between DNA repair pathways and autophagy.

DNA damage can be caused by several exogenous (e.g. ultraviolet light or ionizing radia-
tion) or endogenous agents (e.g. reactive oxygen species (ROS)). The most common types 
of lesion can be single-strand breaks (SSBs), double-strand breaks (DSBs), and interstrand 
cross-links (ICLs). Sensing DNA damage results in the initiation of some programs, includ-
ing cell cycle arrest, checkpoint activation, and DNA damage repair [38–43]. When a DNA 
lesion occurs, histones undergo PTMs, such as phosphorylation and acetylation, that lead to 
chromatin relaxation. This provides access to DDR sensors that bind DNA lesions. Initially, 
DSBs are bound by the Mre11 complex (MRN), including Mre11/Rad50-Nbs1, that recruits 
the ataxia telangiectasia mutated protein kinase ATM [44]. ATM activation is then induced 
by a series of PTMs that trigger the recruitment of additional proteins, including checkpoint 
kinase 2 (Chk2), involved in cell cycle control, the tumor suppressor protein p53 that controls 
cell survival, and HDAC1 and HDAC2 that regulate chromatin remodeling to further orches-
trate and amplify the DSB response. In the case of DSBs, the ATM-DNAPK pathway induces 
phosphorylation of the histone variant γ-H2AX that flanks DBS sites.

SSBs, instead, favor the activation of ataxia telangiectasia and Rad3-related (ATR) kinase that 
is recruited by the replication protein A (RPA) complex [45]. ATR activity is, in turn, amplified 
by the recruitment of several factors, leading to the spread of SSB signal.

There are five main DNA repair mechanisms: mismatch repair (MMR), base excision repair 
(BER), nucleotide excision repair (NER), nonhomologous end joining (NHEJ), and homolo-
gous recombination (HR). MMR, BER, and NER are used for different types of base-associated 
lesions that require a single strand incision. NHEJ and HR repair mechanisms are involved 
in DSB repair [38, 39].

DNA repair is carried out by a large number of enzymes that chemically modify DNA to 
repair the damage, including nucleases, helicases, polymerases, topoisomerases, recombi-
nases, ligases, glycosylases, demethylases, kinases, and phosphatases. PTMs of these proteins 
by ubiquitin and ubiquitin-like modifiers (UBLs) are essential in regulating the enzymes that 
reestablish genome integrity after damage.

Mutations and dysfunctions in genes involved in DNA repair pathways have been impli-
cated in many human diseases, such as neurological and immunological defects, aging, and 
cancer [38]. In the nervous system, indeed, neurons exhibit high oxygen consumption by 

The Cross Talk among Autophagy, Ubiquitination, and DNA Repair: An Overview
http://dx.doi.org/10.5772/intechopen.71404

109



mitochondrial respiration, which can result in oxidative stress and subsequent DNA dam-

age; given that neurons display limited capacity of replacement, DNA repair pathways play 
an essential role to maintain their homeostasis [39]. Deficiency in multiple DNA repair path-
ways, including NER, BER, and DSB repair, has been linked to premature aging. Finally, the 
maintenance of genomic integrity by DNA repair pathways is critical to prevent tumorigen-
esis, as indicated by the cancer predisposition of several DDR syndromes [46].

3.2. Connections between autophagy and DNA repair

The first evidence that linked autophagy to DNA damage came out to understand why 
defects in autophagy rendered cells susceptible to metabolic stress promoting tumorigenesis. 
In 2007, Mathew and colleagues reported for the first time that autophagy could function to 
protect the genome [28]. Knockdown of autophagy genes such as ATG5 and Beclin 1 results in 
gene amplification, chromosomal instability, and aneuploidy, facilitating tumor progression. 
In detail, in autophagy-deficient cells, they found an increase in the levels of γ-H2AX and 
other DNA damage responses, suggesting that constitutive and stress-induced autophagy 
is important to prevent DNA damage and maintain the integrity of the genome [28, 47–51].

Interestingly, it has been reported that in murine embryonic fibroblasts (MEFs), knockout for 
the 200 kDa FAK-family interacting protein (FIP200), there is a significant decrease in DNA 
damage repair in response to ionizing radiation as well as to chemotherapeutic agents [52]. 
FIP200 is a component of the ULK1 complex and is essential for activation of autophagy. In 
this study, at variance with its potential tumor suppression function, inactivation of FIP200 
and subsequent deficiency in autophagy sensitize cells to apoptosis-inducing agents probably 
due to the defective DNA damage repair.

From then onwards, several studies have demonstrated that autophagy participates, directly 
or indirectly, in DNA repair pathways. Indeed, it is now accepted that autophagy, in particu-
lar mitophagy—the selective removal of damaged mitochondria, can prevent genomic insta-
bility by removing ROS-producing mitochondria, since ROS are one of the major sources of 
DNA damage as they could directly modify the DNA or indirectly generate different lesions, 
both affecting cell viability [53]. Moreover, autophagy is also necessary for providing energy 
and metabolites required for an efficient DNA repair. In fact, many evidence show that, by 
sustaining the energy demand required to support DNA repair processes, autophagy can 
help the development of chemoresistance mechanisms in cancer cells, delaying apoptotic cell 
death upon DNA damage [54, 55]. Besides that, it is now clear that autophagy can be activated 
by DNA damage at multiple levels. The use of the DNA-damaging agents such as camptoth-
ecin, etoposide and temozolomide, p-anilioaniline, and ionizing radiation (IR), in addition to 
initiate cell cycle arrest, also initiates autophagy [54, 56, 57].

As described above, ATM is a central regulator of the DDR response. In response to DNA 
damage, the transcription factor FOXO3a binds ATM, thus leading to its activation and pro-
moting repair. Both ATM and FOXO3a have been linked to autophagy. ATM induces the 
activation of the energy sensor AMP-activated protein kinase (AMPK), leading to autophagy 
progression [58, 59]. On the one hand, AMPK interacts with the main negative regulator of 
autophagy, the mTORC1 complex via a pathway involving tuberous sclerosis complex 1 and 
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2 (TSC1/2); on the other hand, AMPK directly phosphorylates one of the key protein kinases 
that initiate autophagy, ULK1 [60, 61]. ATM also mediates the activation of Che-1, a RNA 
polymerase II-binding protein that regulates the transcription of two mTOR inhibitors: Redd1 
and Deptor [62]. Otherwise, FOXO3a controls the transcription of autophagy-related genes, 
such as LC3 and Bnip3 [63–65]. Another DDR protein involved in autophagy is poly[ADP-
ribose] polymerase 1 (PARP1). After a DNA lesion, PARP1 synthesizes poly(ADP-ribose) 
chains that recruit the DNA damage repair proteins. Recently, it has been demonstrated that 
hyperactivated PARP1 causes a depletion of ATP that leads to AMPK activation and, conse-
quently, to autophagy induction [66].

A crucial regulator of DNA repair pathways is the tumor suppressor protein p53. P53 has a 
dual role in autophagy [67, 68]: on one hand, p53 together with other members of its family 
(p63 and p73) regulates transcriptionally autophagy-related proteins; on the other hand, p53 
acts directly on AMPK signaling.

Moreover, HDAC proteins represent a significant link between autophagy and DNA repair 
pathways. HDACs are histone deacetylases that influence DNA damage response through 
acetylation of key DNA repair and checkpoint proteins. Robert and colleagues found that 
HDACs control chromosome stability by coordinating the ATR checkpoint and DSB process-
ing with autophagy [36]. In particular, HDAC inhibition triggers degradation of the recombi-
nation protein SAE1 (in human CtIP) by promoting autophagy that affects the DNA damage 
sensitivity of HDAC mutants.

Recent studies have suggested that another family of proteins called sirtuins could play an 
important role in autophagy and DNA repair pathways. Sirtuins are protein deacetylases 
dependent on NAD+ that are involved in autophagosome formation by deacetylating ATG5, 
ATG7, and ATG8. In DNA repair pathways, sirtuins regulate transcriptional activity of p53, 
thus affecting cell cycle and cell death under DNA damage conditions [69].

Recently, an interesting connection between DNA repair signaling and mitophagy has also 
been provided. As mentioned above, damaged mitochondria may produce elevated levels 
of ROS, thus inducing DNA damage. In addition, blockage of mitophagy can result in the 
accumulation of dysfunctional mitochondria, damaged mtDNA, and an increased rate of 
apoptotic cell death. Feng and colleagues found that in ataxia telangiectasia patients, charac-
terized by ATM dysfunctions, the defect in the nuclear DNA damage repair leads to defective 
mitophagy [70]. This occurs through the impairment of Sirtuin1 activity that, in turn, affects 
the expression of the mitochondrial uncoupling protein 2 (UCP2), responsible for the import, 
cleavage, and removal of PINK1, a key molecule in mitophagy induction.

Intriguingly, new evidence suggests a direct role for autophagy in the function of “error proof” 
HR, NER, or MMR. About the involvement of autophagy in NER regulation, (an adaptable 
DNA repair pathway that corrects helix-distorting base lesions induced by environmental 
carcinogens), it has been found implicated in downregulating the transcription of XPC and 
impairing the recruitment of DDB2 to UV-induced lesion sites through TWIST1-mediated 
inhibition of EP300 [71]. MMR defects also impair autophagy induced by chemotherapeutic 
drugs [72]. Mispairs induced by nucleoside analogs, such as 6-thioguanine (6-TG) and 5-fluo-
rouracil (5-FU), have been reported to induce autophagy in a p53-, mTOR-dependent manner 
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by upregulation of BNIP3. These studies suggest that targeted inhibition of the autophagic 
pathway may enhance the cytotoxicity of those anticancer agents that are recognized and 
processed by the MMR system.

Of note, the protein UVRAG (UV-irradiation-resistance-associated gene) plays a dual role act-
ing both in autophagosome formation and maturation and chromosomal stability [73], inde-
pendently from autophagy. In autophagy, UVRAG is responsible for the activation of PI(3) 
class III (PI(3)KC3) kinase through Beclin 1 interaction. During NHEJ, UVRAG interacts and 
helps the assembly of the upstream protein kinase of the NHEJ pathway, DNA-PK. Moreover, 
UVRAG is found to be associated with centrosomes by its interaction with CEP63. Affecting 
the UVRAG-centrosome interaction destabilizes centrosomes, resulting in extensive aneu-
ploidy. In the same way, Beclin 1 exerts a specific role on the NHEJ pathway [74]. Conversely, 
the genomic instability characterizing autophagy-defective mice models underlines how 
autophagy-deficient cells rely on the error-prone NHEJ repair process.

Of note, one of the most important connections between autophagy and DNA repair path-
ways is highlighted by the mediator of autophagy on UPS, the adaptor protein p62. These 
very recent and fascinating discoveries will be better explained in the next paragraph.

4. Autophagy, ubiquitination, and DNA repair

As previously described, p62 is an autophagic receptor and substrate that selectively targets 
polyubiquitinated proteins for degradation via both proteasome and autophagy. P62 levels are 
impaired in many diseases, such as cancer, proteinopathies, neurodegeneration, obesity, and 
liver diseases [75, 76]. P62 protein levels are strongly induced by different proteotoxic stresses 
such as oxidants, proteasomal inhibitors, or ionophores; many p62 functions are carried out 
by its N-terminal PB1 and C-terminal UBA domains that are necessary for protein-protein 
interactions and for its polymerization. P62 is commonly found in the cytosol, together with 
ubiquitinated proteins or aggregates; however, by now, it is evident that p62 is able to shuttle 
between cytoplasm and nucleus by a specific nuclear export signal (NES) and two nuclear 
localization signals (NLS) [22]. In the nucleus, p62 is found associated to promyelocytic leuke-
mia bodies (PML) that usually contain proteasomes, chaperones, and ubiquitinated proteins 
[77]. Its nucleocytosolic distribution is finely regulated by several mechanisms, including self-
association, phosphorylation, and binding to ubiquitinated proteins. In particular, accumula-
tion of ubiquitinated proteins is able to retain p62, resulting in its accumulation in aggregates 
both in the cytosol and in the nucleus. It has been recently found that nuclear p62 is able to 
associate with markers of DNA repair, providing the first important link among autophagy, 
UPS, and DNA repair [20]. More in detail, Hewitt and colleagues found that after DNA dam-

age (X-ray irradiation), p62 was associated with DNA damage foci (DDF); this association 
decreased after autophagy induction and it was impaired in autophagy-deficient cells, thus 
suggesting a role for p62 in mediating the effect of autophagy on DNA repair. The molecular 
mechanism by which p62 carries out its functions in this context involves the proteasomal 
degradation of two essential DNA repair-related proteins: filamin A (FLNA) and the RAD51 
recombinase. FLNA is known to mediate the recruitment of RAD51 to DSB and facilitate 
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HR. The p62-mediated proteasomal degradation of FLNA results in reducing RAD51 protein 
levels and slower DNA repair. Therefore, autophagy is able to control HR by reducing the 
levels of its substrate p62. Overall, these findings explain how autophagy impairment leads 
to an increase in DNA damage and consequently to genomic instability. This is particularly 
relevant during aging, when nuclear levels and co-localization of p62 with DNA damage foci 
have been reported to increase and when autophagy is gradually impaired, underlining the 
important role of this pathway to age-related diseases.

Novel important mechanistic insights into the connection among autophagy, ubiquitination, 
and DNA damage response have been presented in the same year, and also in those cases, a 
main role was played by p62. Wang and colleagues identified the E3 ligase RNF168 as a novel 
p62-binding protein [21]. RNF168 is an ubiquitin E3 ligase that binds ubiquitinated histones 
H1 and H2A, thus propagating the H2A ubiquitination at sites of DNA damage [78]. RNF168 
catalyzes Ub-K63 chains on Lys13-15 of H2A and H2AX [79–81]. The RNF168 pathway has 
an important function in regulating the DSB repair pathway choice, by promoting the recruit-
ment of the key repair factors for both NHEJ and HR at chromatin areas near DSBs. Wang 
and colleagues discovered that p62 inhibits RNF168 E3 ligase activity, leading to a decrease in 
RNF168-dependent polyubiquitination of histone H2A [21]. It has been reported that the LB 
domain of p62 is responsible for the binding and repression of RNF168. After DNA damage, 
p62 dissociates from RNF168, presumably because p62 is degraded by autophagy. In autoph-

agy-deficient cells, indeed, p62 accumulates at DNA damage sites and impairs chromatin 
ubiquitination. When histone ubiquitination decreases, the recruitment of DNA repair pro-

teins such as BRCA1, RAD51, and RAP80 to sites of DSBs is compromised and consequently 
also the repair of radiation-induced DNA damage.

Besides the direct role of p62 in DNA repair, some key factors of DNA damage response have 
also been found to be degraded by autophagy. The heterochromatin component HP1a is nec-

essary to maintain chromatin in a condensed state, and this hides the RAD51 binding site at 
DSBs. A recent study showed that, after X-ray irradiation, the E2 ligase RAD6 interacts with 
HP1a, leading to its ubiquitination and degradation via autophagy. HP1a autophagy-mediated 
degradation makes chromatin more permissive for the catalysis of HR [82]. In addition, these 
findings are supported by another work showing that RAD6 is important for Parkin-dependent 
mitophagy [83]. Interestingly, checkpoint kinase 1 (Chk1), a regulator of DNA damage repair 
by HR, is another target of autophagy. A recent paper shows that loss of autophagy results in 
decreased levels of total and phospho-Chk1; the authors propose that decreased levels of Chk1, 
in the absence of autophagy, are due to increased proteasomal activity and this, in turn, impairs 
both DNA damage repair by HR (but not NHEJ) and genomic integrity [84]. Another study 
identified Chk1 as a target of chaperone-mediated autophagy (CMA) [85]. Park and colleagues 
found that CMA is upregulated by DNA damage after both irradiation and chemotherapy, 
thus inducing degradation of p-Chk1 [86]. Interestingly, CMA is able to degrade Chk1 only 
after its phosphorylation on Ser345; by contrast, Ser317-phosphorylated Chk1 is the preferred 
substrate of the proteasome. When CMA is defective, Chk1 accumulates in the nucleus and 
leads to destabilization of the MRN complex involved in the initial processing of DSBs prior to 
DNA repair by HR, thus facilitating genomic instability. A schematic representation of the cross 
talk among autophagy, ubiquitination, and DNA repair machinery is reported in Figure 2.
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Figure 2. Model of autophagy in the DNA damage response. Autophagy impairment is directly associated with the 
modulation of different DNA repair pathways and with the formation of DNA double strand breaks. Mitophagy defects 
lead to the accumulation of malfunctioning mitochondria and to the increase of reactive oxygen species (ROS) that 
cause the formation of DNA double strand breaks. Upon DNA damage, different DNA repair pathways are induced, 
depending on the type of DNA lesion and on the phase of cell cycle. It has been demonstrated that impairment on 
autophagy decreases the functionality of homologous recombination (HR). P62 levels increase upon autophagy 
downregulation, thus inducing the proteasome-dependent degradation of CHK1 or Rad51/FLNA proteins. Moreover, 
p62 affects HR repair by directly binding and inhibiting the histone ubiquitin ligase RNF168. On the other hand, 
autophagy-related proteins, such as Beclin 1 and UVRAG, can shuttle into the nucleus and promote the nonhomologous 
end joining pathway of DNA repair.

Recent publications reported that autophagy can also positively regulate NER, acting on the 
levels of NER-specific damage recognition proteins such as XPC, UVRAG, and DDB1/2. As 
previously mentioned, UVRAG is involved in both autophagy and DNA repair. In this work, 
they found that, after irradiation, UVRAG localizes to DNA lesions and associates with DDB1 
to promote assembly and activity of the DDB2-DDB1-Cullin4A-Roc1 ubiquitin ligase com-

plex, thus leading to XPC recruitment and NER [87]. Moreover, impairment of autophagy 
leads to both transcriptional suppression and ubiquitination of XPC, a key process for DNA 
damage recognition [71]. Intriguingly, the DDB1-Cul4 ubiquitin complex is also known to be 
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directly involved in autophagy [11]. In fact, the pro-autophagy protein AMBRA1 is degraded 
by Cullin-4 in a time-dependent manner during autophagy. In nutrient-rich conditions, 
Cullin-4 association limits AMBRA1 abundance. ULK1 activation by nutrient deprivation 
causes a rapid release of AMBRA1 from Cullin-4 and consequent AMBRA1 protein stabiliza-
tion. Several hours later, Cullin-4 reassociates with AMBRA1 and triggers its degradation, 
initiating autophagy termination.

How the mechanism of autophagy termination upon starvation can be applied also to other 
types of stress remains unknown. Recent evidence shows that Cullin-1 is responsible for ter-
mination of autophagy after DNA damage [88]. Cullin-1, via binding its receptor FBXL20, 
mediates the proteasomal degradation of VPS34, a key component of Beclin 1 complex in 
autophagy. Degradation of VPS34 occurs during the mitotic arrest induced by DNA damage 
agents by CDK1-mediated phosphorylation and after transcriptional induction of FBXL20 
and p53.

5. Conclusion and perspectives

Autophagy is a central player in the regulation of DNA repair pathways and it may have 
evolved as a quality control system that responds to many stressful conditions, including 
DNA damage.

In recent years, there have been impressive advances in our understanding of the principles 
and mechanisms by which autophagy cross talks with the DNA damage machinery and how 
integration with PTMs, in particular ubiquitination, allows for optimal context-dependent 
DSB repair. Impairments in autophagy have been linked to increased susceptibility of the cells 
to genotoxic agents, and this could be important in anticancer therapy. However, it should be 
taken into account that this process plays a context-dependent role in cancer development.

Interestingly, defects in DNA damage repair impair autophagy. Contrarily, an impairment of 
autophagy causes the production of protein and free radicals increasing mutation rate, which 
might promote human diseases such as cancer and neurodegeneration. However, the ques-
tion about the exact role of autophagy in DNA repair pathways and its implication for cancer 
therapy is still waiting for a complete answer.
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