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Abstract

In this chapter, we propose a methodology for behavior variation and anomaly detection
from acquired sensory data, based on temporal clustering models. Data are collected
from five prominent European smart cities, and Singapore, that aim to become fully
“elderly-friendly,” with the development and deployment of ubiquitous systems for
assessment and prediction of early risks of elderly Mild Cognitive Impairments (MCI)
and frailty, and for supporting generation and delivery of optimal personalized pre-
ventive interventions that mitigate those risks, utilizing smart city datasets and IoT
infrastructure. Low level data collected from IoT devices are preprocessed as sequences
of activities, with temporal and causal variations in sequences classified as normal or
anomalous behavior. The goals of proposed methodology are to (1) recognize significant
behavioral variation patterns and (2) support early identification of pattern changes.
Temporal clustering models are applied in detection and prediction of the following
variation types: intra-activity (single activity, single citizen) and inter-activity (multi-
ple-activities, single citizen). Identified behavioral variations and anomalies are further
mapped to MCl/frailty onset behavior and risk factors, following the developed geriatric
expert model.

Keywords: temporal clustering, IoT, smart cities, behavior recognition, anomaly
detection
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1. Introduction

Frailty and Mild Cognitive Impairment are common and inevitable conditions in the elderly
citizen population defined as premature or accelerated physical and mental declines. These
conditions are often an early indicator of more severe states, such as Alzheimer’s disease.
Control (delaying or decelerating) of the onset and progression of MCl/frailty is becoming one
of the major tasks of global efforts in maintaining the functional independence and quality of
life of the globally growing elderly population. In 2016, for the first time in history, estimated
majority of the world population can expect to live into their sixties and beyond. Beside the
global initiatives, strategies and action plans on healthy ageing conducted by the relevant
key organizations such as World Health Organization (WHO), or United Nations (UN), the
growing market trend for the so-called “silver economy” sector is booming. The increase of
population aged 65 and over is projected to reach 28.1% of the whole population in the EU by
2050, they have a spending power higher than the generation segment aged 18 to 39, and they
account for approx. 60% of total expenditures in the US and 50% in the UK, generating demand
for new services and products, ranging from personalized care to age-friendly technologies
and other solutions that enable the maintenance and prolongation of healthy, independent
lives. Technologies and systems supporting innovative ways of influencing people's behavior
and lifestyles at all ages also present a significant economic and business opportunity.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement or
direct observation in controlled conditions) which are in most cases intrusive and demand citi-
zens’ presence in geriatric centers and a lot of time for data collection. More importantly, these
methods do not enable real time monitoring of behavioral changes (e.g., data from question-
naires are collected on semi-annual or annual intervals) and thus prevent predictive and preven-
tive interventions. Finally, data collected from such method is often subjective or incomplete.

With the goal to overcome the stated drawbacks, many technological instruments and
methods emerged, aiming to automate as much as possible the detection and mitigation of
behavior deteriorations and anomalies. Particularly, the recent development and expansion
of wearable technologies/devices and Internet of Things (IoT) has enabled the build-up of
infrastructures of smart devices that collect vast and heterogeneous volumes of various sen-
sory data in smart cities. These social and technological infrastructural advances potentiate
the public health and prevention aspects of smart cities, transforming the urban public health
from a reactive to a predictive system. In the specific area of support for (active and healthy)
ageing, the transformation and progress direction of particular interest is the expansion of
concept of ambient-assisted environments, from currently predominant implementations in
residential and social indoor spaces (homes, elderly care/community centers) to outdoor and
public environments. However, there is still a large gap between potential and actual IoT data
exploitation because of many challenges that have to be overcome before putting data driven
predictive and preventive models in geriatric or healthcare practice [1, 2].

Research presented in this paper is mainly the part of City4Age project (www.city4agepro-
ject.eu) that develops age-friendly Cities and Environments in deployments in six differ-
ent prominent pilot smart cities in EU and beyond — Athens, Birmingham, Lecce, Madrid,



Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired...
http://dx.doi.org/10.5772/intechopen.75203

Montpellier and Singapore. The main goal of this research and City4Age project is to develop
a framework for predictive and preventive risk control of Frailty and MCI, as one of the core
system infrastructure assets of age-friendly cities. Specific goals are development of methods
based on smart cities IoT data for early risk detection and enrichment of traditional geriatric
instruments. In order to achieve these goals, we are faced with several challenges: (1) identifi-
cation and characterization of temporal behavioral patterns from sensor data, (2) Identification
of behavior changes (transitions) and (3) Anomalous behavior and anomalous data detection.

Given that IoT data are collected from smart devices in form of unlabeled data streams, for
initial behavior variation detection models, unsupervised machine learning techniques have
to be employed. From data analytics point of view, behavior can be defined as alternating
pattern of sequences of activities. Based on this definition, clustering is identified as natural
technique for behavioral pattern recognition, change and anomaly detection. Clustering tech-
niques that allow grouping objects into homogenous groups where objects in the same group
are similar (intra-cluster distance is low) and objects between groups are dissimilar (inter-
cluster distance is high). For building cluster models, we employed Hidden Markov models
(HMMs), since they allow direct modeling of time series, provide framework for anomaly
detection and have high degree of interpretability. Interpretability is very important property
for incorporation of data driven models in healthcare practice and integration with domain
knowledge of geriatricians.

Contributions of this chapter are twofold: (1) we propose a framework for behavior charac-
terization, change and anomaly detection in IoT data in smart cities environment and (2) we
provide first experimental evidence of usefulness of data driven modeling of behavioral data
on collected City4Age IoT data.

2. State-of-the-art

World Health Organization (WHO) had recognized the importance as well as human and
economic impact of age-friendly environments and launched the age-friendly Cities and
Communities Programme that introduced the terms in 2006/2007, as the foundation initia-
tive aimed for local and metropolitan governance and development levels. The European
Commission (EC) supports the pursues of goals and objectives of age-friendly environments
and sustainable development by numerous different instruments, primarily through R&D
funding programs such as Horizon 2020 or specialized Active and Assistive Living (AAL)
Programme. Important higher-level EC initiatives that foster innovation and concentrate
stakeholder efforts are the recently established:

¢ European Innovation Partnership on Smart Cities and Communities (EIP on SCC), involv-
ing almost 400 committed cities and other partners, with a marketplace of specialized ini-
tiatives, solutions and tools.

¢ European Innovation Partnership on active and healthy ageing (EIP on AHA), first estab-
lished EIP, in 2011, with specialized dedicated groups A3 for Functional decline & frailty,
and D4 for age-friendly environments, among others.
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These efforts increased research efforts in the area of smart city IoT data analytics through
different projects.

Geriatric practice has in this aim utilized different standardized instruments based on tradi-
tional data collection methods (administration of questionnaires, meter-based measurement
or direct observation in controlled conditions) and quantification and categorization of func-
tional domains of daily life behavior and known frailty/MClI risk factors, such as Lawton IADL
scale, Mini-Mental State Examination (MMSE), Fried Frailty Index, Nottingham Extended
Activities of Daily Living, and numerous others. A comprehensive summary of such tradi-
tional generally psychogeriatric instruments and methods is provided in [3]. These instru-
ments have evident major drawbacks, of late detection and problem identification (analysis
and interpretation of questionnaires or conducting of exams can span intervals of months), and
being generally ineffective, possibly subjective to a high degree, and costly for deployment.

The City4Age project (www.city4ageproject.eu), funded through the mentioned EC Horizon
2020 programme, is one of the pioneering efforts acting as a bridge between the mentioned
two European Innovation Partnerships, EIP on SCC and EIP on AHA, contributing to specific
and shared objectives and involving the committed participants from both Partnerships. The
primary aim of the project is to enable fully Ambient Assisted age-friendly cities, through
development and deployment of a range of ICT tools and services that will improve the unob-
trusive early detection of MCI/frailty risks from heterogeneous IoT and smart city data sources
at homes or on the move within the city, comprising the research and development work
performed and results presented in this chapter as part of the work on the Data Analytics
Platform. Coupled with the appropriate interventions—the developed tools will mitigate the
detected risks as secondary aim. The developed system and components are being validated
through in-situ deployments in six pilot smart cities.

Besides the City4Age project, there are numerous other related efforts in development of IoT
driven systems for maintaining the functional independence and quality of life of the globally
growing elderly population, or in development of data-driven health-related behavior recog-
nition systems or platforms. Some of the recent relevant ones are the following;:

The ActivAGE project (www.activageproject.eu), started in January 2017 and likewise funded
through the Horizon 2020 programme, is a European multi-centric large-scale pilot on Smart
Living Environments. The main objective is to build the first European IoT ecosystem across
nine Deployment Sites (DS) in seven European countries, reusing and scaling up underly-
ing open and proprietary IoT platforms, technologies and standards, and integrating new
interfaces needed to provide interoperability across these heterogeneous platforms, that will
enable the deployment and operation at large scale of active & healthy ageing IoT-based solu-
tions and services.

Participatory Urban Living for Sustainable Environments (PULSE) project (www.pulsepro-
ject.eu), started in January 2016 and likewise funded through the Horizon 2020 programme,
harvests open city data, and data from health systems, urban and remote sensors, and per-
sonal devices, to enable evidence-driven and timely management of public health events and
processes, leveraging diverse data sources and big data analytics to transform urban public
health from a reactive to a predictive system, and from a system focused on surveillance to an
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inclusive and collaborative system supporting health equity. The clinical focus of the project
is on chronic respiratory (asthma) and metabolic diseases (type 2 Diabetes), developing risk
stratification models based on risk factors in each urban location (pilot deployment in five
global cities—Barcelona, Birmingham, Paris, New York and Singapore), taking account of
biological, behavioral, social and environmental risk factors, community resilience and well-
being in cities.

IGERT project, ended in 2016, funded by the US National Science Foundation grant, com-
prises a multi-disciplinary doctoral training programme focused on designing and study-
ing health-assistive smart environments, with particular emphasis on automatic monitoring
and analysis of human health and behavior, unsupervised data-driven detection of activity/
behavior and lifestyle changes, potential simulation/prediction of human behavior and activi-
ties, and enhancement of human physical and cognitive abilities [4].

Recently exhaustive and comprehensive reviews about temporal clustering algorithms and
applications are published [5-7] and thus we will focus here only on the concepts that are
closest to this research. As said behavior recognition, change and anomaly detection can be
modeled naturally with clustering algorithms. Clustering techniques that allow grouping
objects into homogenous groups where objects in the same group are similar (intra-cluster
distance is low) and objects between groups are dissimilar (inter-cluster distance is high).
Since the definition of clustering is based on the notion of similarity it is utterly important to
define the notion of similarity and types of similarity measures. Unlike stationary data, time
series have several aspects of similarity [7]:

Similarity in time: this is the simplest form of similarity with the assumption that instances
that are close in time have similar values. This is a naive assumption and is used for bench-
mark purposes in most of the cases.

Similarity in shape: these similarities disregard the time of occurrence of patterns. Using this
definition, clusters of time-series with similar patterns of change are constructed regardless
of time points—for example, extracting groups of elderly citizens who have a common pat-
tern in their visits to pharmacy, regardless when these pharmacy visits occur in time-series.
Dynamic time warping (DTW) is one of the mostly used dissimilarity measures of this type.

Structural similarity: the types of metrics used to find similarities in changes of time series.
This is done by building models like AutoRegressive Moving Average (ARMA) or Hidden
Markov models (HMMs), and the similarity is measured between parameters of models. In
case of intra-activity behavior variations, structural similarity could recognize patterns such
as: after three weeks of decrease of outdoor_time, citizen has registered increased outdoor_
time, and this behavior is repeated every month.

3. City4Age analytic framework

Main challenges for the Data Science and Analytics in the related research in City4Age coin-
cide with main generic challenges for the potential of collected IoT data from smart cities for
health (and other personal) monitoring—volume and diversity of collected data is huge and
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promising, but the development of formalized and applicable knowledge and learning mod-
els is lagging with adequate potential for interpretation, classification and exploitation. At
the same time, the unobtrusively acquired dataset for each specific person over time is often
sparse, incomplete and erroneous, and with high degree of variation caused by temporary
sensor imprecisions or influence of external factors beyond the sensing or modeling scope.
High-level City4Age Analytics and detection process flow is depicted on Figure 1. City4Age
has from the beginning adopted the combined hybrid knowledge- and data-driven approach,
with the initial contribution of the knowledge-based approach turning out somewhat overes-
timated in the meantime due to the issues mentioned above and consequent non-determinis-
tic and volatile semantic integrity of “known” or presumed universal geriatric causalities and
concepts. The main focus is thus currently on the data driven behavior change variation rec-
ognition and characterization, analysis of relative changes in time series data for each specific
person since the start of the pilot monitoring and determining baseline referent points, values
and features (individual geriatric care analytics), and subsequently on discovering correla-
tions and underlying features and interdependencies in the complete studied and monitored
populations and clusters and groups within it (group exploratory analytics), starting from
minimal initial domain model knowledge.

Majority of the functional domains and parameters of daily life behavior and geriatric risk
are nevertheless known and established, and formalized in the City4Age hierarchic computa-
tional model of geriatric behavior and risk [8].

The main model constructs and variables are based on the notions of Geriatric factors (GEF),
representing monthly behavior characterizations from all various functional behavioral
domain variables and known MCl/frailty risk indicators, on unified Likert scale, with 1 denot-
ing the least favorable and five the most favorable behavior with respect to MCI and Frailty
risk, a common and standard adopted representation in geriatric practice and many of the
used traditional instruments and questionnaires. GEF are further structured on several hier-
archic levels of decomposition (GES—geriatric sub-factors, GFG—geriatric factor groups),
and can be synthesized or derived from “Measures,” native numeric values generated by the

s ®
bt Knowledge domain Stakeholders T
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Analytics
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Learning, |
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Figure 1. High-level City4Age analytics and detection process flow.
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various sensing technologies and methods for collecting data (e.g., daily number of walked
steps, weekly number of visits to relatives, daily time in seconds spent in public transport,
etc.), as exemplified on the diagram above. Measures are analyzed and processed using vari-
ous algorithmic techniques and/or methods, some of which are the clustering and grading
algorithms described in this chapter, but others have also been tried and tested, and therein
is the flexibility and scalability of the model and the Analytics Framework, supporting the
registration of various algorithmic methods through metadata and deploying them on the
“detection” variables (GFG, GEF, GES, Measures) on various model hierarchy and derivation
levels. Example of network representation of GES, GEF and Measures is presented on the
diagram on Figure 2 below. Relations between nodes shown on the diagram are not fixed/
persistent, can variate according to different model configurations in different cities, or adap-
tively according to the results of the data-driven detection.

The results of the data-driven detection are in turn used for expanding and building-up the
domain knowledge base. The structure (ontologies and semantics) and mechanisms for this
are established [9] are in parallel ongoing development, and will be still more intensely in
the future work, in the scope and frame of City4Age contributions and breakthroughs in
establishment of data-driven geriatrics. The unobtrusively acquired temporal dataset on indi-
vidual level, currently being acquired for each single elderly person, is highly likely to expand
with the increase and improvement of deployment scope and reliability of data acquisition
and detection infrastructure and technologies.

WALK_STEPS_OUTDOOR WALK_SPEED_OUTDOOR
WALK_TIME_OUTDOOR .

Fi Health -
& Cognitive

Phyisical
Activity

< Health - Physical 3 3 = Basic ADLs : >
MCIFrailtyRisk
Dependenceyy - oy » X
@ Socialization
- Cultural

Engagement

Figure 2. Example network representation of the City4Age geriatric model main constructs: Measures (purple), GES
(green), and GEF (red).
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4. Hidden Markov models for behavioral modeling of smart cities
IoT data

As discussed, the main tasks of City4Age analytic framework are recognition of behavioral
patterns, behavior changes (transitions) in time and anomaly detection. Additionally, mod-
els derived from data should be interpretable in order to integrate data driven insights with
domain knowledge expertise. Hidden Markov models (HMMs) provide a framework for all
main tasks and thus we employed these models for behavior variation analyses. Additionally,
HMMs allow prediction of identified behavioral patterns in future and this adds predictive
and preventive component in analytic framework. Here we will consider first order HMMs
where each temporal state depends only on one previous state. This is strong assumption, but
allows development of scalable models and real-time inference. Figure 3 describes first order
Markov chain where each state x depends on previous state (x-1) and observed data ().

Hidden Markov models can be explained as total probability of X and Y by following formulae:

~

-1

p(X,Y) = p(x1) p<xt+l l xz)ijp(yt’ | xt’) (1)

T-1

where p(y, 1 x) represents observation probability, while p(x,, Ix) prepresents transition probability.

1

In our case observations are series of IoT sensory data while hidden states represent catego-
rized, homogenous series parts (that wil.l be characterized as behavioral patterns or behav-
iors). This is why we use Gaussian HMMs that characterize states with Gaussian distributions.
This is depicted on Figure 4.

Each HMM model is thus constituted from three elements:

1. Prior probability distribution of hidden states (vector m) that describes how frequently
each state occurs in general.

2. Transition matrix (A,) that describe the transition probabilities from one state to another.

3. Probability distribution functions (one for each state) with corresponding parameters. In
our case Gaussian distributions are modeled and thus means and standard deviations are
used for definition of hidden state (behavior) probability distribution. HMMs allow mod-
eling of discrete data too, but in that case probability distributions are represented by con-
ditional distributions.

: y(t—1) y(t—1) ——l aus

Figure 3. First-order Markov chain.
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Figure 4. Behavior modeling with Gaussian HMMs.

Based on HMM definition, we can work on following tasks [10]:

Training —Learning parameters of HMM (A, B, and the prior distribution ), given a train-
ing sequence of observations y,,y,,...,y,. By solving this task, we will be able to characterize
behavioral patterns (distributions). This task is solved by forward-backward algorithm.

Decoding —given an observation sequence and an HMM, determine the most probable hid-
den state (behavior) sequence. We used this task for state prediction and model evaluation.
This task is solved by Viterbi (backward algorithm).

Likelihood —Calculation of probability that given sequence originates from given HMM
model. In this research, we did not work on this task, since we built personalized behavioral
models, but it will be used in later stages of the project when we will model behavior of
groups of care recipients.

5. Framework for behavioral pattern recognition and change
detection

Based on definition of behavior as pattern of sequences of activities and corresponding mea-
sure values, clustering algorithms emerge as natural algorithmic approach for behavioral pat-
tern recognition and change detection. In City4Age setting, inputs for clustering algorithms
are time series. These time series can be represented by values of activity measures, GES, GEF
or Geriatric Score of care recipients. Based on time series, temporal clustering algorithms can
identify patterns (similar time series values in consecutive time-steps) that are repeated over
time. We characterize these patterns as behaviors and transition between patterns, behavior
changes. Very important component in derivation of GES and GEF from activity measures are
numerical indicators (NUIs). NUIs represent aggregations (e.g., mean, std., trend, etc.) of activ-
ity measure values on monthly level. This granularity level is convenient since it allows direct
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conversion of NUIs to GES and GEF that are interpretable to geriatricians. However, monthly
statistics in some cases do not capture important within month variations in time series.

This is why, in contrast to NUIs, clusters are not restricted to monthly level. Depending on
input data, clusters can be identified on daily or monthly level. For example, if number_
of_steps activity measure is clustered over time, model can identify similar groups of daily
values: days with high values (i.e. average of 3000 steps with standard deviation of 200 steps)
and days with low values (i.e. average of 600 steps with standard deviation of 100 steps).
Similarly, cluster models can identify patterns of series of GES or GEF. For example: care
recipient have periods of time where motility have average motility value of 4.1 with standard
deviation of 0.2. So, behavioral patterns encapsulated in cluster models provide characteriza-
tion of behavior on finer grade than monthly level. Additionally, the level of granularities
does not have to be defined in advance (e.g., weeks).

For example, in first 22 days of January, care recipient had high values and high variability
of number_of_steps, but in next 12 days he or she had low values with low variability. Even
though, behavioral patterns described by clusters are not necessarily aligned with monthly
representations of NUIs, GES and GEEF, they can be exploited for definition of new NUIs that
will capture within month behavior variations (e.g., care recipient showed improved behav-
ior in last eight days of a month). NUIs based can be further graded as described in previous
sub-section. Based on previous examples it is intuitively clear that clusters (behavior patterns)
encapsulate smaller variations of time series and allows data driven discretization and char-
acterization of discrete categories. This discretization allows easier inspection of behavioral
changes (than observing unclustered series with many variations) and thus, results of cluster-
ing (cluster labels) can be directly represented on City4Age interactive dashboards or used as
NUIs for derivations of GES and GEF (Figure 5). This way Geriatricians can access visualiza-
tions of natural groupings among series data, and label behaviors (e.g., normal, bad or good
or on the Likert scale) or revise data driven grading of clusters.

It is important to emphasize that grouping of activities and/or citizens will play an important
role in extending of City4Age interactive dashboards, with mentioned easier identification

Interactive o
Dashboards

Activity measures Cluster : Grading
- NUI generation i
Geriatric Sub-factors algorithms 8 Correction
Geriatric Factors
Geriatric Score
v v
Cluster Cluster Anomaly nUTTE o Corrected
models labels labels geiory grades

Figure 5. Cluster model flow.
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and labeling of patterns in streaming data. The labels will allow development of supervised
models and further automation of City4Age analytics processes and improvement of alarm-
ing systems.

6. Experiments

In order to evaluate proposed framework we conducted experiments collected from City4Age
Pilot sites. The main goal of the experimental evaluation was to evaluate usefulness of HMM
models for behavior recognition, behavior change and anomaly detection in context of
City4Age IoT data. We will describe process of data collection, modeling and evaluation in
following text.

6.1. Data collection and preparation

Data used in experiments originate from the Birmingham Pilot. Data have been acquired by
monitoring 3 Care recipients during a 6-month period (from January to July 2017, and ongo-
ing). Sensory data are collected using Nokia Steel (e.g., Withings Activité) smartwatches.
Nokia Steel tracks the following activities: sleep cycle, movements tracking, walked steps
and distance, burned calories, elevation, heart rate, and optionally SP02 (peripheral capillary
oxygen saturation, an estimate of the amount of oxygen in the blood, taken with additional
pulse oximeter). Integration of sensor data with City4Age analytics platform is described in
the following text. The proximity positioning data are gathered through smartphone BLE
transceiver and relayed through the smartphone 4G connection to the City4Age Platform.
Nokia/Withings API is used for initial pre-processing step on the sleep, activity, and other
data obtained from the smartwatches, before sending to the City4Age Platform. So, input for
building clustering algorithms in this research was sets of activity measures for each citizen.
Summary of observed activity measures is presented in Table 1.

6.2. Experimental setup

The main goal of our experiments was to show that HMM models can be efficiently used for
behavioral pattern recognition, behavior change detection and anomaly detection. In order
to achieve this goal we faced several challenges: identification of adequate model evalua-
tion (selection) measure, identify optimal number of behavioral states for each care recipient
and each activity and finally to characterize identified behaviors (clusters or behavioral pat-
terns). Since HMM models cannot implicitly learn optimal number of hidden states, we built
HMM models with varying number of clusters (in the range 2-10) for each care recipient and
each activity. Additionally, since there is no consensus for evaluation of cluster models in
unsupervised setting, each model was evaluated with log likelihood, BIC and AIC evaluation
measures. So setting we conducted 810 experiments in total (3 care recipients x 10 activities
x 9 variations of state numbers x 3 evaluation measures). Each experiment lasted for 15-24 s
(including learning and evaluation). Since HMM is one of the most scalable algorithm from
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Geriatric sub-factor Activity Measure unit
Walking WALK_STEPS # of steps
WALK_DISTANCE meters
Quality of sleep SLEEP_LIGHT_TIME seconds
SLEEP_DEEP_TIME seconds
SLEEP_AWAKE_TIME seconds
SLEEP_WAKEUP_NUM seconds
SLEEP_TOSLEEP_TIME seconds
Physical activity PHYSICALACTIVITY_SOFT _TIME seconds
PHYSICALACTIVITY_MODERATE_TIME seconds
PHYSICALACTIVITY_INTENSE_TIME seconds
PHYSICALACTIVITY_CALORIES # of calories

Table 1. Observed activity measurements.

Probabilistic Graphical models family (it is frequently used for signal processing and speech
recognition) it allows adaption for much larger series as City4Age streaming data arrives.
After building models, they are applied to activity measure time series for each citizen and
each activity. In this way we labeled each time point with cluster (behavioral pattern or state)
assignment. When scoring HMM models, probabilities that time point originates from cluster
distributions are identified and largest probabilities are stored for anomaly detection pur-
poses. Experimental setup is implemented in Python. Hmmlearn library is used for building
HMM models while Pandas DataFrame is used for data manipulation. All experiments are
conducted on a testing cloud comprising three servers with quad-core Intel Xeon class CPU
each, 8 GB of RAM combined for data storage processes and up to 252 GB of RAM combined
at disposal for data analytics and applicative processes.

6.3. Results and discussion

In this section we will analyze and discuss experimental results from the aspects of identifica-
tion of adequate model selector, behavioral pattern recognition, behavioral change (transi-
tion) recognition and anomaly detection.

6.3.1. Identification of adequate model selector

Since there is no consensus about the best HMM model selection and evaluation metric in
unsupervised setting, our first objective was to identify well suited metric for data at hand.
Good metric should enable automated identification of parsimonious solutions: ones with
high performance but as less complex as possible. For that purpose, we inspected general
behavior of AIC, BIC over all experiments (care recipients and activity measures) and corre-
lated these values with log likelihood performances. Log likelihood measures how probable
is model given the series data. It is intuitively clear that models with maximum possible log



Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired...
http://dx.doi.org/10.5772/intechopen.75203

likelihood are desired, however in general, likelihood monotonically increases with increase
of model complexity. This means that larger number of clusters will almost always be pre-
ferred by log likelihood criteria. The aim of the first analyses was to inspect how AIC and
BIC measurements capture degree of changes (slope) in likelihood values of the model.
Distributions of average values of log likelihood, AIC and BIC over different model complexi-
ties (numbers of states) are shown on Figure 6.

On X-axis numbers of clusters are showed and on Y-axis average AIC, BIC and log likelihood
values (over all experiments), respectively. It can be seen on figure below that AIC values follow
adequately identify steep growth of log likelihood on log likelihood curve. Meaning that average
AIC shows better model performance while log likelihood performance increases in large steps.

Optimal number of clusters (in average over all experiments) according to AIC measure is
5 where “elbow” in AIC curve is detected. This point corresponds to transition from higher
growth (for number of clusters 2-5) of log likelihood to Lower growth (for number of clusters
6-10). On the other side, BIC model selector, ignores steep increase of log likelihood and iden-
tifies three as optimal number of clusters.

Num of Clusters

Avg.BIC Avg. AIC

Avg. Log Likelihood

Figure 6. Distribution of average values of log likelihood, AIC, and BIC over different model complexities.
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After this point, BIC curve grows super linearly meaning that it does not prefer models with
higher number of clusters than 2 or 3. Deeper inspection of AIC, BIC and log likelihood curves
for each care recipient and each activity showed consistent behavior with ones described on
Figure 6. Thus we selected AIC as measure of choice for HMM model selection. Based on
previous discussion we took AIC as measure of choice for model selection and identification
of optimal number of behavioral state for each care recipient and each activity.

However, it is very important to emphasize that insights presented in previous text cannot
be considered as conclusive and cannot generalize over all problems. This is because cluster
performance is dependent on data distributions that are different for each dataset, but also
because depends on the context of analyses.

6.3.2. Choosing optimal number of clusters

Based on previous insights, we used AIC measure to analyze quality of the models with
respect to number of clusters. Results for each activity for one care recipient are shown on
Figure 7. It can be seen from Figure 7 that different activities have different “optimal” number
of clusters. In this analyses term “optimal” have to be considered very loosely because, in
many cases difference in AIC performance is very similar for different number of clusters. This
means that for behavior analysis purposes adequate model can be selected in range of models
with good and similar AIC performance. Most often, parsimonious solution is applied: model
with satisfying performance and the least number of cluster is selected. On the other hand, in
case of existence of global saddle point model selection is clearer process. Saddle points have
strict mathematical definition based on function derivatives, but in this case, saddle point
can be descriptively defined as: point with property that all points from the left side (lower
number of clusters) are larger and all points from the right side (higher number of clusters)
are larger. In these situations, model selection is based on minimal (optimal value of AIC).
Clear example of saddle point on Figure 7 is labeled with k = 4 for physical_activity_calories
activity measure.

6.3.3. Behavior characterization

Figure 8 depicts behavioral patterns for activity sleep_light_time for one care recipient identi-
fied by HMM. X-axis represents temporal dimension in day units is presented for the period
and Y-axis represents cumulative duration of sleep_light time for each day.

It can be seen that HMM model based on AIC model selection criteria identified three differ-
ent clusters (behavioral patterns) that can be characterized as following;:

1. Behavior (purple line): medium values of sleep_light_time (between 8000 and 13000 s) with
low deviations,

2. Behavior (green line): high values of sleep_light_time (between 13000 and 20000 s) with
low deviations and

3. Behavior (red line): low values of sleep_light_time (between 0 and 15000 s) with high
deviations.
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Normal sleeping process includes interchange of light sleep and deep sleep. First and second
behaviors are considered desirable and such times of light sleep lead to mitigation of frailty risk.
On the other hand lack of light sleep time and high variations are considered as negative behav-
ior and could indicate increase of stress and chance of MCl/frailty risk development. Based on
these observations behavioral patterns are quantified and ordered (e.g., 1 —worst behavior, 2—
medium behavior, and 3—good behavior) and pushed in further process of risk quantification
through derivation of numerical indicators and grading (described in previous section).

6.3.4. Behavior variation change and anomaly detection

After characterization of behavioral patterns, we analyzed behavior (pattern) changes over
time. Identification and characterization of behavior changes (transitions) over time is cru-
cial step for building proactive systems and providing timely and preventive interventions.
Figure 9 describes transitions of behaviors identified in previous sub-section.
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Figure 8. Behavioral patterns identified by HMM model.

Frequent pattern changes from Figure 9 can be observed from green (“good” behavior) to
red (“bad” behavior) lines. It can also be observed that red behavior appears more frequently
than other two.

Finally, in most cases “medium” behavior (purple line) transitions to “good” behavior
(green line). Based on this analysis it can be observed that after behavior improvement (from
“medium” to “good”) care recipients often have sudden worsening of behavior. Recognition
of such transitional patterns enables predictive and preventive approach in risk prevention.
Namely, HMM models, based on transitional probability matrices identify probabilities of

User_in_role_id: 66  Activity: sleep_light_time
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Figure 9. Behavior variations (transitions) and anomalous point.
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Figure 10. Anomalous state.

behavior transitions and if behaviors are characterized well, these probabilities can be used
as early risk identification indicators. Furthermore, based on HMM, model anomalies can
be automatically identified per user defined thresholds. For example, by manual labeling on
behavioral series presented on Figure 9, the lowest point of bad behavior (red line between
2017-05 and 2017-06) is identified. This point is captured as anomalous based on probability
threshold of 70%. This means that behavioral point (instance) has max. probability of belong-
ing to any state less than 70%. Experiments on all other activities showed that optimal value of
threshold should be between 65 and 75%. Similarly, anomalous states (behaviors) can be iden-
tified by setting threshold for minimum number of instances (behavioral measurements) that
should constitute behavior (cluster). Since number of behavior measurements is variable for
different users, activities and even periods of measurements, we define threshold as percent-
age of total number of measurements for selected period. In all our experiments series were
constituted from 140 to 180 measurements. Experiments showed that good anomaly scoring
is achieved by setting threshold to 3-5%. Figure 10 illustrates situation where anomalous
behavior is detected (last two measurements connected with yellow line).

7. Conclusion and future work

In this chapter we addressed the problem of behavioral pattern recognition, behavior change
detection and anomaly detection based on IoT data in smart city environment. We proposed
a framework for behavioral change detection that will be utilized in context of mild cog-
nitive impairment (MCI) and frailty risk assessment and detection in the City4Age project.
Behavioral modeling and risk assessment for MCI and Frailty are very challenging tasks
because of the large variations between each specific personal case, and the practical lack
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of universally agreed and adopted criteria in geriatric practice (in real-life environment, not
controlled “lab” settings) on the referent thresholds or ranges of quantified risk factors or
geriatric domain variables that actually denote certain MCl/frailty risk or potential onset.

Thus we developed data driven models based on HMMs that exploit IoT sensory data and
allow automated behavior recognition, change and anomaly detection. Models are used for
characterization of data that serves as an input for exploratory analytics through interac-
tive dashboarding and/or enrichment of modeled Geriatric factors that quantify the specific
behavior characterizations and risk levels for MCI and Frailty.

In future work, we will integrate results from this research in City4Age interactive monitor-
ing dashboards and thus enable geriatricians to gain additional insights into care recipients
behavior and potential risk. This will open the space for supervised behavioral scoring and
risk prediction. Further, we will develop data driven behavioral models for multivariate IoT
data series and explore mutual influence between series. Finally, we will evaluate more unsu-
pervised models for behavioral modeling including deep learning models (e.g., recurrent
neural networks) in the analyses.
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