We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

9,300 130,000 155M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Design Issues and Challenges of
File Systems for Flash Memories

Stefano Di Carlo!, Michele Fabiano!, Paolo Prinetto! and Maurizio Caramia?

YDepartment of Control and Computer Engineering, Politecnico di Torino
2Command Control and Data Handling, Thales Alenia Space
Italy

1. Introduction

The increasing demand for high-speed storage capability both in consumer electronics (e.g.,
USB flash drives, digital cameras, MP3 players, solid state hard-disks, etc.) and mission critical
applications, makes NAND flash memories a rugged, compact alternative to traditional
mass-storage devices such as magnetic hard-disks.

The NAND flash technology guarantees a non-volatile high-density storage support that
is fast, shock-resistant and very power-economic. At higher capacities, however, flash
storage can be much more costly than magnetic disks, and some flash products are still
in short supply. Furthermore, the continuous downscaling allowed by new technologies
introduces serious issues related to yield, reliability, and endurance of these devices (Cooke,
2007; IEEE Standards Department, 1998; Jae-Duk et al., 2002; Jen-Chieh et al., 2002; Ielmini,
2009; Mincheol et al., 2009; Mohammad et al., 2000). Several design dimensions, including
flash memory technology, architecture, file management, dependability enhancement, power
consumption, weight and physical size, must be considered to allow a widespread use of
flash-based devices in the realization of high-capacity mass-storage systems (Caramia et al.,
2009a).

Among the different issues to consider when designing a flash-based mass-storage system, the
file management represents a challenging problem to address. In fact, flash memories store
and access data in a completely different manner if compared to magnetic disks. This must
be considered at the Operating System (OS) level to grant existing applications an efficient
access to the stored information. Two main approaches are pursuit by OS and flash memory
designers: (i) block-device emulation, and (ii) development of native file systems optimized
to operate with flash-based devices (Chang & Kuo, 2004).

Block-device emulation refers to the development of a hardware/software layer able to emulate
the behavior of a traditional block device such as a hard-disk, allowing the OS to communicate
with the flash using the same primitives exploited to communicate with magnetic-disks. The
main advantage of this approach is the possibility of reusing available file systems (e.g., FAT,
NTFS, ext2) to access the information stored in the flash, allowing maximum compatibility
with minimum intervention on the OS. However, traditional file systems do not take into
account the specific peculiarities of the flash memories, and the emulation layer alone may be
not enough to guarantee maximum performance.

www.intechopen.com

4 Flash Memories

The alternative to the block-device emulation is to exploit the hardware features of the flash
device in the development of a native flash file system. An end-to-end flash-friendly solution
can be more efficient than stacking a file system designed for the characteristics of magnetic
hard-disks on top of a device driver designed to emulate disks using flash memories (Gal
& Toledo, 2005). For efficiency reasons, this approach is becoming the preferred solution
whenever embedded NAND flash memories are massively exploited.

The literature is rich of strategies involving block-device emulation, while, to the best of
our knowledge, a comprehensive comparison of available native file systems is still missing.
This chapter discusses how to properly address the issues of using NAND flash memories as
mass-memory devices from the native file system standpoint. We hope that the ideas and the
solutions proposed in this chapter will be a valuable starting point for designers of NAND
flash-based mass-memory devices.

2. Flash memory issues and challenges

Although flash memories are a very attractive solution for the development of high-end mass
storage devices, the technology employed in their production process introduces several
reliability challenges (IEEE Standards Department, 1998; Jen-Chieh et al., 2002; Mohammad
et al., 2000). Native flash file systems have to address these problems with proper strategies
and methodologies in order to efficiently manage the flash memory device. Fig. 1 shows a
possible partial taxonomy of such strategies that will be discussed in the sequel of this section.

Address
Translation

Wear
Leveling

Flash-memory

Strategies

Garbage
Collection

Bad Block
Management

Fig. 1. A possible taxonomy of the management strategies for flash memories

2.1 Technology

The target memory technology is the first parameter to consider when designing a native flash
file system. The continuous technology downscaling strongly affects the reliability of the flash
memory cells, while the reduction of the distance among cells may lead to several types of cell
interferences (Jae-Duk et al., 2002; Mincheol et al., 2009).

From the technology standpoint, two main families of flash memories do exist: (i) NOR flash
memories and (ii) NAND flash memories. A deep analysis of the technological aspects of
NOR and NAND flash memories is out of the scope of this chapter (the reader may refer to

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 5

(Ielmini, 2009) for additional information). Both technologies use floating-gate transistors to
realize non-volatile storing cells. However, the NAND technology allows denser layout and
greater storage capacity per unit of area. It is therefore the preferred choice when designing
mass-storage systems, and it will be the only technology considered in this chapter.

NAND flash memories can be further classified based on the number of bit per cell the
memory is able to store. Single Level Cell (SLC) memories store a single bit per cell, while
Multiple Level Cell (MLC) memories allow to store multiple bits per memory cell. Fig.
2 shows a comparison between SLC and MLC NAND flash memories (Lee et al., 2009)
considering three main characteristics: capacity, performance and endurance.

Capacity Capacity

///
\

Performance Endurance Performance Endurance
(a) SLC NAND Flash (b) MLC NAND Flash

Fig. 2. Comparison of SLC and MLC flash memories

The MLC technology offers higher capacity compared to the SLC technology at the same
cost in terms of area. However, MLC memories are slightly slower than SLC memories.
MLC memories are more complex, cells are closer, there are multiple voltage references
and highly-dependable analog circuitry is requested (Brewer & Gill, 2008). The result is an
increased bit error rate (BER) that reduces the overall endurance and reliability (Mielke et al.,
2008), thus requiring proper error correction mechanisms at the chip and/or file system level.
Consumer electronic products, that continuously demand for increased storage capacity, are
nowadays mainly based on MLC NAND flash memories, while mission-critical applications
that require high reliability mainly adopt SLC memories (Yuan, 2008).

2.2 Architecture

A native flash file system must be deeply coupled with the hardware architecture of the
underlying flash memory. A NAND flash memory is usually a hierarchical structure
organized into pages, blocks and planes.

A page groups a fixed number of memory cells. It is the smallest storage unit when
performing read and programming operations. Each page includes a data area where actual
data are stored and a spare area. The spare area is typically used for system level management,
although there is no physical difference from the rest of the page. Pages already written with
data must be erased prior to write new values. A typical page size can be 2KB plus 64B
spare, but the actual trend is to increase the page size up to 4KB+128B and to exploit the MLC
technology.

Ablock is a set of pages. It is the smallest unit when performing erase operations. Therefore, a
page can be erased only if its corresponding block is totally erased. A block typically contains
64 pages, with a trend to increase this number to 128 pages per block, or even more. Since flash

www.intechopen.com

6 Flash Memories

memories wear out after a certain number of erasure cycles (endurance), if the erasure cycles
of a block exceed this number, the block cannot be considered anymore reliable for storing
data. A typical value for the endurance of an SLC flash memory is about 10° erasure cycles.
Finally, blocks are grouped into planes. A flash memory with N planes can read/write and
erase N pages/blocks at the same time (Cooke, 2007).

<+ 2,112 Bytes =™+ 2,112 Bytes ™

Data Register { 2048 | 64 2048 | 64 /0 0-7
2,048 blocks
perelene | 77 A1 ek
per dovice
Plar'|e1 Plar'|e2

Fig. 3. A Dual Plane 2KB-Page SLC NAND Flash memory

Fig. 3 shows an example of a 512MB dual plane SLC NAND flash memory architecture
proposed in (Cooke, 2007). Each plane can store 256MB with pages of 2KB+64B. A data
register able to store a full page is provided for each plane, and an 8-bit data bus (i.e.,, I/O
0-7) is used to access stored information.

Several variations of this basic architecture can be produced, with main differences in
performance, timing and available set of commands (Cooke, 2007). To allow interoperability
among different producers, the Open NAND Flash Interface (ONFI) Workgroup is trying to
provide an open specification (ONFI specification) to be used as a reference for future designs
(ONFI, 2010).

2.3 Address translation and boot time

Each page of a flash is identified by both a logical and physical address. Logical addresses
are provided to the user to identify a given data with a single address, regardless if the
actual information is moved to different physical locations to optimize the use of the device.
The address translation mechanism that maps logical addresses to the corresponding physical
addresses must be efficient to generate a minor impact on the performance of the memory. The
address translation information must be stored in the non-volatile memory to guarantee the
integrity of the system. However, since frequent updates are performed, a translation lookup
table is usually stored in a (battery-backed) RAM, while the flash memory stores the metadata
to build this table. The size of the table is a trade-off between the high cost of the RAM and
the performance of the storage system.

Memories with a large page size require less RAM, but they inefficiently handle small writes.
In fact, since an entire page must be written into the flash with every flush, larger pages cause
more unmodified data to be written for every (small) change. Small page sizes efficiently
handles small writes, but the resulting RAM requirements can be unaffordable. At the file
system level, the translation table can be implemented both at the level of pages or blocks
thus allowing to trade-off between the table size and the granularity of the table.

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 7

2.4 Garbage collection

Data stored in a page of a flash memory cannot be overwritten unless an erasure of the full
block is performed. To overcome this problem, when the content of a page must be updated,
the new data are usually saved in a new free page. The new page is marked as valid while
the old page is marked as invalid. The address translation table is then updated to allow the
user to access the new data with the same logical address. This process introduces several
challenges at the file system level.

At a certain point, free space is going to run out. When the amount of free blocks is less than
a given threshold, invalidated pages must be erased in order to free some space. The only
way to erase a page is to erase the whole block it belongs to. However, a block selected for
erasure may contain both valid and invalid pages. As a consequence, the valid pages of the
block must be copied into other free pages. The old pages can be then marked as invalid and
the selected block can be erased and made available for storage.

This cleaning activity is referred to as garbage collection. Garbage collection decreases the flash
memory performance and therefore represents a critical aspect of the design of a native flash
tile system. Moreover, as described in the next subsection, it may impact on the endurance of
the device. The key objective of an efficient garbage collection strategy is to reduce garbage
collection costs and evenly erase all blocks.

2.5 Memory wearing

As previously introduced, flash memories wear out after a certain number of erasure cycles
(usually between 10* and 10° cycles). If the number of erasures of a block exceeds this number,
the block is marked as a bad block since it cannot be considered anymore reliable for storing
data. The overall life time of a flash memory therefore depends on the number of performed
erasure cycles. Wear leveling techniques are used to distribute data evenly across each block of
the entire flash memory, trying to level and to minimize the number of erasure cycles of each
block.

There are two main wear leveling strategies: dynamic and static wear leveling. The dynamic
wear leveling only works on those data blocks that are going to be written, while the static
wear leveling works on all data blocks, including those that are not involved in a write
operation. Active data blocks are in general wear-leveled dynamically, while static blocks
(i.e., blocks where data are written and remain unchanged for long periods of time) are
wear-leveled statically. The dynamic and static blocks are usually referred as hot and cold
data, respectively. In MLC memories it is important to move cold data to optimize the wear
leveling. If cold data are not moved then the related pages are seldom written and the wear
is heavily skewed to other pages. Moreover, every read to a page has the potential to disturb
data on other pages in the same block. Thus continuous read-only access to an area can cause
corruption, and cold data should be periodically rewritten.

Wear leveling techniques must be strongly coupled with garbage collection algorithms at the
file system level. In fact, the two tasks have in general conflicting objectives and the good
trade-off must be found to guarantee both performance and endurance.

2.6 Bad block management

As discussed in the previous sections, when a block exceeds the maximum number of erasure
cycles, it is marked as a bad block. Bad blocks can be detected also in new devices as a result of
blocks identified as faulty during the end of production test.

www.intechopen.com

8 Flash Memories

Bad blocks must be detected and excluded from the active memory space. In general, simple
techniques to handle bad blocks are commonly implemented. An example is provided by
the Samsung’s XSR (Flash Driver) and its Bad Block Management scheme (Samsung, 2007).
The flash memory is initially split into a reserved and a user area. The reserved blocks in the
reserved area represent a Reserve Block Pool that can be used to replace bad blocks. Samsung’s
XSR basically remaps a bad block to one of the reserved blocks so that the data contained in a
bad block is not lost and the bad block is not longer used.

2.7 Error correcting codes

Fault tolerance mechanisms and in particular Error Correcting Codes (ECCs) are
systematically applied to NAND flash devices to improve their level of reliability. ECCs are
cost-efficient and allow detecting or even correcting a certain number of errors.

ECCs have to be fast and efficient at the same time. Several ECC schema have been proposed
based on linear codes like Hamming codes or Reed-Solomon codes (Chen et al., 2008; Micron,
2007). Among the possible solutions, Bose-Chaudhuri-Hocquenghem (BCH) codes are linear
codes widely adopted with flash memories (Choi et al.,, 2010; Junho & Wonyong, 2009;
Micheloni et al., 2008). They are less complex than other ECC, providing also a higher
code efficiency. Moreover, manufacturers” and independent studies (Deal, 2009; Duann, 2009;
Yaakobi et al., 2009) have shown that flash memories tend to manifest non-correlated bit
errors. BCH are particularly efficient when errors are randomly distributed, thus representing
a suitable solution for flash memories.

The choice of the characteristics of the ECC is a trade-off between reliability requirements and
code complexity, and strongly depends on the target application (e.g. consumer electronics vs
mission-critical applications) (Caramia et al., 2009b).

ECC can be implemented both at the software-level, or resorting to hardware facilities.
Software implemented ECC allow to decouple the error correction mechanisms from the
specific hardware device. However, the price to pay for a software-based ECC solution is
a drastic performance reduction. For this reason, available file systems tend to delegate the
code computation tasks to a dedicate hardware limiting the amount of operations performed
in software, at the cost of additional resources (e.g., hardware, power consumption, etc.) and
reduced flexibility.

3. File systems for flash memories

As shortly described in the introduction of this chapter, at the OS level the common
alternatives to manage flash based mass-storage devices are block-device emulation and
native flash file systems (Chang & Kuo, 2004). Both approaches try to address the issues
discussed in Section 2. Fig. 4 shows how the two solutions can be mapped in a generic OS.

The block-device emulation approach hides the presence of a flash memory device, by
emulating the behavior of a traditional magnetic hard-disk. The flash device is seen as a
contiguous array of storage blocks. This emulation mechanism is achieved by inserting at the
OS level a new layer, referred to as Flash Translation Layer (FTL). Different implementations of
FTL have been proposed (Chang et al., 2007; Intel, 1998; Jen-Wei et al., 2008). The advantage
of using an FTL is that existing file systems, such as NTFS, Ext2 and FAT, usually supported
by the majority of modern OS, can be directly used to store information in the flash. However,
this approach has many performance restrictions. In fact, existing file systems do not take
into account the critical issues imposed by the flash technology (see Section 2) and in several
situations they may behave in contrast with these constraints. Very sophisticated FTL must

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 9

l User Applications I

Virtual File System

IFAT H HNTFSHJFFSZH HYAFFSI

Flash Translation Layer
(FTL)

l

Flash Driver or Memory Technology Device (MTD) k

—MD3=0O X

I NAND Flash Memory

Fig. 4. Flash Translation Layer and Flash File Systems

be therefore designed with heavy consequences on the performance of the system. Moreover,
the typical block size managed by traditional file systems usually does not match the block
size of a flash memory. This imposes the implementation of complex mechanisms to properly
manage write operations (Gal & Toledo, 2005).

The alternative solution, to overcome the limitation of using an FTL, is to expose the hardware
characteristics of the flash memory to the file system layer, demanding to this module the full
management of the device. These new file systems, specifically designed to work with flash
memories, are usually referred to as Flash File Systems (FFS). This approach allows the file
system to fully exploit the potentiality of a flash memory guaranteeing increased performance,
reliability and endurance of the device. In other words, if efficiency is more important than
compatibility, FES is the best option to choose.

The way FFS manage the information is somehow derived from the model of journaled file
systems. In a journaled file system, each metadata modification is written into a journal (i.e., a
log) before the actual block of data is modified. This in general helps recovering information
in case of crash. In particular log-structured file systems (Aleph One Ltd., 2011; Rosenblum
& Ousterhout, 1992; Woodhouse, 2001) take the journaling approach to the limit since the
journal is the file system. The disk is organized as a log consisting of fixed-sized segments of
contiguous areas of the disk, chained together to form a linked list. Data and metadata are
always written to the end of the log, never overwriting old data. Although this organization
has been in general avoided for traditional magnetic disks, it perfectly fits the way information
can be saved into a flash memory since data cannot be overwritten in these devices, and write
operations must be performed on new pages. Furthermore, log-structuring the file system on
a flash does not influence the read performance as in traditional disks, since the access time on
a flash is constant and does not depend on the position where the information is stored (Gal
& Toledo, 2005).

FFS are nowadays mainly used whenever so called Memory Technology Devices (MTD) are
available in the system, i.e., embedded flash memories that do not have a dedicated hardware
controller. Removable flash memory cards and USB flash drives are in general provided with a

www.intechopen.com

10 Flash Memories

built-in controller that in fact behaves as an FTL and allows high compatibility and portability
of the device. FFS have therefore limited benefits on these devices.

Several FFS are available. A possible approach to perform a taxonomy of the available FFS is
to split them into three categories: (i) experimental FFS documented in scientific and technical
publications, (ii) open source projects and (iii) proprietary products.

3.1 Flash file systems in the technical and scientific literature

Several publications proposed interesting solutions for implementing new FFS (Kawaguchi
et al., 1995; Lee et al., 2009; Seung-Ho & Kyu-Ho, 2006; Wu & Zwaenepoel, 1994). In general
each of these solutions aims at optimizing a subset of the issues proposed in Section 2.
Although these publications in general concentrate on algorithmic aspects, and provide
reduced information about the real implementation, they represent a good starting point to
understand how specific problems can be solved in the implementation of a new FFS.

3.1.1eNVy
Fig. 5 describes the architecture of a system based on eNVy, a large non-volatile main memory
storage system built to work with flash memories (Wu & Zwaenepoel, 1994).

Memory Bus / \

eNVy
N Controller
I/O Bus
SRAM Flash
ﬁ DRAM \ J
Disk Display Main Memory eNVy Storage Subsystem

Fig. 5. Architecture of eNVy

The main goal of eNVy is to present the flash memory to a host computer as a simple linear
array of non-volatile memory. The additional goal is to guarantee an access time to the
memory array as close as possible to those of an SRAM (about 100us) (Gal & Toledo, 2005).
The reader may refer to (Wu, 1994) for a complete description of the eNVy FFS.

Technology
eNVy adopts an SLC NAND flash memory with page size of 256B.
Architecture

The eNVy architecture combines an SLC NAND flash memory with a small and fast
battery-backed static RAM. This small SRAM is used as a very fast write buffer required to
implement an efficient copy-on-write strategy.

Address translation

The physical address space is partitioned into pages of 256B that are mapped to the pages
of the flash. A page table stored in the SRAM maintains the mapping between the linear
logical address space presented to the host and the physical address space of the flash. When
performing a write operation, the target flash page is copied into the SRAM (if not already
loaded), the page table is updated and the actual write request is performed into this fast

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 11

memory. As long as the page is mapped into the SRAM, further read and write requests are
performed directly using this buffer. The SRAM is managed as a FIFO, new pages are inserted
at the end, while pages are flushed from the tail when their number exceeds a certain threshold
(Gal & Toledo, 2005).

Garbage collection

When the SRAM write buffer is full, eNVy attempts to flush pages from the SRAM to the flash.
This in turn requires to allocate a set of free pages in the flash. If there is no free space, the
eNVy controller starts a garbage collection process called cleaning in the eNVy terminology
(see Fig. 6).

G
DA

‘ ‘ ‘ ‘ ‘ ‘ Locate an
erased segment

D20 [] “hea

v, | | |||

Invalidated Data ‘ ‘ Free Space

Z Valid Data

Fig. 6. Steps of the eNVy cleaning process

When eNVy cleans a block (segment in the eNVy terminology), all of its live data (i.e., valid
pages) are copied into an empty block. The original block is then erased and reused. The new
block will contain a cluster of valid pages at its head, while the remaining space will be ready
to accept new pages. A clean (i.e., completely erased) block must be always available for the
next cleaning operation.

The policy for deciding which block to clean is an hybrid between a greedy and a locality
gathering method. Both methods are based on the concept of "flash cleaning cost", defined
as % where y is the utilization of the block. Since after about 80% utilization the cleaning
cost reaches unreasonable levels, y in can not exceed this threshold.

The greedy method cleans the block with the majority of invalidated pages in order to
maximize the recovered space. This method lowers cleaning costs for uniform distributions
(i.e., it tends to clean blocks in a FIFO order), but performance suffers as the locality of
references increases.

The locality gathering algorithm attempts to take advantage from high locality of references.
Since hot blocks are cleaned more often than cold blocks, their cleaning cost can be lowered by
redistributing data among blocks. However, for uniform access distributions, this technique
prevents cleaning performance from being improved. In fact, if all data are accessed with
the same frequency, the data distribution procedure allocates the same amount of data to each
segment. Since pages are flushed back to their original segments to preserve locality, all blocks
always stay at 1 = 80% utilization, leading to a fixed cleaning cost of 4.

www.intechopen.com

12 Flash Memories

eNVy adopts an hybrid approach, which combines the good performance of the FIFO
algorithm for uniform access distributions and the good results of the locality gathering
algorithm for higher locality of references.

The high performance of the system is guaranteed by adopting a wide bus between the flash
and the internal RAM, and by temporarily buffering accessed flash pages. The wide bus
allows pages stored in the flash to be transferred to the RAM in one cycle, while buffering
pages in RAM allows to perform several updates to a single page with a single RAM-to-flash
page transfer. Reducing the number of flash writes reduces the number of unit erasures,
thereby improving performance and extending the lifetime of the device (Gal & Toledo, 2005).
However, using a wide bus has a significant drawback. To build a wide bus, several flash chips
are used in parallel (Wu & Zwaenepoel, 1994). This increases the effective size of each erase
unit. Large erase units are harder to manage and, as a result, they are prone to accelerated
wear (Gal & Toledo, 2005). Finally, although (Wu & Zwaenepoel, 1994) states that a cleaning
algorithm is designed to evenly wear the memory and to extend its lifetime, the work does
not present any explicit wear leveling algorithm. The bad block management and the ECC
strategies are missing as well.

3.1.2 Core flash file system (CFFS)

(Seung-Ho & Kyu-Ho, 2006) proposes the Core Flash File System (CFFS) for NAND
flash-based devices. CFFS is specifically designed to improve the booting time and to reduce
the garbage collection overhead.

The reader may refer to (Seung-Ho & Kyu-Ho, 2006) for a complete description of CFFS. While
concentrating on boot time and garbage collection optimizations, the work neither presents
any explicit bad block management nor any error correction code strategy.

Address translation

CFFS is a log-structured file system. Information items about each file (e.g., file name, file size,
timestamps, file modes, index of pages where data are allocated, etc.) are saved into a spacial
data structure called inode. Two solutions can be in general adopted to store inodes in the
flash: (i) storing several inodes per page, thus optimizing the available space, or (ii) storing
a single inode per page. CFFS adopts the second solution. Storing a single inode per page
introduces a certain overhead in terms of flash occupation, but, at the same time, it guarantees
enough space to store the index of pages composing a file, thus reducing the flash scan time
at the boot.

CFFS classifies inodes in two classes as reported in Fig. 7. i-class] maintains direct indexing
for all index entries except the final one, while i-class2 maintains indirect indexing for all index
entries except the final one. The final index entry is indirectly indexed for i-class1 and double
indirectly indexed for i-class2. This classification impacts the file size range allowed by the file
system. Let us assume to have 256B of metadata for each inode and a flash page size of 512B.
The inode will therefore contain 256B available to store index pointers. A four-byte pointer is
sufficient to point to an individual flash page. As a consequence, 256/4 = 64 pointers fit the
page. This leads to:

* i-classl: 63 pages are directly indexed and 1 page is indirectly indexed, which in turn
can directly index 512/4 = 128 pages; as a consequence the maximum allowed file size is
(63 +128) x 512B = 96KB

* i-class2: 63 pages are indirectly indexed, each of which can directly index 512/4 = 128
pages, thus they can address an overall amount of 63 x 128 = 8064 pages. 1 page is

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 13

NAND Flash Memory \
Attributes

m Attributes

: N
File name 7 /d% File name

T —* DataPage %

Parent Inode Parent Inode

_| Indirect Index
Pointer

: DirectIndex '
' Pointer : Data Page . 1

/
k Data Page [/

s i-class1 Indexing Metadata Pages VA i-class2 Indexing Metadata Pages

N\
N\

Fig. 7. An example of direct (i-class1) and indirect (i-class2) indexing for a NAND flash

double indirectly indexed, which in turn can indirectly index up to (512/ 4)2 = 16384 pages.
Therefore, the maximum allowed file size is (8064 + 16384) x 512B = 12MB

If the flash page is 2KB, the maximum file size is 1916KB for i-class1 and 960MB for i-class2.
The reason CFFS classifies inodes into two types is the relationship between the file size and
the file usage patterns. In fact, most files are small and most write accesses are to small
files. However, most storage is also consumed by large files that are usually only accessed for
reading (Seung-Ho & Kyu-Ho, 2006). The i-class1 requires one additional page consumption
for the inode!, but can address only pretty small files. Each writing into an indirect indexing
entry of i-class? causes the consumption of two additional pages, but it is able to address
bigger files.

When a file is created in CFFS, the file is first set to i-classl and it is maintained in this state
until all index entries are allocated. As the file size grows, the inode class is altered from
i-class1 to i-class2. As a consequence, most files are included in i-class1 and most write accesses
are concentrated in i-class1. In addition, most read operations involve large files, thus inode
updates are rarely performed and the overhead for indirect indexing in i-class2 files is not
significant.

Boot time

An InodeMapBlock stores the list of pages containing the inodes in the first flash memory block.
In case of clean unmounting of the file system (i.e., unmount flag UF not set) the InodeMapBlock
contains valid data that are used to build an InodeBlockHash structure in RAM used to manage
the inodes until the file system is unmounted. When the file system is unmounted, the
InodeBlockHash is written back into the InodeMapBlock. In case of unclean unmounting (i.e.,
unmount flag UF set), the InodeMapBlock does not contain valid data. A full scan of the
memory is therefore required to find the list of pages storing the inodes.

Garbage collection

The garbage collection approach of CFFES is based on a sort of hot-cold policy. Hot data have
high probability of being updated in the near future, therefore, pages storing hot data have

! in general, the number of additional flash pages consumed due to updating the inode index information
is proportional to the degree of the indexing level

www.intechopen.com

14 Flash Memories

higher chance to be invalidated than those storing cold data. Metadata (i.e., inodes) are hotter
than normal data. Each write operation on a file surely results in an update of its inode, but
other operations may result in changing the inode, as well (e.g., renaming, etc.). Since CFFS
allocates different flash blocks for metadata and data without mixing them in a single block,
a pseudo-hot-cold separation already exists. Hot inode pages are therefore stored in the same
block in order to minimize the amount of hot-live pages to copy, and the same happens for
data blocks.

Wear leveling

The separation between inode and data blocks leads to an implicit hot-cold separation which
is efficiently exploited by the garbage collection process. However, since the inode blocks are
hotter and are updated more frequently, they probably may suffer much more erasures than
the data blocks. This can unevenly wear out the memory, thus shortening the life-time of the
device. To avoid this problem, a possible wear-leveling strategy is to set a sort of "swapping
flag". When a data block must be erased, the flag informs the allocator that the next time the
block is allocated it must be used to store an inode, and vice versa.

3.1.3 FlexFS

FlexFS is a flexible FFS for MLC NAND flash memories. It takes advantage from specific
facilities offered by MLC flash memories. FlexFS is based on the JFFS2 file system
(Woodhouse, 2001; 2009), a file system originally designed to work with NOR flash memories.
The reader may refer to (Lee et al., 2009) for a detailed discussion on the FlexFS file system.
However, the work does not tackle neither bad block management, not error correction codes.

Technology

In most MLC flash memories, each cell can be programmed at runtime to work either as an
SLC or an MLC cell (flexible cell programming). Fig. 8 shows an example for an MLC flash

storing 2 bits per cell.
MLC Ve

B

Fig. 8. Flexible Cell Programming

When programmed in MLC mode, the cell uses all available configurations to store data (2 bits
per cell). This configuration provides high capacity but suffers from the reduced performance
intrinsic to the MLC technology (see Fig. 2). When programmed in SLC mode, only two
out of the four configurations are in fact used. The information is stored either in the LSB
or in the MSB of the cell. This specific configuration allows information to be stored in a
more robust way;, as typical in SLC memories, and, therefore, it allows to push the memory at
higher performance. The flexible programming therefore allows to choose between the high
performance of SLC memories and the high capacity of MLC memories.

3
12
Distribution
of Cells

Distribution
of Cells

SLC

Data allocation

FlexFS splits the MLC flash memory into SLC and MLC regions and dynamically changes
the size of each region to meet the changing requirements of applications. It handles

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 15

heterogeneous cells in a way that is transparent to the application layer. Fig. 9 shows the
layout of a flash memory block in FlexFS.

Write Requests

e ~
MLC Write SLC Write
Buffer (4KB) Buffer (4KB)

\xylw

FreeBlock
(unknown)

1% N Logging

Z
Z Valid Data

Fig. 9. The layout of flash blocks in FlexFS

There are three types of flash memory blocks: SLC blocks, MLC blocks and free blocks. FlexFS
manages them as an SLC region, an MLC region and one free blocks pool. A free block does
not contain any data. Its type is decided at the allocation time.

FlexFS allocates data similarly to other log-structured file systems, with the exception of two
log blocks reserved for writing. When data are evicted from the write buffer, FlexFS writes
them sequentially from the first page to the last page of the corresponding region’s log block.
When the free pages in the log block run out, a new log block is allocated.

The baseline approach for allocating data can be to write as much data as possible into SLC
blocks to maximize I/O performances. In case there are no SLC blocks available, a data
migration from the SLC to the MLC region is triggered to create more free space. Fig. 10
shows an example of data migration.

Free Block -, MLCBlock MLC Block
(unknown) ' (512 KB) (512 KB)

Invalid Data § Log Block D Free Space

SLC Block i/ ree Block

SLC Block ///‘,/0‘4”.//5// Free Block
(256KB) /é%‘% (unknown)

A SRR RN

7
Valid Data //I Invalid Data |:| Free Space

Fig. 10. An example of Data Migration

Assuming to have two SLC blocks with valid data, the data migration process converts the
free block into an MLC block and then copies the 128 pages of the two SLC blocks into this
MLC block. Finally, the two SLC blocks are erased, freeing this space.

This simple approach has two main drawbacks. First of all, if the amount of data stored in the
flash approaches to half of its maximum capacity, the migration penalty becomes very high
and reduces I/O performance. Second, since the flash has limited erasure cycles, the number
of erasures due to data migration have to be controlled to meet a given lifetime requirement.
Proper techniques are therefore required to address these two problems.

www.intechopen.com

16 Flash Memories

Three key techniques are adopted to leverage the overhead associated with data migrations:
background migration, dynamic allocation and locality-aware data management.

The background migration technique exploits the idle time of the system (Tjz,) to hide the data
migration overhead. During Tj;, the background migrator moves data from the SLC region
to the MLC region, thus freeing many blocks that would be compulsory erased later. The first
drawback of this technique is that, if an I/O request arrives during a background migration,
it will be delayed of a certain time Tj,;,, that must be minimized by either monitoring the I/O
subsystem or suspending the background migration in case of an I/O request. This problem
can be partially mitigated by reducing the amount of idle time devoted to background
migration, and by triggering the migration at given intervals (Ty,;;) in order to reduce the
probability of an I/O request during the migration.

The background migration is suitable for systems with enough idle time (e.g., mobile phones).
With systems with less idle time, the dynamic allocation is adopted. This method dynamically
redirects part of the incoming data directly to the MLC region depending on the idleness of the
system. Although this approach reduces the performance, it also reduces the amount of data
written in the SLC region, which in turn reduces the data migration overhead. The dynamic
allocator determines the amount of data to write in the SLC region. This parameter depends
on the idle time, which dynamically changes, and, therefore, must be carefully forecast. The
time is divided into several windows. Each window represents the period during which N,

pages are written into the flash. FlexFS evaluates the predicted ﬂzrlid as a weighted average
of the idle times of the last 10 windows. Then, an allocation ratio « is calculated in function
of Tiglid as & = Tl / (N, Tuopy), Where Tyopy is the time required to copy a single page from SLC
to MLC. If Tl.’;rlzd = Np - Teopy, there is enough idle time for data migration, thus « = 1. Fig.

11 shows an example of dynamic allocation. The dynamic allocator distributes the incoming
data across the MLC and SLC regions depending on «. In this case, according to the previous

Np = 10 windows and to Tl.’;rlzd, a = 0.6. Therefore, for the next N, = 10 pages 40%, of the
incoming data will be written in the MLC, and 60% in the SLC region, respectivelly. After
writing all 10 pages, the dynamic allocator calculates a new value of « for the next N, pages.

10 pages
|

Dynamic Allocator

| 4 pages | | 0=0.6 | | 6 pages |

| i
SISO OO ORI

“MLC Block | MLC Block SLC Block
(512KB) | (512KB) (256 KB)
MLC Region SLCRegion
]
_ .
SS Background -
Migration

Fig. 11. An example of Dynamic Allocation

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 17

The locality-aware data management exploits the locality of I/O accesses to improve the
efficiency of data migration. Since hot data have a higher update rate compared to cold data,
they will be invalidated frequently, potentially causing several unnecessary page migrations.
In the case of a locality-unaware approach, pages are migrated from SLC to MLC based on
the available idle time Tj;,. If hot data are allowed to migrate before cold data during T;y,,
the new copy of the data in the MLC region will be invalidated in a short time. Therefore, a
new copy of this information will be written in the SLC region. This results in unnecessary
migrations, reduction of the SLC region and a consequent decrease of a to avoid a congestion
of the SLC region.

If locality of data is considered, the efficiency of data migration can be increases. When
performing data migration cold data have the priority. Hot data have a high temporal locality,
thus data migration for them is not required. Moreover, the value of « can be adjusted as

& = T /[(N,~Ni).T,,,,] where Nt is the number of page writes for hot pages stored in the
P~ Np py p & &
SLC region.

In order to detect hot data, FlexFS adopts a two queues-based locality detection technique.
An hot and a cold queue maintain the inodes of frequently and infrequently modified files. In
order to understand which block to migrate from MLC to SLC, FlexFS calculates the average
hotness of each block and chooses the block whose hotness is lower than the average. Similar
to the approach of idle time prediction, N,’,f"t counts how many hot pages were written into

the SLC region during the previous 10 windows. Their average hotness value will be the N {,’Ot
for the next time window.

Garbage collection

There is no need for garbage collection into the SLC region. In fact, cold data in SLC will be
moved by the data migrator to the MLC region and hot data are not moved for high locality.
However, the data migrator cannot reclaim the space used by invalid pages in the MLC region.
This is the job of the garbage collector. It chooses a victim block V' in the MLC region with as
many invalidated pages as possible. Then, it copies all the valid pages of V into a different
MLC block. Finally, it erases the block V, which becomes part of the free block pool. The
garbage collector also exploits idle times to hide the overhead of the cleaning from the users,
however only limited information on this mechanism is provided in (Lee et al., 2009).

Wear leveling

The use of FlexFS implies that each block undergoes more erasure cycles because of data
migration. To improve the endurance and to prolong the lifetime, it would be better to write
data to the MLC region directly, but this would reduce the overall performance. To address
this trade-off, FlexFS adopts a novel wear-leveling approach to control the amount of data
to write to the SLC region depending on a given storage lifetime. In particular, L,,;, is the
minimum guaranteed lifetime that must be ensured by the file system. It can be expressed as
Lipin & CrotarEcyetes/ WR, where Cyoyy is the size of the flash memory, and E,; ;s is the number of
erasure cycles allowed for each block. The writing rate WR is the amount of data written in
the unit of time (e.g., per day). FlexFS controls the wearing rate so that the total erase count is
close to the maximum number of erase cycles Nergse at a given Ly,

The wearing rate is directly proportional to the value of a. In fact, if « = 1.0 then only SLC
blocks are written, thus if 2 SLC blocks are involved, data migration will involve 1 MLC block,
using 3 overall blocks (see Fig. 10). If « = 0, then only MLC blocks are written, no data
migration occurs and only 1 block is exploited. Fig. 12 shows an example of wearing rate
control.

www.intechopen.com

-
0]

Flash Memories

3 » 81N s &

L+ U+ -1

9 Nerase ot o erase ol 9] Nerase

Q ,r' 6 ,/’ (@] ¢"

(0] i Q i e -7

= e = s 7 =]

2 Vil > ol 0 v

£ il 4] 0 © d

o 7 © 2 — -

-t /” . 7 NLB 7

"'6 // ‘5 ,/ o /"

— ,/ 5 (o ,/ — ,/

[0 Q ’ [} ’

o o o

€ = €

S E] S

Z : T : T T Z : T } T T Z : T : T T
tl tZ t3 t4 I‘min t1 t2 t3 t4 I'min tl tZ t3 t4 I‘min

@ Expected Erase Count 4} Actual Erase Count

Fig. 12. An example of Wearing Rate Control

At first, the actual erase count of Fig. 12 is lower than the expected one, thus the value of «
must be increased. After some time, the actual erase count is higher than expected, thus « is
decreased. At the end, the actual erase count becomes again smaller than the expected erase
count, thus another increase of the value of « is required.

3.2 Open source flash file systems

Open source file systems are widely used in multiple applications using a variety of flash
memory devices and are in general provided with a full and detailed documentation. The
large open source community of developers ensures that any issue is quickly resolved and
the quality of the file system is therefore high. Furthermore, their code is fully available for
consulting, modifications, and practical implementations. Nowadays, YAFFS represents the
most promising open-source project for the the development of an open FFS. For this reason
we will concentrate on this specific file system.

3.2.1 Yet Another Flash File System (YAFFS)

YAFFS (Aleph One Ltd., 2011) is a robust log-structured file system specifically designed for
NAND flash memories, focusing on data integrity and performance. It is licensed both under
the General Public License (GPL) and under per-product licenses available from Aleph One.
There are two versions of YAFFS: YAFFS1 and YAFFS2. The two versions of the file system
are very similar, they share part of the code and provide support for backward compatibility
from YAFFS2 to YAFFS1. The main difference between the two file systems is that YAFFS2
is designed to deal with the characteristics of modern NAND flash devices. In the sequel,
without losing of generality, we will address the most recent YAFFS2, unless differently
specified. We will try to introduce YAFFS’s most important concepts. We strongly suggest
the interested readers to consult the related documentation documentation (Aleph One Ltd.,
2010; 2011; Manning, 2010) and above all the code implementation, which is the most valuable
way to thoroughly understand this native flash file system.

Portability

Since YAFFS has to work in multiple environments, portability is a key requirement. YAFFS
has been successfully ported under Linux, WinCE, pSOS, eCos, ThreadX, and various
special-purpose OS. Portability is achieved by the absence of OS or compiler-specific features
in the main code and by the proper use of abstract types and functions to allow Unicode or
ASCII operations.

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 19

Technology

Both YAFFS1 and YAFFS2 are designed to work with NAND flash memories. YAFFS1 was
designed for devices with page size of 512B plus 16B of spare information. YAFFS1 exploited
the possibility of performing multiple write cycles per page available in old generations
of NAND flash devices. YAFFS2 is the successor of YAFFS1 designed to work with the
contemporary generation of NAND flash chips designed with pages equal or greater than
2KB + 64B. For sake of reliability, new devices do not allow page overwriting and pages of a
block must be written sequentially.

Architecture and data allocation

YAFFS is designed with a modular architecture to provide flexibility for testing and
development. YAFFS modules include both kernel and user space code, as summarized in
Fig. 13.

User Applications |

' POSIX Interface

: !

1

' YAFFS Direct Interface
1

Virtual File System

1 1
1 1
! 1
1 1
. .
K ! :

S | S
18 !
1 1 e
§e ! ¥ §

! 1! I
1 ! 1
| Memory Technology Device ' | !
:‘ (MTD) ' Flash Interface !

NAND Flash Memory or NAND Emulator

Fig. 13. The YAFFS Architecture

Since developing and debugging code in user space is easier than working in kernel mode,
the core of the file system, namely the guts algorithms, is implemented as user code. This
code is also shared with the kernel of the OS. If a full interface at the OS level is required (e.g.,
implementation of specific system calls), it must be implemented inside the Virtual File System
(VES) layer. Otherwise, YAFFS can be used at the application level. In this configuration,
information can be accessed through the YAFFS Direct Interface. This is the typical case for
applications without OS, embedded OS or bootloaders (Aleph One Ltd., 2010).

YAFFS also includes an emulation layer that provides an excellent way to debug the file
system even when no flash devices are available (Manning, 2010).

File systems are usually designed to store information organized into files. YAFFS is instead
designed to store Objects. An object is anything a file system can store: regular data files,
directories, hard/symbolic links, and special objects. Each object is identified by a unique
objectld. Although the NAND flash is arranged in pages, the allocation unit for YAFFES is the
chunk. Typically, a chunk is mapped to a single page, but there is flexibility to use chunks that
span over multiple pages”. Each chunk is identified by its related objectId and by a ChunkId: a
progressive number identifying the position of the chunk in the object.

2 in the sequel, the terms page and chunk will be considered as synonymous unless stated otherwise

www.intechopen.com

20 Flash Memories

YAFFS writes data in the form of a sequential log. Each entry of the log corresponds to a
single chunk. Chunks are of two types: Object Headers and Data Chunks. An Object Header is
a descriptor of an object storing metadata information including: the Object Type (i.e., whether
the object is a file, a directory, etc.) and the File Size in case of an object corresponding to a file.
Object headers are always identified by ChunkId = 0. Data chunks are instead used to old the
actual data composing a file.

Fig. 14 shows a simple example of how YAFFS behaves considering two blocks each
composed of four chunks.

fmmmmmm : pmmmmmn
1 1 \ \§ 1 1
: I o \ Block | 2 \\ Block | 2 : :
: e e NE| e : :
| start (VBN B L 8 Chunk | 0 Chunk | 1 ! Next |
| Log ii;f * 2 S g | Log E
5

D s R Bee e Objectid | 42 Objectld | 42 I
' 1 ’3 ?_'. o 8 - i
: 1 ko \Ch kid | 1 \Ch kid| 0 ' :
1 s un un 1

. it W N "S- :

¥ Block 1 : Block 2

&% Valid Data D Invalid Data D Free Chunks

Fig. 14. An Example of YAFFS Operations

The situation depicted in Fig. 14 shows the data allocation for a file with Objectld 42 that was
first created allocating two data chunks, and then modified deleting the second data chunk
and updating the first chunk. The chunks corresponding to the initial creation of the file are
those saved in Block 1. When a new file is created, YAFFS first allocates an Object Header
(Chunk 1 of Block 1). It then writes the required data chunks (Chunks 2 and 3 of Block
1), and, finally, when the file is closed, it invalidates the first header and allocates an new
updated header (Chunk 4 of Block 1). When the file is updated, according to the requested
modifications, Chunk 3 of Block 1 is invalidated and therefore deleted, while Chunk 2 of Block
1 is invalidated and the updated copy is written in Chunk 2 of Block 2 (the first available
Chunk). Finally, the object header is invalidated (Chunk 4 of Block 1) and the updated copy is
written in Chunk 2 of Block 2.

At the end of this process, all chunks of Block 1 are invalidated while Block 2 still has two free
chunks that will be used for the next allocations. As will be described later in this section, to
improve performance YAFFS stores control information including the validity of each chunk
in RAM. In case of power failure, it must therefore be able to recover the set of valid chunks
where data are allocated. This is achieved by the use of a global sequence number. As each
block is allocated, YAFFS increases the sequence number and uses this counter to mark each
chunk of the block. This allows to organize the log in a chronological order. Thanks to the
sequence number, YAFFS is able to determine the sequence of events and to restore the file
system state at boot time.

Address translation

The data allocation scheme proposed in Fig. 14 requires several data structures to properly
manage information. To increase performance, YAFFS does not store this information in the
flash, but it provides several data structures stored in RAM. The most important structures
are:

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 21

* Device partition: it holds information related to a YAFFS partition or mount point, providing
support for multiple partitions. It is fundamental for all the other data structures which
are usually part of, or accessed via this structure.

* Block info: each device has an array of block information holding the current state of the
NAND blocks.

® Object: each object (i.e., regular file, directory, etc.) stored in the flash has its related object
structure in RAM which holds the state of the object.

* File structure: an object related to a data file stores a tree of special nodes called Tnodes,
providing a mechanism to find the actual data chunks composing the file.

Among all the other information, each file object stores the depth and the pointer to the top
of Tnode tree. The Tnode tree is made up of Tnodes arranged in levels. At Level 0 a Tnode
holds 2#=16 NAND Chunkld which identify the location of the chunks in the NAND flash.
At levels greater than 0, a Tnode holds 23=8 pointers to other Tnodes in the following level.
Powers-of-two make look-ups simpler by just applying bitmasks (Manning, 2010).

Level 1

Level 0

NAND
Flash

2 Invalid 7770 New Created Busy Free Chunk/
“27 Chunk :] Chunk inode inode

7

Fig. 15. An example of Tnode tree for data file

Fig. 15 shows an example of Tnode for a file object. For the sake of simplicity, only 4 entries
are shown for each Tnode. Fig. 15(a) shows the creation of an object composed of 4 chunks,
thus only one Level-0 Tnode is requested. In Fig. 15(b) the object’s size starts to grow up,
thus a Level-1 Tnode is added. This Level-1 Tnode can point to other Level-0 Tnodes which in
turn will point to the physical NAND chunks. In particular, Fig. 15(b) shows how two of the
previous chunks can be rewritten and three new chunks can be added. When the object’s size
will become greater than the 16 chunks of Fig. 15(b), then a Level-2 Tnode will be allocated
and so on.

For sake of brevity, we will not address the structures used to manage directories,
hard/symbolic links and other objects. Interested readers can refer to (Manning, 2010) for
a detailed discussion.

Boot time

The mounting process of a YAFFS partition requires to scan the entire flash. Scanning is the
process in which the state of the file system is rebuilt from scratch. It reads the metadata (tags)
associated with all the active chunks and may take a considerable amount of time.

www.intechopen.com

22 Flash Memories

During the mounting process, YAFFS2 adopts the so called backwards scanning to identify the
most current chunks. This process exploits the sequence numbers introduced in the previous
paragraphs. First, a pre-scan of the blocks is required to determine their sequence number.
Second, they are sorted to make a chronologically ordered list. Finally, a backwards scanning
(i.e., from the highest to the lowest sequence number) of the blocks is performed. The first
occurrence of any pair ObjectId:Chunkld is the most current one, while all following matchings
are obsolete and thus treated as deleted.

YAFFS provides several optimizations to improve boot performance. YAFFS2 supports the
checkpointing which bypasses normal mount scanning, allowing very fast mount times. Mount
times are variable, but 3 sec for 2 GB have been reported. Checkpoint is a mechanism to speed
up the mounting process by taking a snapshot of the YAFFS runtime state at unmount and
then rebuilding the runtime state on re-mounting. Using this approach, only the structure of
the file system (i.e., directory relationships, Tnode trees, etc.) must be created at boot, while
much of the details such as filename, permissions, etc. can be lazy-loaded on demand. This
will happen when the object is looked up (e.g., by a file open or searching for a file in the
directory). However, if the checkpoint is not valid, it is ignored and the state is scanned again.
Scanning needs extra information (i.e., parent directory, object type, etc.) to be stored in the
tags of the object headers in order to reduce the amount of read operations during the scan.
YAFFS2 extends the tags in the object headers with extra fields to improve the mount scanning
performance. A way to store them without enlarging the tags size is to exploit the "useless"
tields of the object headers (i.e., chunkld and nbytes) to cleverly pack the most important data.
These physical information items are called packed tags.

Garbage collection

YAFFS actually calls the garbage collector before writing each chunk of data to the flash
memory. It adopts a pretty simple garbage collection strategy. First of all, it checks how
many erased blocks are available. In case there are several erased blocks, there is no need
for a strong intervention. A passive garbage collection can be performed on blocks with very
few chunks in use. In case of very few erased blocks, a harder work is required to recover
space. The garbage collector identifies the set of blocks with more chunks in use, performing
an aggressive garbage collection.

The rationale behind this strategy is to delay garbage collection whenever possible, in order
to spread and reduce the "stall" time for cleaning. This has the benefit of increasing the
average system performance. However, spreading the garbage collection may lead to possible
fluctuations in the file system throughput (Manning, 2010).

The YAFFS garbage collection algorithm is under constant review to reduce "stall" time and
to increase performance. Charles Manning, the inventor of YAFFS, recently provided a new
background garbage collector. It should significantly reduce foreground garbage collection in
many usage scenarios, particularly those where writing is "bursty" such as a cell phones or
similar applications. This could make writing a lot faster, and applications more responsive.
Furthermore, YAFFS has included the idea of "block refreshing" in the garbage collector.
YAFFS will periodically select the oldest block by exploiting the sequence number and
perform garbage collection on it even if it has no garbage. This operation basically rewrites
the block to new areas, thus performing a sort of static wear leveling.

Wear leveling

YAFFS does not have an explicit set of functions to actively perform wear leveling. In fact,
being a log structured file system, it implicitly spreads out the wear by performing all writes

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 23

in sequence on different chunks. Each partition has a free allocation block. Chunks are allocated
sequentially from the allocation block. When the allocation block is full, another empty block
is selected to become the allocation block by searching upwards from the previous allocation
block. Moreover, blocks are allocated serially from the erased blocks in the partition, thus the
process of erasing tends to evenly use all blocks as well. In conclusion, in spite of the absence
of a specific code, wear leveling is performed as a side effect of other activities (Manning,
2010).

Bad block management

Although YAFFS1 was actively marking bad blocks, YAFFS2 delegates this problem to driver
functions. A block is in general marked as bad if a read or write operation fails or three
ECC errors are detected. Even if this is a suitable policy for the more reliable SLC memories,
alternative strategies for MLC memories are under investigation (Manning, 2010).

Error correction code

YAFFS1 can work with existing software or hardware ECC logic or provide built-in error
correction codes, while YAFFS2 does not provide ECC internally, but, requires that the driver
provides the ECC. The ECC code supplied with YAFFS is the fastest C code implementation
of a Smart Media compatible ECC algorithm with Single Error Correction (SEC) and Double
Error Detection (DED) on a 256-byte data block (Manning, 2010).

3.3 Proprietary FFS

Most of the native FFS are proprietary, i.e., they are under exclusive legal rights of the
copyright holder. Some of them can be licensed under certain conditions, but restricted from
other uses such as modification, further distribution, or reverse engineering. Although the
adopted strategies are usually hidden or expressed from a very high-level point of view, it
is important to know the main commercial FFS and the related field of application, even if
details on the implementation are not available.

3.3.1 exFAT (Microsoft)

The Extended File Allocation Table (exFAT), often incorrectly called FAT64, is the Microsoft
proprietary patent-pending file system intended for USB flash drives (Microsoft, 2009). exFAT
can be used where the NTFS or FAT file systems are not a feasible solution, due to data
structure overhead or to file size restrictions.

The main advantages of exFAT over previous FAT file systems include the support for larger
disk size (i.e., up to 512 TB recommended max), a larger cluster size up to 32 MB, a bigger
file size up to 16 TB, and several I/O improvements. However, there is limited or absent
support outside Microsoft OS environment. Moreover, exFAT looks less reliable than FAT,
since it uses a single mapping table, the subdirectory size is limited to 256 MB, and Microsoft
has not released the official exFAT file specification, requiring a license to make and distribute
exFAT implementations (Microsoft, 2011a). A comparison among exFAT and other three MS
Windows based file systems can be found in (Microsoft, 2011b).

3.3.2 XCFiles (Datalight)

XCFiles is an exFAT-compatible file system implementation by Datalight for Wind River
VxWorks and other embedded OS. XCFiles was released in June 2010 to target consumer
devices. It allows embedded systems to support SDXC, the SD Card Association standard

www.intechopen.com

24 Flash Memories

for extended capacity storage cards (SD Association, 2011). XCFiles is intended to be portable
to any 32-bit platform which meets certain requirements (Datalight, 2010).

3.3.3 TrueFFS (M-Systems)

True flash file system (TrueFES) is a low level file system designed to run on a raw solid-state
drive. TrueFFS implements error correction, bad block re-mapping and wear leveling.
Externally, TrueFFS presents a normal hard disk interface. TrueFFS was created by M-Systems
(Ban, 1995) on the "DiskOnChip 2000" product line, later acquired by Sandisk in 2006. TFFS
or TFFS-lite is a derivative of TrueFFS. It is available in the VxWorks OS, where it works as a
FTL, not as a fully functional file system (SanDisk, 2011b).

3.3.4 ExtremeFFS (SanDisk)
ExtremeFFS is an internal file system for SSD developed by SanDisk allowing for improved
random write performance in flash memories compared to traditional systems such as

TrueFFS. The company plans on using ExtremeFFS in an upcoming MLC implementation of
NAND flash memory (SanDisk, 2011a).

3.3.5 OneFsS (Isilon)

The OneFS file system is a distributed networked file system designed by Isilon Systems for
use in its Isilon IQ storage appliances. The maximum size of a file is 4TB, while the maximum
volume size is 2304TB. However, only the OneFS OS is supported (Isilon, 2011).

3.3.6 emFile (Segger Microcontroller Systems)

emFile is a file system for deeply embedded devices supporting both NAND and NOR
flashes. It implements wear leveling, fast read and write operations, and very low RAM
usage. Moreover, it implements a JTAG emulator that allows to interface the Segger’s
patented flash breakpoint software to a Remote Debug Interface (RDI) compliant debugger.
This software allows program developers to set multiple breakpoints in the flash thus
increasing the capability of debugging applications developed over this file system. This
feature is however only available for systems based on an ARM microprocessor (Segger,
2005; 2010).

4. Comparisons of the presented FFS

Table 1 summarizes the analysis proposed in this chapter by providing an overall comparison
among the proposed FFS, taking into account the aspects proposed in Section 23. Proprietary
FFS are excluded from this comparison given the reduced available documentation.
Considering the technology, eNVy represents the worst choice since it was designed for old
flash NAND devices that are rather different from modern chips. Similarly, CFFS was only
adopted on the SLC 64MB SmartMedia™ Card that is a pretty small device compared to
the modern ones. Both FFS do not offer support for MLC memories. FlexFS is the only
FFS providing support for a reliable NAND MLC at the cost of under-usage of the memory
capacity. YAFFS supports modern SLC NAND devices with pages equal or greater than 2KB,
however the MLC support is still under development.

3 The symbol "-" denotes that no information is available

www.intechopen.com

w oo uadoyoalul Mmm

eNVy CFFS FlexFS
(Wu & Zwaenepoel, 1994) (Seung-Ho & Kyu-Ho, 2006) (Lee et al., 2009)
Pro Cons Pro Cons Pro Cons
old si.c NOMLCG MLC Capacity
Technology - devices support Seall support Waste
bp devices bp
. . Extra Pages
Architecture Simple Josokces T+ < 4KB Pages Flexibilit
Address Fast Expensive Hot-Cold Moderate B B
Translation (Bus&RAM) Separation file size
Boot Time - - Fast Extra - -
Resources
Garbage . Throughput - Only for Poor
Collection Simple Fluctuations Efficient MLC detailed
Wear Accelerated . . Staticand Response:
Leveling - wear Simple No Static Dynamic Overheac
Bad Block - - - - - -
(Integrated) B B B _ B B
ECC

Table 1. Comparison among the strategies of the presented FFS

26 Flash Memories

Excluding YAFFS, details about the architecture of the examined FFS are rather scarce. The
architecture of eNVy is quite simple but it requires a considerable amount of extra resources to
perform well. FlexFS supports MLC devices with 4KB pages, but no details are given about the
portability to other page dimensions. YAFFS modular architecture provides easy portability,
development, and debug, but the log-structure form can limit some design aspects.

The address translation process of eNVy is very fast, but, at the sam time, it is very expensive
due to the use of the wide bus and the battery-backed SRAM. The implicit hot-cold data
separation of CFFS improves addressing, but leads to very moderate maximum file size. The
log-structure and the consistency of tags of YAFFS lead to a very robust strategy for addressing
at the cost of some overhead.

CFES is designed to minimize the boot time, but extra resources are required. Moreover
experimental data are only available from its use on a very small device (i.e., 64MB). Since
FlexFS is JFFS2-based, the boot will be reasonably slower compared to the other file systems.
YAFFS has low boot time thanks to the mechanism of checkpointing, that in turn requires
extra space in the NAND flash.

The pretty simple garbage collection strategy of eNVy may suffer throughput fluctuations
with particular patterns of data. CFFS is designed for minimizing the garbage collection
overhead. The big advantage of FlexFS is that the garbage collection is limited to the MLC
area, but its performance depends on the background migration. The smooth loose/hard
garbage collection strategy of YAFFS is also able to refresh older blocks, but may suffer
throughput fluctuations.

Wear leveling is one of the most critical aspects when dealing with flash memories. eNVy
uses multiple flash chips in parallel, thus being prone to accelerated wear. CFFS has a simple
dynamic wear leveling strategy, but no block refreshing is explicitly provided. FlexFS has both
static and dynamic wear leveling, buy delays in response times may occur. Since in YAFFS
the wear leveling is a side effect of other activities, it is very simple but evaluating alternative
wear leveling strategies can be very tough.

YAFEFS is the only FFS that explicitly address bad blocks management and ECC. Since they
are usually customized to the needs of the user, the integrated strategies are very simple and
cheap, but are not suitable for MLC flash.

An additional comparison among the performance of the different file systems is provided in
Table 2. In this table, power-fail safe refers to the file system capability of recovering from
unexpected crashes.

eNVy CFFS FlexFS YAFFS
Wu & Zwaenepoel (Seung-Ho & (Leeetal,, (Aleph One
(1994) Kyu-Ho, 2006) 2009) Ltd., 2011)
Power-fail No No details No details Yes
Safe
Resource . . .
Overhead High Medium High Low
Performance Medium-High Medium High High

Table 2. Performance comparison among the presented FFS

The comparisons performed in this section clearly show that a single solution able to
efficiently address all challenges of using NAND flash memories to implement high-hand

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 27

mass-storage systems is still missing. A significant effort both from the research and
developers community will be required in the next years to cover this gap. Current solutions
already propose several interesting solutions. Open-source projects such as YAFFS have, in
our opinion, the potential to quickly integrate specific solutions identified by the research
community into a product that can be easily distributed to the users in a short term. In
particular, YAFFS is one of the most interesting solutions in the world of the FFS. However,
there are many things that need to be improved. In fact, although the support for SLC
technology is well-established, the support for MLC devices is still under research. This is
especially linked with the lower reliability of MLC NAND flash devices. At the end, YAFFS
is efficiently linking theory and practice, thus resulting in being today the most complete
solution among the possible open source flash-based file system.

Since the FFS and the related management techniques are continuously evolving, we hope that
this chapter can be a valuable help both to an easier analysis of these strategies and to a more
efficient development of new algorithms and methodologies for flash-based mass memory
devices.

5. Acknowledgments

The authors would like to thank Charles Manning for the valuable comments and advices
at various stages of this manuscript and the FP7 HiPEAC network of excellence (Grant
Agreement no ICT-217068).

6. References

Aleph One Ltd. (2010). Yaffs Direct Interface (YDI), Retrieved April 6, 2011 from the World
Wide Web http://www.yaffs.net/files/yaffs.net/YaffsDirect.pdf.

Aleph One Ltd. (2011). Yet Another Flash File System 2 (YAFFS2), Retrieved April 6, 2011
from the World Wide Web http://www.yaffs.net/.

Ban, A. (1995). Flash file system, u.s. patent 5404485, apr. 4, Retrieved April 6, 2011 from the
World Wide Web http://www. freepatentsonline.com/5404485.pdf.

Brewer, J. & Gill, M. (2008). Nonvolatile Memory Technologies with Emphasis on Flash: A
Comprehensive Guide to Understanding and Using Flash Memory Devices, IEEE Press.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009a). FLARE: A design environment
for flash-based space applications, Proceedings of IEEE International High Level Design
Validation and Test Workshop, HLDVT "09, San Francisco, CA, USA, pp. 14-19.

Caramia, M., Di Carlo, S., Fabiano, M. & Prinetto, P. (2009b). Flash-memories in space
applications: Trends and challenges, Proceedings of the 7th IEEE East-West Design &
Test Symposium, EWDTS 09, Moscow, Russian Federation, pp. 429-432.

Chang, L.-P. & Kuo, T.-W. (2004). An efficient management scheme for large-scale
flash-memory storage systems, Proceedings of the ACM Symposium on Applied
Computing, SAC 04, ACM, Nicosia, Cyprus, pp. 862-868.

Chang, Y.-H., Hsieh, J.-W. & Kuo, T.-W. (2007). Endurance enhancement of flash-memory
storage systems: an efficient static wear leveling design, Proceedings of the 44th annual
Design Automation Conference, DAC '07, ACM, San Diego, California, pp. 212-217.

Chen, B., Zhang, X. & Wang, Z. (2008). Error correction for multi-level NAND flash memory
using Reed-Solomon codes, Proceedings of the IEEE Workshop on Signal Processing
Systems, Washington, DC, USA, pp. 94-99.

www.intechopen.com

28 Flash Memories

Choi, H., Liu, W. & Sung, W. (2010). VLSI implementation of BCH error correction for
multilevel cell NAND flash memory, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 18(6): 843-847.

Cooke, J. (2007). The inconvenient truths of NAND flash memory, Retrieved April 6, 2011 from
the World Wide Web http://download.micron.com/pdf/presentations/
events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf.

Datalight (2010). XCFiles File System for Next Generation Removable Storage, Retrieved April
6, 2011 from the World Wide Web http://www.datalight.com/products/
filesystems/xcfiles.

Deal, E. (2009). Trends in NAND flash memory error correction, Retrieved April 6, 2011
from the World Wide Web http://www.cyclicdesign.com/whitepapers/
Cyclic_Design_NAND_ECC.pdf.

Duann, N. (2009). Error correcting techniques for future NAND flash memory in SSD
applications, Retrieved April 6, 2011 from the World Wide Web http://www.bswd.
com/FMS09/FMS09-201-Duann.pdf.

Gal, E. & Toledo, S. (2005). Algorithms and data structures for flash memories, ACM Comput.
Surv. 37: 138-163.

IEEE Standards Department (1998). IEEE standard definitions and characterization of floating
gate semiconductor arrays, IEEE Std 1005-1998 .

Intel (1998). Understanding the Flash Translation Layer (FTL) specification, AP-684
(order 297816), Retrieved April 6, 2011 from the World Wide Web http:
//www.cse.ust.hk/~yjrobin/reading list/%$5BFlash%20Disks%
5DUnderstanding%20the%20flash%20translation%20layer%$20 (FTL)
%20specification.pdf.

Isilon (2011). OneFS, Retrieved April 6, 2011 from the World Wide Web http://www.
isilon.com/onefs—-operating—system.

Jae-Duk, L., Sung-Hoi, H. & Jung-Dal, C. (2002). Effects of floating-gate interference on NAND
flash memory cell operation, IEEE Electron Device Letters 23(5): 264—266.

Jen-Chieh, Y., Chi-Feng, W., Kuo-Liang, C., Yung-Fa, C., Chih-Tsun, H. & Cheng-Wen, W.
(2002). Flash memory built-in self-test using march-like algorithms, Proceedings
of the First IEEE International Workshop on Electronic Design, Test and Applications,
Christchurch , New Zealand, pp. 137-141.

Jen-Wei, H., Yi-Lin, T., Tei-Wei, K. & Tzao-Lin, L. (2008). Configurable flash-memory
management: Performance versus overheads, IEEE Trans. on Computers
57(11): 1571-1583.

Junho, C. & Wonyong, S. (2009). Efficient software-based encoding and decoding of BCH
codes, IEEE Transactions on Computers 58(7): 878-889.

Kawaguchi, A., Nishioka, S. & Motoda, H. (1995). A flash-memory based file
system, Proceedings of the USENIX Annual Technical Conference, TCON’95, USENIX
Association, New Orleans, Louisiana, pp. 13-13.

Lee, S., Ha, K., Zhang, K., Kim, J. & Kim, J. (2009). FlexFS: a flexible flash file system for
MLC NAND flash memory, Proceedings of the USENIX Annual Technical Conference,
USENIX’'09, USENIX Association, San Diego, California, pp. 9-9.

Ielmini, D. (2009). Reliability issues and modeling of flash and post-flash memory (invited
paper), Microelectronic Engineering 86(7-9): 1870-1875.

Manning, C. (2010). How YAFFS works, Retrieved April 6, 2011 from the World Wide Web
http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf.

www.intechopen.com

Design Issues and Challenges of File Systems for Flash Memories 29

Micheloni, R., Marelli, A. & Ravasio, R. (2008). Error Correction Codes for Non-Volatile Memories,
Springer Publishing Company, Incorporated.

Micron (2007). Hamming codes for NAND flash-memory devices overview, Retrieved
April 6, 2011 from the World Wide Web http://download.micron.com/pdf/
technotes/nand/tn2908.pdf.

Microsoft (2009). Description of the exFAT file system driver update package, Retrieved
April 6, 2011 from the World Wide Web http://support.microsoft.com/kb/
955704/en-us.

Microsoft (2011a). exFAT file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.microsoft.com/about/legal/en/us/IntellectualProperty/
IPLicensing/Programs/exFATFileSystem. aspx.

Microsoft (2011b). File system functionality comparison, Retrieved April 6, 2011
from the World Wide Web http://msdn.microsoft.com/en-us/library/
ee681827 (v=vs.85) .aspx.

Mielke, N., Marquart, T., Wu, N., Kessenich,]., Belgal, H., Schares, E., Trivedi, F.,, Goodness,
E. & Nevill, L. (2008). Bit error rate in NAND flash memories, Proceedings of the IEEE
International Reliability Physics Symposium, Phoenix, AZ, USA, pp. 9-19.

Mincheol, P., Keonsoo, K., Jong-Ho, P. & Jeong-Hyuck, C. (2009). Direct field effect of
neighboring cell transistor on cell-to-cell interference of nand flash cell arrays, IEEE
Electron Device Letters 30(2): 174-177.

Mohammad, M., Saluja, K. & Yap, A. (2000). Testing flash memories, Proceeding of the
Thirteenth International Conference on VLSI Design, IEEE Computer Society, Calcutta,
India, pp. 406—411.

ONFI (2010). Open NAND Flash interface (ONFi) specification, Retrieved April 6, 2011
from the World Wide Web http://onfi.org/wp—content/uploads/2009/
02/0ONFI%202_2%20Gold.pdf.

Rosenblum, M. & Ousterhout, J. K. (1992). The design and implementation of a log-structured
tile system, ACM Trans. Comput. Syst. 10: 26-52.

Samsung (2007). XSR1.5 bad block management, Retrieved April 6, 2011 from
the World Wide Web http://www.samsung.com/global/business/
semiconductor/products/flash/downloads/applicationnote/xsr_
v15_badblockmgmt_application_note.pdf.

SanDisk (2011a). Sandisk’s know-how strengthens the SSD industry, Retrieved April 6, 2011
from the World Wide Web http://www.sandisk.com/business—solutions/
ssd/technical-expertise—--metrics.

SanDisk (2011b). TrueFFS, Retrieved April 6, 2011 from the World Wide Web http://www.
sandisk.nl/Assets/File/OEM/Manuals/pu/mdoc/PU0301.pdf.

SD Association (2011). SDXC, Retrieved April 6, 2011 from the World Wide Web http://
www.sdcard.org/developers/tech/sdxc.

Segger (2005). J-link flash breakpoints, Retrieved April 6, 2011 from the World Wide Web
http://www.segger.com/cms/jlink—-flash-breakpoints.html.

Segger (2010). emkFile file system, Retrieved April 6, 2011 from the World Wide Web http:
//www.segger.com/cms/emfile.html.

Seung-Ho, L. & Kyu-Ho, P. (2006). An efficient NAND flash file system for flash memory
storage, IEEE Transactions on Computers 55(7): 906-912.

www.intechopen.com

30 Flash Memories

Woodhouse, D. (2001). JFES : The Journalling Flash File System, Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario Canada.
URL: http://sources.redhat.com/jffs2/jffs2.pdf

Woodhouse, D. (2009). JFFS2: The Journalling Flash File System, version 2, Retrieved April 6,
2011 from the World Wide Web http://sourceware.org/jffs2/.

Wu, M. (1994). The architecture of eNVy, a non-volatile, main memory storage system, Master’s
thesis, Rice University.

Wu, M. & Zwaenepoel, W. (1994). eNVy: a non-volatile, main memory storage system,
SIGOPS Oper. Syst. Rev. 28: 86-97.

Yaakobi, E., Ma, J., Caulfield, A., Grupp, L., Swanson, S., Siegel, P. &]J.K., W. (2009).
Error correction coding for flash memories, Retrieved April 6, 2011 from the World
Wide Web http://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2009/20090813_S201_Yaakobi.pdf.

Yuan, C. (2008). Flash memory reliability NEPP 2008 task final report, Retrieved April
6, 2011 from the World Wide Web http://trs—-new. jpl.nasa.gov/dspace/
bitstream/2014/41262/1/09-9.pdf.

www.intechopen.com

Flash Memories

FLASH MEMORIES Edited by Prof. Igor Stievano

{dted by igor & Wieang

ISBN 978-953-307-272-2

Hard cover, 262 pages

Publisher InTech

Published online 06, September, 2011
Published in print edition September, 2011

Flash memories and memory systems are key resources for the development of electronic products
implementing converging technologies or exploiting solid-state memory disks. This book illustrates state-of-
the-art technologies and research studies on Flash memories. Topics in modeling, design, programming, and
materials for memories are covered along with real application examples.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Stefano Di Carlo, Michele Fabiano, Paolo Prinetto and Maurizio Caramia (2011). Design Issues and
Challenges of File Systems for Flash Memories, Flash Memories, Prof. Igor Stievano (Ed.), ISBN: 978-953-
307-272-2, InTech, Available from: http://www.intechopen.com/books/flash-memories/design-issues-and-
challenges-of-file-systems-for-flash-memories

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BHIERARKESS _HiBEFR R ARG I AE4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

