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ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Isil Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Abrahdm
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).
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The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Liittgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara Konig (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Miiller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mari€lle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

Welcome to the European Symposium on Programming (ESOP 2020)! The 29th
edition of this conference series was initially planned to be held April 27-30, 2020, in
Dublin, Ireland, but was then moved to fall 2020 due to the COVID-19 outbreak.
ESOP is one of the European Joint Conferences on Theory and Practice of Software
(ETAPS). It is devoted to fundamental issues in the specification, design, analysis, and
implementation of programming languages and systems.

This volume contains 27 papers, which the Program Committee (PC) selected
among 87 submissions. Each submission received between three and six reviews. After
an author response period, the papers were discussed electronically among the PC
members and external reviewers. The one paper for which the PC chair had a conflict of
interest was kindly handled by Sasa Misailovic.

Submissions authored by a PC member were held to slightly higher standards: they
received at least four reviews, had an external reviewer, and were accepted only if they
were not involved in comparisons of relative merit with other submissions. We
accepted two out of four PC submissions.

The final program includes a keynote by Isil Dillig on “Formal Methods for
Evolving Database Applications.”

Any conference depends first and foremost on the quality of its submissions. I would
like to thank all the authors who submitted their work to ESOP 2020! I am truly
impressed by the members of the PC. They produced insightful and constructive
reviews, contributed very actively to the online discussions, and were extremely
helpful. It was an honor to work with all of you! I am also grateful to the external
reviewers, who provided their expert opinions and helped tremendously to reach
well-informed decisions. I would like to thank everybody who contributed to the
organization of ESOP 2020, especially the ESOP 2020 Steering Committee and its
chair Peter Thiemann as well as the ETAPS 2020 Steering Committee and its chair
Marieke Huisman, who provided help and guidance on numerous occasions. Finally,
I’d like to thank Linard Arquint and Vasileios Koutavas for their help with the
proceedings.

February 2020 Peter Miiller
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Formal Methods for Evolving
Database Applications
(Abstract of Keynote Talk)

Isil Dillig

University of Texas at Austin, USA
isil@cs.utexas.edu

Many database applications undergo significant schema changes during their life cycle
due to performance or maintainability reasons. Examples of such schema changes
include denormalization, splitting a single table into multiple tables, and consolidating
multiple tables into a single table. Even though such schema refactorings are quite
common in practice, programmers need to spend significant time and effort to
re-implement parts of the code base that are affected by the schema change. Further-
more, it is not uncommon to introduce bugs during this code transformation process.

In this talk, T will present our recent work on using formal methods to simplify the
schema refactoring process for evolving database applications. Specifically, I will first
propose a definition of equivalence between database applications that operate over
different schemas. Building on this definition, I will then present a fully automated
technique for proving equivalence between a pair of applications. Our verification
technique is capable of automatically synthesizing bisimulation invariants between two
database applications and uses the inferred bisimulation invariant to automatically
prove equivalence.

In the next part of the talk, I will explain how to leverage this verification technique
to completely automate the code migration process. Specifically, given an original
database application P over schema S and a new schema S, T will discuss a practical
program synthesis technique that can be used to generate a new program P’ over
schema S’ such that P and P’ are provably equivalent. In particular, I will first present a
method for generating a program sketch of the new version; then, I will describe a
novel synthesis algorithm that efficiently explores the space of all programs that are in
the search space of the generated sketch.

Finally, T will describe experimental results on a suite of schema refactoring
benchmarks, including real-world database applications written in Ruby-on-Rails.
I will also outline remaining challenges in this area and motivate future research
directions relevant to research in programming languages and formal methods.
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Trace-Relating Compiler Correctness
and Secure Compilation

Carmine Abate!  Roberto Blanco!  Stefan Ciobacd?  Adrien Durier!
Deepak Garg® Citilin Hritcu! Marco Patrignani*® Eric Tanter®! Jérémy Thibault!

nria Paris, France 2UAIC Tasi, Romania 3MPI-SWS, Saarbriicken, Germany 4Stanford University, Stanford, USA
SCISPA, Saarbriicken, Germany University of Chile, Santiago, Chile

Abstract. Compiler correctness is, in its simplest form, defined as the inclusion
of the set of traces of the compiled program into the set of traces of the origi-
nal program, which is equivalent to the preservation of all trace properties. Here
traces collect, for instance, the externally observable events of each execution.
This definition requires, however, the set of traces of the source and target lan-
guages to be exactly the same, which is not the case when the languages are far
apart or when observations are fine-grained. To overcome this issue, we study a
generalized compiler correctness definition, which uses source and target traces
drawn from potentially different sets and connected by an arbitrary relation. We
set out to understand what guarantees this generalized compiler correctness defi-
nition gives us when instantiated with a non-trivial relation on traces. When this
trace relation is not equality, it is no longer possible to preserve the trace prop-
erties of the source program unchanged. Instead, we provide a generic charac-
terization of the target trace property ensured by correctly compiling a program
that satisfies a given source property, and dually, of the source trace property one
is required to show in order to obtain a certain target property for the compiled
code. We show that this view on compiler correctness can naturally account for
undefined behavior, resource exhaustion, different source and target values, side-
channels, and various abstraction mismatches. Finally, we show that the same
generalization also applies to many secure compilation definitions, which char-
acterize the protection of a compiled program against linked adversarial code.

1 Introduction

Compiler correctness is an old idea [37, 40, 41] that has seen a significant revival in re-
cent times. This new wave was started by the creation of the CompCert verified C com-
piler [33] and continued by the proposal of many significant extensions and variants of
CompCert [8, 9, 12, 23, 29, 30, 42, 52, 56, 57, 61] and the success of many other mile-
stone compiler verification projects, including Vellvm [64], Pilsner [45], CakeML [58],
CertiCoq [4], etc. Yet, even for these verified compilers, the precise statement of cor-
rectness matters. Since proof assistants are used to conduct the verification, an external
observer does not have to understand the proofs in order to trust them, but one still has
to deeply understand the statement that was proved. And this is true not just for correct
compilation, but also for secure compilation, which is the more recent idea that our
compilation chains should do more to also ensure security of our programs [3, 26].

Basic Compiler Correctness. The gold standard for compiler correctness is semantic
preservation, which intuitively says that the semantics of a compiled program (in the
target language) is compatible with the semantics of the original program (in the source

© The Author(s) 2020
P. Miiller (Ed.): ESOP 2020, LNCS 12075, pp. 1-28, 2020.
https://doi.org/10.1007/978-3-030-44914-8_1
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language). For practical verified compilers, such as CompCert [33] and CakeML [58],
semantic preservation is stated extrinsically, by referring to traces. In these two settings,
a trace is an ordered sequence of events—such as inputs from and outputs to an external
environment—that are produced by the execution of a program.

A basic definition of compiler correctness can be given by the set inclusion of the
traces of the compiled program into the traces of the original program. Formally [33]:

Definition 1.1 (Basic Compiler Correctness (CC)). A compiler | is correct iff
VYW t. Wt = Wast,

This definition says that for any whole' source program W, if we compile it (denoted
W), execute it with respect to the semantics of the target language, and observe a trace
t, then the original W can produce the same trace t with respect to the semantics of
the source language.” This definition is simple and easy to understand, since it only
references a few familiar concepts: a compiler between a source and a target language,
each equipped with a trace-producing semantics (usually nondeterministic).

Beyond Basic Compiler Correctness. This basic compiler correctness definition as-
sumes that any trace produced by a compiled program can be produced by the source
program. This is a very strict requirement, and in particular implies that the source and
target traces are drawn from the same set and that the same source trace corresponds
to a given target trace. These assumptions are often too strong, and hence in practice
verified compiler efforts use different formulations of compiler correctness:

CompCert [33] The original compiler correctness theorem of CompCert [33] can be
seen as an instance of basic compiler correctness, but it does not provide any guar-
antees for programs that can exhibit undefined behavior [53]. As allowed by the
C standard, such unsafe programs are not even considered to be in the source lan-
guage, so are not quantified over. This has important practical implications, since
undefined behavior often leads to exploitable security vulnerabilities [13, 24, 25]
and serious confusion even among experienced C and C++ developers [32, 53, 59,
60]. As such, since 2010, CompCert provides an additional top-level correctness
theorem? that better accounts for the presence of unsafe programs by providing
guarantees for them up to the point when they encounter undefined behavior [53].
This new theorem goes beyond the basic correctness definition above, as a target
trace need only correspond to a source trace up to the occurrence of undefined
behavior in the source trace.

CakeML [58] Compiler correctness for CakeML accounts for memory exhaustion in
target executions. Crucially, memory exhaustion events cannot occur in source
traces, only in target traces. Hence, dually to CompCert, compiler correctness only
requires source and target traces to coincide up to the occurrence of a memory
exhaustion event in the target trace.

! For simplicity, for now we ignore separate compilation and linking, returning to it in §5.

2 Typesetting convention [47]: we use a blue, sans-serif font for source elements, an orange,
bold font for target ones and a black, italic font for elements common to both languages.

3 Stated at the top of the CompCert file driver/Complements.v and discussed by Regehr [53].
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Trace-Relating Compiler Correctness. Generalized formalizations of compiler cor-
rectness like the ones above can be naturally expressed as instances of a uniform defini-
tion, which we call trace-relating compiler correctness. This generalizes basic compiler
correctness by (a) considering that source and target traces belong to possibly distinct
sets Traces and Tracer, and (b) being parameterized by an arbitrary trace relation ~.

Definition 1.2 (Trace-Relating Compiler Correctness (CC™)). A compiler | is cor-
rect with respect to a trace relation ~ C Traces x Tracer iff

YW.Vt. W]t =ds ~ t. Wass.

This definition requires that, for any target trace t produced by the compiled program
W/, there exist a source trace s that can be produced by the original program W and is
related to t according to ~ (i.e., s ~ t). By choosing the trace relation appropriately,
one can recover the different notions of compiler correctness presented above:
Basic CC Take s ~ t to be s = t. Trivially, the basic CC of Definition 1.1 is CC=.
CompCert Undefined behavior is modeled in CompCert as a trace-terminating event
Goes_wrong that can occur in any of its languages (source, target, and all in-
termediate languages), so for a given phase (or composition thereof), we have
Traces = Tracer. Nevertheless, the relation between source and target traces
with which to instantiate CC™ to obtain CompCert’s current theorem is:
s~t = s=tV(3m<t.s=m Goes_wrong).
A compiler satisfying CC™ for this trace relation can turn a source trace ending
in undefined behavior m-Goes_wrong (where ““-” is concatenation) either into the
same trace in the target (first disjunct), or into a target trace that starts with the
prefix m but then continues arbitrarily (second disjunct, “<” is the prefix relation).
CakeML Here, target traces are sequences of symbols from an alphabet > that has
a specific trace-terminating event, Resource_limit_hit, which is not available
in the source alphabet >s (i.e., X1 = X5 U {Resource_limit_hit}. Then, the
compiler correctness theorem of CakeML can be obtained by instantiating CC™
with the following ~ relation:
s~t = s=tV(Im. m<s.t =m-Resource_limit_hit).
The resulting CC™ instance relates a target trace ending in Resource_limit_hit
after executing m to a source trace that first produces m and then continues in a
way given by the semantics of the source program.

Beyond undefined behavior and resource exhaustion, there are many other practical
uses for CC™: in this paper we show that it also accounts for differences between source
and target values, for a single source output being turned into a series of target outputs,
and for side-channels.

On the flip side, the compiler correctness statement and its implications can be
more difficult to understand for CC™ than for CC=. The full implications of choosing a
particular ~ relation can be subtle. In fact, using a bad relation can make the compiler
correctness statement trivial or unexpected. For instance, it should be easy to see that
if one uses the total relation, which relates all source traces to all target ones, the CC™
property holds for every compiler, yet it might take one a bit more effort to understand
that the same is true even for the following relation:

s~t = AW.Wass A W]t
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Reasoning About Trace Properties. To understand more about a particular CC™ in-
stance, we propose to also look at how it preserves trace properties—defined as sets of
allowed traces [31]—from the source to the target. For instance, it is well known that
CC= is equivalent to the preservation of all trace properties (where W = 7 reads “W
satisfies 7w and stands for Vt. Wt = ¢ € 7):
CCT = Vre2™eyW Wkr = Wll=r.

However, to the best of our knowledge, similar results have not been formulated for
trace relations beyond equality, when it is no longer possible to preserve the trace prop-
erties of the source program unchanged. For trace-relating compiler correctness, where
source and target traces can be drawn from different sets and related by an arbitrary
trace relation, there are two crucial questions to ask:

1. For a source trace property ms of a program—established for instance by formal
verification—what is the strongest target property that any CC™ compiler is guar-
anteed to ensure for the produced target program?

2. For atarget trace property 7r, what is the weakest source property we need to show
of the original source program to obtain 7r for the result of any CC™ compiler?

Far from being mere hypothetical questions, they can help the developer of a verified
compiler to better understand the compiler correctness theorem they are proving, and
we expect that any user of such a compiler will need to ask either one or the other if they
are to make use of that theorem. In this work we provide a simple and natural answer to
these questions, for any instance of CC™. Building upon a bijection between relations
and Galois connections [5, 20, 43], we observe that any trace relation ~ corresponds
to two property mappings 7 and &, which are functions mapping source properties to
target ones (7 standing for “to target”) and target properties to source ones (o standing
for “to source”):

T(ms) ={t | Is.s~t As€ms}; o(rp)={s | Vt.s~t =t €mr}.
The existential image of ~, T, answers the first question above by mapping a given
source property s to the target property that contains all target traces for which there
exists a related source trace that satisfies 7s. Dually, the universal image of ~, &, an-
swers the second question by mapping a given target property 7rr to the source property
that contains all source traces for which all related target traces satisfy . We intro-
duce two new correct compilation definitions in terms of trace property preservation
(TP): TP quantifies over all source trace properties and uses 7 to obtain the corre-
sponding target properties. TP? quantifies over all target trace properties and uses &
to obtain the corresponding source properties. We prove that these two definitions are
equivalent to CC™, yielding a novel trinitarian view of compiler correctness (Figure 1).

YW. Vt. W]t =3s ~ t. Wass
Il
ccr
VTFTVVVVV‘: &(WT) / \ VWSVWW‘: s

= Wl 7mr = TP° TPT = = W] = 7(7s)

Fig. 1: The equivalent compiler correctness definitions forming our trinitarian view.
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Contributions.

We propose a new trinitarian view of compiler correctness that accounts for non-trivial
trace relations. While, as discussed above, specific instances of the CC™ definition have
already been used in practice, we seem to be the first to propose assessing the meaning-
fulness of CC™ instances in terms of how properties are preserved between the source
and the target, and in particular by looking at the property mappings ¢ and 7 induced
by the trace relation ~. We prove that CC™, TP?, and TP7 are equivalent for any
trace relation (§2.2), as illustrated in Figure 1. In the opposite direction, we show that
for every trace relation corresponding to a given Galois connection [20], an analogous
equivalence holds. Finally, we extend these results (§2.3) from the preservation of trace
properties to the larger class of subset-closed hyperproperties (e.g., noninterference).
We use CC™ compilers of various complexities to illustrate that our view on com-
piler correctness naturally accounts for undefined behavior (§3.1), resource exhaustion
(§3.2), different source and target values (§3.3), and differences in the granularity of
data and observable events (§3.4). We expect these ideas to apply to any other discrep-
ancies between source and target traces. For each compiler we show how to choose
the relation between source and target traces and how the induced property mappings
preserve interesting trace properties and subset-closed hyperproperties. We look at the
way particular 6 and 7 work on different kinds of properties and how the produced
properties can be expressed for different kinds of traces.

We analyze the impact of correct compilation on noninterference [22], showing what
can still be preserved (and thus also what is lost) when target observations are finer than
source ones, e.g., side-channel observations (§4). We formalize the guarantee obtained
by correct compilation of a noninterfering program as abstract noninterference [21], a
weakening of target noninterference. Dually, we identify a family of declassifications
of target noninterference for which source reasoning is possible.

Finally, we show that the trinitarian view also extends to a large class of secure com-
pilation definitions [2], formally characterizing the protection of the compiled program
against linked adversarial code (§5). For each secure compilation definition we again
propose both a property-free characterization in the style of CC™, and two character-
izations in terms of preserving a class of source or target properties satisfied against
arbitrary adversarial contexts. The additional quantification over contexts allows for
finer distinctions when considering different property classes, so we study mapping
classes not only of trace properties and hyperproperties, but also of relational hyper-
properties [2]. An example secure compiler accounting for a target that can produce
additional trace events that are not possible in the source illustrates this approach.

The paper closes with discussions of related (§6) and future work (§7). An online ap-
pendix contains omitted technical details: https://arxiv.org/abs/1907.05320.

The traces considered in our examples are structured, usually as sequences of events.
We notice however that unless explicitly mentioned, all our definitions and results are
more general and make no assumption whatsoever about the structure of traces. Most
of the theorems formally or informally mentioned in the paper were mechanized in the
Coq proof assistant and are marked with e . This development has around 10k lines of
code, is described in the online appendix, and is available at the following address:
https://github.com/secure-compilation/different_traces.


https://arxiv.org/abs/1907.05320
https://github.com/secure-compilation/different_traces

6 C. Abate et al.

2 Trace-Relating Compiler Correctness

In this section, we start by generalizing the trace property preservation definitions at
the end of the introduction to TP and TP”, which depend on two arbitrary mappings
o and 7 (§2.1). We prove that, whenever o and 7 form a Galois connection, TP? and
TPT are equivalent (Theorem 2.4). We then exploit a bijective correspondence between
trace relations and Galois connections to close the trinitarian view (§2.2), with two main
benefits: first, it helps us assess the meaningfulness of a given trace relation by look-
ing at the property mappings it induces; second, it allows us to construct new compiler
correctness definitions starting from a desired mapping of properties. Finally, we gen-
eralize the classic result that compiler correctness (i.e., CCT) is enough to preserve not
just trace properties but also all subset-closed hyperproperties [14]. For this, we show
that CC™ is also equivalent to subset-closed hyperproperty preservation, for which we
also define both a version in terms of ¢ and a version in terms of 7 (§2.3).

2.1 Property Mappings

As explained in §1, trace-relating compiler correctness CC™, by itself, lacks a crisp de-
scription of which trace properties are preserved by compilation. Since even the syntax
of traces can differ between source and target, one can either look at trace properties of
the source (but then one needs to interpret them in the target), or at trace properties of
the target (but then one needs to interpret them in the source). Formally we need two
property mappings, 7 : 2772 — 9Tracer apd o . 9Tracer _y glraces which lead us
to the following generalization of trace property preservation (TP).

Definition 2.1 (TP? and TP7). Given two property mappings, T : 2172 — gTracer
and o : 27racer _y 9Traces o o compilation chain -] we define:

TP™ =Vrs. VW. W Enms = W] [=7(ms); TP =Vrr. VW. W Eo(mrr) = W] = 7r.

For an arbitrary source program W, 7 interprets a source property 7s as the farget
guarantee for W . Dually, o defines a source obligation sufficient for the satisfaction
of a target property 7 after compilation. Ideally:
- Given 7, the target interpretation of the source obligation o (7r) should actually
guarantee that 7 holds, i.e., 7(o(7rr)) C 77;
— Dually for 7rs, we would not want the source obligation for 7(7s) to be harder than
s itself, i.e., o(7(7s)) 2 7s.
These requirements are satisfied when the two maps form a Galois connection between
the posets of source and target properties ordered by inclusion. We briefly recall the
definition and the characteristic property of Galois connections [16, 38].

Definition 2.2 (Galois connection). Ler (X, <) and (Y,C) be two posets. A pair of
maps, «: X =Y, v:Y — X isa Galois connection iff it satisfies the adjunction law:
Vee X.VyeY. alzr) Cy < x =2 y(y). a(resp. ) is the lower (upper) adjoint
or abstraction (concretization) function and Y (X ) the abstract (concrete) domain.

We will often write v : (X, <) < (Y, ) : + to denote a Galois connection, or simply
a: X SY v, oreven a = v when the involved posets are clear from context.
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Lemma 2.3 (Characteristic property of Galois connections). If a:(X, <) S (Y, C):y
is a Galois connection, then o,y are monotone and they satisfy these properties:

i) Voe X x=y(a()); i) VyeY.a(y(y) Cy.
If X, Y are complete lattices, then « is continuous, i.e., VF C X. o | F) = | a(F).

If two property mappings, 7 and o, form a Galois connection on trace properties ordered
by set inclusion, Lemma 2.3 (with @ = 7 and 7 = o) tells us that they satisfy the ideal
conditions we discussed above, i.e., 7(o(71)) C 7 and o(7(75)) 2 7s.*

The two ideal conditions on 7 and o are sufficient to show the equivalence of the
criteria they define, respectively TP” and TP?.

Theorem 2.4 (TP™ and TP? coincide &). Ler 7 : 272 = 9Tracer . 5 he g Galois
connection, with T and o the lower and upper adjoints (resp.). Then TPT <— TP?.

2.2 Trace Relations and Property Mappings

We now investigate the relation between CC™, TP™ and TP?. We show that for a trace
relation and its corresponding Galois connection (Lemma 2.7), the three criteria are
equivalent (Theorem 2.8). This equivalence offers interesting insights for both verifi-
cation and design of a correct compiler. For a CC™ compiler, the equivalence makes
explicit both the guarantees one has after compilation (7) and source proof obligations
to ensure the satisfaction of a given target property (o). On the other hand, a compiler
designer might first determine the target guarantees the compiler itself must provide,
i.e., 7, and then prove an equivalent statement, CC™~, for which more convenient proof
techniques exist in the literature [7, 58].

Definition 2.5 (Existential and Universal Image [20]). Given any two sets X and Y
and a relation ~ C A X B, define its existential or direct image, T : 2% 5 2Y and its
universal image, & : 2¥ — 2% as follows:

F=Are2X {y| ma~yrzen};o= 12 {z|War~y=>ycn}.

When trace relations are considered, the existential and universal images can be used to
instantiate Definition 2.1 leading to the trinitarian view already mentioned in §1.

Theorem 2.6 (Trinitarian View «¢). For any trace relation ~ and its existential and
universal images T and &, we have: TPT <— CC~ «— TP°.

This result relies both on Theorem 2.4 and on the fact that the existential and universal
images of a trace relation form a Galois connection (e ). Below we further generalize
this result (Theorem 2.8) relying on a bijective correspondence between trace relations
and Galois connections on properties.

Lemma 2.7 (Trace relations = Galois connections on trace properties). The func-
tion ~ — T S 0 that maps a trace relation to its existential and universal images
is a bijection between trace relations 22> Tracer and Galois connections on trace
properties 2772 = 2Tracer [ig inverse is T S o+ <, where s~ t =t € 7({s}).

* While target traces are often “more concrete” than source ones, trace properties 27 (which
in Coq we represent as the function type Trace—Prop) are contravariant in Trace and thus
target properties correspond to the abstract domain.


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Def.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TraceCriterion.v
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Proof. Gardiner et al. [20] show that the existential image is a functor from the category
of sets and relations to the category of predicate transformers, mapping a set X ~ 2%
and a relation ~ C X x Y + 7 : 2X — 2Y They also show that such a functor
is an isomorphism — hence bijective — when one considers only monotonic predicate
transformers that have a — unique — upper adjoint. The universal image of ~, &, is the
unique adjoint of 7 (&), hence ~ +— 7 < 7 is itself bijective. a

The bijection just introduced allows us to generalize Theorem 2.6 and switch between
the three views of compiler correctness described earlier at will.

Theorem 2.8 (Correspondence of Criteria). For any trace relation ~ and corre-
sponding Galois connection T < o, we have: TPT «— CC~ «— TP°.

Proof. For a trace relation ~ and the Galois connection 7 < ¢, the result follows from
Theorem 2.6. For a Galois connection 7 &= ¢ and ~, use Lemma 2.7 to conclude that
the existential and universal images of ~ coincide with 7 and o, respectively; the goal
then follows from Theorem 2.6. ad

We conclude by explicitly noting that sometimes the lifted properties may be trivial:
the target guarantee can be the true property (the set of all traces), or the source obli-
gation the false property (the empty set of traces). This might be the case when source
observations abstract away too much information (§3.2 presents an example).

2.3 Preservation of Subset-Closed Hyperproperties

A CC= compiler ensures the preservation not only of trace properties, but also of all
subset-closed hyperproperties, which are known to be preserved by refinement [14]. An
example of a subset-closed hyperproperty is noninterference [14]; a CC= compiler thus
guarantees that if W is noninterfering with respect to the inputs and outputs in the trace
then so is WJ]. To be able to talk about how (hyper)properties such as noninterference
are preserved, in this section we propose another trinitarian view involving CC™ and
preservation of subset-closed hyperproperties (Theorem 2.11), slightly weakened in that
source and target property mappings will need to be closed under subsets.

First, recall that a program satisfies a hyperproperty when its complete set of traces,
which from now on we will call its behavior, is a member of the hyperproperty [14].

Definition 2.9 (Hyperproperty Satisfaction). A program W satisfies a hyperproperty
H, written W |= H, iff beh(W) € H, where beh(W) = {t | W~~t}.

Hyperproperty preservation is a strong requirement in general. Fortunately, many inter-
esting hyperproperties are subset-closed (SCH for short), which simplifies their preser-
vation since it suffices to show that the behaviors of the compiled program refine the
behaviors of the source one, which coincides with the statement of CC=.

To talk about hyperproperty preservation in the trace-relating setting, we need an
interpretation of source hyperproperties into the target and vice versa. The one we con-
sider builds on top of the two trace property mappings 7 and o, which are naturally
lifted to hyperproperty mappings. This way we are able to extract two hyperproperty
mappings from a trace relation similarly to §2.2:


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Galois.v
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Definition 2.10 (Lifting property mappings to hyperproperty mappings). Let 7 :
gfraces _y gTracer gng g . QTracer _y gTraces po arbitrary property mappings. The
images of Hs € 92" ,Hr € 22T ynder T and o are, respectively:

7(Hs) = {7(ms) | s € Hs}; o(Hr) = {o(nr) | mr € Hr}.

Formally we are defining two new mappings, this time on hyperproperties, but by a
small abuse of notation we still denote them by 7 and o.

Interestingly, it is not possible to apply the argument used for CC= to show that a
CC~ compiler guarantees W] = 7(Hs) whenever W |= Hs. This is in fact not true
because direct images do not necessarily preserve subset-closure [36, 44]. To fix this
we close the image of 7 and & under subsets (denoted as Clc) and obtain:

Theorem 2.11 (Preservation of Subset-Closed Hyperproperties & ). For any trace
relation ~ and its existential and universal images lifted to hyperproperties, T and &,
and for Clc (H) = {n | 3n" € H. w C «'}, we have:
SCHP'<°™ «= CC™ <= SCHP'<°?, where
SCHPY<c°" = YWWVHs € SCHs.W |= Hs = W{ |= Clc(7(Hs));
SCHP®<°? = YWVYHy € SCHt.W = Clc(6(Hr)) = W] = Hr.

Theorem 2.11 makes us aware of the potential loss of precision when interested in
preserving subset-closed hyperproperties through compilation. In §4 we focus on a se-
curity relevant subset-closed hyperproperty, noninterference, and show that such a loss
of precision can be intended as a declassification of noninterference.

3 Instances of Trace-Relating Compiler Correctness

The trace-relating view of compiler correctness above can serve as a unifying frame-
work for studying a range of interesting compilers. This section provides several rep-
resentative instantiations of the framework: source languages with undefined behavior
that compilation can turn into arbitrary target behavior (§3.1), target languages with re-
source exhaustion that cannot happen in the source (§3.2), changes in the representation
of values (§3.3), and differences in the granularity of data and observable events (§3.4).

3.1 Undefined Behavior

We start by expanding upon the discussion of undefined behavior in §1. We first study
the model of CompCert, where source and target alphabets are the same, including the
event for undefined behavior. The trace relation weakens equality by allowing undefined
behavior to be replaced with an arbitrary sequence of events.

Example 3.1 (CompCert-like Undefined Behavior Relation). Source and target traces
are sequences of events drawn from X, where Goes_wrong € X' is a terminal event that
represents an undefined behavior. We then use the trace relation from the introduction:
s~t = s=tvdm<t.s=m- Goes_wrong.

Each trace of a target program produced by a CC™ compiler is either also a trace of the
original source program or it has a finite prefix that the source program also produces,
immediately before encountering undefined behavior. As explained in §1, one of the
correctness theorems in CompCert can be rephrased as this variant of CC™.


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/SSCHCriterion.v
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We proved that the property mappings induced by the relation can be written as (4 ):

o(mr) = {s | s€mr As # m-Goes_wrong} U {m-Goes_wrong | Vt. m<t = t€mr};
T(ms) = {t | tems}U{t | Im < t. m-Goes_wrong € ms} .

These two mappings explain what a CC™ compiler ensures for the ~ relation above. The
target-to-source mapping ¢ states that to prove that a compiled program has a property
7 using source-level reasoning, one has to prove that any trace produced by the source
program must either be a target trace satisfying 74 or have undefined behavior, but only
provided that any continuation of the trace substituted for the undefined behavior satis-
fies 7v. The source-to-target mapping 7 states that by compiling a program satisfying
a property ms we obtain a program that produces traces that satisfy the same property
or that extend a source trace that ends in undefined behavior.

These definitions can help us reason about programs. For instance, & specifies that,
to prove that an event does not happen in the target, it is not enough to prove that it
does not happen in the source: it is also necessary to prove that the source program is
does not have any undefined behavior (second disjunct). Indeed, if it had an undefined
behavior, its continuations could exhibit the unwanted event. D]

This relation can be easily generalized to other settings. For instance, consider the
setting in which we compile down to a low-level language like machine code. Target
traces can now contain new events that cannot occur in the source: indeed, in modern
architectures like x86 a compiler typically uses only a fraction of the available instruc-
tion set. Some instructions might even perform dangerous operations, such as writing
to the hard drive. Formally, the source and target do not have the same events any more.
Thus, we consider a source alphabet ¥s = X' U {Goes_wrong}, and a target alpha-
bet X1+ = X U X’. The trace relation is defined in the same way and we obtain the
same property mappings as above, except that since target traces now have more events
(some of which may be dangerous), and the arbitrary continuations of target traces get
more interesting. For instance, consider a new event that represents writing data on the
hard drive, and suppose we want to prove that this event cannot happen for a compiled
program. Then, proving this property requires exactly proving that the source program
exhibits no undefined behavior [11]. More generally, what one can prove about target-
only events can only be either that they cannot appear (because there is no undefined
behavior) or that any of them can appear (in the case of undefined behavior).

In §5.2 we study a similar example, showing that even in a safe language linked ad-
versarial contexts can cause dangerous target events that have no source correspondent.

3.2 Resource Exhaustion

Let us return to the discussion about resource exhaustion in §1.

Example 3.2 (Resource Exhaustion). We consider traces made of events drawn from
Y5 in the source, and X1 = ¥s U {Resource_Limit_Hit} in the target. Recall the
trace relation for resource exhaustion:

s~t = s=tVvVdm<s.t=m-Resource_Limit_Hit.
Formally, this relation is similar to the one for undefined behavior, except this time it is
the target trace that is allowed to end early instead of the source trace.


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/UndefBehaviorCompCert.v
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The induced trace property mappings & and 7 are the following (¢ ):
g(mr) ={s|senr}n{s|V¥m <s.m- Resource_Limit Hit € wr};
7(ms) = ms U {m - Resource_Limit_Hit | 3s € 7s. m < s}.

These capture the following intuitions. The target-to-source mapping & states that to
prove a property of the compiled program one has to show that the traces of the source
program satisfy two conditions: (1) they must also satisfy the target property; and (2)
the termination of every one of their prefixes by a resource exhaustion error must be
allowed by the target property. This is rather restrictive: any property that prevents re-
source exhaustion cannot be proved using source-level reasoning. Indeed, if 7w+ does
not allow resource exhaustion, then & (7 ) = @. This is to be expected since resource
exhaustion is simply not accounted for at the source level. The other mapping 7 states
that a compiled program produces traces that either belong to the same properties as the
traces of the source program or end early due to resource exhaustion.

In this example, safety properties [31] are mapped (in both directions) to other safety
properties (e ). This can be desirable for a relation: since safety properties are usually
easier to reason about, one interested only in safety properties at the target can reason
about them using source-level reasoning tools for safety properties.

The compiler correctness theorem in CakeML is an instance of CC™ for the ~
relation above. We have also implemented two small compilers that are correct for this
relation. The full details can be found in the Coq development in the supplementary
materials. The first compiler ( ) goes from a simple expression language (similar to the
one in §3.3 but without inputs) to the same language except that execution is bounded by
some amount of fuel: each execution step consumes some amount of fuel and execution
immediately halts when it runs out of fuel. The compiler is the identity.

The second compiler () is more interesting: we proved this CC™ instance for a
variant of a compiler from a WHILE language to a simple stack machine by Xavier
Leroy [35]. We enriched the two languages with outputs and modified the semantics of
the stack machine so that it falls into an error state if the stack reaches a certain size.
The proof uses a standard forward simulation modified to account for failure. ©

We conclude this subsection by noting that the resource exhaustion relation and
the undefined behavior relation from the previous subsection can easily be combined.
Indeed, given a relation ~yg and a relation ~gg defined as above on the same sets of
traces, we can build a new relation ~ that allows both refinement of undefined behavior
and resource exhaustion by taking their union: s ~ t =s ~yg t V s ~gg t. A compiler
that is CC™~v or CC™®E s trivially CC™, though the converse is not true.

3.3 Different Source and Target Values

We now illustrate trace-relating compilation for a translation mapping source-level
booleans to target-level natural numbers. Given the simplicity of this compiler, most
of the details of the formalization are deferred to the online appendix.

The source language is a pure, statically typed expression language whose expres-
sions e include naturals n, booleans b, conditionals, arithmetic and relational operations,
boolean inputs in, and natural inputs in,. A trace s is a list of inputs is paired with a
result r, which can be a natural, a boolean, or an error. Well-typed programs never pro-
duce error (= ). Types ty are either N (naturals) or B (booleans); typing is standard. The


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/ResourceExhaustion.v
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source language has a standard big-step operational semantics (e ~» (is, r)) which tells
how an expression e generates a trace (is, r). The target language is analogous, except
that it is untyped, only has naturals n and its only inputs are naturals in,,. The semantics
of the target language is also given in big-step style. Since we only have naturals and
all expressions operate on them, no error result is possible in the target.

The compiler is homomorphic, translating a source expression to the same target
expression; the only differences are natural numbers (and conditionals), as noted below.

truel =1 inpl =in, e < eyl =if e;] < ep) then1elseO

false] =0 in,l =in, if e;theneyelsees| =if e;] < 0 then e3] else ey
When compiling an if-then-else the target condition e;] < 0 is used to check that e; is
false, and therefore the then and else branches of the source are swapped in the target.

Relating Traces. We relate basic values (naturals and booleans) in a non-injective fash-
ion as noted below. Then, we extend the relation to lists of inputs pointwise (Rules Empty
and Cons) and lift that relation to traces (Rules Nat and Bool).

n~n true~n ifn>0 false ~ 0
(Empty) (Cons) ] . (Nat) ) . (Bool)
i~i  is~is is~is n~n is~is b~n
g~ i-is~i-is (is,n) ~ (is, n) (is,b) ~ (is, n)

Property mappings. The property mappings ¢ and 7 induced by the trace relation ~
defined above capture the intuition behind encoding booleans as naturals:
— the source-to-target mapping allows true to be encoded by any non-zero number;
— the target-to-source mapping requires that 0 be replaceable by both 0 and false.

Compiler correctness. With the relation above, the compiler is proven to satisfy CC™.

Theorem 3.3 (-| is correct ). -| is CC™.

Simulations with different traces. The difficulty in proving Theorem 3.3 arises from
the trace-relating compilation setting: For compilation chains that have the same source
and target traces, it is customary to prove compiler correctness using a forward simula-
tion (i.e., a simulation between source and target transition system); then, using deter-
minacy [18, 39] of the target language and input totality [19, 63] (aka receptiveness) of
the source, this forward simulation is flipped into a backward simulation (a simulation
between target and source transition system), as described by Beringer et al. [7], Leroy
[34]. This flipping is useful because forward simulations are often much easier to prove
(by induction on the transitions of the source) than backward ones, as it is the case here.

We first give the main idea of the flipping proof, when the inputs are the same in
the source and the target [7, 34]. We only consider inputs, as it is the most interesting
case, since with determinacy, nondeterminism only occurs on inputs. Given a forward
simulation R, and a target program W that simulates a source program Ws, W is
able to perform an input iff so is Ws: otherwise, say for instance that \Ws performs an
output, by forward simulation W would also perform an output, which is impossible
because of determinacy. By input totality of the source, Ws must be able to perform
the exact same input as W; using forward simulation and determinacy, the resulting
programs must be related.


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TypeRelationExampleInput.v
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We _ Ws R Wi
I
| .
I 12 11
| By input totality By contradiction,
p
Y using forward simulation
HWSl N . and determinacy W,
- - - R - -

By forward simulation and determinacy

However, our trace relation is not injective (both 0 and false are mapped to 0),
therefore these arguments do not apply: not all possible inputs of target programs are
accounted for in the forward simulation. We thus have to strengthen the forward sim-
ulation assumption, requiring the following additional property to hold, for any source
program Ws and target program W related by the forward simulation R.

Wi R— Wy
Jis, 7 irs where isq ~ it
7 s iTq . .
~ IS1 ~ 112
dWs, \VYS1 R—— WT} B Wty igp ~ it
-=-

We say that a forward simulation for which this property holds is flippable. For our
example compiler, a flippable forward simulation works as follows: whenever a boolean
input occurs in the source, the target program must perform every strictly positive input
n (and not just 1, as suggested by the compiler). Using this property, determinacy of
the target, input totality of the source, as well as the fact that any target input has an
inverse image through the relation, we can indeed show that the forward simulation can
be turned into a backward one: starting from Ws R W and an input ip,, we show
that there is is; and i1, as in the diagram above, using the same arguments as when the
inputs are the same; because the simulation is flippable, we can close the diagram, and
obtain the existence of an adequate is,. From this we obtain CC"™.

In fact, we have proven a completely general ‘flipping theorem’, with this flippable
hypothesis on the forward simulation (e ). We have also shown that if the relation ~
defines a bijection between the inputs of the source and the target, then any forward
simulation is flippable, hence reobtaining the usual proof technique [7, 34] as a special
case. This flipping theorem is further discussed in the online appendix.

3.4 Abstraction Mismatches

We now consider how to relate traces where a single source action is compiled to mul-
tiple target ones. To illustrate this, we take a pure, statically-typed source language that
can output (nested) pairs of arbitrary size, and a pure, untyped target language where
sent values have a fixed size. Concretely, the source is analogous to the language of §3.3,
except that it does not have inputs or booleans and it has an expression send e, which
can emit a (nested) pair e of values in a single action. That is, given that e reduces
to a pair, e.g., (v1, (v2,v3)), expression send (v1, (v2,v3)) emits action (v1, (v2,v3)).
That expression is compiled into a sequence of individual sends in the target language
send v1 ; send v2 : send v3, since in the target, send e sends the value that e re-
duces to, but the language has no pairs.
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Due to space constraints we omit the full formalization of these simple languages
and of the homomorphic compiler (()l : e — e). The only interesting bit is the
compilation of the send - expression, which relies on the gensend (-) function below.
That function takes a source expression of a given type and returns a sequence of target
send - instructions that send each element of the expression.

send (Fe:N)| if7 =N
gensend (Fe:7) = .
gensend (Fe.l:7');gensend(Fe2:7") ifr=7"x71"

Relating Traces. We start with the trivial relation between numbers: n ~%1n,ie., num-

bers are related when they are the same. We cannot build a relation between single ac-
tions since a single source action is related to multiple target ones. Therefore, we define
a relation between a source action M and a target trace t (a list of numbers), inductively
on the structure of M (which is a pair of values, and values are natural numbers or pairs).

(Trace-Rel-N-N) (Trace-Rel-N-M) (Trace-Rel-M-N) (Trace-Rel-M-M)
n~"n n'~%n n~"n  M~t M~t n~n M~t M ~tf
(n,n"y~n-n’ (n,M)~n-t (M,n)~t-n (M, My ~t -t/

A pair of naturals is related to the two actions that send each element of the pair
(Rule Trace-Rel-N-N). If a pair is made of sub-pairs, we require all such sub-pairs to be
related (Rules Trace-Rel-N-M to Trace-Rel-M-M). We build on these rules to define the

s ~ t relation between source and target traces for which the (Trace-Rel-Single)
compiler is correct (Theorem 3.4). Trivially, traces are related s~ t M~ t/
when they are both empty. Alternatively, given related traces, s-M~t -t/

we can concatenate a source action and a second target trace
provided that they are related (Rule Trace-Rel-Single).

Theorem 3.4 ((-)] is correct). (-)] is CC™.

With our trace relation, the trace property mappings capture the following intuitions:

— The target-to-source mapping states that a source property can reconstruct target
action as it sees fit. For example, trace 4 - 6 - 5 - 7 is related to (4,6) - (5,7) and
((4,(6,(5,7)))) (and many more variations). This gives freedom to the source im-
plementation of a target behavior, which follows from the non-injectivity of ~.

— The source-to-target mapping “forgets” about the way pairs are nested, but is faith-
ful w.r.t. the values v; contained in a message. Notice that source safety properties
are always mapped to target safety properties. For instance, if s € Safetys pre-
scribes that some bad number is never sent, then 7(7s) prescribes the same number
is never sent in the target and 7(7s) € Safetyr. Of course if 75 € Safetys pre-
scribes that a particular nested pairing like (4, (6, (5, 7))) never happens, then 7(7s)
is still a target safety property, but the trivial one, since 7(7s) = T € Safety.

4 Trace-Relating Compilation and Noninterference Preservation

When source and target observations are drawn from the same set, a correct compiler
(CC7) is enough to ensure the preservation of all subset-closed hyperproperties, in par-
ticular of noninterference (NI) [22], as also mentioned at the beginning of §2.3. In the

5 Making ~ injective is a matter of adding open and close parenthesis actions in target traces.
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scenario where target observations are strictly more informative than source observa-
tions, the best guarantee one may expect from a correct trace-relating compiler (CC™)
is a weakening (or declassification) of target noninterference that matches the noninter-
ference property satisfied in the source. To formalize this reasoning, this section applies
the trinitarian view of trace-relating compilation to the general framework of abstract
noninterference (ANI) [21].

We first define NI and explain the issue of preserving source NI via a CC™ compiler.
We then introduce ANI, which allows characterizations of various forms of noninterfer-
ence, and formulate a general theory of ANI preservation via CC™. We also study how
to deal with cases such as undefined behavior in the target. Finally, we answer the dual
question, i.e., which source NI should be satisfied to guarantee that compiled programs
are noninterfering with respect to target observers.

Intuitively, NI requires that publicly observable outputs do not reveal information
about private inputs. To define this formally, we need a few additions to our setup. We
indicate the (disjoint) input and output projections of a trace t as t° and ¢* respectively®.
Denote with [t];,,, the equivalence class of a trace ¢, obtained using a standard low-
equivalence relation that relates low (public) events only if they are equal, and ingores
any difference between private events. Then, NI for source traces can be defined as:

Nls = {71'5 | Vs1s2 € Ts. [Si]low = [Sz}low = [Si]low = [Sﬁ]low }
That is, source NI comprises the sets of traces that have equivalent low output projec-
tions as long as their low input projections are equivalent.

Trace-Relating Compilation and Noninterference. When additional observations are
possible in the target, it is unclear whether a noninterfering source program is compiled
to a noninterfering target program or not, and if so, whether the notion of NI in the tar-
get is the expected or desired one. We illustrate this issue considering a scenario where
target traces extend source ones by exposing the execution time. While source noninter-
ference Nls requires that private inputs do not affect public outputs, NI+ additionally
requires that the execution time is not affected by private inputs.

To model the scenario described, let Traces denote the set of traces in the source,
and Tracer = Traces x N“ be the set of target traces, where N“ = N U {w}. Tar-
get traces have two components: a source trace, and a natural number that denotes
the time spent to produce the trace (w if infinite). Notice that if two source traces
s1,S2, are low-equivalent then {si,s>} € Nls and {(s1,42), (s1,42)} € NI, but
{(s1,42), (s2,43)} & NI and {(s1,42), (s2,42), (s1,43), (s2,43)} & NIr.

Consider the following straightforward trace relation, which relates a source trace
to any target trace whose first component is equal to it, irrespective of execution time:

s~t = dn.t=(s,n).
A compiler is CC™ if any trace that can be exhibited in the target can be simulated
in the source in some amount of time. For such a compiler Theorem 2.11 says that
if W satisfies Nls, then W/ satisfies Clc o 7(Nls), which however is strictly weaker
than NI, as it contains, e.g., {(s1,42), (s2,42), (s1,43), (s2,43)}, and one cannot
conclude that W/ is noninterfering in the target. It is easy to prove that

¢ Here we only require the projections to be disjoint. Depending on the scenario and the attacker
model the projections might record information such as the ordering of events.



16 C. Abate et al.

Clc o7(Nlg) = Clc ({7ms xN“ | ms € Nls}) ={ms xZ | s € NIs AZ C N¥} |
the first equality coming from 7(7s) = 7s x N, and the second from Nls being
subset-closed. As we will see, this hyperproperty can be characterized as a form of
NI, which one might call timing-insensitive noninterference, and ensured only against
attackers that cannot measure execution time. For this characterization, and to describe
different forms of noninterference as well as formally analyze their preservation by a
CC~™ compiler, we rely on the general framework of abstract noninterference [21].

Abstract Noninterference. ANI [21] is a generalization of NI whose formulation re-
lies on abstractions (in abstract interpretation sense [16]) in order to encompass arbi-
trary variants of NI. ANI is parameterized by an observer abstraction p, which denotes
the distinguishing power of the attacker, and a selection abstraction ¢, which specifies
when to check NI, and therefore captures a form of declassification [54].7 Formally:
ANIS = {7 | Viits € 7 6(85) = 6(t3) = plt5) = p(t3)} -

By picking ¢ = p = []jow, We recover the standard noninterference defined above,
where NI must hold for all low inputs (i.e., no declassification of private inputs), and
the observational power of the attacker is limited to distinguishing low outputs.

The observational power of the attacker can be weakened by choosing a more liberal
relation for p. For instance, one may limit the attacker to observe the parity of output
integer values. Another way to weaken ANI is to use ¢ to specify that noninterference
is only required to hold for a subset of low inputs.

To be formally precise, ¢ and p are defined over sets of (input and output projections
of) traces, so when we write ¢(t) above, this should be understood as a convenience
notation for ¢({¢}). Likewise, ¢ = [-];0,, should be understood as ¢ = A. | J,c . [t]i0w>
i.e., the powerset lifting of [-];,.,. Additionally, ¢ and p are required to be upper-closed
operators (uco)—i.e., monotonic, idempotent and extensive—on the poset that is the
powerset of (input and output projections of) traces ordered by inclusion [21].

Trace-Relating Compilation and ANI for Timing. We can now reformulate our ex-
ample with observable execution times in the target in terms of ANI. We have Nls =
ANI f,’: with ¢s = ps = []iow- In this case, we can formally describe the hyperproperty
that a compiled program W satisfies whenever W satisfies Nls as an instance of ANI:

Clc o 7(Nls) = ANIZ?

for ¢ = ¢s and prp () = {(s,n) | I(s1,11) € 7. [5]10w = [51]10w } -
The definition of ¢ tells us that the trace relation does not affect the selection abstrac-
tion. The definition of p-. characterizes an observer that cannot distinguish execution
times for noninterfering traces (notice that n; in the definition of p. is discarded). For
instance, p-({(s,n1)}) = pr({(s,n2)}), for any s, nq, n,. Therefore, in this setting,
we know explicitly through p-. that a CC™ compiler degrades source noninterference
to target timing-insensitive noninterference.

Trace-Relating Compilation and ANI in General. While the particular ¢ and p--
above can be discovered by intuition, we want to know whether there is a systematic
way of obtaining them in general. In other words, for any trace relation ~ and any

" ANT includes a third parameter 7, which describes the maximal input variation that the attacker
may control. Here we omit 7 (i.e., take it to be the identity) in order to simplify the presentation.
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notion of source NI, what property is guaranteed on noninterfering source programs by
any CC™ compiler?

We can now answer this question generally (Theorem 4.1): any source notion of

noninterference expressible as an instance of ANI is mapped to a corresponding in-
stance of ANI in the target, whenever source traces are an abstraction of target ones
(i.e., when ~ is a total and surjective map). For this result we consider trace relations
that can be split into input and output trace relations (denoted as ~ £ (<, <)) such that
s~t <= s°~t°As* < t°. The trace relation ~ corresponds to a Galois connection
between the sets of trace properties 7 < & as described in §2.2. Similarly, the pair ~
and ~ corresponds to a pair of Galois connections, 7° < &° and 7* < °, between the
sets of input and output properties. In the timing example, time is an output so we have
~ 2 (= A) and % is defined as s* ~ t* = In. t* = (s*, n).
Theorem 4.1 (Compiling ANI). Assume traces of source and target languages are
related via ~ C Traces x Tracer, ~ = (X, ) such that ~ and ~ are both total
maps from target to source traces, and ~ is surjective. Assume | is a CC™~ compiler,
and ¢s € uco(277) ps € uco (2772,

#
If W satisfies ANI ’)S , then W/ satisfies ANI Z: , where gbﬁ and pﬁ are defined as:

¢T=g°0¢50f°; pi =g opsof and
={s g(m) ={t" | V. A t" = 5" € 1e}
(and both f* and g* are deﬁned analogously).

For the example above we recover the definitions we justified intuitively, i.e., q&ﬁ =
g°opso f° =y and pT = g* o pso f* = p. Moreover, we can prove that if ~ also

is surjective, ANI pT C Clc o 7(ANI;). Therefore, the derived guarantee ANI e is
at least as strong as the one that follows by just knowing that the compiler | is CCN

Noninterference and Undefined Behavior. As stated above, Theorem 4.1 does not
apply to several scenarios from §3 such as undefined behavior (§3.1), as in those cases
the relation ~ is not a total map. Nevertheless, we can still exploit our framework to
reason about the impact of compilation on noninterference.

Let us consider ~ £ (<, 4) where ~ is any total and surjective map from target to
source inputs (e.g., equality) and ~ is defined as s* ~ t* =s* =tV Im* < t°.s* =
m® - Goes_wrong. Intuitively, a CC™ compiler guarantees that no interference can be
observed by a target attacker that cannot exploit undefined behavior to learn private
information. This intuition can be made formal by the following theorem.

Theorem 4.2 (Relaxed Compiling ANI). Relax the assumptions of Theorem 4.1 by
allowmg ~ to be any output trace relation. If W satisfies ANI?, then W/ satisfies

@s’

ANI Z;ﬁ where (bT is defined as in Theorem 4.1, and pT is such that:

Vs t.st &6t = pl () = pT (7 (ps(s7))-

Technically, instead of giving us a definition of p?f, the theorem gives a property of it.
The property states that, given a target output trace t°, the attacker cannot distinguish it
from any other target output traces produced by other possible compilations (7°) of the
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source trace s it relates to, up to the observational power of the source level attacker ps.
Therefore, given a source attacker ps, the theorem characterizes a family of attackers
that cannot observe any interference for a correctly compiled noninterfering program.
Notice that the target attacker p# = A_. | satisfies the premise of the theorem, but
e

defines a trivial hyperproperty, so that we cannot prove in general that A NI Z; C Clco

T
F(ANIZ;). The same p = A_. T shows that the family of attackers described in
Theorem 4.2 is nonempty, and this ensures the existence of a most powerful attacker

among them [21], whose explicit characterization we leave for future work.

From Target NI to Source NI. We now explore the dual question: under what hy-
potheses does trace-relating compiler correctness alone allow target noninterference to
be reduced to source noninterference? This is of practical interest, as one would be able
to protect from target attackers by ensuring noninterference in the source. This task can
be made easier if the source language has some static enforcement mechanism [1, 36].

Let us consider the languages from §3.4 extended with inputting of (pairs of) values.
It is easy to show that the compiler described in §3.4 is still CC™. Assume that we want
to satisfy a given notion of target noninterference after compilation, i.e., W] [=ANI ng
Recall that the observational power of the target attacker, p-, is expressed as a property
of sequences of values. To express the same property (or attacker) in the source, we
have to abstract the way pairs of values are nested. For instance, the source attacker
should not distinguish (vq, (v2,v3)) and ({v1,v2),v3). In general (i.e., when ~ is not
the identity), this argument is valid only when ¢ can be represented in the source.
More precisely, ¢ must consider as equivalent all target inputs that are related to the
same source one, because in the source it is not possible to have a finer distinction of
inputs. This intuitive correspondence can be formalized as follows:

Theorem 4.3 (Target ANI by source ANI). Let o € uco(2773°°1), p € uco(2T72¢T)
and ~ a total and surjective map from source outputs to target ones and assume that

Vst.s° o t° = o (t°) = dp(7°(5°)).
#
If -1 is a CC™ compiler and W satisfies ANIZS , then W satisfies ANI"™ for
S

o
0¥ =50y o 7; pE=5"0proi.

To wrap up the discussion about noninterference, the results presented in this section
formalize and generalize some intuitive facts about compiler correctness and noninter-
ference. Of course, they all place some restrictions on the shape of the noninterference
instances that can be considered, because compiler correctness alone is in general not a
strong enough criterion for dealing with many security properties [6, 17].

5 Trace-Relating Secure Compilation

So far we have studied compiler correctness criteria for whole, standalone programs.
However, in practice, programs do not exist in isolation, but in a context where they in-
teract with other programs, libraries, etc. In many cases, this context cannot be assumed
to be benign and could instead behave maliciously to try to disrupt a compiled program.

Hence, in this section we consider the following secure compilation scenario: a
source program is compiled and linked with an arbitrary target-level context, i.e., one
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that may not be expressible as the compilation of a source context. Compiler correctness
does not address this case, as it does not consider arbitrary target contexts, looking
instead at whole programs (empty context [33]) or well-behaved target contexts that
behave like source ones (as in compositional compiler correctness [27, 30, 45, 57]).

To account for this scenario, Abate et al. [2] describe several secure compilation
criteria based on the preservation of classes of (hyper)properties (e.g., trace properties,
safety, hypersafety, hyperproperties, etc.) against arbitrary target contexts. For each of
these criteria, they give an equivalent “property-free” criterion, analogous to the equiv-
alence between TP and CC™. For instance, their robust trace property preservation cri-
terion (RTP) states that, for any trace property 7, if a source partial program P plugged
into any context Cg satisfies 7, then the compiled program P/ plugged into any target
context C satisfies 7. Their equivalent criterion to RTP is RTC, which states that for
any trace produced by the compiled program, when linked with any target context, there
is a source context that produces the same trace. Formally (writing C [P] to mean the
whole program that results from linking partial program P with context C') they define:

RTP =VP. Vr. (VCs. Vt.Cs [P]wt = t € 1) = (VCr. Vt. Cp [Pl]wt =t € 7);
RTC =VP.VCr.Vt.Cr [Pl]~t = 3Cs. Cs [P]t.

In the following we adopt the notation P =g 7 to mean “P robustly satisfies 7,” i.e., P
satisfies 7 irrespective of the contexts it is linked with. Thus, we write more compactly:
RTP =Vn. VP. P |=rm = Pl =y 7.

All the criteria of Abate et al. [2] share this flavor of stating the existence of some
source context that simulates the behavior of any given target context, with some varia-
tions depending on the class of (hyper)properties under consideration. All these criteria
are stated in a setting where source and target traces are the same. In this section, we ex-
tend their result to our trace-relating setting, obtaining trintarian views for secure com-
pilation. Despite the similarities with §2, more challenges show up, in particular when
considering the robust preservation of proper sub-classes of trace properties. For exam-
ple, after application of & or 7, a property may not be safety anymore, a crucial point for
the equivalence with the property-free criterion for safety properties by Abate et al. [2].
We solve this by interpreting the class of safety properties as an abstraction of the class
of all trace properties induced by a closure operator (§5.1). The remaining subsections
provide example compilation chains satisfying our trace-relating secure compilation
criteria for trace properties (§5.2) and for safety properties hypersafety (§5.3).

5.1 Trace-Relating Secure Compilation: A Spectrum of Trinities

In this subsection we generalize many of the criteria of Abate et al. [2] using the ideas
of §2. Before discussing how we solve the challenges for classes such as safety and
hypersafety, we show the simple generalization of RTC to the trace-relating setting
(RTC™) and its corresponding trinitarian view (Theorem 5.1):

Theorem 5.1 (Trinity for Robust Trace Properties «). For any trace relation ~ and
induced property mappings © and &, we have: RTPT <= RTC™ <= RTP?, where

RTC™ = VP VYCry Vt. Cp [P]]~t = 3Cs 3s ~ t. Cg [P]rs;
RTP™ = VP Vs € 2775, P |=g s = P =5 7(7s);
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RTP? = VP Vrrp € 27727 P =g 5(mr1) = P| =g 7.

Abate et al. [2] propose many more equivalent pairs of criteria, each preserving different
classes of (hyper)properties, which we briefly recap now. For trace properties, they also
have criteria that preserve safety properties plus their version of liveness properties. For
hyperproperties, they have criteria that preserve hypersafety properties, subset-closed
hyperproperties, and arbitrary hyperproperties. Finally, they define relational hyper-
properties, which are relations between the behaviors of multiple programs for express-
ing, e.g., that a program always runs faster than another. For relational hyperproperties,
they have criteria that preserve arbitrary relational properties, relational safety proper-
ties, relational hyperproperties and relational subset-closed hyperproperties. Roughly
speaking, the security guarantees due to robust preservation of trace properties regard
only protecting the integrity of the program from the context, the guarantees of hyper-
properties also regard data confidentiality, and the guarantees of relational hyperprop-
erties even regard code confidentiality. Naturally, these stronger guarantees are increas-
ingly harder to enforce and prove.

While we have lifted the most significant criteria from Abate et al. [2] to our trini-
tarian view, due to space constraints we provide the formal definitions only for the two
most interesting criteria. We summarize the generalizations of many other criteria in
Figure 2, described at the end. Omitted definitions are available in the online appendix.

Beyond Trace Properties: Robust Safety and Hyperproperty Preservation. We
detail robust preservation of safety properties and of arbitrary hyperproperties since they
are both relevant from a security point of view and their generalization is interesting.

Theorem 5.2 (Trinity for Robust Safety Properties «/). For any trace relation ~
and for the induced property mappings T and &, we have:

RTPS%e°T «—— RSC™ <= RSP?, where
RSC™ =VP VCr Vt Vi < t.Cp [P)|»t = 3Cs It' > m Is ~ t'. Cs [P]~s;
RTPS4/e°% = yPVrg € 27 P |=p 715 = P =4 (Safe o 7)(s);
RSP? = VPVrr € Safetyr.P =g 6(71) = P} =g 7.

There is an interesting asymmetry between the last two characterizations above, which
we explain now in more detail. RSP? quantifies over target safety properties, while
RTPS4/e°T quantifies over arbitrary source properties, but imposes the composition of
7 with Safe, which maps an arbitrary target property 7 to the target safety property
that best over-approximates 7% (an analogous closure was needed for subset-closed
hyperproperties in Theorem 2.11). More precisely, Safe is a closure operator on target
properties, with Safetyr = {Safe(mr) ’ mp € 2772eT 1 The mappings
Safe o 7 : 272 = Safetyr : &

determine a Galois connection between source trace properties and target safety prop-
erties, and ensure the equivalence RTPS%¢°7 «— RSP? (a). This argument gen-
eralizes to arbitrary closure operators on target properties (& ) and on hyperproperties,
as long as the corresponding class is a sub-class of subset-closed hyperproperties, and

8 Safe(r) = N{St | mr C St A St € Safetyr} is the topological closure in the topol-
ogy of Clarkson and Schneider [14], where safety properties coincide with the closed sets.
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explains all but one of the asymmetries in Figure 2, the one that concerns the robust
preservation of arbitrary hyperproperties:

Theorem 5.3 (Weak Trinity for Robust Hyperproperties « ). For a trace relation
~ C Traces x Tracer and induced property mappings ¢ and 7, RHC™ is equivalent
to RHP™; moreover, if T < & is a Galois insertion (i.e., T o & = id), RHC™ implies
RHP?, while if & < 7 is a Galois reflection (i.e., & o 7 = id), RHP? implies RHC™,
where RHC™ = VP VCr 3Cs Vt. Cp [Pl]wt <= (3s ~ t. Cs [P]~s);
RHPT = VP VHs. P =g Hs = Pl = #(Hs);

RHP? = VP VHry. P =g 6(Hr) = P| =5 Hr.

This trinity is weak since extra hypotheses are needed to prove some implications.
While the equivalence RHC™~ <= RHP7 holds unconditionally, the other two im-
plications hold only under distinct, stronger assumptions. For RHP? it is still possible
and correct to deduce a source obligation for a given target hyperproperty Hr when no
information is lost in the the composition 7 o & (i.e., the two maps are a Galois inser-
tion). On the other hand, RHP7 is a consequence of RHP? when no information is lost
in composing in the other direction, ¢ o 7 (i.e., the two maps are a Galois reflection).

Navigating the Diagram. For a given trace relation ~, Figure 2 orders the generalized
criteria according to their relative strength. If a trinity implies another (denoted by =),
then the former provides stronger security for a compilation chain than the latter.

As mentioned, some property-full criteria regarding proper subclasses (i.e., subset-
closed hyperproperties, safety, hypersafety, 2-relational safety and 2-relational hyper-
properties) quantify over arbitrary (relational) (hyper)properties and compose 7 with
an additional operator. We have already presented the Safe operator; other operators
are Clc, HSafe, and 2rSafe, which approximate the image of 7 with a subset-closed
hyperproperty, a hypersafety and 2-relational safety respectively.

As areading aid, when quantifying over arbitrary trace properties we use the shaded
blue as background color, we use the red when quantifying over arbitrary subset-closed
hyperproperties and green for arbitrary 2-relational properties.

We now describe how to interpret the acronyms in Figure 2. All criteria start with R
meaning they refer to robust preservation. Criteria for relational hyperproperties—here
only arity 2 is shown—contain 2r. Next, criteria names spell the class of hyperproperties
they preserve: H for hyperproperties, SCH for subset-closed hyperproperties, HS for
hypersafety, T for trace properties, and S for safety properties. Finally, property-free
criteria end with a C while property-full ones involving & and 7 end with P. Thus,
robust (R) subset-closed hyperproperty-preserving (SCH) compilation (C) is RSCHC"™,
robust (R) two-relational (2r) safety-preserving (S) compilation (C) is R2rSC™, etc.

5.2 Instance of Trace-Relating Robust Preservation of Trace Properties

This subsection illustrates trace-relating secure compilation when the target language
has strictly more events than the source that target contexts can exploit to break security.

Source and Target Languages. The source and target languages used here are nearly
identical expression languages, borrowing from the syntax of the source language of
§3.3. Both languages add sequencing of expressions, two kinds of output events, and
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Fig. 2: Hierarchy of trinitarian views of secure compilation criteria preserving classes
of hyperproperties and the key to read each acronym. Shorthands ‘Ins.” and ‘Refl.” stand
for Galois Insertion and Reflection. The ¢ symbol denotes trinities proven in Coq.

the expressions that generate them: outs n and outg n usable in source and target, re-
spectively, and out+ n usable only in the target, which is the only difference between
source and target. The extra events in the target model the fact that the target language
has an increased ability to perform certain operations, some of them potentially dan-
gerous (such as writing to the hard drive), which cannot be performed by the source
language, and against which source-level reasoning can therefore offer no protection.

Both languages and compilation chains now deal with partial programs, contexts
and linking of those two to produce whole programs. In this setting, a whole program
is the combination of a main expression to be evaluated and a set of function definitions
(with distinct names) that can refer to their argument symbolically and can be called by
the main expression and by other functions. The set of functions of a whole program
is the union of the functions of a partial program and a context; the latter also contains
the main expression. The extensions of the typing rules and the operational semantics
for whole programs are unsurprising and therefore elided. The trace model also follows
closely that of §3.3: it consists of a list of regular events (including the new outputs)
terminated by a result event. Finally, a partial program and a context can be linked into
a whole program when their functions satisfy the requirements mentioned above.

Relating Traces. In the present model, source and target traces differ only in the fact
that the target draws (regular) events from a strictly larger set than the source, i.e.,
31 D Xs. A natural relation between source and target traces essentially maps to a
given target trace t the source trace that erases from t those events that exist only at the
target level. Let t|x, indicate trace t filtered to retain only those elements included in
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alphabet > s. We define the trace relation as:
s~t = s=t|x.
In the opposite direction, a source trace s is related to many target ones, as any target-
only events can be inserted at any point in s. The induced mappings for ~ are:
T(ms) ={t | Is.s=t|z; As€mns}; o(mr)={s|Vt.s=t|g, =t €mr}.

That is, the target guarantee of a source property is that the target has the same
source-level behavior, sprinkled with arbitrary target-level behavior. Conversely, the
source-level obligation of a target property is the aggregate of those source traces all of
whose target-level enrichments are in the target property.

Since R® and R are very similar, it is simple to prove that the identity compiler
(-)) from RS to R™ is secure according to the trace relation ~ defined above.

Theorem 5.4 (-| is Secure #g). -| is RTC™.
5.3 Instances of Trace-Relating Robust Preservation of Safety and Hypersafety

To provide examples of cross-language trace-relations that preserve safety and hyper-
safety properties, we show how existing secure compilation results can be interpreted in
our framework. This indicates how the more general theory developed here can already
be instantiated to encompass existing results, and that existing proof techniques can be
used in order to achieve the secure compilation criteria we define.

For the preservation of safety, Patrignani and Garg [50] study a compiler from a
typed, concurrent WHILE language to an untyped, concurrent WHILE language with
support for memory capabilities. As in §3.3, their source has bools and nats while
their target only has nats. Additionally, their source has an ML-like memory (where
the domain is locations /) while their target has an assembly-like memory (where the
domain is natural numbers n). Their traces consider context-program interactions and
as such they are concatenations of call and return actions with parameters, which can
include booleans as well as locations. Because of the aforementioned differences, they
need a cross-language relation to relate source and target actions.

Besides defining a relation on traces (i.e., an instance of ~), they also define a
relation between source and target safety properties. They provide an instantiation of 7
that maps all safe source traces to the related target ones. This ensures that no additional
target trace is introduced in the target property, and source safety properties are mapped
to target safety ones by 7. Their compiler is then proven to generate code that respects
T, so they achieve a variation of RTPSafeoT

Concerning the preservation of hypersafety, Patrignani and Garg [49] consider com-
pilers in a reactive setting where traces are sequences of input («?) and output («a!) ac-
tions. In their setting, traces are different between source and target, so they define a
cross-language relation on actions that is total on the source actions and injective. Ad-
ditionally, their set of target output actions is strictly larger than the source one, as it
includes a special action -/, which is how compiled code must respond to invalid target
inputs (i.e., receiving a bool when a nat was expected). Starting from the relation on
actions, they define T'P C, which is an instance of what we call 7. Informally, given a set
of source traces, T'P C generates all target traces that are related (pointwise) to a source
trace. Additionally, it generates all traces with interleavings of undesired inputs 7 fol-
lowed by +/ as long as removing 7./ leaves a trace that relates to the source trace.


https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/MoreTargetEventsExample.v

24 C. Abate et al.

TPC preserves hypersafety across languages, i.e., it is an instance of RSCHP#Safeo?
mapping source hypersafety to target hypersafety (and safety to safety).

6 Related Work

We already discussed how our results relate to some existing work in correct compila-
tion [33, 58] and secure compilation [2, 49, 50]. We also already mentioned that most
of our definitions and results make no assumptions about the structure of traces. One
result that relies on the structure of traces is Theorem 5.2, which involves some finite
prefix m, suggesting traces should be some sort of sequences of events (or states), as
customary when one wants to refer to safety properties [14]. It is however sufficient
to fix a topology on properties where safety properties coincide with closed sets [46].
Even for reasoning about safety, hypersafety, or arbitrary hyperproperties, traces can
therefore be values, sequences of program states, or of input output events, or even the
recently proposed interaction trees [62]. In the latter case we believe that the compila-
tion from IMP to ASM proposed by Xia et al. [62] can be seen as an instance of HC™,
for the relation they call “trace equivalence.”

Compilers Where Our Work Could Be Useful. Our work should be broadly applica-
ble to understanding the guarantees provided by many verified compilers. For instance,
Wang et al. [61] recently proposed a CompCert variant that compiles all the way down
to machine code, and it would be interesting to see if the model at the end of §3.1 applies
there too. This and many other verified compilers [12, 29, 42, 56] beyond CakeML [58]
deal with resource exhaustion and it would be interesting to also apply the ideas of §3.2
to them. Hur and Dreyer [27] devised a correct compiler from an ML language to as-
sembly using a cross-language logical relation to state their CC theorem. They do not
have traces, though were one to add them, the logical relation on values would serve as
the basis for the trace relation and therefore their result would attain CC™.

Switching to more informative traces capturing the interaction between the program
and the context is often used as a proof technique for secure compilation [2, 28, 48].
Most of these results consider a cross-language relation, so they probably could be
proved to attain one of the criteria from Figure 2.

Generalizations of Compiler Correctness. The compiler correctness definition of
Morris [41] was already general enough to account for trace relations, since it consid-
ered a translation between the semantics of the source program and that of the compiled
program, which he called “decode” in his diagram, reproduced in Figure 3 (left). And
even some of the more recent compiler correctness definitions preserve this kind of flex-
ibility [51]. While CC™ can be seen as an instance of a definition by Morris [41], we are
not aware of any prior work that investigated the preservation of properties when the
“decode translation” is neither the identity nor a bijection, and source properties need
to be re-interpreted as target ones and vice versa.

Correct Compilation and Galois Connections. Melton et al. [38] and Sabry and
Wadler [55] expressed a strong variant of compiler correctness using the diagram of
Figure 3 (right) [38, 55]. They require that compiled programs parallel the computation
steps of the original source programs, which can be proven showing the existence of a
decompilation map # that makes the diagram commute, or equivalently, the existence
of an adjoint for | (W < W' <= W — W’ for both source and target). The
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source semantics

source language source meanings s
W — Z#
compile J ‘ decode l . T
target semantics W| — 7

target language target meanings

Fig. 3: Morris’s [41] (left) and Melton et al.’s [38] and Sabry and Wadler’s [55] (right)

“parallel” intuition can be formalized as an instance of CC™~. Take source and target
traces to be finite or infinite sequences of program states (maximal trace semantics
[15]), and relate them exactly like Melton et al. [38] and Sabry and Wadler [55].

Translation Validation. Translation validation is an important alternative to proving
that all runs of a compiler are correct. A variant of CC™ for translation validation can
simply be obtained by specializing the definition to a particular W, and one can obtain
again the same trinitarian view. Similarly for our other criteria, including our extensions
of the secure compilation criteria of Abate et al. [2], which Busi et al. [10] seem to
already be considering in the context of translation validation.

7 Conclusion and Future Work

We have extended the property preservation view on compiler correctness to arbitrary
trace relations, and believe that this will be useful for understanding the guarantees var-
ious compilers provide. An open question is whether, given a compiler, there exists a
most precise ~ relation for which this compiler is correct. As mentioned in §1, every
compiler is CC™ for some ~, but under which conditions is there a most precise rela-
tion? In practice, more precision may not always be better though, as it may be at odds
with compiler efficiency and may not align with more subjective notions of usefulness,
leading to tradeoffs in the selection of suitable relations. Finally, another interesting
direction for future work is studying whether using the relation to Galois connections
allows to more easily compose trace relations for different purposes, say, for a compiler
whose target language has undefined behavior, resource exhaustion, and side-channels.
In particular, are there ways to obtain complex relations by combining simpler ones in
a way that eases the compiler verification burden?
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Abstract. Runners of algebraic effects, also known as comodels, pro-
vide a mathematical model of resource management. We show that they
also give rise to a programming concept that models top-level external
resources, as well as allows programmers to modularly define their own
intermediate “virtual machines”. We capture the core ideas of program-
ming with runners in an equational calculus Acoop, Which we equip with
a sound and coherent denotational semantics that guarantees the lin-
ear use of resources and execution of finalisation code. We accompany
Acoop With examples of runners in action, provide a prototype language
implementation in OCAML, as well as a HASKELL library based on Acoop-
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1 Introduction

Computational effects, such as exceptions, input-output, state, nondeterminism,
and randomness, are an important component of general-purpose programming
languages, whether they adopt functional, imperative, object-oriented, or other
programming paradigms. Even pure languages exhibit computational effects at
the top level, so to speak, by interacting with their external environment.

In modern languages, computational effects are often structured using mon-
ads [22,23,36], or algebraic effects and handlers [12,28,30]. These mechanisms
excel at implementation of computational effects within the language itself. For
instance, the familiar implementation of mutable state in terms of state-passing
functions requires no native state, and can be implemented either as a monad or
using handlers. One is naturally drawn to using these techniques also for deal-
ing with actual effects, such as manipulation of native memory and access to
hardware. These are represented inside the language as algebraic operations (as
in EFF [4]) or a monad (in the style of HASKELL’s 10), but treated specially by
the language’s top-level runtime, which invokes corresponding operating system
functionality. While this approach works in practice, it has some unfortunate
downsides too, namely lack of modularity and linearity, and excessive generality.

Lack of modularity is caused by having the external resources hard-coded into
the top-level runtime. As a result, changing which resources are available and
how they are implemented requires modifications of the language implementa-
tion. Additional complications arise when a language supports several operating
systems and hardware platforms, each providing their own, different feature set.
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One wishes that the ingenuity of the language implementors were better sup-
ported by a more flexible methodology with a sound theoretical footing.
Excessive generality is not as easily discerned, because generality of program-
ming concepts makes a language expressive and useful, such as general algebraic
effects and handlers enabling one to implement timeouts, rollbacks, stream redi-
rection [30], async & await [16], and concurrency [9]. However, the flip side of such
expressive freedom is the lack of any guarantees about how external resources
will actually be used. For instance, consider a simple piece of code, written in
Err-like syntax, which first opens a file, then writes to it, and finally closes it:

let fh = open "hello.txt" in write (fh, "Hello, world."); close fh

What this program actually does depends on how the operations open, write,
and close are handled. For all we know, an enveloping handler may intercept the
write operation and discard its continuation, so that close never happens and
the file is not properly closed. Telling the programmer not to shoot themselves
in the foot by avoiding such handlers is not helpful, because the handler may
encounter an external reason for not being able to continue, say a full disk.

Even worse, external resources may be misused accidentally when we combine
two handlers, each of which works as intended on its own. For example, if we
combine the above code with a non-deterministic choose operation, as in

let fh = open "greeting.txt" in
let b = choose () in
if b then write (fh, "hello") else write (fh, "good bye") ; close fth

and handle it with the standard non-determinism handler

handler { return x — [x], choose () k — return (append (k true) (k false)) }

The resulting program attempts to close the file twice, as well as write to it twice,
because the continuation k is invoked twice when handling choose. Of course,
with enough care all such situations can be dealt with, but that is beside the
point. It is worth sacrificing some amount of the generality of algebraic effects
and monads in exchange for predictable and safe usage of external computational
effects, so long as the vast majority of common use cases are accommodated.

Contributions We address the described issues by showing how to design a
programming language based on runners of algebraic effects. We review runners
in §2 and recast them as a programming construct in §3. In §4, we present Acoop,
a calculus that captures the core ideas of programming with runners. We provide
a coherent and sound denotational semantics for Acoop in §5, where we also prove
that well-typed code is properly finalised. In §6, we show examples of runners in
action. The paper is accompanied by a prototype language Coop and a HASKELL
library HASKELL-COOP, based on Acop, see §7. The relationship between Acoop
and existing work is addressed in §8, and future possibilities discussed in §9.
The paper is also accompanied by an online appendix (https://arxiv.org/
abs/1910.11629) that provides the typing and equational rules we omit in §4.
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Runners are modular in that they can be used not only to model the top-
level interaction with the external environment, but programmers can also use
them to define and nest their own intermediate “virtual machines”. Our runners
are effectful: they may handle operations by calling further outer operations,
and raise exceptions and send signals, through which exceptional conditions and
runtime errors are communicated back to user programs in a safe fashion that
preserves linear usage of external resources and ensures their proper finalisation.

We achieve suitable generality for handling of external resources by showing
how runners provide implementations of algebraic operations together with a
natural notion of finalisation, and a strong guarantee that in the absence of
external kill signals the finalisation code is executed exactly once (Thm. 7). We
argue that for most purposes such discipline is well worth having, and giving up
the arbitrariness of effect handlers is an acceptable price to pay. In fact, as will
be apparent in the denotational semantics, runners are simply a restricted form
of handlers, which apply the continuation at most once in a tail call position.

Runners guarantee linear usage of resources not through a linear or unique-
ness type system (such as in the CLEAN programming language [15]) or a syntac-
tic discipline governing the application of continuations in handlers, but rather
by a design based on the linear state-passing technique studied by Mggelberg
and Staton [21]. In this approach, a computational resource may be implemented
without restrictions, but is then guaranteed to be used linearly by user code.

2 Algebraic effects, handlers, and runners

We begin with a short overview of the theory of algebraic effects and handlers,
as well as runners. To keep focus on how runners give rise to a programming
concept, we work naively in set theory. Nevertheless, we use category-theoretic
language as appropriate, to make it clear that there are no essential obstacles to
extending our work to other settings (we return to this point in §5.1).

2.1 Algebraic effects and handlers

There is by now no lack of material on the algebraic approach to structuring
computational effects. For an introductory treatment we refer to [5], while of
course also recommend the seminal papers by Plotkin and Power [25,28]. The
brief summary given here only recalls the essentials and introduces notation.

An (algebraic) signature is given by a set X of operation symbols, and for each
op € X' its operation signature op : Agp ~» Bop, where Aqp and B, are called the
parameter and arity set. A X-structure M is given by a carrier set |M|, and
for each operation symbol op € X, a map op,, : Aop X (Bop = [M|) — [M|,
where = is set exponentiation. The free X-structure Trees (X) over a set X is
the set of well-founded trees generated inductively by

— returnz € Treey, (X), for every z € X, and
— op(a, k) € Treex (X), for every op € X, a € Aop, and k : Bop — Treex (X).
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We are abusing notation in a slight but standard way, by using op both as the
name of an operation and a tree-forming constructor. The elements of Treeys (X)
are called computation trees: a leaf return x represents a pure computation re-
turning a value x, while op(a, k) represents an effectful computation that calls
op with parameter a and continuation &, which expects a result from B,p.

An algebraic theory T = (21,Eqy) is given by a signature X7 and a set of
equations Eqr. The equations Eq, express computational behaviour via inter-
actions between operations, and are written in a suitable formalism, e.g., [30].
We explain these by way of examples, as the precise details do not matter for
our purposes. Let 0 = {} be the empty set and 1 = {x} the standard singleton.

Ezample 1. Given a set C' of possible states, the theory of C-valued state has
two operations, whose somewhat unusual naming will become clear later on,

getenv : 1 ~~ C, setenv : C' ~ 1
and the equations (where we elide appearances of *):

getenv(Ac. setenv(c, k)) = K, setenv(c, getenv k) = setenv(c, K ¢),

setenv(c, setenv(c’, k)) = setenv(c, k).

For example, the second equation states that reading state right after setting it
to ¢ gives precisely c. The third equation states that setenv overwrites the state.

Ezxample 2. Given a set of exceptions F, the algebraic theory of E-many excep-
tions is given by a single operation raise : E ~~ 0, and no equations.

A T -model, also called a T -algebra, is a X-structure which satisfies the
equations in Eqy. The free T-model over a set X is constructed as the quotient

Freer (X) = Trees, (X) /~

by the Yr-congruence ~ generated by Eq;. Each op € X7 is interpreted in the
free model as the map (a, k) — [op(a, k)], where [—] is the ~-equivalence class.
Freer (—) is the functor part of a monad on sets, whose unit at a set X is

X M Treey, (X) . Freer (X).

The Kleisli extension for this monad is then the operation which lifts any map
f:X — Trees, (Y) to the map fT: Frees (X) — Frees, (Y), given by

7 [returna] 2 fa, 7' lop(a, m)] 2 [op(a, f' o x)].

That is, fT traverses a computation tree and replaces each leaf return z with f z.

The preceding construction of free models and the monad may be retro-
fitted to an algebraic signature X, if we construe X' as an algebraic theory with
no equations. In this case ~ is just equality, and so we may omit the quotient
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and the pesky equivalence classes. Thus the carrier of the free X-model is the
set of well-founded trees Treey (X), with the evident monad structure.

A fundamental insight of Plotkin and Power [25,28] was that many com-
putational effects may be adequately described by algebraic theories, with the
elements of free models corresponding to effectful computations. For example,
the monads induced by the theories from Examples 1 and 2 are respectively
isomorphic to the usual state monad Stc X = (C'= X x C) and the exceptions
monad Excg X ¥ X + E.

Plotkin and Pretnar [30] further observed that the universal property of free
models may be used to model a programming concept known as handlers. Given
a T-model M and a map f : X — |M], the universal property of the free
T-model gives us a unique 7-homomorphism f* : Frees (X) — | M| satisfying

fHretunz] = f o, fop(a, k)] = oppy(a, f* o k).

A handler for a theory 7 in a language such as EFF amounts to a model M
whose carrier |[M| is the carrier Freer (V) of the free model for some other the-
ory 7', while the associated handling construct is the induced 7-homomorphism
Frees (X) — Freer (V). Thus handling transforms computations with effects 7
to computations with effects 7’. There is however no restriction on how a han-
dler implements an operation, in particular, it may use its continuation in an
arbitrary fashion. We shall put the universal property of free models to good use
as well, while making sure that the continuations are always used affinely.

2.2 Runners

Much like monads, handlers are useful for simulating computational effects, be-
cause they allow us to transform 7-computations to 7’-computations. However,
eventually there has to be a “top level” where such transformations cease and
actual computational effects happen. For these we need another concept, known
as runners [35]. Runners are equivalent to the concept of comodels [27,31], which
are “just models in the opposite category”, although one has to apply the motto
correctly by using powers and co-powers where seemingly exponentials and prod-
ucts would do. Without getting into the intricacies, let us spell out the definition.

Definition 1. A runner R for a signature X' is given by a carrier set | R| together
with, for each op € X, a co-operation opg : Aop — (|R| = Bop x |R]).

Runners are usually defined to have co-operations in the equivalent uncurried
form Opg : Aop X |R| = Bop X |R|, but that is less convenient for our purposes.
Runners may be defined more generally for theories 7, rather than just sig-
natures, by requiring that the co-operations satisfy Eqs. We shall have no use
for these, although we expect no obstacles in incorporating them into our work.
A runner tells us what to do when an effectful computation reaches the
top-level runtime environment. Think of |R| as the set of configurations of
the runtime environment. Given the current configuration ¢ € |R|, the opera-
tion op(a, ) is executed as the corresponding co-operation 6py a ¢ whose result
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(b,d') € Bop x |R| gives the result of the operation b and the next runtime
configuration ¢’. The continuation x b then proceeds in runtime configuration c’.

It is not too difficult to turn this idea into a mathematical model. For any
X, the co-operations induce a X-structure M with [M| = St/ X = (|R| =
X x |R|) and operations op o : Aop X (Bop = Sty X) — Stjg X given by

op(a, k) = Ae. i (m1(0pg ac)) (m2(0pg ac)).

We may then use the universal property of the free Y-model to obtain a X-
homomorphism ry : Treey (X) — Stz X satisfying the equations

rx(returnz) = Ac. (z, ¢), rx(op(a, k) = opy(a,rx o k).

The map ry precisely captures the idea that a runner runs computations by
transforming (static) computation trees into state-passing maps. Note how in
the above definition of op,,, the continuation x is used in a controlled way, as
it appears precisely once as the head of the outermost application. In terms of
programming, this corresponds to linear use in a tail-call position.

Runners are less ad-hoc than they may seem. First, notice that op , is just the
composition of the co-operation opi with the state monad’s Kleisli extension of
the continuation x, and so is the standard way of turning generic effects into X-
structures [26]. Second, the map rx is the component at X of a monad morphism
r: Treex (—) — Stjg|. Mogelberg & Staton [21], as well as Uustalu [35], showed
that the passage from a runner R to the corresponding monad morphism r forms
a one-to-one correspondence between the former and the latter.

As defined, runners are too restrictive a model of top-level computation,
because the only effect available to co-operations is state, but in practice the
runtime environment may also signal errors and perform other effects, by calling
its own runtime environment. We are led to the following generalisation.

Definition 2. For a signature Y and monad 7', a T-runner R for X, or just an
effectful runner, is given by, for each op € X, a co-operation opg : Aoy — T Bop.

The correspondence between runners and monad morphisms still holds.

Proposition 3. For a signature X and a monad T, the monad morphisms
Treex, (—) — T are in one-to-one correspondence with T-runners for X.

Proof. This is an easy generalisation of the correspondence for ordinary runners.
Let us fix a signature X, and a monad 7" with unit 1 and Kleisli extension —T.

Let R be a T-runner for Y. For any set X, R induces a X-structure M
with |M| = TX and op; : Aep X (Bop = TX) — TX defined as op ,(a,r) =
k'(6pg a). As before, the universal property of the free model Trees; (X ) provides
a unique X-homomorphism ry : Treey, (X) — T'X, satisfying the equations

rx(returnx) = nx(x), rx(op(a,r)) = oppla,rx o k).
The maps rx collectively give us the desired monad morphism r induced by R.

Conversely, given a monad morphism 6 : Treey, (—) — T, we may recover a T-

runner R for X by defining the co-operations as opp a = 6 B (0P(a, Ab. returnd)).
It is not hard to check that we have described a one-to-one correspondence. O
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3 Programming with runners

If ordinary runners are not general enough, the effectful ones are too general:
parameterised by arbitrary monads 7', they do not combine easily and they lack
a clear notion of resource management. Thus, we now engineer more specific
monads whose associated runners can be turned into a programming concept.
While we give up complete generality, the monads presented below are still quite
versatile, as they are parameterised by arbitrary algebraic signatures X', and so
are extensible and support various combinations of effects.

3.1 The user and kernel monads

Effectful source code running inside a runtime environment is just one example
of a more general phenomenon in which effectful computations are enveloped by
a layer that provides a supervised access to external resources: a user process
is controlled by a kernel, a web page by a browser, an operating system by
hardware, or a virtual machine, etc. We shall adopt the parlance of software
systems, and refer to the two layers generically as the user and kernel code.
Since the two kinds of code need not, and will not, use the same effects, each
will be described by its own algebraic theory and compute in its own monad.
We first address the kernel theory. Specifically, we look for an algebraic theory
such that effectful runners for the induced monad satisfy the following desiderata:

1. Runners support management and controlled finalisation of resources.
2. Runners may use further external resources.
3. Runners may signal failure caused by unavoidable circumstances.

The totality of external resources available to user code appears as a stateful
external environment, even though it has no direct access to it. Thus, kernel
computations should carry state. We achieve this by incorporating into the kernel
theory the operations getenv and setenv, and equations for state from Example 1.

Apart from managing state, kernel code should have access to further effects,
which may be true external effects, or some outer layer of runners. In either case,
we should allow the kernel code to call operations from a given signature 3.

Because kernel computations ought to be able to signal failure, we should
include an exception mechanism. In practice, many programming languages and
systems have two flavours of exceptions, variously called recoverable and fatal,
checked and unchecked, exceptions and errors, etc. One kind, which we call just
exceptions, is raised by kernel code when a situation requires special attention
by user code. The other kind, which we call signals, indicates an unrecoverable
condition that prevents normal execution of user code. These correspond pre-
cisely to the two standard ways of combining exceptions with state, namely the
coproduct and the tensor of algebraic theories [11]. The coproduct simply adjoins
exceptions raise : ¥ ~» 0 from Example 2 to the theory of state, while the tensor
extends the theory of state with signals kill : S ~~ 0, together with equations

getenv(Ac. kill s) = kill s, setenv(c, kill s) = kill s. (1)
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These equations say that a signal discards state, which makes it unrecoverable.

To summarise, the kernel theory Kx g s.c contains operations from a signa-
ture X, as well as state operations getenv : 1 ~» C, setenv : C' ~~ 1, exceptions
raise : F ~» 0, and signals kill : § ~» 0, with equations for state from Example 1,
equations (1) relating state and signals, and for each operation op € X, equations

getenv(Ac.op(a, kc)) = op(a, \b. getenv(Ac. kb)),
setenv(c, op(a, k)) = op(a, A\b.setenv(c, kb)),

expressing that external operations do not interact with kernel state. It is not
difficult to see that Kx g s ¢ induces, up to isomorphism, the kernel monad

KepscX = C=Trees ((X+E)xC)+8).

How about user code? It can of course call operations from a signature X
(not necessarily the same as the kernel code), and because we intend it to handle
exceptions, it might as well have the ability to raise them. However, user code
knows nothing about signals and kernel state. Thus, we choose the user theory
Ux g to be the algebraic theory with operations X, exceptions raise : &/ ~» 0, and

no equations. This theory induces the user monad Usx g X < Treey, (X +E).

3.2 Runners as a programming construct

In this section, we turn the ideas presented so far into programming constructs.
We strive for a realistic result, but when faced with several design options, we
prefer simplicity and semantic clarity. We focus here on translating the central
concepts, and postpone various details to §4, where we present a full calculus.
We codify the idea of user and kernel computations by having syntactic
categories for each of them, as well as one for values. We use letters M, N to
indicate user computations, K, L for kernel computations, and V', W for values.
User and kernel code raise exceptions with operation raise, and catch them
with exception handlers based on Benton and Kennedy’s exceptional syntaz [7],

try M with {returnz — N, ... raisee — Ng,...},

and analogously for kernel code. The familiar binding construct let x = M in N
is simply shorthand for try M with {returnz — N, ... raise e — raisee,...}.
As a programming concept, a runner R takes the form

{(Op T — KOp)OpEE}C»

where each Ko, is a kernel computation, with the variable « bound in K, so

that each clause opx — K,, determines a co-operation for the kernel monad.

The subscript C' indicates the type of the state used by the kernel code Kop.
The corresponding elimination form is a handling-like construct

using RQV run M finally F, (2)
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which uses the co-operations of runner R “at” initial kernel state V' to run user
code M, and finalises its return value, exceptions, and signals with F', see (3)
below. When user code M calls an operation op, the enveloping run construct
runs the corresponding co-operation Ko, of R. While doing so, Ko, might raise
exceptions. But not every exception makes sense for every operation, and so
we assign to each operation op a set of exceptions F,, which the co-operations
implementing it may raise, by augmenting its operation signature with Fqp, as

op : Aop ~ Bop ! Egp.

An exception raised by the co-operation K,, propagates back to the operation
call in the user code. Therefore, an operation call should have not only a contin-
uation x. M receiving a result, but also continuations N, one for each e € E,,

op(V, (xM), (Ne)eeEop>~

If Kop returns a value b € By, the execution proceeds as M|b/z], and as N, if
K, raises an exception e € Eyp. In examples, we use the generic versions of op-
erations [26], written op V, which pass on return values and re-raise exceptions.

One can pass exceptions back to operation calls also in a language with han-
dlers, such as EFF, by changing the signatures of operations to Agp ~» Bop + Eop,
and implementing the exception mechanism by hand, so that every operation call
is followed by a case distinction on Bgp 4 Fop. One is reminded of how operating
system calls communicate errors back to user code as exceptional values.

A co-operation Ko, may also send a signal, in which case the rest of the user
code M is skipped and the control proceeds directly to the corresponding case
of the finalisation part F' of the run construct (2), whose syntactic form is

{returnx @Qc+— N, ... raisee @c+— N,,... kills — Ng,...}. (3)

Specifically, if M returns a value v, then NN is evaluated with x bound to v and ¢
to the final kernel state; if M raises an exception e (either directly or indirectly
via a co-operation of R), then N, is executed, again with ¢ bound to the final
kernel state; and if a co-operation of R sends a signal s, then Ny is executed.

FEzample 4. In anticipation of setting up the complete calculus we show how one
can work with files. The language implementors can provide an operation open
which opens a file for writing and returns its file handle, an operation close which
closes a file handle, and a runner filelO that implements writing. Let us further
suppose that filelO may raise an exception QuotaExceeded if a write exceeds the
user disk quota, and send a signal IOError if an unrecoverable external error
occurs. The following code illustrates how to guarantee proper closing of the file:

using filelO @ (open "hello.txt") run
write "Hello, world."

finally {
return x @ fh — close fh,
raise QuotaExceeded @ fh — close fh,
kill IOError — return () }
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Notice that the user code does not have direct access to the file handle. Instead,
the runner holds it in its state, where it is available to the co-operation that
implements write. The finalisation block gets access to the file handle upon suc-
cessful completion and raised exception, so it can close the file, but when a signal
happens the finalisation cannot close the file, nor should it attempt to do so.

We also mention that the code “cheats” by placing the call to open in a posi-
tion where a value is expected. We should have let-bound the file handle returned
by open outside the run construct, which would make it clear that opening the
file happens before this construct (and that open is not handled by the finalisa-
tion), but would also expose the file handle. Since there are clear advantages to
keeping the file handle inaccessible, a realistic language should accept the above
code and hoist computations from value positions automatically.

4 A calculus for programming with runners

Inspired by the semantic notion of runners and the ideas of the previous section,
we now present a calculus for programming with co-operations and runners,
called Acoop- It is a low-level fine-grain call-by-value calculus [19], and as such
could inspire an intermediate language that a high-level language is compiled to.

4.1 Types

The types of Acoop are shown in Fig. 1. The ground types contain base types, and
are closed under finite sums and products. These are used in operation signa-
tures and as types of kernel state. (Allowing arbitrary types in either of these
entails substantial complications that can be dealt with but are tangential to
our goals.) Ground types can also come with corresponding constant symbols f,
each associated with a fixed constant signature f : (41,...,A,) — B.

We assume a supply of operation symbols O, exception names &, and signal
names S. Each operation symbol op € O is equipped with an operation signature
Aop ~ Bop ! Egp, which specifies its parameter type Ao, and arity type Bop, and
the exceptions F,, that the corresponding co-operations may raise in runners.

The value types extend ground types with two function types, and a type
of runners. The user function type X — Y | (X E) classifies functions tak-
ing arguments of type X to computations classified by the user (computa-
tion) type Y ! (X, E), i.e., those that return values of type Y, and may call
operations X and raise exceptions E. Similarly, the kernel function type X —
Y4(X,E,S,C) classifies functions taking arguments of type X to computations
classified by the kernel (computation) type Y4 (X, E, S, C), i.e., those that return
values of type Y, and may call operations X, raise exceptions F, send signals S,
and use state of type C. We note that the ingredients for user and kernel types
correspond precisely to the parameters of the user monad Uy g and the kernel
monad Ky g s ¢ from §3.1. Finally, the runner type X = (X', S, C') classifies run-
ners that implement co-operations for the operations X' as kernel computations
which use operations X', send signals S, and use state of type C.



Runners in action 39

Ground type A, B, C' =:=b base type
| unit unit type
| empty empty type
| Ax B product type
| A+ B sum type

Constant signature: f:(A1,...,4,) > B
Signature X ::= {opy,0p,,...,0p,} < O
Exception set F ::= {e1,e2,...,en} € &

Signal set S = {s1,82,...,8,} S

Operation signature: op : Aop ~ Bop ! Fop
Value type X, Y, Z == A ground type
| XxY product type
| X+Y sum type
| X >Y!Uu user function type
| X >Y4K kernel function type
| Y= (¥50C) runner type

User (computation) type: X !U where Y = (X, E)
Kernel (computation) type: X 4K where K = (X, E, S, C)

Fig. 1. The types of Acoop-

4.2 Values and computations

The syntax of terms is shown in Fig. 2. The usual fine-grain call-by-value strat-
ification of terms into pure values and effectful computations is present, except
that we further distinguish between user and kernel computations.

Values Among the values are variables, constants for ground types, and con-
structors for sums and products. There are two kinds of functions, for abstracting
over user and kernel computations. A runner is a value of the form

{(Op T — Kop)opeE}C~

It implements co-operations for operations op as kernel computations Kop, with
2 bound in Kgp. The type annotation C specifies the type of the state that Koy
uses. Note that C ranges over ground types, a restriction that allows us to define
a naive set-theoretic semantics. We sometimes omit these type annotations.

User and kernel computations The user and kernel computations both have
pure computations, function application, exception raising and handling, stan-
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Values
T

f(V1,...
0
(V7 W)
inlxyV | inrxyV
fun (z: X)) —» M
funK (z: X) —» K
{(opz > Kop)opex}c

Vi)

User computations
return V.

Vvw

try M with {return z — N, (raise e — Ne¢)cer}
match V with {(z,y) — M}

match V with {} x

match V with {inlz — M, inry — N}

opx (Vi (& M), (No)ecry)

raisex e

using V@ W run M finally F’

kernel K Q W finally F'

variable

ground constant
unit

pair

injection

user function
kernel function

runner

value

application
exception handler
product elimination
empty elimination
sum elimination
operation call

raise exception
running user code

switch to kernel mode

{return z @ ¢ — N, (raise e @ ¢ — N¢)eck, (kill s = Ng)ses}

Kernel computations
returnc V'

vw

try K with {return  — L, (raise € — L¢)ecE}
match V with {(z,y) — K}

match V with {} xec

match V with {inlz — K, inry — L}

opx (V, (z. K), (Le)ecEqp)

raisexac e

killxac s

getenve(c. K)

setenv(V, K)

user M with {return z — K, (raise e — L¢)ecE}

value

application
exception handler
product elimination
empty elimination
sum elimination
operation call
raise exception
send signal

get kernel state
set kernel state

switch to user mode

Fig. 2. Values, user computations, and kernel computations of Acoop.



Runners in action 41

dard elimination forms, and operation calls. Note that the typing annotations
on some of these differ according to their mode. For instance, a user operation
call is annotated with the result type X, whereas the annotation X @ C' on a
kernel operation call also specifies the kernel state type C.

The binding construct letx;g = M in N is not part of the syntax, but is an
abbreviation for try M with {return z — N, (raise e — raisex €)ecr}, and there is
an analogous one for kernel computations. We often drop the annotation X!E.

Some computations are specific to one or the other mode. Only the kernel
mode may send a signal with kill, and manipulate state with getenv and setenv,
but only the user mode has the run construct from §3.2. Finally, each mode has
the ability to “context switch” to the other one. The kernel computation

user M with {return x +— K, (raise ¢ — L.)ecr}

runs a user computation M and handles the returned value and leftover excep-
tions with kernel computations K and L.. Conversely, the user computation

kernel K @ W finally {x @ ¢ — M, (raise e Q ¢ — N;)cep, (kill s — Ng)ses}

runs kernel computation K with initial state W, and handles the returned value,
and leftover exceptions and signals with user computations M, N., and Nj.

4.3 Type system

We equip Acoop With a type system akin to type and effect systems for algebraic
effects and handlers [3,7,12]. We are experimenting with resource control, so it
makes sense for the type system to tightly control resources. Consequently, our
effect system does not allow effects to be implicitly propagated outwards.

In §4.1, we assumed that each operation op € O is equipped with some fixed
operation signature op : Agp ~» Bop ! Eop. We also assumed a fixed constant
signature f : (41,...,4,) — B for each ground constant f. We consider this
information to be part of the type system and say no more about it.

Values, user computations, and kernel computations each have a correspond-
ing typing judgement form and a subtyping relation, given by

Ir'-Vv:.:X, I'-M: XU, I'-K: XK,
Xcoy, X'Uey!ly, XiKCYsL,
where ' is a typing context x1 : Xq,...,x, : X,. The effect information is an

over-approximation, i.e., M and K employ at most the effects described by U
and KC. The complete rules for these judgements are given in the online appendix.
We comment here only on the rules that are peculiar to Acoop, see Fig. 3.
Subtyping of ground types SUB-GROUND is trivial, as it relates only equal
types. Subtyping of runners SUB-RUNNER and kernel computations SUB-KERNEL
requires equality of the kernel state types C' and C’ because state is used invari-
antly in the kernel monad. We leave it for future work to replace C' = C” with
a lens [10] from C’ to C, i.e., maps C' — C and C’ x C' — (' satistying state
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SUB-GROUNL SUB-RUNNER
S UB- {OUND !
o P

Yy C X sScs

Cc=c'
AC A

Y= (X2,5,0)E X = (X5,58,0)

SuB-KERNEL

XcX ycy EcFE sScs

c=cC

X4(X,E,S.C) e X 4 (& E,5,C)
TYUSER-TRY

F~M:X!(2,E) TLa:XrFN:YU(S,E) ([FN:Y!(ZE)) _,
I+ try M with {return z — N, (raise e = Ne)eep}: Y | (X, E)

TyYUSER-RUN
F = {returnz @ ¢ — N, (raise e @ ¢ — Ne)eer, (kill s = Ny)ses}
F'FVv:¥=(5,8C) r'=w:cC
FeM:X1(Z,E) [Lz:X,c:C-N:Y! (2, E)
(F,c:CI—Ne:Y!(Z,E))eeE (FI—NS:Y!(E7E'))565
' usingV@W run M finally F: Y I (X' E")

TyYUSER-OP

U= (X, E) ope X

'V Agp
I'z:Bop =M : XU

(M N.: X 1U)
I = Opx(V, (IM)7 (Ne)eEEop) : X 'Z/{

e€ Fop

TYKERNEL-OP
K= (X,E,S,C) ope X

I'FV:Ayp
INz:Bp - K:X4K

(b Le: X4K)
I opx(V, (@. K), (Le)eeny,) : X 4K

TyYUsER-KERNEL

e€Eop

F = {returnz @ ¢ — N, (raise e @ ¢ — Ne)eer, (kill s > Ny)ses}
I'-K:X4(%,ESC) T-W:C @Lz:X,c:CrN:Y!(ZE)
(Ie:CHNY V(S ED), ., (TFN:YU(EE))

seS
T~ kernel K@ W finally F: Y ! (X, E)

TYKERNEL-USER
K=(X,FE,8C)

I'-M:X!(2,E)
Na:X+K:Y4K

(F'=Le:Y4K),
I' + user M with {return z — K, (raise e — L¢)eer} : Y 4K

Fig. 3. Selected typing and subtyping rules.
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equations analogous to Example 1. It has been observed [24,31] that such a lens
in fact amounts to an ordinary runner for C-valued state.

The rules TYUSER-OP and TYKERNEL-OP govern operation calls, where we
have a success continuation which receives a value returned by a co-operation,
and exceptional continuations which receive exceptions raised by co-operations.

The rule TYUSER-RUN requires that the runner V' implements all the opera-
tions M can use, meaning that operations are not implicitly propagated outside
a run block (which is different from how handlers are sometimes implemented).
Of course, the co-operations of the runner may call further external operations,
as recorded by the signature X’. Similarly, we require the finally block F to in-
tercept all exceptions and signals that might be produced by the co-operations
of V or the user code M. Such strict control is exercised throughout. For ex-
ample, in TYUSER-RUN, TYUSER-KERNEL, and TYKERNEL-USER we catch all
the exceptions and signals that the code might produce. One should judiciously
relax these requirements in a language that is presented to the programmer, and
allow re-raising and re-sending clauses to be automatically inserted.

4.4 Equational theory

We present Acop @s an equational calculus, i.e., the interactions between its
components are described by equations. Such a presentation makes it easy to
reason about program equivalence. There are three equality judgements

r-v=w:X, I'-M=N:X'U, I'-K=L:X!K.

It is presupposed that we only compare well-typed expressions with the indicated
types. For the most part, the context and the type annotation on judgements
will play no significant role, and so we shall drop them whenever possible.

We comment on the computational equations for constructs characteristic
of Acoop, and refer the reader to the online appendix for other equations. When
read left-to-right, these equations explain the operational meaning of programs.

Of the three equations for run, the first two specify that returned values and
raised exceptions are handled by the corresponding clauses,

using V.@QW run (return V') finally F = N[V’ /x, W /c],

using V- @ W run (raisex e) finally ' = N.[W /c],

where F < {return 2@c — N, (raise eQ ¢ — N,)ecp, (kill s — Ny)ses}. The third
equation below relates running an operation op with executing the corresponding
co-operation K, where R stands for the runner {(opz — Kop)opes}tc:

using RQ W run (opx (V, (z. M), (Né,)efeEop)) finally I =

kernel Kop[V/z] @ W finally
{returnz @ ¢’ — (using R @ ¢ run M finally F),
(raise e’ @ ¢’ — (using R @ ¢ run N/, finally F))
(kill s — Ny) g }

e’e€Eq
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Because Kp is kernel code, it is executed in kernel mode, whose finally clauses
specify what happens afterwards: if Ko, returns a value, or raises an exception,
execution continues with a suitable continuation, with R wrapped around it; and
if Kop sends a signal, the corresponding finalisation code from F' is evaluated.
The next bundle describes how kernel code is executed within user code:

kernel (returnc V') @ W finally F' = N[V /x, W /c],
kernel (raisexac €) @ W finally F' = N.[W/c],
kernel (killxac s) @ W finally F = Ng,
kernel (getenve(c. K)) @ W finally F' = kernel K[W/c] @ W finally F,
kernel (setenv(V, K)) @ W finally F' = kernel K Q V finally F.

We also have an equation stating that an operation called in kernel mode prop-
agates out to user mode, with its continuations wrapped in kernel mode:

kernel opx (V, (. K), (Lt )erep) @ W finally F' =
opx (V, (x.kernel K @ W finally F'), (kernel Lo, @ W finally F),_, ).

Similar equations govern execution of user computations in kernel mode.

The remaining equations include standard Sn-equations for exception han-
dling [7], deconstruction of products and sums, algebraicity equations for oper-
ations [33], and the equations of kernel theory from §3.1, describing how getenv
and setenv work, and how they interact with signals and other operations.

5 Denotational semantics

We provide a coherent denotational semantics for Acoop, and prove it sound with
respect to the equational theory given in §4.4. Having eschewed all forms of
recursion, we may afford to work simply over the category of sets and functions,
while noting that there is no obstacle to incorporating recursion at all levels and
switching to domain theory, similarly to the treatment of effect handlers in [3].

5.1 Semantics of types

The meaning of terms is most naturally defined by structural induction on their
typing derivations, which however are not unique in Acop due to subsumption
rules. Thus we must worry about devising a coherent semantics, i.e., one in which
all derivations of a judgement get the same meaning. We follow prior work on the
semantics of effect systems for handlers [3], and proceed by first giving a skeletal
semantics of Acoop in Which derivations are manifestly unique because the effect
information is unrefined. We then use the skeletal semantics as the frame upon
which rests a refinement-style coherent semantics of the effectful types of Acoop.
The skeletal types are like Acoop’s types, but with all effect information erased.
In particular, the ground types A, and hence the kernel state types C, do not
change as they contain no effect information. The skeletal value types are

P,Q = A|unit|empty | PxQ|P+Q|P—>Q'|P—Q4C |runnerC.
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The skeletal versions of the user and kernel types are P! and P 4 C, respec-
tively. It is best to think of the skeletal types as ML-style types which implicitly
over-approximate effect information by “any effect is possible”, an idea which is
mathematically expressed by their semantics, as explained below.

First of all, the semantics of ground types is straightforward. One only needs
to provide sets denoting the base types b, after which the ground types receive
the standard set-theoretic meaning, as given in Fig. 4.

Recall that O, S, and £ are the sets of all operations, signals, and exceptions,
and that each op € O has a signature op : Agp ~ Bop | Eop. Let us additionally
assume that there is a distinguished operation X € O with signature X : 1 ~» 010
(otherwise we adjoin it to @). It ensures that the denotations of skeletal user and
kernel types are pointed sets, while operationally L indicates a runtime error.

Next, we define the skeletal user and kernel monads as

USX € UpeX = Treep (X + &),
X TKoes.cX =(C= Treeo (X +&) x C +8)),

and Runner® C as the set of all skeletal runners R (with state C'), which are fami-
lies of co-operations {opg : [Aop]l = Ko, Eyp,5,c[Bopll}opeo- Note that Ko g, s.c
is a coproduct [11] of monads C' = Treep (— x C' + S) and Excg,,, and thus the
skeletal runners are the effectful runners for the former monad, so long as we
read the effectful signatures op : Ao, ~» Bop | Eop as ordinary algebraic ones
op : Aop ~ Bop + Eop. While there is no semantic difference between the two
readings, there is one of intention: Ky, Eop,S,C [Bopll is & kernel computation that
(apart from using state and sending signals) returns values of type B,, and raises
exceptions Eop, whereas C' = Treep (([Bopl] + Eop) x C' + S) returns values of
type Bop + Eop and raises no exceptions. We prefer the former, as it reflects our
treatment of exceptions as a control mechanism rather than exceptional values.

These ingredients suffice for the denotation of skeletal types as sets, as given
in Fig. 4. The user and kernel skeletal types are interpreted using the respective
skeletal monads, and hence the two function types as Kleisli exponentials.

We proceed with the semantics of effectful types. The skeleton of a value
type X is the skeletal type X°® obtained by removing all effect information, and
similarly for user and kernel types, see Fig. 5. We interpret a value type X as a
subset [[X]] < [X*] of the denotation of its skeleton, and similarly for user and
computation types. In other words, we treat the effectful types as refinements
of their skeletons. For this, we define the operation (Xg, X;) = (Y, Y1), for any
Xo € X1 and Yy € Y7, as the set of maps X; — Y] restricted to Xg — Y:

(X0, X1) = (Yo, Y1) = {f: X1 > Y1 |Vze Xo. f(z) € Yo}

Next, observe that the user and the kernel monads preserve subset inclusions, in
the sense that Uy g X < Ug/yE/X/ and Ky g gcX < Kg/ﬁE/’S/’CX/ if X <X,
EcFE,ScS, and X < X'. In particular, we always have Uy p X < U°X
and Ky g s cX € K X. Finally, let Runners; 5» ¢ C' < Runner® C' be the subset
of those runners R whose co-operations for X' factor through Ksr g s c, i-e.,
opp : [[Aop]] — KE',EQP,S-,CIIBOP]] < K(97E0p7$7c[[Bop]]7 for each op € X.
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Ground types

[b]] £ --- [unit] < 1 [empty] = 0
[A x B] = [A] x [B] A+ B] = [A] + [B]

Skeletal types

[P = Q1= [P] x [Q] [P — Q1= [P] = [Q1
[P+eI=[PI+[Q] [P—Q:CI=[P]=[Q:tC]
[runner CT <" Runner® [C]] [P < v[P] [PsC] < TPl
[z1: Pi,...,z0: P et [P x - x [Pn]

Fig. 4. Denotations of ground and skeletal types.

Semantics of effectful types is given in Fig. 5. From a category-theoretic
viewpoint, it assigns meaning in the category Sub(Set) whose objects are subset
inclusions Xy € X7 and morphisms from Xy € X; to Yy € Y; those maps X; —
Y1 that restrict to Xy — Yj. The interpretations of products, sums, and function
types are precisely the corresponding category-theoretic notions x, +, and = in
Sub(Set). Even better, the pairs of submonads Us g € U® and Kx g 5.0 < K&
are the “Sub(Set)-variants” of the user and kernel monads. Such an abstract
point of view drives the interpretation of terms, given below, and it additionally
suggests how our semantics can be set up on top of a category other than Set. For
example, if we replace Set with the category Cpo of w-complete partial orders,
we obtain the domain-theoretic semantics of effect handlers from [3] that models
recursion and operations whose signatures contain arbitrary types.

5.2 Semantics of values and computations

To give semantics to Aceop’s terms, we introduce skeletal typing judgements
Irv:Pp, ' M: P, I'® K:PjC,

which assign skeletal types to values and computations. In these judgements, I"
is a skeletal context which assigns skeletal types to variables.

The rules for these judgements are obtained from Acoop’s typing rules, by
excluding subsumption rules and by relaxing restrictions on effects. For example,
the skeletal versions of the rules TYVALUE-RUNNER and TYKERNEL-KILL are

(I @i Agp ° Kop : Bop4 C)opeZ' seS
I {(opx — Kop)opex ¢ : runner C I' 2 killyacs: X°4C

The relationship between effectful and skeletal typing is summarised as follows:

Proposition 5. (1) Skeletal typing derivations are unique. (2) If X &Y, then
X® =Y?, and analogously for subtyping of user and kernel types. (8) If 'V : X,
then I'* =V : X®, and analogously for user and kernel computations.
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Skeletons
ALA (D= (Y,50) ErumerC (X xY) E X xY*
(X > YU X S YIU (X+Y)PE X 4y
(X > Y4K)E X (Y4K) (XU E X
(z1: X1, @ Xn) S (@1 X5, XD) (X4(%,E,S,C) X0
Denotations
AL = [A] X > YT = [[XT x [XT]
ME = (2,8 C)] £ Runners s [[Cl MX + Y] < MXT+ mxT
[X — Y 'ul] = (X [X°D = (IY ' udl, [ e
[x — v4KD = (X1, [X°D = (Y £ KT [ £K)°T)
X2 B = Uss[IXT] [X4(Z,E, SO = K p,speg X
Mzt X,y zn s Xl € MXAT] % - x [ XA

Fig. 5. Skeletons and denotations of types.

Proof. We prove (1) by induction on skeletal typing derivations, and (2) by
induction on subtyping derivations. For (1), we further use the occasional type
annotations, and the absence of skeletal subsumption rules. For proving (3),
suppose that D is a derivation of I" — V : X. We may translate D to its skeleton
D* deriving I'* - V' : X® by replacing typing rules with matching skeletal ones,
skipping subsumption rules due to (2). Computations are treated similarly. o

To ensure semantic coherence, we first define the skeletal semantics of skeletal
typing judgements, [I' =V : P : [I'T — [P, [I'+ M : P : [I'] — [P'],
and [I' = K : PiC] : [I'] — [P4C]], by induction on their (unique) derivations.

Provided maps [[A1]] x - - - x [[A,]] — [[B] denoting ground constants f, values
are interpreted in a standard way, using the bi-cartesian closed structure of sets,
except for a runner {(opz — Kop)opex } ¢, which is interpreted at an environment
v € [I]] as the skeletal runner {op : [Aop]] = Ko, £,,.s.1c7[Bopll }opeo, given by

opa = (if op e X then p([T, 2 : Aop I Kop : Bops CT(7,a)) else %).

Here the map p : K¢ [Bopll — Ko, E,,.s,1c7[Bopll is the skeletal kernel theory
homomorphism characterised by the equations

p(return b) = return b, pop'(d', k, (Ve)eer,, ) = op'(d', po K, (p(Ve))ee,, )
p(getenv k) = getenv(p o k), p(raisee) = (if e € Eqp then raisee else 1),
p(setenv(c, k)) = getenv(c,po k),  p(kills) = kill s.
The purpose of X in the definition of op is to model a runtime error when the

runner is asked to handle an unexpected operation, while p makes sure that op
raises at most the exceptions E,p, as prescribed by the signature of op.
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User and kernel computations are interpreted as elements of the correspond-
ing skeletal user and kernel monads. Again, most constructs are interpreted in
a standard way: returns as the units of the monads; the operations raise, kill,
getenv, setenv, and ops as the corresponding algebraic operations; and match
statements as the corresponding semantic elimination forms. The interpretation
of exception handling offers no surprises, e.g., as in [30], as long as we follow the
strategy of treating unexpected situations with the runtime error X.

The most interesting part of the interpretation is the semantics of

I'' - (using V- QW run M finally F) : Q!, (4)

where F & {returnz @ ¢ — N, (raisee @ ¢ — N,)ecp, (kill s = Ng)ses}. At an
environment v € [I']], V is interpreted as a skeletal runner with state [C], which
induces a monad morphism r : Treep (—) — ([C] = Treep (— x [C] + S)), as
in the proof of Prop. 3. Let f : Kj [[P]] (ICT = U°[IQ]) be the skeletal
kernel theory homomorphism characterlsed by the equations

f(returnp) = Ae. [T, z:P,c:C = N : Q(v,p,¢),
f(op(a, r, (Ve)eGEop)) = Ac.op(a, Ab. f(kb)c, (f(ve) C)eeEop)7
f(raisee) = Ac. (if e€ Ethen [I,c: C = N, : Q] (7, c) else L),
f(kills) = Ac. (if s € S then [I' ° N : Q] v else L),
f(getenvk) = Ac. f(kc)c, f(setenv(c',k)) = Ac. fr(.

(5)

The interpretation of (4) at v is f(rppyre([I"F M : P y)) ([T = W : Cly),
which reads: map the interpretation of M at v from the skeletal user monad
to the skeletal kernel monad using r (which models the operations of M by the
cooperations of V'), and from there using f to a map [C] = U*[Q], that is then
applied to the initial kernel state, namely, the interpretation of W at ~.

We interpret the context switch I' - kernel K @Q W finally F' : Q! at an
environment y € [ as f([I"' = K : P4C]v) ([T = W : C v), where f is the
map (5). Finally, user context switch is interpreted much like exception handling.

We now define coherent semantics of Aeop’s typing derivations by passing
through the skeletal semantics. Given a derivation D of I' -V : X, its skeleton
Ds derives I - V : X5, We identify the denotation of V' with the skeletal one,

M-V X[ VX)) - [X°].

All that remains is to check that [[I" — V : XT]] restricts to [[I'T] — MXT]]- This
is accomplished by induction on D. The only interesting step is subsumption,
which relies on a further observation that X =Y implies [[X]] < [[Y]]- Typing
derivations for user and kernel computations are treated analogously.

5.3 Coherence, soundness, and finalisation theorems

We are now ready to prove a theorem that guarantees execution of finalisation
code. But first, let us record the fact that the semantics is coherent and sound.
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Theorem 6 (Coherence and soundness). The denotational semantics of
Acoop @5 coherent, and it is sound for the equational theory of Acoop from §4.4.

Proof. Coherence is established by construction: any two derivations of the same
typing judgement have the same denotation because they are both (the same)
restriction of skeletal semantics. For proving soundness, one just needs to unfold
the denotations of the left- and right-hand sides of equations from §4.4, and
compare them, where some cases rely on suitable substitution lemmas. m]

To set the stage for the finalisation theorem, let us consider the computation
using V. @Q W run M finally F, well-typed by the rule TYUSER-RUN from Fig. 3.
At an environment y € [[I']], the finalisation clauses F' are captured semantically
by the finalisation map ¢~ : ([ X[ + E) x [CT + S — [[Y ! (X7, E')]]], given by

oy (ti(t12,0)) E[[Mz:X,c:CH=N:Y (X EN(v,2,c¢),
o (t1(22e,¢)) Lof e:CH Ne:Y (X EN(v, ),
6 (12() T N, Y 1L (S, )]

With ¢ in hand, we may formulate the finalisation theorem for Acoop, stating that
the semantics of using V-@Q W run M finally F' is a computation tree all of whose
branches end with finalisation clauses from F'. Thus, unless some enveloping
runner sends a signal, finalisation with F' is guaranteed to take place.

Theorem 7 (Finalisation). A well-typed run factors through finalisation:
1"+ (using V-@W run M finally F) : Y 1 (', EN]|y = ¢ ¢,
for some t € Treexy ([ XT] + E) x [[CT] + S)-

Proof. We first prove that fuc = (;SI/(u c) holds for all u € Ky g g ey IX1l
and ¢ € [[C]], where f is the map (5). The proof proceeds by computational
induction on u [29]. The finalisation statement is then just the special case with

u ([T F M X H(E,B)]]7) and ¢ < [ =W : CJ 7. °

6 Runners in action

Let us show examples that demonstrate how runners can be usefully combined
to provide flexible resource management. We implemented these and other ex-
amples in the language CoOOP and a library HASKELL-COOP, see §7.

To make the code more understandable, we do not adhere strictly to the
syntax of Acoop, €.8., We use the generic versions of effects [26], as is customary
in programming, and effectful initialisation of kernel state as discussed in §3.2.

Ezample 8 (Nesting). In Example 4, we considered a runner filelO for basic file
operations. Let us suppose that filelO is implemented by immediate calls to the
operating system. Sometimes, we might prefer to accumulate writes and commit
them all at once, which can be accomplished by interposing between filelO and
user code the following runner acclO, which accumulates writes in its state:
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{ write s' — let s = getenv () in setenv (concat s 's') Fstring

By nesting the runners, and calling the outer write (the one of filelO) only in the
finalisation code for acclO, the accumulated writes are commited all at once:

using filelO © (open "hello.txt") run
using acclO @ (return "") run
write "Hello, world."; write "Hello, again."
finally { return x @ s — write s; return x }
finally { return x @ fh — ..., raise QuotaExceeded @ fh — ..., kill IOError — ... }

Ezxample 9 (Instrumentation). Above, acclO implements the same signature as
filelO and thus intercepts operations without the user code being aware of it. This
kind of invisibility can be more generally used to implement instrumentation:

using { ..., op x — let ¢ = getenv () in setenv (c+1); op X, ... }int @ (return 0) run
M
finally { return x @ ¢ — report_ cost c; return x, ... }

Here the interposed runner implements all operations of some enveloping runner,
by simply forwarding them, while also measuring computational cost by counting
the total number of operation calls, which is then reported during finalisation.

Ezample 10 (ML-style references). Continuing with the theme of nested run-
ners, they can also be used to implement abstract and safe interfaces to low-level
resources. For instance, suppose we have a low-level implementation of a mem-
ory heap that potentially allows unsafe memory access, and we would like to
implement ML-style references on top of it. A good first attempt is the runner

{ ref x — let h = getenv () in
let (r,h') = malloc h x in
setenv h'; return r,
get r — let h = getenv () in memread h r,
put (r, x) — let h = getenv () in memset h r X }heap

which has the desired interface, but still suffers from three deficiencies that can be
addressed with further language support. First, abstract types would let us hide
the fact that references are just memory locations, so that the user code could
never devise invalid references or otherwise misuse them. Second, our simple
typing discipline forces all references to hold the same type, but in reality we
want them to have different types. This could be achieved through quantification
over types in the low-level implementation of the heap, as we have done in the
HASKELL-COOP library using HASKELL’s forall. Third, user code could hijack
a reference and misuse it out of the scope of the runner, which is difficult to
prevent. In practice the problem does not occur because, so to speak, the runner
for references is at the very top level, from which user code cannot escape.

Ezample 11 (Monotonic state). Nested runners can also implement access re-
strictions to resources, with applications in security [8]. For example, we can



Runners in action 51

restrict the references from the previous example to be used monotonically by
associating a preorder with each reference, which assignments then have to obey.
This idea is similar to how monotonic state is implemented in the F* language (2],
except that we make dynamic checks where F* statically uses dependent types.

While we could simply modify the previous example, it is better to implement
a new runner which is nested inside the previous one, so that we obtain a modular
solution that works with any runner implementing operations ref, get, and put:

{ mref x rel > let r =ref x in
let m = getenv () in
setenv (add m (r,rel)); return r,
mget r — getr,
mput (r, y) — let x = get rin
let m = getenv () in
match (sel m r) with
| inl rel — if (rel x y) then put (r, y)
else raise MonotonicityViolation
| inr () — kill NoPreoderFound }map(ref,intRel)

The runner’s state is a map from references to preorders on integers. The co-
operation mref x rel creates a new reference r initialised with x (by calling ref of
the outer runner), and then adds the pair (r, rel) to the map stored in the runner’s
state. Reading is delegated to the outer runner, while assignment first checks that
the new state is larger than the old one, according to the associated preorder. If
the preorder is respected, the runner proceeds with assignment (again delegated
to the outer runner), otherwise it reports a monotonicity violation. We may not
assume that every reference has an associated preorder, because user code could
pass to mput a reference that was created earlier outside the scope of the runner.
If this happens, the runner simply kills the offending user code with a signal.

Ezample 12 (Pairing). Another form of modularity is achieved by pairing run-
ners. Given two runners {(opz — Kop)opes, b, and {(op’ z — Kop)opes, }Cas
e.g., for state and file operations, we can use them side-by-side by combining
them into a single runner with operations X; + X5 and kernel state C; x Cs, as
follows (the co-operations op’ of the second runner are treated symmetrically):

{ op x — let (c,c') = getenv () in
user
kernel (Kop x) @ c finally {
return'y @ c'" — return (inl (inl y, c')),
(raise e @ c"" — return (inl (inr e, c")))ccr,,.
(kill s — return (inr s))ses, }
with {
return (inl (inly, c'')) — setenv (', ¢'); return y,
return (inl (inr e, c'')) — setenv (c", c'); raise e,
return (inr s) — Kkill s},
op' X = ..., .. FoyxCy

Notice how the inner kernel context switch passes to the co-operation K,, only
its part of the combined state, and how it returns the result of K,, in a reified
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form (which requires treating exceptions and signals as values). The outer user
context switch then receives this reified result, updates the combined state, and
forwards the result (return value, exception, or signal) in unreified form.

7 Implementation

We accompany the theoretical development with two implementations of Acoop:
a prototype language CooP [6], and a HASKELL library HASKELL-CooP [1].
Coop, implemented in OCAML, demonstrates what a more fully-featured
language based on Acoop might look like. It implements a bi-directional variant
of Acoop’s type system, extended with type definitions and algebraic datatypes,
to provide algorithmic typechecking and type inference. The operational seman-
tics is based on the computation rules of the equational theory from §4.4, but
extended with general recursion, pairing of runners from Example 12, and an in-
terface to the OCAML runtime called containers—these are essentially top-level
runners defined directly in OCAML. They are a modular and systematic way of
offering several possible top-level runtime environments to the programmer.
The HASKELL-CoOOP library is a shallow embedding of Acoop in HASKELL. The
implementation closely follows the denotational semantics of Acoop. For instance,
user and kernel monads are implemented as corresponding HASKELL monads.
Internally, the library uses the FREER monad of Kiselyov [14] to implement free
model monads for given signatures of operations. The library also provides a
means to run user code via HASKELL’s top-level monads. For instance, code
that performs input-output operations may be run in HASKELL’s |0 monad.
HASKELL’s advanced features make it possible to use HASKELL-COOP to
implement several extensions to examples from §6. For instance, we implement
ML-style state that allow references holding arbitrary values (of different types),
and state that uses HASKELL’s type system to track which references are alive.
The library also provides pairing of runners from Example 12, e.g., to combine
state and input-output. We also use the library to demonstrate that ambient
functions from the Koka language [18] can be implemented with runners by
treating their binding and application as co-operations. (These are functions
that are bound dynamically but evaluated in the lexical scope of their binding.)

8 Related work

Comodels and (ordinary) runners have been used as a natural model of stateful
top-level behaviour. For instance, Plotkin and Power [27] have given a treatment
of operational semantics using the tensor product of a model and a comodel.
Recently, Katsumata, Rivas, and Uustalu have generalised this interaction of
models and comodels to monads and comonads [13]. An early version of EFF [4]
implemented resources, which were a kind of stateful runners, although they
lacked satisfactory theory. Uustalu [35] has pointed out that runners are the
additional structure that one has to impose on state to run algebraic effects
statefully. Mggelberg and Staton’s [21] linear-use state-passing translation also
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relies on equipping the state with a comodel structure for the effects at hand.
Our runners arise when their setup is specialised to a certain Kleisli adjunction.

Our use of kernel state is analogous to the use of parameters in parameter-
passing handlers [30]: their return clause also provides a form of finalisation, as
the final value of the parameter is available. There is however no guarantee of
finalisation happening because handlers need not use the continuation linearly.

The need to tame the excessive generality of handlers, and willingness to give
it up in exchange for efficiency and predictability, has recently been recognised
by MuLTICORE OCAML’s implementors, who have observed that in practice
most handlers resume continuations precisely once [9]. In exchange for impres-
sive efficiency, they require continuations to be used linearly by default, whereas
discarding and copying must be done explicitly, incurring additional cost. Lei-
jen [17] has extended handlers in KOKA with a finally clause, whose semantics
ensures that finalisation happens whenever a handler discards its continuation.
Leijen also added an initially clause to parameter-passing handlers, which is used
to compute the initial value of the parameter before handling, but that gets
executed again every time the handler resumes its continuation.

9 Conclusion and future work

We have shown that effectful runners form a mathematically natural and mod-
ular model of resources, modelling not only the top level external resources, but
allowing programmers to also define their own intermediate “virtual machines”.
Effectful runners give rise to a bona fide programming concept, an idea we have
captured in a small calculus, called Acoop, Which we have implemented both as a
language and a library. We have given Acoop an algebraically natural denotational
semantics, and shown how to program with runners through various examples.

We leave combining runners and general effect handlers for future work. As
runners are essentially affine handlers, inspired by MULTICORE OCAML we also
plan to investigate efficient compilation for runners. On the theoretical side, by
developing semantics in a Sub(Cpo)-enriched setting [32], we plan to support
recursion at all levels, and remove the distinction between ground and arbitrary
types. Finally, by using proof-relevant subtyping [34] and synthesis of lenses [20],
we plan to upgrade subtyping from a simple inclusion to relating types by lenses.
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Abstract. Logical relations are one among the most powerful tech-
niques in the theory of programming languages, and have been used
extensively for proving properties of a variety of higher-order calculi.
However, there are properties that cannot be immediately proved by
means of logical relations, for instance program continuity and differen-
tiability in higher-order languages extended with real-valued functions.
Informally, the problem stems from the fact that these properties are
naturally expressed on terms of non-ground type (or, equivalently, on
open terms of base type), and there is no apparent good definition for
a base case (i.e. for closed terms of ground types). To overcome this is-
sue, we study a generalization of the concept of a logical relation, called
open logical relation, and prove that it can be fruitfully applied in sev-
eral contexts in which the property of interest is about expressions of
first-order type. Our setting is a simply-typed A-calculus enriched with
real numbers and real-valued first-order functions from a given set, such
as the one of continuous or differentiable functions. We first prove a
containment theorem stating that for any collection of real-valued first-
order functions including projection functions and closed under function
composition, any well-typed term of first-order type denotes a function
belonging to that collection. Then, we show by way of open logical re-
lations the correctness of the core of a recently published algorithm for
forward automatic differentiation. Finally, we define a refinement-based
type system for local continuity in an extension of our calculus with con-
ditionals, and prove the soundness of the type system using open logical
relations.
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1 Introduction

Logical relations have been extremely successful as a way of proving equivalence
between concrete programs as well as correctness of program transformations.
In their “unary” version, they also are a formidable tool to prove termination of
typable programs, through the so-called reducibility technique. The class of pro-
gramming languages in which these techniques have been instantiated includes
not only higher-order calculi with simple types, but also calculi with recursion
[3,2,23], various kinds of effects [14,12,25,36,10,11,34], and concurrency [56,13].

Without any aim to be precise, let us see how reducibility works, in the
setting of a simply typed calculus. The main idea is to define, by induction on
the structure of types, the concept of a well-behaved program, where in the
base case one simply makes reference to the underlying notion of observation
(e.g. being strong normalizing), while the more interesting case is handled by
stipulating that reducible higher-order terms are those which maps reducible
terms to reducible terms, this way exploiting the inductive nature of simple types.
One can even go beyond the basic setting of simple types, and extend reducibility
to, e.g., languages with recursive types [23,2] or even untyped languages [44] by
means of techniques such as step-indexing [3].

The same kind of recipe works in a relational setting, where one wants to
compare programs rather than merely proving properties about them. Again, two
terms are equivalent at base types if they have the same observable behaviour,
while at higher types one wants that equivalent terms are those which maps
equivalent arguments to equivalent results.

There are cases, however, in which the property one observes, or the property
in which the underlying notion of program equivalence or correctness is based,
is formulated for types which are not ground (or equivalently, it is formulated
for open expressions). As an example, one could be interested in proving that in
a higher-order type system all first-order expressions compute numerical func-
tions of a specific kind, for example, continuous or derivable ones. We call such
properties first-order properties®. As we will describe in Section 3 below, logical
relations do not seem to be applicable off-the-shelf to these cases. Informally,
this is due to the fact that we cannot start by defining a base case for ground
types and then build the relation inductively.

In this paper, we show that logical relations and reducibility can deal with
first-order properties in a compositional way without altering their nature. The
main idea behind the resulting definition, known as open logical relations [59],
consists in parameterizing the set of related terms of a certain type (or the
underlying reducibility set) on a ground environment, this way turning it into a
set of pairs of open terms. As a consequence, one can define the target first-order
property in a natural way.

5 To avoid misunderstandings, we emphasize that we use first-order properties to refer
to properties of expressions of first-order types—and not in relation with definability
of properties in first-order predicate logic.
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Generalizations of logical relations to open terms have been used by sev-
eral authors, and in several (oftentimes unrelated) contexts (see, for instance,
[15,39,47,30,53]). In this paper, we show how open logical relations constitute a
powerful technique to systematically prove first-order properties of programs. In
this respect, the paper’s technical contributions are applications of open logical
relations to three distinct problems.

e In Section 4, we use open logical relations to prove a general Containment
Theorem. Such a theorem serves as a vehicle to introduce open logical re-
lations but is also of independent interest. The theorem states that given a
collection § of real-valued functions including projections and closed under
function composition, any first-order term of a simply-typed A-calculus en-
dowed with primitives for real numbers and operators computing functions in
§, computes itself a function in §. As an instance of such a result, we see that
any first-order term in a simply-typed A-calculus extended with primitives
for continuous functions, computes a continuous function. Although the Con-
tainment Theorem can be derived from previous results by Lafont [41] (see
Section 7), our proof is purely syntactical and consists of a straightforward
application of open logical relations.

e In Section 5, we use open logical relations to prove correctness of a core
algorithm for forward automatic differentiation of simply-typed terms. The
algorithm is a fragment of the one presented in [50]. More specifically, any
first-order term is proved to be mapped to another first-order term computing
its derivative, in the usual sense of mathematical analysis. This goes beyond
the Containment Theorem by dealing with relational properties.

e In Section 6, we consider an extended language with an if-then-else con-
struction. When dealing with continuity, the introduction of conditionals in-
validates the Containment Theorem, since conditionals naturally introduce
discontinuities. To overcome this deficiency, we introduce a refinement type
system ensuring that first-order typable terms are continuous functions on
some intended domain, and use open logical relations to prove the soundness
of the type system.

Due to space constraints, many details have to be omitted, but can be found in
an Extended Version of this work [7].

2 The Playground

In order to facilitate the communication of the main ideas behind open logical
relations and their applications, this paper deals with several vehicle calculi. All
such calculi can be seen as derived from a unique calculus, denoted by AX: =&
which thus provides the common ground for our inquiry. The calculus A*~*® is
obtained by adding to the simply typed A-calculus with product and arrow types
(which we denote by A*7") a ground type R for real numbers and constants r
of type R, for each real number r.

Given a collection § of real-valued functions, i.e. functions f : R* — R
(with n > 1), we endow A™ ™% with an operator f, for any f € §, whose
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intended meaning is that whenever t¢1,..., %, compute real numbers rq,...,7r,,
then f(t1,...,t,) compute f(r1,...,r,). We call the resulting calculus A% "
Depending on the application we are interested in, we will take as § specific
collections of real-valued functions, such as continuous or differentiable functions.

The syntax and static semantics of A; 7R are defined in Figure 1, where
f+R™ — R belongs to §. The static semantics of Ag’H’R is based on judgments
of the form I' - ¢ : 7, which have the usual intended meaning. We adopt standard
syntactic conventions as in [6], notably the so-called variable convention. In
particular, we denote by FV(t) the collection of free variables of ¢ and by s[t/z]
the capture-avoiding substitution of the expression ¢ for all free occurrences of
z in s.

Tu=R|TXT|ToT Is=-|z:7,I

to=ax|r| f(t,...,t) | Aet |t ]| (t,t)|t.1]t.2

I't4:R -+ I'Ht,:R Ix:mbHt:m

r:7hxz:7 I'Fr:R ' f(ti,...,ta) : R I'EXedt:m — 1

I'ts:mm—7m I'Ht:m I'tti:7 I'kFty:o Fl_t27'.1><7'2 (i € {1,2})
I'Fst:m I't (ti,t2): 7 X0 I'Fta:n

Fig. 1: Static semantics of A%(’_}’R.

We do not confine ourselves with a fixed operational semantics (e.g. with a call-
by-value operational semantics), but take advantage of the simply-typed nature
of Ag’H’R and opt for a set-theoretic denotational semantics. The category of
sets and functions being cartesian closed, the denotational semantics of Ag’H’R
is standard and associates to any judgment x1 : 71,...,%, : T, F £ : 7, a function
[z : 715,z o Bt 7] [[[n] — [7], where [7]—the semantics of T7—is
thus defined:

[R] = R; [r1 = 7] = [r]I; [r1 x 7o) =[] x [r2]-

Due to space constraints, we omit the definition of [I" - ¢ : 7] and refer the
reader to any textbook on the subject (such as [43]).

3 A Fundamental Gap

In this section, we will look informally at a problem which, apparently, cannot
be solved using vanilla reducibility or logical relations. This serves both as a
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motivating example and as a justification of some of the design choices we had
to do when designing open logical relations.

Consider the simply-typed A-calculus A*>7, the prototypical example of a
well-behaved higher-order functional programming language. As is well known,
A7 is strongly normalizing and the technique of logical relations can be applied
on-the-nose. The proof of strong normalization for A7 is structured around
the definition of a family of reducibility sets of closed terms {Red, },, indexed by
types. At any atomic type 7, Red, is defined as the set of terms (of type 7) having
the property of interest, i.e. as the collection of strongly normalizing terms. The
set Red, _.,, instead, contains those terms which, when applied to a term in
Red,, , returns a term in Red,,. Reducibility sets are afterwards generalised to
open terms, and finally all typable terms are shown to be reducible.

Let us now consider the calculus /1;’_”1)‘, where § contains the addition and
multiplication functions only. This language has already been considered in the
literature, under the name of higher-order polynomials [22,40], which are crucial
tools in higher-order complexity theory and resource analysis. Now, let us ask
ourselves the following question: can we say anything about the nature of those
functions R™ — R which are denoted by (closed) terms of type R® — R? Of
course, all the polynomials on the real field can be represented, but can we go
beyond, thanks to higher-order constructions? The answer is negative: terms of
type R" — R represent all and only the polynomials [5,17]. This result is an
instance of the general containment theorem mentioned at the end of Section 1.

Let us now focus on proofs of this containment result. It turns out that proofs
from the literature are not compositional, and rely on“heavyweight” tools, in-
cluding strong normalization of A*>~ and soundness of the underlying opera-
tional semantics. In fact, proving the result using usual reducibility arguments
would not be immediate, precisely because there is no obvious choice for the base
case. If, for example, we define Redy as the set of terms strongly normalizing to
a numeral, Redgn_,g as the set of polynomials, and for any other type as usual,
we soon get into troubles: indeed, we would like the two sets of functions

Redgpxr—r; RedR—)(RHR) ;

to denote essentially the same set of functions, modulo the adjoint between
R? — R and R — (R — R). But this is clearly not the case: just consider the
function f in R — (R — R) thus defined:

S RVE’ ifx>0
f(x)_{)\y.y+1ifx<0.

Clearly, f turns any fized real number to a polynomial, but when curried, it
is far from being a polynomial. In other words, reducibility seems apparently
inadequate to capture situations like the one above, in which the “base case” is
not the one of ground types, but rather the one of first-order types.

Before proceeding any further, it is useful to fix the boundaries of our in-
vestigation. We are interested in proving that (the semantics of) programs of
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first-order type R™ — R enjoy first-order properties, such as continuity or dif-
ferentiability, under their standard interpretation in calculus and real analysis.
More specifically, our results do not cover notions of continuity and differentiabil-
ity studied in fields such as (exact) real-number computation [57] or computable
analysis [58], which have a strong domain-theoretical flavor, and higher-order
generalizations of continuity and differentiability (see, e.g., [26,27,32,29]). We
leave for future work the study of open logical relations in these settings. What
this paper aims to provide, is a family of lightweight techniques that can be
used to show that practical properties of interest of real-valued functions are
guaranteed to hold when programs are written taking advantage of higher-order
constructors. We believe that the three case studies we present in this paper are
both a way to point to the practical scenarios we have in mind and of witnessing
the versatility of our methodology.

4 Warming Up: A Containment Theorem

In this section we introduce open logical relations in their unary version (i.e. open
logical predicates). We do so by proving the following Containment Theorem.

Theorem 1 (Containment Theorem). Let § be a collection of real-valued
functions including projections and closed under function composition. Then,
any Ag’_“R term 21 : R,...,x, : RE t: R denotes a function (from R™ to R) in
5. That is, [x1 :R,...,z, :REt:R] €F.

As already remarked in previous sections, notable instances of Theorem 1
are obtained by taking § as the collection of continuous functions, or as the
collection of polynomials.

Our strategy to prove Theorem 1 consists in defining a logical predicate,
denoted by F, ensuring the denotation of programs of a first-order type to be
in §, and hereditary preserving this property at higher-order types. However, §
being a property of real-valued functions—and the denotation of an open term
of the form z1 : R,...,z, : RF ¢ : R being such a function—we shall work with
open terms with free variables of type R and parametrize the candidate logical
predicate by types and environments @ containing such variables.

This way, we obtain a family of logical predicates F© acting on terms of the
form © - t : 7. As a consequence, when considering the ground type R and an
environment @ = x7 : R,...,z, : R, we obtain a predicate -7:11@ on expressions
© F t : R which naturally corresponds to functions from R"™ to R, for which
belonging to § is indeed meaningful.

Definition 1 (Open Logical Predicate). Let © = x4 : R,..., 2, : R be a fized
environment. We define the type-indexed family of predicates F€ by induction
on T as follows:

te FP <= (OFt:RA[OFt:R]€F)
teFE ., = (OFt:m > nAVse Fo. tse F2)
teFE, ., < (OFt:m xmAVie {1,2}. tie F2).

T1 X T2
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We extend ]-'T@ to the predicate FI'©, where I ranges over arbitrary environ-
ments (possibly containing variables of type R) as follows:

te FI® «— (I0Ft:TAVy. yEFL = tye F9).

Here, ~y ranges over substitutions® and vy € FL holds if the support of v is I and
v(z) € FC, for any (v : 7)€ I.

Notice that Definition 1 ensures first-order real-valued functions to be in §,
and asks for such a property to be hereditary preserved at higher-order types.
Lemma 1 states that these conditions are indeed sufficient to guarantee any
Ag’H’R term © -t : R to denote a function in §.

Lemma 1 (Fundamental Lemma). For all environments I',© as above, and
for any expression I',© -t : 7, we have t € Ff’@.

Proof. By induction on t, observing that F is closed under denotational se-
mantics: if s € F€ and [O Ft: 7] =[O F s: 7], then t € FO. The proof follows
the same structure of Lemma 3, and thus we omit details here. O

Finally, a straightforward application of Lemma 1 gives the desired result,
namely Theorem 1.

5 Automatic Differentiation

In this section, we show how we can use open logical relations to prove the
correctness of (a fragment of) the automatic differentiation algorithm of [50]
(suitably adapted to our calculus).

Automatic differentiation [8,9,35] (AD, for short) is a family of techniques
to efficiently compute the numerical (as opposed to symbolical) derivative of
a computer program denoting a real-valued function. Roughly speaking, AD
acts on the code of a program by letting variables incorporate values for their
derivative, and operators propagate derivatives according to the chain rule of
differential calculus [52]. Due to its vast applications in machine learning (back-
propagation [49] being an example of an AD technique) and, most notably, in
deep learning [9], AD is rapidly becoming a topic of interest in the programming
language theory community, as witnessed by the new line of research called dif-
ferentiable programming (see, e.g., [28,50,16,1] for some recent results on AD
and programming language theory developed in the latter field).

AD comes several modes, the two most important ones being the forward
mode (also called tangent mode) and the backward mode (also called reverse
mode). These can be seen as different ways to compute the chain rule, the former
by traversing the chain rule from inside to outside, while the latter from outside
to inside.

5 We write ty for the result of applying ~ to variables in t.
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Here we are concerned with forward mode AD. More specifically, we consider
the forward mode AD algorithm recently proposed in [50]. The latter is based
on a source-to-source program transformation extracting out of a program t a
new program D¢ whose evaluation simultaneously gives the result of computing
t and its derivative. This is achieved by augmenting the code of ¢ in such a way
to handle dual numbers”.

The transformation roughly goes as follows: expressions s of type R are trans-
formed into dual numbers, i.e. expressions s’ of type R X R, where the first compo-
nent of s’ gives the original value of s, and the second component of s’ gives the
derivative of s. Real-valued function symbols are then extended to handle dual
numbers by applying the chain rule, while other constructors of the language
are extended pointwise.

The algorithm of [50] has been studied by means of benchmarks and, to the
best of the authors’ knowledge, the only proof of its correctness available in the
literature® has been given at the time of writing by Huot et al. in [37]. However,
the latter proof relies on denotational semantics, and no operational proof of
correctness has been given so far. Differentiability being a first-order concept,
open logical relations are thus a perfect candidate for such a job.

An AD Program Transformation In the rest of this section, given a differentiable
function f : R™ — R, we denote by 0, f : R” — R its partial derivative with
respect to the variable z. Let © be the collection of (real-valued) differentiable
functions, and let us fix a collection § of real-valued functions such that, for any
f €9, both f and 0, f belong to §. We also assume § to contain functions for
real number arithmetic. Notice that since J, f is not necessarily differentiable,
in general 0, f € ©.

We begin by recalling how the program transformation of [50] works on
Ag’_)’R, the extension of AX ! with operators for functions in ®. In order
to define the derivative of a Ag’H’R expression, we first define an intermediate
program transformation D : A%’_”R — A?—)’R such that:

I'tt:7 = DI'FDt:Dr.

The action of D on types, environments, and expressions is defined in Figure 2.
b b
. . . . X.,—.R . . . X .,—.R
Notice that ¢ is an expression in AX"", whereas D¢ is an expression in Az’ .
D ’ 5

Let us comment the definition of D, beginning with its action on types. Follow-
ing the rationale behind forward-mode AD, the map D associates to the type

" We represent dual numbers [21] as pairs of the form (z, '), with x, 2" € R. The first
component, namely z, is subject to the usual real number arithmetic, whereas the
second component, namely z’, obeys to first-order differentiation arithmetic. Dual
numbers are usually presented, in analogy with complex numbers, as formal sums
of the form z + z’e, where ¢ is an abstract number (an infinitesimal) subject to the
law €2 = 0.

8 However, we remark that formal approaches to backward automatic differentiation
for higher-order languages have been recently proposed in [1,16] (see Section 7).
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DR=RXR D(:) =-
D(11 X T2) = D71 X D72 D(z:7,I')=dx :Dr,DI’

D(T1 — 7‘2) =D11 — D712

Dr=(r,0) D(f(t1,...,tn)) = (f(Dt1.1,... ,Dtn.l),iazif(Dtl.l, ...,Dt,.1) % Dt;.2)

Dz =dz D(A\z.t) = Adaz.Dt D(st) = (Ds)(Dt) D(t.i) =Dt.i D(t1,t2) = (Dt1,Dis)

Fig. 2: Intermediate transformation D

R the product type R x R, the first and second components of its inhabitants
being the original expression and its derivative, respectively. The action of D
on non-basic types is straightforward and it is designed so that the automatic
differentiation machinery can handle higher-order expressions in such a way to
guarantee correctness at real-valued function types.

The action of D on the usual constructors of the A-calculus is pointwise,
although it is worth noticing that D associates to any variable = of type 7 a new
variable, which we denote by dz, of type D7. As we are going to see, if 7 = R,
then dz acts as a placeholder for a dual number.

More interesting is the action of D on real-valued constructors. To any nu-
meral r, D associates the pair Dr = (r,0), the derivative of a number being zero.
Let us now inspect the action of D on an operator f associated to f: R"™ — R

(we treat f as a function in the variables x1,...,xz,). The interesting part is the
second component of D(f(t1,...,tn)), namely

n
> 04, f(Dt1.1,... Dty 1) % Dt;.2
i=1

where Y | and * denote the operators (of A; ) associated to summation
and (binary) multiplication (for readability we omit the underline notation), and
0Oz, [ is the operator (of Ag’_)’R) associated to partial derivative 0, f of f in the
variable x;. It is not hard to recognize that the above expression is nothing but
an instance of the chain rule.

Finally, we notice that if I' - ¢ : 7 is a (derivable) judgment in A3 %, then
indeed DI' - Dt : D7 is a (derivable) judgment in Ag’H’R.

Ezample 1. Let us consider the binary function f(x1,z2) = sin(z1) + cos(z2).
For readability, we overload the notation writing f in place of f (and similarly
for O, f). Given expressions ti,ta, we compute D(sin(1) -+ cos(t2)). Recall that



On the Versatility of Logical Relations 65

Oy, f(x1,22) = cos(x1) and Oy, f(x1, 22) = —sin(zz). We have:

D(sin(t1) + cos(t2))
= (sin(Dt1.1) + cos(Dto.1), Oy, f(Dt1.1,Dto.1) * Dt1.2 + O, f(Dt1.1,Dto.1) * Dt2.2)
= (sin(Dt1.1) + cos(Dto.1), cos(Dty.1) * Dt1.2 — sin(Dtg.1) x Dto.2).

As a consequence, we see that D(Az.\y. sin(z) + cos(y)) is
Adx.Ady.(sin(dz.1) 4+ cos(dy.1), cos(dx.1) x dx.2 — sin(dy.1) * dy.2).

We now aim to define the derivative of an expression 1 : R,...,z, :RF¢:R
with respect to a variable = (of type R). In order to do so we first associate to
any variable y : R its dual expression dual,(y) : R x R defined as:

suar = [D) o=y
ual, =
Y (y,0) otherwise.

Next, we define for x; : R,..., 2, : Rt ¢ : R the derivative deriv(z,t) of ¢ with
respect to x as:

deriv(z,t) = Dt[dual,(z1)/dxy,. .. ,dual, (z,)/de,].2
Let us clarify this passage with a simple example.

Ezxample 2. Let us compute the derivative of x : R,y : R+t : R, where t = = * y.
We first of all compute D¢, obtaining:

dr:RXR,dy:R X RHF ((dz.1) % (dy.1), (dz.1) * (dy.2) + (dz.2) % (dy.1)) : R X R.

Observing that dual,(z) = (z,1) and dual,(y) = (y,0), we indeed obtain the
desired derivative as x : R,y : R  Dt[dual,(x)/dx,dual,(y)/dy].2 : R. For we
have:

[z :R,y:RF Dt[dual,(z)/dx,dual,(y)/dy].2 : R]
=[z:Ry:RF(z*xy,xx0+1%y).2:R]
=[z:Ry:Rty:R] =0,[z:R,y:RFaxy:R].

Remark 1. For © = 1 : R,...,z, : R we have © - dualy,(x;) : DR and © F
Ds[dualy(z1)/dxy,...,dual,(z,)/dz,] : D7, for any variable y and © F s : 7.

Open Logical relations for AD We have claimed that the operation deriv per-
forms automatic differentiation of A%’_”R expressions. By that we mean that
once applied to expressions of the form z; : R,...,z, : R F ¢ : R, the operation
deriv can be used to compute the derivative of [x; : R,...,z, : RF ¢ : R]. We
now show how we can prove such a statement using open logical relations, this
way providing a proof of correctness of our AD program transformation.

We begin by defining a logical relations R between Ag’H’R and A3 ex-
pressions. We design R in such a way that (i) ¢/RDt and (ii) if ¢ R s and ¢ inhabits
a first-order type, then indeed s corresponds to the derivative of ¢. While (ii)
essentially holds by definition, (i) requires some efforts in order to be proved.
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Definition 2 (Open Logical Relation). Let © = x1 : R,...,x, : R be a fized,
arbitrary environment. Define the family of relations (RT@)@J between A%’H’R
and Ag’_ha expressions by induction on T as follows:

OFt:RADOF s:R xR

Yy : R.

[ F s[dualy(x1)/dz,. .., dualy(z,)/dz,].1 : R] =[O F ¢ : R]
[© | s[dualy(z1)/dz1,. .., dualy(z,)/dz,].2 : R] = 0,[O F ¢ : R]

tRE s —

OFt:Tq -1 ADOF s:D1y — D7y

tRE s —
norn {Vp, q.pRE ¢ = tpRE sq

t RS

T1 X T2

{QFt:ﬁxrg/\DQI—szDTlxDTg
s

Vie{1,2}. tiRE s.i

We extend RS to the family (RE©)r o, where I' ranges over arbitrary envi-
ronments (possibly containing variables of type R), as follows:

tRIC s «—= (I'NOFt:7)A(DI,DOF 5:D7) A (V,0. yRE 6§ = tyRE s0)
where vy, § range over substitutions, and:
YRE 6 = (supp(y) = I') A (supp(8) =DI') A (Y(z : 7) € I'. v(x) RE §(dx)).

Obviously, Definition 2 satisfies condition (ii) above. What remains to be
done is to show that it satisfies condition (i) as well. In order to prove such a
result, we first need to show that the logical relation respects the denotational
semantics of A%’H’R.

Lemma 2. Let © =z :R,...,x, : R. Then, the following hold:

tREsA[OFL:7]=[OFt:7] = tREs
tRE s AN[DOF s :Dr] = [DOF s:Dr] = tRY s.

Proof. A standard induction on 7. O
We are now ready to state and prove the main result of this section.

Lemma 3 (Fundamental Lemma). For all environments I',© and for any
expression I',O Ft : 7, we have tRf’@ Dt.

Proof. We prove the following statement, by induction on ¢:
Vt. V7. V[,0. (IO Ft: 7 = tRI© Dt).

We show only the most relevant cases. Suppose ¢ is a variable x. We distinguish
whether x belongs to I" or 6.
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1. Suppose (z : R) € ©. We have to show z Ri"© dz, i.e.
[©F dz[dual,(z)/dz].1 :R] = [@ F z : R]
[© F dz[dual,(z)/dx].2 :R] = 0,[O F x : R]
for any variable y (of type R). The first identity obviously holds as
[© F dz[dual,(z)/dz].1:R] = [O F dz[(x,b)/dz].1 : R] = [O© F z : R],

where b € {0,1}. For the second identity we distinguish whether y = z or
y # x. In the former case we have dual,(z) = (x,1), and thus:

[© t dz[dual,(z)/dz].2 :R] =[O+ 1:R] =0,[O F vy :R].
In the latter case we have dual,(z) = (z,0), and thus:
[© t dz[dualy(z)/dz].2 :R] = [©@ F0:R] = 0,[O F = : R].

2. Suppose (z : 7) € I'. We have to show  RT"€ dz, i.e. y(x) R §(dz), for all
substitutions v,d such that v RS §. Since = belongs to I', we are trivially
done.

Suppose t is Ax.s, so that we have

e,z mks:mn
I'OFAr.s:m — 1

for some types 71, 72. As x is bound in Az.s, without loss of generality we can
assume (x : 7)) € I'UBO. Let A =1T",x: 7y, so that we have A, F s : 19, and
thus s RTA;@ Ds, by induction hypothesis. By definition of open logical relation,
we have to prove that for arbitrary ~,d such that v R &, we have

Az.sy RE Adz.(Ds)J,

T1—T2

i.e. (Az.57)p RE, (Adz.(Ds)d)q, for all p RE ¢. Let us fix a pair (p,q) as above.
By Lemma 2, it is sufficient to show (s7)[p/x] RE ((Ds)d)[q/dz]. Let v/, ¢’ be the
substitutions defined as follows:

'(y) = D fy==x 5 (y) = q ify=dx
T v(y) otherwise v= 5(y) otherwise.

It is easy to see that v/ RS &', so that by s R4 Ds (recall that the latter follows
by induction hypothesis) we infer sy’ RE, (Ds)d’, by the very definition of open
logical relation. As a consequence, the thesis is proved if we show

(s7)[p/2] = 7'; ((Ds)d)[g/dx] = (Ds)d".

The above identities hold if « ¢ FV(y(y)) and dz ¢ FV(é(dy)), for any (y :
7) € I'. This is indeed the case, since v(y) RE §(dy) implies © F y(y) : 7 and
DO F §(dy) : D7, and = ¢ O (and thus dz ¢ DO). O
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A direct application of Lemma 3 allows us to conclude the correctness of
the program transformation D. In fact, given a first-order term © F ¢ : R, with
© =2x1:R,...,z, : R, by Lemma 3 we have tRR@ Dt, and thus

0y[@ Ft:R] =[O F Dt[dualy(x1)/dx1,...,dual,(z,)/dz,].2 : R],

for any real-valued variable y, meaning that D¢ indeed computes the partial
derivative of ¢.

Theorem 2. For any term © Ft : R as above, the term DO F Dt : DR computes
the partial derivative of t, i.e., for any variable y we have

0y[© Ft:R] =[O} Dt[dual,(z1)/dz1, ..., dualy(x,)/dz,].2 : R].

6 On Refinement Types and Local Continuity

In Section 4, we exploited open logical relations to establish a containment the-
orem for the calculus Al;’_)’R, i.e. the calculus A% 7* extended with real-valued
functions belonging to a set § including projections and closed under function
composition. Since the collection € of (real-valued) continuous functions satisfies
both constraints, Theorem 1 allows us to conclude that all first order terms of
A§’_”R represent continuous functions.

The aim of the present section is the development of a framework to prove
continuity properties of programs in a calculus that goes beyond Aé’_”R. More
specifically, (i) we do not restrict our analysis to calculi having operators rep-
resenting continuous real-valued functions only, but consider operators for ar-
bitrary real-valued functions, and (ii) we add to our calculus an if-then-else
construct whose static semantics is captured by the following rule:

I't:R I'kts:7 I'kFp:7T
I'-if t then selsep: T

The intended dynamic semantics of the term if ¢ then s else p is the same as
the one of s whenever ¢ evaluates to any real number r # 0 and the same as the
one of p if it evaluates to 0.

Notice that the crux of the problem we aim to solve is the presence of the
if-then-else construct. Indeed, independently of point (i), such a construct breaks
the global continuity of programs, as illustrated in Figure 3a. As a consequence
we are forced to look at local continuity properties, instead: for instance we
can say that the program of Figure 3a is continuous both on R.y and Rx.
Observe that guaranteeing local continuity allows us (up to a certain point) to
recover the ability of approximating the output of a program by approximating
its input. Indeed, if a program ¢ : R X ... X R — R is locally continuous on a
subset X of R™, then the value of ts (for some input s) can be approximated
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[t(=) A lel(2)

T “ “

(a)t=Mr.if t<Othen —zelsex+1 (b)t=Azr.if 2 <O0thenlelsex+1

Fig. 3: Simply typed first-order programs with branches

by passing as argument to ¢ a family (s, )nen of approximations of s, as long as
both s and all the (s, )nen are indeed elements of X. Notice that the continuity
domains we are interested in are not necessary open sets: we could for instance
be interested in functions that are continuous on the unit circle, i.e. the points
{(a,b) | a®> +b?> = 1} C R2. For this reason we will work with the notion
of sequential continuity, instead of the usual topological notion of continuity.
It must be observed, however, that these two notions coincide as soon as the
continuity domain X is actually an open set.

Definition 3 (Sequential Continuity). Let f : R™ — R, and X be any subset
of R™. We say that f is (sequentially) continuous on X if for every x € X, and
for every sequence (x,)nen of elements of X such that im,, o x, = x, it holds
that lim, o f(z,) = f(z).

In [18], Chaudhuri et al. introduced a logical system designed to guarantee
local continuity properties on programs in an imperative (first-order) program-
ming language with conditional branches and loops. In this section, we develop
a similar system in the setting of a higher-order functional language with an
if-then-else construct, and we use open logical relations to prove the sound-
ness of our system. This witnesses, on yet another situation, the versatility of
open logical relations. Compared to [18], we somehow generalize from a result
on programs built from only first-order constructs and primitive functions, to a
containment result for programs built using also higher-order constructs.

We however mention that, although our system is inspired by the work of
Chaudhuri at al., there are significant differences between the two, even at the
first-order level. The consequences these differences have on the expressive power
of our systems are twofold:

e On the one hand, while inferring continuity on some domain X of a program
of the form if ¢ then s else p, we have more flexibility than [18] for the
domains of continuity of s and p. To be more concrete, let us consider the
program Az.(if (z > 0) then 0 else (if z = 4 then 1 else 0)), which is
continuous on R even though the second branch is continuous on R<g, but
not on R. We are able to show in our system that this program is indeed
continuous on the whole domain R, while Chaudhuri et al. cannot do the
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same in their system for the corresponding imperative program: they ask the
domain of continuity of each of the two branches to coincide with the domain
of continuity of the whole program.

e On the other hand, the system of Chaudhuri at al. allows one to express
continuity along a restricted set of variables, which we cannot do. To illustrate
this, let us look at the program: Az, y.if (x = 0) then (3 y) else (4 * y):
along the variable y, this program is continuous on the whole of R. Chaudhuri
et al. are able to express and prove this statement in their system, while we
can only say that for every real a, this program is continuous on the domain
{a} xR.

For the sake of simplicity, it is useful to slightly simplify our calculus; the ideas
we present here, however, would still be valid in a more general setting, but
that would make the presentation and proofs more involved. As usual, let § be
a collection of real-valued functions. We consider the restriction of the calculus
Ag’_"R obtained by considering types of the form

T = R|p; p = pL XX pp XRX - XR— T3
m-times

only. For the sake of readability, we employ the notation (p; ..., pn,R,...,R) = T
in place of p; X -+ X pp, X R X -+ X R — 7. We also overload the notation and
keep indicating the resulting calculus as Ag’_”R. Nonetheless, the reader should
keep in mind that from now on, whenever referring to a A§’_>’R term, we are
tacitly referring to a term typable according to the restricted type system, but
that can indeed contain conditionals.

Since we want to be able to talk about composition properties of locally
continuous programs, we actually need to talk not only about the points where
a program is continuous, but also about the image of this continuity domain.
In higher-order languages, a well-established framework for the latter kind of
specifications is the one of refinement types, that have been first introduced
by [31] in the context of ML types: the basic idea is to annotate an existing
type system with logical formulas, with the aim of being more precise about
the underlying program’s behaviors than in simple types. Here, we are going to
adapt this framework by replacing the image annotations provided by standard
refinement types with continuity annotations.

6.1 A Refinement Type System Ensuring Local Continuity

Our refinement type system is developed on top of the simple types system of
Section 2 (actually, on the simplification of such a system we are considering in
this section). We first need to introduce a set of logical formulas which talk about
n-uples of real numbers, and which we use as annotations in our refinement types.
We consider a set V of logical variables, and we construct formulas as follows:

poelu=T | (e<e) | vng | -,
eeS::a‘a‘f(e,...m) with a € V,;a € R, f: R" — R.
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Recall that with the connectives in our logic, we are able to encode logical
disjunction and implication, and as customary, we write ¢ = 1 for =¢ V 9. A
real assignment is a partial map o : V — R. When ¢ has finite support, we
sometimes specify o by writing (ay — o(aq),..., @, — o(ay)). We note o = ¢
when ¢ is defined on the variables occurring in ¢, and moreover the real formula
obtained when replacing along o the logical variables of ¢ is true. We write |= ¢
when o = ¢ always holds, independently on o.

We can associate to every formula the subset of R™ consisting of all points
where this formula holds: more precisely, if ¢ is a formula, and X = «aq,...,q,
is a list of logical variables such that Vars(¢) C X, we call truth domain of ¢
w.r.t. X the set:

Dom(¢)* = {(a1,...,an) €R" | (a1 = a1, ..., 00 > an) = ¢}

We are now ready to define the language of refinement types, which can be
seen as simple types annotated by logical formulas. The type R is annotated by
logical variables: this way we obtain refinement real types of the form {a € R}.
The crux of our refinement type system consists in the annotations we put on
the arrows. We introduce two distinct refined arrow constructs, depending on
the shape of the target type: more precisely we annotate the arrow of a type
(Ty,...,T,) — R with two logical formulas, while we annotate (T3,...,T,) = H
(where H is an higher-order type) with only one logical formula. This way, we ob-

tain refined arrow types of the form (77, . .. 7Tn)u}:ﬁb{a €R},and (T1,...,Ty) %
H: in both cases the formula 1 specifies the continuity domain, while the formula
¢ is an image annotation used only when the target type is ground. The intuition
is as follows: a program of type (Hy, ..., H,,{a1 €R},...,{an € R})¢:>¢{a €R}
uses its real arguments continuously on the domain specified by the formula
(w.r.t ag,...,q,), and this domain is sent into the domain specified by the for-

mula ¢ (w.r.t. «). Similarly, a program of the type (71, ...,T,) % H has its real
arguments used in a continuous way on the domain specified by ¥, but it is not
possible anymore to specify an image domain, because H is higher-order.

The general form of our refined types is thus as follows:

T:::H‘F; F = {aeR};
L ) P
H i= (Hy,...,Hp, Fr,...,F) S H | (H,...,Hp, F,...,F,)"3F
with n +m > 0, Vars(¢) C {a}, Vars(¢y)) C {ai,...,a,} when F = {& € R},
F; = {a; € R}, and the (a;)1<i<n are distinct. We take refinement types up to

renaming of logical variables. If T is a refinement type, we write T for the simple
type we obtain by forgetting about the annotations in 7.

Ezample 3. We illustrate in this example the intended meaning of our refinement

types.
e We first look at how to refine R — R: those are types of the form {a; €

R}¢13¢2{a2 € R}. The intended inhabitants of these types are the programs
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t : R — R such that i) [¢t] is continuous on the truth domain of ¢;; and

ii) [t] sends the truth domain of ¢; into the truth domain of ¢. As an

example, ¢; could be (a1 < 3), and ¢3 could be (ag > 5). An example of a

program having this type is t = Az.(5 + f(z)), where f : R — R is defined
= when a < 3

as f(a) =4 3@ . , and moreover we assume that {f,+} C §.
0 otherwise

e We look now at the possible refinements of R — (R — R): those are of the form

{o1 € R} & ({as € R}”3%{as €R}). The intended inhabitants of these
types are the programs ¢ : R — (R — R) whose interpretation function (z,y) €
R? — [t](x)(y) sends continously Dom(#;)*t x Dom(65)®? into Dom(f3).
As an example, consider 6; = (a1 < 1), 0 = (a2 < 3), and 03 = (ag > 0).
An example of a program having this type is Azi.Aze.f(x1 * x2) where we
take f as above. B

A refined typing context I is a list 1 : T,...,z, : T,, where each T; is a
refinement type. In order to express continuity constraints, we need to annotate
typing judgments by logical formulas, in a similar way as what we do for arrow
types. More precisely, we consider two kinds of refined typing judgments: one
for terms of ground type, and one for terms of higher-order type:

P P~
't t: H; I' F. t:F.

6.2 Basic Typing Rules

We first consider refinement typing rules for the fragment of our language which
excludes conditionals: they are given in Figure 4. We illustrate them by way of
a series of examples.

Ezample 4. We first look at the typing rule var-F: if 6 implies ', then the
variable x—that, in semantics terms, does the projection of the context I to
one of its component—sends continuously the truth domain of 6 into the truth
domain of ¢’. Using this rule we can, for instance, derive the following judgment:

(a=0AB20)~(a20)
z:{a€R},y: {f €R} by x:{a €R}. (1)

Ezample 5. We now look at the Rf rule, that deals with functions from §. Using
this rule, we can show that:

(a=>0AB>0)~(v20)
x:{a€R},y:{B €R} [ min(x,y) : {y € R}. (2)

Before giving the refined typing rule for the if-then-else construct, we also
illustrate on an example how the rules in Figure 4 allow us to exploit the conti-
nuity informations we have on functions in §, compositionally.
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E0=0
var-H ” var-F PRy,
I'z:Hbrox: H I''z:{a€R} Fr z:{a €R}
f € § is continuous on Dom(f] A ... A 6},)%t%n 0~0; i
F(Dom(8) A ... ALY ) C Dom(@)? [be ti{as € R}
Rf P
I b f(ti...tn): {B €R}
¥ (n)
b Iz :Th,...,xn Ty Fe t: T =1 A =
abs
P
TRy, an)d s (Th,. . T) Y T
P
(Fl‘rSi : Hi)1gi§m ':ilw/g\/\gn =0
P . J
Phot: (Huyooo Hp  Fryn o F) "1 (I' b+ pj: Fy)icicm
app
#(m)
b t(s1y oy 8myDiye ey Pm) i T
The formula 1(n) should be read as ¢ when T is a higher-order type, and as ¢ ~» n

when T is a ground type.

Fig. 4: Typing Rules

—x if 0
Ezample 6. Let f : R — R be the function defined as: f(z) = L )
x + 1 otherwise

Observe that we can actually regard f as represented by the program in Fig-
ure 3a—but we consider it as a primitive function in § for the time being, since
we have not introduced the typing rule for the if-then-else construct, yet. Con-
sider the program:

t = Aa,y).f(min(z,y)).

We see that [t] : R? — R is continuous on the set {(z,y) | * > 0 Ay > 0},
and that, moreover, the image of f on this set is contained on [1,+00). Using
the rules in Figure 4, the fact that f is continuous on Rx(, and that min is
continuous on R?, we see that our refined type system allows us to prove ¢ to be
continuous in the considered domain, i.e.:

(GZOABZ_OQW(’YZU

Fr t: ({a €R},{B €R}) {y € R}.

6.3 Typing Conditionals

We now look at the rule for the if-then-else construct: as can be seen in the
two programs in Figure 3, the use of conditionals may or may not induce dis-
continuity points. The crux here is the behaviour of the two branches at the
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discontinuity points of the guard function. In the two programs represented in
Figure 3, we see that the only discontinuity point of the guard is in z = 0. How-
ever, in Figure 3b the two branches return the same value in 0, and the resulting
program is thus continuous at x = 0, while in Figure 3a the two branches do
not coincide in 0, and the resulting program is discontinuous at x = 0. We can
generalize this observation: for the program if ¢ then s else p to be continu-
ous, we need the branches s and p to be continuous respectively on the domain
where ¢t is 1, and on the domain where ¢ is 0, and moreover we need s and p
to be continuous and to coincide on the points where ¢ is not continuous. Simi-
larly to the logical system designed by Chaudhuri et al [18], the coincidence of
the branches in the discontinuity points is expressed as a set of logical rules by
way of observational equivalence. It should be observed that such an equivalence
check is less problematic for first-order programs than it is for higher-order one
(the authors of [18] are able to actually check observational equivalence through
an SMT solver). On the other hand, various notions of equivalence which are
included in contextual equivalence and sometimes coincide with it (e.g., applica-
tive bisimilarity, denotational semantics, or logical relations themselves) have
been developed for higher-order languages, and this starts to give rise to actual
automatic tools for deciding contextual equivalence [38].

We give in Figure 5 the typing rule for conditionals. The conclusion of the
rule guarantees the continuity of the program if ¢ then s else p on a do-
main specified by a formula 6. The premises of the rule ask for formulas 6, for
q € {t, s, p} that specify continuity domains for the programs ¢, s, p, and ask also
for two additional formulas 6; o) and 6 1) that specify domains where the value
of the guard ¢ is 0 and 1, respectively. The target formula 6, and the formulas
(04) ge{t,s,p,(t,1),(t,0)} are related by two side-conditions. Side-condition (1) con-
sists of the following four distinct requirements, that must hold for every point a
in the truth domain of 0: i) a is in the truth domain of at least one of the two for-
mulas 6y, 6; ii) if @ is not in 0 1 (i.e., we have no guarantee that ¢ will return 1
at point a, meaning that the program p may be executed) then a must be in the
continuity domain of p; iii) a condition symmetric to the previous one, replacing
1 by 0, and p by s; iv) all points of possible discontinuity (i.e. the points a such
that ' does not hold) must be in the continuity domain of both s and p, and as
a consequence both 6% and 6P must hold there. The side-condition (2) uses typed
contestual equivalence = between terms to express that the two programs s
and p must coincide on all inputs such that 6; does not hold—i.e. that are not
in the continuity domain of ¢. Observe that typed context equivalence here is
defined with respect to the system of simple types.

Notation 1. We use the following notations in Figure 5. When I' is a typing
environement, we write GI' and HI' for the ground and higher-order parts of
I, respectively. Moreover, suppose we have a ground refined typing environment
O =1 : {on €R},...,xy : {an, € R}: we say that a logical assignment o is
compatible with © when {a; | 1 < i < n} C supp(c). When it is the case,
we build in a natural way the substitution associated to o along @ by taking
09 (x;) = o).
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9tw(6i0\/311)

r t: €R

0(¢,0)~(8=0) {6 } 0s(n) 0p(n)

t:{B eRr} ' b s:T ' p:T (1), (2)

r
@(m)W(,B:l)

Fr t:{B €Rr}
If

6(n)
'y if t then selsep: T

Again, the formula ¥(n) should be read as 1 when T is a higher-order type, and as
1 ~»n when T is a ground type. The side-conditions (1), (2) are given as:
1. E6= ((05 VOP) A (0% v gP) A (040 v %) A (B, V (B, A 9,,))).

2. For all logical assignment o compatible with GI",o = 6 A =0, implies HI' +
SO'GF Ectz pO'GF.

Fig.5: Typing Rules for the if-then-else construct

Ezample 7. Using our if-then-else typing rule, we can indeed type the program
in Figure 3b as expected:

FAz.if x <Othenlelsez+1:{a€ R}TQT{ﬁ € R}.

6.4 Open-logical Predicates for Refinement Types

Our goal in this section is to show the correctness of our refinement type systems,
that we state below.

Theorem 3. Lett be any program such that:

O~~0’
xz1:{a1 €R},..., 2y : {an, ER} F t:{B ER}

Then it holds that:
o [t](Dom(8)1-2) € Dom(8')?;
o [t] is sequentially continuous on Dom(f)*1r-%n .

As a first step, we show that our if-then-else rule is reasonable, i.e. that it
behaves well with primitive functions in §. More precisely, if we suppose that
the functions f,gg, g1 are such that the premises of the if-then-else rule hold,
then the program if f(z1,...,%,) then ¢1(x1,...,2,) else go(x1,...,2y) is
indeed continuous in the domain specified by the conclusion of the rule. This is
precisely what we prove in the following lemma.

Lemma 4. Let f,go,g1 : R — R be functions in §, and @ = z1 : {1 €
R}, ..., 2, : {an € R}. We denote a the list of logical variables aq, ..., ap. We
consider logical formulas 6 and 0f,0¢0),0(f1); $gy> g, that have their logical
variables in o, and such that:
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1. f is continuous on Dom(0)* with f(Dom(6;)*) € {0, 1} and f(Dom(0f))*) €
{b} for b€ {0,1}.

2. go and g1 are continuous on Dom(dg,)®, and Dom(pg, )™ respectively, and
(a1 = a,...,an = ayn) =0 A=0f implies go(ar, ..., a,) = gi(a1,...,a,);

3. ': 0= ((¢91 \ ¢90) A (e(f,O) \ ¢g1) A (H(f,l) \% ¢go) A (ef N (¢90 A ¢91)))

Then it holds that:

[+ if f(z1,...,3,) then gi(z1,...,2,) else go(21,...,%,) : R]
is continuous on Dom(0)<.
Proof. The proof can be found in the extended version [7]. O

Similarly to what we did in Section 4, we are going to show Theorem 3
by way of a logical predicate. Recall that the logical predicate we defined in
Section 4 consists actually of three kind of predicates—all defined in Definition 1
of Section 4: FO, F&, FOI' where © ranges over ground typing environments,
I ranges over arbitrary environments, and 7 is a type. The first predicate F©
contains admissible terms ¢ of type © - ¢ : 7, the second predicate ]—'I@ contains
admissible substitutions 7 that associate to every (z : 7) in I" a term of type T
under the typing context @, and the third predicate .7-'7(.9 1" contains admissible
terms t of type I', @+t : 7.

Here, we need to adapt the three kinds of logical predicates to a refinement
scenario: first, we replace 7 and ©, I with refinement types and refined typing
contexts respectively. Moreover, for technical reasons, we also need to generalize
our typing contexts, by allowing them to be annotated with any subset of R"
instead of restricting ourselves to those subsets generated by logical formulas.
Due to this further complexity, we split our definition of logical predicates into
two: we first define the counterpart of the ground typing context predicate F©
in Definition 4, then the counterpart of the predicate for substitutions F& and
the counterpart of the predicates F©I" for higher-order typing environment in
Definition 5.

Let us first see how we can adapt the predicates F€ to our refinement types
setting. Recall that in Section 4, we defined the predicate F¢ as the collection of
terms t such that © ¢ : R, and its semantics [© F ¢ : R] belongs to §. As we are
interested in local continuity properties, we need to build a predicate expressing
local continuity constraints. Moreover, in order to be consistent with our two
arrow constructs and our two kinds of typing judgments, we actually need to
consider also two kinds of logical predicates, depending on whether the target
type we consider is a real type or an higher-order type. We thus introduce the
following logical predicates:

C(O,X ~ ¢, F); C(e,X,H);

where @ is a ground typing environment, X is a subset of R"™, ¢ is a logical
formula, and, as usual, F' ranges over the real refinements types, while H ranges
over the higher-order refinement types. As expected, X and ¢ are needed to
encode continuity constraints inside our logical predicates.
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Definition 4. Let © be a ground typing context of length n, F' and H refined
ground type and higher-order type, respectively. We define families of predicates
on terms C(©,Y ~ ¢, F) and C(0,Y,H), with Y CR"™ and ¢ a logical formula,
as specified in Figure 6.

e For F' = {a € R} we take:
CO,Y -1, F):={t|z1:R,...,zn :RFEL:R,
[t](Y) € Dom(9))* A [t] continuous over Y'}.

e if H is an arrow type of the form H = (Hi,...,Hn,{a1 €R1},...,{ap €R}) v

T:
CO,Y,H):={t|x1:R,...,xn :RFt:H,
VZ,Vs = (s1,...,8m) with s; € C(0, Z, H;),
Vp = (p1,...pp), Y7 with =o' AL AYP =1,
and p; € C(O,Z ~ ¢, {a; €R}),
it holds that t(s,p) € C(©,(Y NZ)(n),T)},
where as usual we should read ¥(n) =¥, (Y N Z)(n) =Y NZ when T is higher-

order, and ¥(n) = ¢ ~n, (Y NZ)(n) = (Y N Z) ~»n when T is an annnotated
real type.

Fig. 6: Open Logical Predicates for Refinement Types.

Ezample 8. We illustrate Definition 4 on some examples. We denote by B° the
open unit ball in R? i.e. B = {(a,b) € R? | a® + b*> < 1}. We consider the
ground typing context © = z1 : {aq € R}, z2 : {aa € R}.

e We look first at the predicate C(©, B° ~~ (8 > 0), {8 € R}). It consists of all
programs z : R,z : R ¢ : R such that 21 : Ryz2 : R F ¢ : R] is continuous
on the open unit ball, and takes only strictly positive values there.

e We look now at an example when the target type T is higher-order. We take

H = {3 € R}(m>0)W ﬁ2>0){6 € R}, and we look at the logical predicate
C(O,B°, H). We are going to show that the latter contains, for instance, the
program:

t=w.f(w,z] +y7) where f(w,a) = if a < 1;0 otherwise.

Looking at Figure 6, we see that it is enough to check that for any Y C R?
and any s € C(0,Y ~ (81 > 0),{B1 €R}), it holds that:

ts €C(O,B°NY ~ (B2 >0),{B2 € R}).
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Our overall goal—in order to prove Theorem 3—is to show the counterpart
of the Fundamental Lemma from Section 4 (i.e. Lemma 1), which states that
the logical predicate F¢ contains all well-typed terms. This lemma only talks
about the logical predicates for ground typing contexts, so we can state it as of
now, but its proof is based on the fact that we dispose of the three predicates.
Observe that from there, Theorem 3 follows just from the definition of the logical
predicates on base types. Similarly to what we did for Lemma 1 in Section 4,
proving it requires to define the logical predicates for substitutions and higher-
order typing contexts. We do this in Definition 5 below. As before, they consist in
an adaptation to our refinement types framework of the open logical predicates
FL and F2I' of Section 4: as usual, we need to add continuity annotations, and
distinguish whether the target type is a ground type or an higher-order type.

Notation 2. We need to first introduce the following notation: let I'; © be two
ground non-refined typing environments of length m and n respectively—and with
disjoint support. Let v : supp(I") — {t | © -t : R} be a substitution. We write
[~] for the real-valued function:

[] :R™ — R™*+™
a (a,[y()](a),.... [v(zn)l(a))

Definition 5. Let @ be a ground typing environment of length n, and I' an
arbitrary typing environment. We note n and m the lengths of respectively @
and GI'.
o Let Z C R* W C R"™™. We define C(0,Z ~~ W ,I') as the set of those
substitutions  : supp(I') — {t | © -t : R} such that:
e V(zx:H)e HI', v(x) €C(©,Z,H),
° [[fy‘ ar] : R" — R"™™ sends continuously Z into W ;
o Let W CR"™ F = {«a € R} an annotated real type, and v a logical formula
with Vars(y) C {a}. We define:

C(I;0), W~y F):={t|,OFt:R
AVX CR"Vye€C(O,X ~W,I), ty € C(O,X ~ ), F)}.
o Let W CR*™ ™ and H an higher-order refined type. We define :
C(r;0),W,H):={t|TO+t:H
AVX CR" VyeC(O,X ~W,I). ty€C(O,X,H)}.
Ezample 9. We illustrate Definition 5 on an example. We consider the same
context O as in Example 8, i.e. © = z1 : {a1 € R}, x5 : {az € R}, and we take
I' =23 : {ag € R},z : H, with H = {f; € R}(ﬁlzo)z(ﬂzzo){ﬁg € R}. We are
interested in the following logical predicate for substitution:
C(@,B% ~ {(v,|v]) |ve B)},T)

where the norm of the couple (a,b) is taken as: |(a,b)| = Va2 + b%. We are
going to build a substitution 7 : {z3,2} — A3 that belongs to this set. We
take:
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o y(z) = dw.f(w, 2} + 23) where f(w,a) = 1% if a < 1;0 otherwise.
o (es) = (V) (a3 +a).
We can check that the requirements of Definition 5 indeed hold for ~:

e v(z) € C(O, B°, H)—see Example 8;

¢ [ver] : RxR — R3 is continuous on B°, and moreover sends B° into
{(v, |v]) | v € B°)}. Looking at our definition of the semantics of a substitu-
tion, we see that [ ¢r](a,b) = (a,b,|(a,b)|), thus the requirements above
hold.

Lemma 5 (Fundamental Lemma). Let © be a ground typing context, and I'
an arbitrary typing context—thus I' can contain both ground type variables and
non-ground type variables.

O~>n

e Suppose that I';© +, t: F:thent e C(I';0,Dom(0) ~ n, F).
0

o Suppose that I',O -, t: H: thent € C(I';0, Dom(0), H).

Proof Sketch. The proof is by induction on the derivation of the refined typing
judgment. Along the lines, we need to show that our logical predicates play well
with the underlying denotational semantics, but also with logic. The details can
be found in the extended version [7]. O

From there, we can finally prove the main result of this section, i.e. Theo-
rem 3, that states the correctness of our refinement type system. Indeed, Lemma 5
has Theorem 3 as a corollary: from there it is enough to look at the definition
of the logical predicate for first-order programs to finally show the correctness
of our type system.

7 Related Work

Logical relations are certainly one of the most well-studied concepts in higher-
order programming language theory. In their unary version, they have been
introduced by Tait [54], and further exploited by Girard [33] and Tait [55] him-
self in giving strong normalization proofs for second-order type systems. The
relational counterpart of realizability, namely logical relations proper, have been
introduced by Plotkin [48], and further developed along many different axes, and
in particular towards calculi with fixpoint constructs or recursive types [3,4,2],
probabilistic choice [14], or monadic and algebraic effects [34,11,34]. Without
any hope to be comprehensive, we may refer to Mitchell’s textbook on program-
ming language theory for a comprehensive account about the earlier, classic
definitions [43], or to aforementioned papers for more recent developments.

Extensions of logical relations to open terms have been introduced by several
authors [39,47,30,53,15] and were explicitly referred to as open logical relations
in [59]. However, to the best of the authors’ knowledge, all the aforementioned
works use open logical relations for specific purposes, and do not investigate
their applicability as a general methodology.
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Special cases of our Containment Theorem can be found in many papers,
typically as auxiliary results. As already mentioned, an example is the one of
higher-order polynomials, whose first-order terms are proved to compute proper
polynomials in many ways [40,5], none of them in the style of logical relations.
The Containment Theorem itself can be derived by a previous result by La-
font [41] (see also Theorem 4.10.7 in [24]). Contrary to such a result, however,
our proof of the Containment Theorem is entirely syntactical and consists of a
straightforward application of open logical relations.

Algorithms for automatic differentiation have recently been extended to higher-
order programming languages [50,46,51,42,45], and have been investigated from
a semantical perspective in [16,1] relying on insights from linear logic and deno-
tational semantics. In particular, the work of Huot et al. [37] provides a deno-
tational proof of correctness of the program transformation of [50] that we have
studied in Section 5.

Continuity and robustness analysis of imperative first-order programs by way
of program logics is the topic of study of a series of papers by Chaudhuri and
co-authors [19,18,20]. None of them, however, deal with higher-order programs.

8 Conclusion and Future Work

We have showed how a mild variation on the concept of a logical relation can be
fruitfully used for proving both predicative and relational properties of higher-
order programming languages, when such properties have a first-order, rather
than a ground “flavor”. As such, the added value of this contribution is not much
in the technique itself, but in showing how it is extremely useful in heterogeneous
contexts, this way witnessing the versatility of logical relations.

The three case studies, and in particular the correctness of automatic dif-
ferentiation and refinement type-based continuity analysis, are given as proof-
of-concepts, but this does not mean they do not deserve to be studied more in
depth. An example of an interesting direction for future work is the extension
of our correctness proof from Section 5 to backward propagation differentiation
algorithms. Another one consists in adapting the refinement type system of Sec-
tion 6.1 to deal with differentiability. That would of course require a substantial
change in the typing rule for conditionals, which should take care of checking not
only continuity, but also differentiability at the critical points. It would also be
interesting to implement the refinement type system using standard SMT-based
approaches. Finally, the authors plan to investigate extensions of open logical
relations to non-normalizing calculi, as well as to non-simply typed calculi (such
as calculi with polymorphic or recursive types).
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Abstract. Game Logic is an excellent setting to study proofs-about-
programs via the interpretation of those proofs as programs, because
constructive proofs for games correspond to effective winning strategies
to follow in response to the opponent’s actions. We thus develop Con-
structive Game Logic, which extends Parikh’s Game Logic (GL) with
constructivity and with first-order programs a la Pratt’s first-order dy-
namic logic (DL). Our major contributions include: 1. a novel realizability
semantics capturing the adversarial dynamics of games, 2. a natural de-
duction calculus and operational semantics describing the computational
meaning of strategies via proof-terms, and 3. theoretical results includ-
ing soundness of the proof calculus w.r.t. realizability semantics, progress
and preservation of the operational semantics of proofs, and Existential
Properties enabling the extraction of computational artifacts from game
proofs. Together, these results provide the most general account of a
Curry-Howard interpretation for any program logic to date, and the
first at all for Game Logic.

Keywords: Game Logic, Constructive Logic, Natural Deduction, Proof Terms

1 Introduction

Two of the most essential tools in theory of programming languages are program
logics, such as Hoare calculi [29] and dynamic logics [45], and the Curry-Howard
correspondence [17,31], wherein propositions correspond to types, proofs to func-
tional programs, and proof term normalization to program evaluation. Their
intersection, the Curry-Howard interpretation of program logics, has received
surprisingly little study. We undertake such a study in the setting of Game
Logic (GL) [38], because this leads to novel insights, because the Curry-Howard
correspondence can be explained particularly intuitively for games, and because
our first-order GL is a superset of common logics such as first-order Dynamic
Logic (DL).

Constructivity and program verification have met before: Higher-order con-
structive logics [16] obey the Curry-Howard correspondence and are used to
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develop verified functional programs. Program logics are also often embedded
in constructive proof assistants such as Coq [48], inheriting constructivity from
their metalogic. Both are excellent ways to develop verified software, but we
study something else.

We study the computational content of a program logic itself. Every funda-
mental concept of computation is expected to manifest in all three of logic, type
systems, and category theory [27]. Because dynamics logics (DL’s) such as GL
have shown that program execution is a first-class construct in modal logic, the
theorist has an imperative to explore the underlying notion of computation by
developing a constructive GL with a Curry-Howard interpretation.

The computational content of a proof is especially clear in GL, which gen-
eralizes DL to programmatic models of zero-sum, perfect-information games be-
tween two players, traditionally named Angel and Demon. Both normal-play and
misére-play games can be modeled in GL. In classical GL, the diamond modality
(o) and box modality [a]¢ say that Angel and Demon respectively have a strat-
egy to ensure ¢ is true at the end of v, which is a model of a game. The difference
between classical GL and CGL is that classical GL allows proofs that exclude the
middle, which correspond to strategies which branch on undecidable conditions.
CGL proofs can branch only on decidable properties, thus they correspond to
strategies which are effective and can be executed by computer. Effective strate-
gies are crucial because they enable the synthesis of code that implements a
strategy. Strategy synthesis is itself crucial because even simple games can have
complicated strategies, and synthesis provides assurance that the implementa-
tion correctly solves the game. A GL strategy resolves the choices inherent in a
game: a diamond strategy specifies every move made by the Angel player, while
a box strategy specifies the moves the Demon player will make.

In developing Constructive Game Logic (CGL), adding constructivity is a
deep change. We provide a natural deduction calculus for CGL equipped with
proof terms and an operational semantics on the proofs, demonstrating the mean-
ing of strategies as functional programs and of winning strategies as functional
programs that are guaranteed to achieve their objective no matter what counter-
strategy the opponent follows. While the proof calculus of a constructive logic
is often taken as ground truth, we go a step further and develop a realizability
semantics for CGL as programs performing winning strategies for game proofs,
then prove the calculus sound against it. We adopt realizability semantics in
contrast to the winning-region semantics of classical GL because it enables us
to prove that CGL satisfies novel properties (Section 8). The proof of our Strat-
egy Property (Theorem 2) constitutes an (on-paper) algorithm that computes a
player’s (effective) strategy from a proof that they can win a game. This is the
key test of constructivity for CGL, which would not be possible in classical GL. We
show that CGL proofs have two computational interpretations: the operational
semantics interpret an arbitrary proof (strategy) as a functional program which
reduces to a normal-form proof (strategy), while realizability semantics interpret
Angel strategies as programs which defeat arbitrary Demonic opponents.
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While CGL has ample theoretical motivation, the practical motivations from
synthesis are also strong. A notable line of work on dGL extends first-order GL
to hybrid games to verify safety-critical adversarial cyber-physical systems [42].
We have designed CGL to extend smoothly to hybrid games, where synthesis
provides the correctness demanded by safety-critical systems and the synthesis
of correct monitors of the external world [36].

2 Related Work

This work is at the intersection of game logic and constructive modal logics.
Individually, they have a rich literature, but little work has been done at their
intersection. Of these, we are the first for GL and the first with a proofs-as-
programs interpretation for a full first-order program logic.

Games in Logic. Parikh’s propositional GL [38] was followed by coalitional
GL [39]. A first-order version of GL is the basis of differential game logic dGL [42]
for hybrid games. GL’s are unique in their clear delegation of strategy to the proof
language rather than the model language, crucially allowing succinct game spec-
ifications with sophisticated winning strategies. Succinct specifications are im-
portant: specifications are trusted because proving the wrong theorem would not
ensure correctness. Relatives without this separation include Strategy Logic [15],
Alternating-Time Temporal Logic (ATL) [5], CATL [30], Ghosh’s SDGL [24],
Ramanujam’s structured strategies [46], Dynamic-epistemic logics [6,10,49], ev-
idence logics [9], and Angelic Hoare logic [35].

Constructive Modal Logics. A major contribution of CGL is our constructive
semantics for games, not to be confused with game semantics [1], which are used
to give programs semantics in terms of games. We draw on work in semantics
for constructive modal logics, of which two main approaches are intuitionistic
Kripke semantics and realizability semantics.

An overview of Intuitionistic Kripke semantics is given by Wijesekera [52].
Intuitionistic Kripke semantics are parameterized over worlds, but in contrast
to classical Kripke semantics, possible worlds represent what is currently known
of the state. Worlds are preordered by w; > ws when w; contains at least
the knowledge in wy. Kripke semantics were used in Constructive Concurrent
DL [53], where both the world and knowledge of it change during execution. A
key advantage of realizability semantics [37,33] is their explicit interpretation of
constructivity as computability by giving a realizer, a program which witnesses
a fact. Our semantics combine elements of both: Strategies are represented by
realizers, while the game state is a Kripke world. Constructive set theory [2] aids
in understanding which set operations are permissible in constructive semantics.

Modal semantics have also exploited mathematical structures such as: i) Neigh-
borhood models [§8], topological models for spatial logics [7], and temporal log-
ics of dynamical systems [20]. ii) Categorical [3], sheaf [28], and pre-sheaf [23]
models. iii) Coalgebraic semantics for classical Propositional Dynamic Logic
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(PDL) [19]. While games are known to exhibit algebraic structure [25], such
laws are not essential to this work. Our semantics are also notable for the seam-
less interaction between a constructive Angel and a classical Demon.

CGL is first-order, so we must address the constructivity of operations that
inspect game state. We consider rational numbers so that equality is decidable,
but our work should generalize to constructive reals [11,13].

Intuitionistic modalities also appear in dynamic-epistemic logic (DEL) [21],
but that work is interested primarily in proof-theoretic semantics while we em-
ploy realizability semantics to stay firmly rooted in computation. Intuitionistic
Kripke semantics have also been applied to multimodal System K with itera-
tion [14], a weak fragment of PDL.

Constructivity and Dynamic Logic. With CGL, we bring to fruition several past
efforts to develop constructive dynamic logics. Prior work on PDL [18] sought
an Existential Property for Propositional Dynamic Logic (PDL), but they ques-
tioned the practicality of their own implication introduction rule, whose side
condition is non-syntactic. One of our results is a first-order Existential Prop-
erty, which Degen cited as an open problem beyond the methods of their day [18].
To our knowledge, only one approach [32] considers Curry-Howard or functional
proof terms for a program logic. While their work is a notable precursor to
ours, their logic is a weak fragment of PDL without tests, monotonicity, or un-
bounded iteration, while we support not only PDL but the much more powerful
first-order GL. Lastly, we are preceded by Constructive Concurrent Dynamic
Logic, [53] which gives a Kripke semantics for Concurrent Dynamic Logic [41],
a proper fragment of GL. Their work focuses on an epistemic interpretation of
constructivity, algebraic laws, and tableaux. We differ in our use of realizability
semantics and natural deduction, which were essential to developing a Curry-
Howard interpretation for CGL. In summary, we are justified in claiming to have
the first Curry-Howard interpretation with proof terms and Existential Proper-
ties for an expressive program logic, the first constructive game logic, and the
only with first-order proof terms.

While constructive natural deduction calculi map most directly to functional
programs, proof terms can be generated for any proof calculus, including a well-
known interpretation of classical logic as continuation-passing style [26]. Proof
terms have been developed [22] for a Hilbert calculus for dL, a dynamic logic
(DL) for hybrid systems. Their work focuses on a provably correct interchange
format for classical dL proofs, not constructive logics.

3 Syntax

We define the language of CGL, consisting of terms, games, and formulas. The
simplest terms are program variables x,y € V where V is the set of variable
identifiers. Globally-scoped mutable program variables contain the state of the
game, also called the position in game-theoretic terminology. All variables and
terms are rational-valued (Q); we also write B for the set of Boolean values {0, 1}
for false and true respectively.
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Definition 1 (Terms). A term f, g is a rational-valued computable function
over the game state. We give a nonexhaustive grammar of terms, specifically
those used in our examples:

frg w= - lqlz|f+g|f-glf/g]fmodyg

where ¢ € Q is a rational literal, x a program variable, f+g a sum, f-g a product.
Division-with-remainder is intended for use with integers, but we generalize the
standard notion to support rational arguments. Quotient f/g is integer even
when [ and g are non-integer, and thus leaves a rational remainder f mod g.
Divisors g are assumed to be nonzero.

A game in CGL is played between a constructive player named Angel and a
classical player named Demon. Our usage of the names Angel and Demon differs
subtly from traditional GL usage for technical reasons. Our Angel and Demon
are asymmetric: Angel is “our” player, who must play constructively, while the
“opponent” Demon is allowed to play classically because our opponent need not
be a computer. At any time some player is active, meaning their strategy resolves
all decisions, and the opposite player is called dormant. Classical GL identifies
Angel with active and Demon with dormant; the notions are distinct in CGL.

Definition 2 (Games). The set of games «, 3 is defined recursively as such:
B = |rz=f|z=+|aUB|aB|a"|al

In the test game ?¢, the active player wins if they can exhibit a constructive
proof that formula ¢ currently holds. If they do not exhibit a proof, the dormant
player wins by default and we informally say the active player “broke the rules”.
In deterministic assignment games x := f, neither player makes a choice, but
the program variable z takes on the value of a term f. In nondeterministic
assignment games x := %, the active player picks a value for x : Q. In the choice
game a U (3, the active player chooses whether to play game « or game (. In
the sequential composition game «; 3, game « is played first, then 8 from the
resulting state. In the repetition game o, the active player chooses after each
repetition of a whether to continue playing, but loses if they repeat « infinitely.
Notably, the exact number of repetitions can depend on the dormant player’s
moves, so the active player need not know, let alone announce, the exact number
of iterations in advance. In the dual game a?, the active player becomes dormant
and vice-versa, then « is played. We parenthesize games with braces {a} when
necessary. Sequential and nondeterministic composition both associate to the
right, i.e., aUB U~y = {aU{FU~}}. This does not affect their semantics as both
operators are associative, but aids in reading proof terms.

Definition 3 (CGL Formulas). The set of CGL formulas ¢ (also 1, p) is given
recursively by the grammar:

¢ == ()¢ |a]p | f~yg
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The defining constructs in CGL (and GL) are the modalities (a)¢ and [a]¢.
These mean that the active or dormant Angel (i.e., constructive) player has a
constructive strategy to play a and achieve postcondition ¢. This paper does
not develop the modalities for active and dormant Demon (i.e., classical) players
because by definition those cannot be synthesized to executable code. We assume
the presence of interpreted comparison predicates ~ € {<, <, =,#,>,>}.

The standard connectives of first-order constructive logic can be derived from
games and comparisons. Verum (tt) is defined 1 > 0 and falsum (£f) is 0 > 1.
Conjunction ¢ A 1) is defined (?¢)e), disjunction ¢ V ¢ is defined (?¢U?)tt,
implication ¢ — 1 is defined [?¢]¢), universal quantification Va ¢ is defined
[z:=%]¢, and existential quantification Jz ¢ is defined (x:==x)¢. As usual in
logic, equivalence ¢ <+ 1 can also be defined (¢ — ) A (¢p — ¢). As usual in
constructive logics, negation —¢ is defined ¢ — ff, and inequality is defined
by f # g = —~(f = g). We will use the derived constructs freely but present
semantics and proof rules only for the core constructs to minimize duplication.
Indeed, it will aid in understanding of the proof term language to keep the
definitions above in mind, because the proof terms for many first-order programs
follow those from first-order constructive logic.

For convenience, we also write derived operators where the dormant player
is given control of a single choice before returning control to the active player.
The dormant choice aN 3, defined {a? U 34}4, says the dormant player chooses
which branch to take, but the active player is in control of the subgames. We
write ¢¥ (likewise for a and f) for the renaming of x for y and vice versa in
formula ¢, and write ¢/ for the substitution of term f for program variable z in
¢, if the substitution is admissible (Def. 9 in Section 6).

3.1 Example Games

We demonstrate the meaning and usage of the CGL constructs via examples,
culminating in the two classic games of Nim and cake-cutting.

Nondeterministic Programs. Every (possibly nondeterministic) program is also
a one-player game. For example, the program n := 0; {n:=n + 1} can nonde-
terministically sets n to any natural number because Angel has a choice whether
to continue after every repetition of the loop, but is not allowed to continue
forever. Conversely, games are like programs where the environment (Demon) is
adversarial, and the program (Angel) strategically resolves nondeterminism to
overcome the environment.

Demonic Counter. Angel’s choices often must be reactive to Demon’s choices.
Consider the game ¢ := 10;{c:=c—1Nc:=c—2}";70 < ¢ < 2 where Demon
repeatedly decreases ¢ by 1 or 2, and Angel chooses when to stop. Angel only wins
because she can pass the test 0 < ¢ < 2, which she can do by simply repeating
the loop until 0 < ¢ < 2 holds. If Angel had to decide the loop duration in
advance, Demon could force a rules violation by “guessing” the duration and
changing his choices of c:=c—1 vs. ¢c:=c— 2.
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Coin Toss. Games are perfect-information and do not possess randomness in the
probabilistic sense, only (possibilistic) nondeterminism. This standard limitation
is shown by attempting to express a coin-guessing game:

coin :=0Ncoin:=1};{guess := 0 U guess := 1}; 7guess = coin
{ e g ;78

The Demon player sets the value of a tossed coin, but does so adversarially,
not randomly, since strategies in CGL are pure strategies. The Angel player has
perfect knowledge of coin and can set guess equivalently, thus easily passing
the test guess = coin, unlike a real coin toss. Partial information games are
interesting future work that could be implemented by limiting the variables
visible in a strategy.

Nim. Nim is the standard introductory example of a discrete, 2-player, zero-
sum, perfect-information game. We consider misére play (last player loses) for
a version of Nim that is also known as the subtraction game. The constant NiMm
defines the game Nim.

NIM:{{{c::c—1Uc::c—2Uc:=c—3};7c>O};

{{C::C—1UC::C—2UC::C—3};7C>O}d}*

The game state consists of a single counter ¢ containing a natural number, which
each player chooses (U) to reduce by 1, 2, or 3 (¢:=c — k). The counter is non-
negative, and the game repeats as long as Angel wishes, until some player empties
the counter, at which point that player is declared the loser (7¢ > 0).

Proposition 1 (Dormant winning region). Suppose ¢ = 1 (mod 4), Then
the dormant player has a strategy to ensure ¢ = 1 (mod 4) as an invariant. That
is, the following CGL formula is valid (true in every state):

c>0—cmod4d=1— [NIM]c mod4=1

This implies the dormant player wins the game because the active player
violates the rules once ¢ = 1 and no move is valid. We now state the winning
region for an active player.

Proposition 2 (Active winning region). Suppose ¢ € {0,2,3} (mod 4) ini-
tially, and the active player controls the loop duration. Then the active player
can achieve ¢ € {2,3,4}:

¢>0—=c¢mod4e{0,2,3} = (NIM")c € {2,3,4}

At that point, the active player will win in one move by setting ¢ = 1 which
forces the dormant player to set ¢ = 0 and fail the test 7c > 0.
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Cake-cutting. Another classic 2-player game, from the study of equitable divi-
sion, is the cake-cutting problem [40]: The active player cuts the cake in two,
then the (initially-)dormant player gets first choice of a piece. This is an optimal
protocol for splitting the cake in the sense that the active player is incentivized
to split the cake evenly, else the dormant player could take the larger piece.
Cake-cutting is also a simple use case for fractional numbers. The constant CC
defines the cake-cutting game. Here z is the relative size (from 0 to 1) of the
first piece, y is the size of the second piece, a is the size of the active player’s
piece, and d is the size of dormant player’s piece.

CC=z:=x?20<z<1)y:=1—u;
{a:=z;d:=yNa:=y;d:=x}

The game is played only once. The active player picks the division of the cake,
which must be a fraction 0 < z < 1. The dormant player then picks which slice
goes to whom.

The active player has a tight strategy to achieve a 0.5 cake share, as stated
in Proposition 3.

Proposition 3 (Active winning region). The following formula is valid:
(CC)a>0.5

The dormant player also has a computable strategy to achieve exactly 0.5
share of the cake (Proposition4). Division is fair because each player has a
strategy to get their fair 0.5 share.

Proposition 4 (Dormant winning region). The following formula is valid:

[CCld > 0.5

Computability and Numeric Types. Perfect fair division is only achieved for a,d €
Q because rational equality is decidable. Trichotomy (a < 0.5Va = 0.5Va > 0.5)
is a tautology, so the dormant player’s strategy can inspect the active player’s
choice of a. Notably, we intend to support constructive reals in future work, for
which exact equality is not decidable and trichotomy is not an axiom. Future
work on real-valued CGL will need to employ approximate comparison techniques
as is typical for constructive reals [11,13,51]. The examples in this section have
been proven [12] using the calculus defined in Section 5.

4 Semantics

We now develop the semantics of CGL. In contrast to classical GL, whose seman-
tics are well-understood [38], the major semantic challenge for CGL is capturing
the competition between a constructive Angel and classical Demon. We base
our approach on realizability semantics [37,33], because this approach makes the
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relationship between constructive proofs and programs particularly clear, and
generating programs from CGL proofs is one of our motivations.

Unlike previous applications of realizability, games feature two agents, and
one could imagine a semantics with two realizers, one for each of Angel and
Demon. However, we choose to use only one realizer, for Angel, which captures
the fact that only Angel is restricted to a computable strategy, not Demon.
Moreover, a single realizer makes it clear that Angel cannot inspect Demon’s
strategy, only the game state, and also simplifies notations and proofs. Because
Angel is computable but Demon is classical, our semantics has the flavor both
of realizability semantics and of a traditional Kripke semantics for programs.

The semantic functions employ game states w € & where we write & for
the set of all states. We additionally write T, L € & (not to be confused with
formulas tt and ff) for the pseudo-states T and L indicating that Angel or
Demon respectively has won the game early by forcing the other to fail a test.
Each w € & maps each & € V to a value w(z) € Q. We write w? for the state
that agrees with w except that x is assigned value v where v € Q.

Definition 4 (Arithmetic term semantics). A term f is a computable func-
tion of the state, so the interpretation [fJw of term f in state w is f(w).

4.1 Realizers

To define the semantics of games, we first define realizers, the programs which
implement strategies. The language of realizers is a higher-order lambda calculus
where variables can range over game states, numbers, or realizers which realize a
give proposition ¢. Gameplay proceeds in continuation-passing style: invoking a
realizer returns another realizer which performs any further moves. We describe
the typing constraints for realizers informally, and say a is a («)¢-realizer (a €
(a)p Rz) if it provides strategic decisions exactly when (a)¢ demands them.

Definition 5 (Realizers). The syntax of realizers a,b,c € Rz (where Rz is
the set of all realizers) is defined coinductively:

a,bc=x] O | (a,b) | m(a) | mr(a) | (Mw: 6&. a(w)) | (Az: Q. a)
| (Az: ¢Rz. a) | av | ab]|aw|if (f(w))aelsed

where z is a program (or realizer) variable and f is a term over the state w. The
Roman a, b, ¢ should not be confused with the Greek «, 3,v which range over
games. Realizers have access to the game state w, expressed by lambda realizers
(Aw : 6. a(w)) which, when applied in a state v, compute the realizer a with
v substituted for w. State lambdas A are distinguished from propositional and
first-order lambdas A. The unit realizer () makes no choices and is understood
as a unit tuple. Units () realize f ~ g because rational comparisons, in contrast
to real comparisons, are decidable. Conditional strategic decisions are realized
by if (f(w)) a else b for computable function f : & — B, and execute a if f
returns truth, else b. Realizer (Aw : 6. f(w)) is a (« U B)¢-realizer if f(w) €
({0} x (@)pRz) U ({1} x (B)¢ Rz) for all w. The first component determines
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which branch is taken, while the second component is a continuation which
must be able to play the corresponding branch. Realizer (Aw : &. f(w)) can also
be a (x:=x)¢p-realizer, which requires f(w) € Q x (¢pRz) for all w. The first
component determines the value of x while the second component demonstrates
the postcondition ¢. The pair realizer (a,b) realizes both Angelic tests (?¢)y and
dormant choices [a U B]¢. It is identified with a pair of realizers: (a,b) € RzxRz.

A dormant realizer waits and remembers the active Demon’s moves, because
they typically inform Angel’s strategy once Angel resumes action. The first-order
realizer (Az : Q. b) is a [x := *]¢-realizer when bY is a ¢-realizer for every v € Q;
Demon tells Angel the desired value of x, which informs Angel’s continuation b.
The higher-order realizer (Az : ¢ Rz. b) realizes [?¢]1) when bS realizes ¢ for every
¢-realizer ¢. Demon announces the realizer for ¢ which Angel’s continuation b
may inspect. Tuples are inspected with projections 7y, (a) and 7r(a). A lambda
is inspected by applying arguments aw for state-lambdas, av for first-order,
and ab for higher-order. Realizers for sequential compositions («; )¢ (likewise
[a; B]o) are (a)(B)¢p-realizers: first « is played, and in every case the continuation
must play 3 before showing ¢. Realizers for repetitions a* are streams containing
a-realizers, possibly infinite by virtue of coinductive syntax. Active loop realizer
ind(x. a) is the least fixed point of the equation b = [b/z]a, i.e., x is a recursive
call which must be invoked only in accordance with some well-order. We realize
dormant loops with gen(a, x.b, z.c), coinductively generated from initial value
a, update b, and post-step ¢ with variable = for current generator value.

Active loops must terminate, so («a*)¢-realizers are constructed inductively
using any well-order on states. Dormant loops must be played as long as the
opponent wishes, so [a*]|¢-realizers are constructed coinductively, with the in-
variant that ¢ has a realizer at every iteration.

4.2 Formula and Game Semantics

A state w paired with a realizer a that continues the game is called a possibility.
A region (written X,Y, Z) is a set of possibilities. We write [¢] C ¢ Rz x & for
the region which realizes formula ¢. A formula ¢ is valid iff some a uniformly
realizes every state, i.e., {a} x & C [¢]. A sequent I" - ¢ is valid iff the formula
AT — ¢ is valid, where A I' is the conjunction of all assumptions in I

The game semantics are region-oriented, i.e., they process possibilities in
bulk, though Angel commits to a strategy from the start. The region X {(«)) :
©(Rz x &) is the union of all end regions of game « which arise when ac-
tive Angel commits to an element of X, then Demon plays adversarially. In
X[a]] : p(Rzx &) Angel is the dormant player, but it is still Angel who commits
to an element of X and Demon who plays adversarially. Recall that pseudo-states
T and L represent early wins by each Angel and Demon, respectively. The defini-
tions below implicitly assume L, T ¢ X, they extend to the case L € X (likewise
T € X) using the equations (X U {L})[[o]] = X[a]]JU{L} and (X U{L}){a) =
X{(a)) U{L}. That is, if Demon has already won by forcing an Angel violation
initially, any remaining game can be skipped with an immediate Demon victory,
and vice-versa. The game semantics exploit the Angelic projections Z), Z(1)
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and Demonic projections Z[g), Z[1), which represent binary decisions made by
a constructive Angel and a classical Demon, respectively. The Angelic projec-
tions, which are defined Zpy = {(7r(a),w) | 7(a)(w) = 0,(a,w) € Z} and
Zyy = {(rr(a),w) | mr(a)(w) = 1,(a,w) € Z}, filter by which branch Angel
chooses with 7y, (a)(w) € B, then project the remaining strategy mr(a). The
Demonic projections, which are defined Zyg = {(7r(a),w) | (a,w) € Z} and
Zpny = {(mr(a),w) | (a,w) € Z}, contain the same states as Z, but project the
realizer to tell Angel which branch Demon took.

Definition 6 (Formula semantics). [¢] C Rz x & is defined as:

(O,w) € [f ~ gl iff [f]w ~ [glw
(a,w) € [{)g] iff {(a,w)}{a) S ([FJU{T})
(a,w) € [la)e] iff {(a,w)}Ha]l € ([p] U{T})
Comparisons f ~ g defer to the term semantics, so the interesting cases are
the game modalities. Both [«]¢ and («)¢ ask whether Angel wins « by following
the given strategy, and differ only in whether Demon vs. Angel is the active

player, thus in both cases every Demonic choice must satisfy Angel’s goal, and
early Demon wins are counted as Angel losses.

Definition 7 (Angel game forward semantics). We inductively define the
region X () : p(Rz x &) in which o can end when active Angel plays X :

X((7¢) = {(wr(a),w) | (mr(a),w) € [¢] for some (a,w) € X }
UL | (mra),w) & [¢] for all (a,w) € X}
X{(z:= f) = {(a,0F1*) | (a,w) € X}

el
Definition 8 (Demon game forward semantics). We inductively define the
region X[[o]] : p(Rz x &) in which a can end when dormant Angel plays X :
X[7¢]l = {(ab,w) | (a,w) € X, (b,w) € [¢], some b € Rz}
U{T | (a,w) € X, but no (b,w) € [¢]}

Xz = f) = {(a,w 1) | (a,w) € X}
X[z =« ={(ar,w}) | r € Q}
Xl 8] = (X[[a]))[[8]
X(au 8] = X [[e]] U Xy (18]
X[ = ({20 SRz x & | X U (Zyla]) < 2}
I



Constructive Game Logic 95

Angelic tests ?7¢ end in the current state w with remaining realizer g (a) if
Angel can realize ¢ with 71, (a), else end in L. Angelic deterministic assignments
consume no realizer and simply update the state, then end. Angelic nondeter-
ministic assignments x := % ask the realizer 7 (a) to compute a new value for x
from the current state. Angelic compositions «; S first play «, then 8 from the
resulting state using the resulting continuation. Angelic choice games aU § use
the Angelic projections to decide which branch is taken according to 7, (a). The
realizer mr(a) may be reused between « and 3, since mr(a) could just invoke
7r(a) if it must decide which branch has been taken. This definition of Angelic
choice (corresponding to constructive disjunction) captures the reality that re-
alizers in CGL, in contrast with most constructive logics, are entitled to observe
a game state, but they must do so in computable fashion.

Repetition Semantics. In any GL, the challenge in defining the semantics of
repetition games «* is that the number of iterations, while finite, can depend
on both players’ actions and is thus not known in advance, while the DL-like
semantics of a* as the finite reflexive, transitive closure of « gives an advance-
notice semantics. Classical GL provides the no-advance-notice semantics as a
fixed point [38], and we adopt the fixed point semantics as well. The Angelic
choice whether to stop (Z o)) or iterate the loop (Z(yy) is analogous to the case
for a U B.

Duality Semantics. To play the dual game o, the active and dormant players
switch roles, then play «. In classical GL, this characterization of duality is inter-
changeable with the definition of a? as the game that Angel wins exactly when
it is impossible for Angel to lose. The characterizations are not interchangeable
in CGL because the Determinacy Axiom (all games have winners) of GL is not
valid in CGL:

Remark 1 (Indeterminacy). Classically equivalent determinacy axiom schemata
—(a)—¢ — [a]¢ and (@)= V [a]¢ of classical GL are not valid in CGL, because
they imply double negation elimination.

Remark 2 (Classical duality). In classical GL, Angelic dual games are character-
ized by the axiom schema (a?)¢ <+ =(a)=¢, which is not valid in in CGL. It is
classically interdefinable with (a?) <+ [a]¢.

The determinacy axiom is not valid in CGL, so we take (a?) < [a]¢ as primary.

4.3 Demonic Semantics

Demon wins a Demonic test by presenting a realizer b as evidence that the
precondition holds. If he cannot present a realizer (i.e., because none exists), then
the game ends in T so Angel wins by default. Else Angel’s higher-order realizer a
consumes the evidence of the pre-condition, i.e., Angelic strategies are entitled to
depend (computably) on how Demon demonstrated the precondition. Angel can
check that Demon passed the test by executing b. The Demonic repetition game
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o is defined as a fixed-point [42] with Demonic projections. Computationally,
a winning invariant for the repetition is the witness of its winnability.

The remaining cases are innocuous by comparison. Demonic deterministic
assignments x := f deterministically store the value of f in z, just as Angelic
assignments do. In demonic nondeterministic assignment x := %, Demon chooses
to set x to any value. When Demon plays the choice game U 3, Demon chooses
classically between o and 8. The dual game o is played by Demon becoming
dormant and Angel become active in «.

Semantics Fxamples. The realizability semantics of games are subtle on a first
read, so we provide examples of realizers. In these examples, the state argument
w is implicit, and we refer to w(x) simply as x for brevity.

Recall that [?¢]y and ¢ — 9 are equivalent. For any ¢, the identity function
(Az : ¢ Rz. x) is a ¢ — ¢-realizer: for every ¢-realizer & which Demon presents,
Angel can present the same x as evidence of ¢. This confirms expected behavior
per propositional constructive logic: the identity function is the proof of self-
implication.

In example formula (z :=*%; {z :=x Uz := —z})x > 0, Demon gets to set z,
then Angel decides whether to negate x in order to make it nonnegative. It is
realized by Az : Q. ((if (x < 0) 1 else 0), ()): Demon announces the value of
x, then Angel’s strategy is to check the sign of z, taking the right branch when
x is negative. Each branch contains a deterministic assignment which consumes
no realizer, then the postcondition x > 0 has trivial realizer ().

Consider the formula ({z:=x + 1}")2 > y, where Angel’s winning strategy
is to repeat the loop until > y, which will occur as x increases. The realizer
is ind(w. (if (x > y) (0, O)) else (1,w), ()), which says that Angel stops the
loop if x > y and proves the postcondition with a trivial strategy. Else Angel
continues the loop, whose body consumes no realizer, and supplies the inductive
call w to continue the strategy inductively.

Consider the formula [?2 > 0;{z =2+ 1}"]3y (y < 2 Ay > 0) for a subtle
example. Our strategy for Angel is to record the initial value of x in y, then
maintain a proof that y < z as x increases. This strategy is represented by Aw :
(x > 0)Rz. gen((x, (O, w)), z.(rr(2),(O,mr(7rR(2)))), 2.2). That is, initially
Demon announces a proof w of x > 0. Angel specifies the initial element of the
realizer stream by witnessing Jy (y < Ay > 0) with ¢g = (z, (), w)), where the
first component instantiates y = x, the trivial second component indicates that
y < y trivially, and the third component reuses w as a proof of y > 0. Demon can
choose to repeat the loop arbitrarily. When Demon demands the k’th repetition,
z is bound to ¢x_1 to compute ¢, = (wr(2), (), 7r(7r(2)))), which plays the
next iteration. That is, at each iteration Angel witnesses Jy (y < x Ay > 0) by
assigning the same value (stored in 71 (2)) to y, reproving y < x with (), then
reusing the proof (stored in mr(7wr(2))) that y > 0.
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5 Proof Calculus

Having settled on the meaning of a game in Section 4, we proceed to develop a
calculus for proving CGL formulas syntactically. The goal is twofold: the practical
motivation, as always, is that when verifying a concrete example, the realizabil-
ity semantics provide a notion of ground truth, but are impractical for proving
large formulas. The theoretical motivation is that we wish to expose the compu-
tational interpretation of the modalities ()¢ and [a]¢ as the types of the players’
respective winning strategies for game « that has ¢ as its goal condition. Since
CGL is constructive, such a strategy constructs a proof of the postcondition ¢.

To study the computational nature of proofs, we write proof terms explicitly:
the main proof judgement I' = M : ¢ says proof term M is a proof of ¢ in context
I', or equivalently a proof of sequent (I" - ¢). We write M, N,O (sometimes
A, B, () for arbitrary proof terms, and p,q,/,r,s,g for proof variables, that is
variables that range over proof terms of a given proposition. In contrast to the
assignable program wvariables, the proof variables are given their meaning by
substitution and are scoped locally, not globally. We adapt propositional proof
terms such as pairing, disjoint union, and lambda-abstraction to our context of
game logic. To support first-order games, we include first-order proof terms and
new terms for features: dual, assignment, and repetition games.

We now develop the calculus by starting with standard constructs and work-
ing toward the novel constructs of CGL. The assumptions p in I' are named,
so that they may appear as variable proof-terms p. We write I'% and M ¥ for
the renaming of program variable = to y and vice versa in context I or proof
term M, respectively. Proof rules for state-modifying constructs explicitly perform
renamings, which both ensures they are applicable as often as possible and also
ensures that references to proof variables support an intuitive notion of lexical
scope. Likewise I/ and M/ are the substitutions of term f for program variable
x. We use distinct notation to substitute proof terms for proof variables while
avoiding capture: [N/p]M substitutes proof term N for proof variable p in proof
term M. Some proof terms such as pairs prove both a diamond formula and a
box formula. We write (M, N) and [M, N] respectively to distinguish the terms
or (M, N) to treat them uniformly. Likewise we abbreviate (a])¢ when the same
rule works for both diamond and box modalities, using [(«}]¢ to denote its dual
modality. The proof terms (z := f£ in p. M) and [z := fZ in p. M| introduce
an auxiliary ghost variable y for the old value of x, which improves completeness
without requiring manual ghost steps.

The propositional proof rules of CGL are in Fig. 1. Formula [?¢]t is construc-
tive implication, so rule [?]E with proof term M N eliminates M by supplying
an N that proves the test condition. Lambda terms (Ap : ¢. M) are introduced
by rule [?]I by extending the context I". While this rule is standard, it is worth
emphasizing that here p is a proof variable for which a proof term (like N in [?]E)
may be substituted, and that the game state is untouched by [?]I. Constructive
disjunction (between the branches (a)¢ and (5)¢) is the choice (a« U 3)¢. The
introduction rules for injections are (U)I1 and (U)I2, and case-analysis is per-
formed with rule (U)E, with two branches that prove a common consequence
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Fig. 1. CGL proof calculus: Propositional rules

from each disjunct. The cases (?¢)1 and [« U §]¢ are conjunctive. Conjunctions
are introduced by (?)I and [U]I as pairs, and eliminated by (?)E1, (?)E2, [U]EL,
and [U]JE2 as projections. Lastly, rule hyp says formulas in the context hold by
assumption.

We now begin considering non-propositional rules, starting with the simplest
ones. The majority of the rules in Fig.2, while thoroughly useful in proofs,

(‘FFA:<04*>¢ I''s:¢pFB:yp Ig:{a)ya™yotC:y
I't(case, Aof s= B|g=0C):¢
\[F#M:<a>¢ F%,p:d)FN:w
I't Mo, N : {a)

H]E '+ M:[a"]o rd '+ M:[a)¢
I' = [unroll M]: ¢ A [a][a*]¢ - I'E (yield M) :(a?)¢
. I'FM:¢ . I'FM:$Ala’]e
" TF (stop M) : ()¢ T Eroll M]: o]
TEM:gV (a)a)é 1 T EM el (50

I't (go M):{a*)¢ 't Qe M) :(a; Bho

Fig. 2. CGL proof calculus: Some non-propositional rules

are computationally trivial. The repetition rules ([*|E,[*]R) fold and unfold the
notion of repetition as iteration. The rolling and unrolling terms are named in
analogy to the iso-recursive treatment of recursive types [50], where an explicit
operation is used to expand and collapse the recursive definition of a type.
Rules (x)C,(x)S,(x)G are the destructor and injectors for (a*)¢, which are
similar to those for (o U 8)¢. The duality rules ({?)I) say the dual game is proved
by proving the game where roles are reversed. The sequencing rules ((;)I) say a
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sequential game is played by playing the first game with the goal of reaching a
state where the second game is winnable.

Among these rules, monotonicity M is especially computationally rich. The
notation I'=—Z— BV( j says that in the second premiss, the assumptions in I" have
all bound variables of « (written BV(a)) renamed to fresh variables y for com-
pleteness. In practice, I' usually contains some assumptions on variables that
are not bound, which we wish to access without writing them explicitly in ¢.
Rule M is used to execute programs right-to-left, giving shorter, more efficient
proofs. It can also be used to derive the Hoare-logical sequential composition
rule, which is frequently used to reduce the number of case splits. Note that like
every GL, CGL is subnormal, so the modal modus ponens axiom K and Gdodel
generalization (or necessitation) rule G are not sound, and M takes over much of
the role they usually serve. On the surface, M simply says games are monotonic:
a game’s goal proposition may freely be replaced with a weaker one. From a
computational perspective, Section 7 will show that rule M can be (lazily) elimi-
nated. Moreover, M is an admissible rule, one whose instances can all be derived
from existing rules. When proofs are written right-to-left with M, the normal-
ization relation translates them to left-to-right normal proofs. Note also that in
checking Mo, N, the context I" has the bound variables o renamed freshly to
some y within N, as required to maintain soundness across execution of a.

Next, we consider first-order rules, i.e., those which deal with first-order
programs that modify program variables. The first-order rules are given in Fig. 3.
In (:x)E, FV(¢) are the free variables of 1, the variables which can influence
its meaning. Nondeterministic assignment provides quantification over rational-

It p:(z=fLr-M:¢
T tinp M) =l
rep:(e=fL+-M:¢ ! .
F'_<f% kP M> < > (%pfesh,fco p)
F}—unpack(M Y. N)
rr-m:¢
L' (2 :Q. M):[w:=x]¢

I'E(M f):¢i

(y fresh)

Ny (y fresh, = ¢ FV(v))

(v fresh)

(¢ admiss.)

Fig. 3. CGL proof calculus: first-order games

valued program variables. Rule [:+]I is universal, with proof term (Az : Q. M).
While this notation is suggestive, the difference vs. the function proof term
(Ap : ¢. M) is essential: the proof term M is checked (resp. evaluated) in a state
where the program variable x has changed from its initial value. For soundness,
[:+]] renames x to fresh program variable y throughout context I', written I"%.
This means that M can freely refer to all facts of the full context, but they
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now refer to the state as it was before x received a new value. Elimination [:x]E
then allows instantiating x to a term f. Existential quantification is introduced
by (:+)I whose proof term (f% :x p. M) is like a dependent pair plus bound
renaming of = to y. The witness f is an arbitrary computable term, as always.
We write (f~ :* M) for short when y is not referenced in M. It is eliminated in
(:+)E by unpacking the pair, with side condition = ¢ FV (1) for soundness. The
assignment rules {:=)I do not quantify, per se, but always update x to the value
of the term f, and in doing so introduce an assumption that  and f (suitably
renamed) are now equal. In (:x)I and {:=)I, program variable y is fresh.

I'-A:p
pro,q: Mog=M>0FB:(a)(pAMog>=M) p:p,q: M=0+C:¢

IFfor(p: p(M) = Aig. B: O){a} - (a)g (Mo fresh)
I'=M:J ' A:{a*)¢
p:JEN:[a]J p:JEO:¢ s:pkF B: g:{a)yp=C:e
I'-(Mrepp:J. NinO):[a*]d I'+FP(A,s. B,g. C):¢

' (split [f,g] ):f<gVf>g

Fig. 4. CGL proof calculus: loops

The looping rules in Fig. 4, especially (x)I, are arguably the most sophis-
ticated in CGL. Rule (x)I provides a strategy to repeat a game « until the
postcondition ¢ holds. This is done by exhibiting a convergence predicate ¢ and
termination metric M with terminal value 0 and well-ordering >. Proof term A
shows ¢ holds initially. Proof term B guarantees M decreases with every itera-
tion where My is a fresh metric variable which is equal to M at the antecedent
of B and is never modified. Proof term C allows any postcondition ¢ which fol-
lows from convergence ¢ A M = 0. Proof term for(p : o(M) = A;q. B; C){a}
suggests the computational interpretation as a for-loop: proof A shows the con-
vergence predicate holds in the initial state, B shows that each step reduces the
termination metric while maintaining the predicate, and C' shows that the post-
condition follows from the convergence predicate upon termination. The game «
repeats until convergence is reached (M = 0). By the assumption that metrics
are well-founded, convergence is guaranteed in finitely (but arbitrarily) many
iterations.

A naive, albeit correct, reading of rule (x)I says M is literally some term f.
If lexicographic or otherwise non-scalar metrics should be needed, it suffices to
interpret ¢ and My > M as formulas over several scalar variables.

Rule FP says (a*)¢ is a least pre-fixed-point. That is, if we wish to show a
formula 1) holds now, we show that v is any pre-fixed-point, then it must hold
as it is no lesser than ¢. Rule [%]I is the well-understood induction rule for loops,
which applies as well to repeated games. Premiss O ensures [*]I supports any
provable postcondition, which is crucial for eliminating M in Lemma 7. The elim-
ination form for [a*]¢ is simply [#]E. Like any program logic, reasoning in CGL
consists of first applying program-logic rules to decompose