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Preface

These lecture notes are intended to accompany a single-semester graduate course.
They are meant to be entirely self-contained. All the theory required to prove the
main results is presented and only basic knowledge in probability theory is assumed.

In Chap. 1, we describe the main storyline of this text. It is meant to be light
bedtime reading exposing the reader to the main results that will be presented and
providing some background. Chapter 2 introduces the theory of electric networks
and discusses their highly useful relations to random walks. It is roughly based
on Chap. 8 of Yuval Peres’ excellent lecture notes [69]. We then discuss the circle
packing theorem and present its proof in Chap. 3. Chapter 4 discusses the beautiful
theorem of He and Schramm [40], relating the circle packing type of a graph to
recurrence and transience of the random walk on it. To the best of our knowledge,
their work is the first to form connections between the circle packing theorem
and probability theory. Next in Chap. 5, we present the highly influential theorem
of Benjamini and Schramm [11] about the almost sure recurrence of the simple
random walk in planar graph limits of bounded degrees. The notion of a local limit
(also known as distributional limit or Benjamini-Schramm limit) of a sequence of
finite graphs was introduced there for the first time to our knowledge (and also
studied by Aldous–Steele [3] and Aldous–Lyons [2]); this notion is highly important
in probability theory as well as other mathematical disciplines (see [2] and the
references within). In Chap. 6, we provide a theorem from which one can deduce
the almost sure recurrence of the simple random walk on many models of random
planar maps. This theorem was obtained by Ori Gurel-Gurevich and Nachmias in
[31]. Chapter 7 discusses uniform spanning forests on planar maps and appeals to
the circle packing theorem to show that the free uniform spanning forest on proper
planar maps is almost surely connected, i.e., it is in fact a tree. This theorem was
obtained by Hutchcroft and Nachmias in [45]. We close these notes in Chap. 8 with
a description of some related contemporary developments in this field that are not
presented in this text.

vii



viii Preface

We have made an effort to add value beyond what is in the published papers. Our
proof of the circle packing theorem in Chap. 3 is inspired by Thurston’s argument
[82] and Brightwell–Scheinerman [13], but we have made what we think are some
simplifications; the proof also employs a neat argument due to Ohad Feldheim and
Ori Gurel-Gurevich (Theorem 3.14) which makes the drawing part of the argument
rather straightforward and avoids topological considerations that are used in the
classical proofs. The original proof of the He–Schramm Theorem [40] is based
on the notion of discrete extremal length which is essentially a form of effective
resistance in electric networks (in fact, the edge extremal length is precisely an
effective resistance, see [61, Exercise 2.78]). We find that our approach in Chap. 4
using electric networks is somewhat more robust and intuitive to probabilists. We
obtain a quantitative version of the He-Schramm Theorem in Chap. 4 as well as the
Benjamini–Schramm Theorem [11] in Chap. 5 (see Theorem 5.8). These quantified
versions are key to the proofs of Chap. 6. Lastly, some aspects of stationary random
graphs are better explained here in Chap. 6 than in the publication [31]. The videoed
lectures of this course taken in 48th Saint-Flour summer school are available at the
author’s webpage http://www.math.tau.ac.il/~asafnach/.
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Chapter 1
Introduction

1.1 The Circle Packing Theorem

A planar graph is a graph that can be drawn in the plane, with vertices represented
by points and edges represented by non-crossing curves. There are many different
ways of drawing any given planar graph and it is not clear what is a canonical
method. One very useful and widely applicable method of drawing a planar graph
is given by Koebe’s 1936 circle packing theorem [51], stated below. As we will
see, various geometric properties of the circle packing drawing (such as existence
of accumulation points and their structure, bounds on the radii of circles and so
on) encode important probabilistic information (such as the recurrence/transience
of the simple random walk, connectivity of the uniform spanning forest and much
more). This deep connection is especially fruitful to the study of random planar
maps. Indeed, one of the main goals of these notes is to present a self-contained
proof that the so-called uniform infinite planar triangulation (UIPT) is almost surely
recurrent [31].

A circle packing is a collection of discs P = {Cv} in the plane C such that any
two distinct discs in P have disjoint interiors. That is, distinct discs in P may be
tangent, but may not overlap. Given a circle packing P , we define the tangency
graph G(P) of P to be the graph with vertex set P and with two vertices connected
by an edge if and only if their corresponding circles are tangent. The tangency graph
G(P) can be drawn in the plane by drawing straight lines between the centers of
tangent circles in P , and is therefore planar. It is also clear from the definition that
G(P) is simple, that is, any two vertices are connected by at most one edge and
there are no edges beginning and ending at the same vertex. See Fig. 1.1.

We call a circle packing P a circle packing of a planar graph G if G(P) is
isomorphic to G.

Theorem 1.1 (Koebe 1936) Every finite simple planar graph G has a circle
packing. That is, there exists a circle packing P such that G(P) is isomorphic to G.

© The Author(s) 2020
A. Nachmias, Planar Maps, Random Walks and Circle Packing, Lecture Notes
in Mathematics 2243, https://doi.org/10.1007/978-3-030-27968-4_1
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Fig. 1.1 A planar graph and a circle packing of it

(a) (b) (c) (d) 

Fig. 1.2 A sketch of how to obtain circle packings using Koebe’s extension of the Riemann
mapping theorem to finitely connected domains, which states that every domain D ⊆ C ∪ {∞}
with at most finitely many boundary components is conformally equivalent to a circle domain,
that is, a domain all of whose boundary components are circles or points. (a) Step 1: We begin by
drawing the finite simple planar graph G in the plane in an arbitrary way. (b) Step 2: If we remove
the ‘middle ε’ of each edge, then the complement of the resulting drawing is a domain with finitely
many boundary components. (c) Step 3: Finding a conformal map from this domain to a circle
domain gives an ‘approximate circle packing’ of G. (d) Step 4: Taking the limit as ε ↓ 0 can be
proven to yield a circle packing of G

One immediate consequence of the circle packing theorem is Fáry’s Theorem
[25], which states that every finite simple planar graph can be drawn so that all the
edges are represented by straight lines.

The circle packing theorem was first discovered by Koebe [51], who established
it as a corollary to his work on the generalization of the Riemann mapping
theorem to finitely connected domains; a brief sketch of Koebe’s argument is
given in Fig. 1.2. The theorem was rediscovered and popularized in the 1970s by
Thurston [82], who showed that it follows as a corollary to the work of Andreev
on hyperbolic polyhedra (see also [63]). Thurston also initiated a popular program
of understanding circle packing as a form of discrete complex analysis, a viewpoint
which has been highly influential in the subsequent development of the subject and
which we discuss in more detail below (see [79] for a review of a different form
of discrete complex analysis with many applications to probability). There are now
many proofs of the circle packing theorem available including, remarkably, four
distinct proofs discovered by Oded Schramm. In Chap. 3 we will give an entirely
combinatorial proof, which is adapted from the proof of Thurston [63, 82] and
Brightwell and Scheinerman [13].
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Uniqueness

We cannot expect a uniqueness statement in Theorem 1.1 (see Fig. 1.1; we may
“slide” circles 5 and 6 along circle 2). However, when our graph is a finite triangu-
lation, circle packings enjoy uniqueness up to circle-preserving transformations.

Definition 1.2 A planar triangulation is a planar graph that can be drawn so that
every face is incident to exactly three edges. In particular, when the graph is finite
this property must hold for the outer face as well.

Claim 1.3 If G is a finite triangulation, then the circle packing whose tangency
graph is isomorphic to G is unique, up to Möbius transformations and reflections in
lines.

The uniqueness of circle packing was first proven by Thurston, who noted that
it follows as a corollary to Mostow’s rigidity theorem. Since then, many different
proofs have been found. In Chap. 3 we will give a very short and elementary proof
of uniqueness due to Oded Schramm that is based on the maximum principle.

Infinite Planar Graphs

So far, we have only discussed the existence and uniqueness of circle packings of
finite planar triangulations. What happens with infinite triangulations? To address
this question, we will need to introduce some more definitions.

Definition 1.4 We say that a graph G is one-ended if the removal of any finite set
of vertices leaves at most one infinite connected component.

Definition 1.5 Let P = {Cv} be a circle packing of a triangulation. We define
the carrier of P to be the union of the closed discs bounded by the circles of P

together with the spaces bounded between any three circles that form a face (i.e.,
the interstices). We say that P is in D if its carrier is D.

See Fig. 1.3 for examples where the carrier is a disc or a square. The circle
packing of the standard triangular lattice (see Fig. 4.2) has the whole plane C as
its carrier. It is not too hard to see that if G(P) is an infinite triangulation, then it is
one-ended if and only if the carrier of P is simply connected, see Lemma 4.1.

It can be shown via a compactness argument that any simple infinite planar
triangulation can be circle packed in some domain. Indeed, one can simply take
subsequential limits of circle packings of finite subgraphs (the fact that such
subsequential limits can be taken is a consequence of the so-called Ring Lemma, see
Lemma 4.2). This is performed in Claim 4.3. However, this compactness argument
does not give us any control of the domain we end up with as the carrier of our
circle packing. The following theorems of He and Schramm [39, 40] give us much
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Fig. 1.3 The 7-regular hyperbolic tessellation circle packed in a disc and in a square

better control; they can be thought of as discrete analogues of the Poincaré-Koebe
uniformization theorem for Riemann surfaces.

Theorem 1.6 (He and Schramm 1993) Any one-ended infinite triangulation can
be circle packed such that the carrier is either the plane or the open unit disk, but
not both.

This theorem will be proved in Chap. 4 (with the added assumption of finite
maximal degree). The proofs in [39, 40] are based on the notion of discrete extremal
length. We will present our own approach to the proof in Chap. 4 based on a very
similar notion of electric resistance discussed in Chap. 2. This approach is somewhat
more appealing to a probabilist and allows for quantitative versions of the He-
Schramm Theorem that will be used later for the study of random planar maps in
Chap. 6.

In view of Theorem 1.6, we call an infinite one-ended simple planar triangulation
CP parabolic if it can be circle packed in C, and call it CP hyperbolic if it can be
circle packed in the open unit disk U.

Theorem 1.7 (He and Schramm 1995) Let T be a CP hyperbolic infinite one-
ended simple planar triangulation and let D � C be a simply connected domain.
Then there exists a circle packing of T with carrier D.

What about uniqueness? Theorem 1.7 shows that, in general, we have much more
flexibility when choosing a circle packing of an infinite planar triangulation than we
have in the finite case, see Fig. 1.3 again. Indeed, it implies that the circle packing of
a CP hyperbolic triangulation is not determined up to Möbius transformations and
reflections, since, for example, we can circle pack the same triangulation in both the
unit disc and the unit square, and these two packings are clearly not related by a
Möbius transformation. Fortunately, the following theorem of Schramm [73] shows
that we recover Möbius rigidity if we restrict the packing to be in C or U.
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Theorem 1.8 (Schramm 1991) Let T be a one-ended infinite planar triangula-
tion.

• If T is CP parabolic, then its circle packing in C is unique up to dilations,
rotations, translations and reflections.

• If T is CP hyperbolic, then its circle packing in U is unique up to Möbius
transformations or reflections fixing U.

Relation to Conformal Mapping

A central motivation behind Thurston’s popularization of circle packing was its role
as a discrete analogue of conformal mapping. The resulting theory is somewhat
tangential to the main thrust of these notes, but is worth reviewing for its beauty,
and for the intuition it gives about circle packing. A more detailed treatment of this
and related topics is given in [81].

Recall that a map φ : D → D′ between two domains D,D′ ⊆ C is conformal
if and only if it is holomorphic and one-to-one. Intuitively, we can think of the
latter condition as saying that φ maps infinitesimal circles to infinitesimal circles.
Thus, it is natural to wonder, as Thurston did, whether conformal maps can be
approximated by graph isomorphisms between circle packings of the corresponding
domains, which literally map circles to circles.

For each ε > 0, let Tε = {εn + ε 1+√
3i

2 m : n,m ∈ Z} ⊆ C be the triangular
lattice with lattice spacing ε, which we make into a simple planar triangulation by
connecting two vertices if and only if they have distance ε from each other. This
triangulation is naturally circle packed in the plane by placing a disc of radius ε

around each point of Tε: this is known as the hexagonal packing. Now, let D be a
simply connected domain, and take z0 to be a marked point in the interior of D. For
each ε > 0 let uε be an element of Tε of minimal distance to z0, and let vε = uε + ε

and wε = uε + (1 + √
3i)ε/2. For each ε > 0, let Tε(D) be the subgraph of Tε

induced by the vertices of distance at least 2ε from ∂D (i.e., the subgraph containing
all such vertices and all the edges between them), and let T ′

ε(D) be the component
of Tε(D) containing uε . Finally, let T ′′

ε (D) be the triangulation obtained from T ′
ε(D)

by placing a single additional vertex ∂ε in the outer face of T ′
ε(D) and connecting

this vertex to every vertex in the outer boundary of T ′
ε(D).

Applying the circle packing theorem to T ′′
ε (D) and then applying a Möbius

transformation or a reflection if necessary, we obtain a circle packing Pε of T ′′
ε (D)

with the following properties:

• The boundary vertex ∂ε is represented by the unit circle,
• the vertex uε is represented by a circle centered at the origin,
• the vertex vε is represented by a circle centered on the real line, and
• the vertex wε is represented by a circle centered in the upper half-plane.
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The function sending each vertex of T ′
ε(D) to the center of the circle representing

it in Pε can be extended piecewise on each triangle by an affine extension. Call the
resulting function φε.

The following theorem was conjectured by Thurston and proven by Rodin and
Sullivan [70].

Theorem 1.9 (Rodin and Sullivan 1987) Let φ be the unique conformal map from
D to U with φ(z0) = 0 and φ′(z0) > 0. Then φε converge to φ as ε ↓ 0, uniformly
on compact subsets of D.

See Fig. 1.4. The key to the proof of Theorem 1.9 was to establish that the
hexagonal packing is the only circle packing of the triangular lattice, which is now
a special case of Theorem 1.8.

Various strengthenings and generalizations of Theorem 1.9 have been established
in the works [21, 36, 38, 41, 42, 80].

Fig. 1.4 Approximating the conformal map from a rhombus to the disc using circle packing, at
two different degrees of accuracy
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1.2 Probabilistic Applications

Why should we be interested in circle packing as probabilists? At a very heuristic
level, when we uniformize the geometry of a triangulation by applying the circle
packing theorem, we also uniformize the random walk on the triangulation, allowing
us to compare it to a standard reference process that we understand very well,
namely Brownian motion. Indeed, since Brownian motion is conformally invariant
and circle packings satisfy an approximate version of conformality, it is not
unreasonable to expect that the random walk on a circle packed triangulation will
behave similarly to Brownian motion. This intuition turns out to be broadly correct,
at least when the triangulation has bounded degrees, although it is more accurate
to say that the random walk behaves like a quasi-conformal image of Brownian
motion, that is, the image of Brownian motion under a function that distorts angles
by a bounded amount.

Although it is possible to make the discussion in the paragraph above precise,
in these notes we will be interested primarily in much coarser information that can
be extracted from circle packings, namely effective resistance estimates for planar
graphs. This fundamental topic is thoroughly discussed in Chap. 2. One of the many
definitions of the effective resistance Reff(A ↔ B) between two disjoint sets A and
B in a finite graph is

1

Reff(A ↔ B)
=
∑

v∈A

deg(v)Pv(τB < τ+
A ),

where Pv is the law of the simple random walk started at v, τB is the first time the
walk hits B, and τ+

A is the first positive time the walk visits A. Good enough control
of effective resistances allows one to understand most aspects of the random walk
on a graph. We can also define effective resistances on infinite graphs, although
issues arise with boundary conditions. An infinite graph is recurrent if and only if
the effective resistance from a vertex to infinity is infinite.

The effective resistance can also be computed via either of two variational
principles: Dirichlet’s principle and Thomson’s principle, see Sect. 2.4. The first
expresses the effective resistance as a supremum of energies of a certain set of
functions, while the second expresses the effective resistance as an infimum of
energies of a certain set of flows. Thus, we can bound effective resistances from
above by constructing flows, and from below by constructing functions. A central
insight is that we can use the circle packing to construct these functions and flows.
This idea leads fairly easily to various statements such as the following:

• The effective resistance across a Euclidean annulus of fixed modulus is at most a
constant. If the triangulation has bounded degrees, then the resistance is at least
a constant.
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• The effective resistance between the left and right sides of a Euclidean square is
at most a constant. If the triangulation has bounded degrees, then the resistance
is at least a constant.

See for instance Lemma 4.9. We will use these ideas to prove the following
remarkable theorem of He and Schramm [40], which pioneered the connection
between circle packing and random walks.

Theorem 1.10 (He and Schramm 1995) Let T be a one-ended infinite triangula-
tion. If T has bounded degrees, then it is CP parabolic if and only if it is recurrent
for simple random walk, that is, if and only if the simple random walk on T visits
every vertex infinitely often almost surely.

This has been extended to the multiply-ended cases in [32], see also Chap. 8,
item 4.

Recurrence of Distributional Limits of Random Planar Maps

Random planar maps is a widely studied field lying at the intersection of probability,
combinatorics and statistical physics. It aims to answer the vague question “what
does a typical random surface look like?”

We provide here a very quick account of this field, referring the readers to the
excellent lecture notes [58] by Le Gall and Miermont, and the many references
within for further reading. The enumerative study of planar maps (answering
questions of the form “how many simple triangulations on n vertices are there?”)
began with the work of Tutte in the 1960s [83] who enumerated various classes of
finite planar maps, in particular triangulations. Cori and Vauquelin [18], Schaeffer
[72] and Chassaing and Schaeffer [16] have found beautiful bijections between
planar maps and labeled trees and initiated this fascinating topic in enumerative
combinatorics. The bijections themselves are model dependent and extremely useful
since many combinatorial and metric aspects of random planar maps can be inferred
from them. This approach has spurred a new line of research: limits of large random
planar maps.

Two natural notions of such limits come to mind: scaling limits and local limits.
In the first notion, one takes a random planar map Mn on n vertices, scales the
distances appropriately (in most models the correct scaling turns out to be n−1/4),
and aims to show that this random metric space converges in distribution in the
Gromov-Hausdorff sense. The existence of such limits was suggested by Chassaing
and Schaeffer [16], Le Gall [55], and Marckert and Mokkadem [62], who coined the
term the Brownian map for such a limit. The recent landmark work of Le Gall [56]
and Miermont [65] establishes the convergence of random p-angulations for p = 3
and all even p to the Brownian map.

The study of local limits of random planar maps, initiated by Benjamini and
Schramm [11], while bearing many similarities, is independent of the study of
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scaling limits. The local limit of a random planar map Mn on n vertices is an infinite
random rooted graph (U, ρ) with the property that neighborhoods of Mn around a
random vertex converge in distribution to neighborhoods of U around ρ. The infinite
random graph (U, ρ) captures the local behavior of Mn around typical vertices. We
develop this notion precisely in Chap. 5.

In their pioneering work, Angel and Schramm [5] showed that the local limit of
a uniformly chosen random triangulation on n vertices exists and that it is a one-
ended infinite planar triangulation. They termed the limit as the uniform infinite
planar triangulation (UIPT). The uniform infinite planar quadrangulation (UIPQ),
that is, the local limit of a uniformly chosen random quadrangulation (i.e., each face
has 4 edges) on n vertices, was later constructed by Krikun [52].

The questions in this line of research concern the almost sure properties of this
limiting geometry. It is a highly fractal geometry that is drastically different from
Z2. Angel [4] proved that the volume of a graph-distance ball of radius r in the
UIPT is almost surely of order r4+o(1) and that the boundary component separating
this ball from infinity has volume r2+o(1) almost surely. For the UIPQ this is proved
in [16].

Due to the various combinatorial techniques of generating random planar maps,
many of the metric properties of the UIPT/UIPQ are firmly understood. Surface
properties of these maps are somewhat harder to understand using enumerative
methods. Recall that a non-compact simply connected Riemannian surface is either
conformally equivalent to the disc or the whole plane and that this is determined
according to whether Brownian motion on the surface is transient or recurrent.
Hence, the behavior of the simple random walk on the UIPT/UIPQ is considered
here as a “surface property” (see also [30]).

As mentioned earlier, one of the main objectives of these notes is to answer the
question of the almost sure recurrence/transience of the simple random walk on the
UIPT/UIPQ. We provide a general statement, Theorem 6.1 of these notes, to which
a corollary is

Theorem 1.11 ([31]) The UIPT and UIPQ are almost surely recurrent.

The proof heavily relies on the circle packing theorem and can be viewed as
an extension of the remarkable theorem of Benjamini and Schramm [11] stating
that the local limit of finite planar maps with finite maximum degree is almost
surely recurrent. The maximum degree of the UIPT is unbounded and so one cannot
apply [11]. A combination of the techniques presented in Chaps. 4–6 is required to
overcome this difficulty.

Recently, there have been terrific new developments studying further surface
properties of the UIPT/UIPQ. Lee [59] has given an exciting new proof of Theo-
rem 1.11 based on a spectral analysis and an embedding theorem for planar maps
due to [48]. His proof also yields that the spectral dimension of the UIPT/UIPQ is
at most 2 and applies to local limits of sphere-packable graphs in higher dimensions
as well. Gwynne and Miller [33] provided the converse bound showing that the
spectral dimension of the UIPT equals 2 and calculated other exponents governing
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the behavior of the random walk. Their results are based on the deep work of
Gwynne et al. [35] (see also Chap. 8, item 9).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.
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included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 2
Random Walks and Electric Networks

An extremely useful tool and viewpoint for the study of random walks is Kirchhoff’s
theory of electric networks. Our treatment here roughly follows [69, Chapter 8], we
also refer the reader to [61] for an in-depth comprehensive study.

Definition 2.1 A network is a connected graph G = (V ,E) endowed with positive
edge weights, {ce}e∈E (called conductances). The reciprocals re = 1/ce are called
resistances.

In Sects. 2.1–2.4 below we discuss finite networks. We extend our treatment to
infinite networks in Sect. 2.5.

2.1 Harmonic Functions and Voltages

Let G = (V ,E) be a finite network. In physics classes it is taught that when
we impose specific voltages at fixed vertices a and z, then current flows through
the network according to certain laws (such as the series and parallel laws). An
immediate consequence of these laws is that the function from V to R giving the
voltage at each vertex is harmonic at each x ∈ V \ {a, z}.
Definition 2.2 A function h : V → R is harmonic at a vertex x if

h(x) = 1

πx

∑

y:y∼x

cxyh(y) where πx :=
∑

y:y∼x

cxy. (2.1)

Instead of starting with the physical laws and proving that voltage is harmonic,
we now take the axiomatically equivalent approach of defining voltage to be a
harmonic function and deriving the laws as corollaries.

© The Author(s) 2020
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Definition 2.3 Given a network G = (V ,E) and two distinct vertices a, z ∈ V , a
voltage is a function h : V → R that is harmonic at any x ∈ V \ {a, z}.

We will show in Claim 2.8 and Corollary 2.7 that for any α, β ∈ R, there is a
unique voltage h such that h(a) = α and h(z) = β (this assertion is true only when
the network is finite).

Claim 2.4 If h1, h2 are harmonic at x then so is any linear combination of h1, h2.

Proof Let h̄ = αh1 + βh2 for some α, β ∈ R. It holds that

h̄(x) = αh1(x) + βh2(x) = 1

πx

∑

y:y∼x

cxyαh1(y) + 1

πx

∑

y:y∼x

cxyβh2(y)

= 1

πx

∑

y:y∼x

cxyh̄(y). �

Claim 2.5 If h : V → R is harmonic at all the vertices of a finite network, then it
is constant.

Proof Let M = supx h(x) be the maximum value of h. Let A = {x ∈ V : h(x) =
M}. Since G is finite, A �= ∅. Given x ∈ A, we have that h(y) ≤ h(x) for all
neighbors y of x. By harmonicity, h(x) is the weighted average of the values of
h(y) at the neighbors; but this can only happen if all neighbors of x are also in A.
Since G is connected we obtain that A = V implying that h is constant. �

We now show that a voltage is determined by its boundary values, i.e., by its
values at a, z.

Claim 2.6 If h is a voltage satisfying h(a) = h(z) = 0, then h ≡ 0.

Proof Put M = maxx h(x) (which is attained since G is finite) and let A = {x ∈
V : h(x) = M}. As before, by harmonicity, if x ∈ A\{a, z} then all of its neighbors
are also in A. Since G is connected, there exists a simple path from x to either a or z

such that only its endpoint is in {a, z}. Since h(a) = h(z) = 0 we learn that M = 0,
that is, h is non-positive. Similarly, one proves that h is non-negative, thus h ≡ 0. �
Corollary 2.7 (Voltage Uniqueness) For every α, β ∈ R, if h, h′ are voltages
satisfying h(a) = h′(a) = α and h(z) = h′(z) = β, then h ≡ h′.

Proof By Claim 2.4, the function h − h′ is a voltage, taking the value 0 at a and z,
hence by Claim 2.6 we get h ≡ h′. �
Claim 2.8 For every α, β ∈ R, there exists a voltage h satisfying h(a) = α,h(z)

= β.

Proof 1 We write n = |V |. Observe that a voltage h with h(a) = α and h(z) = β

is defined by a system of n − 2 linear equations of the form (2.1) in n − 2 variables
(which are the values h(x) for x ∈ V \ {a, z}). Corollary 2.7 guarantees that the
matrix representing that system has empty kernel, hence it is invertible. �
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We present an alternative proof of existence based on the random walk on the
network. Consider the Markov chain {Xn} on the state space V with transition
probabilities

pxy := P(Xt+1 = y | Xt = x) = cxy

πx

. (2.2)

This Markov chain is a weighted random walk (note that if cxy are all 1 then the
described chain is the so-called simple random walk). We write Px and Ex for the
probability and expectation, respectively, conditioned on X0 = x. For a vertex x,
define the hitting time of x by

τx := min{t ≥ 0 | Xt = x}.

Proof 2 We will find a voltage g satisfying g(a) = 0 and g(z) = 1 by setting

g(x) = Px(τz < τa).

Indeed, g is harmonic at x �= a, z, since by the law of total probability and the
Markov property we have

g(x) = 1

πx

∑

y:y∼x

cxyPx(τz < τa | X1 = y) = 1

πx

∑

y:y∼x

cxyPy(τz < τa)

= 1

πx

∑

y:y∼x

cxyg(y).

For general boundary conditions α, β we define h by

h(x) = g(x) · (β − α) + α .

By Claim 2.4, h is a voltage, and clearly h(a) = α and h(z) = β, concluding the
proof. �

This proof justifies the equality between simple random walk probabilities and
voltages that was discussed at the start of this chapter: since the function x �→
Px(τz < τa) is harmonic on V \ {a, z} and takes values 0, 1 at a, z respectively, it
must be equal to the voltage at x when voltages 0, 1 are imposed at a, z.

Claim 2.9 If h is a voltage with h(a) ≤ h(z), then h(a) ≤ h(x) ≤ h(z) for all
x ∈ V .

Furthermore, if h(a) < h(z) and x ∈ V \ {a, z} is a vertex such that x is in the
connected component of z in the graph G\{a}, and x is in the connected component
of a in the graph G \ {z}, then h(a) < h(x) < h(z).



14 2 Random Walks and Electric Networks

Proof This follows directly from the construction of h in Proof 2 of Claim 2.8 and
the uniqueness statement of Corollary 2.7. Alternatively, one can argue as in the
proof of Claim 2.6 that if M = maxx h(x) and m = minx h(x), then the sets A =
{x ∈ V : h(x) = M} and B = {x ∈ V : h(x) = m} must each contain at least one
element of {a, z}.

To prove the second assertion, we note that by Claim 2.8 and Corollary 2.7 it is
enough to check when h is the voltage with boundary values h(a) = 0 and h(z) = 1.
In this case, the condition on x guarantees that the probabilities that the random walk
started at x visits a before z or visits z before a are positive. By proof 2 of Claim 2.8
we find that h(x) ∈ (0, 1). �

2.2 Flows and Currents

For a graph G = (V ,E), denote by �E the set of edges of G, each endowed with
the two possible orientations. That is, (x, y) ∈ �E iff {x, y} ∈ E (and in that case,
(y, x) ∈ �E as well).

Definition 2.10 A flow from a to z in a network G is a function θ : �E → R

satisfying

1. For any {x, y} ∈ E we have θ(xy) = −θ(yx) (antisymmetry), and
2. ∀x �∈ {a, z} we have

∑
y:y∼x θ(xy) = 0 (Kirchhoff’s node law).

Claim 2.11 If θ1, θ2 are flows then, so is any linear combination of θ1, θ2.

Proof Let θ̄ = αθ1 + βθ2 for some α, β ∈ R. It holds that

θ̄ (xy) = αθ1(xy) + βθ2(xy) = −αθ1(yx) − βθ2(yx) = −θ̄ (yx),

and for x �= a, z,

∑

y:y∼x

θ̄ (xy) = α
∑

y:y∼x

θ1(xy) + β
∑

y:y∼x

θ2(xy) = 0. �

Definition 2.12 Given a voltage h, the current flow θ = θh associated with h is
defined by θ(xy) = cxy(h(y) − h(x)).

In other words, the voltage difference across an edge is the product of the current
flowing along the edge with the resistance of the edge. This is known as Ohm’s law.
According to this definition, the current flows from vertices with lower voltage to
vertices with higher voltage. We will use this convention throughout, but the reader
should be advised that some other sources use the opposite convention.

Claim 2.13 The current flow associated with a voltage is indeed a flow.
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Proof The current flow is clearly antisymmetric by definition. To show that it
satisfies the node law, observe that for x �= a, z, since h is harmonic,

∑

y:y∼x

θ(xy) =
=πxh(x)︷ ︸︸ ︷∑

y:y∼x

cxyh(y)−
=πxh(x)︷ ︸︸ ︷∑

y:y∼x

cxyh(x) = 0. �

Claim 2.14 The current flow associated with a voltage h satisfies Kirchhoff’s cycle
law, that is, for every directed cycle �e1, . . . , �em,

r∑

i=1

rei θ(�ei) = 0.

Proof Write �ei = (xi−1, xi), and observe that x0 = xm. We have that

m∑

i=1

rei θ(�ei) =
m∑

i=1

rxi−1xi cxi−1xi (h(xi) − h(xi−1)) =
m∑

i=1

(h(xi) − h(xi−1)) = 0.

�

For examples of a flow which does not satisfy the cycle law and a current flow,
see Fig. 2.1.

Claim 2.15 Given a flow θ which satisfies the cycle law, there exists a voltage h =
hθ such that θ is the current flow associated with h. Furthermore, this voltage is
unique up to an additive constant.

Proof For every vertex x, let �e1, . . . , �ek be a path from a to x, and define

h(x) =
k∑

i=1

rei θ(�ei). (2.3)

a z

1

1

1

0

2

a z

1/2

1/2

0

1/2

1/2

Fig. 2.1 On the left, a flow of strength 2 in which the cycle law is violated. On the right, the unit
(i.e., strength 1) current flow
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Note that since θ satisfies the cycle law, the right hand side of (2.3) does not depend
on the choice of the path, hence h(x) is well defined. Let x ∈ V , and consider a given
path �e1, . . . , �ek from a to x (if x = a we take the empty path). To evaluate h(y) for
y ∼ x, consider the path �e1, . . . , �ek, xy from a to y, so h(y) = h(x) + rxyθ(xy). It
follows that h(y) − h(x) = rxyθ(xy), hence θ(xy) = cxy(h(y) − h(x)), meaning
that θ is indeed the current flow associated with h.

Since θ(xy) = cxy(h(y) − h(x)) for any x ∼ y, the node law of immediately
implies that h is a voltage. To show that h is unique up to an additive constant,
suppose that g : V → R is another voltage such that rxyθ(xy) = g(y) − g(x). It
follows that g(y) − h(y) = g(x) − h(x) for any x ∼ y. Since G is connected it
follows that g − h is the constant function on V . �
Definition 2.16 The strength of a flow θ is

‖θ‖ =
∑

x:x∼a

θ(ax).

Claim 2.17 For every flow θ ,

∑

x:x∼z

θ(xz) = ‖θ‖.

Proof We have that

0 =
∑

x∈V

∑

y:y∼x

θ(xy)

=
∑

x∈V \{a,z}

∑

y:y∼x

θ(xy) +
∑

y:y∼a

θ(ay) +
∑

y:y∼z

θ(zy)

=
∑

y:y∼a

θ(ay) +
∑

y:y∼z

θ(zy)

where the first equality is due to antisymmetry, and the third equality is due to the
node law. The claim follows again by antisymmetry. �
Claim 2.18 If θ1, θ2 are flows satisfying the cycle law and ‖θ1‖ = ‖θ2‖, then θ1 =
θ2.

Proof Let θ̄ = θ1 − θ2. According to Claim 2.11, θ̄ is a flow. It also satisfies the
cycle law, as for every cycle �e1, . . . , �em,

m∑

i=1

rei θ̄ (�ei) =
m∑

i=1

rei θ1(�ei) −
m∑

i=1

rei θ2(�ei) = 0.
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Observe in addition that ‖θ̄‖ = ‖θ1‖−‖θ2‖ = 0. Now, let h = hθ̄ be the voltage
defined in Claim 2.15, chosen so that h(a) = 0. Note that it is harmonic at a, since

1

πa

∑

x:x∼a

caxh(x) = 1

πa

∑

x:x∼a

cax(h(a) + raxθ̄ (ax))

= 1

πa

∑

x:x∼a

caxh(a) + 1

πa

∑

x:x∼a

θ̄ (ax) = h(a) + ‖θ̄‖
πa

= h(a).

Similarly, using Claim 2.17 it is also harmonic at z. Since h is harmonic everywhere,
it is constant by Claim 2.5, and thus h ≡ 0, hence θ̄ ≡ 0 and so θ1 = θ2. �

This last claim prompts the following useful definition.

Definition 2.19 The unit current flow from a to z is the unique current flow from
a to z of strength 1.

2.3 The Effective Resistance of a Network

Suppose we are given a voltage h on a network G with fixed vertices a and z.
Scaling h by a constant multiple causes the associated current flow to scale by the
same multiple, while adding a constant to h does not change the current flow at all.
Therefore, the strength of the current flow is proportional to the difference h(z) −
h(a).

Claim 2.20 For every non-constant voltage h and a current flow θ corresponding to
h, the ratio

h(z) − h(a)

‖θ‖ (2.4)

is a positive constant which does not depend on h.

Proof Let h1, h2 be two non-constant voltages, and let θ1, θ2 be their associated
current flows. For i = 1, 2, let h̄i = hi/‖θi‖ and let θ̄i be the current flow associated
with h̄i (note that since hi is non-constant ‖θi‖ �= 0). Thus, ‖θ̄i‖ = 1. By Claim 2.18
we get θ̄1 = θ̄2 and therefore h̄1 = h̄2 + c for some constant c by Claim 2.15. It
follows that h̄1(z) − h̄1(a) = h̄2(z) − h̄2(a).

To see that this constant is positive, it is enough to check one particular choice
of a voltage. By Claim 2.8, let h be the voltage with h(a) = 0 and h(z) = 1. By
Claim 2.9 and since G is connected, we have that h(x) > 0 for at least one neighbor
x of a. Thus, the corresponding current flow θ has ‖θ‖ > 0 making (2.4) positive.
�
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a

0 1 2 3 4

z

5

(a)

a
0

z
1

1/2

1/2

(b)

Fig. 2.2 Examples for effective resistances of two networks with unit edge conductances. (a) For
the voltage depicted, the voltage difference between a and z is 5, and the current flow’s strength
is 1, hence the effective resistance is 5/1 = 5. (b) For the voltage depicted, the voltage difference
between a and z is 1, and the current flow’s strength is 1, hence the effective resistance is 1/1 = 1

Claim 2.20 is the mathematical manifestation of Ohm’s law which states that the
voltage difference across an electric circuit is proportional to the current through
it. The constant of proportionality is usually called the effective resistance of the
circuit.

Definition 2.21 The number defined in (2.4) is called the effective resistance
between a and z in the network, and is denoted Reff(a ↔ z). We call its reciprocal
the effective conductance between a and z and is denoted Ceff(a ↔ z) :=
Reff(a ↔ z)−1.

For examples of computing the effective resistances of networks, see Fig. 2.2.

Notation In most cases we write Reff(a ↔ z) and suppress the notation of which
network we are working on. However, when it is important to us what the network
is, we will write Reff(a ↔ z;G) for the effective resistance in the network G with
unit edge conductances and Reff(a ↔ z; (G, {re})) for the effective resistance in
the network G with edge resistances {re}e∈E . Furthermore, given disjoint subsets A

and Z of vertices in a graph G, we write Reff(A ↔ Z) for the effective resistance
between a and z in the network obtained from the original network by identifying
all the vertices of A into a single vertex a, and all the vertices of Z into a single
vertex z.

Probabilistic Interpretation For a vertex x we write τ+
x for the stopping time

τ+
x = min{t ≥ 1 | Xt = x} , (2.5)

where Xt is the weighted random walk on the network, as defined in (2.2). Note that
if X0 �= x then τx = τ+

x with probability 1.

Claim 2.22

Reff(a ↔ z) = 1

πaPa(τz < τ+
a )

.

Proof Consider the voltage h satisfying h(a) = 0 and h(z) = 1, and let θ be the
current flow associated with h. Due to uniqueness of h (Corollary 2.7) we have that
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for x �= a, z,

h(x) = Px(τz < τa),

hence

Pa(τz < τ+
a ) = 1

πa

∑

x∼a

caxPx(τz < τa)

= 1

πa

∑

x∼a

caxh(x)

= 1

πa

∑

x∼a

θ(ax) = ‖θ‖
πa

= 1

πaReff(a ↔ z)
. �

Network Simplifications Sometimes a network can be replaced by a simpler
network, without changing the effective resistance between a pair of vertices.

Claim 2.23 (Parallel Law) Conductances add in parallel. Suppose e1, e2 are
parallel edges between a pair of vertices, with conductances c1 and c2, respectively.
If we replace them with a single edge e′ with conductance c1 + c2, then the effective
resistance between a and z is unchanged.

A demonstration of the parallel law appears in Fig. 2.3.

Proof Let G′ be the graph where e1 and e2 are replaced with e′ with conductance
c1 + c2. Then it is immediate that if h is any voltage function on G, then it remains
a voltage function on the network G′. The claim follows. �

Claim 2.24 (Series Law) Resistances add in series. Suppose that u �∈ {a, z} is a
vertex of degree 2 and that e1 = (u, v1) and e2 = (u, v2) are the two edges touching
u with edge resistances r1 and r2, respectively. If we erase u and replace e1 and e2
by a single edge e′ = (v1, v2) of resistance r1 + r2, then the effective resistance
between a and z is unchanged.

The series law is depicted in Fig. 2.4.

Proof Denote by G′ the graph in which u is erased and e1 and e2 are replaced by a
single edge (v1, v2) of resistance r1 + r2. Let θ be a current flow from a to z in G,
and define a flow θ ′ from a to z in G′ by putting θ ′(e) = θ(e) for any e �= e1, e2
and θ ′(v1, v2) = θ(v1, u). Since u had degree 2, it must be that θ(v1, u) = θ(u, v2).

u v

c1

c2

u v
c1 + c2

Fig. 2.3 Demonstrating the parallel law. Two parallel edges are replaced by a single edge
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v1
u

v2
r1 r2

v1 v2
r1 + r2

Fig. 2.4 An example of a network G where edges in series are replaced by a single edge

Thus θ ′ satisfies the node law at any x �∈ {a, z} and ‖θ‖ = ‖θ ′‖. Furthermore, since
θ satisfies the cycle law, so does θ ′. We conclude θ ′ is a current flow of the same
strength as θ and the voltage difference they induce is the same. �

The operation of gluing a subset of vertices S ⊂ V consists of identifying the
vertices of S into a single vertex and keeping all the edges and their conductances.
In this process we may generate parallel edges or loops.

Claim 2.25 (Gluing) Gluing vertices of the same voltage does not change the
effective resistance between a and z.

Proof This is immediate since the voltage on the glued graph is still harmonic. �
Example: Spherically Symmetric Tree Let � be a spherically symmetric tree,
that is, a rooted tree where all vertices at the same distance from the root have the
same number of children. Denote by ρ the root of the tree, and let {dn}n∈N be a
sequence of positive integers. Every vertex at distance n from the root ρ has dn

children. Denote by �n the set of all vertices of height n. We would like to calculate
Reff(ρ ↔ �n). Due to the tree’s symmetry, all vertices at the same level have the
same voltage and therefore by Claim 2.25 we can identify them. Our simplified
network has now one vertex for each level, denoted by {vi}i∈N (where ρ = v0),
with |�n+1| edges between vn and vn+1. Using the parallel law (Claim 2.23), we
can reduce each set of |�n| edges to a single edge with resistance 1

|�n| , then, using
the series law (Claim 2.24) we get

Reff(ρ ↔ �n) =
n∑

i=1

1

|�i | =
n∑

i=1

1

d0 · · · di−1
,

see Fig. 2.5.

By Claim 2.22 we learn that

Pρ(τn < τ+
ρ ) = 1

d0
∑n

i=1
1

d0···di−1

, (2.6)

where τn is the hitting time of �n for the random walk on �. Observe that

Pρ

(
τn < τ+

ρ for all n
) = Pρ (Xt never returns to ρ) ,
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Fig. 2.5 Using network
simplifications. (a) The first
four levels of a spherically
symmetric tree with
{dn} = {3, 2, 1, . . .}. (b)
Gluing nodes on the same
level. (c) Applying the
parallel law. (d) Applying the
series law

(a) (b)

ρ

v3

1/3

1/6

1/6

(c)

ρ

v3

4/6

(d)

so by (2.6) we reach an interesting dichotomy. If
∑∞

i=1
1

d1···di
= ∞, then the random

walker returns to ρ with probability 1, and hence returns to ρ infinitely often almost
surely. If

∑∞
i=1

1
d1···di

< ∞, then with positive probability the walker never returns
to ρ, and hence visits ρ only finitely many times almost surely.

The former graph is called a recurrent graph and the latter is called transient.
We will get back to this dichotomy in Sect. 2.5.

The Commute Time Identity

The following lemma shows that the effective resistance between a and z is
proportional to the expected time it takes the random walk starting at a to visit z

and then return to a, in other words, the expected commute time between a and z.
We will use this lemma only in Chap. 6 so the impatient reader may skip this section
and return to it later.

Lemma 2.26 (Commute Time Identity) Let G = (V ,E) be a finite network and
a �= z two vertices. Then

Ea[τz] + Ez[τa] = 2Reff(a ↔ z)
∑

e∈E

ce

Proof We denote by Gz : V × V → R the so-called Green function

Gz(a, x) = Ea[number of visits to x before z]
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and note that

Ea[τz] =
∑

x∈V

Gz(a, x).

It is straightforward to show that the function ν(x) = Gz(a, x)/πx is harmonic
in V \ {a, z}. Also, we have that Gz(a, z) = 0 and Gz(a, a) = 1

Pa(τz<τa)
=

πaReff(a ↔ z). Thus, ν is a voltage function with boundary conditions ν(z) = 0
and ν(a) = Reff(a ↔ z) which satisfies

Ea[τz] =
∑

x∈V

ν(x)πx .

Similarly, the same analysis for Ez[τa] yields the same result, with the voltage
function η which has boundary conditions η(z) = Reff(a ↔ z) and η(a) = 0.
Therefore, η(x) = ν(a)−ν(x) for all x ∈ V since both sides are harmonic functions
in V \ {a, z} that receive the same boundary values. This implies that

Ez[τa] =
∑

x∈V

πx (ν(a) − ν(x)) .

Summing these up gives

Ea[τz] + Ez[τa] =
∑

x∈V

πxν(a) = 2
∑

e∈E

ceReff(a ↔ z). �

2.4 Energy

So far we have seen how to compute the effective resistance of a network via
harmonic functions and current flows. However, in typical situations it is hard to find
a flow satisfying the circle law. Luckily, an extremely useful property of the effective
resistance is that it can be represented by a variational problem. Our intuition from
highschool physics suggests that the energy of the unit current flow is minimal
among all unit flows from a to z. The notion of energy can be made precise and
will allow us to obtain valuable monotonicity properties. For instance, removing any
edge from an electric network can only increase its effective resistance. Hence, any
recurrent graph remains recurrent after removing any subset of edges from it. Two
variational problems govern the effective resistance, Thomson’s principle, which is
used to bound the effective resistance from above, and Dirichlet’s principle, used to
bound it from below.
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Definition 2.27 The energy of a flow θ from a to z, denoted by E(θ), is defined
to be

E(θ) := 1

2

∑

�e∈ �E
r�e θ(�e)2 =

∑

e∈E

θ(e)2re.

Note that in the second sum we sum over undirected edges, but since θ(xy)2 =
θ(yx)2, this is well defined.

Theorem 2.28 (Thomson’s Principle)

Reff(a ↔ z) = inf{E(θ) : ‖θ‖ = 1, θ is a flow from a to z}
and the unique minimizer is the unit current flow.

Proof First, we will show that the energy of the unit current flow is the effective
resistance. Let I be the unit current flow, and h the corresponding (Claim 2.15)
voltage function.

E(I) = 1

2

∑

x∈V

∑

y:y∼x

rxyI (xy)2 = 1

2

∑

x∈V

∑

y:y∼x

rxy

(
h(y) − h(x)

rxy

)
I (xy)

= 1

2

∑

x∈V

∑

y:y∼x

(h(y) − h(x)) I (xy)

= 1

2

∑

x∈V

∑

y:y∼x

h(y)I (xy) − 1

2

∑

x∈V

∑

y:y∼x

h(x)I (xy).

Observe that in the second term of the right hand side, for every x �= a, z the sum
over all y ∼ x is 0 due to the node law, hence the entire term equals 1

2 (h(a)−h(z)).
From antisymmetry of I , the first term on the right hand side equals − 1

2 (h(a) −
h(z)), hence the right hand side equals altogether h(z) − h(a) = Reff(a ↔ z).

We will now show that every other flow J with ‖J‖ = 1 has E(J ) ≥ E(I). Let
J be such flow and write J = I + (J − I). Set θ = J − I and note that ‖θ‖ = 0.
We have

E(J ) = 1

2

∑

x∈V

∑

y:y∼x

rxy(I (xy) + θ(xy))2

= 1

2

∑

x∈V

∑

y:y∼x

rxyI (xy)2 + 1

2

∑

x∈V

∑

y:y∼x

rxyθ(xy)2

+
∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy)

= E(I) + E(θ) +
∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy).
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Now,

∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy) =
∑

x∈V

∑

y:y∼x

rxyθ(xy)
(h(y)− h(x))

rxy

=
∑

x∈V

∑

y:y∼x

θ(xy) (h(y) − h(x))

= 2 · ‖θ‖ · (h(z) − h(a)) = 0,

where the last inequality follows from the same reasoning as before. We conclude
that E(J ) ≥ E(I) as required and that equality holds if and only if E(θ) = 0, that
is, if and only if J = I . �
Corollary 2.29 (Rayleigh’s Monotonicity Law) If {re}e∈E and {r ′e}e∈E are edge
resistances on the same graph G so that re ≤ r ′e for all edges e ∈ E, then

Reff(a ↔ z; (G, {re})) ≤ Reff(a ↔ z; (G, {r ′e})).

Proof Let θ be a flow on G, then

∑

e∈E

reθ(e)2 ≤
∑

e∈E

r ′eθ(e)2.

This inequality is preserved while taking infimum over all flows with strength 1.
Applying Theorem 2.28 finishes the proof. �
Corollary 2.30 Gluing vertices cannot increase the effective resistance between a

and z.

Proof Denote by G the original network and by G′ the network obtained from
gluing a subset of vertices. Then every flow θ on G (viewed as a function on the
edges) is a flow on G′. Hence the infimum in Theorem 2.28 taken over flows in G′
is taken over a larger subset of flows. �
Definition 2.31 The energy of a function h : V → R, denoted by E(h), is defined
to be

E(h) :=
∑

{x,y}∈E

cxy(h(x) − h(y))2.

Compare the following lemma with Thomson’s principle (Theorem 2.28).

Lemma 2.32 (Dirichlet’s Principle) Let G be a finite network with source a and
sink z. Then

1

Reff(a ↔ z)
= inf

{
E(h) : h : V → R, h(a) = 0, h(z) = 1

}
.
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Proof The infimum is obtained when h is the harmonic function taking 0 and 1 at
a, z respectively. The reason is that if there exists v �= a, z with

h(v) �=
∑

u∼v

cvu

πv

h(u), (2.7)

then we can change the value of h at v to be the right hand side of (2.7) and the
energy will only decrease. One way to see this is that if X is a random variable with a
second moment, then the value E(X) minimizes the function f (x) = E

(
(X − x)2

)
.

Let h be that harmonic function and let I be its current flow, so I (xy) =
cxy(h(y)−h(x)). Write Î = Reff(a ↔ z) · I , so ‖Î‖ = 1. By Thomson’s principle,

Reff(a ↔ z) = E(Î ) =
∑

e∈E

reÎ (e)2 =
∑

{x,y}∈E

rxyReff(a ↔ z)2c2
xy(h(y) − h(x))2,

hence

1

Reff(a ↔ z)
= E(h). �

2.5 Infinite Graphs

Let G = (V ,E) be an infinite connected graph with edge resistances {re}e∈E . We
assume henceforth that this network is locally finite, that is, for any vertex x ∈ V we
have

∑
y:y∼x cxy < ∞. Let {Gn} be a sequence of finite subgraphs of G such that⋃

n∈N Gn = G and Gn ⊂ Gn+1; we call such a sequence an exhaustive sequence
of G. Identify all vertices of G \ Gn with a single vertex zn.

Claim 2.33 Given an exhaustive sequence {Gn} of G, the limit

lim
n→∞Reff(a ↔ zn;Gn ∪ {zn}) (2.8)

exists.

Proof The graph Gn ∪ {zn} can be obtained from Gn+1 ∪ {zn+1} by gluing the
vertices in Gn+1 \ Gn with zn+1 and labeling the new vertex zn. By Corollary 2.30,
the effective resistance Reff(a ↔ zn;Gn ∪ {zn}) is increasing in n. �
Claim 2.34 The limit in (2.8) does not depend on the choice of exhaustive sequence
{Gn}.
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Proof Indeed, let {Gn} and {G′
n} be two exhaustive sequences of G. We can find

subsequences {ik}k≥1 and {jk}k≥1 such that

Gi1 ⊆ G′
j1

⊆ Gi2 ⊆ . . .

Since {Gi1,G
′
j1

,Gi2 , . . .} is itself an exhaustive sequence of G, the limit of effective
resistances for this sequence exists and equals the limits of effective resistances for
the subsequences {Gik } and {G′

jk
}. In turn, these are equal to the limits of effective

resistances for the original sequences {Gn} and {G′
n}, respectively. �

Definition 2.35 In an infinite network, the effective resistance from a vertex a and
∞ is

Reff(a ↔ ∞) := lim
n→∞Reff(a ↔ zn;Gn ∪ {zn}) .

We are now able to address the question of recurrence versus transience of a
graph systematically. Recall the definition of τ+

x in (2.5). In an infinite network we
define τ+

a = ∞ when there is no time t ≥ 1 such that Xt = a.

Definition 2.36 A network (G, {re}e∈E) is called recurrent if Pa(τ
+
a = ∞) = 0,

that is, if the probability of the random walker started at a never returning to a is 0.
Otherwise, it is called transient .

Observe that since G is connected, if Pa(τ
+
a = ∞) = 0 for one vertex a, then it

holds for all vertices in the network. As we have seen, if n is large enough so that
a ∈ Gn, then

Reff(a ↔ zn;Gn ∪ {zn}) = 1

πa · Pa

(
τG\Gn < τ+

a

) .

Since
⋂

n{τG\Gn < τ+
a } = {τ+

a = ∞} we have

Reff(a ↔ ∞) = 1

πa · Pa(τ
+
a = ∞)

,

with the convention that 1/0 = ∞.

Definition 2.37 Let G be an infinite network. A function θ : E(G) → R is a flow
from a to ∞ if it is anti-symmetric and satisfies the node law on each vertex v �= a.

The following follows easily from Theorem 2.28, we omit the proof.

Theorem 2.38 (Thomson’s Principle for Infinite Networks) Let G be an infinite
network, then

Reff(a ↔ ∞) = inf{E(θ) : θ is a flow from a to ∞ of strength 1}.
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Corollary 2.39 Let G be an infinite graph. The following are equivalent:

1. G is transient.
2. There exists a vertex a ∈ V such that Reff(a ↔ ∞) < ∞. Hence all vertices

satisfy this.
3. There exists a vertex a ∈ V and a unit flow θ from a to ∞ with E(θ) < ∞. Hence

all vertices satisfy this.

We will now develop a useful method for bounding effective resistances from
below. This will lead us to a popular sufficient criterion for recurrence in Corol-
lary 2.43.

Definition 2.40 A cutset � ⊆ E(G) separating a from z is a set of edges such that
every path from a to z must use an edge from �.

Claim 2.41 Let θ be a flow from a to z in a finite network, and let � a cutset
separating a from z. Then

∑

e∈�

|θ(e)| ≥ ‖θ‖.

Proof Denote by Z the set of vertices separated from a by �. Denote by G′ the
network where Z is identified to a single vertex x and all edges having both
endpoints in Z are removed. Now, the restriction of θ to the edges of the new
network is a flow from a to x. By Claim 2.17, we have

∑
y:y∼x θ(yx) = ‖θ‖.

Also, all edges incident to x must be in �, since otherwise x is not separated from a

by �. Therefore

∑

e∈�

|θ(e)| ≥
∑

y:y∼x

θ(yx) = ‖θ‖. �

Theorem 2.42 (Nash-Williams Inequality) Let {�n} be disjoint cutsets separat-
ing a from z in a finite network. Then

Reff(a ↔ z) ≥
∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

.

Proof Let θ be a flow from a to z with ‖θ‖ = 1. From Cauchy-Schwarz, for each n

we have

⎛

⎝
∑

e∈�n

√
re
√

ce|θ(e)|
⎞

⎠
2

≤
∑

e∈�n

ce

∑

e∈�n

reθ(e)2 .
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Also, since �n is a cutset, the flow passing through �n is at least ‖θ‖, by Claim 2.41.
So

⎛

⎝
∑

e∈�n

√
re
√

ce|θ(e)|
⎞

⎠
2

≥ ‖θ‖2 = 1.

Combining them, we get that

∑

e∈�n

reθ(e)2 ≥ 1∑
e∈�n

ce

.

Summing over all n gives

E(θ) ≥
∑

n

∑

e∈�n

reθ(e)2 ≥
∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

.

Applying Thomson’s principle (Theorem 2.28) yields the result. �
Consider now an infinite network G = (V ,E). We say that � ⊂ E is a cutset

separating a from ∞ if any infinite simple path from a must intersect �.

Corollary 2.43 In any infinite network, if there exists a collection {�n} of disjoint
cutsets separating a from ∞ such that

∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

= ∞,

then the network is recurrent.

Example 2.44 (Z2 is Recurrent) Define �n as the set of vertical edges
{(x, y), (x, y+1)} with |x| ≤ n and min{|y|, |y+1|} = n along with the horizontal
edges {(x, y), (x + 1, y)} with |y| ≤ n and min{|x|, |x + 1|} = n, see Fig. 2.6. Then

Fig. 2.6 A part of Z2: the
edges in {−1, 0, 1}2 are
drawn in bold. �1 is dashed
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{�n} is a collection of disjoint cutsets separating 0 from ∞. Also, |�n| = 4(2n+ 1)

and therefore
∑

n

(∑
e∈�n

ce

)−1 = ∞. We deduce by Corollary 2.43 that Z2 is
recurrent.

Remark 2.45 There are recurrent graphs for which there exists M < ∞ such that
for every collection {�n} of disjoint cutsets,

∑
n

(∑
e∈�n

ce

)−1 ≤ M . Therefore, the
Nash-Williams inequality is not sharp. See Exercise 4 of this chapter.

2.6 Random Paths

We now present the method of random paths, which is one of the most useful
methods for generating unit flows on a network and bounding their energy. In fact, it
is possible to show that the electric flow can be represented by such a random path.
Suppose G is a network with fixed vertices a, z and μ is a probability measure on
the set of paths from a to z.

Claim 2.46 For a path γ sampled from μ, let

θγ (�e) = (# of times �e was traversed by γ ) − (# of times �e was traversed by γ ),

where by �e and �e we mean the two orientations of an edge e of G. Set

θ(�e) = Eθγ (�e).

Then θ is a flow from a to z with ‖θ‖ = 1.

Proof θ is antisymmetric since θγ is antisymmetric for every γ , and it satisfies
the node law since θγ satisfies the node law. Similarly, the “strength” of θγ (i.e.,∑

x∼a θγ (ax)) is 1, hence ‖θ‖ = 1. �
An example of the use of this method is the following classical result.

Theorem 2.47 Z3 is transient.

Proof For R > 0 denote by BR = {(x, y, z) : x2 + y2 + z2 ≤ R2} the ball of radius
R in R3. Put VR = BR ∩Z3 and let ∂VR be the external vertex boundary of VR , that
is, the set of vertices not in VR which belong to an edge with an endpoint in VR.

We construct a random path μ from the origin 0 to ∂VR by choosing a uniform
random point p in ∂BR = {(x, y, z) : x2 + y2 + z2 = R2}, drawing a straight line
between 0 and p in R3, considering the set of distance at most 10 in R3 from the
line, and then choosing (in some arbitrary fashion) a path in Z3 which is contained
inside this set. The non-optimal constant 10 was chosen in order to guarantee that
such a discrete path exists for any point p ∈ ∂BR .

By Claim 2.46, the measure μ corresponds to a flow from 0 to ∂VR. To estimate
the energy of this flow, we note that if �e is an edge at distance r ≤ R from the origin,
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then the probability that it is traversed by a path drawn by μ is O(r−2). Furthermore,
there are O(r2) such edges. Hence the energy of the flow is at most

E = O
( R∑

r=1

r2 · (r−2)2) ≤ C ,

for some constant C < ∞ which does not depend on R. By Claim 2.46 and
Theorem 2.28 we learn that Reff(0 ↔ ∂VR) ≤ C for all R, and so by Corollary 2.39
we deduce that Z3 is transient. �

2.7 Exercises

1. Let Gz(a, x) be the Green’s function, that is,

Gz(a, x) = Ea

[
#visits to x before visiting z

]
.

Show that the function h(x) = Gz(a, x)/π(x) is a voltage.
2. Show that the effective resistance satisfies the triangle inequality. That is, for any

three vertices x, y, z we have

Reff(x ↔ z) ≤ Reff(x ↔ y) +Reff(y ↔ z) . (2.9)

3. Let a, z be two vertices of a finite network and let τa, τz be the first visit time to
a and z, respectively, of the weighted random walk. Show that for any vertex x

Px(τa < τz) ≤ Reff(x ↔ {a, z})
Reff(x ↔ a)

.

4. Consider the following tree T . At height n it has 2n vertices (the root is at height
n = 0) and if (v1, . . . , v2n ) are the vertices at level n we make it so that vk has 1
child at level n + 1 and if 1 ≤ k ≤ 2n−1 and vk has 3 children at level n + 1 for
all other k.

(a) Show that T is recurrent.
(b) Show that for any disjoint edge cutsets �n we have that

∑
n |�n|−1 < ∞.

(So, the Nash-Williams criterion for recurrence is not sharp)

5. (a) Let G be a finite planar graph with two distinct vertices a �= z such that
a, z are on the outer face. Consider an embedding of G so that a is the left
most point on the real axis and z is the right most point on the real axis. Split
the outer face of G into two by adding the ray from a to −∞ and the ray
from z to +∞. Consider the dual graph G∗ of G and write a∗ and z∗ for the
two vertices corresponding to the split outer face of G. Assume that all edge
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resistances are 1. Show that

Reff(a ↔ z;G) = 1

Reff(a∗ ↔ z∗;G∗)
.

(b) Show that the probability that a simple random walk on Z2 started at (0, 0)

has probability 1/2 to visit (0, 1) before returning to (0, 0).
6. Let G = (V ,E) be a graph so that V = Z and the edge set E = ∪k≥0Ek where

E0 = {(i, i + 1) : i ∈ Z} and for k > 0

Ek =
{(

2k(n − 1/2), 2k(n + 1/2)
) : n ∈ Z

}
.

Is G recurrent or transient?
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Chapter 3
The Circle Packing Theorem

3.1 Planar Graphs, Maps and Embeddings

Definition 3.1 A graph G = (V ,E) is planar if it can be properly drawn in the
plane, that is, if there exists a mapping sending the vertices to distinct points of R2

and edges to continuous curves between the corresponding vertices so that no two
curves intersect, except at the vertices they share. We call such a mapping a proper
drawing of G.

Remark 3.2 A single planar graph has infinitely many drawings. Intuitively, some
may seem similar to one another, while others seem different. For example,

≡

while

�≡

The following definition gives a precise sense to the above intuitive
equivalence/non-equivalence of drawings.

Definition 3.3 A planar map is a graph endowed with a cyclic permutation of the
edges incident to each vertex, such that there exists a proper drawing in which the
clockwise order of the curves touching the image of a vertex respects that cyclic
permutation.

The combinatorial structure of a planar map allows us to define faces directly
(that is, without mentioning the drawing). Consider each edge of the graph as
directed in both ways, and say that a directed edge �e precedes �f (or, equivalently,
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�e

�f

(a)

y

x

(b)

Fig. 3.1 Examples for the edge precedence relation. (a) �e precedes �f . (b) (x, y) precedes (y, x)

�f succeeds �e), if there exist vertices v, x, y such that �e = (x, v), �f = (v, y), and y

is the successor of x in the cyclic permutation σv; see Fig. 3.1.
We say that �e, �f belong to the same face if there exists a finite directed path

�e1, . . . , �em in the graph with �ei preceding �ei+1 for i = 1, . . . ,m − 1 and such that
either �e = �e1 and �f = �em, or �f = �e1 and �e = �em. This is readily seen to be an
equivalence relation and we call each equivalence class a face. Even though a face
is a set of directed edges, we frequently ignore the orientations and consider a face
as the set of corresponding undirected edges. Each (undirected) edge is henceforth
incident to either one or two faces.

When the map is finite an equivalent definition of a face is the set of edges that
bound a connected component of the complement of the drawing, that is, of R2

minus the images of the vertices and edges. This definition is not suitable for infinite
planar maps since there may be a complicated set of accumulation points. Given
a proper drawing of a finite planar map, there is a unique unbounded connected
component of the complement of the drawing; the edges that bound it are called
the outer face and all other faces are called inner faces . However, for any face
in a finite map there is a drawing so that this face bounds the unique unbounded
connected component, and because of this we shall henceforth refer to the outer
face as an arbitrarily chosen face of the map.

We will use the following classical formula.

Theorem 3.4 (Euler’s Formula) Suppose G is a planar graph with n vertices, m

edges and f faces. Then

n − m + f = 2.

We now state the main theorem we will discuss and use throughout this course.
Its proof is presented in the next section.

Theorem 3.5 (The Circle Packing Theorem [51]) Given any finite simple planar
map G = (V ,E), V = {v1, . . . , vn}, there exist n circles in R2, C1, . . . , Cn,
with disjoint interiors, such that Ci is tangent to Cj if and only if {i, j } ∈ E.
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1 2

34

5

1 2

34

5

1 2

34

5

1 2

34

5

Fig. 3.2 Two distinct planar maps (of the same graph) with corresponding circle packings

Furthermore, for every vertex vi , the clockwise order of the circles tangent to Ci

agrees with the cyclic permutation of vi ’s neighbors in the map.

Figure 3.2 gives examples for embeddings of maps which respect the cyclic
orderings of neighbors, as guaranteed to exist according to the theorem.

First note that it suffices to prove the theorem for triangulations, that is, simple
planar maps in which every face has precisely three edges. Indeed, in any planar map
we may add a single vertex inside each face and connect it to all vertices bounding
that face. The obtained map is a triangulation, and after applying the circle packing
theorem for triangulations, we may remove the circles corresponding to the added
vertices, obtaining a circle packing of the original map which respects its cyclic
permutations. This is depicted in Fig. 3.3.

Thus, it suffices to prove Theorem 3.5 for finite triangulations. In this case an
important uniqueness statement also holds.

4 5

(a) (b)

1

2

3

0

∞

0

3 2
1

5

4

∞

Fig. 3.3 Circle packing of a triangulation of a planar map. (a) A planar map and a triangulation.
(b) A circle packing of the triangulation
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Theorem 3.6 Let G = (V ,E) be a finite triangulation on vertex set V =
{v1, . . . , vn} and assume that {v1, v2, v3} form a face. Then for any three positive
numbers ρ1, ρ2, ρ3, there exists a circle packing C1, . . . , Cn as in Theorem 3.5 with
the additional property that C1, C2, C3 are mutually tangent, form the outer face,
and have radii ρ1, ρ2, ρ3, respectively. Furthermore, this circle packing is unique,
up to translations and rotations of the plane.

3.2 Proof of the Circle Packing Theorem

We prove Theorem 3.6 which implies Theorem 3.5 as explained above. Therefore
we assume from now on that our map is a triangulation. Denote by n, m and f

the number of vertices, edges and faces of the map respectively, and observe that
3f = 2m since each edge is counted in exactly two faces, and each face is bounded
by exactly three edges. Therefore, by Euler’s formula (Theorem 3.4), we have that

2 = n − m + f = n − 3

2
f + f = n − 1

2
f,

thus

f = 2n − 4. (3.1)

We assume the vertex set is {v1, . . . , vn}, that {v1, v2, v3} is the outer face and
that ρ1, ρ2, ρ3 are three positive numbers that will be the radii of the outer circles
C1, C2, C3 eventually. Denote by F ◦ the set of inner faces of the map, and for a
subset of vertices A let F(A) be the set of inner faces with at least one vertex in A.
We write F(v) when we mean F({v}).

Given a vector r = (r1, . . . , rn) ∈ (0,∞)n, an inner face f ∈ F ◦ bounded
by the vertices vi, vj , vk , and a distinguished vertex vj , we associate a number
αr

f (vj ) = �vivj vk ∈ (0, π) which is the angle of vj in the triangle �vivj vk created
by connecting the centers of three mutually tangent circles Ci,Cj , Ck of radii ri , rj
and rk (that is, in a triangle with side lengths ri + rj , rj + rk and rk + ri ). This
number can be calculated using the cosine formula

cos(�vivj vk) = 1 − 2rirk

(ri + rj )(rj + rk)
,

however, we will not use this formula directly. For every j ∈ {1, . . . , n} we define

σr(vj ) =
∑

f∈F(vj )

αr
f (vj )
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to be the sum of angles at vi with respect to r. Let θ1, θ2, θ3 be the angles formed
at the centers of three mutually tangent circles C1, C2, C3 of radii ρ1, ρ2, ρ3.
Equivalently, these are the angles of a triangle with edge lengths r1 + r2, r2 + r3
and r1 + r3. If the vector r was the vector of radii of a circle packing of the map
satisfying Theorem 3.6, then it would hold that

σr(vi) =
{

θi i ∈ {1, 2, 3} ,

2π otherwise ,
(3.2)

and additionally (r1, r2, r3) = (ρ1, ρ2, ρ3). The proof is split into three parts:

1. Show that there exists a vector r ∈ (0,∞)n satisfying (3.2);
2. Given such r, show that a circle packing with these radii exists and that (r1, r2, r3)

is a positive multiple of (ρ1, ρ2, ρ3); furthermore, this circle packing is unique
up to translations and rotations.

3. Show that r is unique up to scaling all entries by a constant factor.

Proof of Theorem 3.6, Step 1: Finding the Radii Vector r

Observation 3.7 For every r,

n∑

i=1

σr(vi) = ∣∣F ◦∣∣π = (2n − 5)π.

Proof Follows immediately since each inner face f bounded by the vertices
vi, vj , vk contributes the three angles αr

f (vi), αr
f (vj ) and αr

f (vk) which sum to π .
By (3.1), there are 2n − 5 inner faces. �

We now set

δr(vi) =
{

σr(vi) − θi j ∈ {1, 2, 3} ,

σr(vj ) − 2π otherwise.
(3.3)

Using this notation, our goal is to find r for which δr ≡ 0. It follows from
Observation 3.7 that for every r,

n∑

i=1

δr(vi) =
n∑

i=1

σr(vi) − θ1 − θ2 − θ3 − (n − 3) · 2π = 0 . (3.4)

We define

Er =
n∑

i=1

δr(vi)
2.
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α

α′

Fig. 3.4 When the radius of a circle corresponding to a vertex increases, while the radii of
the circles corresponding to its two neighbors in a given face decrease, the vertex’s angle in the
corresponding triangle decreases (see Observation 3.8)

We would like to find r for which Er = 0. We will use the following geometric
observation; see Fig. 3.4.

Observation 3.8 Let r = (r1, . . . , rn) and r′ = (r ′1, . . . , r ′n), and let f ∈ F ◦ be
bounded by vi, vj , vk .

• If r ′i ≤ ri , r ′k ≤ rk and r ′j ≥ rj , then αr′
f (vj ) ≤ αr

f (vj ).

• If r ′i ≥ ri , r ′k ≥ rk and r ′j ≤ rj , then αr′
f (vj ) ≥ αr

f (vj ).
• αr

f (vj ) is continuous in r.

Proof A proof using the cosine formula is routine and is omitted. �
We now define an iterative algorithm, whose input and output are both vectors of

radii normalized to have �1 norm 1. We start with the vector r(0) =
(

1
n
, . . . , 1

n

)
, and

given r = r(t) we construct r′ = r(t+1). Write δ = δr and δ′ = δr′ , and similarly
E = Er and E ′ = Er′ . We begin by ordering the set of reals {δ(vi) | 1 ≤ i ≤ n}.
If δ ≡ 0 we are done; otherwise, we may choose s ∈ R such that the set S = {v |
δ(v) > s} �= ∅ and its complement V \ S are non-empty and such that the gap

gapδ(S) := min
v∈S

δ(v) − max
v /∈S

δ(v) > 0

is maximal over all such s. See Fig. 3.5 for illustration.

V \ S S

gapδ

V \ S S

t

Fig. 3.5 Left: finding the maximum gap between two consecutive values of δ, and splitting the
set of values into S and its complement. Right: moving from r to r′ closes the gap between S and
V \ S
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Once we choose S, a step of the algorithm consists of two steps:

1. For some λ ∈ (0, 1) to be chosen later, we set

(rλ)i =
{

ri vi ∈ S,

λri vi /∈ S.

2. We normalize rλ so that the sum of entries is 1, letting r̄λ be the normalized
vector. Note that this step does not change the vector δ.

We will choose an appropriate λ that will decrease all values of δ(v) for v ∈ S,
increase all values of δ(v) for v /∈ S, and will close the gap. This is made formal in
the following two claims.

Claim 3.9 For every λ ∈ (0, 1), setting r′ = r̄λ, we have that δ′(v) ≤ δ(v) for any
v ∈ S, and δ′(v) ≥ δ(v) for any v /∈ S.

Claim 3.10 There exists λ ∈ (0, 1) such that setting r′ = r̄λ gives that gapδ′(S) =
0.

Proof of Claim 3.9 Consider vj /∈ S and an inner face vi, vj , vk .

Case I vi, vk /∈ S. In this case, the radii of Ci,Cj , Ck are all multiplied by the
same number λ, so αr′

f (vj ) = αr
f (vj ).

Case II vi, vk ∈ S. In this case, the radii of Ci,Ck remain unchanged and the
radius of Cj decreases, thus by Observation 3.8, αr′

f (vj ) ≥ αr
f (vj ).

Case III vi /∈ S, vk ∈ S. In this case the radii of Ci,Cj are multiplied by λ

and the radius of Ck is unchanged. The angles of �vivj vk remain unchanged
if we multiply all radii by λ−1, thus we could just as easily have left Ci , Cj

unchanged and increased the radius of Ck . By Observation 3.8, we get that
αr′

f (vj ) ≥ αr
f (vj ).

It follows that δ′(v) ≥ δ(v) for any v /∈ S. An identical argument shows that
δ′(v) ≤ δ(v) for all v ∈ S. �

In order to prove Claim 3.10, we present another claim.

Claim 3.11

lim
λ↘0

∑

v /∈S

δrλ (v) > 0.

Proof of Claim 3.10 Using Claim 3.11 The function λ �→ gapδrλ
(S) is continuous

on (0, 1] by the third bullet of Observation 3.8, and its value at λ = 1 is gapδ(S) > 0.
Claim 3.11 says that if μ > 0 is small enough, then

∑

v /∈S

δrμ(v) > 0 ,
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from which it follows that maxv /∈S δrμ(v) > 0. By (3.4), we also have

∑

v∈S

δrμ(v) < 0,

meaning that minv∈S δrμ(v) < 0 and therefore gapδrμ
(S) < 0. By continuity, there

exists λ ∈ (μ, 1) such that gapδrλ
(S) = 0. �

Proof of Claim 3.11 We first show that for each face f ∈ F(V \ S) bounded by
vi, vj , vk , the sum of angles at the vertices belonging to V \ S converges to π as
λ ↘ 0. We show this by the following case analysis. The statements in cases II and
III can be justified by drawing a picture or appealing to the cosine formula.

Case I If vi, vj , vk /∈ S then since the face is a triangle, α
rλ

f (vi) + α
rλ

f (vj ) +
α

rλ

f (vk) = π for all λ ∈ (0, 1).

Case II If vi, vj /∈ S but vk ∈ S then limλ↘0 α
rλ

f (vk) = 0, hence

limλ↘0 α
rλ

f (vi) + α
rλ

f (vj ) = π .

Case III If vi /∈ S but vj , vk ∈ S then limλ↘0 α
rλ

f (vj ) + α
rλ

f (vk) = 0, hence

limλ↘0 α
rλ

f (vi) = π .

It follows that

lim
λ↘0

∑

v /∈S

σrλ (v) = |F(V \ S)|π. (3.5)

For convenience, set

θ(vi) =
{

θi 1 ≤ i ≤ 3,

2π otherwise,

so that δr(v) = σr(v) − θ(v) for all v ∈ V . Then

lim
λ↘0

∑

v /∈S

δrλ (v) = |F(V \ S)|π −
∑

v /∈S

θ(v). (3.6)

Let F̄ = F ◦ \ F(V \ S), so every face in F̄ contains only vertices of S. We will
show that

|F̄ |π <
∑

v∈S

θ(v). (3.7)

If (3.7) holds, then we can add the negative quantity |F̄ |π −∑v∈S θ(v) to the right
side of (3.6), obtaining |F ◦|π−∑v∈V θ(v) = (2n−5)π−(2n−5)π = 0. It follows
that (3.6) is strictly positive, proving the claim. Thus it suffices to show (3.7).
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In the rest of the proof, we fix an embedding of G in the plane with (v1, v2, v3)

as the outer face. Let G[S] be the subgraph of G induced by S. Partition S into
equivalence classes, S = S1 ∪ · · · ∪ Sk , where two vertices are equivalent if they are
in the same connected component of G[S]. Then G[S] = G[S1] ∪ · · · ∪ G[Sk]. Let
F̄j be the set of faces in F̄ that appear as faces of G[Sj ], so that we have the disjoint
union F̄ = F̄1 ∪ · · · ∪ F̄k .

Since S is nonempty, it is enough to show that for all 1 ≤ j ≤ k,

|F̄j |π <
∑

v∈Sj

θ(v). (3.8)

Let mj and fj denote the number of edges and faces, respectively, of G[Sj ].
Observe that |F̄j | ≤ fj − 1. If |F̄j | = 0, then (3.8) is trivial. If |F̄j | ≥ 1, then
G[Sj ] has at least one inner face, and since it is a simple graph, every face must
have degree at least 3. (The degree of a face is the number of directed edges that
make up its boundary.) Because the sum of the degrees of all the faces equals twice
the number of edges, we have 2mj ≥ 3fj . Euler’s formula now gives

|Sj | + fj − 2 = mj ≥ 3

2
fj ,

and hence fj ≤ 2|Sj | − 4. Thus, the left side of (3.8) satisfies

|F̄j |π ≤ (2|Sj | − 5)π.

If Sj contains all of v1, v2, v3, then the right side of (3.8) is

θ1 + θ2 + θ3 + (|Sj | − 3) · 2π = (2|Sj | − 5)π.

Otherwise, at least one of the θi is replaced by 2π and so the right side of (3.8) is
strictly greater than the left side. In fact, (3.8) holds except when v1, v2, v3 ∈ Sj

and |F̄j | = fj − 1 = 2|Sj | − 5. We now show that this situation cannot occur.
The equality |F̄j | = fj − 1 means that every inner face of G[Sj ] is an element

of F̄j and therefore a face of G. Since v1, v2, v3 ∈ Sj , the outer face of G[Sj ] is
(v1, v2, v3), which is the same as the outer face of G. So, every face of G[Sj ] is also
a face of G. But this is impossible: if we choose any v ∈ V \ S, then v must lie in
some face of G[Sj ], which then cannot be a face of G. Therefore, it cannot be true
that v1, v2, v3 ∈ Sj and also |F̄j | = fj − 1, so we conclude that (3.8) always holds.
�

We now analyse the algorithm. Let λ ∈ (0, 1) be the one guaranteed by
Claim 3.10, and set r′ = r̄λ.

Claim 3.12 E ′ ≤ E
(

1 − 1
2n3

)
.
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Proof As depicted in Fig. 3.5, define

t = min
v∈S

δ′(v) = max
v /∈S

δ′(v).

By (3.4) we have that
∑n

i=1 δ(vi) =∑n
i=1 δ′(vi) = 0, hence

E−E ′ =
n∑

i=1

δ(vi)
2 −

n∑

i=1

δ′(vi )
2 =

n∑

i=1

(δ(vi)−δ′(vi ))
2 +2

n∑

i=1

(t −δ′(vi ))(δ
′(vi)−δ(vi )).

If v ∈ S, then t ≤ δ′(v) ≤ δ(v) and if v /∈ S, then t ≥ δ′(v) ≥ δ(v). Thus, in both
cases (t −δ′(v))(δ′(v)−δ(v)) ≥ 0. Taking u ∈ S and v /∈ S with δ′(u) = δ′(v) = t ,
we have that

E − E ′ ≥ (δ(u) − t)2 + (δ(v) − t)2 ≥ (δ(u) − δ(v))2

2
≥ gapδ(S)2

2
.

Since gapδ(S) was chosen to be the maximal gap we may bound,

gapδ(S) ≥ 1

n

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)
.

For every v ∈ V ,

max
w∈V

δ(w) − min
w∈V

δ(w) ≥ |δ(v)|,

and thus

n

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)2

≥
n∑

i=1

δ(vi)
2 = E .

Hence

E − E ′ ≥ 1

2n2

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)2

≥ 1

2n2 · E
n

,

and we conclude that

E ′ ≤ E
(

1 − 1

2n3

)
. �
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Write E (t) = Er(t) . By iterating the described algorithm, we obtain from
Claim 3.12 that

E (t) ≤ E (0)

(
1 − 1

2n3

)t

−→ 0 as t → ∞ .

By our normalization
∥∥r(t)

∥∥
�1

= 1. Thus, by compactness, there exists a subse-

quence {tk} and a vector r∞ such that r(tk) → r∞ as k → ∞. From continuity of E
we have that E (r∞) = 0, meaning that (3.2) is satisfied. For r∞ to be feasible as a
vector of radii, we also have to argue that it is positive (the fact that no coordinates
are ∞ follows since ||r∞||�1 = 1).

Claim 3.13 r∞i > 0 for every i.

Proof Let S = {vi ∈ V : r∞i > 0}. Because of the normalization of r, we know
that S is nonempty. Assume for contradiction that S � V . We repeat the exact same
argument used in the proof of Claim 3.11 showing first by case analysis that

lim
t→∞

∑

v /∈S

σr(t) (v) = |F(V \ S)|π

and then deducing that

lim
t→∞

∑

v /∈S

δr(t) (v) > 0.

This contradicts that limt→∞ E (t) = 0, so we conclude that S = V . �

Proof of Theorem 3.6, Step 2: Drawing the Circle Packing
Described by r∞

Given the vector of radii r∞ satisfying (3.2), we now show that the corresponding
circle packing can be drawn uniquely up to translations and rotations. In fact, we
provide a slightly more general statement which is due to Ori Gurel-Gurevich and
Ohad Feldheim [personal communications, 2018].

Let G = (V ,E) be a finite planar triangulation on vertex set {v1, . . . , vn} and
assume that {v1, v2, v3} is the outer face. A vector of positive real numbers � =
{�e}e∈E indexed by the edge set E is called feasible if for any face enclosed by
edges e1, e2, e3, the lengths �e1, �e2, �e3 can be made to form a triangle. In other
words, these lengths satisfy three triangle inequalities,

�ei + �ej > �ek {i, j, k} = {1, 2, 3} .
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Given a feasible edge length vector � we may again use the cosine formula to
compute, for each face f , the angle at a vertex of the triangle formed by the three
corresponding edge lengths. We denote these angles, as before, by α�

f (v) where v is
a vertex of f . Similarly, we define

σ�(v) =
∑

f∈F(v)

α�
f (v)

to be the sum of angles at a vertex v.

Theorem 3.14 Let G be a finite triangulation and � a feasible vector of edge
lengths. Assume that σ�(v) = 2π for any internal vertex v. Then there is a drawing
of G in the plane so that each edge e is drawn as a straight line segment of length
�e and no two edges cross. Furthermore, this drawing is unique up to translations
and rotations.

It is easy to use the theorem above to draw the circle packing given the radii
vector r∞ satisfying (3.2). Indeed, given r∞ we set � by putting �e = r∞i + r∞j for
any edge e = {vi, vj } of the graph. Condition (3.2) implies that � is feasible. We
now apply Theorem 3.14 and obtain the guaranteed drawing and draw a circle Ci

of radii r∞i around vi for all i. Theorem 3.14 guarantees that for any edge {vi, vk}
the distance between vi, vj is precisely r∞i + r∞j and thus Ci and Cj are tangent.
Conversely, assume that vi, vj do not form an edge. To each vertex v let Av be the
union of triangles touching v, each triangle is the space bounded by a face touching
v in the drawing of Theorem 3.14. Since G is a triangulation and vi and vj are
not adjacent we learn that Avi and Avj have disjoint interiors. Furthermore, Ci ⊂
Int(Avi ) since the straight lines emanating from vi have length larger than r∞i . By
the same token Cj ⊂ Int(Avj ) and we conclude that Ci and Cj are not tangent.

Lastly, we note that by (3.2) the outer boundary of the polygon we drew is
a triangle with angles θ1, θ2, θ3 and hence (r1, r2, r3) is a positive multiple of
(ρ1, ρ2, ρ3). Step 2 of the proof of Theorem 3.5 is now concluded.

Proof of Theorem 3.14 We prove this by induction on the number of vertices n. The
base case n = 3 is trivial since the feasibility of � guarantees that the edge lengths
of the three edges of the outer face can form a triangle. Any two triangles with the
same edge lengths can be rotated and translated to be identical, so the uniqueness
statement holds for n = 3.

Assume now that n > 3 so that there exists an internal vertex v. Denote by
v1, . . . , vm the neighbors of v ordered clockwise. We begin by placing v at the
origin and drawing all the faces to which v belongs, see Fig. 3.6, left. That is, we
draw the edge {v, v1} as a straight line interval of length �{v,v1} on the positive x-
axis emanating from the origin and proceed iteratively: for each 1 < i ≤ m we
draw the edge {v, vi } as a straight line interval of length �{v,vi} emanating from
the origin (v) at a clockwise angle of α�

f (v) from the previous drawn line segment
of {v, vi−1}, where f = {v, vi−1, vi}. This determines the location of v1, . . . , vm

in the plane and allows us to “complete” the triangles by drawing the straight line
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v

v1

v2

v3

v4

v5 v6

v1

v2

v3

v4

v5 v6

Fig. 3.6 On the left, we first draw the polygon surrounding v. On the right, we then erase v and
the edge emanating from it, replacing it with diagonals that triangulate the polygon while recording
the lengths of the diagonals in �′. The latter is the input to the induction hypothesis

segments connecting vi to vi+1, each of length �{vi ,vi+1} where 1 ≤ i ≤ m (where
vm+1 = v1). Denote these edges by e1, . . . , em.

Since σ�(v) = 2π we learn that these m triangles have disjoint interiors and that
the edges e1, . . . , em form a closed polygon containing the origin in its interior. It
is a classical fact [64] that every closed polygon can be triangulated by drawing
some diagonals as straight line segments in the interior of the polygon. We fix such
a choice of diagonals and use it to form a new graph G′ on n − 1 vertices and
|E(G)| − 3 edges by erasing v and the m edges emanating from it and adding the
new m−3 edges corresponding to the diagonals we added. Furthermore, we generate
a new edge length vector �′ corresponding to G′ by assigning the new edges lengths
corresponding to the Euclidean length of the drawn diagonals and leaving the other
edge lengths unchanged. See Fig. 3.6, right.

It is clear that �′ is feasible and that the angle sum at each internal vertex of
G′ is 2π . Therefore we may apply the induction hypothesis and draw the graph
G′ according to the edge lengths �′. This drawing is unique up to translations and
rotations by induction. Note that in this drawing of G′, the polygon corresponding
to e1, . . . , em must be the exact same polygon as before, up to translations and
rotations, since it has the same edge lengths and the same angles between its edges.
Since it is the same polygon, we can now erase the diagonals in this drawing and
place a new vertex in the same relative location where we drew v previously, along
with the straight line segments connecting it to v1, . . . , vm. Thus we have obtained
the desired drawing of G. The uniqueness up to translations and rotations of this
drawing follows from the uniqueness of the drawing of G′ and the fact that the
location of v is uniquely determined in that drawing. �
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Proof of Theorem 3.6, Step 3: Uniqueness

Theorem 3.15 (Uniqueness of Circle Packing) Given a simple finite triangula-
tion with outer face v1, v2, v3 and three radii ρ1, ρ2, ρ3, the circle packing with
Cv1, Cv2 , Cv3 having radii ρ1, ρ2, ρ3 is unique up to translations and rotations.

Proof We have already seen in step 2 that given the radii vector r the drawing we
obtain is unique up to translations and rotations. Thus, we only need to show the
uniqueness of r given ρ1, ρ2, ρ3.

To that aim, suppose that ra and rb are two vectors satisfying (3.2). Since the
outer face in both vectors correspond to a triangle of angles θ1, θ2, θ3 we may rescale
so that ra

i = rb
i = ρi for i = 1, 2, 3. After this rescaling, assume by contradiction

that ra �= rb and let v be the interior vertex which maximizes ra
v/rb

v . We can assume
without loss of generality that this quantity is strictly larger than 1, as otherwise we
can swap ra and rb.

Now we claim that for each f = (v, u1, u2) ∈ F(v), we have αra

f (v) ≤ αrb

f (v),

with equality if and only if the ratios ra
ui

/rb
ui

, for i = 1, 2, are both equal to ra
v/rb

v .
This is a direct consequence of Observation 3.8. Indeed, scale all the radii in rb by
a factor of ra

v/rb
v to get a new vector r′ such that ra

v = r′v and ra
u ≤ r′u for all u �= v.

The second bullet point in Observation 3.8 implies that αra

f (v) ≤ αr′
f (v) = αrb

f (v).
As well, if either ra

u1
< r′u1

or ra
u2

< r′u2
, then the cosine formula yields the strict

inequality αra

f (v) < αr′
f (v). Thus, αra

f (v) = αrb

f (v) only if ra
ui

/rb
ui

= ra
v/rb

v for
i = 1, 2.

Now, since αra

f (v) ≤ αrb

f (v) for each f ∈ F(v), while σra (v) = σrb (v) = 2π ,

the equality αra

f (v) = αrb

f (v) must hold for each f . Therefore, each neighbor u of

v satisfies ra
u/rb

u = ra
v/rb

v . Because the graph is connected, the ratio ra
u/rb

u must
be constant for all vertices u ∈ V (G). But this contradicts that ra

v/rb
v > 1 while

ra
vi

/rb
vi

= 1 for i = 1, 2, 3. We conclude that ra = rb. �
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Chapter 4
Parabolic and Hyperbolic Packings

4.1 Infinite Planar Maps

In this chapter we discuss countably infinite connected simple graphs that are locally
finite, that is, the vertex degrees are finite. In a similar fashion to the previous
chapter, an infinite planar graph is a connected infinite graph such that there exists
a drawing of it in the plane. We recall that a drawing is a correspondence sending
vertices to points of R2 and edges to continuous curves between the corresponding
vertices such that no two edges cross. An infinite planar map is an infinite planar
graph equipped with a set of cyclic permutations {σv : v ∈ V } of the neighbors
of each vertex v, such that there exists a drawing of the graph which respects
these permutations, that is, the clockwise order of edges emanating from a vertex v

coincides with σv .
Unlike the finite case, one cannot define faces as the connected components of

the plane with the edges removed since the drawing may have a complicated set
of accumulation points. This is the reason that we have defined faces in Sect. 3.1
combinatorially, that is, based solely on the edge set and the cyclic permutation
structure. This definition makes sense in both the finite and infinite case. In the
latter case we may have infinite faces.

A (finite or infinite) planar map is a triangulation if each of its faces has exactly
3 edges. Given a drawing of a triangulation, the Jordan curve theorem implies that
the edges of each face bound a connected component of the plane minus the edges.
We will often refer to the faces as these connected components. A triangulation is
called a plane triangulation if there exists a drawing of it such that every point of
the plane is contained in either a face or an edge and any compact subset of the plane
intersects at most finitely many edges and vertices. The term disk triangulation is
also used in the literature and means the same with the unit disk taking the place of
the plane in the previous definition. Of course these two definitions are equivalent
since the plane and the open disk are homeomorphic. For example, take the product
of the complete graph K3 on 3 vertices with an infinite rayN and add a diagonal edge
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in each face that has 4 edges; this is a plane triangulation. However, the product of
K3 with a bi-infinite ray Z together with the same diagonals is a triangulation but not
a plane triangulation, since it cannot be drawn in the plane without an accumulation
point.

It turns out that there is a combinatorial criterion for a triangulation to be a
plane/disk triangulation. We say that an infinite graph is one-ended if the removal
of any finite set of its vertices leaves exactly one infinite connected component.

Lemma 4.1 An infinite triangulation is a plane triangulation if and only if it is
one-ended.

Proof Suppose G = (V ,E) is a plane triangulation and consider a drawing of the
graph with no accumulation points in the plane such that every point of the plane
belongs to either an edge or a face. Let A ⊆ V be a finite set of vertices and take
B ⊂ R

2 to be a ball around the origin which contains every vertex of A, every edge
touching a vertex of A and every face incident to such an edge. Let u �= v be two
vertices drawn outside of B and take a continuous curve γ between them in R

2 \B.
By definition of B, this path only touches faces and edges that are not incident to the
vertices of A and hence one can trace a discrete path from u to v in the graph that
“follows” γ and avoids A. Since B intersects only finitely many edges and vertices,
we learn that G \ A has a unique infinite component.

Conversely, assume now that G is one-ended and consider a drawing of G in the
plane. By the stereographic projection we project the drawing to the unit sphere S

2

in R
3. Denote by I the complement in S

2 of the union of all faces and edges. Since
G is an infinite triangulation this union is an open set, hence I is a closed set and
its boundary ∂I is precisely the set of accumulation points of the drawing. Since I
is closed, each connected component of I must be closed as well and hence contain
at least one accumulation point. Since G is one-ended I cannot have more than
one connected component, since otherwise we would be able to separate the two
components by a finite set of edges and obtain two infinite connected components.
Now choose a point p ∈ I and rotate the sphere so that p is the north pole. Project
back the rotated sphere to the plane and consider the drawing in the plane. In this
drawing the union of all faces and edges must be a simply connected set. By the
Riemann mapping theorem this set is homeomorphic to the whole plane, and we
deduce that the triangulation is a plane triangulation. �

4.2 The Ring Lemma and Infinite Circle Packings

The circle packing theorem Theorem 3.5 is stated for finite planar maps. However,
it is not hard to argue that any infinite map also has a circle packing. To this aim
we will prove what is known as Rodin and Sullivan’s Ring Lemma [70]; we will
use it many times throughout this book. Given circles C0, C1, . . . , CM with disjoint
interiors, we say that C1, . . . , CM completely surround C0 if they are all tangent to
C0 and Ci is tangent to Ci+1 for i = 1, . . . ,M (where CM+1 is set to be C1).
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Fig. 4.1 C2 is small, but both
C1 and C3 are large

C0

C2

C3C1

Lemma 4.2 (Ring Lemma, Rodin and Sullivan [70]) For every integer M > 0
there exists A > 0 such that if C0 is a circle completely surrounded by M circles
C1, . . . , CM , and ri is the radius of Ci for every i = 0, 1, . . . ,M , then r0/ri ≤ A

for every i = 1, . . . ,M .

Proof We may scale the picture so that r0 = 1. Assume that the radius of C2 is
small and consider the circles C1 and C3 to its left and right. It cannot be that both
C1 and C3 have large radii compared to C2 since in this case they will intersect;
see Fig. 4.1. Hence, one of them has to be small as well. Assume without loss of
generality that it is C3. By similar reasoning, one of C1 and C4 has to be small. We
continue this argument this way and get a path of circles of small radii; thus, for the
circles C1, . . . , CM to completely surround C0 we learn that M must be large. �

For a circle packing P and a vertex v, denote by Cv the circle corresponding to v,
by cent(v) the center of that circle, and by rad(v) its radius. We write G(P) for the
tangency graph of the packing P , that is, the graph in which each vertex is a circle
of P and two such circles form an edge when they are tangent.

Claim 4.3 Let G be an infinite simple planar map. Then there exists a circle packing
P such that G(P) is isomorphic to G as planar maps.

Proof If G is not a triangulation, then it is always possible to add in each face new
vertices and edges touching them so the resulting graph is a planar triangulation (in
an infinite face we have to put infinitely many vertices). After circle packing this
new graph, we can remove all the circles corresponding to the added vertices and
remain with a circle packing of G. Thus, we may assume without loss of generality
that G is a triangulation.

Fix a vertex x, and let Gn be the graph distance ball of radius n around x. Apply
the circle packing theorem to Gn to obtain a packing Pn, and scale and translate it
so that rad(x) = 1 and cent(x) is the origin.

Consider a neighbor y of x. By the Ring Lemma (Lemma 4.2), there exists
a constant A = A(x, y) > 0 such that A−1 ≤ rad(y) ≤ A. By compactness
there exists a subsequence of packings Pnk for which radnk (y) and centnk (y) both
converge. By taking further subsequences for the rest of x’s neighbors, and then for
the rest of the graph’s vertices, it follows by a diagonalization argument that there
exists a subsequence such that the radii and centers of all vertices converge. The
limiting packing P∞ satisfies that G(P∞) is isomorphic to G. �
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4.3 Statement of the He–Schramm Theorem

Given a circle packing P of a triangulation G, we define the carrier of P , denoted
Carrier(P ), to be the union of the closed discs bounded by the circles of P together
with the spaces bounded between any three circles that form a face (i.e., the
interstices). When P is a circle packing of an infinite one-ended triangulation, the
argument in Lemma 4.1 shows that Carrier(P ) is simply connected.

We say that G is circle packed in R
2 when Carrier(P ) = R

2. Denote by U the
disk {z ∈ R

2 : |z| < 1}; we say that G is circle packed in U when Carrier(P ) = U.
See Fig. 4.2.

Let G be a plane triangulation. Then G can be drawn in the plane R
2 or

alternatively in the disk U (since they are homeomorphic), but can it be circle
packed both in R

2 and in U? A celebrated theorem of He and Schramm [40] states
that this cannot be done: each plane triangulation can be circle packed in either
the plane or the disk, but not both. In fact, the combinatorial property of G that
determines on which side of the dichotomy we are is the recurrence or transience of
the simple random walk on G (assuming also that G has bounded degrees, that is,
supx∈V (G) deg(x) < ∞). This is the content of the He–Schramm theorem, which
we are now ready to state.

Theorem 4.4 (He and Schramm [40]) Let G be an infinite simple plane triangu-
lation with bounded degrees.

1. If G is recurrent, then there exists a circle packing P of G such that
Carrier(P ) = R2.

2. If G is transient, then there exists a circle packing P of G such that
Carrier(P ) = U.

Fig. 4.2 Two circle packings with carriers R2 (left) and U (right)
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3. If P is a circle packing of G with Carrier(P ) = R
2, then G is recurrent.

4. If P is a circle packing of G with Carrier(P ) = U, then G is transient.

Remark 4.5 Schramm [73] proved that a circle packing P of a triangulation G(P)

with Carrier(P ) = R2 is uniquely determined up to dilations, rotations and
translations. If Carrier(P ) = U the same holds up to Möbius transformations of U
onto itself (see also [37]). Hence the packings guaranteed to exist in Theorem 4.4 (1)
and Theorem 4.4 (2) are unique in this sense.

Corollary 4.6 Any bounded degree plane triangulation can be circle-packed in R2

or U, but not both.

Remark 4.7 In fact, it is proved in [40] that the corollary above holds without
the assumption of bounded degree. Furthermore, in [40] Theorem 4.4 (1) and
Theorem 4.4 (4) are proved without the bounded degrees assumption, but the other
two statements require this assumption.

The following example demonstrates why the bounded degree condition is
necessary for Theorem 4.4 (2) and Theorem 4.4 (3).

Example 4.8 Let P be a triangular lattice circle packing (as in Fig. 4.3), and let
C0, C1, C2, . . . be an infinite horizontal path of circles in P going (say) to the right.
In the upper face shared by Cn and Cn+1, draw 2n circles which form a vertical path
and each of them tangent both to Cn and Cn+1; the last circle of these is also tangent
to the upper neighbor of Cn and Cn+1. See Fig. 4.3.

The resulting graph is a plane triangulation and the carrier of the packing is R2.
However, it is an easy exercise to verify that the tangency graph of this circle packing
is transient.

In the rest of this chapter we prove Theorem 4.4. We begin by proving parts
3 and 4, in which a circle packing is given and we use its geometry to estimate

C0 C1 C2 C3

Fig. 4.3 Unbounded degree transient triangulation circle packed in R2
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certain effective resistances. Afterwards we prove parts 1 and 2, in which we use
the electrical estimates to deduce facts about the geometry of the circle packing.

4.4 Proof of the He–Schramm Theorem

Proof of Theorem 4.4 (3)

Denote the circle packing P = {Cv}v∈V where V is the vertex set of G and Cv

denotes the circle corresponding to the vertex v. Write Δ for the maximum degree
of G and fix a vertex v0. By scaling and translating we may assume that Cv0 is a
radius 1 circle around the origin. For a real number R > 0, let VR = VB(0,R) denote
set of vertices v for which cent(v) is in the Euclidean ball of radius R around the
origin.

Lemma 4.9 There exist C = C(Δ) > 1 and c = c(Δ) > 0 such that for every
R ≥ 1 we have

(i) There are no edges between VR and V \ VCR, and
(ii) Reff (VR ↔ V \ VCR) ≥ c.

Proof We begin with part (i). For every v ∈ VR it holds that rad(v) ≤ R since Cv0

is centered at the origin. By the Ring Lemma (Lemma 4.2), there exists A = A(Δ)

such that rad(u) ≤ AR for every u ∼ v , and therefore | cent(u)| ≤ (A + 2)R.
Hence (i) holds with C = A + 2.

To prove part (ii) we define

h(v) =

⎧
⎪⎪⎨

⎪⎪⎩

0 v ∈ VR,

1 v ∈ V \ VCR,
| cent(v)|−R

(C−1)R
otherwise.

Recall from Lemma 2.32 that Reff (VR ↔ V \ VCR) ≥ E(h)−1. By the triangle
inequality, for an edge {x, y} with both endpoints in VCR \ VR we have

|h(x) − h(y)| ≤ | cent(x) − cent(y)|
(C − 1)R

= rad(x) + rad(y)

(C − 1)R
,

and it is straightforward to check that the same bound holds also when one of the
edge’s endpoints is in VR or V \ VCR. Thus, using the Ring Lemma’s (Lemma 4.2)
constant A = A(Δ) from part (i),

E(h) ≤
∑

x∈VCR\VR

∑

y:y∼x

((A + 1) rad(x))2

(C − 1)2R2 ≤ Δ(A + 1)2

π(C − 1)2R2 ·
∑

x∈VCR\VR

area(Cx),
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where area(Cx) is the area that Cx encloses (that is, π rad(x)2). We have that∑
x area(Cx) ≤ area(B(0, 2CR)) = 4πC2R2, hence if C = A + 2, then

E(h) ≤ 4ΔC2,

and the result follows for c = (4ΔC2)−1. �
Proof of Theorem 4.4 (3) Consider the unit current flow I from v0 to ∞ and fix any
R ≥ 1. Restricting this flow to the edges which have at least one endpoint in the
annulus VCR \ VR gives a unit flow from VR to V \ VCR, by part (i) of Lemma 4.9.
Hence, by part (ii) of that lemma and by Thomson’s principle (Theorem 2.28), the
energy contributed to E(I) from these edges is at least c. In the same manner, the
edges which have at least one endpoint in the annulus VC2k+1R \ VC2kR contribute
at least c to E(I). Part (i) of Lemma 4.9 implies that all these edge sets are disjoint,
hence E(I) = ∞ and we learn that G is recurrent (Corollary 2.39). �

Proof of Theorem 4.4 (4)

We will use the given circle packing of G to create a random path to infinity with
finite energy. This gives transience by Claim 2.46. This proof strategy is similar to
that of Theorem 2.47.

Proof of Theorem 4.4 (4) Let v0 be a fixed vertex of the graph, and apply a Möbius
transformation to make the circle of P corresponding to v0 be centered at the origin
0. We now use Claim 2.46 to construct a flow θ from v0 to ∞ by choosing a uniform
random point p on ∂U, taking the straight line from 0 to p and considering the set of
all circles in the packing P that intersect this line in the order that they are visited;
this set forms an infinite simple path in the graph which starts at v0.

To bound the energy of the flow, we claim that there exists some constant C

(which may depend on the graph G and the packing P ) such that the probability
that the random path uses the vertex v is bounded above by C rad(v). Indeed, since
there are only finitely many vertices with centers at distance at most 1/2 from 0, we
may assume that the center of v is of distance at least 1/2 from 0. In this case, in
order for v to be included in the random path the circle of v must intersect the line
between 0 and p. By the Ring Lemma (Lemma 4.2) the neighbors of v have circles
of radii comparable to rad(v) and so the probability of the line touching them is at
most C rad(v). Since the vertex degree is bounded by Δ and

∑
v∈V π rad(v)2 is at

most the area of U, we find that

E(θ) ≤ CΔ
∑

v∈V

rad(v)2 ≤ CΔ .

Hence G is transient by Corollary 2.39 �
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Proof of Theorem 4.4 (1)

We apply Claim 4.3 to obtain a circle packing P of G and prove that Carrier(P ) =
R2. Fix some vertex v and rescale and translate so that P(v) is the unit circle ∂U.
Assume by contradiction that Carrier(P ) �= R2 and let p ∈ R2 \ Carrier(P ) be a
point not in the carrier. Rotate the packing so that p = R for some real number
R > 1. Let U ∈ [−1, 1] and consider the circle CU = {z : |z − p| = R − U}.
We traverse CU from the point U counterclockwise and consider all the circles of P

which intersect CU . These circles form a simple path in the graph G starting from v.
Since Carrier(P ) is simply connected by Lemma 4.1 and p �∈ Carrier(P ) it cannot
be that CU ⊂ Carrier(P ). Thus, as we traverse CU counterclockwise we must hit
the boundary of Carrier(P ). We conclude that the path in G we obtained in this
manner is an infinite simple path starting at v.

We now let U be a uniform random variable in [−1, 1] and let μ denote the
probability measure on random infinite paths starting at v we obtained as described
above. Let θ be the flow induced by μ as in Claim 2.46. We wish to bound the
energy E(θ). Consider a vertex w ∈ G and its corresponding circle Cw and let B be
the Euclidean ball of radius R + 1 around p. If Cw does not intersect B, it cannot be
included in the random path by our construction. If it does intersect this ball, then
the probability that the random path intersects it is bounded above by its radius.
Thus as in the proof of Theorem 4.4 (4),

E(θ) ≤ CΔ
∑

w:Cw∩B �=∅
rad(w)2 ,

where Δ is the maximal degree of G and we have used the Ring Lemma
(Lemma 4.2). We learn that E(θ) is bounded above by a constant multiple of the
area of all circles of P that intersect B. Since p �∈ Carrier(P ), by the Ring Lemma
(Lemma 4.2), any circle of P that intersects B cannot have radius more than AR

for some large A ≥ R (since otherwise, all the circles surrounding this vertex will
have radius more than R + 1, contradicting the fact that p �∈ Carrier(P )). We learn
that all the circles counted in the sum above are contained in the Euclidean ball of
radius (A + 1)R + 1 around p. Since these circles has disjoint interiors, the sum of
their area is bounded above by the area of the Euclidean ball above. We conclude
that E(θ) < ∞, hence G is transient by Corollary 2.39 and we have reached a
contradiction. �

Proof of Theorem 4.4 (2)

We will use the following simple corollary of the circle packing theorem, Theo-
rem 3.5. A finite triangulation with boundary is a finite connected simple planar
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map in which all faces are triangles except for a distinguished outer face whose
boundary is a simple cycle.

Claim 4.10 Let G be a finite triangulation with boundary. Then, there is a circle
packing P of G such that all circles of the outer face are internally tangent to ∂U

and all other circles of P are contained in U.

Proof Denote by v1, . . . , vm the vertices of the outer face ordered according to the
cycle they form. Add a new vertex v∗ to the graph and connect it to v1, . . . , vm

according to their order. We obtain a finite triangulation G∗. Apply Theorem 3.5
to obtain a circle packing P = {Cv}v∈V (G∗). By translating and dilating we
may assume that Cv∗ is centered at the origin and has radius 1. Apply the map
z �→ 1

z
on this packing. Since this map preserves circles, the image of the circles

{Cv}v∈V (G∗)\{v∗} under this map is precisely the desired circle packing. �
Furthermore, we will require an auxiliary general estimate. Given a circle

packing P and a set of vertices A, we write diamP (A) for the Euclidean diameter
of the union of all circles in P corresponding to the vertices of A.

Lemma 4.11 Let P be a circle packing contained in U of a finite triangulation with
boundary with maximum degree Δ, such that the circle of a chosen non-boundary
vertex v0 is centered at the origin and has radius r0. Assume that r0 ≥ rmin for some
constant rmin > 0. Then there exists a constant c = c(rmin,Δ) > 0 such that for
any connected set A of vertices,

Reff(v0 ↔ A) ≥ c log
1

diamP (A)
. (4.1)

If in addition all circles of the outer face are tangent to ∂U and A contains a vertex
of the outer face, then

Reff(v0 ↔ A) ≤ c−1 log
1

diamP (A) ∧ 1
2

. (4.2)

Proof Write ε = diamP (A) and let z(A) denote the union of all circles correspond-
ing to the vertices of A. We begin with the proof of (4.1), which goes along similar
lines to the proof of Lemma 4.9. Let z0 ∈ R2 be such that z(A) ⊂ {|z − z0| ≤ ε}.
For any r > 0 denote by Vr the set of vertices whose corresponding circles have
centers inside {|z − z0| ≤ r}, so that A ⊂ Vε. Repeating the proof of Lemma 4.9
shows that there exists a constant C = C(Δ) > 0 such that

(i) There are no edges between Vr and V \ VCr , and
(ii) Reff(Vr ↔ V \ VCr) ≥ C−1, as long as Vr and V \ VCr are non-empty.

Regarding this proof, we note that it is possible that the set {|z − z0| ≤ r} is not
contained in U (unlike the proof of Lemma 4.9 when the carrier is all of R2),
however, this only works in our favor. The proof of (4.1) now proceeds similarly
to the proof of Theorem 4.4 (3). When ε is small enough (depending only on rmin
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and Δ), by the Ring Lemma (Lemma 4.2), the Euclidean distance between the
circle corresponding to v0 and A is at least some constant (which again depends
only on rmin and Δ) so that v0 �∈ VCKε for some K = Ω(log(1/ε)). For each
k = 0, 2, 4, . . . ,K the sets of edges which have at least one endpoint in the annulus
VCk+1ε \ VCkε are disjoint by (i). By (ii), each of these sets of edges contribute at
least C−1 to the energy of the unit current flow from A to v0, concluding the proof
of (4.1) using Thomson’s principle (Theorem 2.28).

For the proof of (4.2) we construct a unit flow from v0 to A that has energy
O(log(1/ε)). The construction is in the same spirit as the proof of Theorem 4.4 (4),
but there are some technical difficulties to overcome. Since A contains a vertex that
is tangent to ∂U, we choose z0 ∈ ∂U that belongs to a circle of A. By rotating the
packing we may assume that z0 = eiε/4.

We now treat two cases separately. In the first case we assume that there exists z1
in z(A) such that arg(z1) ∈ [0, ε/2] and |z1| ≤ 1 − ε/2 such that the path in z(A)

from z0 to z1 remains in the sector arg(z) ∈ [0, ε/2]. Consider the points

x0 = −r0 x1 = r0 y1 = 1 − ε/3 y0 = 1 ,

and note that x0, x1 are the leftmost and rightmost points on the circle of v0. Let C0
and C1 be the upper half plane semi-circles in which x0, y0 and x1, y1 are antipodal
points, respectively. The choice of y0, y1 is made so that the path between z0 to z1
in z(A) must cross the region bounded by C0, C1 and the intervals [x0, x1], [y1, y0],
by our assumption on z1 as long as ε is small enough. See Fig. 4.4, left.

For each t ∈ [0, 1] write Ct for the upper half plane semi-circle in which ty1 +
(1−t)y0 and tx1+(1−t)x0 are antipodal points, so that Ct continuously interpolates
between C0 and C1. See Fig. 4.4, left. Choose t ∈ [0, 1] uniformly at random and
consider the random path γ which traces Ct from left to right. This random path

Fig. 4.4 Left: for any t ∈ [0, 1] the semi-circle Ct must intersect the path in A between z0 and z1.
Right: the quadrilateral Qi is bounded between �θi

, �θi+1 , C0 and C1
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starts at the circle of v0 and must hit the path between z0 and z1 by our previous
discussion. Hence, the circles of P that intersect γ must contain a path in the graph
from v0 to A. By Claim 2.46 we obtain a flow I from v0 to A whose energy E(I)

we now bound.
For an angle θ ∈ [0, π] we denote by wθ(t) the point at angle θ , seen from the

center of Ct , on the semi-circle Ct . It is an exercise to see that the set of points
{wθ(t) : t ∈ [0, 1]} form a straight line interval �θ . Furthermore, when t is chosen
uniform in [0, 1], the intersection of Ct and �θ is a uniformly chosen point on �θ .
Set θ0 = 0 and θi = 2i−1ε for i = 1, . . . ,K − 1 where K = O(log(1/ε)) such that
θK−1 ∈ [π/4, π/2] and set θK = π . We will obtain the bound E(I) = O(K)

by bounding from above by a constant the contribution to E(I) coming from
edges which intersect the quadrilateral Qi of R2 bounded by �θi , �θi+1, C0, C1; see
Fig. 4.4, right. The random path γ restricted to Qi can be sampled by choosing a
uniform random point on �θi , setting t ∈ [0, 1] to be the unique number such that
Ct intersects �θi at the chosen point, and tracing the part of Ct from �θi to �θi+1 . The
lengths of the four curves bounding Qi are all of order 2iε and so we deduce that if
v corresponds to a circle of radius O(2iε) which intersects Qi , then the probability
that it is visited by γ is O(rad(v)/2i ε). Since the sum of rad(v)2 over such v’s is at
most the area of Qi up to a multiplicative constant (note that some of these circles
need not be contained in Qi) it is at most O(22iε2). Since the degrees are bounded
we deduce that the contribution to the energy from edges touching such v’s is O(1).
Lastly, if v corresponds to a larger circle, then we bound its probability of being
visited by γ by 1 and note that there can only be O(1) many such v’s whose circles
intersects Qi . Thus the contribution from these is another O(1). Since there are
O(log(1/ε)) such i’s we learn that E(I) = O(log(1/ε)) finishing our proof in this
case using Thomson’s principle (Theorem 2.28).

In the second case, we assume that there exists z1 ∈ z(A) such that arg(z1) �∈
[0, ε/2] and |z1| ≥ 1 − ε. It is clear that since diamP (A) = ε either the first or the
second case must occur. Denote z′0 = |z1|eiε/4 and let x0, x1 be antipodal points
on the circle of v0 such that the straight line between x0 and x1 is parallel to the
straight line between z′0 and z1. The vertices z′0, z1, x0, x1 form a trapezoid, see
Fig. 4.5. We choose a uniform random point t ∈ [0, 1] and stretch a straight line
from tx0 + (1 − t)x1 to tz0 + (1 − t)z′1. We then continue it by a straight line from
tz0+(1− t)z′1 to w ∈ ∂U where arg(w) = arg(tz0 +(1− t)z′1). Denote the resulting
path by γt and note that it starts inside the circle of v0 and must hit the path between
z0 and z1 in z(A). Thus, the set of all circles which intersect γt form a path in the
graph that starts at v0 and ends at A; this random choice of γt gives us as usual a unit
flow from v0 to A by Claim 2.46. By repeating the same argument as in the previous
case (that is, splitting the trapezoid into O(log(1/ε)) many trapezoids of constant
aspect ratio), we see that the contribution to the energy of the flow induced by the
random path γt of the edges in the trapezoid is O(log(1/ε)). Furthermore, the same
argument gives that the edges in the quadrilateral formed by the vertices z0, z

′
0, z1

and ei arg(z1) also contribute at most a constant to the energy, concluding our proof
for the second case by Thomson’s principle again (Theorem 2.28). �
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Fig. 4.5 The resistance
across the trapezoid on
vertices x0, x1, z

′
0, z1 is

O(log(1/ε)) when
|z′0 − z1| = Θ(ε)

Proof of Theorem 4.4 (2) Denote by dG(u, v) the graph distance between the ver-
tices u, v of G. Fix some v0 ∈ V and let

Bj = {v : dG(v0, v) ≤ j },
Vj = Bj ∪ {finite components of V \ Bj },
Ej = {edges induced by Vj }.

The graph Gj = (Vj ,Ej ) with the map structure inherited from G is a finite
triangulation with boundary. Indeed, it is straightforward to check that it is 2-
connected (i.e., the removal of a single vertex does not disconnect the graph)
which implies that the outer face forms a simple cycle, see [20, Proposition 4.2.5].
Furthermore, since G is one-ended and we have added all the finite components in
V \Bj there cannot be a face with more than 3 edges except for the outer face which
we denote by ∂Gj .

Thus Gj is an increasing sequence of finite triangulations with boundary such
that ∪jGj = G. We apply Claim 4.10 to pack Gj inside the unit disk U such that
the circles of ∂Gj are tangent to ∂U. By applying a Möbius transformation from U

onto U, we may assume that the circle corresponding to v0 is centered at the origin.
We denote this packing by Pj and let r

j
0 be the radius of v0 in Pj .

Since G is transient it follows that there exists some c = c(Δ) > 0 such that
r
j

0 ≥ c for all j by Corollary 2.39. Indeed, if r
j

0 ≤ ε, we learn by Lemma 4.9
and the proof of Theorem 4.4 (3) that Reff(v0 ↔ ∞) ≥ c′ log(ε−1) for some
c′ = c′(Δ) > 0.

As we did in Claim 4.3, we now take a subsequence in which the centers and
radii of all vertices converge. Denote the resulting limiting packing by P∞. This
packing has all circles inside U and we therefore deduce that Carrier(P∞) ⊆ U. It is
a priori possible that Carrier(P∞) is some strict subset of U, i.e., that all the circles
stabilize inside some strict subset of U. We now argue that this is not possible.

Let Z be the set of accumulation points of Carrier(P∞); it suffices to show that
Z ⊂ ∂U since any simply connected domain Ω ⊂ U for which ∂Ω ⊂ ∂U must
equal U. Since Z is a compact set, let z ∈ Z minimize |z| among all z ∈ Z; it
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suffices to show that z ∈ ∂U. Fix ε > 0 and put

Uε(z) = {v ∈ G : | centP∞(v) − z| ≤ ε
}
.

The graph spanned on the vertices Uε(z) may be disconnected, yet by our choice
of z it is clear that Uε(z) contains an infinite connected component. Indeed, one
can draw a straight line from the origin to z without intersecting Z and consider
the set of all circles intersecting this line; from some point onwards the vertices
corresponding to these circles will reside in Uε(z).

Therefore, let Wε(z) be an infinite connected component of the graph spanned
on Uε(z). Let J = J (z, ε) be the first integer such that VJ ∩ Wε(z) �= ∅. Since the
Gj ’s are increasing finite sets and Wε(z) is an infinite connected set, we have that
∂Gj ∩Wε(z) �= ∅ for all j ≥ J . Consider now any connected component Aj of the
graph spanned on the vertices Vj ∩ Wε(z).

Denote by P
j∞ the finite circle packing obtained from P∞ by taking only the

circles of Vj . It has the same adjacenty graph as Pj but it is a different packing. Since
Aj ⊂ Wε(z), it follows that diam

P
j∞
(Aj) ≤ 4ε. By Lemma 4.11, Eq. (4.1), applied

to the set Aj in the packing P
j∞, we deduce that Reff(v0 ↔ Aj ;Gj) ≥ c log(1/ε).

Since Aj is a connected component of Vj ∩ Wε(z) and since Wε(z) is an infinite
connected set of vertices in G, it follows that Aj must contain a vertex of ∂Vj .
Thus, we may apply Lemma 4.11, Eq. 4.2, to the set Aj , this time in the packing Pj ,
to get that there exists some c > 0 such that

diamPj (Aj ) ≤ εc . (4.3)

Choose some vJ ∈ ∂GJ ∩ Wε(z) so that | centP∞(vJ ) − z| ≤ ε. For each j ≥ J

choose vj ∈ ∂Gj ∩ Wε(z) so that vj and vJ are in the same connected component
Aj of the graph spanned on Vj ∩ Wε(z). Since the circle of vj in Pj touches ∂U

we learn by (4.3) that the distance of the circle of vJ in Pj from ∂U is at most εc

for all j ≥ J . Since the circle corresponding to vJ in P∞ is the limit of its circles
in Pj we deduce that the distance of centP∞(vJ ) from ∂U is at most εc. Hence the
distance of z from ∂U is at most ε+εc. Since ε was arbitrary we obtain that z ∈ ∂U,
as required. �

4.5 Exercises

1. Let G be a triangulation of the plane with maximal degree at most 6. Prove
that the simple random walk on G is recurrent.

2. Let G be a plane triangulation that can be circle packed in the unit disc {z :
|z| < 1}. Show that the simple random walk on G is transient. (Note that G

may have unbounded degrees)
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3.(*) Let P be a circle packing of a finite simple planar map with degree bounded
by D such that all of its faces are triangles except for the outerface. Assume
that the carrier of P is contained in [−11, 11]2, contains [−10, 10]2 and that
all circles have radius at most 1. Let h be the harmonic function taking the
value 1 on all vertices with centers left of the line {−10} × R, taking the
value 0 on all vertices with centers right of the line {10}×R, and is harmonic
anywhere else. Assume x and y are two vertices such that their centers are
contained in [−1, 1]2 and that the Euclidean distance between these centers
is at most ε > 0. Show that

|h(x) − h(y)| ≤ C

log(1/ε)
,

for some constant C = C(D) > 0 independent of ε. [Hint: assume h(x) <

h(y) and consider the sets A = {v : h(v) ≤ h(x)} and B = {v : h(v) ≥
h(y)}].
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Chapter 5
Planar Local Graph Limits

5.1 Local Convergence of Graphs and Maps

In order to study large random graphs it is mathematically natural and appealing to
introduce an infinite limiting object and study its properties. In their seminal paper,
Benjamini and Schramm [11] introduced the notion of locally convergent graph
sequences, which we now describe.

We will consider random variables taking values in the space G• of locally finite
connected rooted graphs viewed up to root preserving graph isomorphisms. That is,
G• is the space of pairs (G, ρ) where G is a locally finite graph (which may be finite
or infinite) and ρ ∈ V (G) is a vertex of G and two elements (G1, ρ1), (G2, ρ2)

are considered equivalent if there is a graph isomorphism between them (that is, a
bijection ϕ : V (G1) → V (G2) such that ϕ(ρ1) = ϕ(ρ2) and {v1, v2} ∈ E(G1)

if and only if {ϕ(v1), ϕ(v2)} ∈ E(G2)). We remark that throughout this book
our graphs will almost entirely be connected. In the rare case when G is not
connected, we impose the convention that (G, ρ) refers to (G[ρ], ρ) where G[ρ]
is the connected component of ρ in G. This way (G, ρ) ∈ G• even when G is
disconnected (this will only be relevant in Chap. 6, and in particular in Lemma 6.11
and its usage).

In a similar fashion we define M• to be the set of equivalence classes of
rooted maps; in this case we require the graph isomorphism to preserve additionally
the cyclic permutations of the neighbors of each vertex, that is, it is a map
isomorphism. Let us describe the topology on G• and M•. For convenience we
discuss G• but every statement in the following holds for M• as well.

Given an element (G, ρ) of G•, the finite graph BG(ρ,R) is the subgraph of
(G, ρ) rooted at ρ spanned by the vertices of distance at most R from ρ. We provide
G• with a metric dloc

dloc((G1, ρ1), (G2, ρ2)) = 2−R,
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where R is the largest integer for which BG1(ρ1, R) and BG2(ρ2, R) are isomorphic
as graphs. This is a separable topological space (the finite graphs form a countable
base for the topology) and is easily seen to be complete, thus it is a Polish space.
The distances are bounded by 1 but the space is not compact. Indeed, the sequence
Gn of stars with n leaves emanating from the root ρ has no converging subsequence.

Since G• is a Polish space, we can discuss convergence in distribution of
a sequence of random variables {Xn}∞n=1 taking values in G•. We say that Xn

converges in distribution to a random variable X, and denote it by Xn
d−→ X, if

for every bounded continuous function f : G• → R we have that E(f (Xn)) →
E(f (X)). We will be focused here on the particular situation in which Xn is a
finite rooted random graph (Gn, ρn) such that given Gn, the root ρn is uniformly
distributed among the vertices of Gn. It is a very common setting and justifies the
following definition.

Definition 5.1 Let {Gn} be a sequence of (possibly random) finite graphs. We say
that Gn converges locally to a (possibly infinite) random rooted graph (U, ρ) ∈ G•,

and denote it by Gn
loc−→ (U, ρ), if for every integer r ≥ 1,

BGn(ρn, r)
d−→ BU(ρ, r),

where ρn is a uniformly chosen vertex from Gn.

It is straightforward to see that this definition is equivalent to saying that the random
variables (Gn, ρn) converge in distribution to (U, ρ). Note that this definition is
consistent whether Gn is a deterministic finite graph or is a random variable drawn
from some probability measure. In both cases BGn(ρn, r) is a random variable
taking values in G• and we clarify that ρn is drawn uniformly conditioned on Gn.

Examples

• The sequence {Gn} of paths of length n converges locally to the graph (Z, 0)

(note that the root vertex can be chosen to be any vertex of Z since (Z, i) and
(Z, j) are equivalent for all i, j ∈ Z).

• The sequence {Gn} of the n×n square grid converges locally to the graph (Z2, 0)

(again the root can be chosen to be any vertex of Z2).
• Let λ > 0 be fixed and let {G(n, λ

n
)} be the sequence of random graphs obtained

from the complete graph Kn by retaining each edge with probability λ
n

and
erasing it otherwise, independently for all edges. This is known as the Erdös-
Rényi random graph. One can verify that this sequences converges locally to a
branching process with progeny distribution Poisson(λ). See exercise 1 of this
chapter.
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Fig. 5.1 A part of the
canopy tree

• Let Gn be the binary tree of height n. Perhaps surprisingly, its local limit is not the
infinite binary tree. Instead, it is the following so-called canopy tree depicted in
Fig. 5.1 and the root is at distance k ≥ 0 from the leaves with probability 2−k−1.
Note that the distance of the root from the leaves determines the isomorphism
class of the rooted graph. It is easy to see that the canopy tree is not isomorphic to
the infinite binary tree, for example, it has leaves; furthermore, unlike the infinite
binary tree it is recurrent.

• Consider Gn to be a path of length n, glued via one of its leaves into a
√

n ×√
n

grid. The local limit of Gn is (U, ρ), where (U, ρ) is (Z, 0) with probability 1/2,
and (Z2, 0) otherwise.

Our goal in this chapter is to prove the following pioneering result.

Theorem 5.2 (Benjamini–Schramm [11]) Let M < ∞ and let Gn be finite planar

maps (possibly random) with degrees almost surely bounded by M such that Gn
loc−→

(U, ρ). Then (U, ρ) is almost surely recurrent.

For instance, a local limit of planar maps cannot be the 3-regular infinite tree
(however, the 3-regular infinite tree can be obtained as a local limit of uniformly
random 3-regular graphs). The bounded degree assumption in Theorem 5.2 is
necessary. Indeed, suppose we start with a binary tree of height n and replace each
edge (u, v) that is at distance k ≥ 0 from the leaves by 2k parallel edges. By the same
reasoning of the local convergence of binary trees to the canopy tree, the modified
graph sequence converges locally to a modified canopy tree in which an edge at
distance k from the leaves is replaced with 2k parallel edges. Using the parallel law
it is immediate to see that this graph is transient, and that the effective resistance
from a leaf to ∞ is at most 2 (in fact it equals 2). See Fig. 5.2.
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Fig. 5.2 A part of a
transient canopy tree.
Numbers on edges are
conductances of those edges
after applying the parallel law

1 1

2 2

1 1

4 4

2 2

8 8

4 4

16 16

8 8

5.2 The Magic Lemma

Suppose C ⊆ R2 is finite. For each w ∈ C, define

ρw = min{|v − w| : v ∈ C \ {w}}.

We call ρw the isolation radius of w. Given δ ∈ (0, 1), s ≥ 2 and w ∈ C, we
say that w is (δ, s)-supported if in the disk of radius δ−1ρw around w there are
at least s points of C outside any given disk of radius δρw. In other words, w is
(δ, s)-supported if

inf
p∈R2

∣∣∣C ∩ B
(
w, δ−1ρw

)
\ B(p, δρw)

∣∣∣ ≥ s.

The proof of Theorem 5.2 is based on the following lemma, which has been
dubbed “the Magic Lemma”.

Lemma 5.3 ([11]) There exists A > 0 such that for every δ ∈ (0, 1/2), every finite
C ⊆ R2 and every s ≥ 2, the number of (δ, s)-supported points in C is at most

A|C|δ−2 ln(δ−1)

s
.

Remark 5.4 We prove the lemma for R2, but it holds for Rd or any other doubling
metric space. In fact, a metric space for which the lemma holds must be doubling;
see [29].



5.2 The Magic Lemma 65

Proof of Lemma 5.3

Let k ≥ 3 be an integer (later we will take k = k(δ)). Let G0 be a tiling of R2 by
1 × 1 squares, rooted at some point p, and for every n ∈ Z, let Gn be a tiling of R2

by kn × kn such that each square of Gn is tiled by k × k squares of Gn−1. We may
choose p so that none of the points of C lies on the edge of a square.

We say that a square S ∈ Gn is s-supported if for every smaller square S′ ∈
Gn−1 we have that |C ∩ (S \ S′)| ≥ s.

Claim 5.5 For any s ≥ 2 the total number of s-supported squares, in G =⋃
n∈Z Gn, is at most 2|C|/s.

Proof Define a “flow” f : G × G → R as follows:

f (S′, S) =

⎧
⎪⎪⎨

⎪⎪⎩

min(s/2, |S′ ∩ C|) S′ ⊆ S, S′ ∈ Gn, S ∈ Gn+1,

−f (S, S′) S ⊆ S′, S ∈ Gn, S
′ ∈ Gn+1,

0 otherwise.

Let us make two initial observations. First we have that

∑

S ′∈G

f (S′, S) ≥ 0 , (5.1)

by splitting into the two cases depending on whether there exists a square S′ ⊆ S

such that f (S′, S) = s/2 or not. Secondly, if S is a s-supported square

∑

S ′∈G

f (S′, S) ≥ s

2
, (5.2)

by splitting into cases depending on whether the number of squares S′ ⊆ S such
that f (S′, S) = s/2 is at most one or at least two.

Let a ∈ Z be such that each square in Ga contains at most 1 point of C so there
are no s-supported squares in

⋃
n≤a Gn. It easily follows from the definition of f

that

∑

S ′∈Ga

∑

S∈Ga+1

f (S′, S) = |C|, (5.3)

and that for every b ∈ Z

∑

S ′∈Gb

∑

S∈Gb+1

f (S′, S) ≥ 0. (5.4)
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Now, using (5.3) and (5.4),

b∑

n=a+1

∑

S∈Gn

∑

S ′∈G

f (S′, S) =
b∑

n=a+1

∑

S∈Gn

⎛

⎝
∑

S ′∈Gn−1

f (S′, S) +
∑

S ′∈Gn+1

f (S′, S)

⎞

⎠

=
∑

S∈Ga+1

∑

S ′∈Ga

f (S′, S) +
∑

S∈Gb

∑

S ′∈Gb+1

f (S′, S) ≤ |C|.

Therefore, using (5.1) and (5.2), we deduce that there are at most 2|C|/s squares in⋃
b≥n>a Gn that are s-supported. Sending b → ∞ finishes the proof. �
The above claim is very close to the statement of Lemma 5.3 which we are

pursuing. However, we need to move from squares to circles. We choose k =
�20δ−2 and let β ∼ Unif([0, ln k]). Let G0 be a tiling with side length eβ , based at
the origin. Suppose we have defined Gn as a tiling of squares of side length eβkn;
then Gn+1 is a tiling of squares of side length eβkn+1 that is based uniformly at one
of the k2 possible points of Gn. Because the desired statement is invariant under
translation and dilation of C, we may assume that C does not intersect the edges of
Gn (for every n) and that ρw ≥ k for every w ∈ C. We call a point w ∈ C a city in
a square S ∈ G if:

• the side length of S is in the interval [4δ−1ρw, 5δ−1ρw], and
• the distance from w to the center of S is at most δ−1ρw .

Claim 5.6 The probability that any given w ∈ C is a city is Ω(ln−1(δ−1)).

Proof For the first item to hold, β needs to satisfy that there exists n ∈ Z such
that eβkn ∈ [4δ−1ρw, 5δ−1ρw], or β + n ln k ∈ ln(δ−1ρw) + [ln 4, ln 5]. Since
β ∈ Unif([0, ln k]), the probability for that is (ln(5/4))/ ln k, which is Ω(ln−1(δ−1))

when δ ∈ (0, 1/2).
As for the second item, it holds with positive probability (independent of δ) over

the k2 choices for basing Gn on top of Gn−1, given that β satisfies the requirement
posed by the first item. �
Claim 5.7 If w is a city in S and is (δ, s)-supported, then S is s-supported.

Proof If S ∈ Gn is as above, then any little square S′ ∈ Gn−1 has side length at
most

δ2

20
· 5ρw

δ
= δρw

4
.

Hence, it is contained in a disk of radius δρw. Thus, for every S′ ∈ Gn−1 with
S′ ⊆ S there exists a point p such that

|C ∩ (S \ S′)| ≥
∣∣∣C ∩

(
B
(
w, δ−1ρw

)
\ B(p, δρw)

)∣∣∣ ≥ s ,
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where we have used the fact that B
(
w, δ−1ρw

) ⊂ S. �
Now note that the expected number of pairs (w, S) such that S is s-supported, w

is (δ, s)-supported, and w is a city, is at least c ln−1(δ−1)N , where N is the number
of (δ, s)-supported points. Also, no more than cδ−2 points of C can be cities in a
single square S. It follows from Claim 5.5 that

N ≤ A|C|δ−2 ln(δ−1)

s
,

concluding the proof of Lemma 5.3. �

5.3 Recurrence of Bounded Degree Planar Graph Limits

Theorem 5.2 follows immediately from the following theorem which gives a
quantitative estimate on the growth of the resistance in local limits of bounded
degree planar maps. In particular, it states that the resistance grows logarithmically
in the Euclidean distance of the corresponding circle packing.

Theorem 5.8 Let (U, ρ) be a local limit of (possibly random) finite planar maps
with maximum degree at most D. Then, almost surely, there exist a constant c > 0
and a sequence {Bk}k≥1 of subsets of U such that for each k we have

1. |Bk | ≤ c−1k, and
2. Reff(ρ ↔ U \ Bk) ≥ c log k.

In particular, (U, ρ) is almost surely recurrent.

We write Beuc(p, r) for the Euclidean ball of radius r around a point p ∈ R2. As
before, for a subset O ⊂ R2 and a given circle packing we write VO for the set of
vertices in which the centers of the corresponding circles are in O . In order to prove
Theorem 5.8, we will need the following immediate corollary of the Magic Lemma
(Lemma 5.3):

Corollary 5.9 Let G be a finite simple planar triangulation, and P a circle packing
of G. Let ρ be a uniform random vertex and P ′ a dilation and translation of P such
that the circle of ρ is a unit circle centered at the origin 0. Then, there exists a
universal constant A > 0 such that in the packing P ′, for every real r ≥ 2 and
integer s ≥ 2

P

(
∀p ∈ R

2
∣∣∣VBeuc(0,r)\Beuc(p, 1

r
)

∣∣∣ ≥ s
)
≤ Ar2 log r

s
.

Proof Apply the Magic Lemma with δ = 1
r

and s = s, with the centers of circles
of P ′ as the point set C. Note that there exists a constant C > 0 such that for all
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w ∈ V the isolation radius of w, ρw , satisfies rad(Cw) ≤ ρw ≤ C rad(Cw) (without
appealing to the Ring Lemma). �

The following lemma provides the main estimate needed to prove Theorem 5.8.
Once it has been shown, Theorem 5.8 will follow by a Borel-Cantelli argument.

Lemma 5.10 Let G be a finite simple planar map with maximum degree at most
D and let ρ be a uniform random vertex of G. Then, there exists a constant C =
C(D) < ∞ such that for all k ≥ 1,

P

(
∃B ⊆ V, |B| ≤ Ck, Reff(ρ ↔ V \ B) ≥ C−1 log k

)
≥ 1 − Ck− 1

3 log k ,

where we interpret Reff(ρ ↔ V \ B) = ∞ when B = V .

Proof We first assume that G is a triangulation and consider a circle packing of it
where the circle of ρ is a unit circle centered at the origin 0. Applying Corollary 5.9

with r = k
1
3 , s = k, we have that with probability at least 1 −Ak− 1

3 log(k)/3, there
exists p ∈ R

2 with

∣∣∣VBeuc(0,r)\Beuc(p, 1
r
)

∣∣∣ < k.

Now, if |V
Beuc(p, 1

r )
| ≤ 1, we set B = VBeuc(0,r). We then have |B| ≤ k and by

applying Ω(log k) times Lemma 4.9 together with the series law (Claim 2.24) we
get that Reff(ρ ↔ V \B) ≥ c log k for some c = c(D) > 0. Else, if |V

Beuc(p, 1
r )
| ≥ 2

then we take B = VBeuc(0,r) \ V
Beuc(p, 1

r )
. By the Ring Lemma, there exists a c′ =

c′(D) > 0 such that |p| ≥ 1+ c′. Since |V
Beuc(p, 1

r )
| ≥ 2, we have a vertex in that set

with radius at most r−1. Therefore, Beuc(p, 2
r
) contains at least one full circle Cv .

Hence, by scaling and translating such that Cv = U, we get (again, by Lemma 4.9)
that

Reff

(
V

Beuc(p, 2
r )

↔ V \ VBeuc(p,c′/2)

)
≥ c2 log k ,

for some other constant c2 = c2(D) > 0. Since ρ ∈ V \ VBeuc(p,c′/2) we obtain

Reff

(
ρ ↔ VBeuc(p, 2

r
)

)
≥ c2 log k .

By Lemma 4.9 we also have that

Reff
(
ρ ↔ V \ VBeuc(0,r)

) ≥ c3 log k ,
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for some c3 = c3(D) > 0. By Claim 2.22 this means that

Pρ

(
τV \VBeuc(0,r)

< τ+
ρ

) ≤ 1

c2 log(k)
and Pρ

(
τV

Beuc(p, 2
r )

< τ+
ρ

)
≤ 1

c3 log(k)
.

By the union bound

Pρ

(
τV \B < τ+

ρ

) ≤ 2

min(c2, c3) log(k)
,

hence by Claim 2.22 again

Reff (ρ ↔ V \ B) ≥ min(c2, c3)D
−1 log(k)/2 ,

concluding the proof when G is a triangulation.
If G is not a triangulation, we would like to add edges to make it a triangulation

while making sure that the maximal degree does not increase too much. We also
have to ensure that the graph remains simple which may require us to add some
additional vertices as well. Let f be a face of G with vertices v1, . . . , vk . Suppose
first that there are no edges between non-consecutive vertices of the face. In this
case, we draw the edges in a zig-zag fashion, as in Fig. 5.3.

In the case where there are edges between non-consecutive vertices of the face
exist, we draw a cycle u1, . . . , uk inside f . Then, we connect ui to vi and vi+1 for
each i < k and uk to vk and v1. Finally, we triangulate the inner face created by the
new cycle by zig-zagging as in the previous case (see Fig. 5.4).

Fig. 5.3 Adding diagonals to
a face in a zigzag fashion

v1v2

v3

v4

v5 v6

v7

v8
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Fig. 5.4 Drawing an inner
cycle and triangulating the
new inner face

v1

u1

v2

u2v3

u3

v4 u4

v5

u5

v6

u6 v7

u7

v8u8

Since each vertex of the original graph is a member of at most D faces and for
each face at most 2 edges are added, the maximal degree of the resulting graph is
at most 3D. Similarly, the number of vertices in the resulting graph is at most D

times the number of vertices in the original graph hence the probability of a random
vertex being a vertex of the original graph is at least D−1. If this occurs then it is
straightforward to see that the existence of a subset of vertices B in the new graph
which satisfies the required conditions implies the existence of such a set in the old
graph, concluding our reduction to the triangulation case and finishing our proof. �

We are ready to deduce Theorem 5.8.

Proof of Theorem 5.8 Assume that Gn are finite planar maps with maximum degree

at most D such that Gn
loc−→ (U, ρ). If {Gn} are not simple graphs we erase self-

loops and merge parallel edges into a single edge to obtain the sequence {G′
n}. It

is immediate that G′
n

loc−→ (U ′, ρ′) where (U ′, ρ′) is distributed as (U, ρ) after
removing from U all loops and merging parallel edges into a single edge. Since the
maximum degree is bounded, U ′ is recurrent if and only if U is recurrent. Thus we
may assume that Gn are simple graphs so the previous estimates may be used.

Denote by Ak the event

Ak = {∃B ⊆ U, |B| ≤ Ck, Reff (ρ ↔ V \ B) ≥ c log k} ,

where C = C(D) < ∞ is the constant from Lemma 5.10. Therefore P(Ac
k) ≤

c−1k− 1
3 log(k). Looking at the sequence {A2j }j≥1, by Borel-Cantelli, almost surely

there exists j0 such that for all j ≥ j0 the event A2j holds. Thus we have proved
the required assertion for k which is a power of 2. To prove this for all k sufficiently
large, let B2j be the set guaranteed to exist in the definition of A2j , and take Bk =
B2j for the unique j for which 2j ≤ k < 2j+1. It is immediate that these sets satisfy
the assertion of the theorem, concluding our proof. �
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5.4 Exercises

1. Let G(n, p) be the random graph on n vertices drawn such that each of the
(
n
2

)

possible edges appears with probability p independently of all other edges. Let
λ > 0 be a constant, show that G(n, λ/n) converges locally to a branching
process with progeny distribution Poisson(λ).

2. For a graph G, let G2 be the graph on the same vertex set as G so that vertices
u, v form an edge if and only if the graph distance in G between u and v is at
most 2. Show that if G has uniformly bounded degrees, then G is recurrent if and
only if G2 is recurrent.

3. Construct an example of a local limit (U, ρ) of finite planar graphs such that U

is almost surely recurrent, but U2 is almost surely transient.
4. Fix an integer k ≥ 1. Construct an example of a sequence of finite simple

planar maps Gn such that Gn converge locally to (U, ρ) with the property that
E[degk(ρ)] < ∞ and U is almost surely transient.

5. (*) Suppose that Gn is a sequence of finite trees converging locally to (U, ρ).
Show that U is almost surely recurrent. (Note that the degrees may be
unbounded).
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Chapter 6
Recurrence of Random Planar Maps

Our main goal in this chapter is to remove the bounded degrees assumption in
Theorem 5.2 and replace it with the assumption that the degree of the root has an
exponential tail.

Theorem 6.1 ([31]) Let Gn be a sequence of (possibly random) planar graphs such

that Gn
loc−→ (U, ρ) and there exist C, c > 0 such that P(deg(ρ) ≥ k) ≤ Ce−ck for

every k. Then U is almost surely recurrent.

As discussed in Sect. 1.2, the last theorem is immediately applicable in the setting
of random planar maps. It is well known that the degree of the root in the UIPT and
the UIPQ has an exponential tail. See [5, Lemma 4.1 and 4.2] or [26] for the UIPT
and [8, Proposition 9] for the UIPQ.

Corollary 6.2 ([31]) The UIPT/UIPQ are almost surely recurrent.

6.1 Star-Tree Transform

We present here a transformation which transforms any planar map G to a planar
map G∗ with maximal degree of 4. We call this transformation G �→ G∗ the star-
tree transform. Recall that a balanced rooted tree is a finite rooted tree in which
every non-leaf vertex has precisely two children and the distance of the leaves from
the root differs by at most 1. The transformation is performed as follows.

1. Subdivide each edge e by adding a new vertex we of degree two in the “middle”.
See Fig. 6.1b. Denote the resulting graph by G′.

2. For every vertex v ∈ V (G), replace all edges incident to v in G′ by a balanced
binary tree rooted at v, whose leaves are the neighbors of v in G′. We perform
this in a fashion which preserves the cyclic order of these neighbors and thus

© The Author(s) 2020
A. Nachmias, Planar Maps, Random Walks and Circle Packing, Lecture Notes
in Mathematics 2243, https://doi.org/10.1007/978-3-030-27968-4_6
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u

v

(a)

u

w

v

(b)

v
w1

w2w3

w4

w5 w6

(c)

v

w1 w2 w3 w4

w5 w6

(d)

Fig. 6.1 The star-tree transform. (a) An original edge of G. (b) Subdividing an edge. (c) The
“star” of a vertex in G′. (d) Transforming the star of v into a tree Tv

preserves planarity. Furthermore, add two extra vertices and attach them to the
root. Denote this tree by Tv . See Fig. 6.1d.

Remark 6.3 The careful reader will notice that we have not specified precisely what
is Tv (if degG(v) is not a power of 2 there may several balanced binary trees with
deg(v) leaves) and in which way precisely we identify the leaves of Tv with the
neighbors of v in G′ (we may rotate the tree and get a different identification while
still preserving planarity). This is a subtle yet important issue1 and our convention
is that the choice of tree and identification are performed uniformly at random from
all the possible choices. This will be crucially used in Claim 6.13.

Lemma 6.4 Let G be a planar map and G∗ its star-tree transform. We set edge
resistances on G∗ by putting Re = 1/dG(v), where v is the vertex of G for which
e ∈ Tv and dG(v) is the degree of v in G. If the network (G∗, Re) is recurrent, then
G is recurrent as well.

Proof It is clear that from the point of view of recurrence versus transience, the
two edges leading to the two “extra” neighbors of each root do not matter and can
be removed. Hence for the rest of the proof we write Tv for the previously defined
tree with these two edges removed. The purpose of these extra edges will become
apparent later in the proof of Theorem 6.1.

Assume G is transient and let a ∈ V (G) be some vertex. There is a flow θ from
a to ∞ such that E(θ) < ∞. We will construct a flow θ∗ on (G∗, Re) from a to

1We thank Daniel Jerison for pointing this out to us.



6.1 Star-Tree Transform 75

∞ with finite energy, showing that (G∗, Re) is transient, giving the theorem. First
we define a flow θ ′ from a to infinity in G′ in the natural manner: for each edge
e = (x, y) of G we set θ ′(x,we) = θ ′(we, y) = θ(x, y). Obviously E(θ ′) = 2E(θ).

Next we provide some notation. We denote by A the set of vertices that were
added to form G′ in the first step of the star-tree transform, that is, the white vertices
in Fig. 6.1. Each vertex w ∈ A is a leaf of precisely two trees Tu and Tv , where
{u, v} was the edge of G that w divided. We call u and v the tree roots of w. We
denote by B the set of vertices that were added to G∗ in the second step of the star-
tree transform, that is, the gray vertices in Fig. 6.1d. The vertices of V (G) are the
black discs in Fig. 6.1. Each vertex of x ∈ V (G) ∪ B is a member of a single tree
Tv; we call v the tree root of x. Lastly, for any x ∈ V (G)∪B we denote by Cx ⊂ A

the set of leaves of Tv , where v is the tree root of x, for which the path from the leaf
to the root of Tv goes through x; in other words, Cx is the set of leaves of Tv which
are the “descendants” of x. If x ∈ A, then we set Cx = {x}.

To define θ∗, let e = (x, y) be an edge of Tv . Assume that x is closer to the root
of Tv than y in graph distance. We set

θ∗(e) =
∑

w∈Cy

θ ′(v,w) .

The construction of θ∗ is depicted in Fig. 6.2.
We will now show that E(θ∗) ≤ 2E(θ ′) where the energy of θ∗ is taken in the

network (G∗, Re). Let v ∈ V (G) and write h for the height of Tv , that is, h is
the maximal graph distance from a leaf of Tv to its root. Note that since the tree

u

v

θ1

(a)

u

w

v

θ1

θ1

(b)

v
w1

θ1

w2

θ2

w3

θ3

w4
θ4

w5

θ5

w6

θ6

(c)

v

w1 w2 w3 w4

w5 w6θ1 θ2 θ3 θ4

θ1 + θ2 θ3 + θ4 θ5 θ6

θ5 + θ6θ1 + θ2 + θ3 + θ4

(d)

Fig. 6.2 The construction of the flow θ∗ from θ . (a) An original edge of G which has flow θ1. (b)
The flow passes through the divided edge. (c) The flow going out from a vertex of G in G′. (d) The
division of the flow in Tv
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is balanced, the distances from the leaves to the root vary by at most 1. Let e =
(x, y) be an edge of Tv and assume that x is closer than y to the root of Tv . By the
construction of θ∗, the contribution of e to E(θ∗) is

Reθ
∗(e)2 = 1

dG(v)

⎛

⎝
∑

w∈Cy

θ ′(v,w)

⎞

⎠
2

.

If the graph distance of y from the root is � ∈ {1, . . . , h}, then |Cy | ≤ 2h−�. Hence
by Cauchy-Schwarz

Reθ
∗(e)2 ≤ 2h−�

dG(v)

∑

w∈Cy

θ ′(v,w)2 .

Summing over all edges in Tv at distance � from the root, we go over each leaf of
Tv precisely once. Thus,

∑

e=(x,y)∈Tv

dG∗ (y,v)=�

Reθ
∗(e)2 ≤ 2h−�

dG(v)

∑

w∈Cv

θ ′(v,w)2 .

We now sum over all edges in Tv by summing over � ∈ {1, . . . , h}. We get

∑

e∈Tv

Reθ
∗(e)2 ≤ 2h

dG(v)

∑

w∈Cv

θ ′(v,w)2 ≤ 2
∑

w∈Cv

θ ′(v,w)2 ,

since h ≤ log2(dG(v)) + 1. Lastly, we sum this over all v ∈ V (G) to obtain that

E(θ∗) ≤ 2E(θ ′) = 4E(θ) ,

concluding our proof. �

6.2 Stationary Random Graphs and Markings

Stationary Random Graphs

Recall that Theorem 6.1 and the entire setup of Chap. 5 is adapted to the case when
Gn is itself random. The reason is that in Definition 5.1 we consider the graph
distance ball BGn(ρn, r) as a random variable in the probability space (G•, dloc),
where ρn conditioned on Gn is a uniformly chosen random vertex.
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Let us emphasize that this is not the same as drawing a sample of {Gn} and

claiming that almost surely Gn
loc−→ (U, ρ). For example, let Gn be a path of length

n with probability 1/2 and an n×n square grid with probability 1/2, independently

for all n. In this case Gn
loc−→ (U, ρ) where U = Z with probability 1/2 and U = Z2

with probability 1/2, however, almost surely on the sequence {Gn}, the local limit
of Gn does not exist.

In many cases it is useful to take a random root drawn from the stationary
distribution on Gn, that is, the probability distribution on vertices giving each vertex
v probability degGn

(v)/2|E(Gn)|. In a similar fashion to Definition 5.1, we define
this type of local convergence.

Definition 6.5 Let {Gn} be a sequence of (possibly random) finite graphs with non-

empty sets of edges. We say that Gn
loc−→
π

(U, ρ) where (U, ρ) is a random rooted

graph, if for every integer r ≥ 1,

BGn(ρn, r)
d−→ BU(ρ, r),

where ρn is a randomly chosen vertex from Gn with distribution proportional to the
vertex degrees. We call such a limit a stationary local limit.

Let us remark that Gn
loc−→ (U, ρ) does not imply that Gn

loc−→
π

(U ′, ρ′) for some

(U ′, ρ′). Indeed, let Gn be a path of length n attached to a complete graph on
√

n

vertices. Then the local limit of Gn is Z, however the limit according to a stationary
random root does not exist.

The reason for taking the
loc−→
π

limit rather than the uniform limit as before is that

the random walk on the limit (U, ρ) starting from ρ is then stationary.

Claim 6.6 Assume that Gn
loc−→
π

(U, ρ). Conditioned on (U, ρ), let X1 be a

uniformly chosen neighbor of ρ. Then (U,X1) is equal in law to (U, ρ). Similarly,
if {Xn}n≥0 is the simple random walk on (U, ρ), then for each n ≥ 0 the law of
(U,Xn) coincides with the law of (U, ρ).

Proof If H is a finite graph and v is a vertex chosen with probability proportional
to its degree, then it is immediate that a uniformly chosen random neighbor of v

is distributed according to the stationary distribution. Thus for any fixed r > 0 the
ball BGn(ρn, r) has the same distribution as BGn(X1, r) where ρn is drawn from the
stationary distribution on Gn and X1 is a uniform neighbor of ρn. The claim follows
now by definition. �
Definition 6.7 A random rooted graph (G, ρ) is called a stationary random graph
if (G,X1) has the same distribution as (G, ρ), where the vertex X1 is a uniform
neighbor of ρ conditioned on (G, ρ).
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We would like to develop a simple abstract framework that will allow us to

comfortably move from
loc−→ convergence to

loc−→
π

convergence and vice versa. This

is straightforward when {Gn} are a sequence of deterministic graphs with uniformly
bounded average degree but is less obvious when Gn themselves are random. For
this we need to degree bias our random graphs.

Definition 6.8 Denote by P the law of a random rooted graph (G, ρ) and assume
that E deg(ρ) ∈ (0,∞). The probability measure μ on (G•, dloc) defined by

μ(A) := 1

E deg(ρ)

∑

k≥1

k P(A ∩ {deg(ρ) = k}) ,

for any event A ⊂ (G•, dloc) is called the degree biasing of P. Similarly, if we
assume that almost surely ρ is not an isolated vertex, then the probability measure
ν defined by

ν(A) = 1

E[deg(ρ)−1]
∑

k≥1

P(A ∩ {deg(ρ) = k})
k

,

is called the degree unbiasing of P.

Lemma 6.9 Assume that (G, ρ) is a random rooted graph such that G is almost
surely finite, that the distribution of ρ given G is uniform and that E deg(ρ) ∈
(0,∞). Then the degree biasing of (G, ρ) is a stationary random graph.

Conversely, assume that (Gπ, ρπ ) is a stationary random graph such that Gπ is
almost surely finite and has no isolated vertices. Then its degree unbiasing (G, ρ) is
such that G is almost surely finite and ρ conditioned on G is uniformly distributed.

Proof We will prove only the first statement and the second is similar. Denote by
(Gπ, ρπ ) a random variable drawn according to the degree biasing of (G, ρ). Let
H be a fixed finite graph and denote by degH (v) the degree of a vertex v in H . By
definition we have that

P((Gπ, ρπ ) = (H, v)) = degH(v) · P((G, ρ) = (H, v))

E deg(ρ)
. (6.1)

Let X1 be a uniformly chosen neighbor of ρπ . Then by (6.1)

P((Gπ , X1) = (H, u)) =
∑

v : {u,v}∈E(H)

P((Gπ , ρπ ) = (H, v))

degH (v)
=
∑

v : {u,v}∈E(H) P((G, ρ) = (H, v))

E deg(ρ)
.

Since ρ is uniformly distributed given G, the quantity P((G, ρ) = (H, v)) is the
same for all v. So

P((Gπ,X1) = (H, u)) = degH (u)P((G, ρ) = (H, u))

E deg(ρ)
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so by (6.1) the required assertion follows. �
Corollary 6.10 Assume that {Gn} is a sequence of random graphs that are almost
surely finite and that E deg(ρn) ∈ (0,∞) where ρn is a uniformly chosen vertex of

Gn. Let (Gπ
n , ρπ

n ) be the degree biasing of (Gn, ρn). Assume that Gn
loc−→ (U, ρ)

and that E deg(ρ) < ∞ and that E deg(ρn) → E deg(ρ). Then Gπ
n

loc−→
π

(Uπ , ρπ )

where (Uπ , ρπ ) is the degree biasing of (U, ρ). Furthermore, (U, ρ) and (Uπ , ρπ )

are absolutely continuous with respect to each other.
Conversely, assume that {Gπ

n } is a sequence of random graphs that are almost
surely finite and have no isolated vertices. Denote by ρπ

n a random vertex of Gπ
n

drawn with probability proportional to the vertex degrees and by (Gn, ρn) the

degree unbiasing of (Gπ
n , ρπ

n ). If Gπ
n

loc−→
π

(Uπ, ρπ ), then Gn
loc−→ (U, ρ) where

(U, ρ) is the degree unbiasing of (Uπ, ρπ ). Furthermore, (U, ρ) and (Uπ , ρπ) are
absolutely continuous with respect to each other.

Proof We start by proving the first assertion. Let (H, v) be a finite rooted graph and
r > 0 a fixed integer. Then by Definition 6.8

P(BGπ
n
(ρπ

n , r) = (H, v)) = degH(v)P(BGn(ρn, r) = (H, v))

E deg(ρn)
.

Since Gn
loc−→ (U, ρ) and E deg(ρn) → E deg(ρ) we obtain that

lim
n→∞P(BGπ

n
(ρπ

n , r) = (H, v)) = degH (v)P(BU (ρ, r) = (H, v))

E deg(ρ)
= P(BUπ (ρπ , r) = (H, v)),

where the last equality is also by Definition 6.8. The absolute continuity of (U, ρ)

and (Uπ , ρπ ) follows immediately from the definition.
The second statement follows by the same proof. Note that E[deg(ρπ

n )−1] →
E[deg(ρπ )−1] by definition since BGπ

n
(ρπ

n , 1) converges in distribution to
BUπ (ρπ , 1) and the function f ((G, ρ)) = deg(ρ)−1 is a bounded continuous
function on G•. �

We end this subsection by addressing the somewhat technical issue of verifying
the condition E deg(ρn) → E deg(ρ) in Corollary 6.10. It is not guaranteed just by
requiring supn E deg(ρn) < ∞ as can be seen in the example of a path of length
n where we choose

√
n arbitrary vertices and add

√
n loops to each one; in this

example deg(ρ) = 2 almost surely, and E deg(ρn) = 4 + o(1). However, we now
show that it is always possible to “truncate” the finite graphs Gn by removing edges
touching vertices of large degrees so that the limit is unchanged and the average
degrees converge to the expected degree of the limit. Given a finite graph G and an
integer k ≥ 1 we denote by G∧k the graph obtained from G by erasing all the edges
touching vertices of degree at least k. We note that even when G is connected, G∧k

may be disconnected and may have isolated vertices. As we defined in Sect. 5.1, by
(G ∧ k, ρ) we mean (G ∧ k[ρ], ρ) where G ∧ k[ρ] is the connected component of
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ρ in G ∧ k, hence it is a member of G• even when it is disconnected. All statements
in this chapter, most importantly Corollary 6.10, do not assume the graphs involved
are connected.

Lemma 6.11 Let {Gn} be a sequence of random finite graphs such that Gn
loc−→

(U, ρ) and E deg(ρ) < ∞. Then there exists a sequence k(n) → ∞ such that

Gn ∧ k(n)
loc−→ (U, ρ) .

Furthermore, if we set G′
n = Gn ∧ k(n), then

E degG′
n
(ρn) → E deg(ρ) ,

where ρn is a uniformly chosen vertex of G′
n.

Proof We first show that for any sequence k(n) → ∞ we have that Gn ∧ k(n)
loc−→

(U, ρ). Indeed, since Gn
loc−→ (U, ρ) we have that for any fixed integer r ≥ 1

P

(
max

{
deg(v) : v ∈ BGn(ρn, r)

} ≥ k(n)
)
→ 0 .

If max{deg(v) : v ∈ BGn(ρn, r + 1)} < k(n), then BGn(ρn, r) = BGn∧k(n)(ρn, r).
Since Gn and Gn ∧ k(n) have the same set of vertices we deduce that for any fixed
r ≥ 1 and any rooted graph (H, v)

P
(
BGn∧k(n)(ρn, r) = (H, v)) → P(BU(ρ, r) = (H, v)) .

Secondly, since deg(ρn) converges in distribution to deg(ρ) we have that there
exists a sequence k(n) → ∞ such that E[deg(ρn) ∧ k(n)] → E deg(ρ). Indeed, by
dominated convergence we have that E[deg(ρ)∧k] →k→∞ E deg(ρ). Furthermore,
for any fixed k the function f ((G, ρ)) = deg(ρ) ∧ k is a bounded and continuous
on G•, thus E[deg(ρn) ∧ k] →n→∞ E[deg(ρ) ∧ k]. Hence for any ε > 0 there exist
k and N such that for all n ≥ N we have that |E[deg(ρn) ∧ k] − E deg(ρ)| ≤ ε. It
is an exercise that this implies the existence of k(n).

Lastly, lim supE degG′
n
(ρn) ≤ E deg(ρ) since degG′

n
(ρn) ≤ degGn

(ρn) ∧
k(n). We also have that degG′

n
(ρn)

d−→ deg(ρ), hence by Fatou’s lemma
lim infE degG′

n
(ρn) ≥ E deg(ρ), and hence the second assertions follows. �

Markings

Given a locally convergent sequence of (possibly random) graphs Gn, we wish to
apply the star-tree transform on them to create a sequence G∗

n and take its local limit
of that while “remembering”, in light of Lemma 6.4, the original degrees of Gn. The
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approach is a rather straightforward extension of the abstract setting of Sect. 5.1,
see also [2]. We consider the space of triples (G, ρ,M) where G = (V ,E) is a
graph, ρ ∈ V is a vertex and M : E → R is a function assigning real values
to the edges. We endow the space with a metric by setting the distance between
(G1, ρ1,M1) and (G2, ρ2,M2) to be 2−R where R is the maximal value such that
there exists a rooted graph isomorphism ϕ between BG1(ρ1, R) and BG2(ρ2, R)

such that |M1(e) − M2(ϕ(e))| ≤ R−1 for all edges e ∈ E(G) both of whose end
points are in BG1(ρ1, R). It is easy to check that this space is again a Polish space, so
again we may define convergence in distribution of random variables taking values
in this space.

We say that such a random triplet (U, ρ,M) is stationary if conditioned on
(U, ρ,M) a uniformly chosen random neighbor X1 of ρ satisfies that (U, ρ,M)

has the same law as (U,X1,M) in the space of isomorphism classes of rooted
graphs with markings (that is, rooted isomorphisms that preserve the markings).
Given a marking M we extend it to M : E(U) ∪ V (U) → R by setting M(v) =
maxe:v∈e M(e) for any v ∈ V (U). We say that (U, ρ,M) has an exponential tail if
for some A < ∞ and β > 0 we have that P(M(ρ) ≥ s) ≤ Ae−βs for all s ≥ 0.

In the following lemma we consider a stationary triplet (U, ρ,M) that has an
exponential tail and compare the hitting probabilities of certain sets when we endow
the graphs with two sets of edge resistances: the first are the usual unit resistances,
and in the second we may change the edge resistances arbitrarily but only on edges
with high M values. We tailored the lemma this way in order to show that (G∗, Re)

from Lemma 6.4 is recurrent.

Lemma 6.12 Let (U, ρ,M) be a stationary, bounded degree rooted random graph
with markings which has an exponential tail. Conditioned on (U, ρ,M) and given
some finite set B ⊂ U , let Pρ denote the unit-resistance random walk on U starting
from ρ and let P′

ρ denote the random walk on U with edge resistances R′
e satisfying

that R′
e = 1 whenever M(e) ≤ 21β−1 log |B|. Then almost surely on (U, ρ,M)

there exists K < ∞ such that for any finite subset B ⊂ U with |B| ≥ K we have

∣∣Pρ(τU\B < τ+
ρ ) − P′

ρ(τU\B < τ+
ρ )
∣∣ ≤ 1

|B| .

Proof For every pair of integers T , s ≥ 1 we set

AT ,s =
{

Pρ(∃t < T : M(Xt) ≥ s) ≤ T 3e−βs/2
}

.

Since (U, ρ,M) is stationary and has an exponential tail for any t ≥ 0 we have

E
[
Pρ(M(Xt ) ≥ s)

] ≤ Ae−βs ,

hence by the union bound

E
[
Pρ(∃t < T : M(Xt ) ≥ s)

] ≤ AT e−βs .
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Thus by Markov’s inequality

P
(
Ac

T ,s

) ≤ AT −2e−βs/2 .

By Borel-Cantelli we deduce that almost surely AT ,s occurs for all but finitely many
pairs T , s. Conditioned on (U, ρ,M), we may consider only finite subsets B ⊂ U

which contain ρ, since otherwise both probabilities in the statement of the lemma
are 1. Let B be such a subset. By the commute time identity Lemma 2.26, and since
the maximum degree of U is bounded,

Eρ(τU\B) ≤ CReff(ρ ↔ U \ B)|B| ≤ C|B|2 ,

for some constant C > 0. The last inequality is since the resistance is bounded
by |B| since there is a path of length at most |B| from ρ to U \ B. By Markov’s
inequality,

Pρ(τU\B ≥ T ) ≤ C|B|2
T

.

Write S = {v ∈ U : M(v) ≥ s}. For every T , s for which AT ,s occurs we have

Pρ

(
τS < τ+

{ρ}∪U\B
)
≤ Pρ(τU\B ≥ T ) + Pρ(∃t < T : M(Xt) ≥ s) ≤ C|B|2

T
+ T 3e−βs/2.

We now choose T = 2C|B|3 and s = 21β−1 log |B| so that the right hand side of the
last inequality is at most |B|−1 when |B| is sufficiently large. It is clear that we can
couple two random walks starting from ρ, one walking on U with unit resistances
and the other on (U,Re), so that they remain together until they visit a vertex of S.
Hence, when |B| is large enough so that the chosen T , s are such that AT ,s holds we
deduce from the last inequality that with probability at least 1 − |B|−1 the simple
random walk on U visits {ρ} ∪ U \ B before visiting S, concluding our proof. �

6.3 Proof of Theorem 6.1

We now proceed to wrapping up the proof of Theorem 6.1. Recall that we have a

sequence of finite planar graphs {Gn} such that Gn
loc−→ (U, ρ) and with P(deg(ρ) ≥

k) ≤ Ce−ck . Our goal is to prove that (U, ρ) is almost surely recurrent.
Let us explain how we use Lemma 6.11 and Corollary 6.10 to truncate and degree

bias Gn and (U, ρ) so that we may assume without loss of generality that Gn
loc−→
π

(U, ρ). Indeed, if it does not hold that E deg(ρn) → E deg(ρ) we consider Gn∧k(n)

of Lemma 6.11 which has the same limit (U, ρ). Since k(n) → ∞ the graphs
Gn ∧ k(n) have non-empty set of edges (we assume that Gn have non-empty sets of
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edges otherwise (U, ρ) is an isolated vertex), and thus we may apply Corollary 6.10
and deduce that the degree biasing (Gn ∧ k(n), ρn) converges to the degree biasing
of (U, ρ) which is absolutely continuous with respect to (U, ρ), and in particular, it
is recurrent almost surely if and only if (U, ρ) is. We also erase from Gn ∧ k(n) all
isolated vertices that may have been created in the truncation, since these are drawn
with probability 0 after the degree bias. This will be important for us later when
we unbias the graphs. Lastly, it is an easy computation using Definition 6.8 that
we still have P(deg(ρ) ≥ k) ≤ Ce−ck (possibly for some other positive constants

C, c). Thus, from now on we assume without loss of generality that Gn
loc−→
π

(U, ρ)

and that deg(ρ) has an exponential tail and that Gn have no isolated vertices almost
surely.

Recall now the definitions and notations of Sect. 6.1. Consider the star-tree
transform G∗

n of Gn and let ρ∗
n be a random vertex of Tρn drawn according to

the stationary distribution of Tρn . Similarly, conditioned on (U, ρ), let U∗ be the
star-tree transform of U and ρ∗ be a random vertex of Tρ drawn according to
the stationary distribution of Tρ . Furthermore, we put markings on G∗

n and U∗ by
marking each edge e of G∗

n or U∗ with deg(v) whenever e is in the tree Tv and
deg(v) is the degree of v in Gn or U , respectively. Denote these markings by Mn

and M , respectively.

Claim 6.13 We have that (G∗
n, ρ

∗
n,Mn) for each n and (U∗, ρ∗,M) are stationary,

and,

(G∗
n, ρ

∗
n,Mn)

d−→ (U∗, ρ∗,M) .

Proof Since for any fixed integer r > 0, the laws of BG∗
n
(ρ∗

n, r) and BU∗(ρ∗, r) are
determined by BGn(ρn, r) and BU (ρ, r), respectively, see Remark 6.3. We obtain
that

(G∗
n, ρ

∗
n,Mn)

d−→ (U∗, ρ∗,M) .

Secondly, it is immediate to check that for each v ∈ Gn we have that the number
of edges in Tv is precisely 2 degGn

(v). This is the reason why we added the two
“extra” neighbors to the root of Tv in the star tree transform described in Sect. 6.1.
Thus, conditioned on Gn, for any x ∈ G∗

n such that x ∈ Tv for some v ∈ Gn we
have that

P(ρ∗
n = x | Gn) = degGn

(v)

2|E(Gn)| ·
degTv

(x)

2|E(Tv)| = degTv
(x)

2|E(G∗
n)|

,

or in other words, (G∗
n, ρ

∗
n,Mn) is a stationary random graph and since it converges

to (U∗, ρ∗,M), the latter is also stationary. �
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Lemma 6.14 The triplet (U∗, ρ∗,M) has an exponential tail.

Proof We observe that M(ρ∗) = deg(v) where v is either ρ or one of its neighbors.
Hence it suffices to show that if (U, ρ) is a stationary local limit such that deg(ρ)

has an exponential tail, then the random variable D(ρ) = maxv:{ρ,v}∈E(U) deg(v)

has an exponential tail. We have

P(D(ρ) ≥ k) ≤ P(deg(ρ) ≥ k) + P(deg(ρ) ≤ k and D(ρ) ≥ k) . (6.2)

The probability of the first term on the right hand side decays exponentially in k due
to our assumption on (U, ρ). Conditioned on (U, ρ), let X1 be a uniformly chosen
random neighbor of ρ. Then clearly

P(deg(X1) ≥ k | deg(ρ) ≤ k and D(ρ) ≥ k) ≥ k−1 .

However, by stationarity P(deg(X1) ≥ k) = P(deg(ρ) ≥ k), which decays
exponentially. We conclude that the second term on the right hand side of (6.2)
decays exponentially as well. �

Consider the stationary random graph (U∗, ρ∗,M). By Lemma 6.14 it has an
exponential tail. Consider the edge resistances

Runit
e ≡ 1 , Rmark

e = 1

M(e)
.

In view of Lemma 6.4, it suffices to show that the network (U∗, Rmark) is almost
surely recurrent, for then it will follow that U is almost surely recurrent. To prove the
former, we apply the second assertion of Corollary 6.10 which allows us to assume
without loss of generality that (U∗, ρ∗) is a local limit of finite planar maps (rather
than a stationary local limit). In the beginning of the proof we assumed that almost
surely Gn have no isolated vertices (they were erased after the degree biasing), hence
the same holds for G∗

n and we may use Corollary 6.10. Since (U∗, ρ∗) is now a local
limit of finite planar maps with degrees bounded by 4 we may apply Theorem 5.8 to
obtain an almost sure constant c > 0 and a sequence of sets Bk ⊂ U∗ such that

1. ck ≤ |Bk| ≤ c−1k, and
2. Reff(ρ

∗ ↔ U∗ \ Bk ; {Runit
e }) ≥ c log k,

where we added to the conclusion of Theorem 5.8 that Bk ≥ ck since adding vertices
to Bk makes the lower bound on the resistance even better.

We now define one extra set of edge resistances on U∗ which will allow us to
interpolate between the edge resistances Runit and Rmark. For each integer k ≥ 1 we
define

Rmid
e =

{
1 M(e) ≤ C log k,

M−1(e) otherwise ,
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where C > 0 is some large constant that will be chosen later. We will use P,
Pmark and Pmid to denote the probability measures, conditioned on (U∗, ρ∗,M), of
random walks on U∗ with edge resistances {Runit

e }, {Rmark
e } and {Rmid

e }, respectively.

Lemma 6.15 For some other constant c > 0 we have

Reff(ρ
∗ ↔ U∗ \ Bk ; {Rmid

e }) ≥ c log k .

Proof We may assume k is large enough so that M(e) ≤ C log k for every edge e

incident to ρ∗. By Claim 2.22 we have

Reff(ρ
∗ ↔ U∗ \ Bk ; {Runit

e }) ≤ 1

Pρ∗(τU∗\Bk < τ+
ρ∗)

,

hence

Pρ∗(τU∗\Bk < τ+
ρ∗) ≤ 1

c log k
,

by our assumption on Bk above. By Lemma 6.12 it follows that

Pmid
ρ∗ (τU∗\Bk < τ+

ρ∗) ≤ 2

c log k
,

when k is large enough and the constant C > 0 in the definition of {Rmid
e } is chosen

large enough with respect to β. Using Claim 2.22 again and the fact that U∗ has
degrees bounded by 4 concludes the proof. �

We need yet another easy general fact about electric networks.

Claim 6.16 Consider a finite network G in which all resistances are bounded above
by 1. Then for any integer m ≥ 1 and any two vertices a �= z we have

Reff(BG(a,m) ↔ z) ≥ Reff(a ↔ z) − m .

Proof Let θm be the unit current flow from B(a,m) to z. For a vertex v ∈ B(a,m)

denote

αv =
∑

u �∈B(a,m):u∼v

θm(vu)

so that αv ≥ 0 for all v ∈ B(a,m) and
∑

v∈B(a,m) αv = 1. For a vertex v ∈ B(a,m)

let θa,v be a unit flow putting flow 1 on some shortest path from a to v in B(a,m).
Set

θ =
∑

v∈B(a,m)

αv(θ
m + θa,v) .
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By Thomson’s principle (Theorem 2.28), Jensen’s inequality and since∑
v αv = 1 we have

Reff(a ↔ z) ≤ E(θ) = E(θm) +
∑

e

re
[ ∑

v∈B(a,m)

αvθ
a,v(e)

]2 ≤ E(θm) +
∑

v∈B(a,m)

αv

∑

e

re
(
θa,v(e)

)2

≤ E(θm) +
∑

v∈B(a,m)

αv · m = Reff(B(a,m) ↔ z) + m . �

We are finally ready to conclude the proof of the main theorem of this chapter.

Proof of Theorem 6.1 By Lemma 6.15 and Claim 6.16 we have that the sets Bk

obtained earlier satisfy that for any m ≥ 0

Reff(BU∗(ρ∗,m) ↔ U∗ \ Bk ; {Rmid
e }) ≥ c log k − m .

Moreover, for every edge e,

Rmark
e ≥ Rmid

e

C log k
,

hence

Reff(BU∗(ρ∗,m) ↔ U∗ \ Bk ; {Rmark
e }) ≥ c/C − m/C log k .

By taking k → ∞ we deduce that there exists c > 0 such that for any m ≥ 1

Reff(BU∗(ρ∗,m) ↔ ∞; {Rmark
e }) ≥ c .

Consider the current unit flow from ρ∗ to ∞ in (U∗, {Rmark
e }). If this flow had finite

energy, then for any ε > 0 there would exists m ≥ 1 such that Reff(BU∗(ρ∗,m) ↔
∞; {Rmark

e }) ≤ ε, which is a contradiction to the above. Hence

Reff(ρ
∗ ↔ ∞; {Rmark

e }) = ∞ ,

that is, (U∗, {Rmark
e }) is almost surely recurrent. The theorem now follows by

Lemma 6.4. �
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Chapter 7
Uniform Spanning Trees of Planar
Graphs

7.1 Introduction

Let G be a finite connected graph. A spanning tree T of G is a connected subgraph
of G that contains no cycles and such that every vertex of G is incident to at least one
edge of T . The set of spanning trees of a given finite connected graph is obviously
finite and hence we may draw one uniformly at random. This random tree is called
the uniform spanning tree (UST) of G. This model was first studied by Kirchhoff
[49] who gave a formula for the number of spanning trees of a given graph and
provided a beautiful connection with the theory of electric networks. In particular,
he showed that the probability that a given edge {x, y} of G is contained in the
UST equals Reff(x ↔ y;G); we prove this fundamental formula in Sect. 7.2 (see
Theorem 7.2).

Is there a natural way of defining a UST probability measure on an infinite
connected graph? It will soon become clear that we have set the framework already
in Sect. 2.3 to answer this question positively. Let G = (V ,E) be an infinite
connected graph and assume that {Gn} is a finite exhaustion of G as defined in
Sect. 2.5. That is, {Gn} is a sequence of finite graphs, Gn ⊂ Gn+1 for all n, and
∪Gn = G. Russell Lyons conjectured that the UST probability measure on Gn

converges weakly to some probability measure on subsets of E and in his pioneering
work Pemantle [68] showed that it is indeed the case.

More precisely, denote by Tn a UST of Gn, then it is shown in [68] that for any
two finite subset of edges A,B of G the limit

lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) , (7.1)

exists and does not depend on the exhaustion {Gn}. The proof is a consequence of
Rayleigh’s monotonicity (Corollary 2.29) and will be presented in Sect. 7.3. This
together with Kolmogorov’s extension theorem [24, Theorem A.3.1] implies that
there exists a unique probability measure on infinite subsets of E for which a sample
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of F satisfies

P(A ⊂ F , B ∩ F = ∅) = lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

for any two finite subsets of edges A and B of G. Thus, the law of F is determined
and we denote it by μF . The superscript F stands for free and will be explained
momentarily. Let us explore some properties of μF that are immediate from its
definition.

Since every vertex of G is touched by at least one edge of Tn with probability
1 when n is large enough (so that Gn contains the vertex), we learn that the edges
of F almost surely touch every vertex of G, that is, F is almost surely spanning.
Similarly, the probability that the edges of a given cycle in G are contained in Tn

(once n is large enough so that Gn contains the cycle) is 0. Since G has countably
many cycles we deduce that almost surely there are no cycles in F. By a similar
reasoning we deduce that almost surely any connected component of F is infinite.
However, a moment’s reflection shows that this kind of reasoning cannot be used to
determine that F is almost surely connected.

It turns out, perhaps surprisingly, that F need not be connected almost surely.
A remarkable result of Pemantle [68] shows that a sample of μF on Zd is almost
surely connected when d = 1, 2, 3, 4 and almost surely disconnected when d ≥
5. Since it may be the case that a sample of μF is disconnected with positive
probability, we call μF the free uniform spanning forest (rather than tree) of G,
denoted henceforth FUSFG. The term free corresponds to the fact that we have
not imposed any boundary conditions when taking a limit. It will be very useful to
take other boundary conditions, such as the wired boundary condition, see Sect. 7.3.
The seminal paper of Benjamini et al. [12] explores many properties of these
infinite random trees (properties such as number of components and connectivity in
particular, size of the trees, recurrence or transience of the trees and many others) on
various underlying graphs with an emphasis on Cayley graphs. We refer the reader
to [12] and to [61, Chapters 4 and 10] for a comprehensive treatment.

The question of connectivity of the FUSF is therefore fundamental and unfortu-
nately it is not even known that connectivity is an event of probability 0 or 1 on any
graph G, see [12, Question 15.7]. In [44] the circle packing theorem (Theorem 3.5)
is used to prove that FUSFG is almost surely connected when G is a bounded
degree proper planar map, answering a question of [12, Question 15.2]. Our goal
in this chapter is to present a proof for a specific case where G is a bounded degree,
transient, one-ended planar triangulations. Even though this is a particular case of a
general theorem, the argument we present here contains most of the key ideas. We
refer the interested reader to [44] for the general statement.

Theorem 7.1 ([44]) Let G be a simple, bounded degree, transient, one-ended
planar triangulation. Then FUSFG is almost surely connected.

The rest of this chapter is organized as follows. In Sect. 7.2 we discuss two
basic properties of USTs on finite graphs. Namely, Kirchhoff’s effective resistance
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formula mentioned earlier and the spatial Markov property for the UST. In Sect. 7.3
we prove Pemantle’s [68] result (7.1) showing that FUSFG exists. We will also
define there the wired uniform spanning forest which is obtained by taking a limit
of the UST probability measures over exhaustions with wired boundary. We will
also need some fairly basic notions of electric networks on infinite graphs that we
have not discussed in Sect. 2.5. Next, in Sect. 7.4 we will restrict to the setting of
planar graph and employ planar duality to obtain an extremely useful connection
between the free and wired spanning forests which will be useful later. Using these
tools we have collected we will prove Theorem 7.1 in Sect. 7.5.

7.2 Basic Properties of the UST

Kirchhoff’s Effective Resistance Formula

Theorem 7.2 (Kirchoff [49]) Let G be a finite connected graph and denote by T
a uniformly drawn spanning tree of G. Then for any edge e = (x, y) we have

P(e ∈ T ) = Reff(x ↔ y) .

Proof Let a �= z be two distinct vertices of G (later we will take a = x and z = y)
and note that any spanning tree of G contains precisely one path connecting a and
z. Thus, a uniformly drawn spanning tree induces a random path from a to z. By
Claim 2.46 we obtain a unit flow θ from a to z. To be concrete, for each edge e we
have that θ(�e) is the probability that the random path from a to z traverses �e minus
the probability that it traverses �e. We will now show that θ satisfies the cycle law
(see Claim 2.14), so it is in fact the unit current flow (see Definition 2.19).

Let �e1, . . . , �em be a directed cycle in G. Our goal is to show that

m∑

i=1

θ( �ei) = 0 . (7.2)

Denote by T (G) the set of spanning trees of G. Expanding the sum on the left hand
side with the definition of θ we get that it equals

|T (G)|−1
∑

t∈T (G)

m∑

i=1

f+
i (t) − |T (G)|−1

∑

t∈T (G)

m∑

j=1

f−
j (t) ,

where f +
i (t) equals 1 if the unique path from a to z in t traverses �ei and 0 otherwise,

and similarly, f−
j (t) equals 1 if this path traverses �ej and 0 otherwise.

For 1 ≤ i ≤ m we denote by T +
i the set of pairs (t, i) for which f+

i (t) = 1.
Similarly define T −

j as the set of pairs (t, j) for which f −
j (t) = 1. To prove (7.2) it
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suffices to show that

| "i∈{1,...m} T +
i | = | "j∈{1,...m} T −

j | .

Let (t, i) ∈ T +
i . The graph t \ {ei} has two connected components. Let �ej be the

first edge after �ei , in the order of the cycle �e1, . . . , �em, that is incident to both
connected components and consider the spanning tree t ′ = t ∪ {ej } \ {ei}. Note
that the unique path in t ′ from a to z traverses �ej , so (t ′, j) ∈ T −

j . This procedure

defines a bijection from "iT
+
i to "j T

−
j . Indeed, given (t ′, j) from before, we can

erase ej and go on the cycle in the opposite order until we reach ei which has to be
the first edge incident to the two connected components of t ′ \{ej }. This shows (7.2)
and concludes the proof. �

Spatial Markov Property of the UST

We would like to study the UST probability measure conditioned on the event that
some edges are present in the UST and others not. It turns out that sampling from
this conditional distribution amounts to drawing a UST on a modified graph.

Let G = (V ,E) be a finite connected graph and let A and B be two disjoint
subsets of edges. We write (G − B)/A for the graph obtained from G by erasing
the edges of B and contracting the edges of A. We identify the edges of (G−B)/A

with the edges E \ B. Denote by TG and T(G−B)/A a UST on G and (G − B)/A,
respectively, and assume that

P(A ⊂ TG , B ∩ TG = ∅) > 0 .

This assumption is equivalent to G − B being connected and that A contains no
cycles.

Then, conditioned on the event that TG contains the edges A and does not contain
any edge of B the distribution of TG is equal to the union of A with T(G−B)/A. In
other words, for a set A of spanning trees of G we have that

P(TG ∈ A | A ⊂ TG , B ∩ TG = ∅) = P(A ∪ T(G−B)/A ∈ A ) . (7.3)

The proof of (7.3) follows immediately from the observation that the set of spanning
trees of G not containing any edge of B is simply the set of spanning trees of G−B.
Similarly, the set of spanning trees of G containing all the edges of A is simply the
union of A to each spanning tree of G/A, and (7.3) follows.
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7.3 Limits over Exhaustions: The Free and Wired USF

Let G be an infinite connected graph and let {Gn} be a finite exhaustion of it. In
this section we will show that (7.1) holds and that the UST measures with wired
boundary conditions also converge. Let us first explain the latter. Denote by G∗

n the
graph obtained from G by identifying the infinite set of vertices G \ Gn to a single
vertex zn and erasing the loops at zn formed by this identification. We say that {G∗

n}
is a wired finite exhaustion of G.

Theorem 7.3 (Pemantle [68]) Let G be an infinite connected graph, {Gn} a finite
exhaustion and {G∗

n} the corresponding wired finite exhaustion. Denote by Tn and
T ∗

n USTs on Gn and G∗
n, respectively. Then for any two finite disjoint subsets

A,B ⊂ E(G) of edges of G we have that the limits

lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

and

lim
n→∞ P(A ⊂ T ∗

n , B ∩ T ∗
n = ∅) ,

exist and do not depend on the exhaustion {Gn}.
We postpone the proof for a little longer and first discuss some of its implications.

As mentioned earlier, Theorem 7.3 together with Kolmogorov’s extension theorem
[24, Theorem A.3.1] implies that there exists two probability measures μF and μW

on infinite subsets of the edges of E arising as the unique limits of the laws Tn and
T ∗

n . That is, the samples Ff and Fw of μF and μW satisfy

P(A ⊂ Ff , B ∩ Ff = ∅) = lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

and

P(A ⊂ Fw , B ∩ Fw = ∅) = lim
n→∞ P(A ⊂ T ∗

n , B ∩ T ∗
n = ∅) .

We call μF and μW the free uniform spanning forest and the wired uniform
spanning forest and denote them by FUSFG and WUSFG respectively. We have
seen earlier (one paragraph below (7.1)) that both Ff and Fw are almost surely
spanning forests, that is, spanning graphs of G with no cycles and that every
connected component of them is infinite. Thus μF and μW are supported on what
are known as essential spanning forests of G, that is, spanning forests of G in
which every component is infinite.

Are the probability measures FUSFG and WUSFG equal? Not necessarily. It is
easy to see that on the infinite path Z the WUSFZ and the FUSFZ are equal and are
the entire graph Z with probability 1. Conversely, it is not very difficult to see that
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they are different on a 3-regular tree, see exercise 1 of this chapter. Pemantle [68]
has shown that FUSFZd = WUSFZd for any d ≥ 1 and a very useful criterion for
determining whether there is equality was developed in [12]. We refer the reader to
[61, Chapter 10] for further reading.

Before presenting the proof of Theorem 7.3 let us make a few short observations
regarding the effective resistance between two vertices in an infinite graph, extend-
ing what we proved in Sect. 2.5.

Effective Resistance in Infinite Networks
Let G be an infinite connected graph. We have seen in Sect. 2.5 that for any vertex
v the electric resistance Reff(v ↔ ∞) from v to ∞ is well defined as the limit
of Reff(a ↔ zn;G∗

n) where {G∗
n} is a wired finite exhaustion and zn is the vertex

resulting in the identification of the vertices G \ Gn.
To define the electric resistance between two vertices v, u of an infinite graph,

one has to take exhaustions and specify boundary conditions since the limits may
differ depending on them.

Claim 7.4 Let G be an infinite connected graph, {Gn} a finite exhaustion and {G∗
n}

a wired finite exhaustion. Then for any two vertices u, v of G we have that the limits

RF
eff(u ↔ v;G) := lim

n
Reff(u ↔ v;Gn) ,

and

RW
eff(u ↔ v;G) := lim

n
Reff(u ↔ v;G∗

n) ,

exist and do not depend on the exhaustion {Gn}.
Proof For the first limit we note that by Rayleigh’s monotonicity (Corollary 2.29),
the sequence Reff(u ↔ v;Gn) is non-increasing and non-negative since Gn ⊂
Gn+1, hence it converges. A sandwiching argument as in the proof of Claim 7.4
shows that the limit does not depend on the exhaustion {Gn}.

For the second limit, since Gn can be obtained by gluing vertices of Gn+1 we
deduce by Corollary 2.30 that the sequence Reff(u ↔ v;G∗

n) is non-decreasing
and bounded (by the graph distance in G between u and v for instance), hence it
converges. The limit does not depend on the exhaustion by an identical sandwiching
argument. �

We call RF
eff(u ↔ v;G) and RW

eff(u ↔ v;G) the free effective resistance and
wired effective resistance between u and v respectively.
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Proof of Theorem 7.3

We will prove the assertion regarding the first limit; the second is almost identical.
Write A = {e1, . . . , ek} and ei = (xi, yi) for each 1 ≤ i ≤ k. Assume without loss
of generality that Gn contains A for all n. As before, denote by Tn a UST of Gn.
By (7.3) and Theorem 7.2 we have that

P(A ⊂ Tn) =
k∏

i=1

P(ei ∈ Tn | ej ∈ Tn ∀ j < i) =
k∏

i=1

Reff(xi ↔ yi;Gn/{e1, . . . , ei−1}) .

Note that
{
Gn/{e1, . . . , ei−1}

}
is a finite exhaustion of the infinite graph

G/{e1, . . . , ei−1} and so by Claim 7.4 we obtain that the limit

lim
n

P(A ⊂ Tn) =
k∏

i=1

Reff(xi ↔ yi;G/{e1, . . . , ei−1}) ,

exists and does not depend on the exhaustion.
Since we know this limit exists for all finite edge sets A, it follows by the

inclusion-exclusion formula that P(A ⊂ Tn, B ∩ Tn = ∅) converges for any finite
sets A,B, concluding our proof. �

It is now quite pleasant to see that the symbiotic relationship between electric
network and UST theories continues to flourish in the infinite setting. Indeed, by
combining Theorems 7.3 and Claim 7.4 we obtain the extension of Kirchhoff’s
formula for infinite connected graphs.

Theorem 7.5 Let G be an infinite connected graph and denote by FF and FW a
sample from FUSFG and WUSFG respectively. Then for any edge e = (x, y) of G

we have that

P(e ∈ FF ) = RF
eff(x ↔ y;G) ,

and

P(e ∈ FW) = RW
eff(x ↔ y;G) .

7.4 Planar Duality

When G is planar there is a very useful relationship between FUSFG and WUSFG.
Recall that given a planar map G, the dual graph of G is the graph G† whose vertex
set is the set of faces of G and two faces are adjacent in G† if they share an edge in
G. Thus, G† is locally-finite if and only if every face of G has finitely many edges.
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To each edge e ∈ E(G) corresponds a dual edge e† ∈ E(G†) which is the pair of
faces of G incident to e; this is clearly a one-to-one correspondence.

When G is a finite planar graph, this correspondence induces a one-to-one
correspondence between the set of spanning trees of G and the set of spanning trees
of G†. Given a spanning tree of t of G we slightly abuse the notation and write t†

for the set of edges {e† : e ∈ G \ t}, that is

e ∈ t ⇐⇒ e† �∈ t† .

If t† has a cycle, then t is disconnected. Furthermore, if there is a vertex G† not
incident to any edge of t†, then all the edges of the corresponding face in G are
present in t hence t contains a cycle. We deduce that if t is a spanning tree of
G, then t† is a spanning tree of G†. The converse also holds since (t†)† = t and
(G†)† = G.

Now assume that G is an infinite planar maps such that G† is locally finite.
Given an essential spanning forest F of G we similarly define F† as the set of edges
{e† : e ∈ G \ F}. A similar argument shows that F† is an essential spanning forest
of G†. This raises the natural question: when F is a sample of FUSFG, what is the
law of F†? The answer in general is an object known as the transboundary uniform
spanning forest [44, Proposition 5.1]. However, when G is additionally assumed to
be one-ended (in particular, in the setting of Theorem 7.1) it turns out that F† is
distributed as WUSFG† :

Proposition 7.6 Let G be an infinite, one-ended planar map with a locally finite
dual G† and let F be a sample of FUSFG. Then the law of F† is WUSFG† .

Proof Let Gn be a finite exhaustion of G. Let Fn be a finite exhaustion G† defined
by letting f ∈ Fn if and only if every vertex of f in G belongs to Gn. Then G

†
n

is obtained from G† by contracting G† \ Fn into a single vertex which corresponds
to the outer face of Gn. Thus, G

†
n is a wired exhaustion of G† and the statement

follows. �
We use to obtain an important criterion of connectivity of FUSFG in the planar

case.

Proposition 7.7 Let G be an infinite, one-ended planar map with a locally finite
dual G†. Then a sample of FUSFG is connected almost surely if and only if each
component of a sample of WUSFG is one-ended almost surely.

Proof By Proposition 7.6 it suffices to show that if F is an essential spanning forest
of G, then F is connected if and only if every component of F† is one-ended. Indeed,
if F is disconnected, then the boundary of a connected component of F induces an
bi-infinite path in F†. Conversely, if F† contains a bi-infinite path, then by the Jordan
curve theorem F is disconnected. �
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7.5 Connectivity of the Free Forest

Last Note on Infinite Networks

We make two more useful and natural definitions. Given two disjoint finite sets
A and B in an infinite connected graph G we define the free and wired effective
resistance between them RW

eff(A ↔ B;G) and RF
eff(A ↔ B;G) as the free

and wired effective resistance between a and b in the graph obtained from G by
identifying A and B to the vertices a and b.

Lastly, given a graph G, a wired finite exhaustion {G∗
n} of G and two disjoint

finite sets A and B we define

Reff(A ↔ B ∪ {∞};G) := lim
n→∞Reff(A ↔ B ∪ {zn};G∗

n) , (7.4)

where the last limit exists since the sequence is non-increasing from n that is large
enough so that Gn contains A and B. In the proof of Theorem 7.1 we will require
the following estimate.

Lemma 7.8 Let A and B be two finite sets of vertices in an infinite connected graph
G. Then

RW
eff(A ↔ B; G) ≤ 3 max

[
Reff (A ↔ B ∪ {∞}; G) , Reff (B ↔ A ∪ {∞}; G)

]
.

Proof For any three distinct vertices u, v,w in a finite network we have by the union
bound that Pu(τ{v,w} < τ+

u ) ≤ Pu(τv < τ+
u ) + Pu(τw < τ+

u ). Hence by Claim 2.22
we get that

Reff(u ↔ {v,w})−1 ≤ Reff(u ↔ v)−1 +Reff(u ↔ w)−1 .

Let {G∗
n} be a wired finite exhaustion of G and assume without loss of generality

that A and B are contained in G∗
n for all n. Then by the previous estimate

Reff(A ↔ B ∪ {zn};G∗
n)

−1 ≤ Reff(A ↔ B;G∗
n)

−1 +Reff(A ↔ zn;G∗
n)

−1 .

Denote by M the maximum in the statement of the lemma and take n → ∞ in the
last inequality. We obtain that

M−1 ≤ Reff(A ↔ B ∪ {∞};G)−1 ≤ RW
eff(A ↔ B;G)−1 +Reff(A ↔ ∞;G)−1 .

Rearranging gives that

Reff(A ↔ ∞;G) ≤ MRW
eff(A ↔ B;G)

RW
eff(A ↔ B;G) − M

.
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By symmetry, the same inequality holds when we replace the roles of A and B. We
put this together with the triangle inequality for effective resistances (2.9) and get
that

RW
eff(A ↔ B; G) ≤ Reff(A ↔ ∞;G) + Reff(B ↔ ∞;G) ≤ 2MRW

eff(A ↔ B;G)

RW
eff(A ↔ B;G) − M

,

which by rearranging gives the desired inequality. �

Method of Random Sets

We present the following weakening of the method of random paths as in Sect. 2.6.
Let μ be the law of a random subset W of vertices of G. Define the energy of μ as

E(μ) =
∑

v∈V

μ(v ∈ W)2.

Lemma 7.9 (Method of Random Sets) Let A,B be two disjoint finite sets of
vertices in an infinite graph G. Let W be a random subset of vertices of G and
denote by μ its law. Assume that the subgraph of G induced by W almost surely
contains a simple path starting at A that is either infinite or finite and ends at B.
Then

Reff(A ↔ B ∪ {∞};G) ≤ E(μ). (7.5)

Proof Given W let γ be a simple path, contained in W , connecting A to B

or an infinite path starting at A. We choose γ according to some prescribed
lexicographical ordering. Then, letting ν be the law of γ ,

E(ν) ≤
∑

�e∈E

ν(�e ∈ γ )2,

where by �e ∈ γ we mean that the directed edge �e is traversed (in its direction) by γ ,
and by E(ν) we mean the energy of the flow induced by γ , as in Claim 2.46.

Let γ ′ be an independent random path having the same law as γ . Then the sum
above is precisely the expected number of directed edges traversed both by γ and γ ′.
Since these are simple paths, they each contain at most one directed edge emanating
from each vertex v ∈ W . Thus, the expected number of directed edges used by both
paths is at most the number of vertices used by both paths. Hence,

E(ν) ≤
∑

v∈V (G)

ν(v ∈ γ )2 ≤
∑

v∈V (G)

μ(v ∈ W)2 = E(μ) ,

and the proof is concluded by Thomson’s principle (Theorem 2.28). �
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Proof of Theorem 7.1

In Theorem 7.1 we assume that G = (V ,E) is a bounded-degree, one-ended
triangulation. Hence G† is a bounded degree (in fact, 3-regular), one-ended and
transient planar map with faces of uniformly bounded size. We leave this verification
as an exercise for the reader. To avoid carrying the † symbol around, and with a
slight abuse of notation, let G = (V ,E) be a graph satisfying these assumptions
on G†, that is, we assume that G is a one-ended, transient, infinite planar map with
bounded degrees and face sizes. We will prove under these assumptions that every
component of WUSFG is one ended almost surely which implies Theorem 7.1 by
Proposition 7.7.

Let T be the bounded-degree one-ended triangulation obtained from G by adding
a vertex inside each face of G and connecting it by edges to the vertices of that face
according to their cyclic ordering. By Theorem 4.4 there exists a circle packing of
T in the unit disc U. We identify the vertices of T as the vertices V (G) and faces
F(G) of G, and denote this circle packing as P = {P(v) : v ∈ V (G)} ∪ {P(f ) :
f ∈ F(G)}.

Given z ∈ U and r ′ ≥ r > 0 denote by Az(r, r
′) the annulus {w ∈ C : r ≤

|w − z| ≤ r ′}.
Definition 7.10 Write Vz(r, r

′) for the set of vertices v of G such that either

• P(v) ∩ Az(r, r
′) �= ∅, or

• P(v) ⊂ {w ∈ C : |w| ≤ r} and there is a face f of G with v ∈ f and
P(f ) ∩ Az(r, r

′) �= ∅.

We emphasize that Vz(r, r
′) contains only vertices of G; no vertices of T that

correspond to faces of G belong to it.

Lemma 7.11 There exists a constant C < ∞ depending only on the maximal
degree such that for any z ∈ U and any positive integer n satisfying |z| ≥ 1 − C−n

the sets

Vz(C
−i , 2C−i ) 1 ≤ i ≤ n ,

are disjoint.

Proof By the Ring Lemma (Lemma 4.2) there exists a constant B < ∞ such that
for any C > 1, any z satisfying z ≥ 1 − C−n and any 1 ≤ i ≤ n, if a circle of
P intersects Az(C

−i , 2C−i ) or is tangent to a circle that intersects Az(C
−i , 2C−i ),

then its radius is at most BC−i . Hence, this set of circles is contained in the disc
of radius (2 + 4B)C−i around z. Furthermore, since |z| ≥ 1 − C−n, by the Ring
Lemma again there exists b > 0 such that any such circle must be of distance at
least bC−i from z. Hence, any fixed C > 4+4B

b
satisfies the assertion of the lemma.

�
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Lemma 7.12 Let z ∈ U and r > 0. Let U be a uniform random variable in
[1, 2] and denote by μr the law of the random set Vz(Ur,Ur) (as defined in
Definition 7.10). Then there exists a constant C < ∞ depending only on the
maximal degree such that

E(μr) ≤ C .

Proof For each vertex v, the event v ∈ Vz(Ur,Ur) implies that the circle {w ∈
C : |w − z| = Ur} intersects the circle P(v) or intersects P(f ) for some face f

incident to v. The union of P(v) and P(f ) over all such faces f is contained in the
Euclidean ball around the center of P(v) of radius r(v) + 2 maxf :v∈f r(f ). Since
T has finite maximal degree we have that r(f ) ≤ Cr(v) for all f with v ∈ f where
C < ∞ depends only on the maximal degree by the Ring Lemma (Lemma 4.2).
Hence,

μr(v ∈ Vz(Ur,Ur)) ≤ 1

r
min

(
2r(v) + 4 max

f :f%v
r(f ), r

)
≤ C

r
min{r(v), r}.

(7.6)

We claim that

∑

v∈Vz(r,2r)

min{r(v), r}2 ≤ 16r2. (7.7)

Indeed, consider a vertex v ∈ Vz(r, 2r) for which the corresponding circle P(v) has
radius larger than r . By Definition 7.10 this circle must intersect {w ∈ C : |w−z| ≤
2r}. We replace each such P(v) with a circle of radius r that is contained in the
original circle and intersects {w ∈ C : |w− z| ≤ 2r}. The circles in this new set still
have disjoint interiors and are contained in {w ∈ C : |w − z| ≤ 4r}. Therefore their
area is at most π16r2 and (7.7) follows. The proof of lemma is now concluded by
combining (7.6) and (7.7). �
Proof of Theorem 7.1 Let F be a sample of WUSFG and given an edge e = (x, y)

we define A e to be the event that x and y are in two distinct infinite connected
components of F \ {e}. It is clear that every component of F is one-ended almost
surely if and only if

P(e ∈ F , A e) = 0 (7.8)

for every edge e of G. Consider the triangulation T described above Definition 7.10
and its circle packing P in U. By choosing the proper Möbius transformation we
may assume that the tangency point between P(x) and P(y) is the origin, and that
the centers of P(x) and P(y) lie on the negative and positive real axis, respectively.

Fix now an arbitrary ε > 0 and let Vε be all the vertices of G such that the center
z(v) of P(v) satisfies |z(v)| ≤ 1 − ε. Denote by Be

ε the event that every connected
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x y

L

R

x y

Fig. 7.1 Illustration of the proof. Left: On the event A e
ε , the paths ηx and ηy split Vε into two

pieces, L and R. Right: We define a random set containing a path (solid blue) from ηx to ηy ∪{∞}
in G \ Kc using a random circle (dashed blue). Here we see two examples, one in which the path
ends at ηy , and the other in which the path ends at the boundary (i.e., at infinity)

component of F\{e} intersects V \Vε. Note that Ae ⊂ ∩ε>0B
e
ε but this containment

is strict since it is possible that e �∈ F and x is connected to y in F inside Vε.
Assume that Be

ε holds. Let ηx be the rightmost path in F \ {e} from x to V \ Vε

when looking at x from y, and let ηy be the leftmost path in F \ {e} from y to
V \ Vε when looking at y from x. As mentioned above, the paths ηx and ηy are
not necessarily disjoint. Nonetheless, concatenating the reversal of ηx with e and
ηy separates Vε into two sets of vertices, L and R, which are to the left and right
of e (when viewed from x to y) respectively. See Fig. 7.1 for an illustration of the
case when ηx and ηy are disjoint (when they are not, R is a “bubble” separated from
V \ Vε).

On the event Be
ε , let K be the set of edges that are either incident to a vertex in

L or belong to the path ηx ∪ηy , and set K = E off of this event. Note that the edges
of K do not touch the vertices of R. The condition that ηx and ηy are the rightmost
and leftmost paths to V \Vε from x and y is equivalent to the condition that K does
not contain any open path from x to V \ Vε other than ηx , and does not contain
any open path from y to V \ Vε other than ηy . We note that K can be explored
algorithmically, without querying the status of any edge in E \ K , by performing a
right-directed depth-first search of x’s component in F and a left-directed depth-first
search of y’s component in F, stopping each search when it first leaves Vε.

Denote by A e
ε the event that ηx and ηy are disjoint, or equivalently, that K does

not contain an open path from x to y (and in particular, no path starting at ηx and
ending at ηy ). The event A e

ε is measurable with respect to the random set K and
A e = ∩ε>0A e

ε . Hence

P(e ∈ F , A e) ≤ P(e ∈ F | A e
ε ) = E[P(e ∈ F | A e

ε ,K)] . (7.9)
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Denote by Ko the open edge of K (that is, the edge of K in F) and by Kc the closed
edges of K (that is, the edges of K not belonging to F). In particular, ηx and ηy are
contained in Ko. Then by the UST Markov property (7.3), conditioned on K and
the event A e

ε , the law of F is equal to the union of Ko with a sample of the WUSF
on (G − Kc)/Ko. In particular, by Kirchhoff’s formula Theorem 7.5 we have that

P(e ∈ F | A e
ε ,K) ≤ RW

eff(ηx ↔ ηy;G − Kc) , (7.10)

where in the last inequality we used the fact that gluing cannot increase the
resistance (Corollary 2.30).

We will show that the last quantity tends to 0 as ε → 0 which gives (7.8). To
that aim, let vx be the endpoint of the path ηx and let z0 be the center of the P(vx).
On the event A e

ε , for each 1 − |z0| ≤ r ≤ 1/4, we claim that the set Vz0(r, r), as
defined in Definition 7.10, contains a path in G from ηx to ηy that is contained in
R ∪ ηx ∪ ηy or an infinite simple path starting at ηx that is contained in R ∪ ηx .
Either of these paths are therefore a path in G − Kc.

To see this, consider the arc A′(z0, r) = {z ∈ U : |z − z0| = r} viewed
in the clockwise direction and let A(z0, r) be the subarc beginning at the last
intersection of A′(z0, r) with a circle corresponding to a vertex in the trace of ηx ,
and ending at the first intersection after this time of A′(z0, r) with either ∂U or a
circle corresponding to a vertex in the trace of ηy (see Fig. 7.1). Hence, if A e

ε holds,
then the set of vertices of T whose circles in P intersect A(z0, r) contains a path in
T starting at ηx and ending ηy or does not end at all, for every 1 − |z0| ≤ r ≤ 1/4.
To obtain a path in G rather than T we divert the path counterclockwise around
each face of G. That is, whenever the path passes from a vertex u of G to a face f

of G and then to a vertex v of G, we replace this section of the path with the list of
vertices of G incident to f that are between u and v in the counterclockwise order.
By Definition 7.10 this diverted path is in Vz0(r, r) and so this construction shows
that the subgraph of G − Kc induced by the set Vz0(r, r) contains a path from ηx to
ηy or an infinite path from ηx , as claimed.

Let ri = C−i for i = 1, . . . , N where C < ∞ the constant from Lemma 7.11 and
N = &logC(ε)'. Assume without loss of generality that C ≥ 4 so that ε ≤ ri ≤ 1/4
for all i = 1, . . . , N . By Lemma 7.11 the measures μri defined in Lemma 7.12
are supported on sets that are contained in the disjoint sets Vz(ri , 2ri). Thus, by
Lemma 7.9 and Lemma 7.12 we have

RW
eff

(
ηx ↔ ηy ∪ {∞}; G \ Kc

)
≤ E

(
1

N

N∑

i=1

μri

)
= 1

N2

N∑

i=1

E(μri ) ≤ B

log(1/ε)
,

where B < ∞ is a constant depending only on the maximum degree. By symmetry
we also have

RW
eff(η

y ↔ ηx ∪ {∞}; G − Kc) ≤ B

log(1/ε)
.
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Applying Lemma 7.8 and (7.10) gives

P(e ∈ F |FK, A e
ε ) ≤ 3B

log(1/ε)
.

We plug this estimate into (7.10) and take ε → 0, which together with (7.9) shows
that (7.8) holds, concluding our proof. �

7.6 Exercises

1. Use Theorem 7.5 to show that on the 3-regular infinite tree T3 the probability
measures FUSFT3 and the WUSFT3 are distinct.

2. Let (G; {re}) be a tree with edge resistances {re} such that
∑

n≥1 r(en) = ∞
for any simple infinite path {en}n≥1 in G. Show that the free and wired uniform
spanning forests coincide if and only if (G; {re}) is recurrent.

3. Let Ln be the ladder graph, that is, the vertex set is {1, . . . , n} × {a, b} and the
edges set is {[(i, a), (i, b)] : 1 ≤ i ≤ n} ∪ {[(i, a), (i + 1, a)] : 1 ≤ i ≤
n − 1} ∪ {[(i, b), (i + 1, b)] : 1 ≤ i ≤ n − 1}. Compute the limiting probability,
as n → ∞, that the edge [(1, a), (1, b)] is in the UST of Ln.

4. Show that Z3 contains a transient subtree.
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Chapter 8
Related Topics

In this chapter we briefly review some aspects of the literature on circle packing that
unfortunately we do not have space to get into in depth in this course. We hope this
will be useful as a guide to further reading.

1. Double circle packing. If one wishes to study planar graphs that are not
triangulations, it is often convenient to work with double circle packings, which
enjoy similar rigidity properties to usual circle packings, but for the larger class of
polyhedral planar graphs. Here, a planar graph is polyhedral if it is both simple
and 3-connected, meaning that the removal of any two vertices cannot disconnect
the graph. Double circle packings also satisfy a version of the ring lemma [45,
Theorem 4.1], which means that they can be used to produce good straight-
line embeddings of polyhedral planar graphs that have bounded face degrees but
which are not necessarily triangulations.

Let G be a planar graph with vertex set V and face set F . A double circle
packing of G is a pair of circle packings P = {Pv : v ∈ V } and P † = {Pf : f ∈
F } satisfying the following conditions:

(a) (G is the tangency graph of P .) For each pair of vertices u and v of G, the
discs Pu and Pv are tangent if and only if u and v are adjacent in G.

(b) (G† is the tangency graph of P †.) For each pair of faces f and g of G, the
discs Pf and Pg are tangent if and only if f and g are adjacent in G†.

(c) (Primal and dual circles are perpendicular.) For each vertex v and face f

of G, the discs Pf and Pv have non-empty intersection if and only if f is
incident to v, and in this case the boundary circles of Pf and Pv intersect at
right angles.

See Fig. 8.1 for an illustration.
Thurston’s proof of the circle packing theorem also implies that every finite

polyhedral planar graph admits a double circle packing. This was also shown
by Brightwell and Scheinerman [13]. As with circle packings of triangulations,
the double circle packing of any finite polyhedral planar map is unique up to

© The Author(s) 2020
A. Nachmias, Planar Maps, Random Walks and Circle Packing, Lecture Notes
in Mathematics 2243, https://doi.org/10.1007/978-3-030-27968-4_8

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27968-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-27968-4_8


106 8 Related Topics

Fig. 8.1 A finite polyhedral plane graph (left) and its double circle packing (right). Primal circles
are filled and have solid boundaries, dual circles have dashed boundaries

Möbius transformations or reflections. The theory of double circle packings in
the infinite setting follows from the work of He [37], and is exactly analogous
to the corresponding theory for triangulations. Indeed, essentially everything we
have to say in these notes about circle packings of simple triangulations can
be generalized to double circle packings of polyhedral planar maps (sometimes
under the additional assumption that the faces are of bounded degree).

2. Packing with other shapes. A very powerful generalization of the circle packing
theorem known as the monster packing theorem was proven by Schramm in his
PhD thesis [76]. One consequence of this theorem is as follows: Let T = (V ,E)

be a finite planar triangulation with a distinguished boundary vertex ∂ . Specify a
bounded, simply connected domain D ⊂ C with smooth boundary, and for each
v ∈ V \{∂} specify a strictly convex, bounded domain Dv with smooth boundary.
Then there exists a collection of homotheties (compositions of translations and
dilations) {hv : v ∈ V } such that

• If u, v ∈ V \ {∂} are distinct, then the closure of hvDv and huDu have disjoint
interiors, and intersect if and only if v and u are adjacent in T .

• If v ∈ V \ {∂}, then the closure of hvDv and C \D have disjoint interiors, and
intersect if and only if v is adjacent to ∂ in T .

In other words, we can represent the triangulation of T by a packing with
arbitrary smooth convex shapes that are specified up to homothety (it is quite
surprising at first that rotations are not needed). The full monster packing theorem
also allows one to relax the smoothness and convexity assumptions above in
various ways. The proof of the monster packing theorem is based upon Brouwer’s
fixed point theorem, and does not give an algorithm for computing the packing.

3. Square tiling. Another popular method of embedding planar graphs is the square
tiling, in which vertices are represented by horizontal line segments and edges
by squares; such square tilings can take place either in a rectangle, the plane, or
a cylinder. Square tiling was introduced by Brooks et al. [14], and generalized
to infinite planar graphs by Benjamini and Schramm [10]. Like circle packing,
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Fig. 8.2 The square tiling of
the 7-regular triangulation

square tiling can be thought of as a discrete version of conformal mapping, and
in particular can be used to approximate the uniformizing map from a simply
connected domain with four marked boundary points to a rectangle. For studying
the random walk, a very nice feature of the square tiling that is not enjoyed by
the circle packing is that the height of a vertex in the cylinder is a harmonic
function, so that the height of a random walk is a martingale. Furthermore,
Georgakopoulos [28] observed that if one stops the random walk at the first time
it hits some height, then its horizontal coordinate at this time is uniform on the
circle (this takes some interpretation to make precise). Further works on square
tiling include [1, 28, 46] (Fig. 8.2).

Unlike circle packing, however, square tilings do not enjoy an analogue of
the ring lemma, and can be geometrically very degenerate. Indeed, it is possible
for edges to be represented by squares of zero area, and is also possible for two
distinct planar graphs to have the same square tiling. Furthermore, square tilings
are typically defined with reference to a specified root vertex, and it is difficult
to compare the two different square tilings of the same graph that are computed
with respect to different root vertices. These differences tend to mean that square
tilings are best suited to quite different problems than circle packing.

We also remark that a different sort of square tiling in which vertices are
represented by squares was introduced independently by Cannon et al. [15] and
Schramm [74].

4. Multiply-connected triangulations. Several works have studied generalizations
of the circle packing theorem to triangulations that are either not simply
connected or not planar. Most notably, He and Schramm [39] proved that every
triangulation of a domain with countably many boundary components can be
circle packed in a circle domain, that is, a domain all of whose boundary com-
ponents are either circles or points: see Fig. 8.3 for examples. The corresponding
statement for a triangulation of an arbitrary domain is a major open problem,
and is closely related to the Koebe conjecture.

Gurel-Gurevich, the current author, and Suoto [32] generalized the part of the
He-Schramm Theorem concerning recurrence of the random walk as follows: A
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Fig. 8.3 Left: A circle packing in the multiply-connected circle domain U \ {0}. Right: A circle
packing in a circle domain with several boundary components

bounded degree triangulation circle packed in a domain D is transient if and only
if Brownian motion on D is transient, i.e. leaves D in finite time almost surely.

5. Isoperimetry of planar graphs. In [66], Miller, Teng, Thurston, and Vavasis
used circle packing to give a new proof of the Lipton-Tarjan planar separator
theorem [60], which concerns sparse cuts in planar graphs. Precisely, the theorem
states that for any n-vertex planar graph, one can find a set of vertices of size at
most O(

√
n) such that if this vertex set is deleted from the graph then every

connected component that remains has size at most 3n/4. More precisely, the
authors of [66] showed that if one circle packs a planar graph in the unit sphere
of R3, normalizes by applying an appropriate Möbius transformation, and takes
a random plane passing through the origin in R3, then the set of vertices whose
corresponding discs intersect the plane will have the desired properties with high
probability.

A related result of Jonasson and Schramm [47] concerns the cover time of
planar graphs, i.e., the expected number of steps for a random walk on the graph
to visit every vertex of the graph. They used circle packing to prove that the cover
time of an n-vertex planar graph with maximum degree M is always at least
cMn log2 n for some positive constant cM depending only on M . This bound
is attained (up to the constant) for large boxes [−n, n]2 in Z2. In general, it is
possible for n-vertex graphs to have cover time as small as (1 + o(1))n log n.

6. Boundary theory. Benjamini and Schramm [9] proved that if P is a circle
packing of a bounded degree triangulation in the unit disc U, then the simple
random walk on the circle packed triangulation converges to a point in the
boundary of U, and that the law of the limit point is non-atomic and has full
support. (That is, the walk has probability zero of converging to any specific
boundary point, and has positive probability of converging to any positive-length
interval.) They used this result to deduce that a bounded degree planar graph
admits non-constant bounded harmonic functions if and only if it is transient
(equivalently, the invariant sigma-algebra of the random walk on the triangulation
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is non-trivial if and only if the walk is transient), and in this case it also admits
non-constant bounded harmonic functions of finite Dirichlet energy. They also
gave an alternative proof of the same result using square tiling instead of circle
packing in [10].

Indeed, given the result of Benjamini and Schramm, one may construct a non-
constant bounded harmonic function h on T by taking any bounded, measurable
function f : ∂U → R and defining h to be the harmonic extension of f , that is,

h(v) = Ev

[
f
(

lim
n→∞ z(Xn)

)]
,

where Ev denotes expectation taken with respect to the random walk X started at
v, and z(u) denotes the center of the circle in P corresponding to u. Angel et al.
[6] proved that, in fact, every bounded harmonic function on a bounded degree
triangulation can be represented in this way. In other words, the boundary ∂U can
be identified with the Poisson boundary of the triangulation. Probabilistically,
this means that the entire invariant σ -algebra of the random walk coincides
with the σ -algebra generated by the limit point. They also proved the stronger
result that ∂U can be identified with the Martin boundary of the triangulation.
Roughly speaking, this means that every positive harmonic function on the
triangulation admits a representation as the harmonic extension of some measure
on ∂U. A related representation theorem for harmonic functions of finite Dirichlet
energy on bounded degree triangulations was established by Hutchcroft [43].

The results of [6] regarding the Poisson boundary followed earlier work by
Georgakopoulos [28], which established a corresponding result for square tilings.
Both results were revisited in the work of Hutchcroft and Peres [46], which gave
a simplified and unified proof that works for both embeddings.

A parallel boundary theory for circle packings of unimodular random
triangulations of unbounded degree was developed by Angel, Hutchcroft, the
current author, and Ray in [7].

7. Harnack inequalities, Poincaré inequalities, and comparison to Brownian
motion. The work of Angel et al. [6] also established various quite strong
estimates for random walk on circle packings of bounded degree triangulations.
Roughly speaking, these estimates show that the random walk behaves similarly
to the image of a Brownian motion under a quasi-conformal map, that is, a
bijective map that distorts angles by at most a bounded amount (i.e., maps
infinitesimal circles to infinitesimal ellipses of bounded eccentricity). These
estimates were central to their result concerning the Martin boundary of the
triangulation, and are also interesting in their own right. Further related estimates
have also been established by Chelkak [17].

Recent work of Murugan [67] has built further upon these methods to establish
very precise control of the random walk on (graphical approximations of) various
deterministic self-similar fractal surfaces.

8. Liouville quantum gravity and the KPZ correspondence. Statistical physics
in two dimensions has been one of the hottest areas of probability theory in
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recent years. The introduction of Schramm’s SLE [75] and further breakthrough
developments by Lawler, Schramm and Werner (see [53, 54] and the references
within) on the one hand, and the application of discrete complex analysis,
pioneered by Smirnov [79], on the other, have led to several breakthroughs
and to the resolution of a number of long-standing conjectures. These include
the conformally invariant scaling limits of critical percolation [77] and Ising
models [78], and the determination of critical exponents and dimensions of sets
associated with planar Brownian motion [53] (such as the frontier and the set of
cut points). It is manifest that much progress will follow, possibly including the
treatment of self-avoiding walk (the connective constant of the hexagonal lattice
was calculated in the breakthrough work [22]), the O(n) loop model and the Potts
model. While the bulk of this body of work applies to specific lattices, there are
many fascinating problems in extending results to arbitrary planar graphs.

The next natural step is to study the classical models of statistical physics
in the context of random planar maps (see Le Gall’s 2014 ICM proceedings
[57]). There are deep conjectured connections between the behaviour of the
models in the random setting versus the Euclidean setting, most significantly the
KPZ formula of Knizhnik et al. [50] from conformal field theory. This formula
relates the dimensions of certain sets in Euclidean geometry to the dimensions of
corresponding sets in the random geometry. It may provide a systematic way to
analyze models on the two dimensional Euclidean lattice: first study the model in
the random geometry setting, where the Markovian properties of the underlying
space make the model tractable; then use the KPZ formula to translate the critical
exponents from the random setting to the Euclidean one.

Much of this picture is conjectural but a definite step towards this goal was
taken in the influential paper of Duplantier and Sheffield [23]. Let us describe
their formulation. Let Gn be a random triangulation on n vertices and consider
its circle packing (or any other “natural” embedding) in the unit sphere. The
embedding induces a random measure μn on the sphere by putting μn(A) to be
the proportion of circle centers that are in A. The Duplantier-Sheffield conjecture
asserts that the measures μn converge in distribution to a random measure μ on
the sphere that has density given by an exponential of the Gaussian free field—
the latter is carefully defined and constructed in [23]. This measure is what is
known as Liouville quantum gravity (LQG).

Next, given a deterministic or random set K on the sphere, one can calculate
its expected dimension using the random measure given by LQG, and using
the usual Lebesgue measure—one gets two different numbers. Duplantier and
Sheffield [23] obtain a quadratic formula allowing to compute one number
from the other in the spirit of [50]; this is the first rigorous instance of the
KPZ correspondence. It allows one to compute the dimension of random sets
in the Z2 lattice (corresponding to Lebesgue measure) by first calculating the
corresponding dimension in the random geometry setting and then appealing to
the KPZ formula.

Many difficult models of statistical physics are tractable on a random planar
map due to the inherent randomness of the space. For instance, it can be shown
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that the self avoiding walk on the UIPT behaves diffusively, that is, the endpoint
of a self avoiding walk of length n is typically of distance n1/2+o(1) from the
origin [19, 34]. A straightforward calculation with the KPZ formula allows one
to predict that the typical displacement of the self-avoiding walk of length n

on the lattice Z2 is n3/4+o(1)—a notoriously hard open problem with endless
simulations supporting it.

LQG and the KPZ correspondence thus pose a path to solving many difficult
problems in classical two-dimensional statistical physics. We refer the interested
reader to Garban’s excellent survey [27] of the topic.
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