Patricia Bouyer

Lutz Schroder (Eds.)

Foundations
of Software Science and
Computation Structures

25th International Conference, FOSSACS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2-7, 2022

Proceedings

r . L;—‘
‘ EUROPEAN JOINT CONFERENCES ON

LNCS 13242 | ARCoSS

FHEORY & PRACTICE OF SOFTWARE

Lecture Notes in Computer Science 13242

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Gerhard Woeginger ®, Germany
Wen Gao, China Moti Yung®, USA
Bernhard Steffen®, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Patricia Bouyer - Lutz Schroder (Eds.)

Foundations
of Software Science and
Computation Structures

25th International Conference, FOSSACS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 27, 2022

Proceedings

@ Springer

Editors

Patricia Bouyer Lutz Schroder
Université Paris-Saclay, CNRS, Friedrich-Alexander-Universitdt Erlangen
ENS Paris-Saclay Erlangen, Germany

Gif-sur-Yvette, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99252-1 ISBN 978-3-030-99253-8 (eBook)

https://doi.org/10.1007/978-3-030-99253-8

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0002-3146-5906
https://doi.org/10.1007/978-3-030-99253-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 25th ETAPS! ETAPS 2022 took place in Munich, the beautiful capital
of Bavaria, in Germany.

ETAPS 2022 is the 25th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organizing these conferences in a coherent,
highly synchronized conference program enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attract many researchers from all over the globe.

ETAPS 2022 received 362 submissions in total, 111 of which were accepted,
yielding an overall acceptance rate of 30.7%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2022 featured the unifying invited speakers Alexandra Silva (University
College London, UK, and Cornell University, USA) and Toma§ Vojnar (Brno
University of Technology, Czech Republic) and the conference-specific invited
speakers Nathalie Bertrand (Inria Rennes, France) for FoSSaCS and Lenore Zuck
(University of Illinois at Chicago, USA) for TACAS. Invited tutorials were provided by
Stacey Jeffery (CWI and QuSoft, The Netherlands) on quantum computing and
Nicholas Lane (University of Cambridge and Samsung AI Lab, UK) on federated
learning.

As this event was the 25th edition of ETAPS, part of the program was a special
celebration where we looked back on the achievements of ETAPS and its constituting
conferences in the past, but we also looked into the future, and discussed the challenges
ahead for research in software science. This edition also reinstated the ETAPS men-
toring workshop for PhD students.

ETAPS 2022 took place in Munich, Germany, and was organized jointly by the
Technical University of Munich (TUM) and the LMU Munich. The former was
founded in 1868, and the latter in 1472 as the 6th oldest German university still running
today. Together, they have 100,000 enrolled students, regularly rank among the top
100 universities worldwide (with TUM’s computer-science department ranked #1 in
the European Union), and their researchers and alumni include 60 Nobel laureates. The

vi ETAPS Foreword

local organization team consisted of Jan Kietinsky (general chair), Dirk Beyer (general,
financial, and workshop chair), Julia Eisentraut (organization chair), and Alexandros
Evangelidis (local proceedings chair).

ETAPS 2022 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (Twente, chair), Jan Kofroii (Prague), Barbara Konig
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Paris), Tarmo Uustalu (Reykjavik
and Tallinn), and Lenore Zuck (Chicago).

Other members of the Steering Committee are Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Reiko Heckel (Leicester), Joost-Pieter
Katoen (Aachen and Twente), Fabrice Kordon (Paris), Jan Kietinsky (Munich), Orna
Kupferman (Jerusalem), Leen Lambers (Cottbus), Tiziana Margaria (Limerick),
Andrew M. Pitts (Cambridge), Elizabeth Polgreen (Edinburgh), Grigore Rosu (Illinois),
Peter Ryan (Luxembourg), Sriram Sankaranarayanan (Boulder), Don Sannella
(Edinburgh), Lutz Schroder (Erlangen), Ilya Sergey (Singapore), Natasha Sharygina
(Lugano), Pawel Sobocinski (Tallinn), Peter Thiemann (Freiburg), Sebastidn Uchitel
(London and Buenos Aires), Jan Vitek (Prague), Andrzej Wasowski (Copenhagen),
Thomas Wies (New York), Anton Wijs (Eindhoven), and Manuel Wimmer (Linz).

I’d like to take this opportunity to thank all authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2022.

Finally, a big thanks to Jan, Julia, Dirk, and their local organization team for all their
enormous efforts to make ETAPS a fantastic event.

February 2022 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the papers presented at the 25th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2022), which
was held during April 4-6, 2022, in Munich, Germany. The conference is dedicated to
foundational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

In addition to an invited talk by Nathalie Bertrand (Université de Rennes, Inria,
CNRS, and IRISA, France) on “Parameterized verification to the rescue of distributed
algorithms”, the program consisted of 23 contributed papers, selected from among 77
submissions. Each submission was assessed by three or more Program Committee
members. The conference management system EasyChair was used to handle the
submissions, to conduct the electronic Program Committee discussions, and to assist
with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. Finally, we
would like to thank the ETAPS organization for providing an excellent environment for
FoSSaCS, other conferences, and workshops.

January 2022 Patricia Bouyer
Lutz Schroder

Program Committee

C. Aiswarya

S. Akshay

Carlos Areces
Filippo Bonchi
Patricia Bouyer (Chair)
Michaél Cadilhac
Ankush Das

Maribel Fernandez
Santiago Figueira
Hongfei Fu

Patricia Johann
Ohad Kammar
Shin-ya Katsumata
Aleks Kissinger
Naoki Kobayashi
Orna Kupferman
Alexander Kurz
Stawomir Lasota
Annabelle Mclver
Daniela Petrisan
Elaine Pimentel
Jean-Francois Raskin
Jurriaan Rot

Lutz Schréder (Chair)

Pawel Sobocinski
Ana Sokolova
Jiri Srba

James Worrell

Additional Reviewers

Abriola, Sergio

Allais, Guillaume
Alvarez-Picallo, Mario
Atkey, Robert

Baillot, Patrick
Balabonski, Thibaut

Organization

Chennai Mathematical Institute, India

Indian Institute of Technology Bombay, India
Universidad Nacional de Cérdoba, Argentina
Universita di Pisa, Italy

CNRS, LMF, France

DePaul University, USA

Amazon Web Services, USA

King’s College London, UK

Universidad de Buenos Aires, Argentina
Shanghai Jiao Tong University, China
Appalachian State University, USA
University of Edinburgh, UK

National Institute of Informatics, Japan
University of Oxford, UK

University of Tokyo, Japan

Hebrew University, Israel

Chapman University, USA

University of Warsaw, Poland

Macquarie University, Australia

Université de Paris, IRIF, France

Universidade Federal do Rio Grande do Norte, Brazil

Université Libre de Bruxelles, Belgium
Radboud University, The Netherlands

Friedrich-Alexander-Universitdt Erlangen-Niirnberg,

Germany
Tallinn University of Technology, Estonia
Universitédt Salzburg, Austria
Aalborg University, Denmark
University of Oxford, UK

Balasubramanian, A. R.
Bansal, Suguman
Barloy, Corentin
Blondin, Michael
Bodlaender, Hans L.
Boker, Udi

X Organization

Bollig, Benedikt
Bonomo, Flavia

Bork, Alexander
Bonneland, Frederik M.
Carai, Luca

Carbone, Marco
Chen, Zhenbang
Clemente, Lorenzo
Comfort, Cole
Crubillé, Raphaélle
Czerwinski, Wojciech
D’Argenio, Pedro R.
Dal Lago, Ugo

Della Penna, Giuseppe
Delzanno, Giorgio
Demri, Stéphane
Devillers, Raymond
DeYoung, Henry
Dominguez, Martin Ariel
Doyen, Laurent
Exibard, Léo

Fervari, Raul

Figueira, Diego
Finkel, Alain

Garner, Richard
Gastin, Paul

Gay, Simon

Genest, Blaise

Gocht, Stephan
Goncharov, Sergey
Grochau Azzi, Guilherme
Grédel, Erich
Hadzihasanovic, Amar
Hague, Matthew
Hedges, Jules

Ho, Hsi-Ming
Hodkinson, Ian
Junges, Sebastian
Kahn, David
Karimov, Toghrul
Kauffman, Sean
Kiefer, Stefan

Klin, Bartek

Koutny, Maciej

Kura, Satoshi
Kuznetsov, Stepan

Lange, Martin

Lewis, Marco

Lorber, Florian

Loépez Franco, Ignacio
Maarand, Hendrik
Maderbacher, Benedikt
Mamouras, Konstantinos
Martens, Wim
Martinez, Maria Vanina
Mathieson, Luke
Matsushita, Yusuke
Meggendorfer, Tobias
Mikulski, Lukasz
Mikudionis, Marius
Moerman, Joshua
Muniz, Marco
Nakazawa, Koji
Nester, Chad
Ockerlund, Kyle
Oualhadj, Youssouf
Padhi, Saswat
Paperman, Charles
Perez, Guillermo
Piedeleu, Robin

Pir6g, Maciej

Pogas, Diogo

Praveen, M.

Puglisi, Simon
Reynier, Pierre-Alain
Roman, Mario
Sacerdoti Coen, Claudio
Saivasan, Prakash
Sangnier, Arnaud
Sankur, Ocan

Sarkar, Saptarshi
Schmid, Todd

Schou, Morten Konggaard
Sharma, Vaibhav
Steinberg, Florian
Sterling, Jonathan
Thejaswini, K. S.
Trotta, Davide

Tull, Sean

Tzevelekos, Nikos
Ulidowski, Irek

van Dijk, Tom

van Glabbeek, Rob
van Heerdt, Gerco
Veltri, Niccolo
Voorneveld, Niels
Vortmeier, Nils
Wagemaker, Jana
Wagner, Dominik
Wang, Di

Organization

Wang, Weiyou
Wojtczak, Dominik
Yamakami, Tomoyuki
Yang, Qizhe

Ying, Mingsheng
Ziliani, Beta
Zimmermann, Martin
Zikeli¢, Djordje

xi

Parameterized Verification to the Rescue
of Distributed Algorithms
(Abstract of Invited Talk)

Nathalie Bertrand

Univ Rennes, Inria, CNRS, IRISA, France
nathalie.bertrand@inria. fr

Abstract. Distributed computing is everywhere in our daily lives and in
advanced technological applications. Bugs in distributed algorithms can have
huge consequences, so that already in 2006, Lamport advised: “Model-checking
algorithms prior to submitting them for publication should become the norm”
[4]. Formal verification techniques indeed avoid tedious and error-prone manual
correctness proofs.

Developing formal verification techniques for distributed algorithms is a real
challenge, since correctness should typically hold independently of the number
of participants. The latter often can be considered, or are by design, anonymous,
forming a crowd of identical copies. Since the seminal work of German and
Sistla establishing the decidability of parameterized verification for crowds of
finite-state machines interacting via rendez-vous [3], the model checking com-
munity has been focusing on specific classes of distributed algorithms, and has
proposed appropriate crowds models with a decidable parameterized verification
problem [1, 2].

In this talk, we will report on recent contributions to the parameterized
verification of distributed algorithms.

Keywords: Model checking - Parameterized verification - Distributed
algorithms

References

1. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers (2015). https://doi.org/10.2200/
S00658ED1V01Y201508DCTO013

2. Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verification (invited
talk). In: Proceedings of the 31st International Symposium on Theoretical Aspects of Com-
puter Science (STACS’14). LIPIcs, vol. 25, pp. 1-10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.1

3. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675-735 (1992). https://doi.org/10.1145/146637.146681

4. Lamport, L.: Checking a multithreaded algorithm with *CAL. In: Dolev, S. (ed.) Distributed
Computing. DISC 2006. Lecture Notes in Computer Science, vol. 4167, pp. 151-163.
Springer, Berlin (2006). https://doi.org/10.1007/11864219_11

https://orcid.org/0000-0002-9957-5394
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/11864219_11

Contents

Representing Regular Languages of Infinite Words Using Mod 2
Multiplicity AUtomataot 1
Dana Angluin, Timos Antonopoulos, Dana Fisman, and Nevin George

Limits and difficulties in the design of under-approximation
abstract dOmains 21
Flavio Ascari, Roberto Bruni, and Roberta Gori

On probability-raising causality in Markov decision processes 40
Christel Baier, Florian Funke, Jakob Piribauer, and Robin Ziemek

Parameterized Analysis of Reconfigurable Broadcast Networks. 61
A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy

Separators in Continuous Petri Nets. 81
Michael Blondin and Javier Esparza

Graphical Piecewise-Linear Algebra 101
Guillaume Boisseau and Robin Piedeleu

Token Games and History-Deterministic Quantitative Automata 120
Udi Boker and Karoliina Lehtinen

On the Translation of Automata to Linear Temporal Logic. 140
Udi Boker, Karoliina Lehtinen, and Salomon Sickert

Categorical composable cryptography 161
Anne Broadbent and Martti Karvonen

DyNetKAT: An Algebra of Dynamic Networks 184
Georgiana Caltais, Hossein Hojjat, Mohammad Reza Mousavi,
and Hiinkar Can Tung

A new criterion for M, A -adhesivity, with an application
to hierarchical graphs. L 205
Davide Castelnovo, Fabio Gadducci, and Marino Miculan

Quantifier elimination for counting extensions of Presburger arithmetic 225
Dmitry Chistikov, Christoph Haase, and Alessio Mansutti

A first-order logic characterisation of safety and co-safety languages. 244
Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari,
and Stefano Tonetta

Xvi Contents

First-order separation over countable ordinals
Thomas Colcombet, Sam van Gool, and Rémi Morvan

A Faithful and Quantitative Notion of Distant Reduction for Generalized
ApPPLCAtiONS o ot e
José Espirito Santo, Delia Kesner, and Loic Peyrot

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy . . .
Raul Fervari and Alessio Mansutti

Temporal Stream Logic modulo Theories.
Bernd Finkbeiner, Philippe Heim, and Noemi Passing

The Different Shades of Infinite Session Types.
Simon J. Gay, Diogo Pocgas, and Vasco T. Vasconcelos

Complete and tractable machine-independent characterizations

of second-order polytime
Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion,
and Romain Péchoux

Variable binding and substitution for (nameless) dummies
André Hirschowitz, Tom Hirschowitz, Ambroise Lafont,
and Marco Maggesi

Uniform Guarded Fragments
Reijo Jaakkola

Sweedler Theory of Monads.
Dylan McDermott, Exequiel Rivas, and Tarmo Uustalu

Model Checking Temporal Properties of Recursive Probabilistic Programs. . .
Tobias Winkler, Christina Gehnen, and Joost-Pieter Katoen

Author Index e

Representing Regular Languages of Infinite
Words Using Mod 2 Multiplicity Automata

Dana Angluin!, Timos Antonopoulos! (<), Dana Fisman?, and Nevin George®

! Yale University, New Haven, CT, USA
timos.antonopoulos@yale.edu
2 Ben-Gurion University, Beer-Sheva, Israel

Abstract. We explore the suitability of mod 2 multiplicity automata
(M2MAs) as a representation for regular languages of infinite words.
M2MAs are a deterministic representation that is known to be learnable
in polynomial time with membership and equivalence queries, in contrast
to many other representations. Another advantage of M2MAs compared
to non-deterministic automata is that their equivalence can be decided in
polynomial time and complementation incurs only an additive constant
size increase. Because learning time is parameterized by the size of the
representation, particular attention is focused on the relative succinct-
ness of alternate representations, in particular, LTL formulas and Biichi
automata of the types: deterministic, non-deterministic and strongly un-
ambiguous. We supplement the theoretical results of worst case upper
and lower bounds with experimental results computed for randomly gen-
erated automata and specific families of LTL formulas.

Keywords: Multiplicity Automata - Regular Omega Languages - Biichi
Automata - Linear Temporal Logic - Conciseness

1 Introduction

Regular languages of infinite words (or w-words) play an important role in ver-
ification of reactive systems. The question of whether a system S satisfies a
specification given by a temporal logic formula ¢ can be reduced to the question
of whether L(S) N L(—¢) is empty, where L(.S) is the set of w-words represent-
ing the computation paths of the system S and L(—¢p) is the set of w-words
representing computations that violate ¢. Automata are a useful machinery for
performing operations on languages such as complementation and intersection,
and for deciding properties such as emptiness and equivalence. Many verification
tools are implemented using reductions to automata [20].

Regular w-languages can be represented using various types of automata (e.g.
Biichi, Rabin, Parity, etc.). Different automata types differ in their succinctness
and in the complexity of performing operations of interest. Non-deterministic
Biichi automata (NBAs) are one of the most popular acceptor types for regular
w-languages, mainly due to their simplicity, succinctness, and good complexity

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 1-20, 2022.
https://doi.org/10.1007/978-3-030-99253-8_1

®

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_1&domain=pdf

2 D. Angluin et al.

for the emptiness problem. An issue with Biichi automata is that their deter-
ministic version (DBAs) is strictly less expressive: while NBAs accept all regular
w-languages, DBAs recognize only a strict subset thereof. Another issue is that
complementation of NBAs is hard; it has a 2271987 Jower bound (where n is the
number of states) [16]. This motivated the introduction of complete unambiguous
Biichi automata (CUBA) by Carton and Michel who showed that every regular
w-language can be represented by a CUBA, i.e. there is a way to limit the non-
determinism without losing expressiveness [8]. Bousquet and Loding proposed
strongly unambiguous Biichi automata (SUBA), a slight relaxation of CUBA for
which they have shown that equivalence can be decided in polynomial time [6].

The SUBA model was also shown useful in terms of learnability of regular
w-languages — Angluin, Antonopoulos and Fisman have shown that SUBAs are
polynomially predictable using membership queries (while NBAs, under plausi-
ble cryptographic assumptions, are not) [1]. Their proof makes use of a model of
automata called Mod 2 Multiplicity Automata (M2MA). Informally, multiplicity
automata are an algebraic variant of automata that compute functions from fi-
nite words to a field K [4,5], and M2MAs are multiplicity automata that work
over the field GF(2) = {0,1} where sum and product are computed modulo 2.

In this paper we look at questions concerning the adequacy of M2MAs for
representing regular w-languages. We note that M2MAs operate on finite words,
and their use for representing regular w-languages follows a reduction, by Cal-
brix, Nivat and Podelski from a regular w-language L to a regular language
(L)g of finite words [7]. We thus start by reviewing the succinctness of M2MAs
with respect to automata on finite words, particularly of types non-deterministic
(NFAs), deterministic (DFAs), and unambiguous (UFAs). We show that M2MAs
are more succinct than DFAs and UFAs, whereas with respect to NFAs there
are in the worst case exponential gaps in going from M2MAs to NFAs and vice
versa.

We also study the complexity of performing basic operations on M2MAs;
complementation can be done with an additive constant increase in size, and
union and intersection with the product of sizes. There is a known cubic algo-
rithm to minimize a weighted automaton [10,19], which applies to an M2MA
and also implies cubic procedures for determining emptiness and equivalence.

We then investigate the succinctness of M2MAs in representing regular w-
languages, by comparing translations from linear temporal logic (LTL) formulas
and Biichi automata (deterministic, non-deterministic and strongly unambigu-
ous) into M2MAs, DFAs, UFAs, SUBAs and NBAs (where the former three use
the (L)g representation). The results are summarized in Fig. 3.

To complement the theoretical bounds, we implemented procedures to trans-
form SUBAs to UFAs and UFAs to M2MAs, and to minimize and learn M2MAs,
and report estimates of the average size increases in transforming random SUBAs,
DBAs, and NBAs to M2MAs. We also determine the minimum dimensions of
M2MAs and minimum sizes of DFAs for a few members of three specific families
of LTL formulas and compare them with the respective w-automaton sizes.

Representing Languages Using M2MAs 3

2 Preliminaries

For nonnegative integers k and ¢, [k..£] is the set of nonnegative integers n such
that £ < n < /. Given a finite alphabet X, X* is the set of finite words over X.
The length of a word z is |z| and the empty word is e. X™ = {a € X* | |z| = n}.
The reverse of a word z is 2”. A language L is any subset of X*. The reverse of
L, denoted L", is {«" | x € L}. The Hankel matriz of a language L is the infinite
matrix whose rows and columns are indexed by elements of X*, where the entry
for row x and column y is 1 if zy € L and 0 if zy & L.

The set of infinite words (or w-words) over X' is the set of all maps from
the positive integers to X and is denoted X“. An w-language is any subset of
X%, For a finite or infinite word w, w[i] denotes the symbol at position i, with
indices starting at 1. Concatenation of a finite word x with a finite or infinite
word y is denoted zy. The word x is a prefix of zy and the word y is a suffix
of zy. The suffix of w starting at position 4 is denoted w[i :]. If x € X* and k
is a nonnegative integer, z* denotes the concatenation of k copies of x, and z¥
denotes the concatenation of x with itself infinitely many times. An w-word is
ultimately periodic if it can be written in the form w(v)® for u,v € X* with
|v| > 0. If A; and A; are sets and S C A; x Ag, then we define the projection
m1(S) = {a1 | (3az)(a1,a2) € S} and analogously for the projection .

2.1 NFAs, UFAs, DFAs, NBAs, UBAs, SUBAs, and DBAs

A (nondeterministic) finite-state automaton A is a tuple (X, Q, I, A, F) consist-
ing of a finite alphabet X, a finite set @ of states, a set I C @ of initial states,
a set F' C @ of final states, and a transition relation A C Q x X x Q. The
transition relation A is deterministic if for every state ¢ € @ and every symbol
o € X, there is at most one state ¢’ € @ such that (q,0,q") € A. The size of a
finite-state automaton is |Q|.

For a word w, a run of A on w is a sequence of states qg,qi, ... such that
for each 7 that indexes a symbol in w, (g;—1,w[i],q;) € A. Thus, for w € X*
a run on w is a sequence of length |w| + 1, and for w € X“, a run on w is an
infinite sequence of states. A run on w is initial if g9 € I. A finite run is final
if ;| € F', and an infinite run is final if there are infinitely many values of ¢
for which ¢; € F. Acceptors of languages and w-languages may be defined using
finite-state automata, as follows. In each case, the language of words accepted
by an acceptor A is denoted L(A).

A nondeterministic finite acceptor (NFA) is a finite-state automaton A that
accepts a word w € X* if there exists a run of A on w that is both initial
and final. An NFA A is an unambiguous finite acceptor (UFA) if for every word
w € L(A) there is exactly one run of A on w that is initial and final. An NFA
A is a deterministic finite acceptor (DFA) if there is exactly one initial state
(II] = 1) and the transition relation A is deterministic. The languages over X
that are accepted by NFAs, UFAs, or DFAs is precisely the regular languages
over Y.

A nondeterministic Biichi acceptor (NBA) is a finite-state automaton A that
accepts a word w € X% if there exists a run of A on w that is both initial and

4 D. Angluin et al.

final. An NBA is an unambiguous Biichi acceptor (UBA) if for every w € L(A),
there exists exactly one run of A on w that is initial and final. Bousquet and
Loding [6] introduced the concept of a strongly unambiguous Biichi acceptor
(SUBA), which is an NBA such that for every w € X, there is at most one final
run of the acceptor on w — note that the condition of being initial is dropped.
Thus, every SUBA is a UBA. The w-languages over X' that are accepted by
NBAs, UBAs, or SUBAs are precisely the regular w-languages. An NBA is a
deterministic Biichi acceptor (DBA) if there is exactly one initial state (|I| = 1)
and the transition relation A is deterministic. Every DBA is a UBA, but is not
necessarily a SUBA. The w-languages that are accepted by DBAs are a proper
subclass of the class of all regular w-languages.

For Biichi acceptors, we also consider a generalized version, GNBA, in which
the acceptance condition is specified not by a single set of final states, but by a
collection F of sets of final states. For a GNBA, a run qo,q1,... is final iff for
each F' € F, there exist infinitely many indices ¢ such that ¢; € F. Applying this
generalization to a SUBA yields a GSUBA. There is a standard translation of a
GNBA of size n with k sets of final states into an NBA of size kn, in which there
are k copies of the GNBA automaton. However, applying this construction to a
GSUBA does not in general yield a SUBA.

2.2 LTL formulas

The syntax of linear temporal logic (LTL) [18] over a set AP of atomic proposi-
tions is given by the following grammar @ ==p | ~¢ | o1 Ap2 | Op | (L1U p2)
where p € AP is an atomic proposition.

The semantics of LTL relates w-words over 247 to formulas as shown on the
right (recall that indexing of words starts at 1). Additional Boolean and temporal
connectives are defined in the

usual way. In particular T (true) % =p ?H p € w(l]
is defined as pV-p, Op (eventually A lff w @
@) is defined as (T U ¢) and Oy ¥ E o1 A g2 lﬁ w E 1 and w E 9
(always @) is defined as =O(—p). ¥ = Oy lff w[2 :): ¥

The w-language of an LTL for- % F (1t o) iff 3. w,[]] ': 2 and
mula ¢, denoted L(yp), is the set Vi <j.wli:] =

of w-words for which it is true. The size of an LTL formula ¢ is the number of dis-
tinct subformulas it contains. Every LTL formula represents a regular w-language
(see Section 5). However, not every regular w-language can be represented by an
LTL formula; in particular, the regular w-languages that can be represented by
LTL formulas are noncounting [9].

2.3 M2MAs

A multiplicity automaton represents a function mapping X* to elements of a field
K. We focus on the case where K = {0,1} and product and sum are computed
modulo 2. A mod 2 multiplicity acceptor (M2MA) of dimension d is a tuple
A= (X,v1,{tto }sex,vr), where X is the input alphabet, v; € K? is the initial

Representing Languages Using M2MAs 5

vector, vp € K? is the final vector, and for each o € X, i, is a d x d transition
matrix over /C, that is, an element of %>,

The vectors v; and vy are interpreted as d X 1 column vectors. The transpose
operation is denoted by T, and the inner product of two column vectors v, w € K¢
is denoted v w.

To define L(A) we inductively define the matrix p, for all x € X*. If x = ¢,
then p, is the d x d identity matrix. If + = oy for some o € ¥ and y € X*
then gy = popy. The function f4 : X* — K computed by A is defined by
fa(z) =v] pevp. A word z is accepted by A if fa(z) = 1.

We refer to column vectors v € K? as states or co-states of A. A state v is
reachable iff there exists a word z € X* such that v = (v] ;). A co-state w is
co-reachable iff there exists a word x € X* such that w = p,vp. For any state
v, L,(A) denotes the language of words accepted by A with its initial vector
replaced by v.

We assume standard results from finite dimensional vector spaces. If U is a
vector space of dimension k over the field {0,1} then |U| = 2*. If U is a vector
subspace of the vector space V', then the orthogonal complement of U is the set
Ut ={v|vTu=0VYuec U}, Ut is a vector subspace of V which is disjoint
from U except for the zero vector, and the dimensions of U and U+ sum to the
dimension of V.

The following simple lemmas relate M2MAs to UFAs and DFAs, and show
that M2MAs accept exactly the regular languages.

Lemma 1. [Beimel et al. [4]] Let L C X*. If L is accepted by a UFA of size n,
it is also accepted by an M2MA of dimension n.

Lemma 2. Let L C X*. If L is accepted by an M2MA of dimension d with R
reachable states, then L is also accepted by a DFA of R states. Clearly, R < 2¢.

Beimel et al. [4] have shown that there is a polynomial time algorithm to
learn an unknown M2MA using equivalence and membership queries.

2.4 Size lower bounds for DFAs, M2MAs and NFAs

Given a language L C X*, we define an observation table for L as an £ x m
matrix T of 0’s and 1’s where each row ¢ is associated with a finite word x; and
each column j is associated with a finite word y;, and the entry T; ; is 1 if and
only if z;y; € L. This terminology is derived from its use in algorithms to learn
DFAs. An observation table for L is thus a finite submatrix of its Hankel matrix.

Certain properties of observation tables for a language L yield lower bounds
on acceptors recognizing L. Recall that the rank of a matrix is the number of
linearly independent rows (or columns) it contains.

Lemma 3. Let T be an observation table for the reqular language L with rows
associated with finite words x; for i = [1..£] and columns associated with finite
words y; for j € [1.m]. Assume T has n distinct rows and rank d over the field
{0,1}. Then any DFA to accept L must have at least n states, and any M2MA
to accept L must have dimension at least d.

6 D. Angluin et al.

Proof. Let D be a DFA accepting L. If the rows for x; and xj, are distinct, then
there is a column j on which they differ, that is, z;3y; € L iff xy; € L. Thus,
the states of D reached from the initial state on the words x; and x;, must be
different and D has at least n states.

Let M be an M2MA accepting L. Following the argument of Beimel et al. [4],
the observation table is a submatrix of the Hankel matrix of the language L,
and its rank (modulo 2) is a lower bound for the rank (modulo 2) of the Hankel
matrix, which is a lower bound for the size of any M2MA accepting L. a

For lower bounds for NFAs, we use the concept of covering the observation
table by 1-monochromatic rectangles. If R and C' are subsets of the indices of
the rows and columns (respectively) of a matrix M, then the (R, C')-rectangle of
M is the matrix obtained from M by deleting those rows whose indices are not
in R and those columns whose indices are not in C. The (R, C)-rectangle of a
matrix M is v-monochromatic iff all of its entries are equal to the value v.

Let M be a matrix of 0 and 1 values. A 1-rectangle cover of M is a set
{(Rs,C5) | s € [1..t]}, of 1-monochromatic rectangles (R, Cs) of M such that
for every i and j, if M; ; = 1 then there exists some s € [1..t] such that i € R,
and j € Cs. A minimum 1-rectangle cover of M is a l-rectangle cover of M of
minimum possible cardinality t.

Lemma 4. Let T be an ¢ x m observation table for the regular language L. Any
NFA M recognizing L must have at least as many states as the cardinality of the
minimum 1-rectangle cover of T.

This is implied by Theorem 5.2.4.10 and Exercise 5.2.5.14 of Hromkovic¢ [12].
For completeness we provide a simple direct proof.

Proof. Let the strings indexing the rows of T be z; for i € [1..£] and the strings
indexing the columns of T be y; for j € [1..m]. For each state g of M, let R, be
the set of all i € [1..£] such that x; reaches ¢ from an initial state of M, and let
Cy be the set of all j € [1..m] such that y; reaches a final state of M from g.
Clearly (Ry, Cy) must be a 1-monochromatic rectangle of T', because if i € R,
and j € C, then z;y; is accepted by M and the entry T; ; must be 1. Also, if
T;; = 1, then z;y; must be accepted by M, so there must exist a state g of M
such that z; reaches ¢ from an initial state of M and y; reaches a final state
of M from ¢, that is, i € R, and j € C,. Thus, the rectangles (R, Cy) for all
states ¢ of M form a 1-rectangle covering of T', and the number of states of M

is greater than or equal to the cardinality of the minimum 1-rectangle covering
of T. O

Corollary 1. If L is a reqular language with an n X n observation table T that
has exactly one 1 in every row and column, then any DFA, M2MA, or NFA to
recognize L must have at least n states.

Representing Languages Using M2MAs 7

As an example of the use of these results, let L be the reg-

ular language over {a, b, ¢} consisting of those strings that do E i (11 Il)
not contain any occurrences of the substrings ba or cb, with b Iil0n
the observation table for L in Fig. 1. There are 4 different c[11]o
rows, so any DFA to accept L must have at least 4 states. ba|0]0j0

The mod 2 rank of the table is 3 (the first three rows are a ~ Fig. 1: Observation
row basis) so any M2MA accepting L must have dimension table with rank 3.
at least 3. The observation table with rows ¢ and b, and columns a and b is the
2 x 2 identity matrix, so any NFA to accept L must have at least 2 states. In
fact, there is a DFA of 4 states, an M2MA of dimension 3, and an NFA of 2
states accepting L, so for this example, the lower bounds are tight.

3 M2MAs as representations of regular languages

We consider the computational cost and size implications of some common op-
erations and decision questions using M2MAs to represent regular languages.

3.1 M2MAs: procedures for operations and properties

Reverse Given an M2MA A accepting a regular language L, an M2MA A"
accepting the reverse language L" may be obtained from A by exchanging the
initial and final vectors, and transposing each of the transition matrices. Thus,
the minimum dimension of an M2MA accepting L is equal to the minimum
dimension of an M2MA accepting L". Reversing is similarly easy for UFAs and
NFAs, but may incur an exponential increase in size for a DFA.

Sum If for i = 1,2, M; is a multiplicity automaton of dimension d; computing
the function f; : 2* — K, then the sum f; + fo is computed by a multiplicity
automaton M of dimension d; + ds constructed as the direct product of M7 and
M, as follows. State vectors of M are the concatenation of state vectors of M,
and My, including the initial and final vectors. For each o € X' the transition
matrix p, is a (dy +ds) x (di +d2) matrix obtained by putting (u1), in the upper
left, (p2)o in the lower right, and setting the remaining entries to 0. This ensures
that the state updates of M7 and M are done in parallel for each symbol, and
the output is the sum of the outputs for M; and M.

Boolean operations For M2MAs, complementation follows directly from the
sum construction. If A is an M2MA of dimension d and C'is the M2MA of dimen-
sion 1 that outputs 1 on every string, then the sum construction with M and C'
yields an M2MA of dimension d+1 that accepts the regular language X*\ L(A).
For DFAs, complementation is size-preserving, while for NFAs, complementation
may incur an exponential increase in size.

Given M2MAs A; of dimension d; for ¢ = 1,2, the intersection language
L(A1) N L(As) is accepted by an M2MA of dimension d; - da obtained from A;

8 D. Angluin et al.

and As using the Kronecker product of matrices.®> Union can then be obtained
from complementation and intersection.

Minimization, Equivalence, and Emptiness Sakarovitch [10,19] describes
a cubic-time algorithm to minimize a weighted automaton with weights from a
skew field, which has the following corollary.

Corollary 2 (of Theorem 5.20 in [10]). Given an M2MA A of dimension d,
an M2MA A" of the minimum possible dimension accepting L(A) may be found
in time O(|X|d?).

An M2MA recognizes the empty language iff it has dimension 0 when minimized,
and the equivalence of two M2MAs may be tested by determining if their sum
is the empty language.

3.2 Conciseness comparisons for regular languages

We summarize known results comparing the conciseness of M2MAs with that of
DFAs, UFAs and NFAs as representations of regular languages in Fig. 2. The
entry for row A and column B is “—” if the representation A is an instance
of the representation B, otherwise, starting with a machine of size n in the
representation A, how large must an equivalent machine in the representation B
be in the worst case? The entry 20(") means that there is a lower bound of 2°
and an upper bound of 24" for positive constants ¢ and d.

We briefly explain the entries in the
table. A DFA is also a UFA and an NFA,

and a UFA is also an NFA. A DFA or UFA DFA | UFA | NFA IM2MA
of size n can be converted to an equiv- DFA 9_<n) - - n
alent M2MA of dimension n (Lemma 1). UFA |2 Y (_ﬁn)
The subset construction to determinize an NFA |2 2 — |2

. . M2MA [28()[980()[20(m) | _
NFA of size n yields a DFA (and there-

fore also a UFA or M2MA) of size at most eF ig. 2: two.mjcase size bounds for
representations of regular languages.
2". An M2MA of dimension n can be con-
verted to a DFA (or UFA or NFA) of size
at most 2" (Lemma 2). The language B,, = X*-1- X", for X = {0, 1}, consisting
of binary strings with a 1 located n + 1 symbols before the end is accepted by
a UFA of size n + 2 (and therefore also an NFA of size n + 2 and an M2MA of
dimension n + 2), but requires at least 2”1 states for any DFA that accepts it.
For the problem of converting an NFA to an M2MA, Kaznatcheev and
Panangaden [13] consider the language L,, = X* ((0X™~'1) + (12"10)) * for
Y ={0, 1}, and show that L,, is recognized by an NFA of 2n + 2 states, but that
any M2MA to recognize L, must have dimension at least 2”. By Lemma 1, this
lower bound applies also to UFAs.
For the problem of converting an M2MA to an NFA, Kaznatcheev and Panan-
gaden [13] give a family of languages {L,} such that L, is recognized by an

3 If A is an m x n matrix and B is a p X ¢ matrix, then the Kronecker product A® B is
the pm X gn block matrix, with blocks of size B, where the block-matrix at position
(i,7) is ai; B [17, Def 1.2.1].

Representing Languages Using M2MAs 9

M2MA of dimension n + 2, and prove that any NFA to recognize L,, must have
at least 2/2 — 2 states. Here we provide a simpler proof of a stronger lower
bound. Let L, be the language recognized by the M2MA given in Fig. 1 of
the paper of Kaznatcheev and Panangaden. This M2MA accepts a word iff the
number of indices ¢ such that both w[i] and w[i + n] is 1, is odd.

Lemma 5. Any NFA to recognize L, must have at least 2"~ states.

Proof. The language L,, has an observation table T,, of dimension 2" x 2", in
which the rows and columns are indexed by strings z,y € {0,1}". We view
strings in {0,1}"™ as vectors of length n over the field {0,1}, so that the entry
corresponding to the pair (x,y) is the inner product of the vectors and y, that
is "y. Note that the inner product z "y is 1 iff the number of indices i such
that both zy[i] and zy[i +n] is 1, is odd. The lower bound of 2" — 1 then follows
from Lemma 4 and the following Lemma. 0O

Lemma 6. The minimum 1-rectangle covering of the observation table T,, just
defined has cardinality 2™ — 1.

Proof. For the upper bound it suffices to consider a 1-rectangle covering of T;,
consisting of pairs (R, C) where R is the singleton index of a nonzero row and
C consists of the indices of the occurrences of 1 in that row.

If z € {0,1}" is the zero vector, then z Ty is 0 for all vectors y; otherwise,
2Ty = 1 for exactly half the vectors y, that is, for 2”1 columns of 7T},. Hence,
T,, contains exactly 2"~1(2" — 1) entries of value 1. We now show that any 1-
monochromatic rectangle (R, C') of T, has at most 2"~ entries of 1, which shows
that a minimum 1-rectangle covering of T,, must have cardinality at least 2" — 1.

Let (R,C) be any l-monochromatic rectangle of T,,. Let U be the vector
subspace spanned by the vectors x corresponding to indices in R, and let B be
a basis for U whose indices are drawn from R. Let k = |B|, so that |U| = 2*.
Every element of U is a sum of elements of B, but a sum of an even number of
elements of B will be 0 in all the columns with indices in C, so R can contain
the indices of at most half the elements of U, that is, |R| < 2+F~1.

Let S = {v | u"v =1 VYu € B}, the set of vectors whose inner product with
all elements of B is 1; clearly, |C| < |S]. We use inclusion/exclusion to find the
cardinality of .S, as follows.

5| =2"—| | J{v|uTv=0}

ueB
=2"—| {J ¢
CCB
n n—1 k n—2 kon—k
=20 k2 ()27 ()R
1
=2". (1 - =)
(1-3)

— 2n—k

Thus, |C| < 277k Then |R x C| < 2k=1.2n=k = 2n=1 "concluding the proof. O

10 D. Angluin et al.

4 Representing regular omega-languages using regular
languages

In the preliminaries we discussed NBAs, SUBAs and DBAs, and LTL formulas as
representations of regular w-languages. Here we explain that M2MAs and other
automata over finite words can also be used to represent regular w-languages.

A regular w-language is uniquely determined by the set of ultimately periodic
w-words it contains. Let L be a regular w-language and let $ be a symbol not
in the alphabet of L. To represent the set of ultimately periodic words in L,
Calbrix, Nivat and Podelski [7] introduced the related language of finite words
Lg = {u$v | u(v)¥ € L} and proved that it is regular.

Thus a regular w-language L can be represented by an acceptor for the regular
language Lg, for example, a DFA, UFA, NFA or M2MA. The representation of
Lg by an M2MA was used by Angluin, Antonopoulos, and Fisman [1] in showing
that regular w-languages are polynomially predictable with membership queries
as a function of the size of the smallest SUBA accepting the language.

We note that if for ¢ = 1,2, A; is an M2MA of dimension d; accepting
(L;)g for the regular w-language L;, then there is an M2MA of dimension d; - da
accepting (L; N Ly)g, and an M2MA of dimension d; + 3 accepting (X% \ L1)s.
The former follows by the intersection result for M2MAs, and the latter follows
by the sum result applied to A; and the dimension 3 M2MA that accepts the
set {uv |ue X* ve Xt}

5 Conciseness comparisons for regular omega-languages

We present known and new results comparing the conciseness of M2MAs with
that of several other representations of regular w-languages, summarized in
Fig. 3. The entry for row A and column B gives upper (above) and lower (below)
bounds on the worst case increase in size for a representation of type A of size
or dimension n to an equivalent representation of type B. The entry is “—" if a
representation of type A is an instance of a representation of type B. The entries
for the columns for DFA, UFA, M2MA, and NFA are for the language Lg. An
arrow indicates that the (lower or upper) bound is derived from a related (lower
or upper) bound in the table. For example, the upper bound for the row DBA
and columns UFA, M2MA and NFA are derived from the upper bound for the
row DBA and column DFA. We now discuss the entries.

5.1 Size increases for LTL formulas

Upper bounds

There is a “classic” algorithm, described by Baier and Katoen [3, Chapter 5], to
translate an LTL formula of size n into a GNBA of size 2™ with at most n sets
of final states, which then yields an NBA of size at most n2"™. This shows that
every LTL formula represents a regular w-language, and gives an upper bound
for translating an LTL formula to an NBA. Another algorithm to translate LTL
formulas into NBAs is given by Gerth, Peled, Vardi and Wolper [11].

Representing Languages Using M2MAs 11

| DFA UFA | M2MA | NFA | (G)SUBA NBA
220(") 90(n) . . 2", n) nan
LTL via UFA Cor.3 Prop. 1 [3]
N N 9%(n) 99(n) N 99(n)
Thm. 2 Thm. 2 [3]
n+n3" - - - ! _
[14]
DBA 9Q(nlogn) 992(n) 992(n) 992(n)
N _
[2] Thm. 3 Thm. 3 [6]
n 2 2
2" 4 2m3" . . n+ n3" (12n)" 3
NBA [14] (14] 8]
T 0 t 0) -
4 2n? +n - - . B
(6]
SUBA
P) . M2 —n+2|2n2 —n+2 3 3
[1] Thm. 4 Thm. 4

Fig. 3: Worst-case size bounds for representations of regular w-languages.

Concerning the classic translation algorithm, Bousquet and Loding [6] give a
brief argument and state that “Hence the automaton that is constructed in this
standard way is strongly unambiguous.” Wilke [21] states that “Every tempo-
ral formula with n subformulas can be translated into an equivalent backwards
deterministic generalized Biichi automaton with at most 2™ states and as many
Biichi sets as there are subformulas with leading temporal operator F (eventu-
ally) or U (until).” To clarify these earlier statements, we reformulate them in
our terminology. This gives an upper bound for transforming an LTL formula to
a GSUBA.

Proposition 1. Let ¢ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Applying the classic translation algorithm
to ¢ yields a GSUBA of size 2" with m sets of final states.

Proof. Baier and Katoen [3] show that the algorithm yields a GNBA M of the
given size in which each state corresponds to an assignment of true or false to
every subformula of ¢. Moreover, if the w-word w is accepted from a state g,
then ¢ assigns true to each subformula 1 of ¢ iff ¥ is true for w. Hence there

is at most one state of M from which the w-word w is accepted, and thus M is
also GSUBA.]

To get an upper bound for translation of LTL formulas to UFAs, M2MAs,
and NFAs, we would like to use the property of being strongly unambiguous.
However, if the resulting GSUBA has more than one set of final states, trans-
forming it in the usual way into an NBA does not in general yield a SUBA.
Instead, we generalize to GSUBAs the method of Bousquet and Loding [6] for
transforming a SUBA accepting L into a UFA accepting Lg.

12 D. Angluin et al.

Theorem 1. There is an algorithm to transform a GSUBA of size n with m
sets of final states accepting L into a UFA of size 2™n? +n accepting Lg. It runs
in time polynomial in n and 2™.

Proof. Let L be accepted by the GSUBA M = (X,Q,I, A, F) with n = |Q]
and m = |F|. We index the elements of F as F; for i € [1..m]. Bousquet and
Léding [6, Lemma 1] show that u(v)® is accepted by a SUBA iff there exists a
state ¢ reachable from an initial state on reading w, such that on the word v
there is a computation path that loops from ¢ back to g while passing through
an accepting state. For the GSUBA M, the condition is that the computation
path that loops from ¢ back to ¢ must pass through at least one state from each
F; for ¢ € [1..m].

We define an NFA M’ = (X', Q', I', A’, F’) as follows. The alphabet is 3/ =
Y U {$}. The state set is Q' = Q U Q1, where @1 = {(q1,¢2,5) | ¢1,92 € Q,S C
[1..m]}. The initial states are I’ = I. The transition relation is A’ = AUA; UA,,
where A; is the set of all triples ((¢1,42,5),0,(q}],q5,5")) such that ¢; = qi,
(g2,0,45) € A, and 8" = SUT, where T' = {i € [1.m] | ¢4 € F;}. And A,
contains all triples (q,$, (¢,¢,0)) such that ¢ € Q. The set of final states F’ is
the set of triples (¢1, g2, S) such that S = [1..m] and ¢1 = ¢o.

Then M’ has 2™n? + n states, and can be constructed in time polynomial in
n and 2™ given the GSUBA M. On an input u$v, the NFA M’ behaves like M
on the word u, reaching some state ¢. Then on the symbol $, M’ transitions to
the state (g, q,), recording the state q reached after reading u. As M’ continues
reading v, the first component remembers ¢ while the second component transi-
tions as in M. The third component, S, records the set of indices of those final
sets F; that have been visited in the processing of v. The input u$v is accepted
by M’ iff there is a state g of M reachable from a state of I on input u such that
there exists a computation path in M on input v from ¢ to ¢ that visits at least
one state in F; for every i € [1..m]. Thus M’ accepts Lg. (Note that the set S
generalizes the single bit used in Bousquet and Léding’s construction.)

To see that M’ is a UFA, we note that if there are two different accepting
computations in M’ for u$v, then these may be used to construct two different
accepting computations in M for u(v)“, contradicting the fact that M is a

GSUBA. .

The entry in Fig. 3 for row LTL and column UFA is then justified by the
following.

Corollary 3. Let ¢ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Then there is a UFA of size 22"T™ 4+ 2" to

accept L()sg.

For transforming LTL to DFA, we have only the doubly-exponential bound
for transforming an LTL formula to a UFA and the UFA to DFA.

Lower bounds
We first generalize Lemma 3 to DBAs and Lemma 4 to NBAs. An observation

Representing Languages Using M2MAs 13

table for an w-language L is a matrix 7' € {0, 1}**™ with rows indexed by finite
words «; for ¢ € [1..4] and columns indexed by w-words y; for j € [1..m] such
that T; ; = 1 iff z;y; € L. Then we have the following, proved analogously to
Lemma 3 and Lemma 4.

Lemma 7. Let T be an observation table for the w-language L. If T has n
distinct rows, then any DBA accepting L has at least n states.

Lemma 8. Let T be an observation table for the w-language L. If the minimum
1-cover of T has cardinality n, then any NBA to recognize L has at least n states.

Baier and Katoen [3, Theorem 5.4.2] give a lower bound for a family of LTL
formulas ¢,, of size poly(n) for which equivalent NBAs must have at least 2"
states. Below we give a simplified and slightly strengthened version of their lower
bound, which also applies to M2MAs or NFAs for Lg.

Theorem 2. For every positive integer n there exists an LTL formula v, of
size at most 2n + 6 such that any NBA accepting L(,) must have size at least
2", Any NFA or M2MA accepting L(,)g must have size or dimension at least
2m,

Proof. Let p be a propositional variable. For any positive integer n we define
the LTL formula 1, = O(p — O"(®)) A (-p = O"(-p)). We use O"
to represent the composition of () with itself n times, so (O3(p) abbreviates
O(O(O(p)))- The formula v, has size 2n+6. Let the symbols 0 and 1 represent
the assignment of false and true to p. Then L(v,,) is the language of w-words w
over {0,1} such that for some z € X", w = av.

For L(vy)g, let x1,22,...,29» be any total ordering of all the elements of
{0,1}", and consider the observation table T with rows corresponding to x; and
columns corresponding to $z; for ¢ € [1..2"]. Clearly, there is exactly one 1 in
row z;, in the column $z;, so this observation table is the 2™ x 2" identity matrix,
which has rank 2", and any NFA or M2MA accepting L(1),,)s must have size at
least 2™ by Corollary 1.

For the lower bound on NBAs, we observe that if we instead index the
columns of T with (z;)¥, it becomes an observation table for the w-language
L(vy,), and remains the 2" x 2™ identity matrix, which implies that any NBA
accepting L(¢,) must have at least 2" states, by Lemma 8. O

5.2 Size increases for DBAs, NBAs, SUBAs

Upper bounds

For an NBA of n states accepting L, Calbrix, Nivat and Podelski [7] show that
there is a DFA of 27 + 227"+ states to accept Lg. Kuperberg, Pinault and
Pous [14] give a more concise construction that yields for Lg an NFA of size
n+n3" and a DFA of size 2" + 2"3"". For the conversion of an NBA of n
states to a SUBA, Carton and Michel provide the upper bound of (12n)™ [8].

14 D. Angluin et al.

Starting with a DBA instead of an NBA, the NFA construction of Kuperberg,
Pinault and Pous is fully deterministic, so the upper bound of n+ n3"" holds for
transforming a DBA into a DFA. Bousquet and Loding [6] show that a SUBA of
n states accepting the w-language L may be transformed into a UFA of 2n? +n
states accepting Lg.

Lower bounds

For transforming a DBA for L into a DFA for Lg, Angluin and Fisman [2] prove
that for every n there is a DBA of n + 2 states accepting a language L such that
no DFA of fewer than n! states accepts Lg. For transforming a DBA into a UFA,
M2MA or NFA, we prove the following result.

Theorem 3. For every even positive integer n there is an w-language L, that
is accepted by a DBA of n + 5 states such that any UFA, NFA or M2MA to
accept (Ly)s must have size or dimension at least (, /2) which is ~ 2™ /\/7n /2.

Proof (Sketch). The proof uses a modification of the DBAs in the construction
by Angluin and Fisman [2]. Here we sketch the main idea and give an example.
Let n = 2k for some nonnegative integer k, let Xor, = {01,...,09;:} and let X
be Yor U{0, L, E, F'}. Consider the regular w-language defined by the w-regular
expression (Uyesnjoy (0 (2 \ {o})*-0))”, which is accepted by a DBA with
2k + 5 states. Given two subsets C' and D of X5, each of size k, we define words
uc and vp such that (ue - vp)® is in the language if and only if C' = D. The
main idea behind the construction is that vp forces each symbol op in Xoi \ D
to be followed by the character 0. Thus, if the string preceding (and including)
an occurrence of such a symbol op is described by the (unambiguous) regular
expression (U,ex 03 0+ (¥ \ {o})" - 0)", then the symbol 0 that follows cannot
be properly consumed, resulting in the w-word being not in the language. We
construct the words uc and vp in such a way that this can happen if and only if
such a symbol op € Yo\ D is also in C. Since C' and D are subsets of Yy, each
of size k, this happens exactly when C' # D. There is therefore an observation
table with rows indexed by $uc for all subsets C of size k and whose columns are
indexed by vp for all subsets D of size k, and where each entry, corresponding
to row and column subsets C' and D respectively, is 1 if and only if C' = D. By

Corollary 1, the result follows. O
Example. Let Yy, = {1,2,3,4}, let X be wo=F-2-F-2.3.2.3.L-3
YorU{0,L,E, F},let C ={2,3}, and let D = vwo=L-E-1.0-4.-0-F
{2,4}. Then uc, ve and vp are defined on the vwp=L-E-1-0:3-0-F

right. Then (uc-ve)® is in the language, whereas (uc-vp)® is not (since C' # D).

For the lower bound on transforming a DBA into a SUBA, Bousquet and
Loding [6] show that for every positive integer n there exists an w-language that
is accepted by a DBA with n + 1 states, and cannot be accepted by a SUBA
with fewer than 27! states.

Representing Languages Using M2MAs 15

For transforming a SUBA into a DFA, Angluin, Antonopoulos and Fisman [1,
Theorem 5] give a family of w-languages such that L, is accepted by a SUBA
of size 4n + 5, but any DFA to accept (Ly)g or its reverse must have size at
least 2™. For transforming a SUBA into a UFA, M2MA or NFA, we prove the
following asymptotically tight lower bound.

Theorem 4. For every positive integer m greater than 3, there is an w-language
L that is accepted by a SUBA with m states, but no M2MA of dimension less
than 2m? —m + 2 or NFA or UFA of size less than 2m?* —m + 2 accepts (L)s.

Proof (Sketch). For every n € N we define L,, to be the regular w-language over
Y ={a,b, ¢} given by the expression ((cc-b™)*-aa-b™)“. This language is accepted
by a SUBA S,,, with m = n + 3 states. We construct a specific observation table
M for the language (L,)s. We then show that any 1-rectangle cover of M is of
size at least 2m? — m + 2, which implies by Lemma 4 that the number of states
of any NFA (or UFA) for the language (L,)g is at least 2m? —m + 2. We further
show that the rank of M is 2m? — m + 2, and by Lemma 3, obtain that the
dimension of any M2MA for this language is also at least 2m? — m + 2. a

6 Empirical results

We report typical size increases in going from a random SUBA, DBA or NBA
acceptor for a regular w-language L to a minimized M2MA (and DFA, in the
case of a SUBA) for Lg. We also report computed sizes of minimized M2MAs
and DFAs for L(¢,)g for members of particular families {¢,} of LTL formulas.
Code is available in the GitHub repository:
https://github.com/nevingeorge/Learning_Automata.

For the generation of random SUBAs, DBAs or NBAs, our procedure is
as follows. Given parameters n, f, and t we generate a transition relation on
n states (random reverse-deterministic for a SUBA, random deterministic for a
DBA, and all possible transitions for an NBA), select f of the n states at random
to be final, and randomly remove ¢ of the transitions. The resulting transition
relation is trimmed to remove non-live states and their transitions. The trimmed
acceptor may have fewer than n states.

If the goal is a SUBA, using the criterion of Wilke [21], we check that there
do not exist two different states g; and g2 and a nonempty finite word v such
that for ¢ = 1,2, there is a loop on v from ¢; to ¢; that passes through a final
state. If the acceptor fails this test, it is rejected, and the procedure is repeated
until a SUBA is successfully generated.

6.1 SUBAs to minimized M2MAs and DFAs

For random SUBAs to minimized M2MAs, we first generate a random SUBA
with X' = {a,b,c}, n € {5,10,15}, t € {[1,5],[2,10],[18,22]} (resp.), and f =2
or f = 3 with equal probability. We then convert it into a UFA using the
algorithm of Bousquet and Loéding [6], and minimize the equivalent M2MA.

https://github.com/nevingeorge/Learning_Automata

16 D. Angluin et al.

Minimized M2MA Dimension Minimized M2MA Dimension

120 120

100 Experiment results 100 SUBA

~—— M2MA upper bound 80 — NBA

60 — DBA

SUBA Size Input Automata Size

2 4 6 8 10 e 4 6 8 10
Fig. 4: Random SUBAs to minimized M2MAs Fig. 5: Random SUBAs, NBAs, and DBAs to
minimized M2MAs

* SUBA to minimized DFA
— DFA upper bound

SUBA to minimized M2MA

— Log of SUBA to
minimized DFA

SUBA Size SUBA Size

2 4 6 8 10 2 4 6 8 10

Fig. 6: Random SUBAs to minimized DFAs

We performed the above process on approximately 220, 000 randomly generated
SUBAs.

Fig. 4 is a plot of the average minimized M2MA dimension for each trimmed
SUBA size from 1 to 10. Upon performing quadratic regression, we obtain the
orange curve 1.212n2 — .2248n, and the blue curve is the theoretical upper bound
of 2n? +n given in Fig. 3. The quadratic fit has a R? of 0.9996 while a linear fit
has a R? of 0.9370, suggesting that the growth is indeed quadratic. This curve
satisfies the theoretical upper bound of 2n? + n, and suggests that the lower
bound of 2(n?) holds on average.

For random SUBAs to minimized DFAs, we also calculated the number of
reachable states of each minimized M2MA. This is the number of states in the
equivalent minimized DFA, by a property of the minimization algorithm of Corol-
lary 2. From Fig. 3, the lower bound in going from a SUBA to a DFA is 2",
and the upper bound is 2" + 2ngn’

In the left graph in Fig. 6, the blue data points representing the results of
the SUBA to DFA experiment grow much more sharply than the results of the
SUBA to M2MA experiment, so it is clear that a SUBA can be represented more
concisely as an M2MA than as a DFA on average. Upon taking the log (base 2),
we obtain a roughly linear fit as seen in the right graph with equation .7196n +
1.738 and a R? of .9841, suggesting that on average the growth is exponential.
The standard deviation and range of converted DFA sizes was large for this
conversion, making it difficult to make firm claims about the growth. However,
the data suggests that the exponential lower bzound likely holds on average, and
that in general the upper bound of 2" 4 2"3™ is a severe overestimate.

Representing Languages Using M2MAs 17

6.2 NBAs and DBAs to minimized M2MAs

For NBAs and DBASs, a minimized M2MA is computed using the M2MA learning
algorithm of Beimel et al. [4], which makes membership and equivalence queries
to the NBA or DBA. Instead of exact equivalence queries, we use approximate
equivalence queries, implemented by testing membership agreement on a sample
of randomly generated ultimately periodic words. Thus, the dimension of the
learned M2MA may be an underestimate of the true minimum dimension of an
M2MA for Lg.

For the NBA/DBA to M2MA experiments, we generated approximately 1000
random NBAs/DBAs with X' = {a,b,c}, n € {5,...,10}, t € [0,n] for DBAs
and ¢ in ranges within [90,680] for NBAs, and f = 2 or f = 3 with equal
probability. For the approximate equivalence queries, we tested 1000 random
ultimately periodic words of length at most 25. The results of the experiments
can be seen in Fig. 5. The fitted NBA and DBA curves are quadratic with
equations 1.096n% — .8947n and 1.318n2 — 1.392n, respectively. The quadratic
fits for the NBA and DBA results have a R? of .9954 and .9961, respectively,
while linear fits have a R? of .9227 and .9118, respectively. These experiments
have limitations: the use of approximate equivalence queries, the small sample
size (because of the time requirements of the learning algorithm), and the large
standard deviation and range of converted M2MA sizes. However, the results
from all three conversions are very similar, suggesting that in these conditions,
SUBAs, NBAs, and DBAs don’t vary significantly on average with respect to
their equivalent M2MA representations.

6.3 LTL formulas to minimized M2MAs

Random LTL formulas seem not to provide much insight, so we consider spe-
cific families of LTL formulas: bounded request/grant formulas and two families
based on the hierarchy of Manna and Pnueli [15], namely obligation and reac-
tivity formulas. Empirically, for each of the first few members of each family we
calculate the minimum dimension of an M2MA and the minimum size of a DFA
accepting the corresponding Lg language, and use the online tool provided by
the Spot website (https://spot.Irde.epita.fr/) to find an w-language acceptor for
the corresponding L. (Omitted Spot entries exceeded the limit on calculation
time.)

The canonical request/grant formula is of the form O(p — O(gq)), which
asserts that whenever a request (p) is made, it is eventually granted (g). In the
bounded version, a number of steps n is specified, and the assertion is that the
request is granted within n steps. Thus, for each natural number n, we have a
formula R,, = O(p — (¢ VvV Olq) VO?*(q) V...V (O"(q))). The table in Fig. 7a
gives the resulting sizes and dimensions for n from 0 to 5. It is reasonable to
conjecture n + 1 for the size of a DBA, n? + 3n + 3 for the minimum dimension
of an M2MA, and 2n2 + 3n + 4 for the minimum size of a DFA representing R,,.

The family of obligation formulas we consider is: F,, = A", ((Op; VOg;). Using
conjunction and minimization, we calculate the minimum dimension M2MA (and
minimum size DFA) for Lg for these formulas for n up to 5. The table in Fig. 7b

https://spot.lrde.epita.fr/

18 D. Angluin et al.

n|DBA|M2MA|DFA

0] 1 3 | 4 n|DBA|M2MA|DFA n|GNBA|M2MA |DFA
i 2 7 |9 1 3 7 | 9 1@ | 5 | 6
2 3 | 13 | 18 2[9 | 19 | 23 2[(10,2)| 11 | 12
3 4 | 21 |31 3[27 | 55 | 63 3[(28,3)| 29 | 30
4 5 | 31 | 48 4] 81 | 163 | 179 i - 83 | 84
5/ 6 | 43 | 69 5[— | 487 |519 5[— | 245 | 246

(a) Rp, sizes. (b) Fp, sizes. (c) Gp, sizes.

Fig. 7: Size or dimension of acceptors for families of LTL formulas.

shows the results. It is reasonable to conjecture 3™ for the size of a DBA, 2-3"+1
for the minimum dimension of an M2MA, and 2 - 3" 4+ 2™ + 1 for the minimum
size of a DFA to represent Fj,.

The family of reactivity formulas we consider is: G,, = A (O0p; V 00g;).
We proceed as for the obligation formulas, with the results shown in the table
in Fig. 7c. Note that these formulas cannot be represented by DBAs, but are
instead represented by GNBAs, which may have multiple sets of final states. For
example, the entry (10,2) indicates a GNBA with 10 states and 2 sets of final
states. A reasonable conjecture in this case is (3" + 1, n) for the size of a GNBA,
3" 4 2 for the minimum dimension of an M2MA, and 3™ + 3 for the minimum
size of a DFA representing G.,,.

In these cases, the minimum dimension of an M2MA (and size of a DFA)
appears to grow at most as a polynomial in the size of an w-language acceptor,
quadratically for the bounded request/grant family, and linearly for the obliga-
tion and reactivity families.

7 Summary and conclusions

We provide a survey of size relations of M2MAs as a representation of regular
languages and regular w-languages, as well as empirical results for several of
these relations. New theoretical results include an improvement of the lower
bound for transforming an M2MA to an NFA, an upper bound of 29 for the
translation of an LTL formula of size n to a UFA, NFA, or M2MA, a lower bound
of 22(") for the translation of a DBA of n states to an M2MA or NFA, and an
asymptotically optimal lower bound of 2n? —n + 2 for the translation of a SUBA
of n states to an M2MA or NFA.

M2MAs have many advantages as a representation for regular w-languages:
determinism, succinct complementation, and polynomial time algorithms for
minimization, equivalence testing, and learning with membership and equiva-
lence queries. M2MAs are as succinct as DFAs, sometimes exponentially more
so, and deserve further study.

Acknowledgements We would like to thank the anonymous reviewers for their
insightful feedback. This work was supported in part by ONR Grant N00014-
17-1-2787, by NSF awards CCF-2106845, CCF-2131476, by BSF grant 2016239
and by ISF Grant 2507/21.

Representing Languages Using M2MAs 19

References

@

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

. Angluin, D.; Antonopoulos, T., Fisman, D.: Strongly unambiguous Biichi automata

are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL. pp. 8:1-8:17 (2020)

Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57-72 (2016)

Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)

Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47(3), 506-530 (May 2000)
Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. SIAM J. Comput. 25(6), 1268-1280 (1996)

. Bousquet, N., Léding, C.: Equivalence and inclusion problem for strongly un-

ambiguous Biichi automata. In: Language and Automata Theory and Appli-
cations, 4th International Conference, LATA. Proceedings. pp. 118-129 (2010).
https://doi.org/10.1007/978-3-642-13089-2_10

Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Proceedings of the 9th International Conference on Mathematical
Foundations of Programming Semantics. pp. 554-566. Springer-Verlag (1994)
Carton, O., Michel, M.: Unambiguous Biichi automata. Theor. Comput. Sci. 297(1-
3), 37-81 (2003). https://doi.org/10.1016/50304-3975(02)00618-7

Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas|. pp. 261-306 (2008)
Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata, chap.
4: Rational and Recognizable Series, by Jaques Sakarovitch, pp. 105-174. Springer-
Verlag Berlin Heidelberg (2009)

Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: Protocol Specification, Testing and Verification XV.
PSTV 1995. Springer (1996). https://doi.org/10.1007/978-0-387-34892-6_1
Hromkovi¢, J.: Communication Complexity and Parallel Computing. Springer-
Verlag Berlin Heidelberg (1997), (There is also 2013 edition.)

Kaznatcheev, A., Panangaden, P.: Weighted automata are compact and actively
learnable. Information Processing Letters 171 (2021), (The authors were appar-
ently unaware of prior results on learning multiplicity automata by Beimel et al.
and others.)

Kuperberg, D., Pinault, L., Pous, D.: Coinductive algorithms for Biichi automata.
In: Developments in Language Theory - 23rd International Conference, DLT Pro-
ceedings. pp. 206—220 (2019)

Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing. p. 377-410. PODC ’90, Association for Computing Machinery (1990).
https://doi.org/10.1145/93385.93442

Michel, M.: Complementation is much more difficult with automata on infinite
words. In: Manuscript, CNET (1988)

Moser, B.K.: Linear algebra and related introductory topics. In: Linear Models, A
Mean Model Approach, A volume in Probability and Mathematical Statistics. pp.
1-22 (1996)

Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46-57 (1977)
Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, USA
(2009)

https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1145/93385.93442

20 D. Angluin et al.

20. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency - Structure versus Automata (8th Banff Higher Order Workshop,
Banff, Canada, August 27 - September 3, 1995, Proceedings). pp. 238-266 (1995).
https://doi.org/10.1007/3-540-60915-6_6

21. Wilke, T.: w-automata. CoRR abs/1609.03062 (2016), http://arxiv.org/abs/
1609.03062

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-60915-6_6
http://arxiv.org/abs/1609.03062
http://arxiv.org/abs/1609.03062
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Limits and difficulties in the design of
under-approximation abstract domains*

Flavio Ascari™®®, Roberto Bruni®, and Roberta Gori

Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, Pisa, Italy,
flavio.ascari@phd.unipi.it, {roberto.bruni,roberta.gori}@unipi.it

Abstract. Static analyses are mostly designed to show the absence of
bugs: if the analysis reports no alarms then the program won’t exhibit any
unwanted behaviours. To this aim they manipulate over-approximations
of program semantics and, inevitably, they often report some false alarms.
Recently, O’Hearn proposed Incorrectness Logic, that is based on under-
approximations, as a formal method to find bugs that only reports true
alarms. In this paper we aim to answer one important question raised
by O’Hearn, namely which role can Abstract Interpretation play for the
development of under-approximate tools for bug catching. In principle,
Abstract Interpretation based static analyses can be defined for comput-
ing over-approximations as well as under-approximations, but in practice,
most techniques exploited the former while few attempts developed the
latter. To show why it is difficult to design effective under-approximation
abstract domains, we first propose the new definitions of non emptying
functions and highly surjective function family and then we formally
prove the limits of under-approximation analysis by showing the non ex-
istence of abstract domains able to approximate such functions in a non
trivial way. Our results outline the limits of under-approximation Ab-
stract Interpretation and clarify, for the first time, why over- and under-
approximation analyzers exhibited such a different development.

Keywords: Abstract Interpretation, Under-approximation, Abstract do-
mains, Impossibility results

1 Introduction

Static program analyses are techniques used to infer properties of programs di-
rectly from their source code, without executing them. They have been studied
and successfully applied for over 50 years [12,3,13,1,10,17,18,22,23,4] to pro-
duce effective methods and tools to support the development of correct soft-
ware. For all these years, the main focus of static analysis was to prove the
absence of bugs by computing over-approximations (supersets of all possible
behaviours) of the semantics of programs: the absence of unwanted behaviour

* Research supported by MIUR PRIN Project 201784YSZ5 ASPRA-Analysis of Pro-
gram Analyses.

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 21-39, 2022.
https://doi.org/10.1007/978-3-030-99253-8_2

http://orcid.org/0000-0003-4624-9752
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-7424-9576
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_2&domain=pdf

22 F. Ascari, R. Bruni, and R. Gori

in the over-approximation guarantees the correctness of the program. However,
over-approximations cannot be used to expose bugs, since any alert raised by
the analyser may be caused by the over-approximation rather than by the pro-
gram, i.e. it can be a so called false alarm. From the point of view of a software
developer, false alarms are undesirable because they undermine the credibility
and usefulness of the analysis. In principle, there is a symmetrical approach to
static analysis, that is to compute an under-approximation of the semantics, i.e.,
a subset of all possible behaviours of a program. Dually to over-approximations,
under-approximations can then expose defects in the code, while they are unable
to show their absence.

Early works on static analysis, like Hoare logic [13], focused on over-approx-
imation to prove the absence of errors, and maybe their influence directed the
focus toward over-approximations. Recently O’Hearn argued for the relevance
of bug catching with respect to correctness proofs and proposes the Incorrect-
ness Logic [19], a dual version of Hoare logic thought from the ground up for
under-approximation. He also advocates for a similar change of perspective in
the static analyses approach.

For instance, consider the simple code

for(i = 0; 1 < 5; ++i) sum += 1000 / (2 * i) + 100 / (2 * 1 - B);

An abstract analysis based on the domain Int of intervals allows to over-approxi-
mate the set of possible values each variable can take as the smallest interval that
contains such values. When applied the above program, the analysis may detect
that the value of variable i is between 0 and 4 within the body of the loop, so
that the arithmetic expression 2 * i is then over-approximated by the interval
[0,8] while 2 * i - 5 by the interval [—5, 3]. This raises two warnings for possi-
ble division by zero, since it seems that both arithmetic expression may assume
the value 0. It is worth noting that while the warning on the first expression is a
true alarm, the warning on the second one is a false alarm. On the contrary, an
analysis based on under-approximation will never raise a warning for the second
expression since no value of i can cause an error in this case, However, not all
under-approximations will detect the problem with 2 * i) because any subset
of {0,2,4,6,8} is a valid under-approximation, including e.g. {2, 4, 6, 8}.

The Problem: Abstract Interpretation [6,22,4] is a general framework to define
sound analyses based on constructive approximations that found its way through
many aspects of modern computer science, such as verification, optimization, se-
curity and program transformation. Given its broad applicability, in his paper
on Incorrectness Logic [19], O’'Hearn leaves as an open question whether Ab-
stract Interpretation could “eventually play a guiding and explanatory role for
a wide range of static and dynamic under-approximate tools for bug catching,
similar to what it already does for over-approximate analyses”. The goal of this
work is to investigate this topic. The results we have achieved will establish that
under-approximation based Abstract Interpretation analyses have serious intrin-
sic limitations, and therefore our contribution can be read as a negative answer,
even if we will then discuss how to overcome some limits.

Limits in the design of under-approximation abstract domains 23

Related Work: In their first works on Abstract Interpretation [6], Cousot and
Cousot introduced the formal theory that could be used to define either over-
or under-approximations. However, while the former has been extensively stud-
ied, there have been only sparse studies on the latter. Bourdoncle [2] proposed
abstract debugging using over-approximation domains, but acknowledged that
under-approximation ones could be better suited. Lev-Ami et al. [14] proposed
to use complements of over-approximation domains to infer sufficient precondi-
tion for program correctness. For the same goal, Miné [15] used directly over-
approximation domains, giving up the best abstraction and handling the choice
of a maximal one with heuristics. To infer necessary condition for incorrectness,
a problem similar to O’Hearn’s but studied for a different goal, Cousot et al.
[9,8] use Abstract Interpretation techniques but on boolean formulas, hence by-
passing the issue of defining an abstract domain. Schmidt [24] uses higher-order
domains, defining abstract states with meaning “there exists a value satisfying
this over-approximation property”, hence giving rise to an under-approximation
of over-approximations. In conclusion, all the above approaches design under-
approximation domains starting from over-approximation ones, and, to the ex-
tent of our knowledge, there are no abstract domains thought from the ground
up for under-approximation. So the question whether it is possible to design an
abstract domain for computing under-approximations naturally arises.

Contributions: We believe the absence of under-approximation abstract domains
to be caused by intrinsic difficulties in their design. In this article, we determine
and explain the reasons behind these difficulties. In the following we point out
some intuitive asymmetries that suggest why under-approximations are not as
immediate to use as over-approximations for program analysis.

While over- and under-approximation can be thought as dual theories, they
have a deep asymmetry when dealing with the semantics of basic constructs of
the language, the so called basic transfer functions. For instance, given an over-
approximation abstract domain, we can define an under-approximation domain
by taking the opposite interpretation of abstract elements: the idea is that an
abstract element represents all concrete elements that may not be present in the
set of possible values. As a consequence of being an under-approximation, this
means that all the other concrete elements (the complement of the set) must be
actual values. Considering the abstract domain of (complemented) intervals, it
happens, e.g. that an arithmetic expression such as a sum of variables is often
under-approximated as the whole Z. It is also worth noticing that, while basic
transfer functions are the same, over-approximation abstract domains are closed
under intersection, while under-approximation abstract domains are closed under
union and can grow large very easily.

Another asymmetry we point out is the handling of divergence. Divergence
is represented in over- and under-approximation by the same abstract element
1, but note that L as an under-approximations also represents the absence of
information (dually to T in over-approximations). This becomes a problem since
many concrete functions are strict, that is, when applied to a non-terminating
expression, they also fail to terminate (they return L if one argument is L), and,

24 F. Ascari, R. Bruni, and R. Gori

to be a correct under-approximation, also the corresponding abstract function
needs to be strict. This implies that whenever the analysis can’t determine any
meaningful information at some program point, it has to propagate this absence
of information along all program paths, at least until a join in the control flow
is found. So “recovery” from L, that is, producing a result different from L,
once we start with it, is very hard in an under-approximation. Note that, on the
contrary, “recovery” from T in an over-approximation is quite easier, e.g. by a
constant assignment.

The previous arguments are substantiated by formal impossibility results for
building meaningful under-approximation abstract domains. First, we introduce
the new definition of non emptying function, describing functions that don’t
tamper the analysis and we prove that no abstract domain for integers can be
constructed that makes all sums non emptying. Second, we propose two general-
izations (one local and one global) of the result for integers domains to arbitrary
concrete domains and function families, by introducing the notion of highly sur-
jective function family, of which sums are an instance. The local condition applies
to each function in the family, while the global condition is a property of the
whole family. Finally, we study hypothesis for the existence of abstract domains
making all functions in a family non emptying to show first that the hypothesis
of high surjectivity is tight, and then that further conditions on the function
family must hold.

Structure of the paper: In Section 2 we introduce the notation used in the rest of
the paper and recall the basics of Abstract Interpretation for over- and under-
approximations. In Section 3 we apply our idea to the concrete domain of integers
to show that, under some simple conditions, no under-approximation abstract
domain can exist. In Section 4 we extend the result obtained for integers to
arbitrary concrete domains and function families. In Section 5 we show that the
hypothesis of high surjectivity is needed and explore other requirements for the
function family. Section 6 contains some concluding remarks and an outline of
future research directions. Due to space limitation, only informal proof sketches
are included in this proceedings.

2 Background

Notation. We let P(S) denote the powerset of the set S and idg : § — S be the
identity function on a set S. We omit subscripts when obvious from the context.
If f:S — T is a function, then we overload the symbol f to denote also its
additive extension f : P(S) — P(T) defined as f(X) = {f(z)|x € X} for any
X C 5. We say a function f : S — S is acyclic if, for any element x € S and
any n > 0, we have f"(x) # x, where f™ denotes composition of f with itself n
times. In ordered structures, such as posets and lattices, we usually denote the
ordering with =, least upper bounds (lubs) with LI, greatest lower bounds (glbs)
with M, least element with 1, greatest element with T. If < is an order relation,
> is the opposite relation, defined as s = ¢ if and only if ¢ < s. We write just

Limits in the design of under-approximation abstract domains 25

S for the poset (S, <) whenever the order relation < is known from the context
and we use S°P to denote the opposite poset (S, =): hence S°P denotes the same
set as S, but S°P comes equipped with the opposite ordering relation »=. Given
a poset T and two functions f,g : S — T, the notation f < g means that, for
all s € S, f(s) < g(s). Any powerset is a complete lattice with ordering given
by the inclusion relation. In this case, we use standard symbols C, U, etc.

Abstract Interpretation. Abstract Interpretation [6,7,16] is a general framework
to define sound-by-construction static analyses, with the main idea of approxi-
mating the program semantics on some abstract domain A instead of working on
the concrete domain C. The main tool used to study Abstract Interpretations
are Galois connections. Given two complete lattices C' and A, a pair of monotone
functions av: €' — A and v : A — C define a Galois connection (GC) when

Vee Ciae A. alc) Xa < c¢=7(a)

and we denote it with (C % A). We call C and A, respectively, the concrete and
the abstract domain, « is the abstraction function and + is the concretization
function. In any GC, idg = yo«, a o~y <id4, v preserves glbs and « preserves
lubs. In particular, this means that 7(T 4) = T¢ and dually a(Le) = La.

A GC in which a oy =idy4 is called Galois insertion (GI), and if this is the
case also o is onto and ~ is injective. By this last property, there is a bijection
between A and y(A), and using this isomorphism, whenever we consider a GI
we identify A and its y-image so that A becomes a subset of C and v = id 4,
written as (C = A). A GI is said to be trivial if A is the concrete domain or it
only contains T ¢.

Given a monotone function f : ¢ — C and a GC (C < A), a function

(0%

ff: A — Ais a correct (or sound) approximation of f if «o f < f o a. Its best
correct approximation (bca) is f4 = a o f o+, and it is the most precise of all
the correct approximation of f.

As an example, let us consider C' = P(Z) be the powerset of integers and
A = Int be the abstract domain of intervals [6]. Elements of Int are finite intervals
[n,m] with n < m, or infinite intervals of the form [—oo, m] or [n, oo}, together
with the empty interval L. The top element is [—oo, 00]. Intervals are ordered
by inclusion, the concretisation function + is defined as usual, while the abstrac-
tion function o maps a set of integers to the smallest interval that contains it.
If f(z) = |=| is the absolute value function, one of its sound abstractions is
f*([n,m]) = [0, max(|n|, |m|)] because the interval [0, max(|n|,|m|)] always con-
tains the entire set f(S) when n = min(S) and m = max(S). However this is
not the best possible abstraction: for instance on S = {1} this yields [0, 1] while
f(S) = {1}. Actually the best correct abstraction f# is computed as

[0, max(|n|,|m])] fn<0<m
A ml) = aco f o (fn,m]) = § [m] if0<n

[—m, —n] ifm<0

26 F. Ascari, R. Bruni, and R. Gori

2.1 Under-approximation Galois Connections

The definition of GC is not symmetric in v and «a: it favours over-approximation,
and is not suited to describe under-approximations. This can be more easily
seen from the property idc < 7 o «, that means the abstraction y(a(c)) of a
concrete element c is greater than (ie. an over-approximation of) ¢ itself. For
this reason we introduce the notion of under-approximation Galois connection
(UGQ). Formally, an UGC is just a GC between A and C, in the reverse order, or
equivalently a GC in which we replaced C' and A with C°P and A°P. However, we
believe this definition to allow a better notation, helping the reader’s intuition.
Given two complete lattices C and A, a pair of monotone functions o : C' — A,
~v: A — C defines an UGC between C' and A when

VeeCoac A, a=alc) <= ~(a) 2¢

and we denote such UGC with (C % A). Note the different positions of arrows
and their super/subscripts when compared with a GC (C < A). The difference

Q0 6

a) Over-approximation GC b) Under-approximation GC

Fig. 1: Sketches of GC and UGC

between a GC and an UGC is sketched in Figure 1: in the GC (on the left) ~ is
above and « below, while in the UGC (on the right) the two are reversed. Using
the duality observed above, from standard properties of GCs we get, reversing
inequalities, that v o a < id¢, ida X a o7, v preserves lubs and « preserves
glbs. Moreover, an under-approximation Galois insertion (UGI) is an UGC in
which cvo~y =id 4, and has the properties of o being onto and v being injective,
making the same identification of A with v(A) possible, written as (C = A). In

(&3
=

particular, this means that in an UGI on a concrete powerset (P(C) = A), for
all a,a’ € A, v(aUd') = aUd’, that is A is closed under union.

Dually to standard, over-approximation GCs, given a monotone function f :
C — C and an UGC (C % A), a function f* : A — A is a correct (or sound)

Limits in the design of under-approximation abstract domains 27

abstraction of f if a o f = f” o . Again, f* = a o f o~ is the best correct
approximation of f.

As an example, let us take again C = P(Z) and A = Inty be the set of
integer intervals around 0, ie. Intg = {I € Int|0 € I} U {L}. This is an under-
approximation abstract domain because it contains 1 and is closed under union:
the union of intersecting intervals is an interval too, and all elements of Intg
intersects at 0. If again f(z) = |x| is the absolute value function, its bca f4 is
f2([n,m]) = [0, max(|n|, |m|)] since it’s always the case that n < 0 < m.

3 Integer Domains

In this section we focus on under-approximations of integer domains and prove
that any under-approximation abstract domain will mostly return trivial analy-
ses for programs that include sums inside arithmetic expressions.

To this aim, we introduce the concept of non emptying function.

Definition 1 (Non emptying function). Let (C % A) bean UGC, f : C — C

a monotone function and f4 = oo foy its bea. We say that f is non emptying (in
A) if, for any concrete value ¢, a(c) # L and a(f(c)) # L imply f4(a(c)) # L.

Remember that | does not give any interesting information in the under-ap-
proximation setting, because it can mean divergence as well as complete loss of
precision. On the contrary, any abstract element different than | means “some-
thing” interesting. The rationale behind the definition of non emptying function
is that if the analysis starts from something (a(c) # L) and it can find something
(a(f(c)) # L) then it will find at least one of the possible results (f4(a(c)) # L),
thus not falling to 1 and avoiding the issues discussed in the Introduction. The
meaning of Definition 1 is illustrated by the following toy example.

Ezample 2. Consider the simple imperative fragment
if (x # 0) then { while (x < 10) {y :=7 / x; x :=x +1; } }

where a careless programmer used the condition x # 0 instead of the expected
x > 0: on any initial state where x is negative the program incurs a division by
0 error.

For the analysis, suppose x is an integer value and consider the domain
Int)y ={I €Int|0 € IVv1el}U{L}, avariation of Inty such that each interval
in Intg; must contain at least one of 0 and 1. By an argument similar to that
for Intg it can be shown that Intp; is closed under union (since 0 and 1 are
consecutive values in the integer domain), and thus is an under-approximation
domain.

Assume to start the analysis in this domain with the initial condition [—1; 10]
for variable z: remember that this being an under-approximation analysis, the
abstract state [—1; 10] means that may assume all the values in that interval
at the beginning of the code fragment. In the concrete execution, the filter x # 0
then produces the concrete set of values ¢ = {—1,1,2,...,10}, but the abstract

28 F. Ascari, R. Bruni, and R. Gori

interpreter must abstract this to its largest subset that is an interval containing
0 or 1, that is [1; 10]. The abstract analysis of the cycle then proceeds straightfor-
wardly, finding L after one iteration of the loop body (since after the increment
the set of values for x is {2,3,...,11} that is abstracted to L because it doesn’t
contain neither 0 nor 1) and so the abstract fixpoint of the loop [1; 10]. This yields

no error, even though the concrete execution starting at * = —1 does indeed fail
after one iteration. The issue here is that the semantics f of the increment x :=
2 + 1 is not non emptying in Intg;: on the concrete value ¢ = {-1,1,2,...,10},

its input in this program, we have a(f(c)) = «({0,2,3,...,11}) = [0] # L but
FAa(e) = fA(110]) = a(f(+([1;10])) = a({2,3,...,11}) = L.

For the remainder of the paper we assume a set of concrete values C', an UGI
(P(C) = A) with concrete domain P(C), and we say an element S € P(C) is
representable if it belongs to A, or equivalently if «(S) = S.

Definition 3. Let S C C be a subset of C. We say that d € C' is representable
with S if SU{d} is representable. We call R(S) the set of elements of C repre-
sentable with S, ie.

R(S) ={d e C|a({d}US) = {d} US}

For the sake of brevity, we shall write R for R()), the set of representable values
of C, and R(c) for R({c}) where ¢ € C is any concrete value. The following
is a technical lemma valid for non emptying functions, that explains the role
played by Definition 1 in proving all our negative results (Propositions 7, 10 and
Theorems 12, 15).

Lemma 4. Let f : C — C be non emptying, ¢ € R and the pair {c,é} be not
representable, ie. ¢ ¢ R(c). If f(¢) € R then also f(c) € R.

The main proof line of all our impossibility results is the same, and exploit this
Lemma. All our results requires the size of the abstract domain to be compa-
rable with that of the set of concrete values C' (whose powerset P(C') is the
concrete domain), and this in turn implies that representable elements are few.
Then, assuming that all functions in a certain family are non emptying, we use
repeatedly Lemma 4 to get many new representable elements, thus finding a
contradiction. The key issues in the proofs are two: first, it must be possible to
apply Lemma 4; second, all the new representable elements obtained applying
it must be different from one another. In the following, we present some sets of
conditions that are able to guarantee these two points, hence getting hypothesis
for non existence of under-approximation abstract domain.

3.1 Infinite Integer Domain

As a first example, we consider the infinite domain P(Z) of integers.

Assumption 5 We assume that an abstract domain A, to be feasible for anal-
yses, must be at most countable.

Limits in the design of under-approximation abstract domains 29

We make this assumption because we want to represent abstract elements with
an amount of bits comparable with that of concrete values, to have a complexity
comparable with a single concrete execution of the program and not exponen-
tially larger. Thus, we require the size of the abstract domain to be that of Z,
the set of values handled by the program, and not the concrete domain P(Z).
Many abstract domains satisfy it, for instance intervals, octagons and polyhe-
drons with at most n edges, for any n; some, such as general polyhedrons, don’t,
but they also exhibit a worst case exponential cost.

Based on Assumption 5, we prove a simple cardinality estimate that is used,
as anticipated before, to prove that there are few representable elements.

Lemma 6. For any fizved subset S C Z, R(S) is finite.

The result for integers now shows that no under-approximation abstract domain
makes all sums non emptying. The idea of the proof is to define an infinite
sequence of representable elements, that is in contradiction with the previous
lemma that says that R is finite. In order to define such a sequence, we want
to use Lemma 4: we start from an initial representable ng and from a value n
not representable with it, then find a non-emptying f that maps 7 into ng, so
that f(n) is representable and we can then apply the lemma to get the new
representable element f(ng). We then iterate this procedure, changing f, to
build the infinite sequence. We believe the hypothesis that there exists an initial
representable value is not very restrictive since initializations like x = 0 must
be abstracted to L if 0 is not representable.

Proposition 7. Let (P(Z) = A) be an UGI, and assume that there is an integer

ng that is representable. Then it can’t be the case that all the functions of the
form fn(z) =z +n are non emptying in A.

The meaning of this proposition for program analysis is the fact that a domain
small enough (by Assumption 5) is probably unable to deduce meaningful in-
formations on an integer domain: if it doesn’t contain representable singletons
it must abstract to 1 any variable initialization, and otherwise it can’t be non
emptying for all sums, hence getting | when values are manipulated using this
operation. In both cases, because of strictness, the abstract | is propagated
along program paths, yielding it as the final result of the analysis, that means
exactly it can’t determine any information. This issue is not bound to manifest
for all programs, but for any domain there exists programs for which it does.

3.2 Finite Integer Domain

An analogous result can be obtained for a finite integer domain P([—N;N]),
where N is some big integer. This concrete domain models machine integers, that
are constrained within an interval, so we assume that operations are performed
in machine arithmetic, that is wrapping around in case of overflows. This is
modelled working modulo 2N + 1, the length of the interval, and taking the
unique representative of each congruence class in the interval [—N, N] of interest.

30 F. Ascari, R. Bruni, and R. Gori

It is worth noting that the interval is taken symmetric around 0 to simplify
notation, but there is no conceptual difficulty in using an asymmetric one.

Assumption 8 We assume that an abstract domain A, to be feasible, must have
a cardinality that is polynomial in N.

This assumption guarantees that the number of bits required to represent an
abstract element is linear in that for concrete elements so that, again, the cost of
the analysis is polynomial and not exponential in that of a concrete execution.

In the following we’ll use asymptotic notation for some quantities. For this
to be completely formal we should define a sequence of abstract domain Ay,
each one for the concrete domain P([—N, N]), then define a sequence of values
for each quantity we want to estimate, and take the limit of this sequence for
N going to infinity. However we do believe all these formal details would clutter
notation, making hard to get insight. For this reason, we avoid all this, just
(ab)using the intuitive meaning associated with the notation.

The next lemma is analogous to Lemma 6 in proving that some sets are small
under Assumption 8 on the cardinality of A.

Lemma 9. For any fized subset S C Z, |R(S)| = O(log(N)).

The following proposition uses the same proof line as Proposition 7 above: we
define a sequence of representable elements, and prove that they are too many
since, by the previous lemma, R is quite small.

Proposition 10. Let (P([—N, N]) 2 A) be an under-approxzimation Galois in-
sertion, and assume that there is an integer ng that is representable. Then it can’t
be the case that all the functions of the form f,(z) = x+mn (modulo 2N +1) are
non emptying in A.

4 Arbitrary domains

The definition of non emptying function is fully general and not limited to the
concrete integer domain, hence we use it to propose conditions that are indepen-
dent of the concrete domain. In this section, we deal with an infinite set C of
concrete values, and an UGI (P(C) = A). Again, we take the Assumption 5 on
the size of A. Under this assumption we can prove again Lemma 6, that doesn’t
depend on the specific integer domain considered in the previous section.

All conditions we propose in this section are mainly on the family of functions
considered and not on the abstract domain. The reason for this is that first we
fix a function family, corresponding to a program, and then we look for a domain
well suited to analyse the specific family at hand. In other words, the family is
given by the applicative context, while the domain can be adapted to it.

Definition 11 (Highly surjective function family). Given a family F of
functions from C to itself and an element c € C, let

Plc)={deC|3f € F. f(d)=c}

Limits in the design of under-approximation abstract domains 31

be the set of preimages of ¢, elements of C' that can be mapped to ¢ by a function
in F. We say that the family F is highly surjective if P(c) is infinite for any
possible choice of c € C.

This property is needed together with Lemma 6 to apply Lemma 4 and get a new
representable element: since there are infinite preimages of ¢ but R(c) is finite,
there are elements ¢ € P(c) not in R(c); then by definition of P(c) there is an f
such that f(¢) = ¢ € R, so we can apply the lemma to get f(c) € R. The reason
for requiring f(¢) = ¢ instead of just in R is that, at the beginning of the proof, we
only assume R to contain one element, hence the two conditions are equivalent.
Starting from this basic idea, we present two set of sufficient conditions to prove
the non existence of any under-approximation abstract domain.

4.1 Local Requirements for Impossibility

The first set of conditions we propose is in a sense more “local”, in that it requires
conditions on each function in the family F' independently on the other.

Theorem 12. Let F' be an highly surjective function family from C to itself
such that all functions f € F are either injective or acyclic. Assume also that R
isn’t empty. Then A can’t be non emptying for all f € F.

In the previous section we developed an ad hoc proof for the family of sums
over integers, but the same result can also be obtained as an application of this
theorem: if C = Z and F = {A\x.xz + n|n € Z}, the family is highly surjective
(actually P(c) = Z for all ¢) and all these functions are injective, so it meets the
hypothesis of the theorem. Another example are rational or real numbers, with
sums or products

Ezample 13. Take C = Q\ {0} and F = {Az.x - ¢|q € Q\ {0}}. The family
is highly surjective since P(c) = Q\ {0} for all ¢, and all these functions are
invertible, hence injective.

A possibly more interesting example of application is to floating-point numbers
as described by the IEEE Standard.

Ezample 14. Take C' = F \ {0} the set of non-zero floating-point numbers that
can be represented with a fixed number of significant digits, say ¢ bits, but
with an arbitrary precision exponent. We make the choice of infinite precision
exponents and finite number of significant digits in order to have an infinite
domain, as required by the theorem, but also preserve characteristics of floating-
point arithmetic.

Let - and ® denote respectively real product and its floating-point approxi-
mation, and consider the function family F' = {\z.x ® y |y € C}. The function
family is highly surjective, eg. considering that all numbers with the same signifi-
cant digits as a floating-point x but different exponent can be mapped into x mul-
tiplying them by 1 times the difference of exponents. For the second condition,
if y = +1 we have that the function Ax.x ® y is invertible, hence injective. Oth-
erwise, assume without loss of generality that y > 1 (other cases are analogous),

32 F. Ascari, R. Bruni, and R. Gori

and by contradiction assume it has a cycle f™(z¢) = x¢. By monotonicity of ® we
have f(z) =2 ©y > 21 =z, hence zg < f(x0) < f*(x0) < -+ < f™(z0) = 20
so all the elements of the cycle are equal, in particular f(z¢) = x. However,
if y # 1, the product = ® y is never equal to z, that is a contradiction. Hence
the function is acyclic. This means F' meets hypothesis of Theorem 12, hence no
abstract domain on floating-point numbers can be non emptying for all multi-
plications.

4.2 Global Requirements for Impossibility

The second set of conditions we propose is “global”, in the sense that it requires
the family F' to satisfy a property as a whole.

Theorem 15. Let F' be an highly surjective function family from C' in itself
such that

— for all pair of elements c¢,d € C there exists at most a finite amount of f € F
such that f(d) =c

— for all pair of an element ¢ € C and a function f € F, there exists at most
a finite amount of elements d € C' such that f(d) = c

Assume also that R isn’t empty. Then A can’t be non emptying for all f € F.

Again this result can be used to prove the impossibility of building an ab-
stract domain for integers that is non emptying for all sums, or for floating-point
numbers.

Ezample 16. Take C = F \ {0} the set of non-zero floating-point numbers with
t bits significands and arbitrary precision exponents, and F = {dz.x © y|y €
F \ {0}}. As observed in Example 14 this family is highly surjective. Fixed
now two floating-point numbers z,y, and letting u be the machine precision of
floating-point arithmetic, we have that y = f(z) =« ® z only if
’y — @A) _
Tz

that is 1 1

y\ R

Sl—— <z < |5 ——

‘x 1+u 12 zll—u
This is a bounded interval since x # 0, and hence contains only a finite amount
of floating-point numbers. Analogously, fixed a floating-point y and a function
f(z) = 2®z, we have that y = 2 © z only if |z| belong to a bounded interval, that
contains a finite amount of floating-point numbers. So, by means of Theorem 15

above, we proved again that no abstract domain on floating-point numbers can
be non emptying for all multiplications.

Limits in the design of under-approximation abstract domains 33

5 On the necessity of high surjectivity hypothesis

Both sets of conditions we proposed in this section require the function family
to be highly surjective. This turns out to be necessary in order to prove that no
under-approximation abstract domain exists:

Proposition 17. For any fized family F of functions from C' to itself that is
not highly surjective, there exists an abstract domain Ap for P(C) such that

— Ap is finite
— all functions f € F' are non emptying in Ap

Moreover, the proof of this proposition is constructive, and we present an exam-
ple of such construction in the following.

Ezample 18. Fix the pair of functions f(z) = z — 1 and g(z) = * — 2 on Z.
The family F = {f, g} is clearly not highly surjective, so we build an under-
approximation abstract domain for which these functions are non emptying.
First, take an integer ng such that P(ng) (computed with respect to F') is finite.
With this F, any integer is fine, so let us fix ng = 0.

The set of preimages of 0 is P(0) = {1,2}. We define the abstract domain
Ap as

Ap ={0}u{X U{0} | X C P(0)} = {0,{0},{0,1},{0,2},{0,1,2}}

In this abstract domain, a set is abstracted to @) if and only if it doesn’t contain
0 since all elements of Ar but () contains 0 and the abstraction of a set must be
a subset of that set.

To check that f is non emptying in Ap fix a set S C Z. If «(S) = 0 the
non emptying condition is vacuously true, so assume this is not the case, that is
equivalent to 0 € S. Analogously, if a(f(S)) = 0 the condition is true, so assume
0 € f(S) or, equivalently, 1 € S. Using these two we get

FA(a(9)) = a(f(a(9))) [def. of f4]
2 a(f(a({0,1}))) [, f monotone, S D {0, 1}]
=a(f({0,1})) [a({0,1}) = {0, 1}]
=a({-1,0}) = {0} [def. of f and a]

The check for g is analogous.

Even though this proposition defines an under-approximation abstract domain,
it shouldn’t be interpreted as a positive result since the resulting domain is
almost a power set and hence too large to be feasible in practice. Instead, the
proposition should be regarded as a way to show that one of the hypothesis
required in the previous theorems is tight and can’t be weakened. In particular,
since these kind of results need high surjectivity, they are ill suited when the
focus is on a single function.

34 F. Ascari, R. Bruni, and R. Gori

This proposition can be generalized to consider sets S C C whose preimages
are finite, but a little care is needed when lifting the definition of preimages to
sets of values: a preimage is a set for which there exists a function that maps it
to S, not the union of the preimages of elements in S:

P(S)={T cC|3f e F.f(T)=5}
Using this definition, the proposition generalizes straightforwardly:

Proposition 19. Let F' be a family of functions from C in itself, and assume
there is a set So C C such that P(Sy) is finite. Then there exists a finite abstract
domain Ap for P(C) such that all functions f € F are non emptying in Ap.

This proposition may for instance be applied to the concrete domain of finite
lists to show that a natural function family to consider can’t be used to prove
non existence of under-approximation domains using non emptying functions.

Ezxample 20. Fix the concrete domain C' as the set of all lists of finite length
over a finite, non-empty alphabet I', i.e. C'= I'*. For a € I'* a finite string, let

concat, (8) = af

the function that prefix « to its argument. The family
F = {concat, |a € I'"}

is not highly surjective, because fixed a string « only its prefixes can be mapped
into it by a function in F', and they are a finite amount. Hence we can define
an under-approximation abstract domain for which all these functions are non
emptying by means of Proposition 19. Such domains are defined with a con-
struction similar to that of Example 18, and in particular, if € is the empty list,
considering the set Sy = {e} whose preimage is only Sy itself, the construction

yields
Ap = {0, {e}}

It’s easy to check that all functions concat, are non emptying in this abstract
domain.

The previous proposition focuses on preimages, stating that if there is a con-
crete element that has a finite amount of them then it is possible to define an
under-approximation domain. A natural dual of this proposition can be formu-
lated in terms of images. For a subset S C C| the set of its images is

I(S) ={f(S)| f € F}

This definition is exactly dual to that of preimages, and can actually be used to
formulate a similar result.

Proposition 21. Let F be a family of total functions (ie. if S # 0 then f(S) #
0) from P(C) in itself, and assume there is a non empty set So C C such
that 1(Sy) is finite. Then there exists a finite abstract domain Ap such that all
functions f € F are non emptying in Ap.

Limits in the design of under-approximation abstract domains 35

Even though this proposition introduces the technical hypothesis that all f € F
are total, we don’t believe this to be very restrictive because these theorems
are intended to be applied when F is a family of basic transfer functions, that
seldom introduce divergence: in programming languages this is often caused by
control-flow constructs. An application of this proposition is again on lists, to
rule out another natural function family.

Ezample 22. Fix again C' = I'*, and consider functions drop,, : I™* — I'* that,
taken a list, drop its first n elements and return the resulting list. If the input
list is shorter than n, the output of drop,, is the empty list €. The function family

F = {drop,, |n € N}

is highly surjective since, for any fixed list @ € I'* and any n, we can extend
o with any n character, and map this list to o with drop,,. However, images
through this function family are finite:

I(a) = {drop,,(a) |n € N}

that is finite since it’s the set of all tails of a. Hence by Proposition 21 we can
define an under-approximation abstract domain such that all functions drop,,
are non emptying. Again, these domains are constructed from sets Sy with a
finite amount of images, and considering So = {e€}, that satisfies I(Sy) = {e€}, it

yields
Ap = {0.{e}}
Again it can be easily checked that all functions drop,, are non emptying in Ap.

These two propositions consider opposite situations in which it is possible
to define an under-approximation domain: the former requires to be able to go
backward using F' in infinitely many ways, while the latter to go forward. This
often isn’t the case in the presence of “boundaries” in the concrete domain, that
are points with respect to which functions tend to walk either up or away: for
instance, € is such a point with finite strings because concat functions go away
from it while drop go towards. Another example of such boundary is 0 in the
domain of integers Z with respect to multiplications and (rounded) divisions:
the former increase absolute value, moving away from 0 (even though 0 itself
is never a preimage), while the latter decrease it. Also considering a function
family made of both kind of functions doesn’t work: a slight adaptation of the
constructions for the two propositions above shows that, if F' can be partitioned
in two subfamilies, each satisfying the hypothesis of one of the two propositions,
then there exists an under-approximation abstract domain. An example of this
is in the set of finite lists, taking as F' both concat and drop functions. The
construction then yields exactly Ar = {0, {€}}, for which all these functions are
non emptying, as shown in Examples 20 and 22. In light of these observations, in
order to apply effectively the definition of non emptying function to prove non
existence of abstract domains, for all possible boundaries there is the need for a
function that is able to both enter and exit it. This happens for integers, since
there is no boundary, but doesn’t for finite lists, with {e} being often either a
sink or a source for many functions on lists.

36 F. Ascari, R. Bruni, and R. Gori

6 Conclusions and Future Works

Until recently, the focus of formal static analyses has been on over-approximation
to prove program correctness, but many tools based on this theory are instead
deployed to catch bugs [23,10]. Incorrectness Logic promoted the study of a
theory for under-approximation to give a formal basis to a new class of tools.
This has seldom been done in the last few decades, especially in the framework
of Abstract Interpretation. In our work, we point out some asymmetries between
over- and under-approximation in Abstract Interpretation, and why those are
an obstacle to the design of abstract domains. We have identified functions as
the main difference, because they remain the same in both over- and under-
approximation thus preventing one theory to be obtained simply as a dual of
the other. Handling of divergence is another critical issue. Building on those
ideas, we have proposed the new (to the extent of our knowledge) definition of
non emptying function and studied how it can be used to prove non existence of
under-approximation abstract domains. We have presented some general results,
and applied them to integer and floating point domains to conclude that, under
some assumptions, there are no useful under-approximation domains. Then, we
have found conditions under which there do exist under-approximation abstract
domains, showing that some of the hypothesis required in our theorems are very
tight. However, because of the scarcity of works in this direction, we believe there
are many possible subjects for future research.

Under-approximation abstract domains must be closed under union, but
known abstract domains are rarely such. However disjunctive completion [11], a
known domain transformer, refines any abstract domain in a union-closed one.
This has been studied for over-approximation in order to improve precision at
the expense of increased complexity. A solution to keep the analysis feasible is
to use heuristics to prune disjunctions, trading back complexity for precision,
but making the analysis possible for under-approximations. Moreover, practical
tools based on the theory of Incorrectness Logic already use heuristic to drop
logical disjunctions [19], so taking inspiration from them may be effective also
for Abstract Interpretation.

In their recent work, Raad et al. [20] study incorrectness separation logic, the
join of separation logic [21] and Incorrectness Logic. They notice that the origi-
nal separation logic doesn’t distinguish a pointer known to be dangling from one
about which it has no information, and they introduce a new kind of heap asser-
tion for dangling pointers. This issue is reminiscent of the difference between di-
vergence and no information we incur into in Abstract Interpretation. This may
suggest the introduction of a similar distinction also in under-approximation
domains, but a new point different from | describing divergence needs a con-
cretization, and no such element exists in a power set other than (). However, in
Abstract Interpretation it happens at times that more general concrete domains
allow more flexibility in the abstraction (eg. as proposed for higher-order func-
tional languages [5]), so it may be worth to investigate the possibility to change
the concrete domain to account for this new point.

Limits in the design of under-approximation abstract domains 37

All our results depend on the existence of a representable value. This assump-
tion is motivated by the analysis performed, but is not a requirement of Abstract
Interpretation itself. A way to remove this hypothesis may be to consider repre-
sentable sets of minimal cardinality because functions defined as additive exten-
sions don’t increase cardinality, so they might take the place of singletons. The
technical issue is if and how Lemma 4 can be generalized, but we believe it may
be possible to relax that hypothesis about singletons.

We have discussed the finite domain of integers at the end of Section 3, but
all our general results deal with infinite concrete domains. Both theorems rely on
cardinality estimates essentially based on the fact that arbitrary combinations
of finite numbers is still finite, hence less than the cardinality of the concrete
domain. However, with a finite concrete domain those would be replaced by
combinations of logarithmic factors, which may become equal to the size of
the concrete domain. For finite domains we can prove a result reminiscent of
Theorem 15, but this topic requires thorough investigation to understand the
new issues and possibilities they open up.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments.

References

1. Boulanger, J.L. (ed.): Static Analysis of Software: The Abstract Interpretation.
Wiley (2011)

2. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. SIG-
PLAN Not. 28(6), 46-55 (Jun 1993). https://doi.org/10.1145/173262.155095

3. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM’15. LNCS, vol. 9058, pp. 3—11. Springer
(2015). https://doi.org/10.1007/978-3-319-17524-9_1

4. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)

5. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and
per analysis of functional languages). In: Proceedings of 1994 IEEE Inter-
national Conference on Computer Languages (ICCL’94). pp. 95-112 (1994).
https://doi.org/10.1109/ICCL.1994.288389

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238-252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. p. 269-282. POPL ’79, Association for Computing Machin-
ery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

https://doi.org/10.1145/173262.155095
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Ascari, R. Bruni, and R. Gori

. Cousot, P., Cousot, R., Fahndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Veri-
fication, Model Checking, and Abstract Interpretation, 14th International Con-
ference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings. Lec-
ture Notes in Computer Science, vol. 7737, pp. 128-148. Springer (2013).
https://doi.org/10.1007 /978-3-642-35873-9_10

. Cousot, P., Cousot, R., Logozzo, F.: Precondition inference from intermittent as-

sertions and application to contracts on collections. In: Jhala, R., Schmidt, D.A.

(eds.) Verification, Model Checking, and Abstract Interpretation - 12th Interna-

tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-

ings. Lecture Notes in Computer Science, vol. 6538, pp. 150-168. Springer (2011).

https://doi.org/10.1007/978-3-642-18275-4_12

Distefano, D., Féahndrich, M., Logozzo, F., O’Hearn, P.W.. Scaling

static analyses at Facebook. Commun. ACM 62(8), 62-70 (2019).

https://doi.org/10.1145/3338112

Filé, G., Ranzato, F.: Improving abstract interpretations by systematic lifting to

the powerset. In: Proceedings of the 1994 International Symposium on Logic Pro-

gramming. p. 655-669. ILPS '94, MIT Press, Cambridge, MA, USA (1994)

Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on Ap-

plied Mathematics 19, 19-32 (1967)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576-580 (Oct 1969). https://doi.org/10.1145/363235.363259

Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring

quantified preconditions. Tr-2007-12-01, Tel Aviv University (2007)

Miné, A.: Backward under-approximations in numeric abstract domains to auto-

matically infer sufficient program conditions. Sci. Comput. Program. 93, 154-182

(Nov 2014). https://doi.org/10.1016/j.scico.2013.09.014

Miné, A.: Tutorial on static inference of numeric invariants by abstract in-

terpretation. Found. Trends Program. Lang. 4(3-4), 120-372 (Dec 2017).

https://doi.org/10.1561/2500000034

Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer

(2010). https://doi.org/10.1007/978-3-662-03811-6

O’Hearn, P.W.: Continuous reasoning: Scaling the impact of formal methods. In:

Proc. LICS’18. p. 13-25. ACM (2018). https://doi.org/10.1145/3209108.3209109

O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (Dec

2019). https://doi.org/10.1145/3371078

Raad, A., Berdine, J., Dang, H.H., Dreyer, D., O’Hearn, P.W., Villard, J.: Local

reasoning about the presence of bugs: Incorrectness separation logic. In: Lahiri,

S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Con-

ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part

II. Lecture Notes in Computer Science, vol. 12225, pp. 225-252. Springer (2020).

https://doi.org/10.1007/978-3-030-53291-8_14

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July

2002, Copenhagen, Denmark, Proceedings. pp. 55-74. IEEE Computer Society

(2002). https://doi.org/10.1109/LICS.2002.1029817

Rival, X., Yi, K.: Introduction to Static Analysis — An Abstract Interpretation

Perspective. MIT Press (2020)

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons

from building static analysis tools at Google. Commun. ACM 61(4), 58-66 (Mar

2018). https://doi.org/10.1145/3188720

https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-18275-4_12
https://doi.org/10.1145/3338112
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.scico.2013.09.014
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3188720

Limits in the design of under-approximation abstract domains 39

24. Schmidt, D.A.: A calculus of logical relations for over- and underap-
proximating static analyses. Sci. Comput. Program. 64(1), 29-53 (2007).
https://doi.org/10.1016/j.scico.2006.03.008

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.scico.2006.03.008
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

On probability-raising causality
in Markov decision processes *

Christel Baier ™), Florian Funke @, Jakob Piribauer =@, and Robin Ziemek &

Technische Universitit Dresden
{christel .baier, florian.funke,
jakob.piribauer,robin.ziemek}@tu-dresden.de

Abstract. The purpose of this paper is to introduce a notion of causality in
Markov decision processes based on the probability-raising principle and to ana-
lyze its algorithmic properties. The latter includes algorithms for checking cause-
effect relationships and the existence of probability-raising causes for given effect
scenarios. Inspired by concepts of statistical analysis, we study quality measures
(recall, coverage ratio and f-score) for causes and develop algorithms for their
computation. Finally, the computational complexity for finding optimal causes
with respect to these measures is analyzed.

1 Introduction

As modern software systems control more and more aspects of our everyday lives, they
grow increasingly complex. Even small changes to a system might cause undesired
or even disastrous behavior. Therefore, the goal of modern computer science does not
only lie in the development of powerful and versatile systems, but also in providing
comprehensive techniques to understand these systems. In the area of formal verifi-
cation, counterexamples, invariants and related certificates are often used to provide
a verifiable justification that a system does or does not behave according to a specifi-
cation (see e.g., [30,16,32]). These, however, provide only elementary insights on the
system behavior. Thus, there is a growing demand for a deeper understanding on why
a system satisfies or violates a specification and how different components influence
the performance. The analysis of causal relations between events occurring during the
execution of a system can lead to such understanding. The majority of prior work in
this direction relies on causality notions based on Lewis’ counterfactual principle [29]
stating the effect would not have occurred if the cause would not have happened. A
prominent formalization of the counterfactual principle is given by Halpern and Pearl
[21] via structural equation models. This inspired formal definitions of causality and
related notions of blameworthiness and responsibility in Kripke and game structures
(see, e.g., [15,11,14,40,19,41,7]).

In this work, we approach the concept of causality in a probabilistic setting, where
we focus on the widely accepted probability-raising principle which has its roots in

* This work was funded by DFG grant 389792660 as part of TRR 2438, the Cluster of Excellence
EXC 2050/1 (CeTlI, project ID 390696704, as part of Germany’s Excellence Strategy), DFG-
projects BA-1679/11-1 and BA-1679/12-1,and the RTG QuantLA (GRK 1763).

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 40-60, 2022.
https://doi.org/10.1007/978-3-030-99253-8_3

http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-7301-1550
http://orcid.org/0000-0003-4829-0476
http://orcid.org/0000-0002-8490-1433
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_3&domain=pdf

On probability-raising causality in Markov decision processes 41

Table 1. Complexity results for MDPs and Markov chains (MC) with fixed effect set

for fixed set Cause find optimal cause
check PR compute qua].lty values covratio-optimal)
condition (recall, covratio, f-score) | = recall-optimal f-score-optimal
poly-space
SPR cP poly-time poly-time poly-time for MC
threshold problem € NP M coNP
€ PSPACE : poly-space
GPR poly-time threshold problems € PSPACE and NP-hard

and € P for MC

and NP-complete for MC

philosophy [38,39,18,22] and has been refined by Pearl [35] for causal and probabilis-
tic reasoning in intelligent systems. The different notions of probability-raising cause-
effect relations discussed in the literature share the following two main principles:

(C1) Causes raise the probabilities for their effects, informally expressed by the re-
quirement “Pr(effect|cause) > Pr(effect)”.
(C2) Causes must happen before their effects.

Despite the huge amount of work on probabilistic causation in other disciplines, re-
search on probability-raising causes in the context of formal methods is comparably
rare and has concentrated on Markov chains (see, e.g., [24,25,6] and the discussion of
related work in Section 3.2). To the best of our knowledge, probabilistic causation for
probabilistic operational models with nondeterminism has not been studied before.

We formalize the principles (C1) and (C2) for Markov decision processes (MDPs),
a standard operational model combining probabilistic and non-deterministic behavior,
and concentrate on reachability properties where both cause and effect are given as sets
of states. Condition (C1) can be interpreted in two natural ways in this setting: On one
hand, the probability-raising property can be locally required for each element of the
cause. Such causes are called strict probability-raising (SPR) causes in our framework.
This interpretation is especially suited when the task is to identify system states that
have to be avoided for lowering the effect probability. On the other hand, one might want
to treat the cause set globally as a unit in (C1) leading to the notion of global probability-
raising (GPR) cause. Considering the cause set as a whole is better suited when further
constraints are imposed on the candidates for cause set. This might apply, e.g., when the
set of non-terminal states of the given MDP is partitioned into sets of states S; under the
control of an agent i, 1 <1 < k. For the task to identify which agent’s decisions cause
the effect only the subsets of Si,...,Sy are candidates for causes. Furthermore, global
causes are more appropriate when causes are used for monitoring purposes under partial
observability constraints as then the cause candidates are sets of indistinguishable states.

Different causes for an effect according to our definition can differ substantially
regarding how well they predict the effect and how well the executions exhibiting the
cause cover the executions showing the effect. Taking inspiration from measures used
in statistical analysis (see, e.g., [36]), we introduce quality measures that allow us to
compare causes and to look for optimal causes: The recall captures the probability that
the effect is indeed preceded by the cause. The coverage-ratio quantifies the fraction of

42 Baier et al.

the probability that cause and effect are observed and the probability that the effect but
not the cause is observed. Finally, the f-score, a widely used quality measure for binary
classifiers, is the harmonic mean of recall and precision, i.e., the probability that the
cause is followed by the effect.

Contributions. The goal of this work are the mathematical and algorithmic founda-
tions of probabilistic causation in MDPs based on (C1) and (C2). We introduce strict
and global probability-raising causes in MDPs (Section 3). Algorithms are provided to
check whether given cause and effect sets satisfy (one of) the probability-raising con-
ditions (Section 4.1 and 4.2) and to check the existence of causes for a given effect
(Section 4.1). In order to evaluate the coverage properties of a cause, we subsequently
introduce the above-mentioned quality measures (Section 5.1). We give algorithms for
computing these values for given cause-effect relations (Section 5.2) and characterize
the computational complexity of finding optimal causes with respect to the different
measures (Section 5.3). Table 1 summarizes our complexity results. An extended ver-
sion of this paper containing the omitted proofs can be found in [8].

2 Preliminaries

Throughout the paper, we will assume some familiarity with basic concepts of Markov
decision processes. Here, we only present a brief summary of the notations used in the
paper. For more details, we refer to [37,9,23].

A Markov decision process (MDP) is a tuple M = (S,Act, P, init) where S is a finite
set of states, Act a finite set of actions, init € S the initial stateand P: S x Act x S — [0, 1]
the transition probability function such that } s P(s,«,t) € {0,1} for all states s € S
and actions « € Act. An action « is enabled in state s € S if ZtES P(s,o,t) =1. We
define Act(s) = {oc| ot is enabled in s}. A state t is ferminal if Act(t) = 0. A Markov
chain (MC) is a special case of an MDP where Act is a singleton (we then write P(s,u)
rather than P(s, o, ut)). A path in an MDP M is a (finite or infinite) alternating sequence
T=8000S] X S2- - € (SXAct)* U (S x Act)® such that P(si,xq,s141) > 0 for all
indices i. A path is called maximal if it is infinite or finite and ends in a terminal state.
An MDP can be interpreted as a Kripke structure in which transitions go from states to
probability distributions over states.

A (randomized) scheduler G is a function that maps each finite non-maximal path
S00Q...Xn_1Sn to a distribution over Act(sy). 6 is called deterministic if G(7t) is a
Dirac distribution for all finite non-maximal paths 7t. If the chosen action only depends
on the last state of the path, G is called memoryless. We write MR for the class of mem-
oryless (randomized) and MD for the class of memoryless deterministic schedulers.
Finite-memory schedulers are those that are representable by a finite-state automaton.

The scheduler G of M induces a (possibly infinite) Markov chain. We write Prj%[’ s
for the standard probability measure on measurable sets of maximal paths in the Markov
chain induced by & with initial state s. If ¢ is a measurable set of maximal paths, then
Pryis (@) and Pr“M‘if‘S (¢) denote the supremum resp. infimum of the probabilities for ¢

under all schedulers. We use the abbreviation Pr§); = Pr§y ., and notations Prii¢* and

Prg‘/it“ for extremal probabilities. Analogous notations will be used for expectations. So,
if f is a random variable, then, e.g., Ejev[(f) denotes the expectation of f under & and

On probability-raising causality in Markov decision processes 43

EN* (f) its supremum over all schedulers. We use LTL-like temporal modalities such as
¢ (eventually) and U (until) to denote path properties. For X, T C S the formula XU T is
satisfied by paths 7t = s¢s; ... such that there exists j > 0 such that forall i <j:s; € X
and s; € T and OT = SUT. It is well-known that Prnj\}i[“(XUT) and Priyi*(XUT) and
corresponding optimal MD-schedulers are computable in polynomial time.

If s € S and « € Act(s), then (s, «) is said to be a state-action pair of M. An end
component (EC) of an MDP M is a strongly connected sub-MDP containing at least
one state-action pair. ECs will be often identified with the set of their state-action pairs.
An EC € is called maximal (abbreviated MEC) if there is no proper superset &’ of (the
set of state-action pairs of) € which is an EC.

3 Strict and global probability-raising causes

We now provide formal definitions for cause-effect relations in MDPs which rely on
the probability-raising (PR) principle as stated by (C1) and (C2) in the introduction. We
focus on the case where both causes and effects are state properties, i.e., sets of states.

In the sequel, let M = (S,Act, P, init) be an MDP and Eff C S\ {init} a nonempty set
of terminal states. (As the effect set is fixed, for the analysis of cause-effect relationships
in M it suffices to assume all effect states are terminal by (C2).) Furthermore, we may
assume that every state s € S is reachable from init.

We consider here two variants of the probability-raising condition: the global set-
ting treats the set Cause as a unit, while the strict view requires the probability-raising
condition for all states in Cause individually.

Definition 1 (Global and strict probability-raising cause (GPR/SPR cause)). Let
M and Eff be as above and Cause a nonempty subset of S\ Eff. Then, Cause is said to
be a GPR cause for Eff iff the following two conditions (G) and (M) hold:

(G) For each scheduler & where Pr% (OCause) > 0:
Prs (OEff | OCause) > Priy (QEff). (GPR)
(M) For each c € Cause, there is a scheduler & with Pr%((ﬂCause) Uc) > 0.

Cause is called an SPR cause for Eff iff (M) and the following condition (S) hold:

(S) For each state ¢ € Cause and each scheduler S where Pr%((ﬁCa use)Uc) > 0:
PrS;(OEFF | (—Cause)Uc) > PrS(OEF). (SPR)

Condition (M) can be seen as a minimality requirement as states ¢ € Cause which
are not accessible from init without traversing other states in Cause could be omitted
without affecting the true positives (events where an effect state is reached after vis-
iting a cause state, “covered effects”) or false negatives (events where an effect state
is reached without visiting a cause state before, “uncovered effect”). More concretely,
whenever a set C C S\ Eff satisfies conditions (G) or (S) then the set Cause of states
¢ € C where M has a path from init satisfying (—C) Uc is a GPR resp. an SPR cause.

44 Baier et al.

3.1 Examples and simple properties of probability-raising causes

We first observe that SPR/GPR causes cannot contain the initial state init, since other-
wise an equality instead of an inequality would hold in (GPR) and (SPR). Furthermore
as a direct consequence of the definitions and using the equivalence of the LTL formulas
¢{Cause and (—Cause) U Cause we obtain:

Lemma 1 (Singleton PR causes). If Cause is a singleton then Cause is a SPR cause
for Eff if and only if Cause is a GPR cause for Eff.

As the event (Cause is a disjoint union of all events (—Cause) U ¢ with ¢ € Cause,
the probability for covered effects Pr%,[(QEff | OCause) is a weighted average of the
probabilities Prg\j/t(QEff | (—Cause) Uc) for ¢ € Cause. This yields:

Lemma 2 (Strict implies global). Every SPR cause for Eff is a GPR cause for Eff.

Example 1 (Non-strict GPR cause). Consider the Markov chain M depicted below
where the nodes represent states and the directed edges represent transitions labeled
with their respective probabilities. Let Eff ={eff}. Then, Pry (QEff) = % + % . % + % =
%, Pr¢ (OEff|Oct) = Prag ¢, (Oeff) = 1 and Pry¢ (OEfF|Oca) = Proy ¢, (Oeff) = . Thus,
{c1}is both an SPR and a GPR cause for Eff, while {c,} is not. The set Cause ={c;,c»}
is a non-strict GPR cause for Eff as:

Pry(OEff | OCause) = (§+3-1)/(3+3) =(3)/(3) = 3 > § =Pry(OEF).

The second condition (M) is obviously fulfilled. Non-strictness follows from the
fact that the SPR condition does not hold for state c,. <

1/12 @ 1/4
1 C /3 1/3
3/4

1/4

Example 2 (Probability-raising causes might not exist). PR causes might not exist, even
if M is a Markov chain. This applies, e.g., to the Markov chain M with two states init
and eff where P(init,eff) = 1 and the effect set Eff = {eff}. The only cause candidate
is the singleton {init}. However, the strict inequality in (GPR) or (SPR) does not hold
for Cause = {init}. The same phenomenon occurs if all non-terminal states of a Markov
chain reach the effect states with the same probability. In such cases, however, the non-
existence of PR causes is well justified as the events QEff and (Cause are stochastically
independent for every set Cause C S\ Eff. <

Remark 1 (Memory needed for refuting PR condition). Let M be the MDP in Figure 1,
where the notation is similar to Example 1 with the addition of actions o, 3 and y. Let
Cause = {c} and Eff = {eff}. Only state s has a nondeterministic choice. Cause is not
an PR cause. To see this, regard the deterministic scheduler ¥ that schedules 3 only for
the first visit of s and « for the second visit of s. Then:

Pry(Oeff) = L. L4 Ll b= 3 5 b = prf (OefflOc)

On probability-raising causality in Markov decision processes 45

Fig. 1. MDP M from Remark 1 Fig. 2. MDP M from Remark 2

Denote the MR schedulers reaching ¢ with positive probability as G, with G (s) ()
=Aand G, (s)(B) = 1—A for some A € [0, 1[. Then, Prg\j/[’:S(Oeff) > 0 and:

Py (Oeff) = 1P (Oeff) < Prip, (Oeff) = Prip, (Oeff) = Prip (OefflOc)

Thus, the SPR/GPR condition holds for Cause and Eff under all memoryless schedulers
reaching Cause with positive probability, although Cause is not an PR cause. <

Remark 2 (Randomization needed for refuting PR condition). Consider the MDP M of
Figure 2. Let Eff = {eff ,nc,eff o, } and Cause ={c}. The two MD-schedulers & and &
that select o resp. 3 for the initial state init are the only deterministic schedulers. As G o
does not reach c, it is irrelevant for the SPR or GPR condition. G satisfies (SPR) and

(GPR) as Prf/tf5 (OEff|Oc) = % > % = Prj\@,g3 (OQEff). The MR scheduler T which selects
o and {3 with probability % in init reaches c with positive probability and violates (SPR)
and (GPR) as Pr}ﬁ((}EfFl(}c) = % < % = % + % - % : % :Pr}%[(OEfF). <

Remark 3 (Cause-effect relations for regular classes of schedulers). The definitions of
PR causes in MDPs impose constraints for all schedulers reaching a cause state. This
condition is fairly strong and might lead to the phenomenon that no PR cause exists.
However, replacing M with an MDP resulting from the synchronous parallel compo-
sition of M with a deterministic finite automaton representing a regular constraint on
the scheduled state-action sequences (e.g., “alternate between actions o and [3 in state
s” or “take o on every third visit to state s and actions (3 or y otherwise”) leads to a
weaker notion of PR causality. This can be useful to obtain more detailed information
on cause-effect relationships in special scenarios. For example at design time where
multiple scenarios (regular classes of schedulers) are considered or for a post-hoc anal-
ysis. For the later, one seeks causes of an occurred effect and the information about the
scheduled actions is either extractable from log files or gathered by a monitor. <

Remark 4 (Action causality and other forms of PR causality). Our notions of PR causes
are purely state-based with conditions that compare probabilities under the same sched-
uler. However, in combination with model transformations, the proposed notions are
also applicable for reasoning about other forms of PR causality.

Suppose, the task is to check whether taking action « in state s raises the effect
probabilities compared to never scheduling « in state s. Let Mg and M; be copies of M
with the following modifications: In M, the only enabled action of state s is «, while

46 Baier et al.

in M the enabled actions of state s are the elements of Acty¢(s) \{c}. Let now N be the
MDP whose initial state has a single enabled action and moves with probability 1/2 to
My and M. Then, action « raises the effect probability in M iff the initial state of M
consitutes an SPR cause in N. This idea can be generalized to check whether scheduler
classes satisfying a regular constraint have higher effect probability compared to all
other schedulers. In this case, we can deal with an MDP N as above where Mg and M,
are defined as the synchronous product of deterministic finite automata and M. <

3.2 Related work

Previous work in the direction of probabilistic causation in stochastic operational mod-
els has mainly concentrated on Markov chains. Kleinberg [24,25] introduced prima
facie causes in finite Markov chains where both causes and effects are formalized as
PCTL state formulae, and thus they can be seen as sets of states as in our approach.
The correspondence of Kleinberg’s PCTL constraints for prima facie causes and the
strict probability-raising condition formalized using conditional probabilities has been
worked out in the survey article [S]. Our notion of SPR causes corresponds to Klein-
berg’s prima facie causes, except for the minimality condition (M). Abrahim et al [1]
introduces a hyperlogic for Markov chains and gives a formalization of probabilistic
causation in Markov chains as a hyperproperty, which is consistent with Kleinberg’s
prima facie causes, and with SPR causes up to minimality. Cause-effect relations in
Markov chains where effects are w-regular properties have been introduced in [6]. The
notion relies on the strict probability-raising condition, but requires completeness in the
sense that every path where the effect occurs has a prefix in the cause set. The paper [6]
permits a non-strict inequality in the SPR condition with the consequence that causes
always exist, which is not the case for our notions.

The survey article [5] introduces notions of global probability-raising causes for
Markov chains where causes and effects can be path properties. [5]’s notion of reacha-
bility causes in Markov chains directly corresponds to our notion GPR causes, the only
difference being that [5] deals with a relaxed minimality condition and requires that the
cause set is reachable without visiting an effect state before. The latter is inherent in our
approach as we suppose that all states are reachable and the effect states are terminal.

To the best of our knowledge, probabilistic causation in MDPs has not been studied
before. The only work in this direction we are aware of is the recent paper by Dim-
itrova et al [17] on a hyperlogic, called PHL, for MDPs. While the paper focuses on
the foundation of PHL, it contains an example illustrating how action causality can be
formalized as a PHL formula. Roughly, the presented formula expresses that taking a
specific action « increases the probability for reaching effect states. Thus, it also relies
on the probability-raising principle, but compares the “effect probabilities” under dif-
ferent schedulers (which either schedule « or not) rather than comparing probabilities
under the same scheduler as in our PR condition. However, as Remark 4 argues, to some
extent our notions of PR causes can reason about action causality as well.

There has also been work on causality-based explanations of counterexamples in
probabilistic models [27,28]. The underlying causality notion of this work, however, re-
lies on the non-probabilistic counterfactual principle rather than the probability-raising

On probability-raising causality in Markov decision processes 47

condition. The same applies to the notions of forward and backward responsibility in
stochastic games in extensive form introduced in the recent work [7].

4 Checking the existence of PR causes and the PR conditions

We now turn to algorithms for checking whether a given set Cause is an SPR or GPR
cause for Eff. As condition (M) of SPR and GPR causes is verifiable by standard model
checking techniques in polynomial time, we concentrate on checking the probability-
raising conditions (SPR) and (GPR). For Markov chains, both (SPR) and (GPR) can
be checked in polynomial time by computing the corresponding probabilities. So, the
interesting case is checking the PR conditions in MDPs.

We start by stating that for the SPR and GPR condition, it suffices to consider sched-
ulers minimizing the probability to reach an effect state from every cause state.

Notation 1 (MDP with minimal effect probabilities from cause candidates). If C C
S then we write M[c) for the MDP resulting from M by removing all enabled ac-
tions of the states in C. Instead, M) has a new action <y that is enabled exactly in

the states s € C with the transition probabilities Py, (s,7v,eff) = mm . (QEff) and
P e (s,y,noeff) = lfPr“]\}i[‘}s (QEfF). Here, eff is a fixed state in Eff and noefF a (pos-
sibly fresh) terminal state not in Eff. We write M. if C ={c} is a singleton.

Lemma 3. Let M = (S,Act,P,init) be an MDP and Eff C S a set of terminal states. Let
Cause C S\ Eff. Then, Cause is an SPR cause (resp. a GPR cause) for Eff in M if and
only if Cause is an SPR cause (resp. a GPR cause) for Eff in Mc,yse)-

4.1 Checking the strict probability-raising condition and the existence of causes

The basis of both checking the existence of PR causes or checking the SPR condition
for a given cause candidate is the following polynomial time algorithm to check whether
the SPR condition holds in a given state ¢ of M for all schedulers & with Prj%[(Oc)>0:

Algorithm 2. Input: state c € S, set of terminal states Eff C S.
Task: Decide whether (SPR) holds in ¢ for all schedulers &.
Compute w, = Prmln (OEff) and q5 = Prrmlx s (OEfF) for each state s in M) .

1. If qinit < W, then return “yes, (SPR) holds for c”.

2. If ginit > Wc, then return “no, (SPR) does not hold for c”.

3. Suppose qinit =We. Let A(s) ={o € Actyr (s) [qs = Ztes[o (s,00t) - qe
for each non-terminal state s. Let M‘[lla]x denote the sub-MDP of M [c] induced by

the state-action pairs (s, x) where o € A(s).
3.1 If cisreachable from init in Mr[‘;a]x, then return “no, (SPR) does not hold for c”.

3.2 If ¢ is not reachable from init in .’me, then return “yes, (SPR) holds for c”.

Lemma 4. Algorithm 2 is sound and runs in polynomial time.

48 Baier et al.

Soundness. Let N = M;.j. Soundness is obvious in case 1. For case 2, consider a real
number A with 1 > A > % and MD-schedulers T and & realizing Pry (OEff) = qs

and Pr%(@c) > (0 for all states s. We can combine ¥ and & to a new MR-scheduler ${
with the property that Pr%((}t) =)\Pr%[(ot) + (1—)\)Pr%(<>t) for all terminal states t
and for t = c. Then, U witnesses a violation of (SPR). For case 3.1 consider an MD-
scheduler & of M‘[ﬁx where c is reachable from init via a G-path and Pr%i <(OEff) =qs
for all states s. Then, (SPR) does not hold for ¢ in the scheduler &. In case 3.2 we
have Pr%((}c) =0 for all schedulers & for N with Pr%(OEfF) = (init = W¢. But then
Pr%((}c) > 0 implies Pr%(()EfF) < we as required in (SPR). a

By applying Algorithm 2 to all states ¢ € Cause and standard algorithms to check
the existence of a path satisfying (—Cause) Uc for every state ¢ € Cause, we obtain:

Theorem 3 (Checking SPR causes). The problem “given M, Cause and Eff, check
whether Cause is a SPR cause for Eff in M” is solvable in polynomial-time.

Remark 5 (Memory requirements for refuting the SPR property). As the soundness
proof for Algorithm 2 shows: If Cause does not satisfy the SPR condition, then there is
an MR-scheduler & for M ¢, Witnessing the violation of (SPR). Scheduler & cor-
responds to a finite-memory (randomized) scheduler ¥ with two memory cells for M:
“before Cause” (where ¥ behaves as &) and “after Cause” (where ¥ behaves as an
MD-scheduler minimizing the effect probability form every state). <

Lemma 5 (Criterion for the existence of probability-raising causes). Let M be an
MDP and Eff a nonempty set of states. Then Eff has an SPR cause in M iff Eff has
a GPR cause in M iff there is a state co € S\ Eff such that the singleton {cy} is an
SPR cause (and therefore a GRP cause) for Eff in M. In particular, the existence of
SPR/GPR causes can be checked with Algorithm 2 in polynomial time.

4.2 Checking the global probability-raising condition

Theorem 4. The problem “given M, Cause and Eff, check whether Cause is a GPR
cause for Eff in M” is solvable in polynomial space.

In order to provide an algorithm, we perform a model transformation after which the
violation of (GPR) by a scheduler & can be expressed solely in terms of the expected
frequencies of the state-action pairs of the transformed MDP under &. This allows
us to express the existence of a scheduler witnessing the non-causality of Cause in
terms of the satisfiability of a quadratic constraint system. Then we can restrict the
quantification in (G) to MR-schedulers in the transformed model. We trace back the
memory requirements to Mc,se] and to the original MDP M yielding the second main
result. Still, memory can be necessary to witness non-causality (Remark 1).

Theorem 5. Let M be an MDP with effect set Eff as before and Cause a set of non-
effect states such that condition (M) holds. If Cause is not a GPR cause for Eff, then
there is an MR-scheduler for Mc,yse] refuting the GPR condition for Cause in M[c,yse]
and a finite-memory scheduler for M with two memory cells refuting the GPR condition
for Cause in M.

On probability-raising causality in Markov decision processes 49

The remainder of this section is concerned with the proofs of Theorem 4 and Theo-
rem 5. We suppose that both the effect set Eff and the cause candidate Cause are fixed
disjoint subsets of the state space of the MDP M and that Cause satisfies (M).

Checking the GPR condition (Proof of Theorem 4). The first step is a polynomial-
time model transformation which permits to make the following assumptions when
checking the GPR condition of Cause for Eff.

(A1) Eff ={effunc, effcov} consists of two terminal states.

(A2) For every state ¢ € Cause, there is only a single enabled action, say Act(c) ={y},
and there exists w¢ € [0, 1] NQ such that P(c, v, effoy) =W and P(c, v, noeffg,) =
1—w. where noeffg, is a terminal non-effect state and noeffg, and eff.,, are only
accessible via the y-transition from the states c € Cause.

(A3) M has no end components and there is a further terminal state noeffy, and an
action T such that T € Act(s) implies P(s, T, noeffy,) = 1.

Intuitively, eff.,, stands for covered effects (“Eff after Cause”) and can be seen as
a true positive, while eff . represents the uncovered effects (“Eff without preceding
Cause”) and corresponds to a false negative. Let & be a scheduler in M. Note that
Pr%((ﬁCause) UEff) = Prf,[(oeffunc) and Pr% (O(Cause ANQESf)) = Prjev[(Oeffeoy). As
the cause states can not reach each other we also have Pr%{ ((—Cause)Uc) = Pr%,[(Oc)
for each ¢ € Cause. The intuitive meaning of noeffy, is a false positive (“no effect after
Cause”), while noeffy, stands for true negatives where neither the effect nor the cause is
observed. Note that Prj%[(O(Cause/\ﬁOEfF)) = Pr%t(OnoefFfp) and Prj%[(ﬂOCause/\
—QEff)) = P (Onoeff,).

Justification of assumptions (Al)-(A3): We justify the assumptions as we can trans-
form M into a new MDP of the same asymptotic size satisfying the above assump-
tions. Thanks to Lemma 3, we may suppose that M = Mc, s (see Notation 1) without
changing the satisfaction of the GPR condition. We then may rename the effect state
eff and the non-effect state noeff reachable from Cause into eff.,, and noeffs,, respec-
tively. Furthermore, we collapse all other effect states into a single state eff,,. and all
true negative states into noeffy,. Similarly, by renaming and possibly duplicating ter-
minal states we also suppose that noeffg, has no other incoming transitions than the
y-transitions from the states in Cause. This ensures (A1) and (A2). For (A3) consider
the set T of terminal states in the MDP obtained so far. We remove all end components
by switching to the MEC-quotient [2], i.e., we collapse all states that belong to the same
MEC € into a single state s¢ while ignoring the actions inside €. Additionally, we add
a fresh T-transition from the states sg¢ to noeffy, (i.e., P(sg,T,noeffy,) = 1). The 1-
transitions from states s¢ to noeff,, mimic cases where schedulers of the original MDP
eventually enter an end component and stay there forever with positive probability.
With assumptions (A1)-(A3), the GPR condition can be reformulated as follows:

Lemma 6. Under assumptions (Al)-(A3), Cause satisfies the GPR condition if and only
if for each scheduler & with Pr% (OCause) > 0 the following condition holds:

Pr§ (OCause) - Pr§ (Oeffunc) < (1—Pr§(OCause)) ZPrM Oc)-we (GPR-1)

c€&Cause

50 Baier et al.

With assumptions (A1)-(A3), a terminal state of M is reached almost surely under
any scheduler after finitely many steps in expectation. Given a scheduler & for M, the
expected frequencies (i.e., expected number of occurrences in maximal paths) of state
action-pairs (s, o), states s € S and state-sets T C S under & are defined by:

def

Sfreqes (s, o) EJ%[(number of visits to s in which « is taken)
def

freqels) =) freas(s. o), frege(T) =) freqe(s).

Let T be one of the sets {effeoy}, {effunc}, Cause, or a singleton {c} with ¢ € Cause. As
T is visited at most once during each run of M (assumptions (A1) and (A2)), we have
Pr%((}T) = freqg (T) for each scheduler &. This allows us to express the violation
of the GPR condition in terms of a quadratic constraint system over variables for the
expected frequencies of state-action pairs in the following way:

Let StAct denote the set of state-action pairs in M. We consider the following con-
straint system over the variables xg o for each (s,) € StAct where we use the short
form notation Xs =3\ cpe(s) Xs,a!

Xso 20 for all (s,) € StAct 1)
Xinit = 1+ Z Xt o - P(t, &, init))
(t,oc) EStAct
Xg = Z Xt o - P(t, &, 8) for all s € S\ {init} 3)
(t,oc) EStAct

Using well-known results for MDPs without ECs (see, e.g., [23, Theorem 9.16]), given
a vector x € RS’ then x is a solution to (1) and the balance equations (2) and (3)
if and only if there is a (possibly history-dependent) scheduler & for M with x5 o =
freqe (s, o) for all (s,) € StAct if and only if there is an MR-scheduler & for M with
X5, =Jreqg (s, o) forall (s,) € StAct.

The violation of (GPR-1) in Lemma 6 and the condition Pr%’:[(OCause) > 0 can be
reformulated in terms of the frequency-variables as follows where Xcayse 1S an abbrevi-

ation for)~ . ccause Xe:
XCause * Xeffync > (1 _XCause) . Z Xc " We (4)
ccCause
XCause =~ 0 (5)

Lemma 7. Under assumptions (Al)-(A3), the set Cause is not a GPR cause for Eff in
M iff the constructed quadratic system of inequalities (1)-(5) has a solution.

Proof of Theorem 4. The existence of a solution to the quadratic system of inequalities
(Lemma 7) can straight-forwardly be formulated as a sentence in the language of the
existential theory of the reals. The system of inequalities can be constructed from M,
Cause, and Eff in polynomial time. Its solvability is decidable in polynomial space as
the decision problem of the existential theory of the reals is in PSPACE [13]. O

On probability-raising causality in Markov decision processes 51

Memory requirements of schedulers in the original MDP (Proof of Theorem 5).
As stated above, every solution to the linear system of inequalities (1), (2), and (3)
corresponds to expected frequencies of state-action pairs of an MR-scheduler in the
transformed model satisfying (A1)-(A3). Hence:

Corollary 1. Under assumptions (Al)-(A3), Cause is no GPR cause for Eff iff there
exists an MR-scheduler ¥ with Pr%[(OCause) > 0 violating the GPR condition.

The model transformation we used for assumptions (A1)-(A3), however, does affect
the memory requirements of schedulers. We may further restrict the MR-schedulers
necessary to witness non-causality under assumptions (A1)-(A3). For the following
lemma, recall that T is the action of the MEC quotient used for the extra transition
from states representing MECs to a new trap state (see also assumption (A3)).

Lemma 8. Assume (Al)-(A3). Given an MR-scheduler 3\ with Pr%,[(QCa use) > 0 that
violates (GPR), an MR-scheduler € with T(s)(t) €{0, 1} for each state s with T € Act(s)
that satifies Pr%(OCa use) > 0 and violates (GPR) is computable in polynomial time.

The condition that T only has to be scheduled with probability O or 1 in each state
is the key to transfer the sufficiency of MR-schedulers to the MDP M¢, ;. This fact
is of general interest as well and stated in the following theorem where T again is the
action added to move from a state s¢ to the new trap state in the MEC-quotient.

Theorem 6. Let M be an MDP with pairwise disjoint action sets for all states. Then,
for each MR-scheduler & for the MEC-quotient of M with &(s¢)(t) € {0, 1} for each
MEC & of M there is an MR-scheduler X for M such that every action « of M that does
not belong to an MEC of M, has the same expected frequency under G and ¥.

Proof sketch. The crux are cases where S(s¢)(t) = 0, which requires to traverse the
MEC € of M in a memoryless way such that all actions leaving € have the same ex-
pected frequency under ¥ and &. First, we construct a finite-memory scheduler T’ that
always leaves each such end component according to the distribution given by S(s¢).
By [23, Theorem 9.16], we then conclude that there is an MR-scheduler ¥ under which
the expected frequencies of all state-action pairs are the same as under . a

Proof of Theorem 5. The model transformation establishing assumptions (A1)-(A3) re-
sults in the MEC-quotient of Mc,,s] up to the renaming and collapsing of terminal
states. By Corollary 1 and Theorem 6, we conclude that Cause is not a GPR cause for
Eff in M iff there is a MR-scheduler & for M ¢, se) With Pr%,[[Cau (OCause) > 0 that

se]

violates (GPR). As in Remark 5, G can be extended to a finite-memory randomized
scheduler ¥ for M with two memory cells. O

Remark 6 (On lower bounds on GPR checking). Solving systems of quadratic inequal-
ities with linear side constraints is NP-hard in general (see, e.g., [20]). For convex prob-
lems, in which the associated symmetric matrix in the quadratic inequality has only
non-negative eigenvalues, the problem is, however, solvable in polynomial time [26].
Unfortunately, the quadratic constraint system given by (1)-(5) is not of this form. Even
if Cause is a singleton {c} and the variable x.f,,. is forced to take a constant value y by
(1)-(3), i.e., by the structure of the MDP, the inequality (4) takes the form:

52 Baier et al.

XC'WC_X%'(WC—’_y)gO *)

Here, the 1 x 1-matrix (—w:—y) has a negative eigenvalue. Although it is not ruled
out that (1)-(5) belongs to another class of efficiently solvable constraint systems, the
NP-hardness result in [33] for the solvability of quadratic inequalities of the form (*)
with linear side constraints might be an indication for the computational difficulty. <

5 Quality and optimality of causes

The goal of this section is to identify notions that measure how “good” causes are and to
present algorithms to determine good causes according to proposed quality measures.
We have seen so far that small (singleton) causes are easy to determine (see Section
4.1). Moreover, it is easy to see that the proposed existence-checking algorithm can be
transformed such that it returns a singleton (strict or global) probability-raising cause
{co} with maximal precision, i.e., a state ¢y where infg Pr% (OEff|Ocy) = Prrj‘\l,i[‘?c() (QEff)
is maximal. On the other hand, singleton or small cause sets might have poor coverage
in the sense that the probability of paths which reach an effect state without visiting a
cause state before (“uncovered effects”) can be large. This motivates the consideration
of quality notions for causes that incorporate how well effect scenarios are covered.
We take inspiration of quality measures that are considered in statistical analysis (see
e.g. [36]). This includes the recall as a measure for the relative coverage (proportion
of covered effects among all effect scenarios), the coverage ratio (quotient of covered
and uncovered effects) as well as the f-score. The f-score is a standard measure for
classifiers defined by the harmonic mean of precision and recall. It can be seen as a
compromise to achieve both good precision and good recall.

Throughout this section, we assume as before an MDP M = (S, Act,P,init) and a
set Eff C S are given where all effect states are terminal. Furthermore, we suppose that
all states s € S are reachable from init.

5.1 Quality measures for causes

In statistical analysis, the precision of a classifier with binary outcomes (“‘positive” or
“negative”) is defined as the ratio of all true positives among all positively classified
elements, while its recall is defined as the ratio of all true positives among all actual
positive elements. Translated to our setting, we consider classifiers induced by a given
cause set Cause that return “positive” for sample paths in case that a cause state is visited
and “negative” otherwise. The intuitive meaning of true positives and false negatives is
as explained after Definition 1. The meaning of true negatives and false positives is
analogous. We use tp® for the probability for true positives under &. The notations
pr, fnG, tn® have analogous meanings.

With this interpretation of causes as binary classifiers in mind, the recall and preci-
sion and coverage ratio of a cause set Cause under a scheduler S is defined as follows
(assuming Pr%((OEfF) > 0 resp. Pr%((}Cause) > 0 resp. Prf/[((ﬂCause) U Eff) > 0):

th
tpS +p®

S
recall® (Cause) = Pr§;(OCause | OEff) tpetpW

precision® (Cause) = Pr_%[(QEff | OCause)

On probability-raising causality in Markov decision processes 53

I
covrat® (Cause) = PrM(O(Cause/\QEfF)) _ »Y

Pr; ((—Cause) UEFF) fn®
For the coverage ratio, if Pr%{ ((ﬁCa use)U EfF) =0 and Pr%{(OCause) > 0 we define
covrat® (Cause) = +oo. Finally, the f-score of Cause under a scheduler & is defined
as the harmonic mean of the precision and recall (assuming Prj%[(OCause) > 0, which
implies Pr%[(OEff) > 0 as Cause is a PR cause):

precision® (Cause) - recall® (Cause)

fscore® (Cause) £ 2

precision® (Cause) + recall® (Cause)

If, however, Prj%[(OEfF) > 0 and Pr%((}Cause) = 0 we define fscore® (Cause) = 0.

Quality measures for cause sets. Let Cause be a PR cause. The recall of Cause mea-
sures the relative coverage in terms of the worst-case conditional probability for covered
effects (true positives) among all scenarios where the effect occurs.

recall(Cause) = infg recall® (Cause) = Pr}’\}i["(OCause | OEff)

when ranging over all schedulers G with Prj\e/[(OEff) > 0. Likewise, the coverage ratio
and f-score of Cause are defined by the worst-case coverage ratio resp. f-score (when
ranging over schedulers for which covrar® (Cause) resp. fscore® (Cause) is defined):

covrat(Cause) = infg covrat®(Cause), fscore(Cause) = infg fscore® (Cause)

5.2 Computation schemes for the quality measures for fixed cause set

For this section, we assume a fixed PR cause Cause is given and address the problem
to compute its quality values. Since all quality measures are preserved by the switch
from M to Mic,yse) as well as the transformations of Mc,,s) to an MDP that satisfies
conditions (A1)-(A3) of Section 4.2, we may assume that M satisfies (A1)-(A3).

While efficient computation methods for recall(Cause) are known from literature
(see [10,31] for poly-time algorithms to compute conditional reachability probabilities),
we are not aware of known concepts that are applicable for computing the coverage ratio
or the f-score. Indeed, both are efficiently computable:

Theorem 7. The values covrat(Cause) and fscore(Cause) and corresponding worst-
case schedulers are computable in polynomial time.

By definition, the value covrat(Cause) is the infimum over a quotient of reachability
probabilities for disjoint sets of terminal states. While this is not the case for the f-score,
we can express fscore(Cause) in terms of the supremum of such a quotient. More pre-
cisely, under assumptions (A1)-(A3) and assuming fscore(Cause) > 0, we have:

Pr§; (Onoeffe,) +Prs (Oeffunc)
Pr§; (Oeffeoy)

fscore(Cause) = xi

=5 Wwhere X = supg

where G ranges over all schedulers with Pr%(()effcov) > 0. Furthermore, we have
fscore(Cause) = 0 if and only if recall(Cause) = 0 if and only if there exists a scheduler
G satisfying Pr%((}EfF) >0 and Pr%(OCause) =0.

So, the remaining task to prove Theorem 7 is a generally applicable technique for
computing extremal ratios of reachability probabilities in MDPs without ECs.

54 Baier et al.

Max/min ratios of reachability probabilities for disjoint sets of terminal states.
Suppose we are given an MDP M = (S,Act, P,init) without ECs and disjoint subsets
U,V C S of terminal states. Given a scheduler & with Pr% (OV) > 0 we define:

ratio%t(u,V) = Pr%((}U)/Pr%((}V)

The goal is to compute the extremal values: ratio'J‘\‘/i[“(U,V) = infg ratioj%[(u,V) and
ratio)* (U, V) = supg ratio%t(u,V) where & ranges over all schedulers such that
Pr%((}V) > 0. For their computation, we rely on a polynomial reduction to the classi-
cal stochastic shortest path problem [12]. For this, consider the MDP N arising from
M by adding reset transitions from all terminal states t € S\V to init. Thus, exactly the
V-states are terminal in N. The MDP N might contain ECs, which, however, do not in-
tersect with V. We equip N with the weight function that assigns 1 to all states in U and
0 to all other states. For a scheduler T with Pr%((}V) =1, let EJ‘I\I(EEIV) be the expected
accumulated weight until reaching V under ¥. Let E%“(EV) = infg E%(BHV) and
EN*(HV) = supg E}I\I(EHV), where T ranges over all schedulers with Pr%((}V) =1.
We can rely on known results [12,3,4] to obtain that both ER"(HV) and EFf* (V)
are computable in polynomial time. As N has only non-negative weights, EN/" (V)
is finite and a corresponding MD-scheduler with minimal expectation exists. If N has
an EC containing at least one U-state, which is the case iff M has a scheduler & with
Prﬁ(ou) > 0 and Pr%(()V) =0, then Ef{* (V) = +o00. Otherwise, ER* (BV) is fi-
nite and the maximum is achieved by an MD-scheduler as well.

Theorem 8. Let M be an MDP without ECs and W,V disjoint sets of terminal states in
M, and let N be the constructed MDP as above. Then, ratioy"(U,V) = E}"(BV) and
max

ratio* (U, V) = EX™(BV). Thus, both values are computable in polynomial time, and

there is an MD-scheduler minimizing ratio%,[(W,V), and an MD-scheduler maximizing
ratio$y (U, V) if ratioS&* (U, V) is finite.

Proof of Theorem 7. Using assumptions (A1)-(A3), we obtain that covrat(Cause) =
ratio‘}\‘/i[“(U,V) where U = {effcoy}, V = {effync}. Similarly, with U = {noeffg,, effync},
V = {effeov}, we get fscore(Cause) = 0 if ratioyi* (U, V) = +oo and fscore(Cause) =
2/(ratioy* (U, V) +2) otherwise. Thus, the claim follows from Theorem 8.]

5.3 Quality-optimal probability-raising causes

An SPR cause Cause is called recall-optimal if recall(Cause) = max ¢ recall(C) where
C ranges over all SPR causes. Likewise, ratio-optimality resp. f-score-optimality of
Cause means maximality of covrat(Cause) resp. fscore(Cause) among all SPR causes.
Recall-, ratio- and f-score-optimality for GPR causes are defined accordingly.

Lemma 9. Let Cause be an SPR or a GPR cause. Then, Cause is recall-optimal if and
only if Cause is ratio-optimal.

Recall- and ratio-optimal SPR causes. The techniques of Section 4.1 yield an algo-
rithm for generating a canonical SPR cause with optimal recall and ratio. To see this,
let C denote the set of states that constitute a singleton SPR cause. The canonical cause
CanCause is defined as the set of states ¢ € C such that there is a scheduler & with
Pr%(((ﬁ@) Uc) > 0. Obviously, € and CanCause are computable in polynomial time.

On probability-raising causality in Markov decision processes 55

Theorem 9. [f C # @ then CanCause is a ratio- and recall-optimal SPR cause.

This is not true for the f-score. To see this, Con- 1/4
sider the Markov chain on the right hand side. We have @
CanCause ={s1}, which has precision(CanCause) = % and 12
recall(CanCause) = %/(i + %) = % But the SPR cause
{s>2} has better f-score as its precision is 1 and it has the 4 34
same recall as CanCause.

F-score-optimal SPR cause. From Section 5.2, we see that f-score-optimal SPR causes
in MDPs can be computed in polynomial space by computing the f-score for all poten-
tial SPR causes one by one in polynomial time (Theorem 7). As the space can be reused
after each computation, this results in polynomial space. For Markov chains, we can do
better and compute an f-score-optimal SPR cause in polynomial time via a polynomial
reduction to the stochastic shortest path problem:

Theorem 10. In Markov chains that have SPR causes, an f-score-optimal SPR cause
can be computed in polynomial time.

Proof. We regard the given Markov chain M as an MDP with a singleton action set
Act ={«}. As M has SPR causes, the set C of states that constitute a singleton SPR cause
is nonempty. We may assume that M has no non-trivial (i.e., cyclic) bottom strongly
connected components as we may collapse them. Let w. = Pry¢ . (OEff). We switch
from M to a new MDP X with state space Sx = S U{effcoy, noeffe,} with fresh states
effcoy and noeffg, and the action set Acty = {«,y}. The MDP X arises from M by
adding (i) for each state ¢ € € a fresh state-action pair (c,y) with Py (c,v, effcoy) = We
and Py (c,y,noeffg,) = 1—w, and (ii) reset transitions to init with action label o from
the new state noeffs, and all terminal states of M, i.e., Py (noeffg,, &, init) = 1 and
Pgc(s,x,init) = 1 for s € Eff or if s is a terminal non-effect state of M. So, exactly
effcoy is terminal in X, and Acty (c) = {w,v} for ¢ € €, while Actqc(s) = {«} for all
other states s. Intuitively, taking action vy in state ¢ € C selects c to be a cause state. The
states in Eff represent uncovered effects in K, while eff ., stands for covered effects.
We assign weight 1 to all states in U = Eff U{noeffg,} and weight O to all other states
of K. Let V = {effeo}. Then, f = Egg“(EﬂV) and an MD-scheduler & for X such that
ES%(EHV) = f are computable in polynomial time. Let C,, denote the set of states c € €
where &(c) =1 and let Cause be the set of states ¢ € €, where M has a path satisfying
(—Cy)Uc. Then, Cause is an SPR cause of M. With arguments as in Section 5.2 we
obtain fscore(Cause) = 2/(f+2). It remains to show that Cause is f-score-optimal. Let
C be an arbitrary SPR cause. Then, C C €. Let ¥ be the MD-scheduler for X that
schedules y in C and o for all other states of K. Then, fscore(C) = 2/(f*+2) where
T = E;IC(EEV). Hence, f < f¥, which yields fscore(Cause) > fscore(C). O

The naive adaption of the construction presented in the proof of Theorem 10 for
MDPs would yield a stochastic game structure where the objective of one player is
to minimize the expected accumulated weight until reaching a target state. Although
algorithms for stochastic shortest path (SSP) games are known [34], they rely on as-
sumptions on the game structure which would not be satisfied here. However, for the

56 Baier et al.

threshold problem SPR-f-score where inputs are an MDP M, Eff and ¥ € Q>0 and the
task is to decide the existence of an SPR cause whose f-score exceeds ¥, we can estab-
lish a polynomial reduction to SSP games, which yields an NP N coNP upper bound:

Theorem 11. The decision problem SPR-f-score is in NP M coNP.

Proof sketch. Given an MDP M, an effect set Eff, and 9 € Q, we construct an SSP
game [34] after a series of model transformations ensuring (i) that terminal states are
reached almost surely and (ii) that Eff is reached with positive probability under all
schedulers. Condition (i) is established by a standard MEC-quotient construction. To
establish condition (ii), we provide a construction that forces schedulers to leave an
initial sub-MDP in which the minimal probability to reach Eff is 0. This construction —
unlike the MEC-quotient — affects the possible combinations of probability values with
which terminal states and potential cause states can be reached, but the existence of an
SPR cause satisfying the f-score-threshold condition is not affected.

The underlying idea of the construction of the game shares similarities with the
MDP constructed in the proof of Theorem 10: Player 0 takes the role to select potential
cause states while player 1 takes the role of a scheduler in the transformed MDP. Using
the observation that for each cause C, fscore(C) > 9 iff

2(1—9)Prs (OC A QEFF) —OPr$ (—OC A QEFF) — 9P (OCA—QEff) >0 (%)

for all schedulers & for M with Pr_%[(OEfF) > 0, weights are assigned to Eff-states
and other terminal states depending on whether player O has chosen to include a state
to the cause beforehand. In the resulting SSP game, both players have optimal MD-
strategies [34]. Given such strategies C for player 0 and & for player 1, the resulting
expected accumulated weight agrees with the left-hand side of (x) when considering
G as a scheduler for the transformed MDP and the cause C induced by the states that
¢ chooses to belong to the cause. Thus, player O wins the constructed game iff an SPR
cause with f-score above the threshold © exists. The existence of optimal MD-strategies
for both players allows us to decide this threshold problem in NP and coNP. O

Optimality and threshold constraints for GPR causes. Computing optimal GPR
causes for either quality measure can be done in polynomial space by considering all
cause candidates, checking the GPR condition in polynomial space (Theorem 4) and
computing the corresponding quality measure in polynomial time (Section 5.2). How-
ever, we show that no polynomial-time algorithms can be expected as the corresponding
threshold problems are NP-hard. Let GPR-covratio (resp. GPR-recall, GPR-f-score) de-
note the decision problems: Given M, Eff and & € Q, decide whether there exists a GPR
cause with coverage ratio (resp. recall, f-score) at least 3.

Theorem 12. The problems GPR-covratio, GPR-recall and GPR-f-score are NP-hard
and belong to PSPACE. For Markov chains, all three problems are NP-complete. NP-
hardness even holds for tree-like Markov chains.

Proof sketch. NP-hardness is established via a polynomial reduction from the knap-
sack problem. Membership to NP for Markov chains resp. to PSPACE = NPSPACE
for MDPs is obvious as we can guess nondeterministically a cause candidate and then
check (i) the GPR condition in polynomial time (Markov chains) resp. polynomial space
(MDPs) and (ii) the threshold condition in polynomial time (see Section 5.2). O

On probability-raising causality in Markov decision processes 57
6 Conclusion

The goal of the paper was to formalize the probability-raising principle in MDPs and
related quality notions for PR causes as well as studying fundamental algorithmic prob-
lems for them. We considered the strict (Iocal) and the global view. Our results indicate
that GPR causes are more general and leave more flexibility to achieve better accuracy,
while algorithmic reasoning about SPR causes is simpler.

Existential definition of SPR/GPR causes. The proposed definition of PR causes relies
on a universal quantification over all relevant schedulers. However, another approach
could be via existential quantification, i.e. there is a scheduler & such that (GPR) or
resp. (SPR) hold. The resulting notion of causality yields fairly the same results (up to
Pr‘j‘\‘f”‘c (QEff) instead of Pr‘;\l}[‘}c (OEff) etc). A canonical existential SPR cause can be de-
fined in analogy to the universal case and shown to be recall- and ratio-optimal (cf. The-
orem 9). The problem to find an existential f-score-optimal SPR cause is even simpler
and solvable in polynomial time as the construction presented in the proof of Theorem
10 can be adapted for MDPs (thanks to the simpler nature of maxc supg fscore6 (C)
compared to maxc infg fscore6 (C)). However, NP-hardness for the existence of GPR
causes with threshold constraints for the quality carries over to the existential definition
(as NP-hardness holds for Markov chains, Theorem 12).

Non-strict inequality in the PR conditions. Our notions of PR causes are in line with the
classical approach of probability-raising causality in literature with strict inequality in
the PR condition. This has the consequence that causes might not exist (see Example
2). The switch to a relaxed definition of PR causes with non-strict inequality seems to
be a minor change that identifies more sets as causes. Indeed, the proposed algorithms
for checking the SPR and GPR condition (Section 4) can easily be modified for the
relaxed definition. While this leads to a questionable notion of causality (e.g., {init}
would always be a recall- and ratio-optimal SPR cause under the relaxed definition), it
could be useful in combination with other side constraints. E.g., requiring the relaxed
PR condition for all schedulers which reach a cause state with positive probability and
requiring the existence of a scheduler where the PR condition with strict inequality
holds might be a useful alternative definition that agrees with Def. 1 for Markov chains.
Relaxing the minimality condition (M). As many causality notions of the literature in-
clude some minimality constraint, we included condition (M). However, (M) could be
dropped without affecting the algorithmic results presented here. This can be useful
when the task is to identify components or agents that are responsible for the occur-
rences of undesired effects. In these cases the cause candidates are fixed (e.g., for each
agent 1i, the set of states controlled by agent 1), but some of them might violate (M).

Future directions include PR causality when causes and effects are path properties
and the investigation of other quality measures for PR causes inspired by other in-
dices for binary classifiers used in machine learning or customized for applications of
cause-effect reasoning in MDPs. More sophisticated notions of probabilistic backward
causality and considerations on PR causality with external interventions as in Pearl’s
do-calculus [35] are left for future work.

Acknowledgments We would like to thank Simon Jantsch and Clemens Dubslaff for
their helpful comments and feedback on the topic of causality in MDPs.

58

Baier et al.

References

10.

11.

12.

13.

14.

15.

16.

. Abraham, E., Bonakdarpour, B.: HyperPCTL: A temporal logic for probabilistic hyperprop-

erties. In: Mclver, A., Horvath, A. (eds.) 15th International Conference on Quantitative Eval-
uation of Systems (QEST). Lecture Notes in Computer Science, vol. 11024, pp. 20-35.
Springer (2018), https://doi.org/10.1007/978-3-319-99154-2_2

de Alfaro, L.: Formal Verification of Probabilistic Systems. Phd thesis, Stanford
University, Stanford, USA (1997), https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/
4375-deAlfaro(1997)-Formal VerificationofProbabilisticSystems.pdf

de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic sys-
tems. In: Baeten, J.C.M., Mauw, S. (eds.) 10th International Conference on Concurrency
Theory (CONCUR). Lecture Notes in Computer Science, vol. 1664, pp. 66—81. Springer
(1999), https://doi.org/10.1007/3-540-48320-9_7

Baier, C., Bertrand, N., Dubslaff, C., Gburek, D., Sankur, O.: Stochastic shortest paths and
weight-bounded properties in Markov decision processes. In: Dawar, A., Gridel, E. (eds.)
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018. pp. 86-94. ACM (2018), https://doi.org/10.1145/3209108.3209184
Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek, R.: From
verification to causality-based explications (invited talk). In: Bansal, N., Merelli, E., Wor-
rell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming,
(ICALP). LIPIcs, vol. 198, pp. 1:1-1:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik
(2021), https://doi.org/10.4230/LIPIcs.ICALP.2021.1

Baier, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Probabilistic causes in Markov
chains. CoRR abs/2104.13604 (2021), https://arxiv.org/abs/2104.13604, accepted for publi-
cation at ATVA’21.

Baier, C., Funke, F., Majumdar, R.: A game-theoretic account of responsibility allocation.
In: Zhou, Z. (ed.) 30th International Joint Conference on Artificial Intelligence (IICAI). pp.
1773-1779. ijcai.org (2021), https://doi.org/10.24963/ijcai.2021/244

Baier, C., Funke, F., Piribauer, J., Ziemek, R.: On probability-raising causality in markov
decision processes (2022), https://arxiv.org/abs/2201.08768

Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The
MIT Press, Cambridge, MA (2008)

Baier, C., Klein, J., Kliippelholz, S., Mércker, S.: Computing conditional probabilities in
Markovian models efficiently. In: Abraham, E., Havelund, K. (eds.) 20th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 8413, pp. 515-530. Springer (2014), https://doi.
org/10.1007/978-3-642-54862-8_43

Beer, 1., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples
using causality. Formal Methods in System Design 40(1), 20—40 (2012), https://doi.org/10.
1007/s10703-011-0132-2

Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Mathe-
mathics of Operations Research 16(3), 580-595 (1991)

Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: 20th Annual ACM
Symposium on Theory of Computing (STOC). pp. 460-467. ACM (1988)

Chockler, H.: Causality and responsibility for formal verification and beyond. In: First
Workshop on Causal Reasoning for Embedded and safety-critical Systems Technologies
(CREST). EPTCS, vol. 224, pp. 1-8 (2016), https://doi.org/10.4204/EPTCS.224.1
Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification?
ACM Transactions on Computational Logic 9(3), 20:1-20:26 (2008)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

https://doi.org/10.1007/978-3-319-99154-2_2
https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/4375-de Alfaro (1997) - Formal Verification of Probabilistic Systems.pdf
https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/4375-de Alfaro (1997) - Formal Verification of Probabilistic Systems.pdf
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1145/3209108.3209184
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://arxiv.org/abs/2104.13604
https://doi.org/10.24963/ijcai.2021/244
https://arxiv.org/abs/2201.08768
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.4204/EPTCS.224.1

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

On probability-raising causality in Markov decision processes 59

Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov decision
processes. In: Hung, D. V., Sokolsky, O. (eds.) 18th International Symposium on Automated
Technology for Verification and Analysis (ATVA). Lecture Notes in Computer Science, vol.
12302, pp. 484-500. Springer (2020), https://doi.org/10.1007/978-3-030-59152-6_27

Eells, E.: Probabilistic Causality. Cambridge Studies in Probability, Induction and Decision
Theory, Cambridge University Press (1991)

Friedenberg, M., Halpern, J.Y.: Blameworthiness in multi-agent settings. In: 33rd Conference
on Artificial Intelligence (AAAI). pp. 525-532. AAAI Press (2019), https://doi.org/10.1609/
aaai.v33i01.3301525

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach: Part 1:
Causes. In: 17th Conference in Uncertainty in Artificial Intelligence (UAI). pp. 194-202
(2001)

Hitchcock, C.: Probabilistic causation. In: Hijek, A., Hitchcock, C. (eds.) The Oxford Hand-
book of Probability and Philosophy, pp. 815-832. Oxford University Press (2016)
Kallenberg, L.: Lecture Notes Markov Decision Problems - version 2020 (02 2020)
Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: 25th Conference on
Uncertainty in Artificial Intelligence (UAI). pp. 303-312 (2009)

Kleinberg, S.: Causality, Probability and Time. Cambridge University Press (2012)

Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex
quadratic programming. USSR Computational Mathematics and Mathematical Physics
20(5), 223-228 (1980)

Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via causality to
fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) 30th International Conference
on Computer Safety, Reliability, and Security (SAFECOMP). Lecture Notes in Computer
Science, vol. 6894, pp. 71-84. Springer (2011), https://doi.org/10.1007/978-3-642-24270-0_
6

Leitner-Fischer, F.: Causality Checking of Safety-Critical Software and Systems. Ph.D.
thesis, University of Konstanz, Germany (2015), http://kops.uni-konstanz.de/handle/
123456789/30778

Lewis, D.: Counterfactuals and comparative possibility. Journal of Philosophical Logic 2(4),
418-446 (1973)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Safety.
Springer-Verlag (1995)

Mircker, S.: Model checking techniques for design and analysis of future hardware and
software systems. Ph.D. thesis, TU Dresden, Germany (2020), https://d-nb.info/1232958204
Namyjoshi, K.S.: Certifying model checkers. In: 13th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science, vol. 2102, pp. 2—13. Springer
(2001), https://doi.org/10.1007/3-540-44585-4 2

Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-
hard. Journal of Global optimization 1(1), 15-22 (1991)

Patek, S.D., Bertsekas, D.P.: Stochastic shortest path games. SIAM Journal on Control and
Optimization 37(3), 804-824 (1999)

Pearl, J.: Causality. Cambridge University Press, 2nd edn. (2009)

Powers, D.: Evaluation: From precision, recall and f-factor to ROC, informedness, marked-
ness & correlation. Mach. Learn. Technol. 2 (01 2008)

Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY (1994)

Reichenbach, H.: The Direction of Time. Dover Publications (1956)

https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1007/978-3-642-24270-0_6
https://doi.org/10.1007/978-3-642-24270-0_6
http://kops.uni-konstanz.de/handle/123456789/30778
http://kops.uni-konstanz.de/handle/123456789/30778
https://d-nb.info/1232958204
https://doi.org/10.1007/3-540-44585-4_2

60

39.
40.

41.

Baier et al.

Suppes, P.: A Probabilistic Theory of Causality. Amsterdam: North-Holland Pub. Co. (1970)
Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent systems. In: Bal-
doni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) 19th International
Conference on Princiles and Practice of Multi-Agent Systems (PRIMA). Lecture Notes
in Computer Science, vol. 9862, pp. 261-278. Springer (2016), https://doi.org/10.1007/
978-3-319-44832-9_16

Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic responsibility
under imperfect information. In: Elkind, E., Veloso, M., Agmon, N., Taylor, M.E. (eds.) 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp.
592-600. International Foundation for Autonomous Agents and Multiagent Systems (2019),
http://dl.acm.org/citation.cfm?id=3331745

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-

mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
http://dl.acm.org/citation.cfm?id=3331745
http://creativecommons.org/licenses/by/4.0/

Parameterized Analysis of Reconfigurable
Broadcast Networks*

1

A. R. Balasubramanian®, Lucie Guillou?®, and Chana Weil-Kennedy? (=)

! Technical University of Munich bala.ayikudi@tum.de
2 ENS Rennes lucie.guillou@ens-rennes.fr
3 Technical University of Munich chana.weilkennedy@in.tum.de

Abstract. Reconfigurable broadcast networks (RBN) are a model of
distributed computation in which agents can broadcast messages to other
agents using some underlying communication topology which can change
arbitrarily over the course of executions. In this paper, we conduct pa-
rameterized analysis of RBN. We consider cubes, (infinite) sets of config-
urations in the form of lower and upper bounds on the number of agents
in each state, and we show that we can evaluate boolean combinations
over cubes and reachability sets of cubes in PSPACE. In particular, reach-
ability from a cube to another cube is a PSPACE-complete problem.

To prove the upper bound for this parameterized analysis, we prove some
structural properties about the reachability sets and the symbolic graph
abstraction of RBN, which might be of independent interest. We justify
this claim by providing two applications of these results. First, we show
that the almost-sure coverability problem is PSPACE-complete for RBN,
thereby closing a complexity gap from a previous paper [3]. Second, we
define a computation model using RBN;, a la population protocols, called
RBN protocols. We characterize precisely the set of predicates that can
be computed by such protocols.

Keywords: Broadcast networks - Parameterized reachability - Almost-
sure coverability - Asynchronous shared-memory systems

1 Introduction

Reconfigurable broadcast networks (RBN) [8,10] are a formalism for modelling
distributed systems in which a set of anonymous, finite-state agents execute the
same underlying protocol and broadcast messages to their neighbors according to
an underlying communication topology. The communication topology is reconfig-
urable, meaning that the set of neighbors of an agent can change arbitrarily over
the course of an execution. Parameterized verification of these networks concerns
itself with proving that a given property is correct, irrespective of the number
of participating agents. Dually, it can be viewed as the problem of finding an

* This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 61-80, 2022.
https://doi.org/10.1007/978-3-030-99253-8_4

®

Check for
updates

http://orcid.org/0000-0002-7258-5445
http://orcid.org/0000-0002-6101-2895
http://orcid.org/0000-0002-1351-8824
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_4&domain=pdf

62 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

execution of some number of agents which violates a given property. Ever since
their introduction within this context [10], RBN have been studied extensively,
with various results on (parameterized) reachability and coverability [8,10,3,7],
along with various extensions using probabilities and clocks [5,4].

In this paper, we first consider the cube-reachability problem for RBN, in
which we are given two (possibly infinite) sets of configurations C and C’ (called
cubes), each of them defined by lower and upper bounds on the number of agents
in each state, and we must decide if there is a configuration in C which can reach
some configuration in C’. The cube-reachability question covers parameterized
reachability and coverability problems, and as explained in [3], also covers the
parameterized reachability problem for a generalized model of RBN called RBN
with leaders. Moreover, a sub-problem of cube-reachability has already been
studied for RBN in [8]. The authors show that this sub-problem is PSPACE-
complete. One of the results in our paper is that the entire cube-reachability
problem is PSPACE-complete, hence extending the sub-problem considered in [§],
while still retaining the same complexity upper bound.

In fact, our main result, which we call the PSPACE Theorem, is a more
general result. It subsumes the above result for cube-reachability and allows for
more complex parameterized analysis of RBN. The PSPACE Theorem roughly
states that any boolean combination of atoms can be evaluated in PSPACE,
where an atom is a finite union of cubes or the reachability set of a finite union
of cubes (i.e. post* or pre*). To prove the PSPACE Theorem, we first consider
the so called symbolic graph of a RBN (8], Section 5). We prove some structural
properties about these graphs, using results from [8]. Next, using these structural
properties, we show that the set of reachable configurations of a cube C can be
expressed as a finite union of cubes, each having a norm exponentially bounded
in the size of the given RBN and C. This result then allows us to give an on-the-fly
exploration algorithm for proving the PSPACE Theorem.

We believe that the PSPACE Theorem and the results leading to it that
we have proven in this paper have further applications to problems concerning
RBN. To justify this claim, we provide two applications. First, we show that the
almost-sure coverability problem for RBN is PSPACE-complete, thereby closing
a complexity gap from a previous paper ([3], Section 5.3). Second, we define a
computation model using RBN, called RBN protocols, which is similar in spirit
to the population protocols model [1,2]. We characterize precisely the set of
predicates that can be computed using RBN protocols. This result generalizes
the corresponding result for IO protocols, which are a sub-class of population
protocols that can be simulated by RBN protocols, as shown in ([3], Section 6.2).

Finally, by the reduction given in ([3], Section 4.2), our results on cube-
reachability and almost-sure coverability can be transferred to another model of
distributed computation called asynchronous shared memory systems (ASMS),
giving a PSPACE-completeness result for both of these problems. This solves an
open problem from ([6], Section 6).

To summarize, we have shown that many important parameterized problems
of RBN can be solved in PSPACE, that the sub-problem of the cube-reachability

Parameterized Analysis of RBN 63

problem defined in [8] can be generalized while retaining the same upper bounds,
and that the almost-sure coverability problems for RBN and ASMS are PSPACE-
complete, thereby solving open problems from [3,6]. We believe that our other
results might be of independent interest, and we provide an application by in-
troducing RBN protocols and characterizing the set of predicates that they can
compute.

The paper is organized as follows. Section 2 contains preliminaries, including
the definition of RBN. Section 3 defines the symbolic graph of a RBN, and proves
the properties of this graph needed to derive our main result. Section 4 contains
the main result that a host of parameterized problems over cubes, including
cube-reachability, is PSPACE-complete for RBN. Finally, Sections 5 and 6 give
applications of our main results: Section 5 solves the complexity gap for the
almost-sure coverability problem, and Section 6 introduces RBN protocols and
characterizes their expressive power. Due to lack of space, full proofs of some of
the results can be found in the long version.

2 Preliminaries

The definitions and notations in this section are taken from [3].

2.1 Multisets

A multiset on a finite set F is a mapping C: EF — N, i.e. for any e € E,
C'(e) denotes the number of occurrences of element e in C. We let M(E) denote
the set of all multisets on E. Let (eq,..., e, denote the multiset C' such that
C(e) = |{j | ej = e}|. We sometimes write multisets using set-like notation.
For example, {2 - a,b§ and {a,a,b§ denote the same multiset. Given e € E,
we denote by e the multiset consisting of one occurrence of element e, that is
(e§. Operations on N like addition or comparison are extended to multisets by
defining them component wise on each element of E. Subtraction is allowed as
long as each component stays non-negative. We call |C] = > ecr C(e) the size
of C.

2.2 Reconfigurable Broadcast Networks

Reconfigurable broadcast networks (RBN) are networks consisting of finite-state,
anonymous agents and a communication topology which specifies for every pair
of processes, whether or not there is a communication link between them. Dur-
ing a single step, a single agent can broadcast a message which is received by
all of its neighbors, after which both the agent and its neighbors change their
state according to some transition relation. Further, in between two steps, the
communication topology can change in an arbitrary manner. For the problems
that we consider in this paper, it is easier to forget the communication topology
and define the semantics of an RBN directly in terms of collections of agents.

64 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

Definition 1. A reconfigurable broadcast network is a tuple R = (Q,X,0)
where Q is a finite set of states, X is a finite alphabet and 6 C Qx{la,?a | a € X}x
Q is the transition relation.

If (p,la,q) (resp. (p,?a,q)) is a transition in §, we will denote it by p LN q

(resp. p ta, q). A configuration C of a RBN R is a multiset over @, which
intuitively counts the number of processes in each state. Given a letter a € X
and two configurations C' and C’ we say that there is a step C' = C if there exists

a multiset {¢,t1,...,t;§ of 0 for some k > 0 satisfying the following: ¢t = p 1, q,

each t; = p; Yo, G, C>p+>,pi,and C"'=C—p—->.pi+q+> ,q. We
sometimes write this as €'~ &7 or 0 % (7, Intuitively it means that a
process at the state p broadcasts the message a and moves to g, and for each
1 < i < k, there is a process at the state p; which receives this message and
moves to ¢;. We denote by = the reflexive and transitive closure of the step
relation. A run is then a sequence of steps.

la
?

a
OB 0SS0

1b
Fig.1. An RBN R with three states.

Let R = (Q, X,) be an RBN. Given configurations C and C’, we say C’ is
reachable from C if C' 5 C'. We say C’ is coverable from C' if there exists C"
such that C' = C” and C” > C'. The reachability problem consists of deciding,
given a RBN R and configurations C, C’, whether C’ is reachable from C in R.
The coverability problem consists of deciding, given a RBN R and configurations
C,C’, whether C' is coverable from C in R. Let S be a set of configurations.

*

The predecessor set of S is pre*(S) = {C'|3C € §.C" X C}, and the successor
set of S is post*(S) = {C|3C" € §.C" 5 C}.

Ezample 1. Figure 1 illustrates a RBN R = (Q,X,0) with @ = {¢1,42,93}
Configuration {3-¢1 § can reach {2-¢1, g3 § in two steps. First, a process broadcasts
a, the two other processes receive it and move to go. Then, one of the processes
in g2 broadcasts b and moves to g1, while the other one receives b and moves to
¢s. Notice that {¢3§ is only coverable from a configuration (k- ¢ § if & > 3.

2.3 Cubes and Counting Sets

Given a finite set @, a cube C is a subset of M(Q) described by a lower bound
L: Q@ — N and an upper bound U: @ — NU {oo} such that C ={C : L < C <

Parameterized Analysis of RBN 65

U}. Abusing notation, we identify the set C with the pair (L,U). Notice that
since U(q) can be oo for some state g, a cube can contain an infinite number of
configurations. All the results in this paper are true irrespective of whether the
constants in a given input cube are encoded in unary or binary.

A finite union of cubes |J[",(L;,U;) is called a counting constraint and the
set of configurations (!, C; it describes is called a counting set. Notice that two
different counting constraints may describe the same counting set. For example,
let @ = {q} and let (L,U) = (1,3), (L',U’") = (2,4), (L",U") = (1,4). The
counting constraints (L, U)U (L, U") and (L”,U") define the same counting set.
It is easy to show (see also Proposition 2 of [11]) that counting constraints and
counting sets are closed under Boolean operations.

Norms. Let C = (L,U) be a cube. Let ||C||; be the the sum of the components
of L. Let ||C||,, be the sum of the finite components of U if there are any, and 0
otherwise. The norm of C is the maximum of ||C||; and ||C||,,, denoted by ||C||. We
define the norm of a counting constraint I' = J", C; as ||| & _ér[llax]{HCiH}.

The norm of a counting set S is the smallest norm of a counting constraint
def

representing S, that is, ||S|| = smﬁ?“]]{”l—‘”} Proposition 5 of [11] entails the

following results for the norms of the union, intersection and complement.

Proposition 1. Let §1,852 be counting sets. The norms of the union, inter-
section and complement satisfy: [|S1USz| < max{[|S1], [|S2l}, |S1 N Sal <
[Sill + [IS2l, and [[Si]| < |Q] - [[S1]| + Q-

Reachability. The reachability problem can be generalized to the cube-reachability
problem which consists of deciding, given an RBN R and two cubes C, C’, whether
there exists configurations C' € C and C’ € C’ such that C’ is reachable from C' in
R. If this is the case, we say C’ is reachable from C. The counting set-reachability
problem asks, given an RBN R and two counting sets S,S’, whether there ex-
ists cubes C € S and C’ € &’ such that C’ is reachable from C in R. We define
cube-coverability and counting set-coverability in an analoguous way.

Remark 1. In the paper [8], the authors define a sub-class of the cube-reachability
problem, which is called the unbounded initial cube-reachability problem in [3].
More precisely, the sub-class considered in [8] is the following: We are given an
RBN and two cubes C = (L,U) and C’ = (L’,U’) with the special property
that L(q) = 0 and U(q) € {0,00} for every state ¢q. We then have to decide if
C can reach C’. This problem was shown to be PSPACE-complete ([8], Theorem
5.5), whenever the numbers in the input are given in unary. As we shall show
later in this paper, the cube-reachability problem itself is in PSPACE, even when
the input numbers are encoded in binary, thereby generalizing the upper bound
results given in that paper.

66 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy
3 Reachability sets of counting sets

In this section, we set the stage for proving the main result of this paper. This
main result is given in two stages: First, we show that given a RBN with state set
@ and a counting set S, the set post*(S) is also a counting set and ||post*(S)|| <
2P(ISI1@D where p is some fixed polynomial. Using this, we then prove that a
host of cube-parameterized problems for RBN can be solved in PSPACE.

The rest of this section is organized as follows: To prove the first result, we
recall the notion of a symbolic graph of a RBN from [8]. In the symbolic graph,
each node is a symbolic configuration of the RBN, which intuitively represents
an infinite set of configurations in which the number of agents is fixed in some
states, and arbitrarily big in the others. Next, by exploiting the special structure
of the symbolic graph, we prove some properties which allow us to show that
whenever two nodes in this graph are reachable, they are reachable by a path
having a special structure. Finally, using these properties and the connection
between symbolic configurations and configurations of the RBN, we prove the
desired first result. Once we have shown the first result, we then show how the
PSPACE Theorem can be obtained from it.

Throughout this section, we fix an RBN R = (Q, X, 9).

3.1 Symbolic graph

In this subsection, we recall the notion of a symbolic graph of an RBN from [8].
Here, for the sake of convenience, we define it in a slightly different way, but the
underlying notion is the same as [8]. Throughout this subsection and the next,
we fix a number k € N.

The symbolic graph of index k associated with the RBN R is an edge-labelled
graph Gy, = (N, E, L) where N = M,(Q) x 2% is the set of nodes. Here My, (Q)
denotes the set of multisets on @ of size at most k. F is the set of edges and
L : E — X is the labelling function. Each node of G is also called a symbolic
configuration. Intuitively, in each symbolic configuration (v,S), the multiset v
(called the concrete part) is used to keep track of a fixed set of at most k agents,
and the subset S (called the abstract part) is used to keep track of the support
of the remaining agents.

Let 0 = (v,5) and 0 = (v/,S’) be two symbolic configurations. There is
an edge labelled by a between # and 6’ if and only if the following is satisfied:
There exists a transition (g, !a,q") € § such that at least one of the following two
conditions holds

— (Broadcast from v) There exists a multiset of transitions {(p1, ?a,p}),...,
(p1,7a,p))§ such that v' = v — 3. p; + >, P} — q+ @', and for each ¢, € Q:
o If g, € 5"\ S then there exists ¢, € S and (¢., 7a,qs) € R,
e If g, € S\ S’ then there exists ¢, € " and (gs, ?a,q.) € R.
— (Broadcast from S) There exists a multiset of transitions {(p1, ?a,p}), ...,
(p1,?a,p;)§ such that v/ = v —>".p; + >, P, ¢ € S,¢' € ', and for each
qs € Q\{q,¢'}:

Parameterized Analysis of RBN 67

e if g, € '\ S then there exists ¢, € S and (¢, ?a,qs) € R,
e if g, € S\ S then there exists ¢, € S’ and (gs, ?a,¢.,) € R.

An edge labelled by a between ¢ and 0" is denoted by 6 ~~§ 6. The relation
wgk is the reflexive and transitive closure of ~~g, := Usex wgk. Whenever the

index k is clear, we will drop the subscript Gi from these notations.

Remark 2. Let 6 = (v, 5),60" = (v, S") be two symbolic configurations. By con-
struction, 6 can only reach 8’ if |v] = [v/|.

To give an intuition behind the edges in Gy, recall the intuition that in a
symbolic configuration, the concrete part is used to keep track of a fixed set of
at most k processes and the abstract part is used to keep track of the support of
the remaining processes. The first condition for the existence of an edge asserts
the following: 1) In the concrete part, some process broadcasts the message a and
some subset of processes receive a, 2) In the abstract part, any new state added
or any old state deleted comes because of receiving a. The second condition
asserts exactly the same, except we now require the process broadcasting the
message a to be from the abstract part.

The symbolic graph of index k can be thought of as an abstraction of the
set of configurations of R, where only a fixed number of processes are explicitly
represented and the rest are abstracted by means of their support alone. To
formalize this, given a symbolic configuration 8 = (v, S), we let [0] denote the
following (infinite) set of configurations: C' € [4] if and only if C(¢q) = v(q) for
qg¢ S and C(q) > v(q) for g e S.

{q17 q2; q3}

{as}

{2,403}

Fig. 2. Symbolic graph Gy of index 0 of the RBN of Example 1.

Example 2. The symbolic graph Gy of index 0 of the RBN of Example 1 is
illustrated in Figure 2. At this index, the graph only keeps track of a subset
S C @, and the edges correspond to broadcasts from S. Consider the edges from
{¢1}. The self-loop corresponds to a broadcast of a that is not received. The
edge to {q1, g2} corresponds to a broadcast of a received by at least one process

68 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

in g;. There is no edge from {g3} because there is no broadcast transition from
q3.

We then have the following lemma, which asserts that runs between two
configurations in an RBN induce corresponding runs in the symbolic graph. The
proof of the lemma is easily obtained from the definition of the symbolic graph.

Lemma 1. Let C,C’ be two configurations of R such that C % C'. Then, for
every 0 such that C € [0], there exists 0 such that C' € [0'] and 6 ~* 6.

3.2 Properties of the symbolic graph

In this subsection, we prove some properties of the symbolic graph (of any index
k). The first two properties that we prove exhibit some structural properties on
the paths of the symbolic graph. The next two properties relate paths over the
symbolic graph to runs over the configurations of the given RBN. These four
properties will ultimately lead us to prove our two main contributions in the
next section.

First property: Monotonicity. Let £ € N and let Gy be the symbolic graph of
index k associated with R. The first key property of Gy is the following property,
which we call monotonicity.

Proposition 2. Let 0 = (v,S5) and 8’ = (v',8") be symbolic configurations of
Gi. Then the following are true:

—IfZC S and 0 ~* 0, then (v,S) ~* (v, ZUS").
- IfZCQ and 6 ~* 0, then (v,ZUS) ~* (v, ZUS5’).

Proof. The two points follow immediately from the definition of ~+¢. O

Second property: Normal Form. To state the second property, we first need
a small definition.

Definition 2. Let (vg, So) ~ -+ ~ (U, Sm) @ path in Gi. A pair of indices
0<i<j<mis called a bad pair if (S; \ Siz1) N S; # 0. A path is said to be
in normal form if it contains no bad pairs, i.e., for all 0 <i <m and any j > 1,

(SZ \ S¢+1) N Sj = (Z)

Intuitively, a path is in normal form if during each step, the states that
disappear from the abstract part never reappear again. The following lemma
asserts that whenever there is a path between two symbolic configurations, then
there is a path between them that is in normal form.

Lemma 2. Let 6,0 be symbolic configurations of Gy, such that there is a path
between 6 and ' of length m. Then, there is a path in normal form between 6
and ' of length m.

Parameterized Analysis of RBN 69

Proof Sketch. Let 0 = 0y ~ 01 ~ 0y ~~ ...0,,_1 ~ 0, = 0’ be the path
between 6§ and 0. We proceed by induction on m. The claim is clearly true for
m = 0. Suppose m > 0 and the claim is true for m — 1. By induction hypothesis,
we can assume that the path 6y ~» 61 ~» ... ~» 0,,_1 is already in normal form.

Let each 6; = (v;, S;). Let I be the number of bad pairs in the path between
6o and 6,,. If [= 0, then the path is already in normal form and we are done.
Suppose [> 0 and let (w,w’) be a bad pair. Since the path between 6y and 0,,,_1
is already in normal form, it has to be the case that w’ = m. Hence, we have
Z = (Sw \ Swt1) NSy, # 0.

By Proposition 2, the following is a valid path: (v, Sw) ~ (Vw+t1, Sw+1 U
Z) ~ (D2, Swi2 U Z) .. (U1, Sm—1 U Z) > (U, S U Z) = (U, Sm). Let
0% := 0; if j < w and (v;,5; U Z) otherwise. Hence, we get a path 0y ~ 6] ~
.. .0;,1_1 ~ G;n.

Let each 0, = (v1,S!) and let 0 < i < j < m—1. By a case analysis on where
i and j are relative to the index w, we can prove that (S;\S;,;)NS} = (). Having
proved this, it is then clear by construction, that this new path from 6 := 6y to
0! := 0., has at most [— 1 bad pairs only. Hence, we now have a path from 6,
to @, such that the prefix of length m — 1 is in normal form and the number of
bad pairs has been strictly reduced to [— 1. Repeatedly applying this procedure
leads to a path in normal form between 6y and 6,,. O

Third property: Refinement. Before we state the third property, we need
a small definition. Recall that, given a symbolic configuration 8 = (v,S), the
set [0] denotes the set of configurations C' such that C(q) = v(q) if ¢ ¢ S and
C(q) > v(q) otherwise. The following definition refines the set [6].

Definition 3. Given a symbolic configuration 0 = (v, S) and a number N € N,
let [0] y denote the set of configurations C' such that C(q) = v(q) if ¢ ¢ S and
C(q) > v(q) + N otherwise. Note that [0] = [0],,.

This definition along with the above two properties now enable us to prove
the third property. It roughly states that if a symbolic configuration 6’ can be
reached from another symbolic configuration 6, then there is a “small” N such
that any configuration in [#'] y, can be reached from some configuration in [6].

Theorem 1. Let 0,0 be symbolic configurations of Gy, such that 6 ~* 0'. Then
there exists N < k x (2k)I9 x (|Q| + 1)@ + 1 such that for all C" € [0]y,
there exists C € [0] such that C = C".

Proof Sketch. Suppose 6 ~~* €. If the length of the path is 0, then there is
nothing to prove. Hence, we restrict ourselves to the case when the length of the
path is bigger than 0. By Lemma 2, there is a path in normal from from 6 to ¢’
(say) 0 = 6p ~> 01 ~> Oa...0, 1 ~ O, = 0" with each 0; := (v;,5;).

Let No =0 and let N; = (N;—1 +1) - (|Si—1 \ S;| + 1) for every 1 < i < m.
In Lemma 5.3 of [8] (more precisely in its proof, in Lemma 6 of the long version
[9]), the following fact has been proved:

70 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

For every 1 < i < m and for every C' € [0;]y ,,, there exists C' €
[0:i-1]y, 41 such that C = C'.

This immediately proves that for all C" € [¢'] 5 . ;, there exists C' € [¢] such

that C' = C". If we prove N,, < k x (2k)I9 x (|Q| + 1)!9I*1, then the proof of
the theorem will be complete.

Notice that if (v,0) ~ (v',8") is an edge in Gy, then S’ = (). This fact, along
with the definition of a path in normal form, allows us to easily conclude that the
number of indices ¢ such that |S;_1 \ S;| > 0 is at most |Q)|. It then follows that
except for at most |@| indices, each index N; is obtained from N;_; by simply
adding 1 and in the remaining indices, N; is obtained from N;_; by adding 1
and then multiplying by a number which is at most |Q| + 1. Using this, we can
deduce that the maximum value for N,, is at most (m — |Q| + 1)|Q|(|Q| + 1)</
Since m is itself the length of the path between 6y and 6,,, m is upper bounded
by the number of symbolic configurations in Gy, which is at most k x k@l x 2/Ql.
Overall we get that N,,, < k x (2k)I9 x (|Q| + 1)I@I+1, O

Remark 3. A similar result was proved in Lemma 5.3 of [8], but there it was just
stated that there exists an IV satisfying this property. Moreover from the proof
of that lemma, only a doubly exponential bound on N could be inferred.

Fourth property: Compatibility. To describe the fourth property, we need
the following notion of order on configurations, relative to a given symbolic
configuration.

Definition 4. Let 0 = (v,S) be a symbolic configuration, and let C,C" be two
configurations of R. We define an order <y such that C' <y C' if and only if
C,C" € [0], andVq e S, C(q) < C'(q).

This definition enables us to state our next property, which we dub compat-
1bility. It intuitively says that the order that we have defined is, in some sense,
compatible with the edges of the symbolic configurations.

Lemma 3. Let 0 be a symbolic configuration of Gy, and let C,C’ be two config-
wrations of R. If C € [0] and C = C', then there exists a symbolic configuration
0" such that 1) C" € [0'], 2) 0 ~* 0" and 3) for all C} such that C| =g C', there
exists C1 € [0] such that Cy Bl 1.

Proof. Let 6 be a symbolic configuration and C, C’ be configurations such that
C e [f] and C 5C. Let C=Cy— -+ — Cp_y — C,, = C" denote the run
between C' and C’. We prove the property by induction on m. For m = 0, we
have C' = C’. The property is easily seen to hold with 6’ = 6.

Suppose now that m > 1, and that the property holds for all n < m. By in-
duction hypothesis, for the configuration C,,_1, there exists a symbolic configu-
ration 6,,_ satisfying the property, in particular 6 ~»* 6,,_1. Since Cp,_1 — Cy,
for some a € X, by Lemma 1, there exists a symbolic configuration 6,, such that
Cpm € [0m], and 0, —1 ~> 0. Using 0 ~»* 0,,,_1, we obtain that 6 ~* 0,,.

Parameterized Analysis of RBN 71

Let 0p—1 = (Um—1,m—1) and 0,, = (Vin,Sm). Let C), € [0] be such
that CJ, »g, Cu,. We will construct a configuration C},_; € [0—1] such that
1 70,1 Cm—1 and C

m—1 7
by induction hypothesis, there is a C; € [f] such that C; = C! _, = C’., which
will conclude the proof.

Let CJ,_1(q) = Cpn-1(q) for all ¢ & Sp,—1. To define CJ,_; on S,,—1, we
first define a mapping pred from states in S,, to states of S,,_1 US,,_1 = @ as
follows. Given ¢’ € Sy,:

1 = C' . If we construct such a configuration, then

—If ¢ € Sp_q, pred(¢’) = ¢';

—If ¢ € S,,_1, by definition of edges in the symbolic graph, there exists
q € Sp—1 such that (q,7a,q’) is a transition. Then pred(q’) = ¢ for one
(arbitrary but fixed) such gq.

By definition, CJ,(¢) = Cin(q) for all ¢ € S,,. For all ¢ € Sy, let n, =
CJ.(q) — Cpn(q). Intuitively, we want to place these n, processes in the right
placesof C/,_; sothat C],_; — C/ .Forallq € S,,_1,let C/,_1(q) = Cp—1(q)+

m—

Zq/esm,pr'ed(q’)=q ng . By definition, C},,_; >4,, , Cm—1. So all that remains is

to prove that C’,_, = C’ .

Let Cp_y —22ly O where ¢ = (p,la,p’) and each t; = (p;,?a,p}). If
we let Sy, \ Sm—1 = {d},.-.,q,}, then by definition there is a transition ¢, :=
(pred(q}),?a,q.) for each i. Additionally, C}, _,(pred(q,)) > Cpm-1(pred(q))) +

’ ’ ’
t+t1,...,tn,nqi~t1,nqé~t2,...,n 7oty

%y c

m»

ng . This allows us to do Cy,_4 which con-
cludes the proof.

O

4 The PSPACE Theorem

In this section, we prove our two main contributions. First, we show that given
a cube C, post*(C) is a counting set of bounded size. Using this, we show our
main result: any boolean combination of atoms can be evaluated in PSPACE,
where an atom is a counting set or the reachability set of a counting set. We call
this the PSPACE Theorem. The intuition behind the PSPACE Theorem is that
the norms of the counting sets obtained by such combinations are “small”, and
so we only need to examine small configurations to verify them, thus yielding a
PSPACE algorithm for checking correctness. In particular, the PSPACE Theorem
will show that the cube-reachability problem is in PSPACE. We fix an arbitrary
RBN R = (Q, X,) for the rest of the section.
We start by drawing links between cubes and symbolic configurations.

— Given a symbolic configuration 6 = (v, S), we let Cy be the cube (L, U) where
L=v,and U(q) =v(q) if ¢ ¢ S and U(q) = oo otherwise. Then Cy = [6].

— Given a cube C = (L,U), we define A¢ to be the set of symbolic configura-
tions 0 = (v,.5) with S = {q | U(q) = oo} and L(q) < v(q) < Ulq)ifq & S
and v(q) = L(q) otherwise. Then [Ac] = C.

72 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

Notice that the set Ac¢ is included in the symbolic graph of index 2||C||.
Indeed, if C = (L,U) and (v, S) € Ac, then |v| < |L| + |Uy| where Us(q) = 0 if
U(q) = oo and Uy(q) = U(q) otherwise. Since ||C|| = max(|L|, |Uy|), we have the
desired result. By Remark 2, we know that symbolic configurations in the graph
of index 2||C|| can only reach symbolic configurations which are also in the graph
of index 2||C||.

Lemma 4. Given a cube C, the sets Ac and post*(Ac) are included in the
symbolic graph of index 2||C||.

There are only a finite number of symbolic configurations in the graph of a
given index. Therefore post*(Ac) is a finite set of symbolic configurations 6. It
follows that [post*(Ac)] is the finite union of the cubes Cy, and thus a counting
set.

Unfortunately, it is in general not the case that post*(C) = [post*(Ac)],
which would close our argument. However, we will show that for each symbolic
configuration 6 in post*(Ac), there is a counting set Sy C [f] such that the
finite union of these counting sets is equal to post*(C). This will then show our
first important result, namely that the reachability set of a counting set is also
a counting set with “small” norm.

Theorem 2. Let C be a cube. Then post*(C) is a counting set and
lpost™(C)|| € O((lC]| - QD))
The same holds for pre* by using the given RBN with reversed transitions.

Proof. We start by defining a counting set M of configurations, which we will
then prove to be equal to post*(C).Given a symbolic configuration 6 of post*(Ac),
we define the set min(6,C) to be the set of configurations C' € [#] such that C
is minimal for the order <y over the configurations of post*(C), i.e.

min(6,C) = Hﬁli@n{C e8] | C € post™(C)}

We can now define M to be the following set

m= U U c.

0cpost*(Ac) Cemin(6,C)

where CZ is the cube C(c gy for S such that 6 = (v, S). Since M is a finite union
of cubes, it is a counting set.

We show that post*(C) € M. Let C' € post*(C). There exists Cy € C such
that Cy = C, and there exists 6y € A¢ such that Cy € [60]. Applying Lemma
1, we obtain the existence of 8 € post*(6y) C post*(Ac) such that C € [0]. Now,
there exists a configuration C’ € min(6,C) such that C’ <y C. By definition of
C%,, Cis in C%, and thus in M.

Now we show that M C post*(C). Let C € M. By definition, there must be
a symbolic configuration 6 € post*(Ac¢) and a configuration C’ € post*(C) such

Parameterized Analysis of RBN 73

that C' <y C. By the Compatibility Lemma (Lemma 3), C is in post*(C) as
well.

All that remains is to bound the norm of M. To do this, let § = (v,5) €
post*(Ac) and let C € min(0,C). If we bound the norm of C% by the desired
quantity, then the proof will be complete. Noticing that ||C4|| = |C]|, it suffices
to bound |C] by the desired quantity, which is what we shall do now.

By Theorem 1 and Lemma 4, there exists an N < 2||C|| x (4]|C|)!?! x (|Q] +
D)IQH such that [post*(Ac)]n € post*([Ac]) = post*(C). By definition of C,
there must be a smallest N’ such that C(q) < v(q) + N’ for every state ¢. If
N’ > N, then let C'y be the configuration given by Cn(¢) = min(C(q),v(q)+N).
We get that Cy € [0]n C [post*(Ac)]n C post™(C), and so Cx =p C and
Cn € post™(C), which is a contradiction to the minimality of C. Hence N’ < N
and so |C| < |v|+]Q]- N. Since 0 = (v, S) is in post*(Ac), by Lemma 4, we have
that |v| < 2||C||. Substituting the upper bounds for |v| and N in the inequality
|C| < |v|+|Q]|- N then gives the required upper bound for |C/|, thereby finishing
the proof.

This result also holds for pre*(C). If R = (Q, X, R) is the given RBN, consider
the “reverse” RBN R,, defined as R = (Q, X, R,) where R, has a transition
(g,*a,q’) for x € {!,?} iff R, has a transition (¢’,*a, q). Notice that R, is still
an RBN and that post*(C) in R is equal to pre*(C) in R,. O

Recall that counting sets are closed under boolean operations. With the above
theorem, plus the fact that counting sets are finite unions of cubes, we obtain
the following closure result.

Corollary 1 (Closure). Counting sets are closed under post™, pre* and boolean
operations.

We are now ready to show our main result, the PSPACE Theorem. We
show that there exist PSPACE algorithms to evaluate boolean combinations over
counting sets and reachability set of counting sets. This result and its proof are
adapted from a similar result for population protocols in [12].

Given a counting constraint I", we let [I'] denote the counting set described
by I'. To state our result, we first define some “nice” expressions.

Definition 5. A nice expression is any expression that is constructed by the
following syntax:

E:=T|post*(I') | pre*(I') | ENE | EUE | E

where I' is any counting constraint.
If E is a nice expression, then the size of E, denoted by |E|, is defined as
follows:

— If E=1T or post*(I") or pre*(I'), then |E| = 1;
- IfE:&UEQ or B = E1 QEQ, then |E| = |E1‘ + |E2‘,‘
— IfE =T, then |E| = |Ey| + 1.

74 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

The set of configurations that is described by a nice expression E can be defined
in a straightforward manner, and is denoted as [E].

Notice that any nice expression E is a counting constraint, and [E] is a
counting set, by the Closure Corollary 1.

Theorem 3 (PSPACE Theorem). Let E be a nice expression and let N be the
mazimum norm of the counting constraints appearing in E. Then [E] is a count-
ing set of norm at most exponential in N,|E| and |Q|. Further, the membership
and emptiness problems for [E] are in PSPACE.

Proof. Recall that [E] is a counting set , by the Closure Corollary (Corollary 1).
The exponential bounds for the norms follow immediately from Proposition 1 and
Theorem 2. The membership complexity for union, intersection and complement
is easy to see. Without loss of generality it suffices to prove that membership in
post*(I") is in PSPACE, where I' is a counting constraint.

By Savitch’s Theorem NPSPACE=PSPACE, so we provide a nondeterministic
algorithm. Given (C, I'), we want to decide whether C' € post*(I"). The algorithm
first guesses a configuration Cy € I of the same size as C, verifies that Cy belongs
to I', and then simply guesses an execution starting at Cj, step by step. The
algorithm stops if either the configuration reached at some step is C, or if it has
guessed more steps than the number of configurations of size |C|. This concludes
the discussion regarding the membership complexity.

To see that checking emptiness of E is in PSPACE, notice that if E is
nonempty, then it has an element of size at most ||F||. We can guess such an
element C' in polynomial space (by representing each coefficient in binary), and
verify that C is indeed in F by means of the PSPACE membership algorithm. O

This result is a powerful tool which can be used to prove that a host of
problems are in PSPACE for RBN. For instance, the cube-reachability problem
for cubes C and C’ is just checking if post*(C)NC’ is empty, which by the PSPACE
Theorem can be done in PSPACE. Combining this with Remark 1, we obtain the
following result.

Theorem 4. Cube-reachability is PSPACE-complete for RBN.

By the reduction given in Section 4.2 of [3], this result also proves that
cube-reachability is PSPACE-complete for asynchronous shared-memory systems
(ASMS), which is another model of distributed computation where agents com-
municate by a shared register. Due to lack of space, we defer a discussion of this
result to the appendix.

We will demonstrate further applications of the PSPACE Theorem in the next
section.

5 Application 1: Almost-sure coverability

Having presented our PSPACE Theorem and the closure property for reachability
sets of counting sets, we now provide two applications. For the first one, we

Parameterized Analysis of RBN 75

consider the almost-sure coverability problem for RBN. Using our new results,
we prove that this problem is PSPACE-complete.

The rest of the section is as follows: We first recall the definition of the almost-
sure coverability problem, give a characterization of it in terms of counting sets
and then prove PSPACE-completeness. Throughout this section, we fix a RBN
R = (Q,X,0) with two special states init, fin € @, which will respectively be
called the initial and final states.

5.1 The almost-sure coverability problem

Let 1 fin denote the set of all configurations C of R such that C(fin) > 1. For
any k > 1, we say that the configuration {k - init§ almost-surely covers fin if
and only if post™({k - init§) C pre*(T fin). The reason behind calling this the
almost-sure coverability relation is that the definition given here is equivalent
to covering the state fin from (k- init § with probability 1 under a probabilistic
scheduler which picks agents uniformly at random at each step.

The number £ is called a cut-off if one of the following is true: Either, 1) for
all h > k, the configuration {h - init§ almost-surely covers fin, in which case k is
called a positive cut-off; or, 2) for all h > k, the configuration {h - init§ does not
almost-surely cover fin, in which case k is called a negative cut-off. The following
was proved in Theorem 9 of [3].

Theorem 5. Given an RBN with two states init, fin, a cut-off always exists.
Whether the cut-off is positive or negative can be decided in EXPSPACE.

Our main result of this section is that

Theorem 6. Deciding whether the cut-off of a given RBN is positive or negative
is PSPACE-complete. Moreover, a given RBN always has a cut-off which is at
most exponential in its number of states.

5.2 A characterization of almost-sure coverability

We now rewrite the definition of almost-sure coverability in terms of counting
sets. Let [init] be the cube such that L(q) = U(q) = 0 if ¢ # nit and L(init) =
0,U(init) = co. Notice that by definition, 1 fin is a cube. We now consider the
set of configurations defined by S := post*([init]) N pre* (1 fin). By our PSPACE
Theorem 3, S is a counting set such that the norm of S is at most 2P(QD for
some fixed polynomial p. We now claim the following.

Theorem 7. R has a positive cut-off if and only if S is finite. Moreover, |Q|-|S]
is an upper bound on the size of the cut-off for R and so R has a cut-off which
is exponential in its number of states.

Proof. Let N be the norm of S. Suppose S is finite. If C' € S, then quQ C(g) <
|Q| - N. So, if C is any configuration of size h > |Q| - N such that C' € post™({h -
init§) then C' € pre*(1 fin). Hence, |@Q| - N is a positive cut-off for R.

76 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

Suppose § is infinite, and let U;C; be a counting constraint for & whose
norm is N. Then there must exist an index ¢ with C; := (L,U) and a state
p such that U(p) = oco. For each h > N, consider the configuration C} given
by Cr(q) = L(q) if ¢ # p and Cp(p) = h. Notice that C, € S and so C}, €
post™*([init]) N pre*(T fin). Hence, for every h > |Q| - N, we have exhibited a
configuration of size h, reachable from ({% - init§ but from which fin is not

coverable. Thus N is a negative cut-off for R. O

Remark 4. Notice that we have shown that if S is finite, then R has a positive
cut-off and if S is infinite, then R has a negative cut-off. This gives an alternative
proof of the fact that a cut-off always exists for a given RBN.

5.3 PSPACE-completeness of the almost-sure coverability problem
Because of Theorem 7, we now have the following result.

Lemma 5. Deciding whether the cut-off of a given RBN 1is positive or negative
can be done in PSPACE.

Proof Sketch. By Theorem 7, it follows that a given RBN has a negative cut-off
iff S = post*([init]) N pre* (1 fin) is infinite. We have already seen that S is a
counting set such that the norm of S is at most N := 2PUQD for some fixed
polynomial p.

Let U;C; be a counting constraint for & which minimizes its norm and let
each C; = (L;,U;). Hence, L;(q) < N for every state ¢. Further, S is infinite iff
there is an index 7 and a state ¢ such that U;(q) = oo. Using these two facts, we
can then show that S is infinite iff there is a state ¢ and a configuration C € §
such that C(¢") < N for every ¢ # q and C(q) = N + 1.

Hence, to check if § is infinite, we just have to guess a state ¢ and a config-
uration C' such that C(q') < N for every ¢’ # q and C(q) = N + 1 and check if
C € S. Since guessing C' can be done in polynomial space (by representing every
number in binary), by the PSPACE Theorem (Theorem 3), we can check if C € S
in polynomial space as well, which concludes the proof of the theorem. O

We also have the accompanying hardness result.

Lemma 6. Deciding whether the cut-off of a given RBN is positive or negative
is PSPACE-hard.

Similar to the cube-reachability problem, our result on almost-sure cover-
ability also applies to the related model of ASMS. This solves an open problem
from [6]. For lack of space, we once again defer this discussion to the appendix.

6 Application 2: Computation by RBN

In this section we give another application of our results. We introduce a model
of computation using RBN called RBN protocols. We take inspiration from the

Parameterized Analysis of RBN 77

extensively-studied model of population protocols [1,2,12]. The reader can con-
sult the above references for more details on population protocols.

In our model, reconfigurable networks of identical, anonymous agents interact
to compute a predicate ¢ : N¥ — {0,1}. We show that RBN protocols compute
exactly the threshold predicates, which we will define more formally below.

6.1 RBN Protocols
We introduce our computation model. The notation mimics that of [13].

Definition 6. An RBN protocol is a tuple P = (Q, X,0,1,0) where (Q, X, 0)
is an RBN, I = {q1,...,qr} is a set of input states, and O : Q@ — {0,1} is an
output function.

Configurations and runs of P are the same as that of the underlying RBN. A
configuration C is called a 0-consensus (respectively a I1-consensus) if C(g) > 0
implies O(q) = 0 (respectively O(q) = 1). For b € {0, 1}, a b-consensus C' is stable
if every configuration reachable from C' is also a b-consensus. A run Cy — C; —
Cs -+ of P is fair if it is finite and cannot be extended by any step, or if it is
infinite and the following condition holds for all configurations C,C": if C — C’
and C = C; for infinitely many 7 > 0, then the step C — C’ appears infinitely
along the run. In other words, if a fair run reaches a configuration infinitely
often, then all the configurations reachable in a step from that configuration will
be reached infinitely often from it.

A fair run Cy = C1 — ... converges to b if there is ¢ > 0 such that C; is a
b-consensus for every j > i. For every v € NF, let C,, be the configuration given
by Cy(gq;) = v; for every ¢; € I, and Cyp(q) = 0 for every ¢ € Q \ I. We call
Cy the initial configuration for input v. The protocol P computes the predicate
¢: N¥ — {0, 1}, if for every v € N¥_ every fair run starting at C, converges to
¢(v).

Fig. 3. An RBN protocol P.

Example 8. Adding the dashed line transitions to the RBN of Example 1 yields
the RBN protocol P = (Q, X, §, I, O) illustrated in Figure 3. The initial state is

78 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

q1,1.e. I = {q1}, and the output function is defined such that O(¢1) = O(g2) =0
and O(gs) = 1. If there is a process in gs, it can “attract” the rest of the
processes there using the new dashed transitions. As with the RBN of Example
1, a process can be put in g3 starting from the initial configuration (k- ¢y § if and
only if £ > 3. This RBN protocol computes the predicate = > 3: if there are less
than 3 processes originally in ¢; then they stay in states with output 0, and if
there are more, then in a fair run a process eventually enters g3, and eventually
the others follow, thus converging to 1.

6.2 Expressivity

In this section, we show that RBN protocols compute exactly the predicates
definable by counting sets. A predicate ¢ : N¥ — {0,1} is definable by counting
sets if for every b € {0, 1}, the sets {v | ¢(v) = b} are counting sets.

For b € {0, 1}, define the following sets of configurations:

— Let Cp be the set of b-consensus configurations.

— Let ST be the set pre* (Cy) of stable b-consensuses. These are the configu-
rations from which one can reach only b-consensuses.

— Let 7 be the set of initial configurations C,, for inputs v such that ¢(v) = b.

The next lemma states that every predicate computed by a protocol is de-
finable by counting sets.

Lemma 7. Let P be a RBN protocol that computes the predicate o : NF —
{0,1}. Then for every b € {0,1}, the sets Ip,,Cy and STy are all counting sets.
This entails that ¢ is definable by counting sets.

Proof Sketch. Fix a b € {0,1}. It is easy to see that Cp is a cube. Unraveling the
definitions of Z; and 87, we can express them in terms of C, by using boolean
operations and pre*. By the Closure Corollary (Corollary 1), they are counting
sets. Set {v | p(v) = b} is simply Z, restricted to I, and so we are done. O

The next lemma states the converse result. It essentially uses the fact that
there is a sub-class of population protocols called IO protocols which compute
exactly the predicates definable by counting sets (Theorem 7 and Theorem 39
of [2,13]), and that IO protocols are a sub-class of RBN (Section 6.2 of [3]).

Lemma 8. Let ¢ : N¥ — {0,1} be a predicate definable by counting sets. Then
there exists a RBN protocol computing ¢.

By Lemma 7 and Lemma 8, we get our result.

Theorem 8. RBN protocols compute exactly the predicates definable by count-
ing sets.

Acknowledgements

We thank Nathalie Bertrand and Javier Esparza for many helpful discussions.

Parameterized Analysis of RBN 79

References

1.

10.

11.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Comput. 18(4), 235—
253 (2006). https://doi.org/10.1007/s00446-005-0138-3

Angluin, D., Aspnes, J., FEisenstat, D., Ruppert, E.: The computational
power of population protocols. Distributed Comput. 20(4), 279-304 (2007).
https://doi.org/10.1007 /s00446-007-0040-2

Balasubramanian, A.R., Weil-Kennedy, C.: Reconfigurable broadcast networks and
asynchronous shared-memory systems are equivalent. In: Ganty, P., Bresolin, D.
(eds.) Proceedings 12th International Symposium on Games, Automata, Logics,
and Formal Verification, GandALF 2021, Padua, Italy, 20-22 September 2021.
EPTCS, vol. 346, pp. 18-34 (2021). https://doi.org/10.4204/EPTCS.346.2
Bertrand, N., Fournier, P.: Parameterized verification of many identical proba-
bilistic timed processes. In: TARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS. pp. 501-513 (2013).
https://doi.org/10.4230/LIPIcs. FSTTCS.2013.501

Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfig-
urable broadcast networks. In: Foundations of Software Science and Computa-
tion Structures - 17th International Conference, FOSSACS. pp. 134-148 (2014).
https://doi.org/10.1007/978-3-642-54830-7_9

Bouyer, P., Markey, N., Randour, M., Sangnier, A., Stan, D.: Reachability in net-
works of register protocols under stochastic schedulers. In: Chatzigiannakis, I.,
Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy. LIPIcs, vol. 55, pp. 106:1-106:14. Schloss Dagstuhl - Leibniz-Zentrum fir In-
formatik (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.106

Chini, P., Meyer, R., Saivasan, P.: Liveness in broadcast networks. In: Atig,
M.F., Schwarzmann, A.A. (eds.) Networked Systems - 7th International Confer-
ence, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 11704, pp. 52-66. Springer (2019).
https://doi.org/10.1007/978-3-030-31277-0_4

Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: D’Souza, D.,
Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December
15-17, 2012, Hyderabad, India. LIPIcs, vol. 18, pp. 289-300. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik (2012), https://doi.org/10.4230/LIPIcs.FSTTCS.
2012.289

Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of pa-
rameterized reachability in reconfigurable broadcast networks. Long version (2012),
https://www.irif.fr /~sangnier /publis/DSTZ-FSTTCS12-long.pdf

Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency
Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6269,
pp. 313-327. Springer (2010). https://doi.org/10.1007/978-3-642-15375-4_22
Esparza, J., Ganty, P., Majumdar, R., Weil-Kennedy, C.: Verification of im-
mediate observation population protocols. In: CONCUR. LIPIcs, vol. 118,
pp. 31:1-31:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs. CONCUR.2018.31

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.4204/EPTCS.346.2
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.1007/978-3-030-31277-0_4
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://www.irif.fr/~sangnier/publis/DSTZ-FSTTCS12-long.pdf
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.4230/LIPIcs.CONCUR.2018.31

80 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

12. Esparza, J., Jaax, S., Raskin, M.A., Weil-Kennedy, C.: The complexity of
verifying population protocols. Distributed Comput. 34(2), 133-177 (2021).
https://doi.org/10.1007 /s00446-021-00390-x

13. Esparza, J., Raskin, M.A., Weil-Kennedy, C.: Parameterized analysis of immediate
observation petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory
of Petri Nets and Concurrency - 40th International Conference, PETRI NETS
2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11522, pp. 365-385. Springer (2019). https://doi.org/10.1007/978-3-
030-21571-2_20

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00446-021-00390-x
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
http://creativecommons.org/licenses/by/4.0/

Separators in Continuous Petri Nets*

Michael Blondin! X @ and Javier Esparza?

1 Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca

2 Technical University of Munich, Munich, Germany
esparza@in.tum.de

Abstract. Leroux has proved that unreachability in Petri nets can be
witnessed by a Presburger separator, i.e. if a marking mg,;. cannot reach
a marking mygt, then there is a formula ¢ of Presburger arithmetic such
that: ¢(msrc) holds; ¢ is forward invariant, i.e., ¢(m) and m — m’
imply ¢(m’); and —p(mg:) holds. While these separators could be used
as explanations and as formal certificates of unreachability, this has not
yet been the case due to their (super-)Ackermannian worst-case size and
the (super-)exponential complexity of checking that a formula is a sepa-
rator. We show that, in continuous Petri nets, these two problems can be
overcome. We introduce locally closed separators, and prove that: (a) un-
reachability can be witnessed by a locally closed separator computable
in polynomial time; (b) checking whether a formula is a locally closed
separator is in NC (so, simpler than unreachablity, which is P-complete).

Keywords: Petri net - continuous reachability - separators - certificates.

1 Introduction

Petri nets form a widespread formalism of concurrency with several applications
ranging from the verification of concurrent programs to the analysis of chemical
systems. The reachability problem — which asks whether a a marking my,. can
reach another marking my,, — is fundamental as a plethora of problems, such
as verifying safety properties, reduce to it (e.g. [13,11,2]).

Leroux has shown that unreachability in Petri nets can be witnessed by a
Presburger separator, i.e., if a marking mg,. cannot reach a marking myg, then
there exists a formula ¢ of Presburger arithmetic such that: ¢(mg..) holds; ¢ is
forward invariant, i.e., p(m) and m — m/ imply p(m'); and p(my,) does not
hold [14]. Intuitively, ¢ “separates” mg, from the set of markings reachable from
Mgc. Leroux’s result leads to a very simple algorithm to decide the Petri net
reachability problem, consisting of two semi-algorithms; the first one explores
the markings reachable from m,., and halts if and when it hits 74, while the

* M. Blondin was supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by the Fonds de recherche
du Québec — Nature et technologies (FRQNT). J. Esparza was supported by an ERC
Advanced Grant (787367: PaVeS).

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 81-100, 2022.
https://doi.org/10.1007/978-3-030-99253-8_5

®

Check for
updates

http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0001-9862-4919
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_5&domain=pdf

82 M. Blondin and J. Esparza

second enumerates formulas from Presburger arithmetic, and halts if and when
it hits a separator.

Separators can be used as explanations and as formal certificates. Verifying
a safety property can be reduced to proving that a target marking (or set of
markings) is not reachable from a source marking, and a separator is an invariant
of the system that explains why the property holds. Further, if a reachability tool
produces separators, then the user can check that the properties of a separator
indeed hold, and so trust the result even if they do not trust the tool (e.g.,
because it has not been verified, or is executed on a remote faster machine).
Yet, in order to be useful as explanations and certificates, separators have to
satisfy two requirements: (1) they should not be too large, and (2) checking
that a formula is a separator should have low complexity, and in particular
lower complexity than deciding reachability. This does not hold, at least in the
worst-case, for the separators of [14]: In the worst case, the separator has super-
Ackermannian size in the Petri net size (a consequence of the fact that the
reachability problem is Ackermann-complete [16,15,7]) and the complexity of
the check is super-exponential.

In this paper, we show that, unlike the above, continuous Petri nets do
have separators satisfying properties (1) and (2). Continuous Petri nets are a
relaxation of the standard Petri net model, called discrete in the following, in
which transitions are allowed to fire “fluidly”: instead of firing once, consuming
i, tokens from each input place p and adding o, tokens to each output place g,
a transition can fire o times for any nonnegative real number «, consuming and
adding a-i, and «-o4 tokens, respectively. Continuous Petri nets are interesting in
their own right [8], and moreover as an overapproximation of the discrete model.
In particular, if g is not reachable from 1, under the continuous semantics,
then it is also not under the discrete one. As reachability in continuous Petri nets
is P-complete [12], and so drastically more tractable than discrete reachability,
this approximation is used in many tools for the verification of discrete Petri
nets, VAS, or multiset rewriting systems (e.g. [5,4,10]).

It is easy to see that unreachability in continuous Petri nets can be witnessed
by separators expressible in linear arithmetic (the first-order theory of the reals
with addition and order). Indeed, Blondin et al. show in [5] that the continuous
reachability relation is expressible by an existential formula reach(m,m’) of lin-
ear arithmetic, from which we can obtain a separator for any pair of unreachable
markings. To wit, for all markings m,. and Mg, if My, is not reachable from
Mg, then the formula sep,, (m) = —reach(mg., m) is a separator. Further,
reach(m, m’) has only linear size. However, these separators do not satisfy prop-
erty (2) unless P = NP. Indeed, while the reachability problem for continuous
Petri nets is P-complete [12], checking if a formula of linear arithmetic is a sepa-
rator is coNP-hard, even for quantifier-free formulas in disjunctive normal form,
a very small fragment. So, the separators arising from [5] cannot be directly used
as certificates.

In this paper, we overcome this problem. We identify a class of locally closed
separators, satisfying the following properties: unreachability can always be wit-

Separators in Continuous Petri Nets 83

nessed by locally closed separators; locally closed separators can be constructed
in polynomial time; and checking whether a formula is a locally closed separa-
tor is computationally easier than deciding unreachability. Let us examine the
last claim in more detail. While the reachability problem for continuous Petri
nets is decidable in polynomial time, it is still time consuming for larger mod-
els, which can have tens of thousands of nodes. Indeed, for a Petri net with n
places and m transitions, the algorithm of [12] requires to solve O(m?) linear
programming problems in n variables, each of them with up to m constraints.
Moreover, since the problem is P-complete, it is unlikely that a parallel computer
can significantly improve performance. We prove that, on the contrary, checking
if a formula is a locally closed separator is in NC rather than P-complete, and so
efficiently parallelizable. Further, the checking algorithm only requires to solve
linear programming problems in a single variable.

The paper is organized as follows. Section 2 introduces terminology, and
defines separators (actually, a slightly different notion called bi-separators). Sec-
tion 3 recalls the characterization of the reachability relation given by Fraca
and Haddad in [12], and derives a characterization of unreachability suitable
for finding bi-separators. Section 4 shows that checking the separators derivable
from [5] is coNP-hard, and introduces locally closed bi-separators. Sections 5
and 6 show that locally closed bi-separators satisfy the aforementioned proper-
ties (1) and (2). Finally, Section 7 shows that all our results can be extended to
separators that separate two sets of markings instead of singletons.

2 Preliminaries

Numbers, vectors and relations. We write N, R and R to denote the naturals
(including 0), reals, and non-negative reals (including 0). Let .S be a finite set.
We write e, to denote the unit vector e; € R® such that e4(s) = 1 and e (t) =0
for all s,t € S such that t # s. Given x,y € R, we write ~g y to indicate
that x(s) ~ y(s) for all s € S, where ~ is a total order such as <. We define the
support of a vector x € RY as supp(z) = {s € S : z(s) > 0}. We write x(9) :=
> ses x(s). The transpose of a binary relation R is R" :== {(y,z) : (z,y) € R}.

Petri nets. A Petri net® is a tuple N' = (P, T, F) where P and T are disjoint
finite sets, whose elements are respectively called places and transitions, and
where F = (F_,F,) with F_,F.: P x T — N. For every t € T, vectors
Ay, Af € NP are respectively defined as the column of F_ and F associated
tot,ie. Ay ==F_-e; and A} :=F, -e;. A marking is a vector m € Ri. We say
that transition t is a-enabled if m > aA; holds. If this is the case, then ¢ can
be a-fired from m, which leads to marking m’ :== m — aA; + aA/, which we

denote m 2% m/. A transition is enabled if it is a-enabled for some real number

3 In this work, “Petri nets” stands for “continuous Petri nets”. In other words, we will
consider standard Petri nets, but equipped with a continuous reachability relation.
We will work over the reals, but note that it is known that working over the rationals
is equivalent. For decidability issues, we will assume input numbers to be rationals.

84 M. Blondin and J. Esparza

a > 0. We define F .= F, — F_ and A; = F - e;. In particular, m Y m
implies m’ = m + aA;. For example, for the Petri net of Figure 1:

t
{pl'—>2p2'—>0p3'—>0p4HO})1{ = 3/2,p2 = 1/2,p3 — 0,py — 0}.

Moreover, w.r.t. to orderings p; < --- < py (rows) and t; < --- < t4 (columns):

1220 0010 1-2-10
0010 1000 1 0 -10
Fo=1lg001l" F+={o110] 2 F=|y 1 1
0100 0101 00 0 1

ta

p3

Fig. 1. A Petri net and two markings me.c = {p1 — 2,p2 — 0,p3 — 0,ps — 0} (black
circles) and mygt = {p1 — 0,p2 — 0,p3 — 0,ps — 1} (colored squares).

A sequence 0 = aity -+ - anty, is a firing sequence from myg,c to My if there

. . . t ’V'Lt’Vl
are markings my, . .., M, satisfying mge = mo —— My - " My, = Mg
We write mg - m,,. We say that mg. enables o, and that myg enables o
backwards, or backward-enables o. The support of o is the set {t1,...,t,}. For

example, for the Petri net of Figure 1, we have mg. N My Where

Mgre = {pl — 27]72 = Oap?) = 05p4 — O}a
mtgt = {pl — 07p2 — 07p3 — Oap4 — 1}7

o= (1/2)t1 (1/2)ts (1/2)t4 (1/2)ta (1/2)t4

Let U C T. We write m —U m/ to denote that m 21 m! for some a > 0 and
t € U, and =Y for the transitive and reflexive closure of —V. We simply write
— and —* when U = T. The Petri net Ny is obtained by removing transitions
T\ U from N. In particular, m —U" m/ holds in N iff m —* m’ holds in Ny .

The transpose of N' = (P,T,(F_,F)) is NT == (P,T,(F,F_)). We have
Mgre — Mgy in N iff myg — Mg in N7, where 7 is the reverse of o. For
U C T, we write UT to denote U in the context of N'T. This way, when we write,
e.g. —»U and —U", it is clear that we respectively refer to A and A/7.

Linear arithmetic and Farkas’ lemma. An atomic proposition is a linear inequal-
ity of the form ax < b or ax < b, where b and the components of a are over

Separators in Continuous Petri Nets 85

R. Such a proposition is homogeneous if b = 0. A linear formula is a first-order
formula over atomic propositions with variables ranging over R (the classi-
cal definition uses R, but in our context variables will encode markings.) The
solutions of a linear formula ¢, denoted [¢], are the assignments to the free
variables of ¢ that satisfy . A linear formula is homogeneous if all of its atomic
propositions are homogeneous. For every formula ¢(x,y) where & and y have
the same arity, we write ¢! to denote the formula that syntactically swaps x
and y, so that [¢'] = []". Throughout the paper, we will use Farkas’ lemma,
a fundamental result of linear arithmetic that rephrases the absence of solution
to a system into the existence of one for another system:

Lemma 1 (Farkas’ lemma). Let A € R™*" and b € R™. The formula
Az < b has no solution iff ATy =0Ab"y <0Ay >0 has a solution.

2.1 Separators and bi-separators
Let us fix a Petri net N' = (P, T, F) and two markings mgc, Mg € Ri.

Definition 1. A separator for (Mg, Myg) is a linear formula ¢ over Ri such
that: (1) mg. € [¢]; (2) ¢ is forward invariant, i.e., m € [¢] and m — m’
implies m' € [¢]; and (3) myg ¢ [¢].

It follows immediately from the definition that if there exists a separator ¢
for (Mere, Mgt), then Mg /% Mygy. Thus, in order to show that mg.. /A Mgy
in N, we can either give a separator for (Mg, mtgt) w.r.t. A, or a separator
for (mygt, Mgre) wrt. N T. Let us call them forward and backward separators.
Loosely speaking, a forward separator shows that g is not among the mark-
ings reachable from myg,., and a backward separator shows that mg. is not
among the markings backward-reachable from m,. Bi-separators are formulas
from which we can easily obtain forward and backward separators. The symme-
try w.r.t. forward and backward reachability make them easier to handle.

Definition 2. A linear formula ¢ over (RY)? is forward invariant if (m,m') €
[¢] and m' — m' imply (m,m") € [¢]; backward invariant if (m’,m”) € [¢]
and m — m’ imply (m, m") € [¢]; and bi-invariant if it is forward and back-
ward invariant. A bi-separator for (Mgsye, Myg:) is a bi-invariant linear formula
@ 8.t (More, Mre) € [@], (Mgr, Muge) € [@] and (Musre, M) &[]

The following proposition shows how to obtain separators from bi-separators.

Proposition 1. Let ¢ be a bi-separator for (Mg, Myg:). The following holds:
— (m) = p(Mg,m) is a separator for (Mpe, Myg) in N;
— ' (m) = p(m, myy) is a separator for (Myg, Myyc) in NT.

Proof. It suffices to prove the first statement, the second is symmetric.

It is the case that mg. € [¢] and Mg ¢ [¢] as (Mere, Masre) € [¢] and
(Msre, Migt) ¢ [¢]. It remains to show that ¢ is forward invariant. Let m € [¢]
and m <% m/. Since (Mg, m) € [¢] and ¢ is forward invariant, it is the case
that (Mg, m') € [¢]. Hence, m’ € [¢] as desired. O

86 M. Blondin and J. Esparza

3 A characterization of unreachability

In [12], Fraca and Haddad gave the following characterization of the reachability
relation in continuous Petri nets:

Theorem 1 ([12]). Let N = (P,T,F) be a Petri net, let U C T, and let
Migre, Mgt € Ri. It is the case that mg. —U My iff there exists S C U such
that the following conditions hold:

1. some vector x € Ri with support S satisfies Mgrc + Fx = myg,
2. some firing sequence o with support S is enabled at Mg, and
3. some firing sequence T with support S is backward-enabled at Mg

Furthermore, these conditions can be checked in polynomial time.

Theorem 1 has the following form, where P;, P, and P; stand for the condi-
tions of 1., 2., and 3.:

Mae =7 Mg < IS CU : (Fz: Pi(S,2)) A (3o: Pa(S,0) A (37: P5(S,7)).
Therefore, Mg AV Mgt holds iff
VS CU: (Va: =P (S,z))V (Vo: =P(S,0)) V (Vr: =P5(S,1)).

To obtain a witness of unreachability for a given S C U, we replace each univer-
sally quantified disjunct by an existentially quantified equivalent one. For condi-
tions 2. and 3., the solution (implicitly given in [12]) is formulated in Proposition
2. Given a set of places X, let *X (resp. X*) be the set of transitions ¢ such that
F.(p,t) > 0 (resp. F_(p,t) > 0) for some p € X. A siphon of N is a subset @Q
of places such that *Q C Q®. A trap is a subset R of places such that R® C °R.
Informally, empty siphons remain empty, and marked traps remain marked. For-
mally, if m — m/, then m(Q) = 0 implies m/(Q) = 0, and m(R) > 0 implies
m/(R) > 0. We have:

Proposition 2 ([12]). Let N = (P,T,F) be a Petri net, let S C T, and let
m € Rf. The following statements hold:

— No firing sequence with support S is enabled at m iff there exists a siphon
Q of Ns such that Q* # 0 satisfies m(Q) = 0;

— No firing sequence with support S is backward-enabled at m iff there exists
a trap R of Ng such that *R # 0 satisfies m(R) = 0.

So the universal statements “no firing sequence ... is enabled /backward-enabled
...” are replaced by existential statements “there exists a siphon/trap ...”. The
if-direction of the proposition is easy to prove. A siphon Q of Ng satisfies Q® C S.
Since @ is empty at m, if we only fire transitions from S then @ remains empty,
and so no transition of @Q°® ever becomes enabled. So transitions of Q°® can only
fire after transitions that do not belong to S have fired first. But no such firing
sequence has support S, and we are done. The case of traps is analogous. For
the only-if direction we refer the reader to [12].

For condition 1. of Theorem 1, we obtain a solution in terms of exclusion
functions.

Separators in Continuous Petri Nets 87

Definition 3. Let N' = (P,T,F) be a Petri net, let mg.c, muy € RY and let
S C 5" CT. An exclusion function for (S,5") is a function f: RY — R s.t.

1. m > m/ implies f(m) < f(m') for all s € S'; and
2. either f(Mgre) > f(Mige), or f(Mmge) = f(myg) and there exists s € S such
that m > m/ implies f(m) < f(m/).

An exclusion function for S is an exclusion function for (S,S).

An exclusion function for S excludes the existence of a firing sequence from
Mg t0 My With support S, i.e., witnesses that condition 1 of Theorem 1 fails.
To see why, call f(m) the value of m. By definition of f, either g has lower
value than mg,. but no transition of S decreases it, or Mg and Mg have the
same value but no transition of S decreases it, and at least one increases it. So
it is impossible to reach Mg, from my,. by firing all and only the transitions of
S. Let us apply exclusion functions and Proposition 2 to an example.

Ezample 1. Consider the Petri net of Figure 1, but with mye == {p1 — 0,p2 —
0,p3 — 1,pqy — 0} as target We prove Mg, 7¢> Mygt. For the sake of contra-
diction, assume Mg, —Y Mg for some U C T'. We proceed in several steps:

— Claim: t4 ¢ U. The function f(m) := m(p4) is an exclusion function for T
Indeed, since no transition decreases the number of tokens of py, m Lom/
implies f(m) < f(m/) for every transition ¢t € T. Furthermore, f(mg.) =
0 = f(myg), and, since t4 adds tokens to ps, m Yy m implies f(m) <
f(m/). Tt follows that no firing sequence from Mg to Mg can fire ¢4.

— Claim: ty ¢ U. The set Q = {p4} is a siphon of N\ 1,3 (but not of). Since
Mgc(Q) = 0, it is impossible to use transitions of ./\/'T\{t ,} that consume from
@, i.e. transitions of Q°® = {t2}.

— Claim: t1,t3 ¢ U. The set R == {p1,p2} is a trap of Np\ 4, 4,3 (but not of
N1\ f23)- Since myg (R) = 0, it is impossible to reach Mg using transitions
of Np\{t,,t4) that produce in R, i.e. transitions of *R = {t1,3}.

By the claims, U = {), hence we reach the contradiction mge = Mygy. 0O

Proposition 4 below shows that condition 1. of Theorem 1 fails if and only
if there is an exclusion function for S (actually, a slightly more general result).
We need the following consequence of Farkas’ lemma:

Proposition 3. The system 3 > 0: Ax =bA S Csupp(x) C S’ has no solu-
tion iff this system has some: Jy : ATy > OAD Ty < 0ADbTy < Zses(ATy)s-

Proposition 4. Let N = (P,T,F) be a Petri net, let Mg, My € Ri, and let
S CS" CT. Novectorx €]R£ satisfies S C supp(x) C 5" and my+Fx = myy
iff there exists a linear exclusion function for (S,S").

88 M. Blondin and J. Esparza

Proof. Assume no such x € Ri exists. Let b := Mgt — M. By Proposition 3,
there exists y € R such that: FTy > 0AbTy <0OADbTy < Zses(FTy)s. We
show that f(k) =y Tk is a linear exclusion function for (.S, S").

1. We have f(mtgt)_f(msrc) = mitgt _misrc = yT(mtgt _msrc) = yTb =
by <0, and hence f(myg) < f(Misre).

2. Let m 2% m/ with s € § and \ € R, . We have m’ = m + A\Fe,. Thus:
fm') =y'm' =yTm + Ay Fle; =y m + A(FTy)Tes > y'm = f(m),
where the inequality follows from A > 0, FTy, >¢ 0 and s € S’

3. Recall that bTy < 0 and Zses(FTy)s > b'y. If the latter sum equals zero,
then by < 0, and hence we are done since f(mig;) — f(Mge) = by < 0.
Otherwise, we have > _o(FTy)s > 0 since S € 5" and FTy >g 0. There-
fore, there exists a transition s € S such that (FTy), > 0. Let m = m’/. We
have m’ = m + AFe; for some A > 0. Thus, f(m/) =y "m + \(FTy)Te, >
y'm = f(m), where the inequality holds by A > 0 and (FTy), > 0. O

Putting together Proposition 4 with Theorem 1 and Proposition 2, we obtain
the following characterization of unreachability.

Proposition 5. Let N = (P, T, F) be a Petri net, let U C T, and Mgy, Mg €
]Rf It is the case that m g, 74>U* Mg iff for every S C U:

1. there exists an exclusion function for S, or
2. there exists a siphon Q of N such that Q* # 0 and m..(Q) =0, or
3. there exists a trap R of Ng such that °*R # 0 and me(R) = 0.

This proposition shows that, for all supports S, we can produce a witness of
unreachability as an exclusion function, a siphon, or a trap. In the next section,
we transform these witnesses into separators useful as certificates.

4 Separators as certificates

Let N'= (P, T, F) be a Petri net and let mg.c, My € RY be two markings of NV.
From [5], one can easily show that if g /4* Mg, then there is a separator for
(Msre, Mgt). Indeed, [5, Prop. 3.2] shows that there exists an existential formula
¥ of linear arithmetic such that m —* m/ iff (m, m’) € [¢]. Thus, the formula
p(m) = (Mg, m) is a separator.

However, ¢ is not adequate as a certificate of unreachability. Indeed, checking
a certificate for mg.. #* Mg should have smaller complexity than deciding
whether mgc —* Mmyg. This is not the case for existential linear formulas,
because mgc —* Mg can be decided in polynomial time, but checking that an
existential linear formula is a separator is coNP-hard.

Proposition 6. The problem of determining whether an existential linear for-
mula ¢ is a separator for (Mg, Myg) is coNP-hard, even if is a quantifier-free
formula in DNF and homogeneous.

Separators in Continuous Petri Nets 89

In the rest of the section, we introduce locally closed bi-separators, and then,
in Sections 5 and 6, we respectively prove that they satisfy the following:

— If Mg A% Mgy, then some locally closed bi-separator for (Mmgyc, mygt) can
be computed in polynomial time;
— Deciding whether a formula is a locally closed bi-separator is in NC.

4.1 Locally closed bi-separators

The most difficult part of checking that a formula ¢ is a bi-separator consists
of checking that it is forward and backward invariant. Let us focus on forward
invariance, backward invariance being symmetric.

Recall the definition: for all markings m,m’,m’ and every transition ¢: if
(m,m’) € [¢] and m' 2% m” then (m,m”) € [¢]. Assume now that ¢ is in
DNF, i.e., a disjunction of clauses ¢ = ¢1V---Vp,. The forward invariance check
can be decomposed into n smaller checks, one for each ¢ € [1..n], of the form:
if (m,m’) € [¢;], then (m, m"”) € [¢]. However, in general the check cannot
be decomposed into local checks of the form: there exists j € [1..m] such that
(m,m’) € [p;] implies (m, m") € [¢,]. Indeed, while this property is sufficient
for forward invariance, it is not necessary. Intuitively, locally closed bi-separators
are separators where invariance can be established by local checks.

For the formal definition, we need to introduce some notations. Given a
transition ¢ and atomic propositions 1,1, we say that 1 t-implies 1’, written
P~ i (m,m') € [¢] and m’ 2 m/ implies (m,m) € [¢']. We further
say that a clause 1 = 11 A+ - - Ay, t-implies a clause ¢’ =] A--- Al written
Y~y 3, if for every j € [1..n], there exists i € [1..m] such that ; ~; .
Definition 4. A linear formula ¢ is locally closed w.r.t. N = (P, T, F) if:

— =1 V-V, is quantifier-free, in DNF and homogeneous,

— for every t € T and every i € [1..n], there exists j € [1..n] s.t. @; ~ @,

— for every t € TT and every i € [1..n], there exists j € [L.n] s.t. @] ~; o]

-
Note that the definition is semantic. We make the straightforward but crucial
observation that:

Proposition 7. Locally closed formulas are bi-invariant.

Proof. Let ¢ = 1 V---V ¢, be a locally closed formula. We only consider the

forward case; the other case is symmetric. Let (m,m’) € [¢] and m/ 2% m/.

Let i € [1..n] be such that (m, m’) € [g;]. Since ¢ is locally closed, there exists

J € [1..n] such that ¢; ~»; ¢;. For every atomic proposition 9’ of ¢;, there exists

an atomic proposition ¢ of (; such that ¥ ~; 1’. Since each atomic proposition

of p; is satisfied by (m,m’), we obtain (m,m”) € [p,]. O
Proposition 7 justifies the following definition:

Definition 5. A locally closed bi-separator for (M, M) is a locally closed
formula ¢ s.t. (Mo, Mgre) € [0], (Migr, Mige) € [@] and (Megre, Mige) & [].

Indeed, by Proposition 7, a locally closed bi-separator is a bi-separator, as
the bi-invariance condition of Definition 2 follows from local closedness.

90 M. Blondin and J. Esparza
5 Constructing locally closed bi-separators

In this section, we prove that unreachability can always be witnessed by locally
closed bi-separators of polynomial size and computable in polynomial time. The
proof uses the results of Section 3.

Theorem 2. If mg,. AU Mg, then there is a locally closed bi-separator ¢ for
(Mgpe, Mygy) wort. Ny. Further, ¢ = \/1<,<,, vi,» where n < 2|U| + 1 and each
@i contains at most 2|U| 4+ 1 atomic propositions. Moreover, ¢ is computable in
polynomial time.

Proof. We proceed by induction on |U|. First consider U = (). Let p € P be such
that mg(p) # Mgt (p). Take o(m, m’) :=e,m < e,m’ or —e,m < —e,m’.

Now, assume that U # (). Consider the system 3z € RE Mg +FxT = myg A
supp(ax) C U. Suppose first that the system has no solution. By Proposition 4,
taking S = () and S’ = U, there is a linear exclusion function for (§,U), i.e. a
linear function f satisfying:

1- f(msrc) > f(mtgt>7
2. m =% m/ implies f(m) < f(m’) for all u € U.

(The first item holds due to Item 2 of Definition 3 and S = ().) So we can take
plm,m’) = (f(m) < f(m)).

Suppose now that the system has a solution x € R_[{. By convexity, we
can suppose that supp(x) C U is maximal. Indeed, if ' and " are solutions,
then (1/2)ax’ + (1/2)x” is a solution with support supp(a’) U supp(z”). Let
U’ := supp(x). For every t € U \ U’, consider the system of Proposition 4 with
S = {t} and &’ = U. By maximality of U’ C U, none of these systems has a
solution. Consequently, for each ¢ € U\U’, Proposition 4 yields a linear exclusion
function for ({t},U), i.e. a linear function f; that satisfies:

3~ ft(msrc) Z ft(mtgt)v
4. m % m/ implies f;(m) < f,(m/) for all u € U,
5. either fi(mgc) > fi(myigt), or m Lom! implies fi(m) < fi(m/).

If fi(Mgec) > fi(mygt) holds for some ¢t € U\ U’, then we are done by taking
po(m,m') = (fy(m) < f;(m’')) as Item 4 ensures that ¢ ~»,, ¢ for every u € U.
So assume it does not hold for any ¢t € U \ U’, i.e. assume that f;(mge) =
ft(myg) holds, and the second disjunct of Item 5 holds for all ¢ € U \ U’. This
is the most involved case. Let

pinv(m,m') = /\(fi(m) < fi(m')) and @i(m,m’) == (fi(m) < fi(m")).
teU\U’

Let Q,R C P be respectively the maximal siphon and trap of Ny such that
Mo (Q) = 0 and My (R) = 0 (well-defined by closure under union). Let U :=
U’\ (Q*U°R). By Theorem 1 and Proposition 2, Q*U°R #). Thus, U” is a strict

Separators in Continuous Petri Nets 91

subset of U’, and, by induction hypothesis, there is a locally closed bi-separator
w.r.t. Ny~ of the form ¢ =\/, _, ., 1; that satisfies the claim for set U”. Let

=\ ¢i(m,m) V [pine (m, m') Am(Q) + m/(R) > 0] v
O\ [(mym) Am(R) +m/(Q) < 0 A gi(m,m)].

1<i<m

As (Mg, Myrc) € [Pinv] and (Migre, Msre) € [¥0], we have (Mg, Mge) € [¢].

Similarly, (mtgtamtgt) € [¢]. By Item 3, (msrc>mtgt) ¢ [[VteU\U’ er(m, m')].

Further, mg.c(Q) +mge (R) = 0 and (Mgre, Migt) ¢ [¥]. S0, (Mrsre, Migt) € []-
The number of disjuncts of ¢ is |[U \ U’| + 1 + m and hence at most

[U\NU'|+1+2U"|+1<|U = U"|+14+2U"|+1=
Ul +|U"|+2<|U|+ (U —1)+2=2|U|+ 1.

The same bounds holds for the number of atomic propositions per disjunct.

It remains to show that p(m, m’) is locally closed w.r.t. Ny. We only consider
the forward case, as the backward case is symmetric. Let (m,m’) € [¢] and
m’ % m” for some v € U. By Item 4, ¢, ~, ¢; holds for each ;. Indeed,
fi(m) < fi(m/) and m/ =% m' imply f;(m) < fi(m’) < f;(m"), and hence
fi(m) < fi(m'"). To handle the other clauses, we make a case distinction on wu.

— Case u € U\ U'. Atomic proposition 8 = (f,(m) < f,(m')) of iy, satisfies
0 ~+y 0y Indeed, if f,(m) < fu(m') and m’ 2% m” | then we have f,(m) <
fu(m') by Ttem 5.

— Case u € U'. By Item 4, each atomic proposition 6 of ¢y, satisfies 6 ~,, 6.

e Case u € *R. We have ¢ ~, (m(Q)+ m/(R) > 0) for any atomic
proposition @', since m’ % m’" implies m” (R) > 0 (regardless of ¢').

e Case u € Q°. If m/(Q) < 0, then u is disabled in m/. Thus, it only
remains to handle 059 = (m(Q)+m’'(R) > 0). Since R is a trap of Ny,
firing u from m’ does not empty R, and hence 0~ ~, 0¢.

o Case u € U”. Let < = (m(R) + m/(Q) < 0) and 059 = (m(Q) +
m/(R) > 0). Since Q and R are respectively a siphon and trap of Ny, we
have 6<g ~, 0<o and 05 ~», 0>0. Moreover, by induction hypothesis,
for every i € [1..m], there exists j € [1..m] such that ©); ~>, ;.

We conclude the proof by observing that it is constructive and can be turned
into Algorithm 1. The procedure works in polynomial time. Indeed, there are at
most |U| recursive calls. Moreover, each set can be obtained in polynomial time
via either linear programming or maximal siphons/traps computations [9]. O

Example 2. Let us apply the construction of Theorem 2 to the Petri net and
the markings of Example 1: mg. = {p1 — 2,p2 — 0,p3 — 0,ps — 0} and
Mygt, = {p1 > 0,p2 — 0,p3 — 1,ps — 0}. The locally closed bi-separator is the
formula ¢ below, where the colored arrows represent the relations ~,, ..., ~y,:

92 M. Blondin and J. Esparza

b1, to, ts, ta 07 [m

3
s
&
N
3
=
iy
>
3
s
J’_
3
)
)
IN
o
>

|
3
)
L
IA

|
3
)
D

The forward separator ¥(m) := p(mg., m) is, after simplifications, given by
(m) = m(p1) + m(p2) >0V m(py) > 0.
Similarly, we obtain this backward separator ¢’'(m) == p(m, Mgy):
¥'(m) = m(p1) + m(p2) = 0Am(ps) > 1 Am(ps) = 0.

The backward separator ¥ provides a much simpler proof of Mg 7 Mg than
the one of Example 1. The proof goes as follows: v’ is trivially backward invari-
ant, because markings that only mark ps do not backward-enable any transition.
In particular, since myy; only marks ps, it can only be reached from Mg, O

Algorithm 1: Construction of a locally closed bi-sep. for (Mg, Migt)-

Input: N = (P,T,F), U C T and mgc, My € Qi S.t. Mgre 7L>U* Mgt
Output: A locally closed bi-separator w.r.t. Ny

bi-separator (U)

if U =0 then

pick p € P such that mec(p) # Mg (p)

return (am < am’) where a = sign(Mrc(p) — Mige(p)) - €p
else

b = Mgt — Misrc

X = {x € RY :Fz = b,supp(x) C U}

Yo ={yeR":Fly>y 0,b'y<0,b'y<> _o(F'y)}

if X =0 then
| pick y € Yy and return (y'm < y"m’)
else

U ={ueU:x(u) >0 for some x € X}
fort e U\ U’ do
pick y: € Y{4y; fi(m) =y/m
if fi(More) > fi(Mmyg) then return (fi(m) < fi(m'))
Q = largest siphon of Ny such that me..(Q) =0
R = largest trap of Ny such that myg(R) =0
Pinv = Nyern o (fe(m) < fo(m))
W1V -V by, = bi-separator (U’ \ (Q° U °R))
return \/, .\ r 9¢(m, m') V [pine (m, m’) Am(Q) + m/(R) > 0] v
Vicicm[pinv(m, m') Am(R) + m'(Q) < 0 A¢i(m,m')]

Separators in Continuous Petri Nets 93

6 Checking locally closed bi-separators is in NC

We show that the problem of deciding whether a given linear formula is a locally
closed bi-separator is in NC. To do so, we provide a characterization of ¢ ~~; 1 for
homogeneous atomic propositions 1 and v¢’. We only focus on forward firability,
as backward firability can be expressed as forward firability in the transpose
Petri net. Recall that 1) ~»; ¥’ holds iff the following holds:

(m,m’) € [¥] and m’ 2% m” imply (m,m”) € [¢']. (*)
Property (*) can be rephrased as:
(m,m’) € [¢] and m' > o A; imply (m,m' + o - A) € [¢].

As we will see towards the end of the section, due to homogeneity, it actually
suffices to consider the case where o = 1, which yields this reformulation:

{(m,m/) € [¢] :m’ > A7} C {(m,m) : (m,m/ + A;) € [V']}.
X Y

Therefore, testing 1 ~»; ¥’ amounts to the inclusion check X C Y. Of course,
if X = (), then this is trivial. Hence, we will suppose that X # (), assuming for
now that it can somehow be tested efficiently. In the forthcoming Propositions 8
and 9, we will provide necessary and sufficient conditions for X C Y to hold. In
Proposition 10, we will show that these conditions are testable in NC. Then, in
Proposition 11, we will explain how to check whether X # () actually holds.

For X C Y, we can characterize the case of atomic propositions v that use
“<” (rather than “<”) with a generalization of Farkas’ lemma:

Proposition 8. Let a,a’,l e R" and ¥ eR. Let X ={x e R" :ax < 0Nz >
I} andY = {x e R" : a’'x < '} be such that X # 0. It is the case that X CY
iff there exists A > 0 such that Aa > a’ and —b' < (Aa — a’)l.

We now give the conditions for all four combinations of “<” and “<”:

Proposition 9. Let a,a’ e R", ¥’ e R, 1 > 0 and ~,~' € {<,<}. Let X =
{x>l:ax~0} and Y, ={x € R": ad'x ~' '} be such that X # 0. It holds
that X C Y. iff there exists A > 0 s.t. A\a > a’' and one of the following holds:

1. ~ =< and -b < (Aa—a')l;
2. ~=<, ~ =<, and —b < (Aa—a')l;
3. ~=<,~ =<, and either —b' < (Aa —a’)l or =t/ = (Aa —a')l AX> 0.

Proof.

1. If ~ = <, then it follows immediately from Proposition 8. Thus, assume ~ =
<. We claim that X C Y< iff X< C Y<. The validity of this claim concludes
the proof of this case as we have handled ~ = < and as X< D X # 0.

94

3.

M. Blondin and J. Esparza

Let us show the claim. It is clear that X C Y< is implied by X< C Y<. So,
we only have to show direction from left to right. For the sake of contradic-
tion, suppose that Xo C Y< and X< € Y<. Let X_ := X<\ X_.. Note that
X_#0.Letx € Xcandz’ € X_\Y<. Wehave z,z’ > [, ax <0, ax’ =0,
ax=c<¥V and a'x' = >V for some ¢,¢’ € R. In particular, b’ € [¢,).
Let € € (0,1] be such that b < ec + (1 —€)d. Let " = ex + (1 — €)’.
Observe that " > . Moreover, we have:

azr” = eax + (1 — €)ax’ = cax <0,

dx’ =edx+ (1—ea's' =ec+(1—e)d >0

Therefore, we have " € X< and «” ¢ Y<, which is a contradiction.

=) Since X< C Y, the system Jz : & > I Aax < 0Aa'z > b has no
solution. In matrix notation, the system corresponds to Jx : Ax < ¢ where

-1 -1
A= a and ¢ == 0
—a’ -

By Farkas’ lemma (Lemma 1), ATy = 0 and ¢'y < 0 for some y > 0. In
other words,

z2>0 0N >0:da—-Na =zA-NV <zl

Since z > 0, we have Aa > Xa'A—=XV < (Aa—Na')l. If X > 0, then we are
done by dividing all terms by \. For the sake of contradiction, suppose that
M = 0. This means that Aa > 0 and 0 < Aal. We necessarily have A > 0 and
al > 0. Let © € X<. We have 0 > ax > al > 0, which is a contradiction.

<) Let © € X<. We have a’x < b’ and hence x € Y. as desired, since:

—b < (Aa—a)l
<(\a-—-a)z (by (\@a —a’) >0 and = >1>0)
=lax —ad'zx
< —ad'x (by A > 0 and azx <0).
The proof is similar albeit slightly more complicated.]

The conditions arising from Proposition 9 involve solving linear programs

with one variable A. It is easy to see that this problem is in NC:

Proposition 10. Given a,b € Q" and ~ € {<, <}, testing IN>0:ar ~ b
is in NC.

Recall that at the beginning of the section we made the assumption that some

pair (m, m’) € [¢] is such that m/' enables a transition ¢. Checking whether this
is actually true has a cost. Fortunately, we provide a simple characterization of
enabledness which can checked in NC. Formally, we say that ¢ enables t if there
exists (m,m’) € [¢] such that m’ a-enables t for some o > 0. We have:

Separators in Continuous Petri Nets 95

Proposition 11. Let p.(m, m') = am ~ bm’ where a,b € RY. This holds:

1. ¢ enables u iff a 2 0 or b £ 0, and
2. < enables u iff bA;, >0 or (bA, <0A (a,—b) # (0,0)).

Proof.

1. =) Since @ enables u, we have [p<] # 0. Let (m,m’) € [p<]. We have
am < bm/. It cannot be that @ > 0 and b < 0, as otherwise am > 0 > bm/.

<) It suffices to give a pair (m, m’) € [p<] such that m’ > A, . Informally,
if a has a negative value (resp. b has a positive value), then we can consider
the pair (0, A7) and “fix” the value on the left-hand-side (resp. right-hand
side) so that p. is satisfied. More formally, if a(p) < 0, then (ke,, A;) €
[o<] with k == (|bA;| + 1)/|a(p)l; if b(p) > 0, then (0, Ay + key) € [p<]
with k == (|bA, | + 1)/b(p).

2. The proof is similar albeit slightly more complicated. 0O

We can finally show that testing i ~»; 1’ can be done in NC, for atomic
propositions 1 and . In turn, this allows us to show that we can test in NC
whether a linear formula is a locally closed bi-separator.

Proposition 12. Given a Petri net N, a transition t and homogeneous atomic
propositions ¥ and 1)’ testing whether 1 ~»; ¢’ can be done in NC.

Proof. Recall that addition, subtraction, multiplication, division and comparison
can be done in NC. Note that, by Proposition 11, we can check whether v enables
¢ in NC. If it does, then we must test whether (m,m’) € [¢] and m/ 2% m”
implies (m, m”) € [¢']. We claim that this amounts to testing X C Y, where:

X ={(m,m) e R xRY : (m,m’) € [¢] and (m,m’) > (0,4;)},
Y= {(m,m)eRE xR : (m,m' + A;) € [¥']}.
Let us prove this claim.
=) Let (m,m’) € X. We have (m,m/’) € [¢] and (m,m') > (0, 4;). Thus
m’ 5 m’ + A,. By assumption, (m,m’' + A;) € [¢'], and hence (m,m’) €Y.
<) Let (m,m’) € [¢] and m' 2% m”. We have m' > aA; and m/” =
m' 4+ ad;. Let k = m/a, K = m//a and k" = m/ /a. As o > 0 and ¢
is homogeneous, we have (k, k') € [¢], (k,k") > (0,4;) and k" = k' + A;.
Thus, (k, k') € X CY. By definition of Y, this means that (k,k”) € [¢']. By
homogeneity, we conclude that (m,m”) € [¢'].
Now that we have shown the claim, let us explain how to check whether
X C Y in NC. Note that X #) since 1) enables t. Thus, by Proposition 9,
testing X C Y amounts to solving a linear program in one variable. For example,
ifp = (a-(m,m') <0) and ¢’ = (a’-(m, m’) < 0), then we must check whether
this system has a solution:

IAN>0:da>a Na-(0,4;) <(Na—-a')-(0,A;).

Thus, by Proposition 10, testing X C Y can be done in NC. 0O

96 M. Blondin and J. Esparza

Theorem 3. Given N' = (P, T, F), Mg, myy € QF and a formula ¢, testing
whether ¢ is a locally closed bi-separator for (Msye, Myg) can be done in NC.

Proof. Recall that ¢ = @1 V-V ¢, must be in DNF with homogeneous atomic
propositions. As arithmetic belongs in NC and ¢ is in DNF, we can test whether
(Msrc, Mirc) € [@], (Migr; Mige) € [¢] and (Mgre, Migt) ¢ [0] in NC by evalu-
ating ¢ in parallel. We can further test whether ¢ is locally closed by checking
the following (which is simply the definition of “locally closed”):

AV AN Ve=vinf AV AV 0T —?

teT je[l.n]YEp; P Ep; teTT jE[l.n]YeEp; P Ep;
i€[l..n] i€[l..n]

By Proposition 12, each test 1) ~+; 1’ can be carried in NC. Therefore, we can
perform all of them in parallel. Note that we do not have to explicitly compute
the transpose of transitions and formulas; we can simply swap arguments.]

Remark 1. Testing whether ¢ is locally closed is even simpler if the tester is also
given annotations indicating for every clause ; and transition ¢ which clause ¢;
is supposed to satisfy ¢; ~+; ;. This mapping is a byproduct of the procedure
to compute a locally closed bi-separator, and so comes at no cost. O

7 Bi-separators for set-to-set unreachability

In most applications, one does not have to prove unreachability of one mark-
ing, but rather of a set of markings, usually defined by means of some simple
linear constraints. We show that our approach can be extended to “set-to-set
reachability”, i.e. queries of the form Img.c € A, Mgt € B 1 Myge —* Mgy,
which we denote by A —* B. We focus on the case where sets A and B are
described by conjunctions of atomic propositions; in other words, A and B are
convex polytopes defined as intersections of half-spaces. In particular, this in-
cludes “coverability” queries which are important in practice, i.e. where A is a
singleton and B is of the form {m : m > b}. More generally, our approach can
directly be adapted to convex linear Horn constraints, which is a fragment of lin-
ear arithmetic that extends linear programs and that captures the expressiveness
of continuous Petri nets [6].

As shown in [6, Lem. 3.7], given an atomic proposition) = (ax ~ b), one
can construct (in logarithmic space) a Petri net N, and some y € {0,1}° such
that ¢(z) holds iff (z,y) —* (0,0) in Ny. The idea—depicted in Figure 2,
which is adapted from [6, Fig. 1])—is simply to cancel out positive and negative
coeflicients of 1. It is straightforward to adapt this construction to a conjunction
N1 <i<k Yr(x) of atomic propositions. Indeed, it suffices to make k copies of the
gadget, but where places {p1,...,p,} and transitions {t1,...,t,} are shared. In
this more general setting, t; consumes from p; and simultaneously spawns the
respective coefficient to each copy. In summary, the following holds:

Separators in Continuous Petri Nets 97

Fig. 2. Petri net for ¢(x) = (a1 -1+ -+ an - zn > ¢) where a1,a2,¢ > 0 and a, < 0.

Proposition 13. Given a conjunction of atomic propositions p, it is possible to
construct, in logarithmic space, a Petri net N, and y € {0,1}°% such that p(z)
holds iff (z,y) —* (0,0) in N.

With the previous construction in mind, we can reformulate any set-to-set
reachability query into a standard (“marking-to-marking”) reachability query.

Proposition 14. Given a Petri net N' and convex polytopes A and B described
as conjunctions of atomic propositions, one can construct, in log. space, a Petri
net N and markings mg.. and myg s.t. A —* B in N iff mge —* myg in N7

Proof. Let N = (P, T,F_,F,) where P = {p1,...,pn}. Let us describe N/ =
(P',T",F"_,F'_) with the help of Figure 3. The Petri net N’ extends A as follows:

— we add transitions {¢1,...,t,} whose purpose is to nondeterministically
guess an initial marking of N in P, and make a copy in P’ := {p},...,p.};

— we add a gadget, obtained from Proposition 13, to test whether the marking
in P’ belongs to A; and we add a gadget, obtained from Proposition 13, to
test whether the marking in P belongs to B.

€ A?

€ B?

Fig. 3. Reduction from set-to-set reachability to (marking-to-marking) reachability.

98 M. Blondin and J. Esparza

The Petri net N’ is intended to work sequentially as follows: (1) guess the
initial marking m of N; (2) execute N on m and reach a marking m/; and (3) test
whether m € A and m/’ € B. If N follows this order, then it is straightforward
to see that A —* B in N iff (0,0,y,y’) —* (0,0,0,0) in N/, where y and y’ are
obtained from Proposition 13. However, N’ may interleave the different phases.*
Nonetheless, this is not problematic, as any run of N’ can be reordered in such
a way that all three phases are consecutive. Indeed, phase (1) only produces
tokens in P U P’, and phase (3) only consumes tokens from P U P’. O

As a consequence of Proposition 14, combined with Theorems 2 and 3, we
obtain the following corollary:

Corollary 1. A negative answer to a convex polytope query A —* B is wit-
nessed by a locally closed bi-separator computable in polynomial time and check-
able in NC.

8 Conclusion

We have shown that continuous Petri nets admit locally closed bi-separators that
can be efficiently computed. These separators are succinct and very efficiently
checkable certificates of unreachability. In particular, checking that a linear for-
mula is a locally closed bi-separator is in NC, and only requires to solve linear
inequations in one variable over the nonnegative reals.

Verification tools that have not been formally verified, or rely (as is usu-
ally the case) on external packages for linear arithmetic, can apply our results
to provide certificates for their output. Further, our separators can be used as
explanations of why a certain marking is unreachable. Obtaining minimal expla-
nations is an interesting research avenue.

From a logical point of view, separators are very closely related to inter-
polants for linear arithmetic, which are widely used in formal verification to
refine abstractions in the CEGAR approach [3,17,18,1]. We intend to explore
whether they can constitute the basis of a CEGAR approach for the verification
of continuous Petri nets.

Acknowledgments. We thank the anonymous referees for their comments, and
in particular for suggesting a more intuitive definition of bi-separator.

References

1. Althaus, E., Beber, B., Kupilas, J., Scholl, C.: Improving interpolants for linear
arithmetic. In: Proc. 13*® International on Automated Technology for Verification
and Analysis (ATVA). pp. 48-63 (2015). https://doi.org/10.1007/978-3-319-24953-
75

4 1t is tempting to implement a lock, but this only works under discrete semantics.

https://doi.org/10.1007/978-3-319-24953-7_5
https://doi.org/10.1007/978-3-319-24953-7_5

10.

11.

12.

13.

14.

15.

16.

17.

Separators in Continuous Petri Nets 99

Baumann, P., Majumdar, R., Thinniyam, R.S., Zetzsche, G.: Context-bounded
verification of liveness properties for multithreaded shared-memory programs. Pro-
ceedings of the ACM on Programming Languages (PACMPL) 5, 1-31 (2021).
https://doi.org/10.1145/3434325

Beyer, D., Zufferey, D., Majumdar, R.: Csisat: Interpolation for LA4+EUF. In:
Proc. 20" International Conference on Computer Aided Verification (CAV). pp.
304-308 (2008). https://doi.org/10.1007/978-3-540-70545-1_29

. Blondin, M., Esparza, J., Helfrich, M., Kucera, A., Meyer, P.J.: Checking qualita-

tive liveness properties of replicated systems with stochastic scheduling. In: Proc.
324 International Conference on Computer Aided Verification (CAV). vol. 12225,
pp. 372-397 (2020). https://doi.org/10.1007/978-3-030-53291-8_20

Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous
Petri nets. ACM Transactions on Computational Logic (TOCL) 18(3), 24:1-24:28
(2017). https://doi.org/10.1145/3105908

Blondin, M., Haase, C.: Logics for continuous reachability in Petri nets
and vector addition systems with states. In: Proc. 32"¢ Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). pp. 1-12 (2017).
https://doi.org/10.1109/LICS.2017.8005068

Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. In: Proc. 62" Annual IEEE Symposium on Foundations
of Computer Science (FOCS) (2021), to appear

David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri nets. Springer, 2 edn.
(2010)

Desel, J., Esparza, J.: Free choice Petri nets. No. 40, Cambridge University Press
(1995)

Esparza, J., Helfrich, M., Jaax, S., Meyer, P.J.: Peregrine 2.0: Explaining correct-
ness of population protocols through stage graphs. In: Proc. 18" International
Symposium on Automated Technology for Verification and Analysis (ATVA). vol.
12302, pp. 550-556 (2020). https://doi.org/10.1007/978-3-030-59152-6_32

Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based
synthesis for complex APIs. In: Proc. 44™® ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). pp. 599-612. ACM (2017).
https://doi.org/10.1145/3009837.3009851

Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundamenta
Informaticae 137(1), 1-28 (2015). https://doi.org/10.3233/FI-2015-1168
German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675-735 (1992). https://doi.org/10.1145/146637.146681
Leroux, J.: Vector addition systems reachability problem (A simpler solution).
In: Turing-100 — The Alan Turing Centenary. vol. 10, pp. 214-228 (2012).
https://doi.org/10.29007 /bnx2

Leroux, J.: The reachability problem for Petri nets is not primitive recursive. In:
Proc. 62" Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(2021), to appear

Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Proc. 34*" Symposium on Logic in Computer
Science (LICS). pp. 1-13 (2019). https://doi.org/10.1109/LICS.2019.8785796
Rybalchenko, A., Sofronie-Stokkermans, V.. Constraint solving for inter-
polation. Journal of Symbolic Computation 45(11), 1212-1233 (2010).
https://doi.org/10.1016/j.jsc.2010.06.005

https://doi.org/10.1145/3434325
https://doi.org/10.1007/978-3-540-70545-1_29
https://doi.org/10.1007/978-3-030-53291-8_20
https://doi.org/10.1145/3105908
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1007/978-3-030-59152-6_32
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1145/146637.146681
https://doi.org/10.29007/bnx2
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.jsc.2010.06.005

100 M. Blondin and J. Esparza

18. Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arith-
metic. In: Proc. Conference & Exhibition on Design, Automation & Test in Europe
(DATE). pp. 1-6 (2014). https://doi.org/10.7873/DATE.2014.128

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.7873/DATE.2014.128
http://creativecommons.org/licenses/by/4.0/

Graphical Piecewise-Linear Algebra

Guillaume Boisseau!® = and Robin Piedeleu?

! University of Oxford, Oxford, UK guillaume.boisseau@cs.ox.ac.uk
2 University College London, London, UK r.piedeleu@ucl.ac.uk

Abstract. Graphical (Linear) Algebra is a family of diagrammatic lan-
guages allowing to reason about different kinds of subsets of vector spaces
compositionally. It has been used to model various application domains,
from signal-flow graphs to Petri nets and electrical circuits. In this paper,
we introduce to the family its most expressive member to date: Graphi-
cal Piecewise-Linear Algebra, a new language to specify piecewise-linear
subsets of vector spaces.

Like the previous members of the family, it comes with a complete ax-
iomatisation, which means it can be used to reason about the correspond-
ing semantic domain purely equationally, forgetting the set-theoretic
interpretation. We show completeness using a single axiom on top of
Graphical Polyhedral Algebra, and show that this extension is the small-
est that can capture a variety of relevant constructs.

Finally, we showcase its use by modelling the behaviour of stateless elec-
tronic circuits of ideal elements, a domain that had remained outside the
remit of previous diagrammatic languages.

Keywords: string diagrams - piecewise-linear - prop - axiomatisation

1 Introduction

Functional thinking underpins most scientific models. Nature, however, does
not distinguish inputs and outputs—physical systems are governed by laws that
merely express relations between their observable variables. While influential
scientists, like the famous control theorist J. Willems, have pointed out the
blind spots of functional thinking [11], it has remained the dominant paradigm
in science and engineering. Arguably, our mathematical practice, especially the
foundational emphasis on sets and functions, and the limitations of standard al-
gebraic syntax, are partially to blame for the persistence of this status quo. But
there are also alternative approaches, that take relations seriously as the primi-
tive building blocks of our mathematical models. Category theory in particular
is agnostic about what constitutes a morphism and can accommodate relations
as easily as functions.

Relations, with their usual composition and the cartesian product of sets,
form a monoidal category—a category in which morphisms can be composed
in two different ways. As a result, they admit a natural two-dimensional syn-
tax of string diagrams. This notation has several advantages when it comes to

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 101-119, 2022.
https://doi.org/10.1007/978-3-030-99253-8_6

®

Check for
updates

http://orcid.org/0000-0001-5244-893X
http://orcid.org/0000-0002-3945-2704
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_6&domain=pdf

102 G. Boisseau and R. Piedeleu

reasoning about open and interconnected systems [1]: string diagrams naturally
keep track of structural properties, such as interconnectivity; they factor out
irrelevant topological information that standard algebraic syntax needs to keep
explicit; variable-sharing—the relational form of composition for systems—is de-
picted simply by wiring different components together.

As a result, a wealth of recent developments in computer science and be-
yond have adopted relations and their diagrammatic notation as a unifying lan-
guage to reason about a broad range of systems, from electrical circuits to Petri
nets [2,6,5]. Many of these follow the same methodology. 1) Given a class of
systems, find a set of diagrammatic generators from which any system can be
specified, using the two available forms of composition. 2) Interpret each of them
as a relation between the observable variables of the system that they describe.
This defines a structure-preserving mapping—a monoidal functor—from the di-
agrammatic syntax to the semantics, from the two-dimensional representation
of a system to its behaviour. 3) Finally, identify a convenient set of equations
between diagrams, from which any semantic equality between the behaviour of
the corresponding systems may be derived.

Graphical linear algebra (GLA) is a paradigmatic example of this approach.
It provides a diagrammatic syntax to reason compositionally about different
types of linear dynamical systems (including for instance traditional signal flow
graphs) and prove their behavioural equivalence purely diagrammatically. The
syntax of GLA is generated by the following primitive components:

—&_ | o[o[|0 p-Jo—[{D- (xeK)

As relations, the black nodes force all of their ports to share the same value; the
white nodes constrain their left ports and the right ports to sum to the same value
(or to zero when there are no left /right ports); the final generator, parameterised
by an element of the chosen field K, behaves as an amplifier: its right value is
x times the left value. Following point 3) of the methodology sketched above,
GLA enjoys a sound and complete equational theory for the specified semantics,
called the theory of Interacting Hopf Algebras (IH). In summary, string diagrams
with n ports on the left and m ports on the right, quotiented by the axioms of
IH, are precisely linear relations, i.e., linear subspaces of K" x K™.

GLA was the starting point of different extensions, two of which play a
prominent role in this paper. First, Graphical Affine Algebra, which adds to
the syntax a generator — for the constant 1. This allows it to express affine
relations, i.e. affine subspaces of K™ x K™. A corresponding complete equational
theory was presented in [6]. Then, Graphical Polyhedral Algebra (GPA), which
assumes that K is an ordered field and adds a generator for this order. The
resulting graphical calculus can express all polyhedral relations, i.e., polyhedra®
in K® x K™, and also comes with its own complete axiomatisation.

In this paper, we define the most expressive member of the GLA family tree
to date: Graphical Piecewise-Linear Algebra (GPLA) is a hybrid of symbolic and

3 For the case of R, these include the usual polytopes, which are bounded subsets of
R™ x R™, as well as proper polyhedra, which may have unbounded faces.

Graphical Piecewise-Linear Algebra 103

diagrammatic syntax for piecewise-linear (pl) relations—finite unions of polyhe-
dra in K" x K™—and a corresponding complete equational theory. We argue
below that the proposed language strikes a convincing balance between struc-
ture and expressiveness. It is a simple extension of GPA [4], yet for K =R, it is
sufficiently powerful to approximate any submanifold of R™ arbitrarily closely.

Furthermore, this extension completes a research program initiated in parallel
with the birth of GLA [2,6,3]: its chief purpose was to give the informal graphical
notation for electrical circuits a formal, compositional interpretation, with a
corresponding equational theory.

Until now however, the category-theoretic setting could only accommodate
components with a linear (more precisely, affine) behaviour, such as resistors,
inductors, capacitors, voltage and current sources. GPLA finally makes it possi-
ble to reason equationally about electronic components, such as ideal diodes and
transistors. Even when the idealised physical behaviour of these components is
not necessarily piecewise-linear, GPLA is theoretically expressive enough to ap-
proximate it as closely as necessary. Indeed, piecewise-linear approximations of
transistor behaviour have been proposed to bypass the unavoidable abstraction
leaks of purely digital circuits [9]. In this context, GPLA can serve as a form of
abstract interpretation for electronic circuits, with adjustable precision to allow
for the intended semantics to be as physically realistic as desired. Of course,
in practice, working with large diagrams can be prohibitive. But this is a lim-
itation shared by all members of the Graphical Algebra family, and developing
convenient tools and techniques for diagrammatic reasoning is an active research
area. Our main thrust is that piecewise-linearity provides the appropriate level
of structure, where general relations are too flexible to come with a useful equa-
tional theory, and linear relations are too rigid to accommodate diodes and other
electronic components.

Finally, a remark about syntax. While it is possible to make the language
purely diagrammatic, we found that what one gains in purity one loses in com-
plexity. Ultimately, the hybrid syntax of union and diagrams is more convenient
to manipulate and intuitive to read. In fact, this is not the first time that sums of
diagrams appear in the literature [8]. Nevertheless, one of our central technical
contributions is the rigorous definition of a syntax blending diagrams and binary
joins, and the corresponding notion of equational theory.

Outline. In Section 2 we recall the necessary mathematical background, the fun-
damentals of diagrammatic syntax, and the language of Graphical Polyhedral
Algebra (GPA). In Section 3, we extend the diagrammatic syntax with unions
and define the notion of symmetric monoidal semi-lattice theory. From there,
in Section 4, we extend GPA with unions, to capture piecewise-linear relations,
and give this new language a theory that we prove is complete (Theorem 2).
This is our main technical contribution. In Section 5, we explore alternative
languages for piecewise-linear relations, and show that they are all equally ex-
pressive. Finally, in Section 6, we extend the compositional re-interpretation of
electrical circuits from [3] to include electronic components, namely diodes and
transistors.

104 G. Boisseau and R. Piedeleu
2 Preliminaries

Informally, our starting point is a simple diagrammatic language of circuits built
from the following generators:

We will explain how these basic components can be wired together and give
them a formal interpretation.

2.1 Props and Symmetric Monoidal Theories

The mathematical backbone of our approach is the notion of product and per-
mutations category (prop), a structure which generalises standard algebraic the-
ories [7]. Formally, a prop is a strict symmetric monoidal category (SMC) whose
objects are the natural numbers and where the monoidal product @& on ob-
jects is given by addition. Equivalently, it is a strict SMC whose objects are
all monoidal products of a single generating object. Prop morphisms are strict
symmetric monoidal functors that act as the identity on objects.

Following an established methodology, we will define two props: Syn and
Sem, for the syntax and semantics respectively. To guarantee a compositional
interpretation, we require [-] : Syn — Sem, the mapping of terms to their
intended semantics, to be a prop morphism.

Typically, the syntactic prop Syn is freely generated from a monoidal signa-
ture X, i.e. a set of arrows g : m — n. In this case, we use the notation PX and
Syn interchangeably. Morphisms of PX are terms of an (N, N)-sorted syntax,
whose constants are elements of X' and whose operations are the usual compo-
sition (—); (=) : Syn(n,m) x Syn(m,l) — Syn(n,!) and the monoidal product
(=) ® (=) : Syn(ni,m1) x Syn(nz, mz) = Syn(ny + nz,m1 + mz), quotiented
by the laws of SMCs. But this quotient is cumbersome and unintuitive to work
with.

This is why we will prefer a different representation. With their two forms
of composition, monoidal categories admit a natural two-dimensional graphical
notation of string diagrams. The idea is that an arrow ¢ : n — m of PX is better
represented as a box with n ordered wires on the left and m on the left. We
can compose these diagrams in two different ways: horizontally, by connecting
the right wires of one diagram to the left wires of another, and vertically by
juxtaposing two diagrams:

ni d mi
c;d= "H{cyqdH- di ©dy =

where the labelled wire —" is syntactic sugar for a stack of n wires. The identity
idy : 1 — 1is denoted as a plain wire —, the unit for @, idy : 0 — 0, as the empty
diagram |, and when the category is symmetric, the symmetry o1 : 2 = 2 is

Graphical Piecewise-Linear Algebra 105

denoted as a wire crossing X_. With this representation the laws of SMCs become
diagrammatic tautologies.

Once we have defined [-] : Syn — Sem, it is natural to look for equations
to reason about semantic equality directly on the diagrams themselves. Given
a set of equations F, i.e., a set containing pairs of arrows of the same type, we
write = for the smallest congruence wrt the two composition operations ; and
@®. We say that = is sound if ¢ = d implies [¢] = [d]. It is moreover complete
when the converse implication holds. We call a pair (X, E) a symmetric monoidal
theory (SMT) and we can form the prop PX,p obtained by quotienting PX' by

Z. There is then a prop morphism ¢ : PX — PY, g witnessing this quotient.
We may also wonder what the expressive power of our diagrammatic language
is. In terms of props we look to characterise precisely the image Im([-]) of the
syntax via [-].
The situation for a sound and complete SMT is summarised in the commu-
tative diagram below right.

Soundness simply means that [-] fac- PX/p —————— Im([-])
tors as s o ¢ through PY,p and com- qT s \[l
pleteness means that s is a faithful prop

morphism. Syn=PY ————— Sem

[-]
Typically, our semantic prop Sem will be (a subcategory of) the category of
sets and relations.

Definition 1. Let K be a field. Relk is the prop

— whose arrows n — m are relations R C K™ x K™,

— with composition given by R; S = {(z,2) | Jy. (z,y) € RA (y,2) € S}, for
R:n—m,S: m—1, and identity n — n the diagonal {(x,x) | x € K"},

— monoidal product given by

Ri® Ry = {((2) : (z;)) | (x1,41) € R A (w2,92) € Rg}

for Ry : ny — mq and Ry @ ng — mao,

— symmetry n+m — m+n, the relation { (<Z) , <y>) | (z,y) € K™ x Km} .

T

2.2 Ordered Props and Symmetric Monoidal Inequality Theories

Our semantic prop—Relg—carries additional structure that we wish to lift to
the syntax: as subsets of K™ x K™, relations n — m can be ordered by inclusion.
The corresponding structure is that of an ordered prop, a prop enriched over
the category of posets, whose composition and monoidal product are monotone
maps.

If props can be presented by SMTs, ordered props can be presented by sym-
metric monoidal inequality theories (SMIT). Formally, the data of a SMIT is

106 G. Boisseau and R. Piedeleu

the same as that of a SMT: a signature X and a set I of pairs ¢,d : n — m of
PX-arrows of the same type, that we now read as inequalities ¢ < d.

As for plain props, we can construct an ordered prop from a SMIT by building
the free prop PX' and passing to a quotient PY;. First, we build a preorder
on each homset by closing I under @& and taking the reflexive and transitive
closure of the resulting relation. Then, we obtain the free ordered prop PX,; by
quotienting the resulting preorder by imposing anti-symmetry.

SMITs subsume SMTs, since every SMT can be presented as a SMIT, by
splitting each equation into two inequalities. We will refer to both simply as
theories and their defining inequalities as azioms. When referring to a sound
and complete theory, we will also use the term aziomatisation, as is standard in
the literature.

2.3 Graphical Polyhedral Algebra

We now assume that K is an ordered field, that is, a field equipped with a
total order > compatible with the field operations in the following sense: for all
z,y,z €K, i)if x > ythen x+2 > y+2, and #) if x > 0 and y > 0 then zy > 0.

Following [4], from the generators in (1), we define a prop, give it a seman-
tics in Relg, characterise the image of the semantic functor, and describe an
axiomatisation for the specified semantics.

— For 2; = {{,4,},%,{,%,},%,}—,,(7‘ € K)}

define [-] : PZ‘; — Relg to be the prop morphism given by

[—] ¢:{<1‘, <z>> IxGK} [—e]:={(z,0) |z € K}

[1 :{<<i>,x> |x€K} [e—] :={(e,2) | 2 € K}

[—C] :={<x+y, (y)) |x,yeﬂ<} [—o] :={(0,0)}
{((z)x+y> meK} [o—] = {(e,0)}

k

Yy

x,k-x) |z €K} for ke K

z,y) EKx K|z >y} [—] :={(e,1)}

— The image of PZ’;r by [-] is the prop whose arrows n — m are finitely
generated polyhedra of K® x K™, i.e., subsets of the form

{(x,y)eK”me|A<Z)+bzo}

for some matrix A and some vector b (see [4] for more details, in particular
the appendix for the proof that these form a prop).

Graphical Piecewise-Linear Algebra 107

— IHE provides an axiomatisation of polyhedral relations [4, Corollary 25]; it
can be found in the first four blocks of Fig. 1.

Ezample 1 (Duality). Two diagrams play a special role in this paper: the half
turns e« and e, called cup and cap, respectively. Using these and >, we
can build cups and caps for any number n of wires: 03: and)n‘

They allow us to associate a dual d°? : n — m to any diagram d : m — n
by turning its left ports into right ports and vice-versa:

R Ty} od ®

Correspondingly, [d°?] is the opposite relation, i.e. [dP] = {(y,z) | (z,y) € [d]}.
We will use of a suggestive mirror notation to denote the dual of a given gener-

ator: = ()", —:=(—)" and = ()Op.

3 Symmetric Monoidal Semi-Lattice Theories

There are several routes to describe piecewise-linear subsets of K”. In this paper
we choose to equip our syntax with a primitive operation of join, in order to
describe piecewise-linear sets as (finite) unions of polyhedra. In the same way
that we moved from simple props to ordered props in Section 2.2, we now move
to the setting of semi-lattice-enriched props.

A U-prop is a prop enriched over the monoidal category of semi-lattices —
partially-ordered sets with least upper bounds for any finite subset — and join-
preserving maps, with the Cartesian product as monoidal product. In other
words a U-prop is a prop whose homsets are semi-lattices, with composition and
monoidal product themselves join-preserving. The paradigmatic example is Relg
which is a U-prop with the union of relations as join.

As we would like to incorporate binary joins into our syntax, we need a new
description of the free U-prop PyX over a given signature Y.

— The arrows n — m of PyX are finite sets of arrows n — m of PX. We
use capital letters C, D ... to range over them. We will also abuse notation
slightly, using ¢, d . .. to refer to singletons {c}, {d} ... and writing d;U- - -Udy,
for the set {di,...,dg}. The set can be empty, yielding the bottom of the
semi-lattice.

— The composition of C': n — m and D : m — [is given by C; D = {c; d |
c € C,d € D} where c; d denotes composition in Py. The identity over n is
the singleton {id,, }.

— The monoidal product of Dy : n;y — my and Ds : ny — mo is given by
Dy ® Dy = {di®ds | di € D1,d2 € Dy} where dy & da is the monoidal
product in Py2X.

— For the enrichment, each homset Py X(n,m) is a semi-lattice with union
as join. By definition, composition and monoidal product distribute over
union and define join-preserving maps (—); (=) : PuX(n,m) x PuX(m,1l) —
PUE(’IZ, l) and (—)EB(—) : PUE(nl, ml) X PUE(TLQ, mg) — PUE(nl—an, mi+
mg)

108 G. Boisseau and R. Piedeleu

We now define a corresponding notion of theory for U-props. A symmetric
monoidal (semi-)lattice theory (SMLT) is the data of a signature X and a set E of
equations: formally the latter is a set of pairs (C, D) of arrows C, D : n — m from
PuX. We will write the elements of E as equations of the form (J, . ¢ = Uyep d-
We now explain how to define a U-prop PyX, 5 from the data of an SMLT (X, E).

As for SMTs, we can build the smallest congruence = wrt to ; and &, which
equates the pairs in E. Then define PyX, g to be the quotient of Py by =
That this is a well-defined U-prop follows again from the distributivity of the
composition and monoidal product over unions.

Note that the semi-lattice structure allows us to define an order over the
homsets of any U-prop, making it into an ordered prop: we write C' C D as a

shorthand for C'U D = D. We will also use C' C D for CUD £ D in Py3)p.
(We prefer this notation to avoid the confusion with the order > on K itself.)

Remark 1 (Reasoning in U-props). The reader familiar with string diagrams and
equational reasoning might be surprised by certain features of derivations that
combine diagrammatic and traditional syntax (joins, in this case). We would
like to clarify one particular point. When we want to use an equality of the
form d = dy U dy inside a term of the form ¢; U ¢y U ¢, we need to identify a
linear context C[—] (i.e. the hole occurs exactly once in C') common to ¢; and co
such that ¢; = C[d;] and ¢ = C[dz]. Then we are allowed to use the fact that
C[d] = Cld1] U Clda] to conclude that ¢; Uy Uc = C[d]Uec. An example of this
form of reasoning can be found in the proof of Lemma 2, which we reproduce

here: we apply the equality e— =" U in

:] : _ D
Do G B (o u-GEo)

Note that, to clarify the common context to the reader, we will often use the
intermediate notation C[d; U ds], as we did in the first step above.

4 The Theory of Piecewise-Linear Relations

4.1 Syntax and Semantics

For piecewise-linear relations we retain the same signature X3 and consider
Pu(XY), the free U-prop over it. As we saw, its morphisms are nonempty finite
sets of diagrams of PXT. This is our syntax.

On the semantic side, we now need to extend the functor [-] to have PXJ
as domain, retaining Relx as codomain. Concretely, since we already know how
to assign a relation to each diagram of PE;7 we only need to specify how to
interpret finite sets of such diagrams: unsurprisingly, we set

[{d1,....dn}]:=[di]U---U[dn]

Graphical Piecewise-Linear Algebra 109

This is join-preserving by construction, and remains monoidal and functorial.

By definition, we call piecewise-linear (pl) any relation in the image of this
functor, i.e., any relation that is a finite union of polyhedral relations. As far
as we know, this is the first time that this notion appears in print. However, it
does capture our intuitive notion of piecewise-linearity as submanifolds of K"
that can be subdivided into linear subspaces.

4.2 Equational Theory

IHpr,, the SMLT of pl relations, is presented in Fig. 1. The first block is the theory
of matrices/linear maps; the second block, IH, axiomatises all linear relations; the
third block axiomatises the behaviour of the order —{>)—; the fourth, deals with
the affine fragment of the theory, axiomatising the behaviour of the constant —.
Taken together, those four blocks constitute IHZ, an axiomatisation of polyhedral
relations—we refer the reader to [4] for more details on this fragment.

The key addition of IHpy, is the last block, containing the axiom of totality,
which states that any real number belongs to the non-negative or to the non-
positive fragment of K. Remarkably, this simple axiom is the only one we need to
add to IHJ>r to obtain a complete theory for pl relations. Its soundness is simply
a consequence of the definition of an ordered field: the order is assumed to be
total in the sense that, for any z,y € K we have x <y or y < x. Take y = 0 to
recover the last axiom of IHpy,.

Remark 2. As a consequence of the Frobenius laws (e-fr) and of (co)unitality
(e-un)-(e-coun), the diagrams &nd: and jo satisfy

n n

el o

for any n, the defining equations of a compact closed category. Intuitively, these
allow us to forget the direction of wires. In addition, compactness implies the
following proposition.

Hpr Hpr
Proposition 1. C C D iff C°? C D°P.

Another important property of compact closed category which we will exploit
to simplify the completeness proof is stated in the following proposition. It is an
immediate consequence of (3).

.. . Hpr . m Hpy T
Proposition 2. Given C,D: m —n, C C D iff , c .,

4.3 Completeness Theorem

As we stated above, the axioms in Fig. 1 form a complete theory for pl rela-
tions. We will prove that claim in this section. Without loss of generality, using
Proposition 2, we restrict to n — 0 diagrams.

We start by defining appropriate normal forms for polyhedral and pl relations,
and then show that every diagram can be reduced to normal form.

110 @G. Boisseau and R. Piedeleu

(e-coas) (e-coco) counl)
= = {
i)t (.-:as) 9}7 : 3 .- co) } 3}7(. unl)

>

}_C(oo_bi):%: (o-gun)oi (-o—gun)g. O—.(O.;)O) .

- L .o

(o-fr1) (o-fr2) (e5p) (e-bo) :

Y
)

ii(-fl) <-f2>j <) (0-bo) ¢
o:r }_(o:r oep ozuw.

—q(o—fas) :-Q (o- coco){ 4@ counl)

(r-inv) (r-coinv)
D= =D (r#£0)

(=dup) (<add) (<del) (szero)
BC T D IR

O LD >0 O L-ED- (<0

B

(direct)

1-dup) —— 1-del) i3 24 0<1) :
(:p> (il) —O (:) —O o (=)
« i L P— — o &— H

— o 0o—

=Y o Z-u

Fig. 1. Axioms of GPLA.

Graphical Piecewise-Linear Algebra 111

Definition 2. We call hyperplane a nonzero affine map H : n — 1 which we
write {H)-. A given hyperplane H defines two half-spaces and {B)(<}o,
as well as an affine subspace {H)o. Since inequality is not strict, the half-spaces
include the affine subspace.

In [4, Theorem 14], polyhedral relations have a normal form given by a set of
inequations of the form A;z+b; > 0. In other words, the normal form is given by
an intersection of half-spaces. For our purposes we define a related but slightly
different normal form.

Definition 3. A PX-diagram d : n — 0 is in polyhedral normal form if there

are hyperplanes H; and diagrams € {4),, } such that:

Where the d; are minimal in the following sense: fizing the set of hyperplanes
H;, we consider all choices of d; that give d when composed as above. We then
require the d; in the normal form to be minimal (wrt the order of IH;) among
those. We call the set of the d; a valuation for d relative to the hyperplanes H;.

Definition 4. We say that a morphism D of PyXY is in pl normal form if it is
written as a non-empty union of diagrams d; each in the language of PXY (i.e.
without unions), the d; are in the normal form defined in Definition 3, and all
the normal forms use the same set of hyperplanes.

Lemma 1. Fveryd: n — 0 in PZ‘;r has a polyhedral normal form.

Proof. The normal form from [4, Theorem 14] already has the right shape. We
only need to find a minimal valuation. Observe that the intersection of two
valuations for d is again a valuation for d: let v and v’ be two valuations

)
for d relative to the hyperplanes H;. If we write = —<: then
>

it

Therefore v N v’ is again a valuation for d. Since there are finitely many
valuations, we construct the minimal one by intersecting them all. 0O

Lemma 2. If a morphism D of PUZ; s in pl normal form and H is a hyper-

plane, there exists C in pl normal form such that D "EL G and Hyperplanes(C) =
Hyperplanes(D) U {H}.

Proof. We write the normal form of D as D = |, d;. Define C' to be the following

morphism:
® L@
K3

—0-U~ G55 ek

112 G. Boisseau and R. Piedeleu

We transform C into C’ by reducing all the terms in the union to polyhe-
dral normal form. This makes C’ be in pl normal form. Since we add the same
hyperplane H to all d;, Hyperplanes(C’) = Hyperplanes(D) U {H }.

Moreover:

U@ O
“©9=-0 (u) e 2

Theorem 1. Fvery morphism of PUZ';r has a pl normal form.

Proof. Let D be a n — 0 morphism of P, XY, First using distributivity of the
union over sequential and parallel composition, we move all the uses of the union
to the top-level.

Thus D is written |J; d; where each d; doesn’t use the union, i.e. is in the
language of PE; We then rewrite each d; into polyhedral normal form using
Lemma, 1. B

Each d; is thus also individually in pl normal form, so we can use Lemma 2 to
add to each d; all the hyperplanes of the other d;. For each i we get a new diagram

d; rer d; in pl normal form, and all the d} use the same set of hyperplanes. So
U, d} is a pl normal form for D. O

Before we can prove completeness, we need a final notion: the interior of a
polyhedral relation, which is the set of its points that don’t touch any of its
faces.

Definition 5. Let d be morphism in polyhedral normal form. We define Int(d)
to be the set of points x € [d] for which H;(z) # 0 when # —o. In other
words, H;(x) is nonzero for all hyperplanes where it can be nonzero without x
leaving [d].

Note that we define Int only on polyhedral normal form diagrams. Int appears
to be representation-independent at least when K = R, but we won’t try to prove
it in the general case as we don’t need this here.

Remark 3. This is not the usual topological notion of interior. In particular, this
notion is independent from the dimension of the surrounding space: a polyhedron
of dimension 0 < k < n within R™ has an empty topological interior but a
nonempty Int, as we’ll see in the next theorem. Int(d) instead coincides with the
interior of d with the topology of the smallest containing affine space.

Lemma 3. Let d be a diagram in polyhedral normal form. If [d] is nonempty,
then Int(d) is nonempty.

Proof. First, write d in polyhedral normal form:

Graphical Piecewise-Linear Algebra 113

Up to negating some of the H;, we can assume that none of the are {(<}o.
If Vi.—(d;) = —o, then by definition Int(d) = [d] which is nonempty so we’re
done. Assume then that = for at least some i. For each such i, by
minimality of the d; in the normal form there must be a z; € [d] such that
H;(xz;) > 0. We pick such an z; for each 4, and define z := %ZZ x; to be their
average. By convexity, € [d]. H; is an affine map, hence is concave, thus if
we had picked an z; then H;(z) > %Zj Hi(z;) > %Hi(a:i) > 0. Then for each i
either = —oor H;(z) > 0, hence z € Int(d).]

Theorem 2 (Completeness). [D]C[C] = D <

Proof. Using Proposition 2 we can without loss of generality assume that D and
C have n inputs and 0 outputs. Using Theorem 1, we reduce D and C into pl
normal form. Using Lemma 2, we add each others’ hyperplanes to D and C so
that they both use the exact same set. So D = J, d; and C = |, ¢;, where the d;
and ¢; are in polyhedral normal form and use a same set of hyperplanes {H;};.
Pick one of the d; in D.

If d; is the empty polyhedron, we have [d;] =0 C [¢o], so by completeness

HE
> Hpr Hpp

ofIH‘Z|r we get di C ¢g. Thusd; C ¢ C C.
Otherwise d; is nonempty, and using Lemma 3 we pick « € Int(d;). Then:

zent(d;) Cld;] C[D]C[C]= ch :U[[cj]]

Thus there is a j such that « € [¢;]. Now pick a k. If = —o, then

IEL regardless of @ If = {>)o, then by definition of

Int(d;), we have Hy(z) > 0. Since moreover z € [¢;], must be {>)o. If

= «<}o, similarly must be «(<}o. In all three cases, "EL ~

This is the case for every k, so:

Hpr

IH I
Finally, since we have d; iL C for all i, we derive D = UZ d; € C. O

5 Generating Piecewise-Linear Relations

Piecewise-linear subsets of vector spaces give us a rather wide semantic space to
explore. One might suspect that there exist useful structured relations that live
strictly between the linear and piecewise-linear worlds.

114 G. Boisseau and R. Piedeleu

Formally, we're interested in finding sub-props of Relkx that contain not only
linear or polyhedral relations, but some selected non-convex relations that would
be useful for particular applications. It turns out that for many sensible choices,
the resulting image will coincide with pl relations—a somewhat surprising fact.
Note that we are interested in generating sub-props of Relg here, not U-props,
since the U-prop generated by the image of PyXY under [-] already contains
all pl relations. B

We will go through a few natural choices, each time defining them as a term
of P,XZ, a shortcut which makes reasoning about them much easier than with
their set-theoretic semantics. Of course, their semantics in Relx can be recovered
via [-].

5.1 The n-Fold Union Generators

We first show that the main difference between polyhedral and pl relations —the
unions—can be bridged. Indeed, it is not obvious that we can build arbitrary
unions of diagrams without having access to the syntax of a SMLT. For this we
introduce a family of diagrams we call the n-fold union generators, defined for a

given n as:
n n
-—
n L V n
2@, = nU
n

These generators suffice to reproduce the behaviour of the syntactic union:

Theorem 3. The image of the free prop generated by 3 and the n-fold union
generators for all n is the prop of pl relations. -

Proof. If —() and —(D) are non-empty n — 0 diagrams,

© 9 ;»_ —©
n n
a2 - y --©u-®
® " O D
Since every pl relation can be written as a finite union of diagrams in PXJ,

and we can easily avoid diagrams denoting the empty relation, this generates all
of pl relations. O

This means that we didn’t formally need to introduce the notion of a SMLT
after all: we could have defined an equivalent SMIT by adding these generators.
However, this is for most purposes a much less convenient syntax, and the cor-
responding equational theory would be more difficult to calculate with. This is
also the case for the examples that follow.

5.2 The Simplest Non-Convex Diagram

The following is one of the simplest diagrams that captures a non-convex relation:

' = —o0e—U—e0o—

Graphical Piecewise-Linear Algebra 115

It is named after its semantics: the union of the x and y axes in the plane,
corresponding to the simple equation x = 0V y = 0. Despite its simplicity, it
suffices to generate all of pl relations.

Theorem 4. The image of the free prop generated by X3 and is the
prop of pl relations. -

Proof. Define dup : 1 — 2: —{dup =

This diagram has the interesting property of duplicating black and white units:

o@D = I N
o . +1
We can chain it to build = for any n.

Then, let “{+}* := “~(dup”” i am)y = 20 e U e o
This allows us to build:

n n n

Q

n n
n_— o
JUNZ—@Q

5.3 The Semantics of a Diode

Most basic electrical circuit components can be modelled U

with an affine semantics. The first exception is the (ideal)

diode: the idealised current-voltage semantics across a

diode is that the current can be negative and the voltage I
difference positive but not both at the same time.

On a graph, the allowed (current, voltage difference) pairs are depicted above.
Not only is this not affine, it is not even convex. The corresponding diagram,
o— U—o o<}, is outside of both affine and polyhedral algebra.

We will see how to model electrical circuits with diodes in more detail in the
next section. We will focus here on the following fact: adding a generator with
this semantics is once again enough to recover all pl relations. In fact we can
even build the > relation from the diode, so we can start from affine algebra
(without requiring the generality of polyhedral algebra).

For convenience, we define a new generator whose semantics is the mirror
image of the diode’s graph:

O = Poo-u—oo@

116 G. Boisseau and R. Piedeleu

Theorem 5. Recall that X is Z‘; without —-{>)—. The image of the free prop
generated by X and L is the prop of pl relations.

Proof. First, we can construct the > generator from L:

R I S LTI Giic A RIS

So we generate all polyhedral relations. Then we can also recover the + gen-
erator from the previous section, which is enough to generate all of pl relations:

ISR g SIS G =
A S

={>o0o0—U—o0o{>-U—0o(U—0 e—
=-{>o0o0—U—0 F::

o0
G
= —e O—U O—U o—U—0 e—
—eo0—U—0 H:

5.4 Alternative generators: max, ReLu and abs

Three of the most basic piecewise-linear functions one might come across are
abs, max and ReLu. We define them diagrammatically as follows:

_ ! _
max = abs =

S

While the reader will certainly be familiar with the first two, ReLu has ac-
quired significant fame as one of the basic building blocks of neural networks. In
fact, all neural networks whose activation function is ReLu can be represented in
GPLA. This opens up the exciting possibility of applying equational reasoning
to neural networks, a possibility that we leave for future work.

Once again, adding either of them to the syntax for affine algebra suffices to
construct any pl relation.

Graphical Piecewise-Linear Algebra 117

Theorem 6. The image of the free prop generated by X and any of max, abs
or ReLu is the prop of pl relations.

Proof. First, we notice that the three functions are inter-definable. abs and ReLu
were already defined in terms of max, and we can complete the cycle:

max(z,y) = + max(0,y —) =z + ReLu(y — x)

ReLu(z) = max(0,z) = (x + abs(x))/2
So we only need to show the result for one of them. Let’s pick maxz. We recover

L, which we know suffices by Theorem 5. First = u a :.

Thus

Remark 4. It is standard that maz together with linear maps generates all con-
tinuous pl functions. Our result can be seen as a generalization of this fact to
the relational setting.

5.5 Conclusion

These examples justify the generality of pl relations: they constitute the min-
imal extension of polyhedral algebra (and in some cases affine algebra) that
can express any of the very useful relations above. This is interesting because
pl relations form a nearly universal domain: they can approximate any smooth
manifold over a bounded domain.

Despite our compelling examples, there could still be interesting props be-
tween polyhedral and pl relations. In particular, determining the prop generated
by X3 together with o— U+— is currently an open problem.

6 Case Study: Electronic Circuits

To illustrate how one would use this theory in a concrete case, we turn to the
study of electronic circuits. We build on the work done in [3]. The syntax mimics
the usual circuits drawn by electrical engineers, by generating a free two-colored
prop from basic elements and wires. The blue wires are electrical wires, and the
black wires carry information; for details see [3].

I P B B S < S By)

The corresponding physical model imposes constraints between two quanti-
ties: current and voltage. To express this, we map an electrical wire into two
GPLA wires, the top one for voltage and the bottom one for current. We then
give to each generator a semantics in GPLA that expresses the relevant physical
equations. For example:

118 @G. Boisseau and R. Piedeleu

[4]- "= [[2]-2

The core of this approach is the fact that composition of constraints in GPLA
gives the behaviour of the corresponding composite electrical circuit. We can thus
define the semantics of a whole circuit compositionally, and get the physically
expected result.

So far this follows exactly [3]. Our contribution is the ability to express the
behaviour of diodes:

1= v (Go

{(Hw>} 505

Remark 5. We cannot include capacitors and inductors, because they require se-
mantics in IH,, and R(z) cannot be ordered in a way that would be consistent
with the physics. Finding diagrammatic semantics that can accommodate both
capacitors and diodes is an important open problem.

This extension allows us to model electronic circuits! As hinted in the previous
section, diodes by themselves can be used to build many things. For example,
we can model a simple idealized transistor as follows: [10, Fig. 59.1]

}:: Q@F

That said, it is impractical to prove the equality of two non-trivial electronic
circuits explicitly as the number of alternatives grows exponentially in the num-
ber of diodes. Like in standard mathematical practice, making this practical will
require finding appropriate techniques and approximations, which we leave for
future work.

Acknowledgements. The authors would like to thank the various Twitter and
Zulip users who contributed to the genesis and development of the theory con-
tained in this paper, notably Jules Hedges, Cole Comfort and Reid Barton. Reid
Barton in particular contributed significantly to the proof of completeness.

The first author is funded by the EPSRC under grant OUCS,/GB/1034913.
The second author acknowledges support from EPSRC grant EP/V002376/1.

References

1. Baez, J.C., Coya, B., Rebro, F.: Props in network theory. Theory and Applications
of Categories 33(25), 727-783 (2018)

10.

11.

Graphical Piecewise-Linear Algebra 119

Baez, J.C., Fong, B.: A compositional framework for passive linear networks. The-
ory and Applications of Categories 33(38), 1158-1222 (2018)

Boisseau, G., Sobocinski, P.: String Diagrammatic Electrical Circuit Theory.
arXiv:2106.07763 [cs] (2021), http://arxiv.org/abs/2106.07763

Bonchi, F., Di Giorgio, A., Sobocinski, P.: Diagrammatic Polyhedral Algebra.
arXiv:2105.10946 [cs, math] (2021), http://arxiv.org/abs/2105.10946

Bonchi, F., Holland, J., Piedeleu, R., Sobocinski, P., Zanasi, F.: Diagrammatic
algebra: from linear to concurrent systems. In: Proceedings of the 46th Annual
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL)
(2019)

Bonchi, F., Piedeleu, R., Sobocinski, P., Zanasi, F.. Graphical Affine
Algebra. In: 34th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). pp. 1-12. IEEE, Vancouver, BC, Canada (2019).
https://doi.org/10.1109/LICS.2019.8785877

Bonchi, F., Sobocinski, P., Zanasi, F.: Deconstructing lawvere with distributive
laws. Journal of logical and algebraic methods in programming 95, 128-146 (2018)
Cvitanovic, P., Cvitanovi¢, P.: Group theory. Princeton University Press (2008)
Stephan, P.R., Brayton, R.K.: Physically realizable gate models. In: Proceedings of
1993 IEEE International Conference on Computer Design ICCD’93. pp. 442-445.
IEEE (1993)

Theraja, B., Theraja, A.: A textbook of electrical technology : in S.I. system of
units. Publication division of Nirja Construction and Development Co., New Delhi
(1994)

Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE
Control Systems Magazine 27(6), 46-99 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2106.07763
http://arxiv.org/abs/2105.10946
https://doi.org/10.1109/LICS.2019.8785877
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

l‘)

Check for
updates

Token Games and History-Deterministic
Quantitative Automata

Udi Boker!® and Karoliina Lehtinen™=?

! Reichman University, Herzliya, Israel udiboker@idc.ac.il
2 CNRS, Marseille-Aix Université, Université de Toulon, LIS, Marseille, France
lehtinen@lis-lab.fr

Abstract. A nondeterministic automaton is history-deterministic if its
nondeterminism can be resolved by only considering the prefix of the
word read so far. Due to their good compositional properties, history-
deterministic automata are useful in solving games and synthesis prob-
lems. Deciding whether a given nondeterministic automaton is history-
deterministic (the HDness problem) is generally a difficult task, which
might involve an exponential procedure, or even be undecidable, for ex-
ample for pushdown automata. Token games provide a PTIME solution
to the HDness problem of Biichi and coBiichi automata, and it is conjec-
tured that 2-token games characterise HDness for all w-regular automata.
We extend token games to the quantitative setting and analyze their po-
tential to help deciding HDness for quantitative automata. In particular,
we show that 1-token games characterise HDness for all quantitative (and
Boolean) automata on finite words, as well as discounted-sum (DSum)
automata on infinite words, and that 2-token games characterise HD-
ness of LimInf and LimSup automata. Using these characterisations, we
provide solutions to the HDness problem of Inf and Sup automata on
finite words in PTIME, for DSum automata on finite and infinite words
in NPNco-NP, for LimSup automata in quasipolynomial time, and for
LimInf automata in exponential time, where the latter two are only poly-
nomial for automata with a logarithmic number of weights.

Keywords: Automata, History-determinism, Token games, Synthesis

1 Introduction

History-determinism. A nondeterministic [quantitative] automaton is history-
deterministic (HD) [11,8] if its nondeterministic choices can be resolved by only
considering the word read so far, uniformly across possible suffixes (see Fig. 2
for examples of HD and non-HD automata). More precisely, there should be a
function (strategy), sometimes called a resolver, that maps the finite prefixes of
a word to the transition to be taken at the last letter. The run built in this way
must, in the Boolean setting, be accepting whenever the word is in the language
of the automaton, and in the more general, quantitative, setting, attain the value
of the automaton on the word (i.e., the supremum of all its runs’ values).

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 120-139, 2022.
https://doi.org/10.1007/978-3-030-99253-8_7

http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0003-1171-8790
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_7&domain=pdf

Quantitative Automata Token Games 121

History-determinism lies in between determinism and nondeterminism, enjoy-
ing in some aspects the best of both worlds: HD automata are, like deterministic
ones, useful for solving games and reactive synthesis [16,11,17,18,12,15,8], yet
can sometimes be more expressive and/or succinct. For example, HD coBiichi
and LimInf automata can be exponentially more succinct than deterministic ones
[19], and HD pushdown automata are both more expressive and at least exponen-
tially more succinct than deterministic ones [20,15]. In the (w-)regular setting,
history-determinism coincides with good-for-gameness [7], while in the quantita-
tive setting it is stronger [8]. The problem of deciding whether a nondeterministic
automaton is HD is interreducible with deciding the best-value synthesis problem
of a deterministic automaton [14,8]. In this quantitative version of the reactive
synthesis problem, the system must guarantee a behaviour that matches the
value of any global behaviour compatible with the environment’s actions. The
witness of HDness corresponds exactly to the solution system of this synthesis
problem, providing another motivation for this line of research.

Deciding history-determinism — a difficult task. History-determinism is formally
defined by a letter game played on the automaton A between Adam and Eve,
where Adam produces an input word w, letter by letter, and Eve tries to resolve
the nondeterminism in A so that the resulting run attains A’s value on w. Then
A is HD if Eve has a winning strategy in the letter game on it. The difficulty of
deciding who wins the letter game stems from its complicated winning condition
— Eve wins if her run has the value of the supremum over all runs of A on w.

The naive solution is to determinise A into an automaton D, and consider
a game equivalent to the letter game that has a simple winning condition and
whose arena is the product of A4 and D [16]. The downside with this approach,
however, is that it requires the determinisation of A, which often involves a
procedure exponential in the size of A and sometimes is even impossible due to
an expressiveness gap. Note that deciding whether an automaton is good-for-
games, which is closely related to whether it is HD [7,8], is also difficult, as it
requires reasoning about composition with all possible games.

Token games — a possible aid. In [3], Bagnol and Kuperberg introduced token
games on w-regular automata, which are closely related to the letter game, but
easier to decide. In a k-token game on an automaton A, denoted by G (A), like
in the letter game, Adam generates a word w letter by letter, and Eve builds
a run on w by resolving the nondeterminism. In addition, Adam also has to
resolve the nondeterminism of A to build & runs letter-by-letter over w. The
winning condition for Eve in these games is that either all runs built by Adam
are rejecting, or Eve’s run is accepting. Such games, as they compare concrete
runs, are easier to solve than the letter game.

Then, to decide HDness for a class of automata, one can attempt to show that
the letter game always has the same winner as a k-token game, for some k, and
solve the k-token game. (If Eve wins the letter game then she wins the k-token
game, for every k, by using the same strategy, ignoring Adam’s runs. However,

122 U. Boker and K. Lehtinen

it might be that she wins a k-token game, taking advantage of her knowledge of
how Adam resolves the nondeterminism, but loses the letter game.)

Bagnol and Kuperberg showed in [3] that on Biichi automata, the letter game
and the 2-token game always have the same winner, and in [6], Boker, Kuperberg,
Lehtinen and Skrzypczak extended this result to coBiichi automata. In both
cases, this allows for a PTIME procedure for deciding HDness. Furthermore,
Bagnol and Kuperberg suggested in [3, Conclusion] that 2-token games might
characterise HDness also for parity automata (and therefore for all w-regular
automata); a conjecture (termed later the G2 conjecture) that is still open.

Our contribution. We extend token games to the quantitative setting, and use
them to decide HDness of some quantitative automata. We define a k-token game
on a quantitative automaton exactly as on a Boolean one, except that Eve wins
if her run has a value at least as high as all of Adam’s runs.

We show first, in Section 4, that the 1-token game, in which Adam just
has one run to build, characterises history-determinism for all quantitative (and
Boolean) automata on finite words, and for discounted-sum (DSum) automata
on infinite words. This results in a PTIME decision procedure for checking HD-
ness of Inf and Sup automata on finite words, and an NPNCONP procedure for
DSum automata on finite and infinite words. Note that the complexity for DSum
automata on finite words was already known [14], but on infinite words it was
erroneously believed to be NP-hard [17, Theorem 6].

Towards getting the above results, we analyse key properties of value func-
tions of quantitative automata, and show that the 1-token game characterises
HDness for every Val automaton, such that Val is present-focused (Definition 3),
which is in particular the case for all Val automata on finite words [8, Lemma
16], as well as DSum automata on infinite words [8, Lemma 22].

We then show, in Section 5, that the 2-token game, in which Adam builds two
runs, characterises history-determinism for both LimSup and LimInf automata.
The approach here is more involved: it decomposes the quantitative automaton
into a collection of Biichi or coBiichi automata such that if Eve wins the 2-token
game on the original automaton, she also wins in the component automata. Since
the 2-token game characterises HD for Biichi and coBiichi automata, the com-
ponent automata are then HD and the witness strategies can be combined with
the 2-token strategy of the original automaton to build a letter-game strategy
for Eve. The general flow of our approach is illustrated in Fig. 1.

We further present, in Section 5.1, algorithms to decide the winner of the two-
token games on LimInf and LimSup automata via reductions to solving parity
games. The complexity of the procedure for a LimSup automaton A is the same
as that of solving a parity game of size polynomial in the size of A with twice as
many priorities as there are weights in 4, which is in quasipolynomial time. For
LimInf automata the procedure is in exponential time. In both cases, it is only in
polynomial time if the number of weights is logarithmic in the automaton size.

For some variants of the synthesis problem, the complexity of the witness of
history-determinism is also of particular interest (while for other variants it is
not), as it corresponds to the complexity of the implementation of the solution

Quantitative Automata Token Games 123

system [8, Section 5]. We give an exponential upper bound to the complexity of
the witness for LimSup and LimInf automata, which, for LimlInf, is tight. As a
corollary, we obtain that HD LimSup automata are as expressive as deterministic
LimSup automata and at most exponentially more succinct.

Related work. In the w-regular setting (where HDness coincides with good-for-
gameness), [16, Section 4] provides an exponential scheme for checking HDness of
all w-regular automata, based on determinisation and checking fair simulation.
HDness of Biichi automata is resolved, as mentioned above, in PTIME, using
2-token games [3]. The coBiichi case is also resolved in PTIME, originally via an
indirect usage of “joker games” [19], and later by using 2-token games [6].

In the quantitative setting, deciding HDness coincides with best-value par-
tial domain synthesis [14], O-regret synthesis [18] and, for some value functions,
0O-regret determinisation [13,8]. There are procedures to decide HDness (which is
sometimes called good-for-gameness due to erroneously assuming them equiva-
lent) of Sum, Avg, and DSum automata on finite words, as follows.

For Sum and Avg automata on finite words, a PTIME solution combines [1,
Theorem 4.1], which provides a PTIME algorithm for checking whether such an
automaton is “determinisable by pruning”, and [8, Theorem 21], which shows
that such an automaton is HD if and only if it is determinisable by pruning.

Proposition 1. Deciding whether a Sum or Avg automaton on finite words is
history-deterministic is in P TIME.

For DSum automata on finite words, [14, Theorem 23] provides an NPNco-
NP solution, using a game that is quite similar to the one-token game, differing
from it in a few aspects—for example, Adam is asked to either copy Eve with
his token or move into a second phase where he plays transitions first—and uses
a characterisation of HD strategies resembling our notion of cautious strategies
(Definition 2) specialised to DSum automata.

2 Preliminaries

Words. An alphabet X' is a finite nonempty set of letters. A finite (resp. infinite)
word w = 0q...0, € X* (resp. w = 0g0y... € X¥) is a finite (resp. infinite)
sequence of letters from X; € is the empty word. We write X*° for X* U X“. We
use [i..j] to denote a set {i,...,j} of integers, [i] for [¢..9], [..j] for [0..5], and [i..]
for integers equal to or larger than i. We write wi..j], w[..j], and w[i..] for the
infix 0; ... 0j, prefix g ... 05, and suffix ;... of w. A language is a set of words.

Games. We consider a variety of turn-based zero-sum games between Adam (A)
and Eve (E). Formally, a game is played on an arena of which the positions
are partitioned between the two players. A play is a maximal (finite or infinite)
path. The winning condition partitions plays into those that are winning for
each player. In some of the technical developments we use parity games, in which

124 U. Boker and K. Lehtinen

moves are coloured with integer priorities and a play is winning for Eve if the
maximal priority that occurs infinitely often along the play is even.

A strategy for a player P € {A, E} maps partial plays ending in a position
belonging to P to a successor position. A (partial) play 7 agrees with a strategy
sp of P, written w € sp, if whenever its prefix p ends in a position of P, the
next move is sp(p). A strategy of P is winning from a position v if all plays
starting at v that agree with it are winning for P. A strategy is positional if it
maps all plays that end in the same position to the same successor. A game is
determined if for every position, one of the players has a winning strategy.

Quantitative Automata. A nondeterministic quantitative® automaton (or just
automaton from here on) on words is a tuple A = (X, Q,¢,0), where X is an
alphabet; @ is a finite nonempty set of states; ¢ € @ is an initial state; and
§: Q x ¥ — 2(QxQ) ig 3 transition function over weight-state pairs.

A transition is a tuple (q,0,2,¢') € QxXxQ x Q, also written ¢ =% ¢'.
(There might be several transitions with different weights over the same letter
between the same states.) We write () = x for the weight of a transition
t = (q,0,2,q"). A is deterministic if for all ¢ € Q and a € X, §(q,a) is a
singleton. We require that the automaton A is total, namely that for every state

g € Q and letter o € X, there is at least one state ¢ and a transition ¢ == ¢'.

A run of A on a word w is a sequence p = qq wlol:o e wtlo qs - ..

of transitions where go = ¢ and (z;,¢41) € 0(g;, w[i]). As each transition ¢;
carries a weight v(¢;) € Q, the sequence p provides a weight sequence v(p) =
v(to)y(t1) A Val (e.g., Sum) automaton is one equipped with a value function
Val: Q* — R or Val : Q¥ — R, which assigns real values to runs of A. The value
of a run p is Val(y(p)). The value of A on a word w is the supremum of Val(p)
over all runs p of A on w. Two automata A and A’ are equivalent, if they realise
the same function. The size of an automaton consists of the maximum among
the size of its alphabet, state-space, and transition-space.

Value functions.
For finite sequences vgv; . ..v,_1 of rational weights:

n—1 n—1
1
-S o i - A == i
um(v) ;v vg(v) ” ;v
For finite and infinite sequences vgv; ... of rational weights:
— Inf(v) = inf{v, | n > 0} — Sup(v) = sup{v, | n > 0}
— For a discount factor A € QN (0,1), A-DSum(v) = Z)\ivi

. . . . i>0
For infinite sequences vgv; ... of rational weights: =

3 We speak of “quantitative” rather than “weighted” automata, following the distinc-
tion made in [5] between the two.

Quantitative Automata Token Games 125
— LimlInf(v) = nlglgo inf{v; | i > n} — LimSup(v) = nl;ngo sup{v; | i > n}

w-regular automata (with acceptance on transitions) can be viewed as special
cases of quantitative automata. In particular, a Biichi (resp. coBiichi) automaton
can be seen as a quantitative one, in which a rejecting transition has weight 0, an
accepting transition has weight 1, and whose value function is 1 if the sequence
of weighs has infinitely many 1’s and 0 otherwise (resp. 1 if the sequence of
weights has finitely many 0). See more on w-regular automata, e.g., in [4].

History-determinism. Intuitively, an automaton is history-deterministic if there
is a strategy to resolve its nondeterminism according to the word read so far
such that for every word, the value of the resulting run is the value of the word.

Definition 1 (History-determinism [11,8]). A Val automaton A is history-
deterministic (HD) if Eve wins the following win-lose letter game, in which Adam
chooses the next letter and Eve resolves the nondeterminism, aiming to construct
a run whose value is equivalent to the generated word’s value.

Letter game: A play begins in qo = ¢ (the initial state of A) and at the i*"

turn, from state q;, it progresses to a next state as follows:

— Adam picks a letter o; from X and

— FEve chooses a transition t; = q; LN Qit1-
In the limit, a play consists of an infinite word w that is derived from the
concatenation of og,01,..., as well as an infinite sequence ™ = tg,tq,...
of transitions. For A over infinite words, Fve wins a play in the letter-
game if Val(r) > A(w). For A over finite words, Eve wins if for all i € N,
Val(7[0..5]) > A(wl[0..7]).

Consider for example the LimSup automaton A in Fig. 2. Eve loses the letter
game on A: Adam can start with the letter a; then if Eve goes from sg to s1,
Adam continues to choose a forever, generating the word a*, where A(a®) = 3,
while Eve’s run has the value 2. If, on the other hand, Eve chooses on her first
move to go from sy to s2, Adam continues with choosing b forever, generating
the word ab®, where A(ab®) = 2, while Eve’s run has the value 1.

Families of value functions. We will provide some of our results with respect to
a family of Val automata based on properties of the value function Val.

We first define cautious strategies for Eve in both the letter game and token
games (Section 3), which we use to define present-focused value functions. Intu-
itively, a strategy is cautious if it avoids mistakes: it only builds run prefixes that
can achieve the maximal value of any continuation of the current word prefix.

Definition 2 (Cautious strategies [8]). Consider the letter game on a Val

automaton A, in which Fve builds a run of A transition by transition. A move

(transition) t = q L2 of Ewve, played after some run p ending in a state q,

s non-cautious if for some word w, there is a run 7 from q over cw such that

Val(pr') is strictly greater than the value of Val(pr) for any w starting with t.
A strategy is cautious if it makes no non-cautious moves.

126 U. Boker and K. Lehtinen

A winning strategy for Eve in the letter game must of course be cautious;
Whether all cautious strategies are winning depends on the value function. We
call a value function present-focused if, morally, it depends on the prefixes of the
value sequence, formalised by winning the letter game via cautious strategies.

Definition 3 (Present-focused value functions [8]). A value function Val,
on finite or infinite sequences, is present-focused if for all automata A with value
function Val, every cautious strategy for Eve in the letter game on A is also a
winning strategy in that game.

Value functions on finite sequences are present-focused, as they can only
depend on prefixes, while value functions on infinite sequences are not necessarily
present-focused [8, Remark 17], for example LimInf and LimSup.

Proposition 2 ([8, Lemma 16]). Every value function Val on finite sequences
of rational values is present focused.

Proposition 3 ([8, Lemma 22]). For every A € QN(0,1), A-DSum on infinite
sequences of rational values is a present-focused value function.

3 Token Games

Token games were introduced by Bagnol and Kuperberg [3] in the scope of
resolving the HDness problem of Biichi automata. In the k-token game, known
as Gy, the players proceed as in the letter game, except that now Adam has k
tokens that he must move after Eve has made her move, thus building &k runs.
For Adam to win, at least one of these must be better than Eve’s run. In the
Boolean setting, this run must be accepting, thus witnessing that the word is in
the language of the automaton. Intuitively, the more tokens Adam has, the less
information he is giving Eve about the future of the word he is building.

We generalise token games to the quantitative setting, defining that the max-
imal value produced by Adam’s runs witnesses a lower bound on the value of
the word, and Eve’s task is to match or surpass this value on her run.

In the Boolean setting, G5 has the same winner as the letter game for
Biichi [3, Corollary 21] and coBiichi [6, Theorem 28] automata (the case of
parity and more powerful automata is open). Since G is solvable in polynomial
time for Biichi and coBiichi acceptance conditions, this gives a PTIME algorithm
for deciding HDness, which avoids the determinisation used to solve the letter
game directly. In the following sections we study how different token games can
be used to decide HDness for different quantitative automata.

Definition 4 (k-token games). Consider a Val automaton A = (X,Q,¢,0).
A configuration of the game Gr(A) for k > 1 is a tuple (¢,p1,...px) € QFF!
of states. A play consists of an infinite sequence of configurations (t,t,...,1) =

(QO7p1707 s 7pk,0)a (Q17p1,1a s 7pk,1)a ...Ina conﬁgumtion (qivpl,ia s 7pk,i); the
game proceeds to the next configuration as follows.

Quantitative Automata Token Games 127

— Adam picks a letter o; from X,
. . 0i:%0,i
— Fve picks a transition ¢ ——— q;+1, and
. .. 04T 4 i Tk,
— Adam picks transitions, p1; —— D1,i+1,--->DPki —— Dk, i+1-
In the limit, a play consists of an infinite word w that is derived from the con-
catenation of 0g,01,..., as well as k + 1 infinite sequences m (picked by Eve)
and 7 ... 7 (picked by Adam) of transitions over w. Eve wins the play if
Val(r) > max(Val(m),. .., Val(mg)).
On finite words, Gy, is defined as above, except that the winning condition is
a safety condition for Fve: for all finite prefives of a play, it must be the case
that the value of Eve’s run is at least the value of each of Adam’s runs.

Cautious strategies (Definition 2) immediately extend to Eve’s strategies in
Gr(A). Note that unlike in the letter game, a winning strategy in Gy (A) must
not necessarily be cautious, since Adam’s run prefixes might not allow him to
build an optimal run over the word witnessing that Eve’s move was non-cautious.

4 Deciding History-Determinism via One-Token Games

Bagnol and Kuperberg showed that the one-token game G; does not suffice to
characterise HDness for Biichi automata [3, Lemma 8]. However, it turns out
that G; does characterise HDness for all quantitative (and Boolean) automata
on finite words and some quantitative automata on infinite words.

We can then use G to decide history-determinism of some of these automata,
over which the G; game is simple to decide. In particular, Inf and Sup automata
on finite words and DSum automata on finite and infinite words.

Theorem 1. Given a nondeterministic automaton A with a present-focused
value function Val over finite or infinite words, Eve wins G1(A) if and only
if A is HD. Furthermore, a winning strategy for Eve in G1(A) induces a HD
strategy with the same memory.

Proof. One direction is easy: if A is HD, Eve can use her HD strategy to win Gy
by ignoring Adam’s token. For the other direction, assume that Eve wins G.

We consider the following family of copycat strategies for Adam in Gp: a
copycat strategy is one where Adam moves his token in the same way as Eve until
she makes a non-cautious move t = ¢ == ¢ after building a run p; that is, there
is some word w and run 7’ from ¢ on ow, such that for every run 7 on cw starting
with ¢, we have Val(pr’) > Val(pr). Then the copycat strategy stops copying and
directs Adam’s token along the run 7’ and plays the word w. If Eve plays a non-
cautious move in (G; against a copycat strategy, she loses. Then, if Eve wins
Gy with a strategy s, she wins in particular against all copycat strategies and
therefore s never makes a non-cautious move against such a strategy.

Eve can then play in the letter game over A with a strategy s’ that moves
her token as s would in G1(A) assuming Adam uses a copycat strategy. Then,
s’ never makes a non-cautious move and is therefore a cautious strategy. Since

128 U. Boker and K. Lehtinen

Val is present-focused, any cautious strategy, and in particular s’, is winning in
the letter game, so A is HD. Note that s’ requires no more memory than s. 0O

Corollary 1. Given a nondeterministic automaton A over finite words, Eve
wins G1(A) if and only if A is HD, and winning strategies in G1(A) induce HD
strategies for A of the same complexity.

Proof. A direct consequence of Proposition 2 and Theorem 1. a

Solving token games. For resolving the HDness problem of Val automata where
Val is present-focused, it then remains to study for which of them the corre-
sponding G game is simple to decide.

Theorem 2. Deciding whether an Inf or Sup automaton on finite words is HD
is in PTIME, namely in O(|X|n?k) for Sup and O(|X|n?k?) for Inf, where X is
the automaton’s alphabet, k the number of weights and n the number of states.

Proof. Given a Sup automaton A = (X, Q, ¢, d) with weights W, G1(.A) reduces
to solving a safety game, whose positions (0, ¢,¢,2g,t) € X U {e} x Q* x W x
{L, E, A} consist of a possibly empty letter o representing the last letter played,
a pair of states (¢, ¢q’), one for Eve and one for Adam, which keep track of the end
of the current run built by each player, a weight zg from W, which keeps track
of the maximal weight seen on Eve’s run so far, and a turn variable t € {L, E, A}
indicating whether it is Adam’s turn to give a letter (L), Eve’s turn to choose
a transition (E), or Adam’s turn to choose a transition (A). The initial position
is (e,t,t,m, L) where m is the minimal weight of A. The moves and position
ownership encode the permitted moves in G1(A) and update zg to reflect the
maximal value of Eve’s run. The winning condition for Eve is a safety condition:
Adam wins if he picks a move with a weight higher than z g, the maximal weight
on Eve’s run. Then plays in this game are in bijection with plays of G1(A), and
Eve wins if and only if she can avoid Adam choosing a transition with a larger
weight than x g, that is, if she can win G;(A).

Then, solving G1(.A) reduces to solving this safety game, which can be done
in time linear in the number of positions of the arena, which is 3|X|n2k.

The case of Inf automata is similar, except that instead of keeping Eve’s
maximal value along her run, we need to keep the minimal value along Adam’s
run in some variable x4, and the safety condition for Eve is that her current
value must always be at least as big as x4 and Adam’s next move. Since Adam
plays after Eve in each round of the game, we also need to keep Eve’s last value,
thus having 3| X|n?k? positions. O

Next, we show that solving G; is in NPNco-NP for DSum automata.

Theorem 3. For every A € QN (0,1), deciding whether a A-DSum automaton
A, on finite or infinite words, is HD is in NPNco-NP*,

* Tt was already known for finite words [14]. It is perhaps surprising for infinite words,
given the NP-hardness result in [17, Theorem 6]. In consultation with the authors,
we have confirmed that there is an error in the hardness proof.

Quantitative Automata Token Games 129

Proof. Consider a A-DSum automaton A = (X, Q,t,0), where the weight of a
transition ¢ is denoted by v(t). From Propositions 2 and 3 and Theorem 1, Eve
wins G1(A) if and only if A is HD. It therefore suffices to show that solving
G1(A) is NPNco-NP. We achieve this by reducing solving G1(A) to solving a
discounted-sum threshold game, which Eve wins if the DSum of a play is non-
negative. It is enough to consider infinite games, as they also encode finite games,
by allowing Adam to move to a forever-zero-position in each of his turns.

The reduction follows the same pattern as that in the proof of Theorem 2: we
represent the arena of the game G1(A) as a finite arena, and encode its winning
condition, which requires the difference between the DSum of two runs to be non-
negative, as a threshold DSum winning condition. Note first that the difference
between the A-DSum of the two sequences zgz... and z(z]... of weights is equal
to the A-DSum of the sequence of differences dy = (z9 — zy),d1 = (21 — 27), .. .,
as follows: (Yoo Now;) — D oog Mol = Y oo g Nz — f).

We now describe the DSum arena G in which Eve wins with a non-strict
0-threshold objective if and only if she wins G1(.A). The arena has positions in
(0,9,¢',t,m) € X U{e} x Q*> x 6 U{e} x {L, E, A} where o is the potentially
empty last played letter, starting with e, the states ¢, ¢’ represent the positions
of Eve and Adam’s tokens, ¢ is the transition just played by Eve if m = A and ¢
otherwise, and m denotes the move type, having L for Adam choosing a letter,
E for Eve choosing a transition and A for Adam choosing a transition.

A move of Adam that chooses a transition ¢ = ¢’ =% ¢”, namely a move
(0,q,¢',t,A) = (0,q,q",e, L), is given weight v(¢) — v(t'), that is, the difference
between the weights of the transitions chosen by both players. Other transitions
are given weight 0. Observe that we need to compensate for the fact that only
one edge in three is weighted. One option to do it is to take a discount factor
N = A3 for the DSum game G. Yet,) can then be irrational, which some-
what complicates things. Another option is to consider discounted-sum games
with multiple discount factors [2] and choose three rational discount factors
AN N e QN (0,1), such that A - A7 - X" = A. Since the first two weights in
every triple are 0, only the multiplication of the three discount factors toward
the third weight is what matters. For A = %, where p < ¢ are positive integers,

/_ _4p n __ 4p+1 nm o 2p+1
one can choose \' = 4p+1,)\ = iz and N = 5

Plays in G1(A) and in G are in bijection. It now suffices to argue that the
winning condition of G, namely that the (A, X/, \"’)-DSum of the play is non-
negative, correctly encodes the winning condition of G7(.A), meaning that the
difference between the A-DSum of Eve’s run and of Adam’s run is non-negative.

Let dod; ... be the sequence of weight differences between the transitions
played by both players in G1(A), and let Ag, A1, ... and wp,ws,... be the cor-
responding sequences of discount factors and weights in the (X, X, \")-DSum
game, respectively, where for every i = (0 mod 3), we have w; = 0 and \; = X,
for every ¢ = (1 mod 3), we have w; = 0 and \; =)\, and for every i = (2
mod 3), we have w; = d; and A; = M. Then the value of the (A, \; \”"")-DSum
sequence is equal to the required DSum sequence multiplied by A\ - \:

130 U. Boker and K. Lehtinen

(o) 31—1 31 3i+1 %)
()\/’)\”7)\’”)_D5um — Z(O H)\j +O.H)\j +wsiyo- H)\j) —)‘/')‘H'Z)\idi
i=0 j=0 =0 =0 i=0

Hence Eve wins the game G1(A) if and only if she wins the O-threshold
(N, A, N")-DSum game over G. As G has a state-space polynomial in the state-
space of A and solving DSum-games is in NPNCONP [2], solving G;1(A), and
therefore deciding whether A is HD, is also in NPNCONP. O

DSum games are positionally determined [22,23,2] so this algorithm also com-
putes a finite-memory witness of HDness for A that is of polynomial size in the
state-space of A. However, a positional witness also exists [17, Section 5].

5 Deciding History-Determinism via Two Token Games

In this section we solve the HDness problem of LimSup and LimInf automata via
two-token games. As is the case with Biichi and coBiichi automata, one-token
games do not characterise HDness of LimSup and LimInf automata. For LimInf, a
possible alternative approach is to try to solve the letter game directly: we can
use an equivalent deterministic LimInf automaton to track the value of a word,
and the winning condition of the letter game corresponds to comparing Eve’s run
to the one of the deterministic automaton. Unfortunately, determinising LimlInf
automata is exponential in the number of its states [10, Theorem 13], so the new
game is large, and, in addition, its winning condition, which compares the LimInf
value of two runs, is non-standard and needs additional work to be encoded into
a parity game. For LimSup automata the situation is even worse, as they are
not necessarily equivalent to deterministic LimSup automata, so it is not obvious
whether the winner of the letter game is decidable at all.

Here we show that the 2-token-game approach, used to resolve HDness of
Biichi and coBiichi automata, can be generalised to LimSup and LimInf automata.
While the proof that G5 has the same winner as the letter game is quite different
for the Biichi and coBiichi cases, our proofs for the LimSup and LimInf cases follow
the same structure, while relying on the Biichi and coBiichi results respectively.
However, the argument that G2(.A) is solvable differs according to whether A is a
LimSup or LimInf automaton. In particular, perhaps surprisingly (since the naive
approach to solving the letter game seems harder for LimSup), we show that G,
is solvable in quasipolynomial time for LimSup while for LimInf our algorithm is
exponential in the number of weights (but not in the number of states).

Without loss of generality, we assume the weights to be {1,2,...}.

We start, in Section 5.1, with analysing the 2-token game on LimSup and
LimInf automata, and show, in Section 5.2, that it characterises their HDness.

5.1 G2 on LimSup and LimiInf Automata

We first observe that Gy (A), for both a LimSup and a LimInf automaton A, can
be solved via a reduction to a parity game. The G5 winning condition for LimSup

Quantitative Automata Token Games 131

automata can be encoded by adding carefully chosen priorities to the arena of
G42(A), while for LimInf the encoding requires additional positions.

Lemma 1. Given a nondeterministic LimSup automaton A of size n with k
weights, the game Ga(A) can be solved in time quasipolynomial in n, and if k is
in O(logn), in time polynomial in n.

Proof. We encode the game Ga(A), for a LimSup automaton A = (X, Q,,9),
into a parity game as follows. The arena is simply the arena of G3(A), seen as a
product of the alphabet and three copies of A, to reflect the current letter and
the current position of each of the three runs (one for Eve, two for Adam).

Adam’s letter-picking moves are labelled with priority 0, Eve’s choices of
transition ¢ =% ¢’ are labelled with priority 22 and Adam’s choices of transition
q =% ¢ are labelled with priority 2z — 1.

We claim that Eve wins this parity game if and only if she wins G5(.A), that
is, the priorities correctly encode the winner of G2(A). Observe that the even
priorities seen infinitely often in a play of the parity game are exactly priorities
2z, where z is a weight seen infinitely often in Eve’s run in the corresponding play
in Go(A). The odd priorities seen infinitely often on the other hand are 2z — 1,
where & > 0 occurs infinitely often on one of Adam’s runs in the corresponding
play of G2(A). Hence, Eve can match the maximal value of Adam’s runs in
G2(A) if and only if she can win the parity game that encodes Gz(A).

The number of positions in this game is polynomial in the size n of A; the
maximal priority is linear in the number of weights. It can be solved in quasipoly-
nomial time, or in polynomial time if the number of weights is in O(logn), using
the reader’s favourite state-of-the-art parity game algorithm, for instance [9].

O

Lemma 2. Given a nondeterministic LimInf automaton A of size n with k
weights, the game Ga(A) can be solved in time exponential in n, and if k is
in O(logn), in time polynomial in n.

Proof. As in the proof of Lemma 1, we can represent Ga(.A) as a game on an
arena that is the product of three copies of A, one for Eve and two for Adam.
The winning condition for Eve is that the smallest weight seen infinitely often on
the run built on her copy of A should be at least as large as both of the minimal
weights seen infinitely often on the runs built on Adam’s copies. We will encode
this winning condition as a parity condition, but, unlike in the LimSup case, we
will need to use an additional memory structure, which we describe now.

Intuitively, the weights on Eve’s run will be encoded by odd priorities, with
smaller weights corresponding to higher priorities, as in LimlInf the lowest weight
seen infinitely often is the one that matters, while weights on Adam’s runs will
be encoded by even priorities, but only once both of Adam’s runs have seen the
corresponding weight or a lower one. This is the role of the memory structure,
which encodes which of Adam’s runs has seen which weight recently.

More precisely, let k& be the number of weights in A. Moves corresponding
to Eve choosing a transition of weight ¢ have priority 2(k — ¢ + 1) — 1, that is,

132 U. Boker and K. Lehtinen

an odd priority that is larger the smaller ¢ is. Further, for each weight, we use a
three-valued variable z; € {0, 1,2}, initiated to 0, which gets updated as follows:
if ; = 0 and the game takes a transition with a weight w < i on one of Adam’s
runs, x; is updated to 1 or 2 according to which of Adam’s run saw this weight;
if z; = 1 (resp. 2) and Adam’s second (resp. first) run takes a transition with
weight w < 4, then x; is reset to 0. Transitions that reset variables to 0 have
priority 2(k—i+1) for the minimal 7 such that the transition resets xz; to 0; other
transitions have priority 1. Other moves do not affect z;, and have priority 1.

We now argue that the highest priority seen infinitely often along a play is
even if and only if the LimInf value of Eve’s run is at least as high as that of
both of Adam’s runs. Indeed, the maximal odd priority seen infinitely often on
a play is 2(k — i + 1) — 1 such that 7 is the minimal priority seen on Eve’s run
infinitely often, and the maximal even priority seen infinitely often is 2(k—j+1)
where j is the minimal weight such that both of Adam’s runs see j or a smaller
priority infinitely often. In particular, 2(k —i+1) — 1 < 2(k — j + 1) if and only
if ¢ > j, that is, if Eve wins Ga(A).

This parity game is of size exponential in k& due to the memory structure
({0,1,2}*) and has 2k priorities. As the number of priorities is logarithmic in
the size of the game, it can be solved in polynomial time [9]. If the number of
weights is in O(logn), then the algorithm is polynomial in the size n of A. O

5.2 G2 Characterises HDness for LimSup and LimInf Automata

The rest of the section is dedicated to proving that a LimSup or LimInf automaton
is HD if and only if Eve wins the 2-token game on it. In both cases, the structure
of the argument is similar. One direction is immediate: if an automaton A is
HD, then Eve can use the letter-game strategy to win in G2(.A), ignoring Adam'’s
tokens. The other direction requires more work. We use an additional notion, that
of k-HDness, also known as the width of an automaton [21], which generalises
HDness, in the sense that Eve maintains k£ runs, rather than only one, and needs
at least one of them to be optimal. We will then show that if Eve wins G2(A),
then A is k-HD for a finite k£ (namely, the number of weights in .4 minus one).
Finally, we will show that for automata that are k-HD, for any finite k, a strategy
for Eve in G3(A) can be combined with the k-HD strategy to obtain a strategy
for her in the letter game.

Many of the tools used in this proof are familiar from the w-regular set-
ting [3,6]. The main novelty in the argument is the decomposition of the LimSup
(LimInf) automaton A with k& weights into k — 1 Biichi (coBiichi) automata
Ag, ..., Ay that are HD whenever Eve wins G2(A). (The converse does not hold,
namely As,..., Ay can be HD even if Eve loses G2(A) — see Fig. 2.) The HD
strategies for As, ..., A can then be combined to prove the k-HDness of A.

Fig. 1 illustrates the flow of our arguments.

We first generalise to quantitative automata Bagnol and Kuperberg’s key
insight that if Eve wins G2, then she also wins G}, for all k [3, Thm 14].

Quantitative Automata Token Games 133

Ga(A) Theorem 4 > Vk.Gr(A)

Lemma 3 Proposition 4 HD(A)

G2(Az2),...,G2(Ay) =——————— Fk.HDx(A)

Fig. 1. The flow of arguments for showing that G2(A) = HD(A) for a LimInf or
LimSup automaton A.

A
22@ I 23 21
. 21@0\2;1@@:3@ g
B 8§ &
51 (50 = (2 —2 8
N \&/
As

D) I S/ X
o1)2 (o0 (50—

Fig. 2. A LimSup automaton A and corresponding Biichi automata A5 and As, as per
Lemma 3. (Accepting transitions in A and A3 are marked with double lines.) Observe
that A is not HD and Eve loses the two-token game on A, while both A2 and A3 are
HD. (In A, if Eve goes from sg to s1, Adam goes from so to s2 and continues with an
a, and if she goes from s¢ to sz, Adam goes from sp to s; and continues with a b. In
Az Eve goes from sg to s1 and in A3 from so to s2.)

Theorem 4. Given a quantitative automaton A, if Fve wins Go(A) then she
also wins Gp(A) for any k € N\ {0}. Furthermore, if her winning strategy in
G2(A) has memory of size m and A has n states, then she has a winning strategy
in Gx(A) with memory of size n*~1 . mF.
Proof. This is the generalisation of [3, Thm 14]. The proof is similar to Bagnol
and Kuperberg’s original proof, but without assuming positional strategies for
Eve in Gi(A). If Eve wins G2(A) then she obviously wins G1(.A), using her
G- strategy with respect to two copies of Adma’s single token in G;. We thus
consider below Gy (A) for every k € N\ {0,1,2}.

Let so be a winning strategy for Eve in G3(A). We inductively show that
Eve has a winning strategy s; in G;(.A) for each finite i. To do so, we assume
a winning strategy s;_1 in G;_1(A). The strategy s; maintains some additional

134 U. Boker and K. Lehtinen

(not necessarily finite) memory that maintains the position of one virtual token
in A, a position in the (not necessarily finite) memory structure of s;_1, and a
position in the (not necessarily finite) memory structure of so. The virtual token
is initially at the initial state of .A. The strategy s; then plays as follows: at each
turn, after Adam has moved his 4 tokens and played a letter (or, at the first turn,
just played a letter), it first updates the s;_; memory structure, by ignoring the
last of Adam’s tokens, and, treating the position of the virtual token as Eve’s
token in G,_1(A), it updates the position of the virtual token according to the
strategy s;_1; it then updates the sy memory structure by treating Adam’s last
token and the virtual token as Adam’s 2 tokens in G3(A), and finally outputs
the transition to be played according to ss.

We now argue that this strategy is indeed winning in G;(A). Since s;_1 is a
winning strategy in G;_1(.A), the virtual token traces a run of which the value
is at least as large as the value of any of the runs built by the first ¢ — 1 tokens
of Adam. Since s; is also winning, the value of the run built by Eve’s token is at
least as large as the values of the runs built by the virtual token and by Adam’s
last token. Hence, Eve is guaranteed to achieve at least the supremum value of
Adam’s ¢ runs, making this a winning strategy in G;(A).

As for the memory size of a winning strategy for Eve in G (.A), let m be the
memory size of her winning strategy in Ga(A) and n the number of states in A.
Then, by the above construction of her strategy in Gi(.A), the memory of her
strategy in G3(.A) is n for the virtual token times m for the copy of her memory
in G3(A) times m for the copy of her memory in G;_1(A) = G2(A), namely
n-m-m =n-m?2 Then for G4(A) it is n-m- (n-m?) = n?-m3; for G5(A) it is
n-m-(n?-m3) =n®-m? and for G(A) it is n*~1 - mF.]

We proceed with the definition of k-HDness, also known as width [21], based
on the k-runs letter game (not to be confused with Gy, the k-token game), which
generalises the letter game.

Definition 5 (k-HD and k-runs letter game). A configuration of the game
on a LimSup (LimInf) automaton A = (X,Q,1,6) is a tuple ¢* € QF of states of
A, initialised to J*.

In a configuration (¢ 1,...,qi k), the game proceeds to the next configuration
(@ig1,15- -+ Qiv1,k) as follows.

— Adam picks a letter o; € X, then
— Eve chooses for each q; j, a transition ¢; ; RAIIEN Qi+1,

In the limit, a play consists of an infinite word w that is derived from the concate-
nation of og,01,..., as well as of k infinite sequences pg, p1, ... of transitions.
Eve wins the play if max;c (1. .k} Val(p;) = A(w).

If Eve has a winning strategy, we say that A is k-HD, or that HDy(A) holds.

Notice that the standard letter game (Definition 1) is a 1-run letter game and
standard HD (Definition 1) is 1-HD.
Next, we use HDy(A) to show that G characterises HDness.

Quantitative Automata Token Games 135

Proposition 4 ([3]). Given a quantitative automaton A, if HDy(A) for some
k € N, and Eve wins Gy, then A is HD.

Proof. The argument is identical to the one used in [3], which we summarise
here. The strategy 7 for Eve in HDy (A) provides a way of playing k tokens that
guarantees that one of the k£ runs formed achieves the automaton’s value on the
word w played by Adam. If Eve moreover wins G (A) with some strategy s,
she can, in order to win in the letter game, play si against Adam’s letters and &
virtual tokens that she moves according to 7. The winning strategy 7 guarantees
that one of the k runs built by the k virtual tokens achieves Val(w); then her
strategy si guarantees that her run also achieves Val(w).]

It remains to prove that if Eve wins Ga(A), then HDy(A) for some k.

Given a LimSup automaton A, with weights {1,..., &k}, we define k — 1 auxil-
iary Biichi automata As, ..., A; with acceptance on transitions, such that each
A is a copy of A, where a transition is accepting if its weight 7 in A is at least
x. Each A, recognises the set of words w such that A(w) > z. (See Fig. 2.)

Given a LimInf automaton A, we similarly define auxiliary coBiichi automata:
A, is a copy of A where transitions with weights smaller than x are rejecting,
while those with weights x or larger are accepting. Again, A, recognises the set
of words w such that A(w) > z.

We now use these auxiliary automata to argue that if Go(A) then HDy_1 (A).

Lemma 3. Given a LimSup or LimInf autormaton A with weights {1,...,k}, if
Eve wins Go(A), then for all x € {2,...,k}, Eve also wins G2(Az).

Proof. Since A, is identical to A except for the acceptance condition or value
function, Eve can use in Go(A;) her winning strategy in Ga(A). For the LimSup
case, if one of Adam’s runs sees an accepting transition infinitely often, the
underlying transition of A4 visited infinitely often has weight at least x. Then,
Eve’s strategy guarantees that her run also sees infinitely often a value at least
as large as x, corresponding to an accepting transition in Ga(A,).

Similarly, for the LimiInf case, if one of Adam’s runs avoids seeing a rejecting
transition infinitely often in A,, then this run’s value in A is at least =, and
Eve’s strategy guarantees that her run’s value in A is at least x, meaning that
it avoids seeing a rejecting transition in 4, infinitely often, and accepts.]

Lemma 4. Given a LimSup or LimInf autormaton A with weights {1,...,k}, if
Eve wins G2(Ay) for all x € {2,...,k} then HDy_1(A) holds.

Proof. From Lemma 3, if Eve wins G2(.A), then for all x € {2,...,k}, Eve also
wins G5(A,). Since each A, is a Biichi or coBiichi automaton, this implies that
for all x € {2,...,k}, the automaton A, is HD [3,6], that is, there is a winning
strategy s, for Eve in the letter game on each A,. Now, in the (k — 1)-run letter
game on A, Eve can use each s, to move one token. Then, if Adam plays a
word w with some value Val(w) = 4, this word is accepted by 4;, and therefore
the strategy s; guarantees that the run of the i'” token achieves at least the
value i, corresponding to seeing accepting transitions of A; infinitely often for

136 U. Boker and K. Lehtinen

the LimSup case, or eventually avoiding rejecting transitions in the LimInf case.
O

Finally, we combine the G and HDj_ strategies in A to show that A is HD.

Theorem 5. A nondeterministic LimSup or LimInf automaton A is HD if and
only if Eve wins Go(A).

Proof. If A is HD then Eve can use the letter-game strategy to win in Ga(A),
ignoring Adam’s moves. If Eve wins Go(A) then by Lemma 3 and Lemma 4 she
wins HDy_1(A), where k is the number of weights in A. By Theorem 4 she also
wins Gj—1(A) and, finally, by Proposition 4 we get that A is HD. a

Theorem 6. Given a nondeterministic LimSup (resp. LimInf) automaton A of
size n with k weights, the HDness problem of A can be solved in time quasipoly-
nomial (resp. exponential) in n. In both cases, if k is in O(logn), it can be solved
in time polynomaial in n.

Proof. Tt directly follows from Theorem 5 and Lemmas 1 and 2; the former
reducing the HDness problem to solving G2(.A), and the latter two showing that
G2(A) can be solved in the stated complexity. O

In contrast to the cases considered in the Section 4, where strategies in G
immediately induce HD strategies of the same complexity, for Biichi and coBiichi
automata, a winning G strategy does not necessarily induce an HD strategy
(even though it implies the existence of such a strategy). We now analyse the
size of the HD strategies which our proofs show exist whenever Eve wins Ga,
and discuss the implications for the determinisability of HD LimSup automata.

Corollary 2. Given an HD LimSup or LimInf automaton A of size n, there is
an HD strategy for A with memory exponential inn. If A is a LimSup automaton
with O(logn) weights then the memory is only polynomial in n.

Proof. Let n be the size of A and k + 1 the number of weights. We construct an
HD strategy for A, by combining an HDy, strategy and a Gy, strategy for it.

The HDy, strategy—which, like the HD strategy, is hard to compute directly—
combines the HD strategies of the k auxiliary Biichi or coBiichi automata for A,
as constructed in Lemma 3. For HD Biichi automata, which are equivalent to
deterministic automata of quadratic size [19], there always exists a polynomial
resolver: indeed, the letter game can be represented as a polynomial parity game,
in which a positional strategy for Eve corresponds to a resolver. For HD coBiichi
automata on the other hand, these auxiliary strategies might have exponential
memory in the number of states of A [19].

The Gy, strategy on the other hand is positional for LimSup, since it can be
encoded as a parity game directly on the G (.A) arena, similarly to the reduction
in Lemma 1; the size of the Gj(A) arena is O(n**1). The overall HD strategy
for LimSup therefore needs memory exponential in the number of weights.

For LimInf on the other hand, by Lemma 2 and Theorem 4, the G, strategy
can do with memory of size n*~! . 3¥*. The overall HD strategy therefore has
memory exponential in the size of A. a

Quantitative Automata Token Games 137

We leave open whether this can be improved upon. Already for coBiichi
automata, it is known that deciding whether an automaton is HD is polynomial
despite there being automata for which the optimal HD strategy is exponential.
Hence, at least for the LimInf case, we cannot expect to do much better. However,
for the LimSup case, it might be that polynomial, or even positional HD strategies
could suffice. However, positionality is already open for the Biichi case.

Our proof does however imply that if a LimSup automaton A is HD, then
there is a finite memory HD strategy, which implies that A is determinisable,
without increasing the number of weights, by taking a product of A with the
finite HD strategy. (Recall that every LimInf automaton can be determinised,
while not every LimSup automaton can.)

Corollary 3. FEvery HD LimSup automaton is equivalent to a deterministic one
with at most an exponential number of states and the same set of weights.

6 Conclusions

We have extended the token-game approach to characterising history-determinism
from the Boolean (w-regular) to the quantitative setting. Already 1-token games

turn out to be useful for characterising history-determinism for some quanti-

tative automata. For LimSup and LimInf automata, one token is not enough,

but the 2-token game does the trick. Given the correspondence between decid-

ing history-determinism and the best-value synthesis problem, our results also

directly provide algorithms both to decide whether the synthesis problem is re-

alisable and to compute a solution strategy.

This application further motivates understanding the limits of these tech-
niques. Whether the 2-token game G5 characterises more general Boolean classes
of automata beyond Biichi and coBiichi automata is already an open ques-
tion. Similarly, we leave open whether the G5 game also characterises history-
determinism for limit-average automata and other quantitative automata. At
the moment we are not aware of examples of automata of any kind (quanti-
tative, pushdown, register, timed, ...) for which Eve could win G2 despite the
automaton not being history-deterministic, yet even for parity automata, a proof
of characterisation remains elusive.

Acknowledgments

We thank Guillermo A. Pérez for discussing history-determinism of discounted-
sum and limit-average automata.

References

1. Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online
algorithms with weighted automata. ACM Trans. Algorithms, 6(2):28:1-28:36,
2010.

138

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

U. Boker and K. Lehtinen

Daniel Andersson. An improved algorithm for discounted payoff games. In Proc.
of ESSLLI Student Session, pages 91-98, 2006.

Marc Bagnol and Denis Kuperberg. Biichi good-for-games automata are efficiently
recognizable. In 38th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2018), page 16, 2018.

Udi Boker. Why these automata types? In Proceedings of LPAR, pages 143163,
2018.

Udi Boker. Quantitative vs. weighted automata. In Proc. of Reachbility Problems,
pages 1-16, 2021.

Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michat Skrzypczak. On
succinctness and recognisability of alternating good-for-games automata. arXiv
preprint arXiv:2002.07278, 2020.

Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeter-
minism to alternation. In Proceedings of CONCUR, volume 140 of LIPIcs, pages
19:1-19:16, 2019.

Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in
quantitative automata. In Proc. of FSTTCS, pages 35:1-35:20, 2021.

Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In Proceedings of STOC,
pages 252-263, 2017.

Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative
languages. ACM Trans. Comput. Log., 11(4):23:1-23:38, 2010.

Thomas Colcombet. The theory of stabilisation monoids and regular cost functions.
In Proceedings of ICALP, pages 139-150, 2009.

Thomas Colcombet and Nathanagl Fijalkow. Universal graphs and good for games
automata: New tools for infinite duration games. In Proc. of FOSSACS, volume
11425 of Lecture Notes in Computer Science, pages 1-26. Springer, 2019.
Emmanuel Filiot, Ismaél Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-
Frangois Raskin. On delay and regret determinization of max-plus automata. In
LICS, pages 1-12, 2017.

Emmanuel Filiot, Christof Loding, and Sarah Winter. Synthesis from weighted
specifications with partial domains over finite words. In Nitin Saxena and Sunil
Simon, editors, F'STTCS, volume 182 of LIPIcs, pages 46:1-46:16. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2020.

Shibashis Guha, Ismaél Jecker, Karoliina Lehtinen, and Martin Zimmermann. A
bit of nondeterminism makes pushdown automata expressive and succinct. In Proc.
of MFCS, pages 53:1-53:20, 2021.

Thomas Henzinger and Nir Piterman. Solving games without determinization. In
Proceedings of CSL, pages 395410, 2006.

Paul Hunter, Guillermo A. Pérez, and Jean-Frangois Raskin. Minimizing regret in
discounted-sum games. In Jean-Marc Talbot and Laurent Regnier, editors, CSL,
volume 62 of LIPIcs, pages 30:1-30:17, 2016.

Paul Hunter, Guillermo A. Pérez, and Jean-Frangois Raskin. Reactive synthesis
without regret. Acta Informatica, 54(1):3-39, 2017.

Denis Kuperberg and Michal Skrzypczak. On determinisation of good-for-games
automata. In Proceedings of ICALP, pages 299-310, 2015.

Karoliina Lehtinen and Martin Zimmermann. Good-for-games w-pushdown au-
tomata. In LICS20, pages 689-702, 2020.

Anirban Majumdar and Denis Kuperberg. Computing the width of non-
deterministic automata. Logical Methods in Computer Science, 15, 2019.

Quantitative Automata Token Games 139

22. L. S. Shapley. Stochastic games. In Proc. of Nat. Acad. Sci., volume 39, pages
1095-1100, 1953.

23. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Electron. Colloquium Comput. Complez., 2(40), 1995.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

l")

Check for

I On the Translation of Automata

to Linear Temporal Logic*

Udi Boker! ®, Karoliina Lehtinen®™ @, and Salomon Sickert3**

! Reichman University, Herzliya, Israel
udiboker@idc.ac.il
2 CNRS, Aix-Marseille University and University of Toulon, LIS, Marseille, France
lehtinen@lis-lab.fr
3 The Hebrew University, Jerusalem, Israel
salomon.sickert@mail.huji.ac.il

Abstract While the complexity of translating future linear temporal
logic (LTL) into automata on infinite words is well-understood, the size
increase involved in turning automata back to LTL is not. In particular,
there is no known elementary bound on the complexity of translating
deterministic w-regular automata to LTL.

Our first contribution consists of tight bounds for LTL over a unary al-
phabet: alternating, nondeterministic and deterministic automata can be
exactly exponentially, quadratically and linearly more succinct, respect-
ively, than any equivalent LTL formula. Our main contribution consists
of a translation of general counter-free deterministic w-regular automata
into LTL formulas of double exponential temporal-nesting depth and
triple exponential length, using an intermediate Krohn-Rhodes cascade
decomposition of the automaton. To our knowledge, this is the first ele-
mentary bound on this translation. Furthermore, our translation pre-
serves the acceptance condition of the automaton in the sense that it
turns a looping, weak, Biichi, coBiichi or Muller automaton into a for-
mula that belongs to the matching class of the syntactic future hierarchy.
In particular, it can be used to translate an LTL formula recognising a
safety language to a formula belonging to the safety fragment of LTL
(over both finite and infinite words).

Keywords: Linear temporal logic - Automata - Cascade decomposition

1 Introduction

Linear Temporal Logic with only future temporal operators (from here on LTL)
and w-regular automata, whether deterministic, nondeterministic or alternating,
are both well-established formalisms to describe properties of infinite-word lan-
guages. LTL is popular in formal verification and synthesis due to its simple

* The omitted proofs of this chapter can be found in the full version [5].
** Salomon Sickert is supported by the Deutsche Forschungsgemeinschaft (DFG) under
project number 436811179.

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 140-160, 2022.
https://doi.org/10.1007/978-3-030-99253-8_8

http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0003-1171-8790
http://orcid.org/0000-0002-0280-8981
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_8&domain=pdf

On the Translation of Automata to Linear Temporal Logic 141

syntax and semantics. Yet, while properties might be convenient to define in
LTL, most verification and synthesis algorithms eventually compile LTL formu-
las into w-regular automata. The expressiveness of both these key formalisms, as
well as translations from LTL to automata of various types, are well understood.
Here, we consider the converse translations, which, in comparison, have received
less attention: up till now, no elementary upper bound on the size blow-up of
going from automata to LTL was known.

Regarding expressive power, deterministic Muller automata, nondetermin-
istic Biichi automata, and weak alternating automata recognise all w-regular
languages [21,40]. LTL-definable languages (surveyed in [13]) are a strict subset
thereof, also defined by first-order logic, star-free regular expressions, aperiodic
monoids, counter-free automata, and very weak alternating automata. As for
succinctness, nondeterministic and alternating automata can be exponentially
and double-exponentially more succinct than deterministic automata, respect-
ively. Determinisation in particular has precise bounds [32,35,24,36,12,3].

The succinctness of various representations of LTL-definable languages is less
clear: effective translations between the different models are far from straight-
forward, and their complexity is sometimes uncertain. In particular, to the best
of our knowledge, up to now there has been no elementary bound even on the
translation of deterministic counter-free automata, arguably the simplest auto-
mata model for this class of languages, into LTL formulas. (Considering LTL
with both future and past temporal operators, there is a double-exponential up-
per bound on the length of the formula [26]*.) The complexity of obtaining a
deterministic counter-free automaton from a nondeterministic one is also, to the
best of our knowledge, open.

We study the complexity of translating automata to LTL (equivalently, to
very weak alternating automata), considering formula length, size, and nesting
depth of temporal operators.

We begin (Section 3), as a warm-up, with the unary alphabet case on fi-
nite words. We show that the size-blow up involved in translating deterministic,
non-deterministic and alternating automata to LTL, when possible, is linear,
quadratic and exponential, respectively, and these bounds are tight. In contrast,
going from LTL to alternating, nondeterministic and deterministic automata is
linear, exponential and double-exponential, respectively [33,41,19].

The case of non-unary alphabets is much more difficult. We provide a transla-
tion of counter-free deterministic w-regular automata (with any acceptance con-
dition) into LTL formulas with double exponential depth and triple exponential
length. Our translation uses an intermediate Krohn-Rhodes reset cascade decom-
position (wreath product) of deterministic automata, which is a deterministic
automaton built from simple components.

Our main technical contribution consists of a translation of a reset cascade
into an LTL formula of depth linear and length singly exponential in the number
of cascade configurations. Combining this with Eilenberg’s Holonomy translation
of a semigroup into a cascade [14, Corollary I1.7.2] and Pnueli and Maler’s adapt-

4 See Remark 1 on whether the upper bound in [26] is single or double exponential.

142 U. Boker, K. Lehtinen, S. Sickert

ation of it to automata [26, Theorem 3] (see Remark 1), we obtain a translation
of counter-free deterministic w-regular automata into LTL formulas of double
exponential depth and triple exponential length. Our construction preserves the
acceptance condition of the automaton in the sense that it turns a Biichi-looping,
coBiichi-looping, weak, Biichi or coBiichi automaton into a formula that belongs
to the matching class of the syntactic future hierarchy (see Definition 1 and [8]).

Related work

Finite words. While LTL is usually interpreted over infinite words, it also admits
finite-word semantics that coincide with the finite word version of the other
equivalent formalisms. The equivalence between FO and star-free languages on
finite words is due to McNaughton and Papert [31]. Cohen, Perrin and Pin [10]
used the Krohn-Rhodes decomposition to characterise the expressive power of
LTL with only X and F (eventually), but do not provide bounds on the size
trade-off between the different models. Wilke [42] gives a double-exponential
translation from counter-free DFA to LTL. More recently, Bojanczyk provided
an algebraically flavoured adaptation of Wilke’s proof [2, Section 2.2.2].

Infinite words. With substantial effort over several decades, the above techniques
have been extended to infinite words using intricate tools with opaque complex-
ities. Ladner [22] and Thomas [38,39] for example extended the equivalence of
star-free regular expressions and FO to infinite words, while the w-extension of
the equivalence with aperiodic languages is due to Perrin [34]. The correspond-
ence with LTL is due to Kamp [18] and Gabbay, Pnueli, Shelah and Stavi [16].
Diekert and Gastin’s survey [13] provides an algebraic translation into LTL via w-
monoids while Cohen-Chesnot gives a direct algebraic proof of the equivalence of
star-free w-regular expressions and LTL [11]. Wilke takes an automata-theoretic
approach, using backward deterministic automata [43,44]. However, none of the
above address the complexity of the transformations. Zuck’s dissertation [46]
gives a translation of star-free regular expressions into LTL, with at least non-
elementary complexity. Subsequently, Chang, Mana and Pneuli [8] use Zuck’s
results to show that the levels of their hierarchy of future temporal properties
coincide with syntactic fragments of LTL. Sickert and Esparza [37] gave an ex-
ponential translation of any LTL formula into level Ay of this hierarchy.

2 Preliminaries

Languages. An alphabet Y, of size | Y|, is a finite set of letters. X*, X+ and X¥
denote the sets of finite, nonempty finite, and infinite words over X, respectively.
A language of finite or infinite words is a subset of X* or X“, respectively.
We write [i..j] and [i..j), with integers ¢ < j, for the sets {i,s + 1,...,75} and
{i,i+1,...,5 — 1}, respectively. For a word w = 0 - 01 - - -, we write |w| for its
length (oo if w is infinite), w[i] for o;, wy;. ;) and wy;. ;y for its corresponding infixes
(wyi..qy is the empty word), and wy;.) for its (finite or infinite) suffix o; - o1 - - -.

On the Translation of Automata to Linear Temporal Logic 143

Linear Temporal Logic (LTL). Let AP be a finite set of atomic propositions. LTL
formulas are constructed from the constant true, atomic propositions a € AP,
the connectives = (negation) and A (and), and the temporal operators U (until)
and X (next). Their semantics are given by a satisfiability relation = between
finite or infinite words w € (247)* U (247)«, and a formula ¢ inductively as
follows:

w [true wEa iff a € wl0]

wiE—p ff wiEe wEeAY iff wispadwl=Y
wEXe iff |w>1andwy) e

w = Uy iff Fi€[0.|w]). wy.) =1 and Vj € [0.4). wyj) = ¢

We also use the common shortcuts false = —true, ¢ V¢ = =((=p) A (—1)),
Fy = trueUp, Gy = -F-y, and 1Ry = —(—)1)U(—)3). The language
of finite words of ¢ is L<%(¢) = {w € (247)T | w = ¢}, and the language of
infinite words is L(y) = {w € (247)¥ | w |= ¢}. Note that we omit the “< w”
superscript if it is clear from the context which set is used. The length || of ¢
is the number of nodes in its syntax tree, the size of ¢ is the number of nodes in
a DAG representing this syntax tree, and its temporal nesting depth, denoted by
depth(y), is defined by: depth(true) = 0; depth(a) = 0 for an atomic proposition
a € AP; depth(—) = depth(t)); depth(w; A 1¥9) = max(depth (1), depth(2));
depth(X4)) = depth(z)) +1; and depth(¢); Utpy) = max(depth()1), depth(¢pz)) +1.
Chang, Manna, and Pnueli define in [8] a syntactic hierarchy for LTL formulas
(over infinite words):

Definition 1 (LTL Syntactic future hierarchy [8] °).

— Yo = Iy = Ay is the least set containing all atomic propositions and their
negations, and is closed under the application of conjunction and disjunction.

— Y41 1s the least set containing II; and negated formulas of II; 1 closed under
the application of conjunction, disjunction, and the X and U operators.

— II; 11 is the least set containing X; and negated formulas of X;+1 closed under
the application of conjunction, disjunction, and the X and R operators.

— A4 is the least set containing X1 and Il;41 that is closed under the
application of conjunction, disjunction, and negation.

X1 is referred to as syntactic co-safety formulas, I, as syntactic safety formulas.

Automata. A deterministic semiautomaton is a tuple D = (X, Q,0), where X
is an alphabet; @ is a finite nonempty set of states; and d: @ x X — @ is a
transition function and we extend it to finite words in the usual way. A path of
D on a word w = 0o - 01 -+ - is a sequence of states qg, q1, . . ., such that for every
i < |w|, we have §(q;,07) = ¢it1.

It is a reset semiautomaton if for every letter o € X, either i) for every state
q € @ we have §(q,0) = q, or ii) there exists a state ¢ € @, such that for every
state ¢ € @ we have 6(q,0) =¢'.

5 This extends [6,37] with negation, which can be removed via negation normal form.

144 U. Boker, K. Lehtinen, S. Sickert

It is counter free if for every state ¢ € @, finite word v € X', and number
n € N\ {0}, there is a self loop of ¢ on u™ iff there is a self loop of ¢ on w.

A deterministic automaton is a tuple D = (X, Q,, 0,), where (X, Q,0) is a
deterministic semiautomaton, ¢ € () is an initial state; and « is some acceptance
condition, as detailed below. A run of D on a word w is a path of D on w that
starts in ¢. It is a reset or counter-free automaton if its semiautomaton is.

The acceptance condition of an automaton on finite words is a set F C Q; a
run is accepting if it ends in a state ¢ € F. The acceptance condition of an w-
regular automaton, on infinite words, is defined with respect to the set inf(r) of
states visited infinitely often along a run r. We define below several acceptance
conditions that we use in the sequel; for other conditions, see, for example, [3].

The Muller condition is a set a = {Mjy, ..., My} of sets M; C @ of states,
and a run r is accepting if there exists a set M;, such that M; = inf(r). The
Rabin condition is a set o = {(G1, B1),...,(Gk, By)} of pairs of sets of states,
and r is accepting if there exists a pair (G;, B;), such that G; N inf(r) # 0 and
B; Nninf(r) = 0. The Biichi (resp. coBiichi) condition is a set o C @Q of states,
and r is accepting if aNinf(r) # 0 (resp. aNinf(r) =). A weak automaton is a
Biichi automaton, in which every strongly connected component (SCC) contains
only states in a or only states out of a. A looping automaton is a Biichi or
coBiichi automaton, where all states are in «, except for a single sink state.

Deterministic automata of the above types correspond to the hierarchy of
temporal properties [28]: Looping-Biichi, looping-coBiichi, weak, Biichi, coBiichi,
and Rabin/Muller deterministic automata define respectively safety, guarantee
(co-safety), obligation, recurrence, persistence, and reactivity languages. If the
language is also LTL-definable, then there exists an equivalent LTL formula in
I, X1, Ay, IIy, X5, and As, respectively [8]. Every deterministic w-regular
automaton is equivalent to deterministic Muller and Rabin automata, where the
Muller (but not always Rabin) one can be defined on the same semiautomaton.

Nondeterministic and alternating automata (to which we only refer in Sec-
tion 3, on finite words over a unary alphabet) extend deterministic automata by
having a transition function 6: @ x X' — 29 and 6: Q x X' — (positive Boolean
formulas over Q), respectively. (See, for example, [7] for formal definitions.)

3 Unary Alphabet

Kupferman, Ta-Shma and Vardi [20] compared the succinctness of different auto-
mata models when counting, that is, recognising the singleton language {a*} for
some k over the singleton alphabet {a}. For the succinctness gap between auto-
mata and LTL, we study the task of recognising arbitrary languages over the
unary alphabet, which can be seen as sets of integers, rather than a single integer.

For a unary alphabet, since there is only one infinite word, only languages
on finite words are interesting. We thus consider LTL formulas over (no) atomic
propositions AP = (), and automata on finite unary words over the corresponding
alphabet ¥ = 247 = {§}, where we use the shorthand a = (). The size of
a deterministic automaton is the number of its states, of a nondeterministic

On the Translation of Automata to Linear Temporal Logic 145

automaton the number of its transitions, and of an alternating automaton the
number of subformulas in its transition function.

We show that the size blow-up involved in translating deterministic, non-
deterministic, and alternating automata to LTL, when possible, is linear, quad-
ratic, and exponential, respectively.

In our analysis, we shall use the following folklore theorem, which extends
Wolper’s Theorem [45].

Proposition 1 (Extended Wolper’s theorem, Folklore). Consider an
LTL formula ¢ with depth(p) = n over the atomic propositions AP, and let
X = 24P Then for every words u € X*, v € X1 and t € X¥, and numbers
i,j > n, ¢ has the same truth value on the words (uv't) and (uvit).

We use this to establish that unary LTL describes only finite and co-finite
properties, and that there is a tight relation between the depth of LTL formulas
and the length of words above which they are all in or all out of the language.

Proposition 2. Given an LTL formula ¢ with depth(¢) = n on finite words
over the unary alphabet {a}, a* € L(p) for alli >n or a* ¢ L(p) for all i > n.

Proposition 3. Consider a language L C {a}™ that agrees on all words of
length over n, that is, has the same truth value on all such words. Then there is
an LTL formula of size in O(n) with language L.

We now establish the trade-off between LTL and alternating automata (AFA)
over unary alphabets. AFA are closed under (linear) complementation, so we use
a pumping argument to bound the length after which all words have the same
truth value, giving an upper bound on the LTL formula.

Lemma 1. FEvery alternating automaton with n states that recognises an LTL-
expressible language L C {a}™ is equivalent to an LTL formula of size in O(2").

We show next that this upper bound is tight. Consider the language {aan1 }
which, according to Proposition 2, is only recognised by LTL formulas of size at
least 2"~ 1. Tt is recognised by a weak alternating automaton with 2n states and
size in O(n), using an automaton based on Leiss’s construction [23]. Intuitively,
the alternating automaton represents an n-bit up-counter with two states for
each bit, one for 1 and one for 0 (see Fig. 1), where the universal transitions
enforce that nondeterministic transitions correctly update the counter.

Lemma 2 (Adaptation of [23, proof of Theorem 1]). For every n €
N\ {0}, there is a weak alternating automaton with 2n states and transition

1
1.
We continue to nondeterministic automata (NFAs), for which the arguments
are more involved as they do not allow for linear complementation.

function of size in O(n) recognising the language {a®"

146 U. Boker, K. Lehtinen, S. Sickert

@ ql,o

—O— 4_@_\,?

&= O ‘”‘
ﬁ@jk
&

Figure 1. An alternating automaton of size in O(n) recognising {a2n71}; here with
n = 3, where the initial configuration is q1,0 A g2,0 A ¢3,0.

q1,1

Lemma 3. FEvery nondeterministic automaton with n states recognising an LTL-
expressible language L C {a}* is equivalent to an LTL formula of size in O(n?).

Proof sketch. For finite L, by a pumping argument, 4 only accepts words up to
length n, and by Proposition 3 we are done. We now consider a co-finite L.

We use 2-way deterministic automata, which are deterministic automata that
process words of the form Fw-, where - and - are start- and end-of-word markers
respectively, and where transitions specify whether to read the letter to the right
or to the left of the current position. They accept by reaching an end state, and
reject by reaching a rejecting state or by failing to terminate [17], and every
unary NFA A can be turned into a 2-way DFA D of size O(n?) [9].

We construct from an NFA A a 2-way DFA D, and then a 2-way DFA D’ of
the same size that recognises a* \ {a*}, where a* is the longest word not in L.
We use the fact that a 2-way DFA of size m can be complemented into one of
size 4m [17] to complement D’ into D" that recognises {a*} and must therefore
be of size at least k + 2 [1], so k, and by Proposition 2, an LTL formula for L,
is in O(n?). O

We now show that this upper bound is tight. The previous lower bound ideas
do not work with nondeterminism, since we need n states to recognise {a™} [20].
Yet, we need not count ezactly to n for achieving a lower bound. We can use
a variant of a language used in [4, pages 10-11]: For every positive integer k,
define the set of positive integers Sy = {m >0|3i,j e NNm =ik +j(k+1)},
and the language Vi, = {a” | m € St} C {a}*.

Proposition 4 (Folklore, [4, Theorem 3]). For every k € N the number
k%2 — k — 1 is the mazimal number not in Si.

On the Translation of Automata to Linear Temporal Logic 147

Proposition 5 ([4, proof of Theorem 4]). For everyn € N, there is an NFA
of size in O(n) recognising a co-finite language L C {a}*, such that ak’—k=1 g
not in L, while for every t > k? — k, we have that a* € L.

Theorem 1. The size blow-up involved in translating deterministic, nondetermin-
istic, and alternating automata on finite unary words to LTL, when possible, is
O(n), ©(n?), and O(2"), respectively.

4 General Alphabet

In this section we consider the more challenging task of turning counter-free w-
regular automata over arbitrary alphabets into LTL. We use the fact that these
automata can be turned into reset cascade automata (Krohn-Rhodes-Holonomy
decomposition), which we describe in Section 4.1. Our technical contribution is
then the translation of reset cascade automata into LTL.

In brief, we build, in Section 4.2, a parameterised LTL formula that is sat-
isfied by a word w iff the run of the cascade on w, starting in the parameter
configuration S, reaches a parameter configuration 7', such that the remain-
ing suffix of w satisfies a parameter LTL formula 7. We then use this formula,
in Section 4.4, to describe the automaton’s acceptance condition.

When encoding the behavior of a cascade by an LTL formula, we need to
overcome two major challenges: First, the cascade is a formalism that looks at
the past, namely at the word read so far, to determine the next configuration,
while an LTL formula obtains its value only from the future. Second, the cascade
has an internal state, while an LTL formula does not. Our reachability formulas
are therefore quite involved, built inductively over the number of levels in the
cascade, and implicitly allowing to track the internal configuration of the cascade.

In Section 4.3 we analyse the length and depth of the resulting formulas.

4.1 Cascaded Automata

Cascades. A cascaded semiautomaton (analogous to the algebraic wreath pro-
duct) over an alphabet X is a semiautomaton that can be described as a sequence
of simple semiautomata, such that the alphabet of each of them is X' together
with the current state of each of the preceding semiautomata in the sequence. It
is a reset cascade if it is a sequence of reset semiautomata. Formally, a cascaded
semiautomaton, or just cascade, over alphabet Y with n levels is a tuple A =
(X, A1, Ay ..., Ay), such that A; = (X;,Q;,0;) is a semiautomaton for each
level i, where X; = X x Q1 X -+- X Q;—1. (So X1 = X, Yy = ¥ X Qq, etc.). It is
a reset cascade if all A;’s are reset semiautomata.

An i-configuration S of A is a tuple (q1,q2,...,¢;) € Q1 X -+ x Q;. Ilf g;41 €
Qi1 is a state of level i + 1, we write (S, ¢;11) for the (i + 1)-configuration
(g1, -, i, qit1)- Note that the 0-configuration is the empty tuple (). Further, we
derive the transition relation for configurations by point-wise application of the
respective d;’s. We define d<;({q1,q2,...qi),0) as (01(q1, (o)), 02(q2, {0, ¢1)), . .).

148 U. Boker, K. Lehtinen, S. Sickert

Note that we will omit the “< 7”-subscript if it is clear from context, and by
just writing “configuration”, we mean an n-configuration.

Notice that A describes a standard semiautomaton D4 over X', whose states
are the configurations of A of level n, and its transition function is d<y,. If there
are up to j states in each level of A, there are up to j™ states in D 4. Observe that
when A is a reset cascade, it can be translated to an equivalent reset cascade
with up to nlogj levels, and 2 states in each level [14, Ex. 1.10.2].

For a state ¢ € Q; of level i of a reset cascade, we denote by Enter(q), Stay(q),
and Leave(q) C X' x Q1 X --- X Q;—1 the sets of (combined) letters that enter
g, stay in it, and leave it, respectively. These are sets of pairs (o, S), where S
is an (i—1)-configuration and o € Y. Notice that Enter(q) C Stay(q), and that
Leave(q) is the complement of Stay(g) (w.r.t. the relevant (combined) letters).

A semiautomaton (X, @,d) is homomorphic to a cascade (X, Ay,..., A,) if
there exists a partial surjective function ¢: Q1 X --- X @, — @, such that for
every o0 € X and S € Q1 X - -+ X Qp, we have 6(¢(S5),0) = ¢(d<n (S, 0)).

Proposition 6 (Part of the Krohn-Rhodes-Holonomy Decomposition
[14, Corollary II.7.2], [26, Theorem 3]). Every counter-free deterministic
semiautomaton D with n states is homomorphic to a reset cascade A with up to
2™ levels and 2™ states in each level.

Remark 1. The Krohn-Rhodes and Holonomy decomposition theorems consider
also more general cascades and give results with respect to arbitrary semiauto-
mata. The Holonomy decomposition in [14], as opposed to many other proofs
of the Krohn-Rhodes decomposition, guarantees up to 2™ levels with up to 2"
states in each level. Yet, it shows that A covers D, allowing A to operate over
an alphabet different from that of D. In [26,27,25], the algebraic proof of [14] is
translated to an automata-theoretic one, providing the stated homomorphism.
It is also stated in [26, Theorem 3.1], [27, Corollary 20], and [25, Corollary 2]
that the number of configurations in A is singly exponential in n, but to the
best of our understanding they do not provide an explicit proof for it.

Cascades with acceptance conditions. As a cascade A describes a standard semi-
automaton (whose states are the configurations of A), we can add to it an initial
configuration and an acceptance condition to make it a standard deterministic
automaton. We show below that the homomorphism between an automaton and
a cascade can be extended to also transfer the same acceptance condition.

Proposition 7. Let D be a deterministic Biichi, coBuchi or Rabin automaton,
with a semiautomaton homomorphic to a cascade A. There is respectively a
deterministic Biichi, coBiichi or Rabin automaton D’ equivalent to D with semi-
automaton A. For Rabin, D and D’ have the same number of acceptance pairs.

Proposition 8. Consider a deterministic Muller automaton D with n states,
whose semiautomaton is homomorphic to a reset cascade A with m configura-
tions. Then there is a deterministic Muller automaton D’ equivalent to D, whose
semiautomaton is A and its Muller condition has up to 2°0™) acceptance sets.

On the Translation of Automata to Linear Temporal Logic 149

4.2 Encoding Reachability within Reset Cascades by LTL Formulas

For the rest of this section, let us fix a set of atomic propositions AP, an alphabet
X =247 and a reset cascade A = (¥, A1, A, ..., A,).

The main reachability formula. For every level i of A, three configurations S, B
and T of level 4, and two LTL formulas 8 and 7, we will define the LTL formula
S~~~ T (1) with the intended semantics that it holds on a word w € X¢ iff

A goes from the ‘starting’ configuration S to the ‘target’ configuration 7" along
some prefix u of w, such that the suffix of w after u satisfies 7 and the path
along v avoids the ‘bad’ configuration B with a suffix satisfying 3.

Auziliary reachability formulas. We will formally define the main reachability
formula by induction on the level ¢ of the involved configurations, and using
four auxiliary formulas, whose intended semantics is described in Table 1. These
formulas distinguish between the case that the top-level state is unchanged along
the reachability path, denoted with a solid arrow —, and the case that it is
changed, denoted by a dashed arrow ---+. They also have dual, weak, versions.

Observe that intuitively S S T (1) is an extended Until operator, while

its dual § ~~2% T' (1) = —(S ~~~ B (B)) is an extended Weak until (or Release)
BAL L

operator. We build the formulas so that for appropriate choices of 5 and 7, the
(strong) reachability formulas 1, 3, and 5 (as numbered in Table 1) are syntactic
co-safety and the weak formulas 2 and 4 are syntactic safety formulas.

Formulas 1 and 2. The main formula is simply defined as the union of two
auxiliary formulas, corresponding to whether or not the top-level state changes,
and its weak version is defined to be its dual.

(=8)Ur if S =)

S %& T (1) = {S %) T(t)V S :B:@+ T (1) otherwise.

S%T(T) = ﬁ<S~;~@wB(ﬂ)>

Formula 3. Since the formula should ensure that the top-level state s is un-
changed, we first distinguish between four cases, depending on which of the
source configuration (S, s), bad configuration (B,b), and target configuration
(T, t) are equal. The definitions of the four cases only differ in whether or not
each of 8 and 7 are satisfied in the first position of the word.

We define them using an intermediate common formula that is indifferent
to the first position, which we mark by “> 0” on top of the arrow. We then
define the “> 0” formula by using the main reachability formula with respect
to a lower level, namely with respect to the configurations S and T instead of
(S, s) and (T, t), and having corresponding disjunctions and conjunctions on all
the combined letters of the top level that belong to Stay(s) and Leave(s).

150 U. Boker, K. Lehtinen, S. Sickert

Intended semantics
Reachability formula ¢ | Intuitively: Reading a word w from the configuration S or (S, s)
Formally: w = ¢ <~

not reaching B(f) until reaching T'(7).
1. S T 3 > 0. 8(S,wpp..y) =T Awy.) T
A (V5 € [0..2). 6(S, w[on;)) # BV B)

. reaching T'(7) releases not reaching B(/3).
2. S%"’ T(r) Vi > 0. (6(S,wio..)) = BAwp.) = B)
— (3_] S [0..2). 5(5 wouj)) = T/\U}[j“]): T)

not reaching (B, b) () until reaching (T',¢)(7), while staying in s.
3 (S, 8) ——— (T, t) (7) 3 > 0. 6((575), (0.9) = (T, t) Nw) =7
’ TBME) A (V)€ [i) 6((S,), w o.<g>) # (B, b) V. = B)

A (V5 € [0..9). (w[j],d(S,w..4))) € Stay(s))
reaching (T, t)(7) releases not (reaching (B, b)(8) or leaving s).
4 (S, s) == (T (1) Vi > 0. ((6((S wio..) = (B,b) ANwpi =)
’ TB#8) (2 l)' wli—1], (5(\‘.11[1y)) ¢ Leaveull)
= (35 €[0-4). 5({S,5), wio..p)) = (T 1) Awpyy £ 7)

not reaching (B, b) () until reaching (T',¢)(7) and leaving s.
Fin,io > 0. 0((S, 5), wp..i)) = (T, t) Nwps, =T

FES J— (T8 (r A (371 € [0..41). (w[j1], (S, wio. 4,))) € Enter(t))
5. () TBHM8). o0 () wliz], §(S, Wio..i5))) € Leave(s)
A (Vg2 € [0..max(i1—1,12)]. 6((S,s), wo..5,)) # (B,b)
V Wi, l# /B)

Table 1. The intended semantics of reachability formulas. Orange subformulas show
the difference between the auxiliary formulas and the first or second (main) formula.

(S, s) —> (T,t) (1) =
(S, s) {m}> (T, t) (1) if (S, s) # (B,b) and (S, s) # (T t)
(S, s) m (T, t) (1) VT if (S,s) # (B,b) and (S, s) = (T, ¢)
S, s 20 L) () A if (S,s) = (B,b) and (S, s ,
(>M<Tt>()Aﬂ (S,5) = (B,b) and (S, s) # (T’ 1)
((S, s) ﬁ (T,t) (1) A —\,3) v if (S,s) = (B,b) and (S, s) = (T,t)

B

where (S, s) ——— (T, t) (1) == \/ <S s T (0 A XT)
B (o,T") EStay(s) <
s.t. (T',8) S (T,t)

B

On the Translation of Automata to Linear Temporal Logic 151

A /\ S~ T (6 AXT) A /\ S‘VWWW‘)TI(O'/\XT)>
(n,L)€ELeave(s) (p,B’)€Stay(s)
s.t. (B',s)5(B,b)

Formula 4. Tts intended semantics is also that the top-level state s is unchanged,
but we weaken Formula 3 by not enforcing that the target configuration (T, ¢) is
reached and 7 is satisfied. Thus as long as the top-level state s stays unchanged
and the bad configuration (B, b) is not reached while satisfying 8, Formula 4 is
also satisfied. Note that since both Formula 3 and Formula 4 need to ensure that
the top-level state s is unchanged they cannot simply be defined as the dual of
each other. However, they share the same construction principle:

weak

(S, s) M} (T,t) (1) =

weak,>0

(S, 5) % (T, t) (7) if (S, s) # (B,b) and (S, s) # (T, 1)
(S, s) me;)) (T,t) (1) V T if (S, s) # (B,b) and (S, s) = (T}t)
(S, 5) M}f;(ﬂ £ (1) A =B if (S, s) = (B,b) and (S, s) # (T, t)
((S,) m (T, t) (7) V T> A=B if (S,s) = (B,b) and (S, s) = (T, 1)

where

weak, >0
—_—

(S,s)

—

T,t) (7

~—

S T (0 A X7 S A T (0 A X7 1
\/(/\ LT @A XD A N\ ST))()

(o,T")€EStay(s) (n,L)€Leave(s) (p,B’)€Stay(s)
s.t. (T',s) 53 (T,t) s.t. (B,s)5(B,b)
\Vi < N\ S S(false) A\ S S (false)) 2)
(n.L)eleave(s) PR (B yestay(s) B PAXEL

s.t. (B',s)5(B,b)

Formula 5. The definition of the last reachability formula is the most challenging,
since the top-level state changes (s # t), which prevents the direct usage of lower
level configurations.

Intuitively, before reaching the target configuration (7', ¢), the run must see a
combined letter (o,T") € Enter(t), after which the top-level state ¢ is preserved
and the bad situation (B, b)(f) is avoided. This is line (1) of the definition.

The run must also not see (B,b)(3) before reaching T, which is handled in
line (2), whose difference from line (1) is the additional constraint on the path
from S to T”. (Line (1) is required for the case that Enter(b) is empty.) We use
Formula 4 for that constraint, rather than Formula 3 which could also be used,
in order to ensure that Formula 5 can be a syntactic co-safety formula.

152 U. Boker, K. Lehtinen, S. Sickert

Lastly, line (3) ensures that the top-level state is indeed changed.

(S, 8) 2o s (T, t) (1) =
()!/)G (Sm T’ <a AX (84T,) ey (T m)) A)
Enter(t)

éﬁ'éf\gbis RAX (TR %<B7b>(ﬂ))) : (U/\ X(MTI’) m o (T)))) ®
V] S M)

Leave(s)

We prove the correctness of the above definitions with respect to the intended
meaning of Table 1 by induction on the level of the involved configurations.

Lemma 4. The intended semantics of Table 1 hold for all infinite words w €
Y@ = (247)% configurations S, B, T of level m < n, states s,b,t in level m + 1
(when m < n), and LTL formulas 8 and T over AP.

Using the same induction principle we prove that the reachability formulas
stay within certain classes of the syntactic future hierarchy (Definition 1). We
use S Sray T (Y) € Z as a shorthand for saying that for every formulas g € X

and 7 € Y, the formula S~~~ T (7) is in Z.
BAL

Lemma 5. Let S, B, T be configurations of level m < n, and let s,b,t be states
in level m 4+ 1 (when m < n). Then for i > 1 it holds that:

- S%"" T (%), (S,s) m (T,t) (X:), (S,s) RN (T,t) () € %

y

= S T(IL), (S,s) —=—— (1) (IL) € II;
B TBHL)

4.3 Depth and Length Analysis

We analyze the length and temporal-nesting depth of the LTL reachability for-
mulas defined in Section 4.2. Notice that both measures are of independent
interest, as there might be a non-elementary gap between the depth and length
of LTL formulas [15, Theorem 6]. Since we provide upper bounds, the bound on
the length of formulas obviously gives also a bound on their size.

We consider a reset cascade A with n levels, as in Section 4.2, and further
assume for the length and depth analysis that it has up to n states in each level.
(This assumption holds in the reset cascades that result from the Krohn-Rohdes
decomposition as per Proposition 6.)

We define for each of the five reachability formulas a depth function D, (i, d)
and a length function L. (i,1), where x refers to the number of the reachability

On the Translation of Automata to Linear Temporal Logic 153

formula, to bound the depth and length of the formulas. These depend on the
level i of its input configurations S, B and T, and the maximal depth d and
length [of its input formulas 8 and 7. For the main (first) reachability formula,
we also use D and L, standing for D; and L;. For example, the length of the first
formula S iy T (1) over configurations S, B and T of level 7 and formulas

and 7 of length up to 77 is bounded by the value of L;(7,77).

For simplicity, we consider the LTL representation of an alphabet letter o € X
to be of length 1, while its actual length is 3log, |¥|. This increase is due to the
need to encode an alphabet letter o € X = 247 as a conjunction of atomic
propositions in AP. The representation length can be multiplied by the total
length of the final relevant formula (e.g., a formula equivalent to the entire reset
cascade), since it remains constant along all steps of our inductive computation.

We provide in Table 2 upper bounds on the depth and length functions, rel-
ative to values of other depth and length functions with respect to configurations
of the same or lower-by-one level. The table is constructed by following the syn-
tactic definitions of the reachability formulas, and applying basic simplifications
to the resulting expressions. For example, L1 (0,1) = 2+2! standing for the length
of (=4)Ur. In Lemma 6 we will use Table 2 to bound the absolute depth and
length of the main reachability formula.

Depth Analysis. The temporal nesting depth of the main reachability formula
S S T (7) is intuitively exponential in the number n of levels of the reset

cascade (linear in the number of configurations), since it is defined inductively
along these levels, and the depth of a level-(i + 1) formula is about twice the
depth of a level-i formula. The parameters of the reachability formula are both
the configurations S, B and T of level i, and the formulas g and 7; yet, the
depth of the reachability formula only linearly depends on the depth of 8 and 7.

Length Analysis. Intuitively, the overall length of the main reachability formula
S ~~~~ T (1) with respect to configurations of the top level is doubly exponential

in the number n of levels of the reset cascade (and thus singly exponential in
the number of configurations), since the formula is defined inductively along
these levels, and the length L(7,1) is roughly L(i—1,1) - L(i—1,1). More precisely,
L(é,1) =1 - f(i) for some doubly exponential function f(i).

Now, why is L(¢,1) roughly equal to L(i—1,1) - L(i—1,1)? The dominant
component of the level-i reachability formula is line (2) in the definition of
(S, 8) ——----- » (T,t) (7). It is a level-(i—1) reachability formula whose formula-

parameters are themselves auxiliary reachability formulas of level ¢ with formula
parameters of length [. The length of an auxiliary reachability formula of level 4 is
roughly as of the main reachability formula of level ¢—1, implying that the length
of L;(1) is roughly L;_1(L;—1(1)). By the inductive proof that L;_1(1) = I- f(i—1),
we get that Ll(l) = Li_l(Li_l(l)) = Li_1(l) : f(i—l) =1 f(i—l) . f(i—l).

As for the many disjunctions and conjunctions that appear in the formulas,
observe that the number of disjuncts and conjuncts does not depend on the

154 U. Boker, K. Lehtinen, S. Sickert

Reachability formula ¢ Bounds on depth(p) and length |¢|
1 if i =
DiGia)< ¢ FL om0
max(D3(i,d), D5(i,d)) otherwise.
1 S~ T (T)
. 2+ 21 ifi=0
Li(i,1) < .) .
1+ Ls(é,0) + Ls(4,1) otherwise.
2 ST |DED=DGd)
BAL

Lg(i, l) =1+4+1L (Z', l)

Dg(i, d) < D1(i—1, d+ 1)
Ls(i, 1) < 3+20+ [Z|n' " (1+L1(i—1,3+)+
1+ |Z|n (L1 (i—1,341) + 1)+
1+ |2~ (L1 (i1, 3+1) + 1))
< 34204 422020 DL (-1, 143)

3. (59) Sy (T,) (1)

- D4(i,d) < D2(i—1,d 4+ 1) = D1(i—1,d + 1)
4. (5, 8) c—~ L) | L) <3+20+0+ 12) (14 [S0 (1 + La(i—1,143)))
<3+ 2+ 4) P20V (1,1 + 3)

D5(i,d) < Dl(i—l,max(l + Dg(i, d), 1+ D4(Z,d)))
5.5 e DO LG <1 (Ll - 1,3+ Le(6,1) + 2+
[Z[n* " (Li(i — 1, max(3 + L3 (i,1),3 + La(i,1))) + 1))
+1+ |2 (1 + L3 (4,3 + 1)

Table 2. The relative depths and lengths of the reachability formulas over configura-
tions of level 4, and LTL formulas 8 and 7 of depth at most d and length at most [. For
the first two reachability formulas, we consider ¢ > 0 and for the other formulas ¢ > 1.

formula-parameters 5 and 7, but only the level i of the configurations S, B, and
T. Hence, they do not dominate the growth rate of the overall formula length.

Lemma 6. Consider a reset cascade A with n levels and up to n states in each
level, and a formula (= S ~~~~ T (1) with configurations S, B and T of A of

level i < n. Let d = max(depth(S3),depth(7)) and let | = max(|8|, |7]). Then:
(a) depth(C) <d+3" and (b) [¢] <1-(10|Z|>n)*
Lemma 6 is proven by induction on ¢ and the details of this proof can be
found in the full version [5].
4.4 Translating Deterministic Counter-Free Automata to LTL

We use the reachability formulas of Section 4.2 to translate a reset cascade A to
an equivalent LTL formula. Our LTL formulation of A’s acceptance condition

On the Translation of Automata to Linear Temporal Logic 155

is based on an LTL formulation of “C' is visited finitely/infinitely often along
a run of A on a word w”, for a given configuration C' of A. It thus applies
to every w-regular acceptance condition and by Propositions 6 and 8 to every
deterministic counter-free w-regular automaton. We introduce two shorthands to
the main reachability formula: the first is satisfied if we reach T from S without
any side constraints (which is always satisfied in the case that S = T), and the
second requires that we reach it along a nonempty prefix.
Snr T 1= § s T (true) S~ Ti= \/ (UAX(d(S,a)WT))
Ttfalse)

< oeX

With Lemmas 4 and 5 we then obtain (the proof can be found in [5]):

Lemma 7. Consider a reset cascade A = (247, Ay,..., A,) together with an
initial configuration L and some configuration C. Then for a word w € (2AP)W,
the run of A on w starting in L visits C' finitely often iff w satisfies the formula

Fin(C) ==L~~~ C)V L~~~ C(ﬂ(C’~>\9~+ (). Furthermore, Fin(C) € X5.
We are now in position to give our main result.

Theorem 2. Every counter-free deterministic w-regular automaton D over al-
phabet 24T with n states (and any acceptance condition) is equivalent to an LTL
formula ¢ over atomic propositions AP of double-exponential temporal-nesting
depth (in O(22")) and triple-exponential length (in 220(2n)). If D is a looping-
Biichi, looping-coBiichi, weak, Biichi, coBichi, or Muller automaton then ¢ is
respectively in the ITy, X, Ay, I, Yo, or Ay syntactic fragment of LTL.

Proof. We first prove the general result, w.r.t. an arbitrary counter-free determ-
inistic automaton D, and then take into account D’s acceptance condition, to
establish the last part of the theorem.

Consider a counter-free deterministic w-regular automaton D with some ac-
ceptance condition and n states. Recall that there is a Muller automaton D’ equi-
valent to D over the semiautomaton of D. By Propositions 6 and 8, D’ is equival-
ent to a deterministic Muller automaton D" that is described by a reset cascade
A with up to m = 2" levels and m states in each level (and thus up to m™ con-
figurations), and whose acceptance condition has up to k € 20(m™n) — 90(m™)
acceptance sets. An LTL formula ¢ equivalent to D can be defined by formulating
the acceptance condition of D’ along Lemma 7.

Recall that the Muller condition is a k-elements disjunction, where each dis-
junct M is a conjunction of requirements to visit infinitely often every configur-
ation from some set G and finitely often every configuration not in G. Observe
that M can be formulated as a disjunction over all the configurations in D (at
most m™), having for each configuration C' the LTL formula Fin(C) or = Fin(C),
as defined in Lemma 7, depending on whether or not C' € G. Hence, the overall
formula ¢ is a combination of disjunctions and conjunctions of up to k-m™ sub-
formulas of the form Fin(C) or —=Fin(C). Therefore, the depth of ¢ is the same
as of Fin(C), while || € O(km™|Fin(C)|) < 2°m™)|Fin(C)|. For calculating
depth(Fin(C)) and |Fin(C)|, we use Lemma 6 bottom up over the subformulas
of Fin(C).

156 U. Boker, K. Lehtinen, S. Sickert

Depth.
depth(L ~~ C) < 3™ ; depth(C ~2% C) < 3™ + 1

depth(L ~ C(—(C ~Z2% C))) < 2-3™ + 1

depth(Fin(C)) = max(3™,2-3™ +1) € O(3™) = 0(2*"),
implying depth() € O(22").

Length.
L~ C| < (10| 52m)4" 5 |C~22% C| < (4]2)]) - (10| Z2m)4"
20 (m)

|F7,n(C)| €2+ (10|2‘2m)4m 4 (|E‘m)20(m) c (|E|m)20(m>,

Therefore, || € 200m™) . (m™) - ((|1X]m)2* ™) = | 227",

Expressing the length of ¢ with respect to the number n of states in the
automaton D, and taking into account the fact that the alphabet 3 has at most
n™ different letters (any additional letter must have the same behavior as another
letter), we have: |¢| € | 527" < (21)27¢" = 22907,

We now sketch the second part of the theorem connecting the syntactic hier-
archy and the different acceptance conditions of D. We only consider the cases
in which D is either a Muller or a coBiichi automaton. The complete analysis
is given in the full version [5]. If D is a Muller automaton, then the overall for-
mula ¢ is in Ay, since it is a Boolean combination of Fin(C) formulas, which
by Lemma 7 belong to Xs. If D is a coBiichi automaton, then we construct the
formula ¢ directly from the coBiichi condition a: ¢ is a conjunction of Fin(C)
formulas over all configurations C' that are mapped to states in a. As Fin(C)
belongs to X5, so does . O

Observe that by Theorem 2, we get the following result, extending the result
of [39, Theorem 3.2] that only considers Rabin automata.

Corollary 1. Every counter-free deterministic w-regular automaton (with any
acceptance condition) recognises an LTL-definable language.

Proof. Recall that every deterministic w-regular automaton is equivalent to a
deterministic Muller automaton over the same semiautomaton (see, e.g., [3]).
The claim is then a direct consequence of Theorem 2. O

Remark 2. Theorem 2 can be adapted to the finite-word setting. While on infin-
ite words, the neXt operator is self-dual, i.e., =X1) is equivalent to X—), over
finite words, this equivalence does not hold on words of length 1. Thus X gains
a dual weak next, defined as Xw := = X-—. In the finite word case, syntactic
cosafety (safety) formulas are constructed from true, false, a, —a, V, A, and the
temporal operators U and X (R and 5{) Observe that X and X differ only on
words of length 1, and thus the only required change in our translation scheme
is to replace some Xs with Xs in the reachability formula 4. For finite words a

On the Translation of Automata to Linear Temporal Logic 157

translation of a counter-free DFA to an LTL formula with only a double expo-
nential size blow-up is known [42]; however, unlike our translation, it does not
guarantee syntactic safety (cosafety) formulas for safety (cosafety) languages.

Lastly, we provide a corollary on looping automata, using Theorem 2 and
the following known result.

Proposition 9 (Rephrased Theorem 13 from [29]). Let D be a determin-
istic looping-Biichi automaton with n states that recognises an LTL-definable lan-
guage. Then there exists an equivalent counter-free deterministic looping-Biichi
automaton D' with at most n states.

Corollary 2. Every deterministic looping-Biichi (looping-coBiichi) automaton
with n states that recognises an LTL-definable language is equivalent to an LTL

formula ¢ € ITy (£,) of temporal nesting depth in O(22") and length in 929",

This is an elementary upper bound for two constructions for which either the
upper bound was unknown or non-elementary: the liveness-safety decomposition
of LTL [29] and the translation of semantic safety LTL to syntactic safety LTL.

5 Conclusions

We have studied the size trade-offs between LTL and automata. Over a un-
ary alphabet, the situation is straightforward and we provided tight complexity
bounds. The general case of infinite words over an arbitrary alphabet is more
complex. We gave to our knowledge the first elementary complexity bound on the
translation of counter-free deterministic w-regular automata into LTL formulas.
Every w-regular automaton recognising an LTL-definable language can be
translated to a counter-free deterministic automaton [39, Theorem 3.2]. Yet, we
are unaware of a bound on the size blow-up involved in such a translation. Once
established, it can be combined with our translation to get a general bound on
the translation of automata to LTL. It will also provide a (currently unknown®)
elementary upper bound on the translation of LTL with both future and past
operators to LTL with only future operators (which is the version of LTL that we
have considered), as (both version of) LTL can be translated to nondeterministic
Biichi automata with a single exponential size blow-up [41, Theorem 2.1].
While going from non-elementary to double-exponential depth and triple-ex-
ponential length is an improvement, these upper bounds might not be tight—
there is currently no known non-linear lower bound! Closing this gap is a chal-
lenging open problem, which might require new lower bound techniques for al-
ternating automata, as LTL formulas are an inherently alternating model.

Acknowledgements. We thank Moshe Vardi and Orna Kupferman for suggesting
studying the succinctness gap between semantic and syntactic safe formulas, and
Mikotaj Bojanczyk for answering our questions on algebraic automata theory.

6 In consultation with the author of [30], we have confirmed that while the lower bound
provided in that paper holds, the stated upper bound is erroneous.

158

U. Boker, K. Lehtinen, S. Sickert

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathem-

atical Systems Theory 29(3), 191-226 (1996)

. Bojanczyk, M.: Languages recognised by finite semigroups, and their generalisa-

tions to objects such as trees and graphs, with an emphasis on definability in
monadic second-order logic (2020)

Boker, U.: Why these automata types? In: Proc. of LPAR. pp. 143-163 (2018)
Boker, U., Kupferman, O.: The quest for a tight translation of Biichi to co-Biichi
automata. In: Fields of Logic and Computation, pp. 147-164. Springer (2010)
Boker, U., Lehtinen, K., Sickert, S.: On the translation of automata to linear tem-
poral logic (2022), https://arxiv.org/abs/2201.10267, full version

Cerna, 1., Pelanek, R.: Relating hierarchy of temporal properties to model checking.
In: MFCS. Lecture Notes in Computer Science, vol. 2747, pp. 318-327. Springer
(2003)

Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114—
133 (Jan 1981)

Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) Automata, Languages and Programming, 19th International
Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings. Lecture
Notes in Computer Science, vol. 623, pp. 474-486. Springer (1992)

Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149-158 (1986)

Cohen, J., Perrin, D.; Pin, J.E.: On the expressive power of temporal logic. Journal
of computer and System Sciences 46(3), 271-294 (1993)

Cohen-Chesnot, J.: On the expressive power of temporal logic for infinite words.
Theoretical Computer Science 83(2), 301-312 (1991)

Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of trans-
ition labeled Biichi automata. In: International Colloquium on Automata, Lan-
guages, and Programming. pp. 151-162. Springer (2009)

Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]. Texts in Logic and
Games, vol. 2, pp. 261-306 (2008)

Eilenberg, S.: Automata, Languages, and Machines Volume B. Academic Press,
Inc., USA (1976)

Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and
unary temporal logic. Inf. Comput. 179(2), 279-295 (2002)

Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. of POPL. p. 163-173. New York, NY, USA (1980)

Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite auto-
mata. Information and Computation 205(8), 1173-1187 (2007)

Kamp, J.A.W.: Tense logic and the theory of linear order. University of California,
Los Angeles (1968)

Kupferman, O., Rosenberg, A.: The blowup in translating LTL to deterministic
automata. In: Proc. of Model Checking and Artificial Intelligence. pp. 85-94 (2010)
Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata. In: Proc. of
LICS (1999)

Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic (TOCL) 2(3), 408-429 (2001)

https://arxiv.org/abs/2201.10267

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

On the Translation of Automata to Linear Temporal Logic 159

Ladner, R.E.: Application of model theoretic games to discrete linear orders and
finite automata. Information and Control 33(4), 281-303 (1977)

Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oretical computer science 13(3), 323-330 (1981)

Léding, C.: Optimal bounds for transformations of w-automata. In: Rangan, C.P.,
Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology and The-
oretical Computer Science. pp. 97-109. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1999)

Maler, O.: On the Krohn-Rhodes cascaded decomposition theorem. In: Time for
Verification, Essays in Memory of Amir Pnueli. Lecture Notes in Computer Science,
vol. 6200, pp. 260-278. Springer (2010)

Maler, O., Pnueli, A.: Tight bounds on the complexity of cascaded decomposition
of automata. In: Proc. of FOCS. pp. 672-682 (1990)

Maler, O., Pnueli, A.: On the cascaded decomposition of automata, its complexity
and its application to logic. Unpublished. Available at: http://www-verimag.imag.
fr/~maler/Papers/decomp.pdf (1994)

Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC. pp. 377-410.
ACM (1990)

Maretic, G.P., Dashti, M.T., Basin, D.A.: LTL is closed under topological closure.
Inf. Process. Lett. 114(8), 408-413 (2014)

Markey, N.: Temporal logic with past is exponentially more succinct. Bull. EATCS
79, 122-128 (2003)

McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris 15 (1988)

Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings Third Annual Symposium on Logic in Computer Science. pp.
422-423. IEEE Computer Society (1988)

Perrin, D.: Recent results on automata and infinite words. In: International Sym-
posium on Mathematical Foundations of Computer Science. pp. 134-148. Springer
(1984)

Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann
Institute, Rehovot, Israel (1989)

Schewe, S.: Biichi Complementation Made Tight. In: Albers, S., Marion, J.Y. (eds.)
Proc. of 26th International STACS. Leibniz International Proceedings in Inform-
atics (LIPIcs), vol. 3, pp. 661-672 (2009)

Sickert, S., Esparza, J.: An efficient normalisation procedure for linear temporal
logic and very weak alternating automata. In: LICS. pp. 831-844. ACM (2020)
Thomas, W.: Star-free regular sets of w-sequences. Information and Control 42(2),
148-156 (1979)

Thomas, W.: A combinatorial approach to the theory of w-automata. Information
and Control 48(3), 261-283 (1981)

Thomas, W.: Automata on infinite objects. In: Formal Models and Semantics, pp.
133-191. Elsevier (1990)

Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. of LICS. pp. 332-344 (1986)

Wilke, T.: Classifying discrete temporal properties. In: Annual symposium on the-
oretical aspects of computer science. pp. 32-46. Springer (1999)

http://www-verimag.imag.fr/~maler/Papers/decomp.pdf
http://www-verimag.imag.fr/~maler/Papers/decomp.pdf

160 U. Boker, K. Lehtinen, S. Sickert

43. Wilke, T.: Past, present, and infinite future. In: 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

44. Wilke, T.: Backward deterministic Biichi automata on infinite words. In: 37th
TARCS Annual Conference on Foundations of Software Technology and Theor-
etical Computer Science (FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

45. Wolper, P.: Temporal logic can be more expressive 56(1-2), 72-99 (1983)

46. Zuck, L.D.: Past Temporal Logic. Ph.D. thesis, The Weizmann Institute of Science,
Israel (Aug 1986)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Categorical composable cryptography™*

Anne Broadbent® and Martti Karvonen (=)

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
{abroadbe ,martti.karvonen}@uottawa.ca

Abstract. We formalize the simulation paradigm of cryptography in
terms of category theory and show that protocols secure against abstract
attacks form a symmetric monoidal category, thus giving an abstract
model of composable security definitions in cryptography. Our model
is able to incorporate computational security, set-up assumptions and
various attack models such as colluding or independently acting subsets
of adversaries in a modular, flexible fashion. We conclude by using string
diagrams to rederive the security of the one-time pad and no-go results
concerning the limits of bipartite and tripartite cryptography, ruling out
e.g., composable commitments and broadcasting.

Keywords: Cryptography - composable security - quantum cryptogra-
phy - category theory

1 Introduction

Modern cryptographic protocols are complicated algorithmic entities, and their
security analyses are often no simpler than the protocols themselves. Given this
complexity, it would be highly desirable to be able to design protocols and reason
about them compositionally, i.e., by breaking them down into smaller constituent
parts. In particular, one would hope that combining protocols proven secure
results in a secure protocol without need for further security proofs. However, this
is not the case for stand-alone security notions that are common in cryptography.
To illustrate such failures of composability, let us consider the history of quantum
key distribution (QKD), as recounted in [60]: QKD was originally proposed in
the 80s [7]. The first security proofs against unbounded adversaries followed
a decade later [8,49,50,64]. However, since composability was originally not a
concern, it was later realized that the original security definitions did not provide
a good enough level of security [42]—they didn’t guarantee security if the keys
were to be actually used, since even a partial leak of the key would compromise
the rest. The story ends on a positive note, as eventually a new security criterion
was proposed, together with stronger proofs [5, 62].

In this work we initiate a categorical study of composable security definitions
in cryptography. In the viewpoint developed here one thinks of cryptography

* This work was supported by the Air Force Office of Scientific Research under award
number FA9550-20-1-0375, Canada’s NFRF and NSERC, an Ontario ERA, and the
University of Ottawa’s Research Chairs program.

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 161-183, 2022.
https://doi.org/10.1007/978-3-030-99253-8_9

®

Check for
updates

http://orcid.org/0000-0003-1911-0093
http://orcid.org/0000-0002-8919-343X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_9&domain=pdf

162 A. Broadbent and M. Karvonen

as a resource theory: cryptographic functionalities (e.g. secure communication
channels) are viewed as resources and cryptographic protocols let one transform
some starting resources to others. For instance, one can view the one-time-pad as
a protocol that transforms an authenticated channel and a shared secret key into
a secure channel. For a given protocol, one can then study whether it is secure
against some (set of) attack model(s), and protocols secure against a fixed set
of models can always be composed sequentially and in parallel.

This is in fact the viewpoint taken in constructive cryptography [47], which
also develops the one-time-pad example above in more detail. However [47] does
not make a formal connection to resource theories as usually understood, whether
as in quantum physics [16,39], or more generally as defined in order theoretic [32]
or categorical [20] terms. Instead, constructive cryptography is usually combined
with abstract cryptography [48] which is formalized in terms of a novel algebraic
theory of systems [46].

Our work can be seen as a particular formalization of the ideas behind con-
structive cryptography, or alternatively as giving a categorical account of the
real-world-ideal-world paradigm (also known as the simulation paradigm [34]),
which underlies more concrete frameworks for composable security, such as uni-
versally composable cryptography [13] and others [2,3,38,43,44,51,58]. We will
discuss these approaches and abstract and constructive cryptography in more
detail in Section 1.1

Our long-term goal is to enable cryptographers to reason about composable
security at the same level of formality as stand-alone security, without having
to fix all the details of a machine model nor having to master category the-
ory. Indeed, our current results already let one define multipartite protocols
and security against arbitrary subsets of malicious adversaries in any symmetric
monoidal category C. Thus, as long as one’s model of interactive computation
results in a symmetric monoidal category, or more informally, one is willing to
use pictures such as fig. 1d to depict connections between computational pro-
cesses without further specifying the order in which the picture was drawn, one
can use the simulation paradigm to reason about multipartite security against
malicious participants composably—and specifying finer details of the compu-
tational model is only needed to the extent that it affects the validity of one’s
argument. Moreover, as our attack models and composition theorems are fairly
general, we hope that more refined models of adversaries can be incorporated.

We now highlight our contributions to cryptography: We show how to adapt
resource theories as categorically formulated [20] in order to reason abstractly
about secure transformations between resources. This is done in Section 3 by
formalizing the simulation paradigm in terms of an abstract attack model (Def-
inition 1), designed to be general enough to capture standard attack models
of interest (and more) while still structured enough to guarantee composabil-
ity. This section culminates in Corollary 1, which shows that for any fixed set
of attack models, the class of protocols secure against each of them results in a
symmetric monoidal category. In Theorem 3 we observe that under suitable con-
ditions, images of secure protocols under monoidal functors remain secure, which

Categorical composable cryptography 163

gives an abstract variant of the lifting theorem [68, Theorem 15] that states that
perfectly UC-secure protocols are quantum UC-secure. We adapt this framework
to model computational security in two ways: either by replacing equations with
an equivalence relation, abstracting the idea of computational indistinguishabil-
ity, as is done in section 4, or by working with a notion of distance, deferred to
a full version. In the case of a distance, one can then either explicitly bound the
distance between desired and actually achieved behavior, or work with sequences
of protocols that converge to the target in the limit: the former models working
in the finite-key regimen [67] and the latter models the kinds of asymptotic se-
curity and complexity statements that are common in cryptography.Finally, we
apply the framework developed to study bipartite and tripartite cryptography.
We first prove pictorially the security of the one-time pad. We then reprove the
no-go-theorems of [46, 48, 61] concerning two-party commitments (resp. three-
party broadcasting) in this setting, and reinterpret them as limits on what can
be achieved securely in any compact closed category (resp. symmetric monoidal
category). The key steps of the proof are done graphically, thus opening the door
for cryptographers to use such pictorial representations as rigorous tools rather
than merely as illustrations.

Moreover, we discuss some categorical constructions capturing aspects of
resource theories appearing in the physics literature. These contributions may be
of independent interest for further categorical studies on resource theories. In [20]
it is observed that many resource theories arise from an inclusion Cr — C of free
transformations into a larger monoidal category, by taking the resource theory

of states. We observe that this amounts to applying the monoidal Grothendieck
hom(T,—
construction [53] to the functor Cr — C rom7), Set. This suggests applying

this construction more generally to the composite of monoidal functors F: D —
C and R: C — Set. In Example 1 we note that choosing F' to be the n-fold
monoidal product C™ — C captures resources shared by n parties and n-partite
transformations between them. In the extended version, we model categorically
situations where there is a notion of distance between resources, and instead
of exact resource conversions one either studies approximate transformations or
sequences of transformations that succeed in the limit. In the extended version,
we discuss a variant of a construction on monoidal categories, used in special
cases in [31] and discussed in more detail in [23,33], that allows one to declare
some resources free and thus enlarge the set of possible resource conversions.

1.1 Related work

We have already mentioned that cryptographers have developed a plethora of
frameworks for composable security, such as universally composable cryptogra-
phy [13], reactive simulatability [2,3, 58] and others [38, 43, 44, 51]. Moreover,
some of these frameworks have been adapted to the quantum setting [6, 54, 68].
One might hence be tempted to think that the problem of composability in
cryptography has been solved. However, it is fair to say that most mainstream
cryptography is not formulated composably and that composable cryptography

164 A. Broadbent and M. Karvonen

has yet to realize its full potential. Moreover, this proliferation of frameworks
should be taken as evidence of the continued importance of the issue, and is in
fact reflected by the existence of a recent Dagstuhl seminar on this matter [12].
Indeed, the aforementioned frameworks mostly consist of setting up fairly de-
tailed models of interacting machines, which as an approach suffers from two
drawbacks: Firstly, in order to be more realistic, the detailed models are often
complicated, both to reason in terms of and to define, thus making practicing
cryptographers less willing to use them. Perhaps more importantly it is not al-
ways clear whether the results proven in a particular model apply more generally
for other kinds of machines, whether those of a competing framework or those in
the real world. It is true that the choice of a concrete machine model does affect
what can be securely achieved—for instance, quantum cryptography differs from
classical cryptography and similarly classical cryptography behaves differently
in synchronous and asynchronous settings [4,40]. Nevertheless, one might hope
that composable cryptography could be done at a similar level of formality as
complexity theory, where one rarely worries about the number of tapes in a Tur-
ing machine or of other low-level details of machine models. Second, changing
the model slightly (to e.g., model different kinds of adversaries or to incorporate
a different notion of efficiency) often requires reproving “composition theorems”
of the framework or at least checking that the existing proof is not broken by
the modification.

In contrast to frameworks based on detailed machine models, there are two
closely related top-down approaches to cryptography: constructive cryptogra-
phy [47] and its cousin abstract cryptography [48]. We are indebted to both
of these approaches, and indeed our framework could be seen as formalizing
the key idea of constructive cryptography—mnamely, cryptography as a resource
theory—and thus occupying a similar space as abstract cryptography. A key
difference is that constructive cryptography is usually instantiated in terms of
abstract cryptography [48], which in turn is based on a novel algebraic theory of
systems [46]. However, our work is not merely a translation from this theory to
categorical language, as there are important differences and benefits that stem
from formalizing cryptography in terms of a well-established and well-studied
algebraic theory of systems—that of (symmetric) monoidal categories:

The fact that cryptographers wish to compose their protocols sequentially and
in parallel strongly suggests using monoidal categories, that have these composi-
tion operations as primitives. In our framework, protocols secure against a fixed
set of attack models results in a symmetric monoidal category. In contrast, the
algebraic theory of systems [46] on which abstract cryptography is based takes
parallel composition and internal wiring as its primitives. This design choice re-
sults in some technical kinks and tangles that are natural with any novel theory
but have already been smoothed out in the case of category theory. For instance,
in the algebraic theory of systems of [46] the parallel composition is a partial
operation and in particular the parallel composite of a system with itself is never

Categorical composable cryptography 165

defined! and the set of wires coming out of a system is fixed once and for all?.
In contrast, in a monoidal category parallel composition is a total operation and
whether one draws a box with n output wires of types Ay, ... A, or single output
wire of type @, A; is a matter of convenience. Technical differences such as
these make a direct formal comparison or translation between the frameworks
difficult, even if informally and superficially there are similarities.

We do not abstract away from an attacker model, but rather make it an
explicit part of the formalism that can be modified without worrying about
composability. This makes it possible to consider and combine very easily dif-
ferent security properties, and in particular paves the way to model attackers
with limited powers such as honest-but-curious adversaries. In our framework,
one can first fix a protocol transforming some resource to another one, and then
discuss whether this transformation is secure against different attack models. In
contrast, in abstract cryptography a cryptographic resource is a tuple of func-
tionalities, one for each set of dishonest parties, and thus has no prior existence
before fixing the attack model. This makes the question “what attack models is
this protocol secure against?” difficult to formalize.

As category theory is de facto the lingua franca between several subfields of
mathematics and computer science, elucidating the categorical structures present
in cryptography opens up the door to further connections between cryptography
and other fields. For instance, game semantics readily gives models of interactive,
asynchronous and probabilistic (or quantum) computation [18,19,69] in which
our theory can be instantiated, and thus further paves the way for programming
language theory to inform cryptographic models of concurrency.

Category theory comes with existing theory, results and tools that can readily
be applied to questions of cryptographic interest. In particular, the graphical
calculi of symmetric monoidal and compact closed categories [63] enables one
to rederive impossibility results shown in [46,48, 61] purely pictorially. In fact,
such pictures were already often used as heuristic devices that illuminate the
official proofs, and viewing these pictures categorically lets us promote them
from mere illustrations to rigorous yet intuitive proofs. Indeed, in [48, Footnote
27] the authors suggest moving from a 1-dimensional symbolic presentation to a
2-dimensional one, and this is exactly what the graphical calculus achieves.

The approaches above result in a framework where security is defined so as
to guarantee composability. In contrast, approaches based on various protocol
logics [25-30] aim to characterize situations where composition can be done
securely, even if one does not use composable security definitions throughout.
As these approaches are based on process calculi, they are categorical under the
hood [52,55] even if not overtly so. There is also earlier work explicitly discussing

1 While the suggested fix is to assume that one has “copies” of the same system with
disjoint wire labels, it is unclear how one recognizes or even defines in terms of the
system algebra that two distinct systems are copies of each other.

2 Indeed, while [59] manages to bundle and unbundle ports along isomorphism when
convenient, it seems like the chosen technical foundation makes this more of a strug-
gle than it should be.

166 A. Broadbent and M. Karvonen

category theory in the context of cryptography [9,10,21,22,35-37,41,56,57,65,
66], but they concern stand-alone security of particular cryptographic protocols,
rather than categorical aspects of composable security definitions.

2 Resource theories

We briefly review the categorical viewpoint on resource theories of [20]. Roughly
speaking, a resource theory can be seen as a SMC but the change in termi-
nology corresponds to a change in viewpoint: usually in category theory one
studies global properties of a category, such as the existence of (co)limits, re-
lationships to other categories, etc. In contrast, when one views a particular
SMC C as resource theory, one is interested in local questions. One thinks of
objects of C as resources, and morphisms as processes that transform a resource
to another. From this point of view, one mostly wishes to understand whether
hom¢(X,Y) is empty or not for resources X and Y of interest. Thus from the
resource-theoretic point of view, most of the interesting information in C is al-
ready present in its preorder collapse. As concrete examples of resource-theoretic
questions, one might wonder if (i) some noisy channels can simulate a (almost)
noiseless channel [20, Example 3.13.], (ii) there is a protocol that uses only local
quantum operations and classical communication and transforms a particular
quantum state to another one [17], (iii) some non-classical statistical behavior
can be used to simulate other such behavior [1]. In [20] the authors show how
many familiar resource theories arise in a uniform fashion: starting from an SMC
C of processes equipped with a wide sub-SMC Cp, the morphisms of which cor-
respond to “free” processes, they build several resource theories (=SMCs). Per-
haps the most important of these constructions is the resource theory of states:
given Cp — C, the corresponding resource theory of states can be explicitly
constructed by taking the objects of this resource theory to be states of C, i.e.,
maps r: I — A for some A, and maps r — s are maps f: A — B in Cp that
transform r to s as in fig. la.

We now turn our attention towards cryptography. As contemporary cryptog-
raphy is both broad and complex in scope, any faithful model of it is likely to be
complicated as well. A benefit of the categorical idiom is that we can build up to
more complicated models in stages, which is what we will do in the sequel. We
phrase our constructions in terms of an arbitrary SMC C, but in order to model
actual cryptographic protocols, the morphisms of C should represent interactive
computational machines with open “ports”, with composition then amounting
to connecting such machines together. Different choices of C set the background
for different kinds of cryptography, so that quantum cryptographers want C to
include quantum systems whereas in classical cryptography it is sufficient that
these computational machines are probabilistic. Constructing such categories C
in detail is not trivial but is outside our scope—we will discuss this in more
detail in section 6.

Our first observation is that there is no reason to restrict to inclusions
Cr — C in order to construct a resource theory of states. Indeed, while it

Categorical composable cryptography 167

is straightforward to verify explicitly that the resource theory of states is a sym-
metric monoidal category, it is instructive to understand more abstractly why

this is so: in effect, the constructed category is the category of elements of the

hom (I,— . .
composite functor Cp — C ﬂ—)ﬁ Set. As this composite is a (lax) symmet-

ric monoidal functor, the resulting category is automatically symmetric monoidal
as observed in [53]. Thus this construction goes through for any symmetric (lax)

monoidal functors D C £ Set. Here we may think of F' as interpreting
free processes into an ambient category of all processes, and R: C — Set as an
operation that gives for each object A of C the set R(A) of resources of type A.

Explicitly, given symmetric monoidal functors D RNy oJEiN Set, the category
of elements [RF has as its objects pairs (r, A) where A is an object of D and
r € RF(A), the intuition being that r is a resource of type F(A). A morphism
(r,A) = (s,B) is given by a morphism f: A — B in D that takes r to s,
i.e., satisfies RF(f)(r) = s. The symmetric monoidal structure comes from the
symmetric monoidal structures of D, Set and RF. Somewhat more explicitly,
(r,A) ® (s, B) is defined by (r ® s, A ® B) where r ® s is the image of (r,s)
under the function RF(A) x RF(B) — RF(A® B) that is part of the monoidal
structure on RF', and on morphisms of [RF the monoidal product is defined
from that of D.

From now on we will assume that F is strong monoidal, and while R =
hom(I, —) captures our main examples of interest, we will phrase our results for
an arbitrary lax monoidal R. This relaxation allows us to capture the n-partite
structure often used when studying cryptography, as shown next.

. . ® hom(I,—)
Ezample 1. Consider the resource theory induced by C* — C ————= Set,
where we write ® for the m-fold monoidal product®. The resulting resource
theory has a natural interpretation in terms of n agents trying to transform
resources to others: an object of this resource theory corresponds to a pair
((A)—q,r: I — @ A;), and can be thought of as an n-partite state, depicted
in fig. 1b, where the ith agent has access to a port of type A;. A morphism f =
(f1y- fn): ((A)P_q,7m) = ((B:)™4, s) between such resources then amounts to
a protocol that prescribes, for each agent ¢ a process f; that they should perform
so that r gets transformed to s as in fig. 1c.

In this resource theory, all of the agents are equally powerful and can perform
all processes allowed by C, and this might be unrealistic: first of all, C might
include computational processes that are too powerful/expensive for us to use
in our cryptographic protocols. Moreover, having agents with different computa-
tional powers is important to model e.g., blind quantum computing [11] where a
client with access only to limited, if any, quantum computation tries to securely
delegate computations to a server with a powerful quantum computer. This lim-
itation is easily remedied: we could take the ith agent to be able to implement
computations in some sub-SMC C; of C, and then consider []" ; C; — C.

3 As C is symmetric, the functor ® is strong monoidal.

168 A. Broadbent and M. Karvonen

By Bn

(a) A map f in the
resource theory of (b) An n-partite (c) An n-partite (d) Factorization of
states state transformation an attack on f® g

Fig. 1: Some resource transformations
A more serious limitation is that such transformations have no security

guarantees—they only work if each agent performs f; as prescribed by the pro-
tocol. We fix this next.

3 Cryptography as a resource theory

(a) Attack by the par- (b) Security against the (c) Security against the
tiesk+1,...,n parties K+ 1,...,n initial attack

Fig. 2: Attacks and security constraints

In order for a protocol f = (fi,...,fn): ((A)y,7) — ((Bi),,s) to be
secure, we should have some guarantees about what happens if, as a result of an
attack on the protocol, something else than (fi,..., f,,) happens. For instance,
some subset of the parties might deviate from the protocol and do something
else instead. In the simulation paradigm [34], security is then defined by saying
that, anything that could happen when running the real protocol, i.e., f with
r, could also happen in the ideal world, i.e., with s. A given protocol might be
secure against some kinds of attacks and insecure against others, so we define
security against an abstract attack model. This abstract notion of an attack
model is one of the main definitions of our paper. It isolates conditions needed
for the composition theorem (Theorem 1). It also captures our key examples
that we use to illustrate the definition after giving it. Note that most proofs are
deferred to an extended version.

Definition 1. An attack model A on an SMC C consists of giving for each
morphism f of C a class A(f) of morphisms of C such that

Categorical composable cryptography 169

(i) [€ A(f) for every f.

(i) For any f: A — B and g: B — C and composable g’ € A(g), f' € A(f)
we have g' o f' € A(go f). Moreover, any h € A(go f) factorizes as g’ o f’
with ¢ € A(g) and f' € A(f).

(i1i) For any f: A — B, g: C — D in C and f' € A(f),q € A(g) we have
f'®g € A(f ® g). Moreover, any h € A(f ® g) factorizes as h' o (f' ® ¢’)
with ' € A(f), ¢’ € A(g) and b € A(idpgp)-

Let f: (A,r) — (B, s) define a morphism in the resource theory [RF induced by
F:D — C and R: C — Set. We say that f is secure against an attack model
A on C (or A-secure) if for any f' € A(F(f)) with dom(f') = F(A) there is
b€ A(idp(py) with dom(b) = F(B) such that R(f")r = R(b)s.

The above definition of security asks for perfect equality and corresponds to
information-theoretic security in cryptography. This is often too much to hope
for, and we will replace this by an equivalence relation in section 4 and by a
notion of distance in an extended version.

The intuition is that A gives, for each process in C, the set of behaviors that
the attackers could force to happen instead of honest behavior. In particular,
A(idg) give the set of behaviors that is available to attackers given access to
a system of type B. Then property (i) amounts to the assumption that the
adversaries could behave honestly. The first halves of properties (ii) and (iii)
say that, given an attack on g and one on f, both attacks could happen when
composing g and f sequentially or in parallel. The second parts of these say
that attacks on composite processes can be understood as composites of attacks.
However, note that (iii) does not say that an attack on a product has to be
a product of attacks: the factorization says that any h € A(g ® f) factorizes
as in fig. 1d with ¢’ € A(g), f’ € A(f) and ' € A(idggp). The intuition is
that an attacker does not have to attack two parallel protocols independently
of each other, but might play the protocols against each other in complicated
ways. This intuition also explains why we do not require that all morphisms in
A(f) have F(A) as their domain, despite the definition of A-security quantifying
only against those: when factoring h € A(g o f) as ¢’ o f/ with ¢’ € A(g) and
f' € A(f), we can no longer guarantee that F'(B) is the domain of ¢'—perhaps
the attackers take us elsewhere when they perform f’.

If one thinks of F': D — C as representing the inclusion of free processes
into general processes, one also gets an explanation why we do not insist that
free processes and attacks live in the same category, i.e., that F' = idg. This is
simply because we might wish to prove that some protocols are secure against
attackers that can use more resources than we wish or can use in the protocols.

Ezxample 2. For any SMC C there are two trivial attack models: the minimal
one defined by A(f) = {f} and the maximal one sending f to the class of all
morphisms of C. We interpret the minimal attack model as representing honest
behavior, and the maximal one as representing arbitrary malicious behavior.

170 A. Broadbent and M. Karvonen

Proposition 1. If Ay,..., A, are attack models on SMCs Cq,...,C,, respec-
tively, then there is a product [[._, A; attack model on H?zl C; defined by

(ITiy A (frs - - -5 fn) =TTy A fa)-

This proposition, together with the minimal and maximal attack models, is
already expressive enough to model multi-party computation where some subset

of the parties might do arbitrary malicious behavior. Indeed, consider the n-

hom(I,—
partite resource theory induced by C™ NV M Set. Let us first model a

situation where the first n — 1 participants are honest and the last participant
is dishonest. In this case we can set A =[]}, A; where each of Ay,..., A,
is the minimal attack model on C and A,, is the maximal attack model. Then,
an attack on f = (f1,... fu): ((4)",7) — ((Bi)",,s) can be represented
by the first n — 1 parties obeying the protocol and the n-th party doing an
arbitrary computation a, as depicted in the two pictures of fig. 2a, where [n] :=
{1,...,n}, (k,n] := {k+1,...n}, f|[k] = ®f:1 fi, and here k = n—1. The latter
representation will be used when we do not need to emphasize pictorially the fact
that the honest parties are each performing their own individual computations.

If instead of just one attacker, there are several independently acting adver-
saries, we can take A = H?zl A; where A; is the minimal or maximal attack
structure depending on whether the ith participant is honest or not. If the set
of dishonest parties can collude and communicate arbitrarily during the process,
we need the flexibility given in Definition 1 and have the attack structure live
in a different category than where our protocols live. For simplicity of notation,
assume that the first k agents are honest but the remaining parties are mali-
cious and might do arbitrary (joint) processes in C. In particular, the action
done by the dishonest parties k + 1,...,n need not be describable as a product
X (a;) of individual actions. In that case we define A as follows: we first con-

i=k+1
. . id®x® hom(I,—
sider our resource theory as arising from C* —— CF x C 2.c # Set,

and define A on C*¥ x C as the product of the minimal attack model on C* and
the maximal one on C. Concretely, this means that the first k agents always
obey the protocol, but the remaining agents can choose to perform arbitrary
joint behaviors in C. Then a generic attack on a protocol f can be represented
exactly as before in fig. 2a, except we no longer insist that K = n — 1. Now a
protocol f is A-secure if for any a with dom(a) = (A4;),,, there is a b with
dom(b) = (B;)j_;, satisfying the equation of fig. 2b.

If one is willing to draw more wire crossings, one can easily depict and de-
fine security against an arbitrary subset of the parties behaving maliciously, and
henceforward this is the attack model we have in mind when we say that some
n-partite protocol is secure against some subset of the parties. Moreover, for any
subset J of dishonest agents, one could consider more limited kinds of attacks:
for instance, the agents might have limited computational power or limited abil-
ities to perform joint computations—as long as the attack model satisfies the
conditions of Definition 1 one automatically gets a composable notion of secure
protocols by Theorem 1 below.

Categorical composable cryptography 171

Theorem 1. Given symmetric monoidal functors F: D — C, R: C — Set
with F strong monoidal and R lax monoidal, and an attack model A on C,
the class of A-secure maps forms a wide sub-SMC of the resource theory [RF
induced by RF.

So far we have discussed security only against a single, fixed subset of dishon-
est parties, while in multi-party computation it is common to consider security
against any subset containing e.g., at most n/3 or n/2 of the parties. However,
as monoidal subcategories are closed under intersection, we immediately obtain
composability against multiple attack models.

Corollary 1. Given a non-empty family of functors (D EiN C; EiiN Set);cr
with RiF; = R;F; =: R for all i,j € I and attack models A; on C; for each 1,
the class of maps in fR that is secure against each A; is a sub-SMC offR.

Using Corollary 1 one readily obtains composability of protocols that are simul-
taneously secure against different attack models A;. Thus one could, in principle,
consider composable cryptography in an n-party setting where some subsets are
honest-but-curious, some might be outright malicious but have limited compu-
tational power, and some subsets might be outright malicious but not willing or
able to coordinate with each other, without reproving any composition theorems.
While the security definition of f quantifies over A(f), which may be infinite,
under suitable conditions it is sufficient to check security only on a subset of
A(f), so that whether f is A-secure often reduces to finitely many equations.

Definition 2. Given f: A — B, a subset X of A(f) is said to be initial if
any ' € A(f) with dom(f") = A can be factorized as bo a with a € X and
be A(idg).

Theorem 2. Let f: (A,r) — (B,s) define a morphism in the resource theory
induced by F': D — C and R: C — Set and let A be an attack model on C. If
X C A(F(f)) is initial, then f is A-secure if, and only if the security condition
holds against attacks in X, i.e., if for any f' € X with dom(f') = F(A) there is
be A(idp(py) such that R(f")r = R(b)s.

Let us return to the example of C™ — C with the first k£ agents being honest and
the final n — k dishonest and collaborating. Then we can take a singleton as our
initial subset of attacks on f, and this is given by f| @ (@)}, id). Intuitively,
this represents a situation where the dishonest parties k+ 1,...,n merely stand
by and forward messages between the environment and the functionality, so that
initiality can be seen as explaining “completeness of the dummy adversary” [13,
Claim 11] in UC-security. In this case the security condition can be equivalently
phrased by saying that there exists b € A([idp]) satisfying the equation of fig. 2c,
which reproduces the pictures of [51]. Similarly, for classical honest-but-curious
adversaries one usually only considers the initial such adversary, who follows the
protocol otherwise except that they keep track of the protocol transcript.

Theorem 3. In the resource theory of n-partite states, if (fi,...fn) is secure
against some subset J of [n] and F is a strong monoidal, then (F f1,...,Ff,) is
secure against J as well.

172 A. Broadbent and M. Karvonen

For instance, if the inclusion of classical interactive computations into quantum
ones is strong monoidal, i.e., respects sequential and parallel composition (up to
isomorphism), then unconditionally secure classical protocols are also secure in
the quantum setting, as shown in the context of UC-security in [68, Theorem
15]. More generally, this result implies that the construction of the category of
n-partite transformations secure against any fixed subset of [n] is functorial in
C, and this is in fact also true for any family of subsets of [n] by Corollary 1.

4 Computational security

The discussion above has been focused on perfect security, so that the equations
defining security hold exactly. This is often too high a standard for security to
hope for, and consequently cryptographers routinely work with computational
or approximate security. We model this in two ways. The first approach replaces
equations with an equivalence relation abstracting from the idea that the end
results are “computationally indistinguishable” rather than strictly equal. The
latter approach amounts to working in terms of a (pseudo)metric quantifying how
close we are to the ideal resource and is needed to model statements in finite-key
cryptography [67]. The typical metric is given by “distinguisher advantage for
polynomial-time environments”, enabling one to use computational complexity
theory. In a nutshell, this amounts to working with sequences of protocols and
defining security by saying “for any e > 0, for sufficiently large n, for any attack
on the nth protocol there is an attack on the target resource such that the end
results are within €”. The first approach is mathematically straightforward and
we discuss it next, while the second approach is relegated to an extended version.

Replacing strict equations with equivalence relations is easy to describe on
an abstract level as an instance of the theory so far: one just assumes that C has

a monoidal congruence ~ and then works with the resource theory induced by

h =
C" - C/~ M) Set with similar attack models as above. More explicitly,

as long as each hom-set of C is equipped with an equivalence relation =~ that
respects ® and o in that f ~ f' and g =~ ¢’ imply gf ~ ¢'f’ (whenever de-

fined) and g ® f ~ ¢’ ® f’, then working with C" — C/~ %)% Set results
in security conditions that replace = in C with ~ throughout. If C describes
(interactive) computational processes and & represents computational indistin-
guishability (inability for any “efficient” process to distinguish between the two),
one might need to replace C (and consequently functionalities, protocols and at-
tacks on them) with the subcategory of C of efficient processes so that ~ indeed

results in a congruence.

5 Applications

We will now explore how the one-time pad (OTP) fits into our framework, paral-
leling the discussion of OTP in [47]. We will start from the category FinStoch of
finite sets and stochastic maps between them, with ® given by cartesian product

Categorical composable cryptography 173

of sets. This is sufficient for OTP, even if more complicated and interactive cryp-
tographic protocols will need a different starting category. However, the actual
category C we work in is built from FinStoch, essentially by a tripartite variant
of the “resource theory of universally-combinable processes” of [20, Section 3.4].
We will defer the detailed construction of C to an extended version and work in
it more heuristically, allowing us to focus on the OTP.

Roughly speaking, a “basic object” of C consists of finite sets A;,B;, F; for
1=1,2,and of amap f: A1 ® By ® E] = As ® By ® Es in FinStoch, depicted
in fig. 3a. The intuition is that ((As;, By, Ei)icq1,2}, f) represents a box shared

A1 By By

(a) Box shared by (b) The OTP proto-
Alice, Bob and Eve col (c) A secure PRNG (d) Secure channel

Fig. 3: Some resources and protocols

by Alice, Bob and Eve, with Alice’s inputs and outputs ranging over A; and
Ay respectively, and similarly for Bob and Eve. We will often label the ports
just by the party who controls it, and omit labeling trivial ports. For example,
if fig. 4a depicts the copy map X — X ® X for some set X in FinStoch, then

A A E B A B
o bt h
(b) Alice’s copy (c) Alice broadcast- (d) Random shared
(a) The copy map map ing to Bob and Eve key

Fig. 4: Variants of the copy map

fig. 4b denotes an object of C representing Alice copying data privately, whereas
fig. 4c denotes an object C that sends Alice’s input unchanged to Bob and to
Eve—which we view as an insecure (but authenticated) channel from Alice to
Bob.

A general object of C then consists of a list of such basic objects, representing
a list of such resources shared between Alice, Bob and Eve. A morphism of C is
roughly speaking a way of using the starting resources and local computation by
the three parties to produce the target resources: a more formal description will

174 A. Broadbent and M. Karvonen

be given in an extended version. In our attack model Alice and Bob are honest
but Eve is dishonest, so she might do arbitrary local computation instead of
whatever our protocols might prescribe.

In the version of the OTP we discuss, our starting resources consist of an
insecure but authenticated channel? from Alice to Bob as in fig. 4c and (i.e., ®)
of a random key over the same message space, shared by Alice and Bob (fig. 4d).
The goal is to build a secure channel from Alice to Bob (fig. 3d) from these.

The local ingredients of OTP and the axioms they obey are depicted in fig. 5
and correspond to a Hopf algebra with an integral in a SMC. Any finite group
gives rise to such a structure in FinStoch, with the integral given by the uniform
distribution. Concretely, this means that Alice and Bob must agree on a group
structure on the message space, and the fact that this multiplication forms a
group and that the key is random can be captured by the equations of fig. 5.

A A

Fig. 5: Local ingredients of OTP and the axioms they obey

The OTP protocol is then depicted in fig. 3b, i.e., Alice adds the key to her
message, broadcasts it to Eve and Bob. Eve deletes her part and Bob adds the
inverse of the key to the ciphertext to recover the message.

To show that the protocol is secure, note that Eve has an initial attack given
by just reading the ciphertext. The pictorial security proof is depicted in fig. 6.
The first equation is the interaction between multiplication and copying, the
second uses (co)associativity, the third one properties of inverses, the fourth and
last one use unitality, and the fifth one follows from the key being random. Taken
together, these show that Eve’s initial attack is equal to her just producing a
random message herself with Alice and Bob sharing the target resource. The
correctness of the protocol can be proven similarly. Thus OTP gives a map
shared key ® authenticated channel — secure channel that is secure against Eve.

We now use this example to illustrate the use of the composition theorems.
A major drawback of OTP, despite its perfect security, is the fact that one needs
a key that is as long as the message. In practice, Alice and Bob might only
share a short key and wish to promote it a long key. If they agree on a pseudo-
random number generator (PRNG) with their key as the seed, they can map
the short key to a longer key. If the PRNG is computationally secure, then the
end-result is (computationally) indistinguishable from a long key, depicted in

4 If the insecure channel allows Eve to tamper with the message, the analysis changes.

Categorical composable cryptography 175

4 A

Fig. 6: Security proof of OTP

fig. 3c, where = stands for computational indistinguishability. We envision the
computational security of the chosen PRNG to be proven “the usual way” and
not graphically—after all, we believe that our framework is there to supplement
ordinary cryptographic reasoning and not to replace it. The PRNG then results
in a (computationally) secure way of promoting a short shared key into a long
shared key, and then the composition theorems guarantee that these protocols
can be composed, resulting in the security of the stream cipher.

Composable security is a stronger constraint than stand-alone security, and
indeed many cryptographic functionalities are known to be impossible to achieve
“in the plain model”, i.e., without set-up assumptions. A case in point is bit
commitment, which was shown to be impossible in the UC-framework in [14].
This result was later generalized in [61] to show that any two-party functionality
that can be realized in the plain UC-framework is “splittable”. While the authors
of [61] remark that their result applies more generally than just to the UC-
framework, this wasn’t made precise until [48]°. We present a categorical proof
of this result in our framework, which promotes the pictures “illustrating the
proof” in [61] into a full proof—the main difference is that in [61] the pictures
explicitly keep track of an environment trying to distinguish between different
functionalities, whereas we prove our result in the case of perfect security and
then deduce the asymptotic claim.

We now assume that C, our ambient category of interactive computations is
compact closed®. As we are in the 2-party setting, we take our free computations

5 Except that in their framework the 2-party case seems to require security constraints
also when both parties cheat.

5 We do not view this as overtly restrictive, as many theoretical models of concurrent
interactive (probabilistic/quantum) computation are compact closed [18,19,69].

176 A. Broadbent and M. Karvonen

to be given by C2, and we consider two attack models: one where Alice cheats
and Bob is honest, and one where Bob cheats and Alice is honest. We think of
U as representing a two-way communication channel, but this interpretation is
not needed for the formal result.

Theorem 4. For Alice and Bob (one of whom might cheat), if a bipartite func-
tionality v can be securely realized from a communication channel between them,
i.e., from Y, then there is a g such that

e [.

Proof. If a protocol (fa, fp) achieves this, security constraints give us s4, $p

such that and
so that @:::

Corollary 2. Given a compact closed C modeling computation in which wires
model communication channels, (composable) bit commitment and oblivious trans-
fer are impossible in that model without setup, even asymptotically in terms of
distinguisher advantage.

Proof. If r represents bit commitment from Alice to Bob, it does not satisfy
the equation required by Theorem 4 for any g, and the two sides of (%) can be
distinguished efficiently with at least probability 1/2. Indeed, take any f and
let us compare the two sides of (x): if the distinguisher commits to a random
bit b, then Bob gets a notification of this on the left hand-side, so that f has to
commit to a bit on the right side of (%) to avoid being distinguished from the
left side. But this bit coincides with b with probability at most 1/2, so that the
difference becomes apparent at the reveal stage. The case of OT is similar.

We now discuss a similar result in the tripartite case, which rules out building
a broadcasting channel from pairwise channels securely against any single party
cheating. In [46] comparable pictures are used to illustrate the official, symboli-
cally rather involved, proof, whereas in our framework the pictures are the proof.
Another key difference is that [46] rules out broadcasting directly, whereas we
show that any tripartite functionality realizable from pairwise channels satisfies

some equations, and then use these equations to rule out broadcasting.
. . . hom (I,—
Formally, we are working with the resource theory given by C3 ENYe L%

Set where C is an SMC, and reason about protocols that are secure against three

Categorical composable cryptography 177

kinds of attacks: one for each party behaving dishonestly while the rest obey the
protocol. Note that we do not need to assume compact closure for this result,
and the result goes through for any state on A ® A shared between each pair of
parties: we will denote such a state by Y by convention.

Theorem 5. If a tripartite functionality v can be realized from each pair of par-
ties sharing a state Y, securely against any single party, then there are simulators

SA,SB,Sc such that

Proof. Any tripartite protocol building on top of each pair of parties sharing v
can be drawn as in the left side of

T r

Consider now the morphism in C depicted on the right: it can be seen as the
result of three different attacks on the protocol (fa, fs,fc) in C3: one where
Alice cheats and performs f4 and fp (and the wire connecting them), one where
Bob performs fp twice, and one where Charlie performs fp and fo. The security
of (fa, fB, fc) against each of these gives the required simulators.

Corollary 3. Given a SMC C modeling interactive computation, and a state Y
on A® A modeling pairwise communication, it is impossible to build broadcasting
channels securely (even asymptotically in terms of distinguisher advantage) from
pairwise channels.

Proof. We show that a channel r that enables Bob to broadcast an input bit to
Alice and Charlie never satisfies the required equations for any s4, spg, s¢. In-
deed, assume otherwise and let the environment plug “broadcast 0” and “broad-
cast 1” to the two wires in the middle. The leftmost picture then says that Charlie
receives 1, the rightmost picture implies that Alice gets 0 and the middle picture
that Alice and Bob get the same output (if anything at all)—a contradiction. In-
deed, one cannot satisfy all of these simultaneously with high probability, which
rules out an asymptotic transformation.

6 Outlook

We have presented a categorical framework providing a general, flexible and
mathematically robust way of reasoning about composability in cryptography.
Besides contributing a further approach to composable cryptography and poten-
tially helping with cross-talk and comparisons between existing approaches [12],
we believe that the current work opens the door for several further questions.

178 A. Broadbent and M. Karvonen

First, due to the generality of our approach we hope that one can, besides
honest and malicious participants, reason about more refined kinds of adversaries
composably. Indeed, we expect that Definition 1 is general enough to capture
e.g., honest-but-curious adversaries”. It would also be interesting to see if this
captures even more general attacks, e.g., situations where the sets of participants
and dishonest parties can change during the protocol. This might require un-
derstanding our axiomatization of attack models more structurally and perhaps
generalizing it. Does this structure (or a variant thereof) already arise in cate-
gory theory? While we define an attack model on a category, perhaps one could
define an attack model on a (strong) monoidal functor F, the current definition
being recovered when F' = id.

Second, we expect that rephrasing cryptographic questions categorically would
enable more cross-talk between cryptography and other fields already using cate-
gory theory as an organizing principle. For instance, many existing approaches to
composable cryptography develop their own models of concurrent, asynchronous,
probabilistic and interactive computations. As categorical models of such com-
putation exist in the context of game semantics [18,19,69], one is left wondering
whether the models of the semanticists’ could be used to study and answer cryp-
tographic questions, or conversely if the models developed by cryptographers
contain valuable insights for programming language semantics.

Besides working inside concrete models—which ultimately blends into “just
doing composable cryptography”—one could study axiomatically how properties
of a category relate to cryptographic properties in it. As a specific conjecture in
this direction, one might hope to talk about honest-but-curious adversaries at
an abstract level using environment structures [21], that axiomatize the idea of
deleting a system. Similarly, having agents purify their actions is an important
tool in quantum cryptography [45]—can categorical accounts of purification [15,
21,24] elucidate this?

Finally, we hope to get more mileage out of the tools brought in with the cat-
egorical viewpoint. For instance, can one prove further no-go results pictorially?
More specifically, given the impossibility results for two and three parties, one
wonders if the “only topology matters” approach of string diagrams can be used
to derive general impossibility results for n parties sharing pairwise channels.
Similarly, while diagrammatic languages have been used to reason about posi-
tive cryptographic results in the stand-alone setting [9,10,41], can one push such
approaches further now that composable security definitions have a clear cate-
gorical meaning? Besides the graphical methods, thinking of cryptography as a
resource theory suggests using resource-theoretic tools such as monotones. While
monotones have already been applied in cryptography [70], a full understanding
of cryptographically relevant monotones is still lacking.

7 Heuristically speaking this is the case: an honest-but-curious attack on go f should be
factorizable as one on g and one on f, and similarly an honest-but-curious attack on
g ® f should be factorisable into ones on g and f that then forward their transcripts
to an attack on id ® id.

Categorical composable cryptography 179

References

10.

11.

12.

13.

14.

15.

. Abramsky, S., Barbosa, R.S., Karvonen, M., Mansfield, S.: A comonadic

view of simulation and quantum resources. In: 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE (2019).
https://doi.org/10.1109/LICS.2019.8785677

Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: 1st Theory of Cryptography Conference—TCC 2004. pp. 336—
354 (2004). https://doi.org/10.1007/978-3-540-24638-1_19

Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Information and Computation 205(12), 1685-1720
(2007). https://doi.org/10.1016/j.ic.2007.05.002

. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:

Proceedings of the twenty-fifth annual ACM symposium on Theory of computing.
pp- 52-61 (1993). https://doi.org/10.1145/167088.167109

Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The univer-
sal composable security of quantum key distribution. In: 2nd Theory of Cryptog-
raphy Conference—TCC 2005. pp. 386-406 (2005). https://doi.org/10.1007/978-
3-540-30576-7_21

Ben-Or, M., Mayers, D.: General security definition and composability for quantum
& classical protocols (2004), https://arxiv.org/abs/quant-ph/0409062

Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing. pp. 175-179 (1984)

Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of
the security of quantum key distribution (extended abstract). In: 32nd Annual
ACM Symposium on Theory of Computing—STOC 2000. pp. 715 — 724 (2000).
https://doi.org/10.1145/335305.335406

Breiner, S., Kalev, A., Miller, C.A.: Parallel self-testing of the GHZ state
with a proof by diagrams. In: Proceedings of QPL 2018. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 287, pp. 43-66 (2018).
https://doi.org/10.4204 /eptcs.287.3

Breiner, S., Miller, C.A., Ross, N.J.: Graphical methods in device-independent
quantum cryptography. Quantum 3, 146 (2019). https://doi.org/10.22331/q-2019-
05-27-146

Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: 50th Annual Symposium on Foundations of Computer Science—FOCS 2009.
pp- 517-526 (2009). https://doi.org/10.1109/FOCS.2009.36

Camenisch, J., Kiisters, R., Lysyanskaya, A., Scafuro, A.: Practical Yet Compos-
ably Secure Cryptographic Protocols (Dagstuhl Seminar 19042). Dagstuhl Reports
9(1), 88-103 (2019). https://doi.org/10.4230/DagRep.9.1.88

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science—
FOCS 2001. pp. 136-145 (2001). https://doi.org/10.1109/SFCS.2001.959888
Canetti, R., Fischlin, M.: Universally composable commitments. In:
Advances in cryptology—CRYPTO 2001. pp. 19-40. Springer (2001).
https://doi.org/10.1007/3-540-44647-8 2

Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic the-
ories with purification. Physical Review A 81(6) (Jun 2010).
https://doi.org/10.1103 /physreva.81.062348

https://doi.org/10.1109/LICS.2019.8785677
https://doi.org/10.1007/978-3-540-24638-1_19
https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1145/167088.167109
https://doi.org/10.1007/978-3-540-30576-7_21
https://doi.org/10.1007/978-3-540-30576-7_21
https://arxiv.org/abs/quant-ph/0409062
https://doi.org/10.1145/335305.335406
https://doi.org/10.4204/eptcs.287.3
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.4230/DagRep.9.1.88
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1103/physreva.81.062348

180

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Broadbent and M. Karvonen

Chitambar, E., Gour, G.: Quantum resource theories. Reviews of Modern Physics
91(2), 025001 (2019). https://doi.org/10.1103/revmodphys.91.025001

Chitambar, E., Leung, D., Manc¢inska, L., Ozols, M., Winter, A.: Everything you
always wanted to know about LOCC (but were afraid to ask). Communications
in Mathematical Physics 328(1), 303-326 (2014). https://doi.org/10.1007 /s00220-
014-1953-9

Clairambault, P., De Visme, M., Winskel, G.: Game semantics for quantum pro-
gramming. Proceedings of the ACM on Programming Languages 3(POPL), 1-29
(2019). https://doi.org/10.1145/3290345

Clairambault, P., de Visme, M., Winskel, G.: Concurrent quantum strategies. In:
International Conference on Reversible Computation. pp. 3-19. Springer (2019).
https://doi.org/10.1007/978-3-030-21500-2_1

Coecke, B., Fritz, T., Spekkens, R.W.. A mathematical theory
of resources. Information and Computation 250, 59-86 (2016).
https://doi.org/10.1016/j.ic.2016.02.008

Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum
mechanics. Logical Methods in Computer Science Volume 8, Issue 4 (2012).
https://doi.org/10.2168 /LMCS-8(4:14)2012

Coecke, B., Wang, Q., Wang, B., Wang, Y., Zhang, Q.: Graphical calculus for quan-
tum key distribution (extended abstract). Electronic Notes in Theoretical Com-
puter Science 270(2), 231-249 (2011). https://doi.org/10.1016/j.entcs.2011.01.034
Cruttwell, G., Gavranovi¢, B., Ghani, N., Wilson, P., Zanasi, F.: Categorical foun-
dations of gradient-based learning (2021), https://arxiv.org/abs/2103.01931
Cunningham, O., Heunen, C.: Purity through factorisation. In: Proceedings of
QPL 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp.
315-328 (2017). https://doi.org/10.4204/EPTCS.266.20

Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for se-
curity protocols and its logical formalization. In: 16th IEEE Computer Se-
curity Foundations Workshop, 2003. Proceedings. pp. 109-125. IEEE (2003).
https://doi.org/10.1109/csfw.2003.1212708

Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composi-
tion. Electronic Notes in Theoretical Computer Science 83, 201-226 (2003).
https://doi.org/10.1016/s1571-0661(03)50011-1

Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compo-
sitional logic for security protocols. Journal of Computer Security 13(3), 423-482
(Aug 2005). https://doi.org/10.3233/JCS-2005-13304

Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311-358 (Apr 2007).
https://doi.org/10.1016/j.entcs.2007.02.012

Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for protocol correct-
ness. In: Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001.
IEEE (2001). https://doi.org/10.1109/csfw.2001.930150

Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security
properties of protocols. Journal of Computer Security 11(4), 677-721 (Oct 2003).
https://doi.org/10.3233/JCS-2003-11407

Fong, B., Spivak, D., Tuyeras, R.: Backprop as functor: A compositional perspec-
tive on supervised learning. In: 2019 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (2019). https://doi.org/10.1109/1ics.2019.8785665
Fritz, T.: Resource convertibility and ordered commutative monoids.
Mathematical ~Structures in Computer Science 27(6), 850-938 (2015).
https://doi.org/10.1017/s0960129515000444

https://doi.org/10.1103/revmodphys.91.025001
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1145/3290345
https://doi.org/10.1007/978-3-030-21500-2_1
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.2168/LMCS-8(4:14)2012
https://doi.org/10.1016/j.entcs.2011.01.034
https://arxiv.org/abs/2103.01931
https://doi.org/10.4204/EPTCS.266.20
https://doi.org/10.1109/csfw.2003.1212708
https://doi.org/10.1016/s1571-0661(03)50011-1
https://doi.org/10.3233/JCS-2005-13304
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1109/csfw.2001.930150
https://doi.org/10.3233/JCS-2003-11407
https://doi.org/10.1109/lics.2019.8785665
https://doi.org/10.1017/s0960129515000444

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Categorical composable cryptography 181

Gavranovi¢, B.: Compositional deep learning (2019), https://arxiv.org/abs/1907.
08292

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270-299 (1984). https://doi.org/10.1016,/0022-0000(84)90070-
9

Heunen, C.: Compactly accessible categories and quantum key distribution. Log-
ical Methods in Computer Science 4(4) (2008). https://doi.org/10.2168/lmcs-
4(4:9)2008

Hillebrand, A.: Superdense coding with GHZ and quantum key distribu-
tion with W in the ZX-calculus. In: Proceedings of QPL 2011. Electronic
Proceedings in Theoretical Computer Science, vol. 95, pp. 103-121 (2011).
https://doi.org/10.4204/EPTCS.95.10

Hines, P.M.: A diagrammatic approach to information flow in encrypted commu-
nication (2020). https://doi.org/10.1007/978-3-030-62230-5_9

Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Jour-
nal of Cryptology 28(3), 423-508 (2015). https://doi.org/10.1007/s00145-013-
9160-y

Horodecki, M., Oppenheim, J.: (Quantumness in the context of) Resource The-
ories. International Journal of Modern Physics B 27(01n03), 1345019 (2013).
https://doi.org/10.1142/s0217979213450197

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Theory of Cryptography, pp. 477-498. Springer (2013).
https://doi.org/10.1007/978-3-642-36594-2_27

Kissinger, A., Tull, S., Westerbaan, B.: Picture-perfect quantum key distribution
(2017), https://arxiv.org/abs/1704.08668

Konig, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum infor-
mation does not imply security. Physical Review Letters 98(14), 140502 (2007).
https://doi.org/10.1103/PhysRevLett.98.140502

Kiisters, R., Tuengerthal, M., Rausch, D.: The II'TM model: a simple and expressive
model for universal composability. Journal of Cryptology 33(4), 1461-1584 (2020).
https://doi.org/10.1007/s00145-020-09352-1

Liao, K., Hammer, M.A., Miller, A.: ILC: a calculus for composable, computational
cryptography. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 640-654. ACM (Jun 2019).
https://doi.org/10.1145/3314221.3314607

Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review
Letters 78(17), 3410-3413 (1997). https://doi.org/10.1103/PhysRevLett.78.3410

Matt, C., Maurer, U., Portmann, C., Renner, R., Tackmann, B.: Toward an
algebraic theory of systems. Theoretical Computer Science 747, 1-25 (2018).
https://doi.org/10.1016/j.tcs.2018.06.001

Maurer, U.: Constructive cryptography—a new paradigm for security definitions
and proofs. In: Joint Workshop on Theory of Security and Applications—TOSCA
2011. pp. 33-56 (2011). https://doi.org/10.1007/978-3-642-27375-9_3

Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer
Science—ICS 2011 (2011)

Mayers, D.: The trouble with quantum bit commitment (1996), http://arxiv.org/
abs/quant-ph/9603015

Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM
48(3), 351-406 (2001). https://doi.org/10.1145/382780.382781

https://arxiv.org/abs/1907.08292
https://arxiv.org/abs/1907.08292
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.2168/lmcs-4(4:9)2008
https://doi.org/10.2168/lmcs-4(4:9)2008
https://doi.org/10.4204/EPTCS.95.10
https://doi.org/10.1007/978-3-030-62230-5_9
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1142/s0217979213450197
https://doi.org/10.1007/978-3-642-36594-2_27
https://arxiv.org/abs/1704.08668
https://doi.org/10.1103/PhysRevLett.98.140502
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1016/j.tcs.2018.06.001
https://doi.org/10.1007/978-3-642-27375-9_3
http://arxiv.org/abs/quant-ph/9603015
http://arxiv.org/abs/quant-ph/9603015
https://doi.org/10.1145/382780.382781

182

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A. Broadbent and M. Karvonen

Micciancio, D., Tessaro, S.: An equational approach to secure multi-party compu-
tation. In: 4th Conference on Innovations in Theoretical Computer Science—ITCS
2013. pp. 355-372 (2013). https://doi.org/10.1145/2422436.2422478

Mifsud, A., Milner, R., Power, J.: Control structures. In: Proceedings of Tenth An-
nual IEEE Symposium on Logic in Computer Science. pp. 188-198. IEEE (1995).
https://doi.org/10.1109/lics.1995.523256

Moeller, J., Vasilakopoulou, C.: Monoidal Grothendieck construction. Theory and
Applications of Categories 35(31), 1159-1207 (2020)

Miiller-Quade, J., Renner, R.: Composability in quantum cryptography.
New Journal of Physics 11(8), 085006 (2009). https://doi.org/10.1088/1367-
2630/11/8/085006

Pavlovic, D.: Categorical logic of names and abstraction in action -cal-
culi. Mathematical Structures in Computer Science 7(6), 619-637 (1997).
https://doi.org/10.1017/S0960129597002296

Pavlovic, D.: Tracing the man in the middle in monoidal categories. In:
Coalgebraic Methods in Computer Science. pp. 191-217. Springer (2012).
https://doi.org/10.1007/978-3-642-32784-1_11

Pavlovic, D.: Chasing diagrams in cryptography. In: Casadio, C., Coecke, B.,
Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language,
and Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th
Birthday, pp. 353-367. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007 /978-3-642-54789-8_19

Pfitzmann, B., Waidner, M.: A model for asynchronous reactive sys-
tems and its application to secure message transmission. In: 2001 IEEE
Symposium on Security and Privacy—S&P 2001. pp. 184-200 (2000).
https://doi.org/10.1109/SECPRI.2001.924298

Portmann, C., Matt, C., Maurer, U., Renner, R., Tackmann, B.: Causal
boxes: quantum information-processing systems closed under composi-
tion. IEEE Transactions on Information Theory 63(5), 3277-3305 (2017).
https://doi.org/10.1109/TIT.2017.2676805

Portmann, C., Renner, R.: Cryptographic security of quantum key distribution
(2014), https://arxiv.org/abs/1409.3525

Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In: Advances in Cryptology—
CRYPTO 2008. pp. 262-279 (2008). https://doi.org/10.1007/978-3-540-85174-5_15
Renner, R.: Security of quantum key distribution. Interna-
tional Journal of Quantum Information 06(01), 1-127 (2005).
https://doi.org/10.1142/S0219749908003256

Selinger, P.: A survey of graphical languages for monoidal categories. In: New
structures for physics, pp. 289-355. Springer (2010). https://doi.org/10.1007/978-
3-642-12821-9 4

Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum
key distribution protocol. Physical Review Letters 85(2), 441-444 (2000).
https://doi.org/10.1103 /physrevlett.85.441

Stay, M., Vicary, J.: Bicategorical semantics for nondeterministic computation. In:
Proceedings of the Twenty-ninth Conference on the Mathematical Foundations of
Programming Semantics, MFPS XXIX. Electronic Notes in Theoretical Computer
Science, vol. 298, pp. 367 — 382 (2013). https://doi.org/10.1016/j.entcs.2013.09.022
Sun, X., He, F., Wang, Q.: Impossibility of quantum bit commitment, a categorical
perspective. Axioms 9(1), 28 (2020). https://doi.org/10.3390/axioms9010028

https://doi.org/10.1145/2422436.2422478
https://doi.org/10.1109/lics.1995.523256
https://doi.org/10.1088/1367-2630/11/8/085006
https://doi.org/10.1088/1367-2630/11/8/085006
https://doi.org/10.1017/S0960129597002296
https://doi.org/10.1007/978-3-642-32784-1_11
https://doi.org/10.1007/978-3-642-54789-8_19
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1109/TIT.2017.2676805
https://arxiv.org/abs/1409.3525
https://doi.org/10.1007/978-3-540-85174-5_15
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1103/physrevlett.85.441
https://doi.org/10.1016/j.entcs.2013.09.022
https://doi.org/10.3390/axioms9010028

67.

68.

69.

70.

Categorical composable cryptography 183

Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key anal-
ysis for quantum cryptography. Nature Communications 3, 634 (2012).
https://doi.org/10.1038 /ncomms1631

Unruh, D.: Universally composable quantum multi-party computation.
In: Advances in Cryptology—EUROCRYPT 2010. pp. 486-505 (2010).
https://doi.org/10.1007 /978-3-642-13190-5_25

Winskel, G.: Distributed probabilistic and quantum strategies. Elec-
tronic Notes in Theoretical Computer Science 298, 403-425 (2013).
https://doi.org/10.1016/j.entcs.2013.09.024

Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-
party computation. IEEE Transactions on Information Theory 54(6), 2792-2797
(2008). https://doi.org/10.1109/tit.2008.921674

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/ncomms1631
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1109/tit.2008.921674
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

DyNetKAT: An Algebra of Dynamic Networks *

3

Georgiana Caltais! ()®, Hossein Hojjat?®, Mohammad Reza Mousavi®®, and

Hiinkar Can Tung?

! University of Konstanz, Germany & University of Twente, The Netherlands
g.g.c.caltais@utwente.nl
2 TelAS, Khatam University & University of Tehran, Iran
hojjat@ut.ac.ir
3 King’s College London, UK
mohammad .mousavi@kcl.ac.uk
4 University of Konstanz, Germany & Aarhus University, Denmark
tunc@cs.au.dk

Abstract. We introduce a formal language for specifying dynamic up-
dates for Software Defined Networks. Our language builds upon Network
Kleene Algebra with Tests (NetKAT) and adds constructs for synchro-
nisations and multi-packet behaviour to capture the interaction between
the control- and data-plane in dynamic updates. We provide a sound and
ground-complete axiomatisation of our language. We exploit the equa-
tional theory and provide an efficient method for reasoning about safety
properties. We implement our equational theory in DyNetiKAT — a tool
prototype, based on the Maude Rewriting Logic and the NetKAT tool,
and apply it to a case study. We show that we can analyse the case study
for networks with hundreds of switches using our tool prototype.

Keywords: Software Defined Networks - Dynamic Updates - Dynamic
Network Reconfiguration - NetKAT - Process Algebra - Equational Rea-
soning.

1 Introduction

Software-Defined Networking (SDN) is an approach to networking that enables
the network to be centrally programmed. There is a spectrum of mathematically
inspired network programming languages that varies between those with a small
number of language constructs and those with expressive language design which
allow them to support more networking features. Flowlog [16] and Kinetic [12]
are points on the more expressive side of the spectrum, which provide support
for formal reasoning based on SAT-solving and model checking, respectively.

* The work of Georgiana Caltais and Hiinkar Can Tung was supported by the DFG
project “CRENKAT”, proj. no. 398056821. The work of Mohammad Reza Mousavi
was supported by the UKRI Trustworthy Autonomous Systems Node in Verifiability,
Grant Award Reference EP/V026801/1. The authors would like to thank Alexandra
Silva and Tobias Kappé for their useful insight into the NetKAT framework.

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 184-204, 2022.
https://doi.org/10.1007/978-3-030-99253-8_10

http://orcid.org/0000-0002-8653-2299
http://orcid.org/0000-0002-4743-8750
http://orcid.org/0000-0002-4869-6794
http://orcid.org/0000-0001-9125-8506
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_10&domain=pdf

DyNetKAT: An Algebra of Dynamic Networks 185

NetKAT [3,10] is an example of a minimalist language based on Kleene algebra
with tests that has a sound and complete equational theory. While the core of
the language is very simple with a few number of operators, the language has
been extended in various ways to support different aspects of networking such as
congestion control [9], history-based routing [6] and higher-order functions [20].

Our starting point is NetKAT, because it provides a clean and analysable
framework for specifying SDNs. The minimalist design of NetKAT does not cater
for some common (failure) patterns in SDNs, particularly those arising from dy-
namic reconfiguration and the interaction between the data- and control-plane
flows. In [13], the authors have proposed an extension to NetKAT to support
stateful network updates. The extension embraces the notion of mutable state
which is in contrast to the pure functional nature of the language. The pur-
pose of this paper is to propose an extension of NetKAT to support dynamic
and stateful behaviours. On the one hand, we preserve the big-step denotational
semantics of NetKAT-specific constructs enabling, for instance, handling flow
table updates atomically, in the spirit of [17]. On the other hand, we extend
NetKAT in a modular fashion, to integrate concurrent SDN behaviours such as
dynamic updates, defined via a small-step operational semantics. To this end,
we pledge to keep the minimalistic design of NetKAT by adding only a few new
operators. Furthermore, our extension does not contradict the nature of the lan-
guage. DyNetKAT is a conservative extension [2] of NetKAT that enables reusing
in a modular fashion frameworks previously developed for NetKAT. Examples
include the NetKAT axiomatisation in [3], for instance.

A number of concurrent extensions of NetKAT have been introduced to date
[11,18,21]. These extensions followed different design decisions than the present
paper and a comparison of their approaches with ours is provided in Section 2;
however, the most important difference lies in the fact that inspired by earlier
abstractions in this domain [17], we were committed to create different layers
for data-plane flows and dynamic updates such that every data-plane packet
observes a single set of flow tables through its flight through the network. This
allowed us, unlike the earlier approaches, to build a layer on top of NetKAT
without modifying its semantics. Although our presentation in this paper is
based on NetKAT, we envisage that our concurrency layer can be modularly (in
the sense of Modular SOS [14]) used for other network programming languages
in the above-mentioned spectrum. We leave a more careful investigation of the
modularity on other network languages for future work.

Running Example. To illustrate our language concepts, we focus on modelling
with DyNetKAT an example of a stateful firewall that involves dynamically
updating the flow table. The example is overly simplified for the purpose of
presentation. Towards the end of this paper and also in the extended version [7],
we treat more complex and larger-scale case studies to evaluate the applicability
and analysability of our language.

A firewall is supposed to protect the intranet of an organisation from unau-
thorised access from the Internet. However, due to certain requests from the
intranet, it should be able to open up connections from the Internet to intranet.

186 G. Caltais et al.

Fig. 1: Stateful Firewall

An example is when a user within the intranet requests a secure connection to a
node on the Internet; in that case, the response from the node should be allowed
to enter the intranet. The behaviour of updating the flow tables with respect to
some events in the network such as receiving a specific packet is a challenging
phenomenon for languages such as NetKAT.

Figure 1 shows a simplified version of the stateful firewall network. Note that

we are not interested in the flow of packets but interested in the flow update.
In this version, the Switch does not allow any packet from the port ext to int
at the beginning. When the Host sends a request to the Switch it opens up the
connection.
Our Contributions. The contributions of this paper are summarised as fol-
lows. (a) We define the syntax and operational semantics of a dynamic exten-
sion of NetKAT that allows for modelling and reasoning about control-plane
updates and their interaction with data-plane flows (Sections 2.3, 2.4). (b) We
give a sound and ground-complete axiomatisation of our language (Section 3).
(c) We devise analysis methods for reasoning about flow properties using our ax-
iomatisation, apply them on examples from the domain and gather and analyse
evidence of applicability and efficiency for our approach (Sections 4, 5, 6).

2 Language Design

In what follows, we provide a brief overview of the NetKAT syntax and seman-
tics [3]. Then, we motivate our language design decisions, we introduce the syn-
tax of DyNetKAT and its underlying semantics, and provide the corresponding
encoding of our running example.

2.1 Brief Overview of NetKAT

We proceed by first introducing some basic notions used throughout the paper.

Definition 1 (Network Packets.) Let F'={f1,..., fn} be a set of field nam-
es f; withi € {1,...n}. We call network packet a partial function in F — N that
maps field names in F to values in N. We use 0,0’ to range over network packets.
We write, for instance, o(f;) = v; to denote a test checking whether the value of
fi in o is v;. Furthermore, we write o[f; := n;] to denote the assignment of f; to
v; in o. A (possibly empty) list of packets is defined as a partial function from
natural numbers to packets, where the natural number in the domain denotes
the position of the packet in the list such that the domain of the function forms
an interval starting from 0. The empty list is denoted by () and is defined as
the empty function (the function with the empty set as its domain). Let o be a

DyNetKAT: An Algebra of Dynamic Networks 187

packet and 1 be a list, then o :: 1 is the list I’ in which o is at position 0 in I,
i.e., '(0) = o, and I'(i + 1) = 1(i), for all i in the domain of L.

NetKAT Syntax:
Pr:=0|1|f=n|Pr+Pr|Pr-Pr|-Pr
N:=Pr|f«n|N+N|N-N|N*"|dup

NetKAT Semantics:

[1](h) = {n} [p-ql (h) = ([p] e [q]) ()
[0](h) = {}{ it [r*] Eh; 2 %Jl}%zv F* (h)
—] (k) & o:htifo(f)=n Fohé h '
[F =] (o:h) = {{} otherwise Fitl (h) & ([p] ® F*) (h)
[-al (h) £ {A}\ [a] (R) (feg)(x) = U{gy) ly € f(x)}
[f < n] (o: h; % [f :=mn]:h} [dup] (0::h) £ {o::(0::h)}

{o
[Pl () U 4] (R)
ig

. 2: NetKAT: Syntax and Semantics [3]

In Figure 2, we recall the NetKAT syntax and semantics [3]. The predicate
for dropping a packet is denoted by 0, while passing on a packet (without any
modification) is denoted by 1. The predicate checking whether the field f of a
packet has value n is denoted by (f = n); if the predicate fails on the current
packet it results on dropping the packet, otherwise it will pass the packet on.
Disjunction and conjunction between predicates are denoted by Pr+ Pr and Pr-
Pr; respectively. Negation is denoted by —Pr. Predicates are the basic building
blocks of NetKAT policies and hence, a predicate is a policy by definition. The
policy that modifies the field f of the current packet to take value n is denoted by
(f + n). A multicast behaviour of policies is denoted by N+ N, while sequencing
policies (to be applied on the same packet) are denoted by N - N. The repeated
application of a policy is encoded as N*. The construct dup simply makes a
copy of the current network packet.

In [3], lists of packets are referred to as histories. Let H stand for the set of
packet histories, and P(H) denote the powerset of H. More formally, the denota-
tional semantics of NetKAT policies is inductively defined via the semantic map
[-] : N - (H — P(H)) in Figure 2, where N stands for the set of NetKAT
policies, h € H is a packet history, a € Pr denotes a NetKAT predicate and
o € F— N is a network packet.

For a reminder, the equational axioms of NetKAT include the Kleene Algebra
axioms, Boolean Algebra axioms and the so-called Packet Algebra axioms that
handle NetKAT networking specific constructs such as field assignments and
dup. In this paper, we write Eyx to denote the NetKAT axiomatisation [3].

2.2 Design Decisions

Our main motivation behind DyNetKAT is to have a minimalist language that
can model control-plane and data-plane network traffic and their interaction.
Our choice for a minimal language is motivated by our desire to use our lan-
guage as a basis for scalable analysis. We would like to be able to compile major

188 G. Caltais et al.

practical languages into ours. Our minimal design helps us reuse much of the
well-known scalable analysis techniques. Regarding its modelling capabilities,
we are interested in modelling the stateful and dynamic behaviour of networks
emerging from these interactions. We would like to be able to model control mes-
sages, connections between controllers and switches, data packets, links among
switches, and model and analyse their interaction in a seamless manner.

Based on these motivations, we start off with NetKAT as a fundamental and
minimal network programming language, which allows us to model the basic
policies governing the network traffic. The choice of NetKAT, in addition to
its minimalist nature, is motivated by its rigorous semantics and equational
theory, and the existing techniques and tools for its analysis. This motivates
our next design constraint, namely, to build upon NetKAT in a hierarchical
manner and without redefining its semantics. This constraint should not be
taken lightly as the challenges in the recent concurrent extensions of NetKAT
demonstrated [11,18,21]. We will elaborate on this point, in the presentation
of our syntax and semantics. We can achieve this thanks to the abstractions
introduced in the domain [17] that allow for a neat layering of data-plane and
control-plan flows such that every data-plane flow sees one set of flow-tables in
its flight through the network.

We introduce a few extensions and modifications to cater for the phenomena
we desire to model in our extension regarding control-plane and dynamic and
stateful behaviour, as follows. (a) Parallel composition and synchronisation: we
introduce a basic mechanism for parallel composition based on handshake syn-
chronisation with the possibility of communicating a network program (a flow
table). The point of adding parallel composition is to have parallel controllers
and switches as separate syntactic entities: controllers trigger reconfigurations
and switches accept different types of reconfiguration and change their continu-
ation accordingly. (b) Guarded recursion: we introduce the concept of recursion
to model the (persistent) dynamic changes that result from control messages
and stateful behaviour. In other words, recursion is used to model the new state
of the flow tables. An alternative modelling construct could have been using
“global” variables and guards, but we prefer recursion due to its neat algebraic
representation. We restrict the use of recursion to guarded recursion, that is a
policy should be applied before changing state to a new recursive definition, in
order to remain within a decidable and analyse-able realm. A natural extension
of our framework could introduce formal parameters and parameterised recur-
sive variables; this future extension is orthogonal to our existing extensions and
in this paper, we go for a minimal extension in which the parameters are coded
in variable names. (c) Multi-packet semantics: we introduce the semantics of
treating a list of packets, which is essential for studying the interaction between
control- and data plane packets. This is in contrast with NetKAT where a single-
packet semantics is introduced. The introduction of multi-packet semantics also
called for a new operator to denote the end of applying a flow-table to the cur-
rent packet and proceeding with the next packet (possibly with the modified
flow-table in place). This is our new sequential composition operator, denoted

DyNetKAT: An Algebra of Dynamic Networks 189

by “”. Inspired by the abstractions in the software defined networking commu-
nity [17], we assume each packet is processed either using the configuration in
place prior to the update, or the configuration in place after the update, but
never a mixture of the two.

2.3 DyNetKAT Syntax

As already mentioned, NetKAT provides the possibility of recording the indi-
vidual “hops” that packets take as they go through the network by using the
so-called dup construct. The latter keeps track of the state of the packet at
each intermediate hop. As a brief reminder of the approach in [3]: assume a
NetKAT switch policy p and a topology ¢, together with an ingress in and
an egress out. Checking whether out is reachable from in reduces to checking:
in-dup- (p-t-dup)* - out Z 0 (see Definition 2 and Theorem 4 in [3]). Fur-
thermore, as shown in [10], dup plays a crucial role in devising the NetKAT
language semantics in a coalgebraic fashion, via Brzozowski-like derivatives on
top of NetKAT coalgebras (or NetKAT automata) corresponding to NetKAT
expressions.

We decided to depart from NetKAT in this respect, due to our important
constraint not to redefine the NetKAT semantics: the dup expression allows for
observable intermediate steps that result from incomplete application of flow-
tables and in concurrency scenarios, the same data packet may become subject
to more than one flow table due to the concurrent interactions with the control
plane. For this semantics to be compositional, one needs to define a small step
operational semantics in such a way that the small steps in predicate evaluation
also become visible (see our past work on compositionality of SOS with data
on such constraints [15]). This will first break our constraint in building upon
NetKAT semantics and secondly, due to the huge number of possible interleav-
ings, make the resulting state-space intractable for analysis.

In addition to the argumentation above, note that similarly to the approach
in [3], we work with packet fields ranging over finite domains. Consequently, our
analyses can be formulated in terms of reachability properties, further verifiable
by means of dup-free expressions of shape: in - (p - t)* - out £ 0. Hence, we
chose to define DyNetKAT synchronisation, guarded recursion and multi-packet
semantics on top of the dup-free fragment of NetKAT, denoted by NetK AT ~94P,

The syntax of DyNetKAT is defined on top of the dup-free fragment of
NetKAT as:

N = NetKAT 9vP
D:=_1|N;D|2?N;D|zIN;D|D|D|D&D|X 1)
X£2D
We write p € NetKAT, p € NetKAT 9P or, respectively, p € DyNetKAT in
order to refer to a NetKAT, NetKAT 9P or, respectively, DyNetKAT policy p.
The DyNetKAT-specific constructs are as follows. By 1 we denote a dummy

policy without behaviour. Our new sequential composition operator, denoted by
N : D, specifies when the NetKAT 9P policy N is applicable to the current

190 G. Caltais et al.

packet has come to a successful end and, thus, the packet can be transmitted
further and the next packet can be fetched for processing according to the rest
of the policy D.

Communication in DyNetKAT, encoded via x!N; D and z7N; D, consists of
two steps. In the first place, sending and receiving NetKAT ~4"P policies through
channel z are denoted by z!N, and z?N. In an expression such as z?N; Py, the
combination of the channel name = and the update type N, determine how the
continuation process Py, considering N as a placeholder in Py, enables defining
compositional and compact parameterised DyNetKAT specifications. Secondly,
as soon as the sending or receiving messages are successfully communicated, a
new packet is fetched and processed according to D. The parallel composition
of two DyNetKAT policies (to enable synchronisation) is denoted by D || D.

As it will become clearer in Section 2.4, communication in DyNetKAT guar-
antees preservation of well-defined behaviours when transitioning between net-
work configurations. This corresponds to the so-called per-packet consistency
in [17], and it guarantees that every packet traversing the network is processed
according to exactly one NetKAT~9%P policy.

Non-deterministic choice of DyNetKAT policies is denoted by D & D. For
a non-determinstic choice over a finite domain P, we use the syntactic sugar
®pepP’, where p appears as “bound variable” in P’; this is interpreted as a sum
of finite summand by replacing the variable p with all its possible values in P.

Finally, one can use recursive variables X in the specification of DyNetKAT
policies, where each recursive variable should have a unique defining equation
X £ D. For the simplicity of notation, we do not explicitly specify the trailing
“ 1”7 in our policy specifications, whenever clear from the context.

In Figure 3 we provide the DyNetKAT formalisation of the firewall in Ex-
ample 1. In the DyNetKAT encoding, we use the message channel secConReq to
open up the connection and secConEnd to close it. We model the behaviour of
the switch using the two programs Switch and Switch'.

Switch= ((port = int) - (port + ext)) ; Switch®
((port = ext) - 0) ; Switch® Host&secConReq!1 ; Host®
secConReq?1 ; Switch’ secConEnd!1; Host
Switch'2 ((port = int) - (port < ext)) ; Switch'®
((port = ext) - (port + int)) ; Switch'® Init= Host || Switch
secConEnd?1 ; Switch

Fig. 3: Stateful Firewall in DyNetKAT

2.4 DyNetKAT Semantics

The operational semantics of DyNetKAT in Figure 4 is provided over configu-
rations of shape (d, H, H'), where d stands for the current DyNetKAT policy, H
is the list of packets to be processed by the network according to d and H' is the
list of packets handled successfully by the network. The rule labels v range over

DyNetKAT: An Algebra of Dynamic Networks 191

o e o JHy, H L”,H',H'
(cpol’)) [([i)ﬂ(f,)) (cpolx) (p, Ho, H1) ’y (Pl 0/ ll)Xé
(p;q,0 = H H') — (¢, H,o' :: H') (X,Ho,Hy) = (p/,Hj), Hy)
(cpol)P0 F15) 2 (¢, Hy, HY) (epol) ®Ho.T13) 2 (of Hy, HY)
(p®q, Ho, Hy) = (p/, Hy, HY) W olla, Ho, Hy) 2 (9)|q, Hy, HY)
cpols s oc {7,
()(w'p;q,Hﬂ’)%(q,H,H’) o
(cpolaa) L) A (¢ HH) (s HH) A (o HH) R A4S
POlaa —ofe(x r
(alls. 7. H') "R (|5, 1, 1) PRI

v 1= (0,0") | zlg | 27¢ | refg(x, q)
Fig. 4: DyNetKAT: Operational Semantics (relevant excerpt)

pairs of packets (0,0’) or communication/reconfiguration-like actions of shape
xlq, 2?q or rcfg(x, q), depending on the context.

Note that the DyNetKAT semantics is devised in a “layered” fashion. Rule
(cpol:/;) in Figure 4 is the base rule that makes the transition between the
NetKAT denotations and DyNetKAT operations. More precisely, whenever o’
is a packet resulted from the successful evaluation of a NetKAT policy p on o,
a (o,0')-labelled step is observed at the level of DyNetKAT. This transition
applies whenever the current configuration encapsulates a DyNetKAT policy of
shape p; ¢ and a list of packets to be processed starting with o. The resulting
configuration continues with evaluating q on the next packet in the list, while o’
is marked as successfully handled by the network.

The remaining rules in Figure 4 define non-deterministic choice @, synchro-
nisation || and recursion X in the standard fashion. Note that synchronisations
leave the packet lists unchanged. Moreover, we choose not to hide the channel
2 and the policy p being communicated (as it is usually the case in ACP), but
rather keep this information visible outside the SDN being modelled, by means of
the label rcfg(x, p). Due to space limitation, we omitted the explicit definitions
of the symmetric cases for @ and ||. The full semantics is provided in [7].

In Figure 5 we depict a labelled transition system (LTS) encoding a pos-
sible behaviour of the stateful firewall in Example 1. We assume the list of
network packets to be processed consists of a “safe” packet o; travelling from
int to ext (i.e., o;(port) = int) followed by a potentially “dangerous” packet
o, travelling from ezt to int (i.e., o.(port) = ext). For the simplicity of no-
tation, in Figure 5 we write H for Host, S for Switch, S’ for Switch’, SCR
for secConReq and SCE for secConEnd. Note that o. can enter the network
only if a secure connection request was received. More precisely, the transition

192 G. Caltais et al.

labelled (o, 0;) is preceded by a transition labelled SCR?1 or rcfg(SCR,1):
SCR?1, rcfg(SCR,1) (0e,0)
No ns ny.

SCE'1,rcfg(SCE,1)
SCE1,SCR1 SCE!1,SCR1

0 SCR!1, 0
’ng : (HI|S, 0e::(), 0e::() }M»’ ns : (HHS’,O’CZZO,UCZZ()‘

(067 Ji)

(Uiv UC)

SCE!1,

SORI d na : (H||S, (), 05::0¢::() ‘
SCR!1, SCE!1,

rcfg(SCR,1) rcfg(SCE, 1)

SCE!'l,
rcfg(SCE,1)

n1: (H||S,05:0¢::(), <>)‘ ’n5 :(H||S, (), oioe:() ‘

U

SCE!1,SCR!1 SCE1,SCRI1
Fig. 5: Stateful Firewall LTS

3 Semantic Results

In this section we define bisimilarity of DyNetKAT policies and provide a cor-
responding sound and ground-complete axiomatization. We start with strong
bisimilarity because it lends itself to a neat theory. Once we establish a theory
for strong bisimilarity, a theory for other notions of equivalence in the linear-
time and branching-time spectrum can be obtained by adding a specific set of
axioms following a standard recipe for each notion. We use this approach to
reason about safety properties that are about traces.
Bisimilarity of DyNetKAT terms is defined in the standard fashion:

Definition 2 (Bisimilarity (~)) A symmetric relation R over DyNetKAT
policies is a bisimulation whenever for (p,q) € R the following holds:

If (p, Hy, Hy) 5 (p', H\, H{) then exists q' s.t. (q, Ho, Hy) Z2, (¢',H), H]) and
(p',q") € R, with v := (0,0") | x7r | zlr | refg(x,1).

We call bisimilarity the largest bisimulation relation. Two policies p and q are
bisimilar (p ~ q) iff there is a bisimulation relation R such that (p,q) € R.

Semantic equivalence of NetKAT %P policies is preserved by DyNetKAT.

Proposition 1 (Semantic Layering). Let p and q be NetKAT~9"P policies.

The following holds: [p] = [q] iff (p;d) ~ (¢;d) for any DyNetKAT policy d.

DyNetKAT: An Algebra of Dynamic Networks 193

for p, ¢, r € DyNetKAT and 2,y € NetKAT 4P for at = a-m| 2?2 | 2!z | refg, ,:

for a =z | 27z | zlz | refg, , Se(l)= L (61)
0;p= 1 (A0) Sc(at;p)= at;dc(p) if at € L (8.)
(z+y);p=2;pDy;p (A1) Sc(at;p)= Lifat e £ (6
POI=q®p (42) Se(p®q)=0c(p)®ocle) (Ja)
P @®r=pd(adrT) (A3)
pOp=p (A4) forn € N:
p®L=p (A5) mo(p)= L (o)
rlla=qllp (A6) mn(Ll)= L1 (1)
pllL=p (A7) Tn+1(at;p) = at; mp(p) (I1,)
plla=plla@qllp®p | q (A8) n(p ® q) = mn(p) ® 7n(q) (ITg)
1p= L (A9)
(a;p)lla= as(plla) (A10) p=qifVn €N : m,(p) = mn(q) (AIP)
(@ q)llr= (pllr) ® (allr) (AlL)
(?z;p) | (zl2;q9) = refg, . (pllg) (Al2) Enk
@) r=@Ir&(alr) (A13)
pla=aqlp (A14)
p|g= L [owise] (A15)

Fig. 6: The axiom system Epygk (including Enk)

Proof sketch. This follows according to ~ and (cpol:/;) in Figure 4. |

We further provide some additional ingredients needed to introduce the
DyNetKAT axiomatisation in Figure 6. First, note that our notion of bisimilarity
identifies synchronisation steps as in (cpolga) in Figure 4. At the axiomatisa-
tion level, this requires introducing corresponding constants rcfg, , defined as:

rcfg(x,z
I, (p, Ho, H)

(rcfg, .;p, Ho, Hy)

In accordance with standard approaches to process algebra (see, e.g., [1,4])
we consider the restriction operator d.(—) with £ a set of forbidden actions
ranging over z7z and z!z as in (1). In practice, we use the restriction opera-
tor to force synchronous communication. We also define a projection operator
mn(—) that, intuitively, captures the first n steps of a DyNetKAT policy. 7, (—)
is crucial for defining the so-called “Approximation Induction Principle” that en-
ables reasoning about equivalence of recursive DyNetKAT specifications. Last,
but not least, in our axiomatisation we employ the left-merge operator (||) and
the communication-merge operator (|) utilised for axiomatising parallel compo-
sition. Intuitively, a process of shape p| ¢ behaves like p as a first step, and then
continues as the parallel composition between the remaining behaviour of p and
g. A process of shape p | ¢ forces the synchronous communication between p
and ¢ in a first step, and then continues as the parallel composition between the
remaining behaviours of p and g. The full description of these auxiliary operators
is provided in [7].

194 G. Caltais et al.

From this point onward, we denote by DyNetKAT the extension with the
operators d2(—), m,(—) and refg, ,:

N ::= NetKAT 9P

De = L|N;D|2?N;De|2!N;De|rcfg, v;De| 2)
De || De | De @ De | 62(De) | wn(De) | Del|De | De|De | X
X2D.,neN, L={c|cu:=2?N|2zIN}

Bisimilarity is defined for DyNetKAT terms as in (2) in the natural fashion.
Lemma 3 For DyNetKAT, bisimilarity is a congruence.

Proof sketch. The result follows from the fact that the semantic rules defined
in this paper comply to the congruence formats proposed in [15]; the notion of
bisimilarity used in our paper coincides with the notion of stateless bisimilarity
in [15] and hence, the lemma follows. |

In Figure 6, we introduce Epyg — the axiom system of DyNetKAT), including
the NetKAT axiomatisation Fyg. Most of the axioms in Figure 6 comply to the
standard axioms of parallel and communicating processes [4], where, intuitively,
@ plays the role of non-deterministic choice, ; resembles sequential composition
and L is a process that deadlocks. An interesting axiom is (A7) : p||L =p
which, intuitively, states that if one network component fails, then the whole
system continues with the behaviour of the remaining components. This is a
departure from the approach in [11], where recovery is not possible in case of a
component’s failure; i.e., ¢||0 = 0. Additionally, (A12) “pin-points” a commu-
nication step via the newly introduced constants of form rcfg, .. Axiom (A0)
states that if the current packet is dropped as a result of the unsuccessful eval-
uation of a NetKAT policy, then the continuation is deadlocked. (A1) enables
mapping the non-deterministic choice at the level of NetKAT to the setting of
DyNetKAT.

The axioms encoding the restriction operator d.(—) and the projection op-
erator m,(—) are defined in the standard fashion, on top of DyNetKAT normal
forms later defined in this section. Intuitively, normal forms are defined induc-
tively, as sums of complete tests and complete assignments « - 7, or commu-
nication steps x7¢, rlq and refg, ,, followed by arbitrary DyNetKAT policies.
Complete tests (typically denoted by «) and complete assignments (typically
denoted by 7) were originally introduced in [3]. In short: let F' = {f1,..., fn}

be a set of fields names with values in V;, for ¢ € {1,...,n}. We call complete
test (resp., complete assignment) an expression f; = vy - ... f, = v, (resp.,
fi v fu), witho, €V, fori € {1,...,n}. Last, but not least, ax-

iom (AIP) corresponds to the so-called “Approximation Induction Principle”,
and it provides a mechanism for reasoning about the equivalence of recursive
behaviours, up to a certain limit denoted by n.

In what follows, we show that the axiom system Fpyg is sound and ground-
complete with respect to DyNetKAT bisimilarity.

DyNetKAT: An Algebra of Dynamic Networks 195

Lemma 4 (NetKAT 9"P Normal Forms) We call a NetKAT P policy ¢
in normal form (n.f.) whenever q is of shape Xo.nc acc-m with A = {a;-m; | i € I}.
Enk is normalising for NetK AT ~94P,

Proof sketch. The result follows from Lemma 4 in [3] stating that the stan-
dard semantics of every NetKAT expression is equal to the union of its minimal
nonzero terms. In the context of NetKAT 9P and packet values drawn from
finite domains (as is the case in [3]), this union can be equivalently expressed
as a sum of complete tests and complete assignments. l.e., - r = X;c;q; - m; for
every NetKAT ~4P expression 7. [|

Definition 5 (DyNetKAT Normal Forms) We call a DyNetKAT policy in
normal form (n.f.) if it is of shape

E;%I(ozi 7)) di B E]%ch; d; (&l)
where d;, d; range over DyNetKAT policies and c; ::= x7q | x!q | refg, , with q
denoting terms in NetKAT ~9uP,

Definition 6 (Guardedness) A DyNetKAT policy p is guarded if and only if
all occurrences of all variables X in p are guarded. An occurrence of a variable
X in a policy p is guarded if and only if (i) p has a subterm of shape p';t such
that either p' is variable-free, or all the occurrences of variables Y in p’ are
guarded, and X occurs in t, or (ii) if p is of shape y?X;t, y!X;t or refgy .

Note that guarded DyNetKAT policies are finitely branching. In what follows,
we assume DyNetKAT policies are guarded.

Lemma 7 (DyNetKAT Normalisation) Epyg is normalising for DyNetKAT.

Proof sketch. The proof follows from Lemma 4 and (A1), by structural in-

duction. Base cases: trivially holds; with ¢ a NetKAT ~9uP
term holds by Lemma 4 and (Al); with ¢ = z7q | zlq | rcfg, ,
trivially holds. Induction step, cases: - discarded, as p is not guarded;

‘pépl @ po ‘; pEpillp2f|pE @) | pEp1 | p2f|p = 0c(p))|and, eventu-

ally, |p £ py || p2 | All items before follow by the axiom system Epyg and the

induction hypothesis, under the assumption that p;,ps and p’ are guarded. W

Lemma 8 (Soundness of Epynetkam\arp) Let Epynetkar\arp stand for the
axiom system Epnk in Figure 6, without the aziom (AIP). EpyNetkAT\AIP 5
sound for DyNetKAT bisimilarity.

Proof sketch. This is proven in a standard fashion, by case analysis on transitions
of shape (p, Ho, H})) 5 (¢, Hy, H}) with v == (0,0’) | 2?n | z!n | rcfg(x,n),
according to the semantic rules of the DyNetKAT operators in (2). Take (A0)

196 G. Caltais et al.

for instance. The left hand-side 0;p can only evolve according to (cpolf;) in
Fig. 4 which, in turn, has an empty premise as [0](c :: ()) = {} for all o.
Thus, (cpolf) does not entail any step for this case. Symmetrically, there is
no semantic transition for L in Fig. 4. In other words, none of the left/right
hand-sides of (A0) displays any behaviour, therefore the axiom is sound. |

Lemma 9 (Soundness of ATP) The Approx. Induction Principle (AIP) is
sound for DyNetKAT bisimilarity.

Proof sketch. The proof is close to the one of Theorem 2.5.8 in [4] and uses the
branching finiteness property of guarded DyNetKAT policies. |

Theorem 1 (Soundness & Completeness). Epygi is sound and ground-
complete for DyNetKAT bisimilarity.

Proof. Soundness: if Epyg = p = ¢ then p ~ ¢, follows from Lemma 8 and
Lemma 9. Completeness: if p ~ ¢ then Epyg F p = ¢, is shown as follows.
Without loss of generality, assume p and ¢ are in n.f., according to Lemma 7.
We want to show that p = ¢ ® p and ¢ = p ® g which, by ACI of & implies
p = ¢q. This reduces to showing that every summand of p is a summand of ¢
and vice-versa. We first argue that every summand of p is a summand of g. The
reasoning is by structural induction.

Base case p = 1 holds by the hypothesis p ~ ¢ that ¢ £ L.

Induction step. Case p = ((a - m);p') @ p": then, (p,oo = H,H') M
(p/,H,o, :: H') implies by the hypothesis p ~ ¢ that (q,0, :: H, H')
(¢, H,o :: H') and p’ ~ ¢’. Recall that ¢ is in n.f.; hence, by the shape of the
semantic rules in Figure 4 it holds that ¢ £ ((a - 7);¢’) @ ¢”. By the induction
hypothesis, it holds that p’ = ¢’ hence, (a-7); p’ is a summand of ¢ as well. Cases
p=(c;p) @p” with ¢ :=an | zln | rcfg, , follow in a similar fashion. Hence,
p = q @ p holds. The symmetric case ¢ = p @ ¢ follows the same reasoning.

(Uoz 70'7\—)

We refer to [7] for the complete proofs and additional details.

4 A Framework for Safety

In this section we provide a language for specifying safety properties for networks
characterized by DyNetKAT, together with a procedure for reasoning about
safety in an equational fashion. Intuitively, safety properties enable specifying
the absence of undesired network behaviours.

Definition 10 (Safety Properties - Syntax) Let A be an alphabet over let-
ters of shape a - m and rcfg, ,,, with a and 7 ranging over complete tests and
assignments, and rcfg, , ranging over reconfiguration actions. Safety properties
are defined in the following fashion:
act m=a -7 |refg, , (a-7, refg, € A)
regexp := true | act | ~act | regexp + regexp | regexp - regexp |
(regezp)™ (with n > 1)
prop = [regezp]|false

DyNetKAT: An Algebra of Dynamic Networks 197

A safety property specification prop is satisfied whenever the behaviour en-
coded by regexp should not be observed within the network. Regular expressions
regexp are defined with respect to actions act: a flow of shape « - 7 is the ob-
servable behaviour of a (NetKAT~9"P) policy transforming a packet encoded by
@ into ., whereas refg, , corresponds to a reconfiguration step in a network.
Recursively, a sum of regular expressions regerp; + regexp, encodes the union
of the two behaviours, a concatenation of regular expressions regexp, - regerp,
encodes the behaviour of regexp, followed by the behaviour of regexp,. A prop-
erty of shape [—a]false, with a € A, states that the system cannot do anything
apart from a as a first step. The property [true]false states that no action can
be observed in the network, whereas [r"]false encodes the repeated application
of r for n times.

Note that true, negated expressions —a and repetitions ™ are mere syntactic
sugars of equivalent expressions free of these operations. Not surprisingly, “de-
sugaring” (ds(—)) is defined as:

ds(true) & Y,caa

ds(—u)éﬂaieAai ds(r™) 2 ds(r-r-...-7)
a; 7§ a n times

ds(r1 - 72) = ds(r1) - ds(re) if r1 - r2 not de-sugared
ds(ri + 72) £ ds(r1) + ds(r2) if r1 + 72 not de-sugared
ds(r) & r [owise]

The complete formal definition of the de-sugaring function is provided in [7].

Definition 11 (Safety Properties - Semantics) Let A be an alphabet over
letters of shape a - m and rcfg(x, p), with a and 7 ranging over complete tests
and assignments, and rcfg(x, p) ranging over reconfiguration actions. We write
w,w’ for (non-empty) words with letters in A (i.e., w,w' € A*) and | w | for
the length of w. We write w' < w whenever w' is a prefix of w (including w).

Let r be a de-sugared regular expression (regexp) as in Definition 10. We call
head normal form (h.n.f.) of v, denoted by hnf(r), the sum of words as above
obtained by left-/right- distributing - over + in r, in the standard fashion. Note
that such a h.n.f. always exists for r. Let Prop stand for the set of all properties
as in Definition 10, in h.n.f.

The semantic map [—] : Prop — DyNetKAT associates to each safety prop-
erty in Prop a DyNetKAT expression as follows. Let © be the DyNetKAT policy
(in normal form) encoding all possible behaviours over A: © £ X%_ , (a; LBa; O).
Then:

A A y® . ® — -
[[[Zz‘el wyfalse] EweA* w; Ll @ Zwe.A* (w; L @ w;0) (3)
w; € A" |w|< M |w|=M
Viel:w Aw Viel:w Aw

such that M 1is the length of the longest word w;, with i € I, and W is a
DyNetKAT-compatible term obtained from w where all letters have been sep-
arated by ; and inductively defined in the obvious way. Namely, @ = a fora € A

198 G. Caltais et al.

and a-w = a;w for a € A and w € A*. The semantic map [—] is defined
following the intuition provided earlier in this section. For instance, as shown
in (3), if none of the sequences of steps w; can be observed in the system, then
the associated DyNetKAT term prevents the immediate execution of all w;.

Typically, safety analysis is reduced to reachability. In our context, a safety
property is violated whenever the network system under analysis displays a (fi-
nite) execution that is not in the behaviour of the property. Thus, the aforemen-
tioned semantic map is based on traces (or words in A*) and is not sensitive
to branching. This paves the way to reasoning about safety properties in an
equational fashion.

Definition 12 (Safe Network Systems) Let E¥, . stand for the equational
azioms in Figure 6, including the additional axiom that enables switching from
the context of bisimilarity to trace equivalence of DyNetKAT policies, namely:
p;(q®r) = p;q® p;r. Assume a specification given as the safety formula s
and a network system implemented as the DyNetKAT policy i. We say that the
network is safe whenever the following holds: E¥y . b [s] @i = [s]. In words:
checking whether i satisfies s reduces to checking whether the trace behaviour of
1 1s included into that of s.

For an example, consider the firewall in Figure 1 and the corresponding
encoding in Figure 3. Recall that reaching int from ext without observing a
secure connection request is a faulty behaviour. This entails the safety formula
s, defined as [(ﬁrcfgseccmReq)l)n - (- 7)) false, for n € N, a £ (port = ext) and
T2 (port < int). Therefore, checking whether the network is safe reduces to
checking, for all n € N: B+ [s,,] @ Init = [s,,]. Note that, for a fixed n, the
verification procedure resembles bounded model checking [5].

5 Implementation

In this section, we describe our implementation for formal reasoning about dy-
namic networks. Our prototype tool, called DyNetiKAT (available at https:
//github.com/hcantunc/DyNetiKAT) is based on Maude [8], the NetKAT deci-
sion procedure [10], and Python [19] as a glue language. Our modular extension
of NetKAT allows for reusing the NetKAT tools in our framework. In our pro-
totype, we focus on checking reachability and waypointing in a dynamic setting.
We build upon the methods for checking reachability and waypointing properties
in NetKAT [3]. For a reminder, in NetKAT, reachability and waypointing prop-
erties are characterised as follows: for reachability properties, an egress point out
is reachable from an ingress point in, in the context of a switch policy p and
topology t, whenever the following NetKAT equivalence holds: in-(p-t)*-out # 0.
For waypointing properties, an intermediate point w between in and out is con-
sidered a waypoint from in to out if all the packets from in to out go through
w. Such a property is satisfied if the following equivalence holds:

https://github.com/hcantunc/DyNetiKAT
https://github.com/hcantunc/DyNetiKAT

DyNetKAT: An Algebra of Dynamic Networks 199

mn-(p-t) -out+in-(—out-p-t)*-w-(—in-p-t)* - out

=in-(-out-p-t)*-w-(—in-p-t)* - out

In order to utilise the NetKAT decision procedure for property checking we
represent the properties given as regular expressions (as described in Section 4).
To this end, we introduced the operators head(D), and tail(D, R), where D is
a DyNetKAT term and R is a set of terms of shape rcfgy . Intuitively, the
operator head(D) returns a NetKAT policy representing the current configu-
ration in D, and tail(D, R) returns a DyNetKAT policy which is the sum of
policies in D that appear after the synchronisation events in R. We utilise these
operators as follows: for a given DyNetKAT term we apply our equational rea-
soning framework to unfold the expression and rewrite it into the normal form.
Then, we extract the desired configurations by using the head and tail opera-
tors. After this step, the resulting expression is a NetKAT term and we use the
NetKAT decision procedure for checking properties. For example, consider the
safety property [(true)™ - (a - m)]false as in Definition 10, and a network SDN.
Note that for a given complete assignments, there exists a corresponding com-
plete test with the same values, e.g., the corresponding complete test for the
complete assignment fo < vg...fn < vp I8 fo = vg...fn = v,. Henceforth,
we write a, to represent the corresponding complete tests of w. The property
[(true)™ - (o -)] false can be encoded in the style of NetKAT as follows:

a - head(m,(SDN)) -a, =0 4)
a - head(tail(7,(SDN),R)) - ar =0 (5)

where R is the set of all synchronisation events in the network and ,,(—) is the
projection operator equationally defined in Figure 6. In our technical report [7]
we provide the corresponding correctness specification of the stateful example
discussed in Section 1. Note that in practice the parameter n in 7, is a fixed value
specified by the user. Intuitively, (4) expresses that the initial configuration of
the network is not able to transform the packets satisfying the predicate a such
that they satisfy the predicate «, and (5) expresses that this transformation
is still not possible in the configurations after any sequence of synchronisation
events. Formally, the operators head and tail are defined as follows:

head(Ll) =0 tail(L,R) = L
head(N; D) = N + head(D) tail(N; D, R) = tail(D, R)
head(D & Q) = head(D) + head(Q) tail(D @ Q, R) = tail(D, R) @ tail(Q, R)
head(refgy n; D) =0 tail(refgy n; D, R) = D @ tail(D, R) if refgx , € R

tail(refgy n; D, R) = Lifrefgy vy € R

Note that we assume the DyNetKAT terms given as input to the operators
head and tail do not contain terms of shape x7¢ and x!q. This can be ensured
by applying the restriction operator § on the input terms.

Observe that the safety properties of Definition 10 are designed to capture
unsafe flows. Similarly, one can also define the syntax (regexp)true to express
that a certain safe flow is possible and reason about it. For an example, consider
the stateful firewall example and the property ((refg .cconpeq1)” - (@ - 7)) true

200 G. Caltais et al.

Core

Aggregation

Top-of-Rack : : ' :
Pod 1 Pod 2 Pod 3 Pod 4

Fig. 7: A FatTree Topology

where o = (port = ext) and 7™ = (port < int). This property expresses that the
flow from port ext to port int is possible after the event refg,..conpeq,1- This
property can be encoded in the NetKAT style as a-head(tail(m, (Init), R)) cr #
0 where R = {rCfgsecConReq,l}'

6 Experimental Evaluation

In this section we evaluate the applicability of our implementation based on a
FatTree [22] topology case. FatTrees are hierarchical topologies commonly used
in data centers. Figure 7 illustrates a FatTree with 3 levels: core, aggregation
and top-of-rack (ToR). The switches at each level contain a number of redundant
links to the upper level. The groups of ToR switches and their corresponding
aggregation switches are called pods. For our experiments, we generated 6 Fat-
Trees that grow in size and achieve a maximum size of 1344 switches. For these
networks we computed a shortest path forwarding policy between all pairs of
ToR switches. The number of switches in the ToR layer is set to k®/4 where k
is the number of pods in the network.

We check dynamic properties on these networks and assess the time per-
formance of our tool. We consider a scenario involving two ToR switches Ty,
and T}, that reside in different pods. Initially, all packets from T, to T} traverse
through a firewall A, in the aggregation layer which filters SSH packets. The
controller then decides to shift the firewall from A, to another switch A, in the
aggregation layer. For this purpose, the controller updates the corresponding ag-
gregation and core layer switches resulting in 4 updates. The checked properties
are as follows: (i) At any point while the controller is performing the updates,
non-SSH packets from T, can always reach Tj. (ii) At any point while the con-
troller is performing the updates, SSH packets from T, can never reach Ty. (iii)
After all the updates are performed, A, is a waypoint between T, and T}.

We conducted the experiments on an Ubuntu 20.04 LTS OS with 16 core
2.4GHz Intel 19-9980HK processor and 64 GB RAM. The results are depicted in
Figure 8. We report the preprocessing time, the time taken for checking proper-
ties (i), (ii), and (iii) individually (referred to as Reachability-I, Reachability-II,
and Waypointing, respectively), and also time taken to check all the properties
in parallel (referred to as All Properties). The reported times are the average of
10 runs.

DyNetKAT: An Algebra of Dynamic Networks 201

The results indicate that preprocessing step is a non-negligible factor that
contributes to overall time. However, preprocessing is independent of the prop-
erty that is being checked and this procedure only needs to be done once for
a given network. After the preprocessing step, the individual properties can be
checked in less than 2 seconds for networks with less than 100 switches. For
larger networks with sizes up to 931 and 1344 switches, the individual properties
can be checked in a maximum of 5 minutes and 11 minutes, respectively. Check-
ing for the property (iii) takes more than twice as much time as checking for
the properties (i) and (ii). In the experiments where we check all properties in
parallel, we allocated one thread for each property. In this setting, checking all
properties introduced 24% overhead on average. After preprocessing, on average
87% of the running times are spent in the NetKAT decision procedure and this
step becomes the bottleneck in analysing larger networks.

B Prey ing M Rea ty-] W React Il ® Waypointir f rti
© 3(0
, I 25 . | | 25(| 600 | |
2‘\ 4 o 20 00 500
o o)
£ 400!
" o8 " ’) 11
‘] | ol]} 300
0.6)
s
0.2 ’ Y 100
0.4
0 0 C 0 0 0
99 Switches 208 Switches 375 Switches 612 Switches 931 Switches 1344 Switches

(6 pods) (8 pods) (10 pods) (12 pods) (14 pods) (16 pods)

Fig. 8: Results of FatTree experiments. Light-coloured areas indicate the time spent
in the NetKAT tool and solid coloured areas indicate the time spent in our tool.

7 Conclusions

We develop the language DyNetKAT for modelling and reasoning about dy-
namic reconfigurations in Software Defined Networks. Our language builds upon
the concepts, syntax, and semantics of NetKAT and hence, provides a modular
extension and makes it possible to reuse the theory and tools of NetKAT. We
define a formal semantics for our language and provide a sound and ground-
complete axiomatisation. We exploit our axiomatisation to analyse reachability
properties of dynamic networks and show that our approach scales to networks
with hundreds of switches. We assume that each data plane packet sees one set
of flow tables throughout their flight in the network [17]. We plan to investigate
small-step semantics in which the control plane updates can have a finer inter-
leaving with in-flight packet as future work. Another natural direction for future
work is devising compilation schemes enabling the translation of DyNetKAT
programs into real running code.

202 G. Caltais et al.

References

1.

2.

Luca Aceto, Bard Bloom, and Frits W. Vaandrager. Turning SOS rules into equa-
tions. Inf. Comput., 111(1):1-52, 1994. doi:10.1006/inco.1994.1040.

L. Aceto, W. J. Fokkink, and C. Verhoef. Conservative extension in structural
operational semantics. Bull. EATCS, 69:110-132, 1999.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetKAT: semantic foundations for
networks. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, pages 113-126. ACM, 2014. doi:
10.1145/2535838.2535862.

Jos C. M. Baeten and W. P. Weijland. Process algebra, volume 18 of Cambridge
tracts in theoretical computer science. Cambridge University Press, 1990.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

Ryan Beckett, Michael Greenberg, and David Walker. Temporal netkat. In
Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 386-401. ACM, 2016.
doi:10.1145/2908080.2908108.

G. Caltais, H. Hojjat, M. R. Mousavi, and H. C. Tunc. DyNetKAT: An algebra of
dynamic networks. CoRR, abs/2102.10035, 2021.

Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet,
José Meseguer, and Carolyn L. Talcott. Full Maude: Extending Core Maude.
In Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, and Carolyn L. Talcott, editors, All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science, pages 559-597.
Springer, 2007. doi:10.1007/978-3-540-71999-1_18.

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-
dra Silva. Probabilistic NetKAT. In Peter Thiemann, editor, Programming Lan-
guages and Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9632 of Lecture Notes in Computer Science, pages 282-309. Springer, 2016.
d0i:10.1007/978-3-662-49498-1_12.

10. Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-

son. A Coalgebraic Decision Procedure for NetKAT. In Sriram K. Rajamani and
David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 343-355. ACM, 2015. doi:10.1145/2676726.2677011.

11. Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi.

Concurrent Kleene Algebra with Observations: from Hypotheses to Complete-
ness. CoRR, abs/2002.09682, 2020. URL: https://arxiv.org/abs/2002.09682, arXiv:
2002.09682.

12. Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,

and Russell J. Clark. Kinetic: Verifiable dynamic network control. In 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 15, Oakland,
CA, USA, May 4-6, 2015, pages 59-72. USENIX Association, 2015. URL: https:
//www.usenix.org/conference/nsdil5/technical-sessions/presentation /kim.

https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1007/978-3-540-71999-1_18
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://arxiv.org/abs/2002.09682
http://arxiv.org/abs/2002.09682
http://arxiv.org/abs/2002.09682
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim

DyNetKAT: An Algebra of Dynamic Networks 203

13. Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. Event-driven
network programming. In Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages
369-385. ACM, 2016. doi:10.1145/2908080.2908097.

14. Peter D. Mosses. Modular structural operational semantics. J. Log. Algebraic
Methods Program. 60-61: 195-228, 2004. doi.org/10.1016/j.jlap.2004.03.008
15. Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. Notions of
bisimulation and congruence formats for SOS with data. Information and Compu-

tation, 200(1):107 — 147, 2005. doi.org/10.1016/j.ic.2005.03.002.

16. Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-
murthi. Tierless programming and reasoning for software-defined networks. In
Ratul Mahajan and Ion Stoica, editors, Proceedings of the 11th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 201, Seattle,
WA, USA, April 2-4, 2014, pages 519-531. USENIX Association, 2014. URL:
https://www.usenix.org/conference/nsdil4/technical-sessions/presentation/nelson.

17. Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Lars Eggert, Jorg Ott, Venkata N. Padman-
abhan, and George Varghese, editors, ACM SIGCOMM 2012 Conference, SIG-
COMM ’12, Helsinki, Finland - August 18 - 17, 2012, pages 323-334. ACM, 2012.
doi:10.1145/2342356.2342427.

18. Alexandra Silva. Models of Concurrent Kleene Algebra. In Elvira Albert and
Laura Kovécs, editors, LPAR 2020: 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27,
2020, volume 73 of EPiC Series in Computing, page 516. EasyChair, 2020. URL:
https://easychair.org/publications/paper/6C8R.

19. Guido van Rossum. Python programming language. In Jeff Chase and Srinivasan
Seshan, editors, Proceedings of the 2007 USENIX Annual Technical Conference,
Santa Clara, CA, USA, June 17-22, 2007. USENIX, 2007.

20. Alexander Vandenbroucke and Tom Schrijvers. PAwnk: functional probabilistic
netkat. Proc. ACM Program. Lang., 4(POPL):39:1-39:27, 2020. doi:10.1145/
3371107.

21. Jana Wagemaker, Paul Brunet, Simon Docherty, Tobias Kappé, Jurriaan Rot, and
Alexandra Silva. Partially Observable Concurrent Kleene Algebra. In Igor Konnov
and Laura Kovécs, editors, 31st International Conference on Concurrency The-
ory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference),
volume 171 of LIPIcs, pages 20:1-20:22. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.20.

22. Al-Fares, Mohammad and Loukissas, Alexander and Vahdat, Amin. A Scalable,
Commodity Data Center Network Architecture. ACM SIGCOMM Comput. Com-
mun. Rev. 38, 4, 63-74, 2008. doi:10.1145/1402946.1402967.

https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/https://doi.org/10.1016/j.ic.2005.03.002
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://doi.org/10.1145/2342356.2342427
https://easychair.org/publications/paper/6C8R
https://doi.org/10.1145/3371107
https://doi.org/10.1145/3371107
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.1145/1402946.1402967

204 G. Caltais et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A new criterion for M, N -adhesivity,

with an application to hierarchical graphs*

Davide Castelnovo!™=, Fabio Gadducci?®, and Marino Miculan®

! Department of Mathematics, Computer Science and Physics,
University of Udine, Udine, Italy.
davide.castelnovo@uniud.it, marino.miculan@uniud.it
2 Department of Computer Science, University of Pisa, Pisa, Italy.
fabio.gadducci@unipi.it

Abstract. Adhesive categories provide an abstract framework for the
algebraic approach to rewriting theory, where many general results can be
recast and uniformly proved. However, checking that a model satisfies the
adhesivity properties is sometimes far from immediate. In this paper we
present a new criterion giving a sufficient condition for M, N -adhesivity,
a generalisation of the original notion of adhesivity. We apply it to several
existing categories, and in particular to hierarchical graphs, a formalism
that is notoriously difficult to fit in the mould of algebraic approaches to
rewriting and for which various alternative definitions float around.

1 Introduction

The introduction of adhesive categories marked a watershed moment for the alge-
braic approaches to the rewriting of graph-like structures [16,9]. Until then, key
results of the approaches on e.g. parallelism and confluence had to be proven over
and over again for each different formalism at hand, despite the obvious similar-
ity of the procedure. Differently from previous solutions to such problems, as the
one witnessed by the butterfly lemma for graph rewriting [8, Lemma 3.9.1], the
introduction of adhesive categories provided such a disparate set of formalisms
with a common abstract framework where many of these general results could
be recast and uniformly proved once and for all.

Despite the elegance and effectiveness of the framework, proving that a given
category satisfies the conditions for being adhesive can be a daunting task. For
this reason, we look for simpler general criteria implying adhesivity for a class of
categories. Similar criteria have been already provided for the core framework of
adhesive categories; e.g., every elementary topos is adhesive [17], and a category
is (quasi)adhesive if and only if can be suitably embedded in a topos [15,12]. This
covers many useful categories such as sets, graphs, etc.; on the other hand, there
are many categories of interest which are not (quasi)adhesive, such as directed
graphs, posets, and many of their subcategories. In these cases we can try to
prove the more general M, N -adhesivity for suitable M, N; however, so far this

* Work supported by the Italian MIUR project PRIN 2017FTXR7S “IT-MaTTerS”.

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 205-224, 2022.
https://doi.org/10.1007/978-3-030-99253-8_11

®

Check for
updates

http://orcid.org/0000-0003-0690-3051
http://orcid.org/0000-0003-0755-3444
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_11&domain=pdf

206 D. Castelnovo, F. Gadducci, M. Miculan

has been achieved only by means of ad hoc arguments. To this end, one of the
main contributions of this paper is a new criterion for M, N-adhesivity, based on
the verification of some properties of functors connecting the category of inter-
est to a family of suitable adhesive categories. This criterion allows us to prove
in a uniform and systematic way some previous results about the adhesivity of
categories built by products, exponents, and comma construction.

Moreover, it is well-known that categorical properties are often prescriptive,
indicating abstractly the presence of some good behaviour of the modelled sys-
tem. Adhesivity is one such property, as it is highly sought after when it comes to
rewriting theories. Thus, our criterion for proving M, N-adhesivity can be seen
also as a “litmus test” for the given category. This is useful in situations that are
not completely settled, and for which different settings have been proposed. An
important example is that of hierarchical graphs, for which we roughly can find
two alternative proposals: on the one hand, algebraic formalisms where the edges
have some algebraic structures, so that the nesting is a side effect of the term
construction; on the other hand, combinatorial approaches where the topology of
a standard graph is enriched by some partial order, either on the nodes or on the
edges, where the order relation indicates the presence of nesting. By applying
our criterion, we can show that the latter approach yields indeed an M, N-
adhesive category, confirming and overcoming the limitations of some previous
approaches to hierarchical graphs [21,23,24], which we briefly recall next.

The more straightforward proposal is by Palacz [24], using a poset of edges
instead of just a set; however, the class of rules has to be restricted in order
to apply the approach, which in any case predates the introduction of adhe-
sive categories. Our work allows to rephrase in terms of adhesive properties and
generalise Palacz’s proposal, dropping his constraint on rules. Another attempt
are Mylonakis and Orejas’ graphs with layers [21], for which M-adhesivity is
proved for a class of monomorphisms in the category of symbolic graphs; how-
ever, nodes between edges at different layers cannot be shared. Padberg [23]
goes for a coalgebraic presentation via a peculiar “superpower set” functor; this
gives immediately M-adhesivity provided that this superpower set functor is
well-behaved with respect to limits. However this approach is rather ad hoc, not
modular and not very natural for actual modelling.

Summarising, the main contributions of this work are: (a) a new general
criterion for assessing M, N-adhesivity; (b) new proofs of M, N -adhesivity for
some relevant categories, systematising previous known proofs; (c) the first proof
that a category of hierarchical graph is M, N-adhesive.

Synopsis. After having recalled some basic notions, in Section 2 we introduce the
new criterion for M, N-adhesivity; using it, we show M, N -adhesivity of several
constructions, such as products and comma categories. In Section 3 we apply
this theory to various example categories, such as directed (acyclic) graphs, trees
and term graphs. We show also the adhesivity of several categories obtained by
combining adhesive ones, and in particular of the elusive category of hierarchical
graphs. Conclusions and directions for future work are in Section 4. An extended
version of this paper is available at [6].

2

A new criterion for M, N-adhesivity 207

M, N -adhesivity via creation of (co)limits

In this section we recall some definitions and results about M, M -adhesive cat-
egories and provide a new criterion to prove this property.

2.1

M, N-adhesive categories

Intuitively, an adhesive category is one in which pushouts of monomorphisms
exist and “behave more or less as they do in the category of sets” [16]. Formally,
we require pushouts of monomorphisms to be Van Kampen colimits.

Definition 2.1. A Van Kampen square in a category A is a pushout square

A% B
ml| S

4>
C’gD

such that for any cube as follows, where the back faces are pullbacks,

m’ A/ n/
C«/(/f/ ‘ \)BI
]
c b

A
/dJ/m ~4

?"D%

C B

the top face is a pushout if and only if the front faces are pullbacks.

Pushout squares which enjoy the “if” of this condition are called stable.

Given a category A we will denote by Mor(A), Mono(A), Reg(A) respectively
the classes of morphisms, monomorphisms and regular monomorphisms of A.

Definition 2.2. Let A be a category and A C Mor(A). Then we say that A is

stable under pushouts if for every pushout square as aside, f

if me Athenn € A; A—B
stable under pullbacks if for every pullback square as aside, ml l”
ifn € A then m € A; C’?D

closed under composition if g, f € A implies g o f € A whenever g and f
are composable;

closed under B-decomposition (where B is another subclass of Mor(A)) if
go f €A and g€ B implies f € A;

closed under decomposition if it is closed under A-decomposition.

Remark 2.1. Clearly, “decomposition” corresponds to “left cancellation”, but we
prefer to stick to the name commonly used in literature (see e.g. [14]).

208 D. Castelnovo, F. Gadducci, M. Miculan

We are now ready to give the definition of M, N-adhesive category [14,25].
Definition 2.3. Let A be a category and M C Mono(A), N C Mor(A) where

(i) M and N contain all isomorphisms and are closed under composition and
decomposition;
(ii) N is closed under M-decomposition;
(iii) M and N are stable under pullbacks and pushouts.

Then we say that A is M, N-adhesive if

(a) every cospan C 2 D & B with m € M can be completed to a pullback
(such pullbacks will be called M-pullbacks);

(b) every span C <= A % B with m € M and n € N can be completed to a
pushout; such pushouts will be called M, N-pushouts;

(c) M, N -pushouts are Van Kampen squares.

Remark 2.2. M-adhesivity as defined in [2] coincides with M, Mor(A)-adhesivity,
while adhesivity and quasiadhesivity [16,12] coincide with Mono(A)-adhesivity
and Reg(A)-adhesivity, respectively. Notice that, in the M-adhesive case, sta-
bility under pushouts of M derives from properties (a)—(c) of Definition 2.3,
while closure under decomposition follows from stability under pullbacks in any
category, so there is no need to prove it independently.

Other authors have introduced weaker notions of M-adhesivity; see, e.g.,
[9,11,28], where our M-adhesive categories are called adhesive HLR categories.

In general, proving that a given category is M, N -adhesive by verifying the
conditions of Definition 2.3 may be long and tedious; hence, we seek criteria
which are sufficient for adhesivity, and simpler to prove. A prominent example
is the following result due to Lack and Sobocinski.

Theorem 2.1 ([17], Thm. 26). Any elementary topos is an adhesive category.

In particular the category Set of sets and any presheaf category are adhesive.
However, there are many important categories for (graph) rewriting which are
not toposes, hence the need for more general criteria.

2.2 A new criterion for M, N -adhesivity

In this section we present our main result, i.e., that M, N-adhesivity is guaran-
teed by the existence of a family of functors with sufficiently nice properties. We
will adapt some definitions from [1].

Definition 2.4. Let I : I — C be a diagram and J a set. We say that a family
F = {F;};ey of functors F; : C — D

1. jointly preserves (co)limits of I if given a (co)limiting (co)cone (L,1;)ie1 for
I, every (Fj(L), F;(l;))ier is (co)limiting for Fjol;

2. jointly reflects (co)limits of I if a (co)cone (L,l;)icr is (co)limiting for I
whenever (F;(L), F;(1;))ier is (co)limiting for Fj oI for every j € J;

A new criterion for M, N-adhesivity 209

3. jointly lifts (co)limits of I if given a (co)limiting (co)cone (Lj,l; ;)i for
every Fj o I, there exists a (co)limiting (co)cone (L,l;)icr for I such that
(F5(L), Fj(l:))iet = (Lj, i i)ier for every j € J;

4. jointly creates (co)hrmts of I if Fj oI has a (co)limit for every j € J, I has
a (co)limit and F jointly preserves and reflects it.

Remark 2.3. Joint preservation, reflection, lifting or creation of (co)limits of F' =
{F; : A = Bj};cs is equivalent to the usual preservation, reflection, lifting or
creation of (co)limits for the functor A — J[;.; B; induced by F'. Notice that
our notion of creation follows [22], which is more lax than, e.g., [19, Def. V.1].

Theorem 2.2. Let A be a category, M C Mono(A), N C Mor(A) satisfying
conditions (i)—(iii) of Definition 2.3, and F a non empty family of functors
F; : A — B; such that B; is M;, N;-adhesive.
1. If every F; preserves pullbacks, Fj(M) C M; and F;(N') C N for every j €
J, F jointly preserves M, N -pushouts, and jointly reflects pushout squares
Fi(f
Fj(A) L) Fy(B)
F; F;
i(m)] Fi(9) LFj(n)
F(©) % Fy(p)

with m,n € M and f € N, then M, N -pushouts in A are stable.
Moreover if in addition F jointly reflects M-pullbacks and N -pullbacks then
M, N -pushouts are Van Kampen squares.

2. If F satisfies the assumptions of the previous points and jointly creates both
M-pullbacks and N -pullbacks, then A is M, N -adhesive.

3. If F jointly creates all pushouts and all pullbacks, then A is Mp, Np-
adhesive, where

Mp = {m € Mor(A) | F;(m) € M; for every j € J}

Np :={n € Mor(A) | Fj(n) € N for every j € J}
Proof. (1.) Take a cube in which the bottom face is an M, N -pushout and
all the vertical faces are pullbacks (below, left). Applying any F; € F we get
another cube in B; (below, right) in which the bottom face is an M ;, N;-pushout

(because F;(m) € M, and Fj(n) € Nj) and the vertical faces are pullbacks, thus
the top face of the second cube is a pushout for every j € J

3\

A/
c’ / J
7 % Fo () Fy(D) /Fj(a)
clg al lb Fie)| Fy(b)
A_p _ ,
2 /dl/m o ﬂ F/(FJ<A>F\J<n>
e Bo | " ™) Fy(B)

210 D. Castelnovo, F. Gadducci, M. Miculan

Now m/, f' € M and n’ € N since they are the pullbacks of m, f and n and
thus we can conclude.

Suppose now that F jointly reflects M-pullbacks and N -pullbacks, we have
to show that the front faces of the first cube above are pullbacks if the top
one is a pushout. In the second cube, the bottom and top face are M, N;-
pushouts and the back faces are pullbacks, then the front faces are pullbacks
too by M;, Nj-adhesivity. Now, notice that f € M and g € N (since M and
N are closed under pushouts) and thus we can conclude since F' jointly reflects
pullbacks along arrows in M or in N.

(2.) Let us show properties (a), (b), (¢) defining M, N -adhesivity.

(a) Given a cospan C 2 D <" Bin A with m € M we can apply F; € F to

it and get F;(C) filo), F;(D) L, F;(B) which is a cospan in B; with

Fj(g) € Mj, thus, by hypothesis it has a limiting cone (P, pr,(5), Pr;(c))
in B;. Since F' jointly creates M-pullbacks there exists a limiting cone
(P,pB,pc) for the cospan C 4% D& B.

(b) Analogously: for every span C <~ A s B in A with m € M and n € N,
we have F;(C) L, F;(A) LLION F;(B) in each B; with F;(m) € M, and
F;(n) € Nj and thus there exists a colimiting cocone (Q;, qr,;(B), 4F;(c)) in
B;. Now we can conclude because F' jointly creates M, N-pushouts.

(¢) This follows at once by the second half of the previous point.

(3.) By the previous point it is enough to show that Mp and N satisfy condi-
tions (i)—(iii) of Definition 2.3.

(i) If f € Mor(A) is an isomorphism then so is F;(f) for every F; € F. Thus
F;(f) belongs to M, and N for every j € J, implying f is in Mp and in
Nr. The parts regarding composition and decomposition follow immediately
by functoriality of each F; € F.

(i) Suppose that go f € Np, with g € Mp then for every j € F Fj(go f) =
Fj(g9) o F;(f) € Nj and Fj(g) € M, thus F;(f) € Nj and so f € Np.

(iii) Take a square

S
A— B
m| |n

—

C 7 D
and suppose that it is a pullback with n € Mg (NF), then applying any
F; € F we get that F;(m) is the pullback of F;(n) along Fj(g), since F;(n) is
in M; (in N}), which implies that F;(m) € M; (N;). This is true for every
j € J, from which the thesis follows. Stability under pushouts is proved
applying the same argument to m. (]

Applying the previous theorem to the families given by, respectively, pro-
jections, evaluations and the inclusion we get immediately the following three
corollaries (cfr. also [9, Thm. 4.15]).

A new criterion for M, N-adhesivity 211

Corollary 2.1. Let {A};cr be a family of categories such that each A; is M, N;-
adhesive. Then the product category [[;c; As is [[;c; M, [1;e; Ni-adhesive, where

HMi = {(mi)ier € Mor(H A,) | m; € M; for everyi € I}

iel iel
HM = {(n;)ier € I\/Ior(H A;) | n; €N; for everyi e I}
iel iel

Corollary 2.2. Let A be an M, N -adhesive category. Then for every other cat-
egory C, the category of functors A€ is MC, N©-adhesive, where

MEC .= {n € Mor(A®) | nc € M for every object C' of C}

NC = {n e Mor(A®) | no € N for every object C of C}
Corollary 2.3. Let A be a full subcategory of an M, N -adhesive category B
and M’ C Mono(A), N/ C Mor(A) satisfying the first three conditions of Def-

inition 2.3 such that M' € M, N' C N and A is closed in B under pullbacks
and M', N -pushouts. Then A is M’', N"-adhesive.

2.3 Comma categories

In this section we show how to apply Theorem 2.2 to the comma construction
[19] in order to guarantee some adhesivity properties under suitable hypotheses.

Definition 2.5. For any two functors L : A — C, R : B — C, the comma
category L] R is the category in which

— objects are triples (A, B,) with A€ A, B€ B, and f: L(A) —» R(B);
— a morphism (A, B, f) = (A’, B',g) is a pair (h,k) withh: A— A', k: B —
B’ such that the following diagram commutes

L(h)
L(A) — L(A)

R(C) 0 R(CY)

We have two obvious forgetful functors

U,:LIR— A Up:LIR— B
(A,B,f) — A (A,B,f) — B
(h.k) | L (h.k) | Lk
(A", B',g) — A’ (A", B',g) — B’

FEzample 2.1. Graph is equivalent to the comma category made from the iden-
tity functor on Set and the product functor sending X to X x X.

212 D. Castelnovo, F. Gadducci, M. Miculan

We have a classic result relating limits and colimits in the comma category
with those preserved by L or R.

Lemma 2.1. Let [: I — LR be a diagram such that L preserves the colimit
(if it exists) of U, o I. Then the family {Uy,Ugr} jointly creates colimits of I.

Corollary 2.4. The family {UL,Ur} jointly creates limits along every diagram
I:1— LR such that R preserves the limit of Ug o I.

Proof. Apply the previous lemma to R°P | L°P which is equivalent to (L] R)°P.

We are now able to deduce the following result from Theorem 2.2.

Theorem 2.3. Let A and B be respectively M, N -adhesive and M’ , N” -adhesive
categories, L : A — C a functor that preserves M, N -pushouts, and R : B — C
a pullback preserving one. Then Ll R is M{M' N | N'-adhesive, where

MIM :={(h,k) € Mor(LLR) | h e M,k e M’}
NIN = {(h,k) € Mor(LLR) | h € ',k € N}

3 Some paradigmatic examples

In this section we apply the results provided in Section 2, to some important
categories, such as directed (acyclic) graphs, hierarchical (hyper)graphs, directed
(acyclic) hypergraphs, and term graphs. These examples have been chosen for
their importance in graph rewriting, and because we can recover their M, N-
adhesivity in a uniform and systematic way. In fact, in the case of hierarchical
(hyper)graphs we give the first proof of M, N-adhesivity, to our knowledge.

3.1 Directed (acyclic) graphs

Among visual formalisms, directed (also known as “simple”) graphs represent
one of the most-used paradigms, since they adhere to the classical view of graphs
as relations included in the cartesian product of vertices. It is also well-known
that directed graphs are not quasiadhesive [15], not even in their acyclic variant.
In this section we are going to exploit Corollary 2.3 to show that these categories
of (acyclic) graphs have nevertheless adhesivity properties.

Definition 3.1. A directed multigraph is a 4-tuple (E,V,s,t) where E and V
are sets, called the set of edges and nodes respectively, and s,t : E — V are
functions, called source and target. An edge e is between v and w if s(e) = v and
t(e) = w, E(v,w) is the set of edges between v and w. A morphism (E,V, s, t) —
(B, W,s',t') is a pair (f,g) of functions f : E — F, g : V. — W such that the
following diagrams commute

S t
— —

~
Rty

V. ESV
Lol Lo
SW F oW

A new criterion for M, N-adhesivity 213

We will denote by Graph the category so defined. A directed graph is a directed
multigraph in which there is at most one edge between two nodes, DGraph is
the full subcategory of Graph given by directed graphs.

A path [e;]", in a directed multigraph is a finite list of edges such that
t(e;) = s(eiq1) for all1 <i<mn—1. A path is called a cycle if s(e1) = t(e,). A
directed acyclic graph is a directed graph without cycles, directed acyclic graphs
form a full subcategory DAG of DGraph and Graph.

Remark 3.1. Graph is equivalent to the category of presheaves on e = e, the
category with just two objects and only two parallel arrows between them (be-
sides the identities), thus it is a topos and as such adhesive. Notice that this also
implies that limits and colimits are computed component-wise and that an arrow
in Graph is mono if and only if both its underlying functions are injective.

Remark 8.2. Notice that if (f,g) : (E,V,s,t) — (F,W,s,t') is an arrow in
DGraph with f injective, then g is injective too.

We will state now two categorical properties of DGraph that will be useful
in the following.

Proposition 3.1. The following properties hold

1. the inclusion functor I : DGraph — Graph has a left adjoint L : Graph —
DGraph which sends a graph (V, E,s,t) to the graph on the same vertices
but in which edges with the same source and target are identified;

2. anarrow (f,g): (E,V,s,t) = (F,W,s',t') of DGraph is a reqular monomor-
phism if and only if f is injective and E(vy,vs) is non empty whenever

F(f(vl), f(vz)) #* 0.

Remark 3.3. Notice that, since L does not modify the vertices part of a graph,
Remark 3.2 implies that L preserves monomorphisms.

Ezample 3.1. In [15] it is shown that DGraph is not quasiadhesive. Take the

cube
(@ a)—— (]

fst
N
il

b b

214 D. Castelnovo, F. Gadducci, M. Miculan

By the results of Proposition 3.1 the top and bottom faces are pushouts along
regular monos and the back faces are pullbacks, but the front one is not, contra-
dicting the Van Kampen property. The same example shows that even DAG is
not quasiadhesive.

Definition 3.2. A monomorphism (f,q) : (E,V,s,t) — (F,W,s',t") in Graph
is said to be downward closed if, for alle € F, e € f(E) whenever t'(e) € g(V)
(in particular this implies that s'(e) € g(V') too). We denote by dclosed, dclosedq
and dclosedq, the classes of downward closed morphisms in Graph, DGraph
and DAG respectively.

Remark 3.4. The functor L of Proposition 3.1 sends downward closed morphisms
to downward closed morphisms.

Remark 3.5. By Proposition 3.1 it is clear that any downward closed morphism
is regular. The vice-versa does not hold: a counterexample is given by

a

)—

b

Lemma 3.1. DGraph and DAG are closed in Graph under pullbacks. More-
over, DGraph is closed under Reg(DGraph), Mono(DGraph)-pushouts and
DAG under dclosedya, Mono(DAG)-pushouts.

Theorem 3.1. The category DGraph is Reg(DGraph), Mono(DGraph)- and
Mono(DGraph), Reg(DGraph)-adhesive, while DAG is dclosedg,, Mono(DAG)-
adhesive.

3.2 Tree Orders

In this section we present trees as partial orders and show that the resulting
category is actually a topos of presheaves, hence adhesive. This fact will be
exploited in Section 3.3 to construct a category of hierarchical graphs, where the
hierarchy between edges is modelled by trees.

Definition 3.3. A tree order is a partial order (E, <) such that for everye € E,
le is a finite set totally ordered by the restriction of <. Since le is a finite chain
we can define the immediate predecessor function

ip: B — EU{x} eH{TaX(ie\{e}) ﬁig

Let i% be the inclusion E — E U {x}; then, for any k € N, the kM predecessor
function % : E — E'U {x} is defined by induction as follows:

ig(i% 1)) ") e E
M{*Eu; (€)) ggi

A new criterion for M, N-adhesivity 215

Let f: (E,<) — (F,<) be a monotone map and f. : EU{x} — F U {x}
be its extension sending x to x. We say that f is strict if the following diagram
commutes

We define the category Tree as the subcategory of Poset given by tree orders
and strict morphisms.

Example 8.2. A strict morphisms is simply a monotone function that preserves
immediate predecessors (and thus every predecessor). For instance the function
{0} — {0,1} sending 0 to 1 and where we endow the codomain with the order
0 <1, is not a strict morphism.

Remark 3.6. Clearly ik, = ig and it holds that i%(e) = if and only if |le| < k.
In this case an easy induction shows that ||i¥,(e)| = |le| — k.

Remark 3.7. We have an obvious forgetful functor

|—| : Tree — Set
(B, <)— E

fl Lf

(F, <) — F

Remark 3.8. Let (E,<) be an object of Tree and w the first infinite ordinal,
then we can define its associated presheaf E : w°P — Set sending n to the set

{e€ B lle~ {c}| =n}
If n < m in w, we can define a function
Eo i E(m) = E(n) e ip"(e)
which is well defined since |le| > m —n so
LB "(e)|=le|—m+n=m+1-m+n=n+1
Notice that if m = n, i " (e) is the identity, while for any k < n < m we have
ton(trm(€)) = i (i) = i * T (e) = i (e) = iy (e)
so E is really a presheaf on w.

Theorem 3.2. There exists an equivalence of categories (/—\) : Tree — Set®”
sending (E,<) to E.

Corollary 3.1. Tree is adhesive and the forgetful functor |—| : Tree — Set
preserves all colimits.

216 D. Castelnovo, F. Gadducci, M. Miculan

3.3 Various kinds of hierarchical graphs

In this section we construct several categories of hierarchical graphs combining
sufficiently adhesive categories of preorders or graphs (modelling the hierarchy
between the edges) and the wanted structure on the nodes. For each of them
we can readily prove suitable adhesivity properties, leveraging the modularity
provided by Theorem 2.2. Besides hypergraphs and interfaces, this methodology
can be applied to other settings such as Petri nets (see [10]).

Hierarchical graphs We can use trees to produce a category of hierarchical graphs
[24], which, in addition, can be equipped with an interface, modelled by a func-
tion into the set of nodes.

Definition 3.4. The category HIGraph of hierarchical graphs with interface
has as objects 6-tuples ((E,<),V, X, f,s,t) where (E,<) is a tree order, f is a
function X — V and s,t are functions E — V, and as arrows triples (h,k,1) :
(B,), V, X, f,s,t) = (F,<),W)Y,qg,s,t') with h : (E,<) — (F,<) in Tree,
k:V >Wandl: X —Y in Set such that the following squares commute

Sy gLy XLV

nlo, Lenl o, el Lk

F—w F—Ww Y —W

We can realise HIGRaph as a comma category: as L we take the functor |—| :
Tree — Set of Remark 3.7, while as R we take the composition of cod : Set? —
Set, sending an arrow to its codomain, with the functor Set — Set that sends
a set X to X x X. Notice that cod preserves limits since it coincides with the
forgetful functor idget | idset, SO we can apply Theorem 2.3 to get the following.

Theorem 3.3. HIGraph is an adhesive category.

The next step is to move to hypergraphs, using the Kleene star (—)* : Set —
Set (the monoid monad) instead of the product functor. This step is not trivial:
it relies on the fact that the monoid monad preserves all connected limits (such
monads are called cartesian), which in turn rests upon the fact that the theory
of monoids is a strongly regular theory (see [5, Sec. 3] and [18, Ch.4] for details).

Hierarchical hypergraphs A variation on the previous example is obtained by
allowing an edge to be mapped to an arbitrary subset of nodes. In this way, we
obtain a category of hypergraphs whose edges form a tree order, corresponding
to Milner’s (pure) bigraphs [20], with possibly infinite edges®.

Definition 3.5. The category HHGraph of hierarchical hypergraphs with in-
terface has as objects 5-tuples ((E,<),V, X, f,e) where (E,<) is a tree order
and f : X — V, e : E — V* two functions; arrows are triples (h,k,1) :
(E,<),V,X, fe) = (F,<),W,Y,g,¢') with h : (E,<) = (F,<) in Tree,
k:V =>Wandl: X —Y in Set such that the following squares commute

3 In bigraph terminology, “controls” and “edges” correspond to our edges and nodes.

A new criterion for M, N-adhesivity 217

& - ® .
g e

Y Y

Fig.1. A DAG-hypergraph (left) and a DGraph-hypergraph corresponding to the
CCS process P = a(z).b(zy).P (right). Relation between edges is depicted in red.

ESve X J, 1%
Fo W Y —W

e’

Even in this case HHGraph is a comma category: on the left side we take |—|
as before, on the right side we take the composition of cod with the Kleene star,
so even in this case we can deduce adhesivity.

Theorem 3.4. HHGRaph is adhesive.

DGraph and DAG-hypergraphs We can consider more general relations be-
tween edges, besides tree orders. An interesting case is when edges form a
directed acyclic graph, yielding the category of DAG-hypergraphs; this corre-
sponds to (possibly infinite) bigraphs with sharing, where an edge can have more
than one parent, as in [27] (see also Fig. 1, left). Even more generally, we can
consider any relation between edges, i.e., the edges form a generic directed graph
possibly with cycles, yielding the category of DGraph-hypergraphs. These can
be seen as “recursive bigraphs”, i.e., bigraphs which allow for cyclic dependencies
between controls, like in recursive processes; an example is in Fig. 1 (right).

Definition 3.6. We define the category of DGraph-hypergraphs (respectively
DAG-hypergraphs) with interface DHGraph (DAGHGraph) as the one in
which objects are 5-tuples ((E, T, s,t),V, X, f,e) where (E, T, s,t) is in DGraph
(in DAG), f is a function X — V, and e a function T — V* and as ar-
rows tm’ple ((hlv h2)7 ka l) : ((Ea T, S, t)a ‘/7 Xv f’ 6) - ((Fa Tlv S/a tl)’ ‘/Vv ngv 6/)
with (h1,he) : (E,T,s,t) = (F,T',s,t') in DAG (in DGraph), k: V — W
andl: X =Y in Set such that the following squares commute

f
TSV XSV

hal kel Lk

TS WY W
e g

We can realise also DHGraph and DAGHGraph as comma categories: it is
enough to take respectively the forgetful functors DGraph — Set and DAG —
Set on one side and again the composition of the Kleene star with cod.

218 D. Castelnovo, F. Gadducci, M. Miculan

Theorem 3.5. DHGraph is adhesive with respect to the classes

{((h1, h2),k,1) € Mor(DHGraph) | (h1, h2) € Reg(DGraph), k,I € Mono(Set)}
{((h1,h2),k,1) € Mor(DHGraph) | (h1,h2) € Mono(DGraph)}

while DAGHGraph is adhesive with respect to the classes

{((h1,h2),k,1) € Mor(DAGHGraph) | (h1, h2) € dclosedqa, k,! € Mono(Set)}
{((h1,h2),k,1) € Mor(DHGraph) | (h1,h2) € Mono(DAG)}

3.4 Term graphs

The use of term graphs has been advocated as a tool for the optimal implemen-
tation of terms, with the intuition that the graphical counterpart of trees can
allow for the sharing of sub-terms [26]. A brute force proof of quasiadhesivity
of the category of terms graphs was given in [7]. In this section we recover that
result by exploiting our new criterion for adhesivity.

Definition 3.7. Let ¥ = (O, ar) be an algebraic signature (O is a set and ar :
O — N a function called arity function). A term graph over X is a triple (V,1, s)
where V is a set, [:' V — O, s: V —= V* are partial functions such that

— dom(l) = dom(s);
— for each v € dom(l), ar(I(v)) = length(s(a)), where length : V* — N asso-
ciates to each word its length.

Elements of V are called nodes, a node v not in dom(l) is called empty. A
morphism (V,1,s) — (W,t,1) is a function f:V — W such that

for every v € dom(l). We will denote by TGy the category of term graphs over X
and their morphisms. We will use U to denote the forgetful functor TGy — Set
sending a term graph to the set of its nodes and that is the identity on arrows.

Definition 3.8. We define a functor A : Set — TGy putting

X — (X e1,e2)

£l Lf

Y — (Y, e}, €h)
where the domains of the structural functions ey, es of A(X) are the empty set.

Lemma 3.2. The following properties hold

1. AU,
2. TGy has equalizers and binary products.

A new criterion for M, N-adhesivity 219

Remark 3.9. Right adjoints preserves monomorphisms, so, by the first point of
Lemma 3.2, if f : (V,l,s) — (W,t,r) is a monomorphism then its underlying
function is injective. On the other hand U/ is faithful and thus reflects monomor-
phisms, i.e. also the other implication holds.

Remark 3.10. TGy in general does not have terminal objects. Since U preserves
limits, if a terminal object exists it must have the singleton as set of nodes. Now
take as signature the one given by two operations {a, b} both of arity 0, then we
have three term graphs with only one node v: A({v}), ({v},l,s) and ({v},¢,s)
where [(v) = a, t(v) = b and s sends v to the empty word. Clearly there are no
morphisms between the last two and from the last two to the first one, and thus
neither of them can be terminal.

Remark 3.11. TGy is not an adhesive category. In particular it does not have
pushouts along all monomorphisms. Take the signature of the previous remark,
then we can use the identity {v} — {v} to form a span

({oh,1,s) & A{v}) 5 (o), t,9).

This span cannot be completed to commutative a square: if

A({v}) 5 ({v},t,5)
i'l 19

vhl, s V,p,r
({o})?(p.7)

is commutative then f(v) = g(v); therefore

and this is absurd.

Remark 8.12. Tt is worth to spell out the explicit construction of equalizers in
TGy. Given two arrows f,g: (V,l,s) = (W,t,r), let

E={veV][f(v)=g)}

be the equalizer of U(f) and U(g) in Set. We have a partial function p : E — O
given by the restriction of [to E. Moreover, if v € E N dom(s) then

f(s(v)) = r(f(v)) = r(g(v)) = g"(s(v))

hence s(v) € E* (which is the equalizer of f* and g*, see [5]), thus we can restrict
sto q: E — E*. In this way we get a term graph (E,p,q) with an arrow into
(V,1, s) which clearly equalize f and g.

On the other hand, if k : (U, a,b) — (V,1, s) is such that

gok=fok

then the induced function k : U — E is a morphism of TG .

220 D. Castelnovo, F. Gadducci, M. Miculan

Remark 3.13. Lemma 3.2 implies that TGy has pullbacks. In the following we
will need their explicit description. The pullback of a cospan

(V,1,8) L (W,t,7) & (U, a,b)
is given by (P, p, q) where
P={(v,u) e VxU][f(u) =g(v)}
is the pullback of f along g in Set and

I(v) v € dom(l), w € dom(¥)

undefined otherwise

[(s(v)s, ()92 4 € dom(l), w € dom(t)
undefined otherwise

p:P—0 (v,u)n—>{
qg: P—P* (v,u)»—){

where, given x € X*, x; denotes its i‘" letter and, given z1,...,z, € X, [z;],
denotes the element in X™* such that ([z;]7,); is exactly z;.

Now, notice that ¢ is the unique partial function P — P* that makes the
projections arrows of TGy. Moreover even p has a uniqueness property: it is
the unique partial function P — O such that the projections are arrows of TGy
and p(z) is undefined if and only if at least one of its image is undefined. In
particular this implies the following result.

Proposition 3.2. U creates pullbacks along arrows which preserves empty nodes.

This is especially useful when paired with the following result from [7].

Proposition 3.3 ([7], Prop. 4.3). An arrow f : (V,l,s) — (W,t,r) in TGy
is a regular mono if and only if [is injective and preserves empty nodes.

Proof. (=) Follows by the construction of equalizers given in Remark 3.12.
(<) Consider (U, a,b) where U = WU(W ~ f(V)). Let 41 and i3 be the inclusions
of W and W~ f(V) into U, we can define

t(w) u =11 (w), w € dom(t)
a:U—0 u = < t(w) u=r1is(w),w e (W~ f(V))Ndom(t)
undefined otherwise

while for b : U — U*, we put b(u) = r(w) if u = i1(w),w € dom(r), while if

ar(a(u))
1

u = i9(w) with w € dom(r) we define b(u) = [u;];2 where

w — {Zé(?“(w)z‘) r(w) € W~ f(V)
" ir(w)r) r(w) € f(V)

A new criterion for M, N-adhesivity 221

We have two functions (V,t,r) — (U, a,b): one is just i1, while the other one is
given by

i1(w) we f(V)
is(w) w¢ f(V)

Now, 41 o f and g o f both send v to i1(f(v)), therefore

g:W=U w»—){

iyof=gof

Suppose that h : (P,p,q) — (W,t,r) equalizes i1 and g, thus h(z) € f(V) for
every x € P, and we have a unique function A’ : P — V such that foh’ = h.
For every x € dom(p), t(h(x)) = p(x), thus h(z) = f(h'(x)) € dom(¢). Since f
preserves the empty nodes, h/(z) belongs to dom(l), so:

p(x) = t(h(x)) = t(f(h'(x))) = I(W (2))

Preservation of successors follows at once, while uniqueness follows from the
uniqueness of the function A’ in Set. a

Lemma 3.3. U preserves and lifts pushouts along regular monomorphisms, more-
over it reflects all pushout squares

U(P,p,q) &U(W,M)

Uim) | |uwm
UV, s) M UWU,a,b)

in which n is regular. In addition Reg(TGyx) is closed under pushouts.

We can now use the first point of Theorem 2.2 to get half of the following result.

Theorem 3.6 ([7, Thm. 4.2]). The category TGy is quasi-adhesive.

Proof. We already know by Lemmas 3.2 and 3.3 and Theorem 2.2 that pushouts
along regular monos are stable. So, let us take a cube

/ (Vl,l/,sl) ’

m n
/ ~
(T/)C/7d/) f/ (let/7rl)
s
g(U,a'b) @
c b
d| __Wils)
/ m S
(Ta c, d) (VV, t, 7’)

222 D. Castelnovo, F. Gadducci, M. Miculan

in which m is regular, the top and bottom faces are pushouts and the back faces
pullbacks. Applying U we get another cube

m' V' n
//f/ ‘ \)W/
/U/{«J(

b

v
F

!

N
YV
/s

A

w

with pushouts along monos as top and bottom faces and pullbacks as ver-
tical ones. By Proposition 3.2 U creates pullbacks along regular monos and
f € Reg(TGy), then we can conclude that the front right face of the start-
ing cube is a pullback as well. We have to show that the front left face of the
starting cube is a pullback too. Suppose it is not, then, by the explicit description
of pullbacks, there must be a node t € T’ which is empty in (7”,¢’,d’) and such
that ¢’(t) and ¢(t) are non empty. By the computation of pushouts along regu-
lar monos we can deduce that ¢'(t) € dom(a’) implies the existence of v € V’,
necessarily empty, such that m/(v) = ¢ and f'(n/(v)) = ¢'(t), thus n/(v) is non
empty since f’ is regular. Moreover, ¢(m/(v)) = m(a(v)) and the left hand side
is non empty, therefore even a(v) is non empty by the regularity of m, but this
contradicts the hypothesis that the back right face is a pullback. O

4 Conclusions

In this paper we have introduced a new criterion for M, AV -adhesivity, based
on the verification of some properties of functors connecting the category of in-
terest to a family of suitably adhesive categories. This criterion can be seen as
a distilled abstraction of many ad hoc proofs of adhesivity found in literature.
This criterion allows us to prove in a uniform and systematic way some pre-
vious results about the adhesivity of categories built by products, exponents,
and comma construction. We have applied the criterion to several significant ex-
amples, such as term graphs and directed (acyclic) graphs; moreover, using the
modularity of our approach, we have readily proved suitable adhesivity proper-
ties to categories constructed by combining simpler ones. In particular, we have
been able to tackle the adhesivity problem for several categories of hierarchical
(hyper)graphs, including Milner’s bigraphs, bigraphs with sharing, and a new
version of bigraphs with recursion.

As future work, we plan to analyse other categories of graph-like objects using
our criterion; an interesting case is that of directed bigraphs [13,3,4]. Moreover, it
is worth to verify whether the M, N-adhesivity that we obtain from the results
of this paper is suited for modelling specific rewriting systems, e.g. based on the
DPO approach. As an example, TGy is quasiadhesive but this does not suffice
in most applications, because the rules are often spans of monomorphisms, and
not of regular monos [7].

A new criterion for M, N-adhesivity 223

References

10.

11.

12.

13.

14.

15.

16.

17.

18
19

J. Adamek, H. Herrlich, and G. E. Strecker. Abstract and concrete categories: The
joy of cats. Reprints in Theory and Applications of Categories, 17:1-507, 2006.

. G. G. Azzi, A. Corradini, and L. Ribeiro. On the essence and initiality of conflicts

in M-adhesive transformation systems. Journal of Logical and Algebraic Methods
in Programming, 109:100482, 2019.

. G. Bacci, D. Grohmann, and M. Miculan. DBtk: A toolkit for directed bigraphs.

In A. Kurz, M. Lenisa, and A. Tarlecki, editors, CALCO 2009, volume 5728 of
LNCS, pages 413-422. Springer, 2009.

. F. Burco, M. Miculan, and M. Peressotti. Towards a formal model for composable

container systems. In C. Hung, T. Cerny, D. Shin, and A. Bechini, editors, SAC
2020, pages 173-175. ACM, 2020.

. A. Carboni and P. Johnstone. Connected limits, familial representability and Artin

glueing. Mathematical Structures in Computer Science, 5(4):441-459, 1995.

. D. Castelnovo, F. Gadducci, and M. Miculan. A new criterion for M, N -adhesivity,

with an application to hierarchical graphs. CoRR, abs/2201.00233, 2022.

. A. Corradini and F. Gadducci. On term graphs as an adhesive category. In

M. Fernéndez, editor, TERMGRAPH 2004, volume 127(5) of ENTCS, pages 43—
56. Elsevier, 2005.

. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Léwe. Algebraic

approaches to graph transformation - Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations, pages 163—246. World Scien-
tific, 1997.

. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. Springer, 2006.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Mathematical Structures in Computer
Science, 1(3):361-404, 1991.

H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, ICGT 2004, LNCS, pages 144-160. Springer, 2004.

R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories.
Theory and Applications of Categories, 27(3):27-46, 2012.

D. Grohmann and M. Miculan. Directed bigraphs. In M. Fiore, editor, MFPS
2007, volume 173 of ENTCS, pages 121-137. Elsevier, 2007.

A. Habel and D. Plump. M, N-adhesive transformation systems. In H. Ehrig,
G. Engels, H. Kreowski, and G. Rozenberg, editors, ICGT 2012, volume 7562 of
LNCS, pages 218-233. Springer, 2012.

P. T. Johnstone, S. Lack, and P. Sobocinski. Quasitoposes, quasiadhesive categories
and Artin glueing. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors,
CALCO 2007, volume 4624 of LNCS, pages 312-326. Springer, 2007.

S. Lack and P. Sobociniski. Adhesive and quasiadhesive categories. RAIRO-
Theoretical Informatics and Applications, 39(3):511-545, 2005.

S. Lack and P. Sobocinski. Toposes are adhesive. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT 2006, volume 4178 of
LNCS, pages 184-198. Springer, 2006.

T. Leinster. Higher operads, higher categories. Cambridge University Press, 2004.
S. Mac Lane. Categories for the working mathematician. Springer, 2013.

224 D. Castelnovo, F. Gadducci, M. Miculan

20. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

21. N. Mylonakis and F. Orejas. A framework of hierarchical graphs and its application
to the semantics of SRML. Technical Report LSI-12-1-R, Facultad de Informaética,
Universitat Politecnica da Catalunya, 2012.

22. nLab. Creation of limits, 2016. Last accessed on January 26, 2022. http://nlab-
pages.s3.us-east-2.amazonaws.com/nlab/show/created+limit.

23. J. Padberg. Hierarchical graph transformation revisited - Transformations of coal-
gebraic graphs. In J. de Lara and D. Plump, editors, ICGT 2017, volume 10373
of LNCS, pages 20-35. Springer, 2017.

24. W. Palacz. Algebraic hierarchical graph transformation. Journal of Computer and
System Sciences, 68(3):497-520, 2004.

25. C. Peuser and A. Habel. Composition of M, N-adhesive categories with application
to attribution of graphs. In D. Plump, editor, GCM 2015, volume 73 of FElectronic
Communications of the EASST. EASST, 2016.

26. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformations, Vol. 2: Applications, Languages, and Tools, pages 3—61. World
Scientific, 1999.

27. M. Sevegnani and M. Calder. Bigraphs with sharing. Theoretical Computer Sci-
ence, 577:43-73, 2015.

28. P. Sobociniski and N. Behr. Rule algebras for adhesive categories. Logical Methods
in Computer Science, 16, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantifier elimination for counting extensions
of Presburger arithmetic

Dmitry Chistikov!®, Christoph Haase?®, and Alessio Mansutti? (&)

! Centre for Discrete Mathematics and its Applications (DIMAP) & Department of
Computer Science, University of Warwick, Coventry, UK
d.chistikov@warwick.ac.uk
2 Department of Computer Science, University of Oxford, Oxford, UK
{christoph.haase,alessio.mansutti}@cs.ox.ac.uk

Abstract. We give a new quantifier elimination procedure for Pres-
burger arithmetic extended with a unary counting quantifier 3%y ® that
binds to the variable the number of different y satisfying ®. While our
procedure runs in non-elementary time in general, we show that it yields
nearly optimal elementary complexity results for expressive counting ex-
tensions of Presburger arithmetic, such as the threshold counting quanti-
fier 32°y ® that requires that the number of different y satisfying ® be at
least ¢ € N, where ¢ can succinctly be defined by a Presburger formula.
Our results are cast in terms of what we call the monadically-guarded
fragment of Presburger arithmetic with unary counting quantifiers, for
which we develop a 2EXPSPACE decision procedure.

1 Introduction

Counting the number of solutions to an equation, or the number of elements in
a set subject to constraints, is a fundamental and often computationally chal-
lenging problem studied in logic, mathematics and computer science. In discrete
geometry, counting the number of integral points in a polyhedron is a canonical
#P-complete problem. Barvinok’s celebrated algorithm solves this problem in
polynomial time when the dimension is fixed [2]. In this paper, we investigate
a generalization of this problem and study algorithmic aspects of counting the
number of models of formulae of Presburger arithmetic, the first-order theory of
the integers with addition and order, and more generally, extensions of this logic
with counting quantifiers.

Counting quantifiers such as the Hdrtig quantifier, which allows to assert
equal-cardinality constraints on the sets of satisfying assignments of two given
first-order formulae, have long been studied in first-order logic [6]. In first-order
theories of integer arithmetic, it is compelling to consider variants of counting
quantifiers that bind the number of satisfying assignments of a formula to a
first-order variable. Apelt [1] and Schweikardt [10] studied the decidability of
Presburger arithmetic enriched with the unary counting quantifier 3=%y with
the following semantics: given an assignment of integers to the first-order vari-
ables x, 21, ..., 2, a formula 3=%y ®(x,y, 21, . . ., 2,) evaluates to true whenever

© The Author(s) 2022
P. Bouyer and L. Schroder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 225-243, 2022.
https://doi.org/10.1007/978-3-030-99253-8_12

®

Check for
updates

http://orcid.org/0000-0001-9055-918X
http://orcid.org/0000-0002-5452-936X
http://orcid.org/0000-0002-1104-7299
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_12&domain=pdf

226 D. Chistikov et al.

the number of different y satisfying ®(x,y, 21, ..., 2,) is exactly z. In both [1]
and [10], decidability is shown by developing a quantifier elimination procedure
for this extension of Presburger arithmetic which eliminates a counting quantifier
by translating it into an equivalent quantified formula of Presburger arithmetic,
i.e., one that only uses standard first-order quantifiers. This immediately gives
decidability of Presburger arithmetic extended with the unary counting quanti-
fier 3=y since Presburger arithmetic is decidable in 2EXPSPACE [9,3,12]. Un-
fortunately, the quantifier elimination procedures in [1,10] do not yield a similar
elementary upper bound for the extended theory, as the elimination of a single
quantifier 3%y results in an exponential blow-up of the formula size and intro-
duces nested first-order quantifiers. It is a widely open problem whether there
is a decision procedure for Presburger arithmetic extended with the counting
quantifier 3=y with elementary running time, or whether this theory admits a
significantly stronger lower bound than standard Presburger arithmetic.

To shed more light on the complexity of Presburger arithmetic extended
with the aforementioned unary counting quantifier, Habermehl and Kuske gave
a quantifier elimination procedure for Presburger arithmetic extended with a
unary modulo counting quantifier 39y, where r and ¢ are positive natural
numbers [4]. Here, 39y U(y, 21, ..., z,) holds whenever the number of different
y satisfying ¥(y, 21, . .., z,) is congruent to r modulo ¢. An analysis of the growth
of the constants and coefficients occurring in their procedure then enables them
to derive a 2EXPSPACE upper bound for the logic, matching the complexity of
Presburger arithmetic on deterministic machines. This noteworthy result shows
that there is still room to extend Presburger arithmetic with non-trivial counting
quantifiers without increasing the computational cost of deciding the logic.

Note that in order to keep the logic decidable, the counting quantifiers con-
sidered in the literature must be unary. Indeed, consider a binary counting quan-
tifier 3% (y;1,y2) counting the number of different y; and yo satisfying a formula.
Then, ®(x,2) = 37%(y1,y2)(0 < y1,y2 < 2) holds for & = 22, which in turn al-
lows defining multiplication, leading to undecidability of the resulting theory.

Our contribution. Following the lines of [4] while trying to avoid the limitations
of the procedures in [1,10], our goal is to study decision procedures for Presburger
arithmetic enriched with variants of counting quantifiers that do not increase
the complexity of the Presburger arithmetic. To begin with, we develop a new
quantifier elimination procedure for Presburger arithmetic with unary counting
quantifiers 3=%y that, in contrast to [1,10], does not require the introduction
of first-order quantifiers. While the procedure still runs in non-elementary time,
avoiding first-order quantification allows us not only to derive exponentially
better bounds on the size of the formula obtained after eliminating a single 3=*y,
but also to identify the sources of non-elementary growth. We exploit those
observations to extend the range of counting quantifiers that can be added to
Presburger arithmetic without increasing the complexity of the resulting logic.
The first type of counting quantifiers we consider is a threshold counting quan-
tifier 32¢y for some integer c. A formula 32°y W (y, 21, ..., z,) evaluates to true
whenever there are at least ¢ different values of y satisfying ¥(y, 21, ..., 2,). We

Quantifier elimination for counting extensions of Presburger arithmetic 227

show that Presburger arithmetic enriched with threshold counting quantifiers can
be decided in 2EXPSPACE, even when the threshold c itself is succinctly given as
the unique solution of a Presburger arithmetic formula. This is surprising since in
Presburger arithmetic one can define numbers that are triply exponential in the
size of the formula used to encode them [7, pp. 151-152]. Furthermore, we show
that if we restrict ¢ to be at most doubly exponential in the size of its encod-
ing then Presburger arithmetic with threshold counting quantifiers is decidable

in STA (x, 22no<1) ,O(n)), matching the complexity of Presburger arithmetic [3].
Here, STA(s(n),t(n),a(n)) is the class of all decision problems in which inputs
of length n can be decided by an alternating Turing machine in space s(n) and
time ¢(n) using a(n) alternations, where “*” stands for unbounded availability
of a certain resource.

Our results on the quantifier 32°z arise from studying a more general exten-
sion of Presburger arithmetic that relies on the notion of monadic decomposition
put forward by Veanes et al. in [11] and studied by Hague et al. [5] in the con-
text of integer linear arithmetic. Briefly, a formula ®(z,y1,...,y,) is said to
be monadically decomposable on the variable x whenever it is equivalent to a
formula of the form \/;,.; Ai(z) A Vi(y1,...,yn), ie., a formula where the satis-
faction of constraints on x does not depend on the values of y1, ..., y,. Based on
this definition, we extend Presburger arithmetic by allowing the general unary
counting quantifiers 3%y to appear with guards of the form Fz(¥ A Iy D),
where ¥ is monadically decomposable on the variable z. The resulting logic
is very powerful, as it not only generalizes the quantifiers 32°z but also the
modulo counting quantifiers 3@y from [4]. We establish two further results
for this monadically-guarded fragment of Presburger arithmetic with counting
quantifiers. First, we develop a 3EXPTIME quantifier elimination procedure for
the logic, matching the complexity of the best possible quantifier elimination
procedures for Presburger arithmetic. Second, we exploit this procedure to ob-
tain a quantifier relativization argument showing that the logic is decidable
in 2EXPSPACE.

2 Presburger arithmetic with counting quantifiers

General notation. The symbols Z, N and N denote the set of integers, natural
numbers including zero, and natural numbers without zero, respectively. We
usually use a,b,c,... for integers, which we assume being encoded in binary.
Given n € N, we write [n] & {0,...,n — 1}, and #A for the cardinality of a
set A. If A is infinite, then #A = oo, and we postulate n < oo for all n € Z.

Structure. We consider the structure Z = (Z, (¢)cez, +, <, (=¢)qen,) of Pres-
burger arithmetic, where (¢).cz are constant symbols that shall be interpreted
as their homographic integer numbers, the binary function symbol + is inter-
preted as addition on Z, the binary relation < is interpreted as “less than”, and
=, is interpreted as the modulo relation, i.e., a =4 b if and only if ¢ divides a —b.

228 D. Chistikov et al.

Basic syntaz. Let X = {x,y,z2,...} be a countable set of first-order variables.
Linear terms, usually denoted by ¢, t;, to, etc., are expressions of the form
a1x1 + -+ - + agrqg + ¢ where z41,...,24 € X, a1,...,aq,¢c € Z. The integer a;
is the coefficient of the variable x;. Variables not appearing in the linear term
are tacitly assumed to have a 0 coefficient. A term ¢ is said to be x-free if the
coefficient of the variable z in ¢ is 0. The integer c is the constant of the linear
term. Linear terms with constant 0 are said to be homogeneous.

Given a term t, the lexeme ¢t < 0 is understood as a linear inequality, and
t =, 0 is a modulo constraint. Syntactically, Presburger arithmetic (PA) is the
closure of linear inequalities and modulo constraints under the Boolean connec-
tives A and — (i.e., conjunction and negation, respectively) and the first-order
quantifier Jy. Presburger arithmetic with counting quantifiers (PAC) extends PA
with the (unary) counting quantifier 3=%y, where x and y are two syntactically
distinct variables from X. Formulae of PAC are denoted by ®, ¥, T', etc.

We write vars(®) and fv(®) for the set of variables and free variables of @, re-
spectively, with fv(3=%y ®) = {x} U (fv(®)\ {y}). A sentence is a formula ® with
fv(®) = (). We sometimes write ®(x1,...,zx) or &(x), with € = (z1,...,2%) a
tuple of variables, for a formula ® with fv(®) = {z1,...,2x}. We say that ® is
z-free if z € X does not occur in ®. Given terms t and ¢/, ®[¢' /t] stands for the for-
mula obtained from ® by syntactically replacing every occurrence of ¢ by ¢’. Given
®(xq,...,x;) and terms ty,...,tg, P(t1,...,tx) stands for ®t1/x4] ... [tr/zk].

Semantics. An assignment is a function v: X — Z assigning an integer value to
every variable. As usual, we extend v in the standard way to a function that maps
every term to an element of Z. For instance, v(z+3z+2) = v(z)+3v(y)+2. Given
a variable z and an integer n, we write v[n/x] for the assignment obtained form v
by updating the value of x to n, i.e. v[n/z](x) = n, and for all variables y distinct
from z, v[n/x](y) = v(y). Given a formula ® of PAC and an assignment v, the
satisfaction relation v |= @ is defined as usual for linear inequalities, modulo
constraints, Boolean connectives and the existential quantifier ranging over Z.
For the counting quantifier, we define

v E Iy ® if and only if #{n € Z | v[n/y] E P} = v(x).

Informally, 3=%y ® is satisfied by v if there are exactly v(x) distinct values for
the variable y that make ® true. A formula ® of PAC is satisfiable (resp. valid)
if v E @ holds for an assignment (resp. every assignment) v. A formula ®
entails a formula ¥, written ® = ¥, whenever every assignment satisfying ® also
satisfies ¥. We write ® < ¥ to denote that ® and ¥ are equivalent, i.e. & = U
and U = ®.

Syntactic abbreviations. We define 1 2 0 < 0 and T & — 1. The Boolean con-
nectives V, — and <> and the universal first-order quantifier V are derived as
usual, and so are the (in)equalities <, <, =, >, and >, between terms. For in-
stance, t; < to corresponds to t; — to < 0, where we tacitly manipulate t; — to
with standard operations of linear arithmetic to obtain an equivalent term. Sim-
ilarly, t1 =4 to is short for ¢; — to =, 0, whereas [t;| + t2 < 0 is short for

Quantifier elimination for counting extensions of Presburger arithmetic 229

(t1 <0 —=to—t1 <0)A(t1 >0 —t; +1t2 <0). For a variable z € X and r € [q],
we call x = r a simple modulo constraint. All modulo constraints introduced
by our quantifier elimination procedure given in Section 3 are simple.

The counting quantifier 32%y. Historically [1,10], the quantifier 3=y has been
the unary counting quantifier of choice when it comes to PAC. However, a priori
one could define PAC as the extension of PA featuring counting quantifiers 32%y,
where v |= 32%y ® holds for an assignment v whenever there are at least v(x)
values n € Z for y such that v[n/y] = ®. Notice that the counting quantifier 3=
can be expressed using 32Y, and vice versa:

— Iy d o Ry d AT i a) =x+1A-F27 yd; and

— Py d o (VzIy:|z| <y A®) VI 2! >z ATy b
Two comments are in order: first, translating a PAC formula by swapping the
type of counting quantifiers using the equivalences above has the unpleasant ef-
fect of increasing the size of the formula, exponentially if the nesting depth of
quantifiers is unbounded. Second, the subformula Vz 3y : |z| < |y| A @ used in
the last equivalence states that there are infinitely many values for y that make
the formula ® true. This formula highlights the main difference between 3=%y
and 327y quantifiers: the latter is true in the presence of infinitely many val-
ues for y, whereas the former is false. Throughout the paper, we focus on the
quantifier 3%y, as done in [1,10], but use this observation to argue that our
results can be readily adapted to the counting quantifier 32%y. Full details of
this adaptation are given in the full version of the paper.

Parameters of formulae. To analyze quantifier-elimination procedures, follow-
ing [8,12], we introduce a number of parameters for formulae of PAC:

— |®| denotes the length of the formula @, i.e., the number of symbols to write
down ¢, with numbers encoded in binary. We always assume |®| > 2;

— qr(®) (resp. nr(®P)) denotes the quantifier (resp. negation) rank of the for-
mula @, i.e., the depth of nesting of the quantifiers (resp. negations) of ®;

— {d(®) denotes the overall depth of ®, i.e., the depth of nesting of all con-
structors (i.e. A, =, 3z and 3=7y) in the formula ®;

— lin(®) is the set containing the term 0 plus all the terms ¢ that appear in
linear inequalities ¢ < 0 of ® (recall that ¢; < to is short for ¢; — ¢2 < 0);

— hom(®) is the set of homogeneous linear terms obtained from all terms in
lin(®) by setting their constants to 0;

— const(®) is the set of all constants appearing in linear terms of lin(®); and

— mod(®) is the set of all moduli ¢ € N appearing in modulo constraints
t1 =4 to of . We postulate 1 € mod(®), even if ¢ has no modulo constraints.

Given a vector v = (vq,...,v4) € Z%, we write |v| = max{|v;] : 1 < i < d}
for the infinity norm of v. Similarly, for a linear term ¢, we write ||t|| for the
maximum absolute value of a coefficient or constant appearing in ¢. Given a
finite set of vectors or a finite set of terms A, we define || A|| = max{|al : a € A}.
Given a matrix A € Z"*? its infinity norm is the maximal infinity norm of its
column vectors. Notice that ||[lin(®)| = ||hom(®P) U const(P)||. For a formula P,
we define |®| £ ||lin(®) Umod(®)].

230 D. Chistikov et al.

Complexity remarks. The proposition below characterizes the complexity of PA.
2O
Proposition 1 ([3]). Presburger arithmetic is STA (x,2? ,O(n))-complete.

To be more precise, the number of alternations required to decide the validity
or satisfiability of a formula ® from Presburger arithmetic is linear in nr(®).

O
Notice that 2NEXPTIME C STA (x, 22 ' ,O(n)) C 2EXPSPACE.

3 A quantifier elimination procedure for PAC

In this section, we develop a new quantifier elimination procedure (QE proce-
dure) for the counting quantifier 3=%y:

Proposition 2. Let ® be quantifier-free. Then 3=y ® is equivalent to a Boolean
combination of linear inequalities and simple modulo constraints.

We quantify the growth of parameters in the formula in Section 4. Upper
bounds on this growth are at the core of our results. Without any bounds (as
stated), Proposition 2 is known and can be obtained by chaining the quantifier
elimination procedure developed by Schweikardt [10] together with the standard
quantifier elimination procedure for Presburger arithmetic. An advantage of our
QE procedure for the quantifier 3=%y is that it avoids the introduction of ad-
ditional 3- and V-quantifiers when eliminating a counting quantifier on which
Schweikardt’s procedure relies. More precisely, given a formula 3=%y ® where ®
is quantifier-free (q.f. in short), the QE procedure in [10] requires a full transfor-
mation of ® into disjunctive normal form, and eliminates the quantifier 3=%y by
introducing first-order quantifiers, producing an equivalent formula ¥ of Pres-
burger arithmetic. This strategy comes at a cost: the size of the q.f. formula
obtained after removing the quantifiers from ¥ is doubly exponential in the
size of =%y ®. By avoiding the introduction of first-order quantifiers, our QE
procedure already exponentially improves upon Schweikardt’s procedure.

Our QE procedure performs a series of formula manipulations, divided into
five steps. At the end of the i-th step, the procedure produces a formula ®; equiv-
alent to the original formula 3=%y ®. Ultimately, ®5 is a Boolean combination
of inequalities and simple modulo constraints allowing us to establish Proposi-
tion 2. In this section, we present the procedure and briefly discuss its correctness,
leaving the computational analysis of parameters lin(®5), hom(®5), const(®s5)
and mod(®5) to subsequent sections.

Step I: Normalise the coefficients of y. Given the input formula &, = 3=y &,
with ® q.f., the first step of the procedure is a standard step for QE procedures
for Presburger arithmetic. It produces an equivalent formula ®1 in which all non-
zero coeflicients of y appearing in a linear term are normalized to 1 or —1. For
simplicity, we first translate every modulo constraint in ® into simple modulo
constraints, by relying on the lemma below.

© 0 g O o

Quantifier elimination for counting extensions of Presburger arithmetic 231

Lemma 1. Every constraint t =, 0 is equivalent to a Boolean combination ¥ of
simple modulo constraints such that vars(¥) C vars(t =, 0) and mod(¥) = {q¢}.

The first step of our QE procedure is as follows:

Translate every modulo constraint in ® into simple modulo constraints (Lemma 1).
Let k be the lem of the absolute values of all coefficients of y appearing in hom(®).
Let ® be the formula obtained from ® by applying the following three rewrite rules
to each linear inequality and simple modulo constraint in which y appears:

e ay+t<0 — ky—+(k/a) -t <0, ifa>0,

e ay+t<0 — —ky—(k/a)-t<0, ifa<0,and

o y=,1r — ky=iqkr,

where t is a term, ¢ > 1 and r € [g]:
Define ®; & 377y (y =4 0 A &' [y/ky]).

Claim 1. ®g < @1, and in P4, all non-zero coefficients of y are either 1 or —1.

Step II: Subdivide the formula according to term orderings and residue classes.
We define an ordering for a set of linear terms T to be a formula of the form

(tl <4 tg) A (t2 <2 t3) VANCERWAN (tn—l <p—1 tn), (1)
where {t1,...,t,} =T and {<,...,<,_1} C {<,=}.

Lemma 2. There is an algorithm that, given a set T of n linear terms over d vari-
ables, computes in time n®@ log ||THO(1) a set {01,...,0,} of orderings for T
s.t. (1) o=0(m%), (2) T < \i_, 0 (3) L& O; AO; whenever i # j.

Lemma 2 is proven analogously to [13, Proposition 5.1].
The second step of our QE procedure is as follows:

Let T be the set of all y-free terms ¢ such that ¢, y — t or —y + ¢ belongs to lin(®1).
Using Lemma 2, build a set {O1,...,0,} of orderings for the terms 7.

Let Z & vars(®) and m % lem(mod(®1)).

For every i € [1,0] and every r: Z — [m], let T;» & O; A (Nsez 2 =m 1(2))-

Define ®2 £ \/7_, V. ;0 (Tir A ®1).

Claim 2. 1 & s.

In Steps III to V of the procedure, we focus on each disjunct of ®, sepa-
rately, iterating over all ¢ € [1, 0], hence over all orderings, and all r: Z — [m],
i.e., functions assigning residue classes modulo m to the variables in Z.

Step III: Split the range of y into segments. Recall that &3 = 3=%y ¥, where
U is some Boolean combination of inequalities and modulo constraints with
variables from vars(®) in which the non-zero coefficients of y are either 1 or —1.
Let T|o, ¥ (t;,--- ,t,) be the tuple of all the terms in T that the formula O;
asserts pairwise non-equal, taken in the ascending order. In other words, we
obtain t,...,t, by removing from the sequence t1,...,t, in Equation (1) all
terms t;41 for which <; is =. Let seg(y, O;) be the set of formulae

10
11
12
13
14

15
16
17
18
19
20
21
22

232 D. Chistikov et al.

{y<th, y=tl, (i, <yny<t)), y=t;, t)y<y : iec[2,{}.

We have #seg(y, O;) = 20+ 1. Given k € seg(y, O;), the formula O; A k imparts
a linear ordering on the terms 7'U {y}. This enables us to “almost evaluate” ¥:

Lemma 3. For every k € seg(y,O;), there is a Boolean combination %" of
simple modulo constraints such that vars(¥%") = {y}, mod(¥%") C mod(¥) and

Dir ARAY & T Ak AWET
Our QE procedure manipulates ®5 as follows:

For every i € [1,0]| and every r: Z — [m] :
Let seg(y, O;) = {ko, ..., K2}
For every j € [0,2¢], consider the formula W};" from Lemma 3.
Let ®5" = 3zg... Iz (z = Z?io zj A /\?io I%iy(k; A \I/;JT))
Deﬁne q>3 déf V'Lc')zl VT‘: Z—>[m](F'Lv"' A q)éﬂ‘).

Claim 3. Py, & B3,

Step IV: Compute the number of solutions for each segment. We next aim at
eliminating the counting quantifiers introduced in Step III in the sub-formulae
3=%i y(njA\Il;;”) We go over each k € seg(y, O;), and consider three cases depend-
ing on whether it specifies (syntactically) an infinite interval, a finite segment,
or a single value for y.

Notice that r is in fact an assignment to variables, so r(t) € Z is well-defined
for every term ¢ with free variables Z. For all ¢ € [1,0] and r: Z — [m], given
Tlo, = (t},...,t;) the procedure computes the following numbers ¢y, ..., ¢,
P2,...,pe and ro, ..., Tp.

For every j € [1,4] :
If WL'[r(t;)/y] is true, where k = (y = t}), then let ¢; £ 1, else let ¢; £ 0.
For every j € [2,/] :
Let p; € [0,m] be the number of y € [m] satisfying ¥L" (y).
Let u; = (r(tj_1) mod m).
Let u; be the smallest integer congruent to r(t;) modulo m and greater than ;.
Let r} € [0,m] be the number of y € [u; + 1,7; — 1] satisfying WL ().

Let r; € [-m?,m?] be such that r; = —p; - (T; —u;) +m-rj.

Lemma 4. Given a formula $%" and m,u,

computed in #P, or by a deterministic algorithm with running time O(m-|PL7]).

- /
,Uj, the numbers p; and r}; can be

The numbers ¢;, p;, r; determine, for each k € seg(y, O;), how many assign-
ments to the variable y satisfy the formula W%" in the conjunction I'; . Ak A W4T,
Intuitively, this is ¢; for s of the form y = ¢, and (p;(t; —t;_,) +7;)/m for x of
the form t;_l <yNy < t;-. We say “intuitively” here, because in the latter case
the expression above depends on other variables so is not, strictly speaking, a
number. The following claims formalize this intuition:

23
24
25
26

27
28
29
30

Quantifier elimination for counting extensions of Presburger arithmetic 233

Claim 4. Let r € {y < t}, t, <y}. If UL (y) is satisfiable, then ®}" < L.
Claim 5. Let j € [1,{], s = (y =t}), z € X. Then, 377y (k AUL") & z=¢;.
Claim 6. Let k = (tj_; <y Ay <) for some j € [2,/] and let z be a fresh
variable. Then, T'; . A 377y (k AWLT) & Typ Amz=p;(t; —t;_;) +7;.
The procedure manipulates the formula ®3 as follows:

For every i € [1,0] and every r: Z — [m] :

If Uh"(y) is satisfiable for some x € {y < t, t; < y}, then let ®4" & |

else ®" & 3z, ... Jay(z = Z§:2 zj + Z§:1 ci A /\fz2 ma; = p;(t; —ti_1) +15).
Define @4 = \/fL):l \/'r: Z%[m](riar A @Z"‘).

Claim 7. P; & Py

Step V: Sum up the solutions. It remains to get rid of the variables z; introduced
earlier. For each disjunct I'; » A ®3" of @4, we use the notation from Step IV.

For every i € [1,0] and every r: Z — [m] :

If 0" = 1, then let @27 & |,

else let @Y & my = E?ZQ(pj(t;- —tiq)+r)+m- E§:1 .
Let @5 £ \/?_ \/,. Zsfmg (L A @),

The procedure outputs ®5. The following claim implies Proposition 2.
Claim 8. &, < ®5. The formula &5 is quantifier-free.

4 Discussion, summary of results and roadmap

The QE procedure for a single counting quantifier 3="y from Section 3 forms the
basis of our results. In this section we discuss its use and lay out its applications.

Analysis of the procedure. The next lemma establishes the growth of the formulae
and their parameters in our quantifier elimination procedure.

Lemma 5. Let ®5 be obtained from applying the QE procedure of Section 3 to
a formula 3=Yx @, where ® is quantifier-free and #vars(®) = d. Then:

mod(®5) = {m} with m = k - lem(mod(®)) and k < |[hom(®)|#rm®),
#lin(®5) < NO@ . lin(®5)] < O(N) - |1in(@)],
#hom(®5) < NO@ |lhom(®5)| < O(N) - |[hom(®)||, with N = m? - #lin(®).

Remark 1. With minor changes to our procedure, one can obtain a QE pro-
cedure for the quantifier 32%y. In particular, since 32%y ® is true if there are
infinitely many values for y that satisfy ®, Claim 4 needs to be updated so that
Py" < T is deduced, instead of 5" < L. Other minor adaptations are required,
e.g. equalities “z = ...” and counting quantifiers 3=%y appearing in Line 13
must be updated to “z < ...” and 32%iy. The resulting QE procedure for 327y
still adheres to the bounds in Lemma 5.

234 D. Chistikov et al.

A consequence of Lemma 5 is that our QE procedure gives an algorithm for
deciding a formula ® from PAC featuring multiple counting quantifiers 3=%y

in time 2 27 where the height of the tower is linear in the quantifier rank
of ®. Indeed, in view of the upper bounds and equations given by Lemma 5 for
#hom(®5), N, m, and k, we observe that the upper bound for #hom(®5) is ex-
ponential in #hom(®). This means that more fine-grained bounds are necessary
for decision procedures with elementary complexity, i.e., with a running time
bounded from above by a k-fold exponential in the size of the input formula.

Elementary decision procedures. In view of this growth of the parameters, it
is natural to ask ourselves whether our QE procedure is perhaps naively dis-
regarding important properties of the underlying arithmetic theory that could
lead to better bounds. A good test in this direction is to check whether improved
bounds can be achieved when the procedure runs on restricted forms of counting
quantifiers. In the remainder of the paper we show that this is the case, and ex-
plain how the growth of parameters can be countered for restricted quantifiers,
obtaining 3EXPTIME quantifier elimination procedures as well as 2EXPSPACE
decision procedures for extensions of PA with a variety of counting quantifiers.

As an example, let us consider Presburger arithmetic enriched with threshold
quantifiers 32¢y ®, where ¢ € N is written in binary. These are satisfied whenever
there are at least ¢ distinct values for the variable y that make the formula ® true.
Notice that the threshold counting quantifiers 32y are a syntactic generalization
of the first-order quantifiers, as 321y ® < Jy ®. Interestingly enough, one can
translate threshold quantifiers into standard Presburger arithmetic with just a
polynomial increase in the size of the formula. For simplicity, assume that the
threshold c is a power of 2. Then, the quantifier 32°y can be internalized in PA
by relying on the equivalence

3229y Py, z) & Vv Iy : (V=0 y < u) A d(y, 2)

as well as 321y ® < Iy ®. However, in terms of decision procedures, this is
an inadequate solution, as it comes at the cost of introducing 2log, ¢ many
quantifier alternations. Building upon the QE procedure from Section 3, we show
how to directly eliminate threshold quantifiers. This proves that the increase in
alternation depth that depends on the threshold c¢ is unnecessary.

Theorem 1. The validity of a formula ® from Presburger arithmetic with thresh-
O(1)
227, 0(d(®))).

This result matches the complexity of deciding standard PA in the case of un-
bounded alternation depth. Thus, PA can be enriched with threshold quantifiers
with almost no computational overhead. Note that a slight increase in number
of alternations is still required, and goes from O(nr(®)) for PA to O(fd(®)) for
PA with threshold counting quantifiers.

We further strengthen Theorem 1, extending it to the case where the thresh-
old ¢ is encoded even more succinctly, as the unique solution of a PA formula

old counting quantifiers can be decided in STA (x

Quantifier elimination for counting extensions of Presburger arithmetic 235

®(x) as long as this solution is bounded doubly-exponentially in |®|. An example
of such a formula is ®(z) = 3z : 2 =1 A ¥, (x, z), where

Wo(z,2) £ =22,
Uiq(2,2) E3Wavb: (a=axAb=y)V(a=yAb=2) = U,(a,b),

and the only solution is given by o = 22" [7, Lecture 23], whilst |®| = O(n). The
crux of our results lies in the identification of a fragment of PAC that we call
monadically-guarded, for which the following theorem can be established.

Theorem 2. Monadically-guarded PAC is decidable in 2EXPSPACE.

In the next section, we introduce the monadically-guarded fragment of PAC
and discuss extensions of PA that can be captured by this fragment. In Section 6,
by adding post-processing to the procedure from Section 3, we show how to deal
with any monadically-guarded counting quantifiers in 3EXPTIME. In Section 7
we establish Theorem 2 by designing a quantifier relativization argument, con-
tinuing the direction of research due to [12]. In Section 8 we prove Theorem 1.

5 The monadically-guarded fragment of PAC

Fix a logic £. A formula ®(z,z) from £, where z is a tuple of variables not
including z, is said to be monadically decomposable on the variable x whenever

® < U, for some U= \/,_ (A;(z) ATi(2)),

where A; and I'; are formulae from L. In this case, ¥ is said to be a monadic
decomposition of ® on the variable x.

The notion of monadic decomposition has been put forward by Veanes et
al. in [11], as a general simplification technique that improves the performance
of solvers. Here, our interest lies in studying whether the notion of monadic
decomposability can bring complexity advantages for Presburger arithmetic with
counting quantifiers. With this in mind, we consider formulae of PAC that we
call monadically-guarded: those in which the quantifiers 3=y only appear in
subformulae of the form 3z (¥ A 3=%y @), where ® and ¥ are themselves from
the monadically-guarded fragment of PAC, x does not occur in ®, and ¥ is
monadically decomposable on the variable z. The monadically-guarded fragment
of PAC is understood as the set of all formulae from PAC that are monadically-
guarded. This fragment captures several interesting extensions of PA:

— It can express that the number of different y satisfying ®(y, z) lies in an
arithmetic progression b, b+p, b+2-p, b+ -p, ..., with b,p € N. That is,

Jx(z >bAx =, bATFTTyP(y, z)).

This type of monadically-guarded formulae extends the modulo counting
quantifiers studied by Habermehl and Kuske [4]. Modulo counting quantifiers
are written as 39y & and hold whenever the number of different y satisfy-
ing ® is congruent to r modulo q. Hence, 39y & < 3z (z =, r A I=7yd).

236 D. Chistikov et al.

Moreover, in the monadically-guarded fragment, we can replace the integer r
with an arbitrary linear term ¢ with variables from z, since the modulo con-
straint =, ¢ can be monadically decomposed into \/Te[p] (x=prAt=pr).
— As we recalled in the previous section with the formula ¥, (z, 2), it is known
that PA allows one to succinctly encode numbers that are doubly or triply
exponentially large with respect to the size of the formula. For instance,
one can define a formula L, (x), again of size polynomial in n, that is true
whenever z is the product of all primes in the interval [2,22"] (see [7, Lecture

24]). In this case, x > 22" for some fixed ¢ > 0. The monadically-guarded
fragment of PAC allows one to use these succinct representations as guards of
counting quantifiers. For instance, 32 (L, (z) A\3="y ¥(y, z)) is true whenever
the number of y satisfying ¥(y, 2) is the product of all primes in [2,22"].

Hague et al. [5] proved that constructing the monadic decomposition of a
quantifier-free formula can be done in exponential time. More precisely, given a
q.f. formula ®(z,y) from PA that is monadically decomposable on z, in [5] it is
shown that there is a natural number B of magnitude exponential in |®| that
makes the following formula ¥z (z,y) a monadic decomposition of ® on z:

U\ (2> BAz =0 cA®B+e,y))V(z < —BAz =y cA®(-B—c,y)))
vV (@ =end(ey)),

where m = lem(mod(®)). We study the arguments presented in [5] and refine
the bound B, tracking dependencies on several formula parameters separately.
We find that B is polynomial in ||®[; it is only exponential in #mod(®) and in
the number of variables of the tuple y.

Proposition 3. Let ®(x,y) be a g.f. formula from PA, where y = (y1,...,Yd)-
Let m = lem(mod(®)) and B = 9484’ (m - lin(®)])¢¢ + 1. If ® is monadically
decomposable on x, then the formula Vg is such a decomposition.

Together with our QE procedure, Proposition 3 shows that it is decidable
to check whether a formula of PAC is monadically decomposable (on a certain
variable). Due to Theorem 2, this problem is in 2EXPSPACE for formulae of the
monadically-guarded fragment of PAC. Besides, notice that all formulae having
one free variable are monadic decompositions of themselves.

Our QE procedure for the monadically-guarded fragment of PAC, outlined
below, makes use of the sharper bound obtained in Proposition 3.

6 Eliminating monadically-guarded counting quantifiers

Consider a formula &y = Jz(¥ A I=%y @), where ® and ¥ are quantifier-free
formulae, x does not occur in ®, and ¥ is monadically decomposable on z. By
relying on the QE procedure introduced in Section 3, we show how to obtain a
quantifier-free formula equivalent to ®3. W.l.o.g., we assume that all free vari-
ables distinct from x and y and occurring in ® and ¥ come from the tuple of
variables z.

Quantifier elimination for counting extensions of Presburger arithmetic 237

Below, let ¥’ = \/, _ - Ap(z) A Vi (z) be the monadic decomposition of ¥ on
the variable x computed according to Proposition 3. Recall that this means that
each Ay is a formula having one among the following three forms:

r>BANx=4¢ r<—-BAx=4cor r=r,

where ¢ £ lem(mod(V)), ¢ € [q], r € [-B+1,B — 1] and B is a fixed natural
number. Let us also consider the formula ®5 obtained from performing the QE
procedure for the 3=*y counting quantifier on 3=y ®, so that ¢ < Jz(V’' A ®5).
In particular, recall that ®5 < \/7_ \/ . Z—sfm) (L A ®L"), where Z is the set of
variables appearing in z, m = lem(mod(®)) and T'; . = O; A (A ez W =m r(w))
is a conjunction of an ordering O; and simple modulo constraints with variables
from Z. Hence, T'; ;- is z-free. Moreover, ;" is either L or a formula of the form

¢ ¢
mx = ijz(pj(t;‘ - t;‘—l) +rj)+m- Zj:l Cj- (2)

where the terms t1,...,t} are from T (where T' is defined as in Step II of Sec-
tion 3), and hence z-free. Therefore, the following property holds.

Claim 9. In @5, x only appears on the left-hand side of equalities of the form (2).

This inconspicuous claim, together with the shape of Ag, is at the heart of
our QE procedure eliminating x from the formula 3z(¥’ A ®5). Indeed, after
distributing the existential quantifier 3z and all conjunctions over disjunctions
of W' A @5, we end up with a disjunction of formulae of the form 3z : Ag(z) A
Ui(z) ATi A®g", and let us consider one such disjunct with Ay(z) = (z >
BAx =4 c) and ®%" as in Equation (2). The variable = can be eliminated with a
simple substitution, rewriting Ay (z) A®L" as the new formula £ > m-BAL =,,.,
m - ¢, where t is the right-hand side of Equation (2). The correctness of this
rewrite step follows simply from the equivalences © > B< m-x > m- B and
T =g & M-T =g M-, with m > 1. In a similar way, we can treat all possible
cases for the different forms of Ay (z) and @é’r. We obtain a formula

\Ilk(z)/\l“w/\fzm~B/\t~Em.qm~c. (3)

The number of homogeneous terms across all such disjuncts is still prohibitive as
it was in ®5. Now comes the key 81mphﬁcat10n step; we deal with the inequality
t > m - B and with the modulo constraint t =,,., m - c.

Consider the former first. By definition, all the coefficients p; of Equation (2)
are non-negative, and thanks to the ordering O; appearing in I'; ., in every
valuation v satisfying the formula in Equation (3) we have v(t; —t;_;) > 0.
Therefore, the 1nequahty t > m - B can be translated into a formula of the
form \/gEG /\j ot —t;_4 > dg j, where each dg ; is non-negative and, for every
g € G, the sum ijzpjdg,j is at least e £ m(B — Z§:1 ¢j) — Z§:2 rj. To
compute this formula efficiently, we appeal to Lemma 2, with respect to the set
of terms {t; —t}_; | j € [2,£]} U[0,e].

238 D. Chistikov et al.

Lemma 6. Letd = |[fv(O; At > m-B)|. In time (e + £)°@ log(B - |0;])°™ one
can compute a formula © =V g /\§22 th—t | >dg; st (1)dg;€[0,e+1],
(2) #G < O((e+0)*?), and (3) O;At>m-B & O; AO.

A similar simplification can be done for the modulo constraint ¢ =,,., m - ¢:
we guess residue classes of variables in t modulo m-q, rewriting tNEm.q m - c into
Vs: 250m-q (t =g m-cA A.cz % =m-q 5(2)) and then replace, in each disjunct,
t =m.qm-cby T or L, according to the satisfaction of s(t) =,.q m - c.

The steps just discussed forms the post-processing phase of our QE procedure
for the monadically-guarded fragment of PAC. Thanks to Lemma 6, we can show
that the set of homogeneous terms of the resulting quantifier free formula ®’,
equivalent to @, is the set of homogeneous terms in the monadic decomposi-
tion U’, together with terms of the form ¢ — ¢’ with ¢ and ¢’ belong to the set T
defined in Line 5. But #hom(¥’) = O(#hom(®y)), and thus:

Lemma 7. #hom(®) < O(#hom(®)?).

Running time. Lemma 7 is the key to obtaining an elementary QE procedure.
In particular, this improvement over the exponential dependence of #hom(®j)
on #hom(®) from our “baseline” Lemma 5 leads to the following bounds on the
elimination of an arbitrary number of monadically-guarded quantifiers.

Lemma 8. Let Q be a formula from the monadically-guarded fragment of PAC,
with quantifier rank d. There is an equivalent quantifier-free formula T such that

— #hom(T) < [and #mod(T) < O(IQ));
— #1in(T), |const(Y)|, [hom(T)|| and |jmod(Y)| are at most 2la?

O(d)

Proof idea. In a nutshell, the bounds of Lemma 8 are obtained by first iterat-
ing Lemma 7 across all quantifier elimination rounds. This results in the doubly

exponential bound \Q|20(d) on the cardinality of the set of homogeneous terms
throughout the entire procedure. With this bound in hand, exponentiation on
the right-hand side of the inequalities of Section 3 does not blow the parameters
above triple exponential. O

Subsequent analysis leads to the following result.

Theorem 3. There is a 3EXPTIME quantifier elimination procedure for the
monadically-guarded fragment of PAC.

Theorem 3 follows by combining Lemma 8 with upper bounds on the run-
ning time of a single quantifier elimination round. These upper bounds are all
subsumed by the size of the obtained formulae, except possibly for the subdivi-
sion procedure of Step II (Lemma 2), the model counting procedure of Step IV
(Lemma 4), and the further subdivision performed by Lemma 6. For Lemmas 2
and 6, the running time is only exponential in the size of the original formula,
and thus polynomial time in the size of the obtained formula, as long as the latter

Quantifier elimination for counting extensions of Presburger arithmetic 239

has at least exponential size. For Lemma 4, observe that m < |[mod(Y)|, where
T is the quantifier-free formula of Lemma 8. Therefore, the bounds of Lemma 8
suffice for a triply exponential time overall.

Remark 2. Only small updates are necessary to treat monadically-guarded for-
mulae of the form Jz(¥(x,2) A I2%yd(y, 2)). Again, these updates deal with
the fact that, contrary to 3=%y®, the formula 32%y® is true whenever there
are infinitely many y satisfying ®, or alternatively when z corresponds to a
non-positive number. Then, Lemma 8 can be established for formulae of PAC
containing both monadically-guarded quantifiers 3=% and 32%.

7 The monadically-guarded fragment is in doubly
exponential space

In this section, we prove Theorem 2. Theorem 3 shows that our QE procedure
has the same asymptotic running time as the standard QE procedures for PA.
Historically, bounds obtained from the latter lead to computationally optimal
decision procedures based on quantifier relativisation [12,4]. More precisely, given
a formula ® from PA, the QE procedures allow us to conclude that there is a
bound C, of bitsize at most doubly exponential in |®|, such that 3z & < Jx :
—C < 2 < CA® holds (a small-model property). Then, a quantifier relativisation
procedure follows the semantics of the formula and naively tries all the possible
assignments to x in [—C, C] whenever a quantifier 3z is encountered. With some
bookkeeping, this procedure runs in 2EXPSPACE. In this section, we show that
this is also the case for our QE procedure, leading to a 2EXPSPACE relativisation
procedure for the monadically-guarded fragment of PAC, proving Theorem 2.

First of all, we need to recall a folklore result regarding the existence of
infinitely many solutions of a quantifier-free Presburger formula.

Lemma 9. Let v be an assignment and ®(y, z) be a q.f. formula of PA, where

z has d variables. Let C £ ||®|| - d - max{1, |v(2)| : z is in z} + H<I>||#m0d((b) + 1L

1. If there are finitely many n € Z s.t. v[n/y| | ®, then they all satisfy |n| < C.

2. If there are infinitely many n € Z such that vin/y] | ®, then for every
Jj € Ny there is such an n satisfying j-C <|n| < (j+1)-C.

Together with Lemma 8, this result leads to the relativisation of first-order
quantifiers in the context of PAC.

Lemma 10. There is a constant ¢ with the following property. Let v be an
assignment, ®(y, z) be a monadically-guarded formula of PAC, where z has d

c-d
variables, and let C % 211" " . max{1, |v(2)| : z is in z}. Then, v |= 3y ® if and
only if vin/y] = ® holds for some n € Z with |n| < 3-C.

We want to derive a similar lemma for monadically guarded counting quan-
tifiers. First of all, we consider a formula ® = 3%y ¥(y, z) where ¥ is a monad-
ically guarded formula. Recall that ® is satisfied by an assignment v whenever
the number of distinct values n € Z such that v[n/y] = ¥ is finite and equal
to v(x). By relying on Lemmas 8 and 9, we show the following lemma.

240 D. Chistikov et al.

Lemma 11. There is a cons