
25th International Conference, FOSSACS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2–7, 2022
Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 1

32
42

AR
Co

SS
Patricia Bouyer
Lutz Schröder (Eds.)

Lecture Notes in Computer Science 13242

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Patricia Bouyer • Lutz Schröder (Eds.)

Foundations
of Software Science and
Computation Structures
25th International Conference, FOSSACS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2–7, 2022
Proceedings

123

Editors
Patricia Bouyer
Université Paris-Saclay, CNRS,
ENS Paris-Saclay
Gif-sur-Yvette, France

Lutz Schröder
Friedrich-Alexander-Universität Erlangen
Erlangen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99252-1 ISBN 978-3-030-99253-8 (eBook)
https://doi.org/10.1007/978-3-030-99253-8

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0002-3146-5906
https://doi.org/10.1007/978-3-030-99253-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 25th ETAPS! ETAPS 2022 took place in Munich, the beautiful capital
of Bavaria, in Germany.

ETAPS 2022 is the 25th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organizing these conferences in a coherent,
highly synchronized conference program enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attract many researchers from all over the globe.

ETAPS 2022 received 362 submissions in total, 111 of which were accepted,
yielding an overall acceptance rate of 30.7%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2022 featured the unifying invited speakers Alexandra Silva (University
College London, UK, and Cornell University, USA) and Tomáš Vojnar (Brno
University of Technology, Czech Republic) and the conference-specific invited
speakers Nathalie Bertrand (Inria Rennes, France) for FoSSaCS and Lenore Zuck
(University of Illinois at Chicago, USA) for TACAS. Invited tutorials were provided by
Stacey Jeffery (CWI and QuSoft, The Netherlands) on quantum computing and
Nicholas Lane (University of Cambridge and Samsung AI Lab, UK) on federated
learning.

As this event was the 25th edition of ETAPS, part of the program was a special
celebration where we looked back on the achievements of ETAPS and its constituting
conferences in the past, but we also looked into the future, and discussed the challenges
ahead for research in software science. This edition also reinstated the ETAPS men-
toring workshop for PhD students.

ETAPS 2022 took place in Munich, Germany, and was organized jointly by the
Technical University of Munich (TUM) and the LMU Munich. The former was
founded in 1868, and the latter in 1472 as the 6th oldest German university still running
today. Together, they have 100,000 enrolled students, regularly rank among the top
100 universities worldwide (with TUM’s computer-science department ranked #1 in
the European Union), and their researchers and alumni include 60 Nobel laureates. The

vi ETAPS Foreword

local organization team consisted of Jan Křetínský (general chair), Dirk Beyer (general,
financial, and workshop chair), Julia Eisentraut (organization chair), and Alexandros
Evangelidis (local proceedings chair).

ETAPS 2022 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Paris), Tarmo Uustalu (Reykjavik
and Tallinn), and Lenore Zuck (Chicago).

Other members of the Steering Committee are Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Reiko Heckel (Leicester), Joost-Pieter
Katoen (Aachen and Twente), Fabrice Kordon (Paris), Jan Křetínský (Munich), Orna
Kupferman (Jerusalem), Leen Lambers (Cottbus), Tiziana Margaria (Limerick),
Andrew M. Pitts (Cambridge), Elizabeth Polgreen (Edinburgh), Grigore Roşu (Illinois),
Peter Ryan (Luxembourg), Sriram Sankaranarayanan (Boulder), Don Sannella
(Edinburgh), Lutz Schröder (Erlangen), Ilya Sergey (Singapore), Natasha Sharygina
(Lugano), Pawel Sobocinski (Tallinn), Peter Thiemann (Freiburg), Sebastián Uchitel
(London and Buenos Aires), Jan Vitek (Prague), Andrzej Wasowski (Copenhagen),
Thomas Wies (New York), Anton Wijs (Eindhoven), and Manuel Wimmer (Linz).

I’d like to take this opportunity to thank all authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2022.

Finally, a big thanks to Jan, Julia, Dirk, and their local organization team for all their
enormous efforts to make ETAPS a fantastic event.

February 2022 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

Preface

This volume contains the papers presented at the 25th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2022), which
was held during April 4–6, 2022, in Munich, Germany. The conference is dedicated to
foundational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

In addition to an invited talk by Nathalie Bertrand (Université de Rennes, Inria,
CNRS, and IRISA, France) on “Parameterized verification to the rescue of distributed
algorithms”, the program consisted of 23 contributed papers, selected from among 77
submissions. Each submission was assessed by three or more Program Committee
members. The conference management system EasyChair was used to handle the
submissions, to conduct the electronic Program Committee discussions, and to assist
with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. Finally, we
would like to thank the ETAPS organization for providing an excellent environment for
FoSSaCS, other conferences, and workshops.

January 2022 Patricia Bouyer
Lutz Schröder

Organization

Program Committee

C. Aiswarya Chennai Mathematical Institute, India
S. Akshay Indian Institute of Technology Bombay, India
Carlos Areces Universidad Nacional de Córdoba, Argentina
Filippo Bonchi Università di Pisa, Italy
Patricia Bouyer (Chair) CNRS, LMF, France
Michaël Cadilhac DePaul University, USA
Ankush Das Amazon Web Services, USA
Maribel Fernandez King’s College London, UK
Santiago Figueira Universidad de Buenos Aires, Argentina
Hongfei Fu Shanghai Jiao Tong University, China
Patricia Johann Appalachian State University, USA
Ohad Kammar University of Edinburgh, UK
Shin-ya Katsumata National Institute of Informatics, Japan
Aleks Kissinger University of Oxford, UK
Naoki Kobayashi University of Tokyo, Japan
Orna Kupferman Hebrew University, Israel
Alexander Kurz Chapman University, USA
Sławomir Lasota University of Warsaw, Poland
Annabelle McIver Macquarie University, Australia
Daniela Petrisan Université de Paris, IRIF, France
Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
Jean-Francois Raskin Université Libre de Bruxelles, Belgium
Jurriaan Rot Radboud University, The Netherlands
Lutz Schröder (Chair) Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Pawel Sobocinski Tallinn University of Technology, Estonia
Ana Sokolova Universität Salzburg, Austria
Jiri Srba Aalborg University, Denmark
James Worrell University of Oxford, UK

Additional Reviewers

Abriola, Sergio
Allais, Guillaume
Alvarez-Picallo, Mario
Atkey, Robert
Baillot, Patrick
Balabonski, Thibaut

Balasubramanian, A. R.
Bansal, Suguman
Barloy, Corentin
Blondin, Michael
Bodlaender, Hans L.
Boker, Udi

Bollig, Benedikt
Bonomo, Flavia
Bork, Alexander
Bønneland, Frederik M.
Carai, Luca
Carbone, Marco
Chen, Zhenbang
Clemente, Lorenzo
Comfort, Cole
Crubillé, Raphaëlle
Czerwiński, Wojciech
D’Argenio, Pedro R.
Dal Lago, Ugo
Della Penna, Giuseppe
Delzanno, Giorgio
Demri, Stéphane
Devillers, Raymond
DeYoung, Henry
Domínguez, Martín Ariel
Doyen, Laurent
Exibard, Léo
Fervari, Raul
Figueira, Diego
Finkel, Alain
Garner, Richard
Gastin, Paul
Gay, Simon
Genest, Blaise
Gocht, Stephan
Goncharov, Sergey
Grochau Azzi, Guilherme
Grädel, Erich
Hadzihasanovic, Amar
Hague, Matthew
Hedges, Jules
Ho, Hsi-Ming
Hodkinson, Ian
Junges, Sebastian
Kahn, David
Karimov, Toghrul
Kauffman, Sean
Kiefer, Stefan
Klin, Bartek
Koutny, Maciej
Kura, Satoshi
Kuznetsov, Stepan

Lange, Martin
Lewis, Marco
Lorber, Florian
López Franco, Ignacio
Maarand, Hendrik
Maderbacher, Benedikt
Mamouras, Konstantinos
Martens, Wim
Martinez, Maria Vanina
Mathieson, Luke
Matsushita, Yusuke
Meggendorfer, Tobias
Mikulski, Lukasz
Mikučionis, Marius
Moerman, Joshua
Muniz, Marco
Nakazawa, Koji
Nester, Chad
Ockerlund, Kyle
Oualhadj, Youssouf
Padhi, Saswat
Paperman, Charles
Perez, Guillermo
Piedeleu, Robin
Piróg, Maciej
Poças, Diogo
Praveen, M.
Puglisi, Simon
Reynier, Pierre-Alain
Román, Mario
Sacerdoti Coen, Claudio
Saivasan, Prakash
Sangnier, Arnaud
Sankur, Ocan
Sarkar, Saptarshi
Schmid, Todd
Schou, Morten Konggaard
Sharma, Vaibhav
Steinberg, Florian
Sterling, Jonathan
Thejaswini, K. S.
Trotta, Davide
Tull, Sean
Tzevelekos, Nikos
Ulidowski, Irek
van Dijk, Tom

x Organization

van Glabbeek, Rob
van Heerdt, Gerco
Veltri, Niccolò
Voorneveld, Niels
Vortmeier, Nils
Wagemaker, Jana
Wagner, Dominik
Wang, Di

Wang, Weiyou
Wojtczak, Dominik
Yamakami, Tomoyuki
Yang, Qizhe
Ying, Mingsheng
Ziliani, Beta
Zimmermann, Martin
Žikelić, Djordje

Organization xi

Parameterized Verification to the Rescue
of Distributed Algorithms
(Abstract of Invited Talk)

Nathalie Bertrand

Univ Rennes, Inria, CNRS, IRISA, France
nathalie.bertrand@inria.fr

Abstract. Distributed computing is everywhere in our daily lives and in
advanced technological applications. Bugs in distributed algorithms can have
huge consequences, so that already in 2006, Lamport advised: “Model-checking
algorithms prior to submitting them for publication should become the norm”
[4]. Formal verification techniques indeed avoid tedious and error-prone manual
correctness proofs.
Developing formal verification techniques for distributed algorithms is a real

challenge, since correctness should typically hold independently of the number
of participants. The latter often can be considered, or are by design, anonymous,
forming a crowd of identical copies. Since the seminal work of German and
Sistla establishing the decidability of parameterized verification for crowds of
finite-state machines interacting via rendez-vous [3], the model checking com-
munity has been focusing on specific classes of distributed algorithms, and has
proposed appropriate crowds models with a decidable parameterized verification
problem [1, 2].
In this talk, we will report on recent contributions to the parameterized

verification of distributed algorithms.

Keywords: Model checking � Parameterized verification � Distributed
algorithms

References

1. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers (2015). https://doi.org/10.2200/
S00658ED1V01Y201508DCT013

2. Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verification (invited
talk). In: Proceedings of the 31st International Symposium on Theoretical Aspects of Com-
puter Science (STACS’14). LIPIcs, vol. 25, pp. 1–10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.1

3. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675–735 (1992). https://doi.org/10.1145/146637.146681

4. Lamport, L.: Checking a multithreaded algorithm with +CAL. In: Dolev, S. (ed.) Distributed
Computing. DISC 2006. Lecture Notes in Computer Science, vol. 4167, pp. 151–163.
Springer, Berlin (2006). https://doi.org/10.1007/11864219_11

https://orcid.org/0000-0002-9957-5394
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/11864219_11

Contents

Representing Regular Languages of Infinite Words Using Mod 2
Multiplicity Automata . 1

Dana Angluin, Timos Antonopoulos, Dana Fisman, and Nevin George

Limits and difficulties in the design of under-approximation
abstract domains . 21

Flavio Ascari, Roberto Bruni, and Roberta Gori

On probability-raising causality in Markov decision processes 40
Christel Baier, Florian Funke, Jakob Piribauer, and Robin Ziemek

Parameterized Analysis of Reconfigurable Broadcast Networks 61
A. R. Balasubramanian, Lucie Guillou, and Chana Weil-Kennedy

Separators in Continuous Petri Nets. 81
Michael Blondin and Javier Esparza

Graphical Piecewise-Linear Algebra . 101
Guillaume Boisseau and Robin Piedeleu

Token Games and History-Deterministic Quantitative Automata 120
Udi Boker and Karoliina Lehtinen

On the Translation of Automata to Linear Temporal Logic. 140
Udi Boker, Karoliina Lehtinen, and Salomon Sickert

Categorical composable cryptography . 161
Anne Broadbent and Martti Karvonen

DyNetKAT: An Algebra of Dynamic Networks . 184
Georgiana Caltais, Hossein Hojjat, Mohammad Reza Mousavi,
and Hünkar Can Tunç

A new criterion for M;N -adhesivity, with an application
to hierarchical graphs. 205

Davide Castelnovo, Fabio Gadducci, and Marino Miculan

Quantifier elimination for counting extensions of Presburger arithmetic 225
Dmitry Chistikov, Christoph Haase, and Alessio Mansutti

A first-order logic characterisation of safety and co-safety languages 244
Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari,
and Stefano Tonetta

First-order separation over countable ordinals . 264
Thomas Colcombet, Sam van Gool, and Rémi Morvan

A Faithful and Quantitative Notion of Distant Reduction for Generalized
Applications . 285

José Espírito Santo, Delia Kesner, and Loïc Peyrot

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy . . . 305
Raul Fervari and Alessio Mansutti

Temporal Stream Logic modulo Theories . 325
Bernd Finkbeiner, Philippe Heim, and Noemi Passing

The Different Shades of Infinite Session Types. 347
Simon J. Gay, Diogo Poças, and Vasco T. Vasconcelos

Complete and tractable machine-independent characterizations
of second-order polytime . 368

Emmanuel Hainry, Bruce M. Kapron, Jean-Yves Marion,
and Romain Péchoux

Variable binding and substitution for (nameless) dummies 389
André Hirschowitz, Tom Hirschowitz, Ambroise Lafont,
and Marco Maggesi

Uniform Guarded Fragments . 409
Reijo Jaakkola

Sweedler Theory of Monads. 428
Dylan McDermott, Exequiel Rivas, and Tarmo Uustalu

Model Checking Temporal Properties of Recursive Probabilistic Programs . . . 449
Tobias Winkler, Christina Gehnen, and Joost-Pieter Katoen

Author Index . 471

xvi Contents

Representing Regular Languages of Infinite
Words Using Mod 2 Multiplicity Automata

Dana Angluin1, Timos Antonopoulos1(�), Dana Fisman2, and Nevin George1

1 Yale University, New Haven, CT, USA
timos.antonopoulos@yale.edu

2 Ben-Gurion University, Beer-Sheva, Israel

Abstract. We explore the suitability of mod 2 multiplicity automata
(M2MAs) as a representation for regular languages of infinite words.
M2MAs are a deterministic representation that is known to be learnable
in polynomial time with membership and equivalence queries, in contrast
to many other representations. Another advantage of M2MAs compared
to non-deterministic automata is that their equivalence can be decided in
polynomial time and complementation incurs only an additive constant
size increase. Because learning time is parameterized by the size of the
representation, particular attention is focused on the relative succinct-
ness of alternate representations, in particular, LTL formulas and Büchi
automata of the types: deterministic, non-deterministic and strongly un-
ambiguous. We supplement the theoretical results of worst case upper
and lower bounds with experimental results computed for randomly gen-
erated automata and specific families of LTL formulas.

Keywords: Multiplicity Automata · Regular Omega Languages · Büchi
Automata · Linear Temporal Logic · Conciseness

1 Introduction

Regular languages of infinite words (or ω-words) play an important role in ver-
ification of reactive systems. The question of whether a system S satisfies a
specification given by a temporal logic formula ϕ can be reduced to the question
of whether L(S) ∩ L(¬ϕ) is empty, where L(S) is the set of ω-words represent-
ing the computation paths of the system S and L(¬ϕ) is the set of ω-words
representing computations that violate ϕ. Automata are a useful machinery for
performing operations on languages such as complementation and intersection,
and for deciding properties such as emptiness and equivalence. Many verification
tools are implemented using reductions to automata [20].

Regular ω-languages can be represented using various types of automata (e.g.
Büchi, Rabin, Parity, etc.). Different automata types differ in their succinctness
and in the complexity of performing operations of interest. Non-deterministic
Büchi automata (NBAs) are one of the most popular acceptor types for regular
ω-languages, mainly due to their simplicity, succinctness, and good complexity

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 1–20, 2022.
https://doi.org/10.1007/978-3-030-99253-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_1&domain=pdf

for the emptiness problem. An issue with Büchi automata is that their deter-
ministic version (DBAs) is strictly less expressive: while NBAs accept all regular
ω-languages, DBAs recognize only a strict subset thereof. Another issue is that
complementation of NBAs is hard; it has a 2Ω(n log n) lower bound (where n is the
number of states) [16]. This motivated the introduction of complete unambiguous
Büchi automata (CUBA) by Carton and Michel who showed that every regular
ω-language can be represented by a CUBA, i.e. there is a way to limit the non-
determinism without losing expressiveness [8]. Bousquet and Löding proposed
strongly unambiguous Büchi automata (SUBA), a slight relaxation of CUBA for
which they have shown that equivalence can be decided in polynomial time [6].

The SUBA model was also shown useful in terms of learnability of regular
ω-languages — Angluin, Antonopoulos and Fisman have shown that SUBAs are
polynomially predictable using membership queries (while NBAs, under plausi-
ble cryptographic assumptions, are not) [1]. Their proof makes use of a model of
automata called Mod 2 Multiplicity Automata (M2MA). Informally, multiplicity
automata are an algebraic variant of automata that compute functions from fi-
nite words to a field K [4,5], and M2MAs are multiplicity automata that work
over the field GF (2) = {0, 1} where sum and product are computed modulo 2.

In this paper we look at questions concerning the adequacy of M2MAs for
representing regular ω-languages. We note that M2MAs operate on finite words,
and their use for representing regular ω-languages follows a reduction, by Cal-
brix, Nivat and Podelski from a regular ω-language L to a regular language
(L)$ of finite words [7]. We thus start by reviewing the succinctness of M2MAs
with respect to automata on finite words, particularly of types non-deterministic
(NFAs), deterministic (DFAs), and unambiguous (UFAs). We show that M2MAs
are more succinct than DFAs and UFAs, whereas with respect to NFAs there
are in the worst case exponential gaps in going from M2MAs to NFAs and vice
versa.

We also study the complexity of performing basic operations on M2MAs;
complementation can be done with an additive constant increase in size, and
union and intersection with the product of sizes. There is a known cubic algo-
rithm to minimize a weighted automaton [10,19], which applies to an M2MA
and also implies cubic procedures for determining emptiness and equivalence.

We then investigate the succinctness of M2MAs in representing regular ω-
languages, by comparing translations from linear temporal logic (LTL) formulas
and Büchi automata (deterministic, non-deterministic and strongly unambigu-
ous) into M2MAs, DFAs, UFAs, SUBAs and NBAs (where the former three use
the (L)$ representation). The results are summarized in Fig. 3.

To complement the theoretical bounds, we implemented procedures to trans-
form SUBAs to UFAs and UFAs to M2MAs, and to minimize and learn M2MAs,
and report estimates of the average size increases in transforming random SUBAs,
DBAs, and NBAs to M2MAs. We also determine the minimum dimensions of
M2MAs and minimum sizes of DFAs for a few members of three specific families
of LTL formulas and compare them with the respective ω-automaton sizes.

2 D. Angluin et al.

2 Preliminaries

For nonnegative integers k and `, [k..`] is the set of nonnegative integers n such
that k ≤ n ≤ `. Given a finite alphabet Σ, Σ∗ is the set of finite words over Σ.
The length of a word x is |x| and the empty word is ε. Σn = {x ∈ Σ∗ | |x| = n}.
The reverse of a word x is xr. A language L is any subset of Σ∗. The reverse of
L, denoted Lr, is {xr | x ∈ L}. The Hankel matrix of a language L is the infinite
matrix whose rows and columns are indexed by elements of Σ∗, where the entry
for row x and column y is 1 if xy ∈ L and 0 if xy 6∈ L.

The set of infinite words (or ω-words) over Σ is the set of all maps from
the positive integers to Σ and is denoted Σω. An ω-language is any subset of
Σω. For a finite or infinite word w, w[i] denotes the symbol at position i, with
indices starting at 1. Concatenation of a finite word x with a finite or infinite
word y is denoted xy. The word x is a prefix of xy and the word y is a suffix
of xy. The suffix of w starting at position i is denoted w[i :]. If x ∈ Σ∗ and k
is a nonnegative integer, xk denotes the concatenation of k copies of x, and xω

denotes the concatenation of x with itself infinitely many times. An ω-word is
ultimately periodic if it can be written in the form u(v)ω for u, v ∈ Σ∗ with
|v| > 0. If A1 and A2 are sets and S ⊆ A1 × A2, then we define the projection
π1(S) = {a1 | (∃a2)(a1, a2) ∈ S} and analogously for the projection π2.

2.1 NFAs, UFAs, DFAs, NBAs, UBAs, SUBAs, and DBAs

A (nondeterministic) finite-state automaton A is a tuple (Σ,Q, I,∆, F) consist-
ing of a finite alphabet Σ, a finite set Q of states, a set I ⊆ Q of initial states,
a set F ⊆ Q of final states, and a transition relation ∆ ⊆ Q × Σ × Q. The
transition relation ∆ is deterministic if for every state q ∈ Q and every symbol
σ ∈ Σ, there is at most one state q′ ∈ Q such that (q, σ, q′) ∈ ∆. The size of a
finite-state automaton is |Q|.

For a word w, a run of A on w is a sequence of states q0, q1, . . . such that
for each i that indexes a symbol in w, (qi−1, w[i], qi) ∈ ∆. Thus, for w ∈ Σ∗

a run on w is a sequence of length |w| + 1, and for w ∈ Σω, a run on w is an
infinite sequence of states. A run on w is initial if q0 ∈ I. A finite run is final
if q|w| ∈ F , and an infinite run is final if there are infinitely many values of i
for which qi ∈ F . Acceptors of languages and ω-languages may be defined using
finite-state automata, as follows. In each case, the language of words accepted
by an acceptor A is denoted L(A).

A nondeterministic finite acceptor (NFA) is a finite-state automaton A that
accepts a word w ∈ Σ∗ if there exists a run of A on w that is both initial
and final. An NFA A is an unambiguous finite acceptor (UFA) if for every word
w ∈ L(A) there is exactly one run of A on w that is initial and final. An NFA
A is a deterministic finite acceptor (DFA) if there is exactly one initial state
(|I| = 1) and the transition relation ∆ is deterministic. The languages over Σ
that are accepted by NFAs, UFAs, or DFAs is precisely the regular languages
over Σ.

A nondeterministic Büchi acceptor (NBA) is a finite-state automaton A that
accepts a word w ∈ Σω if there exists a run of A on w that is both initial and

Representing Languages Using M2MAs 3

final. An NBA is an unambiguous Büchi acceptor (UBA) if for every w ∈ L(A),
there exists exactly one run of A on w that is initial and final. Bousquet and
Löding [6] introduced the concept of a strongly unambiguous Büchi acceptor
(SUBA), which is an NBA such that for every w ∈ Σω, there is at most one final
run of the acceptor on w — note that the condition of being initial is dropped.
Thus, every SUBA is a UBA. The ω-languages over Σ that are accepted by
NBAs, UBAs, or SUBAs are precisely the regular ω-languages. An NBA is a
deterministic Büchi acceptor (DBA) if there is exactly one initial state (|I| = 1)
and the transition relation ∆ is deterministic. Every DBA is a UBA, but is not
necessarily a SUBA. The ω-languages that are accepted by DBAs are a proper
subclass of the class of all regular ω-languages.

For Büchi acceptors, we also consider a generalized version, GNBA, in which
the acceptance condition is specified not by a single set of final states, but by a
collection F of sets of final states. For a GNBA, a run q0, q1, . . . is final iff for
each F ∈ F , there exist infinitely many indices i such that qi ∈ F . Applying this
generalization to a SUBA yields a GSUBA. There is a standard translation of a
GNBA of size n with k sets of final states into an NBA of size kn, in which there
are k copies of the GNBA automaton. However, applying this construction to a
GSUBA does not in general yield a SUBA.

2.2 LTL formulas

The syntax of linear temporal logic (LTL) [18] over a set AP of atomic proposi-
tions is given by the following grammar ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ©ϕ | (ϕ1U ϕ2)
where p ∈ AP is an atomic proposition.

The semantics of LTL relates ω-words over 2AP to formulas as shown on the
right (recall that indexing of words starts at 1). Additional Boolean and temporal

w |= p iff p ∈ w[1]
w |= ¬ϕ iff w 6|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |=©ϕ iff w[2 :] |= ϕ
w |= (ϕ1 U ϕ2) iff ∃j. w[j :] |= ϕ2 and

∀i < j. w[i :] |= ϕ1

connectives are defined in the
usual way. In particular > (true)
is defined as p∨¬p, ♦ϕ (eventually
ϕ) is defined as (> U ϕ) and �ϕ
(always ϕ) is defined as ¬♦(¬ϕ).

The ω-language of an LTL for-
mula ϕ, denoted L(ϕ), is the set
of ω-words for which it is true. The size of an LTL formula ϕ is the number of dis-
tinct subformulas it contains. Every LTL formula represents a regular ω-language
(see Section 5). However, not every regular ω-language can be represented by an
LTL formula; in particular, the regular ω-languages that can be represented by
LTL formulas are noncounting [9].

2.3 M2MAs

A multiplicity automaton represents a function mapping Σ∗ to elements of a field
K. We focus on the case where K = {0, 1} and product and sum are computed
modulo 2. A mod 2 multiplicity acceptor (M2MA) of dimension d is a tuple
A = (Σ, vI , {µσ}σ∈Σ , vF), where Σ is the input alphabet, vI ∈ Kd is the initial

4 D. Angluin et al.

vector, vF ∈ Kd is the final vector, and for each σ ∈ Σ, µσ is a d× d transition
matrix over K, that is, an element of Kd×d.

The vectors vI and vF are interpreted as d×1 column vectors. The transpose
operation is denoted by >, and the inner product of two column vectors v, w ∈ Kd
is denoted v>w.

To define L(A) we inductively define the matrix µx for all x ∈ Σ∗. If x = ε,
then µx is the d × d identity matrix. If x = σy for some σ ∈ Σ and y ∈ Σ∗

then µx = µσµy. The function fA : Σ∗ → K computed by A is defined by
fA(x) = v>I µxvF . A word x is accepted by A if fA(x) = 1.

We refer to column vectors v ∈ Kd as states or co-states of A. A state v is
reachable iff there exists a word x ∈ Σ∗ such that v = (v>I µx)>. A co-state w is
co-reachable iff there exists a word x ∈ Σ∗ such that w = µxvF . For any state
v, Lv(A) denotes the language of words accepted by A with its initial vector
replaced by v.

We assume standard results from finite dimensional vector spaces. If U is a
vector space of dimension k over the field {0, 1} then |U | = 2k. If U is a vector
subspace of the vector space V , then the orthogonal complement of U is the set
U⊥ = {v | v>u = 0 ∀u ∈ U}, U⊥ is a vector subspace of V which is disjoint
from U except for the zero vector, and the dimensions of U and U⊥ sum to the
dimension of V .

The following simple lemmas relate M2MAs to UFAs and DFAs, and show
that M2MAs accept exactly the regular languages.

Lemma 1. [Beimel et al. [4]] Let L ⊆ Σ∗. If L is accepted by a UFA of size n,
it is also accepted by an M2MA of dimension n.

Lemma 2. Let L ⊆ Σ∗. If L is accepted by an M2MA of dimension d with R
reachable states, then L is also accepted by a DFA of R states. Clearly, R ≤ 2d.

Beimel et al. [4] have shown that there is a polynomial time algorithm to
learn an unknown M2MA using equivalence and membership queries.

2.4 Size lower bounds for DFAs, M2MAs and NFAs

Given a language L ⊆ Σ∗, we define an observation table for L as an ` × m
matrix T of 0’s and 1’s where each row i is associated with a finite word xi and
each column j is associated with a finite word yj , and the entry Ti,j is 1 if and
only if xiyj ∈ L. This terminology is derived from its use in algorithms to learn
DFAs. An observation table for L is thus a finite submatrix of its Hankel matrix.

Certain properties of observation tables for a language L yield lower bounds
on acceptors recognizing L. Recall that the rank of a matrix is the number of
linearly independent rows (or columns) it contains.

Lemma 3. Let T be an observation table for the regular language L with rows
associated with finite words xi for i = [1..`] and columns associated with finite
words yj for j ∈ [1..m]. Assume T has n distinct rows and rank d over the field
{0, 1}. Then any DFA to accept L must have at least n states, and any M2MA
to accept L must have dimension at least d.

Representing Languages Using M2MAs 5

Proof. Let D be a DFA accepting L. If the rows for xi and xk are distinct, then
there is a column j on which they differ, that is, xiyj ∈ L iff xkyj 6∈ L. Thus,
the states of D reached from the initial state on the words xi and xk must be
different and D has at least n states.

Let M be an M2MA accepting L. Following the argument of Beimel et al. [4],
the observation table is a submatrix of the Hankel matrix of the language L,
and its rank (modulo 2) is a lower bound for the rank (modulo 2) of the Hankel
matrix, which is a lower bound for the size of any M2MA accepting L. ut

For lower bounds for NFAs, we use the concept of covering the observation
table by 1-monochromatic rectangles. If R and C are subsets of the indices of
the rows and columns (respectively) of a matrix M , then the (R,C)-rectangle of
M is the matrix obtained from M by deleting those rows whose indices are not
in R and those columns whose indices are not in C. The (R,C)-rectangle of a
matrix M is v-monochromatic iff all of its entries are equal to the value v.

Let M be a matrix of 0 and 1 values. A 1-rectangle cover of M is a set
{(Rs, Cs) | s ∈ [1..t]}, of 1-monochromatic rectangles (Rs, Cs) of M such that
for every i and j, if Mi,j = 1 then there exists some s ∈ [1..t] such that i ∈ Rs
and j ∈ Cs. A minimum 1-rectangle cover of M is a 1-rectangle cover of M of
minimum possible cardinality t.

Lemma 4. Let T be an `×m observation table for the regular language L. Any
NFA M recognizing L must have at least as many states as the cardinality of the
minimum 1-rectangle cover of T .

This is implied by Theorem 5.2.4.10 and Exercise 5.2.5.14 of Hromkovič [12].
For completeness we provide a simple direct proof.

Proof. Let the strings indexing the rows of T be xi for i ∈ [1..`] and the strings
indexing the columns of T be yj for j ∈ [1..m]. For each state q of M , let Rq be
the set of all i ∈ [1..`] such that xi reaches q from an initial state of M , and let
Cq be the set of all j ∈ [1..m] such that yj reaches a final state of M from q.

Clearly (Rq, Cq) must be a 1-monochromatic rectangle of T , because if i ∈ Rq
and j ∈ Cq then xiyj is accepted by M and the entry Ti,j must be 1. Also, if
Ti,j = 1, then xiyj must be accepted by M , so there must exist a state q of M
such that xi reaches q from an initial state of M and yj reaches a final state
of M from q, that is, i ∈ Rq and j ∈ Cq. Thus, the rectangles (Rq, Cq) for all
states q of M form a 1-rectangle covering of T , and the number of states of M
is greater than or equal to the cardinality of the minimum 1-rectangle covering
of T . ut

Corollary 1. If L is a regular language with an n× n observation table T that
has exactly one 1 in every row and column, then any DFA, M2MA, or NFA to
recognize L must have at least n states.

6 D. Angluin et al.

ε a b
ε 1 1 1
b 1 0 1
c 1 1 0
ba 0 0 0

Fig. 1: Observation
table with rank 3.

As an example of the use of these results, let L be the reg-
ular language over {a, b, c} consisting of those strings that do
not contain any occurrences of the substrings ba or cb, with
the observation table for L in Fig. 1. There are 4 different
rows, so any DFA to accept L must have at least 4 states.
The mod 2 rank of the table is 3 (the first three rows are a
row basis) so any M2MA accepting L must have dimension
at least 3. The observation table with rows c and b, and columns a and b is the
2 × 2 identity matrix, so any NFA to accept L must have at least 2 states. In
fact, there is a DFA of 4 states, an M2MA of dimension 3, and an NFA of 2
states accepting L, so for this example, the lower bounds are tight.

3 M2MAs as representations of regular languages

We consider the computational cost and size implications of some common op-
erations and decision questions using M2MAs to represent regular languages.

3.1 M2MAs: procedures for operations and properties

Reverse Given an M2MA A accepting a regular language L, an M2MA Ar

accepting the reverse language Lr may be obtained from A by exchanging the
initial and final vectors, and transposing each of the transition matrices. Thus,
the minimum dimension of an M2MA accepting L is equal to the minimum
dimension of an M2MA accepting Lr. Reversing is similarly easy for UFAs and
NFAs, but may incur an exponential increase in size for a DFA.

Sum If for i = 1, 2, Mi is a multiplicity automaton of dimension di computing
the function fi : Σ∗ → K, then the sum f1 + f2 is computed by a multiplicity
automaton M of dimension d1 +d2 constructed as the direct product of M1 and
M2 as follows. State vectors of M are the concatenation of state vectors of M1

and M2, including the initial and final vectors. For each σ ∈ Σ, the transition
matrix µσ is a (d1+d2)×(d1+d2) matrix obtained by putting (µ1)σ in the upper
left, (µ2)σ in the lower right, and setting the remaining entries to 0. This ensures
that the state updates of M1 and M2 are done in parallel for each symbol, and
the output is the sum of the outputs for M1 and M2.

Boolean operations For M2MAs, complementation follows directly from the
sum construction. If A is an M2MA of dimension d and C is the M2MA of dimen-
sion 1 that outputs 1 on every string, then the sum construction with M and C
yields an M2MA of dimension d+1 that accepts the regular language Σ∗ \L(A).
For DFAs, complementation is size-preserving, while for NFAs, complementation
may incur an exponential increase in size.

Given M2MAs Ai of dimension di for i = 1, 2, the intersection language
L(A1) ∩ L(A2) is accepted by an M2MA of dimension d1 · d2 obtained from A1

Representing Languages Using M2MAs 7

and A2 using the Kronecker product of matrices.3 Union can then be obtained
from complementation and intersection.

Minimization, Equivalence, and Emptiness Sakarovitch [10,19] describes
a cubic-time algorithm to minimize a weighted automaton with weights from a
skew field, which has the following corollary.

Corollary 2 (of Theorem 5.20 in [10]). Given an M2MA A of dimension d,
an M2MA A′ of the minimum possible dimension accepting L(A) may be found
in time O(|Σ|d3).

An M2MA recognizes the empty language iff it has dimension 0 when minimized,
and the equivalence of two M2MAs may be tested by determining if their sum
is the empty language.

3.2 Conciseness comparisons for regular languages

We summarize known results comparing the conciseness of M2MAs with that of
DFAs, UFAs and NFAs as representations of regular languages in Fig. 2. The
entry for row A and column B is “−” if the representation A is an instance
of the representation B, otherwise, starting with a machine of size n in the
representation A, how large must an equivalent machine in the representation B
be in the worst case? The entry 2Θ(n) means that there is a lower bound of 2cn

and an upper bound of 2dn for positive constants c and d.

DFA UFA NFA M2MA
DFA − − − n

UFA 2Θ(n) − − n

NFA 2Θ(n) 2Θ(n) − 2Θ(n)

M2MA 2Θ(n) 2Θ(n) 2Θ(n) −
Fig. 2: Worst-case size bounds for

representations of regular languages.

We briefly explain the entries in the
table. A DFA is also a UFA and an NFA,
and a UFA is also an NFA. A DFA or UFA
of size n can be converted to an equiv-
alent M2MA of dimension n (Lemma 1).
The subset construction to determinize an
NFA of size n yields a DFA (and there-
fore also a UFA or M2MA) of size at most
2n. An M2MA of dimension n can be con-
verted to a DFA (or UFA or NFA) of size
at most 2n (Lemma 2). The language Bn = Σ∗ ·1 ·Σn, for Σ = {0, 1}, consisting
of binary strings with a 1 located n + 1 symbols before the end is accepted by
a UFA of size n + 2 (and therefore also an NFA of size n+ 2 and an M2MA of
dimension n+ 2), but requires at least 2n+1 states for any DFA that accepts it.

For the problem of converting an NFA to an M2MA, Kaznatcheev and
Panangaden [13] consider the language Ln = Σ∗

(
(0Σn−11) + (1Σn−10)

)
Σ∗ for

Σ = {0, 1}, and show that Ln is recognized by an NFA of 2n+2 states, but that
any M2MA to recognize Ln must have dimension at least 2n. By Lemma 1, this
lower bound applies also to UFAs.

For the problem of converting an M2MA to an NFA, Kaznatcheev and Panan-
gaden [13] give a family of languages {Ln} such that Ln is recognized by an

3 If A is an m×n matrix and B is a p×q matrix, then the Kronecker product A⊗B is
the pm× qn block matrix, with blocks of size B, where the block-matrix at position
(i, j) is aijB [17, Def 1.2.1].

8 D. Angluin et al.

M2MA of dimension n+ 2, and prove that any NFA to recognize Ln must have
at least 2n/2 − 2 states. Here we provide a simpler proof of a stronger lower
bound. Let Ln be the language recognized by the M2MA given in Fig. 1 of
the paper of Kaznatcheev and Panangaden. This M2MA accepts a word iff the
number of indices i such that both w[i] and w[i+ n] is 1, is odd.

Lemma 5. Any NFA to recognize Ln must have at least 2n−1 states.

Proof. The language Ln has an observation table Tn of dimension 2n × 2n, in
which the rows and columns are indexed by strings x, y ∈ {0, 1}n. We view
strings in {0, 1}n as vectors of length n over the field {0, 1}, so that the entry
corresponding to the pair (x, y) is the inner product of the vectors x and y, that
is x>y. Note that the inner product x>y is 1 iff the number of indices i such
that both xy[i] and xy[i+n] is 1, is odd. The lower bound of 2n− 1 then follows
from Lemma 4 and the following Lemma. ut

Lemma 6. The minimum 1-rectangle covering of the observation table Tn just
defined has cardinality 2n − 1.

Proof. For the upper bound it suffices to consider a 1-rectangle covering of Tn
consisting of pairs (R,C) where R is the singleton index of a nonzero row and
C consists of the indices of the occurrences of 1 in that row.

If x ∈ {0, 1}n is the zero vector, then x>y is 0 for all vectors y; otherwise,
x>y = 1 for exactly half the vectors y, that is, for 2n−1 columns of Tn. Hence,
Tn contains exactly 2n−1(2n − 1) entries of value 1. We now show that any 1-
monochromatic rectangle (R,C) of Tn has at most 2n−1 entries of 1, which shows
that a minimum 1-rectangle covering of Tn must have cardinality at least 2n−1.

Let (R,C) be any 1-monochromatic rectangle of Tn. Let U be the vector
subspace spanned by the vectors x corresponding to indices in R, and let B be
a basis for U whose indices are drawn from R. Let k = |B|, so that |U | = 2k.
Every element of U is a sum of elements of B, but a sum of an even number of
elements of B will be 0 in all the columns with indices in C, so R can contain
the indices of at most half the elements of U , that is, |R| ≤ 2k−1.

Let S = {v | u>v = 1 ∀u ∈ B}, the set of vectors whose inner product with
all elements of B is 1; clearly, |C| ≤ |S|. We use inclusion/exclusion to find the
cardinality of S, as follows.

|S| = 2n − |
⋃
u∈B
{v | u>v = 0}|

= 2n − |
⋃
C⊆B

C⊥|

= 2n − k2n−1 +

(
k

2

)
2n−2 − . . . (−1)k2n−k

= 2n · (1− 1

2
)k

= 2n−k

Thus, |C| ≤ 2n−k. Then |R×C| ≤ 2k−1 ·2n−k = 2n−1, concluding the proof. ut

Representing Languages Using M2MAs 9

4 Representing regular omega-languages using regular
languages

In the preliminaries we discussed NBAs, SUBAs and DBAs, and LTL formulas as
representations of regular ω-languages. Here we explain that M2MAs and other
automata over finite words can also be used to represent regular ω-languages.

A regular ω-language is uniquely determined by the set of ultimately periodic
ω-words it contains. Let L be a regular ω-language and let $ be a symbol not
in the alphabet of L. To represent the set of ultimately periodic words in L,
Calbrix, Nivat and Podelski [7] introduced the related language of finite words
L$ = {u$v | u(v)ω ∈ L} and proved that it is regular.

Thus a regular ω-language L can be represented by an acceptor for the regular
language L$, for example, a DFA, UFA, NFA or M2MA. The representation of
L$ by an M2MA was used by Angluin, Antonopoulos, and Fisman [1] in showing
that regular ω-languages are polynomially predictable with membership queries
as a function of the size of the smallest SUBA accepting the language.

We note that if for i = 1, 2, Ai is an M2MA of dimension di accepting
(Li)$ for the regular ω-language Li, then there is an M2MA of dimension d1 · d2
accepting (L1 ∩ L2)$, and an M2MA of dimension d1 + 3 accepting (Σω \ L1)$.
The former follows by the intersection result for M2MAs, and the latter follows
by the sum result applied to A1 and the dimension 3 M2MA that accepts the
set {u$v | u ∈ Σ∗, v ∈ Σ+}.

5 Conciseness comparisons for regular omega-languages

We present known and new results comparing the conciseness of M2MAs with
that of several other representations of regular ω-languages, summarized in
Fig. 3. The entry for row A and column B gives upper (above) and lower (below)
bounds on the worst case increase in size for a representation of type A of size
or dimension n to an equivalent representation of type B. The entry is “−” if a
representation of type A is an instance of a representation of type B. The entries
for the columns for DFA, UFA, M2MA, and NFA are for the language L$. An
arrow indicates that the (lower or upper) bound is derived from a related (lower
or upper) bound in the table. For example, the upper bound for the row DBA
and columns UFA, M2MA and NFA are derived from the upper bound for the
row DBA and column DFA. We now discuss the entries.

5.1 Size increases for LTL formulas

Upper bounds
There is a “classic” algorithm, described by Baier and Katoen [3, Chapter 5], to
translate an LTL formula of size n into a GNBA of size 2n with at most n sets
of final states, which then yields an NBA of size at most n2n. This shows that
every LTL formula represents a regular ω-language, and gives an upper bound
for translating an LTL formula to an NBA. Another algorithm to translate LTL
formulas into NBAs is given by Gerth, Peled, Vardi and Wolper [11].

10 D. Angluin et al.

DFA UFA M2MA NFA (G)SUBA NBA

22O(n)

2O(n) (2n, n) n2n

via UFA Cor.3
← ←

Prop. 1 [3]

2Ω(n) 2Ω(n) 2Ω(n)LTL

→ →
Thm. 2 Thm. 2

→
[3]

n + n3n
2

[14]
← ← ← ↓ −

2Ω(n logn) 2Ω(n) 2Ω(n) 2Ω(n)DBA

[2]
→

Thm. 3 Thm. 3 [6]
−

2n + 2n3n
2

n + n3n
2

(12n)n

[14]
← ←

[14] [8]
−

NBA

↑ ↑ ↑ ↑ ↑ −

2n2 + n↑
[6]

← ← − −

2Ω(n) 2n2 − n + 2 2n2 − n + 2
SUBA

[1]
→

Thm. 4 Thm. 4
− −

Fig. 3: Worst-case size bounds for representations of regular ω-languages.

Concerning the classic translation algorithm, Bousquet and Löding [6] give a
brief argument and state that “Hence the automaton that is constructed in this
standard way is strongly unambiguous.” Wilke [21] states that “Every tempo-
ral formula with n subformulas can be translated into an equivalent backwards
deterministic generalized Büchi automaton with at most 2n states and as many
Büchi sets as there are subformulas with leading temporal operator F (eventu-
ally) or U (until).” To clarify these earlier statements, we reformulate them in
our terminology. This gives an upper bound for transforming an LTL formula to
a GSUBA.

Proposition 1. Let φ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Applying the classic translation algorithm
to φ yields a GSUBA of size 2n with m sets of final states.

Proof. Baier and Katoen [3] show that the algorithm yields a GNBA M of the
given size in which each state corresponds to an assignment of true or false to
every subformula of φ. Moreover, if the ω-word w is accepted from a state q,
then q assigns true to each subformula ψ of φ iff ψ is true for w. Hence there
is at most one state of M from which the ω-word w is accepted, and thus M is
also GSUBA. ut

To get an upper bound for translation of LTL formulas to UFAs, M2MAs,
and NFAs, we would like to use the property of being strongly unambiguous.
However, if the resulting GSUBA has more than one set of final states, trans-
forming it in the usual way into an NBA does not in general yield a SUBA.
Instead, we generalize to GSUBAs the method of Bousquet and Löding [6] for
transforming a SUBA accepting L into a UFA accepting L$.

Representing Languages Using M2MAs 11

Theorem 1. There is an algorithm to transform a GSUBA of size n with m
sets of final states accepting L into a UFA of size 2mn2 +n accepting L$. It runs
in time polynomial in n and 2m.

Proof. Let L be accepted by the GSUBA M = (Σ,Q, I,∆,F) with n = |Q|
and m = |F|. We index the elements of F as Fi for i ∈ [1..m]. Bousquet and
Löding [6, Lemma 1] show that u(v)ω is accepted by a SUBA iff there exists a
state q reachable from an initial state on reading u, such that on the word v
there is a computation path that loops from q back to q while passing through
an accepting state. For the GSUBA M , the condition is that the computation
path that loops from q back to q must pass through at least one state from each
Fi for i ∈ [1..m].

We define an NFA M ′ = (Σ′, Q′, I ′, ∆′, F ′) as follows. The alphabet is Σ′ =
Σ ∪ {$}. The state set is Q′ = Q ∪Q1, where Q1 = {(q1, q2, S) | q1, q2 ∈ Q,S ⊆
[1..m]}. The initial states are I ′ = I. The transition relation is ∆′ = ∆∪∆1∪∆2,
where ∆1 is the set of all triples ((q1, q2, S), σ, (q′1, q

′
2, S
′)) such that q′1 = q1,

(q2, σ, q
′
2) ∈ ∆, and S′ = S ∪ T , where T = {i ∈ [1..m] | q′2 ∈ Fi}. And ∆2

contains all triples (q, $, (q, q, ∅)) such that q ∈ Q. The set of final states F ′ is
the set of triples (q1, q2, S) such that S = [1..m] and q1 = q2.

Then M ′ has 2mn2 +n states, and can be constructed in time polynomial in
n and 2m given the GSUBA M . On an input u$v, the NFA M ′ behaves like M
on the word u, reaching some state q. Then on the symbol $, M ′ transitions to
the state (q, q, ∅), recording the state q reached after reading u. As M ′ continues
reading v, the first component remembers q while the second component transi-
tions as in M . The third component, S, records the set of indices of those final
sets Fi that have been visited in the processing of v. The input u$v is accepted
by M ′ iff there is a state q of M reachable from a state of I on input u such that
there exists a computation path in M on input v from q to q that visits at least
one state in Fi for every i ∈ [1..m]. Thus M ′ accepts L$. (Note that the set S
generalizes the single bit used in Bousquet and Löding’s construction.)

To see that M ′ is a UFA, we note that if there are two different accepting
computations in M ′ for u$v, then these may be used to construct two different
accepting computations in M for u(v)ω, contradicting the fact that M is a
GSUBA. ut

The entry in Fig. 3 for row LTL and column UFA is then justified by the
following.

Corollary 3. Let φ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Then there is a UFA of size 22n+m + 2n to
accept L(φ)$.

For transforming LTL to DFA, we have only the doubly-exponential bound
for transforming an LTL formula to a UFA and the UFA to DFA.

Lower bounds
We first generalize Lemma 3 to DBAs and Lemma 4 to NBAs. An observation

12 D. Angluin et al.

table for an ω-language L is a matrix T ∈ {0, 1}`×m with rows indexed by finite
words xi for i ∈ [1..`] and columns indexed by ω-words yj for j ∈ [1..m] such
that Ti,j = 1 iff xiyj ∈ L. Then we have the following, proved analogously to
Lemma 3 and Lemma 4.

Lemma 7. Let T be an observation table for the ω-language L. If T has n
distinct rows, then any DBA accepting L has at least n states.

Lemma 8. Let T be an observation table for the ω-language L. If the minimum
1-cover of T has cardinality n, then any NBA to recognize L has at least n states.

Baier and Katoen [3, Theorem 5.4.2] give a lower bound for a family of LTL
formulas φn of size poly(n) for which equivalent NBAs must have at least 2n

states. Below we give a simplified and slightly strengthened version of their lower
bound, which also applies to M2MAs or NFAs for L$.

Theorem 2. For every positive integer n there exists an LTL formula ψn of
size at most 2n+ 6 such that any NBA accepting L(ψn) must have size at least
2n. Any NFA or M2MA accepting L(ψn)$ must have size or dimension at least
2n.

Proof. Let p be a propositional variable. For any positive integer n we define
the LTL formula ψn = �(p → ©n(p)) ∧ (¬p → ©n(¬p)). We use ©n

to represent the composition of © with itself n times, so ©3(p) abbreviates
©(©(©(p))). The formula ψn has size 2n+6. Let the symbols 0 and 1 represent
the assignment of false and true to p. Then L(ψn) is the language of ω-words w
over {0, 1} such that for some x ∈ Σn, w = xω.

For L(ψn)$, let x1, x2, . . . , x2n be any total ordering of all the elements of
{0, 1}n, and consider the observation table T with rows corresponding to xi and
columns corresponding to $xi for i ∈ [1..2n]. Clearly, there is exactly one 1 in
row xi, in the column $xi, so this observation table is the 2n×2n identity matrix,
which has rank 2n, and any NFA or M2MA accepting L(ψn)$ must have size at
least 2n by Corollary 1.

For the lower bound on NBAs, we observe that if we instead index the
columns of T with (xi)

ω, it becomes an observation table for the ω-language
L(ψn), and remains the 2n × 2n identity matrix, which implies that any NBA
accepting L(φn) must have at least 2n states, by Lemma 8. ut

5.2 Size increases for DBAs, NBAs, SUBAs

Upper bounds
For an NBA of n states accepting L, Calbrix, Nivat and Podelski [7] show that

there is a DFA of 2n + 22n
2+n states to accept L$. Kuperberg, Pinault and

Pous [14] give a more concise construction that yields for L$ an NFA of size

n + n3n
2

and a DFA of size 2n + 2n3n
2

. For the conversion of an NBA of n
states to a SUBA, Carton and Michel provide the upper bound of (12n)n [8].

Representing Languages Using M2MAs 13

Starting with a DBA instead of an NBA, the NFA construction of Kuperberg,
Pinault and Pous is fully deterministic, so the upper bound of n+n3n

2

holds for
transforming a DBA into a DFA. Bousquet and Löding [6] show that a SUBA of
n states accepting the ω-language L may be transformed into a UFA of 2n2 + n
states accepting L$.

Lower bounds

For transforming a DBA for L into a DFA for L$, Angluin and Fisman [2] prove
that for every n there is a DBA of n+ 2 states accepting a language L such that
no DFA of fewer than n! states accepts L$. For transforming a DBA into a UFA,
M2MA or NFA, we prove the following result.

Theorem 3. For every even positive integer n there is an ω-language Ln that
is accepted by a DBA of n + 5 states such that any UFA, NFA or M2MA to
accept (Ln)$ must have size or dimension at least

(
n
n/2

)
, which is ∼ 2n/

√
πn/2.

Proof (Sketch). The proof uses a modification of the DBAs in the construction
by Angluin and Fisman [2]. Here we sketch the main idea and give an example.
Let n = 2k for some nonnegative integer k, let Σ2k = {σ1, . . . , σ2k} and let Σ
be Σ2k ∪ {0, L,E, F}. Consider the regular ω-language defined by the ω-regular
expression

(
∪σ∈Σ\{0} (σ · (Σ \ {σ})∗ · σ)

)ω
, which is accepted by a DBA with

2k+ 5 states. Given two subsets C and D of Σ2k, each of size k, we define words
uC and vD such that (uC · vD)ω is in the language if and only if C = D. The
main idea behind the construction is that vD forces each symbol σD in Σ2k \D
to be followed by the character 0. Thus, if the string preceding (and including)
an occurrence of such a symbol σD is described by the (unambiguous) regular
expression (

⋃
σ∈Σ\{0} σ · (Σ \ {σ})∗ · σ)∗, then the symbol 0 that follows cannot

be properly consumed, resulting in the ω-word being not in the language. We
construct the words uC and vD in such a way that this can happen if and only if
such a symbol σD ∈ Σ2k \D is also in C. Since C and D are subsets of Σ2k, each
of size k, this happens exactly when C 6= D. There is therefore an observation
table with rows indexed by $uC for all subsets C of size k and whose columns are
indexed by vD for all subsets D of size k, and where each entry, corresponding
to row and column subsets C and D respectively, is 1 if and only if C = D. By
Corollary 1, the result follows. ut

uC = F · 2 · F · 2 · 3 · 2 · 3 · L · 3
vC = L · E · 1 · 0 · 4 · 0 · E
vD = L · E · 1 · 0 · 3 · 0 · E

Example. Let Σ2k = {1, 2, 3, 4}, let Σ be
Σ2k∪ {0, L,E, F}, let C = {2, 3}, and let D =
{2, 4}. Then uC , vC and vD are defined on the
right. Then (uC ·vC)ω is in the language, whereas (uC ·vD)ω is not (since C 6= D).

For the lower bound on transforming a DBA into a SUBA, Bousquet and
Löding [6] show that for every positive integer n there exists an ω-language that
is accepted by a DBA with n + 1 states, and cannot be accepted by a SUBA
with fewer than 2n−1 states.

14 D. Angluin et al.

For transforming a SUBA into a DFA, Angluin, Antonopoulos and Fisman [1,
Theorem 5] give a family of ω-languages such that Ln is accepted by a SUBA
of size 4n + 5, but any DFA to accept (Ln)$ or its reverse must have size at
least 2n. For transforming a SUBA into a UFA, M2MA or NFA, we prove the
following asymptotically tight lower bound.

Theorem 4. For every positive integer m greater than 3, there is an ω-language
L that is accepted by a SUBA with m states, but no M2MA of dimension less
than 2m2 −m+ 2 or NFA or UFA of size less than 2m2 −m+ 2 accepts (L)$.

Proof (Sketch). For every n ∈ N we define Ln to be the regular ω-language over
Σ = {a, b, c} given by the expression ((cc·bn)∗·aa·bn)ω. This language is accepted
by a SUBA Sn, with m = n+ 3 states. We construct a specific observation table
M for the language (Ln)$. We then show that any 1-rectangle cover of M is of
size at least 2m2 −m+ 2, which implies by Lemma 4 that the number of states
of any NFA (or UFA) for the language (Ln)$ is at least 2m2−m+ 2. We further
show that the rank of M is 2m2 − m + 2, and by Lemma 3, obtain that the
dimension of any M2MA for this language is also at least 2m2 −m+ 2. ut

6 Empirical results

We report typical size increases in going from a random SUBA, DBA or NBA
acceptor for a regular ω-language L to a minimized M2MA (and DFA, in the
case of a SUBA) for L$. We also report computed sizes of minimized M2MAs
and DFAs for L(φn)$ for members of particular families {φn} of LTL formulas.
Code is available in the GitHub repository:
https://github.com/nevingeorge/Learning Automata.

For the generation of random SUBAs, DBAs or NBAs, our procedure is
as follows. Given parameters n, f , and t we generate a transition relation on
n states (random reverse-deterministic for a SUBA, random deterministic for a
DBA, and all possible transitions for an NBA), select f of the n states at random
to be final, and randomly remove t of the transitions. The resulting transition
relation is trimmed to remove non-live states and their transitions. The trimmed
acceptor may have fewer than n states.

If the goal is a SUBA, using the criterion of Wilke [21], we check that there
do not exist two different states q1 and q2 and a nonempty finite word v such
that for i = 1, 2, there is a loop on v from qi to qi that passes through a final
state. If the acceptor fails this test, it is rejected, and the procedure is repeated
until a SUBA is successfully generated.

6.1 SUBAs to minimized M2MAs and DFAs

For random SUBAs to minimized M2MAs, we first generate a random SUBA
with Σ = {a, b, c}, n ∈ {5, 10, 15}, t ∈ {[1, 5], [2, 10], [18, 22]} (resp.), and f = 2
or f = 3 with equal probability. We then convert it into a UFA using the
algorithm of Bousquet and Löding [6], and minimize the equivalent M2MA.

Representing Languages Using M2MAs 15

https://github.com/nevingeorge/Learning_Automata

Fig. 4: Random SUBAs to minimized M2MAs Fig. 5: Random SUBAs, NBAs, and DBAs to
minimized M2MAs

Fig. 6: Random SUBAs to minimized DFAs

We performed the above process on approximately 220, 000 randomly generated
SUBAs.

Fig. 4 is a plot of the average minimized M2MA dimension for each trimmed
SUBA size from 1 to 10. Upon performing quadratic regression, we obtain the
orange curve 1.212n2− .2248n, and the blue curve is the theoretical upper bound
of 2n2 +n given in Fig. 3. The quadratic fit has a R2 of 0.9996 while a linear fit
has a R2 of 0.9370, suggesting that the growth is indeed quadratic. This curve
satisfies the theoretical upper bound of 2n2 + n, and suggests that the lower
bound of Ω(n2) holds on average.

For random SUBAs to minimized DFAs, we also calculated the number of
reachable states of each minimized M2MA. This is the number of states in the
equivalent minimized DFA, by a property of the minimization algorithm of Corol-
lary 2. From Fig. 3, the lower bound in going from a SUBA to a DFA is 2Ω(n),
and the upper bound is 2n + 2n3n

2

.

In the left graph in Fig. 6, the blue data points representing the results of
the SUBA to DFA experiment grow much more sharply than the results of the
SUBA to M2MA experiment, so it is clear that a SUBA can be represented more
concisely as an M2MA than as a DFA on average. Upon taking the log (base 2),
we obtain a roughly linear fit as seen in the right graph with equation .7196n+
1.738 and a R2 of .9841, suggesting that on average the growth is exponential.
The standard deviation and range of converted DFA sizes was large for this
conversion, making it difficult to make firm claims about the growth. However,
the data suggests that the exponential lower bound likely holds on average, and
that in general the upper bound of 2n + 2n3n

2

is a severe overestimate.

16 D. Angluin et al.

6.2 NBAs and DBAs to minimized M2MAs

For NBAs and DBAs, a minimized M2MA is computed using the M2MA learning
algorithm of Beimel et al. [4], which makes membership and equivalence queries
to the NBA or DBA. Instead of exact equivalence queries, we use approximate
equivalence queries, implemented by testing membership agreement on a sample
of randomly generated ultimately periodic words. Thus, the dimension of the
learned M2MA may be an underestimate of the true minimum dimension of an
M2MA for L$.

For the NBA/DBA to M2MA experiments, we generated approximately 1000
random NBAs/DBAs with Σ = {a, b, c}, n ∈ {5, . . . , 10}, t ∈ [0, n] for DBAs
and t in ranges within [90, 680] for NBAs, and f = 2 or f = 3 with equal
probability. For the approximate equivalence queries, we tested 1000 random
ultimately periodic words of length at most 25. The results of the experiments
can be seen in Fig. 5. The fitted NBA and DBA curves are quadratic with
equations 1.096n2 − .8947n and 1.318n2 − 1.392n, respectively. The quadratic
fits for the NBA and DBA results have a R2 of .9954 and .9961, respectively,
while linear fits have a R2 of .9227 and .9118, respectively. These experiments
have limitations: the use of approximate equivalence queries, the small sample
size (because of the time requirements of the learning algorithm), and the large
standard deviation and range of converted M2MA sizes. However, the results
from all three conversions are very similar, suggesting that in these conditions,
SUBAs, NBAs, and DBAs don’t vary significantly on average with respect to
their equivalent M2MA representations.

6.3 LTL formulas to minimized M2MAs

Random LTL formulas seem not to provide much insight, so we consider spe-
cific families of LTL formulas: bounded request/grant formulas and two families
based on the hierarchy of Manna and Pnueli [15], namely obligation and reac-
tivity formulas. Empirically, for each of the first few members of each family we
calculate the minimum dimension of an M2MA and the minimum size of a DFA
accepting the corresponding L$ language, and use the online tool provided by
the Spot website (https://spot.lrde.epita.fr/) to find an ω-language acceptor for
the corresponding L. (Omitted Spot entries exceeded the limit on calculation
time.)

The canonical request/grant formula is of the form �(p → ♦(q)), which
asserts that whenever a request (p) is made, it is eventually granted (q). In the
bounded version, a number of steps n is specified, and the assertion is that the
request is granted within n steps. Thus, for each natural number n, we have a
formula Rn = �(p → (q ∨ ©(q) ∨ ©2(q) ∨ . . . ∨ ©n(q))). The table in Fig. 7a
gives the resulting sizes and dimensions for n from 0 to 5. It is reasonable to
conjecture n+ 1 for the size of a DBA, n2 + 3n+ 3 for the minimum dimension
of an M2MA, and 2n2 + 3n+ 4 for the minimum size of a DFA representing Rn.

The family of obligation formulas we consider is: Fn = ∧ni=1(�pi∨♦qi). Using
conjunction and minimization, we calculate the minimum dimension M2MA (and
minimum size DFA) for L$ for these formulas for n up to 5. The table in Fig. 7b

Representing Languages Using M2MAs 17

https://spot.lrde.epita.fr/

n DBA M2MA DFA

0 1 3 4

1 2 7 9

2 3 13 18

3 4 21 31

4 5 31 48

5 6 43 69

(a) Rn sizes.

n DBA M2MA DFA

1 3 7 9

2 9 19 23

3 27 55 63

4 81 163 179

5 − 487 519

(b) Fn sizes.

n GNBA M2MA DFA

1 (4,1) 5 6

2 (10, 2) 11 12

3 (28, 3) 29 30

4 − 83 84

5 − 245 246

(c) Gn sizes.

Fig. 7: Size or dimension of acceptors for families of LTL formulas.

shows the results. It is reasonable to conjecture 3n for the size of a DBA, 2 ·3n+1
for the minimum dimension of an M2MA, and 2 · 3n + 2n + 1 for the minimum
size of a DFA to represent Fn.

The family of reactivity formulas we consider is: Gn = ∧ni=1(�♦pi ∨ ♦�qi).
We proceed as for the obligation formulas, with the results shown in the table
in Fig. 7c. Note that these formulas cannot be represented by DBAs, but are
instead represented by GNBAs, which may have multiple sets of final states. For
example, the entry (10, 2) indicates a GNBA with 10 states and 2 sets of final
states. A reasonable conjecture in this case is (3n+ 1, n) for the size of a GNBA,
3n + 2 for the minimum dimension of an M2MA, and 3n + 3 for the minimum
size of a DFA representing Gn.

In these cases, the minimum dimension of an M2MA (and size of a DFA)
appears to grow at most as a polynomial in the size of an ω-language acceptor,
quadratically for the bounded request/grant family, and linearly for the obliga-
tion and reactivity families.

7 Summary and conclusions

We provide a survey of size relations of M2MAs as a representation of regular
languages and regular ω-languages, as well as empirical results for several of
these relations. New theoretical results include an improvement of the lower
bound for transforming an M2MA to an NFA, an upper bound of 2O(n) for the
translation of an LTL formula of size n to a UFA, NFA, or M2MA, a lower bound
of 2Ω(n) for the translation of a DBA of n states to an M2MA or NFA, and an
asymptotically optimal lower bound of 2n2−n+2 for the translation of a SUBA
of n states to an M2MA or NFA.

M2MAs have many advantages as a representation for regular ω-languages:
determinism, succinct complementation, and polynomial time algorithms for
minimization, equivalence testing, and learning with membership and equiva-
lence queries. M2MAs are as succinct as DFAs, sometimes exponentially more
so, and deserve further study.

Acknowledgements We would like to thank the anonymous reviewers for their
insightful feedback. This work was supported in part by ONR Grant N00014-
17-1-2787, by NSF awards CCF-2106845, CCF-2131476, by BSF grant 2016239
and by ISF Grant 2507/21.

18 D. Angluin et al.

References

1. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata
are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL. pp. 8:1–8:17 (2020)

2. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning

functions represented as multiplicity automata. J. ACM 47(3), 506–530 (May 2000)
5. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity

and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (1996)
6. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly un-

ambiguous Büchi automata. In: Language and Automata Theory and Appli-
cations, 4th International Conference, LATA. Proceedings. pp. 118–129 (2010).
https://doi.org/10.1007/978-3-642-13089-2 10

7. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Proceedings of the 9th International Conference on Mathematical
Foundations of Programming Semantics. pp. 554–566. Springer-Verlag (1994)

8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1-
3), 37–81 (2003). https://doi.org/10.1016/S0304-3975(02)00618-7

9. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]. pp. 261–306 (2008)

10. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata, chap.
4: Rational and Recognizable Series, by Jaques Sakarovitch, pp. 105–174. Springer-
Verlag Berlin Heidelberg (2009)

11. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: Protocol Specification, Testing and Verification XV.
PSTV 1995. Springer (1996). https://doi.org/10.1007/978-0-387-34892-6 1

12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer-
Verlag Berlin Heidelberg (1997), (There is also 2013 edition.)

13. Kaznatcheev, A., Panangaden, P.: Weighted automata are compact and actively
learnable. Information Processing Letters 171 (2021), (The authors were appar-
ently unaware of prior results on learning multiplicity automata by Beimel et al.
and others.)

14. Kuperberg, D., Pinault, L., Pous, D.: Coinductive algorithms for Büchi automata.
In: Developments in Language Theory - 23rd International Conference, DLT Pro-
ceedings. pp. 206–220 (2019)

15. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing. p. 377–410. PODC ’90, Association for Computing Machinery (1990).
https://doi.org/10.1145/93385.93442

16. Michel, M.: Complementation is much more difficult with automata on infinite
words. In: Manuscript, CNET (1988)

17. Moser, B.K.: Linear algebra and related introductory topics. In: Linear Models, A
Mean Model Approach, A volume in Probability and Mathematical Statistics. pp.
1–22 (1996)

18. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57 (1977)
19. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, USA

(2009)

Representing Languages Using M2MAs 19

https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1145/93385.93442

20. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency - Structure versus Automata (8th Banff Higher Order Workshop,
Banff, Canada, August 27 - September 3, 1995, Proceedings). pp. 238–266 (1995).
https://doi.org/10.1007/3-540-60915-6 6

21. Wilke, T.: ω-automata. CoRR abs/1609.03062 (2016), http://arxiv.org/abs/
1609.03062

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

20 D. Angluin et al.

https://doi.org/10.1007/3-540-60915-6_6
http://arxiv.org/abs/1609.03062
http://arxiv.org/abs/1609.03062
http://creativecommons.org/licenses/by/4.0/

Limits and difficulties in the design of
under-approximation abstract domains?

Flavio Ascari� , Roberto Bruni , and Roberta Gori

Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, Pisa, Italy,
flavio.ascari@phd.unipi.it, {roberto.bruni,roberta.gori}@unipi.it

Abstract. Static analyses are mostly designed to show the absence of
bugs: if the analysis reports no alarms then the program won’t exhibit any
unwanted behaviours. To this aim they manipulate over-approximations
of program semantics and, inevitably, they often report some false alarms.
Recently, O’Hearn proposed Incorrectness Logic, that is based on under-
approximations, as a formal method to find bugs that only reports true
alarms. In this paper we aim to answer one important question raised
by O’Hearn, namely which role can Abstract Interpretation play for the
development of under-approximate tools for bug catching. In principle,
Abstract Interpretation based static analyses can be defined for comput-
ing over-approximations as well as under-approximations, but in practice,
most techniques exploited the former while few attempts developed the
latter. To show why it is difficult to design effective under-approximation
abstract domains, we first propose the new definitions of non emptying
functions and highly surjective function family and then we formally
prove the limits of under-approximation analysis by showing the non ex-
istence of abstract domains able to approximate such functions in a non
trivial way. Our results outline the limits of under-approximation Ab-
stract Interpretation and clarify, for the first time, why over- and under-
approximation analyzers exhibited such a different development.

Keywords: Abstract Interpretation, Under-approximation, Abstract do-
mains, Impossibility results

1 Introduction

Static program analyses are techniques used to infer properties of programs di-
rectly from their source code, without executing them. They have been studied
and successfully applied for over 50 years [12,3,13,1,10,17,18,22,23,4] to pro-
duce effective methods and tools to support the development of correct soft-
ware. For all these years, the main focus of static analysis was to prove the
absence of bugs by computing over-approximations (supersets of all possible
behaviours) of the semantics of programs: the absence of unwanted behaviour

? Research supported by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Pro-
gram Analyses.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 21–39, 2022.
https://doi.org/10.1007/978-3-030-99253-8_2

http://orcid.org/0000-0003-4624-9752
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-7424-9576
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_2&domain=pdf

in the over-approximation guarantees the correctness of the program. However,
over-approximations cannot be used to expose bugs, since any alert raised by
the analyser may be caused by the over-approximation rather than by the pro-
gram, i.e. it can be a so called false alarm. From the point of view of a software
developer, false alarms are undesirable because they undermine the credibility
and usefulness of the analysis. In principle, there is a symmetrical approach to
static analysis, that is to compute an under-approximation of the semantics, i.e.,
a subset of all possible behaviours of a program. Dually to over-approximations,
under-approximations can then expose defects in the code, while they are unable
to show their absence.

Early works on static analysis, like Hoare logic [13], focused on over-approx-
imation to prove the absence of errors, and maybe their influence directed the
focus toward over-approximations. Recently O’Hearn argued for the relevance
of bug catching with respect to correctness proofs and proposes the Incorrect-
ness Logic [19], a dual version of Hoare logic thought from the ground up for
under-approximation. He also advocates for a similar change of perspective in
the static analyses approach.

For instance, consider the simple code

for(i = 0; i < 5; ++i) sum += 1000 / (2 * i) + 100 / (2 * i - 5);

An abstract analysis based on the domain Int of intervals allows to over-approxi-
mate the set of possible values each variable can take as the smallest interval that
contains such values. When applied the above program, the analysis may detect
that the value of variable i is between 0 and 4 within the body of the loop, so
that the arithmetic expression 2 * i is then over-approximated by the interval
[0, 8] while 2 * i - 5 by the interval [−5, 3]. This raises two warnings for possi-
ble division by zero, since it seems that both arithmetic expression may assume
the value 0. It is worth noting that while the warning on the first expression is a
true alarm, the warning on the second one is a false alarm. On the contrary, an
analysis based on under-approximation will never raise a warning for the second
expression since no value of i can cause an error in this case, However, not all
under-approximations will detect the problem with 2 * i, because any subset
of {0, 2, 4, 6, 8} is a valid under-approximation, including e.g. {2, 4, 6, 8}.

The Problem: Abstract Interpretation [6,22,4] is a general framework to define
sound analyses based on constructive approximations that found its way through
many aspects of modern computer science, such as verification, optimization, se-
curity and program transformation. Given its broad applicability, in his paper
on Incorrectness Logic [19], O’Hearn leaves as an open question whether Ab-
stract Interpretation could “eventually play a guiding and explanatory role for
a wide range of static and dynamic under-approximate tools for bug catching,
similar to what it already does for over-approximate analyses”. The goal of this
work is to investigate this topic. The results we have achieved will establish that
under-approximation based Abstract Interpretation analyses have serious intrin-
sic limitations, and therefore our contribution can be read as a negative answer,
even if we will then discuss how to overcome some limits.

22 F. Ascari, R. Bruni, and R. Gori

Related Work: In their first works on Abstract Interpretation [6], Cousot and
Cousot introduced the formal theory that could be used to define either over-
or under-approximations. However, while the former has been extensively stud-
ied, there have been only sparse studies on the latter. Bourdoncle [2] proposed
abstract debugging using over-approximation domains, but acknowledged that
under-approximation ones could be better suited. Lev-Ami et al. [14] proposed
to use complements of over-approximation domains to infer sufficient precondi-
tion for program correctness. For the same goal, Miné [15] used directly over-
approximation domains, giving up the best abstraction and handling the choice
of a maximal one with heuristics. To infer necessary condition for incorrectness,
a problem similar to O’Hearn’s but studied for a different goal, Cousot et al.
[9,8] use Abstract Interpretation techniques but on boolean formulas, hence by-
passing the issue of defining an abstract domain. Schmidt [24] uses higher-order
domains, defining abstract states with meaning “there exists a value satisfying
this over-approximation property”, hence giving rise to an under-approximation
of over-approximations. In conclusion, all the above approaches design under-
approximation domains starting from over-approximation ones, and, to the ex-
tent of our knowledge, there are no abstract domains thought from the ground
up for under-approximation. So the question whether it is possible to design an
abstract domain for computing under-approximations naturally arises.

Contributions: We believe the absence of under-approximation abstract domains
to be caused by intrinsic difficulties in their design. In this article, we determine
and explain the reasons behind these difficulties. In the following we point out
some intuitive asymmetries that suggest why under-approximations are not as
immediate to use as over-approximations for program analysis.

While over- and under-approximation can be thought as dual theories, they
have a deep asymmetry when dealing with the semantics of basic constructs of
the language, the so called basic transfer functions. For instance, given an over-
approximation abstract domain, we can define an under-approximation domain
by taking the opposite interpretation of abstract elements: the idea is that an
abstract element represents all concrete elements that may not be present in the
set of possible values. As a consequence of being an under-approximation, this
means that all the other concrete elements (the complement of the set) must be
actual values. Considering the abstract domain of (complemented) intervals, it
happens, e.g. that an arithmetic expression such as a sum of variables is often
under-approximated as the whole Z. It is also worth noticing that, while basic
transfer functions are the same, over-approximation abstract domains are closed
under intersection, while under-approximation abstract domains are closed under
union and can grow large very easily.

Another asymmetry we point out is the handling of divergence. Divergence
is represented in over- and under-approximation by the same abstract element
⊥, but note that ⊥ as an under-approximations also represents the absence of
information (dually to > in over-approximations). This becomes a problem since
many concrete functions are strict, that is, when applied to a non-terminating
expression, they also fail to terminate (they return ⊥ if one argument is ⊥), and,

Limits in the design of under-approximation abstract domains 23

to be a correct under-approximation, also the corresponding abstract function
needs to be strict. This implies that whenever the analysis can’t determine any
meaningful information at some program point, it has to propagate this absence
of information along all program paths, at least until a join in the control flow
is found. So “recovery” from ⊥, that is, producing a result different from ⊥,
once we start with it, is very hard in an under-approximation. Note that, on the
contrary, “recovery” from > in an over-approximation is quite easier, e.g. by a
constant assignment.

The previous arguments are substantiated by formal impossibility results for
building meaningful under-approximation abstract domains. First, we introduce
the new definition of non emptying function, describing functions that don’t
tamper the analysis and we prove that no abstract domain for integers can be
constructed that makes all sums non emptying. Second, we propose two general-
izations (one local and one global) of the result for integers domains to arbitrary
concrete domains and function families, by introducing the notion of highly sur-
jective function family, of which sums are an instance. The local condition applies
to each function in the family, while the global condition is a property of the
whole family. Finally, we study hypothesis for the existence of abstract domains
making all functions in a family non emptying to show first that the hypothesis
of high surjectivity is tight, and then that further conditions on the function
family must hold.

Structure of the paper: In Section 2 we introduce the notation used in the rest of
the paper and recall the basics of Abstract Interpretation for over- and under-
approximations. In Section 3 we apply our idea to the concrete domain of integers
to show that, under some simple conditions, no under-approximation abstract
domain can exist. In Section 4 we extend the result obtained for integers to
arbitrary concrete domains and function families. In Section 5 we show that the
hypothesis of high surjectivity is needed and explore other requirements for the
function family. Section 6 contains some concluding remarks and an outline of
future research directions. Due to space limitation, only informal proof sketches
are included in this proceedings.

2 Background

Notation. We let P(S) denote the powerset of the set S and idS : S → S be the
identity function on a set S. We omit subscripts when obvious from the context.
If f : S → T is a function, then we overload the symbol f to denote also its
additive extension f : P(S) → P(T) defined as f(X) = {f(x) |x ∈ X} for any
X ⊆ S. We say a function f : S → S is acyclic if, for any element x ∈ S and
any n > 0, we have fn(x) 6= x, where fn denotes composition of f with itself n
times. In ordered structures, such as posets and lattices, we usually denote the
ordering with �, least upper bounds (lubs) with t, greatest lower bounds (glbs)
with u, least element with ⊥, greatest element with >. If � is an order relation,
� is the opposite relation, defined as s � t if and only if t � s. We write just

24 F. Ascari, R. Bruni, and R. Gori

S for the poset (S,�) whenever the order relation � is known from the context
and we use Sop to denote the opposite poset (S,�): hence Sop denotes the same
set as S, but Sop comes equipped with the opposite ordering relation �. Given
a poset T and two functions f, g : S → T , the notation f � g means that, for
all s ∈ S, f(s) � g(s). Any powerset is a complete lattice with ordering given
by the inclusion relation. In this case, we use standard symbols ⊆, ∪, etc.

Abstract Interpretation. Abstract Interpretation [6,7,16] is a general framework
to define sound-by-construction static analyses, with the main idea of approxi-
mating the program semantics on some abstract domain A instead of working on
the concrete domain C. The main tool used to study Abstract Interpretations
are Galois connections. Given two complete lattices C and A, a pair of monotone
functions α : C → A and γ : A→ C define a Galois connection (GC) when

∀c ∈ C, a ∈ A. α(c) � a ⇐⇒ c � γ(a)

and we denote it with 〈C
γ
�
α
A〉. We call C and A, respectively, the concrete and

the abstract domain, α is the abstraction function and γ is the concretization
function. In any GC, idC � γ ◦ α, α ◦ γ � idA, γ preserves glbs and α preserves
lubs. In particular, this means that γ(>A) = >C and dually α(⊥C) = ⊥A.

A GC in which α ◦ γ = idA is called Galois insertion (GI), and if this is the
case also α is onto and γ is injective. By this last property, there is a bijection
between A and γ(A), and using this isomorphism, whenever we consider a GI
we identify A and its γ-image so that A becomes a subset of C and γ = idA,

written as 〈C �
α
A〉. A GI is said to be trivial if A is the concrete domain or it

only contains >C .

Given a monotone function f : C → C and a GC 〈C
γ
�
α
A〉, a function

f] : A→ A is a correct (or sound) approximation of f if α ◦ f � f] ◦ α. Its best
correct approximation (bca) is fA = α ◦ f ◦ γ, and it is the most precise of all
the correct approximation of f .

As an example, let us consider C = P(Z) be the powerset of integers and
A = Int be the abstract domain of intervals [6]. Elements of Int are finite intervals
[n,m] with n ≤ m, or infinite intervals of the form [−∞,m] or [n,∞], together
with the empty interval ⊥. The top element is [−∞,∞]. Intervals are ordered
by inclusion, the concretisation function γ is defined as usual, while the abstrac-
tion function α maps a set of integers to the smallest interval that contains it.
If f(x) = |x| is the absolute value function, one of its sound abstractions is
f]([n,m]) = [0,max(|n|, |m|)] because the interval [0,max(|n|, |m|)] always con-
tains the entire set f(S) when n = min(S) and m = max(S). However this is
not the best possible abstraction: for instance on S = {1} this yields [0, 1] while
f(S) = {1}. Actually the best correct abstraction fA is computed as

fA([n,m]) = α ◦ f ◦ γ([n,m]) =


[0,max(|n|, |m|)] if n ≤ 0 ≤ m
[n,m] if 0 < n

[−m,−n] if m < 0

Limits in the design of under-approximation abstract domains 25

2.1 Under-approximation Galois Connections

The definition of GC is not symmetric in γ and α: it favours over-approximation,
and is not suited to describe under-approximations. This can be more easily
seen from the property idC � γ ◦ α, that means the abstraction γ(α(c)) of a
concrete element c is greater than (ie. an over-approximation of) c itself. For
this reason we introduce the notion of under-approximation Galois connection
(UGC). Formally, an UGC is just a GC between A and C, in the reverse order, or
equivalently a GC in which we replaced C and A with Cop and Aop. However, we
believe this definition to allow a better notation, helping the reader’s intuition.
Given two complete lattices C and A, a pair of monotone functions α : C → A,
γ : A→ C defines an UGC between C and A when

∀c ∈ C, a ∈ A. a � α(c) ⇐⇒ γ(a) � c

and we denote such UGC with 〈C
α
�
γ
A〉. Note the different positions of arrows

and their super/subscripts when compared with a GC 〈C
γ
�
α
A〉. The difference

C

A

α

γ

(a) Over-approximation GC

C

A

γ

α

(b) Under-approximation GC

Fig. 1: Sketches of GC and UGC

between a GC and an UGC is sketched in Figure 1: in the GC (on the left) γ is
above and α below, while in the UGC (on the right) the two are reversed. Using
the duality observed above, from standard properties of GCs we get, reversing
inequalities, that γ ◦ α � idC , idA � α ◦ γ, γ preserves lubs and α preserves
glbs. Moreover, an under-approximation Galois insertion (UGI) is an UGC in
which α ◦ γ = idA, and has the properties of α being onto and γ being injective,

making the same identification of A with γ(A) possible, written as 〈C
α
� A〉. In

particular, this means that in an UGI on a concrete powerset 〈P(C)
α
� A〉, for

all a, a′ ∈ A, γ(a ∪ a′) = a ∪ a′, that is A is closed under union.
Dually to standard, over-approximation GCs, given a monotone function f :

C → C and an UGC 〈C
α
�
γ
A〉, a function f [: A → A is a correct (or sound)

26 F. Ascari, R. Bruni, and R. Gori

abstraction of f if α ◦ f � f [◦ α. Again, fA = α ◦ f ◦ γ is the best correct
approximation of f .

As an example, let us take again C = P(Z) and A = Int0 be the set of
integer intervals around 0, ie. Int0 = {I ∈ Int | 0 ∈ I} ∪ {⊥}. This is an under-
approximation abstract domain because it contains ⊥ and is closed under union:
the union of intersecting intervals is an interval too, and all elements of Int0
intersects at 0. If again f(x) = |x| is the absolute value function, its bca fA is
fA([n,m]) = [0,max(|n|, |m|)] since it’s always the case that n ≤ 0 ≤ m.

3 Integer Domains

In this section we focus on under-approximations of integer domains and prove
that any under-approximation abstract domain will mostly return trivial analy-
ses for programs that include sums inside arithmetic expressions.

To this aim, we introduce the concept of non emptying function.

Definition 1 (Non emptying function). Let 〈C
α
�
γ
A〉 be an UGC, f : C → C

a monotone function and fA = α◦f◦γ its bca. We say that f is non emptying (in
A) if, for any concrete value c, α(c) 6= ⊥ and α(f(c)) 6= ⊥ imply fA(α(c)) 6= ⊥.

Remember that ⊥ does not give any interesting information in the under-ap-
proximation setting, because it can mean divergence as well as complete loss of
precision. On the contrary, any abstract element different than ⊥ means “some-
thing” interesting. The rationale behind the definition of non emptying function
is that if the analysis starts from something (α(c) 6= ⊥) and it can find something
(α(f(c)) 6= ⊥) then it will find at least one of the possible results (fA(α(c)) 6= ⊥),
thus not falling to ⊥ and avoiding the issues discussed in the Introduction. The
meaning of Definition 1 is illustrated by the following toy example.

Example 2. Consider the simple imperative fragment

if (x 6= 0) then { while (x < 10) { y := 7 / x; x := x + 1; } }

where a careless programmer used the condition x 6= 0 instead of the expected
x > 0: on any initial state where x is negative the program incurs a division by
0 error.

For the analysis, suppose x is an integer value and consider the domain
Int01 = {I ∈ Int | 0 ∈ I ∨ 1 ∈ I} ∪ {⊥}, a variation of Int0 such that each interval
in Int01 must contain at least one of 0 and 1. By an argument similar to that
for Int0 it can be shown that Int01 is closed under union (since 0 and 1 are
consecutive values in the integer domain), and thus is an under-approximation
domain.

Assume to start the analysis in this domain with the initial condition [−1; 10]
for variable x: remember that this being an under-approximation analysis, the
abstract state [−1; 10] means that x may assume all the values in that interval
at the beginning of the code fragment. In the concrete execution, the filter x 6= 0
then produces the concrete set of values c = {−1, 1, 2, . . . , 10}, but the abstract

Limits in the design of under-approximation abstract domains 27

interpreter must abstract this to its largest subset that is an interval containing
0 or 1, that is [1; 10]. The abstract analysis of the cycle then proceeds straightfor-
wardly, finding ⊥ after one iteration of the loop body (since after the increment
the set of values for x is {2, 3, . . . , 11} that is abstracted to ⊥ because it doesn’t
contain neither 0 nor 1) and so the abstract fixpoint of the loop [1; 10]. This yields
no error, even though the concrete execution starting at x = −1 does indeed fail
after one iteration. The issue here is that the semantics f of the increment x :=
x+ 1 is not non emptying in Int01: on the concrete value c = {−1, 1, 2, . . . , 10},
its input in this program, we have α(f(c)) = α({0, 2, 3, . . . , 11}) = [0] 6= ⊥ but
fA(α(c)) = fA([1; 10]) = α(f(γ([1; 10]))) = α({2, 3, . . . , 11}) = ⊥.

For the remainder of the paper we assume a set of concrete values C, an UGI

〈P(C)
α
� A〉 with concrete domain P(C), and we say an element S ∈ P(C) is

representable if it belongs to A, or equivalently if α(S) = S.

Definition 3. Let S ⊆ C be a subset of C. We say that d ∈ C is representable
with S if S ∪ {d} is representable. We call R(S) the set of elements of C repre-
sentable with S, ie.

R(S) = {d ∈ C |α({d} ∪ S) = {d} ∪ S}

For the sake of brevity, we shall write R for R(∅), the set of representable values
of C, and R(c) for R({c}) where c ∈ C is any concrete value. The following
is a technical lemma valid for non emptying functions, that explains the role
played by Definition 1 in proving all our negative results (Propositions 7, 10 and
Theorems 12, 15).

Lemma 4. Let f : C → C be non emptying, c ∈ R and the pair {c, c̄} be not
representable, ie. c̄ /∈ R(c). If f(c̄) ∈ R then also f(c) ∈ R.

The main proof line of all our impossibility results is the same, and exploit this
Lemma. All our results requires the size of the abstract domain to be compa-
rable with that of the set of concrete values C (whose powerset P(C) is the
concrete domain), and this in turn implies that representable elements are few.
Then, assuming that all functions in a certain family are non emptying, we use
repeatedly Lemma 4 to get many new representable elements, thus finding a
contradiction. The key issues in the proofs are two: first, it must be possible to
apply Lemma 4; second, all the new representable elements obtained applying
it must be different from one another. In the following, we present some sets of
conditions that are able to guarantee these two points, hence getting hypothesis
for non existence of under-approximation abstract domain.

3.1 Infinite Integer Domain

As a first example, we consider the infinite domain P(Z) of integers.

Assumption 5 We assume that an abstract domain A, to be feasible for anal-
yses, must be at most countable.

28 F. Ascari, R. Bruni, and R. Gori

We make this assumption because we want to represent abstract elements with
an amount of bits comparable with that of concrete values, to have a complexity
comparable with a single concrete execution of the program and not exponen-
tially larger. Thus, we require the size of the abstract domain to be that of Z,
the set of values handled by the program, and not the concrete domain P(Z).
Many abstract domains satisfy it, for instance intervals, octagons and polyhe-
drons with at most n edges, for any n; some, such as general polyhedrons, don’t,
but they also exhibit a worst case exponential cost.

Based on Assumption 5, we prove a simple cardinality estimate that is used,
as anticipated before, to prove that there are few representable elements.

Lemma 6. For any fixed subset S ⊆ Z, R(S) is finite.

The result for integers now shows that no under-approximation abstract domain
makes all sums non emptying. The idea of the proof is to define an infinite
sequence of representable elements, that is in contradiction with the previous
lemma that says that R is finite. In order to define such a sequence, we want
to use Lemma 4: we start from an initial representable n0 and from a value n̄
not representable with it, then find a non-emptying f that maps n̄ into n0, so
that f(n̄) is representable and we can then apply the lemma to get the new
representable element f(n0). We then iterate this procedure, changing f , to
build the infinite sequence. We believe the hypothesis that there exists an initial
representable value is not very restrictive since initializations like x = 0 must
be abstracted to ⊥ if 0 is not representable.

Proposition 7. Let 〈P(Z)
α
� A〉 be an UGI, and assume that there is an integer

n0 that is representable. Then it can’t be the case that all the functions of the
form fn(x) = x+ n are non emptying in A.

The meaning of this proposition for program analysis is the fact that a domain
small enough (by Assumption 5) is probably unable to deduce meaningful in-
formations on an integer domain: if it doesn’t contain representable singletons
it must abstract to ⊥ any variable initialization, and otherwise it can’t be non
emptying for all sums, hence getting ⊥ when values are manipulated using this
operation. In both cases, because of strictness, the abstract ⊥ is propagated
along program paths, yielding it as the final result of the analysis, that means
exactly it can’t determine any information. This issue is not bound to manifest
for all programs, but for any domain there exists programs for which it does.

3.2 Finite Integer Domain

An analogous result can be obtained for a finite integer domain P([−N ;N]),
where N is some big integer. This concrete domain models machine integers, that
are constrained within an interval, so we assume that operations are performed
in machine arithmetic, that is wrapping around in case of overflows. This is
modelled working modulo 2N + 1, the length of the interval, and taking the
unique representative of each congruence class in the interval [−N,N] of interest.

Limits in the design of under-approximation abstract domains 29

It is worth noting that the interval is taken symmetric around 0 to simplify
notation, but there is no conceptual difficulty in using an asymmetric one.

Assumption 8 We assume that an abstract domain A, to be feasible, must have
a cardinality that is polynomial in N .

This assumption guarantees that the number of bits required to represent an
abstract element is linear in that for concrete elements so that, again, the cost of
the analysis is polynomial and not exponential in that of a concrete execution.

In the following we’ll use asymptotic notation for some quantities. For this
to be completely formal we should define a sequence of abstract domain AN ,
each one for the concrete domain P([−N,N]), then define a sequence of values
for each quantity we want to estimate, and take the limit of this sequence for
N going to infinity. However we do believe all these formal details would clutter
notation, making hard to get insight. For this reason, we avoid all this, just
(ab)using the intuitive meaning associated with the notation.

The next lemma is analogous to Lemma 6 in proving that some sets are small
under Assumption 8 on the cardinality of A.

Lemma 9. For any fixed subset S ⊆ Z, |R(S)| = O(log(N)).

The following proposition uses the same proof line as Proposition 7 above: we
define a sequence of representable elements, and prove that they are too many
since, by the previous lemma, R is quite small.

Proposition 10. Let 〈P([−N,N])
α
� A〉 be an under-approximation Galois in-

sertion, and assume that there is an integer n0 that is representable. Then it can’t
be the case that all the functions of the form fn(x) = x+n (modulo 2N + 1) are
non emptying in A.

4 Arbitrary domains

The definition of non emptying function is fully general and not limited to the
concrete integer domain, hence we use it to propose conditions that are indepen-
dent of the concrete domain. In this section, we deal with an infinite set C of

concrete values, and an UGI 〈P(C)
α
� A〉. Again, we take the Assumption 5 on

the size of A. Under this assumption we can prove again Lemma 6, that doesn’t
depend on the specific integer domain considered in the previous section.

All conditions we propose in this section are mainly on the family of functions
considered and not on the abstract domain. The reason for this is that first we
fix a function family, corresponding to a program, and then we look for a domain
well suited to analyse the specific family at hand. In other words, the family is
given by the applicative context, while the domain can be adapted to it.

Definition 11 (Highly surjective function family). Given a family F of
functions from C to itself and an element c ∈ C, let

P (c) = {d ∈ C | ∃f ∈ F. f(d) = c}

30 F. Ascari, R. Bruni, and R. Gori

be the set of preimages of c, elements of C that can be mapped to c by a function
in F . We say that the family F is highly surjective if P (c) is infinite for any
possible choice of c ∈ C.

This property is needed together with Lemma 6 to apply Lemma 4 and get a new
representable element: since there are infinite preimages of c but R(c) is finite,
there are elements c̄ ∈ P (c) not in R(c); then by definition of P (c) there is an f
such that f(c̄) = c ∈ R, so we can apply the lemma to get f(c) ∈ R. The reason
for requiring f(c̄) = c instead of just in R is that, at the beginning of the proof, we
only assume R to contain one element, hence the two conditions are equivalent.
Starting from this basic idea, we present two set of sufficient conditions to prove
the non existence of any under-approximation abstract domain.

4.1 Local Requirements for Impossibility

The first set of conditions we propose is in a sense more “local”, in that it requires
conditions on each function in the family F independently on the other.

Theorem 12. Let F be an highly surjective function family from C to itself
such that all functions f ∈ F are either injective or acyclic. Assume also that R
isn’t empty. Then A can’t be non emptying for all f ∈ F .

In the previous section we developed an ad hoc proof for the family of sums
over integers, but the same result can also be obtained as an application of this
theorem: if C = Z and F = {λx.x + n |n ∈ Z}, the family is highly surjective
(actually P (c) = Z for all c) and all these functions are injective, so it meets the
hypothesis of the theorem. Another example are rational or real numbers, with
sums or products

Example 13. Take C = Q \ {0} and F = {λx.x · q | q ∈ Q \ {0}}. The family
is highly surjective since P (c) = Q \ {0} for all c, and all these functions are
invertible, hence injective.

A possibly more interesting example of application is to floating-point numbers
as described by the IEEE Standard.

Example 14. Take C = F \ {0} the set of non-zero floating-point numbers that
can be represented with a fixed number of significant digits, say t bits, but
with an arbitrary precision exponent. We make the choice of infinite precision
exponents and finite number of significant digits in order to have an infinite
domain, as required by the theorem, but also preserve characteristics of floating-
point arithmetic.

Let · and � denote respectively real product and its floating-point approxi-
mation, and consider the function family F = {λx.x � y | y ∈ C}. The function
family is highly surjective, eg. considering that all numbers with the same signifi-
cant digits as a floating-point x but different exponent can be mapped into x mul-
tiplying them by 1 times the difference of exponents. For the second condition,
if y = ±1 we have that the function λx.x� y is invertible, hence injective. Oth-
erwise, assume without loss of generality that y > 1 (other cases are analogous),

Limits in the design of under-approximation abstract domains 31

and by contradiction assume it has a cycle fn(x0) = x0. By monotonicity of � we
have f(x) = x� y ≥ x� 1 = x, hence x0 ≤ f(x0) ≤ f2(x0) ≤ · · · ≤ fn(x0) = x0
so all the elements of the cycle are equal, in particular f(x0) = x0. However,
if y 6= 1, the product x � y is never equal to x, that is a contradiction. Hence
the function is acyclic. This means F meets hypothesis of Theorem 12, hence no
abstract domain on floating-point numbers can be non emptying for all multi-
plications.

4.2 Global Requirements for Impossibility

The second set of conditions we propose is “global”, in the sense that it requires
the family F to satisfy a property as a whole.

Theorem 15. Let F be an highly surjective function family from C in itself
such that

– for all pair of elements c, d ∈ C there exists at most a finite amount of f ∈ F
such that f(d) = c

– for all pair of an element c ∈ C and a function f ∈ F , there exists at most
a finite amount of elements d ∈ C such that f(d) = c

Assume also that R isn’t empty. Then A can’t be non emptying for all f ∈ F .

Again this result can be used to prove the impossibility of building an ab-
stract domain for integers that is non emptying for all sums, or for floating-point
numbers.

Example 16. Take C = F \ {0} the set of non-zero floating-point numbers with
t bits significands and arbitrary precision exponents, and F = {λx.x � y | y ∈
F \ {0}}. As observed in Example 14 this family is highly surjective. Fixed
now two floating-point numbers x, y, and letting u be the machine precision of
floating-point arithmetic, we have that y = f(x) = x� z only if∣∣∣∣y − (x · z)

x · z

∣∣∣∣ < u

that is ∣∣∣y
x

∣∣∣ 1

1 + u
< |z| <

∣∣∣y
x

∣∣∣ 1

1− u

This is a bounded interval since x 6= 0, and hence contains only a finite amount
of floating-point numbers. Analogously, fixed a floating-point y and a function
f(x) = x�z, we have that y = x�z only if |x| belong to a bounded interval, that
contains a finite amount of floating-point numbers. So, by means of Theorem 15
above, we proved again that no abstract domain on floating-point numbers can
be non emptying for all multiplications.

32 F. Ascari, R. Bruni, and R. Gori

5 On the necessity of high surjectivity hypothesis

Both sets of conditions we proposed in this section require the function family
to be highly surjective. This turns out to be necessary in order to prove that no
under-approximation abstract domain exists:

Proposition 17. For any fixed family F of functions from C to itself that is
not highly surjective, there exists an abstract domain AF for P(C) such that

– AF is finite
– all functions f ∈ F are non emptying in AF

Moreover, the proof of this proposition is constructive, and we present an exam-
ple of such construction in the following.

Example 18. Fix the pair of functions f(x) = x − 1 and g(x) = x − 2 on Z.
The family F = {f, g} is clearly not highly surjective, so we build an under-
approximation abstract domain for which these functions are non emptying.
First, take an integer n0 such that P (n0) (computed with respect to F) is finite.
With this F , any integer is fine, so let us fix n0 = 0.

The set of preimages of 0 is P (0) = {1, 2}. We define the abstract domain
AF as

AF = {∅} ∪ {X ∪ {0} |X ⊆ P (0)} = {∅, {0}, {0, 1}, {0, 2}, {0, 1, 2}}

In this abstract domain, a set is abstracted to ∅ if and only if it doesn’t contain
0 since all elements of AF but ∅ contains 0 and the abstraction of a set must be
a subset of that set.

To check that f is non emptying in AF fix a set S ⊆ Z. If α(S) = ∅ the
non emptying condition is vacuously true, so assume this is not the case, that is
equivalent to 0 ∈ S. Analogously, if α(f(S)) = ∅ the condition is true, so assume
0 ∈ f(S) or, equivalently, 1 ∈ S. Using these two we get

fA(α(S)) = α(f(α(S))) [def. of fA]

⊇ α(f(α({0, 1}))) [α, f monotone, S ⊇ {0, 1}]
= α(f({0, 1})) [α({0, 1}) = {0, 1}]
= α({−1, 0}) = {0} [def. of f and α]

The check for g is analogous.

Even though this proposition defines an under-approximation abstract domain,
it shouldn’t be interpreted as a positive result since the resulting domain is
almost a power set and hence too large to be feasible in practice. Instead, the
proposition should be regarded as a way to show that one of the hypothesis
required in the previous theorems is tight and can’t be weakened. In particular,
since these kind of results need high surjectivity, they are ill suited when the
focus is on a single function.

Limits in the design of under-approximation abstract domains 33

This proposition can be generalized to consider sets S ⊆ C whose preimages
are finite, but a little care is needed when lifting the definition of preimages to
sets of values: a preimage is a set for which there exists a function that maps it
to S, not the union of the preimages of elements in S:

P (S) = {T ⊆ C | ∃f ∈ F.f(T) = S}

Using this definition, the proposition generalizes straightforwardly:

Proposition 19. Let F be a family of functions from C in itself, and assume
there is a set S0 ⊆ C such that P (S0) is finite. Then there exists a finite abstract
domain AF for P(C) such that all functions f ∈ F are non emptying in AF .

This proposition may for instance be applied to the concrete domain of finite
lists to show that a natural function family to consider can’t be used to prove
non existence of under-approximation domains using non emptying functions.

Example 20. Fix the concrete domain C as the set of all lists of finite length
over a finite, non-empty alphabet Γ , i.e. C = Γ ∗. For α ∈ Γ ∗ a finite string, let

concatα(β) = αβ

the function that prefix α to its argument. The family

F = {concatα |α ∈ Γ ∗}

is not highly surjective, because fixed a string γ only its prefixes can be mapped
into it by a function in F , and they are a finite amount. Hence we can define
an under-approximation abstract domain for which all these functions are non
emptying by means of Proposition 19. Such domains are defined with a con-
struction similar to that of Example 18, and in particular, if ε is the empty list,
considering the set S0 = {ε} whose preimage is only S0 itself, the construction
yields

AF = {∅, {ε}}
It’s easy to check that all functions concatα are non emptying in this abstract
domain.

The previous proposition focuses on preimages, stating that if there is a con-
crete element that has a finite amount of them then it is possible to define an
under-approximation domain. A natural dual of this proposition can be formu-
lated in terms of images. For a subset S ⊆ C, the set of its images is

I(S) = {f(S) | f ∈ F}

This definition is exactly dual to that of preimages, and can actually be used to
formulate a similar result.

Proposition 21. Let F be a family of total functions (ie. if S 6= ∅ then f(S) 6=
∅) from P(C) in itself, and assume there is a non empty set S0 ⊆ C such
that I(S0) is finite. Then there exists a finite abstract domain AF such that all
functions f ∈ F are non emptying in AF .

34 F. Ascari, R. Bruni, and R. Gori

Even though this proposition introduces the technical hypothesis that all f ∈ F
are total, we don’t believe this to be very restrictive because these theorems
are intended to be applied when F is a family of basic transfer functions, that
seldom introduce divergence: in programming languages this is often caused by
control-flow constructs. An application of this proposition is again on lists, to
rule out another natural function family.

Example 22. Fix again C = Γ ∗, and consider functions dropn : Γ ∗ → Γ ∗ that,
taken a list, drop its first n elements and return the resulting list. If the input
list is shorter than n, the output of dropn is the empty list ε. The function family

F = {dropn |n ∈ N}

is highly surjective since, for any fixed list α ∈ Γ ∗ and any n, we can extend
α with any n character, and map this list to α with dropn. However, images
through this function family are finite:

I(α) = {dropn(α) |n ∈ N}

that is finite since it’s the set of all tails of α. Hence by Proposition 21 we can
define an under-approximation abstract domain such that all functions dropn
are non emptying. Again, these domains are constructed from sets S0 with a
finite amount of images, and considering S0 = {ε}, that satisfies I(S0) = {ε}, it
yields

AF = {∅, {ε}}
Again it can be easily checked that all functions dropn are non emptying in AF .

These two propositions consider opposite situations in which it is possible
to define an under-approximation domain: the former requires to be able to go
backward using F in infinitely many ways, while the latter to go forward. This
often isn’t the case in the presence of “boundaries” in the concrete domain, that
are points with respect to which functions tend to walk either up or away: for
instance, ε is such a point with finite strings because concat functions go away
from it while drop go towards. Another example of such boundary is 0 in the
domain of integers Z with respect to multiplications and (rounded) divisions:
the former increase absolute value, moving away from 0 (even though 0 itself
is never a preimage), while the latter decrease it. Also considering a function
family made of both kind of functions doesn’t work: a slight adaptation of the
constructions for the two propositions above shows that, if F can be partitioned
in two subfamilies, each satisfying the hypothesis of one of the two propositions,
then there exists an under-approximation abstract domain. An example of this
is in the set of finite lists, taking as F both concat and drop functions. The
construction then yields exactly AF = {∅, {ε}}, for which all these functions are
non emptying, as shown in Examples 20 and 22. In light of these observations, in
order to apply effectively the definition of non emptying function to prove non
existence of abstract domains, for all possible boundaries there is the need for a
function that is able to both enter and exit it. This happens for integers, since
there is no boundary, but doesn’t for finite lists, with {ε} being often either a
sink or a source for many functions on lists.

Limits in the design of under-approximation abstract domains 35

6 Conclusions and Future Works

Until recently, the focus of formal static analyses has been on over-approximation
to prove program correctness, but many tools based on this theory are instead
deployed to catch bugs [23,10]. Incorrectness Logic promoted the study of a
theory for under-approximation to give a formal basis to a new class of tools.
This has seldom been done in the last few decades, especially in the framework
of Abstract Interpretation. In our work, we point out some asymmetries between
over- and under-approximation in Abstract Interpretation, and why those are
an obstacle to the design of abstract domains. We have identified functions as
the main difference, because they remain the same in both over- and under-
approximation thus preventing one theory to be obtained simply as a dual of
the other. Handling of divergence is another critical issue. Building on those
ideas, we have proposed the new (to the extent of our knowledge) definition of
non emptying function and studied how it can be used to prove non existence of
under-approximation abstract domains. We have presented some general results,
and applied them to integer and floating point domains to conclude that, under
some assumptions, there are no useful under-approximation domains. Then, we
have found conditions under which there do exist under-approximation abstract
domains, showing that some of the hypothesis required in our theorems are very
tight. However, because of the scarcity of works in this direction, we believe there
are many possible subjects for future research.

Under-approximation abstract domains must be closed under union, but
known abstract domains are rarely such. However disjunctive completion [11], a
known domain transformer, refines any abstract domain in a union-closed one.
This has been studied for over-approximation in order to improve precision at
the expense of increased complexity. A solution to keep the analysis feasible is
to use heuristics to prune disjunctions, trading back complexity for precision,
but making the analysis possible for under-approximations. Moreover, practical
tools based on the theory of Incorrectness Logic already use heuristic to drop
logical disjunctions [19], so taking inspiration from them may be effective also
for Abstract Interpretation.

In their recent work, Raad et al. [20] study incorrectness separation logic, the
join of separation logic [21] and Incorrectness Logic. They notice that the origi-
nal separation logic doesn’t distinguish a pointer known to be dangling from one
about which it has no information, and they introduce a new kind of heap asser-
tion for dangling pointers. This issue is reminiscent of the difference between di-
vergence and no information we incur into in Abstract Interpretation. This may
suggest the introduction of a similar distinction also in under-approximation
domains, but a new point different from ⊥ describing divergence needs a con-
cretization, and no such element exists in a power set other than ∅. However, in
Abstract Interpretation it happens at times that more general concrete domains
allow more flexibility in the abstraction (eg. as proposed for higher-order func-
tional languages [5]), so it may be worth to investigate the possibility to change
the concrete domain to account for this new point.

36 F. Ascari, R. Bruni, and R. Gori

All our results depend on the existence of a representable value. This assump-
tion is motivated by the analysis performed, but is not a requirement of Abstract
Interpretation itself. A way to remove this hypothesis may be to consider repre-
sentable sets of minimal cardinality because functions defined as additive exten-
sions don’t increase cardinality, so they might take the place of singletons. The
technical issue is if and how Lemma 4 can be generalized, but we believe it may
be possible to relax that hypothesis about singletons.

We have discussed the finite domain of integers at the end of Section 3, but
all our general results deal with infinite concrete domains. Both theorems rely on
cardinality estimates essentially based on the fact that arbitrary combinations
of finite numbers is still finite, hence less than the cardinality of the concrete
domain. However, with a finite concrete domain those would be replaced by
combinations of logarithmic factors, which may become equal to the size of
the concrete domain. For finite domains we can prove a result reminiscent of
Theorem 15, but this topic requires thorough investigation to understand the
new issues and possibilities they open up.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments.

References

1. Boulanger, J.L. (ed.): Static Analysis of Software: The Abstract Interpretation.
Wiley (2011)

2. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. SIG-
PLAN Not. 28(6), 46–55 (Jun 1993). https://doi.org/10.1145/173262.155095

3. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proc. NFM’15. LNCS, vol. 9058, pp. 3–11. Springer
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

4. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
5. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application

to comportment analysis generalizing strictness, termination, projection and
per analysis of functional languages). In: Proceedings of 1994 IEEE Inter-
national Conference on Computer Languages (ICCL’94). pp. 95–112 (1994).
https://doi.org/10.1109/ICCL.1994.288389

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. p. 269–282. POPL ’79, Association for Computing Machin-
ery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

Limits in the design of under-approximation abstract domains 37

https://doi.org/10.1145/173262.155095
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778

8. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Veri-
fication, Model Checking, and Abstract Interpretation, 14th International Con-
ference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings. Lec-
ture Notes in Computer Science, vol. 7737, pp. 128–148. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9 10

9. Cousot, P., Cousot, R., Logozzo, F.: Precondition inference from intermittent as-
sertions and application to contracts on collections. In: Jhala, R., Schmidt, D.A.
(eds.) Verification, Model Checking, and Abstract Interpretation - 12th Interna-
tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6538, pp. 150–168. Springer (2011).
https://doi.org/10.1007/978-3-642-18275-4 12

10. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling
static analyses at Facebook. Commun. ACM 62(8), 62–70 (2019).
https://doi.org/10.1145/3338112

11. Filé, G., Ranzato, F.: Improving abstract interpretations by systematic lifting to
the powerset. In: Proceedings of the 1994 International Symposium on Logic Pro-
gramming. p. 655–669. ILPS ’94, MIT Press, Cambridge, MA, USA (1994)

12. Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on Ap-
plied Mathematics 19, 19–32 (1967)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

14. Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring
quantified preconditions. Tr-2007-12-01, Tel Aviv University (2007)

15. Miné, A.: Backward under-approximations in numeric abstract domains to auto-
matically infer sufficient program conditions. Sci. Comput. Program. 93, 154–182
(Nov 2014). https://doi.org/10.1016/j.scico.2013.09.014

16. Miné, A.: Tutorial on static inference of numeric invariants by abstract in-
terpretation. Found. Trends Program. Lang. 4(3–4), 120–372 (Dec 2017).
https://doi.org/10.1561/2500000034

17. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer
(2010). https://doi.org/10.1007/978-3-662-03811-6

18. O’Hearn, P.W.: Continuous reasoning: Scaling the impact of formal methods. In:
Proc. LICS’18. p. 13–25. ACM (2018). https://doi.org/10.1145/3209108.3209109

19. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (Dec
2019). https://doi.org/10.1145/3371078

20. Raad, A., Berdine, J., Dang, H.H., Dreyer, D., O’Hearn, P.W., Villard, J.: Local
reasoning about the presence of bugs: Incorrectness separation logic. In: Lahiri,
S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12225, pp. 225–252. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 14

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings. pp. 55–74. IEEE Computer Society
(2002). https://doi.org/10.1109/LICS.2002.1029817

22. Rival, X., Yi, K.: Introduction to Static Analysis – An Abstract Interpretation
Perspective. MIT Press (2020)

23. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at Google. Commun. ACM 61(4), 58–66 (Mar
2018). https://doi.org/10.1145/3188720

38 F. Ascari, R. Bruni, and R. Gori

https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-18275-4_12
https://doi.org/10.1145/3338112
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.scico.2013.09.014
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3188720

24. Schmidt, D.A.: A calculus of logical relations for over- and underap-
proximating static analyses. Sci. Comput. Program. 64(1), 29–53 (2007).
https://doi.org/10.1016/j.scico.2006.03.008

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Limits in the design of under-approximation abstract domains 39

https://doi.org/10.1016/j.scico.2006.03.008
http://creativecommons.org/licenses/by/4.0/

On probability-raising causality
in Markov decision processes ?

Christel Baier � , Florian Funke , Jakob Piribauer � , and Robin Ziemek �

Technische Universität Dresden
{christel.baier, florian.funke,

jakob.piribauer,robin.ziemek}@tu-dresden.de

Abstract. The purpose of this paper is to introduce a notion of causality in
Markov decision processes based on the probability-raising principle and to ana-
lyze its algorithmic properties. The latter includes algorithms for checking cause-
effect relationships and the existence of probability-raising causes for given effect
scenarios. Inspired by concepts of statistical analysis, we study quality measures
(recall, coverage ratio and f-score) for causes and develop algorithms for their
computation. Finally, the computational complexity for finding optimal causes
with respect to these measures is analyzed.

1 Introduction

As modern software systems control more and more aspects of our everyday lives, they
grow increasingly complex. Even small changes to a system might cause undesired
or even disastrous behavior. Therefore, the goal of modern computer science does not
only lie in the development of powerful and versatile systems, but also in providing
comprehensive techniques to understand these systems. In the area of formal verifi-
cation, counterexamples, invariants and related certificates are often used to provide
a verifiable justification that a system does or does not behave according to a specifi-
cation (see e.g., [30,16,32]). These, however, provide only elementary insights on the
system behavior. Thus, there is a growing demand for a deeper understanding on why
a system satisfies or violates a specification and how different components influence
the performance. The analysis of causal relations between events occurring during the
execution of a system can lead to such understanding. The majority of prior work in
this direction relies on causality notions based on Lewis’ counterfactual principle [29]
stating the effect would not have occurred if the cause would not have happened. A
prominent formalization of the counterfactual principle is given by Halpern and Pearl
[21] via structural equation models. This inspired formal definitions of causality and
related notions of blameworthiness and responsibility in Kripke and game structures
(see, e.g., [15,11,14,40,19,41,7]).

In this work, we approach the concept of causality in a probabilistic setting, where
we focus on the widely accepted probability-raising principle which has its roots in
? This work was funded by DFG grant 389792660 as part of TRR 248, the Cluster of Excellence

EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), DFG-
projects BA-1679/11-1 and BA-1679/12-1,and the RTG QuantLA (GRK 1763).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 40–60, 2022.
https://doi.org/10.1007/978-3-030-99253-8_3

http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-7301-1550
http://orcid.org/0000-0003-4829-0476
http://orcid.org/0000-0002-8490-1433
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_3&domain=pdf

Table 1. Complexity results for MDPs and Markov chains (MC) with fixed effect set

for fixed set Cause find optimal cause
compute quality valuescheck PR

condition
covratio-optimal
= recall-optimal(recall, covratio, f-score) f-score-optimal

SPR ∈ P poly-time poly-time
poly-space

poly-time for MC
threshold problem ∈ NP∩ coNP

GPR ∈ PSPACE
and ∈ P for MC

poly-time
poly-space

threshold problems ∈ PSPACE and NP-hard
and NP-complete for MC

philosophy [38,39,18,22] and has been refined by Pearl [35] for causal and probabilis-
tic reasoning in intelligent systems. The different notions of probability-raising cause-
effect relations discussed in the literature share the following two main principles:

(C1) Causes raise the probabilities for their effects, informally expressed by the re-
quirement “Pr(effect |cause)> Pr(effect)”.

(C2) Causes must happen before their effects.

Despite the huge amount of work on probabilistic causation in other disciplines, re-
search on probability-raising causes in the context of formal methods is comparably
rare and has concentrated on Markov chains (see, e.g., [24,25,6] and the discussion of
related work in Section 3.2). To the best of our knowledge, probabilistic causation for
probabilistic operational models with nondeterminism has not been studied before.

We formalize the principles (C1) and (C2) for Markov decision processes (MDPs),
a standard operational model combining probabilistic and non-deterministic behavior,
and concentrate on reachability properties where both cause and effect are given as sets
of states. Condition (C1) can be interpreted in two natural ways in this setting: On one
hand, the probability-raising property can be locally required for each element of the
cause. Such causes are called strict probability-raising (SPR) causes in our framework.
This interpretation is especially suited when the task is to identify system states that
have to be avoided for lowering the effect probability. On the other hand, one might want
to treat the cause set globally as a unit in (C1) leading to the notion of global probability-
raising (GPR) cause. Considering the cause set as a whole is better suited when further
constraints are imposed on the candidates for cause set. This might apply, e.g., when the
set of non-terminal states of the given MDP is partitioned into sets of states Si under the
control of an agent i, 1 6 i 6 k. For the task to identify which agent’s decisions cause
the effect only the subsets of S1, . . . ,Sk are candidates for causes. Furthermore, global
causes are more appropriate when causes are used for monitoring purposes under partial
observability constraints as then the cause candidates are sets of indistinguishable states.

Different causes for an effect according to our definition can differ substantially
regarding how well they predict the effect and how well the executions exhibiting the
cause cover the executions showing the effect. Taking inspiration from measures used
in statistical analysis (see, e.g., [36]), we introduce quality measures that allow us to
compare causes and to look for optimal causes: The recall captures the probability that
the effect is indeed preceded by the cause. The coverage-ratio quantifies the fraction of

On probability-raising causality in Markov decision processes 41

the probability that cause and effect are observed and the probability that the effect but
not the cause is observed. Finally, the f-score, a widely used quality measure for binary
classifiers, is the harmonic mean of recall and precision, i.e., the probability that the
cause is followed by the effect.
Contributions. The goal of this work are the mathematical and algorithmic founda-
tions of probabilistic causation in MDPs based on (C1) and (C2). We introduce strict
and global probability-raising causes in MDPs (Section 3). Algorithms are provided to
check whether given cause and effect sets satisfy (one of) the probability-raising con-
ditions (Section 4.1 and 4.2) and to check the existence of causes for a given effect
(Section 4.1). In order to evaluate the coverage properties of a cause, we subsequently
introduce the above-mentioned quality measures (Section 5.1). We give algorithms for
computing these values for given cause-effect relations (Section 5.2) and characterize
the computational complexity of finding optimal causes with respect to the different
measures (Section 5.3). Table 1 summarizes our complexity results. An extended ver-
sion of this paper containing the omitted proofs can be found in [8].

2 Preliminaries

Throughout the paper, we will assume some familiarity with basic concepts of Markov
decision processes. Here, we only present a brief summary of the notations used in the
paper. For more details, we refer to [37,9,23].

A Markov decision process (MDP) is a tuple M= (S,Act,P, init) where S is a finite
set of states, Act a finite set of actions, init∈ S the initial state and P : S×Act×S→ [0,1]
the transition probability function such that

∑
t∈SP(s,α,t) ∈ {0,1} for all states s ∈ S

and actions α ∈ Act. An action α is enabled in state s ∈ S if
∑
t∈SP(s,α,t) = 1. We

define Act(s) = {α | α is enabled in s}. A state t is terminal if Act(t) = ∅. A Markov
chain (MC) is a special case of an MDP where Act is a singleton (we then write P(s,u)
rather than P(s,α,u)). A path in an MDP M is a (finite or infinite) alternating sequence
π = s0α0 s1α1 s2 · · · ∈ (S× Act)∗ ∪ (S× Act)ω such that P(si,αi,si+1) > 0 for all
indices i. A path is called maximal if it is infinite or finite and ends in a terminal state.
An MDP can be interpreted as a Kripke structure in which transitions go from states to
probability distributions over states.

A (randomized) scheduler S is a function that maps each finite non-maximal path
s0α0 . . .αn−1sn to a distribution over Act(sn). S is called deterministic if S(π) is a
Dirac distribution for all finite non-maximal paths π. If the chosen action only depends
on the last state of the path, S is called memoryless. We write MR for the class of mem-
oryless (randomized) and MD for the class of memoryless deterministic schedulers.
Finite-memory schedulers are those that are representable by a finite-state automaton.

The scheduler S of M induces a (possibly infinite) Markov chain. We write PrSM,s
for the standard probability measure on measurable sets of maximal paths in the Markov
chain induced by S with initial state s. If ϕ is a measurable set of maximal paths, then
Prmax

M,s(ϕ) and Prmin
M,s(ϕ) denote the supremum resp. infimum of the probabilities for ϕ

under all schedulers. We use the abbreviation PrSM = PrSM,init and notations Prmax
M and

Prmin
M for extremal probabilities. Analogous notations will be used for expectations. So,

if f is a random variable, then, e.g., ES
M(f) denotes the expectation of f under S and

42 Baier et al.

Emax
M (f) its supremum over all schedulers. We use LTL-like temporal modalities such as
♦ (eventually) and U (until) to denote path properties. For X,T ⊆ S the formula XUT is
satisfied by paths π= s0s1 . . . such that there exists j> 0 such that for all i < j : si ∈ X
and sj ∈ T and ♦T = SUT . It is well-known that Prmin

M (XUT) and Prmax
M (XUT) and

corresponding optimal MD-schedulers are computable in polynomial time.
If s ∈ S and α ∈ Act(s), then (s,α) is said to be a state-action pair of M. An end

component (EC) of an MDP M is a strongly connected sub-MDP containing at least
one state-action pair. ECs will be often identified with the set of their state-action pairs.
An EC E is called maximal (abbreviated MEC) if there is no proper superset E ′ of (the
set of state-action pairs of) E which is an EC.

3 Strict and global probability-raising causes

We now provide formal definitions for cause-effect relations in MDPs which rely on
the probability-raising (PR) principle as stated by (C1) and (C2) in the introduction. We
focus on the case where both causes and effects are state properties, i.e., sets of states.

In the sequel, let M= (S,Act,P, init) be an MDP and Eff ⊆ S\{init} a nonempty set
of terminal states. (As the effect set is fixed, for the analysis of cause-effect relationships
in M it suffices to assume all effect states are terminal by (C2).) Furthermore, we may
assume that every state s ∈ S is reachable from init.

We consider here two variants of the probability-raising condition: the global set-
ting treats the set Cause as a unit, while the strict view requires the probability-raising
condition for all states in Cause individually.

Definition 1 (Global and strict probability-raising cause (GPR/SPR cause)). Let
M and Eff be as above and Cause a nonempty subset of S\Eff. Then, Cause is said to
be a GPR cause for Eff iff the following two conditions (G) and (M) hold:

(G) For each scheduler S where PrSM(♦Cause)> 0:

PrSM(♦Eff | ♦Cause) > PrSM(♦Eff). (GPR)

(M) For each c ∈ Cause, there is a scheduler S with PrSM((¬Cause)Uc)> 0.

Cause is called an SPR cause for Eff iff (M) and the following condition (S) hold:

(S) For each state c ∈ Cause and each scheduler S where PrSM((¬Cause)Uc)> 0:

PrSM(♦Eff | (¬Cause)Uc) > PrSM(♦Eff). (SPR)

Condition (M) can be seen as a minimality requirement as states c ∈ Cause which
are not accessible from init without traversing other states in Cause could be omitted
without affecting the true positives (events where an effect state is reached after vis-
iting a cause state, “covered effects”) or false negatives (events where an effect state
is reached without visiting a cause state before, “uncovered effect”). More concretely,
whenever a set C ⊆ S \Eff satisfies conditions (G) or (S) then the set Cause of states
c ∈ C where M has a path from init satisfying (¬C)Uc is a GPR resp. an SPR cause.

On probability-raising causality in Markov decision processes 43

3.1 Examples and simple properties of probability-raising causes

We first observe that SPR/GPR causes cannot contain the initial state init, since other-
wise an equality instead of an inequality would hold in (GPR) and (SPR). Furthermore
as a direct consequence of the definitions and using the equivalence of the LTL formulas
♦Cause and (¬Cause)UCause we obtain:

Lemma 1 (Singleton PR causes). If Cause is a singleton then Cause is a SPR cause
for Eff if and only if Cause is a GPR cause for Eff.

As the event ♦Cause is a disjoint union of all events (¬Cause)Uc with c ∈ Cause,
the probability for covered effects PrSM(♦Eff | ♦Cause) is a weighted average of the
probabilities PrSM(♦Eff | (¬Cause)Uc) for c ∈ Cause. This yields:

Lemma 2 (Strict implies global). Every SPR cause for Eff is a GPR cause for Eff.

Example 1 (Non-strict GPR cause). Consider the Markov chain M depicted below
where the nodes represent states and the directed edges represent transitions labeled
with their respective probabilities. Let Eff = {eff}. Then, PrM(♦Eff) = 1

3 + 1
3 ·

1
4 + 1

12 =
1
2 , PrM(♦Eff |♦c1) = PrM,c1(♦eff) = 1 and PrM(♦Eff |♦c2) = PrM,c2(♦eff) = 1

4 . Thus,
{c1} is both an SPR and a GPR cause for Eff, while {c2} is not. The set Cause = {c1,c2}

is a non-strict GPR cause for Eff as:

PrM(♦Eff | ♦Cause) = (1
3 +

1
3 ·

1
4)/(

1
3 +

1
3) = (5

12)/(
2
3) =

5
8 >

1
2 = PrM(♦Eff).

The second condition (M) is obviously fulfilled. Non-strictness follows from the
fact that the SPR condition does not hold for state c2. C

init

c1 c2eff noeff
1/3 1/3

1/12 1/4

1
3/4

1/4

Example 2 (Probability-raising causes might not exist). PR causes might not exist, even
if M is a Markov chain. This applies, e.g., to the Markov chain M with two states init
and eff where P(init,eff) = 1 and the effect set Eff = {eff}. The only cause candidate
is the singleton {init}. However, the strict inequality in (GPR) or (SPR) does not hold
for Cause = {init}. The same phenomenon occurs if all non-terminal states of a Markov
chain reach the effect states with the same probability. In such cases, however, the non-
existence of PR causes is well justified as the events ♦Eff and ♦Cause are stochastically
independent for every set Cause⊆ S\Eff. C

Remark 1 (Memory needed for refuting PR condition). Let M be the MDP in Figure 1,
where the notation is similar to Example 1 with the addition of actions α,β and γ. Let
Cause = {c} and Eff = {eff}. Only state s has a nondeterministic choice. Cause is not
an PR cause. To see this, regard the deterministic scheduler T that schedules β only for
the first visit of s and α for the second visit of s. Then:

PrTM(♦eff) = 1
2 ·

1
2 + 1

2 ·
1
2 ·1 ·

1
4 = 5

16 >
1
4 = PrTM(♦eff |♦c)

44 Baier et al.

init

noeff

s

eff c

γ | 1/2

γ | 1/2

3/4 1/4 1/2 1/2

γ | 1

α β

Fig. 1. MDP M from Remark 1

init

effunc

c

noeff effcov

1/2

α | 1 1/21/2

β

1/2
τ

Fig. 2. MDP M from Remark 2

Denote the MR schedulers reaching c with positive probability as Sλ with Sλ(s)(α)

= λ and Sλ(s)(β) = 1−λ for some λ ∈ [0,1[. Then, PrSλM,s(♦eff)> 0 and:

PrSλM (♦eff) = 1
2 ·PrSλM,s(♦eff) < PrSλM,s(♦eff) = PrSλM,c(♦eff) = PrSλM (♦eff |♦c)

Thus, the SPR/GPR condition holds for Cause and Eff under all memoryless schedulers
reaching Cause with positive probability, although Cause is not an PR cause. C

Remark 2 (Randomization needed for refuting PR condition). Consider the MDP M of
Figure 2. Let Eff = {effunc,effcov} and Cause= {c}. The two MD-schedulers Sα and Sβ
that select α resp. β for the initial state init are the only deterministic schedulers. As Sα
does not reach c, it is irrelevant for the SPR or GPR condition. Sβ satisfies (SPR) and

(GPR) as Pr
Sβ
M (♦Eff |♦c) = 1

2 >
1
4 = Pr

Sβ
M (♦Eff). The MR scheduler T which selects

α and β with probability 1
2 in init reaches c with positive probability and violates (SPR)

and (GPR) as PrTM(♦Eff |♦c) = 1
2 <

5
8 = 1

2 +
1
2 ·

1
2 ·

1
2 = PrTM(♦Eff). C

Remark 3 (Cause-effect relations for regular classes of schedulers). The definitions of
PR causes in MDPs impose constraints for all schedulers reaching a cause state. This
condition is fairly strong and might lead to the phenomenon that no PR cause exists.
However, replacing M with an MDP resulting from the synchronous parallel compo-
sition of M with a deterministic finite automaton representing a regular constraint on
the scheduled state-action sequences (e.g., “alternate between actions α and β in state
s” or “take α on every third visit to state s and actions β or γ otherwise”) leads to a
weaker notion of PR causality. This can be useful to obtain more detailed information
on cause-effect relationships in special scenarios. For example at design time where
multiple scenarios (regular classes of schedulers) are considered or for a post-hoc anal-
ysis. For the later, one seeks causes of an occurred effect and the information about the
scheduled actions is either extractable from log files or gathered by a monitor. C

Remark 4 (Action causality and other forms of PR causality). Our notions of PR causes
are purely state-based with conditions that compare probabilities under the same sched-
uler. However, in combination with model transformations, the proposed notions are
also applicable for reasoning about other forms of PR causality.

Suppose, the task is to check whether taking action α in state s raises the effect
probabilities compared to never scheduling α in state s. Let M0 and M1 be copies of M
with the following modifications: In M0, the only enabled action of state s is α, while

On probability-raising causality in Markov decision processes 45

in M1 the enabled actions of state s are the elements of ActM(s)\{α}. Let now N be the
MDP whose initial state has a single enabled action and moves with probability 1/2 to
M0 and M1. Then, action α raises the effect probability in M iff the initial state of M0
consitutes an SPR cause in N. This idea can be generalized to check whether scheduler
classes satisfying a regular constraint have higher effect probability compared to all
other schedulers. In this case, we can deal with an MDP N as above where M0 and M1
are defined as the synchronous product of deterministic finite automata and M. C

3.2 Related work

Previous work in the direction of probabilistic causation in stochastic operational mod-
els has mainly concentrated on Markov chains. Kleinberg [24,25] introduced prima
facie causes in finite Markov chains where both causes and effects are formalized as
PCTL state formulae, and thus they can be seen as sets of states as in our approach.
The correspondence of Kleinberg’s PCTL constraints for prima facie causes and the
strict probability-raising condition formalized using conditional probabilities has been
worked out in the survey article [5]. Our notion of SPR causes corresponds to Klein-
berg’s prima facie causes, except for the minimality condition (M). Ábrahám et al [1]
introduces a hyperlogic for Markov chains and gives a formalization of probabilistic
causation in Markov chains as a hyperproperty, which is consistent with Kleinberg’s
prima facie causes, and with SPR causes up to minimality. Cause-effect relations in
Markov chains where effects areω-regular properties have been introduced in [6]. The
notion relies on the strict probability-raising condition, but requires completeness in the
sense that every path where the effect occurs has a prefix in the cause set. The paper [6]
permits a non-strict inequality in the SPR condition with the consequence that causes
always exist, which is not the case for our notions.

The survey article [5] introduces notions of global probability-raising causes for
Markov chains where causes and effects can be path properties. [5]’s notion of reacha-
bility causes in Markov chains directly corresponds to our notion GPR causes, the only
difference being that [5] deals with a relaxed minimality condition and requires that the
cause set is reachable without visiting an effect state before. The latter is inherent in our
approach as we suppose that all states are reachable and the effect states are terminal.

To the best of our knowledge, probabilistic causation in MDPs has not been studied
before. The only work in this direction we are aware of is the recent paper by Dim-
itrova et al [17] on a hyperlogic, called PHL, for MDPs. While the paper focuses on
the foundation of PHL, it contains an example illustrating how action causality can be
formalized as a PHL formula. Roughly, the presented formula expresses that taking a
specific action α increases the probability for reaching effect states. Thus, it also relies
on the probability-raising principle, but compares the “effect probabilities” under dif-
ferent schedulers (which either schedule α or not) rather than comparing probabilities
under the same scheduler as in our PR condition. However, as Remark 4 argues, to some
extent our notions of PR causes can reason about action causality as well.

There has also been work on causality-based explanations of counterexamples in
probabilistic models [27,28]. The underlying causality notion of this work, however, re-
lies on the non-probabilistic counterfactual principle rather than the probability-raising

46 Baier et al.

condition. The same applies to the notions of forward and backward responsibility in
stochastic games in extensive form introduced in the recent work [7].

4 Checking the existence of PR causes and the PR conditions

We now turn to algorithms for checking whether a given set Cause is an SPR or GPR
cause for Eff. As condition (M) of SPR and GPR causes is verifiable by standard model
checking techniques in polynomial time, we concentrate on checking the probability-
raising conditions (SPR) and (GPR). For Markov chains, both (SPR) and (GPR) can
be checked in polynomial time by computing the corresponding probabilities. So, the
interesting case is checking the PR conditions in MDPs.

We start by stating that for the SPR and GPR condition, it suffices to consider sched-
ulers minimizing the probability to reach an effect state from every cause state.

Notation 1 (MDP with minimal effect probabilities from cause candidates). If C⊆
S then we write M[C] for the MDP resulting from M by removing all enabled ac-
tions of the states in C. Instead, M[C] has a new action γ that is enabled exactly in
the states s ∈ C with the transition probabilities PM[C]

(s,γ,eff) = Prmin
M,s(♦Eff) and

PM[C]
(s,γ,noeff) = 1−Prmin

M,s(♦Eff). Here, eff is a fixed state in Eff and noeff a (pos-
sibly fresh) terminal state not in Eff. We write M[c] if C= {c} is a singleton.

Lemma 3. Let M= (S,Act,P, init) be an MDP and Eff ⊆ S a set of terminal states. Let
Cause⊆ S\Eff. Then, Cause is an SPR cause (resp. a GPR cause) for Eff in M if and
only if Cause is an SPR cause (resp. a GPR cause) for Eff in M[Cause].

4.1 Checking the strict probability-raising condition and the existence of causes

The basis of both checking the existence of PR causes or checking the SPR condition
for a given cause candidate is the following polynomial time algorithm to check whether
the SPR condition holds in a given state c of M for all schedulers S with PrSM(♦c)> 0:

Algorithm 2. Input: state c ∈ S, set of terminal states Eff ⊆ S.
Task: Decide whether (SPR) holds in c for all schedulers S.

Compute wc = Prmin
M,c(♦Eff) and qs = Prmax

M[c],s
(♦Eff) for each state s in M[c] .

1. If qinit <wc, then return “yes, (SPR) holds for c”.
2. If qinit >wc, then return “no, (SPR) does not hold for c”.
3. Suppose qinit =wc. LetA(s) = {α ∈ ActM[c]

(s) | qs =
∑
t∈S[c] PM[c]

(s,α,t) ·qt}
for each non-terminal state s. Let Mmax

[c] denote the sub-MDP of M[c] induced by
the state-action pairs (s,α) where α ∈A(s).
3.1 If c is reachable from init in Mmax

[c] , then return “no, (SPR) does not hold for c”.
3.2 If c is not reachable from init in Mmax

[c] , then return “yes, (SPR) holds for c”.

Lemma 4. Algorithm 2 is sound and runs in polynomial time.

On probability-raising causality in Markov decision processes 47

Soundness. Let N =M[c]. Soundness is obvious in case 1. For case 2, consider a real
number λ with 1 > λ > wc

qinit
and MD-schedulers T and S realizing PrTN,s(♦Eff) = qs

and PrSN(♦c) > 0 for all states s. We can combine T and S to a new MR-scheduler U
with the property that PrUN(♦t) = λPrTN(♦t)+ (1−λ)PrSN(♦t) for all terminal states t
and for t = c. Then, U witnesses a violation of (SPR). For case 3.1 consider an MD-
scheduler S of Mmax

[c] where c is reachable from init via a S-path and PrSN,s(♦Eff) = qs
for all states s. Then, (SPR) does not hold for c in the scheduler S. In case 3.2 we
have PrSN(♦c) = 0 for all schedulers S for N with PrSN(♦Eff) = qinit = wc. But then
PrSN(♦c)> 0 implies PrSN(♦Eff)<wc as required in (SPR). ut

By applying Algorithm 2 to all states c ∈ Cause and standard algorithms to check
the existence of a path satisfying (¬Cause)Uc for every state c ∈ Cause, we obtain:

Theorem 3 (Checking SPR causes). The problem “given M, Cause and Eff, check
whether Cause is a SPR cause for Eff in M” is solvable in polynomial-time.

Remark 5 (Memory requirements for refuting the SPR property). As the soundness
proof for Algorithm 2 shows: If Cause does not satisfy the SPR condition, then there is
an MR-scheduler S for M[Cause] witnessing the violation of (SPR). Scheduler S cor-
responds to a finite-memory (randomized) scheduler T with two memory cells for M:
“before Cause” (where T behaves as S) and “after Cause” (where T behaves as an
MD-scheduler minimizing the effect probability form every state). C

Lemma 5 (Criterion for the existence of probability-raising causes). Let M be an
MDP and Eff a nonempty set of states. Then Eff has an SPR cause in M iff Eff has
a GPR cause in M iff there is a state c0 ∈ S \ Eff such that the singleton {c0} is an
SPR cause (and therefore a GRP cause) for Eff in M. In particular, the existence of
SPR/GPR causes can be checked with Algorithm 2 in polynomial time.

4.2 Checking the global probability-raising condition

Theorem 4. The problem “given M, Cause and Eff, check whether Cause is a GPR
cause for Eff in M” is solvable in polynomial space.

In order to provide an algorithm, we perform a model transformation after which the
violation of (GPR) by a scheduler S can be expressed solely in terms of the expected
frequencies of the state-action pairs of the transformed MDP under S. This allows
us to express the existence of a scheduler witnessing the non-causality of Cause in
terms of the satisfiability of a quadratic constraint system. Then we can restrict the
quantification in (G) to MR-schedulers in the transformed model. We trace back the
memory requirements to M[Cause] and to the original MDP M yielding the second main
result. Still, memory can be necessary to witness non-causality (Remark 1).

Theorem 5. Let M be an MDP with effect set Eff as before and Cause a set of non-
effect states such that condition (M) holds. If Cause is not a GPR cause for Eff, then
there is an MR-scheduler for M[Cause] refuting the GPR condition for Cause in M[Cause]

and a finite-memory scheduler for M with two memory cells refuting the GPR condition
for Cause in M.

48 Baier et al.

The remainder of this section is concerned with the proofs of Theorem 4 and Theo-
rem 5. We suppose that both the effect set Eff and the cause candidate Cause are fixed
disjoint subsets of the state space of the MDP M and that Cause satisfies (M).

Checking the GPR condition (Proof of Theorem 4). The first step is a polynomial-
time model transformation which permits to make the following assumptions when
checking the GPR condition of Cause for Eff.

(A1) Eff = {effunc,effcov} consists of two terminal states.
(A2) For every state c ∈ Cause, there is only a single enabled action, say Act(c) = {γ},

and there existswc ∈ [0,1]∩Q such that P(c,γ,effcov) =wc and P(c,γ,noeff fp) =
1−wc where noeff fp is a terminal non-effect state and noeff fp and effcov are only
accessible via the γ-transition from the states c ∈ Cause.

(A3) M has no end components and there is a further terminal state noefftn and an
action τ such that τ ∈ Act(s) implies P(s,τ,noefftn) = 1.

Intuitively, effcov stands for covered effects (“Eff after Cause”) and can be seen as
a true positive, while effunc represents the uncovered effects (“Eff without preceding
Cause”) and corresponds to a false negative. Let S be a scheduler in M. Note that
PrSM((¬Cause)UEff) = PrSM(♦effunc) and PrSM(♦(Cause∧♦Eff)) = PrSM(♦effcov). As
the cause states can not reach each other we also have PrSM((¬Cause)Uc) = PrSM(♦c)
for each c ∈ Cause. The intuitive meaning of noeff fp is a false positive (“no effect after
Cause”), while noefftn stands for true negatives where neither the effect nor the cause is
observed. Note that PrSM(♦(Cause∧¬♦Eff)) = PrSM(♦noeff fp) and PrSM(¬♦Cause∧
¬♦Eff)) = PrSM(♦noefftn).

Justification of assumptions (A1)-(A3): We justify the assumptions as we can trans-
form M into a new MDP of the same asymptotic size satisfying the above assump-
tions. Thanks to Lemma 3, we may suppose that M=M[Cause] (see Notation 1) without
changing the satisfaction of the GPR condition. We then may rename the effect state
eff and the non-effect state noeff reachable from Cause into effcov and noeff fp, respec-
tively. Furthermore, we collapse all other effect states into a single state effunc and all
true negative states into noefftn. Similarly, by renaming and possibly duplicating ter-
minal states we also suppose that noeff fp has no other incoming transitions than the
γ-transitions from the states in Cause. This ensures (A1) and (A2). For (A3) consider
the set T of terminal states in the MDP obtained so far. We remove all end components
by switching to the MEC-quotient [2], i.e., we collapse all states that belong to the same
MEC E into a single state sE while ignoring the actions inside E. Additionally, we add
a fresh τ-transition from the states sE to noefftn (i.e., P(sE,τ,noefftn) = 1). The τ-
transitions from states sE to noefftn mimic cases where schedulers of the original MDP
eventually enter an end component and stay there forever with positive probability.

With assumptions (A1)-(A3), the GPR condition can be reformulated as follows:

Lemma 6. Under assumptions (A1)-(A3), Cause satisfies the GPR condition if and only
if for each scheduler S with PrSM(♦Cause)> 0 the following condition holds:

PrSM(♦Cause) ·PrSM(♦effunc) <
(
1−PrSM(♦Cause)

)
·
∑

c∈Cause

PrSM(♦c) ·wc (GPR-1)

On probability-raising causality in Markov decision processes 49

With assumptions (A1)-(A3), a terminal state of M is reached almost surely under
any scheduler after finitely many steps in expectation. Given a scheduler S for M, the
expected frequencies (i.e., expected number of occurrences in maximal paths) of state
action-pairs (s,α), states s ∈ S and state-sets T ⊆ S under S are defined by:

freqS(s,α) def
= ES

M(number of visits to s in which α is taken)

freqS(s)
def
=
∑

α∈Act(s)
freqS(s,α), freqS(T)

def
=
∑

s∈T
freqS(s).

Let T be one of the sets {effcov}, {effunc}, Cause, or a singleton {c} with c ∈ Cause. As
T is visited at most once during each run of M (assumptions (A1) and (A2)), we have
PrSN(♦T) = freqS(T) for each scheduler S. This allows us to express the violation
of the GPR condition in terms of a quadratic constraint system over variables for the
expected frequencies of state-action pairs in the following way:

Let StAct denote the set of state-action pairs in M. We consider the following con-
straint system over the variables xs,α for each (s,α) ∈ StAct where we use the short
form notation xs =

∑
α∈Act(s) xs,α:

xs,α > 0 for all (s,α) ∈ StAct (1)

xinit = 1+
∑

(t,α)∈StAct

xt,α ·P(t,α, init) (2)

xs =
∑

(t,α)∈StAct

xt,α ·P(t,α,s) for all s ∈ S\ {init} (3)

Using well-known results for MDPs without ECs (see, e.g., [23, Theorem 9.16]), given
a vector x ∈ RStAct, then x is a solution to (1) and the balance equations (2) and (3)
if and only if there is a (possibly history-dependent) scheduler S for M with xs,α =
freqS(s,α) for all (s,α) ∈ StAct if and only if there is an MR-scheduler S for M with
xs,α = freqS(s,α) for all (s,α) ∈ StAct.

The violation of (GPR-1) in Lemma 6 and the condition PrSM(♦Cause) > 0 can be
reformulated in terms of the frequency-variables as follows where xCause is an abbrevi-
ation for

∑
c∈Cause xc:

xCause ·xeffunc >
(
1−xCause

)
·
∑

c∈Cause

xc ·wc (4)

xCause > 0 (5)

Lemma 7. Under assumptions (A1)-(A3), the set Cause is not a GPR cause for Eff in
M iff the constructed quadratic system of inequalities (1)-(5) has a solution.

Proof of Theorem 4. The existence of a solution to the quadratic system of inequalities
(Lemma 7) can straight-forwardly be formulated as a sentence in the language of the
existential theory of the reals. The system of inequalities can be constructed from M,
Cause, and Eff in polynomial time. Its solvability is decidable in polynomial space as
the decision problem of the existential theory of the reals is in PSPACE [13]. ut

50 Baier et al.

Memory requirements of schedulers in the original MDP (Proof of Theorem 5).
As stated above, every solution to the linear system of inequalities (1), (2), and (3)
corresponds to expected frequencies of state-action pairs of an MR-scheduler in the
transformed model satisfying (A1)-(A3). Hence:

Corollary 1. Under assumptions (A1)-(A3), Cause is no GPR cause for Eff iff there
exists an MR-scheduler T with PrTM(♦Cause)> 0 violating the GPR condition.

The model transformation we used for assumptions (A1)-(A3), however, does affect
the memory requirements of schedulers. We may further restrict the MR-schedulers
necessary to witness non-causality under assumptions (A1)-(A3). For the following
lemma, recall that τ is the action of the MEC quotient used for the extra transition
from states representing MECs to a new trap state (see also assumption (A3)).

Lemma 8. Assume (A1)-(A3). Given an MR-scheduler U with PrUM(♦Cause) > 0 that
violates (GPR), an MR-scheduler T with T(s)(τ)∈ {0,1} for each state swith τ∈Act(s)
that satifies PrTM(♦Cause)> 0 and violates (GPR) is computable in polynomial time.

The condition that τ only has to be scheduled with probability 0 or 1 in each state
is the key to transfer the sufficiency of MR-schedulers to the MDP M[Cause]. This fact
is of general interest as well and stated in the following theorem where τ again is the
action added to move from a state sE to the new trap state in the MEC-quotient.

Theorem 6. Let M be an MDP with pairwise disjoint action sets for all states. Then,
for each MR-scheduler S for the MEC-quotient of M with S(sE)(τ) ∈ {0,1} for each
MEC E of M there is an MR-scheduler T for M such that every action α of M that does
not belong to an MEC of M, has the same expected frequency under S and T.

Proof sketch. The crux are cases where S(sE)(τ) = 0, which requires to traverse the
MEC E of M in a memoryless way such that all actions leaving E have the same ex-
pected frequency under T and S. First, we construct a finite-memory scheduler T′ that
always leaves each such end component according to the distribution given by S(sE).
By [23, Theorem 9.16], we then conclude that there is an MR-scheduler T under which
the expected frequencies of all state-action pairs are the same as under T′. ut

Proof of Theorem 5. The model transformation establishing assumptions (A1)-(A3) re-
sults in the MEC-quotient of M[Cause] up to the renaming and collapsing of terminal
states. By Corollary 1 and Theorem 6, we conclude that Cause is not a GPR cause for
Eff in M iff there is a MR-scheduler S for M[Cause] with PrSM[Cause]

(♦Cause) > 0 that
violates (GPR). As in Remark 5, S can be extended to a finite-memory randomized
scheduler T for M with two memory cells. ut

Remark 6 (On lower bounds on GPR checking). Solving systems of quadratic inequal-
ities with linear side constraints is NP-hard in general (see, e.g., [20]). For convex prob-
lems, in which the associated symmetric matrix in the quadratic inequality has only
non-negative eigenvalues, the problem is, however, solvable in polynomial time [26].
Unfortunately, the quadratic constraint system given by (1)-(5) is not of this form. Even
if Cause is a singleton {c} and the variable xeffunc is forced to take a constant value y by
(1)-(3), i.e., by the structure of the MDP, the inequality (4) takes the form:

On probability-raising causality in Markov decision processes 51

xc ·wc−x2
c · (wc+y)6 0 (*)

Here, the 1× 1-matrix (−wc−y) has a negative eigenvalue. Although it is not ruled
out that (1)-(5) belongs to another class of efficiently solvable constraint systems, the
NP-hardness result in [33] for the solvability of quadratic inequalities of the form (*)
with linear side constraints might be an indication for the computational difficulty. C

5 Quality and optimality of causes

The goal of this section is to identify notions that measure how “good” causes are and to
present algorithms to determine good causes according to proposed quality measures.
We have seen so far that small (singleton) causes are easy to determine (see Section
4.1). Moreover, it is easy to see that the proposed existence-checking algorithm can be
transformed such that it returns a singleton (strict or global) probability-raising cause
{c0} with maximal precision, i.e., a state c0 where infS PrSM(♦Eff |♦c0) = Prmin

M,c0
(♦Eff)

is maximal. On the other hand, singleton or small cause sets might have poor coverage
in the sense that the probability of paths which reach an effect state without visiting a
cause state before (“uncovered effects”) can be large. This motivates the consideration
of quality notions for causes that incorporate how well effect scenarios are covered.
We take inspiration of quality measures that are considered in statistical analysis (see
e.g. [36]). This includes the recall as a measure for the relative coverage (proportion
of covered effects among all effect scenarios), the coverage ratio (quotient of covered
and uncovered effects) as well as the f-score. The f-score is a standard measure for
classifiers defined by the harmonic mean of precision and recall. It can be seen as a
compromise to achieve both good precision and good recall.

Throughout this section, we assume as before an MDP M = (S,Act,P, init) and a
set Eff ⊆ S are given where all effect states are terminal. Furthermore, we suppose that
all states s ∈ S are reachable from init.

5.1 Quality measures for causes

In statistical analysis, the precision of a classifier with binary outcomes (“positive” or
“negative”) is defined as the ratio of all true positives among all positively classified
elements, while its recall is defined as the ratio of all true positives among all actual
positive elements. Translated to our setting, we consider classifiers induced by a given
cause set Cause that return “positive” for sample paths in case that a cause state is visited
and “negative” otherwise. The intuitive meaning of true positives and false negatives is
as explained after Definition 1. The meaning of true negatives and false positives is
analogous. We use tpS for the probability for true positives under S. The notations
fpS, fnS, tnS have analogous meanings.

With this interpretation of causes as binary classifiers in mind, the recall and preci-
sion and coverage ratio of a cause set Cause under a scheduler S is defined as follows
(assuming PrSM(♦Eff)> 0 resp. PrSM(♦Cause)> 0 resp. PrSM

(
(¬Cause)UEff

)
> 0):

precisionS(Cause) = PrSM(♦Eff | ♦Cause) = tpS

tpS+fpS

recallS(Cause) = PrSM(♦Cause | ♦Eff) = tpS

tpS+fnS

52 Baier et al.

covratS(Cause) =
PrSM

(
♦(Cause∧♦Eff)

)
PrSM

(
(¬Cause)UEff

) = tpS

fnS
.

For the coverage ratio, if PrSM
(
(¬Cause)UEff

)
= 0 and PrSM(♦Cause) > 0 we define

covratS(Cause) = +∞. Finally, the f-score of Cause under a scheduler S is defined
as the harmonic mean of the precision and recall (assuming PrSM(♦Cause) > 0, which
implies PrSM(♦Eff)> 0 as Cause is a PR cause):

fscoreS(Cause)
def
= 2 · precisionS(Cause) · recallS(Cause)

precisionS(Cause)+ recallS(Cause)

If, however, PrSM(♦Eff)> 0 and PrSM(♦Cause) = 0 we define fscoreS(Cause) = 0.

Quality measures for cause sets. Let Cause be a PR cause. The recall of Cause mea-
sures the relative coverage in terms of the worst-case conditional probability for covered
effects (true positives) among all scenarios where the effect occurs.

recall(Cause) = infS recallS(Cause) = Prmin
M (♦Cause | ♦Eff)

when ranging over all schedulers S with PrSM(♦Eff) > 0. Likewise, the coverage ratio
and f-score of Cause are defined by the worst-case coverage ratio resp. f-score (when
ranging over schedulers for which covratS(Cause) resp. fscoreS(Cause) is defined):

covrat(Cause) = infS covratS(Cause), fscore(Cause) = infS fscoreS(Cause)

5.2 Computation schemes for the quality measures for fixed cause set

For this section, we assume a fixed PR cause Cause is given and address the problem
to compute its quality values. Since all quality measures are preserved by the switch
from M to M[Cause] as well as the transformations of M[Cause] to an MDP that satisfies
conditions (A1)-(A3) of Section 4.2, we may assume that M satisfies (A1)-(A3).

While efficient computation methods for recall(Cause) are known from literature
(see [10,31] for poly-time algorithms to compute conditional reachability probabilities),
we are not aware of known concepts that are applicable for computing the coverage ratio
or the f-score. Indeed, both are efficiently computable:

Theorem 7. The values covrat(Cause) and fscore(Cause) and corresponding worst-
case schedulers are computable in polynomial time.

By definition, the value covrat(Cause) is the infimum over a quotient of reachability
probabilities for disjoint sets of terminal states. While this is not the case for the f-score,
we can express fscore(Cause) in terms of the supremum of such a quotient. More pre-
cisely, under assumptions (A1)-(A3) and assuming fscore(Cause)> 0, we have:

fscore(Cause) = 2
X+2 where X = supS

PrSM(♦noefffp)+PrSM(♦effunc)

PrSM(♦effcov)

where S ranges over all schedulers with PrSM(♦effcov) > 0. Furthermore, we have
fscore(Cause) = 0 if and only if recall(Cause) = 0 if and only if there exists a scheduler
S satisfying PrSM(♦Eff)> 0 and PrSM(♦Cause) = 0.

So, the remaining task to prove Theorem 7 is a generally applicable technique for
computing extremal ratios of reachability probabilities in MDPs without ECs.

On probability-raising causality in Markov decision processes 53

Max/min ratios of reachability probabilities for disjoint sets of terminal states.
Suppose we are given an MDP M = (S,Act,P, init) without ECs and disjoint subsets
U,V ⊆ S of terminal states. Given a scheduler S with PrSM(♦V)> 0 we define:

ratioSM(U,V) = PrSM(♦U)/PrSM(♦V)

The goal is to compute the extremal values: ratiomin
M (U,V) = infS ratioSM(U,V) and

ratiomax
M (U,V) = supS ratioSM(U,V) where S ranges over all schedulers such that

PrSM(♦V) > 0. For their computation, we rely on a polynomial reduction to the classi-
cal stochastic shortest path problem [12]. For this, consider the MDP N arising from
M by adding reset transitions from all terminal states t ∈ S\V to init. Thus, exactly the
V-states are terminal in N. The MDP N might contain ECs, which, however, do not in-
tersect with V . We equip N with the weight function that assigns 1 to all states inU and
0 to all other states. For a scheduler T with PrTN(♦V) = 1, let ET

N(�V) be the expected
accumulated weight until reaching V under T. Let Emin

N (�V) = infT ET
N(�V) and

Emax
N (�V) = supT ET

N(�V), where T ranges over all schedulers with PrTN(♦V) = 1.
We can rely on known results [12,3,4] to obtain that both Emin

N (�V) and Emax
N (�V)

are computable in polynomial time. As N has only non-negative weights, Emin
N (�V)

is finite and a corresponding MD-scheduler with minimal expectation exists. If N has
an EC containing at least one U-state, which is the case iff M has a scheduler S with
PrSM(♦U) > 0 and PrSM(♦V) = 0, then Emax

N (�V) = +∞. Otherwise, Emax
N (�V) is fi-

nite and the maximum is achieved by an MD-scheduler as well.

Theorem 8. Let M be an MDP without ECs andU,V disjoint sets of terminal states in
M, and let N be the constructed MDP as above. Then, ratiomin

M (U,V) = Emin
N (�V) and

ratiomax
M (U,V) = Emax

N (�V). Thus, both values are computable in polynomial time, and
there is an MD-scheduler minimizing ratioSM(U,V), and an MD-scheduler maximizing
ratioSM(U,V) if ratiomax

M (U,V) is finite.

Proof of Theorem 7. Using assumptions (A1)-(A3), we obtain that covrat(Cause) =
ratiomin

M (U,V) where U = {effcov}, V = {effunc}. Similarly, with U = {noeff fp,effunc},
V = {effcov}, we get fscore(Cause) = 0 if ratiomax

M (U,V) = +∞ and fscore(Cause) =
2/(ratiomax

M (U,V)+2) otherwise. Thus, the claim follows from Theorem 8. ut

5.3 Quality-optimal probability-raising causes

An SPR cause Cause is called recall-optimal if recall(Cause) = maxC recall(C) where
C ranges over all SPR causes. Likewise, ratio-optimality resp. f-score-optimality of
Cause means maximality of covrat(Cause) resp. fscore(Cause) among all SPR causes.
Recall-, ratio- and f-score-optimality for GPR causes are defined accordingly.

Lemma 9. Let Cause be an SPR or a GPR cause. Then, Cause is recall-optimal if and
only if Cause is ratio-optimal.

Recall- and ratio-optimal SPR causes. The techniques of Section 4.1 yield an algo-
rithm for generating a canonical SPR cause with optimal recall and ratio. To see this,
let C denote the set of states that constitute a singleton SPR cause. The canonical cause
CanCause is defined as the set of states c ∈ C such that there is a scheduler S with
PrSM((¬C)Uc)> 0. Obviously, C and CanCause are computable in polynomial time.

54 Baier et al.

Theorem 9. If C 6=∅ then CanCause is a ratio- and recall-optimal SPR cause.

init eff

noeff s1 s2

1/4

1/4 1/2

1/4 3/4

1

This is not true for the f-score. To see this, Con-
sider the Markov chain on the right hand side. We have
CanCause= {s1}, which has precision(CanCause) = 3

4 and
recall(CanCause) = 3

8/(
1
4 + 3

8) =
3
5 . But the SPR cause

{s2} has better f-score as its precision is 1 and it has the
same recall as CanCause.

F-score-optimal SPR cause. From Section 5.2, we see that f-score-optimal SPR causes
in MDPs can be computed in polynomial space by computing the f-score for all poten-
tial SPR causes one by one in polynomial time (Theorem 7). As the space can be reused
after each computation, this results in polynomial space. For Markov chains, we can do
better and compute an f-score-optimal SPR cause in polynomial time via a polynomial
reduction to the stochastic shortest path problem:

Theorem 10. In Markov chains that have SPR causes, an f-score-optimal SPR cause
can be computed in polynomial time.

Proof. We regard the given Markov chain M as an MDP with a singleton action set
Act = {α}. As M has SPR causes, the set C of states that constitute a singleton SPR cause
is nonempty. We may assume that M has no non-trivial (i.e., cyclic) bottom strongly
connected components as we may collapse them. Let wc = PrM,c(♦Eff). We switch
from M to a new MDP K with state space SK = S∪ {effcov,noeff fp} with fresh states
effcov and noeff fp and the action set ActK = {α,γ}. The MDP K arises from M by
adding (i) for each state c ∈ C a fresh state-action pair (c,γ) with PK(c,γ,effcov) =wc
and PK(c,γ,noeff fp) = 1−wc and (ii) reset transitions to init with action label α from
the new state noeff fp and all terminal states of M, i.e., PK(noeff fp,α, init) = 1 and
PK(s,α, init) = 1 for s ∈ Eff or if s is a terminal non-effect state of M. So, exactly
effcov is terminal in K, and ActK(c) = {α,γ} for c ∈ C, while ActK(s) = {α} for all
other states s. Intuitively, taking action γ in state c ∈ C selects c to be a cause state. The
states in Eff represent uncovered effects in K, while effcov stands for covered effects.

We assign weight 1 to all states inU= Eff∪ {noeff fp} and weight 0 to all other states
of K. Let V = {effcov}. Then, f = Emin

K (�V) and an MD-scheduler S for K such that
ES
K(�V) = f are computable in polynomial time. Let Cγ denote the set of states c ∈ C

where S(c) = γ and let Cause be the set of states c∈ Cγ where M has a path satisfying
(¬Cγ)Uc. Then, Cause is an SPR cause of M. With arguments as in Section 5.2 we
obtain fscore(Cause) = 2/(f+2). It remains to show that Cause is f-score-optimal. Let
C be an arbitrary SPR cause. Then, C ⊆ C. Let T be the MD-scheduler for K that
schedules γ in C and α for all other states of K. Then, fscore(C) = 2/(fT+2) where
fT = ET

K(�V). Hence, f6 fT, which yields fscore(Cause)> fscore(C). ut

The naı̈ve adaption of the construction presented in the proof of Theorem 10 for
MDPs would yield a stochastic game structure where the objective of one player is
to minimize the expected accumulated weight until reaching a target state. Although
algorithms for stochastic shortest path (SSP) games are known [34], they rely on as-
sumptions on the game structure which would not be satisfied here. However, for the

On probability-raising causality in Markov decision processes 55

threshold problem SPR-f-score where inputs are an MDP M, Eff and ϑ ∈ Q>0 and the
task is to decide the existence of an SPR cause whose f-score exceeds ϑ, we can estab-
lish a polynomial reduction to SSP games, which yields an NP∩ coNP upper bound:

Theorem 11. The decision problem SPR-f-score is in NP∩ coNP.

Proof sketch. Given an MDP M, an effect set Eff, and ϑ ∈ Q, we construct an SSP
game [34] after a series of model transformations ensuring (i) that terminal states are
reached almost surely and (ii) that Eff is reached with positive probability under all
schedulers. Condition (i) is established by a standard MEC-quotient construction. To
establish condition (ii), we provide a construction that forces schedulers to leave an
initial sub-MDP in which the minimal probability to reach Eff is 0. This construction –
unlike the MEC-quotient – affects the possible combinations of probability values with
which terminal states and potential cause states can be reached, but the existence of an
SPR cause satisfying the f-score-threshold condition is not affected.

The underlying idea of the construction of the game shares similarities with the
MDP constructed in the proof of Theorem 10: Player 0 takes the role to select potential
cause states while player 1 takes the role of a scheduler in the transformed MDP. Using
the observation that for each cause C, fscore(C)> ϑ iff

2(1−ϑ)PrSM(♦C∧♦Eff)−ϑPrSM(¬♦C∧♦Eff)−ϑPrSM(♦C∧¬♦Eff)> 0 (×)

for all schedulers S for M with PrSM(♦Eff) > 0, weights are assigned to Eff-states
and other terminal states depending on whether player 0 has chosen to include a state
to the cause beforehand. In the resulting SSP game, both players have optimal MD-
strategies [34]. Given such strategies ζ for player 0 and S for player 1, the resulting
expected accumulated weight agrees with the left-hand side of (×) when considering
S as a scheduler for the transformed MDP and the cause C induced by the states that
ζ chooses to belong to the cause. Thus, player 0 wins the constructed game iff an SPR
cause with f-score above the threshold ϑ exists. The existence of optimal MD-strategies
for both players allows us to decide this threshold problem in NP and coNP. ut

Optimality and threshold constraints for GPR causes. Computing optimal GPR
causes for either quality measure can be done in polynomial space by considering all
cause candidates, checking the GPR condition in polynomial space (Theorem 4) and
computing the corresponding quality measure in polynomial time (Section 5.2). How-
ever, we show that no polynomial-time algorithms can be expected as the corresponding
threshold problems are NP-hard. Let GPR-covratio (resp. GPR-recall, GPR-f-score) de-
note the decision problems: Given M,Eff and ϑ∈Q, decide whether there exists a GPR
cause with coverage ratio (resp. recall, f-score) at least ϑ.

Theorem 12. The problems GPR-covratio, GPR-recall and GPR-f-score are NP-hard
and belong to PSPACE. For Markov chains, all three problems are NP-complete. NP-
hardness even holds for tree-like Markov chains.

Proof sketch. NP-hardness is established via a polynomial reduction from the knap-
sack problem. Membership to NP for Markov chains resp. to PSPACE = NPSPACE
for MDPs is obvious as we can guess nondeterministically a cause candidate and then
check (i) the GPR condition in polynomial time (Markov chains) resp. polynomial space
(MDPs) and (ii) the threshold condition in polynomial time (see Section 5.2). ut

56 Baier et al.

6 Conclusion

The goal of the paper was to formalize the probability-raising principle in MDPs and
related quality notions for PR causes as well as studying fundamental algorithmic prob-
lems for them. We considered the strict (local) and the global view. Our results indicate
that GPR causes are more general and leave more flexibility to achieve better accuracy,
while algorithmic reasoning about SPR causes is simpler.
Existential definition of SPR/GPR causes. The proposed definition of PR causes relies
on a universal quantification over all relevant schedulers. However, another approach
could be via existential quantification, i.e. there is a scheduler S such that (GPR) or
resp. (SPR) hold. The resulting notion of causality yields fairly the same results (up to
Prmax

M,c(♦Eff) instead of Prmin
M,c(♦Eff) etc). A canonical existential SPR cause can be de-

fined in analogy to the universal case and shown to be recall- and ratio-optimal (cf. The-
orem 9). The problem to find an existential f-score-optimal SPR cause is even simpler
and solvable in polynomial time as the construction presented in the proof of Theorem
10 can be adapted for MDPs (thanks to the simpler nature of maxC supS fscoreS(C)
compared to maxC infS fscoreS(C)). However, NP-hardness for the existence of GPR
causes with threshold constraints for the quality carries over to the existential definition
(as NP-hardness holds for Markov chains, Theorem 12).
Non-strict inequality in the PR conditions. Our notions of PR causes are in line with the
classical approach of probability-raising causality in literature with strict inequality in
the PR condition. This has the consequence that causes might not exist (see Example
2). The switch to a relaxed definition of PR causes with non-strict inequality seems to
be a minor change that identifies more sets as causes. Indeed, the proposed algorithms
for checking the SPR and GPR condition (Section 4) can easily be modified for the
relaxed definition. While this leads to a questionable notion of causality (e.g., {init}
would always be a recall- and ratio-optimal SPR cause under the relaxed definition), it
could be useful in combination with other side constraints. E.g., requiring the relaxed
PR condition for all schedulers which reach a cause state with positive probability and
requiring the existence of a scheduler where the PR condition with strict inequality
holds might be a useful alternative definition that agrees with Def. 1 for Markov chains.
Relaxing the minimality condition (M). As many causality notions of the literature in-
clude some minimality constraint, we included condition (M). However, (M) could be
dropped without affecting the algorithmic results presented here. This can be useful
when the task is to identify components or agents that are responsible for the occur-
rences of undesired effects. In these cases the cause candidates are fixed (e.g., for each
agent i, the set of states controlled by agent i), but some of them might violate (M).
Future directions include PR causality when causes and effects are path properties
and the investigation of other quality measures for PR causes inspired by other in-
dices for binary classifiers used in machine learning or customized for applications of
cause-effect reasoning in MDPs. More sophisticated notions of probabilistic backward
causality and considerations on PR causality with external interventions as in Pearl’s
do-calculus [35] are left for future work.
Acknowledgments We would like to thank Simon Jantsch and Clemens Dubslaff for
their helpful comments and feedback on the topic of causality in MDPs.

On probability-raising causality in Markov decision processes 57

References

1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: A temporal logic for probabilistic hyperprop-
erties. In: McIver, A., Horváth, A. (eds.) 15th International Conference on Quantitative Eval-
uation of Systems (QEST). Lecture Notes in Computer Science, vol. 11024, pp. 20–35.
Springer (2018), https://doi.org/10.1007/978-3-319-99154-2 2

2. de Alfaro, L.: Formal Verification of Probabilistic Systems. Phd thesis, Stanford
University, Stanford, USA (1997), https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/
4375-deAlfaro(1997)-FormalVerificationofProbabilisticSystems.pdf

3. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic sys-
tems. In: Baeten, J.C.M., Mauw, S. (eds.) 10th International Conference on Concurrency
Theory (CONCUR). Lecture Notes in Computer Science, vol. 1664, pp. 66–81. Springer
(1999), https://doi.org/10.1007/3-540-48320-9 7

4. Baier, C., Bertrand, N., Dubslaff, C., Gburek, D., Sankur, O.: Stochastic shortest paths and
weight-bounded properties in Markov decision processes. In: Dawar, A., Grädel, E. (eds.)
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018. pp. 86–94. ACM (2018), https://doi.org/10.1145/3209108.3209184

5. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek, R.: From
verification to causality-based explications (invited talk). In: Bansal, N., Merelli, E., Wor-
rell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming,
(ICALP). LIPIcs, vol. 198, pp. 1:1–1:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021), https://doi.org/10.4230/LIPIcs.ICALP.2021.1

6. Baier, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Probabilistic causes in Markov
chains. CoRR abs/2104.13604 (2021), https://arxiv.org/abs/2104.13604, accepted for publi-
cation at ATVA’21.

7. Baier, C., Funke, F., Majumdar, R.: A game-theoretic account of responsibility allocation.
In: Zhou, Z. (ed.) 30th International Joint Conference on Artificial Intelligence (IJCAI). pp.
1773–1779. ijcai.org (2021), https://doi.org/10.24963/ijcai.2021/244

8. Baier, C., Funke, F., Piribauer, J., Ziemek, R.: On probability-raising causality in markov
decision processes (2022), https://arxiv.org/abs/2201.08768

9. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The
MIT Press, Cambridge, MA (2008)

10. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in
Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) 20th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 8413, pp. 515–530. Springer (2014), https://doi.
org/10.1007/978-3-642-54862-8 43

11. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples
using causality. Formal Methods in System Design 40(1), 20–40 (2012), https://doi.org/10.
1007/s10703-011-0132-2

12. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Mathe-
mathics of Operations Research 16(3), 580–595 (1991)

13. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: 20th Annual ACM
Symposium on Theory of Computing (STOC). pp. 460–467. ACM (1988)

14. Chockler, H.: Causality and responsibility for formal verification and beyond. In: First
Workshop on Causal Reasoning for Embedded and safety-critical Systems Technologies
(CREST). EPTCS, vol. 224, pp. 1–8 (2016), https://doi.org/10.4204/EPTCS.224.1

15. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification?
ACM Transactions on Computational Logic 9(3), 20:1–20:26 (2008)

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

58 Baier et al.

https://doi.org/10.1007/978-3-319-99154-2_2
https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/4375-de Alfaro (1997) - Formal Verification of Probabilistic Systems.pdf
https://wcl.cs.rpi.edu/pilots/library/papers/TAGGED/4375-de Alfaro (1997) - Formal Verification of Probabilistic Systems.pdf
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1145/3209108.3209184
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://arxiv.org/abs/2104.13604
https://doi.org/10.24963/ijcai.2021/244
https://arxiv.org/abs/2201.08768
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.4204/EPTCS.224.1

17. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov decision
processes. In: Hung, D.V., Sokolsky, O. (eds.) 18th International Symposium on Automated
Technology for Verification and Analysis (ATVA). Lecture Notes in Computer Science, vol.
12302, pp. 484–500. Springer (2020), https://doi.org/10.1007/978-3-030-59152-6 27

18. Eells, E.: Probabilistic Causality. Cambridge Studies in Probability, Induction and Decision
Theory, Cambridge University Press (1991)

19. Friedenberg, M., Halpern, J.Y.: Blameworthiness in multi-agent settings. In: 33rd Conference
on Artificial Intelligence (AAAI). pp. 525–532. AAAI Press (2019), https://doi.org/10.1609/
aaai.v33i01.3301525

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

21. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach: Part 1:
Causes. In: 17th Conference in Uncertainty in Artificial Intelligence (UAI). pp. 194–202
(2001)

22. Hitchcock, C.: Probabilistic causation. In: Hájek, A., Hitchcock, C. (eds.) The Oxford Hand-
book of Probability and Philosophy, pp. 815–832. Oxford University Press (2016)

23. Kallenberg, L.: Lecture Notes Markov Decision Problems - version 2020 (02 2020)
24. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: 25th Conference on

Uncertainty in Artificial Intelligence (UAI). pp. 303–312 (2009)
25. Kleinberg, S.: Causality, Probability and Time. Cambridge University Press (2012)
26. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex

quadratic programming. USSR Computational Mathematics and Mathematical Physics
20(5), 223–228 (1980)

27. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via causality to
fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) 30th International Conference
on Computer Safety, Reliability, and Security (SAFECOMP). Lecture Notes in Computer
Science, vol. 6894, pp. 71–84. Springer (2011), https://doi.org/10.1007/978-3-642-24270-0
6

28. Leitner-Fischer, F.: Causality Checking of Safety-Critical Software and Systems. Ph.D.
thesis, University of Konstanz, Germany (2015), http://kops.uni-konstanz.de/handle/
123456789/30778

29. Lewis, D.: Counterfactuals and comparative possibility. Journal of Philosophical Logic 2(4),
418–446 (1973)

30. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Safety.
Springer-Verlag (1995)

31. Märcker, S.: Model checking techniques for design and analysis of future hardware and
software systems. Ph.D. thesis, TU Dresden, Germany (2020), https://d-nb.info/1232958204

32. Namjoshi, K.S.: Certifying model checkers. In: 13th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science, vol. 2102, pp. 2–13. Springer
(2001), https://doi.org/10.1007/3-540-44585-4 2

33. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is np-
hard. Journal of Global optimization 1(1), 15–22 (1991)

34. Patek, S.D., Bertsekas, D.P.: Stochastic shortest path games. SIAM Journal on Control and
Optimization 37(3), 804–824 (1999)

35. Pearl, J.: Causality. Cambridge University Press, 2nd edn. (2009)
36. Powers, D.: Evaluation: From precision, recall and f-factor to ROC, informedness, marked-

ness & correlation. Mach. Learn. Technol. 2 (01 2008)
37. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY (1994)
38. Reichenbach, H.: The Direction of Time. Dover Publications (1956)

On probability-raising causality in Markov decision processes 59

https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1609/aaai.v33i01.3301525
https://doi.org/10.1007/978-3-642-24270-0_6
https://doi.org/10.1007/978-3-642-24270-0_6
http://kops.uni-konstanz.de/handle/123456789/30778
http://kops.uni-konstanz.de/handle/123456789/30778
https://d-nb.info/1232958204
https://doi.org/10.1007/3-540-44585-4_2

39. Suppes, P.: A Probabilistic Theory of Causality. Amsterdam: North-Holland Pub. Co. (1970)
40. Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent systems. In: Bal-

doni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) 19th International
Conference on Princiles and Practice of Multi-Agent Systems (PRIMA). Lecture Notes
in Computer Science, vol. 9862, pp. 261–278. Springer (2016), https://doi.org/10.1007/
978-3-319-44832-9 16

41. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic responsibility
under imperfect information. In: Elkind, E., Veloso, M., Agmon, N., Taylor, M.E. (eds.) 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp.
592–600. International Foundation for Autonomous Agents and Multiagent Systems (2019),
http://dl.acm.org/citation.cfm?id=3331745

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

60 Baier et al.

https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
http://dl.acm.org/citation.cfm?id=3331745
http://creativecommons.org/licenses/by/4.0/

Parameterized Analysis of Reconfigurable
Broadcast Networks?

A. R. Balasubramanian1 , Lucie Guillou2 , and Chana Weil-Kennedy3(�)

1 Technical University of Munich bala.ayikudi@tum.de
2 ENS Rennes lucie.guillou@ens-rennes.fr

3 Technical University of Munich chana.weilkennedy@in.tum.de

Abstract. Reconfigurable broadcast networks (RBN) are a model of
distributed computation in which agents can broadcast messages to other
agents using some underlying communication topology which can change
arbitrarily over the course of executions. In this paper, we conduct pa-
rameterized analysis of RBN. We consider cubes, (infinite) sets of config-
urations in the form of lower and upper bounds on the number of agents
in each state, and we show that we can evaluate boolean combinations
over cubes and reachability sets of cubes in PSPACE. In particular, reach-
ability from a cube to another cube is a PSPACE-complete problem.
To prove the upper bound for this parameterized analysis, we prove some
structural properties about the reachability sets and the symbolic graph
abstraction of RBN, which might be of independent interest. We justify
this claim by providing two applications of these results. First, we show
that the almost-sure coverability problem is PSPACE-complete for RBN,
thereby closing a complexity gap from a previous paper [3]. Second, we
define a computation model using RBN, à la population protocols, called
RBN protocols. We characterize precisely the set of predicates that can
be computed by such protocols.

Keywords: Broadcast networks · Parameterized reachability · Almost-
sure coverability · Asynchronous shared-memory systems

1 Introduction

Reconfigurable broadcast networks (RBN) [8,10] are a formalism for modelling
distributed systems in which a set of anonymous, finite-state agents execute the
same underlying protocol and broadcast messages to their neighbors according to
an underlying communication topology. The communication topology is reconfig-
urable, meaning that the set of neighbors of an agent can change arbitrarily over
the course of an execution. Parameterized verification of these networks concerns
itself with proving that a given property is correct, irrespective of the number
of participating agents. Dually, it can be viewed as the problem of finding an

? This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 61–80, 2022.
https://doi.org/10.1007/978-3-030-99253-8_4

http://orcid.org/0000-0002-7258-5445
http://orcid.org/0000-0002-6101-2895
http://orcid.org/0000-0002-1351-8824
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_4&domain=pdf

execution of some number of agents which violates a given property. Ever since
their introduction within this context [10], RBN have been studied extensively,
with various results on (parameterized) reachability and coverability [8,10,3,7],
along with various extensions using probabilities and clocks [5,4].

In this paper, we first consider the cube-reachability problem for RBN, in
which we are given two (possibly infinite) sets of configurations C and C′ (called
cubes), each of them defined by lower and upper bounds on the number of agents
in each state, and we must decide if there is a configuration in C which can reach
some configuration in C′. The cube-reachability question covers parameterized
reachability and coverability problems, and as explained in [3], also covers the
parameterized reachability problem for a generalized model of RBN called RBN
with leaders. Moreover, a sub-problem of cube-reachability has already been
studied for RBN in [8]. The authors show that this sub-problem is PSPACE-
complete. One of the results in our paper is that the entire cube-reachability
problem is PSPACE-complete, hence extending the sub-problem considered in [8],
while still retaining the same complexity upper bound.

In fact, our main result, which we call the PSPACE Theorem, is a more
general result. It subsumes the above result for cube-reachability and allows for
more complex parameterized analysis of RBN. The PSPACE Theorem roughly
states that any boolean combination of atoms can be evaluated in PSPACE,
where an atom is a finite union of cubes or the reachability set of a finite union
of cubes (i.e. post∗ or pre∗). To prove the PSPACE Theorem, we first consider
the so called symbolic graph of a RBN ([8], Section 5). We prove some structural
properties about these graphs, using results from [8]. Next, using these structural
properties, we show that the set of reachable configurations of a cube C can be
expressed as a finite union of cubes, each having a norm exponentially bounded
in the size of the given RBN and C. This result then allows us to give an on-the-fly
exploration algorithm for proving the PSPACE Theorem.

We believe that the PSPACE Theorem and the results leading to it that
we have proven in this paper have further applications to problems concerning
RBN. To justify this claim, we provide two applications. First, we show that the
almost-sure coverability problem for RBN is PSPACE-complete, thereby closing
a complexity gap from a previous paper ([3], Section 5.3). Second, we define a
computation model using RBN, called RBN protocols, which is similar in spirit
to the population protocols model [1,2]. We characterize precisely the set of
predicates that can be computed using RBN protocols. This result generalizes
the corresponding result for IO protocols, which are a sub-class of population
protocols that can be simulated by RBN protocols, as shown in ([3], Section 6.2).

Finally, by the reduction given in ([3], Section 4.2), our results on cube-
reachability and almost-sure coverability can be transferred to another model of
distributed computation called asynchronous shared memory systems (ASMS),
giving a PSPACE-completeness result for both of these problems. This solves an
open problem from ([6], Section 6).

To summarize, we have shown that many important parameterized problems
of RBN can be solved in PSPACE, that the sub-problem of the cube-reachability

62 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

problem defined in [8] can be generalized while retaining the same upper bounds,
and that the almost-sure coverability problems for RBN and ASMS are PSPACE-
complete, thereby solving open problems from [3,6]. We believe that our other
results might be of independent interest, and we provide an application by in-
troducing RBN protocols and characterizing the set of predicates that they can
compute.

The paper is organized as follows. Section 2 contains preliminaries, including
the definition of RBN. Section 3 defines the symbolic graph of a RBN, and proves
the properties of this graph needed to derive our main result. Section 4 contains
the main result that a host of parameterized problems over cubes, including
cube-reachability, is PSPACE-complete for RBN. Finally, Sections 5 and 6 give
applications of our main results: Section 5 solves the complexity gap for the
almost-sure coverability problem, and Section 6 introduces RBN protocols and
characterizes their expressive power. Due to lack of space, full proofs of some of
the results can be found in the long version.

2 Preliminaries

The definitions and notations in this section are taken from [3].

2.1 Multisets

A multiset on a finite set E is a mapping C : E → N, i.e. for any e ∈ E,
C(e) denotes the number of occurrences of element e in C. We let M(E) denote
the set of all multisets on E. Let He1, . . . , enI denote the multiset C such that
C(e) = |{j | ej = e}|. We sometimes write multisets using set-like notation.
For example, H2 · a, bI and Ha, a, bI denote the same multiset. Given e ∈ E,
we denote by e the multiset consisting of one occurrence of element e, that is
HeI. Operations on N like addition or comparison are extended to multisets by
defining them component wise on each element of E. Subtraction is allowed as

long as each component stays non-negative. We call |C| def
=
∑
e∈E C(e) the size

of C.

2.2 Reconfigurable Broadcast Networks

Reconfigurable broadcast networks (RBN) are networks consisting of finite-state,
anonymous agents and a communication topology which specifies for every pair
of processes, whether or not there is a communication link between them. Dur-
ing a single step, a single agent can broadcast a message which is received by
all of its neighbors, after which both the agent and its neighbors change their
state according to some transition relation. Further, in between two steps, the
communication topology can change in an arbitrary manner. For the problems
that we consider in this paper, it is easier to forget the communication topology
and define the semantics of an RBN directly in terms of collections of agents.

Parameterized Analysis of RBN 63

Definition 1. A reconfigurable broadcast network is a tuple R = (Q,Σ, δ)
where Q is a finite set of states, Σ is a finite alphabet and δ ⊆ Q×{!a, ?a | a ∈ Σ}×
Q is the transition relation.

If (p, !a, q) (resp. (p, ?a, q)) is a transition in δ, we will denote it by p
!a−→ q

(resp. p
?a−→ q). A configuration C of a RBN R is a multiset over Q, which

intuitively counts the number of processes in each state. Given a letter a ∈ Σ
and two configurations C and C ′ we say that there is a step C

a−→ C ′ if there exists

a multiset Ht, t1, . . . , tkI of δ for some k ≥ 0 satisfying the following: t = p
!a−→ q,

each ti = pi
?a−→ qi, C ≥ p +

∑
i pi, and C ′ = C − p −

∑
i pi + q +

∑
i qi. We

sometimes write this as C
t+t1,...,tn−−−−−−→ C ′ or C

a−→ C ′. Intuitively it means that a
process at the state p broadcasts the message a and moves to q, and for each
1 ≤ i ≤ k, there is a process at the state pi which receives this message and
moves to qi. We denote by

∗−→ the reflexive and transitive closure of the step
relation. A run is then a sequence of steps.

q1 q2 q3

?a

!b

?b

!a

Fig. 1. An RBN R with three states.

Let R = (Q,Σ, δ) be an RBN. Given configurations C and C ′, we say C ′ is

reachable from C if C
∗−→ C ′. We say C ′ is coverable from C if there exists C ′′

such that C
∗−→ C ′′ and C ′′ ≥ C ′. The reachability problem consists of deciding,

given a RBN R and configurations C,C ′, whether C ′ is reachable from C in R.
The coverability problem consists of deciding, given a RBN R and configurations
C,C ′, whether C ′ is coverable from C in R. Let S be a set of configurations.

The predecessor set of S is pre∗(S)
def
= {C ′|∃C ∈ S . C ′ ∗−→ C}, and the successor

set of S is post∗(S)
def
= {C|∃C ′ ∈ S . C ′ ∗−→ C}.

Example 1. Figure 1 illustrates a RBN R = (Q,Σ, δ) with Q = {q1, q2, q3}.
Configuration H3·q1I can reach H2·q1, q3I in two steps. First, a process broadcasts
a, the two other processes receive it and move to q2. Then, one of the processes
in q2 broadcasts b and moves to q1, while the other one receives b and moves to
q3. Notice that Hq3I is only coverable from a configuration Hk · q1I if k ≥ 3.

2.3 Cubes and Counting Sets

Given a finite set Q, a cube C is a subset of M(Q) described by a lower bound
L : Q→ N and an upper bound U : Q→ N ∪ {∞} such that C = {C : L ≤ C ≤

64 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

U}. Abusing notation, we identify the set C with the pair (L,U). Notice that
since U(q) can be ∞ for some state q, a cube can contain an infinite number of
configurations. All the results in this paper are true irrespective of whether the
constants in a given input cube are encoded in unary or binary.

A finite union of cubes
⋃m
i=1(Li, Ui) is called a counting constraint and the

set of configurations
⋃m
i=1 Ci it describes is called a counting set. Notice that two

different counting constraints may describe the same counting set. For example,
let Q = {q} and let (L,U) = (1, 3), (L′, U ′) = (2, 4), (L′′, U ′′) = (1, 4). The
counting constraints (L,U)∪ (L′, U ′) and (L′′, U ′′) define the same counting set.
It is easy to show (see also Proposition 2 of [11]) that counting constraints and
counting sets are closed under Boolean operations.

Norms. Let C = (L,U) be a cube. Let ‖C‖l be the the sum of the components
of L. Let ‖C‖u be the sum of the finite components of U if there are any, and 0
otherwise. The norm of C is the maximum of ‖C‖l and ‖C‖u, denoted by ‖C‖. We

define the norm of a counting constraint Γ =
⋃m
i=1 Ci as ‖Γ‖ def

= max
i∈[1,m]

{‖Ci‖}.

The norm of a counting set S is the smallest norm of a counting constraint

representing S, that is, ‖S‖ def
= min
S=JΓ K

{‖Γ‖}. Proposition 5 of [11] entails the

following results for the norms of the union, intersection and complement.

Proposition 1. Let S1,S2 be counting sets. The norms of the union, inter-
section and complement satisfy: ‖S1 ∪ S2‖ ≤ max{‖S1‖, ‖S2‖}, ‖S1 ∩ S2‖ ≤
‖S1‖+ ‖S2‖, and ‖S1‖ ≤ |Q| · ‖S1‖+ |Q|.

Reachability. The reachability problem can be generalized to the cube-reachability
problem which consists of deciding, given an RBNR and two cubes C, C′, whether
there exists configurations C ∈ C and C ′ ∈ C′ such that C ′ is reachable from C in
R. If this is the case, we say C′ is reachable from C. The counting set-reachability
problem asks, given an RBN R and two counting sets S,S ′, whether there ex-
ists cubes C ∈ S and C′ ∈ S ′ such that C′ is reachable from C in R. We define
cube-coverability and counting set-coverability in an analoguous way.

Remark 1. In the paper [8], the authors define a sub-class of the cube-reachability
problem, which is called the unbounded initial cube-reachability problem in [3].
More precisely, the sub-class considered in [8] is the following: We are given an
RBN and two cubes C = (L,U) and C′ = (L′, U ′) with the special property
that L(q) = 0 and U(q) ∈ {0,∞} for every state q. We then have to decide if
C can reach C′. This problem was shown to be PSPACE-complete ([8], Theorem
5.5), whenever the numbers in the input are given in unary. As we shall show
later in this paper, the cube-reachability problem itself is in PSPACE, even when
the input numbers are encoded in binary, thereby generalizing the upper bound
results given in that paper.

Parameterized Analysis of RBN 65

3 Reachability sets of counting sets

In this section, we set the stage for proving the main result of this paper. This
main result is given in two stages: First, we show that given a RBN with state set
Q and a counting set S, the set post∗(S) is also a counting set and ‖post∗(S)‖ ≤
2p(‖S‖·|Q|) where p is some fixed polynomial. Using this, we then prove that a
host of cube-parameterized problems for RBN can be solved in PSPACE.

The rest of this section is organized as follows: To prove the first result, we
recall the notion of a symbolic graph of a RBN from [8]. In the symbolic graph,
each node is a symbolic configuration of the RBN, which intuitively represents
an infinite set of configurations in which the number of agents is fixed in some
states, and arbitrarily big in the others. Next, by exploiting the special structure
of the symbolic graph, we prove some properties which allow us to show that
whenever two nodes in this graph are reachable, they are reachable by a path
having a special structure. Finally, using these properties and the connection
between symbolic configurations and configurations of the RBN, we prove the
desired first result. Once we have shown the first result, we then show how the
PSPACE Theorem can be obtained from it.

Throughout this section, we fix an RBN R = (Q,Σ, δ).

3.1 Symbolic graph

In this subsection, we recall the notion of a symbolic graph of an RBN from [8].
Here, for the sake of convenience, we define it in a slightly different way, but the
underlying notion is the same as [8]. Throughout this subsection and the next,
we fix a number k ∈ N.

The symbolic graph of index k associated with the RBN R is an edge-labelled
graph Gk = (N,E,L) where N = Mk(Q) × 2Q is the set of nodes. Here Mk(Q)
denotes the set of multisets on Q of size at most k. E is the set of edges and
L : E → Σ is the labelling function. Each node of Gk is also called a symbolic
configuration. Intuitively, in each symbolic configuration (v, S), the multiset v
(called the concrete part) is used to keep track of a fixed set of at most k agents,
and the subset S (called the abstract part) is used to keep track of the support
of the remaining agents.

Let θ = (v, S) and θ′ = (v′, S′) be two symbolic configurations. There is
an edge labelled by a between θ and θ′ if and only if the following is satisfied:
There exists a transition (q, !a, q′) ∈ δ such that at least one of the following two
conditions holds

– (Broadcast from v) There exists a multiset of transitions H(p1, ?a, p
′
1), . . . ,

(pl, ?a, p
′
l)I such that v′ = v −

∑
i pi +

∑
i p

′
i − q + q′, and for each qs ∈ Q:

• If qs ∈ S′ \ S then there exists q′s ∈ S and (q′s, ?a, qs) ∈ R,
• If qs ∈ S \ S′ then there exists q′s ∈ S′ and (qs, ?a, q

′
s) ∈ R.

– (Broadcast from S) There exists a multiset of transitions H(p1, ?a, p
′
1), . . . ,

(pl, ?a, p
′
l)I such that v′ = v −

∑
i pi +

∑
i p

′
i, q ∈ S, q′ ∈ S′, and for each

qs ∈ Q \ {q, q′}:

66 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

• if qs ∈ S′ \ S then there exists q′s ∈ S and (q′s, ?a, qs) ∈ R,
• if qs ∈ S \ S′ then there exists q′s ∈ S′ and (qs, ?a, q

′
s) ∈ R.

An edge labelled by a between θ and θ′ is denoted by θ a
Gk θ

′. The relation
 ∗Gk is the reflexive and transitive closure of Gk := ∪a∈Σ a

Gk . Whenever the
index k is clear, we will drop the subscript Gk from these notations.

Remark 2. Let θ = (v, S), θ′ = (v′, S′) be two symbolic configurations. By con-
struction, θ can only reach θ′ if |v| = |v′|.

To give an intuition behind the edges in Gk, recall the intuition that in a
symbolic configuration, the concrete part is used to keep track of a fixed set of
at most k processes and the abstract part is used to keep track of the support of
the remaining processes. The first condition for the existence of an edge asserts
the following: 1) In the concrete part, some process broadcasts the message a and
some subset of processes receive a, 2) In the abstract part, any new state added
or any old state deleted comes because of receiving a. The second condition
asserts exactly the same, except we now require the process broadcasting the
message a to be from the abstract part.

The symbolic graph of index k can be thought of as an abstraction of the
set of configurations of R, where only a fixed number of processes are explicitly
represented and the rest are abstracted by means of their support alone. To
formalize this, given a symbolic configuration θ = (v, S), we let JθK denote the
following (infinite) set of configurations: C ∈ JθK if and only if C(q) = v(q) for
q /∈ S and C(q) ≥ v(q) for q ∈ S.

{q1} {q1, q2} {q1, q2, q3}

{q2} {q1, q3} {q2, q3} {q3}

a
a

b
b

b

b

a, b

b

b a

a

b

b

Fig. 2. Symbolic graph G0 of index 0 of the RBN of Example 1.

Example 2. The symbolic graph G0 of index 0 of the RBN of Example 1 is
illustrated in Figure 2. At this index, the graph only keeps track of a subset
S ⊆ Q, and the edges correspond to broadcasts from S. Consider the edges from
{q1}. The self-loop corresponds to a broadcast of a that is not received. The
edge to {q1, q2} corresponds to a broadcast of a received by at least one process

Parameterized Analysis of RBN 67

in q1. There is no edge from {q3} because there is no broadcast transition from
q3.

We then have the following lemma, which asserts that runs between two
configurations in an RBN induce corresponding runs in the symbolic graph. The
proof of the lemma is easily obtained from the definition of the symbolic graph.

Lemma 1. Let C,C ′ be two configurations of R such that C
a−→ C ′. Then, for

every θ such that C ∈ JθK, there exists θ′ such that C ′ ∈ Jθ′K and θ a θ′.

3.2 Properties of the symbolic graph

In this subsection, we prove some properties of the symbolic graph (of any index
k). The first two properties that we prove exhibit some structural properties on
the paths of the symbolic graph. The next two properties relate paths over the
symbolic graph to runs over the configurations of the given RBN. These four
properties will ultimately lead us to prove our two main contributions in the
next section.

First property: Monotonicity. Let k ∈ N and let Gk be the symbolic graph of
index k associated with R. The first key property of Gk is the following property,
which we call monotonicity.

Proposition 2. Let θ = (v, S) and θ′ = (v′, S′) be symbolic configurations of
Gk. Then the following are true:

– If Z ⊆ S and θ a θ′, then (v, S) a (v′, Z ∪ S′).
– If Z ⊆ Q and θ a θ′, then (v, Z ∪ S) a (v′, Z ∪ S′).

Proof. The two points follow immediately from the definition of a.

Second property: Normal Form. To state the second property, we first need
a small definition.

Definition 2. Let (v0, S0) · · · (vm, Sm) a path in Gk. A pair of indices
0 ≤ i < j ≤ m is called a bad pair if (Si \ Si+1) ∩ Sj 6= ∅. A path is said to be
in normal form if it contains no bad pairs, i.e., for all 0 ≤ i < m and any j > i,
(Si \ Si+1) ∩ Sj = ∅.

Intuitively, a path is in normal form if during each step, the states that
disappear from the abstract part never reappear again. The following lemma
asserts that whenever there is a path between two symbolic configurations, then
there is a path between them that is in normal form.

Lemma 2. Let θ, θ′ be symbolic configurations of Gk such that there is a path
between θ and θ′ of length m. Then, there is a path in normal form between θ
and θ′ of length m.

68 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

Proof Sketch. Let θ = θ0 θ1 θ2 . . . θm−1 θm = θ′ be the path
between θ and θ′. We proceed by induction on m. The claim is clearly true for
m = 0. Suppose m > 0 and the claim is true for m−1. By induction hypothesis,
we can assume that the path θ0 θ1 . . . θm−1 is already in normal form.

Let each θi = (vi, Si). Let l be the number of bad pairs in the path between
θ0 and θm. If l = 0, then the path is already in normal form and we are done.
Suppose l > 0 and let (w,w′) be a bad pair. Since the path between θ0 and θm−1
is already in normal form, it has to be the case that w′ = m. Hence, we have
Z := (Sw \ Sw+1) ∩ Sm 6= ∅.

By Proposition 2, the following is a valid path: (vw, Sw) (vw+1, Sw+1 ∪
Z) (vw+2, Sw+2 ∪ Z) . . . (vm−1, Sm−1 ∪ Z) (vm, Sm ∪ Z) = (vm, Sm). Let
θ′j := θj if j ≤ w and (vj , Sj ∪ Z) otherwise. Hence, we get a path θ′0 θ′1
. . . θ′m−1 θ′m.

Let each θ′e = (v′e, S
′
e) and let 0 ≤ i < j ≤ m−1. By a case analysis on where

i and j are relative to the index w, we can prove that (S′i\S′i+1)∩S′j = ∅. Having
proved this, it is then clear by construction, that this new path from θ′0 := θ0 to
θ′m := θm has at most l − 1 bad pairs only. Hence, we now have a path from θ0
to θm such that the prefix of length m− 1 is in normal form and the number of
bad pairs has been strictly reduced to l− 1. Repeatedly applying this procedure
leads to a path in normal form between θ0 and θm.

Third property: Refinement. Before we state the third property, we need
a small definition. Recall that, given a symbolic configuration θ = (v, S), the
set JθK denotes the set of configurations C such that C(q) = v(q) if q /∈ S and
C(q) ≥ v(q) otherwise. The following definition refines the set JθK.

Definition 3. Given a symbolic configuration θ = (v, S) and a number N ∈ N,
let JθKN denote the set of configurations C such that C(q) = v(q) if q /∈ S and
C(q) ≥ v(q) +N otherwise. Note that JθK = JθK0.

This definition along with the above two properties now enable us to prove
the third property. It roughly states that if a symbolic configuration θ′ can be
reached from another symbolic configuration θ, then there is a “small” N such
that any configuration in Jθ′KN can be reached from some configuration in JθK.

Theorem 1. Let θ, θ′ be symbolic configurations of Gk such that θ ∗ θ′. Then
there exists N ≤ k × (2k)|Q| × (|Q| + 1)|Q|+1 + 1 such that for all C ′ ∈ Jθ′KN ,

there exists C ∈ JθK such that C
∗−→ C ′.

Proof Sketch. Suppose θ ∗ θ′. If the length of the path is 0, then there is
nothing to prove. Hence, we restrict ourselves to the case when the length of the
path is bigger than 0. By Lemma 2, there is a path in normal from from θ to θ′

(say) θ = θ0 θ1 θ2 . . . θm−1 θm = θ′ with each θi := (vi, Si).
Let N0 = 0 and let Ni = (Ni−1 + 1) · (|Si−1 \ Si| + 1) for every 1 ≤ i ≤ m.

In Lemma 5.3 of [8] (more precisely in its proof, in Lemma 6 of the long version
[9]), the following fact has been proved:

Parameterized Analysis of RBN 69

For every 1 ≤ i ≤ m and for every C ′ ∈ JθiKNi+1, there exists C ∈
Jθi−1KNi−1+1 such that C

∗−→ C ′.

This immediately proves that for all C ′ ∈ Jθ′KNm+1, there exists C ∈ JθK such

that C
∗−→ C ′. If we prove Nm ≤ k × (2k)|Q| × (|Q| + 1)|Q|+1, then the proof of

the theorem will be complete.
Notice that if (v, ∅) (v′, S′) is an edge in Gk then S′ = ∅. This fact, along

with the definition of a path in normal form, allows us to easily conclude that the
number of indices i such that |Si−1 \ Si| > 0 is at most |Q|. It then follows that
except for at most |Q| indices, each index Ni is obtained from Ni−1 by simply
adding 1 and in the remaining indices, Ni is obtained from Ni−1 by adding 1
and then multiplying by a number which is at most |Q|+ 1. Using this, we can
deduce that the maximum value for Nm is at most (m− |Q|+ 1)|Q|(|Q|+ 1)|Q|.
Since m is itself the length of the path between θ0 and θm, m is upper bounded
by the number of symbolic configurations in Gk which is at most k× k|Q|× 2|Q|.
Overall we get that Nm ≤ k × (2k)|Q| × (|Q|+ 1)|Q|+1.

Remark 3. A similar result was proved in Lemma 5.3 of [8], but there it was just
stated that there exists an N satisfying this property. Moreover from the proof
of that lemma, only a doubly exponential bound on N could be inferred.

Fourth property: Compatibility. To describe the fourth property, we need
the following notion of order on configurations, relative to a given symbolic
configuration.

Definition 4. Let θ = (v, S) be a symbolic configuration, and let C,C ′ be two
configurations of R. We define an order �θ such that C �θ C ′ if and only if
C,C ′ ∈ [[θ]], and ∀q ∈ S, C(q) ≤ C ′(q).

This definition enables us to state our next property, which we dub compat-
ibility. It intuitively says that the order that we have defined is, in some sense,
compatible with the edges of the symbolic configurations.

Lemma 3. Let θ be a symbolic configuration of Gk, and let C,C ′ be two config-
urations of R. If C ∈ [[θ]] and C

∗−→ C ′, then there exists a symbolic configuration
θ′ such that 1) C ′ ∈ [[θ′]], 2) θ ∗ θ′ and 3) for all C ′1 such that C ′1 �θ′ C ′, there

exists C1 ∈ [[θ]] such that C1
∗−→ C ′1.

Proof. Let θ be a symbolic configuration and C,C ′ be configurations such that
C ∈ [[θ]] and C

∗−→ C ′. Let C = C0 −→ · · · −→ Cm−1 −→ Cm = C ′ denote the run
between C and C ′. We prove the property by induction on m. For m = 0, we
have C = C ′. The property is easily seen to hold with θ′ = θ.

Suppose now that m ≥ 1, and that the property holds for all n ≤ m. By in-
duction hypothesis, for the configuration Cm−1, there exists a symbolic configu-

ration θm−1 satisfying the property, in particular θ ∗ θm−1. Since Cm−1
a−→ Cm

for some a ∈ Σ, by Lemma 1, there exists a symbolic configuration θm such that
Cm ∈ [[θm]], and θm−1 a θm. Using θ ∗ θm−1, we obtain that θ ∗ θm.

70 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

Let θm−1 = (vm−1, Sm−1) and θm = (vm, Sm). Let C ′m ∈ [[θm]] be such
that C ′m �θm Cm. We will construct a configuration C ′m−1 ∈ [[θm−1]] such that

C ′m−1 �θm−1
Cm−1 and C ′m−1

∗−→ C ′m. If we construct such a configuration, then

by induction hypothesis, there is a C1 ∈ [[θ]] such that C1
∗−→ C ′m−1

∗−→ C ′m, which
will conclude the proof.

Let C ′m−1(q) = Cm−1(q) for all q 6∈ Sm−1. To define C ′m−1 on Sm−1, we

first define a mapping pred from states in Sm to states of Sm−1 ∪ Sm−1 = Q as
follows. Given q′ ∈ Sm:

– If q′ ∈ Sm−1, pred(q′) = q′;
– If q′ 6∈ Sm−1, by definition of edges in the symbolic graph, there exists
q ∈ Sm−1 such that (q, ?a, q′) is a transition. Then pred(q′) = q for one
(arbitrary but fixed) such q.

By definition, C ′m(q) = Cm(q) for all q 6∈ Sm. For all q ∈ Sm, let nq =
C ′m(q) − Cm(q). Intuitively, we want to place these nq processes in the right
places of C ′m−1 so that C ′m−1 −→ C ′m. For all q ∈ Sm−1, let C ′m−1(q) = Cm−1(q)+∑
q′∈Sm,pred(q′)=q nq′ . By definition, C ′m−1 �θm−1

Cm−1. So all that remains is

to prove that C ′m−1
∗−→ C ′m.

Let Cm−1
t+t1,...,tn−−−−−−→ Cm where t = (p, !a, p′) and each ti = (pi, ?a, p

′
i). If

we let Sm \ Sm−1 = {q′1, . . . , q′w}, then by definition there is a transition t′i :=
(pred(q′i), ?a, q

′
i) for each i. Additionally, C ′m−1(pred(q′i)) ≥ Cm−1(pred(q′i)) +

nq′i . This allows us to do C ′m−1
t+t1,...,tn,nq′1

·t′1,nq′2 ·t
′
2,...,nq′w

·t′w
−−−−−−−−−−−−−−−−−−−−−−→ C ′m, which con-

cludes the proof.

4 The PSPACE Theorem

In this section, we prove our two main contributions. First, we show that given
a cube C, post∗(C) is a counting set of bounded size. Using this, we show our
main result: any boolean combination of atoms can be evaluated in PSPACE,
where an atom is a counting set or the reachability set of a counting set. We call
this the PSPACE Theorem. The intuition behind the PSPACE Theorem is that
the norms of the counting sets obtained by such combinations are “small”, and
so we only need to examine small configurations to verify them, thus yielding a
PSPACE algorithm for checking correctness. In particular, the PSPACE Theorem
will show that the cube-reachability problem is in PSPACE. We fix an arbitrary
RBN R = (Q,Σ, δ) for the rest of the section.

We start by drawing links between cubes and symbolic configurations.

– Given a symbolic configuration θ = (v, S), we let Cθ be the cube (L,U) where
L = v, and U(q) = v(q) if q /∈ S and U(q) =∞ otherwise. Then Cθ = [[θ]].

– Given a cube C = (L,U), we define ∆C to be the set of symbolic configura-
tions θ = (v, S) with S = {q | U(q) =∞} and L(q) ≤ v(q) ≤ U(q) if q /∈ S
and v(q) = L(q) otherwise. Then [[∆C]] = C.

Parameterized Analysis of RBN 71

Notice that the set ∆C is included in the symbolic graph of index 2‖C‖.
Indeed, if C = (L,U) and (v, S) ∈ ∆C , then |v| ≤ |L| + |Uf | where Uf (q) = 0 if
U(q) =∞ and Uf (q) = U(q) otherwise. Since ‖C‖ = max(|L|, |Uf |), we have the
desired result. By Remark 2, we know that symbolic configurations in the graph
of index 2‖C‖ can only reach symbolic configurations which are also in the graph
of index 2‖C‖.

Lemma 4. Given a cube C, the sets ∆C and post∗(∆C) are included in the
symbolic graph of index 2‖C‖.

There are only a finite number of symbolic configurations in the graph of a
given index. Therefore post∗(∆C) is a finite set of symbolic configurations θ. It
follows that [[post∗(∆C)]] is the finite union of the cubes Cθ, and thus a counting
set.

Unfortunately, it is in general not the case that post∗(C) = [[post∗(∆C)]],
which would close our argument. However, we will show that for each symbolic
configuration θ in post∗(∆C), there is a counting set Sθ ⊆ [[θ]] such that the
finite union of these counting sets is equal to post∗(C). This will then show our
first important result, namely that the reachability set of a counting set is also
a counting set with “small” norm.

Theorem 2. Let C be a cube. Then post∗(C) is a counting set and

‖post∗(C)‖ ∈ O((‖C‖ · |Q|)|Q|+2)

The same holds for pre∗ by using the given RBN with reversed transitions.

Proof. We start by defining a counting set M of configurations, which we will
then prove to be equal to post∗(C).Given a symbolic configuration θ of post∗(∆C),
we define the set min(θ, C) to be the set of configurations C ∈ [[θ]] such that C
is minimal for the order �θ over the configurations of post∗(C), i.e.

min(θ, C) = min
�θ
{C ∈ [[θ]] | C ∈ post∗(C)}

We can now define M to be the following set

M =
⋃

θ∈post∗(∆C)

⋃
C∈min(θ,C)

CθC ,

where CθC is the cube C(C,S) for S such that θ = (v, S). SinceM is a finite union
of cubes, it is a counting set.

We show that post∗(C) ⊆ M. Let C ∈ post∗(C). There exists C0 ∈ C such

that C0
∗−→ C, and there exists θ0 ∈ ∆C such that C0 ∈ [[θ0]]. Applying Lemma

1, we obtain the existence of θ ∈ post∗(θ0) ⊆ post∗(∆C) such that C ∈ [[θ]]. Now,
there exists a configuration C ′ ∈ min(θ, C) such that C ′ �θ C. By definition of
CθC′ , C is in CθC′ and thus in M.

Now we show that M⊆ post∗(C). Let C ∈ M. By definition, there must be
a symbolic configuration θ ∈ post∗(∆C) and a configuration C ′ ∈ post∗(C) such

72 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

that C ′ �θ C. By the Compatibility Lemma (Lemma 3), C is in post∗(C) as
well.

All that remains is to bound the norm of M. To do this, let θ = (v, S) ∈
post∗(∆C) and let C ∈ min(θ, C). If we bound the norm of CθC by the desired
quantity, then the proof will be complete. Noticing that ‖CθC‖ = |C|, it suffices
to bound |C| by the desired quantity, which is what we shall do now.

By Theorem 1 and Lemma 4, there exists an N ≤ 2‖C‖ × (4‖C‖)|Q| × (|Q|+
1)|Q|+1 such that [[post∗(∆C)]]N ⊆ post∗([[∆C]]) = post∗(C). By definition of C,
there must be a smallest N ′ such that C(q) ≤ v(q) + N ′ for every state q. If
N ′ > N , then let CN be the configuration given by CN (q) = min(C(q), v(q)+N).
We get that CN ∈ [[θ]]N ⊆ [[post∗(∆C)]]N ⊆ post∗(C), and so CN �θ C and
CN ∈ post∗(C), which is a contradiction to the minimality of C. Hence N ′ ≤ N
and so |C| ≤ |v|+ |Q| ·N . Since θ = (v, S) is in post∗(∆C), by Lemma 4, we have
that |v| ≤ 2‖C‖. Substituting the upper bounds for |v| and N in the inequality
|C| ≤ |v|+ |Q| ·N then gives the required upper bound for |C|, thereby finishing
the proof.

This result also holds for pre∗(C). IfR = (Q,Σ,R) is the given RBN, consider
the “reverse” RBN Rr, defined as R = (Q,Σ,Rr) where Rr has a transition
(q, ?a, q′) for ? ∈ {!, ?} iff Rr has a transition (q′, ?a, q). Notice that Rr is still
an RBN and that post∗(C) in R is equal to pre∗(C) in Rr.

Recall that counting sets are closed under boolean operations. With the above
theorem, plus the fact that counting sets are finite unions of cubes, we obtain
the following closure result.

Corollary 1 (Closure). Counting sets are closed under post∗, pre∗ and boolean
operations.

We are now ready to show our main result, the PSPACE Theorem. We
show that there exist PSPACE algorithms to evaluate boolean combinations over
counting sets and reachability set of counting sets. This result and its proof are
adapted from a similar result for population protocols in [12].

Given a counting constraint Γ , we let [Γ] denote the counting set described
by Γ . To state our result, we first define some “nice” expressions.

Definition 5. A nice expression is any expression that is constructed by the
following syntax:

E := Γ | post∗(Γ) | pre∗(Γ) | E ∩ E | E ∪ E | E

where Γ is any counting constraint.
If E is a nice expression, then the size of E, denoted by |E|, is defined as

follows:

– If E = Γ or post∗(Γ) or pre∗(Γ), then |E| = 1;
– If E = E1 ∪ E2 or E = E1 ∩ E2, then |E| = |E1|+ |E2|;
– If E = E1, then |E| = |E1|+ 1.

Parameterized Analysis of RBN 73

The set of configurations that is described by a nice expression E can be defined
in a straightforward manner, and is denoted as [E].

Notice that any nice expression E is a counting constraint, and [E] is a
counting set, by the Closure Corollary 1.

Theorem 3 (PSPACE Theorem). Let E be a nice expression and let N be the
maximum norm of the counting constraints appearing in E. Then [E] is a count-
ing set of norm at most exponential in N, |E| and |Q|. Further, the membership
and emptiness problems for [E] are in PSPACE.

Proof. Recall that [E] is a counting set , by the Closure Corollary (Corollary 1).
The exponential bounds for the norms follow immediately from Proposition 1 and
Theorem 2. The membership complexity for union, intersection and complement
is easy to see. Without loss of generality it suffices to prove that membership in
post∗(Γ) is in PSPACE, where Γ is a counting constraint.

By Savitch’s Theorem NPSPACE=PSPACE, so we provide a nondeterministic
algorithm. Given (C, Γ), we want to decide whether C ∈ post∗(Γ). The algorithm
first guesses a configuration C0 ∈ Γ of the same size as C, verifies that C0 belongs
to Γ , and then simply guesses an execution starting at C0, step by step. The
algorithm stops if either the configuration reached at some step is C, or if it has
guessed more steps than the number of configurations of size |C|. This concludes
the discussion regarding the membership complexity.

To see that checking emptiness of E is in PSPACE, notice that if E is
nonempty, then it has an element of size at most ‖E‖. We can guess such an
element C in polynomial space (by representing each coefficient in binary), and
verify that C is indeed in E by means of the PSPACE membership algorithm.

This result is a powerful tool which can be used to prove that a host of
problems are in PSPACE for RBN. For instance, the cube-reachability problem
for cubes C and C′ is just checking if post∗(C)∩C′ is empty, which by the PSPACE
Theorem can be done in PSPACE. Combining this with Remark 1, we obtain the
following result.

Theorem 4. Cube-reachability is PSPACE-complete for RBN.

By the reduction given in Section 4.2 of [3], this result also proves that
cube-reachability is PSPACE-complete for asynchronous shared-memory systems
(ASMS), which is another model of distributed computation where agents com-
municate by a shared register. Due to lack of space, we defer a discussion of this
result to the appendix.

We will demonstrate further applications of the PSPACE Theorem in the next
section.

5 Application 1: Almost-sure coverability

Having presented our PSPACE Theorem and the closure property for reachability
sets of counting sets, we now provide two applications. For the first one, we

74 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

consider the almost-sure coverability problem for RBN. Using our new results,
we prove that this problem is PSPACE-complete.

The rest of the section is as follows: We first recall the definition of the almost-
sure coverability problem, give a characterization of it in terms of counting sets
and then prove PSPACE-completeness. Throughout this section, we fix a RBN
R = (Q,Σ, δ) with two special states init ,fin ∈ Q, which will respectively be
called the initial and final states.

5.1 The almost-sure coverability problem

Let ↑ fin denote the set of all configurations C of R such that C(fin) ≥ 1. For
any k ≥ 1, we say that the configuration Hk · initI almost-surely covers fin if
and only if post∗(Hk · initI) ⊆ pre∗(↑ fin). The reason behind calling this the
almost-sure coverability relation is that the definition given here is equivalent
to covering the state fin from Hk · initI with probability 1 under a probabilistic
scheduler which picks agents uniformly at random at each step.

The number k is called a cut-off if one of the following is true: Either, 1) for
all h ≥ k, the configuration Hh · initI almost-surely covers fin, in which case k is
called a positive cut-off; or, 2) for all h ≥ k, the configuration Hh · initI does not
almost-surely cover fin, in which case k is called a negative cut-off. The following
was proved in Theorem 9 of [3].

Theorem 5. Given an RBN with two states init ,fin, a cut-off always exists.
Whether the cut-off is positive or negative can be decided in EXPSPACE.

Our main result of this section is that

Theorem 6. Deciding whether the cut-off of a given RBN is positive or negative
is PSPACE-complete. Moreover, a given RBN always has a cut-off which is at
most exponential in its number of states.

5.2 A characterization of almost-sure coverability

We now rewrite the definition of almost-sure coverability in terms of counting
sets. Let [init] be the cube such that L(q) = U(q) = 0 if q 6= init and L(init) =
0, U(init) = ∞. Notice that by definition, ↑ fin is a cube. We now consider the
set of configurations defined by S := post∗([init]) ∩ pre∗(↑ fin). By our PSPACE
Theorem 3, S is a counting set such that the norm of S is at most 2p(|Q|) for
some fixed polynomial p. We now claim the following.

Theorem 7. R has a positive cut-off if and only if S is finite. Moreover, |Q|·|S|
is an upper bound on the size of the cut-off for R and so R has a cut-off which
is exponential in its number of states.

Proof. Let N be the norm of S. Suppose S is finite. If C ∈ S, then
∑
q∈Q C(q) ≤

|Q| ·N . So, if C is any configuration of size h > |Q| ·N such that C ∈ post∗(Hh ·
initI) then C ∈ pre∗(↑ fin). Hence, |Q| ·N is a positive cut-off for R.

Parameterized Analysis of RBN 75

Suppose S is infinite, and let ∪iCi be a counting constraint for S whose
norm is N . Then there must exist an index i with Ci := (L,U) and a state
p such that U(p) = ∞. For each h ≥ N , consider the configuration Ch given
by Ch(q) = L(q) if q 6= p and Ch(p) = h. Notice that Ch ∈ S and so Ch ∈
post∗([init]) ∩ pre∗(↑ fin). Hence, for every h ≥ |Q| · N , we have exhibited a
configuration of size h, reachable from (Hh · initI but from which fin is not
coverable. Thus N is a negative cut-off for R.

Remark 4. Notice that we have shown that if S is finite, then R has a positive
cut-off and if S is infinite, then R has a negative cut-off. This gives an alternative
proof of the fact that a cut-off always exists for a given RBN.

5.3 PSPACE-completeness of the almost-sure coverability problem

Because of Theorem 7, we now have the following result.

Lemma 5. Deciding whether the cut-off of a given RBN is positive or negative
can be done in PSPACE.

Proof Sketch. By Theorem 7, it follows that a given RBN has a negative cut-off
iff S = post∗([init]) ∩ pre∗(↑ fin) is infinite. We have already seen that S is a
counting set such that the norm of S is at most N := 2p(|Q|) for some fixed
polynomial p.

Let ∪iCi be a counting constraint for S which minimizes its norm and let
each Ci = (Li, Ui). Hence, Li(q) ≤ N for every state q. Further, S is infinite iff
there is an index i and a state q such that Ui(q) =∞. Using these two facts, we
can then show that S is infinite iff there is a state q and a configuration C ∈ S
such that C(q′) ≤ N for every q′ 6= q and C(q) = N + 1.

Hence, to check if S is infinite, we just have to guess a state q and a config-
uration C such that C(q′) ≤ N for every q′ 6= q and C(q) = N + 1 and check if
C ∈ S. Since guessing C can be done in polynomial space (by representing every
number in binary), by the PSPACE Theorem (Theorem 3), we can check if C ∈ S
in polynomial space as well, which concludes the proof of the theorem.

We also have the accompanying hardness result.

Lemma 6. Deciding whether the cut-off of a given RBN is positive or negative
is PSPACE-hard.

Similar to the cube-reachability problem, our result on almost-sure cover-
ability also applies to the related model of ASMS. This solves an open problem
from [6]. For lack of space, we once again defer this discussion to the appendix.

6 Application 2: Computation by RBN

In this section we give another application of our results. We introduce a model
of computation using RBN called RBN protocols. We take inspiration from the

76 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

extensively-studied model of population protocols [1,2,12]. The reader can con-
sult the above references for more details on population protocols.

In our model, reconfigurable networks of identical, anonymous agents interact
to compute a predicate ϕ : Nk → {0, 1}. We show that RBN protocols compute
exactly the threshold predicates, which we will define more formally below.

6.1 RBN Protocols

We introduce our computation model. The notation mimics that of [13].

Definition 6. An RBN protocol is a tuple P = (Q,Σ, δ, I, O) where (Q,Σ, δ)
is an RBN, I = {q1, . . . , qk} is a set of input states, and O : Q → {0, 1} is an
output function.

Configurations and runs of P are the same as that of the underlying RBN. A
configuration C is called a 0-consensus (respectively a 1-consensus) if C(q) > 0
implies O(q) = 0 (respectively O(q) = 1). For b ∈ {0, 1}, a b-consensus C is stable
if every configuration reachable from C is also a b-consensus. A run C0 −→ C1 −→
C2 · · · of P is fair if it is finite and cannot be extended by any step, or if it is
infinite and the following condition holds for all configurations C,C ′: if C −→ C ′

and C = Ci for infinitely many i ≥ 0, then the step C −→ C ′ appears infinitely
along the run. In other words, if a fair run reaches a configuration infinitely
often, then all the configurations reachable in a step from that configuration will
be reached infinitely often from it.

A fair run C0 −→ C1 −→ . . . converges to b if there is i ≥ 0 such that Cj is a
b-consensus for every j ≥ i. For every v ∈ Nk, let Cv be the configuration given
by Cv(qi) = vi for every qi ∈ I, and Cv(q) = 0 for every q ∈ Q \ I. We call
Cv the initial configuration for input v. The protocol P computes the predicate
ϕ : Nk → {0, 1}, if for every v ∈ Nk, every fair run starting at Cv converges to
ϕ(v).

q1 q2 q3

?a

!b

?b

!a

?b

!b

Fig. 3. An RBN protocol P.

Example 3. Adding the dashed line transitions to the RBN of Example 1 yields
the RBN protocol P = (Q,Σ, δ, I, O) illustrated in Figure 3. The initial state is

Parameterized Analysis of RBN 77

q1, i.e. I = {q1}, and the output function is defined such that O(q1) = O(q2) = 0
and O(q3) = 1. If there is a process in q3, it can “attract” the rest of the
processes there using the new dashed transitions. As with the RBN of Example
1, a process can be put in q3 starting from the initial configuration Hk · q1I if and
only if k ≥ 3. This RBN protocol computes the predicate x ≥ 3: if there are less
than 3 processes originally in q1 then they stay in states with output 0, and if
there are more, then in a fair run a process eventually enters q3, and eventually
the others follow, thus converging to 1.

6.2 Expressivity

In this section, we show that RBN protocols compute exactly the predicates
definable by counting sets. A predicate ϕ : Nk → {0, 1} is definable by counting
sets if for every b ∈ {0, 1}, the sets {v | ϕ(v) = b} are counting sets.

For b ∈ {0, 1}, define the following sets of configurations:

– Let Cb be the set of b-consensus configurations.

– Let ST b be the set pre∗
(
Cb
)

of stable b-consensuses. These are the configu-
rations from which one can reach only b-consensuses.

– Let Ib be the set of initial configurations Cv for inputs v such that ϕ(v) = b.

The next lemma states that every predicate computed by a protocol is de-
finable by counting sets.

Lemma 7. Let P be a RBN protocol that computes the predicate ϕ : Nk →
{0, 1}. Then for every b ∈ {0, 1}, the sets Ib, Cb and ST b are all counting sets.
This entails that ϕ is definable by counting sets.

Proof Sketch. Fix a b ∈ {0, 1}. It is easy to see that Cb is a cube. Unraveling the
definitions of Ib and ST b, we can express them in terms of Cb by using boolean
operations and pre∗. By the Closure Corollary (Corollary 1), they are counting
sets. Set {v | ϕ(v) = b} is simply Ib restricted to I, and so we are done.

The next lemma states the converse result. It essentially uses the fact that
there is a sub-class of population protocols called IO protocols which compute
exactly the predicates definable by counting sets (Theorem 7 and Theorem 39
of [2,13]), and that IO protocols are a sub-class of RBN (Section 6.2 of [3]).

Lemma 8. Let ϕ : Nk → {0, 1} be a predicate definable by counting sets. Then
there exists a RBN protocol computing ϕ.

By Lemma 7 and Lemma 8, we get our result.

Theorem 8. RBN protocols compute exactly the predicates definable by count-
ing sets.

Acknowledgements

We thank Nathalie Bertrand and Javier Esparza for many helpful discussions.

78 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Comput. 18(4), 235–
253 (2006). https://doi.org/10.1007/s00446-005-0138-3

2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distributed Comput. 20(4), 279–304 (2007).
https://doi.org/10.1007/s00446-007-0040-2

3. Balasubramanian, A.R., Weil-Kennedy, C.: Reconfigurable broadcast networks and
asynchronous shared-memory systems are equivalent. In: Ganty, P., Bresolin, D.
(eds.) Proceedings 12th International Symposium on Games, Automata, Logics,
and Formal Verification, GandALF 2021, Padua, Italy, 20-22 September 2021.
EPTCS, vol. 346, pp. 18–34 (2021). https://doi.org/10.4204/EPTCS.346.2

4. Bertrand, N., Fournier, P.: Parameterized verification of many identical proba-
bilistic timed processes. In: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS. pp. 501–513 (2013).
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501

5. Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfig-
urable broadcast networks. In: Foundations of Software Science and Computa-
tion Structures - 17th International Conference, FOSSACS. pp. 134–148 (2014).
https://doi.org/10.1007/978-3-642-54830-7 9

6. Bouyer, P., Markey, N., Randour, M., Sangnier, A., Stan, D.: Reachability in net-
works of register protocols under stochastic schedulers. In: Chatzigiannakis, I.,
Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy. LIPIcs, vol. 55, pp. 106:1–106:14. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.106

7. Chini, P., Meyer, R., Saivasan, P.: Liveness in broadcast networks. In: Atig,
M.F., Schwarzmann, A.A. (eds.) Networked Systems - 7th International Confer-
ence, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 11704, pp. 52–66. Springer (2019).
https://doi.org/10.1007/978-3-030-31277-0 4

8. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: D’Souza, D.,
Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December
15-17, 2012, Hyderabad, India. LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2012), https://doi.org/10.4230/LIPIcs.FSTTCS.
2012.289

9. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of pa-
rameterized reachability in reconfigurable broadcast networks. Long version (2012),
https://www.irif.fr/∼sangnier/publis/DSTZ-FSTTCS12-long.pdf

10. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency
Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6269,
pp. 313–327. Springer (2010). https://doi.org/10.1007/978-3-642-15375-4 22

11. Esparza, J., Ganty, P., Majumdar, R., Weil-Kennedy, C.: Verification of im-
mediate observation population protocols. In: CONCUR. LIPIcs, vol. 118,
pp. 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.CONCUR.2018.31

Parameterized Analysis of RBN 79

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.4204/EPTCS.346.2
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.501
https://doi.org/10.1007/978-3-642-54830-7_9
https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.1007/978-3-030-31277-0_4
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://www.irif.fr/~sangnier/publis/DSTZ-FSTTCS12-long.pdf
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.4230/LIPIcs.CONCUR.2018.31

12. Esparza, J., Jaax, S., Raskin, M.A., Weil-Kennedy, C.: The complexity of
verifying population protocols. Distributed Comput. 34(2), 133–177 (2021).
https://doi.org/10.1007/s00446-021-00390-x

13. Esparza, J., Raskin, M.A., Weil-Kennedy, C.: Parameterized analysis of immediate
observation petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory
of Petri Nets and Concurrency - 40th International Conference, PETRI NETS
2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11522, pp. 365–385. Springer (2019). https://doi.org/10.1007/978-3-
030-21571-2 20

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

80 A. R. Balasubramanian, L. Guillou, C. Weil-Kennedy

https://doi.org/10.1007/s00446-021-00390-x
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
http://creativecommons.org/licenses/by/4.0/

Separators in Continuous Petri Nets?

Michael Blondin1� and Javier Esparza2

1 Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca

2 Technical University of Munich, Munich, Germany
esparza@in.tum.de

Abstract. Leroux has proved that unreachability in Petri nets can be
witnessed by a Presburger separator, i.e. if a marking msrc cannot reach
a marking mtgt, then there is a formula ϕ of Presburger arithmetic such
that: ϕ(msrc) holds; ϕ is forward invariant, i.e., ϕ(m) and m → m′

imply ϕ(m′); and ¬ϕ(mtgt) holds. While these separators could be used
as explanations and as formal certificates of unreachability, this has not
yet been the case due to their (super-)Ackermannian worst-case size and
the (super-)exponential complexity of checking that a formula is a sepa-
rator. We show that, in continuous Petri nets, these two problems can be
overcome. We introduce locally closed separators, and prove that: (a) un-
reachability can be witnessed by a locally closed separator computable
in polynomial time; (b) checking whether a formula is a locally closed
separator is in NC (so, simpler than unreachablity, which is P-complete).

Keywords: Petri net · continuous reachability · separators · certificates.

1 Introduction

Petri nets form a widespread formalism of concurrency with several applications
ranging from the verification of concurrent programs to the analysis of chemical
systems. The reachability problem — which asks whether a a marking msrc can
reach another marking mtgt — is fundamental as a plethora of problems, such
as verifying safety properties, reduce to it (e.g. [13,11,2]).

Leroux has shown that unreachability in Petri nets can be witnessed by a
Presburger separator, i.e., if a marking msrc cannot reach a marking mtgt, then
there exists a formula ϕ of Presburger arithmetic such that: ϕ(msrc) holds; ϕ is
forward invariant, i.e., ϕ(m) and m→m′ imply ϕ(m′); and ϕ(mtgt) does not
hold [14]. Intuitively, ϕ “separates” mtgt from the set of markings reachable from
msrc. Leroux’s result leads to a very simple algorithm to decide the Petri net
reachability problem, consisting of two semi-algorithms; the first one explores
the markings reachable from msrc, and halts if and when it hits mtgt, while the

? M. Blondin was supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by the Fonds de recherche
du Québec – Nature et technologies (FRQNT). J. Esparza was supported by an ERC
Advanced Grant (787367: PaVeS).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 81–100, 2022.
https://doi.org/10.1007/978-3-030-99253-8_5

http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0001-9862-4919
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_5&domain=pdf

second enumerates formulas from Presburger arithmetic, and halts if and when
it hits a separator.

Separators can be used as explanations and as formal certificates. Verifying
a safety property can be reduced to proving that a target marking (or set of
markings) is not reachable from a source marking, and a separator is an invariant
of the system that explains why the property holds. Further, if a reachability tool
produces separators, then the user can check that the properties of a separator
indeed hold, and so trust the result even if they do not trust the tool (e.g.,
because it has not been verified, or is executed on a remote faster machine).
Yet, in order to be useful as explanations and certificates, separators have to
satisfy two requirements: (1) they should not be too large, and (2) checking
that a formula is a separator should have low complexity, and in particular
lower complexity than deciding reachability. This does not hold, at least in the
worst-case, for the separators of [14]: In the worst case, the separator has super-
Ackermannian size in the Petri net size (a consequence of the fact that the
reachability problem is Ackermann-complete [16,15,7]) and the complexity of
the check is super-exponential.

In this paper, we show that, unlike the above, continuous Petri nets do
have separators satisfying properties (1) and (2). Continuous Petri nets are a
relaxation of the standard Petri net model, called discrete in the following, in
which transitions are allowed to fire “fluidly”: instead of firing once, consuming
ip tokens from each input place p and adding oq tokens to each output place q,
a transition can fire α times for any nonnegative real number α, consuming and
adding α·ip and α·oq tokens, respectively. Continuous Petri nets are interesting in
their own right [8], and moreover as an overapproximation of the discrete model.
In particular, if mtgt is not reachable from msrc under the continuous semantics,
then it is also not under the discrete one. As reachability in continuous Petri nets
is P-complete [12], and so drastically more tractable than discrete reachability,
this approximation is used in many tools for the verification of discrete Petri
nets, VAS, or multiset rewriting systems (e.g. [5,4,10]).

It is easy to see that unreachability in continuous Petri nets can be witnessed
by separators expressible in linear arithmetic (the first-order theory of the reals
with addition and order). Indeed, Blondin et al. show in [5] that the continuous
reachability relation is expressible by an existential formula reach(m,m′) of lin-
ear arithmetic, from which we can obtain a separator for any pair of unreachable
markings. To wit, for all markings msrc and mtgt, if mtgt is not reachable from
msrc, then the formula sepmsrc

(m) := ¬reach(msrc,m) is a separator. Further,
reach(m,m′) has only linear size. However, these separators do not satisfy prop-
erty (2) unless P = NP. Indeed, while the reachability problem for continuous
Petri nets is P-complete [12], checking if a formula of linear arithmetic is a sepa-
rator is coNP-hard, even for quantifier-free formulas in disjunctive normal form,
a very small fragment. So, the separators arising from [5] cannot be directly used
as certificates.

In this paper, we overcome this problem. We identify a class of locally closed
separators, satisfying the following properties: unreachability can always be wit-

82 M. Blondin and J. Esparza

nessed by locally closed separators; locally closed separators can be constructed
in polynomial time; and checking whether a formula is a locally closed separa-
tor is computationally easier than deciding unreachability. Let us examine the
last claim in more detail. While the reachability problem for continuous Petri
nets is decidable in polynomial time, it is still time consuming for larger mod-
els, which can have tens of thousands of nodes. Indeed, for a Petri net with n
places and m transitions, the algorithm of [12] requires to solve O(m2) linear
programming problems in n variables, each of them with up to m constraints.
Moreover, since the problem is P-complete, it is unlikely that a parallel computer
can significantly improve performance. We prove that, on the contrary, checking
if a formula is a locally closed separator is in NC rather than P-complete, and so
efficiently parallelizable. Further, the checking algorithm only requires to solve
linear programming problems in a single variable.

The paper is organized as follows. Section 2 introduces terminology, and
defines separators (actually, a slightly different notion called bi-separators). Sec-
tion 3 recalls the characterization of the reachability relation given by Fraca
and Haddad in [12], and derives a characterization of unreachability suitable
for finding bi-separators. Section 4 shows that checking the separators derivable
from [5] is coNP-hard, and introduces locally closed bi-separators. Sections 5
and 6 show that locally closed bi-separators satisfy the aforementioned proper-
ties (1) and (2). Finally, Section 7 shows that all our results can be extended to
separators that separate two sets of markings instead of singletons.

2 Preliminaries

Numbers, vectors and relations. We write N, R and R+ to denote the naturals
(including 0), reals, and non-negative reals (including 0). Let S be a finite set.
We write es to denote the unit vector es ∈ RS such that es(s) = 1 and es(t) = 0
for all s, t ∈ S such that t 6= s. Given x,y ∈ RS , we write x ∼S y to indicate
that x(s) ∼ y(s) for all s ∈ S, where ∼ is a total order such as ≤. We define the
support of a vector x ∈ RS as supp(x) := {s ∈ S : x(s) > 0}. We write x(S) :=∑
s∈S x(s). The transpose of a binary relation R is RT := {(y, x) : (x, y) ∈ R}.

Petri nets. A Petri net3 is a tuple N = (P, T, F) where P and T are disjoint
finite sets, whose elements are respectively called places and transitions, and
where F = (F−,F+) with F−,F+ : P × T → N. For every t ∈ T , vectors
∆−t , ∆

+
t ∈ NP are respectively defined as the column of F− and F+ associated

to t, i.e. ∆−t := F− ·et and ∆+
t := F+ ·et. A marking is a vector m ∈ RP+. We say

that transition t is α-enabled if m ≥ α∆−t holds. If this is the case, then t can
be α-fired from m, which leads to marking m′ := m − α∆−t + α∆+

t , which we

denote m
αt−→m′. A transition is enabled if it is α-enabled for some real number

3 In this work, “Petri nets” stands for “continuous Petri nets”. In other words, we will
consider standard Petri nets, but equipped with a continuous reachability relation.
We will work over the reals, but note that it is known that working over the rationals
is equivalent. For decidability issues, we will assume input numbers to be rationals.

Separators in Continuous Petri Nets 83

α > 0. We define F := F+ − F− and ∆t := F · et. In particular, m
αt−→ m′

implies m′ = m + α∆t. For example, for the Petri net of Figure 1:

{p1 7→ 2, p2 7→ 0, p3 7→ 0, p4 7→ 0} (1/2)t1−−−−→ {p1 7→ 3/2, p2 7→ 1/2, p3 7→ 0, p4 7→ 0}.

Moreover, w.r.t. to orderings p1 < · · · < p4 (rows) and t1 < · · · < t4 (columns):

F− =


1 2 2 0
0 0 1 0
0 0 0 1
0 1 0 0

 , F+ =


0 0 1 0
1 0 0 0
0 1 1 0
0 1 0 1

 and F =


−1 −2 −1 0
1 0 −1 0
0 1 1 −1
0 0 0 1

 .

p1 t1
p2

t3

t2
p4

p3 t4

2

2

Fig. 1. A Petri net and two markings msrc = {p1 7→ 2, p2 7→ 0, p3 7→ 0, p4 7→ 0} (black
circles) and mtgt = {p1 7→ 0, p2 7→ 0, p3 7→ 0, p4 7→ 1} (colored squares).

A sequence σ = α1t1 · · ·αntn is a firing sequence from msrc to mtgt if there

are markings m0, . . . ,mn satisfying msrc = m0
α1t1−−−→m1 · · ·

αntn−−−→mn = mtgt.

We write m0
σ−→ mn. We say that msrc enables σ, and that mtgt enables σ

backwards, or backward-enables σ. The support of σ is the set {t1, . . . , tn}. For

example, for the Petri net of Figure 1, we have msrc
σ−→mtgt where

msrc = {p1 7→ 2, p2 7→ 0, p3 7→ 0, p4 7→ 0},
mtgt = {p1 7→ 0, p2 7→ 0, p3 7→ 0, p4 7→ 1},

σ = (1/2)t1 (1/2)t3 (1/2)t4 (1/2)t2 (1/2)t4.

Let U ⊆ T . We write m −→U m′ to denote that m
αt−→m′ for some α > 0 and

t ∈ U , and −→U∗ for the transitive and reflexive closure of −→U . We simply write
−→ and −→∗ when U = T . The Petri net NU is obtained by removing transitions
T \ U from N . In particular, m −→U∗ m′ holds in N iff m −→∗ m′ holds in NU .

The transpose of N = (P, T, (F−,F+)) is NT := (P, T, (F+,F−)). We have

msrc
σ−→ mtgt in N iff mtgt

τ−→ msrc in NT, where τ is the reverse of σ. For
U ⊆ T , we write UT to denote U in the context of NT. This way, when we write,

e.g. −→U and −→UT

, it is clear that we respectively refer to N and NT.

Linear arithmetic and Farkas’ lemma. An atomic proposition is a linear inequal-
ity of the form ax ≤ b or ax < b, where b and the components of a are over

84 M. Blondin and J. Esparza

R. Such a proposition is homogeneous if b = 0. A linear formula is a first-order
formula over atomic propositions with variables ranging over R+ (the classi-
cal definition uses R, but in our context variables will encode markings.) The
solutions of a linear formula ϕ, denoted JϕK, are the assignments to the free
variables of ϕ that satisfy ϕ. A linear formula is homogeneous if all of its atomic
propositions are homogeneous. For every formula ϕ(x,y) where x and y have
the same arity, we write ϕT to denote the formula that syntactically swaps x
and y, so that JϕTK = JϕKT. Throughout the paper, we will use Farkas’ lemma,
a fundamental result of linear arithmetic that rephrases the absence of solution
to a system into the existence of one for another system:

Lemma 1 (Farkas’ lemma). Let A ∈ Rm×n and b ∈ Rm. The formula
Ax ≤ b has no solution iff ATy = 0 ∧ bTy < 0 ∧ y ≥ 0 has a solution.

2.1 Separators and bi-separators

Let us fix a Petri net N = (P, T, F) and two markings msrc,mtgt ∈ RP+.

Definition 1. A separator for (msrc,mtgt) is a linear formula ϕ over RP+ such
that: (1) msrc ∈ JϕK; (2) ϕ is forward invariant, i.e., m ∈ JϕK and m −→ m′

implies m′ ∈ JϕK; and (3) mtgt /∈ JϕK.

It follows immediately from the definition that if there exists a separator ϕ
for (msrc,mtgt), then msrc 6−→∗ mtgt. Thus, in order to show that msrc 6−→∗ mtgt

in N , we can either give a separator for (msrc,mtgt) w.r.t. N , or a separator
for (mtgt,msrc) w.r.t. NT. Let us call them forward and backward separators.
Loosely speaking, a forward separator shows that mtgt is not among the mark-
ings reachable from msrc, and a backward separator shows that msrc is not
among the markings backward-reachable from mtgt. Bi-separators are formulas
from which we can easily obtain forward and backward separators. The symme-
try w.r.t. forward and backward reachability make them easier to handle.

Definition 2. A linear formula ϕ over (RP+)2 is forward invariant if (m,m′) ∈
JϕK and m′ −→m′′ imply (m,m′′) ∈ JϕK; backward invariant if (m′,m′′) ∈ JϕK
and m −→ m′ imply (m,m′′) ∈ JϕK; and bi-invariant if it is forward and back-
ward invariant. A bi-separator for (msrc,mtgt) is a bi-invariant linear formula
ϕ s.t. (msrc,msrc) ∈ JϕK, (mtgt,mtgt) ∈ JϕK and (msrc,mtgt) /∈ JϕK.

The following proposition shows how to obtain separators from bi-separators.

Proposition 1. Let ϕ be a bi-separator for (msrc,mtgt). The following holds:

– ψ(m) := ϕ(msrc,m) is a separator for (msrc,mtgt) in N ;
– ψ′(m) := ϕ(m,mtgt) is a separator for (mtgt,msrc) in NT.

Proof. It suffices to prove the first statement, the second is symmetric.
It is the case that msrc ∈ JψK and mtgt /∈ JψK as (msrc,msrc) ∈ JϕK and

(msrc,mtgt) /∈ JϕK. It remains to show that ψ is forward invariant. Let m ∈ JψK
and m

αt−→m′. Since (msrc,m) ∈ JϕK and ϕ is forward invariant, it is the case
that (msrc,m

′) ∈ JϕK. Hence, m′ ∈ JψK as desired. ut

Separators in Continuous Petri Nets 85

3 A characterization of unreachability

In [12], Fraca and Haddad gave the following characterization of the reachability
relation in continuous Petri nets:

Theorem 1 ([12]). Let N = (P, T, F) be a Petri net, let U ⊆ T , and let
msrc,mtgt ∈ RP+. It is the case that msrc −→U∗ mtgt iff there exists S ⊆ U such
that the following conditions hold:

1. some vector x ∈ RT+ with support S satisfies msrc + Fx = mtgt,
2. some firing sequence σ with support S is enabled at msrc, and
3. some firing sequence τ with support S is backward-enabled at mtgt.

Furthermore, these conditions can be checked in polynomial time.

Theorem 1 has the following form, where P1, P2 and P3 stand for the condi-
tions of 1., 2., and 3.:

msrc −→U∗ mtgt ⇐⇒ ∃S ⊆ U : (∃x : P1(S,x)) ∧ (∃σ : P2(S, σ) ∧ (∃τ : P3(S, τ)).

Therefore, msrc 6−→U∗ mtgt holds iff

∀S ⊆ U : (∀x : ¬P1(S,x)) ∨ (∀σ : ¬P2(S, σ)) ∨ (∀τ : ¬P3(S, τ)).

To obtain a witness of unreachability for a given S ⊆ U , we replace each univer-
sally quantified disjunct by an existentially quantified equivalent one. For condi-
tions 2. and 3., the solution (implicitly given in [12]) is formulated in Proposition
2. Given a set of places X, let •X (resp. X•) be the set of transitions t such that
F+(p, t) > 0 (resp. F−(p, t) > 0) for some p ∈ X. A siphon of N is a subset Q
of places such that •Q ⊆ Q•. A trap is a subset R of places such that R• ⊆ •R.
Informally, empty siphons remain empty, and marked traps remain marked. For-
mally, if m −→ m′, then m(Q) = 0 implies m′(Q) = 0, and m(R) > 0 implies
m′(R) > 0. We have:

Proposition 2 ([12]). Let N = (P, T, F) be a Petri net, let S ⊆ T , and let
m ∈ RP+. The following statements hold:

– No firing sequence with support S is enabled at m iff there exists a siphon
Q of NS such that Q• 6= ∅ satisfies m(Q) = 0;

– No firing sequence with support S is backward-enabled at m iff there exists
a trap R of NS such that •R 6= ∅ satisfies m(R) = 0.

So the universal statements “no firing sequence . . . is enabled/backward-enabled
. . . ” are replaced by existential statements “there exists a siphon/trap . . . ”. The
if-direction of the proposition is easy to prove. A siphon Q ofNS satisfies Q• ⊆ S.
Since Q is empty at m, if we only fire transitions from S then Q remains empty,
and so no transition of Q• ever becomes enabled. So transitions of Q• can only
fire after transitions that do not belong to S have fired first. But no such firing
sequence has support S, and we are done. The case of traps is analogous. For
the only-if direction we refer the reader to [12].

For condition 1. of Theorem 1, we obtain a solution in terms of exclusion
functions.

86 M. Blondin and J. Esparza

Definition 3. Let N = (P, T, F) be a Petri net, let msrc,mtgt ∈ RP+ and let
S ⊆ S′ ⊆ T . An exclusion function for (S, S′) is a function f : RP+ → R s.t.

1. m
s−→m′ implies f(m) ≤ f(m′) for all s ∈ S′; and

2. either f(msrc) > f(mtgt), or f(msrc) = f(mtgt) and there exists s ∈ S such

that m
s−→m′ implies f(m) < f(m′).

An exclusion function for S is an exclusion function for (S, S).

An exclusion function for S excludes the existence of a firing sequence from
msrc to mtgt with support S, i.e., witnesses that condition 1 of Theorem 1 fails.
To see why, call f(m) the value of m. By definition of f , either mtgt has lower
value than msrc but no transition of S decreases it, or msrc and mtgt have the
same value but no transition of S decreases it, and at least one increases it. So
it is impossible to reach mtgt from msrc by firing all and only the transitions of
S. Let us apply exclusion functions and Proposition 2 to an example.

Example 1. Consider the Petri net of Figure 1, but with mtgt := {p1 7→ 0, p2 7→
0, p3 7→ 1, p4 7→ 0} as target. We prove msrc 6−→∗ mtgt. For the sake of contra-
diction, assume msrc −→U∗ mtgt for some U ⊆ T . We proceed in several steps:

– Claim: t4 /∈ U . The function f(m) := m(p4) is an exclusion function for T .

Indeed, since no transition decreases the number of tokens of p4, m
t−→ m′

implies f(m) ≤ f(m′) for every transition t ∈ T . Furthermore, f(msrc) =

0 = f(mtgt), and, since t4 adds tokens to p4, m
t4−→ m′ implies f(m) <

f(m′). It follows that no firing sequence from msrc to mtgt can fire t4.

– Claim: t2 /∈ U . The set Q := {p4} is a siphon of NT\{t4} (but not of N). Since
msrc(Q) = 0, it is impossible to use transitions of NT\{t4} that consume from
Q, i.e. transitions of Q• = {t2}.

– Claim: t1, t3 /∈ U . The set R := {p1, p2} is a trap of NT\{t2,t4} (but not of
NT\{t4}). Since mtgt(R) = 0, it is impossible to reach mtgt using transitions
of NT\{t2,t4} that produce in R, i.e. transitions of •R = {t1, t3}.

By the claims, U = ∅, hence we reach the contradiction msrc = mtgt. ut

Proposition 4 below shows that condition 1. of Theorem 1 fails if and only
if there is an exclusion function for S (actually, a slightly more general result).
We need the following consequence of Farkas’ lemma:

Proposition 3. The system ∃x ≥ 0 : Ax = b ∧ S ⊆ supp(x) ⊆ S′ has no solu-
tion iff this system has some: ∃y : ATy ≥S′ 0∧ bTy ≤ 0∧ bTy <

∑
s∈S(ATy)s.

Proposition 4. Let N = (P, T, F) be a Petri net, let msrc,mtgt ∈ RP+, and let
S ⊆ S′ ⊆ T . No vector x ∈ RT+ satisfies S ⊆ supp(x) ⊆ S′ and msrc+Fx = mtgt

iff there exists a linear exclusion function for (S, S′).

Separators in Continuous Petri Nets 87

Proof. Assume no such x ∈ RT+ exists. Let b := mtgt −msrc. By Proposition 3,
there exists y ∈ RP such that: FTy ≥S′ 0 ∧ bTy ≤ 0 ∧ bTy <

∑
s∈S(FTy)s. We

show that f(k) := yTk is a linear exclusion function for (S, S′).

1. We have f(mtgt)−f(msrc) = yTmtgt−yTmsrc = yT(mtgt−msrc) = yTb =
bTy ≤ 0, and hence f(mtgt) ≤ f(msrc).

2. Let m
λs−→ m′ with s ∈ S′ and λ ∈ R+. We have m′ = m + λFes. Thus:

f(m′) = yTm′ = yTm + λ(yTF)es = yTm + λ(FTy)Tes ≥ yTm = f(m),
where the inequality follows from λ > 0, FTy, ≥S′ 0 and s ∈ S′.

3. Recall that bTy ≤ 0 and
∑
s∈S(FTy)s > bTy. If the latter sum equals zero,

then bTy < 0, and hence we are done since f(mtgt)− f(msrc) = bTy < 0.
Otherwise, we have

∑
s∈S(FTy)s > 0 since S ⊆ S′ and FTy ≥S′ 0. There-

fore, there exists a transition s ∈ S such that (FTy)s > 0. Let m
s−→m′. We

have m′ = m + λFes for some λ > 0. Thus, f(m′) = yTm + λ(FTy)Tes >
yTm = f(m), where the inequality holds by λ > 0 and (FTy)s > 0. ut

Putting together Proposition 4 with Theorem 1 and Proposition 2, we obtain
the following characterization of unreachability.

Proposition 5. Let N = (P, T, F) be a Petri net, let U ⊆ T , and msrc,mtgt ∈
RP+. It is the case that msrc 6−→U∗ mtgt iff for every S ⊆ U :

1. there exists an exclusion function for S, or
2. there exists a siphon Q of NS such that Q• 6= ∅ and msrc(Q) = 0, or
3. there exists a trap R of NS such that •R 6= ∅ and mtgt(R) = 0.

This proposition shows that, for all supports S, we can produce a witness of
unreachability as an exclusion function, a siphon, or a trap. In the next section,
we transform these witnesses into separators useful as certificates.

4 Separators as certificates

Let N = (P, T, F) be a Petri net and let msrc,mtgt ∈ RP+ be two markings of N .
From [5], one can easily show that if msrc 6−→∗ mtgt, then there is a separator for
(msrc,mtgt). Indeed, [5, Prop. 3.2] shows that there exists an existential formula
ψ of linear arithmetic such that m −→∗ m′ iff (m,m′) ∈ JψK. Thus, the formula
ϕ(m) := ψ(msrc,m) is a separator.

However, ϕ is not adequate as a certificate of unreachability. Indeed, checking
a certificate for msrc 6−→∗ mtgt should have smaller complexity than deciding
whether msrc −→∗ mtgt. This is not the case for existential linear formulas,
because msrc −→∗ mtgt can be decided in polynomial time, but checking that an
existential linear formula is a separator is coNP-hard.

Proposition 6. The problem of determining whether an existential linear for-
mula ϕ is a separator for (msrc,mtgt) is coNP-hard, even if ϕ is a quantifier-free
formula in DNF and homogeneous.

88 M. Blondin and J. Esparza

In the rest of the section, we introduce locally closed bi-separators, and then,
in Sections 5 and 6, we respectively prove that they satisfy the following:

– If msrc 6−→∗ mtgt, then some locally closed bi-separator for (msrc,mtgt) can
be computed in polynomial time;

– Deciding whether a formula is a locally closed bi-separator is in NC.

4.1 Locally closed bi-separators

The most difficult part of checking that a formula ϕ is a bi-separator consists
of checking that it is forward and backward invariant. Let us focus on forward
invariance, backward invariance being symmetric.

Recall the definition: for all markings m,m′,m′′ and every transition t: if

(m,m′) ∈ JϕK and m′
αt−→ m′′ then (m,m′′) ∈ JϕK. Assume now that ϕ is in

DNF, i.e., a disjunction of clauses ϕ = ϕ1∨· · ·∨ϕn. The forward invariance check
can be decomposed into n smaller checks, one for each i ∈ [1..n], of the form:
if (m,m′) ∈ JϕiK, then (m,m′′) ∈ JϕK. However, in general the check cannot
be decomposed into local checks of the form: there exists j ∈ [1..m] such that
(m,m′) ∈ JϕiK implies (m,m′′) ∈ JϕjK. Indeed, while this property is sufficient
for forward invariance, it is not necessary. Intuitively, locally closed bi-separators
are separators where invariance can be established by local checks.

For the formal definition, we need to introduce some notations. Given a
transition t and atomic propositions ψ,ψ′, we say that ψ t-implies ψ′, written

ψ t ψ
′, if (m,m′) ∈ JψK and m′

αt−→m′′ implies (m,m′′) ∈ Jψ′K. We further
say that a clause ψ = ψ1∧ · · ·∧ψm t-implies a clause ψ′ = ψ′1∧ · · ·∧ψ′n, written
ψ t ψ

′, if for every j ∈ [1..n], there exists i ∈ [1..m] such that ψi t ψ
′
j .

Definition 4. A linear formula ϕ is locally closed w.r.t. N = (P, T, F) if:

– ϕ = ϕ1 ∨ · · · ∨ ϕn is quantifier-free, in DNF and homogeneous,
– for every t ∈ T and every i ∈ [1..n], there exists j ∈ [1..n] s.t. ϕi t ϕj,
– for every t ∈ TT and every i ∈ [1..n], there exists j ∈ [1..n] s.t. ϕT

i t ϕ
T
j .

Note that the definition is semantic. We make the straightforward but crucial
observation that:

Proposition 7. Locally closed formulas are bi-invariant.

Proof. Let ϕ = ϕ1 ∨ · · · ∨ ϕn be a locally closed formula. We only consider the

forward case; the other case is symmetric. Let (m,m′) ∈ JϕK and m′
αt−→ m′′.

Let i ∈ [1..n] be such that (m,m′) ∈ JϕiK. Since ϕ is locally closed, there exists
j ∈ [1..n] such that ϕi t ϕj . For every atomic proposition ψ′ of ϕj , there exists
an atomic proposition ψ of ϕi such that ψ t ψ

′. Since each atomic proposition
of ϕi is satisfied by (m,m′), we obtain (m,m′′) ∈ JϕjK. ut

Proposition 7 justifies the following definition:

Definition 5. A locally closed bi-separator for (msrc,mtgt) is a locally closed
formula ϕ s.t. (msrc,msrc) ∈ JϕK, (mtgt,mtgt) ∈ JϕK and (msrc,mtgt) /∈ JϕK.

Indeed, by Proposition 7, a locally closed bi-separator is a bi-separator, as
the bi-invariance condition of Definition 2 follows from local closedness.

Separators in Continuous Petri Nets 89

5 Constructing locally closed bi-separators

In this section, we prove that unreachability can always be witnessed by locally
closed bi-separators of polynomial size and computable in polynomial time. The
proof uses the results of Section 3.

Theorem 2. If msrc 6−→U∗ mtgt, then there is a locally closed bi-separator ϕ for
(msrc,mtgt) w.r.t. NU . Further, ϕ =

∨
1≤i≤n ϕi, where n ≤ 2|U | + 1 and each

ϕi contains at most 2|U |+ 1 atomic propositions. Moreover, ϕ is computable in
polynomial time.

Proof. We proceed by induction on |U |. First consider U = ∅. Let p ∈ P be such
that msrc(p) 6= mtgt(p). Take ϕ(m,m′) := epm ≤ epm

′ or −epm ≤ −epm′.
Now, assume that U 6= ∅. Consider the system ∃x ∈ RT+ : msrc+Fx = mtgt∧

supp(x) ⊆ U . Suppose first that the system has no solution. By Proposition 4,
taking S = ∅ and S′ = U , there is a linear exclusion function for (∅, U), i.e. a
linear function f satisfying:

1. f(msrc) > f(mtgt),

2. m
u−→m′ implies f(m) ≤ f(m′) for all u ∈ U .

(The first item holds due to Item 2 of Definition 3 and S = ∅.) So we can take
ϕ(m,m′) := (f(m) ≤ f(m′)).

Suppose now that the system has a solution x ∈ RU+. By convexity, we
can suppose that supp(x) ⊆ U is maximal. Indeed, if x′ and x′′ are solutions,
then (1/2)x′ + (1/2)x′′ is a solution with support supp(x′) ∪ supp(x′′). Let
U ′ := supp(x). For every t ∈ U \ U ′, consider the system of Proposition 4 with
S = {t} and S′ = U . By maximality of U ′ ⊆ U , none of these systems has a
solution. Consequently, for each t ∈ U \U ′, Proposition 4 yields a linear exclusion
function for ({t}, U), i.e. a linear function ft that satisfies:

3. ft(msrc) ≥ ft(mtgt),

4. m
u−→m′ implies ft(m) ≤ ft(m′) for all u ∈ U ,

5. either ft(msrc) > ft(mtgt), or m
t−→m′ implies ft(m) < ft(m

′).

If ft(msrc) > ft(mtgt) holds for some t ∈ U \U ′, then we are done by taking
ϕ(m,m′) := (ft(m) ≤ ft(m′)) as Item 4 ensures that ϕ u ϕ for every u ∈ U .
So assume it does not hold for any t ∈ U \ U ′, i.e. assume that ft(msrc) =
ft(mtgt) holds, and the second disjunct of Item 5 holds for all t ∈ U \ U ′. This
is the most involved case. Let

ϕinv(m,m′) :=
∧

t∈U\U ′
(ft(m) ≤ ft(m′)) and ϕt(m,m′) := (ft(m) < ft(m

′)).

Let Q,R ⊆ P be respectively the maximal siphon and trap of NU ′ such that
msrc(Q) = 0 and mtgt(R) = 0 (well-defined by closure under union). Let U ′′ :=
U ′\(Q•∪•R). By Theorem 1 and Proposition 2, Q•∪•R 6= ∅. Thus, U ′′ is a strict

90 M. Blondin and J. Esparza

subset of U ′, and, by induction hypothesis, there is a locally closed bi-separator
w.r.t. NU ′′ of the form ψ =

∨
1≤i≤m ψi that satisfies the claim for set U ′′. Let

ϕ(m,m′) :=
∨

t∈U\U ′
ϕt(m,m′) ∨ [ϕinv(m,m′) ∧m(Q) + m′(R) > 0] ∨∨

1≤i≤m

[ϕinv(m,m′) ∧m(R) + m′(Q) ≤ 0 ∧ ψi(m,m′)].

As (msrc,msrc) ∈ JϕinvK and (msrc,msrc) ∈ JψK, we have (msrc,msrc) ∈ JϕK.
Similarly, (mtgt,mtgt) ∈ JϕK. By Item 3, (msrc,mtgt) /∈ J

∨
t∈U\U ′ ϕt(m,m′)K.

Further, msrc(Q)+mtgt(R) = 0 and (msrc,mtgt) /∈ JψK. So, (msrc,mtgt) /∈ JϕK.
The number of disjuncts of ϕ is |U \ U ′|+ 1 +m and hence at most

|U \ U ′|+ 1 + 2|U ′′|+ 1 ≤ |U | − |U ′′|+ 1 + 2|U ′′|+ 1 =

|U |+ |U ′′|+ 2 ≤ |U |+ (|U | − 1) + 2 = 2|U |+ 1.

The same bounds holds for the number of atomic propositions per disjunct.

It remains to show that ϕ(m,m′) is locally closed w.r.t.NU . We only consider
the forward case, as the backward case is symmetric. Let (m,m′) ∈ JϕK and

m′
u−→ m′′ for some u ∈ U . By Item 4, ϕt u ϕt holds for each ϕt. Indeed,

ft(m) < ft(m
′) and m′

u−→ m′′ imply ft(m) < ft(m
′) ≤ ft(m

′′), and hence
ft(m) < ft(m

′′). To handle the other clauses, we make a case distinction on u.

– Case u ∈ U \U ′. Atomic proposition θ = (fu(m) ≤ fu(m′)) of ϕinv satisfies

θ u ϕu. Indeed, if fu(m) ≤ fu(m′) and m′
u−→m′′, then we have fu(m) <

fu(m′) by Item 5.

– Case u ∈ U ′. By Item 4, each atomic proposition θ of ϕinv satisfies θ u θ.

• Case u ∈ •R. We have θ′ u (m(Q) + m′(R) > 0) for any atomic

proposition θ′, since m′
u−→m′′ implies m′′(R) > 0 (regardless of θ′).

• Case u ∈ Q•. If m′(Q) ≤ 0, then u is disabled in m′. Thus, it only
remains to handle θ>0 := (m(Q)+m′(R) > 0). Since R is a trap of NU ′ ,
firing u from m′ does not empty R, and hence θ>0 u θ>0.

• Case u ∈ U ′′. Let θ≤0 := (m(R) + m′(Q) ≤ 0) and θ>0 := (m(Q) +
m′(R) > 0). Since Q and R are respectively a siphon and trap of NU ′ , we
have θ≤0 u θ≤0 and θ>0 u θ>0. Moreover, by induction hypothesis,
for every i ∈ [1..m], there exists j ∈ [1..m] such that ψi u ψj .

We conclude the proof by observing that it is constructive and can be turned
into Algorithm 1. The procedure works in polynomial time. Indeed, there are at
most |U | recursive calls. Moreover, each set can be obtained in polynomial time
via either linear programming or maximal siphons/traps computations [9]. ut

Example 2. Let us apply the construction of Theorem 2 to the Petri net and
the markings of Example 1: msrc = {p1 7→ 2, p2 7→ 0, p3 7→ 0, p4 7→ 0} and
mtgt := {p1 7→ 0, p2 7→ 0, p3 7→ 1, p4 7→ 0}. The locally closed bi-separator is the
formula ϕ below, where the colored arrows represent the relations t1 , . . . , t4 :

Separators in Continuous Petri Nets 91

[m(p4) <m′(p4)] ∨

[m(p4) ≤m′(p4) ∧m(p4) + m′(p4) > 0] ∨

[m(p4) ≤m′(p4) ∧m′(p1) + m′(p2) > 0] ∨

[m(p4) ≤m′(p4) ∧m(p1) + m(p2) ≤ 0 ∧ −m(p3) ≤ −m′(p3)]

t1, t2, t3, t4

t4

t4

t4

t1, t2, t3

t1, t3

t2

t1, t3

t2

The forward separator ψ(m) := ϕ(msrc,m) is, after simplifications, given by

ψ(m) ≡ m(p1) + m(p2) > 0 ∨m(p4) > 0.

Similarly, we obtain this backward separator ψ′(m) := ϕ(m,mtgt):

ψ′(m) ≡ m(p1) + m(p2) = 0 ∧m(p3) ≥ 1 ∧m(p4) = 0.

The backward separator ψ′ provides a much simpler proof of msrc 6
∗−→mtgt than

the one of Example 1. The proof goes as follows: ψ′ is trivially backward invari-
ant, because markings that only mark p3 do not backward-enable any transition.
In particular, since mtgt only marks p3, it can only be reached from mtgt. ut

Algorithm 1: Construction of a locally closed bi-sep. for (msrc,mtgt).

Input: N = (P, T, F), U ⊆ T and msrc,mtgt ∈ QP
+ s.t. msrc 6−→U∗ mtgt

Output: A locally closed bi-separator w.r.t. NU

bi-separator(U)
if U = ∅ then

pick p ∈ P such that msrc(p) 6= mtgt(p)
return (am ≤ am′) where a := sign(msrc(p)−mtgt(p)) · ep

else
b := mtgt −msrc

X := {x ∈ RT
+ : Fx = b, supp(x) ⊆ U}

YS := {y ∈ RP : FTy ≥U 0, bTy ≤ 0, bTy <
∑

s∈S(FTy)s}
if X = ∅ then

pick y ∈ Y∅ and return (yTm ≤ yTm′)
else

U ′ := {u ∈ U : x(u) > 0 for some x ∈ X}
for t ∈ U \ U ′ do

pick yt ∈ Y{t}; ft(m) := yT
t m

if ft(msrc) > ft(mtgt) then return (ft(m) < ft(m
′))

Q := largest siphon of NU′ such that msrc(Q) = 0
R := largest trap of NU′ such that mtgt(R) = 0
ϕinv :=

∧
t∈U\U′(ft(m) ≤ ft(m′))

ψ1 ∨ · · · ∨ ψm := bi-separator(U ′ \ (Q• ∪ •R))

return
∨

t∈U\U′ ϕt(m,m′)∨ [ϕinv(m,m′)∧m(Q) +m′(R) > 0]∨∨
1≤i≤m[ϕinv(m,m′) ∧m(R) + m′(Q) ≤ 0 ∧ ψi(m,m′)]

92 M. Blondin and J. Esparza

6 Checking locally closed bi-separators is in NC

We show that the problem of deciding whether a given linear formula is a locally
closed bi-separator is in NC. To do so, we provide a characterization of ψ t ψ for
homogeneous atomic propositions ψ and ψ′. We only focus on forward firability,
as backward firability can be expressed as forward firability in the transpose
Petri net. Recall that ψ t ψ

′ holds iff the following holds:

(m,m′) ∈ JψK and m′
αt−→m′′ imply (m,m′′) ∈ Jψ′K. (*)

Property (*) can be rephrased as:

(m,m′) ∈ JψK and m′ ≥ α ·∆−t imply (m,m′ + α ·∆t) ∈ Jψ′K.

As we will see towards the end of the section, due to homogeneity, it actually
suffices to consider the case where α = 1, which yields this reformulation:

{(m,m′) ∈ JψK : m′ ≥ ∆−t }︸ ︷︷ ︸
X

⊆ {(m,m′) : (m,m′ +∆t) ∈ Jψ′K}︸ ︷︷ ︸
Y

.

Therefore, testing ψ t ψ
′ amounts to the inclusion check X ⊆ Y . Of course,

if X = ∅, then this is trivial. Hence, we will suppose that X 6= ∅, assuming for
now that it can somehow be tested efficiently. In the forthcoming Propositions 8
and 9, we will provide necessary and sufficient conditions for X ⊆ Y to hold. In
Proposition 10, we will show that these conditions are testable in NC. Then, in
Proposition 11, we will explain how to check whether X 6= ∅ actually holds.

For X ⊆ Y , we can characterize the case of atomic propositions ψ that use
“≤” (rather than “<”) with a generalization of Farkas’ lemma:

Proposition 8. Let a,a′, l ∈ Rn and b′ ∈ R. Let X := {x ∈ Rn : ax ≤ 0∧x ≥
l} and Y := {x ∈ Rn : a′x ≤ b′} be such that X 6= ∅. It is the case that X ⊆ Y
iff there exists λ ≥ 0 such that λa ≥ a′ and −b′ ≤ (λa− a′)l.

We now give the conditions for all four combinations of “≤” and “<”:

Proposition 9. Let a,a′ ∈ Rn, b′ ∈ R, l ≥ 0 and ∼,∼′ ∈ {≤, <}. Let X∼ :=
{x ≥ l : ax ∼ 0} and Y∼′ := {x ∈ Rn : a′x ∼′ b′} be such that X∼ 6= ∅. It holds
that X∼ ⊆ Y∼′ iff there exists λ ≥ 0 s.t. λa ≥ a′ and one of the following holds:

1. ∼′ = ≤ and −b′ ≤ (λa− a′)l;
2. ∼ = ≤, ∼′ = <, and −b′ < (λa− a′)l;
3. ∼ = <, ∼′ = <, and either −b′ < (λa− a′)l or −b′ = (λa− a′)l ∧ λ > 0.

Proof.

1. If ∼ = ≤, then it follows immediately from Proposition 8. Thus, assume ∼ =
<. We claim that X< ⊆ Y≤ iff X≤ ⊆ Y≤. The validity of this claim concludes
the proof of this case as we have handled ∼ = ≤ and as X≤ ⊇ X< 6= ∅.

Separators in Continuous Petri Nets 93

Let us show the claim. It is clear that X< ⊆ Y≤ is implied by X≤ ⊆ Y≤. So,
we only have to show direction from left to right. For the sake of contradic-
tion, suppose that X< ⊆ Y≤ and X≤ 6⊆ Y≤. Let X= := X≤ \X<. Note that
X= 6= ∅. Let x ∈ X< and x′ ∈ X= \Y≤. We have x,x′ ≥ l, ax < 0, ax′ = 0,
a′x = c ≤ b′ and a′x′ = c′ > b′ for some c, c′ ∈ R. In particular, b′ ∈ [c, c′).
Let ε ∈ (0, 1] be such that b′ < εc + (1 − ε)c′. Let x′′ := εx + (1 − ε)x′.
Observe that x′′ ≥ l. Moreover, we have:

ax′′ = εax + (1− ε)ax′ = εax < 0,

a′x′′ = εa′x + (1− ε)a′x′ = εc+ (1− ε)c′ > b′.

Therefore, we have x′′ ∈ X< and x′′ /∈ Y≤, which is a contradiction.

2. ⇒) Since X≤ ⊆ Y<, the system ∃x : x ≥ l ∧ ax ≤ 0 ∧ a′x ≥ b′ has no
solution. In matrix notation, the system corresponds to ∃x : Ax ≤ c where

A :=

 −I
a
−a′

 and c :=

−l0
−b′

 .

By Farkas’ lemma (Lemma 1), ATy = 0 and cTy < 0 for some y ≥ 0. In
other words,

∃z ≥ 0, λ, λ′ ≥ 0 : λa− λ′a′ = z ∧ −λ′b′ < zl.

Since z ≥ 0, we have λa ≥ λ′a′∧−λ′b′ < (λa−λ′a′)l. If λ′ > 0, then we are
done by dividing all terms by λ′. For the sake of contradiction, suppose that
λ′ = 0. This means that λa ≥ 0 and 0 < λal. We necessarily have λ > 0 and
al > 0. Let x ∈ X≤. We have 0 ≥ ax ≥ al > 0, which is a contradiction.

⇐) Let x ∈ X≤. We have a′x < b′ and hence x ∈ Y< as desired, since:

−b′ < (λa− a′)l

≤ (λa− a′)x (by (λa− a′) ≥ 0 and x ≥ l ≥ 0)

= λax− a′x

≤ −a′x (by λ ≥ 0 and ax ≤ 0).

3. The proof is similar albeit slightly more complicated. ut

The conditions arising from Proposition 9 involve solving linear programs
with one variable λ. It is easy to see that this problem is in NC:

Proposition 10. Given a, b ∈ Qn and ∼ ∈ {≤, <}n, testing ∃λ ≥ 0 : aλ ∼ b
is in NC.

Recall that at the beginning of the section we made the assumption that some
pair (m,m′) ∈ JψK is such that m′ enables a transition t. Checking whether this
is actually true has a cost. Fortunately, we provide a simple characterization of
enabledness which can checked in NC. Formally, we say that ϕ enables t if there
exists (m,m′) ∈ JϕK such that m′ α-enables t for some α > 0. We have:

94 M. Blondin and J. Esparza

Proposition 11. Let ϕ∼(m,m′) := am ∼ bm′ where a, b ∈ RP . This holds:

1. ϕ< enables u iff a 6≥ 0 or b 6≤ 0, and
2. ϕ≤ enables u iff b∆−u ≥ 0 or (b∆−u < 0 ∧ (a,−b) 6≥ (0,0)).

Proof.

1. ⇒) Since ϕ< enables u, we have Jϕ<K 6= ∅. Let (m,m′) ∈ Jϕ<K. We have
am < bm′. It cannot be that a ≥ 0 and b ≤ 0, as otherwise am ≥ 0 ≥ bm′.

⇐) It suffices to give a pair (m,m′) ∈ Jϕ<K such that m′ ≥ ∆−u . Informally,
if a has a negative value (resp. b has a positive value), then we can consider
the pair (0, ∆−u) and “fix” the value on the left-hand-side (resp. right-hand
side) so that ϕ< is satisfied. More formally, if a(p) < 0, then (kep, ∆

−
u) ∈

Jϕ<K with k := (|b∆−u | + 1)/|a(p)|; if b(p) > 0, then (0, ∆−u + kep) ∈ Jϕ<K
with k := (|b∆−u |+ 1)/b(p).

2. The proof is similar albeit slightly more complicated. ut

We can finally show that testing ψ t ψ
′ can be done in NC, for atomic

propositions ψ and ψ′. In turn, this allows us to show that we can test in NC
whether a linear formula is a locally closed bi-separator.

Proposition 12. Given a Petri net N , a transition t and homogeneous atomic
propositions ψ and ψ′, testing whether ψ t ψ

′ can be done in NC.

Proof. Recall that addition, subtraction, multiplication, division and comparison
can be done in NC. Note that, by Proposition 11, we can check whether ψ enables

t in NC. If it does, then we must test whether (m,m′) ∈ JψK and m′
αt−→ m′′

implies (m,m′′) ∈ Jψ′K. We claim that this amounts to testing X ⊆ Y , where:

X := {(m,m′) ∈ RP+ × RP+ : (m,m′) ∈ JψK and (m,m′) ≥ (0, ∆−t)},
Y := {(m,m′) ∈ RP+ × RP+ : (m,m′ +∆t) ∈ Jψ′K}.

Let us prove this claim.
⇒) Let (m,m′) ∈ X. We have (m,m′) ∈ JψK and (m,m′) ≥ (0, ∆−t). Thus

m′
t−→m′ +∆t. By assumption, (m,m′ +∆t) ∈ Jψ′K, and hence (m,m′) ∈ Y .

⇐) Let (m,m′) ∈ JψK and m′
αt−→ m′′. We have m′ ≥ α∆−t and m′′ =

m′ + α∆t. Let k := m/α, k′ := m′/α and k′′ := m′′/α. As α > 0 and ψ
is homogeneous, we have (k,k′) ∈ JψK, (k,k′) ≥ (0, ∆−t) and k′′ = k′ + ∆t.
Thus, (k,k′) ∈ X ⊆ Y . By definition of Y , this means that (k,k′′) ∈ Jψ′K. By
homogeneity, we conclude that (m,m′′) ∈ Jψ′K.

Now that we have shown the claim, let us explain how to check whether
X ⊆ Y in NC. Note that X 6= ∅ since ψ enables t. Thus, by Proposition 9,
testing X ⊆ Y amounts to solving a linear program in one variable. For example,
if ψ = (a·(m,m′) ≤ 0) and ψ′ = (a′ ·(m,m′) < 0), then we must check whether
this system has a solution:

∃λ ≥ 0 : λa ≥ a′ ∧ a · (0, ∆t) < (λa− a′) · (0, ∆−t).

Thus, by Proposition 10, testing X ⊆ Y can be done in NC. ut

Separators in Continuous Petri Nets 95

Theorem 3. Given N = (P, T, F), msrc,mtgt ∈ QP+ and a formula ϕ, testing
whether ϕ is a locally closed bi-separator for (msrc,mtgt) can be done in NC.

Proof. Recall that ϕ = ϕ1 ∨ · · · ∨ϕn must be in DNF with homogeneous atomic
propositions. As arithmetic belongs in NC and ϕ is in DNF, we can test whether
(msrc,msrc) ∈ JϕK, (mtgt,mtgt) ∈ JϕK and (msrc,mtgt) /∈ JϕK in NC by evalu-
ating ϕ in parallel. We can further test whether ϕ is locally closed by checking
the following (which is simply the definition of “locally closed”): ∧

t∈T
i∈[1..n]

∨
j∈[1..n]

∧
ψ∈ϕi

∨
ψ′∈ϕj

ψ t ψ
′

 ∧
 ∧

t∈TT

i∈[1..n]

∨
j∈[1..n]

∧
ψ∈ϕi

∨
ψ′∈ϕj

ψT t ψ
′T

 .
By Proposition 12, each test ψ t ψ

′ can be carried in NC. Therefore, we can
perform all of them in parallel. Note that we do not have to explicitly compute
the transpose of transitions and formulas; we can simply swap arguments. ut

Remark 1. Testing whether ϕ is locally closed is even simpler if the tester is also
given annotations indicating for every clause ϕi and transition t which clause ϕj
is supposed to satisfy ϕi t ϕj . This mapping is a byproduct of the procedure
to compute a locally closed bi-separator, and so comes at no cost. ut

7 Bi-separators for set-to-set unreachability

In most applications, one does not have to prove unreachability of one mark-
ing, but rather of a set of markings, usually defined by means of some simple
linear constraints. We show that our approach can be extended to “set-to-set
reachability”, i.e. queries of the form ∃msrc ∈ A,mtgt ∈ B : msrc −→∗ mtgt,
which we denote by A −→∗ B. We focus on the case where sets A and B are
described by conjunctions of atomic propositions; in other words, A and B are
convex polytopes defined as intersections of half-spaces. In particular, this in-
cludes “coverability” queries which are important in practice, i.e. where A is a
singleton and B is of the form {m : m ≥ b}. More generally, our approach can
directly be adapted to convex linear Horn constraints, which is a fragment of lin-
ear arithmetic that extends linear programs and that captures the expressiveness
of continuous Petri nets [6].

As shown in [6, Lem. 3.7], given an atomic proposition ψ = (ax ∼ b), one
can construct (in logarithmic space) a Petri net Nψ and some y ∈ {0, 1}5 such
that ψ(x) holds iff (x,y) −→∗ (0,0) in Nψ. The idea—depicted in Figure 2,
which is adapted from [6, Fig. 1])—is simply to cancel out positive and negative
coefficients of ψ. It is straightforward to adapt this construction to a conjunction∧

1≤i≤k ψk(x) of atomic propositions. Indeed, it suffices to make k copies of the
gadget, but where places {p1, . . . , pn} and transitions {t1, . . . , tn} are shared. In
this more general setting, ti consumes from pi and simultaneously spawns the
respective coefficient to each copy. In summary, the following holds:

96 M. Blondin and J. Esparza

x1

x2

...

xn

t1

t2

tn

p1

p2

pn

qpos

qneg

q≥

q′>

q>

a1

a2

|an|

c

Fig. 2. Petri net for ψ(x) = (a1 ·x1 + · · ·+ an ·xn > c) where a1, a2, c > 0 and an < 0.

Proposition 13. Given a conjunction of atomic propositions ϕ, it is possible to
construct, in logarithmic space, a Petri net Nϕ and y ∈ {0, 1}5k such that ϕ(x)
holds iff (x,y) −→∗ (0,0) in Nϕ.

With the previous construction in mind, we can reformulate any set-to-set
reachability query into a standard (“marking-to-marking”) reachability query.

Proposition 14. Given a Petri net N and convex polytopes A and B described
as conjunctions of atomic propositions, one can construct, in log. space, a Petri
net N ′ and markings msrc and mtgt s.t. A −→∗ B in N iff msrc −→∗ mtgt in N ′.

Proof. Let N = (P, T,F−,F+) where P = {p1, . . . , pn}. Let us describe N ′ =
(P ′, T ′,F′−,F

′
+) with the help of Figure 3. The Petri netN ′ extendsN as follows:

– we add transitions {t1, . . . , tn} whose purpose is to nondeterministically
guess an initial marking of N in P , and make a copy in P ′ := {p′1, . . . , p′n};

– we add a gadget, obtained from Proposition 13, to test whether the marking
in P ′ belongs to A; and we add a gadget, obtained from Proposition 13, to
test whether the marking in P belongs to B.

p′1 p′2

· · ·
p′n

p1 p2

· · ·
pn

∈ A?

∈ B?

t1

t2

...

tn

N

Fig. 3. Reduction from set-to-set reachability to (marking-to-marking) reachability.

Separators in Continuous Petri Nets 97

The Petri net N ′ is intended to work sequentially as follows: (1) guess the
initial marking m ofN ; (2) executeN on m and reach a marking m′; and (3) test
whether m ∈ A and m′ ∈ B. If N ′ follows this order, then it is straightforward
to see that A −→∗ B in N iff (0,0,y,y′) −→∗ (0,0,0,0) in N ′, where y and y′ are
obtained from Proposition 13. However, N ′ may interleave the different phases.4

Nonetheless, this is not problematic, as any run of N ′ can be reordered in such
a way that all three phases are consecutive. Indeed, phase (1) only produces
tokens in P ∪ P ′, and phase (3) only consumes tokens from P ∪ P ′. ut

As a consequence of Proposition 14, combined with Theorems 2 and 3, we
obtain the following corollary:

Corollary 1. A negative answer to a convex polytope query A −→∗ B is wit-
nessed by a locally closed bi-separator computable in polynomial time and check-
able in NC.

8 Conclusion

We have shown that continuous Petri nets admit locally closed bi-separators that
can be efficiently computed. These separators are succinct and very efficiently
checkable certificates of unreachability. In particular, checking that a linear for-
mula is a locally closed bi-separator is in NC, and only requires to solve linear
inequations in one variable over the nonnegative reals.

Verification tools that have not been formally verified, or rely (as is usu-
ally the case) on external packages for linear arithmetic, can apply our results
to provide certificates for their output. Further, our separators can be used as
explanations of why a certain marking is unreachable. Obtaining minimal expla-
nations is an interesting research avenue.

From a logical point of view, separators are very closely related to inter-
polants for linear arithmetic, which are widely used in formal verification to
refine abstractions in the CEGAR approach [3,17,18,1]. We intend to explore
whether they can constitute the basis of a CEGAR approach for the verification
of continuous Petri nets.

Acknowledgments. We thank the anonymous referees for their comments, and
in particular for suggesting a more intuitive definition of bi-separator.

References

1. Althaus, E., Beber, B., Kupilas, J., Scholl, C.: Improving interpolants for linear
arithmetic. In: Proc. 13th International on Automated Technology for Verification
and Analysis (ATVA). pp. 48–63 (2015). https://doi.org/10.1007/978-3-319-24953-
7 5

4 It is tempting to implement a lock, but this only works under discrete semantics.

98 M. Blondin and J. Esparza

https://doi.org/10.1007/978-3-319-24953-7_5
https://doi.org/10.1007/978-3-319-24953-7_5

2. Baumann, P., Majumdar, R., Thinniyam, R.S., Zetzsche, G.: Context-bounded
verification of liveness properties for multithreaded shared-memory programs. Pro-
ceedings of the ACM on Programming Languages (PACMPL) 5, 1–31 (2021).
https://doi.org/10.1145/3434325

3. Beyer, D., Zufferey, D., Majumdar, R.: Csisat: Interpolation for LA+EUF. In:
Proc. 20th International Conference on Computer Aided Verification (CAV). pp.
304–308 (2008). https://doi.org/10.1007/978-3-540-70545-1 29

4. Blondin, M., Esparza, J., Helfrich, M., Kucera, A., Meyer, P.J.: Checking qualita-
tive liveness properties of replicated systems with stochastic scheduling. In: Proc.
32nd International Conference on Computer Aided Verification (CAV). vol. 12225,
pp. 372–397 (2020). https://doi.org/10.1007/978-3-030-53291-8 20

5. Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous
Petri nets. ACM Transactions on Computational Logic (TOCL) 18(3), 24:1–24:28
(2017). https://doi.org/10.1145/3105908

6. Blondin, M., Haase, C.: Logics for continuous reachability in Petri nets
and vector addition systems with states. In: Proc. 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). pp. 1–12 (2017).
https://doi.org/10.1109/LICS.2017.8005068

7. Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. In: Proc. 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS) (2021), to appear

8. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri nets. Springer, 2 edn.
(2010)

9. Desel, J., Esparza, J.: Free choice Petri nets. No. 40, Cambridge University Press
(1995)

10. Esparza, J., Helfrich, M., Jaax, S., Meyer, P.J.: Peregrine 2.0: Explaining correct-
ness of population protocols through stage graphs. In: Proc. 18th International
Symposium on Automated Technology for Verification and Analysis (ATVA). vol.
12302, pp. 550–556 (2020). https://doi.org/10.1007/978-3-030-59152-6 32

11. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based
synthesis for complex APIs. In: Proc. 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). pp. 599–612. ACM (2017).
https://doi.org/10.1145/3009837.3009851

12. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundamenta
Informaticae 137(1), 1–28 (2015). https://doi.org/10.3233/FI-2015-1168

13. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681

14. Leroux, J.: Vector addition systems reachability problem (A simpler solution).
In: Turing-100 – The Alan Turing Centenary. vol. 10, pp. 214–228 (2012).
https://doi.org/10.29007/bnx2

15. Leroux, J.: The reachability problem for Petri nets is not primitive recursive. In:
Proc. 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(2021), to appear

16. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Proc. 34th Symposium on Logic in Computer
Science (LICS). pp. 1–13 (2019). https://doi.org/10.1109/LICS.2019.8785796

17. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for inter-
polation. Journal of Symbolic Computation 45(11), 1212–1233 (2010).
https://doi.org/10.1016/j.jsc.2010.06.005

Separators in Continuous Petri Nets 99

https://doi.org/10.1145/3434325
https://doi.org/10.1007/978-3-540-70545-1_29
https://doi.org/10.1007/978-3-030-53291-8_20
https://doi.org/10.1145/3105908
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1007/978-3-030-59152-6_32
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1145/146637.146681
https://doi.org/10.29007/bnx2
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.jsc.2010.06.005

18. Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arith-
metic. In: Proc. Conference & Exhibition on Design, Automation & Test in Europe
(DATE). pp. 1–6 (2014). https://doi.org/10.7873/DATE.2014.128

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

100 M. Blondin and J. Esparza

https://doi.org/10.7873/DATE.2014.128
http://creativecommons.org/licenses/by/4.0/

Graphical Piecewise-Linear Algebra

Guillaume Boisseau1 � and Robin Piedeleu2

1 University of Oxford, Oxford, UK guillaume.boisseau@cs.ox.ac.uk
2 University College London, London, UK r.piedeleu@ucl.ac.uk

Abstract. Graphical (Linear) Algebra is a family of diagrammatic lan-
guages allowing to reason about different kinds of subsets of vector spaces
compositionally. It has been used to model various application domains,
from signal-flow graphs to Petri nets and electrical circuits. In this paper,
we introduce to the family its most expressive member to date: Graphi-
cal Piecewise-Linear Algebra, a new language to specify piecewise-linear
subsets of vector spaces.
Like the previous members of the family, it comes with a complete ax-
iomatisation, which means it can be used to reason about the correspond-
ing semantic domain purely equationally, forgetting the set-theoretic
interpretation. We show completeness using a single axiom on top of
Graphical Polyhedral Algebra, and show that this extension is the small-
est that can capture a variety of relevant constructs.
Finally, we showcase its use by modelling the behaviour of stateless elec-
tronic circuits of ideal elements, a domain that had remained outside the
remit of previous diagrammatic languages.

Keywords: string diagrams · piecewise-linear · prop · axiomatisation

1 Introduction

Functional thinking underpins most scientific models. Nature, however, does
not distinguish inputs and outputs—physical systems are governed by laws that
merely express relations between their observable variables. While influential
scientists, like the famous control theorist J. Willems, have pointed out the
blind spots of functional thinking [11], it has remained the dominant paradigm
in science and engineering. Arguably, our mathematical practice, especially the
foundational emphasis on sets and functions, and the limitations of standard al-
gebraic syntax, are partially to blame for the persistence of this status quo. But
there are also alternative approaches, that take relations seriously as the primi-
tive building blocks of our mathematical models. Category theory in particular
is agnostic about what constitutes a morphism and can accommodate relations
as easily as functions.

Relations, with their usual composition and the cartesian product of sets,
form a monoidal category—a category in which morphisms can be composed
in two different ways. As a result, they admit a natural two-dimensional syn-
tax of string diagrams. This notation has several advantages when it comes to

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 101–119, 2022.
https://doi.org/10.1007/978-3-030-99253-8_6

http://orcid.org/0000-0001-5244-893X
http://orcid.org/0000-0002-3945-2704
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_6&domain=pdf

reasoning about open and interconnected systems [1]: string diagrams naturally
keep track of structural properties, such as interconnectivity; they factor out
irrelevant topological information that standard algebraic syntax needs to keep
explicit; variable-sharing—the relational form of composition for systems—is de-
picted simply by wiring different components together.

As a result, a wealth of recent developments in computer science and be-
yond have adopted relations and their diagrammatic notation as a unifying lan-
guage to reason about a broad range of systems, from electrical circuits to Petri
nets [2,6,5]. Many of these follow the same methodology. 1) Given a class of
systems, find a set of diagrammatic generators from which any system can be
specified, using the two available forms of composition. 2) Interpret each of them
as a relation between the observable variables of the system that they describe.
This defines a structure-preserving mapping—a monoidal functor—from the di-
agrammatic syntax to the semantics, from the two-dimensional representation
of a system to its behaviour. 3) Finally, identify a convenient set of equations
between diagrams, from which any semantic equality between the behaviour of
the corresponding systems may be derived.

Graphical linear algebra (GLA) is a paradigmatic example of this approach.
It provides a diagrammatic syntax to reason compositionally about different
types of linear dynamical systems (including for instance traditional signal flow
graphs) and prove their behavioural equivalence purely diagrammatically. The
syntax of GLA is generated by the following primitive components:

| | | | | | | | x (x ∈ K)

As relations, the black nodes force all of their ports to share the same value; the
white nodes constrain their left ports and the right ports to sum to the same value
(or to zero when there are no left/right ports); the final generator, parameterised
by an element of the chosen field K, behaves as an amplifier: its right value is
x times the left value. Following point 3) of the methodology sketched above,
GLA enjoys a sound and complete equational theory for the specified semantics,
called the theory of Interacting Hopf Algebras (IH). In summary, string diagrams
with n ports on the left and m ports on the right, quotiented by the axioms of
IH, are precisely linear relations, i.e., linear subspaces of Kn ×Km.

GLA was the starting point of different extensions, two of which play a
prominent role in this paper. First, Graphical Affine Algebra, which adds to
the syntax a generator for the constant 1. This allows it to express affine
relations, i.e. affine subspaces of Kn×Km. A corresponding complete equational
theory was presented in [6]. Then, Graphical Polyhedral Algebra (GPA), which
assumes that K is an ordered field and adds a generator ≥ for this order. The
resulting graphical calculus can express all polyhedral relations, i.e., polyhedra3

in Kn ×Km, and also comes with its own complete axiomatisation.
In this paper, we define the most expressive member of the GLA family tree

to date: Graphical Piecewise-Linear Algebra (GPLA) is a hybrid of symbolic and
3 For the case of R, these include the usual polytopes, which are bounded subsets of
Rn × Rm, as well as proper polyhedra, which may have unbounded faces.

102 G. Boisseau and R. Piedeleu

diagrammatic syntax for piecewise-linear (pl) relations—finite unions of polyhe-
dra in Kn × Km—and a corresponding complete equational theory. We argue
below that the proposed language strikes a convincing balance between struc-
ture and expressiveness. It is a simple extension of GPA [4], yet for K = R, it is
sufficiently powerful to approximate any submanifold of Rn arbitrarily closely.

Furthermore, this extension completes a research program initiated in parallel
with the birth of GLA [2,6,3]: its chief purpose was to give the informal graphical
notation for electrical circuits a formal, compositional interpretation, with a
corresponding equational theory.

Until now however, the category-theoretic setting could only accommodate
components with a linear (more precisely, affine) behaviour, such as resistors,
inductors, capacitors, voltage and current sources. GPLA finally makes it possi-
ble to reason equationally about electronic components, such as ideal diodes and
transistors. Even when the idealised physical behaviour of these components is
not necessarily piecewise-linear, GPLA is theoretically expressive enough to ap-
proximate it as closely as necessary. Indeed, piecewise-linear approximations of
transistor behaviour have been proposed to bypass the unavoidable abstraction
leaks of purely digital circuits [9]. In this context, GPLA can serve as a form of
abstract interpretation for electronic circuits, with adjustable precision to allow
for the intended semantics to be as physically realistic as desired. Of course,
in practice, working with large diagrams can be prohibitive. But this is a lim-
itation shared by all members of the Graphical Algebra family, and developing
convenient tools and techniques for diagrammatic reasoning is an active research
area. Our main thrust is that piecewise-linearity provides the appropriate level
of structure, where general relations are too flexible to come with a useful equa-
tional theory, and linear relations are too rigid to accommodate diodes and other
electronic components.

Finally, a remark about syntax. While it is possible to make the language
purely diagrammatic, we found that what one gains in purity one loses in com-
plexity. Ultimately, the hybrid syntax of union and diagrams is more convenient
to manipulate and intuitive to read. In fact, this is not the first time that sums of
diagrams appear in the literature [8]. Nevertheless, one of our central technical
contributions is the rigorous definition of a syntax blending diagrams and binary
joins, and the corresponding notion of equational theory.

Outline. In Section 2 we recall the necessary mathematical background, the fun-
damentals of diagrammatic syntax, and the language of Graphical Polyhedral
Algebra (GPA). In Section 3, we extend the diagrammatic syntax with unions
and define the notion of symmetric monoidal semi-lattice theory. From there,
in Section 4, we extend GPA with unions, to capture piecewise-linear relations,
and give this new language a theory that we prove is complete (Theorem 2).
This is our main technical contribution. In Section 5, we explore alternative
languages for piecewise-linear relations, and show that they are all equally ex-
pressive. Finally, in Section 6, we extend the compositional re-interpretation of
electrical circuits from [3] to include electronic components, namely diodes and
transistors.

Graphical Piecewise-Linear Algebra 103

2 Preliminaries

Informally, our starting point is a simple diagrammatic language of circuits built
from the following generators:

| | | | | | | | | ≥ | x (x ∈ K) (1)

We will explain how these basic components can be wired together and give
them a formal interpretation.

2.1 Props and Symmetric Monoidal Theories

The mathematical backbone of our approach is the notion of product and per-
mutations category (prop), a structure which generalises standard algebraic the-
ories [7]. Formally, a prop is a strict symmetric monoidal category (SMC) whose
objects are the natural numbers and where the monoidal product ⊕ on ob-
jects is given by addition. Equivalently, it is a strict SMC whose objects are
all monoidal products of a single generating object. Prop morphisms are strict
symmetric monoidal functors that act as the identity on objects.

Following an established methodology, we will define two props: Syn and
Sem, for the syntax and semantics respectively. To guarantee a compositional
interpretation, we require J · K : Syn → Sem, the mapping of terms to their
intended semantics, to be a prop morphism.

Typically, the syntactic prop Syn is freely generated from a monoidal signa-
ture Σ, i.e. a set of arrows g : m→ n. In this case, we use the notation PΣ and
Syn interchangeably. Morphisms of PΣ are terms of an (N,N)-sorted syntax,
whose constants are elements of Σ and whose operations are the usual compo-
sition (−); (−) : Syn(n,m)× Syn(m, l)→ Syn(n, l) and the monoidal product
(−)⊕ (−) : Syn(n1,m1)× Syn(n2,m2)→ Syn(n1 + n2,m1 +m2), quotiented
by the laws of SMCs. But this quotient is cumbersome and unintuitive to work
with.

This is why we will prefer a different representation. With their two forms
of composition, monoidal categories admit a natural two-dimensional graphical
notation of string diagrams. The idea is that an arrow c : n→ m of PΣ is better
represented as a box with n ordered wires on the left and m on the left. We
can compose these diagrams in two different ways: horizontally, by connecting
the right wires of one diagram to the left wires of another, and vertically by
juxtaposing two diagrams:

c ; d = c
n m

d
l d1 ⊕ d2 =

d1

d2

n1 m1

n2 m2

where the labelled wire n is syntactic sugar for a stack of n wires. The identity
id1 : 1→ 1 is denoted as a plain wire , the unit for ⊕, id0 : 0→ 0, as the empty
diagram , and when the category is symmetric, the symmetry σ1,1 : 2→ 2 is

104 G. Boisseau and R. Piedeleu

denoted as a wire crossing . With this representation the laws of SMCs become
diagrammatic tautologies.

Once we have defined J · K : Syn → Sem, it is natural to look for equations
to reason about semantic equality directly on the diagrams themselves. Given
a set of equations E, i.e., a set containing pairs of arrows of the same type, we
write E

= for the smallest congruence wrt the two composition operations ; and
⊕. We say that E

= is sound if c E
= d implies J c K = J d K. It is moreover complete

when the converse implication holds. We call a pair (Σ,E) a symmetric monoidal
theory (SMT) and we can form the prop PΣ/E obtained by quotienting PΣ by
E
=. There is then a prop morphism q : PΣ → PΣ/E witnessing this quotient.

We may also wonder what the expressive power of our diagrammatic language
is. In terms of props we look to characterise precisely the image Im(J · K) of the
syntax via J · K.

The situation for a sound and complete SMT is summarised in the commu-
tative diagram below right.

Soundness simply means that J · K fac-
tors as s ◦ q through PΣ/E and com-
pleteness means that s is a faithful prop
morphism.

PΣ/E Im(J · K)

Syn = PΣ Sem

∼=

s
iq

J · K

Typically, our semantic prop Sem will be (a subcategory of) the category of
sets and relations.

Definition 1. Let K be a field. RelK is the prop

– whose arrows n→ m are relations R ⊆ Kn ×Km,
– with composition given by R;S = {(x, z) | ∃y. (x, y) ∈ R ∧ (y, z) ∈ S}, for
R : n→ m, S : m→ l, and identity n→ n the diagonal {(x, x) | x ∈ Kn},

– monoidal product given by

R1 ⊕R2 =

{((
x1
x2

)
,

(
y1
y2

))
| (x1, y1) ∈ R1 ∧ (x2, y2) ∈ R2

}
for R1 : n1 → m1 and R2 : n2 → m2,

– symmetry n+m→ m+n, the relation
{((

x
y

)
,

(
y
x

))
| (x, y) ∈ Kn ×Km

}
.

2.2 Ordered Props and Symmetric Monoidal Inequality Theories

Our semantic prop—RelK—carries additional structure that we wish to lift to
the syntax: as subsets of Kn×Km, relations n→ m can be ordered by inclusion.
The corresponding structure is that of an ordered prop, a prop enriched over
the category of posets, whose composition and monoidal product are monotone
maps.

If props can be presented by SMTs, ordered props can be presented by sym-
metric monoidal inequality theories (SMIT). Formally, the data of a SMIT is

Graphical Piecewise-Linear Algebra 105

the same as that of a SMT: a signature Σ and a set I of pairs c, d : n → m of
PΣ-arrows of the same type, that we now read as inequalities c ≤ d.

As for plain props, we can construct an ordered prop from a SMIT by building
the free prop PΣ and passing to a quotient PΣ/I . First, we build a preorder
on each homset by closing I under ⊕ and taking the reflexive and transitive
closure of the resulting relation. Then, we obtain the free ordered prop PΣ/I by
quotienting the resulting preorder by imposing anti-symmetry.

SMITs subsume SMTs, since every SMT can be presented as a SMIT, by
splitting each equation into two inequalities. We will refer to both simply as
theories and their defining inequalities as axioms. When referring to a sound
and complete theory, we will also use the term axiomatisation, as is standard in
the literature.

2.3 Graphical Polyhedral Algebra

We now assume that K is an ordered field, that is, a field equipped with a
total order ≥ compatible with the field operations in the following sense: for all
x, y, z ∈ K, i) if x ≥ y then x+z ≥ y+z, and ii) if x ≥ 0 and y ≥ 0 then xy ≥ 0.

Following [4], from the generators in (1), we define a prop, give it a seman-
tics in RelK, characterise the image of the semantic functor, and describe an
axiomatisation for the specified semantics.

– For Σ+
≥ = { , , , , , , , , , ≥ , r (r ∈ K)}

define J · K : PΣ+
≥ → RelK to be the prop morphism given by

J K :=

{(
x,

(
x

x

))
| x ∈ K

}
J K := {(x, •) | x ∈ K}

J K :=

{((
x

x

)
, x

)
| x ∈ K

}
J K := {(•, x) | x ∈ K}

J K :=

{(
x+ y,

(
x

y

))
| x, y ∈ K

}
J K := {(0, •)}

J K :=

{((
x

y

)
, x+ y

)
| x, y ∈ K

}
J K := {(•, 0)}

q
k

y
:= {(x, k · x) | x ∈ K} for k ∈ K

q
≥

y
:= {(x, y) ∈ K×K | x ≥ y} J K := {(•, 1)}

– The image of PΣ+
≥ by J · K is the prop whose arrows n → m are finitely

generated polyhedra of Kn ×Km, i.e., subsets of the form{
(x, y) ∈ Kn ×Km | A

(
x
y

)
+ b ≥ 0

}
for some matrix A and some vector b (see [4] for more details, in particular
the appendix for the proof that these form a prop).

106 G. Boisseau and R. Piedeleu

– IH+
≥ provides an axiomatisation of polyhedral relations [4, Corollary 25]; it

can be found in the first four blocks of Fig. 1.

Example 1 (Duality). Two diagrams play a special role in this paper: the half
turns and , called cup and cap, respectively. Using these and , we
can build cups and caps for any number n of wires:

n
and

n
.

They allow us to associate a dual dop : n → m to any diagram d : m → n
by turning its left ports into right ports and vice-versa:

dop
mn

= d

n

m
(2)

Correspondingly, J dop K is the opposite relation, i.e. J dop K = {(y, x) | (x, y) ∈ J d K}.
We will use of a suggestive mirror notation to denote the dual of a given gener-
ator: r := (r)

op, := ()
op and ≤ :=

(
≥

)op.
3 Symmetric Monoidal Semi-Lattice Theories

There are several routes to describe piecewise-linear subsets of Kn. In this paper
we choose to equip our syntax with a primitive operation of join, in order to
describe piecewise-linear sets as (finite) unions of polyhedra. In the same way
that we moved from simple props to ordered props in Section 2.2, we now move
to the setting of semi-lattice-enriched props.

A ∪-prop is a prop enriched over the monoidal category of semi-lattices –
partially-ordered sets with least upper bounds for any finite subset – and join-
preserving maps, with the Cartesian product as monoidal product. In other
words a ∪-prop is a prop whose homsets are semi-lattices, with composition and
monoidal product themselves join-preserving. The paradigmatic example is RelK
which is a ∪-prop with the union of relations as join.

As we would like to incorporate binary joins into our syntax, we need a new
description of the free ∪-prop P∪Σ over a given signature Σ.

– The arrows n → m of P∪Σ are finite sets of arrows n → m of PΣ. We
use capital letters C,D . . . to range over them. We will also abuse notation
slightly, using c, d . . . to refer to singletons {c}, {d} . . . and writing d1∪· · ·∪dk
for the set {d1, . . . , dk}. The set can be empty, yielding the bottom of the
semi-lattice.

– The composition of C : n → m and D : m → l is given by C ; D = {c ; d |
c ∈ C, d ∈ D} where c ; d denotes composition in PΣ . The identity over n is
the singleton {idn}.

– The monoidal product of D1 : n1 → m1 and D2 : n2 → m2 is given by
D1 ⊕ D2 = {d1 ⊕ d2 | d1 ∈ D1, d2 ∈ D2} where d1 ⊕ d2 is the monoidal
product in P∪Σ.

– For the enrichment, each homset P∪Σ(n,m) is a semi-lattice with union
as join. By definition, composition and monoidal product distribute over
union and define join-preserving maps (−) ; (−) : P∪Σ(n,m)×P∪Σ(m, l)→
P∪Σ(n, l) and (−)⊕(−) : P∪Σ(n1,m1)×P∪Σ(n2,m2)→ P∪Σ(n1+n2,m1+
m2)

Graphical Piecewise-Linear Algebra 107

We now define a corresponding notion of theory for ∪-props. A symmetric
monoidal (semi-)lattice theory (SMLT) is the data of a signature Σ and a set E of
equations: formally the latter is a set of pairs (C,D) of arrows C,D : n→ m from
P∪Σ. We will write the elements of E as equations of the form

⋃
c∈C c =

⋃
d∈D d.

We now explain how to define a ∪-prop P∪Σ/E from the data of an SMLT (Σ,E).
As for SMTs, we can build the smallest congruence E

= wrt to ; and ⊕, which
equates the pairs in E. Then define P∪Σ/E to be the quotient of P∪Σ by E

=.
That this is a well-defined ∪-prop follows again from the distributivity of the
composition and monoidal product over unions.

Note that the semi-lattice structure allows us to define an order over the
homsets of any ∪-prop, making it into an ordered prop: we write C ⊆ D as a

shorthand for C ∪ D = D. We will also use C
E

⊆ D for C ∪ D E
= D in P∪Σ/E .

(We prefer this notation to avoid the confusion with the order ≥ on K itself.)

Remark 1 (Reasoning in ∪-props). The reader familiar with string diagrams and
equational reasoning might be surprised by certain features of derivations that
combine diagrammatic and traditional syntax (joins, in this case). We would
like to clarify one particular point. When we want to use an equality of the
form d = d1 ∪ d2 inside a term of the form c1 ∪ c2 ∪ c, we need to identify a
linear context C[−] (i.e. the hole occurs exactly once in C) common to c1 and c2
such that c1 = C[d1] and c2 = C[d2]. Then we are allowed to use the fact that
C[d] = C[d1] ∪C[d2] to conclude that c1 ∪ c2 ∪ c = C[d] ∪ c. An example of this
form of reasoning can be found in the proof of Lemma 2, which we reproduce
here: we apply the equality (total)

= ≤ ∪ ≥ in

H

D

≥
∪

H

D

≤
=

H

D

≥ ≤∪
()(total)=

H

D

Note that, to clarify the common context to the reader, we will often use the
intermediate notation C[d1 ∪ d2], as we did in the first step above.

4 The Theory of Piecewise-Linear Relations

4.1 Syntax and Semantics

For piecewise-linear relations we retain the same signature Σ+
≥ and consider

P∪(Σ
+
≥), the free ∪-prop over it. As we saw, its morphisms are nonempty finite

sets of diagrams of PΣ+
≥ . This is our syntax.

On the semantic side, we now need to extend the functor J · K to have PΣ+
≥

as domain, retaining RelK as codomain. Concretely, since we already know how
to assign a relation to each diagram of PΣ+

≥ , we only need to specify how to
interpret finite sets of such diagrams: unsurprisingly, we set

J {d1, . . . , dn} K := J d1 K ∪ · · · ∪ J dn K

108 G. Boisseau and R. Piedeleu

This is join-preserving by construction, and remains monoidal and functorial.
By definition, we call piecewise-linear (pl) any relation in the image of this

functor, i.e., any relation that is a finite union of polyhedral relations. As far
as we know, this is the first time that this notion appears in print. However, it
does capture our intuitive notion of piecewise-linearity as submanifolds of Kn
that can be subdivided into linear subspaces.

4.2 Equational Theory

IHPL, the SMLT of pl relations, is presented in Fig. 1. The first block is the theory
of matrices/linear maps; the second block, IH, axiomatises all linear relations; the
third block axiomatises the behaviour of the order ≥ ; the fourth, deals with
the affine fragment of the theory, axiomatising the behaviour of the constant .
Taken together, those four blocks constitute IH+

≥, an axiomatisation of polyhedral
relations—we refer the reader to [4] for more details on this fragment.

The key addition of IHPL is the last block, containing the axiom of totality,
which states that any real number belongs to the non-negative or to the non-
positive fragment of K. Remarkably, this simple axiom is the only one we need to
add to IH+

≥ to obtain a complete theory for pl relations. Its soundness is simply
a consequence of the definition of an ordered field: the order is assumed to be
total in the sense that, for any x, y ∈ K we have x ≤ y or y ≤ x. Take y = 0 to
recover the last axiom of IHPL.

Remark 2. As a consequence of the Frobenius laws (•-fr) and of (co)unitality
(•-un)-(•-coun), the diagrams

n
and

n
satisfy

n

n

IHPL=
n IHPL=

n

n
(3)

for any n, the defining equations of a compact closed category. Intuitively, these
allow us to forget the direction of wires. In addition, compactness implies the
following proposition.

Proposition 1. C
IHPL

⊆ D iff Cop
IHPL

⊆ Dop.

Another important property of compact closed category which we will exploit
to simplify the completeness proof is stated in the following proposition. It is an
immediate consequence of (3).

Proposition 2. Given C,D : m→ n, C
IHPL

⊆ D iff C
m

n

IHPL

⊆ D
m

n

4.3 Completeness Theorem

As we stated above, the axioms in Fig. 1 form a complete theory for pl rela-
tions. We will prove that claim in this section. Without loss of generality, using
Proposition 2, we restrict to n→ 0 diagrams.

We start by defining appropriate normal forms for polyhedral and pl relations,
and then show that every diagram can be reduced to normal form.

Graphical Piecewise-Linear Algebra 109

(•-coas)
=

(•-coco)
=

(•-counl)
=

(•-as)
=

(•-co)
=

(•-unl)
=

(◦•-bi)
=

(◦•-biun)
=

(•◦-biun)
=

(◦•-bo)
=

r

r (add)
= r

(zero)
= r

r
(dup)
=

r

r
r

(del)
=

r s
(×)
= rs

s

r (+)
= r + s 0

(0)
=

(•-fr1)
=

(•-fr2)
=

(•-sp)
=

(•-bo)
=

(•-coas)
=

(•-coco)
=

(•-counl)
=

(◦-fr1)
=

(◦-fr2)
=

(◦-sp)
=

(◦-bo)
=

(◦-coas)
=

(◦-coco)
=

(◦-counl)
=

r r
(r-inv)
=

(r-coinv)
= r r (r 6= 0)

−1 (cup-1)
=

−1 (cap-1)
=

(◦ ⊆ •)
⊆

≥
(≤dup)

⊆
≥

≥
≥

(≤add)
=

≥

≥
≥

(≤del)
=

(≤zero)

⊆ ≤

r ≥
(≤ r+)
= ≥ r (r > 0) r ≥

(≤ r−)
= ≤ r (r < 0)

≤
≥ (antisym)

⊆
≥

≥

≥

≥
(Riesz)
=

≥
≥
≥
≥

≥ ≤
(direct)
=

(1-dup)
=

(1-del)
=

(∅)
= ≤

(0 ≤ 1)
=

(total)
= ≤ ∪ ≥

Fig. 1. Axioms of GPLA.

110 G. Boisseau and R. Piedeleu

Definition 2. We call hyperplane a nonzero affine map H : n → 1 which we
write H . A given hyperplane H defines two half-spaces H ≥ and H ≤ ,
as well as an affine subspace H . Since inequality is not strict, the half-spaces
include the affine subspace.

In [4, Theorem 14], polyhedral relations have a normal form given by a set of
inequations of the form Aix+bi ≥ 0. In other words, the normal form is given by
an intersection of half-spaces. For our purposes we define a related but slightly
different normal form.

Definition 3. A PΣ+
≥-diagram d : n→ 0 is in polyhedral normal form if there

are hyperplanes Hi and diagrams di ∈
{

, ≥ , ≤
}
such that:

d = . . .
d0H0

dkHk

Where the di are minimal in the following sense: fixing the set of hyperplanes
Hi, we consider all choices of di that give d when composed as above. We then
require the di in the normal form to be minimal (wrt the order of IH+

≥) among
those. We call the set of the di a valuation for d relative to the hyperplanes Hi.

Definition 4. We say that a morphism D of P∪Σ+
≥ is in pl normal form if it is

written as a non-empty union of diagrams di each in the language of PΣ+
≥ (i.e.

without unions), the di are in the normal form defined in Definition 3, and all
the normal forms use the same set of hyperplanes.

Lemma 1. Every d : n→ 0 in PΣ+
≥ has a polyhedral normal form.

Proof. The normal form from [4, Theorem 14] already has the right shape. We
only need to find a minimal valuation. Observe that the intersection of two
valuations for d is again a valuation for d: let v and v′ be two valuations

for d relative to the hyperplanes Hi. If we write A := . . .
H0

Hk

then

A

v′

v

=
A

A

v′

v

=
d

d

= d

Therefore v ∩ v′ is again a valuation for d. Since there are finitely many
valuations, we construct the minimal one by intersecting them all. ut

Lemma 2. If a morphism D of P∪Σ+
≥ is in pl normal form and H is a hyper-

plane, there exists C in pl normal form such that D
IHPL= C and Hyperplanes(C) =

Hyperplanes(D) ∪ {H}.

Proof. We write the normal form of D as D =
⋃
i di. Define C to be the following

morphism:

C =
⋃
i H

di

≥
∪
⋃
i H

di

≤

Graphical Piecewise-Linear Algebra 111

We transform C into C ′ by reducing all the terms in the union to polyhe-
dral normal form. This makes C ′ be in pl normal form. Since we add the same
hyperplane H to all di, Hyperplanes(C ′) = Hyperplanes(D) ∪ {H}.

Moreover:

C′ = C =
H ≥ ≤∪

()(
di

⋃
i

)
(total)
=

H

D

= D

ut

Theorem 1. Every morphism of P∪Σ+
≥ has a pl normal form.

Proof. Let D be a n → 0 morphism of P∪Σ+
≥ . First using distributivity of the

union over sequential and parallel composition, we move all the uses of the union
to the top-level.

Thus D is written
⋃
i di where each di doesn’t use the union, i.e. is in the

language of PΣ+
≥ . We then rewrite each di into polyhedral normal form using

Lemma 1.
Each di is thus also individually in pl normal form, so we can use Lemma 2 to

add to each di all the hyperplanes of the other dj . For each i we get a new diagram
d′i

IHPL= di in pl normal form, and all the d′i use the same set of hyperplanes. So⋃
i d
′
i is a pl normal form for D. ut

Before we can prove completeness, we need a final notion: the interior of a
polyhedral relation, which is the set of its points that don’t touch any of its
faces.

Definition 5. Let d be morphism in polyhedral normal form. We define Int(d)
to be the set of points x ∈ J d K for which Hi(x) 6= 0 when di 6= . In other
words, Hi(x) is nonzero for all hyperplanes where it can be nonzero without x
leaving J d K.

Note that we define Int only on polyhedral normal form diagrams. Int appears
to be representation-independent at least when K = R, but we won’t try to prove
it in the general case as we don’t need this here.

Remark 3. This is not the usual topological notion of interior. In particular, this
notion is independent from the dimension of the surrounding space: a polyhedron
of dimension 0 < k < n within Rn has an empty topological interior but a
nonempty Int, as we’ll see in the next theorem. Int(d) instead coincides with the
interior of d with the topology of the smallest containing affine space.

Lemma 3. Let d be a diagram in polyhedral normal form. If J d K is nonempty,
then Int(d) is nonempty.

Proof. First, write d in polyhedral normal form:

d = . . .
d0H0

dkHk

112 G. Boisseau and R. Piedeleu

Up to negating some of the Hi, we can assume that none of the di are ≤ .
If ∀i. di = , then by definition Int(d) = J d K which is nonempty so we’re
done. Assume then that di = ≥ for at least some i. For each such i, by
minimality of the di in the normal form there must be a xi ∈ J d K such that
Hi(xi) > 0. We pick such an xi for each i, and define x := 1

p

∑
i xi to be their

average. By convexity, x ∈ J d K. Hi is an affine map, hence is concave, thus if
we had picked an xi then Hi(x) ≥ 1

p

∑
j Hi(xj) ≥ 1

pHi(xi) > 0. Then for each i
either di = or Hi(x) > 0, hence x ∈ Int(d). ut

Theorem 2 (Completeness). JD K ⊆ JC K =⇒ D
IHPL

⊆ C

Proof. Using Proposition 2 we can without loss of generality assume that D and
C have n inputs and 0 outputs. Using Theorem 1, we reduce D and C into pl
normal form. Using Lemma 2, we add each others’ hyperplanes to D and C so
that they both use the exact same set. So D =

⋃
i di and C =

⋃
i ci, where the di

and ci are in polyhedral normal form and use a same set of hyperplanes {Hi}i.
Pick one of the di in D.

If di is the empty polyhedron, we have J di K = ∅ ⊆ J c0 K, so by completeness

of IH+
≥ we get di

IH
+
≥

⊆ c0. Thus di
IHPL

⊆ c0
IHPL

⊆ C.
Otherwise di is nonempty, and using Lemma 3 we pick x ∈ Int(di). Then:

x ∈ Int(di) ⊆ J di K ⊆ JD K ⊆ JC K =

u

v
⋃
j

cj

}

~ =
⋃
j

J cj K

Thus there is a j such that x ∈ J cj K. Now pick a k. If dik = , then

dik

IHPL

⊆ cjk regardless of cjk . If dik = ≥ , then by definition of

Int(di), we have Hk(x) > 0. Since moreover x ∈ J cj K, cjk must be ≥ . If

dik = ≤ , similarly cjk must be ≤ . In all three cases, dik

IHPL

⊆ cjk .
This is the case for every k, so:

di =
Hm

H0

dim

di0
. . . ⊆

Hm

H0

cjm

cj0
. . . = cj ⊆ C

Finally, since we have di
IHPL

⊆ C for all i, we derive D =
⋃
i di

IHPL

⊆ C. ut

5 Generating Piecewise-Linear Relations

Piecewise-linear subsets of vector spaces give us a rather wide semantic space to
explore. One might suspect that there exist useful structured relations that live
strictly between the linear and piecewise-linear worlds.

Graphical Piecewise-Linear Algebra 113

Formally, we’re interested in finding sub-props of RelK that contain not only
linear or polyhedral relations, but some selected non-convex relations that would
be useful for particular applications. It turns out that for many sensible choices,
the resulting image will coincide with pl relations—a somewhat surprising fact.
Note that we are interested in generating sub-props of RelK here, not ∪-props,
since the ∪-prop generated by the image of P∪Σ+

≥ under J · K already contains
all pl relations.

We will go through a few natural choices, each time defining them as a term
of P∪Σ+

≥ , a shortcut which makes reasoning about them much easier than with
their set-theoretic semantics. Of course, their semantics in RelK can be recovered
via J · K.

5.1 The n-Fold Union Generators

We first show that the main difference between polyhedral and pl relations —the
unions—can be bridged. Indeed, it is not obvious that we can build arbitrary
unions of diagrams without having access to the syntax of a SMLT. For this we
introduce a family of diagrams we call the n-fold union generators, defined for a
given n as:

n

n

n
∪ :=

n

n
n ∪

n

n
n

These generators suffice to reproduce the behaviour of the syntactic union:

Theorem 3. The image of the free prop generated by Σ+
≥ and the n-fold union

generators for all n is the prop of pl relations.

Proof. If C and D are non-empty n→ 0 diagrams,

D

C
n
∪ =

n D

C ∪ n C

D
= C ∪ D

Since every pl relation can be written as a finite union of diagrams in PΣ+
≥ ,

and we can easily avoid diagrams denoting the empty relation, this generates all
of pl relations. ut

This means that we didn’t formally need to introduce the notion of a SMLT
after all: we could have defined an equivalent SMIT by adding these generators.
However, this is for most purposes a much less convenient syntax, and the cor-
responding equational theory would be more difficult to calculate with. This is
also the case for the examples that follow.

5.2 The Simplest Non-Convex Diagram

The following is one of the simplest diagrams that captures a non-convex relation:

+ := ∪

114 G. Boisseau and R. Piedeleu

It is named after its semantics: the union of the x and y axes in the plane,
corresponding to the simple equation x = 0 ∨ y = 0. Despite its simplicity, it
suffices to generate all of pl relations.

Theorem 4. The image of the free prop generated by Σ+
≥ and + is the

prop of pl relations.

Proof. Define dup : 1→ 2: dup :=

≥
≥

≥
≥

−1

−1

This diagram has the interesting property of duplicating black and white units:

dup = dup =

We can chain it to build dup
n+1

:= dup n
dup

for any n.

Then, let +
nn

:= dup
n

dupopn
+1 1 =

nn ∪ nn

This allows us to build:

nn +

n

= nn

n

∪ nn

n

=
n

n
n ∪

n

n
n

=

n

n

n
∪

ut

5.3 The Semantics of a Diode

Most basic electrical circuit components can be modelled
with an affine semantics. The first exception is the (ideal)
diode: the idealised current-voltage semantics across a
diode is that the current can be negative and the voltage
difference positive but not both at the same time.

I

U

On a graph, the allowed (current, voltage difference) pairs are depicted above.
Not only is this not affine, it is not even convex. The corresponding diagram,
≤ ∪ ≤ , is outside of both affine and polyhedral algebra.
We will see how to model electrical circuits with diodes in more detail in the

next section. We will focus here on the following fact: adding a generator with
this semantics is once again enough to recover all pl relations. In fact we can
even build the ≥ relation from the diode, so we can start from affine algebra
(without requiring the generality of polyhedral algebra).

For convenience, we define a new generator whose semantics is the mirror
image of the diode’s graph:

L := ≥ ∪ ≤

Graphical Piecewise-Linear Algebra 115

Theorem 5. Recall that Σ+ is Σ+
≥ without ≥ . The image of the free prop

generated by Σ+ and L is the prop of pl relations.

Proof. First, we can construct the ≥ generator from L:

L
=

≥
∪

≤
= ≥ ∪ = ≥

So we generate all polyhedral relations. Then we can also recover the + gen-
erator from the previous section, which is enough to generate all of pl relations:

L

L −1
=

≥

≥
∪

≥

≥

∪
≥

≤
∪

≥

≤

= ≥ ∪ ≥ ∪ ≤ ∪
= ≥ ∪ =: `

`

`−1
=

≤

≥
∪

≥

∪
≤

∪

= ∪ ≥ ∪ ≤ ∪
= ∪ = +

ut

5.4 Alternative generators: max, ReLu and abs

Three of the most basic piecewise-linear functions one might come across are
abs, max and ReLu. We define them diagrammatically as follows:

max :=
≤

∪
≤

abs :=
−1

max

ReLu := max

While the reader will certainly be familiar with the first two, ReLu has ac-
quired significant fame as one of the basic building blocks of neural networks. In
fact, all neural networks whose activation function is ReLu can be represented in
GPLA. This opens up the exciting possibility of applying equational reasoning
to neural networks, a possibility that we leave for future work.

Once again, adding either of them to the syntax for affine algebra suffices to
construct any pl relation.

116 G. Boisseau and R. Piedeleu

Theorem 6. The image of the free prop generated by Σ+ and any of max, abs
or ReLu is the prop of pl relations.

Proof. First, we notice that the three functions are inter-definable. abs and ReLu
were already defined in terms of max, and we can complete the cycle:

max(x, y) = x+max(0, y − x) = x+ReLu(y − x)

ReLu(x) = max(0, x) = (x+ abs(x))/2

So we only need to show the result for one of them. Let’s pick max. We recover
L, which we know suffices by Theorem 5. First max = ≤ ∪ ≤ .

Thus
−1

−1
max = ≥ ∪ ≤ = L ut

Remark 4. It is standard that max together with linear maps generates all con-
tinuous pl functions. Our result can be seen as a generalization of this fact to
the relational setting.

5.5 Conclusion

These examples justify the generality of pl relations: they constitute the min-
imal extension of polyhedral algebra (and in some cases affine algebra) that
can express any of the very useful relations above. This is interesting because
pl relations form a nearly universal domain: they can approximate any smooth
manifold over a bounded domain.

Despite our compelling examples, there could still be interesting props be-
tween polyhedral and pl relations. In particular, determining the prop generated
by Σ+

≥ together with ∪ is currently an open problem.

6 Case Study: Electronic Circuits

To illustrate how one would use this theory in a concrete case, we turn to the
study of electronic circuits. We build on the work done in [3]. The syntax mimics
the usual circuits drawn by electrical engineers, by generating a free two-colored
prop from basic elements and wires. The blue wires are electrical wires, and the
black wires carry information; for details see [3].

| | | |
R

| | – + | | A | V

The corresponding physical model imposes constraints between two quanti-
ties: current and voltage. To express this, we map an electrical wire into two
GPLA wires, the top one for voltage and the bottom one for current. We then
give to each generator a semantics in GPLA that expresses the relevant physical
equations. For example:

Graphical Piecewise-Linear Algebra 117

t
R

|

:= R ,

s {
:= ,

s
– +

{
:=

The core of this approach is the fact that composition of constraints in GPLA
gives the behaviour of the corresponding composite electrical circuit. We can thus
define the semantics of a whole circuit compositionally, and get the physically
expected result.

So far this follows exactly [3]. Our contribution is the ability to express the
behaviour of diodes:

J K := ≤ ∪ ≤

=
()
≤ ∪ ≤ = −1 L

Remark 5. We cannot include capacitors and inductors, because they require se-
mantics in IH+

R(x), and R(x) cannot be ordered in a way that would be consistent
with the physics. Finding diagrammatic semantics that can accommodate both
capacitors and diodes is an important open problem.

This extension allows us to model electronic circuits! As hinted in the previous
section, diodes by themselves can be used to build many things. For example,
we can model a simple idealized transistor as follows: [10, Fig. 59.1]

:=
A

That said, it is impractical to prove the equality of two non-trivial electronic
circuits explicitly as the number of alternatives grows exponentially in the num-
ber of diodes. Like in standard mathematical practice, making this practical will
require finding appropriate techniques and approximations, which we leave for
future work.

Acknowledgements. The authors would like to thank the various Twitter and
Zulip users who contributed to the genesis and development of the theory con-
tained in this paper, notably Jules Hedges, Cole Comfort and Reid Barton. Reid
Barton in particular contributed significantly to the proof of completeness.

The first author is funded by the EPSRC under grant OUCS/GB/1034913.
The second author acknowledges support from EPSRC grant EP/V002376/1.

References

1. Baez, J.C., Coya, B., Rebro, F.: Props in network theory. Theory and Applications
of Categories 33(25), 727–783 (2018)

118 G. Boisseau and R. Piedeleu

2. Baez, J.C., Fong, B.: A compositional framework for passive linear networks. The-
ory and Applications of Categories 33(38), 1158–1222 (2018)

3. Boisseau, G., Sobociński, P.: String Diagrammatic Electrical Circuit Theory.
arXiv:2106.07763 [cs] (2021), http://arxiv.org/abs/2106.07763

4. Bonchi, F., Di Giorgio, A., Sobocinski, P.: Diagrammatic Polyhedral Algebra.
arXiv:2105.10946 [cs, math] (2021), http://arxiv.org/abs/2105.10946

5. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic
algebra: from linear to concurrent systems. In: Proceedings of the 46th Annual
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL)
(2019)

6. Bonchi, F., Piedeleu, R., Sobociński, P., Zanasi, F.: Graphical Affine
Algebra. In: 34th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). pp. 1–12. IEEE, Vancouver, BC, Canada (2019).
https://doi.org/10.1109/LICS.2019.8785877

7. Bonchi, F., Sobociński, P., Zanasi, F.: Deconstructing lawvere with distributive
laws. Journal of logical and algebraic methods in programming 95, 128–146 (2018)

8. Cvitanovic, P., Cvitanović, P.: Group theory. Princeton University Press (2008)
9. Stephan, P.R., Brayton, R.K.: Physically realizable gate models. In: Proceedings of

1993 IEEE International Conference on Computer Design ICCD’93. pp. 442–445.
IEEE (1993)

10. Theraja, B., Theraja, A.: A textbook of electrical technology : in S.I. system of
units. Publication division of Nirja Construction and Development Co., New Delhi
(1994)

11. Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE
Control Systems Magazine 27(6), 46–99 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Graphical Piecewise-Linear Algebra 119

http://arxiv.org/abs/2106.07763
http://arxiv.org/abs/2105.10946
https://doi.org/10.1109/LICS.2019.8785877
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

Token Games and History-Deterministic
Quantitative Automata

Udi Boker1 and Karoliina Lehtinen�2

1 Reichman University, Herzliya, Israel udiboker@idc.ac.il
2 CNRS, Marseille-Aix Université, Université de Toulon, LIS, Marseille, France

lehtinen@lis-lab.fr

Abstract. A nondeterministic automaton is history-deterministic if its
nondeterminism can be resolved by only considering the prefix of the
word read so far. Due to their good compositional properties, history-
deterministic automata are useful in solving games and synthesis prob-
lems. Deciding whether a given nondeterministic automaton is history-
deterministic (the HDness problem) is generally a difficult task, which
might involve an exponential procedure, or even be undecidable, for ex-
ample for pushdown automata. Token games provide a PTime solution
to the HDness problem of Büchi and coBüchi automata, and it is conjec-
tured that 2-token games characterise HDness for all ω-regular automata.
We extend token games to the quantitative setting and analyze their po-
tential to help deciding HDness for quantitative automata. In particular,
we show that 1-token games characterise HDness for all quantitative (and
Boolean) automata on finite words, as well as discounted-sum (DSum)
automata on infinite words, and that 2-token games characterise HD-
ness of LimInf and LimSup automata. Using these characterisations, we
provide solutions to the HDness problem of Inf and Sup automata on
finite words in PTime, for DSum automata on finite and infinite words
in NP∩co-NP, for LimSup automata in quasipolynomial time, and for
LimInf automata in exponential time, where the latter two are only poly-
nomial for automata with a logarithmic number of weights.

Keywords: Automata, History-determinism, Token games, Synthesis

1 Introduction

History-determinism. A nondeterministic [quantitative] automaton is history-
deterministic (HD) [11,8] if its nondeterministic choices can be resolved by only
considering the word read so far, uniformly across possible suffixes (see Fig. 2
for examples of HD and non-HD automata). More precisely, there should be a
function (strategy), sometimes called a resolver, that maps the finite prefixes of
a word to the transition to be taken at the last letter. The run built in this way
must, in the Boolean setting, be accepting whenever the word is in the language
of the automaton, and in the more general, quantitative, setting, attain the value
of the automaton on the word (i.e., the supremum of all its runs’ values).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 120–139, 2022.
https://doi.org/10.1007/978-3-030-99253-8_7

http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0003-1171-8790
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_7&domain=pdf

History-determinism lies in between determinism and nondeterminism, enjoy-
ing in some aspects the best of both worlds: HD automata are, like deterministic
ones, useful for solving games and reactive synthesis [16,11,17,18,12,15,8], yet
can sometimes be more expressive and/or succinct. For example, HD coBüchi
and LimInf automata can be exponentially more succinct than deterministic ones
[19], and HD pushdown automata are both more expressive and at least exponen-
tially more succinct than deterministic ones [20,15]. In the (ω-)regular setting,
history-determinism coincides with good-for-gameness [7], while in the quantita-
tive setting it is stronger [8]. The problem of deciding whether a nondeterministic
automaton is HD is interreducible with deciding the best-value synthesis problem
of a deterministic automaton [14,8]. In this quantitative version of the reactive
synthesis problem, the system must guarantee a behaviour that matches the
value of any global behaviour compatible with the environment’s actions. The
witness of HDness corresponds exactly to the solution system of this synthesis
problem, providing another motivation for this line of research.

Deciding history-determinism – a difficult task. History-determinism is formally
defined by a letter game played on the automaton A between Adam and Eve,
where Adam produces an input word w, letter by letter, and Eve tries to resolve
the nondeterminism in A so that the resulting run attains A’s value on w. Then
A is HD if Eve has a winning strategy in the letter game on it. The difficulty of
deciding who wins the letter game stems from its complicated winning condition
– Eve wins if her run has the value of the supremum over all runs of A on w.

The naive solution is to determinise A into an automaton D, and consider
a game equivalent to the letter game that has a simple winning condition and
whose arena is the product of A and D [16]. The downside with this approach,
however, is that it requires the determinisation of A, which often involves a
procedure exponential in the size of A and sometimes is even impossible due to
an expressiveness gap. Note that deciding whether an automaton is good-for-
games, which is closely related to whether it is HD [7,8], is also difficult, as it
requires reasoning about composition with all possible games.

Token games – a possible aid. In [3], Bagnol and Kuperberg introduced token
games on ω-regular automata, which are closely related to the letter game, but
easier to decide. In a k-token game on an automaton A, denoted by Gk(A), like
in the letter game, Adam generates a word w letter by letter, and Eve builds
a run on w by resolving the nondeterminism. In addition, Adam also has to
resolve the nondeterminism of A to build k runs letter-by-letter over w. The
winning condition for Eve in these games is that either all runs built by Adam
are rejecting, or Eve’s run is accepting. Such games, as they compare concrete
runs, are easier to solve than the letter game.

Then, to decide HDness for a class of automata, one can attempt to show that
the letter game always has the same winner as a k-token game, for some k, and
solve the k-token game. (If Eve wins the letter game then she wins the k-token
game, for every k, by using the same strategy, ignoring Adam’s runs. However,

Quantitative Automata Token Games 121

it might be that she wins a k-token game, taking advantage of her knowledge of
how Adam resolves the nondeterminism, but loses the letter game.)

Bagnol and Kuperberg showed in [3] that on Büchi automata, the letter game
and the 2-token game always have the same winner, and in [6], Boker, Kuperberg,
Lehtinen and Skrzypczak extended this result to coBüchi automata. In both
cases, this allows for a PTime procedure for deciding HDness. Furthermore,
Bagnol and Kuperberg suggested in [3, Conclusion] that 2-token games might
characterise HDness also for parity automata (and therefore for all ω-regular
automata); a conjecture (termed later the G2 conjecture) that is still open.

Our contribution. We extend token games to the quantitative setting, and use
them to decide HDness of some quantitative automata. We define a k-token game
on a quantitative automaton exactly as on a Boolean one, except that Eve wins
if her run has a value at least as high as all of Adam’s runs.

We show first, in Section 4, that the 1-token game, in which Adam just
has one run to build, characterises history-determinism for all quantitative (and
Boolean) automata on finite words, and for discounted-sum (DSum) automata
on infinite words. This results in a PTime decision procedure for checking HD-
ness of Inf and Sup automata on finite words, and an NP∩coNP procedure for
DSum automata on finite and infinite words. Note that the complexity for DSum
automata on finite words was already known [14], but on infinite words it was
erroneously believed to be NP-hard [17, Theorem 6].

Towards getting the above results, we analyse key properties of value func-
tions of quantitative automata, and show that the 1-token game characterises
HDness for every Val automaton, such that Val is present-focused (Definition 3),
which is in particular the case for all Val automata on finite words [8, Lemma
16], as well as DSum automata on infinite words [8, Lemma 22].

We then show, in Section 5, that the 2-token game, in which Adam builds two
runs, characterises history-determinism for both LimSup and LimInf automata.
The approach here is more involved: it decomposes the quantitative automaton
into a collection of Büchi or coBüchi automata such that if Eve wins the 2-token
game on the original automaton, she also wins in the component automata. Since
the 2-token game characterises HD for Büchi and coBüchi automata, the com-
ponent automata are then HD and the witness strategies can be combined with
the 2-token strategy of the original automaton to build a letter-game strategy
for Eve. The general flow of our approach is illustrated in Fig. 1.

We further present, in Section 5.1, algorithms to decide the winner of the two-
token games on LimInf and LimSup automata via reductions to solving parity
games. The complexity of the procedure for a LimSup automaton A is the same
as that of solving a parity game of size polynomial in the size of A with twice as
many priorities as there are weights in A, which is in quasipolynomial time. For
LimInf automata the procedure is in exponential time. In both cases, it is only in
polynomial time if the number of weights is logarithmic in the automaton size.

For some variants of the synthesis problem, the complexity of the witness of
history-determinism is also of particular interest (while for other variants it is
not), as it corresponds to the complexity of the implementation of the solution

122 U. Boker and K. Lehtinen

system [8, Section 5]. We give an exponential upper bound to the complexity of
the witness for LimSup and LimInf automata, which, for LimInf, is tight. As a
corollary, we obtain that HD LimSup automata are as expressive as deterministic
LimSup automata and at most exponentially more succinct.

Related work. In the ω-regular setting (where HDness coincides with good-for-
gameness), [16, Section 4] provides an exponential scheme for checking HDness of
all ω-regular automata, based on determinisation and checking fair simulation.
HDness of Büchi automata is resolved, as mentioned above, in PTime, using
2-token games [3]. The coBüchi case is also resolved in PTime, originally via an
indirect usage of “joker games” [19], and later by using 2-token games [6].

In the quantitative setting, deciding HDness coincides with best-value par-
tial domain synthesis [14], 0-regret synthesis [18] and, for some value functions,
0-regret determinisation [13,8]. There are procedures to decide HDness (which is
sometimes called good-for-gameness due to erroneously assuming them equiva-
lent) of Sum, Avg, and DSum automata on finite words, as follows.

For Sum and Avg automata on finite words, a PTime solution combines [1,
Theorem 4.1], which provides a PTime algorithm for checking whether such an
automaton is “determinisable by pruning”, and [8, Theorem 21], which shows
that such an automaton is HD if and only if it is determinisable by pruning.

Proposition 1. Deciding whether a Sum or Avg automaton on finite words is
history-deterministic is in PTime.

For DSum automata on finite words, [14, Theorem 23] provides an NP∩co-
NP solution, using a game that is quite similar to the one-token game, differing
from it in a few aspects—for example, Adam is asked to either copy Eve with
his token or move into a second phase where he plays transitions first—and uses
a characterisation of HD strategies resembling our notion of cautious strategies
(Definition 2) specialised to DSum automata.

2 Preliminaries

Words. An alphabet Σ is a finite nonempty set of letters. A finite (resp. infinite)
word u = σ0 . . . σk ∈ Σ∗ (resp. w = σ0σ1 . . . ∈ Σω) is a finite (resp. infinite)
sequence of letters from Σ; ε is the empty word. We write Σ∞ for Σ∗ ∪Σω. We
use [i..j] to denote a set {i, . . . , j} of integers, [i] for [i..i], [..j] for [0..j], and [i..]
for integers equal to or larger than i. We write w[i..j], w[..j], and w[i..] for the
infix σi . . . σj , prefix σ0 . . . σj , and suffix σi . . . of w. A language is a set of words.

Games. We consider a variety of turn-based zero-sum games between Adam (A)
and Eve (E). Formally, a game is played on an arena of which the positions
are partitioned between the two players. A play is a maximal (finite or infinite)
path. The winning condition partitions plays into those that are winning for
each player. In some of the technical developments we use parity games, in which

Quantitative Automata Token Games 123

moves are coloured with integer priorities and a play is winning for Eve if the
maximal priority that occurs infinitely often along the play is even.

A strategy for a player P ∈ {A,E} maps partial plays ending in a position
belonging to P to a successor position. A (partial) play π agrees with a strategy
sP of P , written π ∈ sP , if whenever its prefix p ends in a position of P , the
next move is sP (p). A strategy of P is winning from a position v if all plays
starting at v that agree with it are winning for P . A strategy is positional if it
maps all plays that end in the same position to the same successor. A game is
determined if for every position, one of the players has a winning strategy.

Quantitative Automata. A nondeterministic quantitative3 automaton (or just
automaton from here on) on words is a tuple A = (Σ,Q, ι, δ), where Σ is an
alphabet; Q is a finite nonempty set of states; ι ∈ Q is an initial state; and
δ : Q×Σ → 2(Q×Q) is a transition function over weight-state pairs.

A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q × Q, also written q
σ:x−−→ q′.

(There might be several transitions with different weights over the same letter
between the same states.) We write γ(t) = x for the weight of a transition
t = (q, σ, x, q′). A is deterministic if for all q ∈ Q and a ∈ Σ, δ(q, a) is a
singleton. We require that the automaton A is total, namely that for every state
q ∈ Q and letter σ ∈ Σ, there is at least one state q′ and a transition q

σ:x−−→ q′.

A run of A on a word w is a sequence ρ = q0
w[0]:x0−−−−→ q1

w[1]:x1−−−−→ q2 . . .
of transitions where q0 = ι and (xi, qi+1) ∈ δ(qi, w[i]). As each transition ti
carries a weight γ(ti) ∈ Q, the sequence ρ provides a weight sequence γ(ρ) =
γ(t0)γ(t1) A Val (e.g., Sum) automaton is one equipped with a value function
Val : Q∗ → R or Val : Qω → R, which assigns real values to runs of A. The value
of a run ρ is Val(γ(ρ)). The value of A on a word w is the supremum of Val(ρ)
over all runs ρ of A on w. Two automata A and A′ are equivalent, if they realise
the same function. The size of an automaton consists of the maximum among
the size of its alphabet, state-space, and transition-space.

Value functions.
For finite sequences v0v1 . . . vn−1 of rational weights:

– Sum(v) =

n−1∑
i=0

vi – Avg(v) =
1

n

n−1∑
i=0

vi

For finite and infinite sequences v0v1 . . . of rational weights:

– Inf(v) = inf{vn | n ≥ 0} – Sup(v) = sup{vn | n ≥ 0}

– For a discount factor λ ∈ Q ∩ (0, 1), λ-DSum(v) =
∑
i≥0

λivi

For infinite sequences v0v1 . . . of rational weights:

3 We speak of “quantitative” rather than “weighted” automata, following the distinc-
tion made in [5] between the two.

124 U. Boker and K. Lehtinen

– LimInf(v) = lim
n→∞

inf{vi | i ≥ n} – LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

ω-regular automata (with acceptance on transitions) can be viewed as special
cases of quantitative automata. In particular, a Büchi (resp. coBüchi) automaton
can be seen as a quantitative one, in which a rejecting transition has weight 0, an
accepting transition has weight 1, and whose value function is 1 if the sequence
of weighs has infinitely many 1’s and 0 otherwise (resp. 1 if the sequence of
weights has finitely many 0). See more on ω-regular automata, e.g., in [4].

History-determinism. Intuitively, an automaton is history-deterministic if there
is a strategy to resolve its nondeterminism according to the word read so far
such that for every word, the value of the resulting run is the value of the word.

Definition 1 (History-determinism [11,8]). A Val automaton A is history-
deterministic (HD) if Eve wins the following win-lose letter game, in which Adam
chooses the next letter and Eve resolves the nondeterminism, aiming to construct
a run whose value is equivalent to the generated word’s value.

Letter game: A play begins in q0 = ι (the initial state of A) and at the ith

turn, from state qi, it progresses to a next state as follows:
– Adam picks a letter σi from Σ and
– Eve chooses a transition ti = qi

σi:xi−−−→ qi+1.
In the limit, a play consists of an infinite word w that is derived from the
concatenation of σ0, σ1, . . ., as well as an infinite sequence π = t0, t1, . . .
of transitions. For A over infinite words, Eve wins a play in the letter-
game if Val(π) ≥ A(w). For A over finite words, Eve wins if for all i ∈ N,
Val(π[0..i]) ≥ A(w[0..i]).

Consider for example the LimSup automaton A in Fig. 2. Eve loses the letter
game on A: Adam can start with the letter a; then if Eve goes from s0 to s1,
Adam continues to choose a forever, generating the word aω, where A(aω) = 3,
while Eve’s run has the value 2. If, on the other hand, Eve chooses on her first
move to go from s0 to s2, Adam continues with choosing b forever, generating
the word abω, where A(abω) = 2, while Eve’s run has the value 1.

Families of value functions. We will provide some of our results with respect to
a family of Val automata based on properties of the value function Val.

We first define cautious strategies for Eve in both the letter game and token
games (Section 3), which we use to define present-focused value functions. Intu-
itively, a strategy is cautious if it avoids mistakes: it only builds run prefixes that
can achieve the maximal value of any continuation of the current word prefix.

Definition 2 (Cautious strategies [8]). Consider the letter game on a Val
automaton A, in which Eve builds a run of A transition by transition. A move
(transition) t = q

σ:x−−→ q′ of Eve, played after some run ρ ending in a state q,
is non-cautious if for some word w, there is a run π′ from q over σw such that
Val(ρπ′) is strictly greater than the value of Val(ρπ) for any π starting with t.

A strategy is cautious if it makes no non-cautious moves.

Quantitative Automata Token Games 125

A winning strategy for Eve in the letter game must of course be cautious;
Whether all cautious strategies are winning depends on the value function. We
call a value function present-focused if, morally, it depends on the prefixes of the
value sequence, formalised by winning the letter game via cautious strategies.

Definition 3 (Present-focused value functions [8]). A value function Val,
on finite or infinite sequences, is present-focused if for all automata A with value
function Val, every cautious strategy for Eve in the letter game on A is also a
winning strategy in that game.

Value functions on finite sequences are present-focused, as they can only
depend on prefixes, while value functions on infinite sequences are not necessarily
present-focused [8, Remark 17], for example LimInf and LimSup.

Proposition 2 ([8, Lemma 16]). Every value function Val on finite sequences
of rational values is present focused.

Proposition 3 ([8, Lemma 22]). For every λ ∈ Q∩(0, 1), λ-DSum on infinite
sequences of rational values is a present-focused value function.

3 Token Games

Token games were introduced by Bagnol and Kuperberg [3] in the scope of
resolving the HDness problem of Büchi automata. In the k-token game, known
as Gk, the players proceed as in the letter game, except that now Adam has k
tokens that he must move after Eve has made her move, thus building k runs.
For Adam to win, at least one of these must be better than Eve’s run. In the
Boolean setting, this run must be accepting, thus witnessing that the word is in
the language of the automaton. Intuitively, the more tokens Adam has, the less
information he is giving Eve about the future of the word he is building.

We generalise token games to the quantitative setting, defining that the max-
imal value produced by Adam’s runs witnesses a lower bound on the value of
the word, and Eve’s task is to match or surpass this value on her run.

In the Boolean setting, G2 has the same winner as the letter game for
Büchi [3, Corollary 21] and coBüchi [6, Theorem 28] automata (the case of
parity and more powerful automata is open). Since G2 is solvable in polynomial
time for Büchi and coBüchi acceptance conditions, this gives a PTime algorithm
for deciding HDness, which avoids the determinisation used to solve the letter
game directly. In the following sections we study how different token games can
be used to decide HDness for different quantitative automata.

Definition 4 (k-token games). Consider a Val automaton A = (Σ,Q, ι, δ).
A configuration of the game Gk(A) for k ≥ 1 is a tuple (q, p1, . . . pk) ∈ Qk+1

of states. A play consists of an infinite sequence of configurations (ι, ι, . . . , ι) =
(q0, p1,0, . . . , pk,0), (q1, p1,1, . . . , pk,1), In a configuration (qi, p1,i, . . . , pk,i), the
game proceeds to the next configuration as follows.

126 U. Boker and K. Lehtinen

– Adam picks a letter σi from Σ,

– Eve picks a transition qi
σi:x0,i−−−−→ qi+1, and

– Adam picks transitions, p1,i
σi:x1,i−−−−→ p1,i+1, . . . , pk,i

σi:xk,i−−−−→ pk,i+1.

In the limit, a play consists of an infinite word w that is derived from the con-
catenation of σ0, σ1, . . ., as well as k + 1 infinite sequences π (picked by Eve)
and π1 . . . πk (picked by Adam) of transitions over w. Eve wins the play if
Val(π) ≥ max(Val(π1), . . . ,Val(πk)).

On finite words, Gk is defined as above, except that the winning condition is
a safety condition for Eve: for all finite prefixes of a play, it must be the case
that the value of Eve’s run is at least the value of each of Adam’s runs.

Cautious strategies (Definition 2) immediately extend to Eve’s strategies in
Gk(A). Note that unlike in the letter game, a winning strategy in Gk(A) must
not necessarily be cautious, since Adam’s run prefixes might not allow him to
build an optimal run over the word witnessing that Eve’s move was non-cautious.

4 Deciding History-Determinism via One-Token Games

Bagnol and Kuperberg showed that the one-token game G1 does not suffice to
characterise HDness for Büchi automata [3, Lemma 8]. However, it turns out
that G1 does characterise HDness for all quantitative (and Boolean) automata
on finite words and some quantitative automata on infinite words.

We can then use G1 to decide history-determinism of some of these automata,
over which the G1 game is simple to decide. In particular, Inf and Sup automata
on finite words and DSum automata on finite and infinite words.

Theorem 1. Given a nondeterministic automaton A with a present-focused
value function Val over finite or infinite words, Eve wins G1(A) if and only
if A is HD. Furthermore, a winning strategy for Eve in G1(A) induces a HD
strategy with the same memory.

Proof. One direction is easy: if A is HD, Eve can use her HD strategy to win G1

by ignoring Adam’s token. For the other direction, assume that Eve wins G1.
We consider the following family of copycat strategies for Adam in G1: a

copycat strategy is one where Adam moves his token in the same way as Eve until
she makes a non-cautious move t = q

σ:x−−→ q′ after building a run ρ; that is, there
is some word w and run π′ from q on σw, such that for every run π on σw starting
with t, we have Val(ρπ′) > Val(ρπ). Then the copycat strategy stops copying and
directs Adam’s token along the run π′ and plays the word w. If Eve plays a non-
cautious move in G1 against a copycat strategy, she loses. Then, if Eve wins
G1 with a strategy s, she wins in particular against all copycat strategies and
therefore s never makes a non-cautious move against such a strategy.

Eve can then play in the letter game over A with a strategy s′ that moves
her token as s would in G1(A) assuming Adam uses a copycat strategy. Then,
s′ never makes a non-cautious move and is therefore a cautious strategy. Since

Quantitative Automata Token Games 127

Val is present-focused, any cautious strategy, and in particular s′, is winning in
the letter game, so A is HD. Note that s′ requires no more memory than s. ⊓⊔

Corollary 1. Given a nondeterministic automaton A over finite words, Eve
wins G1(A) if and only if A is HD, and winning strategies in G1(A) induce HD
strategies for A of the same complexity.

Proof. A direct consequence of Proposition 2 and Theorem 1. ⊓⊔

Solving token games. For resolving the HDness problem of Val automata where
Val is present-focused, it then remains to study for which of them the corre-
sponding G1 game is simple to decide.

Theorem 2. Deciding whether an Inf or Sup automaton on finite words is HD
is in PTime, namely in O(|Σ|n2k) for Sup and O(|Σ|n2k2) for Inf, where Σ is
the automaton’s alphabet, k the number of weights and n the number of states.

Proof. Given a Sup automaton A = (Σ,Q, ι, δ) with weights W , G1(A) reduces
to solving a safety game, whose positions (σ, q, q′, xE , t) ∈ Σ ∪ {ε} ×Q2 ×W ×
{L,E,A} consist of a possibly empty letter σ representing the last letter played,
a pair of states (q, q′), one for Eve and one for Adam, which keep track of the end
of the current run built by each player, a weight xE from W , which keeps track
of the maximal weight seen on Eve’s run so far, and a turn variable t ∈ {L,E,A}
indicating whether it is Adam’s turn to give a letter (L), Eve’s turn to choose
a transition (E), or Adam’s turn to choose a transition (A). The initial position
is (ε, ι, ι,m,L) where m is the minimal weight of A. The moves and position
ownership encode the permitted moves in G1(A) and update xE to reflect the
maximal value of Eve’s run. The winning condition for Eve is a safety condition:
Adam wins if he picks a move with a weight higher than xE , the maximal weight
on Eve’s run. Then plays in this game are in bijection with plays of G1(A), and
Eve wins if and only if she can avoid Adam choosing a transition with a larger
weight than xE , that is, if she can win G1(A).

Then, solving G1(A) reduces to solving this safety game, which can be done
in time linear in the number of positions of the arena, which is 3|Σ|n2k.

The case of Inf automata is similar, except that instead of keeping Eve’s
maximal value along her run, we need to keep the minimal value along Adam’s
run in some variable xA, and the safety condition for Eve is that her current
value must always be at least as big as xA and Adam’s next move. Since Adam
plays after Eve in each round of the game, we also need to keep Eve’s last value,
thus having 3|Σ|n2k2 positions. ⊓⊔

Next, we show that solving G1 is in NP∩co-NP for DSum automata.

Theorem 3. For every λ ∈ Q ∩ (0, 1), deciding whether a λ-DSum automaton
A, on finite or infinite words, is HD is in NP∩co-NP4.
4 It was already known for finite words [14]. It is perhaps surprising for infinite words,

given the NP-hardness result in [17, Theorem 6]. In consultation with the authors,
we have confirmed that there is an error in the hardness proof.

128 U. Boker and K. Lehtinen

Proof. Consider a λ-DSum automaton A = (Σ,Q, ι, δ), where the weight of a
transition t is denoted by γ(t). From Propositions 2 and 3 and Theorem 1, Eve
wins G1(A) if and only if A is HD. It therefore suffices to show that solving
G1(A) is NP∩co-NP. We achieve this by reducing solving G1(A) to solving a
discounted-sum threshold game, which Eve wins if the DSum of a play is non-
negative. It is enough to consider infinite games, as they also encode finite games,
by allowing Adam to move to a forever-zero-position in each of his turns.

The reduction follows the same pattern as that in the proof of Theorem 2: we
represent the arena of the game G1(A) as a finite arena, and encode its winning
condition, which requires the difference between the DSum of two runs to be non-
negative, as a threshold DSum winning condition. Note first that the difference
between the λ-DSum of the two sequences x0x1... and x′

0x
′
1... of weights is equal

to the λ-DSum of the sequence of differences d0 = (x0 − x′
0), d1 = (x1 − x′

1), . . .,
as follows: (

∑∞
i=0 λ

ixi)−
∑∞

i=0 λ
ix′

i =
∑∞

i=0 λ
i(xi − x′

i).

We now describe the DSum arena G in which Eve wins with a non-strict
0-threshold objective if and only if she wins G1(A). The arena has positions in
(σ, q, q′, t,m) ∈ Σ ∪ {ε} × Q2 × δ ∪ {ε} × {L,E,A} where σ is the potentially
empty last played letter, starting with ε, the states q, q′ represent the positions
of Eve and Adam’s tokens, t is the transition just played by Eve if m = A and ε
otherwise, and m denotes the move type, having L for Adam choosing a letter,
E for Eve choosing a transition and A for Adam choosing a transition.

A move of Adam that chooses a transition t′ = q′
σ:x−−→ q′′, namely a move

(σ, q, q′, t, A) → (σ, q, q′′, ε, L), is given weight γ(t)− γ(t′), that is, the difference
between the weights of the transitions chosen by both players. Other transitions
are given weight 0. Observe that we need to compensate for the fact that only
one edge in three is weighted. One option to do it is to take a discount factor
λ′ = λ

1
3 for the DSum game G. Yet, λ′ can then be irrational, which some-

what complicates things. Another option is to consider discounted-sum games
with multiple discount factors [2] and choose three rational discount factors
λ′, λ′′, λ′′′ ∈ Q ∩ (0, 1), such that λ′ · λ′′ · λ′′′ = λ. Since the first two weights in
every triple are 0, only the multiplication of the three discount factors toward
the third weight is what matters. For λ = p

q , where p < q are positive integers,

one can choose λ′ = 4p
4p+1 , λ

′′ = 4p+1
4p+2 , and λ′′′ = 2p+1

2q .

Plays in G1(A) and in G are in bijection. It now suffices to argue that the
winning condition of G, namely that the (λ′, λ′′, λ′′′)-DSum of the play is non-
negative, correctly encodes the winning condition of G1(A), meaning that the
difference between the λ-DSum of Eve’s run and of Adam’s run is non-negative.

Let d0d1 . . . be the sequence of weight differences between the transitions
played by both players in G1(A), and let λ0, λ1, . . . and w0, w1, . . . be the cor-
responding sequences of discount factors and weights in the (λ′, λ′′, λ′′′)-DSum
game, respectively, where for every i = (0 mod 3), we have wi = 0 and λi = λ′,
for every i = (1 mod 3), we have wi = 0 and λi = λ′′, and for every i = (2
mod 3), we have wi = di and λi = λ′′′. Then the value of the (λ′, λ′′, λ′′′)-DSum
sequence is equal to the required DSum sequence multiplied by λ′ · λ′′:

Quantitative Automata Token Games 129

(λ′, λ′′, λ′′′)-DSum =

∞∑
i=0

(0 ·
3i−1∏
j=0

λj +0 ·
3i∏

j=0

λj +w3i+2 ·
3i+1∏
j=0

λj) = λ′ ·λ′′ ·
∞∑
i=0

λidi

Hence Eve wins the game G1(A) if and only if she wins the 0-threshold
(λ′, λ′′, λ′′′)-DSum game over G. As G has a state-space polynomial in the state-
space of A and solving DSum-games is in NP∩coNP [2], solving G1(A), and
therefore deciding whether A is HD, is also in NP∩coNP. ⊓⊔

DSum games are positionally determined [22,23,2] so this algorithm also com-
putes a finite-memory witness of HDness for A that is of polynomial size in the
state-space of A. However, a positional witness also exists [17, Section 5].

5 Deciding History-Determinism via Two Token Games

In this section we solve the HDness problem of LimSup and LimInf automata via
two-token games. As is the case with Büchi and coBüchi automata, one-token
games do not characterise HDness of LimSup and LimInf automata. For LimInf, a
possible alternative approach is to try to solve the letter game directly: we can
use an equivalent deterministic LimInf automaton to track the value of a word,
and the winning condition of the letter game corresponds to comparing Eve’s run
to the one of the deterministic automaton. Unfortunately, determinising LimInf
automata is exponential in the number of its states [10, Theorem 13], so the new
game is large, and, in addition, its winning condition, which compares the LimInf
value of two runs, is non-standard and needs additional work to be encoded into
a parity game. For LimSup automata the situation is even worse, as they are
not necessarily equivalent to deterministic LimSup automata, so it is not obvious
whether the winner of the letter game is decidable at all.

Here we show that the 2-token-game approach, used to resolve HDness of
Büchi and coBüchi automata, can be generalised to LimSup and LimInf automata.
While the proof that G2 has the same winner as the letter game is quite different
for the Büchi and coBüchi cases, our proofs for the LimSup and LimInf cases follow
the same structure, while relying on the Büchi and coBüchi results respectively.
However, the argument that G2(A) is solvable differs according to whether A is a
LimSup or LimInf automaton. In particular, perhaps surprisingly (since the naive
approach to solving the letter game seems harder for LimSup), we show that G2

is solvable in quasipolynomial time for LimSup while for LimInf our algorithm is
exponential in the number of weights (but not in the number of states).

Without loss of generality, we assume the weights to be {1, 2, . . .}.
We start, in Section 5.1, with analysing the 2-token game on LimSup and

LimInf automata, and show, in Section 5.2, that it characterises their HDness.

5.1 G2 on LimSup and LimInf Automata

We first observe that G2(A), for both a LimSup and a LimInf automaton A, can
be solved via a reduction to a parity game. The G2 winning condition for LimSup

130 U. Boker and K. Lehtinen

automata can be encoded by adding carefully chosen priorities to the arena of
G2(A), while for LimInf the encoding requires additional positions.

Lemma 1. Given a nondeterministic LimSup automaton A of size n with k
weights, the game G2(A) can be solved in time quasipolynomial in n, and if k is
in O(log n), in time polynomial in n.

Proof. We encode the game G2(A), for a LimSup automaton A = (Σ,Q, ι, δ),
into a parity game as follows. The arena is simply the arena of G2(A), seen as a
product of the alphabet and three copies of A, to reflect the current letter and
the current position of each of the three runs (one for Eve, two for Adam).

Adam’s letter-picking moves are labelled with priority 0, Eve’s choices of
transition q

σ:x−−→ q′ are labelled with priority 2x and Adam’s choices of transition
q

σ:x−−→ q′ are labelled with priority 2x− 1.
We claim that Eve wins this parity game if and only if she wins G2(A), that

is, the priorities correctly encode the winner of G2(A). Observe that the even
priorities seen infinitely often in a play of the parity game are exactly priorities
2x, where x is a weight seen infinitely often in Eve’s run in the corresponding play
in G2(A). The odd priorities seen infinitely often on the other hand are 2x− 1,
where x > 0 occurs infinitely often on one of Adam’s runs in the corresponding
play of G2(A). Hence, Eve can match the maximal value of Adam’s runs in
G2(A) if and only if she can win the parity game that encodes G2(A).

The number of positions in this game is polynomial in the size n of A; the
maximal priority is linear in the number of weights. It can be solved in quasipoly-
nomial time, or in polynomial time if the number of weights is in O(log n), using
the reader’s favourite state-of-the-art parity game algorithm, for instance [9].

⊓⊔

Lemma 2. Given a nondeterministic LimInf automaton A of size n with k
weights, the game G2(A) can be solved in time exponential in n, and if k is
in O(log n), in time polynomial in n.

Proof. As in the proof of Lemma 1, we can represent G2(A) as a game on an
arena that is the product of three copies of A, one for Eve and two for Adam.
The winning condition for Eve is that the smallest weight seen infinitely often on
the run built on her copy of A should be at least as large as both of the minimal
weights seen infinitely often on the runs built on Adam’s copies. We will encode
this winning condition as a parity condition, but, unlike in the LimSup case, we
will need to use an additional memory structure, which we describe now.

Intuitively, the weights on Eve’s run will be encoded by odd priorities, with
smaller weights corresponding to higher priorities, as in LimInf the lowest weight
seen infinitely often is the one that matters, while weights on Adam’s runs will
be encoded by even priorities, but only once both of Adam’s runs have seen the
corresponding weight or a lower one. This is the role of the memory structure,
which encodes which of Adam’s runs has seen which weight recently.

More precisely, let k be the number of weights in A. Moves corresponding
to Eve choosing a transition of weight i have priority 2(k − i + 1) − 1, that is,

Quantitative Automata Token Games 131

an odd priority that is larger the smaller i is. Further, for each weight, we use a
three-valued variable xi ∈ {0, 1, 2}, initiated to 0, which gets updated as follows:
if xi = 0 and the game takes a transition with a weight w ≤ i on one of Adam’s
runs, xi is updated to 1 or 2 according to which of Adam’s run saw this weight;
if xi = 1 (resp. 2) and Adam’s second (resp. first) run takes a transition with
weight w ≤ i, then xi is reset to 0. Transitions that reset variables to 0 have
priority 2(k−i+1) for the minimal i such that the transition resets xi to 0; other
transitions have priority 1. Other moves do not affect xi, and have priority 1.

We now argue that the highest priority seen infinitely often along a play is
even if and only if the LimInf value of Eve’s run is at least as high as that of
both of Adam’s runs. Indeed, the maximal odd priority seen infinitely often on
a play is 2(k − i + 1) − 1 such that i is the minimal priority seen on Eve’s run
infinitely often, and the maximal even priority seen infinitely often is 2(k−j+1)
where j is the minimal weight such that both of Adam’s runs see j or a smaller
priority infinitely often. In particular, 2(k− i+1)− 1 < 2(k− j +1) if and only
if i ≥ j, that is, if Eve wins G2(A).

This parity game is of size exponential in k due to the memory structure
({0, 1, 2}k) and has 2k priorities. As the number of priorities is logarithmic in
the size of the game, it can be solved in polynomial time [9]. If the number of
weights is in O(log n), then the algorithm is polynomial in the size n of A. ⊓⊔

5.2 G2 Characterises HDness for LimSup and LimInf Automata

The rest of the section is dedicated to proving that a LimSup or LimInf automaton
is HD if and only if Eve wins the 2-token game on it. In both cases, the structure
of the argument is similar. One direction is immediate: if an automaton A is
HD, then Eve can use the letter-game strategy to win in G2(A), ignoring Adam’s
tokens. The other direction requires more work. We use an additional notion, that
of k-HDness, also known as the width of an automaton [21], which generalises
HDness, in the sense that Eve maintains k runs, rather than only one, and needs
at least one of them to be optimal. We will then show that if Eve wins G2(A),
then A is k-HD for a finite k (namely, the number of weights in A minus one).
Finally, we will show that for automata that are k-HD, for any finite k, a strategy
for Eve in G2(A) can be combined with the k-HD strategy to obtain a strategy
for her in the letter game.

Many of the tools used in this proof are familiar from the ω-regular set-
ting [3,6]. The main novelty in the argument is the decomposition of the LimSup
(LimInf) automaton A with k weights into k − 1 Büchi (coBüchi) automata
A2, . . . ,Ak that are HD whenever Eve wins G2(A). (The converse does not hold,
namely A2, . . . ,Ak can be HD even if Eve loses G2(A) – see Fig. 2.) The HD
strategies for A2, . . . ,Ak can then be combined to prove the k-HDness of A.

Fig. 1 illustrates the flow of our arguments.

We first generalise to quantitative automata Bagnol and Kuperberg’s key
insight that if Eve wins G2, then she also wins Gk for all k [3, Thm 14].

132 U. Boker and K. Lehtinen

G2(A) ∀k.Gk(A)

G2(A2), . . . , G2(Ak) ∃k.HDk(A)

HD(A)

Theorem 4

Lemma 3

Lemma 4

Proposition 4

Fig. 1. The flow of arguments for showing that G2(A) =⇒ HD(A) for a LimInf or
LimSup automaton A.

A

s0s1 s2 s3 s4
Σ :1 Σ :1

Σ :2
a :3

b :1

Σ :3 Σ :1

A2

s0s1 s2 s3 s4
Σ Σ

Σ
a

b

Σ Σ

A3

s0s1 s2 s3 s4
Σ Σ

Σ
a

b

Σ Σ

Fig. 2. A LimSup automaton A and corresponding Büchi automata A2 and A3, as per
Lemma 3. (Accepting transitions in A2 and A3 are marked with double lines.) Observe
that A is not HD and Eve loses the two-token game on A, while both A2 and A3 are
HD. (In A, if Eve goes from s0 to s1, Adam goes from s0 to s2 and continues with an
a, and if she goes from s0 to s2, Adam goes from s0 to s1 and continues with a b. In
A2 Eve goes from s0 to s1 and in A3 from s0 to s2.)

Theorem 4. Given a quantitative automaton A, if Eve wins G2(A) then she
also wins Gk(A) for any k ∈ N \ {0}. Furthermore, if her winning strategy in
G2(A) has memory of size m and A has n states, then she has a winning strategy
in Gk(A) with memory of size nk−1 ·mk.

Proof. This is the generalisation of [3, Thm 14]. The proof is similar to Bagnol
and Kuperberg’s original proof, but without assuming positional strategies for
Eve in Gk(A). If Eve wins G2(A) then she obviously wins G1(A), using her
G2 strategy with respect to two copies of Adma’s single token in G1. We thus
consider below Gk(A) for every k ∈ N \ {0, 1, 2}.

Let s2 be a winning strategy for Eve in G2(A). We inductively show that
Eve has a winning strategy si in Gi(A) for each finite i. To do so, we assume
a winning strategy si−1 in Gi−1(A). The strategy si maintains some additional

Quantitative Automata Token Games 133

(not necessarily finite) memory that maintains the position of one virtual token
in A, a position in the (not necessarily finite) memory structure of si−1, and a
position in the (not necessarily finite) memory structure of s2. The virtual token
is initially at the initial state of A. The strategy si then plays as follows: at each
turn, after Adam has moved his i tokens and played a letter (or, at the first turn,
just played a letter), it first updates the si−1 memory structure, by ignoring the
last of Adam’s tokens, and, treating the position of the virtual token as Eve’s
token in Gi−1(A), it updates the position of the virtual token according to the
strategy si−1; it then updates the s2 memory structure by treating Adam’s last
token and the virtual token as Adam’s 2 tokens in G2(A), and finally outputs
the transition to be played according to s2.

We now argue that this strategy is indeed winning in Gi(A). Since si−1 is a
winning strategy in Gi−1(A), the virtual token traces a run of which the value
is at least as large as the value of any of the runs built by the first i− 1 tokens
of Adam. Since s2 is also winning, the value of the run built by Eve’s token is at
least as large as the values of the runs built by the virtual token and by Adam’s
last token. Hence, Eve is guaranteed to achieve at least the supremum value of
Adam’s i runs, making this a winning strategy in Gi(A).

As for the memory size of a winning strategy for Eve in Gk(A), let m be the
memory size of her winning strategy in G2(A) and n the number of states in A.
Then, by the above construction of her strategy in Gk(A), the memory of her
strategy in G3(A) is n for the virtual token times m for the copy of her memory
in G2(A) times m for the copy of her memory in Gi−1(A) = G2(A), namely
n ·m ·m = n ·m2. Then for G4(A) it is n ·m · (n ·m2) = n2 ·m3; for G5(A) it is
n ·m · (n2 ·m3) = n3 ·m4, and for Gk(A) it is nk−1 ·mk. ⊓⊔

We proceed with the definition of k-HDness, also known as width [21], based
on the k-runs letter game (not to be confused with Gk, the k-token game), which
generalises the letter game.

Definition 5 (k-HD and k-runs letter game). A configuration of the game
on a LimSup (LimInf) automaton A = (Σ,Q, ι, δ) is a tuple qk ∈ Qk of states of
A, initialised to ιk.

In a configuration (qi,1, . . . , qi,k), the game proceeds to the next configuration
(qi+1,1, . . . , qi+1,k) as follows.

– Adam picks a letter σi ∈ Σ, then

– Eve chooses for each qi,j, a transition qi,j
σi:xi,j−−−−→ qi+1,j

In the limit, a play consists of an infinite word w that is derived from the concate-
nation of σ0, σ1, . . ., as well as of k infinite sequences ρ0, ρ1, . . . of transitions.
Eve wins the play if maxj∈{1...k} Val(ρj) = A(w).

If Eve has a winning strategy, we say that A is k-HD, or that HDk(A) holds.

Notice that the standard letter game (Definition 1) is a 1-run letter game and
standard HD (Definition 1) is 1-HD.

Next, we use HDk(A) to show that G2 characterises HDness.

134 U. Boker and K. Lehtinen

Proposition 4 ([3]). Given a quantitative automaton A, if HDk(A) for some
k ∈ N, and Eve wins Gk, then A is HD.

Proof. The argument is identical to the one used in [3], which we summarise
here. The strategy τ for Eve in HDk(A) provides a way of playing k tokens that
guarantees that one of the k runs formed achieves the automaton’s value on the
word w played by Adam. If Eve moreover wins Gk(A) with some strategy sk,
she can, in order to win in the letter game, play sk against Adam’s letters and k
virtual tokens that she moves according to τ . The winning strategy τ guarantees
that one of the k runs built by the k virtual tokens achieves Val(w); then her
strategy sk guarantees that her run also achieves Val(w). ⊓⊔

It remains to prove that if Eve wins G2(A), then HDk(A) for some k.
Given a LimSup automaton A, with weights {1, . . . , k}, we define k−1 auxil-

iary Büchi automata A2, . . . ,Ak with acceptance on transitions, such that each
Ax is a copy of A, where a transition is accepting if its weight i in A is at least
x. Each Ax recognises the set of words w such that A(w) ≥ x. (See Fig. 2.)

Given a LimInf automatonA, we similarly define auxiliary coBüchi automata:
Ax is a copy of A where transitions with weights smaller than x are rejecting,
while those with weights x or larger are accepting. Again, Ax recognises the set
of words w such that A(w) ≥ x.

We now use these auxiliary automata to argue that if G2(A) then HDk−1(A).

Lemma 3. Given a LimSup or LimInf automaton A with weights {1, . . . , k}, if
Eve wins G2(A), then for all x ∈ {2, . . . , k}, Eve also wins G2(Ax).

Proof. Since Ax is identical to A except for the acceptance condition or value
function, Eve can use in G2(Ax) her winning strategy in G2(A). For the LimSup
case, if one of Adam’s runs sees an accepting transition infinitely often, the
underlying transition of A visited infinitely often has weight at least x. Then,
Eve’s strategy guarantees that her run also sees infinitely often a value at least
as large as x, corresponding to an accepting transition in G2(Ax).

Similarly, for the LimInf case, if one of Adam’s runs avoids seeing a rejecting
transition infinitely often in Ax, then this run’s value in A is at least x, and
Eve’s strategy guarantees that her run’s value in A is at least x, meaning that
it avoids seeing a rejecting transition in Ax infinitely often, and accepts. ⊓⊔

Lemma 4. Given a LimSup or LimInf automaton A with weights {1, . . . , k}, if
Eve wins G2(Ax) for all x ∈ {2, . . . , k} then HDk−1(A) holds.

Proof. From Lemma 3, if Eve wins G2(A), then for all x ∈ {2, . . . , k}, Eve also
wins G2(Ax). Since each Ax is a Büchi or coBüchi automaton, this implies that
for all x ∈ {2, . . . , k}, the automaton Ax is HD [3,6], that is, there is a winning
strategy sx for Eve in the letter game on each Ax. Now, in the (k− 1)-run letter
game on A, Eve can use each sx to move one token. Then, if Adam plays a
word w with some value Val(w) = i, this word is accepted by Ai, and therefore
the strategy si guarantees that the run of the ith token achieves at least the
value i, corresponding to seeing accepting transitions of Ai infinitely often for

Quantitative Automata Token Games 135

the LimSup case, or eventually avoiding rejecting transitions in the LimInf case.
⊓⊔

Finally, we combine the G2 and HDk−1 strategies in A to show that A is HD.

Theorem 5. A nondeterministic LimSup or LimInf automaton A is HD if and
only if Eve wins G2(A).

Proof. If A is HD then Eve can use the letter-game strategy to win in G2(A),
ignoring Adam’s moves. If Eve wins G2(A) then by Lemma 3 and Lemma 4 she
wins HDk−1(A), where k is the number of weights in A. By Theorem 4 she also
wins Gk−1(A) and, finally, by Proposition 4 we get that A is HD. ⊓⊔

Theorem 6. Given a nondeterministic LimSup (resp. LimInf) automaton A of
size n with k weights, the HDness problem of A can be solved in time quasipoly-
nomial (resp. exponential) in n. In both cases, if k is in O(log n), it can be solved
in time polynomial in n.

Proof. It directly follows from Theorem 5 and Lemmas 1 and 2; the former
reducing the HDness problem to solving G2(A), and the latter two showing that
G2(A) can be solved in the stated complexity. ⊓⊔

In contrast to the cases considered in the Section 4, where strategies in G1

immediately induce HD strategies of the same complexity, for Büchi and coBüchi
automata, a winning G2 strategy does not necessarily induce an HD strategy
(even though it implies the existence of such a strategy). We now analyse the
size of the HD strategies which our proofs show exist whenever Eve wins G2,
and discuss the implications for the determinisability of HD LimSup automata.

Corollary 2. Given an HD LimSup or LimInf automaton A of size n, there is
an HD strategy for A with memory exponential in n. If A is a LimSup automaton
with O(log n) weights then the memory is only polynomial in n.

Proof. Let n be the size of A and k+1 the number of weights. We construct an
HD strategy for A, by combining an HDk strategy and a Gk strategy for it.

The HDk strategy—which, like the HD strategy, is hard to compute directly—
combines the HD strategies of the k auxiliary Büchi or coBüchi automata for A,
as constructed in Lemma 3. For HD Büchi automata, which are equivalent to
deterministic automata of quadratic size [19], there always exists a polynomial
resolver: indeed, the letter game can be represented as a polynomial parity game,
in which a positional strategy for Eve corresponds to a resolver. For HD coBüchi
automata on the other hand, these auxiliary strategies might have exponential
memory in the number of states of A [19].

The Gk strategy on the other hand is positional for LimSup, since it can be
encoded as a parity game directly on the Gk(A) arena, similarly to the reduction
in Lemma 1; the size of the Gk(A) arena is O(nk+1). The overall HD strategy
for LimSup therefore needs memory exponential in the number of weights.

For LimInf on the other hand, by Lemma 2 and Theorem 4, the Gk strategy
can do with memory of size nk−1 · 3k2

. The overall HD strategy therefore has
memory exponential in the size of A. ⊓⊔

136 U. Boker and K. Lehtinen

We leave open whether this can be improved upon. Already for coBüchi
automata, it is known that deciding whether an automaton is HD is polynomial
despite there being automata for which the optimal HD strategy is exponential.
Hence, at least for the LimInf case, we cannot expect to do much better. However,
for the LimSup case, it might be that polynomial, or even positional HD strategies
could suffice. However, positionality is already open for the Büchi case.

Our proof does however imply that if a LimSup automaton A is HD, then
there is a finite memory HD strategy, which implies that A is determinisable,
without increasing the number of weights, by taking a product of A with the
finite HD strategy. (Recall that every LimInf automaton can be determinised,
while not every LimSup automaton can.)

Corollary 3. Every HD LimSup automaton is equivalent to a deterministic one
with at most an exponential number of states and the same set of weights.

6 Conclusions

We have extended the token-game approach to characterising history-determinism
from the Boolean (ω-regular) to the quantitative setting. Already 1-token games
turn out to be useful for characterising history-determinism for some quanti-
tative automata. For LimSup and LimInf automata, one token is not enough,
but the 2-token game does the trick. Given the correspondence between decid-
ing history-determinism and the best-value synthesis problem, our results also
directly provide algorithms both to decide whether the synthesis problem is re-
alisable and to compute a solution strategy.

This application further motivates understanding the limits of these tech-
niques. Whether the 2-token game G2 characterises more general Boolean classes
of automata beyond Büchi and coBüchi automata is already an open ques-
tion. Similarly, we leave open whether the G2 game also characterises history-
determinism for limit-average automata and other quantitative automata. At
the moment we are not aware of examples of automata of any kind (quanti-
tative, pushdown, register, timed, . . .) for which Eve could win G2 despite the
automaton not being history-deterministic, yet even for parity automata, a proof
of characterisation remains elusive.

Acknowledgments

We thank Guillermo A. Pérez for discussing history-determinism of discounted-
sum and limit-average automata.

References

1. Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online
algorithms with weighted automata. ACM Trans. Algorithms, 6(2):28:1–28:36,
2010.

Quantitative Automata Token Games 137

2. Daniel Andersson. An improved algorithm for discounted payoff games. In Proc.
of ESSLLI Student Session, pages 91–98, 2006.

3. Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently
recognizable. In 38th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2018), page 16, 2018.

4. Udi Boker. Why these automata types? In Proceedings of LPAR, pages 143–163,
2018.

5. Udi Boker. Quantitative vs. weighted automata. In Proc. of Reachbility Problems,
pages 1–16, 2021.

6. Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Micha l Skrzypczak. On
succinctness and recognisability of alternating good-for-games automata. arXiv
preprint arXiv:2002.07278, 2020.

7. Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeter-
minism to alternation. In Proceedings of CONCUR, volume 140 of LIPIcs, pages
19:1–19:16, 2019.

8. Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in
quantitative automata. In Proc. of FSTTCS, pages 35:1–35:20, 2021.

9. Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In Proceedings of STOC,
pages 252–263, 2017.

10. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative
languages. ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010.

11. Thomas Colcombet. The theory of stabilisation monoids and regular cost functions.
In Proceedings of ICALP, pages 139–150, 2009.

12. Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games
automata: New tools for infinite duration games. In Proc. of FOSSACS, volume
11425 of Lecture Notes in Computer Science, pages 1–26. Springer, 2019.

13. Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-
François Raskin. On delay and regret determinization of max-plus automata. In
LICS, pages 1–12, 2017.

14. Emmanuel Filiot, Christof Löding, and Sarah Winter. Synthesis from weighted
specifications with partial domains over finite words. In Nitin Saxena and Sunil
Simon, editors, FSTTCS, volume 182 of LIPIcs, pages 46:1–46:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

15. Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A
bit of nondeterminism makes pushdown automata expressive and succinct. In Proc.
of MFCS, pages 53:1–53:20, 2021.

16. Thomas Henzinger and Nir Piterman. Solving games without determinization. In
Proceedings of CSL, pages 395–410, 2006.

17. Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Minimizing regret in
discounted-sum games. In Jean-Marc Talbot and Laurent Regnier, editors, CSL,
volume 62 of LIPIcs, pages 30:1–30:17, 2016.

18. Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Reactive synthesis
without regret. Acta Informatica, 54(1):3–39, 2017.

19. Denis Kuperberg and Micha l Skrzypczak. On determinisation of good-for-games
automata. In Proceedings of ICALP, pages 299–310, 2015.

20. Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown au-
tomata. In LICS20, pages 689–702, 2020.

21. Anirban Majumdar and Denis Kuperberg. Computing the width of non-
deterministic automata. Logical Methods in Computer Science, 15, 2019.

138 U. Boker and K. Lehtinen

22. L. S. Shapley. Stochastic games. In Proc. of Nat. Acad. Sci., volume 39, pages
1095–1100, 1953.

23. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Electron. Colloquium Comput. Complex., 2(40), 1995.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Quantitative Automata Token Games 139

http://creativecommons.org/licenses/by/4.0/

On the Translation of Automata
to Linear Temporal Logic?

Udi Boker1 , Karoliina Lehtinen2,� , and Salomon Sickert3??

1 Reichman University, Herzliya, Israel
udiboker@idc.ac.il

2 CNRS, Aix-Marseille University and University of Toulon, LIS, Marseille, France
lehtinen@lis-lab.fr

3 The Hebrew University, Jerusalem, Israel
salomon.sickert@mail.huji.ac.il

Abstract While the complexity of translating future linear temporal
logic (LTL) into automata on infinite words is well-understood, the size
increase involved in turning automata back to LTL is not. In particular,
there is no known elementary bound on the complexity of translating
deterministic ω-regular automata to LTL.
Our first contribution consists of tight bounds for LTL over a unary al-
phabet: alternating, nondeterministic and deterministic automata can be
exactly exponentially, quadratically and linearly more succinct, respect-
ively, than any equivalent LTL formula. Our main contribution consists
of a translation of general counter-free deterministic ω-regular automata
into LTL formulas of double exponential temporal-nesting depth and
triple exponential length, using an intermediate Krohn-Rhodes cascade
decomposition of the automaton. To our knowledge, this is the first ele-
mentary bound on this translation. Furthermore, our translation pre-
serves the acceptance condition of the automaton in the sense that it
turns a looping, weak, Büchi, coBüchi or Muller automaton into a for-
mula that belongs to the matching class of the syntactic future hierarchy.
In particular, it can be used to translate an LTL formula recognising a
safety language to a formula belonging to the safety fragment of LTL
(over both finite and infinite words).

Keywords: Linear temporal logic · Automata · Cascade decomposition

1 Introduction

Linear Temporal Logic with only future temporal operators (from here on LTL)
and ω-regular automata, whether deterministic, nondeterministic or alternating,
are both well-established formalisms to describe properties of infinite-word lan-
guages. LTL is popular in formal verification and synthesis due to its simple

? The omitted proofs of this chapter can be found in the full version [5].
?? Salomon Sickert is supported by the Deutsche Forschungsgemeinschaft (DFG) under

project number 436811179.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 140–160, 2022.
https://doi.org/10.1007/978-3-030-99253-8_8

http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0003-1171-8790
http://orcid.org/0000-0002-0280-8981
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_8&domain=pdf

syntax and semantics. Yet, while properties might be convenient to define in
LTL, most verification and synthesis algorithms eventually compile LTL formu-
las into ω-regular automata. The expressiveness of both these key formalisms, as
well as translations from LTL to automata of various types, are well understood.
Here, we consider the converse translations, which, in comparison, have received
less attention: up till now, no elementary upper bound on the size blow-up of
going from automata to LTL was known.

Regarding expressive power, deterministic Muller automata, nondetermin-
istic Büchi automata, and weak alternating automata recognise all ω-regular
languages [21,40]. LTL-definable languages (surveyed in [13]) are a strict subset
thereof, also defined by first-order logic, star-free regular expressions, aperiodic
monoids, counter-free automata, and very weak alternating automata. As for
succinctness, nondeterministic and alternating automata can be exponentially
and double-exponentially more succinct than deterministic automata, respect-
ively. Determinisation in particular has precise bounds [32,35,24,36,12,3].

The succinctness of various representations of LTL-definable languages is less
clear: effective translations between the different models are far from straight-
forward, and their complexity is sometimes uncertain. In particular, to the best
of our knowledge, up to now there has been no elementary bound even on the
translation of deterministic counter-free automata, arguably the simplest auto-
mata model for this class of languages, into LTL formulas. (Considering LTL
with both future and past temporal operators, there is a double-exponential up-
per bound on the length of the formula [26]4.) The complexity of obtaining a
deterministic counter-free automaton from a nondeterministic one is also, to the
best of our knowledge, open.

We study the complexity of translating automata to LTL (equivalently, to
very weak alternating automata), considering formula length, size, and nesting
depth of temporal operators.

We begin (Section 3), as a warm-up, with the unary alphabet case on fi-
nite words. We show that the size-blow up involved in translating deterministic,
non-deterministic and alternating automata to LTL, when possible, is linear,
quadratic and exponential, respectively, and these bounds are tight. In contrast,
going from LTL to alternating, nondeterministic and deterministic automata is
linear, exponential and double-exponential, respectively [33,41,19].

The case of non-unary alphabets is much more difficult. We provide a transla-
tion of counter-free deterministic ω-regular automata (with any acceptance con-
dition) into LTL formulas with double exponential depth and triple exponential
length. Our translation uses an intermediate Krohn-Rhodes reset cascade decom-
position (wreath product) of deterministic automata, which is a deterministic
automaton built from simple components.

Our main technical contribution consists of a translation of a reset cascade
into an LTL formula of depth linear and length singly exponential in the number
of cascade configurations. Combining this with Eilenberg’s Holonomy translation
of a semigroup into a cascade [14, Corollary II.7.2] and Pnueli and Maler’s adapt-

4 See Remark 1 on whether the upper bound in [26] is single or double exponential.

On the Translation of Automata to Linear Temporal Logic 141

ation of it to automata [26, Theorem 3] (see Remark 1), we obtain a translation
of counter-free deterministic ω-regular automata into LTL formulas of double
exponential depth and triple exponential length. Our construction preserves the
acceptance condition of the automaton in the sense that it turns a Büchi-looping,
coBüchi-looping, weak, Büchi or coBüchi automaton into a formula that belongs
to the matching class of the syntactic future hierarchy (see Definition 1 and [8]).

Related work

Finite words. While LTL is usually interpreted over infinite words, it also admits
finite-word semantics that coincide with the finite word version of the other
equivalent formalisms. The equivalence between FO and star-free languages on
finite words is due to McNaughton and Papert [31]. Cohen, Perrin and Pin [10]
used the Krohn-Rhodes decomposition to characterise the expressive power of
LTL with only X and F (eventually), but do not provide bounds on the size
trade-off between the different models. Wilke [42] gives a double-exponential
translation from counter-free DFA to LTL. More recently, Bojańczyk provided
an algebraically flavoured adaptation of Wilke’s proof [2, Section 2.2.2].

Infinite words. With substantial effort over several decades, the above techniques
have been extended to infinite words using intricate tools with opaque complex-
ities. Ladner [22] and Thomas [38,39] for example extended the equivalence of
star-free regular expressions and FO to infinite words, while the ω-extension of
the equivalence with aperiodic languages is due to Perrin [34]. The correspond-
ence with LTL is due to Kamp [18] and Gabbay, Pnueli, Shelah and Stavi [16].
Diekert and Gastin’s survey [13] provides an algebraic translation into LTL via ω-
monoids while Cohen-Chesnot gives a direct algebraic proof of the equivalence of
star-free ω-regular expressions and LTL [11]. Wilke takes an automata-theoretic
approach, using backward deterministic automata [43,44]. However, none of the
above address the complexity of the transformations. Zuck’s dissertation [46]
gives a translation of star-free regular expressions into LTL, with at least non-
elementary complexity. Subsequently, Chang, Mana and Pneuli [8] use Zuck’s
results to show that the levels of their hierarchy of future temporal properties
coincide with syntactic fragments of LTL. Sickert and Esparza [37] gave an ex-
ponential translation of any LTL formula into level ∆2 of this hierarchy.

2 Preliminaries

Languages. An alphabet Σ, of size |Σ|, is a finite set of letters. Σ∗, Σ+, and Σω

denote the sets of finite, nonempty finite, and infinite words over Σ, respectively.
A language of finite or infinite words is a subset of Σ∗ or Σω, respectively.
We write [i..j] and [i..j), with integers i ≤ j, for the sets {i, i + 1, . . . , j} and
{i, i+ 1, . . . , j − 1}, respectively. For a word w = σ0 · σ1 · · · , we write |w| for its
length (∞ if w is infinite), w[i] for σi, w[i..j] and w[i..j) for its corresponding infixes
(w[i..i) is the empty word), and w[i..] for its (finite or infinite) suffix σi · σi+1 · · · .

142 U. Boker, K. Lehtinen, S. Sickert

Linear Temporal Logic (LTL). Let AP be a finite set of atomic propositions. LTL
formulas are constructed from the constant true, atomic propositions a ∈ AP ,
the connectives ¬ (negation) and ∧ (and), and the temporal operators U (until)
and X (next). Their semantics are given by a satisfiability relation |= between
finite or infinite words w ∈ (2AP)+ ∪ (2AP)ω, and a formula ϕ inductively as
follows:

w |= true w |= a iff a ∈ w[0]
w |= ¬ϕ iff w 6|= ϕ w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= Xϕ iff |w| > 1 and w[1..] |= ϕ
w |= ϕUψ iff ∃i ∈ [0..|w|). w[i..] |= ψ and ∀j ∈ [0..i). w[j..] |= ϕ

We also use the common shortcuts false := ¬true, ϕ ∨ ψ := ¬((¬ϕ) ∧ (¬ψ)),
Fϕ := trueUϕ, Gϕ := ¬F¬ϕ, and ψ1Rψ2 := ¬(¬ψ1)U(¬ψ2). The language
of finite words of ϕ is L<ω(ϕ) := {w ∈ (2AP)+ | w |= ϕ}, and the language of
infinite words is L(ϕ) := {w ∈ (2AP)ω | w |= ϕ}. Note that we omit the “< ω”
superscript if it is clear from the context which set is used. The length |ϕ| of ϕ
is the number of nodes in its syntax tree, the size of ϕ is the number of nodes in
a DAG representing this syntax tree, and its temporal nesting depth, denoted by
depth(ϕ), is defined by: depth(true) = 0; depth(a) = 0 for an atomic proposition
a ∈ AP ; depth(¬ψ) = depth(ψ); depth(ψ1 ∧ ψ2) = max(depth(ψ1), depth(ψ2));
depth(Xψ) = depth(ψ)+1; and depth(ψ1Uψ2) = max(depth(ψ1), depth(ψ2))+1.
Chang, Manna, and Pnueli define in [8] a syntactic hierarchy for LTL formulas
(over infinite words):

Definition 1 (LTL Syntactic future hierarchy [8] 5).

– Σ0 = Π0 = ∆0 is the least set containing all atomic propositions and their
negations, and is closed under the application of conjunction and disjunction.

– Σi+1 is the least set containing Πi and negated formulas of Πi+1 closed under
the application of conjunction, disjunction, and the X and U operators.

– Πi+1 is the least set containing Σi and negated formulas of Σi+1 closed under
the application of conjunction, disjunction, and the X and R operators.

– ∆i+1 is the least set containing Σi+1 and Πi+1 that is closed under the
application of conjunction, disjunction, and negation.

Σ1 is referred to as syntactic co-safety formulas, Π1 as syntactic safety formulas.

Automata. A deterministic semiautomaton is a tuple D = (Σ,Q, δ), where Σ
is an alphabet; Q is a finite nonempty set of states; and δ : Q × Σ → Q is a
transition function and we extend it to finite words in the usual way. A path of
D on a word w = σ0 ·σ1 · · · is a sequence of states q0, q1, . . ., such that for every
i < |w|, we have δ(qi, σi) = qi+1.

It is a reset semiautomaton if for every letter σ ∈ Σ, either i) for every state
q ∈ Q we have δ(q, σ) = q, or ii) there exists a state q′ ∈ Q, such that for every
state q ∈ Q we have δ(q, σ) = q′.

5 This extends [6,37] with negation, which can be removed via negation normal form.

On the Translation of Automata to Linear Temporal Logic 143

It is counter free if for every state q ∈ Q, finite word u ∈ Σ+, and number
n ∈ N \ {0}, there is a self loop of q on un iff there is a self loop of q on u.

A deterministic automaton is a tuple D = (Σ,Q, ι, δ, α), where (Σ,Q, δ) is a
deterministic semiautomaton, ι ∈ Q is an initial state; and α is some acceptance
condition, as detailed below. A run of D on a word w is a path of D on w that
starts in ι. It is a reset or counter-free automaton if its semiautomaton is.

The acceptance condition of an automaton on finite words is a set F ⊆ Q; a
run is accepting if it ends in a state q ∈ F . The acceptance condition of an ω-
regular automaton, on infinite words, is defined with respect to the set inf (r) of
states visited infinitely often along a run r. We define below several acceptance
conditions that we use in the sequel; for other conditions, see, for example, [3].

The Muller condition is a set α = {M1, . . . ,Mk} of sets Mi ⊆ Q of states,
and a run r is accepting if there exists a set Mi, such that Mi = inf (r). The
Rabin condition is a set α = {(G1, B1), . . . , (Gk, Bk)} of pairs of sets of states,
and r is accepting if there exists a pair (Gi, Bi), such that Gi ∩ inf (r) 6= ∅ and
Bi ∩ inf (r) = ∅. The Büchi (resp. coBüchi) condition is a set α ⊆ Q of states,
and r is accepting if α∩ inf (r) 6= ∅ (resp. α∩ inf (r) = ∅). A weak automaton is a
Büchi automaton, in which every strongly connected component (SCC) contains
only states in α or only states out of α. A looping automaton is a Büchi or
coBüchi automaton, where all states are in α, except for a single sink state.

Deterministic automata of the above types correspond to the hierarchy of
temporal properties [28]: Looping-Büchi, looping-coBüchi, weak, Büchi, coBüchi,
and Rabin/Muller deterministic automata define respectively safety, guarantee
(co-safety), obligation, recurrence, persistence, and reactivity languages. If the
language is also LTL-definable, then there exists an equivalent LTL formula in
Π1, Σ1, ∆1, Π2, Σ2, and ∆2, respectively [8]. Every deterministic ω-regular
automaton is equivalent to deterministic Muller and Rabin automata, where the
Muller (but not always Rabin) one can be defined on the same semiautomaton.

Nondeterministic and alternating automata (to which we only refer in Sec-
tion 3, on finite words over a unary alphabet) extend deterministic automata by
having a transition function δ : Q×Σ → 2Q and δ : Q×Σ → (positive Boolean
formulas over Q), respectively. (See, for example, [7] for formal definitions.)

3 Unary Alphabet

Kupferman, Ta-Shma and Vardi [20] compared the succinctness of different auto-
mata models when counting, that is, recognising the singleton language {ak} for
some k over the singleton alphabet {a}. For the succinctness gap between auto-
mata and LTL, we study the task of recognising arbitrary languages over the
unary alphabet, which can be seen as sets of integers, rather than a single integer.

For a unary alphabet, since there is only one infinite word, only languages
on finite words are interesting. We thus consider LTL formulas over (no) atomic
propositions AP = ∅, and automata on finite unary words over the corresponding
alphabet Σ = 2AP = {∅}, where we use the shorthand a = ∅. The size of
a deterministic automaton is the number of its states, of a nondeterministic

144 U. Boker, K. Lehtinen, S. Sickert

automaton the number of its transitions, and of an alternating automaton the
number of subformulas in its transition function.

We show that the size blow-up involved in translating deterministic, non-
deterministic, and alternating automata to LTL, when possible, is linear, quad-
ratic, and exponential, respectively.

In our analysis, we shall use the following folklore theorem, which extends
Wolper’s Theorem [45].

Proposition 1 (Extended Wolper’s theorem, Folklore). Consider an
LTL formula ϕ with depth(ϕ) = n over the atomic propositions AP , and let
Σ = 2AP . Then for every words u ∈ Σ∗, v ∈ Σ+ and t ∈ Σω, and numbers
i, j > n, ϕ has the same truth value on the words (uvit) and (uvjt).

We use this to establish that unary LTL describes only finite and co-finite
properties, and that there is a tight relation between the depth of LTL formulas
and the length of words above which they are all in or all out of the language.

Proposition 2. Given an LTL formula ϕ with depth(ϕ) = n on finite words
over the unary alphabet {a}, ai ∈ L(ϕ) for all i > n or ai /∈ L(ϕ) for all i > n.

Proposition 3. Consider a language L ⊆ {a}+ that agrees on all words of
length over n, that is, has the same truth value on all such words. Then there is
an LTL formula of size in O(n) with language L.

We now establish the trade-off between LTL and alternating automata (AFA)
over unary alphabets. AFA are closed under (linear) complementation, so we use
a pumping argument to bound the length after which all words have the same
truth value, giving an upper bound on the LTL formula.

Lemma 1. Every alternating automaton with n states that recognises an LTL-
expressible language L ⊆ {a}+ is equivalent to an LTL formula of size in O(2n).

We show next that this upper bound is tight. Consider the language {a2n−1},
which, according to Proposition 2, is only recognised by LTL formulas of size at
least 2n−1. It is recognised by a weak alternating automaton with 2n states and
size in O(n), using an automaton based on Leiss’s construction [23]. Intuitively,
the alternating automaton represents an n-bit up-counter with two states for
each bit, one for 1 and one for 0 (see Fig. 1), where the universal transitions
enforce that nondeterministic transitions correctly update the counter.

Lemma 2 (Adaptation of [23, proof of Theorem 1]). For every n ∈
N \ {0}, there is a weak alternating automaton with 2n states and transition

function of size in O(n) recognising the language {a2n−1}.

We continue to nondeterministic automata (NFAs), for which the arguments
are more involved as they do not allow for linear complementation.

On the Translation of Automata to Linear Temporal Logic 145

q3,0 q2,0 q1,0

q3,1 q2,1 q1,1

∨∧ ∧

∧ ∨ q1,1
q2,1

q1,0
q2,0

∨∧ ∧

∨∧ ∧

∧ ∨
q1,1

q1,0
a

a a

a

Figure 1. An alternating automaton of size in O(n) recognising {a2
n−1

}; here with
n = 3, where the initial configuration is q1,0 ∧ q2,0 ∧ q3,0.

Lemma 3. Every nondeterministic automaton with n states recognising an LTL-
expressible language L ⊆ {a}+ is equivalent to an LTL formula of size in O(n2).

Proof sketch. For finite L, by a pumping argument, A only accepts words up to
length n, and by Proposition 3 we are done. We now consider a co-finite L.

We use 2-way deterministic automata, which are deterministic automata that
process words of the form `wa, where ` and a are start- and end-of-word markers
respectively, and where transitions specify whether to read the letter to the right
or to the left of the current position. They accept by reaching an end state, and
reject by reaching a rejecting state or by failing to terminate [17], and every
unary NFA A can be turned into a 2-way DFA D of size O(n2) [9].

We construct from an NFA A a 2-way DFA D, and then a 2-way DFA D′ of
the same size that recognises a∗ \ {ak}, where ak is the longest word not in L.
We use the fact that a 2-way DFA of size m can be complemented into one of
size 4m [17] to complement D′ into D′′ that recognises {ak} and must therefore
be of size at least k + 2 [1], so k, and by Proposition 2, an LTL formula for L,
is in O(n2).

We now show that this upper bound is tight. The previous lower bound ideas
do not work with nondeterminism, since we need n states to recognise {an} [20].
Yet, we need not count exactly to n for achieving a lower bound. We can use
a variant of a language used in [4, pages 10–11]: For every positive integer k,
define the set of positive integers Sk = {m > 0 | ∃i, j ∈ N. m = ik + j(k + 1)},
and the language Vk = {am | m ∈ Sk} ⊆ {a}∗.

Proposition 4 (Folklore, [4, Theorem 3]). For every k ∈ N the number
k2 − k − 1 is the maximal number not in Sk.

146 U. Boker, K. Lehtinen, S. Sickert

Proposition 5 ([4, proof of Theorem 4]). For every n ∈ N, there is an NFA

of size in O(n) recognising a co-finite language L ⊆ {a}∗, such that ak
2−k−1 is

not in L, while for every t ≥ k2 − k, we have that at ∈ L.

Theorem 1. The size blow-up involved in translating deterministic, nondetermin-
istic, and alternating automata on finite unary words to LTL, when possible, is
Θ(n), Θ(n2), and Θ(2n), respectively.

4 General Alphabet

In this section we consider the more challenging task of turning counter-free ω-
regular automata over arbitrary alphabets into LTL. We use the fact that these
automata can be turned into reset cascade automata (Krohn-Rhodes-Holonomy
decomposition), which we describe in Section 4.1. Our technical contribution is
then the translation of reset cascade automata into LTL.

In brief, we build, in Section 4.2, a parameterised LTL formula that is sat-
isfied by a word w iff the run of the cascade on w, starting in the parameter
configuration S, reaches a parameter configuration T , such that the remain-
ing suffix of w satisfies a parameter LTL formula τ . We then use this formula,
in Section 4.4, to describe the automaton’s acceptance condition.

When encoding the behavior of a cascade by an LTL formula, we need to
overcome two major challenges: First, the cascade is a formalism that looks at
the past, namely at the word read so far, to determine the next configuration,
while an LTL formula obtains its value only from the future. Second, the cascade
has an internal state, while an LTL formula does not. Our reachability formulas
are therefore quite involved, built inductively over the number of levels in the
cascade, and implicitly allowing to track the internal configuration of the cascade.

In Section 4.3 we analyse the length and depth of the resulting formulas.

4.1 Cascaded Automata

Cascades. A cascaded semiautomaton (analogous to the algebraic wreath pro-
duct) over an alphabet Σ is a semiautomaton that can be described as a sequence
of simple semiautomata, such that the alphabet of each of them is Σ together
with the current state of each of the preceding semiautomata in the sequence. It
is a reset cascade if it is a sequence of reset semiautomata. Formally, a cascaded
semiautomaton, or just cascade, over alphabet Σ with n levels is a tuple A =
〈Σ,A1,A2, . . . ,An〉, such that Ai = (Σi, Qi, δi) is a semiautomaton for each
level i, where Σi = Σ ×Q1 × · · · ×Qi−1. (So Σ1 = Σ, Σ2 = Σ ×Q1, etc.). It is
a reset cascade if all Ai’s are reset semiautomata.

An i-configuration S of A is a tuple 〈q1, q2, . . . , qi〉 ∈ Q1× · · · ×Qi. If qi+1 ∈
Qi+1 is a state of level i + 1, we write 〈S, qi+1〉 for the (i + 1)-configuration
〈q1, . . . , qi, qi+1〉. Note that the 0-configuration is the empty tuple 〈〉. Further, we
derive the transition relation for configurations by point-wise application of the
respective δi’s. We define δ≤i(〈q1, q2, . . . qi〉, σ) as 〈δ1(q1, 〈σ〉), δ2(q2, 〈σ, q1〉), . . .〉.

On the Translation of Automata to Linear Temporal Logic 147

Note that we will omit the “≤ i”-subscript if it is clear from context, and by
just writing “configuration”, we mean an n-configuration.

Notice that A describes a standard semiautomaton DA over Σ, whose states
are the configurations of A of level n, and its transition function is δ≤n. If there
are up to j states in each level of A, there are up to jn states in DA. Observe that
when A is a reset cascade, it can be translated to an equivalent reset cascade
with up to n log j levels, and 2 states in each level [14, Ex. I.10.2].

For a state q ∈ Qi of level i of a reset cascade, we denote by Enter(q), Stay(q),
and Leave(q) ⊆ Σ × Q1 × · · · × Qi−1 the sets of (combined) letters that enter
q, stay in it, and leave it, respectively. These are sets of pairs 〈σ, S〉, where S
is an (i−1)-configuration and σ ∈ Σ. Notice that Enter(q) ⊆ Stay(q), and that
Leave(q) is the complement of Stay(q) (w.r.t. the relevant (combined) letters).

A semiautomaton (Σ,Q, δ) is homomorphic to a cascade 〈Σ,A1, . . . ,An〉 if
there exists a partial surjective function ϕ : Q1 × · · · × Qn → Q, such that for
every σ ∈ Σ and S ∈ Q1 × · · · ×Qn, we have δ(ϕ(S), σ) = ϕ(δ≤n(S, σ)).

Proposition 6 (Part of the Krohn-Rhodes-Holonomy Decomposition
[14, Corollary II.7.2], [26, Theorem 3]). Every counter-free deterministic
semiautomaton D with n states is homomorphic to a reset cascade A with up to
2n levels and 2n states in each level.

Remark 1. The Krohn-Rhodes and Holonomy decomposition theorems consider
also more general cascades and give results with respect to arbitrary semiauto-
mata. The Holonomy decomposition in [14], as opposed to many other proofs
of the Krohn-Rhodes decomposition, guarantees up to 2n levels with up to 2n

states in each level. Yet, it shows that A covers D, allowing A to operate over
an alphabet different from that of D. In [26,27,25], the algebraic proof of [14] is
translated to an automata-theoretic one, providing the stated homomorphism.
It is also stated in [26, Theorem 3.1], [27, Corollary 20], and [25, Corollary 2]
that the number of configurations in A is singly exponential in n, but to the
best of our understanding they do not provide an explicit proof for it.

Cascades with acceptance conditions. As a cascade A describes a standard semi-
automaton (whose states are the configurations of A), we can add to it an initial
configuration and an acceptance condition to make it a standard deterministic
automaton. We show below that the homomorphism between an automaton and
a cascade can be extended to also transfer the same acceptance condition.

Proposition 7. Let D be a deterministic Büchi, coBüchi or Rabin automaton,
with a semiautomaton homomorphic to a cascade A. There is respectively a
deterministic Büchi, coBüchi or Rabin automaton D′ equivalent to D with semi-
automaton A. For Rabin, D and D′ have the same number of acceptance pairs.

Proposition 8. Consider a deterministic Muller automaton D with n states,
whose semiautomaton is homomorphic to a reset cascade A with m configura-
tions. Then there is a deterministic Muller automaton D′ equivalent to D, whose
semiautomaton is A and its Muller condition has up to 2O(mn) acceptance sets.

148 U. Boker, K. Lehtinen, S. Sickert

4.2 Encoding Reachability within Reset Cascades by LTL Formulas

For the rest of this section, let us fix a set of atomic propositions AP , an alphabet
Σ = 2AP , and a reset cascade A = 〈Σ,A1,A2, . . . ,An〉.

The main reachability formula. For every level i of A, three configurations S,B
and T of level i, and two LTL formulas β and τ , we will define the LTL formula
S ∼∼∼∼XXB(β)

K T (τ) with the intended semantics that it holds on a word w ∈ Σω iff

A goes from the ‘starting’ configuration S to the ‘target’ configuration T along
some prefix u of w, such that the suffix of w after u satisfies τ and the path
along u avoids the ‘bad’ configuration B with a suffix satisfying β.

Auxiliary reachability formulas. We will formally define the main reachability
formula by induction on the level i of the involved configurations, and using
four auxiliary formulas, whose intended semantics is described in Table 1. These
formulas distinguish between the case that the top-level state is unchanged along
the reachability path, denoted with a solid arrow −−→, and the case that it is
changed, denoted by a dashed arrow 999K. They also have dual, weak, versions.

Observe that intuitively S ∼∼∼∼XXB(β)
K T (τ) is an extended Until operator, while

its dual S
weak∼∼∼∼XXB(β)

K T (τ) = ¬(S∼∼∼∼XXT (τ)
KB (β)) is an extended Weak until (or Release)

operator. We build the formulas so that for appropriate choices of β and τ , the
(strong) reachability formulas 1, 3, and 5 (as numbered in Table 1) are syntactic
co-safety and the weak formulas 2 and 4 are syntactic safety formulas.

Formulas 1 and 2. The main formula is simply defined as the union of two
auxiliary formulas, corresponding to whether or not the top-level state changes,
and its weak version is defined to be its dual.

S∼∼∼∼XXB(β)
K T (τ) :=

{
(¬β)Uτ if S = 〈〉
S −−−→XXB(β)

T (τ) ∨ S 9999XXB(β)
K T (τ) otherwise.

S
weak∼∼∼∼XXB(β)

K T (τ) := ¬
(
S∼∼∼∼

HHT (τ)
KB (β)

)
Formula 3. Since the formula should ensure that the top-level state s is un-
changed, we first distinguish between four cases, depending on which of the
source configuration 〈S, s〉, bad configuration 〈B, b〉, and target configuration
〈T, t〉 are equal. The definitions of the four cases only differ in whether or not
each of β and τ are satisfied in the first position of the word.

We define them using an intermediate common formula that is indifferent
to the first position, which we mark by “> 0” on top of the arrow. We then
define the “> 0” formula by using the main reachability formula with respect
to a lower level, namely with respect to the configurations S and T instead of
〈S, s〉 and 〈T, t〉, and having corresponding disjunctions and conjunctions on all
the combined letters of the top level that belong to Stay(s) and Leave(s).

On the Translation of Automata to Linear Temporal Logic 149

Reachability formula ϕ
Intended semantics

Intuitively: Reading a word w from the configuration S or 〈S, s〉
Formally: w |= ϕ ⇐⇒

1. S∼∼∼∼XXB(β)
K T (τ)

not reaching B(β) until reaching T (τ).
∃i ≥ 0. δ(S,w[0..i)) = T ∧ w[i..] |= τ

∧ (∀j ∈ [0..i). δ(S,w[0..j)) 6= B ∨ w[j..] 6|= β)

2. S
weak∼∼∼∼XXB(β)

K T (τ)
reaching T (τ) releases not reaching B(β).
∀i ≥ 0. (δ(S,w[0..i)) = B ∧ w[i..] |= β)

→ (∃j ∈ [0..i). δ(S,w[0..j)) = T ∧ w[j..] |= τ)

3. 〈S, s〉 −−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ)

not reaching 〈B, b〉(β) until reaching 〈T, t〉(τ), while staying in s.
∃i ≥ 0. δ(〈S, s〉, w[0..i)) = 〈T, t〉 ∧ w[i..] |= τ

∧ (∀j ∈ [0..i). δ(〈S, s〉, w[0..j)) 6= 〈B, b〉 ∨ w[j..] 6|= β)
∧ (∀j ∈ [0..i). 〈w[j], δ(S,w[0..j))〉 ∈ Stay(s))

4. 〈S, s〉
weak−−−−−→XXX〈B,b〉(β)

〈T, t〉 (τ)

reaching 〈T, t〉(τ) releases not (reaching 〈B, b〉(β) or leaving s).
∀i ≥ 0.

(
(δ(〈S, s〉, w[0..i)) = 〈B, b〉 ∧ w[i..] |= β)
∨ (i > 0 ∧ 〈w[i−1], δ(S,w[0..i−1))〉 ∈ Leave(s))

)
→ (∃j ∈ [0..i). δ(〈S, s〉, w[0..j)) = 〈T, t〉 ∧ w[j..] |= τ)

5. 〈S, s〉 9999999XXX〈B,b〉(β)
K 〈T, t〉 (τ)

not reaching 〈B, b〉(β) until reaching 〈T, t〉(τ) and leaving s.
∃i1, i2 ≥ 0. δ(〈S, s〉, w[0..i1)) = 〈T, t〉 ∧ w[i1..] |= τ

∧ (∃j1 ∈ [0..i1). 〈w[j1], δ(S,w[0..j1))〉 ∈ Enter(t))
∧ 〈w[i2], δ(S,w[0..i2))〉 ∈ Leave(s)
∧ (∀j2 ∈ [0..max(i1−1, i2)]. δ(〈S, s〉, w[0..j2)) 6= 〈B, b〉

∨ w[j2..] 6|= β)

Table 1. The intended semantics of reachability formulas. Orange subformulas show
the difference between the auxiliary formulas and the first or second (main) formula.

〈S, s〉 −−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) :=

〈S, s〉 >0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) if 〈S, s〉 6= 〈B, b〉 and 〈S, s〉 6= 〈T, t〉

〈S, s〉 >0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∨ τ if 〈S, s〉 6= 〈B, b〉 and 〈S, s〉 = 〈T, t〉

〈S, s〉 >0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∧ ¬β if 〈S, s〉 = 〈B, b〉 and 〈S, s〉 6= 〈T, t〉(

〈S, s〉 >0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∧ ¬β

)
∨ τ if 〈S, s〉 = 〈B, b〉 and 〈S, s〉 = 〈T, t〉

where 〈S, s〉 >0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) :=

∨
〈σ,T ′〉∈Stay(s)

s.t. 〈T ′,s〉 σ→〈T,t〉

(
S∼∼∼∼∼∼XXXS(false)

K T ′ (σ ∧Xτ)

150 U. Boker, K. Lehtinen, S. Sickert

∧
∧

〈η,L〉∈Leave(s)

S∼∼∼∼
HHL(η)

K T ′ (σ ∧Xτ) ∧
∧

〈ρ,B′〉∈Stay(s)
s.t. 〈B′,s〉 ρ→〈B,b〉

S∼∼∼∼∼∼∼XXXXB′(ρ∧Xβ)
K T ′ (σ ∧Xτ)

)

Formula 4. Its intended semantics is also that the top-level state s is unchanged,
but we weaken Formula 3 by not enforcing that the target configuration 〈T, t〉 is
reached and τ is satisfied. Thus as long as the top-level state s stays unchanged
and the bad configuration 〈B, b〉 is not reached while satisfying β, Formula 4 is
also satisfied. Note that since both Formula 3 and Formula 4 need to ensure that
the top-level state s is unchanged they cannot simply be defined as the dual of
each other. However, they share the same construction principle:

〈S, s〉 weak−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) :=

〈S, s〉 weak,>0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) if 〈S, s〉 6= 〈B, b〉 and 〈S, s〉 6= 〈T, t〉

〈S, s〉 weak,>0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∨ τ if 〈S, s〉 6= 〈B, b〉 and 〈S, s〉 = 〈T, t〉

〈S, s〉 weak,>0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∧ ¬β if 〈S, s〉 = 〈B, b〉 and 〈S, s〉 6= 〈T, t〉(

〈S, s〉 weak,>0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) ∨ τ

)
∧ ¬β if 〈S, s〉 = 〈B, b〉 and 〈S, s〉 = 〈T, t〉

where

〈S, s〉 weak,>0−−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ) :=

∨
〈σ,T ′〉∈Stay(s)

s.t. 〈T ′,s〉 σ→〈T,t〉

(∧
〈η,L〉∈Leave(s)

S
weak∼∼∼∼
HHL(η)

K T ′ (σ ∧Xτ) ∧
∧

〈ρ,B′〉∈Stay(s)
s.t. 〈B′,s〉 ρ→〈B,b〉

S
weak∼∼∼∼∼∼∼XXXXB′(ρ∧Xβ)

K T ′ (σ ∧Xτ)

)
(1)

∨ (∧
〈η,L〉∈Leave(s)

S
weak∼∼∼∼
HHL(η)

K S (false) ∧
∧

〈ρ,B′〉∈Stay(s)
s.t. 〈B′,s〉 ρ→〈B,b〉

S
weak∼∼∼∼∼∼∼XXXXB′(ρ∧Xβ)

K S (false)

)
(2)

Formula 5. The definition of the last reachability formula is the most challenging,
since the top-level state changes (s 6= t), which prevents the direct usage of lower
level configurations.

Intuitively, before reaching the target configuration 〈T, t〉, the run must see a
combined letter 〈σ, T ′〉 ∈ Enter(t), after which the top-level state t is preserved
and the bad situation 〈B, b〉(β) is avoided. This is line (1) of the definition.

The run must also not see 〈B, b〉(β) before reaching T ′, which is handled in
line (2), whose difference from line (1) is the additional constraint on the path
from S to T ′. (Line (1) is required for the case that Enter(b) is empty.) We use
Formula 4 for that constraint, rather than Formula 3 which could also be used,
in order to ensure that Formula 5 can be a syntactic co-safety formula.

On the Translation of Automata to Linear Temporal Logic 151

Lastly, line (3) ensures that the top-level state is indeed changed.

〈S, s〉 9999999XXX〈B,b〉(β)
K 〈T, t〉 (τ) :=

∨
〈σ,T ′〉∈
Enter(t)

(
S∼∼∼∼∼∼XXXS(false)

K T ′
(
σ ∧X

(
δ(〈T ′, ·〉, σ) −−−−−→XXX〈B,b〉(β)

〈T, t〉 (τ)
))
∧ (1)

∧
〈η,R〉∈
Enter(b)

S∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼hhhhhhhhhhhhh
R(η∧X(δ(〈R,·〉,η)

weak−−−−−→XXX〈T,t〉(τ)
〈B,b〉(β)))

K T ′
(
σ ∧X

(
δ(〈T ′, ·〉, σ) −−−−−→XXX〈B,b〉(β)

〈T, t〉 (τ)
)))

(2)

∧
∨
〈σ,L〉∈
Leave(s)

〈S, s〉 −−−−−→XXX〈B,b〉(β)
〈L, s〉

(
σ ∧

{
¬β if 〈L, s〉 = 〈B, b〉
true otherwise.

)
(3)

We prove the correctness of the above definitions with respect to the intended
meaning of Table 1 by induction on the level of the involved configurations.

Lemma 4. The intended semantics of Table 1 hold for all infinite words w ∈
Σω = (2AP)ω, configurations S,B, T of level m ≤ n, states s, b, t in level m+ 1
(when m < n), and LTL formulas β and τ over AP .

Using the same induction principle we prove that the reachability formulas
stay within certain classes of the syntactic future hierarchy (Definition 1). We
use S ∼∼∼∼XXXB(X)

K T (Y) ∈ Z as a shorthand for saying that for every formulas β ∈ X
and τ ∈ Y , the formula S∼∼∼∼XXB(β)

K T (τ) is in Z.

Lemma 5. Let S,B, T be configurations of level m ≤ n, and let s, b, t be states
in level m+ 1 (when m < n). Then for i ≥ 1 it holds that:

– S∼∼∼∼∼XXXB(Πi)
K T (Σi) , 〈S, s〉 −−−−−−→hhhh〈B,b〉(Πi)

〈T, t〉 (Σi) , 〈S, s〉 99999999hhhh〈B,b〉(Πi)
K 〈T, t〉 (Σi) ∈ Σi

– S
weak∼∼∼∼∼XXXB(Σi)

K T (Πi) , 〈S, s〉
weak−−−−−−→hhhh〈B,b〉(Σi)

〈T, t〉 (Πi) ∈ Πi

4.3 Depth and Length Analysis

We analyze the length and temporal-nesting depth of the LTL reachability for-
mulas defined in Section 4.2. Notice that both measures are of independent
interest, as there might be a non-elementary gap between the depth and length
of LTL formulas [15, Theorem 6]. Since we provide upper bounds, the bound on
the length of formulas obviously gives also a bound on their size.

We consider a reset cascade A with n levels, as in Section 4.2, and further
assume for the length and depth analysis that it has up to n states in each level.
(This assumption holds in the reset cascades that result from the Krohn-Rohdes
decomposition as per Proposition 6.)

We define for each of the five reachability formulas a depth function Dx(i, d)
and a length function Lx(i, l), where x refers to the number of the reachability

152 U. Boker, K. Lehtinen, S. Sickert

formula, to bound the depth and length of the formulas. These depend on the
level i of its input configurations S,B and T , and the maximal depth d and
length l of its input formulas β and τ . For the main (first) reachability formula,
we also use D and L, standing for D1 and L1. For example, the length of the first
formula S∼∼∼∼XXB(β)

K T (τ) over configurations S,B and T of level 7 and formulas β

and τ of length up to 77 is bounded by the value of L1(7, 77).
For simplicity, we consider the LTL representation of an alphabet letter σ ∈ Σ

to be of length 1, while its actual length is 3 log2 |Σ|. This increase is due to the
need to encode an alphabet letter σ ∈ Σ = 2AP as a conjunction of atomic
propositions in AP . The representation length can be multiplied by the total
length of the final relevant formula (e.g., a formula equivalent to the entire reset
cascade), since it remains constant along all steps of our inductive computation.

We provide in Table 2 upper bounds on the depth and length functions, rel-
ative to values of other depth and length functions with respect to configurations
of the same or lower-by-one level. The table is constructed by following the syn-
tactic definitions of the reachability formulas, and applying basic simplifications
to the resulting expressions. For example, L1(0, l) = 2+2l standing for the length
of (¬β)Uτ . In Lemma 6 we will use Table 2 to bound the absolute depth and
length of the main reachability formula.

Depth Analysis. The temporal nesting depth of the main reachability formula
S ∼∼∼∼XXB(β)

K T (τ) is intuitively exponential in the number n of levels of the reset

cascade (linear in the number of configurations), since it is defined inductively
along these levels, and the depth of a level-(i + 1) formula is about twice the
depth of a level-i formula. The parameters of the reachability formula are both
the configurations S, B and T of level i, and the formulas β and τ ; yet, the
depth of the reachability formula only linearly depends on the depth of β and τ .

Length Analysis. Intuitively, the overall length of the main reachability formula
S∼∼∼∼XXB(β)

K T (τ) with respect to configurations of the top level is doubly exponential

in the number n of levels of the reset cascade (and thus singly exponential in
the number of configurations), since the formula is defined inductively along
these levels, and the length L(i, l) is roughly L(i−1, l) · L(i−1, l). More precisely,
L(i, l) = l · f(i) for some doubly exponential function f(i).

Now, why is L(i, l) roughly equal to L(i−1, l) · L(i−1, l)? The dominant
component of the level-i reachability formula is line (2) in the definition of
〈S, s〉 9999999XXX〈B,b〉(β)

K 〈T, t〉 (τ). It is a level-(i−1) reachability formula whose formula-

parameters are themselves auxiliary reachability formulas of level i with formula
parameters of length l. The length of an auxiliary reachability formula of level i is
roughly as of the main reachability formula of level i−1, implying that the length
of Li(l) is roughly Li−1(Li−1(l)). By the inductive proof that Li−1(l) = l·f(i−1),
we get that Li(l) = Li−1(Li−1(l)) = Li−1(l) · f(i−1) = l · f(i−1) · f(i−1).

As for the many disjunctions and conjunctions that appear in the formulas,
observe that the number of disjuncts and conjuncts does not depend on the

On the Translation of Automata to Linear Temporal Logic 153

Reachability formula ϕ Bounds on depth(ϕ) and length |ϕ|

1. S∼∼∼∼XXB(β)
K T (τ)

D1(i, d) ≤

{
d+ 1 if i = 0

max(D3(i, d) , D5(i, d)) otherwise.

L1(i, l) ≤

{
2 + 2l if i = 0

1 + L3(i, l) + L5(i, l) otherwise.

2. S
weak∼∼∼∼XXB(β)

K T (τ) D2(i, d) = D1(i, d)

L2(i, l) = 1 + L1(i, l)

3. 〈S, s〉 −−−−−→XXX〈B,b〉(β)
〈T, t〉 (τ)

D3(i, d) ≤ D1(i−1, d+ 1)

L3(i, l) ≤ 3+2l + |Σ|ni−1
(
1+L1(i−1, 3+l)+

1 + |Σ|ni−1(L1(i−1, 3+l) + 1)+
1 + |Σ|ni−1(L1(i−1, 3+l) + 1)

)
≤ 3 + 2l + 4|Σ|2n2(i−1)L1(i−1, l+3)

4. 〈S, s〉
weak−−−−−→XXX〈B,b〉(β)

〈T, t〉 (τ)
D4(i, d) ≤ D2(i−1, d+ 1) = D1(i−1, d+ 1)

L4(i, l) ≤ 3 + 2l + (1 + |Σ|ni−1)
(
1 + |Σ|ni−1(1 + L2(i−1, l+3))

)
≤ 3 + 2l + 4|Σ|2n2(i−1)L1(i−1, l + 3)

5. 〈S, s〉 9999999XXX〈B,b〉(β)
K 〈T, t〉 (τ)

D5(i, d) ≤ D1(i−1,max(1 + D3(i, d) , 1 + D4(i, d)))

L5(i, l) ≤ |Σ|ni−1 ·
(
L1(i− 1, 3 + L3(i, l)) + 2+

|Σ|ni−1 ·
(
L1(i− 1,max(3 + L3(i, l), 3 + L4(i, l))) + 1

))
+1 + |Σ|ni−1 · (1 + L3(i, 3 + l))

Table 2. The relative depths and lengths of the reachability formulas over configura-
tions of level i, and LTL formulas β and τ of depth at most d and length at most l. For
the first two reachability formulas, we consider i ≥ 0 and for the other formulas i ≥ 1.

formula-parameters β and τ , but only the level i of the configurations S, B, and
T . Hence, they do not dominate the growth rate of the overall formula length.

Lemma 6. Consider a reset cascade A with n levels and up to n states in each
level, and a formula ζ = S ∼∼∼∼XXB(β)

K T (τ) with configurations S, B and T of A of

level i ≤ n. Let d = max(depth(β), depth(τ)) and let l = max(|β|, |τ |). Then:

(a) depth(ζ) ≤ d+ 3i and (b) |ζ| ≤ l · (10|Σ|2n)4
i

Lemma 6 is proven by induction on i and the details of this proof can be
found in the full version [5].

4.4 Translating Deterministic Counter-Free Automata to LTL

We use the reachability formulas of Section 4.2 to translate a reset cascade A to
an equivalent LTL formula. Our LTL formulation of A’s acceptance condition

154 U. Boker, K. Lehtinen, S. Sickert

is based on an LTL formulation of “C is visited finitely/infinitely often along
a run of A on a word w”, for a given configuration C of A. It thus applies
to every ω-regular acceptance condition and by Propositions 6 and 8 to every
deterministic counter-free ω-regular automaton. We introduce two shorthands to
the main reachability formula: the first is satisfied if we reach T from S without
any side constraints (which is always satisfied in the case that S = T), and the
second requires that we reach it along a nonempty prefix.

S∼∼K T := S∼∼∼∼∼∼XXXXT (false)
K T (true) S

>0∼∼∼K T :=
∨
σ∈Σ

(
σ ∧X(δ(S, σ)∼∼K T)

)
With Lemmas 4 and 5 we then obtain (the proof can be found in [5]):

Lemma 7. Consider a reset cascade A = 〈2AP ,A1, . . . ,An〉 together with an
initial configuration ι and some configuration C. Then for a word w ∈ (2AP)

ω
,

the run of A on w starting in ι visits C finitely often iff w satisfies the formula

Fin(C) := ¬(ι∼∼∼K C) ∨ ι∼∼∼K C(¬(C
>0∼∼∼K C)). Furthermore, Fin(C) ∈ Σ2.

We are now in position to give our main result.

Theorem 2. Every counter-free deterministic ω-regular automaton D over al-
phabet 2AP with n states (and any acceptance condition) is equivalent to an LTL
formula ϕ over atomic propositions AP of double-exponential temporal-nesting

depth (in O(22
n

)) and triple-exponential length (in 22
O(2n)

). If D is a looping-
Büchi, looping-coBüchi, weak, Büchi, coBüchi, or Muller automaton then ϕ is
respectively in the Π1, Σ1, ∆1, Π2, Σ2, or ∆2 syntactic fragment of LTL.

Proof. We first prove the general result, w.r.t. an arbitrary counter-free determ-
inistic automaton D, and then take into account D’s acceptance condition, to
establish the last part of the theorem.

Consider a counter-free deterministic ω-regular automaton D with some ac-
ceptance condition and n states. Recall that there is a Muller automaton D′ equi-
valent to D over the semiautomaton of D. By Propositions 6 and 8, D′ is equival-
ent to a deterministic Muller automaton D′′ that is described by a reset cascade
A with up to m = 2n levels and m states in each level (and thus up to mm con-
figurations), and whose acceptance condition has up to k ∈ 2O(mmn) = 2O(mm)

acceptance sets. An LTL formula ϕ equivalent to D can be defined by formulating
the acceptance condition of D′ along Lemma 7.

Recall that the Muller condition is a k-elements disjunction, where each dis-
junct M is a conjunction of requirements to visit infinitely often every configur-
ation from some set G and finitely often every configuration not in G. Observe
that M can be formulated as a disjunction over all the configurations in D′′ (at
most mm), having for each configuration C the LTL formula Fin(C) or ¬Fin(C),
as defined in Lemma 7, depending on whether or not C ∈ G. Hence, the overall
formula ϕ is a combination of disjunctions and conjunctions of up to k ·mm sub-
formulas of the form Fin(C) or ¬Fin(C). Therefore, the depth of ϕ is the same
as of Fin(C), while |ϕ| ∈ O(kmm|Fin(C)|) ≤ 2O(mm)|Fin(C)|. For calculating
depth(Fin(C)) and |Fin(C)|, we use Lemma 6 bottom up over the subformulas
of Fin(C).

On the Translation of Automata to Linear Temporal Logic 155

Depth.

depth(ι∼∼K C) ≤ 3m ; depth(C
>0∼∼∼K C) ≤ 3m + 1

depth(ι∼∼K C(¬(C
>0∼∼∼K C))) ≤ 2 · 3m + 1

depth(Fin(C)) = max(3m, 2 · 3m + 1) ∈ O(3m) = O(22
n

),
implying depth(ϕ) ∈ O(22

n

).

Length.

|ι∼∼K C| ≤ (10|Σ|2m)4
m

; |C >0∼∼∼K C| ≤ (4|Σ|) · (10|Σ|2m)4
m

|ι∼∼K C(¬(C
>0∼∼∼K C))| ≤ (4|Σ|(10|Σ|2m)4

m

+1)(10|Σ|2m)4
m ∈ (|Σ|m)2

O(m)

|Fin(C)| ∈ 2 + (10|Σ|2m)4
m

+ (|Σ|m)2
O(m) ∈ (|Σ|m)2

O(m)

.

Therefore, |ϕ| ∈ 2O(mm) · (mm) · ((|Σ|m)2
O(m)

) = |Σ|2O(m)

.
Expressing the length of ϕ with respect to the number n of states in the

automaton D, and taking into account the fact that the alphabet Σ has at most
nn different letters (any additional letter must have the same behavior as another

letter), we have: |ϕ| ∈ |Σ|2O(2n) ≤ (2n)2
O(2n)

= 22
O(2n)

.
We now sketch the second part of the theorem connecting the syntactic hier-

archy and the different acceptance conditions of D. We only consider the cases
in which D is either a Muller or a coBüchi automaton. The complete analysis
is given in the full version [5]. If D is a Muller automaton, then the overall for-
mula ϕ is in ∆2, since it is a Boolean combination of Fin(C) formulas, which
by Lemma 7 belong to Σ2. If D is a coBüchi automaton, then we construct the
formula ϕ directly from the coBüchi condition α: ϕ is a conjunction of Fin(C)
formulas over all configurations C that are mapped to states in α. As Fin(C)
belongs to Σ2, so does ϕ.

Observe that by Theorem 2, we get the following result, extending the result
of [39, Theorem 3.2] that only considers Rabin automata.

Corollary 1. Every counter-free deterministic ω-regular automaton (with any
acceptance condition) recognises an LTL-definable language.

Proof. Recall that every deterministic ω-regular automaton is equivalent to a
deterministic Muller automaton over the same semiautomaton (see, e.g., [3]).
The claim is then a direct consequence of Theorem 2.

Remark 2. Theorem 2 can be adapted to the finite-word setting. While on infin-
ite words, the neXt operator is self-dual, i.e., ¬Xψ is equivalent to X¬ψ, over
finite words, this equivalence does not hold on words of length 1. Thus X gains
a dual weak next, defined as X̃ψ := ¬X¬ψ. In the finite word case, syntactic
cosafety (safety) formulas are constructed from true, false, a, ¬a, ∨, ∧, and the
temporal operators U and X (R and X̃). Observe that X and X̃ differ only on
words of length 1, and thus the only required change in our translation scheme
is to replace some Xs with X̃s in the reachability formula 4. For finite words a

156 U. Boker, K. Lehtinen, S. Sickert

translation of a counter-free DFA to an LTL formula with only a double expo-
nential size blow-up is known [42]; however, unlike our translation, it does not
guarantee syntactic safety (cosafety) formulas for safety (cosafety) languages.

Lastly, we provide a corollary on looping automata, using Theorem 2 and
the following known result.

Proposition 9 (Rephrased Theorem 13 from [29]). Let D be a determin-
istic looping-Büchi automaton with n states that recognises an LTL-definable lan-
guage. Then there exists an equivalent counter-free deterministic looping-Büchi
automaton D′ with at most n states.

Corollary 2. Every deterministic looping-Büchi (looping-coBüchi) automaton
with n states that recognises an LTL-definable language is equivalent to an LTL

formula ϕ ∈ Π1 (Σ1) of temporal nesting depth in O(22
n

) and length in 22
O(2n)

.

This is an elementary upper bound for two constructions for which either the
upper bound was unknown or non-elementary: the liveness-safety decomposition
of LTL [29] and the translation of semantic safety LTL to syntactic safety LTL.

5 Conclusions

We have studied the size trade-offs between LTL and automata. Over a un-
ary alphabet, the situation is straightforward and we provided tight complexity
bounds. The general case of infinite words over an arbitrary alphabet is more
complex. We gave to our knowledge the first elementary complexity bound on the
translation of counter-free deterministic ω-regular automata into LTL formulas.

Every ω-regular automaton recognising an LTL-definable language can be
translated to a counter-free deterministic automaton [39, Theorem 3.2]. Yet, we
are unaware of a bound on the size blow-up involved in such a translation. Once
established, it can be combined with our translation to get a general bound on
the translation of automata to LTL. It will also provide a (currently unknown6)
elementary upper bound on the translation of LTL with both future and past
operators to LTL with only future operators (which is the version of LTL that we
have considered), as (both version of) LTL can be translated to nondeterministic
Büchi automata with a single exponential size blow-up [41, Theorem 2.1].

While going from non-elementary to double-exponential depth and triple-ex-
ponential length is an improvement, these upper bounds might not be tight—
there is currently no known non-linear lower bound! Closing this gap is a chal-
lenging open problem, which might require new lower bound techniques for al-
ternating automata, as LTL formulas are an inherently alternating model.

Acknowledgements. We thank Moshe Vardi and Orna Kupferman for suggesting
studying the succinctness gap between semantic and syntactic safe formulas, and
Miko laj Bojańczyk for answering our questions on algebraic automata theory.

6 In consultation with the author of [30], we have confirmed that while the lower bound
provided in that paper holds, the stated upper bound is erroneous.

On the Translation of Automata to Linear Temporal Logic 157

References

1. Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathem-
atical Systems Theory 29(3), 191–226 (1996)

2. Bojańczyk, M.: Languages recognised by finite semigroups, and their generalisa-
tions to objects such as trees and graphs, with an emphasis on definability in
monadic second-order logic (2020)

3. Boker, U.: Why these automata types? In: Proc. of LPAR. pp. 143–163 (2018)

4. Boker, U., Kupferman, O.: The quest for a tight translation of Büchi to co-Büchi
automata. In: Fields of Logic and Computation, pp. 147–164. Springer (2010)

5. Boker, U., Lehtinen, K., Sickert, S.: On the translation of automata to linear tem-
poral logic (2022), https://arxiv.org/abs/2201.10267, full version

6. Cerná, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking.
In: MFCS. Lecture Notes in Computer Science, vol. 2747, pp. 318–327. Springer
(2003)

7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (Jan 1981)

8. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) Automata, Languages and Programming, 19th International
Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings. Lecture
Notes in Computer Science, vol. 623, pp. 474–486. Springer (1992)

9. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47, 149–158 (1986)

10. Cohen, J., Perrin, D., Pin, J.E.: On the expressive power of temporal logic. Journal
of computer and System Sciences 46(3), 271–294 (1993)

11. Cohen-Chesnot, J.: On the expressive power of temporal logic for infinite words.
Theoretical Computer Science 83(2), 301–312 (1991)

12. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of trans-
ition labeled Büchi automata. In: International Colloquium on Automata, Lan-
guages, and Programming. pp. 151–162. Springer (2009)

13. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]. Texts in Logic and
Games, vol. 2, pp. 261–306 (2008)

14. Eilenberg, S.: Automata, Languages, and Machines Volume B. Academic Press,
Inc., USA (1976)

15. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and
unary temporal logic. Inf. Comput. 179(2), 279–295 (2002)

16. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proc. of POPL. p. 163–173. New York, NY, USA (1980)

17. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite auto-
mata. Information and Computation 205(8), 1173–1187 (2007)

18. Kamp, J.A.W.: Tense logic and the theory of linear order. University of California,
Los Angeles (1968)

19. Kupferman, O., Rosenberg, A.: The blowup in translating LTL to deterministic
automata. In: Proc. of Model Checking and Artificial Intelligence. pp. 85–94 (2010)

20. Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata. In: Proc. of
LICS (1999)

21. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic (TOCL) 2(3), 408–429 (2001)

158 U. Boker, K. Lehtinen, S. Sickert

https://arxiv.org/abs/2201.10267

22. Ladner, R.E.: Application of model theoretic games to discrete linear orders and
finite automata. Information and Control 33(4), 281–303 (1977)

23. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oretical computer science 13(3), 323–330 (1981)

24. Löding, C.: Optimal bounds for transformations of ω-automata. In: Rangan, C.P.,
Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology and The-
oretical Computer Science. pp. 97–109. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1999)

25. Maler, O.: On the Krohn-Rhodes cascaded decomposition theorem. In: Time for
Verification, Essays in Memory of Amir Pnueli. Lecture Notes in Computer Science,
vol. 6200, pp. 260–278. Springer (2010)

26. Maler, O., Pnueli, A.: Tight bounds on the complexity of cascaded decomposition
of automata. In: Proc. of FOCS. pp. 672–682 (1990)

27. Maler, O., Pnueli, A.: On the cascaded decomposition of automata, its complexity
and its application to logic. Unpublished. Available at: http://www-verimag.imag.
fr/∼maler/Papers/decomp.pdf (1994)

28. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC. pp. 377–410.
ACM (1990)

29. Maretic, G.P., Dashti, M.T., Basin, D.A.: LTL is closed under topological closure.
Inf. Process. Lett. 114(8), 408–413 (2014)

30. Markey, N.: Temporal logic with past is exponentially more succinct. Bull. EATCS
79, 122–128 (2003)

31. McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

32. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris 15 (1988)

33. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings Third Annual Symposium on Logic in Computer Science. pp.
422–423. IEEE Computer Society (1988)

34. Perrin, D.: Recent results on automata and infinite words. In: International Sym-
posium on Mathematical Foundations of Computer Science. pp. 134–148. Springer
(1984)

35. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann
Institute, Rehovot, Israel (1989)

36. Schewe, S.: Büchi Complementation Made Tight. In: Albers, S., Marion, J.Y. (eds.)
Proc. of 26th International STACS. Leibniz International Proceedings in Inform-
atics (LIPIcs), vol. 3, pp. 661–672 (2009)

37. Sickert, S., Esparza, J.: An efficient normalisation procedure for linear temporal
logic and very weak alternating automata. In: LICS. pp. 831–844. ACM (2020)

38. Thomas, W.: Star-free regular sets of ω-sequences. Information and Control 42(2),
148–156 (1979)

39. Thomas, W.: A combinatorial approach to the theory of ω-automata. Information
and Control 48(3), 261–283 (1981)

40. Thomas, W.: Automata on infinite objects. In: Formal Models and Semantics, pp.
133–191. Elsevier (1990)

41. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. of LICS. pp. 332–344 (1986)

42. Wilke, T.: Classifying discrete temporal properties. In: Annual symposium on the-
oretical aspects of computer science. pp. 32–46. Springer (1999)

On the Translation of Automata to Linear Temporal Logic 159

http://www-verimag.imag.fr/~maler/Papers/decomp.pdf
http://www-verimag.imag.fr/~maler/Papers/decomp.pdf

43. Wilke, T.: Past, present, and infinite future. In: 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

44. Wilke, T.: Backward deterministic Büchi automata on infinite words. In: 37th
IARCS Annual Conference on Foundations of Software Technology and Theor-
etical Computer Science (FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

45. Wolper, P.: Temporal logic can be more expressive 56(1–2), 72–99 (1983)
46. Zuck, L.D.: Past Temporal Logic. Ph.D. thesis, The Weizmann Institute of Science,

Israel (Aug 1986)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

160 U. Boker, K. Lehtinen, S. Sickert

http://creativecommons.org/licenses/by/4.0/

Categorical composable cryptography⋆

Anne Broadbent and Martti Karvonen(�)

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
{abroadbe,martti.karvonen}@uottawa.ca

Abstract. We formalize the simulation paradigm of cryptography in
terms of category theory and show that protocols secure against abstract
attacks form a symmetric monoidal category, thus giving an abstract
model of composable security definitions in cryptography. Our model
is able to incorporate computational security, set-up assumptions and
various attack models such as colluding or independently acting subsets
of adversaries in a modular, flexible fashion. We conclude by using string
diagrams to rederive the security of the one-time pad and no-go results
concerning the limits of bipartite and tripartite cryptography, ruling out
e.g., composable commitments and broadcasting.

Keywords: Cryptography · composable security · quantum cryptogra-
phy · category theory

1 Introduction

Modern cryptographic protocols are complicated algorithmic entities, and their
security analyses are often no simpler than the protocols themselves. Given this
complexity, it would be highly desirable to be able to design protocols and reason
about them compositionally, i.e., by breaking them down into smaller constituent
parts. In particular, one would hope that combining protocols proven secure
results in a secure protocol without need for further security proofs. However, this
is not the case for stand-alone security notions that are common in cryptography.
To illustrate such failures of composability, let us consider the history of quantum
key distribution (QKD), as recounted in [60]: QKD was originally proposed in
the 80s [7]. The first security proofs against unbounded adversaries followed
a decade later [8, 49, 50, 64]. However, since composability was originally not a
concern, it was later realized that the original security definitions did not provide
a good enough level of security [42]—they didn’t guarantee security if the keys
were to be actually used, since even a partial leak of the key would compromise
the rest. The story ends on a positive note, as eventually a new security criterion
was proposed, together with stronger proofs [5, 62].

In this work we initiate a categorical study of composable security definitions
in cryptography. In the viewpoint developed here one thinks of cryptography

⋆ This work was supported by the Air Force Office of Scientific Research under award
number FA9550-20-1-0375, Canada’s NFRF and NSERC, an Ontario ERA, and the
University of Ottawa’s Research Chairs program.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 161–183, 2022.
https://doi.org/10.1007/978-3-030-99253-8_9

http://orcid.org/0000-0003-1911-0093
http://orcid.org/0000-0002-8919-343X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_9&domain=pdf

as a resource theory: cryptographic functionalities (e.g. secure communication
channels) are viewed as resources and cryptographic protocols let one transform
some starting resources to others. For instance, one can view the one-time-pad as
a protocol that transforms an authenticated channel and a shared secret key into
a secure channel. For a given protocol, one can then study whether it is secure
against some (set of) attack model(s), and protocols secure against a fixed set
of models can always be composed sequentially and in parallel.

This is in fact the viewpoint taken in constructive cryptography [47], which
also develops the one-time-pad example above in more detail. However [47] does
not make a formal connection to resource theories as usually understood, whether
as in quantum physics [16,39], or more generally as defined in order theoretic [32]
or categorical [20] terms. Instead, constructive cryptography is usually combined
with abstract cryptography [48] which is formalized in terms of a novel algebraic
theory of systems [46].

Our work can be seen as a particular formalization of the ideas behind con-
structive cryptography, or alternatively as giving a categorical account of the
real-world-ideal-world paradigm (also known as the simulation paradigm [34]),
which underlies more concrete frameworks for composable security, such as uni-
versally composable cryptography [13] and others [2,3,38,43,44,51,58]. We will
discuss these approaches and abstract and constructive cryptography in more
detail in Section 1.1

Our long-term goal is to enable cryptographers to reason about composable
security at the same level of formality as stand-alone security, without having
to fix all the details of a machine model nor having to master category the-
ory. Indeed, our current results already let one define multipartite protocols
and security against arbitrary subsets of malicious adversaries in any symmetric
monoidal category C. Thus, as long as one’s model of interactive computation
results in a symmetric monoidal category, or more informally, one is willing to
use pictures such as fig. 1d to depict connections between computational pro-
cesses without further specifying the order in which the picture was drawn, one
can use the simulation paradigm to reason about multipartite security against
malicious participants composably—and specifying finer details of the compu-
tational model is only needed to the extent that it affects the validity of one’s
argument. Moreover, as our attack models and composition theorems are fairly
general, we hope that more refined models of adversaries can be incorporated.

We now highlight our contributions to cryptography: We show how to adapt
resource theories as categorically formulated [20] in order to reason abstractly
about secure transformations between resources. This is done in Section 3 by
formalizing the simulation paradigm in terms of an abstract attack model (Def-
inition 1), designed to be general enough to capture standard attack models
of interest (and more) while still structured enough to guarantee composabil-
ity. This section culminates in Corollary 1, which shows that for any fixed set
of attack models, the class of protocols secure against each of them results in a
symmetric monoidal category. In Theorem 3 we observe that under suitable con-
ditions, images of secure protocols under monoidal functors remain secure, which

162 A. Broadbent and M. Karvonen

gives an abstract variant of the lifting theorem [68, Theorem 15] that states that
perfectly UC-secure protocols are quantum UC-secure. We adapt this framework
to model computational security in two ways: either by replacing equations with
an equivalence relation, abstracting the idea of computational indistinguishabil-
ity, as is done in section 4, or by working with a notion of distance, deferred to
a full version. In the case of a distance, one can then either explicitly bound the
distance between desired and actually achieved behavior, or work with sequences
of protocols that converge to the target in the limit: the former models working
in the finite-key regimen [67] and the latter models the kinds of asymptotic se-
curity and complexity statements that are common in cryptography.Finally, we
apply the framework developed to study bipartite and tripartite cryptography.
We first prove pictorially the security of the one-time pad. We then reprove the
no-go-theorems of [46, 48, 61] concerning two-party commitments (resp. three-
party broadcasting) in this setting, and reinterpret them as limits on what can
be achieved securely in any compact closed category (resp. symmetric monoidal
category). The key steps of the proof are done graphically, thus opening the door
for cryptographers to use such pictorial representations as rigorous tools rather
than merely as illustrations.

Moreover, we discuss some categorical constructions capturing aspects of
resource theories appearing in the physics literature. These contributions may be
of independent interest for further categorical studies on resource theories. In [20]
it is observed that many resource theories arise from an inclusion CF ↪→ C of free
transformations into a larger monoidal category, by taking the resource theory
of states. We observe that this amounts to applying the monoidal Grothendieck

construction [53] to the functor CF → C
hom(I,−)−−−−−−→ Set. This suggests applying

this construction more generally to the composite of monoidal functors F : D →
C and R : C → Set. In Example 1 we note that choosing F to be the n-fold
monoidal product Cn → C captures resources shared by n parties and n-partite
transformations between them. In the extended version, we model categorically
situations where there is a notion of distance between resources, and instead
of exact resource conversions one either studies approximate transformations or
sequences of transformations that succeed in the limit. In the extended version,
we discuss a variant of a construction on monoidal categories, used in special
cases in [31] and discussed in more detail in [23, 33], that allows one to declare
some resources free and thus enlarge the set of possible resource conversions.

1.1 Related work

We have already mentioned that cryptographers have developed a plethora of
frameworks for composable security, such as universally composable cryptogra-
phy [13], reactive simulatability [2, 3, 58] and others [38, 43, 44, 51]. Moreover,
some of these frameworks have been adapted to the quantum setting [6, 54, 68].
One might hence be tempted to think that the problem of composability in
cryptography has been solved. However, it is fair to say that most mainstream
cryptography is not formulated composably and that composable cryptography

Categorical composable cryptography 163

has yet to realize its full potential. Moreover, this proliferation of frameworks
should be taken as evidence of the continued importance of the issue, and is in
fact reflected by the existence of a recent Dagstuhl seminar on this matter [12].
Indeed, the aforementioned frameworks mostly consist of setting up fairly de-
tailed models of interacting machines, which as an approach suffers from two
drawbacks: Firstly, in order to be more realistic, the detailed models are often
complicated, both to reason in terms of and to define, thus making practicing
cryptographers less willing to use them. Perhaps more importantly it is not al-
ways clear whether the results proven in a particular model apply more generally
for other kinds of machines, whether those of a competing framework or those in
the real world. It is true that the choice of a concrete machine model does affect
what can be securely achieved—for instance, quantum cryptography differs from
classical cryptography and similarly classical cryptography behaves differently
in synchronous and asynchronous settings [4, 40]. Nevertheless, one might hope
that composable cryptography could be done at a similar level of formality as
complexity theory, where one rarely worries about the number of tapes in a Tur-
ing machine or of other low-level details of machine models. Second, changing
the model slightly (to e.g., model different kinds of adversaries or to incorporate
a different notion of efficiency) often requires reproving “composition theorems”
of the framework or at least checking that the existing proof is not broken by
the modification.

In contrast to frameworks based on detailed machine models, there are two
closely related top-down approaches to cryptography: constructive cryptogra-
phy [47] and its cousin abstract cryptography [48]. We are indebted to both
of these approaches, and indeed our framework could be seen as formalizing
the key idea of constructive cryptography—namely, cryptography as a resource
theory—and thus occupying a similar space as abstract cryptography. A key
difference is that constructive cryptography is usually instantiated in terms of
abstract cryptography [48], which in turn is based on a novel algebraic theory of
systems [46]. However, our work is not merely a translation from this theory to
categorical language, as there are important differences and benefits that stem
from formalizing cryptography in terms of a well-established and well-studied
algebraic theory of systems—that of (symmetric) monoidal categories:

The fact that cryptographers wish to compose their protocols sequentially and
in parallel strongly suggests using monoidal categories, that have these composi-
tion operations as primitives. In our framework, protocols secure against a fixed
set of attack models results in a symmetric monoidal category. In contrast, the
algebraic theory of systems [46] on which abstract cryptography is based takes
parallel composition and internal wiring as its primitives. This design choice re-
sults in some technical kinks and tangles that are natural with any novel theory
but have already been smoothed out in the case of category theory. For instance,
in the algebraic theory of systems of [46] the parallel composition is a partial
operation and in particular the parallel composite of a system with itself is never

164 A. Broadbent and M. Karvonen

defined1 and the set of wires coming out of a system is fixed once and for all2.
In contrast, in a monoidal category parallel composition is a total operation and
whether one draws a box with n output wires of types A1, . . . An or single output
wire of type

⊗n
i=1 Ai is a matter of convenience. Technical differences such as

these make a direct formal comparison or translation between the frameworks
difficult, even if informally and superficially there are similarities.

We do not abstract away from an attacker model, but rather make it an
explicit part of the formalism that can be modified without worrying about
composability. This makes it possible to consider and combine very easily dif-
ferent security properties, and in particular paves the way to model attackers
with limited powers such as honest-but-curious adversaries. In our framework,
one can first fix a protocol transforming some resource to another one, and then
discuss whether this transformation is secure against different attack models. In
contrast, in abstract cryptography a cryptographic resource is a tuple of func-
tionalities, one for each set of dishonest parties, and thus has no prior existence
before fixing the attack model. This makes the question “what attack models is
this protocol secure against?” difficult to formalize.

As category theory is de facto the lingua franca between several subfields of
mathematics and computer science, elucidating the categorical structures present
in cryptography opens up the door to further connections between cryptography
and other fields. For instance, game semantics readily gives models of interactive,
asynchronous and probabilistic (or quantum) computation [18, 19, 69] in which
our theory can be instantiated, and thus further paves the way for programming
language theory to inform cryptographic models of concurrency.

Category theory comes with existing theory, results and tools that can readily
be applied to questions of cryptographic interest. In particular, the graphical
calculi of symmetric monoidal and compact closed categories [63] enables one
to rederive impossibility results shown in [46, 48, 61] purely pictorially. In fact,
such pictures were already often used as heuristic devices that illuminate the
official proofs, and viewing these pictures categorically lets us promote them
from mere illustrations to rigorous yet intuitive proofs. Indeed, in [48, Footnote
27] the authors suggest moving from a 1-dimensional symbolic presentation to a
2-dimensional one, and this is exactly what the graphical calculus achieves.

The approaches above result in a framework where security is defined so as
to guarantee composability. In contrast, approaches based on various protocol
logics [25–30] aim to characterize situations where composition can be done
securely, even if one does not use composable security definitions throughout.
As these approaches are based on process calculi, they are categorical under the
hood [52,55] even if not overtly so. There is also earlier work explicitly discussing

1 While the suggested fix is to assume that one has “copies” of the same system with
disjoint wire labels, it is unclear how one recognizes or even defines in terms of the
system algebra that two distinct systems are copies of each other.

2 Indeed, while [59] manages to bundle and unbundle ports along isomorphism when
convenient, it seems like the chosen technical foundation makes this more of a strug-
gle than it should be.

Categorical composable cryptography 165

category theory in the context of cryptography [9,10,21,22,35–37,41,56,57,65,
66], but they concern stand-alone security of particular cryptographic protocols,
rather than categorical aspects of composable security definitions.

2 Resource theories

We briefly review the categorical viewpoint on resource theories of [20]. Roughly
speaking, a resource theory can be seen as a SMC but the change in termi-
nology corresponds to a change in viewpoint: usually in category theory one
studies global properties of a category, such as the existence of (co)limits, re-
lationships to other categories, etc. In contrast, when one views a particular
SMC C as resource theory, one is interested in local questions. One thinks of
objects of C as resources, and morphisms as processes that transform a resource
to another. From this point of view, one mostly wishes to understand whether
homC(X,Y) is empty or not for resources X and Y of interest. Thus from the
resource-theoretic point of view, most of the interesting information in C is al-
ready present in its preorder collapse. As concrete examples of resource-theoretic
questions, one might wonder if (i) some noisy channels can simulate a (almost)
noiseless channel [20, Example 3.13.], (ii) there is a protocol that uses only local
quantum operations and classical communication and transforms a particular
quantum state to another one [17], (iii) some non-classical statistical behavior
can be used to simulate other such behavior [1]. In [20] the authors show how
many familiar resource theories arise in a uniform fashion: starting from an SMC
C of processes equipped with a wide sub-SMC CF , the morphisms of which cor-
respond to “free” processes, they build several resource theories (=SMCs). Per-
haps the most important of these constructions is the resource theory of states:
given CF ↪→ C, the corresponding resource theory of states can be explicitly
constructed by taking the objects of this resource theory to be states of C, i.e.,
maps r : I → A for some A, and maps r → s are maps f : A → B in CF that
transform r to s as in fig. 1a.

We now turn our attention towards cryptography. As contemporary cryptog-
raphy is both broad and complex in scope, any faithful model of it is likely to be
complicated as well. A benefit of the categorical idiom is that we can build up to
more complicated models in stages, which is what we will do in the sequel. We
phrase our constructions in terms of an arbitrary SMC C, but in order to model
actual cryptographic protocols, the morphisms of C should represent interactive
computational machines with open “ports”, with composition then amounting
to connecting such machines together. Different choices of C set the background
for different kinds of cryptography, so that quantum cryptographers want C to
include quantum systems whereas in classical cryptography it is sufficient that
these computational machines are probabilistic. Constructing such categories C
in detail is not trivial but is outside our scope—we will discuss this in more
detail in section 6.

Our first observation is that there is no reason to restrict to inclusions
CF ↪→ C in order to construct a resource theory of states. Indeed, while it

166 A. Broadbent and M. Karvonen

is straightforward to verify explicitly that the resource theory of states is a sym-
metric monoidal category, it is instructive to understand more abstractly why
this is so: in effect, the constructed category is the category of elements of the

composite functor CF → C
hom(I,−)−−−−−−→ Set. As this composite is a (lax) symmet-

ric monoidal functor, the resulting category is automatically symmetric monoidal
as observed in [53]. Thus this construction goes through for any symmetric (lax)

monoidal functors D
F−→ C

R−→ Set. Here we may think of F as interpreting
free processes into an ambient category of all processes, and R : C → Set as an
operation that gives for each object A of C the set R(A) of resources of type A.

Explicitly, given symmetric monoidal functors D
F−→ C

R−→ Set, the category
of elements

∫
RF has as its objects pairs (r,A) where A is an object of D and

r ∈ RF (A), the intuition being that r is a resource of type F (A). A morphism
(r,A) → (s,B) is given by a morphism f : A → B in D that takes r to s,
i.e., satisfies RF (f)(r) = s. The symmetric monoidal structure comes from the
symmetric monoidal structures of D,Set and RF . Somewhat more explicitly,
(r,A) ⊗ (s,B) is defined by (r ⊗ s,A ⊗ B) where r ⊗ s is the image of (r, s)
under the function RF (A)×RF (B) → RF (A⊗B) that is part of the monoidal
structure on RF , and on morphisms of

∫
RF the monoidal product is defined

from that of D.

From now on we will assume that F is strong monoidal, and while R =
hom(I,−) captures our main examples of interest, we will phrase our results for
an arbitrary lax monoidal R. This relaxation allows us to capture the n-partite
structure often used when studying cryptography, as shown next.

Example 1. Consider the resource theory induced by Cn ⊗−→ C
hom(I,−)−−−−−−→ Set,

where we write ⊗ for the n-fold monoidal product3. The resulting resource
theory has a natural interpretation in terms of n agents trying to transform
resources to others: an object of this resource theory corresponds to a pair
((Ai)

n
i=1, r : I →

⊗
Ai), and can be thought of as an n-partite state, depicted

in fig. 1b, where the ith agent has access to a port of type Ai. A morphism f̄ =
(f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) between such resources then amounts to

a protocol that prescribes, for each agent i a process fi that they should perform
so that r gets transformed to s as in fig. 1c.

In this resource theory, all of the agents are equally powerful and can perform
all processes allowed by C, and this might be unrealistic: first of all, C might
include computational processes that are too powerful/expensive for us to use
in our cryptographic protocols. Moreover, having agents with different computa-
tional powers is important to model e.g., blind quantum computing [11] where a
client with access only to limited, if any, quantum computation tries to securely
delegate computations to a server with a powerful quantum computer. This lim-
itation is easily remedied: we could take the ith agent to be able to implement
computations in some sub-SMC Ci of C, and then consider

∏n
i=1 Ci → C.

3 As C is symmetric, the functor ⊗ is strong monoidal.

Categorical composable cryptography 167

r

f

=
s

(a) A map f in the
resource theory of
states

s

. . .

A1 An

(b) An n-partite
state

r

. . .
f1 fn

=
s

. . .

B1 Bn

(c) An n-partite
transformation

g′ f′

h′

(d) Factorization of
an attack on f ⊗ g

Fig. 1: Some resource transformations

A more serious limitation is that such transformations have no security
guarantees—they only work if each agent performs fi as prescribed by the pro-
tocol. We fix this next.

3 Cryptography as a resource theory

r

. . .

f1 fk a

or
r

[k] (k, n]

f̄ |[k] a

(a) Attack by the par-
ties k + 1, . . . , n

r

[k] (k, n]

f̄ |[k] a

=
s

[k] (k, n]

b

(b) Security against the
parties k + 1, . . . , n

r

[k] (k, n]

f̄ |[k]

=
s

[k] (k, n]

b

(c) Security against the
initial attack

Fig. 2: Attacks and security constraints

In order for a protocol f̄ = (f1, . . . , fn) : ((Ai)
n
i=1, r) → ((Bi)

n
i=1, s) to be

secure, we should have some guarantees about what happens if, as a result of an
attack on the protocol, something else than (f1, . . . , fn) happens. For instance,
some subset of the parties might deviate from the protocol and do something
else instead. In the simulation paradigm [34], security is then defined by saying
that, anything that could happen when running the real protocol, i.e., f̄ with
r, could also happen in the ideal world, i.e., with s. A given protocol might be
secure against some kinds of attacks and insecure against others, so we define
security against an abstract attack model. This abstract notion of an attack
model is one of the main definitions of our paper. It isolates conditions needed
for the composition theorem (Theorem 1). It also captures our key examples
that we use to illustrate the definition after giving it. Note that most proofs are
deferred to an extended version.

Definition 1. An attack model A on an SMC C consists of giving for each
morphism f of C a class A(f) of morphisms of C such that

168 A. Broadbent and M. Karvonen

(i) f ∈ A(f) for every f .

(ii) For any f : A → B and g : B → C and composable g′ ∈ A(g), f ′ ∈ A(f)
we have g′ ◦ f ′ ∈ A(g ◦ f). Moreover, any h ∈ A(g ◦ f) factorizes as g′ ◦ f ′

with g′ ∈ A(g) and f ′ ∈ A(f).

(iii) For any f : A → B, g : C → D in C and f ′ ∈ A(f), g′ ∈ A(g) we have
f ′ ⊗ g′ ∈ A(f ⊗ g). Moreover, any h ∈ A(f ⊗ g) factorizes as h′ ◦ (f ′ ⊗ g′)
with f ′ ∈ A(f), g′ ∈ A(g) and h′ ∈ A(idB⊗D).

Let f : (A, r) → (B, s) define a morphism in the resource theory
∫
RF induced by

F : D → C and R : C → Set. We say that f is secure against an attack model
A on C (or A-secure) if for any f ′ ∈ A(F (f)) with dom(f ′) = F (A) there is
b ∈ A(idF (B)) with dom(b) = F (B) such that R(f ′)r = R(b)s.

The above definition of security asks for perfect equality and corresponds to
information-theoretic security in cryptography. This is often too much to hope
for, and we will replace this by an equivalence relation in section 4 and by a
notion of distance in an extended version.

The intuition is that A gives, for each process in C, the set of behaviors that
the attackers could force to happen instead of honest behavior. In particular,
A(idB) give the set of behaviors that is available to attackers given access to
a system of type B. Then property (i) amounts to the assumption that the
adversaries could behave honestly. The first halves of properties (ii) and (iii)
say that, given an attack on g and one on f , both attacks could happen when
composing g and f sequentially or in parallel. The second parts of these say
that attacks on composite processes can be understood as composites of attacks.
However, note that (iii) does not say that an attack on a product has to be
a product of attacks: the factorization says that any h ∈ A(g ⊗ f) factorizes
as in fig. 1d with g′ ∈ A(g), f ′ ∈ A(f) and h′ ∈ A(idB⊗D). The intuition is
that an attacker does not have to attack two parallel protocols independently
of each other, but might play the protocols against each other in complicated
ways. This intuition also explains why we do not require that all morphisms in
A(f) have F (A) as their domain, despite the definition of A-security quantifying
only against those: when factoring h ∈ A(g ◦ f) as g′ ◦ f ′ with g′ ∈ A(g) and
f ′ ∈ A(f), we can no longer guarantee that F (B) is the domain of g′—perhaps
the attackers take us elsewhere when they perform f ′.

If one thinks of F : D → C as representing the inclusion of free processes
into general processes, one also gets an explanation why we do not insist that
free processes and attacks live in the same category, i.e., that F = idC. This is
simply because we might wish to prove that some protocols are secure against
attackers that can use more resources than we wish or can use in the protocols.

Example 2. For any SMC C there are two trivial attack models: the minimal
one defined by A(f) = {f} and the maximal one sending f to the class of all
morphisms of C. We interpret the minimal attack model as representing honest
behavior, and the maximal one as representing arbitrary malicious behavior.

Categorical composable cryptography 169

Proposition 1. If A1, . . . ,An are attack models on SMCs C1, . . . ,Cn respec-
tively, then there is a product

∏n
i=1 Ai attack model on

∏n
i=1 Ci defined by

(
∏n

i=1 Ai)(f1, . . . , fn) =
∏n

i=1 Ai(fi).

This proposition, together with the minimal and maximal attack models, is
already expressive enough to model multi-party computation where some subset
of the parties might do arbitrary malicious behavior. Indeed, consider the n-

partite resource theory induced by Cn ⊗−→ C
hom(I,−)−−−−−−→ Set. Let us first model a

situation where the first n − 1 participants are honest and the last participant
is dishonest. In this case we can set A =

∏n
i=1 Ai where each of A1, . . . ,An−1

is the minimal attack model on C and An is the maximal attack model. Then,
an attack on f̄ = (f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) can be represented

by the first n − 1 parties obeying the protocol and the n-th party doing an
arbitrary computation a, as depicted in the two pictures of fig. 2a, where [n] :=

{1, . . . , n}, (k, n] := {k+1, . . . n}, f̄ |[k] :=
⊗k

i=1 fi, and here k = n−1. The latter
representation will be used when we do not need to emphasize pictorially the fact
that the honest parties are each performing their own individual computations.

If instead of just one attacker, there are several independently acting adver-
saries, we can take A =

∏n
i=1 Ai where Ai is the minimal or maximal attack

structure depending on whether the ith participant is honest or not. If the set
of dishonest parties can collude and communicate arbitrarily during the process,
we need the flexibility given in Definition 1 and have the attack structure live
in a different category than where our protocols live. For simplicity of notation,
assume that the first k agents are honest but the remaining parties are mali-
cious and might do arbitrary (joint) processes in C. In particular, the action
done by the dishonest parties k + 1, . . . , n need not be describable as a product⊗n

i=k+1(ai) of individual actions. In that case we define A as follows: we first con-

sider our resource theory as arising from Cn idk×⊗−−−−→ Ck×C
⊗−→ C

hom(I,−)−−−−−−→ Set,
and define A on Ck ×C as the product of the minimal attack model on Ck and
the maximal one on C. Concretely, this means that the first k agents always
obey the protocol, but the remaining agents can choose to perform arbitrary
joint behaviors in C. Then a generic attack on a protocol f̄ can be represented
exactly as before in fig. 2a, except we no longer insist that k = n − 1. Now a
protocol f̄ is A-secure if for any a with dom(a) = (Ai)

n
i=k+1 there is a b with

dom(b) = (Bi)
n
i=k+1 satisfying the equation of fig. 2b.

If one is willing to draw more wire crossings, one can easily depict and de-
fine security against an arbitrary subset of the parties behaving maliciously, and
henceforward this is the attack model we have in mind when we say that some
n-partite protocol is secure against some subset of the parties. Moreover, for any
subset J of dishonest agents, one could consider more limited kinds of attacks:
for instance, the agents might have limited computational power or limited abil-
ities to perform joint computations—as long as the attack model satisfies the
conditions of Definition 1 one automatically gets a composable notion of secure
protocols by Theorem 1 below.

170 A. Broadbent and M. Karvonen

Theorem 1. Given symmetric monoidal functors F : D → C, R : C → Set
with F strong monoidal and R lax monoidal, and an attack model A on C,
the class of A-secure maps forms a wide sub-SMC of the resource theory

∫
RF

induced by RF .

So far we have discussed security only against a single, fixed subset of dishon-
est parties, while in multi-party computation it is common to consider security
against any subset containing e.g., at most n/3 or n/2 of the parties. However,
as monoidal subcategories are closed under intersection, we immediately obtain
composability against multiple attack models.

Corollary 1. Given a non-empty family of functors (D
Fi−→ Ci

Ri−−→ Set)i∈I

with RiFi = RjFj =: R for all i, j ∈ I and attack models Ai on Ci for each i,
the class of maps in

∫
R that is secure against each Ai is a sub-SMC of

∫
R.

Using Corollary 1 one readily obtains composability of protocols that are simul-
taneously secure against different attack models Ai. Thus one could, in principle,
consider composable cryptography in an n-party setting where some subsets are
honest-but-curious, some might be outright malicious but have limited compu-
tational power, and some subsets might be outright malicious but not willing or
able to coordinate with each other, without reproving any composition theorems.

While the security definition of f quantifies over A(f), which may be infinite,
under suitable conditions it is sufficient to check security only on a subset of
A(f), so that whether f is A-secure often reduces to finitely many equations.

Definition 2. Given f : A → B, a subset X of A(f) is said to be initial if
any f ′ ∈ A(f) with dom(f ′) = A can be factorized as b ◦ a with a ∈ X and
b ∈ A(idB).

Theorem 2. Let f : (A, r) → (B, s) define a morphism in the resource theory
induced by F : D → C and R : C → Set and let A be an attack model on C. If
X ⊂ A(F (f)) is initial, then f is A-secure if, and only if the security condition
holds against attacks in X, i.e., if for any f ′ ∈ X with dom(f ′) = F (A) there is
b ∈ A(idF (B)) such that R(f ′)r = R(b)s.

Let us return to the example of Cn → C with the first k agents being honest and
the final n− k dishonest and collaborating. Then we can take a singleton as our
initial subset of attacks on f̄ , and this is given by f̄ |[k]⊗(

⊗n
i=k+1 id). Intuitively,

this represents a situation where the dishonest parties k+1, . . . , n merely stand
by and forward messages between the environment and the functionality, so that
initiality can be seen as explaining “completeness of the dummy adversary” [13,
Claim 11] in UC-security. In this case the security condition can be equivalently
phrased by saying that there exists b ∈ A([idb]) satisfying the equation of fig. 2c,
which reproduces the pictures of [51]. Similarly, for classical honest-but-curious
adversaries one usually only considers the initial such adversary, who follows the
protocol otherwise except that they keep track of the protocol transcript.

Theorem 3. In the resource theory of n-partite states, if (f1, . . . fn) is secure
against some subset J of [n] and F is a strong monoidal, then (Ff1, . . . , Ffn) is
secure against J as well.

Categorical composable cryptography 171

For instance, if the inclusion of classical interactive computations into quantum
ones is strong monoidal, i.e., respects sequential and parallel composition (up to
isomorphism), then unconditionally secure classical protocols are also secure in
the quantum setting, as shown in the context of UC-security in [68, Theorem
15]. More generally, this result implies that the construction of the category of
n-partite transformations secure against any fixed subset of [n] is functorial in
C, and this is in fact also true for any family of subsets of [n] by Corollary 1.

4 Computational security

The discussion above has been focused on perfect security, so that the equations
defining security hold exactly. This is often too high a standard for security to
hope for, and consequently cryptographers routinely work with computational
or approximate security. We model this in two ways. The first approach replaces
equations with an equivalence relation abstracting from the idea that the end
results are “computationally indistinguishable” rather than strictly equal. The
latter approach amounts to working in terms of a (pseudo)metric quantifying how
close we are to the ideal resource and is needed to model statements in finite-key
cryptography [67]. The typical metric is given by “distinguisher advantage for
polynomial-time environments”, enabling one to use computational complexity
theory. In a nutshell, this amounts to working with sequences of protocols and
defining security by saying “for any ϵ > 0, for sufficiently large n, for any attack
on the nth protocol there is an attack on the target resource such that the end
results are within ϵ”. The first approach is mathematically straightforward and
we discuss it next, while the second approach is relegated to an extended version.

Replacing strict equations with equivalence relations is easy to describe on
an abstract level as an instance of the theory so far: one just assumes that C has
a monoidal congruence ≈ and then works with the resource theory induced by

Cn → C/≈ hom(I,−)−−−−−−→ Set with similar attack models as above. More explicitly,
as long as each hom-set of C is equipped with an equivalence relation ≈ that
respects ⊗ and ◦ in that f ≈ f ′ and g ≈ g′ imply gf ≈ g′f ′ (whenever de-

fined) and g ⊗ f ≈ g′ ⊗ f ′, then working with Cn → C/≈ hom(I,−)−−−−−−→ Set results
in security conditions that replace = in C with ≈ throughout. If C describes
(interactive) computational processes and ≈ represents computational indistin-
guishability (inability for any “efficient” process to distinguish between the two),
one might need to replace C (and consequently functionalities, protocols and at-
tacks on them) with the subcategory of C of efficient processes so that ≈ indeed
results in a congruence.

5 Applications

We will now explore how the one-time pad (OTP) fits into our framework, paral-
leling the discussion of OTP in [47]. We will start from the category FinStoch of
finite sets and stochastic maps between them, with ⊗ given by cartesian product

172 A. Broadbent and M. Karvonen

of sets. This is sufficient for OTP, even if more complicated and interactive cryp-
tographic protocols will need a different starting category. However, the actual
category C we work in is built from FinStoch, essentially by a tripartite variant
of the “resource theory of universally-combinable processes” of [20, Section 3.4].
We will defer the detailed construction of C to an extended version and work in
it more heuristically, allowing us to focus on the OTP.

Roughly speaking, a “basic object” of C consists of finite sets Ai,Bi, Ei for
i = 1, 2, and of a map f : A1 ⊗B1 ⊗E1 → A2 ⊗B2 ⊗E2 in FinStoch, depicted
in fig. 3a. The intuition is that ⟨(Ai, Bi, Ei)i∈{1,2}, f⟩ represents a box shared

A1

A2

B1

B2

E1

E2

f

(a) Box shared by
Alice, Bob and Eve

A

B

B

i

A

E B

(b) The OTP proto-
col

short

BA

PRNGPRNG

≈
long

BA

(c) A secure PRNG

A

B

(d) Secure channel

Fig. 3: Some resources and protocols

by Alice, Bob and Eve, with Alice’s inputs and outputs ranging over A1 and
A2 respectively, and similarly for Bob and Eve. We will often label the ports
just by the party who controls it, and omit labeling trivial ports. For example,
if fig. 4a depicts the copy map X → X ⊗X for some set X in FinStoch, then

(a) The copy map

A

AA

(b) Alice’s copy
map

A

BE

(c) Alice broadcast-
ing to Bob and Eve

BA

(d) Random shared
key

Fig. 4: Variants of the copy map

fig. 4b denotes an object of C representing Alice copying data privately, whereas
fig. 4c denotes an object C that sends Alice’s input unchanged to Bob and to
Eve—which we view as an insecure (but authenticated) channel from Alice to
Bob.

A general object of C then consists of a list of such basic objects, representing
a list of such resources shared between Alice, Bob and Eve. A morphism of C is
roughly speaking a way of using the starting resources and local computation by
the three parties to produce the target resources: a more formal description will

Categorical composable cryptography 173

be given in an extended version. In our attack model Alice and Bob are honest
but Eve is dishonest, so she might do arbitrary local computation instead of
whatever our protocols might prescribe.

In the version of the OTP we discuss, our starting resources consist of an
insecure but authenticated channel4 from Alice to Bob as in fig. 4c and (i.e., ⊗)
of a random key over the same message space, shared by Alice and Bob (fig. 4d).
The goal is to build a secure channel from Alice to Bob (fig. 3d) from these.

The local ingredients of OTP and the axioms they obey are depicted in fig. 5
and correspond to a Hopf algebra with an integral in a SMC. Any finite group
gives rise to such a structure in FinStoch, with the integral given by the uniform
distribution. Concretely, this means that Alice and Bob must agree on a group
structure on the message space, and the fact that this multiplication forms a
group and that the key is random can be captured by the equations of fig. 5.

= = = = = =

= i = = i = =

Fig. 5: Local ingredients of OTP and the axioms they obey

The OTP protocol is then depicted in fig. 3b, i.e., Alice adds the key to her
message, broadcasts it to Eve and Bob. Eve deletes her part and Bob adds the
inverse of the key to the ciphertext to recover the message.

To show that the protocol is secure, note that Eve has an initial attack given
by just reading the ciphertext. The pictorial security proof is depicted in fig. 6.
The first equation is the interaction between multiplication and copying, the
second uses (co)associativity, the third one properties of inverses, the fourth and
last one use unitality, and the fifth one follows from the key being random. Taken
together, these show that Eve’s initial attack is equal to her just producing a
random message herself with Alice and Bob sharing the target resource. The
correctness of the protocol can be proven similarly. Thus OTP gives a map
shared key⊗authenticated channel → secure channel that is secure against Eve.

We now use this example to illustrate the use of the composition theorems.
A major drawback of OTP, despite its perfect security, is the fact that one needs
a key that is as long as the message. In practice, Alice and Bob might only
share a short key and wish to promote it a long key. If they agree on a pseudo-
random number generator (PRNG) with their key as the seed, they can map
the short key to a longer key. If the PRNG is computationally secure, then the
end-result is (computationally) indistinguishable from a long key, depicted in

4 If the insecure channel allows Eve to tamper with the message, the analysis changes.

174 A. Broadbent and M. Karvonen

A

E
B

i (1.)
=

E

A

B

i (2.)
=

BE

A

i (3.)
=

BE

A

(4.)
=

E

A

B

(5.)
=

E

A

B

(6.)
=

A

BE

Fig. 6: Security proof of OTP

fig. 3c, where ≈ stands for computational indistinguishability. We envision the
computational security of the chosen PRNG to be proven “the usual way” and
not graphically—after all, we believe that our framework is there to supplement
ordinary cryptographic reasoning and not to replace it. The PRNG then results
in a (computationally) secure way of promoting a short shared key into a long
shared key, and then the composition theorems guarantee that these protocols
can be composed, resulting in the security of the stream cipher.

Composable security is a stronger constraint than stand-alone security, and
indeed many cryptographic functionalities are known to be impossible to achieve
“in the plain model”, i.e., without set-up assumptions. A case in point is bit
commitment, which was shown to be impossible in the UC-framework in [14].
This result was later generalized in [61] to show that any two-party functionality
that can be realized in the plain UC-framework is “splittable”. While the authors
of [61] remark that their result applies more generally than just to the UC-
framework, this wasn’t made precise until [48]5. We present a categorical proof
of this result in our framework, which promotes the pictures “illustrating the
proof” in [61] into a full proof—the main difference is that in [61] the pictures
explicitly keep track of an environment trying to distinguish between different
functionalities, whereas we prove our result in the case of perfect security and
then deduce the asymptotic claim.

We now assume that C, our ambient category of interactive computations is
compact closed6. As we are in the 2-party setting, we take our free computations

5 Except that in their framework the 2-party case seems to require security constraints
also when both parties cheat.

6 We do not view this as overtly restrictive, as many theoretical models of concurrent
interactive (probabilistic/quantum) computation are compact closed [18,19,69].

Categorical composable cryptography 175

to be given by C2, and we consider two attack models: one where Alice cheats
and Bob is honest, and one where Bob cheats and Alice is honest. We think of

as representing a two-way communication channel, but this interpretation is
not needed for the formal result.

Theorem 4. For Alice and Bob (one of whom might cheat), if a bipartite func-
tionality r can be securely realized from a communication channel between them,
i.e., from , then there is a g such that

r

A B

=
r r

g

. (∗)

Proof. If a protocol (fA, fB) achieves this, security constraints give us sA, sB

such that fA =
r

sB

and fB =
r

sA

so that r = fA fB = fA fB =
r r

sB sA

Corollary 2. Given a compact closed C modeling computation in which wires
model communication channels, (composable) bit commitment and oblivious trans-
fer are impossible in that model without setup, even asymptotically in terms of
distinguisher advantage.

Proof. If r represents bit commitment from Alice to Bob, it does not satisfy
the equation required by Theorem 4 for any g, and the two sides of (∗) can be
distinguished efficiently with at least probability 1/2. Indeed, take any f and
let us compare the two sides of (∗): if the distinguisher commits to a random
bit b, then Bob gets a notification of this on the left hand-side, so that f has to
commit to a bit on the right side of (∗) to avoid being distinguished from the
left side. But this bit coincides with b with probability at most 1/2, so that the
difference becomes apparent at the reveal stage. The case of OT is similar.

We now discuss a similar result in the tripartite case, which rules out building
a broadcasting channel from pairwise channels securely against any single party
cheating. In [46] comparable pictures are used to illustrate the official, symboli-
cally rather involved, proof, whereas in our framework the pictures are the proof.
Another key difference is that [46] rules out broadcasting directly, whereas we
show that any tripartite functionality realizable from pairwise channels satisfies
some equations, and then use these equations to rule out broadcasting.

Formally, we are working with the resource theory given byC3 ⊗−→ C
hom(I,−)−−−−−−→

Set whereC is an SMC, and reason about protocols that are secure against three

176 A. Broadbent and M. Karvonen

kinds of attacks: one for each party behaving dishonestly while the rest obey the
protocol. Note that we do not need to assume compact closure for this result,
and the result goes through for any state on A⊗A shared between each pair of
parties: we will denote such a state by by convention.

Theorem 5. If a tripartite functionality r can be realized from each pair of par-
ties sharing a state , securely against any single party, then there are simulators
sA, sB , sC such that

r

sA

=
r

sB

=
r

sC

.

Proof. Any tripartite protocol building on top of each pair of parties sharing
can be drawn as in the left side of

fA fB fC fA fB fB fC

Consider now the morphism in C depicted on the right: it can be seen as the
result of three different attacks on the protocol (fA, fB , fC) in C3: one where
Alice cheats and performs fA and fB (and the wire connecting them), one where
Bob performs fB twice, and one where Charlie performs fB and fC . The security
of (fA, fB , fC) against each of these gives the required simulators.

Corollary 3. Given a SMC C modeling interactive computation, and a state
on A⊗A modeling pairwise communication, it is impossible to build broadcasting
channels securely (even asymptotically in terms of distinguisher advantage) from
pairwise channels.

Proof. We show that a channel r that enables Bob to broadcast an input bit to
Alice and Charlie never satisfies the required equations for any sA, sB , sC . In-
deed, assume otherwise and let the environment plug “broadcast 0” and “broad-
cast 1” to the two wires in the middle. The leftmost picture then says that Charlie
receives 1, the rightmost picture implies that Alice gets 0 and the middle picture
that Alice and Bob get the same output (if anything at all)—a contradiction. In-
deed, one cannot satisfy all of these simultaneously with high probability, which
rules out an asymptotic transformation.

6 Outlook

We have presented a categorical framework providing a general, flexible and
mathematically robust way of reasoning about composability in cryptography.
Besides contributing a further approach to composable cryptography and poten-
tially helping with cross-talk and comparisons between existing approaches [12],
we believe that the current work opens the door for several further questions.

Categorical composable cryptography 177

First, due to the generality of our approach we hope that one can, besides
honest and malicious participants, reason about more refined kinds of adversaries
composably. Indeed, we expect that Definition 1 is general enough to capture
e.g., honest-but-curious adversaries7. It would also be interesting to see if this
captures even more general attacks, e.g., situations where the sets of participants
and dishonest parties can change during the protocol. This might require un-
derstanding our axiomatization of attack models more structurally and perhaps
generalizing it. Does this structure (or a variant thereof) already arise in cate-
gory theory? While we define an attack model on a category, perhaps one could
define an attack model on a (strong) monoidal functor F , the current definition
being recovered when F = id.

Second, we expect that rephrasing cryptographic questions categorically would
enable more cross-talk between cryptography and other fields already using cate-
gory theory as an organizing principle. For instance, many existing approaches to
composable cryptography develop their own models of concurrent, asynchronous,
probabilistic and interactive computations. As categorical models of such com-
putation exist in the context of game semantics [18,19,69], one is left wondering
whether the models of the semanticists’ could be used to study and answer cryp-
tographic questions, or conversely if the models developed by cryptographers
contain valuable insights for programming language semantics.

Besides working inside concrete models—which ultimately blends into “just
doing composable cryptography”—one could study axiomatically how properties
of a category relate to cryptographic properties in it. As a specific conjecture in
this direction, one might hope to talk about honest-but-curious adversaries at
an abstract level using environment structures [21], that axiomatize the idea of
deleting a system. Similarly, having agents purify their actions is an important
tool in quantum cryptography [45]—can categorical accounts of purification [15,
21,24] elucidate this?

Finally, we hope to get more mileage out of the tools brought in with the cat-
egorical viewpoint. For instance, can one prove further no-go results pictorially?
More specifically, given the impossibility results for two and three parties, one
wonders if the “only topology matters” approach of string diagrams can be used
to derive general impossibility results for n parties sharing pairwise channels.
Similarly, while diagrammatic languages have been used to reason about posi-
tive cryptographic results in the stand-alone setting [9,10,41], can one push such
approaches further now that composable security definitions have a clear cate-
gorical meaning? Besides the graphical methods, thinking of cryptography as a
resource theory suggests using resource-theoretic tools such as monotones. While
monotones have already been applied in cryptography [70], a full understanding
of cryptographically relevant monotones is still lacking.

7 Heuristically speaking this is the case: an honest-but-curious attack on g◦f should be
factorizable as one on g and one on f , and similarly an honest-but-curious attack on
g⊗ f should be factorisable into ones on g and f that then forward their transcripts
to an attack on id ⊗ id.

178 A. Broadbent and M. Karvonen

References

1. Abramsky, S., Barbosa, R.S., Karvonen, M., Mansfield, S.: A comonadic
view of simulation and quantum resources. In: 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE (2019).
https://doi.org/10.1109/LICS.2019.8785677

2. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: 1st Theory of Cryptography Conference—TCC 2004. pp. 336–
354 (2004). https://doi.org/10.1007/978-3-540-24638-1 19

3. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Information and Computation 205(12), 1685–1720
(2007). https://doi.org/10.1016/j.ic.2007.05.002

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing.
pp. 52–61 (1993). https://doi.org/10.1145/167088.167109

5. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The univer-
sal composable security of quantum key distribution. In: 2nd Theory of Cryptog-
raphy Conference—TCC 2005. pp. 386–406 (2005). https://doi.org/10.1007/978-
3-540-30576-7 21

6. Ben-Or, M., Mayers, D.: General security definition and composability for quantum
& classical protocols (2004), https://arxiv.org/abs/quant-ph/0409062

7. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing. pp. 175–179 (1984)

8. Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of
the security of quantum key distribution (extended abstract). In: 32nd Annual
ACM Symposium on Theory of Computing—STOC 2000. pp. 715 – 724 (2000).
https://doi.org/10.1145/335305.335406

9. Breiner, S., Kalev, A., Miller, C.A.: Parallel self-testing of the GHZ state
with a proof by diagrams. In: Proceedings of QPL 2018. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 287, pp. 43–66 (2018).
https://doi.org/10.4204/eptcs.287.3

10. Breiner, S., Miller, C.A., Ross, N.J.: Graphical methods in device-independent
quantum cryptography. Quantum 3, 146 (2019). https://doi.org/10.22331/q-2019-
05-27-146

11. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: 50th Annual Symposium on Foundations of Computer Science—FOCS 2009.
pp. 517–526 (2009). https://doi.org/10.1109/FOCS.2009.36

12. Camenisch, J., Küsters, R., Lysyanskaya, A., Scafuro, A.: Practical Yet Compos-
ably Secure Cryptographic Protocols (Dagstuhl Seminar 19042). Dagstuhl Reports
9(1), 88–103 (2019). https://doi.org/10.4230/DagRep.9.1.88

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science—
FOCS 2001. pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

14. Canetti, R., Fischlin, M.: Universally composable commitments. In:
Advances in cryptology—CRYPTO 2001. pp. 19–40. Springer (2001).
https://doi.org/10.1007/3-540-44647-8 2

15. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic the-
ories with purification. Physical Review A 81(6) (Jun 2010).
https://doi.org/10.1103/physreva.81.062348

Categorical composable cryptography 179

https://doi.org/10.1109/LICS.2019.8785677
https://doi.org/10.1007/978-3-540-24638-1_19
https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1145/167088.167109
https://doi.org/10.1007/978-3-540-30576-7_21
https://doi.org/10.1007/978-3-540-30576-7_21
https://arxiv.org/abs/quant-ph/0409062
https://doi.org/10.1145/335305.335406
https://doi.org/10.4204/eptcs.287.3
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.22331/q-2019-05-27-146
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.4230/DagRep.9.1.88
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1103/physreva.81.062348

16. Chitambar, E., Gour, G.: Quantum resource theories. Reviews of Modern Physics
91(2), 025001 (2019). https://doi.org/10.1103/revmodphys.91.025001

17. Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you
always wanted to know about LOCC (but were afraid to ask). Communications
in Mathematical Physics 328(1), 303–326 (2014). https://doi.org/10.1007/s00220-
014-1953-9

18. Clairambault, P., De Visme, M., Winskel, G.: Game semantics for quantum pro-
gramming. Proceedings of the ACM on Programming Languages 3(POPL), 1–29
(2019). https://doi.org/10.1145/3290345

19. Clairambault, P., de Visme, M., Winskel, G.: Concurrent quantum strategies. In:
International Conference on Reversible Computation. pp. 3–19. Springer (2019).
https://doi.org/10.1007/978-3-030-21500-2 1

20. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory
of resources. Information and Computation 250, 59–86 (2016).
https://doi.org/10.1016/j.ic.2016.02.008

21. Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum
mechanics. Logical Methods in Computer Science Volume 8, Issue 4 (2012).
https://doi.org/10.2168/LMCS-8(4:14)2012

22. Coecke, B., Wang, Q., Wang, B., Wang, Y., Zhang, Q.: Graphical calculus for quan-
tum key distribution (extended abstract). Electronic Notes in Theoretical Com-
puter Science 270(2), 231–249 (2011). https://doi.org/10.1016/j.entcs.2011.01.034

23. Cruttwell, G., Gavranović, B., Ghani, N., Wilson, P., Zanasi, F.: Categorical foun-
dations of gradient-based learning (2021), https://arxiv.org/abs/2103.01931

24. Cunningham, O., Heunen, C.: Purity through factorisation. In: Proceedings of
QPL 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp.
315–328 (2017). https://doi.org/10.4204/EPTCS.266.20

25. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for se-
curity protocols and its logical formalization. In: 16th IEEE Computer Se-
curity Foundations Workshop, 2003. Proceedings. pp. 109–125. IEEE (2003).
https://doi.org/10.1109/csfw.2003.1212708

26. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composi-
tion. Electronic Notes in Theoretical Computer Science 83, 201–226 (2003).
https://doi.org/10.1016/s1571-0661(03)50011-1

27. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compo-
sitional logic for security protocols. Journal of Computer Security 13(3), 423–482
(Aug 2005). https://doi.org/10.3233/JCS-2005-13304

28. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311–358 (Apr 2007).
https://doi.org/10.1016/j.entcs.2007.02.012

29. Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for protocol correct-
ness. In: Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001.
IEEE (2001). https://doi.org/10.1109/csfw.2001.930150

30. Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security
properties of protocols. Journal of Computer Security 11(4), 677–721 (Oct 2003).
https://doi.org/10.3233/JCS-2003-11407

31. Fong, B., Spivak, D., Tuyeras, R.: Backprop as functor: A compositional perspec-
tive on supervised learning. In: 2019 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (2019). https://doi.org/10.1109/lics.2019.8785665

32. Fritz, T.: Resource convertibility and ordered commutative monoids.
Mathematical Structures in Computer Science 27(6), 850–938 (2015).
https://doi.org/10.1017/s0960129515000444

180 A. Broadbent and M. Karvonen

https://doi.org/10.1103/revmodphys.91.025001
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1145/3290345
https://doi.org/10.1007/978-3-030-21500-2_1
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.2168/LMCS-8(4:14)2012
https://doi.org/10.1016/j.entcs.2011.01.034
https://arxiv.org/abs/2103.01931
https://doi.org/10.4204/EPTCS.266.20
https://doi.org/10.1109/csfw.2003.1212708
https://doi.org/10.1016/s1571-0661(03)50011-1
https://doi.org/10.3233/JCS-2005-13304
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1109/csfw.2001.930150
https://doi.org/10.3233/JCS-2003-11407
https://doi.org/10.1109/lics.2019.8785665
https://doi.org/10.1017/s0960129515000444

33. Gavranović, B.: Compositional deep learning (2019), https://arxiv.org/abs/1907.
08292

34. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-
9

35. Heunen, C.: Compactly accessible categories and quantum key distribution. Log-
ical Methods in Computer Science 4(4) (2008). https://doi.org/10.2168/lmcs-
4(4:9)2008

36. Hillebrand, A.: Superdense coding with GHZ and quantum key distribu-
tion with W in the ZX-calculus. In: Proceedings of QPL 2011. Electronic
Proceedings in Theoretical Computer Science, vol. 95, pp. 103–121 (2011).
https://doi.org/10.4204/EPTCS.95.10

37. Hines, P.M.: A diagrammatic approach to information flow in encrypted commu-
nication (2020). https://doi.org/10.1007/978-3-030-62230-5 9

38. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Jour-
nal of Cryptology 28(3), 423–508 (2015). https://doi.org/10.1007/s00145-013-
9160-y

39. Horodecki, M., Oppenheim, J.: (Quantumness in the context of) Resource The-
ories. International Journal of Modern Physics B 27(01n03), 1345019 (2013).
https://doi.org/10.1142/s0217979213450197

40. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Theory of Cryptography, pp. 477–498. Springer (2013).
https://doi.org/10.1007/978-3-642-36594-2 27

41. Kissinger, A., Tull, S., Westerbaan, B.: Picture-perfect quantum key distribution
(2017), https://arxiv.org/abs/1704.08668

42. König, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum infor-
mation does not imply security. Physical Review Letters 98(14), 140502 (2007).
https://doi.org/10.1103/PhysRevLett.98.140502

43. Küsters, R., Tuengerthal, M., Rausch, D.: The IITMmodel: a simple and expressive
model for universal composability. Journal of Cryptology 33(4), 1461–1584 (2020).
https://doi.org/10.1007/s00145-020-09352-1

44. Liao, K., Hammer, M.A., Miller, A.: ILC: a calculus for composable, computational
cryptography. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 640–654. ACM (Jun 2019).
https://doi.org/10.1145/3314221.3314607

45. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review
Letters 78(17), 3410–3413 (1997). https://doi.org/10.1103/PhysRevLett.78.3410

46. Matt, C., Maurer, U., Portmann, C., Renner, R., Tackmann, B.: Toward an
algebraic theory of systems. Theoretical Computer Science 747, 1–25 (2018).
https://doi.org/10.1016/j.tcs.2018.06.001

47. Maurer, U.: Constructive cryptography–a new paradigm for security definitions
and proofs. In: Joint Workshop on Theory of Security and Applications—TOSCA
2011. pp. 33–56 (2011). https://doi.org/10.1007/978-3-642-27375-9 3

48. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer
Science—ICS 2011 (2011)

49. Mayers, D.: The trouble with quantum bit commitment (1996), http://arxiv.org/
abs/quant-ph/9603015

50. Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM
48(3), 351–406 (2001). https://doi.org/10.1145/382780.382781

Categorical composable cryptography 181

https://arxiv.org/abs/1907.08292
https://arxiv.org/abs/1907.08292
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.2168/lmcs-4(4:9)2008
https://doi.org/10.2168/lmcs-4(4:9)2008
https://doi.org/10.4204/EPTCS.95.10
https://doi.org/10.1007/978-3-030-62230-5_9
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1142/s0217979213450197
https://doi.org/10.1007/978-3-642-36594-2_27
https://arxiv.org/abs/1704.08668
https://doi.org/10.1103/PhysRevLett.98.140502
https://doi.org/10.1007/s00145-020-09352-1
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1016/j.tcs.2018.06.001
https://doi.org/10.1007/978-3-642-27375-9_3
http://arxiv.org/abs/quant-ph/9603015
http://arxiv.org/abs/quant-ph/9603015
https://doi.org/10.1145/382780.382781

51. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party compu-
tation. In: 4th Conference on Innovations in Theoretical Computer Science—ITCS
2013. pp. 355–372 (2013). https://doi.org/10.1145/2422436.2422478

52. Mifsud, A., Milner, R., Power, J.: Control structures. In: Proceedings of Tenth An-
nual IEEE Symposium on Logic in Computer Science. pp. 188–198. IEEE (1995).
https://doi.org/10.1109/lics.1995.523256

53. Moeller, J., Vasilakopoulou, C.: Monoidal Grothendieck construction. Theory and
Applications of Categories 35(31), 1159–1207 (2020)

54. Müller-Quade, J., Renner, R.: Composability in quantum cryptography.
New Journal of Physics 11(8), 085006 (2009). https://doi.org/10.1088/1367-
2630/11/8/085006

55. Pavlovic, D.: Categorical logic of names and abstraction in action cal-
culi. Mathematical Structures in Computer Science 7(6), 619–637 (1997).
https://doi.org/10.1017/S0960129597002296

56. Pavlovic, D.: Tracing the man in the middle in monoidal categories. In:
Coalgebraic Methods in Computer Science. pp. 191–217. Springer (2012).
https://doi.org/10.1007/978-3-642-32784-1 11

57. Pavlovic, D.: Chasing diagrams in cryptography. In: Casadio, C., Coecke, B.,
Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language,
and Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th
Birthday, pp. 353–367. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54789-8 19

58. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive sys-
tems and its application to secure message transmission. In: 2001 IEEE
Symposium on Security and Privacy—S&P 2001. pp. 184–200 (2000).
https://doi.org/10.1109/SECPRI.2001.924298

59. Portmann, C., Matt, C., Maurer, U., Renner, R., Tackmann, B.: Causal
boxes: quantum information-processing systems closed under composi-
tion. IEEE Transactions on Information Theory 63(5), 3277–3305 (2017).
https://doi.org/10.1109/TIT.2017.2676805

60. Portmann, C., Renner, R.: Cryptographic security of quantum key distribution
(2014), https://arxiv.org/abs/1409.3525

61. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In: Advances in Cryptology—
CRYPTO 2008. pp. 262–279 (2008). https://doi.org/10.1007/978-3-540-85174-5 15

62. Renner, R.: Security of quantum key distribution. Interna-
tional Journal of Quantum Information 06(01), 1–127 (2005).
https://doi.org/10.1142/S0219749908003256

63. Selinger, P.: A survey of graphical languages for monoidal categories. In: New
structures for physics, pp. 289–355. Springer (2010). https://doi.org/10.1007/978-
3-642-12821-9 4

64. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum
key distribution protocol. Physical Review Letters 85(2), 441–444 (2000).
https://doi.org/10.1103/physrevlett.85.441

65. Stay, M., Vicary, J.: Bicategorical semantics for nondeterministic computation. In:
Proceedings of the Twenty-ninth Conference on the Mathematical Foundations of
Programming Semantics, MFPS XXIX. Electronic Notes in Theoretical Computer
Science, vol. 298, pp. 367 – 382 (2013). https://doi.org/10.1016/j.entcs.2013.09.022

66. Sun, X., He, F., Wang, Q.: Impossibility of quantum bit commitment, a categorical
perspective. Axioms 9(1), 28 (2020). https://doi.org/10.3390/axioms9010028

182 A. Broadbent and M. Karvonen

https://doi.org/10.1145/2422436.2422478
https://doi.org/10.1109/lics.1995.523256
https://doi.org/10.1088/1367-2630/11/8/085006
https://doi.org/10.1088/1367-2630/11/8/085006
https://doi.org/10.1017/S0960129597002296
https://doi.org/10.1007/978-3-642-32784-1_11
https://doi.org/10.1007/978-3-642-54789-8_19
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1109/TIT.2017.2676805
https://arxiv.org/abs/1409.3525
https://doi.org/10.1007/978-3-540-85174-5_15
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1103/physrevlett.85.441
https://doi.org/10.1016/j.entcs.2013.09.022
https://doi.org/10.3390/axioms9010028

67. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key anal-
ysis for quantum cryptography. Nature Communications 3, 634 (2012).
https://doi.org/10.1038/ncomms1631

68. Unruh, D.: Universally composable quantum multi-party computation.
In: Advances in Cryptology—EUROCRYPT 2010. pp. 486–505 (2010).
https://doi.org/10.1007/978-3-642-13190-5 25

69. Winskel, G.: Distributed probabilistic and quantum strategies. Elec-
tronic Notes in Theoretical Computer Science 298, 403–425 (2013).
https://doi.org/10.1016/j.entcs.2013.09.024

70. Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-
party computation. IEEE Transactions on Information Theory 54(6), 2792–2797
(2008). https://doi.org/10.1109/tit.2008.921674

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Categorical composable cryptography 183

https://doi.org/10.1038/ncomms1631
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1109/tit.2008.921674
http://creativecommons.org/licenses/by/4.0/

DyNetKAT: An Algebra of Dynamic Networks ⋆

Georgiana Caltais1(�) , Hossein Hojjat2 , Mohammad Reza Mousavi3 , and
Hünkar Can Tunç4

1 University of Konstanz, Germany & University of Twente, The Netherlands
g.g.c.caltais@utwente.nl

2 TeIAS, Khatam University & University of Tehran, Iran
hojjat@ut.ac.ir

3 King’s College London, UK
mohammad.mousavi@kcl.ac.uk

4 University of Konstanz, Germany & Aarhus University, Denmark
tunc@cs.au.dk

Abstract. We introduce a formal language for specifying dynamic up-
dates for Software Defined Networks. Our language builds upon Network
Kleene Algebra with Tests (NetKAT) and adds constructs for synchro-
nisations and multi-packet behaviour to capture the interaction between
the control- and data-plane in dynamic updates. We provide a sound and
ground-complete axiomatisation of our language. We exploit the equa-
tional theory and provide an efficient method for reasoning about safety
properties. We implement our equational theory in DyNetiKAT – a tool
prototype, based on the Maude Rewriting Logic and the NetKAT tool,
and apply it to a case study. We show that we can analyse the case study
for networks with hundreds of switches using our tool prototype.

Keywords: Software Defined Networks · Dynamic Updates · Dynamic
Network Reconfiguration · NetKAT · Process Algebra · Equational Rea-
soning.

1 Introduction

Software-Defined Networking (SDN) is an approach to networking that enables
the network to be centrally programmed. There is a spectrum of mathematically
inspired network programming languages that varies between those with a small
number of language constructs and those with expressive language design which
allow them to support more networking features. Flowlog [16] and Kinetic [12]
are points on the more expressive side of the spectrum, which provide support
for formal reasoning based on SAT-solving and model checking, respectively.

⋆ The work of Georgiana Caltais and Hünkar Can Tunç was supported by the DFG
project “CRENKAT”, proj. no. 398056821. The work of Mohammad Reza Mousavi
was supported by the UKRI Trustworthy Autonomous Systems Node in Verifiability,
Grant Award Reference EP/V026801/1. The authors would like to thank Alexandra
Silva and Tobias Kappé for their useful insight into the NetKAT framework.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 184–204, 2022.
https://doi.org/10.1007/978-3-030-99253-8_10

http://orcid.org/0000-0002-8653-2299
http://orcid.org/0000-0002-4743-8750
http://orcid.org/0000-0002-4869-6794
http://orcid.org/0000-0001-9125-8506
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_10&domain=pdf

NetKAT [3,10] is an example of a minimalist language based on Kleene algebra
with tests that has a sound and complete equational theory. While the core of
the language is very simple with a few number of operators, the language has
been extended in various ways to support different aspects of networking such as
congestion control [9], history-based routing [6] and higher-order functions [20].

Our starting point is NetKAT, because it provides a clean and analysable
framework for specifying SDNs. The minimalist design of NetKAT does not cater
for some common (failure) patterns in SDNs, particularly those arising from dy-
namic reconfiguration and the interaction between the data- and control-plane
flows. In [13], the authors have proposed an extension to NetKAT to support
stateful network updates. The extension embraces the notion of mutable state
which is in contrast to the pure functional nature of the language. The pur-
pose of this paper is to propose an extension of NetKAT to support dynamic
and stateful behaviours. On the one hand, we preserve the big-step denotational
semantics of NetKAT-specific constructs enabling, for instance, handling flow
table updates atomically, in the spirit of [17]. On the other hand, we extend
NetKAT in a modular fashion, to integrate concurrent SDN behaviours such as
dynamic updates, defined via a small-step operational semantics. To this end,
we pledge to keep the minimalistic design of NetKAT by adding only a few new
operators. Furthermore, our extension does not contradict the nature of the lan-
guage. DyNetKAT is a conservative extension [2] of NetKAT that enables reusing
in a modular fashion frameworks previously developed for NetKAT. Examples
include the NetKAT axiomatisation in [3], for instance.

A number of concurrent extensions of NetKAT have been introduced to date
[11,18,21]. These extensions followed different design decisions than the present
paper and a comparison of their approaches with ours is provided in Section 2;
however, the most important difference lies in the fact that inspired by earlier
abstractions in this domain [17], we were committed to create different layers
for data-plane flows and dynamic updates such that every data-plane packet
observes a single set of flow tables through its flight through the network. This
allowed us, unlike the earlier approaches, to build a layer on top of NetKAT
without modifying its semantics. Although our presentation in this paper is
based on NetKAT, we envisage that our concurrency layer can be modularly (in
the sense of Modular SOS [14]) used for other network programming languages
in the above-mentioned spectrum. We leave a more careful investigation of the
modularity on other network languages for future work.

Running Example. To illustrate our language concepts, we focus on modelling
with DyNetKAT an example of a stateful firewall that involves dynamically
updating the flow table. The example is overly simplified for the purpose of
presentation. Towards the end of this paper and also in the extended version [7],
we treat more complex and larger-scale case studies to evaluate the applicability
and analysability of our language.

A firewall is supposed to protect the intranet of an organisation from unau-
thorised access from the Internet. However, due to certain requests from the
intranet, it should be able to open up connections from the Internet to intranet.

DyNetKAT: An Algebra of Dynamic Networks 185

SwitchHost int ext

Fig. 1: Stateful Firewall

An example is when a user within the intranet requests a secure connection to a
node on the Internet; in that case, the response from the node should be allowed
to enter the intranet. The behaviour of updating the flow tables with respect to
some events in the network such as receiving a specific packet is a challenging
phenomenon for languages such as NetKAT.

Figure 1 shows a simplified version of the stateful firewall network. Note that
we are not interested in the flow of packets but interested in the flow update.
In this version, the Switch does not allow any packet from the port ext to int
at the beginning. When the Host sends a request to the Switch it opens up the
connection.
Our Contributions. The contributions of this paper are summarised as fol-
lows. (a) We define the syntax and operational semantics of a dynamic exten-
sion of NetKAT that allows for modelling and reasoning about control-plane
updates and their interaction with data-plane flows (Sections 2.3, 2.4). (b) We
give a sound and ground-complete axiomatisation of our language (Section 3).
(c) We devise analysis methods for reasoning about flow properties using our ax-
iomatisation, apply them on examples from the domain and gather and analyse
evidence of applicability and efficiency for our approach (Sections 4, 5, 6).

2 Language Design

In what follows, we provide a brief overview of the NetKAT syntax and seman-
tics [3]. Then, we motivate our language design decisions, we introduce the syn-
tax of DyNetKAT and its underlying semantics, and provide the corresponding
encoding of our running example.

2.1 Brief Overview of NetKAT

We proceed by first introducing some basic notions used throughout the paper.

Definition 1 (Network Packets.) Let F = {f1, . . . , fn} be a set of field nam-
es fi with i ∈ {1, . . . n}. We call network packet a partial function in F → N that
maps field names in F to values in N. We use σ, σ′ to range over network packets.
We write, for instance, σ(fi) = vi to denote a test checking whether the value of
fi in σ is vi. Furthermore, we write σ[fi := ni] to denote the assignment of fi to
vi in σ. A (possibly empty) list of packets is defined as a partial function from
natural numbers to packets, where the natural number in the domain denotes
the position of the packet in the list such that the domain of the function forms
an interval starting from 0. The empty list is denoted by ⟨⟩ and is defined as
the empty function (the function with the empty set as its domain). Let σ be a

186 G. Caltais et al.

packet and l be a list, then σ :: l is the list l′ in which σ is at position 0 in l′,
i.e., l′(0) = σ, and l′(i+ 1) = l(i), for all i in the domain of l.

NetKAT Syntax:
Pr ::= 0 | 1 | f = n | Pr + Pr | Pr · Pr | ¬Pr
N ::= Pr | f ← n | N +N | N ·N | N∗ | dup

NetKAT Semantics:

J1K(h) ≜ {h}
J0K(h) ≜ {}

Jf = nK (σ::h) ≜
{
{σ::h} if σ(f) = n
{} otherwise

J¬aK (h) ≜ {h} \ JaK (h)
Jf ← nK (σ::h) ≜ {σ[f := n]::h}

Jp+ qK (h) ≜ JpK (h) ∪ JqK (h)

Jp · qK (h) ≜ (JpK • JqK) (h)
Jp∗K (h) ≜

⋃
i∈N F i (h)

F 0 (h) ≜ {h}
F i+1 (h) ≜ (JpK • F i) (h)

(f • g)(x) ≜
⋃
{g(y) | y ∈ f(x)}

JdupK (σ::h) ≜ {σ::(σ::h)}

Fig. 2: NetKAT: Syntax and Semantics [3]

In Figure 2, we recall the NetKAT syntax and semantics [3]. The predicate
for dropping a packet is denoted by 0, while passing on a packet (without any
modification) is denoted by 1. The predicate checking whether the field f of a
packet has value n is denoted by (f = n); if the predicate fails on the current
packet it results on dropping the packet, otherwise it will pass the packet on.
Disjunction and conjunction between predicates are denoted by Pr+Pr and Pr ·
Pr , respectively. Negation is denoted by ¬Pr . Predicates are the basic building
blocks of NetKAT policies and hence, a predicate is a policy by definition. The
policy that modifies the field f of the current packet to take value n is denoted by
(f ← n). A multicast behaviour of policies is denoted by N+N , while sequencing
policies (to be applied on the same packet) are denoted by N ·N . The repeated
application of a policy is encoded as N∗. The construct dup simply makes a
copy of the current network packet.

In [3], lists of packets are referred to as histories. Let H stand for the set of
packet histories, and P(H) denote the powerset of H. More formally, the denota-
tional semantics of NetKAT policies is inductively defined via the semantic map
J−K : N → (H → P(H)) in Figure 2, where N stands for the set of NetKAT
policies, h ∈ H is a packet history, a ∈ Pr denotes a NetKAT predicate and
σ ∈ F → N is a network packet.

For a reminder, the equational axioms of NetKAT include the Kleene Algebra
axioms, Boolean Algebra axioms and the so-called Packet Algebra axioms that
handle NetKAT networking specific constructs such as field assignments and
dup. In this paper, we write ENK to denote the NetKAT axiomatisation [3].

2.2 Design Decisions

Our main motivation behind DyNetKAT is to have a minimalist language that
can model control-plane and data-plane network traffic and their interaction.
Our choice for a minimal language is motivated by our desire to use our lan-
guage as a basis for scalable analysis. We would like to be able to compile major

DyNetKAT: An Algebra of Dynamic Networks 187

practical languages into ours. Our minimal design helps us reuse much of the
well-known scalable analysis techniques. Regarding its modelling capabilities,
we are interested in modelling the stateful and dynamic behaviour of networks
emerging from these interactions. We would like to be able to model control mes-
sages, connections between controllers and switches, data packets, links among
switches, and model and analyse their interaction in a seamless manner.

Based on these motivations, we start off with NetKAT as a fundamental and
minimal network programming language, which allows us to model the basic
policies governing the network traffic. The choice of NetKAT, in addition to
its minimalist nature, is motivated by its rigorous semantics and equational
theory, and the existing techniques and tools for its analysis. This motivates
our next design constraint, namely, to build upon NetKAT in a hierarchical
manner and without redefining its semantics. This constraint should not be
taken lightly as the challenges in the recent concurrent extensions of NetKAT
demonstrated [11, 18, 21]. We will elaborate on this point, in the presentation
of our syntax and semantics. We can achieve this thanks to the abstractions
introduced in the domain [17] that allow for a neat layering of data-plane and
control-plan flows such that every data-plane flow sees one set of flow-tables in
its flight through the network.

We introduce a few extensions and modifications to cater for the phenomena
we desire to model in our extension regarding control-plane and dynamic and
stateful behaviour, as follows. (a) Parallel composition and synchronisation : we
introduce a basic mechanism for parallel composition based on handshake syn-
chronisation with the possibility of communicating a network program (a flow
table). The point of adding parallel composition is to have parallel controllers
and switches as separate syntactic entities: controllers trigger reconfigurations
and switches accept different types of reconfiguration and change their continu-
ation accordingly. (b) Guarded recursion: we introduce the concept of recursion
to model the (persistent) dynamic changes that result from control messages
and stateful behaviour. In other words, recursion is used to model the new state
of the flow tables. An alternative modelling construct could have been using
“global” variables and guards, but we prefer recursion due to its neat algebraic
representation. We restrict the use of recursion to guarded recursion, that is a
policy should be applied before changing state to a new recursive definition, in
order to remain within a decidable and analyse-able realm. A natural extension
of our framework could introduce formal parameters and parameterised recur-
sive variables; this future extension is orthogonal to our existing extensions and
in this paper, we go for a minimal extension in which the parameters are coded
in variable names. (c) Multi-packet semantics : we introduce the semantics of
treating a list of packets, which is essential for studying the interaction between
control- and data plane packets. This is in contrast with NetKAT where a single-
packet semantics is introduced. The introduction of multi-packet semantics also
called for a new operator to denote the end of applying a flow-table to the cur-
rent packet and proceeding with the next packet (possibly with the modified
flow-table in place). This is our new sequential composition operator, denoted

188 G. Caltais et al.

by “;”. Inspired by the abstractions in the software defined networking commu-
nity [17], we assume each packet is processed either using the configuration in
place prior to the update, or the configuration in place after the update, but
never a mixture of the two.

2.3 DyNetKAT Syntax

As already mentioned, NetKAT provides the possibility of recording the indi-
vidual “hops” that packets take as they go through the network by using the
so-called dup construct. The latter keeps track of the state of the packet at
each intermediate hop. As a brief reminder of the approach in [3]: assume a
NetKAT switch policy p and a topology t, together with an ingress in and
an egress out . Checking whether out is reachable from in reduces to checking:
in · dup · (p · t · dup)∗ · out ̸≡ 0 (see Definition 2 and Theorem 4 in [3]). Fur-
thermore, as shown in [10], dup plays a crucial role in devising the NetKAT
language semantics in a coalgebraic fashion, via Brzozowski-like derivatives on
top of NetKAT coalgebras (or NetKAT automata) corresponding to NetKAT
expressions.

We decided to depart from NetKAT in this respect, due to our important
constraint not to redefine the NetKAT semantics: the dup expression allows for
observable intermediate steps that result from incomplete application of flow-
tables and in concurrency scenarios, the same data packet may become subject
to more than one flow table due to the concurrent interactions with the control
plane. For this semantics to be compositional, one needs to define a small step
operational semantics in such a way that the small steps in predicate evaluation
also become visible (see our past work on compositionality of SOS with data
on such constraints [15]). This will first break our constraint in building upon
NetKAT semantics and secondly, due to the huge number of possible interleav-
ings, make the resulting state-space intractable for analysis.

In addition to the argumentation above, note that similarly to the approach
in [3], we work with packet fields ranging over finite domains. Consequently, our
analyses can be formulated in terms of reachability properties, further verifiable
by means of dup-free expressions of shape: in · (p · t)∗ · out ̸≡ 0. Hence, we
chose to define DyNetKAT synchronisation, guarded recursion and multi-packet
semantics on top of the dup-free fragment of NetKAT, denoted by NetKAT−dup.

The syntax of DyNetKAT is defined on top of the dup-free fragment of
NetKAT as:

N ::= NetKAT−dup

D ::= ⊥ | N ;D | x?N ;D | x!N ;D | D ||D | D ⊕D | X
X ≜ D

(1)

We write p ∈ NetKAT, p ∈ NetKAT−dup or, respectively, p ∈ DyNetKAT in
order to refer to a NetKAT, NetKAT−dup or, respectively, DyNetKAT policy p.

The DyNetKAT-specific constructs are as follows. By ⊥ we denote a dummy
policy without behaviour. Our new sequential composition operator, denoted by
N ;D , specifies when the NetKAT−dup policy N is applicable to the current

DyNetKAT: An Algebra of Dynamic Networks 189

packet has come to a successful end and, thus, the packet can be transmitted
further and the next packet can be fetched for processing according to the rest
of the policy D.

Communication in DyNetKAT, encoded via x!N ;D and x?N ;D, consists of
two steps. In the first place, sending and receiving NetKAT−dup policies through
channel x are denoted by x!N , and x?N . In an expression such as x?N ;PN , the
combination of the channel name x and the update type N , determine how the
continuation process PN , considering N as a placeholder in PN , enables defining
compositional and compact parameterised DyNetKAT specifications. Secondly,
as soon as the sending or receiving messages are successfully communicated, a
new packet is fetched and processed according to D. The parallel composition
of two DyNetKAT policies (to enable synchronisation) is denoted by D ||D .

As it will become clearer in Section 2.4, communication in DyNetKAT guar-
antees preservation of well-defined behaviours when transitioning between net-
work configurations. This corresponds to the so-called per-packet consistency
in [17], and it guarantees that every packet traversing the network is processed
according to exactly one NetKAT−dup policy.

Non-deterministic choice of DyNetKAT policies is denoted by D ⊕ D. For
a non-determinstic choice over a finite domain P , we use the syntactic sugar
⊕p∈PP

′, where p appears as “bound variable” in P ′; this is interpreted as a sum
of finite summand by replacing the variable p with all its possible values in P .

Finally, one can use recursive variables X in the specification of DyNetKAT
policies, where each recursive variable should have a unique defining equation
X ≜ D. For the simplicity of notation, we do not explicitly specify the trailing
“;⊥” in our policy specifications, whenever clear from the context.

In Figure 3 we provide the DyNetKAT formalisation of the firewall in Ex-
ample 1. In the DyNetKAT encoding, we use the message channel secConReq to
open up the connection and secConEnd to close it. We model the behaviour of
the switch using the two programs Switch and Switch ′.

Switch≜
(
(port = int) · (port← ext)

)
;Switch⊕(

(port = ext) · 0
)
;Switch⊕

secConReq?1 ;Switch′

Switch ′≜
(
(port = int) · (port← ext)

)
;Switch ′⊕(

(port = ext) · (port← int)
)
;Switch ′⊕

secConEnd?1 ;Switch

Host≜secConReq!1 ;Host⊕
secConEnd!1 ;Host

Init≜Host ||Switch

Fig. 3: Stateful Firewall in DyNetKAT

2.4 DyNetKAT Semantics

The operational semantics of DyNetKAT in Figure 4 is provided over configu-
rations of shape (d,H,H ′), where d stands for the current DyNetKAT policy, H
is the list of packets to be processed by the network according to d and H ′ is the
list of packets handled successfully by the network. The rule labels γ range over

190 G. Caltais et al.

(cpol✓;)
σ′ ∈ JpK(σ::⟨⟩)

(p; q, σ :: H,H ′)
(σ,σ′)−−−−→ (q,H, σ′ :: H ′)

(cpolX)
(p,H0, H1)

γ−→ (p′, H ′
0, H

′
1)

(X,H0, H1)
γ−→ (p′, H ′

0, H
′
1)

X ≜ p

(cpol ⊕)
(p,H0, H

′
0)

γ−→ (p′, H1, H
′
1)

(p⊕ q,H0, H
′
0)

γ−→ (p′, H1, H
′
1)

(cpol ||)
(p,H0, H

′
0)

γ−→ (p′, H1, H
′
1)

(p||q,H0, H
′
0)

γ−→ (p′||q,H1, H
′
1)

(cpol•)
(x • p; q,H,H ′)

x•p−−→ (q,H,H ′)
• ∈ {?, !}

(cpol♣♠)
(q,H,H ′)

x♣ p−−−→ (q′, H,H ′) (s,H,H ′)
x♠ p−−−→ (s′, H,H ′)

(q||s,H,H ′)
rcfg(x,p)−−−−−−→ (q′||s′, H,H ′)

♣ =? ♠ =!
or

♣ =! ♠ =?

γ ::= (σ, σ′) | x!q | x?q | rcfg(x,q)
Fig. 4: DyNetKAT: Operational Semantics (relevant excerpt)

pairs of packets (σ, σ′) or communication/reconfiguration-like actions of shape
x!q, x?q or rcfg(x,q), depending on the context.

Note that the DyNetKAT semantics is devised in a “layered” fashion. Rule
(cpol✓;) in Figure 4 is the base rule that makes the transition between the
NetKAT denotations and DyNetKAT operations. More precisely, whenever σ′

is a packet resulted from the successful evaluation of a NetKAT policy p on σ,
a (σ, σ′)-labelled step is observed at the level of DyNetKAT. This transition
applies whenever the current configuration encapsulates a DyNetKAT policy of
shape p; q and a list of packets to be processed starting with σ. The resulting
configuration continues with evaluating q on the next packet in the list, while σ′

is marked as successfully handled by the network.

The remaining rules in Figure 4 define non-deterministic choice ⊕, synchro-
nisation || and recursion X in the standard fashion. Note that synchronisations
leave the packet lists unchanged. Moreover, we choose not to hide the channel
x and the policy p being communicated (as it is usually the case in ACP), but
rather keep this information visible outside the SDN being modelled, by means of
the label rcfg(x,p). Due to space limitation, we omitted the explicit definitions
of the symmetric cases for ⊕ and ||. The full semantics is provided in [7].

In Figure 5 we depict a labelled transition system (LTS) encoding a pos-
sible behaviour of the stateful firewall in Example 1. We assume the list of
network packets to be processed consists of a “safe” packet σi travelling from
int to ext (i.e., σi(port) = int) followed by a potentially “dangerous” packet
σe travelling from ext to int (i.e., σe(port) = ext). For the simplicity of no-
tation, in Figure 5 we write H for Host, S for Switch, S ′ for Switch ′, SCR
for secConReq and SCE for secConEnd . Note that σe can enter the network
only if a secure connection request was received. More precisely, the transition

DyNetKAT: An Algebra of Dynamic Networks 191

labelled (σe, σi) is preceded by a transition labelled SCR?1 or rcfg(SCR,1):

n2
SCR?1, rcfg(SCR,1)−−−−−−−−−−−−−→ n3

(σe,σi)−−−−→ n4.

n0 : (H||S, σi::σe::⟨⟩, ⟨⟩)

n1 : (H||S′, σi::σe::⟨⟩, ⟨⟩)

n2 : (H||S, σe::⟨⟩, σe::⟨⟩ n3 : (H||S′, σe::⟨⟩, σe::⟨⟩

n4 : (H||S′, ⟨⟩, σi::σe::⟨⟩

n5 : (H||S, ⟨⟩, σi::σe::⟨⟩

SCE!1,

SCR!1

SCR!1,
rcfg(SCR,1)

SCE!1,SCR!1

SCE!1,

rcfg(SCE,1)

(σi, σe)
(σi, σe)

SCE!1,SCR!1
SCR!1,

rcfg(SCR,1)

SCE!1,rcfg(SCE,1)

(σe, σi)

SCE!1,SCR!1

SCE!1,

SCR!1

SCE!1,

rcfg(SCE,1)

SCR!1,

rcfg(SCR,1)

SCE!1,SCR!1

Fig. 5: Stateful Firewall LTS

3 Semantic Results

In this section we define bisimilarity of DyNetKAT policies and provide a cor-
responding sound and ground-complete axiomatization. We start with strong
bisimilarity because it lends itself to a neat theory. Once we establish a theory
for strong bisimilarity, a theory for other notions of equivalence in the linear-
time and branching-time spectrum can be obtained by adding a specific set of
axioms following a standard recipe for each notion. We use this approach to
reason about safety properties that are about traces.

Bisimilarity of DyNetKAT terms is defined in the standard fashion:

Definition 2 (Bisimilarity (∼)) A symmetric relation R over DyNetKAT
policies is a bisimulation whenever for (p, q) ∈ R the following holds:

If (p,H0, H1)
γ−→ (p′, H ′

0, H
′
1) then exists q′ s.t. (q,H0, H1)

γ−→ (q′, H ′
0, H

′
1) and

(p′, q′) ∈ R, with γ ::= (σ, σ′) | x?r | x!r | rcfg(x, r).
We call bisimilarity the largest bisimulation relation. Two policies p and q are
bisimilar (p ∼ q) iff there is a bisimulation relation R such that (p, q) ∈ R.

Semantic equivalence of NetKAT−dup policies is preserved by DyNetKAT.

Proposition 1 (Semantic Layering). Let p and q be NetKAT−dup policies.
The following holds: JpK = JqK iff (p; d) ∼ (q; d) for any DyNetKAT policy d.

192 G. Caltais et al.

for p, q, r ∈ DyNetKAT and z, y ∈ NetKAT−dup

for a ::= z | x?z | x!z | rcfgx,z

0 ; p≡ ⊥ (A0)

(z + y) ; p≡ z ; p ⊕ y ; p (A1)

p ⊕ q≡ q ⊕ p (A2)

(p ⊕ q) ⊕ r≡ p ⊕ (q ⊕ r) (A3)

p ⊕ p≡ p (A4)

p ⊕ ⊥≡ p (A5)

p || q≡ q || p (A6)

p || ⊥≡ p (A7)

p || q≡ pTq ⊕ qTp ⊕ p | q (A8)

⊥Tp≡ ⊥ (A9)

(a ; p)Tq≡ a ;(p || q) (A10)

(p ⊕ q)Tr≡ (pTr) ⊕ (qTr) (A11)

(x?z ; p) | (x!z ; q)≡ rcfgx,z ;(p || q) (A12)

(p ⊕ q) | r≡ (p | r) ⊕ (q | r) (A13)

p | q≡ q | p (A14)

p | q≡ ⊥ [owise] (A15)

for at ::= α · π | x?z | x!z | rcfgx,z :

δL(⊥)≡ ⊥ (δ⊥)

δL(at ; p)≡ at ; δL(p) if at ̸∈ L (δ;)

δL(at ; p)≡ ⊥ if at ∈ L (δ⊥;)

δL(p ⊕ q)≡ δL(p) ⊕ δL(q) (δ⊕)

for n ∈ N :

π0(p)≡ ⊥ (Π0)

πn(⊥)≡ ⊥ (Π⊥)

πn+1(at ; p)≡ at ;πn(p) (Π;)

πn(p ⊕ q)≡ πn(p) ⊕ πn(q) (Π⊕)

p ≡ q if ∀n ∈ N : πn(p) ≡ πn(q) (AIP)

ENK

Fig. 6: The axiom system EDNK (including ENK)

Proof sketch. This follows according to ∼ and (cpol✓;) in Figure 4. ■

We further provide some additional ingredients needed to introduce the
DyNetKAT axiomatisation in Figure 6. First, note that our notion of bisimilarity
identifies synchronisation steps as in (cpol♣♠) in Figure 4. At the axiomatisa-
tion level, this requires introducing corresponding constants rcfgx,z defined as:

(rcfgx,z; p,H0, H1)
rcfg(x,z)−−−−−−→ (p,H0, H1)

.

In accordance with standard approaches to process algebra (see, e.g., [1, 4])
we consider the restriction operator δL(−) with L a set of forbidden actions
ranging over x?z and x!z as in (1). In practice, we use the restriction opera-
tor to force synchronous communication. We also define a projection operator
πn(−) that, intuitively, captures the first n steps of a DyNetKAT policy. πn(−)
is crucial for defining the so-called “Approximation Induction Principle” that en-
ables reasoning about equivalence of recursive DyNetKAT specifications. Last,
but not least, in our axiomatisation we employ the left-merge operator (T) and
the communication-merge operator (|) utilised for axiomatising parallel compo-
sition. Intuitively, a process of shape pTq behaves like p as a first step, and then
continues as the parallel composition between the remaining behaviour of p and
q. A process of shape p | q forces the synchronous communication between p
and q in a first step, and then continues as the parallel composition between the
remaining behaviours of p and q. The full description of these auxiliary operators
is provided in [7].

DyNetKAT: An Algebra of Dynamic Networks 193

From this point onward, we denote by DyNetKAT the extension with the
operators δL(−), πn(−) and rcfgx,z:

N ::= NetKAT−dup

De ::= ⊥ | N ;D | x?N ;De | x!N ;De | rcfgx,N ;De |
De ||De | De ⊕De | δL(De) | πn(De) | DeTDe | De|De | X
X ≜ De, n ∈ N, L = {c | c ::= x?N | x!N}

(2)

Bisimilarity is defined for DyNetKAT terms as in (2) in the natural fashion.

Lemma 3 For DyNetKAT, bisimilarity is a congruence.

Proof sketch. The result follows from the fact that the semantic rules defined
in this paper comply to the congruence formats proposed in [15]; the notion of
bisimilarity used in our paper coincides with the notion of stateless bisimilarity
in [15] and hence, the lemma follows. ■

In Figure 6, we introduce EDNK – the axiom system of DyNetKAT, including
the NetKAT axiomatisation ENK. Most of the axioms in Figure 6 comply to the
standard axioms of parallel and communicating processes [4], where, intuitively,
⊕ plays the role of non-deterministic choice, ; resembles sequential composition
and ⊥ is a process that deadlocks. An interesting axiom is (A7) : p || ⊥ ≡ p
which, intuitively, states that if one network component fails, then the whole
system continues with the behaviour of the remaining components. This is a
departure from the approach in [11], where recovery is not possible in case of a
component’s failure; i.e., e || 0 ≡ 0. Additionally, (A12) “pin-points” a commu-
nication step via the newly introduced constants of form rcfgx,z. Axiom (A0)
states that if the current packet is dropped as a result of the unsuccessful eval-
uation of a NetKAT policy, then the continuation is deadlocked. (A1) enables
mapping the non-deterministic choice at the level of NetKAT to the setting of
DyNetKAT.

The axioms encoding the restriction operator δL(−) and the projection op-
erator πn(−) are defined in the standard fashion, on top of DyNetKAT normal
forms later defined in this section. Intuitively, normal forms are defined induc-
tively, as sums of complete tests and complete assignments α · π, or commu-
nication steps x?q, x!q and rcfgx,q, followed by arbitrary DyNetKAT policies.
Complete tests (typically denoted by α) and complete assignments (typically
denoted by π) were originally introduced in [3]. In short: let F = {f1, . . . , fn}
be a set of fields names with values in Vi, for i ∈ {1, . . . , n}. We call complete
test (resp., complete assignment) an expression f1 = v1 · . . . · fn = vn (resp.,
f1 ← v1 · . . . · fn ← vn), with vi ∈ Vi, for i ∈ {1, . . . , n}. Last, but not least, ax-
iom (AIP) corresponds to the so-called “Approximation Induction Principle”,
and it provides a mechanism for reasoning about the equivalence of recursive
behaviours, up to a certain limit denoted by n.

In what follows, we show that the axiom system EDNK is sound and ground-
complete with respect to DyNetKAT bisimilarity.

194 G. Caltais et al.

Lemma 4 (NetKAT−dup Normal Forms) We call a NetKAT−dup policy q
in normal form (n.f.) whenever q is of shape Σα·π∈Aα·π with A = {αi·πi | i ∈ I}.
ENK is normalising for NetKAT−dup.

Proof sketch. The result follows from Lemma 4 in [3] stating that the stan-
dard semantics of every NetKAT expression is equal to the union of its minimal
nonzero terms. In the context of NetKAT−dup and packet values drawn from
finite domains (as is the case in [3]), this union can be equivalently expressed
as a sum of complete tests and complete assignments. I.e., ⊢ r ≡ Σi∈Iαi · πi for
every NetKAT−dup expression r. ■

Definition 5 (DyNetKAT Normal Forms) We call a DyNetKAT policy in
normal form (n.f.) if it is of shape

Σ⊕
i∈I(αi · πi); di ⊕Σ⊕

j∈Jcj ; dj (⊕⊥)

where di, dj range over DyNetKAT policies and cj ::= x?q | x!q | rcfgx,q with q

denoting terms in NetKAT−dup.

Definition 6 (Guardedness) A DyNetKAT policy p is guarded if and only if
all occurrences of all variables X in p are guarded. An occurrence of a variable
X in a policy p is guarded if and only if (i) p has a subterm of shape p′; t such
that either p′ is variable-free, or all the occurrences of variables Y in p′ are
guarded, and X occurs in t, or (ii) if p is of shape y?X; t, y!X; t or rcfgX,t.

Note that guarded DyNetKAT policies are finitely branching. In what follows,
we assume DyNetKAT policies are guarded.

Lemma 7 (DyNetKAT Normalisation) EDNK is normalising for DyNetKAT.

Proof sketch. The proof follows from Lemma 4 and (A1), by structural in-

duction. Base cases: p ≜ ⊥ trivially holds; p ≜ q; d with q a NetKAT−dup

term holds by Lemma 4 and (A1); p ≜ c; d with c ::= x?q | x!q | rcfgx,q

trivially holds. Induction step, cases: p ≜ X - discarded, as p is not guarded;

p ≜ p1 ⊕ p2 ; p ≜ p1Tp2 ; p ≜ πn(p
′) ; p ≜ p1 | p2 ; p ≜ δL(p

′) and, eventu-

ally, p ≜ p1 || p2 . All items before follow by the axiom system EDNK and the

induction hypothesis, under the assumption that p1, p2 and p′ are guarded. ■

Lemma 8 (Soundness of EDyNetKAT\AIP) Let EDyNetKAT\AIP stand for the
axiom system EDNK in Figure 6, without the axiom (AIP). EDyNetKAT\AIP is
sound for DyNetKAT bisimilarity.

Proof sketch. This is proven in a standard fashion, by case analysis on transitions

of shape (p,H0, H
′
0)

γ−→ (q,H1, H
′
1) with γ ::= (σ, σ′) | x?n | x!n | rcfg(x,n),

according to the semantic rules of the DyNetKAT operators in (2). Take (A0)

DyNetKAT: An Algebra of Dynamic Networks 195

for instance. The left hand-side 0; p can only evolve according to (cpol✓;) in
Fig. 4 which, in turn, has an empty premise as J0K(σ :: ⟨⟩) = {} for all σ.
Thus, (cpol✓;) does not entail any step for this case. Symmetrically, there is
no semantic transition for ⊥ in Fig. 4. In other words, none of the left/right
hand-sides of (A0) displays any behaviour, therefore the axiom is sound. ■

Lemma 9 (Soundness of AIP) The Approx. Induction Principle (AIP) is
sound for DyNetKAT bisimilarity.

Proof sketch. The proof is close to the one of Theorem 2.5.8 in [4] and uses the
branching finiteness property of guarded DyNetKAT policies. ■

Theorem 1 (Soundness & Completeness). EDNK is sound and ground-
complete for DyNetKAT bisimilarity.

Proof. Soundness: if EDNK ⊢ p ≡ q then p ∼ q, follows from Lemma 8 and
Lemma 9. Completeness: if p ∼ q then EDNK ⊢ p ≡ q, is shown as follows.
Without loss of generality, assume p and q are in n.f., according to Lemma 7.
We want to show that p ≡ q ⊕ p and q ≡ p ⊕ q which, by ACI of ⊕ implies
p ≡ q. This reduces to showing that every summand of p is a summand of q
and vice-versa. We first argue that every summand of p is a summand of q. The
reasoning is by structural induction.
Base case p ≜ ⊥ holds by the hypothesis p ∼ q that q ≜ ⊥.
Induction step. Case p ≜ ((α · π); p′) ⊕ p′′: then, (p, σα :: H,H ′)

(σα,σπ)−−−−−→
(p′, H, σπ :: H ′) implies by the hypothesis p ∼ q that (q, σα :: H,H ′)

(σα,σπ)−−−−−→
(q′, H, σπ :: H ′) and p′ ∼ q′. Recall that q is in n.f.; hence, by the shape of the
semantic rules in Figure 4 it holds that q ≜ ((α · π); q′) ⊕ q′′. By the induction
hypothesis, it holds that p′ ≡ q′ hence, (α ·π); p′ is a summand of q as well. Cases
p ≜ (c; p′)⊕ p′′ with c ::= x?n | x!n | rcfgx,n follow in a similar fashion. Hence,
p ≡ q ⊕ p holds. The symmetric case q ≡ p⊕ q follows the same reasoning.

We refer to [7] for the complete proofs and additional details.

4 A Framework for Safety

In this section we provide a language for specifying safety properties for networks
characterized by DyNetKAT, together with a procedure for reasoning about
safety in an equational fashion. Intuitively, safety properties enable specifying
the absence of undesired network behaviours.

Definition 10 (Safety Properties - Syntax) Let A be an alphabet over let-
ters of shape α · π and rcfgx,p, with α and π ranging over complete tests and
assignments, and rcfgx,p ranging over reconfiguration actions. Safety properties
are defined in the following fashion:

act ::= α · π | rcfgx,p (α · π, rcfgx,p ∈ A)
regexp ::= true | act | ¬act | regexp + regexp | regexp · regexp |

(regexp)n (with n ≥ 1)
prop ::= [regexp]false

196 G. Caltais et al.

A safety property specification prop is satisfied whenever the behaviour en-
coded by regexp should not be observed within the network. Regular expressions
regexp are defined with respect to actions act : a flow of shape α · π is the ob-
servable behaviour of a (NetKAT−dup) policy transforming a packet encoded by
α into απ, whereas rcfgx,p corresponds to a reconfiguration step in a network.
Recursively, a sum of regular expressions regexp1 + regexp2 encodes the union
of the two behaviours, a concatenation of regular expressions regexp1 · regexp2

encodes the behaviour of regexp1 followed by the behaviour of regexp2. A prop-
erty of shape [¬a]false, with a ∈ A, states that the system cannot do anything
apart from a as a first step. The property [true]false states that no action can
be observed in the network, whereas [rn]false encodes the repeated application
of r for n times.

Note that true, negated expressions ¬a and repetitions rn are mere syntactic
sugars of equivalent expressions free of these operations. Not surprisingly, “de-
sugaring” (ds(−)) is defined as:

ds(true) ≜ Σa∈Aa

ds(¬a) ≜ Σ
ai ∈ A
ai ̸= a

ai ds(rn) ≜ ds(r · r · . . . · r︸ ︷︷ ︸
n times

)

ds(r1 · r2) ≜ ds(r1) · ds(r2) if r1 · r2 not de-sugared

ds(r1 + r2) ≜ ds(r1) + ds(r2) if r1 + r2 not de-sugared

ds(r) ≜ r [owise]

The complete formal definition of the de-sugaring function is provided in [7].

Definition 11 (Safety Properties - Semantics) Let A be an alphabet over
letters of shape α · π and rcfg(x,p), with α and π ranging over complete tests
and assignments, and rcfg(x,p) ranging over reconfiguration actions. We write
w,w′ for (non-empty) words with letters in A (i.e., w,w′ ∈ A∗) and | w | for
the length of w. We write w′ ⪯ w whenever w′ is a prefix of w (including w).

Let r be a de-sugared regular expression (regexp) as in Definition 10. We call
head normal form (h.n.f.) of r, denoted by hnf(r), the sum of words as above
obtained by left-/right- distributing · over + in r, in the standard fashion. Note
that such a h.n.f. always exists for r. Let Prop stand for the set of all properties
as in Definition 10, in h.n.f.

The semantic map J−K : Prop → DyNetKAT associates to each safety prop-
erty in Prop a DyNetKAT expression as follows. Let Θ be the DyNetKAT policy
(in normal form) encoding all possible behaviours over A: Θ ≜ Σ⊕

a∈A(a;⊥⊕a;Θ).
Then:

J [Σ i ∈ I
wi ∈ A∗

wi]false K ≜ Σ⊕
w ∈ A∗

| w |< M
∀i ∈ I : wi ̸⪯ w

w;⊥ ⊕ Σ⊕
w ∈ A∗

| w |= M
∀i ∈ I : wi ̸⪯ w

(w;⊥ ⊕ w;Θ) (3)

such that M is the length of the longest word wi, with i ∈ I, and w is a
DyNetKAT-compatible term obtained from w where all letters have been sep-
arated by ; and inductively defined in the obvious way. Namely, a ≜ a for a ∈ A

DyNetKAT: An Algebra of Dynamic Networks 197

and a · w ≜ a;w for a ∈ A and w ∈ A∗. The semantic map J−K is defined
following the intuition provided earlier in this section. For instance, as shown
in (3), if none of the sequences of steps wi can be observed in the system, then
the associated DyNetKAT term prevents the immediate execution of all wi.

Typically, safety analysis is reduced to reachability. In our context, a safety
property is violated whenever the network system under analysis displays a (fi-
nite) execution that is not in the behaviour of the property. Thus, the aforemen-
tioned semantic map is based on traces (or words in A∗) and is not sensitive
to branching. This paves the way to reasoning about safety properties in an
equational fashion.

Definition 12 (Safe Network Systems) Let Etr
DNK stand for the equational

axioms in Figure 6, including the additional axiom that enables switching from
the context of bisimilarity to trace equivalence of DyNetKAT policies, namely:
p; (q ⊕ r) ≡ p; q ⊕ p; r. Assume a specification given as the safety formula s
and a network system implemented as the DyNetKAT policy i. We say that the
network is safe whenever the following holds: Etr

DNK ⊢ JsK ⊕ i ≡ JsK. In words:
checking whether i satisfies s reduces to checking whether the trace behaviour of
i is included into that of s.

For an example, consider the firewall in Figure 1 and the corresponding
encoding in Figure 3. Recall that reaching int from ext without observing a
secure connection request is a faulty behaviour. This entails the safety formula
sn defined as [(¬rcfgsecConReq,1)

n · (α · π)]false, for n ∈ N, α ≜ (port = ext) and

π ≜ (port ← int). Therefore, checking whether the network is safe reduces to
checking, for all n ∈ N: Etr

DNK ⊢ JsnK⊕ Init ≡ JsnK. Note that, for a fixed n, the
verification procedure resembles bounded model checking [5].

5 Implementation

In this section, we describe our implementation for formal reasoning about dy-
namic networks. Our prototype tool, called DyNetiKAT (available at https:
//github.com/hcantunc/DyNetiKAT) is based on Maude [8], the NetKAT deci-
sion procedure [10], and Python [19] as a glue language. Our modular extension
of NetKAT allows for reusing the NetKAT tools in our framework. In our pro-
totype, we focus on checking reachability and waypointing in a dynamic setting.
We build upon the methods for checking reachability and waypointing properties
in NetKAT [3]. For a reminder, in NetKAT, reachability and waypointing prop-
erties are characterised as follows: for reachability properties, an egress point out
is reachable from an ingress point in, in the context of a switch policy p and
topology t, whenever the following NetKAT equivalence holds: in·(p·t)∗ ·out ̸≡ 0.
For waypointing properties, an intermediate point w between in and out is con-
sidered a waypoint from in to out if all the packets from in to out go through
w. Such a property is satisfied if the following equivalence holds:

198 G. Caltais et al.

https://github.com/hcantunc/DyNetiKAT
https://github.com/hcantunc/DyNetiKAT

in · (p · t)∗ · out+ in · (¬out · p · t)∗ · w · (¬in · p · t)∗ · out
≡ in · (¬out · p · t)∗ · w · (¬in · p · t)∗ · out

In order to utilise the NetKAT decision procedure for property checking we
represent the properties given as regular expressions (as described in Section 4).
To this end, we introduced the operators head(D), and tail(D,R), where D is
a DyNetKAT term and R is a set of terms of shape rcfgX,N . Intuitively, the
operator head(D) returns a NetKAT policy representing the current configu-
ration in D, and tail(D,R) returns a DyNetKAT policy which is the sum of
policies in D that appear after the synchronisation events in R. We utilise these
operators as follows: for a given DyNetKAT term we apply our equational rea-
soning framework to unfold the expression and rewrite it into the normal form.
Then, we extract the desired configurations by using the head and tail opera-
tors. After this step, the resulting expression is a NetKAT term and we use the
NetKAT decision procedure for checking properties. For example, consider the
safety property [(true)n · (α · π)]false as in Definition 10, and a network SDN .
Note that for a given complete assignments, there exists a corresponding com-
plete test with the same values, e.g., the corresponding complete test for the
complete assignment f0 ← v0 . . . fn ← vn is f0 = v0 . . . fn = vn. Henceforth,
we write απ to represent the corresponding complete tests of π. The property
[(true)n · (α · π)]false can be encoded in the style of NetKAT as follows:

α · head(πn(SDN)) · απ ≡ 0 (4)

α · head(tail(πn(SDN), R)) · απ ≡ 0 (5)

where R is the set of all synchronisation events in the network and πn(−) is the
projection operator equationally defined in Figure 6. In our technical report [7]
we provide the corresponding correctness specification of the stateful example
discussed in Section 1. Note that in practice the parameter n in πn is a fixed value
specified by the user. Intuitively, (4) expresses that the initial configuration of
the network is not able to transform the packets satisfying the predicate α such
that they satisfy the predicate απ and (5) expresses that this transformation
is still not possible in the configurations after any sequence of synchronisation
events. Formally, the operators head and tail are defined as follows:

head(⊥) = 0 tail(⊥, R) = ⊥
head(N ;D) = N + head(D) tail(N ;D,R) = tail(D,R)

head(D ⊕ Q) = head(D) + head(Q) tail(D ⊕ Q,R) = tail(D,R) ⊕ tail(Q,R)

head(rcfgX,N ;D) = 0 tail(rcfgX,N ;D,R) = D ⊕ tail(D,R) if rcfgX,Z ∈ R

tail(rcfgX,N ;D,R) = ⊥ if rcfgX,N ̸∈ R

Note that we assume the DyNetKAT terms given as input to the operators
head and tail do not contain terms of shape x?q and x!q. This can be ensured
by applying the restriction operator δ on the input terms.

Observe that the safety properties of Definition 10 are designed to capture
unsafe flows. Similarly, one can also define the syntax ⟨regexp⟩true to express
that a certain safe flow is possible and reason about it. For an example, consider
the stateful firewall example and the property ⟨(rcfgsecConReq,1)

n · (α · π)⟩true

DyNetKAT: An Algebra of Dynamic Networks 199

A1 A2 A3 A4 A5 A6 A7 A8

C1 C2 C3 C4

T1 T2 T3 T4 T5 T6 T7 T8

Aggregation

Core

Top-of-Rack
Pod 1 Pod 2 Pod 3 Pod 4

Fig. 7: A FatTree Topology

where α ≜ (port = ext) and π ≜ (port ← int). This property expresses that the
flow from port ext to port int is possible after the event rcfgsecConReq,1. This
property can be encoded in the NetKAT style as α·head(tail(πn(Init), R))·απ ̸≡
0 where R = {rcfgsecConReq,1}.

6 Experimental Evaluation

In this section we evaluate the applicability of our implementation based on a
FatTree [22] topology case. FatTrees are hierarchical topologies commonly used
in data centers. Figure 7 illustrates a FatTree with 3 levels: core, aggregation
and top-of-rack (ToR). The switches at each level contain a number of redundant
links to the upper level. The groups of ToR switches and their corresponding
aggregation switches are called pods. For our experiments, we generated 6 Fat-
Trees that grow in size and achieve a maximum size of 1344 switches. For these
networks we computed a shortest path forwarding policy between all pairs of
ToR switches. The number of switches in the ToR layer is set to k3/4 where k
is the number of pods in the network.

We check dynamic properties on these networks and assess the time per-
formance of our tool. We consider a scenario involving two ToR switches Ta

and Tb that reside in different pods. Initially, all packets from Ta to Tb traverse
through a firewall Ax in the aggregation layer which filters SSH packets. The
controller then decides to shift the firewall from Ax to another switch Ax′ in the
aggregation layer. For this purpose, the controller updates the corresponding ag-
gregation and core layer switches resulting in 4 updates. The checked properties
are as follows: (i) At any point while the controller is performing the updates,
non-SSH packets from Ta can always reach Tb. (ii) At any point while the con-
troller is performing the updates, SSH packets from Ta can never reach Tb. (iii)
After all the updates are performed, Ax′ is a waypoint between Ta and Tb.

We conducted the experiments on an Ubuntu 20.04 LTS OS with 16 core
2.4GHz Intel i9-9980HK processor and 64 GB RAM. The results are depicted in
Figure 8. We report the preprocessing time, the time taken for checking proper-
ties (i), (ii), and (iii) individually (referred to as Reachability-I, Reachability-II,
and Waypointing, respectively), and also time taken to check all the properties
in parallel (referred to as All Properties). The reported times are the average of
10 runs.

200 G. Caltais et al.

The results indicate that preprocessing step is a non-negligible factor that
contributes to overall time. However, preprocessing is independent of the prop-
erty that is being checked and this procedure only needs to be done once for
a given network. After the preprocessing step, the individual properties can be
checked in less than 2 seconds for networks with less than 100 switches. For
larger networks with sizes up to 931 and 1344 switches, the individual properties
can be checked in a maximum of 5 minutes and 11 minutes, respectively. Check-
ing for the property (iii) takes more than twice as much time as checking for
the properties (i) and (ii). In the experiments where we check all properties in
parallel, we allocated one thread for each property. In this setting, checking all
properties introduced 24% overhead on average. After preprocessing, on average
87% of the running times are spent in the NetKAT decision procedure and this
step becomes the bottleneck in analysing larger networks.

Fig. 8: Results of FatTree experiments. Light-coloured areas indicate the time spent
in the NetKAT tool and solid coloured areas indicate the time spent in our tool.

7 Conclusions

We develop the language DyNetKAT for modelling and reasoning about dy-
namic reconfigurations in Software Defined Networks. Our language builds upon
the concepts, syntax, and semantics of NetKAT and hence, provides a modular
extension and makes it possible to reuse the theory and tools of NetKAT. We
define a formal semantics for our language and provide a sound and ground-
complete axiomatisation. We exploit our axiomatisation to analyse reachability
properties of dynamic networks and show that our approach scales to networks
with hundreds of switches. We assume that each data plane packet sees one set
of flow tables throughout their flight in the network [17]. We plan to investigate
small-step semantics in which the control plane updates can have a finer inter-
leaving with in-flight packet as future work. Another natural direction for future
work is devising compilation schemes enabling the translation of DyNetKAT
programs into real running code.

DyNetKAT: An Algebra of Dynamic Networks 201

References

1. Luca Aceto, Bard Bloom, and Frits W. Vaandrager. Turning SOS rules into equa-
tions. Inf. Comput., 111(1):1–52, 1994. doi:10.1006/inco.1994.1040.

2. L. Aceto, W. J. Fokkink, and C. Verhoef. Conservative extension in structural
operational semantics. Bull. EATCS, 69:110–132, 1999.

3. Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetKAT: semantic foundations for
networks. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, pages 113–126. ACM, 2014. doi:
10.1145/2535838.2535862.

4. Jos C. M. Baeten and W. P. Weijland. Process algebra, volume 18 of Cambridge
tracts in theoretical computer science. Cambridge University Press, 1990.

5. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

6. Ryan Beckett, Michael Greenberg, and David Walker. Temporal netkat. In
Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 386–401. ACM, 2016.
doi:10.1145/2908080.2908108.

7. G. Caltais, H. Hojjat, M. R. Mousavi, and H. C. Tunc. DyNetKAT: An algebra of
dynamic networks. CoRR, abs/2102.10035, 2021.

8. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and Carolyn L. Talcott. Full Maude: Extending Core Maude.
In Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors, All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science, pages 559–597.
Springer, 2007. doi:10.1007/978-3-540-71999-1_18.

9. Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-
dra Silva. Probabilistic NetKAT. In Peter Thiemann, editor, Programming Lan-
guages and Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9632 of Lecture Notes in Computer Science, pages 282–309. Springer, 2016.
doi:10.1007/978-3-662-49498-1_12.

10. Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-
son. A Coalgebraic Decision Procedure for NetKAT. In Sriram K. Rajamani and
David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 343–355. ACM, 2015. doi:10.1145/2676726.2677011.

11. Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi.
Concurrent Kleene Algebra with Observations: from Hypotheses to Complete-
ness. CoRR, abs/2002.09682, 2020. URL: https://arxiv.org/abs/2002.09682, arXiv:
2002.09682.

12. Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russell J. Clark. Kinetic: Verifiable dynamic network control. In 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 15, Oakland,
CA, USA, May 4-6, 2015, pages 59–72. USENIX Association, 2015. URL: https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim.

202 G. Caltais et al.

https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1007/978-3-540-71999-1_18
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://arxiv.org/abs/2002.09682
http://arxiv.org/abs/2002.09682
http://arxiv.org/abs/2002.09682
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim

13. Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerný. Event-driven
network programming. In Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages
369–385. ACM, 2016. doi:10.1145/2908080.2908097.

14. Peter D. Mosses. Modular structural operational semantics. J. Log. Algebraic
Methods Program. 60-61: 195-228, 2004. doi.org/10.1016/j.jlap.2004.03.008

15. Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. Notions of
bisimulation and congruence formats for SOS with data. Information and Compu-
tation, 200(1):107 – 147, 2005. doi.org/10.1016/j.ic.2005.03.002.

16. Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-
murthi. Tierless programming and reasoning for software-defined networks. In
Ratul Mahajan and Ion Stoica, editors, Proceedings of the 11th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2014, Seattle,
WA, USA, April 2-4, 2014, pages 519–531. USENIX Association, 2014. URL:
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson.

17. Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Lars Eggert, Jörg Ott, Venkata N. Padman-
abhan, and George Varghese, editors, ACM SIGCOMM 2012 Conference, SIG-
COMM ’12, Helsinki, Finland - August 13 - 17, 2012, pages 323–334. ACM, 2012.
doi:10.1145/2342356.2342427.

18. Alexandra Silva. Models of Concurrent Kleene Algebra. In Elvira Albert and
Laura Kovács, editors, LPAR 2020: 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27,
2020, volume 73 of EPiC Series in Computing, page 516. EasyChair, 2020. URL:
https://easychair.org/publications/paper/6C8R.

19. Guido van Rossum. Python programming language. In Jeff Chase and Srinivasan
Seshan, editors, Proceedings of the 2007 USENIX Annual Technical Conference,
Santa Clara, CA, USA, June 17-22, 2007. USENIX, 2007.

20. Alexander Vandenbroucke and Tom Schrijvers. Pλωnk: functional probabilistic
netkat. Proc. ACM Program. Lang., 4(POPL):39:1–39:27, 2020. doi:10.1145/

3371107.
21. Jana Wagemaker, Paul Brunet, Simon Docherty, Tobias Kappé, Jurriaan Rot, and

Alexandra Silva. Partially Observable Concurrent Kleene Algebra. In Igor Konnov
and Laura Kovács, editors, 31st International Conference on Concurrency The-
ory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference),
volume 171 of LIPIcs, pages 20:1–20:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.20.

22. Al-Fares, Mohammad and Loukissas, Alexander and Vahdat, Amin. A Scalable,
Commodity Data Center Network Architecture. ACM SIGCOMM Comput. Com-
mun. Rev. 38, 4, 63-74, 2008. doi:10.1145/1402946.1402967.

DyNetKAT: An Algebra of Dynamic Networks 203

https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/https://doi.org/10.1016/j.ic.2005.03.002
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://doi.org/10.1145/2342356.2342427
https://easychair.org/publications/paper/6C8R
https://doi.org/10.1145/3371107
https://doi.org/10.1145/3371107
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.1145/1402946.1402967

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

204 G. Caltais et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

http://creativecommons.org/licenses/by/4.0/

A new criterion for M,N -adhesivity,
with an application to hierarchical graphs?

Davide Castelnovo1�, Fabio Gadducci2 , and Marino Miculan1

1 Department of Mathematics, Computer Science and Physics,
University of Udine, Udine, Italy.

davide.castelnovo@uniud.it, marino.miculan@uniud.it
2 Department of Computer Science, University of Pisa, Pisa, Italy.

fabio.gadducci@unipi.it

Abstract. Adhesive categories provide an abstract framework for the
algebraic approach to rewriting theory, where many general results can be
recast and uniformly proved. However, checking that a model satisfies the
adhesivity properties is sometimes far from immediate. In this paper we
present a new criterion giving a sufficient condition for M,N -adhesivity,
a generalisation of the original notion of adhesivity. We apply it to several
existing categories, and in particular to hierarchical graphs, a formalism
that is notoriously difficult to fit in the mould of algebraic approaches to
rewriting and for which various alternative definitions float around.

1 Introduction

The introduction of adhesive categories marked a watershed moment for the alge-
braic approaches to the rewriting of graph-like structures [16,9]. Until then, key
results of the approaches on e.g. parallelism and confluence had to be proven over
and over again for each different formalism at hand, despite the obvious similar-
ity of the procedure. Differently from previous solutions to such problems, as the
one witnessed by the butterfly lemma for graph rewriting [8, Lemma 3.9.1], the
introduction of adhesive categories provided such a disparate set of formalisms
with a common abstract framework where many of these general results could
be recast and uniformly proved once and for all.

Despite the elegance and effectiveness of the framework, proving that a given
category satisfies the conditions for being adhesive can be a daunting task. For
this reason, we look for simpler general criteria implying adhesivity for a class of
categories. Similar criteria have been already provided for the core framework of
adhesive categories; e.g., every elementary topos is adhesive [17], and a category
is (quasi)adhesive if and only if can be suitably embedded in a topos [15,12]. This
covers many useful categories such as sets, graphs, etc.; on the other hand, there
are many categories of interest which are not (quasi)adhesive, such as directed
graphs, posets, and many of their subcategories. In these cases we can try to
prove the more generalM,N -adhesivity for suitableM,N ; however, so far this

? Work supported by the Italian MIUR project PRIN 2017FTXR7S “IT-MaTTerS”.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 205–224, 2022.
https://doi.org/10.1007/978-3-030-99253-8_11

http://orcid.org/0000-0003-0690-3051
http://orcid.org/0000-0003-0755-3444
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_11&domain=pdf

has been achieved only by means of ad hoc arguments. To this end, one of the
main contributions of this paper is a new criterion forM,N -adhesivity, based on
the verification of some properties of functors connecting the category of inter-
est to a family of suitable adhesive categories. This criterion allows us to prove
in a uniform and systematic way some previous results about the adhesivity of
categories built by products, exponents, and comma construction.

Moreover, it is well-known that categorical properties are often prescriptive,
indicating abstractly the presence of some good behaviour of the modelled sys-
tem. Adhesivity is one such property, as it is highly sought after when it comes to
rewriting theories. Thus, our criterion for proving M,N -adhesivity can be seen
also as a “litmus test” for the given category. This is useful in situations that are
not completely settled, and for which different settings have been proposed. An
important example is that of hierarchical graphs, for which we roughly can find
two alternative proposals: on the one hand, algebraic formalisms where the edges
have some algebraic structures, so that the nesting is a side effect of the term
construction; on the other hand, combinatorial approaches where the topology of
a standard graph is enriched by some partial order, either on the nodes or on the
edges, where the order relation indicates the presence of nesting. By applying
our criterion, we can show that the latter approach yields indeed an M,N -
adhesive category, confirming and overcoming the limitations of some previous
approaches to hierarchical graphs [21,23,24], which we briefly recall next.

The more straightforward proposal is by Palacz [24], using a poset of edges
instead of just a set; however, the class of rules has to be restricted in order
to apply the approach, which in any case predates the introduction of adhe-
sive categories. Our work allows to rephrase in terms of adhesive properties and
generalise Palacz’s proposal, dropping his constraint on rules. Another attempt
are Mylonakis and Orejas’ graphs with layers [21], for which M-adhesivity is
proved for a class of monomorphisms in the category of symbolic graphs; how-
ever, nodes between edges at different layers cannot be shared. Padberg [23]
goes for a coalgebraic presentation via a peculiar “superpower set” functor; this
gives immediately M-adhesivity provided that this superpower set functor is
well-behaved with respect to limits. However this approach is rather ad hoc, not
modular and not very natural for actual modelling.

Summarising, the main contributions of this work are: (a) a new general
criterion for assessing M,N -adhesivity; (b) new proofs of M,N -adhesivity for
some relevant categories, systematising previous known proofs; (c) the first proof
that a category of hierarchical graph is M,N -adhesive.

Synopsis. After having recalled some basic notions, in Section 2 we introduce the
new criterion forM,N -adhesivity; using it, we showM,N -adhesivity of several
constructions, such as products and comma categories. In Section 3 we apply
this theory to various example categories, such as directed (acyclic) graphs, trees
and term graphs. We show also the adhesivity of several categories obtained by
combining adhesive ones, and in particular of the elusive category of hierarchical
graphs. Conclusions and directions for future work are in Section 4. An extended
version of this paper is available at [6].

206 D. Castelnovo, F. Gadducci, M. Miculan

2 M,N -adhesivity via creation of (co)limits

In this section we recall some definitions and results about M,N -adhesive cat-
egories and provide a new criterion to prove this property.

2.1 M,N -adhesive categories

Intuitively, an adhesive category is one in which pushouts of monomorphisms
exist and “behave more or less as they do in the category of sets” [16]. Formally,
we require pushouts of monomorphisms to be Van Kampen colimits.

Definition 2.1. A Van Kampen square in a category A is a pushout square

A B

DC

n

g

m f

such that for any cube as follows, where the back faces are pullbacks,

C

A

B

D

A′

B′C ′

D′

n′

bc
d

m′

f ′

g′

n

g f

a

m

the top face is a pushout if and only if the front faces are pullbacks.
Pushout squares which enjoy the “if” of this condition are called stable.

Given a category A we will denote by Mor(A),Mono(A),Reg(A) respectively
the classes of morphisms, monomorphisms and regular monomorphisms of A.

Definition 2.2. Let A be a category and A ⊆ Mor(A). Then we say that A is

– stable under pushouts if for every pushout square as aside,
if m ∈ A then n ∈ A;
stable under pullbacks if for every pullback square as aside,
if n ∈ A then m ∈ A;

A B

DC

f

g

m n

– closed under composition if g, f ∈ A implies g ◦ f ∈ A whenever g and f
are composable;

– closed under B-decomposition (where B is another subclass of Mor(A)) if
g ◦ f ∈ A and g ∈ B implies f ∈ A;

– closed under decomposition if it is closed under A-decomposition.

Remark 2.1. Clearly, “decomposition” corresponds to “left cancellation”, but we
prefer to stick to the name commonly used in literature (see e.g. [14]).

A new criterion for M,N -adhesivity 207

We are now ready to give the definition of M,N -adhesive category [14,25].

Definition 2.3. Let A be a category and M⊆ Mono(A), N ⊆ Mor(A) where

(i) M and N contain all isomorphisms and are closed under composition and
decomposition;

(ii) N is closed under M-decomposition;
(iii) M and N are stable under pullbacks and pushouts.

Then we say that A is M,N -adhesive if

(a) every cospan C
g−→ D

m←− B with m ∈ M can be completed to a pullback
(such pullbacks will be called M-pullbacks);

(b) every span C
m←− A

n−→ B with m ∈ M and n ∈ N can be completed to a
pushout; such pushouts will be called M,N -pushouts;

(c) M,N -pushouts are Van Kampen squares.

Remark 2.2. M-adhesivity as defined in [2] coincides withM,Mor(A)-adhesivity,
while adhesivity and quasiadhesivity [16,12] coincide with Mono(A)-adhesivity
and Reg(A)-adhesivity, respectively. Notice that, in the M-adhesive case, sta-
bility under pushouts of M derives from properties (a)–(c) of Definition 2.3,
while closure under decomposition follows from stability under pullbacks in any
category, so there is no need to prove it independently.

Other authors have introduced weaker notions of M-adhesivity; see, e.g.,
[9,11,28], where our M-adhesive categories are called adhesive HLR categories.

In general, proving that a given category is M,N -adhesive by verifying the
conditions of Definition 2.3 may be long and tedious; hence, we seek criteria
which are sufficient for adhesivity, and simpler to prove. A prominent example
is the following result due to Lack and Sobociński.

Theorem 2.1 ([17], Thm. 26). Any elementary topos is an adhesive category.

In particular the category Set of sets and any presheaf category are adhesive.
However, there are many important categories for (graph) rewriting which are
not toposes, hence the need for more general criteria.

2.2 A new criterion for M,N -adhesivity

In this section we present our main result, i.e., that M,N -adhesivity is guaran-
teed by the existence of a family of functors with sufficiently nice properties. We
will adapt some definitions from [1].

Definition 2.4. Let I : I→ C be a diagram and J a set. We say that a family
F = {Fj}j∈J of functors Fj : C→ Dj

1. jointly preserves (co)limits of I if given a (co)limiting (co)cone (L, li)i∈I for
I, every (Fj(L), Fj(li))i∈I is (co)limiting for Fj ◦ I;

2. jointly reflects (co)limits of I if a (co)cone (L, li)i∈I is (co)limiting for I
whenever (Fj(L), Fj(li))i∈I is (co)limiting for Fj ◦ I for every j ∈ J ;

208 D. Castelnovo, F. Gadducci, M. Miculan

3. jointly lifts (co)limits of I if given a (co)limiting (co)cone (Lj , lj,i)i∈I for
every Fj ◦ I, there exists a (co)limiting (co)cone (L, li)i∈I for I such that
(Fj(L), Fj(li))i∈I = (Lj , lj,i)i∈I for every j ∈ J ;

4. jointly creates (co)limits of I if Fj ◦ I has a (co)limit for every j ∈ J , I has
a (co)limit and F jointly preserves and reflects it.

Remark 2.3. Joint preservation, reflection, lifting or creation of (co)limits of F =
{Fj : A → Bj}j∈J is equivalent to the usual preservation, reflection, lifting or
creation of (co)limits for the functor A →

∏
j∈J Bj induced by F . Notice that

our notion of creation follows [22], which is more lax than, e.g., [19, Def. V.1].

Theorem 2.2. Let A be a category, M ⊂ Mono(A), N ⊂ Mor(A) satisfying
conditions (i)–(iii) of Definition 2.3, and F a non empty family of functors
Fj : A→ Bj such that Bj is Mj ,Nj-adhesive.

1. If every Fj preserves pullbacks, Fj(M) ⊂Mj and Fj(N) ⊂ Nj for every j ∈
J , F jointly preserves M,N -pushouts, and jointly reflects pushout squares

Fj(A) Fj(B)

Fj(D)Fj(C)

Fj(f)

Fj(g)
Fj(m) Fj(n)

with m,n ∈M and f ∈ N , then M,N -pushouts in A are stable.
Moreover if in addition F jointly reflects M-pullbacks and N -pullbacks then
M,N -pushouts are Van Kampen squares.

2. If F satisfies the assumptions of the previous points and jointly creates both
M-pullbacks and N -pullbacks, then A is M,N -adhesive.

3. If F jointly creates all pushouts and all pullbacks, then A is MF ,NF -
adhesive, where

MF := {m ∈ Mor(A) | Fj(m) ∈Mj for every j ∈ J}
NF := {n ∈ Mor(A) | Fj(n) ∈ Nj for every j ∈ J}

Proof. (1.) Take a cube in which the bottom face is an M,N -pushout and
all the vertical faces are pullbacks (below, left). Applying any Fj ∈ F we get
another cube in Bj (below, right) in which the bottom face is anMj ,Nj-pushout
(because Fj(m) ∈Mj and Fj(n) ∈ Nj) and the vertical faces are pullbacks, thus
the top face of the second cube is a pushout for every j ∈ J

C

A

B

D

A′

B′C ′

D′

n′

bc
d

m′

f ′

g′

n

g f

a

m

Fj(C)

Fj(A)

Fj(B)

Fj(D)

Fj(A
′)

Fj(B
′)Fj(C

′)

Fj(D
′)

Fj(n
′)

Fj(b)Fj(c)
Fj(d)

Fj(m
′)

Fj(f
′)

Fj(g
′)

Fj(n)

Fj(g) Fj(f)

Fj(a)

Fj(m)

A new criterion for M,N -adhesivity 209

Now m′, f ′ ∈ M and n′ ∈ N since they are the pullbacks of m, f and n and
thus we can conclude.

Suppose now that F jointly reflects M-pullbacks and N -pullbacks, we have
to show that the front faces of the first cube above are pullbacks if the top
one is a pushout. In the second cube, the bottom and top face are Mj ,Nj-
pushouts and the back faces are pullbacks, then the front faces are pullbacks
too by Mj ,Nj-adhesivity. Now, notice that f ∈ M and g ∈ N (since M and
N are closed under pushouts) and thus we can conclude since F jointly reflects
pullbacks along arrows in M or in N .
(2.) Let us show properties (a), (b), (c) defining M,N -adhesivity.

(a) Given a cospan C
g−→ D

m←− B in A with m ∈ M we can apply Fj ∈ F to

it and get Fj(C)
Fj(g)−−−→ Fj(D)

Fj(m)←−−−− Fj(B) which is a cospan in Bj with
Fj(g) ∈ Mj , thus, by hypothesis it has a limiting cone (Pj , pFj(B), pFj(C))
in Bj . Since F jointly creates M-pullbacks there exists a limiting cone

(P, pB , pC) for the cospan C
g−→ D

m←− B.

(b) Analogously: for every span C
m←− A

n−→ B in A with m ∈ M and n ∈ N ,

we have Fj(C)
Fj(m)←−−−− Fj(A)

Fj(n)−−−→ Fj(B) in each Bj with Fj(m) ∈Mj and
Fj(n) ∈ Nj and thus there exists a colimiting cocone (Qj , qFj(B), qFj(C)) in
Bj . Now we can conclude because F jointly creates M,N -pushouts.

(c) This follows at once by the second half of the previous point.

(3.) By the previous point it is enough to show that MF and NF satisfy condi-
tions (i)–(iii) of Definition 2.3.

(i) If f ∈ Mor(A) is an isomorphism then so is Fj(f) for every Fj ∈ F . Thus
Fj(f) belongs to Mj and Nj for every j ∈ J , implying f is in MF and in
NF . The parts regarding composition and decomposition follow immediately
by functoriality of each Fj ∈ F .

(ii) Suppose that g ◦ f ∈ NF , with g ∈ MF then for every j ∈ F Fj(g ◦ f) =
Fj(g) ◦ Fj(f) ∈ Nj and Fj(g) ∈Mj , thus Fj(f) ∈ Nj and so f ∈ NF .

(iii) Take a square

A B

DC

f

g

m n

and suppose that it is a pullback with n ∈ MF (NF), then applying any
Fj ∈ F we get that Fj(m) is the pullback of Fj(n) along Fj(g), since Fj(n) is
in Mj (in Nj), which implies that Fj(m) ∈Mj (Nj). This is true for every
j ∈ J , from which the thesis follows. Stability under pushouts is proved
applying the same argument to m. ut

Applying the previous theorem to the families given by, respectively, pro-
jections, evaluations and the inclusion we get immediately the following three
corollaries (cfr. also [9, Thm. 4.15]).

210 D. Castelnovo, F. Gadducci, M. Miculan

Corollary 2.1. Let {A}i∈I be a family of categories such that each Ai isMi,Ni-
adhesive. Then the product category

∏
i∈I Ai is

∏
i∈IMi,

∏
i∈I Ni-adhesive, where∏

i∈I
Mi := {(mi)i∈I ∈ Mor(

∏
i∈I

Ai) | mi ∈Mi for every i ∈ I}∏
i∈I
Ni := {(ni)i∈I ∈ Mor(

∏
i∈I

Ai) | ni ∈ Ni for every i ∈ I}

Corollary 2.2. Let A be anM,N -adhesive category. Then for every other cat-
egory C, the category of functors AC is MC,NC-adhesive, where

MC := {η ∈ Mor(AC) | ηC ∈M for every object C of C}
NC := {η ∈ Mor(AC) | ηC ∈ N for every object C of C}

Corollary 2.3. Let A be a full subcategory of an M,N -adhesive category B
and M′ ⊂ Mono(A), N ′ ⊂ Mor(A) satisfying the first three conditions of Def-
inition 2.3 such that M′ ⊂ M, N ′ ⊂ N and A is closed in B under pullbacks
and M′,N ′-pushouts. Then A is M′,N ′-adhesive.

2.3 Comma categories

In this section we show how to apply Theorem 2.2 to the comma construction
[19] in order to guarantee some adhesivity properties under suitable hypotheses.

Definition 2.5. For any two functors L : A → C, R : B → C, the comma
category L↓R is the category in which

– objects are triples (A,B, f) with A ∈ A, B ∈ B, and f : L(A)→ R(B);
– a morphism (A,B, f)→ (A′, B′, g) is a pair (h, k) with h : A→ A′, k : B →
B′ such that the following diagram commutes

L(A) L(A′)

R(C ′)R(C)

L(h)

R(k)

f g

We have two obvious forgetful functors

UL : L↓R→ A

(A′, B′, g)

(h, k)

−→

(A,B, f)

7−→

7−→

A′

−→ h
A

UR : L↓R→ B

(A′, B′, g)

(h, k)

−→

(A,B, f)

7−→

7−→

B′

−→ k
B

Example 2.1. Graph is equivalent to the comma category made from the iden-
tity functor on Set and the product functor sending X to X ×X.

A new criterion for M,N -adhesivity 211

We have a classic result relating limits and colimits in the comma category
with those preserved by L or R.

Lemma 2.1. Let I : I → L↓R be a diagram such that L preserves the colimit
(if it exists) of UL ◦ I. Then the family {UL, UR} jointly creates colimits of I.

Corollary 2.4. The family {UL, UR} jointly creates limits along every diagram
I : I→ L↓R such that R preserves the limit of UR ◦ I.

Proof. Apply the previous lemma to Rop ↓Lop which is equivalent to (L↓R)op.

We are now able to deduce the following result from Theorem 2.2.

Theorem 2.3. Let A and B be respectivelyM,N -adhesive andM′,N ′-adhesive
categories, L : A→ C a functor that preserves M,N -pushouts, and R : B→ C
a pullback preserving one. Then L↓R is M↓M′,N ↓N ′-adhesive, where

M↓M′ := {(h, k) ∈ Mor(L↓R) | h ∈M, k ∈M′}
N ↓N := {(h, k) ∈ Mor(L↓R) | h ∈ N , k ∈ N ′}.

3 Some paradigmatic examples

In this section we apply the results provided in Section 2, to some important
categories, such as directed (acyclic) graphs, hierarchical (hyper)graphs, directed
(acyclic) hypergraphs, and term graphs. These examples have been chosen for
their importance in graph rewriting, and because we can recover their M,N -
adhesivity in a uniform and systematic way. In fact, in the case of hierarchical
(hyper)graphs we give the first proof of M,N -adhesivity, to our knowledge.

3.1 Directed (acyclic) graphs

Among visual formalisms, directed (also known as “simple”) graphs represent
one of the most-used paradigms, since they adhere to the classical view of graphs
as relations included in the cartesian product of vertices. It is also well-known
that directed graphs are not quasiadhesive [15], not even in their acyclic variant.
In this section we are going to exploit Corollary 2.3 to show that these categories
of (acyclic) graphs have nevertheless adhesivity properties.

Definition 3.1. A directed multigraph is a 4-tuple (E, V, s, t) where E and V
are sets, called the set of edges and nodes respectively, and s, t : E → V are
functions, called source and target. An edge e is between v and w if s(e) = v and
t(e) = w, E(v, w) is the set of edges between v and w. A morphism (E, V, s, t)→
(F,W, s′, t′) is a pair (f, g) of functions f : E → F , g : V → W such that the
following diagrams commute

E V

WF

s

s′

f g
E V

WF

t

t′

f g

212 D. Castelnovo, F. Gadducci, M. Miculan

We will denote by Graph the category so defined. A directed graph is a directed
multigraph in which there is at most one edge between two nodes, DGraph is
the full subcategory of Graph given by directed graphs.

A path [ei]
n
i=1 in a directed multigraph is a finite list of edges such that

t(ei) = s(ei+1) for all 1 ≤ i ≤ n− 1. A path is called a cycle if s(e1) = t(en). A
directed acyclic graph is a directed graph without cycles, directed acyclic graphs
form a full subcategory DAG of DGraph and Graph.

Remark 3.1. Graph is equivalent to the category of presheaves on • ⇒ •, the
category with just two objects and only two parallel arrows between them (be-
sides the identities), thus it is a topos and as such adhesive. Notice that this also
implies that limits and colimits are computed component-wise and that an arrow
in Graph is mono if and only if both its underlying functions are injective.

Remark 3.2. Notice that if (f, g) : (E, V, s, t) → (F,W, s′, t′) is an arrow in
DGraph with f injective, then g is injective too.

We will state now two categorical properties of DGraph that will be useful
in the following.

Proposition 3.1. The following properties hold

1. the inclusion functor I : DGraph→ Graph has a left adjoint L : Graph→
DGraph which sends a graph (V,E, s, t) to the graph on the same vertices
but in which edges with the same source and target are identified;

2. an arrow (f, g) : (E, V, s, t)→ (F,W, s′, t′) of DGraph is a regular monomor-
phism if and only if f is injective and E(v1, v2) is non empty whenever
F (f(v1), f(v2)) 6= ∅.

Remark 3.3. Notice that, since L does not modify the vertices part of a graph,
Remark 3.2 implies that L preserves monomorphisms.

Example 3.1. In [15] it is shown that DGraph is not quasiadhesive. Take the
cube

a1 a2 a

aa1 a2

b b

a1 a2 a

aa1 a2

b b

A new criterion for M,N -adhesivity 213

By the results of Proposition 3.1 the top and bottom faces are pushouts along
regular monos and the back faces are pullbacks, but the front one is not, contra-
dicting the Van Kampen property. The same example shows that even DAG is
not quasiadhesive.

Definition 3.2. A monomorphism (f, g) : (E, V, s, t)→ (F,W, s′, t′) in Graph
is said to be downward closed if, for all e ∈ F , e ∈ f(E) whenever t′(e) ∈ g(V)
(in particular this implies that s′(e) ∈ g(V) too). We denote by dclosed, dclosedd
and dclosedda the classes of downward closed morphisms in Graph, DGraph
and DAG respectively.

Remark 3.4. The functor L of Proposition 3.1 sends downward closed morphisms
to downward closed morphisms.

Remark 3.5. By Proposition 3.1 it is clear that any downward closed morphism
is regular. The vice-versa does not hold: a counterexample is given by

b

a

b

Lemma 3.1. DGraph and DAG are closed in Graph under pullbacks. More-
over, DGraph is closed under Reg(DGraph),Mono(DGraph)-pushouts and
DAG under dclosedda,Mono(DAG)-pushouts.

Theorem 3.1. The category DGraph is Reg(DGraph),Mono(DGraph)- and
Mono(DGraph),Reg(DGraph)-adhesive, while DAG is dclosedda,Mono(DAG)-
adhesive.

3.2 Tree Orders

In this section we present trees as partial orders and show that the resulting
category is actually a topos of presheaves, hence adhesive. This fact will be
exploited in Section 3.3 to construct a category of hierarchical graphs, where the
hierarchy between edges is modelled by trees.

Definition 3.3. A tree order is a partial order (E,≤) such that for every e ∈ E,
↓e is a finite set totally ordered by the restriction of ≤. Since ↓e is a finite chain
we can define the immediate predecessor function

iE : E → E t {∗} e 7→

{
max(↓er {e}) ↓e 6= {e}
∗ ↓e = {e}

Let i0E be the inclusion E → E t {∗}; then, for any k ∈ N+, the kth predecessor
function ikE : E → E t {∗} is defined by induction as follows:

e 7→

{
iE(ik−1E (e)) ik−1E (e) ∈ E
∗ ik−1E (e) = ∗

214 D. Castelnovo, F. Gadducci, M. Miculan

Let f : (E,≤) → (F,≤) be a monotone map and f∗ : E t {∗} → F t {∗}
be its extension sending ∗ to ∗. We say that f is strict if the following diagram
commutes

E E t {∗}

F t {∗}F

iE

iF

f f∗

We define the category Tree as the subcategory of Poset given by tree orders
and strict morphisms.

Example 3.2. A strict morphisms is simply a monotone function that preserves
immediate predecessors (and thus every predecessor). For instance the function
{0} → {0, 1} sending 0 to 1 and where we endow the codomain with the order
0 ≤ 1, is not a strict morphism.

Remark 3.6. Clearly i1E = iE and it holds that ikE(e) = ∗ if and only if |↓e| ≤ k.
In this case an easy induction shows that

∣∣↓ikE(e)
∣∣ = |↓e| − k.

Remark 3.7. We have an obvious forgetful functor

|−| : Tree→ Set

(F,≤)

f

−→

(E,≤)

7−→

7−→

F

−→ f
E

Remark 3.8. Let (E,≤) be an object of Tree and ω the first infinite ordinal,

then we can define its associated presheaf Ê : ωop → Set sending n to the set

{e ∈ E | |↓er {e}| = n}

If n ≤ m in ω, we can define a function

ιEn,m : Ê(m)→ Ê(n) e 7→ im−nE (e)

which is well defined since |↓e| > m− n so∣∣↓im−nE (e)
∣∣ = |↓e| −m+ n = m+ 1−m+ n = n+ 1

Notice that if m = n, im−nE (e) is the identity, while for any k ≤ n ≤ m we have

ιEk,n(ιEn,m(e)) = in−kE (im−nE (e)) = in−k+m−nE (e) = im−kE (e) = ιEm−k(e)

so Ê is really a presheaf on ω.

Theorem 3.2. There exists an equivalence of categories (̂−) : Tree → Setω
op

sending (E,≤) to Ê.

Corollary 3.1. Tree is adhesive and the forgetful functor |−| : Tree → Set
preserves all colimits.

A new criterion for M,N -adhesivity 215

3.3 Various kinds of hierarchical graphs

In this section we construct several categories of hierarchical graphs combining
sufficiently adhesive categories of preorders or graphs (modelling the hierarchy
between the edges) and the wanted structure on the nodes. For each of them
we can readily prove suitable adhesivity properties, leveraging the modularity
provided by Theorem 2.2. Besides hypergraphs and interfaces, this methodology
can be applied to other settings such as Petri nets (see [10]).

Hierarchical graphs We can use trees to produce a category of hierarchical graphs
[24], which, in addition, can be equipped with an interface, modelled by a func-
tion into the set of nodes.

Definition 3.4. The category HIGraph of hierarchical graphs with interface
has as objects 6-tuples ((E,≤), V,X, f, s, t) where (E,≤) is a tree order, f is a
function X → V and s, t are functions E → V , and as arrows triples (h, k, l) :
((E,≤), V,X, f, s, t) → ((F,≤),W, Y, g, s′, t′) with h : (E,≤) → (F,≤) in Tree,
k : V →W and l : X → Y in Set such that the following squares commute

E V

WF

s

s′
h k

E V

WF

t

t′
h k

X V

WY

f

g
l k

We can realise HIGRaph as a comma category: as L we take the functor |−| :
Tree→ Set of Remark 3.7, while as R we take the composition of cod : Set2 →
Set, sending an arrow to its codomain, with the functor Set→ Set that sends
a set X to X × X. Notice that cod preserves limits since it coincides with the
forgetful functor idSet ↓ idSet, so we can apply Theorem 2.3 to get the following.

Theorem 3.3. HIGraph is an adhesive category.

The next step is to move to hypergraphs, using the Kleene star (−)? : Set→
Set (the monoid monad) instead of the product functor. This step is not trivial:
it relies on the fact that the monoid monad preserves all connected limits (such
monads are called cartesian), which in turn rests upon the fact that the theory
of monoids is a strongly regular theory (see [5, Sec. 3] and [18, Ch.4] for details).

Hierarchical hypergraphs A variation on the previous example is obtained by
allowing an edge to be mapped to an arbitrary subset of nodes. In this way, we
obtain a category of hypergraphs whose edges form a tree order, corresponding
to Milner’s (pure) bigraphs [20], with possibly infinite edges3.

Definition 3.5. The category HHGraph of hierarchical hypergraphs with in-
terface has as objects 5-tuples ((E,≤), V,X, f, e) where (E,≤) is a tree order
and f : X → V , e : E → V ? two functions; arrows are triples (h, k, l) :
((E,≤), V,X, f, e) → ((F,≤),W, Y, g, e′) with h : (E,≤) → (F,≤) in Tree,
k : V →W and l : X → Y in Set such that the following squares commute

3 In bigraph terminology, “controls” and “edges” correspond to our edges and nodes.

216 D. Castelnovo, F. Gadducci, M. Miculan

b

a

y

x

c

ba

y

x

Fig. 1. A DAG-hypergraph (left) and a DGraph-hypergraph corresponding to the
CCS process P = a(x).b(xy).P (right). Relation between edges is depicted in red.

E V ∗

W ∗F

e

e′

h k∗
X V

WY

f

g

l k

Even in this case HHGraph is a comma category: on the left side we take |−|
as before, on the right side we take the composition of cod with the Kleene star,
so even in this case we can deduce adhesivity.

Theorem 3.4. HHGRaph is adhesive.

DGraph and DAG-hypergraphs We can consider more general relations be-
tween edges, besides tree orders. An interesting case is when edges form a
directed acyclic graph, yielding the category of DAG-hypergraphs ; this corre-
sponds to (possibly infinite) bigraphs with sharing, where an edge can have more
than one parent, as in [27] (see also Fig. 1, left). Even more generally, we can
consider any relation between edges, i.e., the edges form a generic directed graph
possibly with cycles, yielding the category of DGraph-hypergraphs. These can
be seen as “recursive bigraphs”, i.e., bigraphs which allow for cyclic dependencies
between controls, like in recursive processes; an example is in Fig. 1 (right).

Definition 3.6. We define the category of DGraph-hypergraphs (respectively
DAG-hypergraphs) with interface DHGraph (DAGHGraph) as the one in
which objects are 5-tuples ((E, T, s, t), V,X, f, e) where (E, T, s, t) is in DGraph
(in DAG), f is a function X → V , and e a function T → V ? and as ar-
rows triple ((h1, h2), k, l) : ((E, T, s, t), V,X, f, e) → ((F, T ′, s′, t′),W, Y, g, e′)
with (h1, h2) : (E, T, s, t) → (F, T ′, s′, t′) in DAG (in DGraph), k : V → W
and l : X → Y in Set such that the following squares commute

T V ?

W ?T ′

e

e′

h2 k?
X V

WY

f

g

l k

We can realise also DHGraph and DAGHGraph as comma categories: it is
enough to take respectively the forgetful functors DGraph→ Set and DAG→
Set on one side and again the composition of the Kleene star with cod.

A new criterion for M,N -adhesivity 217

Theorem 3.5. DHGraph is adhesive with respect to the classes

{((h1, h2), k, l) ∈ Mor(DHGraph) | (h1, h2) ∈ Reg(DGraph), k, l ∈ Mono(Set)}
{((h1, h2), k, l) ∈ Mor(DHGraph) | (h1, h2) ∈ Mono(DGraph)}

while DAGHGraph is adhesive with respect to the classes

{((h1, h2), k, l) ∈ Mor(DAGHGraph) | (h1, h2) ∈ dclosedda, k, l ∈ Mono(Set)}
{((h1, h2), k, l) ∈ Mor(DHGraph) | (h1, h2) ∈ Mono(DAG)}

3.4 Term graphs

The use of term graphs has been advocated as a tool for the optimal implemen-
tation of terms, with the intuition that the graphical counterpart of trees can
allow for the sharing of sub-terms [26]. A brute force proof of quasiadhesivity
of the category of terms graphs was given in [7]. In this section we recover that
result by exploiting our new criterion for adhesivity.

Definition 3.7. Let Σ = (O, ar) be an algebraic signature (O is a set and ar :
O → N a function called arity function). A term graph over Σ is a triple (V, l, s)
where V is a set, l : V ⇀ O, s : V ⇀ V ? are partial functions such that

– dom(l) = dom(s);
– for each v ∈ dom(l), ar(l(v)) = length(s(a)), where length : V ? → N asso-

ciates to each word its length.

Elements of V are called nodes, a node v not in dom(l) is called empty. A
morphism (V, l, s)→ (W, t, r) is a function f : V →W such that

t(f(v)) = l(v) r(f(v)) = f?(s(v))

for every v ∈ dom(l). We will denote by TGΣ the category of term graphs over Σ
and their morphisms. We will use U to denote the forgetful functor TGΣ → Set
sending a term graph to the set of its nodes and that is the identity on arrows.

Definition 3.8. We define a functor ∆ : Set→ TGΣ putting

Y

f

−→

X

7−→

7−→

(Y, e′1, e
′
2)

−→ f
(X, e1, e2)

where the domains of the structural functions e1, e2 of ∆(X) are the empty set.

Lemma 3.2. The following properties hold

1. ∆ a U ;
2. TGΣ has equalizers and binary products.

218 D. Castelnovo, F. Gadducci, M. Miculan

Remark 3.9. Right adjoints preserves monomorphisms, so, by the first point of
Lemma 3.2, if f : (V, l, s) → (W, t, r) is a monomorphism then its underlying
function is injective. On the other hand U is faithful and thus reflects monomor-
phisms, i.e. also the other implication holds.

Remark 3.10. TGΣ in general does not have terminal objects. Since U preserves
limits, if a terminal object exists it must have the singleton as set of nodes. Now
take as signature the one given by two operations {a, b} both of arity 0, then we
have three term graphs with only one node v: ∆({v}), ({v}, l, s) and ({v}, t, s)
where l(v) = a, t(v) = b and s sends v to the empty word. Clearly there are no
morphisms between the last two and from the last two to the first one, and thus
neither of them can be terminal.

Remark 3.11. TGΣ is not an adhesive category. In particular it does not have
pushouts along all monomorphisms. Take the signature of the previous remark,
then we can use the identity {v} → {v} to form a span

({v}, l, s) i←− ∆({v}) i′−→ ({v}, t, s).

This span cannot be completed to commutative a square: if

∆({v}) ({v}, t, s)

(V, p, r)({v}, l, s)

i

f

i′ g

is commutative then f(v) = g(v); therefore

a = l(v) = p(f(v)) = p(g(v)) = t(v) = b

and this is absurd.

Remark 3.12. It is worth to spell out the explicit construction of equalizers in
TGΣ . Given two arrows f, g : (V, l, s)→ (W, t, r), let

E = {v ∈ V | f(v) = g(v)}

be the equalizer of U(f) and U(g) in Set. We have a partial function p : E ⇀ O
given by the restriction of l to E. Moreover, if v ∈ E ∩ dom(s) then

f?(s(v)) = r(f(v)) = r(g(v)) = g?(s(v))

hence s(v) ∈ E? (which is the equalizer of f? and g?, see [5]), thus we can restrict
s to q : E ⇀ E?. In this way we get a term graph (E, p, q) with an arrow into
(V, l, s) which clearly equalize f and g.

On the other hand, if k : (U, a, b)→ (V, l, s) is such that

g ◦ k = f ◦ k

then the induced function k̄ : U → E is a morphism of TGΣ .

A new criterion for M,N -adhesivity 219

Remark 3.13. Lemma 3.2 implies that TGΣ has pullbacks. In the following we
will need their explicit description. The pullback of a cospan

(V, l, s)
f−→ (W, t, r)

g←− (U, a, b)

is given by (P, p, q) where

P = {(v, u) ∈ V × U | f(u) = g(v)}

is the pullback of f along g in Set and

p : P ⇀ O (v, u) 7→

{
l(v) v ∈ dom(l), w ∈ dom(t)

undefined otherwise

q : P ⇀ P ? (v, u) 7→

{
[(s(v)i, r(u)i)]

ar(l(v))
i=1 v ∈ dom(l), w ∈ dom(t)

undefined otherwise

where, given x ∈ X?, xi denotes its ith letter and, given x1, . . . , xn ∈ X, [xi]
n
i=1

denotes the element in X? such that ([xi]
n
i=1)i is exactly xi.

Now, notice that q is the unique partial function P ⇀ P ? that makes the
projections arrows of TGΣ . Moreover even p has a uniqueness property: it is
the unique partial function P ⇀ O such that the projections are arrows of TGΣ

and p(x) is undefined if and only if at least one of its image is undefined. In
particular this implies the following result.

Proposition 3.2. U creates pullbacks along arrows which preserves empty nodes.

This is especially useful when paired with the following result from [7].

Proposition 3.3 ([7], Prop. 4.3). An arrow f : (V, l, s) → (W, t, r) in TGΣ

is a regular mono if and only if f is injective and preserves empty nodes.

Proof. (⇒) Follows by the construction of equalizers given in Remark 3.12.
(⇐) Consider (U, a, b) where U = Wt(Wrf(V)). Let i1 and i2 be the inclusions
of W and W r f(V) into U , we can define

a : U ⇀ O u 7→


t(w) u = i1(w), w ∈ dom(t)

t(w) u = i2(w), w ∈ (W r f(V)) ∩ dom(t)

undefined otherwise

while for b : U ⇀ U?, we put b(u) = r(w) if u = i1(w), w ∈ dom(r), while if

u = i2(w) with w ∈ dom(r) we define b(u) = [ui]
ar(a(u))
i=1 where

ui =

{
i2(r(w)i) r(w) ∈W r f(V)

i1(r(w)1) r(w) ∈ f(V)

220 D. Castelnovo, F. Gadducci, M. Miculan

We have two functions (V, t, r)→ (U, a, b): one is just i1, while the other one is
given by

g : W → U w 7→

{
i1(w) w ∈ f(V)

i2(w) w /∈ f(V)

Now, i1 ◦ f and g ◦ f both send v to i1(f(v)), therefore

i1 ◦ f = g ◦ f

Suppose that h : (P, p, q) → (W, t, r) equalizes i1 and g, thus h(x) ∈ f(V) for
every x ∈ P , and we have a unique function h′ : P → V such that f ◦ h′ = h.
For every x ∈ dom(p), t(h(x)) = p(x), thus h(x) = f(h′(x)) ∈ dom(t). Since f
preserves the empty nodes, h′(x) belongs to dom(l), so:

p(x) = t(h(x)) = t(f(h′(x))) = l(h′(x))

Preservation of successors follows at once, while uniqueness follows from the
uniqueness of the function h′ in Set. ut

Lemma 3.3. U preserves and lifts pushouts along regular monomorphisms, more-
over it reflects all pushout squares

U(V, l, s)

U(W, t, r)U(P, p, q)

U(U, a, b)

U(f)

U(g)
U(m) U(n)

in which n is regular. In addition Reg(TGΣ) is closed under pushouts.

We can now use the first point of Theorem 2.2 to get half of the following result.

Theorem 3.6 ([7, Thm. 4.2]). The category TGΣ is quasi-adhesive.

Proof. We already know by Lemmas 3.2 and 3.3 and Theorem 2.2 that pushouts
along regular monos are stable. So, let us take a cube

(T, c, d)

(V, l, s)

(W, t, r)

(U, a, b)

(V ′, l′, s′)

(W ′, t′, r′)(T ′, c′, d′)

(U ′, a′, b′)

n′

bc

d

m′

f ′

g′

n

g f

a

m

A new criterion for M,N -adhesivity 221

in which m is regular, the top and bottom faces are pushouts and the back faces
pullbacks. Applying U we get another cube

T

V

E

W

V ′

W ′T ′

U ′

n′

bc
d

m′

f ′

g′

n

g f

a

m

with pushouts along monos as top and bottom faces and pullbacks as ver-
tical ones. By Proposition 3.2 U creates pullbacks along regular monos and
f ∈ Reg(TGΣ), then we can conclude that the front right face of the start-
ing cube is a pullback as well. We have to show that the front left face of the
starting cube is a pullback too. Suppose it is not, then, by the explicit description
of pullbacks, there must be a node t ∈ T ′ which is empty in (T ′, c′, d′) and such
that g′(t) and c(t) are non empty. By the computation of pushouts along regu-
lar monos we can deduce that g′(t) ∈ dom(a′) implies the existence of v ∈ V ′,
necessarily empty, such that m′(v) = t and f ′(n′(v)) = g′(t), thus n′(v) is non
empty since f ′ is regular. Moreover, c(m′(v)) = m(a(v)) and the left hand side
is non empty, therefore even a(v) is non empty by the regularity of m, but this
contradicts the hypothesis that the back right face is a pullback. ut

4 Conclusions

In this paper we have introduced a new criterion for M,N -adhesivity, based
on the verification of some properties of functors connecting the category of in-
terest to a family of suitably adhesive categories. This criterion can be seen as
a distilled abstraction of many ad hoc proofs of adhesivity found in literature.
This criterion allows us to prove in a uniform and systematic way some pre-
vious results about the adhesivity of categories built by products, exponents,
and comma construction. We have applied the criterion to several significant ex-
amples, such as term graphs and directed (acyclic) graphs; moreover, using the
modularity of our approach, we have readily proved suitable adhesivity proper-
ties to categories constructed by combining simpler ones. In particular, we have
been able to tackle the adhesivity problem for several categories of hierarchical
(hyper)graphs, including Milner’s bigraphs, bigraphs with sharing, and a new
version of bigraphs with recursion.

As future work, we plan to analyse other categories of graph-like objects using
our criterion; an interesting case is that of directed bigraphs [13,3,4]. Moreover, it
is worth to verify whether the M,N -adhesivity that we obtain from the results
of this paper is suited for modelling specific rewriting systems, e.g. based on the
DPO approach. As an example, TGΣ is quasiadhesive but this does not suffice
in most applications, because the rules are often spans of monomorphisms, and
not of regular monos [7].

222 D. Castelnovo, F. Gadducci, M. Miculan

References

1. J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and concrete categories: The
joy of cats. Reprints in Theory and Applications of Categories, 17:1–507, 2006.

2. G. G. Azzi, A. Corradini, and L. Ribeiro. On the essence and initiality of conflicts
in M-adhesive transformation systems. Journal of Logical and Algebraic Methods
in Programming, 109:100482, 2019.

3. G. Bacci, D. Grohmann, and M. Miculan. DBtk: A toolkit for directed bigraphs.
In A. Kurz, M. Lenisa, and A. Tarlecki, editors, CALCO 2009, volume 5728 of
LNCS, pages 413–422. Springer, 2009.

4. F. Burco, M. Miculan, and M. Peressotti. Towards a formal model for composable
container systems. In C. Hung, T. Cerný, D. Shin, and A. Bechini, editors, SAC
2020, pages 173–175. ACM, 2020.

5. A. Carboni and P. Johnstone. Connected limits, familial representability and Artin
glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.

6. D. Castelnovo, F. Gadducci, and M. Miculan. A new criterion for M,N -adhesivity,
with an application to hierarchical graphs. CoRR, abs/2201.00233, 2022.

7. A. Corradini and F. Gadducci. On term graphs as an adhesive category. In
M. Fernández, editor, TERMGRAPH 2004, volume 127(5) of ENTCS, pages 43–
56. Elsevier, 2005.

8. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation - Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations, pages 163–246. World Scien-
tific, 1997.

9. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

10. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Mathematical Structures in Computer
Science, 1(3):361–404, 1991.

11. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, ICGT 2004, LNCS, pages 144–160. Springer, 2004.

12. R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories.
Theory and Applications of Categories, 27(3):27–46, 2012.

13. D. Grohmann and M. Miculan. Directed bigraphs. In M. Fiore, editor, MFPS
2007, volume 173 of ENTCS, pages 121–137. Elsevier, 2007.

14. A. Habel and D. Plump. M, N -adhesive transformation systems. In H. Ehrig,
G. Engels, H. Kreowski, and G. Rozenberg, editors, ICGT 2012, volume 7562 of
LNCS, pages 218–233. Springer, 2012.

15. P. T. Johnstone, S. Lack, and P. Sobocinski. Quasitoposes, quasiadhesive categories
and Artin glueing. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors,
CALCO 2007, volume 4624 of LNCS, pages 312–326. Springer, 2007.

16. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO-
Theoretical Informatics and Applications, 39(3):511–545, 2005.

17. S. Lack and P. Sobocinski. Toposes are adhesive. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT 2006, volume 4178 of
LNCS, pages 184–198. Springer, 2006.

18. T. Leinster. Higher operads, higher categories. Cambridge University Press, 2004.
19. S. Mac Lane. Categories for the working mathematician. Springer, 2013.

A new criterion for M,N -adhesivity 223

20. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

21. N. Mylonakis and F. Orejas. A framework of hierarchical graphs and its application
to the semantics of SRML. Technical Report LSI-12-1-R, Facultad de Informática,
Universitat Politècnica da Catalunya, 2012.

22. nLab. Creation of limits, 2016. Last accessed on January 26, 2022. http://nlab-
pages.s3.us-east-2.amazonaws.com/nlab/show/created+limit.

23. J. Padberg. Hierarchical graph transformation revisited - Transformations of coal-
gebraic graphs. In J. de Lara and D. Plump, editors, ICGT 2017, volume 10373
of LNCS, pages 20–35. Springer, 2017.

24. W. Palacz. Algebraic hierarchical graph transformation. Journal of Computer and
System Sciences, 68(3):497–520, 2004.

25. C. Peuser and A. Habel. Composition of M,N -adhesive categories with application
to attribution of graphs. In D. Plump, editor, GCM 2015, volume 73 of Electronic
Communications of the EASST. EASST, 2016.

26. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformations, Vol. 2: Applications, Languages, and Tools, pages 3–61. World
Scientific, 1999.

27. M. Sevegnani and M. Calder. Bigraphs with sharing. Theoretical Computer Sci-
ence, 577:43–73, 2015.

28. P. Sobociński and N. Behr. Rule algebras for adhesive categories. Logical Methods
in Computer Science, 16, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

224 D. Castelnovo, F. Gadducci, M. Miculan

http://creativecommons.org/licenses/by/4.0/

Quantifier elimination for counting extensions
of Presburger arithmetic

Dmitry Chistikov1 , Christoph Haase2 , and Alessio Mansutti2(�)

1 Centre for Discrete Mathematics and its Applications (DIMAP) & Department of
Computer Science, University of Warwick, Coventry, UK

d.chistikov@warwick.ac.uk
2 Department of Computer Science, University of Oxford, Oxford, UK

{christoph.haase,alessio.mansutti}@cs.ox.ac.uk

Abstract. We give a new quantifier elimination procedure for Pres-
burger arithmetic extended with a unary counting quantifier ∃=xyΦ that
binds to the variable x the number of different y satisfying Φ. While our
procedure runs in non-elementary time in general, we show that it yields
nearly optimal elementary complexity results for expressive counting ex-
tensions of Presburger arithmetic, such as the threshold counting quanti-
fier ∃≥cyΦ that requires that the number of different y satisfying Φ be at
least c ∈ N, where c can succinctly be defined by a Presburger formula.
Our results are cast in terms of what we call the monadically-guarded
fragment of Presburger arithmetic with unary counting quantifiers, for
which we develop a 2ExpSpace decision procedure.

1 Introduction

Counting the number of solutions to an equation, or the number of elements in
a set subject to constraints, is a fundamental and often computationally chal-
lenging problem studied in logic, mathematics and computer science. In discrete
geometry, counting the number of integral points in a polyhedron is a canonical
#P-complete problem. Barvinok’s celebrated algorithm solves this problem in
polynomial time when the dimension is fixed [2]. In this paper, we investigate
a generalization of this problem and study algorithmic aspects of counting the
number of models of formulae of Presburger arithmetic, the first-order theory of
the integers with addition and order, and more generally, extensions of this logic
with counting quantifiers.

Counting quantifiers such as the Härtig quantifier, which allows to assert
equal-cardinality constraints on the sets of satisfying assignments of two given
first-order formulae, have long been studied in first-order logic [6]. In first-order
theories of integer arithmetic, it is compelling to consider variants of counting
quantifiers that bind the number of satisfying assignments of a formula to a
first-order variable. Apelt [1] and Schweikardt [10] studied the decidability of
Presburger arithmetic enriched with the unary counting quantifier ∃=xy with
the following semantics: given an assignment of integers to the first-order vari-
ables x, z1, . . . , zn, a formula ∃=xyΦ(x, y, z1, . . . , zn) evaluates to true whenever

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 225–243, 2022.
https://doi.org/10.1007/978-3-030-99253-8_12

http://orcid.org/0000-0001-9055-918X
http://orcid.org/0000-0002-5452-936X
http://orcid.org/0000-0002-1104-7299
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_12&domain=pdf

the number of different y satisfying Φ(x, y, z1, . . . , zn) is exactly x. In both [1]
and [10], decidability is shown by developing a quantifier elimination procedure
for this extension of Presburger arithmetic which eliminates a counting quantifier
by translating it into an equivalent quantified formula of Presburger arithmetic,
i.e., one that only uses standard first-order quantifiers. This immediately gives
decidability of Presburger arithmetic extended with the unary counting quanti-
fier ∃=xy since Presburger arithmetic is decidable in 2ExpSpace [9,3,12]. Un-
fortunately, the quantifier elimination procedures in [1,10] do not yield a similar
elementary upper bound for the extended theory, as the elimination of a single
quantifier ∃=xy results in an exponential blow-up of the formula size and intro-
duces nested first-order quantifiers. It is a widely open problem whether there
is a decision procedure for Presburger arithmetic extended with the counting
quantifier ∃=xy with elementary running time, or whether this theory admits a
significantly stronger lower bound than standard Presburger arithmetic.

To shed more light on the complexity of Presburger arithmetic extended
with the aforementioned unary counting quantifier, Habermehl and Kuske gave
a quantifier elimination procedure for Presburger arithmetic extended with a
unary modulo counting quantifier ∃(r,q)y, where r and q are positive natural
numbers [4]. Here, ∃(r,q)yΨ(y, z1, . . . , zn) holds whenever the number of different
y satisfying Ψ(y, z1, . . . , zn) is congruent to r modulo q. An analysis of the growth
of the constants and coefficients occurring in their procedure then enables them
to derive a 2ExpSpace upper bound for the logic, matching the complexity of
Presburger arithmetic on deterministic machines. This noteworthy result shows
that there is still room to extend Presburger arithmetic with non-trivial counting
quantifiers without increasing the computational cost of deciding the logic.

Note that in order to keep the logic decidable, the counting quantifiers con-
sidered in the literature must be unary. Indeed, consider a binary counting quan-
tifier ∃=x(y1, y2) counting the number of different y1 and y2 satisfying a formula.
Then, Φ(x, z) = ∃=x(y1, y2)(0 ≤ y1, y2 < z) holds for x = z2, which in turn al-
lows defining multiplication, leading to undecidability of the resulting theory.

Our contribution. Following the lines of [4] while trying to avoid the limitations
of the procedures in [1,10], our goal is to study decision procedures for Presburger
arithmetic enriched with variants of counting quantifiers that do not increase
the complexity of the Presburger arithmetic. To begin with, we develop a new
quantifier elimination procedure for Presburger arithmetic with unary counting
quantifiers ∃=xy that, in contrast to [1,10], does not require the introduction
of first-order quantifiers. While the procedure still runs in non-elementary time,
avoiding first-order quantification allows us not only to derive exponentially
better bounds on the size of the formula obtained after eliminating a single ∃=xy,
but also to identify the sources of non-elementary growth. We exploit those
observations to extend the range of counting quantifiers that can be added to
Presburger arithmetic without increasing the complexity of the resulting logic.

The first type of counting quantifiers we consider is a threshold counting quan-
tifier ∃≥cy for some integer c. A formula ∃≥cyΨ(y, z1, . . . , zn) evaluates to true
whenever there are at least c different values of y satisfying Ψ(y, z1, . . . , zn). We

226 D. Chistikov et al.

show that Presburger arithmetic enriched with threshold counting quantifiers can
be decided in 2ExpSpace, even when the threshold c itself is succinctly given as
the unique solution of a Presburger arithmetic formula. This is surprising since in
Presburger arithmetic one can define numbers that are triply exponential in the
size of the formula used to encode them [7, pp. 151–152]. Furthermore, we show
that if we restrict c to be at most doubly exponential in the size of its encod-
ing then Presburger arithmetic with threshold counting quantifiers is decidable

in STA(∗, 22nO(1)

,O(n)), matching the complexity of Presburger arithmetic [3].
Here, STA(s(n), t(n), a(n)) is the class of all decision problems in which inputs
of length n can be decided by an alternating Turing machine in space s(n) and
time t(n) using a(n) alternations, where “∗” stands for unbounded availability
of a certain resource.

Our results on the quantifier ∃≥cx arise from studying a more general exten-
sion of Presburger arithmetic that relies on the notion of monadic decomposition
put forward by Veanes et al. in [11] and studied by Hague et al. [5] in the con-
text of integer linear arithmetic. Briefly, a formula Φ(x, y1, . . . , yn) is said to
be monadically decomposable on the variable x whenever it is equivalent to a
formula of the form

∨
i∈I ∆i(x) ∧Ψi(y1, . . . , yn), i.e., a formula where the satis-

faction of constraints on x does not depend on the values of y1, . . . , yn. Based on
this definition, we extend Presburger arithmetic by allowing the general unary
counting quantifiers ∃=xy to appear with guards of the form ∃x(Ψ ∧ ∃=xyΦ),
where Ψ is monadically decomposable on the variable x. The resulting logic
is very powerful, as it not only generalizes the quantifiers ∃≥cx but also the
modulo counting quantifiers ∃(r,q)y from [4]. We establish two further results
for this monadically-guarded fragment of Presburger arithmetic with counting
quantifiers. First, we develop a 3ExpTime quantifier elimination procedure for
the logic, matching the complexity of the best possible quantifier elimination
procedures for Presburger arithmetic. Second, we exploit this procedure to ob-
tain a quantifier relativization argument showing that the logic is decidable
in 2ExpSpace.

2 Presburger arithmetic with counting quantifiers

General notation. The symbols Z, N and N+ denote the set of integers, natural
numbers including zero, and natural numbers without zero, respectively. We
usually use a, b, c, . . . for integers, which we assume being encoded in binary.
Given n ∈ N, we write [n] def= {0, . . . , n − 1}, and #A for the cardinality of a
set A. If A is infinite, then #A =∞, and we postulate n ≤ ∞ for all n ∈ Z.

Structure. We consider the structure Z = 〈Z, (c)c∈Z,+, <, (≡q)q∈N+〉 of Pres-
burger arithmetic, where (c)c∈Z are constant symbols that shall be interpreted
as their homographic integer numbers, the binary function symbol + is inter-
preted as addition on Z, the binary relation < is interpreted as “less than”, and
≡q is interpreted as the modulo relation, i.e., a ≡q b if and only if q divides a−b.

Quantifier elimination for counting extensions of Presburger arithmetic 227

Basic syntax. Let X = {x, y, z, . . . } be a countable set of first-order variables.
Linear terms, usually denoted by t, t1, t2, etc., are expressions of the form
a1x1 + · · · + adxd + c where x1, . . . , xd ∈ X, a1, . . . , ad, c ∈ Z. The integer ai
is the coefficient of the variable xi. Variables not appearing in the linear term
are tacitly assumed to have a 0 coefficient. A term t is said to be x-free if the
coefficient of the variable x in t is 0. The integer c is the constant of the linear
term. Linear terms with constant 0 are said to be homogeneous.

Given a term t, the lexeme t < 0 is understood as a linear inequality, and
t ≡q 0 is a modulo constraint. Syntactically, Presburger arithmetic (PA) is the
closure of linear inequalities and modulo constraints under the Boolean connec-
tives ∧ and ¬ (i.e., conjunction and negation, respectively) and the first-order
quantifier ∃y. Presburger arithmetic with counting quantifiers (PAC) extends PA
with the (unary) counting quantifier ∃=xy, where x and y are two syntactically
distinct variables from X. Formulae of PAC are denoted by Φ, Ψ, Γ, etc.

We write vars(Φ) and fv(Φ) for the set of variables and free variables of Φ, re-
spectively, with fv(∃=xyΦ) def= {x}∪(fv(Φ)\{y}). A sentence is a formula Φ with
fv(Φ) = ∅. We sometimes write Φ(x1, . . . , xk) or Φ(x), with x = (x1, . . . , xk) a
tuple of variables, for a formula Φ with fv(Φ) = {x1, . . . , xk}. We say that Φ is
z-free if z ∈ X does not occur in Φ. Given terms t and t′, Φ[t′/t] stands for the for-
mula obtained from Φ by syntactically replacing every occurrence of t by t′. Given
Φ(x1, . . . , xk) and terms t1, . . . , tk, Φ(t1, . . . , tk) stands for Φ[t1/x1] . . . [tk/xk].

Semantics. An assignment is a function ν : X → Z assigning an integer value to
every variable. As usual, we extend ν in the standard way to a function that maps
every term to an element of Z. For instance, ν(x+3x+2) = ν(x)+3ν(y)+2. Given
a variable x and an integer n, we write ν[n/x] for the assignment obtained form ν
by updating the value of x to n, i.e. ν[n/x](x) = n, and for all variables y distinct
from x, ν[n/x](y) = ν(y). Given a formula Φ of PAC and an assignment ν, the
satisfaction relation ν |= Φ is defined as usual for linear inequalities, modulo
constraints, Boolean connectives and the existential quantifier ranging over Z.
For the counting quantifier, we define

ν |= ∃=xyΦ if and only if #{n ∈ Z | ν[n/y] |= Φ} = ν(x).

Informally, ∃=xyΦ is satisfied by ν if there are exactly ν(x) distinct values for
the variable y that make Φ true. A formula Φ of PAC is satisfiable (resp. valid)
if ν |= Φ holds for an assignment (resp. every assignment) ν. A formula Φ
entails a formula Ψ, written Φ |= Ψ, whenever every assignment satisfying Φ also
satisfies Ψ. We write Φ⇔ Ψ to denote that Φ and Ψ are equivalent, i.e. Φ |= Ψ
and Ψ |= Φ.

Syntactic abbreviations. We define ⊥ def= 0 < 0 and > def= ¬⊥. The Boolean con-
nectives ∨, → and ↔ and the universal first-order quantifier ∀ are derived as
usual, and so are the (in)equalities <, ≤, =, ≥, and >, between terms. For in-
stance, t1 < t2 corresponds to t1 − t2 < 0, where we tacitly manipulate t1 − t2
with standard operations of linear arithmetic to obtain an equivalent term. Sim-
ilarly, t1 ≡q t2 is short for t1 − t2 ≡q 0, whereas |t1| + t2 < 0 is short for

228 D. Chistikov et al.

(t1 < 0→ t2− t1 < 0)∧ (t1 ≥ 0→ t1 + t2 < 0). For a variable x ∈ X and r ∈ [q],
we call x ≡q r a simple modulo constraint. All modulo constraints introduced
by our quantifier elimination procedure given in Section 3 are simple.

The counting quantifier ∃≥xy. Historically [1,10], the quantifier ∃=xy has been
the unary counting quantifier of choice when it comes to PAC. However, a priori
one could define PAC as the extension of PA featuring counting quantifiers ∃≥xy,
where ν |= ∃≥xyΦ holds for an assignment ν whenever there are at least ν(x)
values n ∈ Z for y such that ν[n/y] |= Φ. Notice that the counting quantifier ∃=y

can be expressed using ∃≥y, and vice versa:

– ∃=xyΦ ⇔ ∃≥xyΦ ∧ ∃x′ : x′ = x+ 1 ∧ ¬∃≥x′yΦ; and
– ∃≥xyΦ ⇔ (∀z ∃y : |z| ≤ |y| ∧ Φ) ∨ ∃x′ : x′ ≥ x ∧ ∃=x′yΦ.

Two comments are in order: first, translating a PAC formula by swapping the
type of counting quantifiers using the equivalences above has the unpleasant ef-
fect of increasing the size of the formula, exponentially if the nesting depth of
quantifiers is unbounded. Second, the subformula ∀z ∃y : |z| ≤ |y| ∧ Φ used in
the last equivalence states that there are infinitely many values for y that make
the formula Φ true. This formula highlights the main difference between ∃=xy
and ∃≥xy quantifiers: the latter is true in the presence of infinitely many val-
ues for y, whereas the former is false. Throughout the paper, we focus on the
quantifier ∃=xy, as done in [1,10], but use this observation to argue that our
results can be readily adapted to the counting quantifier ∃≥xy. Full details of
this adaptation are given in the full version of the paper.

Parameters of formulae. To analyze quantifier-elimination procedures, follow-
ing [8,12], we introduce a number of parameters for formulae of PAC:

– |Φ| denotes the length of the formula Φ, i.e., the number of symbols to write
down ϕ, with numbers encoded in binary. We always assume |Φ| ≥ 2;

– qr(Φ) (resp. nr(Φ)) denotes the quantifier (resp. negation) rank of the for-
mula Φ, i.e., the depth of nesting of the quantifiers (resp. negations) of Φ;

– fd(Φ) denotes the overall depth of Φ, i.e., the depth of nesting of all con-
structors (i.e. ∧, ¬, ∃x and ∃=xy) in the formula Φ;

– lin(Φ) is the set containing the term 0 plus all the terms t that appear in
linear inequalities t < 0 of Φ (recall that t1 < t2 is short for t1 − t2 < 0);

– hom(Φ) is the set of homogeneous linear terms obtained from all terms in
lin(Φ) by setting their constants to 0;

– const(Φ) is the set of all constants appearing in linear terms of lin(Φ); and
– mod(Φ) is the set of all moduli q ∈ N appearing in modulo constraints
t1 ≡q t2 of Φ. We postulate 1 ∈ mod(Φ), even if Φ has no modulo constraints.

Given a vector v = (v1, . . . , vd) ∈ Zd, we write ||v|| = max{|vi| : 1 ≤ i ≤ d}
for the infinity norm of v. Similarly, for a linear term t, we write ||t|| for the
maximum absolute value of a coefficient or constant appearing in t. Given a
finite set of vectors or a finite set of terms A, we define ||A|| = max{||a|| : a ∈ A}.
Given a matrix A ∈ Zn×d, its infinity norm is the maximal infinity norm of its
column vectors. Notice that ||lin(Φ)|| = ||hom(Φ) ∪ const(Φ)||. For a formula Φ,
we define ||Φ|| def= ||lin(Φ) ∪mod(Φ)||.

Quantifier elimination for counting extensions of Presburger arithmetic 229

Complexity remarks. The proposition below characterizes the complexity of PA.

Proposition 1 ([3]). Presburger arithmetic is STA(∗, 22nO(1)

,O(n))-complete.

To be more precise, the number of alternations required to decide the validity
or satisfiability of a formula Φ from Presburger arithmetic is linear in nr(Φ).

Notice that 2NExpTime ⊆ STA(∗, 22nO(1)

,O(n)) ⊆ 2ExpSpace.

3 A quantifier elimination procedure for PAC

In this section, we develop a new quantifier elimination procedure (QE proce-
dure) for the counting quantifier ∃=xy:

Proposition 2. Let Φ be quantifier-free. Then ∃=xyΦ is equivalent to a Boolean
combination of linear inequalities and simple modulo constraints.

We quantify the growth of parameters in the formula in Section 4. Upper
bounds on this growth are at the core of our results. Without any bounds (as
stated), Proposition 2 is known and can be obtained by chaining the quantifier
elimination procedure developed by Schweikardt [10] together with the standard
quantifier elimination procedure for Presburger arithmetic. An advantage of our
QE procedure for the quantifier ∃=xy is that it avoids the introduction of ad-
ditional ∃- and ∀-quantifiers when eliminating a counting quantifier on which
Schweikardt’s procedure relies. More precisely, given a formula ∃=xyΦ where Φ
is quantifier-free (q.f. in short), the QE procedure in [10] requires a full transfor-
mation of Φ into disjunctive normal form, and eliminates the quantifier ∃=xy by
introducing first-order quantifiers, producing an equivalent formula Ψ of Pres-
burger arithmetic. This strategy comes at a cost: the size of the q.f. formula
obtained after removing the quantifiers from Ψ is doubly exponential in the
size of ∃=xyΦ. By avoiding the introduction of first-order quantifiers, our QE
procedure already exponentially improves upon Schweikardt’s procedure.

Our QE procedure performs a series of formula manipulations, divided into
five steps. At the end of the i-th step, the procedure produces a formula Φi equiv-
alent to the original formula ∃=xyΦ. Ultimately, Φ5 is a Boolean combination
of inequalities and simple modulo constraints allowing us to establish Proposi-
tion 2. In this section, we present the procedure and briefly discuss its correctness,
leaving the computational analysis of parameters lin(Φ5), hom(Φ5), const(Φ5)
and mod(Φ5) to subsequent sections.

Step I: Normalise the coefficients of y. Given the input formula Φ0 = ∃=xyΦ,
with Φ q.f., the first step of the procedure is a standard step for QE procedures
for Presburger arithmetic. It produces an equivalent formula Φ1 in which all non-
zero coefficients of y appearing in a linear term are normalized to 1 or −1. For
simplicity, we first translate every modulo constraint in Φ into simple modulo
constraints, by relying on the lemma below.

230 D. Chistikov et al.

Lemma 1. Every constraint t ≡q 0 is equivalent to a Boolean combination Ψ of
simple modulo constraints such that vars(Ψ) ⊆ vars(t ≡q 0) and mod(Ψ) = {q}.

The first step of our QE procedure is as follows:

1 Translate every modulo constraint in Φ into simple modulo constraints (Lemma 1).

2 Let k be the lcm of the absolute values of all coefficients of y appearing in hom(Φ).

3 Let Φ′ be the formula obtained from Φ by applying the following three rewrite rules

to each linear inequality and simple modulo constraint in which y appears:

• ay + t < 0 −→ ky + (k/a) · t < 0, if a > 0,

• ay + t < 0 −→ −ky − (k/a) · t < 0, if a < 0, and

• y ≡q r −→ ky ≡kq kr,
where t is a term, q ≥ 1 and r ∈ [q]:

4 Define Φ1
def= ∃=xy (y ≡k 0 ∧ Φ′[y/ky]).

Claim 1. Φ0 ⇔ Φ1, and in Φ1, all non-zero coefficients of y are either 1 or −1.

Step II: Subdivide the formula according to term orderings and residue classes.
We define an ordering for a set of linear terms T to be a formula of the form

(t1 C1 t2) ∧ (t2 C2 t3) ∧ · · · ∧ (tn−1 Cn−1 tn), (1)

where {t1, . . . , tn} = T and {C1, . . . ,Cn−1} ⊆ {<,=}.
Lemma 2. There is an algorithm that, given a set T of n linear terms over d vari-

ables, computes in time nO(d) log ||T ||O(1)
a set {O1, . . . , Oo} of orderings for T

s.t. (1) o = O(n2d), (2) > ⇔
∨o
i=1Oi, (3) ⊥ ⇔ Oi ∧Oj whenever i 6= j.

Lemma 2 is proven analogously to [13, Proposition 5.1].
The second step of our QE procedure is as follows:

5 Let T be the set of all y-free terms t such that t, y − t or −y + t belongs to lin(Φ1).

6 Using Lemma 2, build a set {O1, . . . , Oo} of orderings for the terms T .

7 Let Z def= vars(Φ) and m def= lcm(mod(Φ1)).

8 For every i ∈ [1, o] and every r : Z → [m], let Γi,r
def= Oi ∧ (

∧
z∈Z z ≡m r(z)).

9 Define Φ2
def=
∨o
i=1

∨
r : Z→[m] (Γi,r ∧ Φ1).

Claim 2. Φ1 ⇔ Φ2.

In Steps III to V of the procedure, we focus on each disjunct of Φ2 sepa-
rately, iterating over all i ∈ [1, o], hence over all orderings, and all r : Z → [m],
i.e., functions assigning residue classes modulo m to the variables in Z.

Step III: Split the range of y into segments. Recall that Φ1 = ∃=xyΨ, where
Ψ is some Boolean combination of inequalities and modulo constraints with
variables from vars(Φ) in which the non-zero coefficients of y are either 1 or −1.
Let T |Oi

def= (t′1, · · · , t′`) be the tuple of all the terms in T that the formula Oi
asserts pairwise non-equal, taken in the ascending order. In other words, we
obtain t′1, . . . , t

′
` by removing from the sequence t1, . . . , tn in Equation (1) all

terms tj+1 for which Cj is =. Let seg(y,Oi) be the set of formulae

Quantifier elimination for counting extensions of Presburger arithmetic 231

{
y < t′1, y = t′1, (t′i−1 < y ∧ y < t′i), y = t′i, t′` < y : i ∈ [2, `]

}
.

We have #seg(y,Oi) = 2`+ 1. Given κ ∈ seg(y,Oi), the formula Oi ∧ κ imparts
a linear ordering on the terms T ∪ {y}. This enables us to “almost evaluate” Ψ:

Lemma 3. For every κ ∈ seg(y,Oi), there is a Boolean combination Ψi,r
κ of

simple modulo constraints such that vars(Ψi,r
κ) = {y}, mod(Ψi,r

κ) ⊆ mod(Ψ) and

Γi,r ∧ κ ∧Ψ ⇔ Γi,r ∧ κ ∧Ψi,r
κ .

Our QE procedure manipulates Φ2 as follows:

10 For every i ∈ [1, o] and every r : Z → [m] :

11 Let seg(y,Oi) = {κ0, . . . , κ2`}.
12 For every j ∈ [0, 2`], consider the formula Ψi,r

κj
from Lemma 3.

13 Let Φi,r3 = ∃x0 . . . ∃x2`
(
x =

∑2`
j=0 xj ∧

∧2`
j=0 ∃

=xjy(κj ∧Ψi,r
κj

)
)
.

14 Define Φ3
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r3).

Claim 3. Φ2 ⇔ Φ3.

Step IV: Compute the number of solutions for each segment. We next aim at
eliminating the counting quantifiers introduced in Step III in the sub-formulae
∃=xjy(κj∧Ψi,r

κj
). We go over each κ ∈ seg(y,Oi), and consider three cases depend-

ing on whether it specifies (syntactically) an infinite interval, a finite segment,
or a single value for y.

Notice that r is in fact an assignment to variables, so r(t) ∈ Z is well-defined
for every term t with free variables Z. For all i ∈ [1, o] and r : Z → [m], given
T |Oi

= (t′1, . . . , t
′
`) the procedure computes the following numbers c1, . . . , c`,

p2, . . . , p` and r2, . . . , r`.

15 For every j ∈ [1, `] :

16 If Ψi,r
κ [r(t′j)/y] is true, where κ = (y = t′j), then let cj

def= 1, else let cj
def= 0.

17 For every j ∈ [2, `] :

18 Let pj ∈ [0,m] be the number of y ∈ [m] satisfying Ψi,r
κ (y).

19 Let uj = (r(t′j−1) mod m).

20 Let uj be the smallest integer congruent to r(t′j) modulo m and greater than uj .

21 Let r′j ∈ [0,m] be the number of y ∈ [uj + 1, uj − 1] satisfying Ψi,r
κ (y).

22 Let rj ∈ [−m2,m2] be such that rj = −pj · (uj − uj) +m · r′j .

Lemma 4. Given a formula Ψi,r
κ and m,uj , uj, the numbers pj and r′j can be

computed in #P, or by a deterministic algorithm with running time O(m·|Ψi,r
κ |).

The numbers cj , pj , rj determine, for each κ ∈ seg(y,Oi), how many assign-
ments to the variable y satisfy the formula Ψi,r

κ in the conjunction Γi,r∧κ∧Ψi,r
κ .

Intuitively, this is cj for κ of the form y = t′j , and (pj(t
′
j − t′j−1) + rj)/m for κ of

the form t′j−1 < y ∧ y < t′j . We say “intuitively” here, because in the latter case
the expression above depends on other variables so is not, strictly speaking, a
number. The following claims formalize this intuition:

232 D. Chistikov et al.

Claim 4. Let κ ∈ {y < t′1, t
′
` < y}. If Ψi,r

κ (y) is satisfiable, then Φi,r
3 ⇔ ⊥.

Claim 5. Let j ∈ [1, `], κ = (y = t′j), z ∈ X. Then, ∃=zy (κ ∧Ψi,r
κ) ⇔ z = cj .

Claim 6. Let κ = (t′j−1 < y ∧ y < t′j) for some j ∈ [2, `] and let z be a fresh

variable. Then, Γi,r ∧ ∃=zy (κ ∧Ψi,r
κ) ⇔ Γi,r ∧mz = pj(t

′
j − t′j−1) + rj .

The procedure manipulates the formula Φ3 as follows:

23 For every i ∈ [1, o] and every r : Z → [m] :

24 If Ψi,r
κ (y) is satisfiable for some κ ∈ {y < t′1, t

′
` < y}, then let Φi,r4

def= ⊥,

25 else Φi,r4
def= ∃x2 . . . ∃x`

(
x =

∑`
j=2 xj +

∑`
j=1 cj ∧

∧`
j=2mxj = pj(t

′
j − t′j−1) + rj

)
.

26 Define Φ4
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r4).

Claim 7. Φ3 ⇔ Φ4.

Step V: Sum up the solutions. It remains to get rid of the variables xi introduced
earlier. For each disjunct Γi,r ∧ Φi,r4 of Φ4, we use the notation from Step IV.

27 For every i ∈ [1, o] and every r : Z → [m] :

28 If Φi,r4 = ⊥, then let Φi,r5
def= ⊥,

29 else let Φi,r5
def= mx =

∑`
j=2(pj(t

′
j − t′j−1) + rj) +m ·

∑`
j=1 cj .

30 Let Φ5
def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧ Φi,r5).

The procedure outputs Φ5. The following claim implies Proposition 2.

Claim 8. Φ4 ⇔ Φ5. The formula Φ5 is quantifier-free.

4 Discussion, summary of results and roadmap

The QE procedure for a single counting quantifier ∃=xy from Section 3 forms the
basis of our results. In this section we discuss its use and lay out its applications.

Analysis of the procedure. The next lemma establishes the growth of the formulae
and their parameters in our quantifier elimination procedure.

Lemma 5. Let Φ5 be obtained from applying the QE procedure of Section 3 to
a formula ∃=yxΦ, where Φ is quantifier-free and #vars(Φ) = d. Then:

mod(Φ5) = {m} with m = k · lcm(mod(Φ)) and k ≤ ||hom(Φ)||#hom(Φ)
,

#lin(Φ5) ≤ NO(d), ||lin(Φ5)|| ≤ O(N) · ||lin(Φ)||,
#hom(Φ5) ≤ NO(d), ||hom(Φ5)|| ≤ O(N) · ||hom(Φ)||, with N = m2 ·#lin(Φ).

Remark 1. With minor changes to our procedure, one can obtain a QE pro-
cedure for the quantifier ∃≥xy. In particular, since ∃≥xyΦ is true if there are
infinitely many values for y that satisfy Φ, Claim 4 needs to be updated so that
Φi,r3 ⇔ > is deduced, instead of Φi,r

3 ⇔ ⊥. Other minor adaptations are required,
e.g. equalities “x = . . . ” and counting quantifiers ∃=xjy appearing in Line 13
must be updated to “x ≤ . . . ” and ∃≥xjy. The resulting QE procedure for ∃≥xy
still adheres to the bounds in Lemma 5.

Quantifier elimination for counting extensions of Presburger arithmetic 233

A consequence of Lemma 5 is that our QE procedure gives an algorithm for
deciding a formula Φ from PAC featuring multiple counting quantifiers ∃=xy

in time 2.
. . 2

, where the height of the tower is linear in the quantifier rank
of Φ. Indeed, in view of the upper bounds and equations given by Lemma 5 for
#hom(Φ5), N , m, and k, we observe that the upper bound for #hom(Φ5) is ex-
ponential in #hom(Φ). This means that more fine-grained bounds are necessary
for decision procedures with elementary complexity, i.e., with a running time
bounded from above by a k-fold exponential in the size of the input formula.

Elementary decision procedures. In view of this growth of the parameters, it
is natural to ask ourselves whether our QE procedure is perhaps näıvely dis-
regarding important properties of the underlying arithmetic theory that could
lead to better bounds. A good test in this direction is to check whether improved
bounds can be achieved when the procedure runs on restricted forms of counting
quantifiers. In the remainder of the paper we show that this is the case, and ex-
plain how the growth of parameters can be countered for restricted quantifiers,
obtaining 3ExpTime quantifier elimination procedures as well as 2ExpSpace
decision procedures for extensions of PA with a variety of counting quantifiers.

As an example, let us consider Presburger arithmetic enriched with threshold
quantifiers ∃≥cyΦ, where c ∈ N is written in binary. These are satisfied whenever
there are at least c distinct values for the variable y that make the formula Φ true.
Notice that the threshold counting quantifiers ∃≥cy are a syntactic generalization
of the first-order quantifiers, as ∃≥1yΦ ⇔ ∃yΦ. Interestingly enough, one can
translate threshold quantifiers into standard Presburger arithmetic with just a
polynomial increase in the size of the formula. For simplicity, assume that the
threshold c is a power of 2. Then, the quantifier ∃≥cy can be internalized in PA
by relying on the equivalence

∃≥2gyΦ(y, z)⇔ ∃u ∀v ∃≥gy : (v = 0↔ y < u) ∧ Φ(y, z)

as well as ∃≥1yΦ ⇔ ∃yΦ. However, in terms of decision procedures, this is
an inadequate solution, as it comes at the cost of introducing 2 log2 c many
quantifier alternations. Building upon the QE procedure from Section 3, we show
how to directly eliminate threshold quantifiers. This proves that the increase in
alternation depth that depends on the threshold c is unnecessary.

Theorem 1. The validity of a formula Φ from Presburger arithmetic with thresh-

old counting quantifiers can be decided in STA(∗, 22|Φ|
O(1)

,O(fd(Φ))).

This result matches the complexity of deciding standard PA in the case of un-
bounded alternation depth. Thus, PA can be enriched with threshold quantifiers
with almost no computational overhead. Note that a slight increase in number
of alternations is still required, and goes from O(nr(Φ)) for PA to O(fd(Φ)) for
PA with threshold counting quantifiers.

We further strengthen Theorem 1, extending it to the case where the thresh-
old c is encoded even more succinctly, as the unique solution of a PA formula

234 D. Chistikov et al.

Φ(x) as long as this solution is bounded doubly-exponentially in |Φ|. An example
of such a formula is Φ(x) = ∃z : z = 1 ∧Ψn(x, z), where

Ψ0(x, z) def= x = 2z,

Ψn+1(x, z) def= ∃y∀a∀b : (a = x ∧ b = y) ∨ (a = y ∧ b = z)→ Ψn(a, b),

and the only solution is given by x = 22n

[7, Lecture 23], whilst |Φ| = O(n). The
crux of our results lies in the identification of a fragment of PAC that we call
monadically-guarded, for which the following theorem can be established.

Theorem 2. Monadically-guarded PAC is decidable in 2ExpSpace.

In the next section, we introduce the monadically-guarded fragment of PAC
and discuss extensions of PA that can be captured by this fragment. In Section 6,
by adding post-processing to the procedure from Section 3, we show how to deal
with any monadically-guarded counting quantifiers in 3ExpTime. In Section 7
we establish Theorem 2 by designing a quantifier relativization argument, con-
tinuing the direction of research due to [12]. In Section 8 we prove Theorem 1.

5 The monadically-guarded fragment of PAC

Fix a logic L. A formula Φ(x, z) from L, where z is a tuple of variables not
including x, is said to be monadically decomposable on the variable x whenever

Φ⇔ Ψ, for some Ψ def=
∨
i∈I(∆i(x) ∧ Γi(z)),

where ∆i and Γi are formulae from L. In this case, Ψ is said to be a monadic
decomposition of Φ on the variable x.

The notion of monadic decomposition has been put forward by Veanes et
al. in [11], as a general simplification technique that improves the performance
of solvers. Here, our interest lies in studying whether the notion of monadic
decomposability can bring complexity advantages for Presburger arithmetic with
counting quantifiers. With this in mind, we consider formulae of PAC that we
call monadically-guarded : those in which the quantifiers ∃=xy only appear in
subformulae of the form ∃x (Ψ ∧ ∃=xyΦ), where Φ and Ψ are themselves from
the monadically-guarded fragment of PAC, x does not occur in Φ, and Ψ is
monadically decomposable on the variable x. The monadically-guarded fragment
of PAC is understood as the set of all formulae from PAC that are monadically-
guarded. This fragment captures several interesting extensions of PA:

– It can express that the number of different y satisfying Φ(y, z) lies in an
arithmetic progression b, b+ p, b+ 2 · p, b+ i · p, . . . , with b, p ∈ N. That is,

∃x(x ≥ b ∧ x ≡p b ∧ ∃=xyΦ(y, z)).

This type of monadically-guarded formulae extends the modulo counting
quantifiers studied by Habermehl and Kuske [4]. Modulo counting quantifiers
are written as ∃(r,q)yΦ and hold whenever the number of different y satisfy-
ing Φ is congruent to r modulo q. Hence, ∃(r,q)yΦ ⇔ ∃x (x ≡p r ∧ ∃=xyΦ).

Quantifier elimination for counting extensions of Presburger arithmetic 235

Moreover, in the monadically-guarded fragment, we can replace the integer r
with an arbitrary linear term t with variables from z, since the modulo con-
straint x ≡p t can be monadically decomposed into

∨
r∈[p](x ≡p r ∧ t ≡p r).

– As we recalled in the previous section with the formula Ψn(x, z), it is known
that PA allows one to succinctly encode numbers that are doubly or triply
exponentially large with respect to the size of the formula. For instance,
one can define a formula Ln(x), again of size polynomial in n, that is true
whenever x is the product of all primes in the interval [2, 22n

] (see [7, Lecture

24]). In this case, x ≥ 2c2
2n

for some fixed c > 0. The monadically-guarded
fragment of PAC allows one to use these succinct representations as guards of
counting quantifiers. For instance, ∃x(Ln(x)∧∃=xyΨ(y, z)) is true whenever
the number of y satisfying Ψ(y, z) is the product of all primes in [2, 22n

].

Hague et al. [5] proved that constructing the monadic decomposition of a
quantifier-free formula can be done in exponential time. More precisely, given a
q.f. formula Φ(x,y) from PA that is monadically decomposable on x, in [5] it is
shown that there is a natural number B of magnitude exponential in |Φ| that
makes the following formula ΨB(x,y) a monadic decomposition of Φ on x:

ΨB
def=
∨m−1
c=0

((
x ≥ B ∧ x ≡m c ∧ Φ(B + c,y)

)
∨
(
x ≤ −B ∧ x ≡m c ∧ Φ(−B − c,y)

))
∨
∨B−1
c=−B+1(x = c ∧ Φ(c,y)),

where m = lcm(mod(Φ)). We study the arguments presented in [5] and refine
the bound B, tracking dependencies on several formula parameters separately.
We find that B is polynomial in ||Φ||; it is only exponential in #mod(Φ) and in
the number of variables of the tuple y.

Proposition 3. Let Φ(x,y) be a q.f. formula from PA, where y = (y1, . . . , yd).

Let m = lcm(mod(Φ)) and B = 248d2

(m · ||lin(Φ)||)6d + 1. If Φ is monadically
decomposable on x, then the formula ΨB is such a decomposition.

Together with our QE procedure, Proposition 3 shows that it is decidable
to check whether a formula of PAC is monadically decomposable (on a certain
variable). Due to Theorem 2, this problem is in 2ExpSpace for formulae of the
monadically-guarded fragment of PAC. Besides, notice that all formulae having
one free variable are monadic decompositions of themselves.

Our QE procedure for the monadically-guarded fragment of PAC, outlined
below, makes use of the sharper bound obtained in Proposition 3.

6 Eliminating monadically-guarded counting quantifiers

Consider a formula Φ0 = ∃x(Ψ ∧ ∃=xyΦ), where Φ and Ψ are quantifier-free
formulae, x does not occur in Φ, and Ψ is monadically decomposable on x. By
relying on the QE procedure introduced in Section 3, we show how to obtain a
quantifier-free formula equivalent to Φ0. W.l.o.g., we assume that all free vari-
ables distinct from x and y and occurring in Φ and Ψ come from the tuple of
variables z.

236 D. Chistikov et al.

Below, let Ψ′ =
∨
k∈K ∆k(x)∧Ψk(z) be the monadic decomposition of Ψ on

the variable x computed according to Proposition 3. Recall that this means that
each ∆k is a formula having one among the following three forms:

x ≥ B ∧ x ≡q c; x ≤ −B ∧ x ≡q c; or x = r,

where q def= lcm(mod(Ψ)), c ∈ [q], r ∈ [−B + 1, B − 1] and B is a fixed natural
number. Let us also consider the formula Φ5 obtained from performing the QE
procedure for the ∃=xy counting quantifier on ∃=xyΦ, so that Φ0 ⇔ ∃x(Ψ′ ∧ Φ5).
In particular, recall that Φ5

def=
∨o
i=1

∨
r : Z→[m](Γi,r ∧Φi,r5), where Z is the set of

variables appearing in z, m = lcm(mod(Φ)) and Γi,r = Oi ∧ (
∧
w∈Z w ≡m r(w))

is a conjunction of an ordering Oi and simple modulo constraints with variables
from Z. Hence, Γi,r is x-free. Moreover, Φi,r5 is either ⊥ or a formula of the form

mx =
∑`
j=2(pj(t

′
j − t′j−1) + rj) +m ·

∑`
j=1 cj . (2)

where the terms t′1, . . . , t
′
` are from T (where T is defined as in Step II of Sec-

tion 3), and hence x-free. Therefore, the following property holds.

Claim 9. In Φ5, x only appears on the left-hand side of equalities of the form (2).

This inconspicuous claim, together with the shape of ∆k, is at the heart of
our QE procedure eliminating x from the formula ∃x(Ψ′ ∧ Φ5). Indeed, after
distributing the existential quantifier ∃x and all conjunctions over disjunctions
of Ψ′ ∧ Φ5, we end up with a disjunction of formulae of the form ∃x : ∆k(x) ∧
Ψk(z) ∧ Γi,r ∧ Φi,r5 , and let us consider one such disjunct with ∆k(x) = (x ≥
B∧x ≡q c) and Φi,r5 as in Equation (2). The variable x can be eliminated with a

simple substitution, rewriting ∆k(x)∧Φi,r5 as the new formula t̃ ≥ m ·B∧ t̃ ≡m·q
m · c, where t̃ is the right-hand side of Equation (2). The correctness of this
rewrite step follows simply from the equivalences x ≥ B ⇔ m · x ≥ m ·B and
x ≡q c⇔ m ·x ≡m·q m ·c, with m ≥ 1. In a similar way, we can treat all possible

cases for the different forms of ∆k(x) and Φi,r5 . We obtain a formula

Ψk(z) ∧ Γi,r ∧ t̃ ≥ m ·B ∧ t̃ ≡m·q m · c. (3)

The number of homogeneous terms across all such disjuncts is still prohibitive as
it was in Φ5. Now comes the key simplification step; we deal with the inequality
t̃ ≥ m ·B and with the modulo constraint t̃ ≡m·q m · c.

Consider the former first. By definition, all the coefficients pj of Equation (2)
are non-negative, and thanks to the ordering Oi appearing in Γi,r, in every
valuation ν satisfying the formula in Equation (3) we have ν(t′j − t′j−1) ≥ 0.

Therefore, the inequality t̃ ≥ m · B can be translated into a formula of the
form

∨
g∈G

∧`
j=2 t

′
j − t′j−1 ≥ dg,j , where each dg,j is non-negative and, for every

g ∈ G, the sum
∑`
j=2 pjdg,j is at least e def= m(B −

∑`
j=1 cj) −

∑`
j=2 rj . To

compute this formula efficiently, we appeal to Lemma 2, with respect to the set
of terms {t′j − t′j−1 | j ∈ [2, `]} ∪ [0, e].

Quantifier elimination for counting extensions of Presburger arithmetic 237

Lemma 6. Let d = |fv(Oi∧t̃ ≥ m·B)|. In time (e+ `)O(d) log(B · ||Oi||)O(1) one

can compute a formula Θ =
∨
g∈G

∧`
j=2 t

′
j − t′j−1 ≥ dg,j s.t. (1) dg,j ∈ [0, e+ 1],

(2) #G ≤ O((e+ `)2d), and (3) Oi ∧ t̃ ≥ m ·B ⇔ Oi ∧Θ.

A similar simplification can be done for the modulo constraint t̃ ≡m·q m · c:
we guess residue classes of variables in t̃ modulo m · q, rewriting t̃ ≡m·q m · c into∨
s : Z→[m·q](t̃ ≡m·q m · c∧

∧
z∈Z z ≡m·q s(z)) and then replace, in each disjunct,

t̃ ≡m·q m · c by > or ⊥, according to the satisfaction of s(t̃) ≡m·q m · c.
The steps just discussed forms the post-processing phase of our QE procedure

for the monadically-guarded fragment of PAC. Thanks to Lemma 6, we can show
that the set of homogeneous terms of the resulting quantifier free formula Φ′,
equivalent to Φ0, is the set of homogeneous terms in the monadic decomposi-
tion Ψ′, together with terms of the form t− t′ with t and t′ belong to the set T
defined in Line 5. But #hom(Ψ′) = O(#hom(Φ0)), and thus:

Lemma 7. #hom(Φ′) ≤ O(#hom(Φ0)
2
).

Running time. Lemma 7 is the key to obtaining an elementary QE procedure.
In particular, this improvement over the exponential dependence of #hom(Φ5)
on #hom(Φ) from our “baseline” Lemma 5 leads to the following bounds on the
elimination of an arbitrary number of monadically-guarded quantifiers.

Lemma 8. Let Ω be a formula from the monadically-guarded fragment of PAC,
with quantifier rank d. There is an equivalent quantifier-free formula Υ such that

– #hom(Υ) ≤ |Ω|2
O(d)

and #mod(Υ) ≤ O(|Ω|);

– #lin(Υ), ||const(Υ)||, ||hom(Υ)|| and ||mod(Υ)|| are at most 2|Ω|
2O(d)

.

Proof idea. In a nutshell, the bounds of Lemma 8 are obtained by first iterat-
ing Lemma 7 across all quantifier elimination rounds. This results in the doubly

exponential bound |Ω|2
O(d)

on the cardinality of the set of homogeneous terms
throughout the entire procedure. With this bound in hand, exponentiation on
the right-hand side of the inequalities of Section 3 does not blow the parameters
above triple exponential.

Subsequent analysis leads to the following result.

Theorem 3. There is a 3ExpTime quantifier elimination procedure for the
monadically-guarded fragment of PAC.

Theorem 3 follows by combining Lemma 8 with upper bounds on the run-
ning time of a single quantifier elimination round. These upper bounds are all
subsumed by the size of the obtained formulae, except possibly for the subdivi-
sion procedure of Step II (Lemma 2), the model counting procedure of Step IV
(Lemma 4), and the further subdivision performed by Lemma 6. For Lemmas 2
and 6, the running time is only exponential in the size of the original formula,
and thus polynomial time in the size of the obtained formula, as long as the latter

238 D. Chistikov et al.

has at least exponential size. For Lemma 4, observe that m ≤ ||mod(Υ)||, where
Υ is the quantifier-free formula of Lemma 8. Therefore, the bounds of Lemma 8
suffice for a triply exponential time overall.

Remark 2. Only small updates are necessary to treat monadically-guarded for-
mulae of the form ∃x(Ψ(x, z) ∧ ∃≥xyΦ(y, z)). Again, these updates deal with
the fact that, contrary to ∃=xyΦ, the formula ∃≥xyΦ is true whenever there
are infinitely many y satisfying Φ, or alternatively when x corresponds to a
non-positive number. Then, Lemma 8 can be established for formulae of PAC
containing both monadically-guarded quantifiers ∃=x and ∃≥x.

7 The monadically-guarded fragment is in doubly
exponential space

In this section, we prove Theorem 2. Theorem 3 shows that our QE procedure
has the same asymptotic running time as the standard QE procedures for PA.
Historically, bounds obtained from the latter lead to computationally optimal
decision procedures based on quantifier relativisation [12,4]. More precisely, given
a formula Φ from PA, the QE procedures allow us to conclude that there is a
bound C, of bitsize at most doubly exponential in |Φ|, such that ∃xΦ ⇔ ∃x :
−C ≤ x ≤ C∧Φ holds (a small-model property). Then, a quantifier relativisation
procedure follows the semantics of the formula and näıvely tries all the possible
assignments to x in [−C,C] whenever a quantifier ∃x is encountered. With some
bookkeeping, this procedure runs in 2ExpSpace. In this section, we show that
this is also the case for our QE procedure, leading to a 2ExpSpace relativisation
procedure for the monadically-guarded fragment of PAC, proving Theorem 2.

First of all, we need to recall a folklore result regarding the existence of
infinitely many solutions of a quantifier-free Presburger formula.

Lemma 9. Let ν be an assignment and Φ(y, z) be a q.f. formula of PA, where

z has d variables. Let C def= ||Φ|| · d ·max{1, |ν(z)| : z is in z}+ ||Φ||#mod(Φ)
+ 1.

1. If there are finitely many n ∈ Z s.t. ν[n/y] |= Φ, then they all satisfy |n| ≤ C.
2. If there are infinitely many n ∈ Z such that ν[n/y] |= Φ, then for every

j ∈ N+ there is such an n satisfying j · C < |n| ≤ (j + 1) · C.

Together with Lemma 8, this result leads to the relativisation of first-order
quantifiers in the context of PAC.

Lemma 10. There is a constant c with the following property. Let ν be an
assignment, Φ(y, z) be a monadically-guarded formula of PAC, where z has d

variables, and let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}. Then, ν |= ∃yΦ if and

only if ν[n/y] |= Φ holds for some n ∈ Z with |n| ≤ 3 · C.

We want to derive a similar lemma for monadically guarded counting quan-
tifiers. First of all, we consider a formula Φ = ∃=xyΨ(y, z) where Ψ is a monad-
ically guarded formula. Recall that Φ is satisfied by an assignment ν whenever
the number of distinct values n ∈ Z such that ν[n/y] |= Ψ is finite and equal
to ν(x). By relying on Lemmas 8 and 9, we show the following lemma.

Quantifier elimination for counting extensions of Presburger arithmetic 239

Lemma 11. There is a constant c with the following property. Let ν be an as-
signment, and consider a formula Φ = ∃=xyΨ(y, z) such that Ψ is a monadically

guarded formula of quantifier rank d. Let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}.

Then, ν |= Φ iff (i) ν[n/y] 6|= Ψ, for every n ∈ Z with C < |n| ≤ 3 ·C; and
(ii) #{n ∈ Z : |n| ≤ C and ν[n/y] |= Ψ} = ν(x).

We now consider the outermost quantifier x of a monadically-guarded for-
mula Θ = ∃x (Ψ(x, z) ∧ ∃=xyΦ(y, z)), and aim at finding relativisation bounds
for the variable x. Notice that the subformula Ψ(x, z) ∧ ∃=xyΦ(y, z) is not,
strictly speaking, in the monadically-guarded fragment of PAC. However, we
can first apply Lemma 8 and obtain quantifier-free formulae Ψ̂ and Φ′ equiva-
lent to Ψ and Φ, respectively. Then, we apply the QE procedure of Section 3
on input ∃=xyΦ′, producing an equivalent quantifier-free formula Φ̂. We have
Θ⇔ ∃x (Ψ̂ ∧ Φ̂), where Ψ̂ ∧ Φ̂ is quantifier-free. Similarly to Lemma 10, we can

now obtain relativisation bounds from ∃x (Ψ̂ ∧ Φ̂) by relying on Lemma 9:

Lemma 12. There is a constant c with the following property. Let ν be an
assignment, and let Θ = ∃x (Ψ(x, z) ∧ ∃=xyΦ(y, z)) be a monadically-guarded

formula of quantifier rank d. Define C def= 2|Θ|
2c·d · max{1, |ν(z)| : z is in z}.

Then, ν |= Θ if and only if there is n ∈ N s.t. n ≤ C and ν[n/x] |= Ψ ∧ ∃=xyΦ.

Lemmas 10 to 12 allow to evaluate the truth of a sentence of the monadically-
guarded fragment of PAC by recursively evaluating the truth of its subformulae,
and iterating over a finite set of values when considering first-order and counting
quantifiers. As all the considered values admit a binary encoding that is doubly
exponential in the size of the input formula, this proves Theorem 2.

8 A complexity characterisation

By Theorem 2, for deterministic machines, the monadically-guarded fragment
of PAC is no harder than standard Presburger arithmetic, and the same is true
when considering monadically-guarded quantifiers ∃≥xy (Remark 2). However,
by Proposition 1, PA is not complete for 2ExpSpace, but rather for the complex-

ity class STA(∗, 22nO(1)

,O(n)). This leads to the natural question on whether
the monadically-guarded fragment of PAC is also complete for the same STA
class. While we leave this question open, in this section we show a completeness
result in the restricted case where all monadically-guarded quantifiers appear
in the form ∃x(Ψ(x) ∧ ∃≥xyΦ), where Ψ(x) is any formula from PAC having

all models bounded by 22|Ψ| , in absolute value. For brevity, let us denote this
fragment by F. As F extends PA, proving the following upper bound suffices.

Theorem 4. The validity of a sentence Φ in F can be decided by an alternating

Turing machine with runtime 22|Φ|
O(1)

and performing O(fd(Φ)) alternations.

Since the equivalence ∃≥cyΦ⇔ ∃x : x = c∧∃≥xyΦ, where c ∈ Z is written in
binary, shows that F contains PA enriched with threshold counting quantifiers,

240 D. Chistikov et al.

Function check(V : non-empty set of assignments, Φ : formula from F) → {>,⊥}
1 check(V , t < 0) = if ν |= t < 0 holds for all ν ∈ V then return > else return ⊥.

2 check(V , Φ1 ∨ Φ2) = if ∃V1, V2 : V = V1 ∪ V2 and check(V1,Φ1) = check(V2,Φ2) = >
3 then return > else return ⊥.

4 check(V , ¬Ψ) = if ∃ν ∈ V : check({ν}, Ψ) = > then return ⊥ else return >.

5 check(V , ∃x(Ψ(x) ∧ ∃≥xyΘ(y, z))) = if there is a family (Wν)ν∈V such that

6 • check(
⋃
ν∈V Wν , Ψ ∧Θ) = >, and

7 • each Wν is either {ν[k(ν)/x][n(ν)/y]} or {ν[k(ν)/x][n
(ν)
i /y] : i ∈ [1, k(ν)]}

8 where |k(ν)| ≤ 22|Ψ|

9 let C be defined as in Lemma 13, w.r.t . ν and Ψ;

10 n(ν) ∈ Z such that C < |n(ν)| ≤ 3 · C;

11 |n(ν)
i | ≤ C for every i ∈ [1, k(ν)]; and

12 n
(ν)
i 6= n

(ν)
j for every two distinct i, j ∈ [1, k(ν)]

13 then return > else return ⊥.

Fig. 1. Deciding whether a formula Φ from F is satisfied by all assignments in V .

this result implies Theorem 1. To establish Theorem 4, the first step is to rely
on Lemmas 8 and 9 and adapt the proof of Lemma 11 to obtain a quantifier
relativisation argument for the counting quantifier ∃≥xy.

Lemma 13. There is a constant c with the following property. Let ν be an as-
signment, and consider a formula Φ = ∃≥xyΨ(y, z) such that Ψ is a monadically

guarded formula of quantifier rank d. Let C def= 2|Ψ|
2c·d ·max{1, |ν(z)| : z is in z}.

Then, ν |= Φ iff (i) there is n ∈ Z s.t. ν[n/y] |= Ψ and C < |n| ≤ 3 ·C, or
(ii) #{n ∈ Z : |n| ≤ C and ν[n/y] |= Ψ} ≥ ν(x).

With Lemma 13 at hand, designing an algorithm that can be implemented as
an alternating Turing machine with resources bounded as in Theorem 4 is simple.
The function check(·, ·) given in Figure 1 provides such an algorithm.

Lemma 14. check(V , Φ) returns > if and only if for all ν ∈ V , ν |= Φ.

When Φ is a sentence, i.e. fv(Φ) = ∅, this lemma implies that Φ is valid if and
only if check({ν},Φ) = >, where ν is an arbitrary assignment. Then, Theorem 4
follows by establishing that check(·, ·) can be implemented with an alternating
Turing machine that, on input ({ν},Φ) where Φ is a sentence in F, runs in time

22|Φ|
O(1)

and performs O(fd(Φ)) many alternations. We see the existential quan-
tifications on V1, V2, ν and (Wν)ν∈V in Lines 2, 4 and 5 as guesses done by the
alternating Turing machine. The computation in Line 1 is done deterministically
in time polynomial in the encoding of V and t < 0. In Line 2, the alternating
Turing machine decides which branch among check(V1,Φ1) and check(V2,Φ2)
must be evaluated, at the cost of one alternation. In this way, alternations occur
only in the case of check(V ,Φ1 ∨Φ2) and check(V ,¬Ψ), as the latter returns the
negation of the assertion “∃ν ∈ V : check({ν}, Ψ) = >”. This leads to O(fd(Φ))

Quantifier elimination for counting extensions of Presburger arithmetic 241

many alternations overall. Let us now discuss the runtime of check(·, ·), again
on alternating Turing machines. Assume that, after a certain number of recur-
sive calls including at most r ≤ qr(Φ) calls to Line 5, the algorithm evaluates

the input (V ′,Ψ). Then, the number of assignments in V ′ is bounded by 2r·2
|Φ|

(this correspond to the case where each Wν in Line 7 contains the maximum
amount of assignments, according to k(ν)), and following the bounds on the num-

bers n(ν) and n
(ν)
i in Lines 10 and 11 and by Lemma 13, all these assignments

map each variable to an integer that is, in absolute value, bounded by 2r·|Φ|
2c·d

,
where c is the constant of Lemma 13 and d is the number of variables in Φ.
So, as the number of recursive calls to check(·, ·) is bounded by |Φ|, no more

than |Φ| · 2qr(Φ)·2|Φ| · log2(2qr(Φ)·|Φ|2
c·d

) ≤ 22(c+3)|Φ|
space is required to represent

all possible sets of assignments that are generated throughout the evaluation of
check(·, ·). All the assignments are guessed by the alternating Turing machine
and thus, when also accounting for the computation done in Line 1, we conclude

that check({ν},Φ) runs in time 22|Φ|
O(1)

.

9 Conclusion

We developed a new quantifier elimination procedure for Presburger arithmetic
extended with the unary counting quantifiers (PAC), and adapted it for its
monadically-guarded fragment. While the existence of an algorithm for PAC
running in elementary time is wide open, our procedure runs in 3ExpTime on
the monadically-guarded fragment and leads to the small-model property and
relativisation argument, which show that this logic is decidable in 2ExpSpace.
When it comes to deterministic algorithms, this matches the complexity of decid-
ing standard Presburger arithmetic. However, fully settling the complexity of the
monadically-guarded fragment of Presburger arithmetic seems to require a gen-
eralisation of the STA complexity framework to capture counting mechanisms,
which we leave as an avenue for further investigation. In this direction, we have

shown that Presburger arithmetic is still STA(∗, 22nO(1)

, O(n))-complete when
enriched with threshold quantifiers ∃≥cy, for the case of c written in binary but
also even for the case of c represented succinctly as a solution of a Presburger
formula Φ, characterising a number that may be doubly exponential in |Φ|.

With respect to our QE procedure for (general) unary counting quanti-
fiers ∃=x, we have pinpointed precisely where the non-elementary growth oc-
curs. It remains to be seen whether our procedure can be further improved, or
if, possibly based on insights obtained from it, a non-elementary lower bound for
Presburger arithmetic extended with the ∃=xy quantifier can be established.

Acknowledgments. We are grateful to our reviewers for drawing our
attention to the translation of threshold counting into standard PA. This
work is part of a project that has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 852769, ARiAT).

242 D. Chistikov et al.

References

1. Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen
Arithmetik verwandte Systeme. Math. Log. Q. 12(1), 131–168 (1966)

2. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

3. Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11(1), 71–77
(1980)

4. Habermehl, P., Kuske, D.: On Presburger arithmetic extended with modulo count-
ing quantifiers. In: Proc. Foundations of Software Science and Computation Struc-
tures, FoSSaCS. Lect. Notes Comput. Sc., vol. 9034, pp. 375–389. Springer (2015)

5. Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Monadic decomposition in integer lin-
ear arithmetic. In: Proc. International Joint Conference on Automated Reasoning,
IJCAR. Lect. Notes Comput. Sc., vol. 12166, pp. 122–140. Springer (2020)

6. Herre, H., Krynicki, M., Pinus, A., Väänänen, J.: The Härtig quantifier: A survey.
J. Symb. Comput. 56(4), 1153–1183 (1991)

7. Kozen, D.: Theory of Computation. Texts in Computer Science, Springer (2006)

8. Oppen, D.C.: A 222pn

upper bound on the complexity of Presburger arithmetic. J.
Comput. Syst. Sci. 16(3), 323–332 (1978)

9. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du I congres de Mathematiciens des Pays Slaves, pp. 92–101.
American Mathematical Society (1929)

10. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM
Trans. Comput. Log. 6(3), 634–671 (2005)

11. Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic decomposition. J.
ACM 64(2), 14:1–14:28 (2017)

12. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb.
Comput. 10(5), 395–404 (1990)

13. Woods, K.: Presburger arithmetic, rational generating functions, and quasi-
polynomials. J. Symb. Log. 80(2), 433–449 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Quantifier elimination for counting extensions of Presburger arithmetic 243

http://creativecommons.org/licenses/by/4.0/

A first-order logic characterisation of
safety and co-safety languages

Alessandro Cimatti1 , Luca Geatti3(�) , Nicola Gigante3(�) ,
Angelo Montanari2 , and Stefano Tonetta1

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,tonettas}@fbk.eu
2 University of Udine, Italy
angelo.montanari@uniud.it

3 Free University of Bozen-Bolzano, Italy
{geatti,gigante}@inf.unibz.it

Abstract. Linear Temporal Logic (LTL) is one of the most popular tem-
poral logics, that comes into play in a variety of branches of computer sci-
ence. Its widespread use is also due to its strong foundational properties.
One of them is Kamp’s theorem, showing that LTL and the first-order
theory of one successor (S1S[FO]) are expressively equivalent. Safety and
co-safety languages, where a finite prefix suffices to establish whether a
word does not or does belong to the language, respectively, play a cru-
cial role in lowering the complexity of problems like model checking and
reactive synthesis for LTL. Safety-LTL (resp., coSafety-LTL) is a fragment
of LTL where only universal (resp., existential) temporal modalities are
allowed, that recognises safety (resp., co-safety) languages only.
In this paper, we introduce a fragment of S1S[FO], called Safety-FO, and
its dual coSafety-FO, which are expressively complete with regards to the
LTL-definable safety languages. In particular, we prove that they respec-
tively characterise exactly Safety-LTL and coSafety-LTL, a result that
joins Kamp’s theorem, and provides a clearer view of the charactisations
of (fragments of) LTL in terms of first-order languages. In addition, it
gives a direct, compact, and self-contained proof that any safety language
definable in LTL is definable in Safety-LTL as well. As a by-product, we
obtain some interesting results on the expressive power of the weak to-
morrow operator of Safety-LTL interpreted over finite and infinite traces.

1 Introduction

Linear Temporal Logic (LTL) is the de-facto standard logic for system specifica-
tions [14]. It is a modal logic that is usually interpreted over infinite state se-
quences, but the finite-trace semantics has recently gained attention as well [6,7].
The widespread use of LTL is due to its simple syntax and semantics, and to its
strong foundational properties. Among them, we would like to mention the semi-
nal work by Kamp [10] and Gabbay et al. [8], on its expressive completeness, i.e.,
LTL-definable languages are exactly those definable in the first-order fragment
of the monadic second-order theory of one successor [3] (S1S[FO] for short).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 244–263, 2022.
https://doi.org/10.1007/978-3-030-99253-8_13

http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-7125-787X
http://orcid.org/0000-0002-2254-4821
http://orcid.org/0000-0002-4322-769X
http://orcid.org/0000-0001-9091-7899
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_13&domain=pdf

In formal verification, an important class of specifications is that of safety
languages. They are languages of infinite words where a finite prefix suffices
to tell whether a word does not belong to the language. As an example, the
set of all and only those infinite sequences where some particular bad event
never happens can be regarded as a safety language. In their duals, co-safety
languages (sometimes called guarantee languages), a finite prefix is sufficient to
tell whether a word belongs to the language, e.g., when some desired event is
mandated to eventually happen. Safety and co-safety languages are important
for verification, model-checking, monitoring, and automated synthesis because
they capture a variety of real-world requirements while being much simpler to
deal with algorithmically [1, 11, 20].

Safety-LTL is the fragment of LTL where only universal temporal modalities
are allowed. Similarly, its dual coSafety-LTL is obtained by only allowing exis-
tential modalities. It has been proved by Chang et al. [5] that Safety-LTL and
coSafety-LTL define exactly the safety and co-safety languages that are definable
in LTL, respectively.

In this paper, we provide a novel characterization of LTL-definable safety lan-
guages, and of their duals, in terms of a fragment of S1S[FO], called Safety-FO,
and its dual coSafety-FO. The presented fragments have a very natural syntax,
and we prove they are expressively complete with regards to LTL-definable safety
and co-safety languages. We prove the correspondence between coSafety-FO and
coSafety-LTL, which extends naturally to their duals and can be considered as
a version of Kamp’s theorem [10] specialized for safety and co-safety properties,
helping to create a clearer picture of the correspondence between (fragments
of) temporal and first-order logics. We exploit such a result to prove the corre-
spondence between co-safety languages definable in LTL and coSafety-FO, thus
establishing also the equivalence between the former and coSafety-LTL. This pro-
vides a proof of the fact that Safety-LTL captures exactly the set of LTL-definable
safety languages [5], which can be regarded as another contribution of the paper.
The interest of our proof is twofold: on the one hand, the original proof by Chang
et al. [5] is only sketched and it relies on two non-trivial translations scattered
across different sources [16, 21]; on the other hand, such an equivalence result
seems not to be very much known, as some authors presented the problem as
open as lately as 2017 [20].4 Thus, a compact and self-contained proof of the
result seems to be a useful contribution for the community. It is worth to note
that both proofs build on the fact that safety/co-safety languages can be cap-
tured by formulas of the form Gα/Fα with α pure-past, but after that, the two
proofs significantly diverge. Finally, as a by-product of this proof, we provide
some results that assess the expressive power of the weak tomorrow operator of
Safety-LTL when interpreted over finite vs. infinite traces.

The paper is organized as follows. After recalling necessary background knowl-
edge in Section 2, Section 3 introduces Safety-FO and coSafety-FO and proves
their correspondence with Safety-LTL and coSafety-LTL. Then, Section 4 proves

4 As a matter of fact, we discovered about Chang et al. [5] after setting up the proof
shown in this paper.

A first-order logic characterisation of safety and co-safety languages 245

their correspondence with the set of safety and co-safety languages definable
in LTL, thus providing a compact and self-contained proof of the equivalence
between Safety-LTL and LTL-definable safety languages. Some properties of the
weak next operator are outlined as well. Finally, Section 5 concludes the paper
with some final considerations and a discussion of future work.

2 Preliminaries

Let A be a finite alphabet. We denote as A∗ and Aω the set of all finite and
infinite words, respectively, over A. We let A+ = A∗ \ {ε}, where ε is the empty
word. Given a word σ ∈ A∗ we denote as |σ| the length of σ. For an infinite
word σ ∈ Aω, |σ| = ω. For a (finite or infinite) word σ, we denote as σi ∈ A,
for 0 ≤ i < |σ|, the letter at the i-th position of the word. With σ[i,j], for
0 ≤ i ≤ j < |σ|, we denote the subword that goes from the i-th to the j-th letter
of the word, extrema included. With σ[i,∞] we denote the suffix of σ starting
from the i-th letter. Given a word σ ∈ A∗ and σ′ ∈ A∗ ∪ Aω, we denote the
concatenation of the two words as σ · σ′, or simply σσ′. A language L, either
L ⊆ A∗ or L ⊆ Aω, is a set of words. Given two languages L and L′ with L ⊆ A∗

and either L′ ⊆ A∗ or L′ ⊆ Aω, we define L ·L′ = {σ · σ′ | σ ∈ L and σ′ ∈ L′}.
For a finite word σ = σ0 . . . σk let σr = σk . . . σ0 be the reverse of σ, and for a
language of finite words L let Lr = {σr | σ ∈ L}. We can now define safety and
co-safety languages.

Definition 1 (Safety language [11, 19]). Let L ⊆ Aω. We say that L is a
safety language if and only if for all the words σ ∈ Aω it holds that, if σ ̸∈ L,
then there exists an i ∈ N such that, for all σ′ ∈ Aω, σ[0,i] · σ′ ̸∈ L. The class of
safety languages is denoted as SAFETY.

Definition 2 (Co-safety language [11, 19]). Let L ⊆ Aω. We say that L
is a co-safety language if and only if for all the words σ ∈ Aω it holds that, if
σ ∈ L, then there exists an i ∈ N such that, for all σ′ ∈ Aω, σ[0,i] · σ′ ∈ L. The
class of co-safety languages is denoted as coSAFETY.

Linear Temporal Logic with Past (LTL+P) is a modal logic interpreted over
infinite or finite words. Given a set Σ of proposition variables, the syntax of an
LTL formula ϕ is generated by the following grammar:

ϕ := p | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 Boolean connectives

| Xϕ1 | X̃ϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 future modalities

| Yϕ1 | Zϕ1 | ϕ1 S ϕ2 | ϕ1 T ϕ2 past modalities

where ϕ1 and ϕ2 are LTL+P formulas and p ∈ Σ. An LTL+P formula is a pure
future formula if it does not make use of past modalities, and it is pure past
if it does not make use of future modalities. We denote with LTL the set of
pure future formulas, and with LTLP the set of pure past formulas. Most of the
temporal operators of the language can be defined in terms of a small number

246 A. Cimatti et al.

of basic ones. In particular, conjunction can be defined in terms of disjunction
(ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)), the release operator can be defined in terms of the
until operator (ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2)), and the triggered operator can be
defined in terms of the since operator (ϕ1 T ϕ2 ≡ ¬(¬ϕ1 S ¬ϕ2)). Nevertheless,
we consider all these connectives and operators as primitive in order to be able
to put any formula in negated normal form (NNF), i.e., a form where negations
are only applied to proposition letters. Note that the syntax includes both a
tomorrow (Xϕ) and weak tomorrow (X̃ϕ) operators, as well as a yesterday (Yϕ)
and weak yesterday (Zϕ) operators, for the same reason. Moreover, standard
shortcut operators are available such as the eventually (Fϕ ≡ ⊤U ϕ), and always
(Gϕ ≡ ¬F¬ϕ) future operators, and the once (Oϕ ≡ ⊤ S ϕ), and historically
(Hϕ ≡ ¬O¬ϕ) past operators.

LTL+P is interpreted over state sequences, which are finite or infinite words
over 2Σ . Given a state sequence σ ∈ (2Σ)+ or σ ∈ (2Σ)ω, the satisfaction of a
formula ϕ by σ at a time point i ≥ 0, denoted as σ, i |= ϕ, is defined as follows:

1. σ, i |= p iff p ∈ σi;
2. σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
3. σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
4. σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
5. σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
6. σ, i |= X̃ϕ iff either i+ 1 = |σ| or σ, i+ 1 |= ϕ;
7. σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
8. σ, i |= Zϕ iff either i = 0 or σ, i− 1 |= ϕ;
9. σ, i |= ϕ1 U ϕ2 iff there exists i ≤ j < |σ| such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with i ≤ k < j;
10. σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with j < k ≤ i;
11. σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all i ≤ j < |σ|, or there exists

k ≥ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≤ j ≤ k;

12. σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there exists
k ≤ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≥ j ≥ k

We say that a state sequence σ satisfies ϕ, written σ |= ϕ, if σ, 0 |= ϕ. Note
that, when interpreted over an infinite word, the tomorrow and weak tomorrow
operators have the same semantics. The language of ϕ, denoted as L(ϕ), is the
set of words σ ∈ (2Σ)ω such that σ |= ϕ. The language of finite words of ϕ,
denoted as L<ω(ϕ), is the set of finite words σ ∈ (2Σ)+ such that σ |= ϕ. Given
a logic L (e.g., LTL), we denote as JLK the set of languages L such that there is a
formula ϕ ∈ L such that L = L(ϕ), and we denote as JLK<ω the set of languages
of finite words L such that there is a formula ϕ ∈ L such that L = L<ω(ϕ). Note
that JLTLK<ω is usually called LTLf in the literature [6].

We now define the two fragments of LTL that are the subject of this paper.

Definition 3 (Safety-LTL and coSafety-LTL [17]). The logic Safety-LTL (resp.
coSafety-LTL) is the fragment of LTL where, for formulas in negated normal

A first-order logic characterisation of safety and co-safety languages 247

form, only the tomorrow, weak tomorrow and release (resp. until) temporal
operators are allowed.

We also define the logic coSafety-LTL(−X̃) as the logic coSafety-LTL devoid
of the weak tomorrow operator (this logic will play a central role in our proofs).

In the next Section we present two fragments of the first-order theory of
one successor [2, 3], namely S1S[FO], or simply FO in the following. Fixed
an alphabet Σ, FO is a first-order language with equality over the signature
⟨<, {P}p∈Σ⟩, and is interpreted over structures M = ⟨DM, <M, {PM}p∈Σ⟩
where DM, for our goals, is either the set N of natural numbers or a prefix
{0, . . . , n} thereof, and <M is the usual ordering relation between natural num-
bers. Given an FO formula ϕ(x0, . . . , xm) with m + 1 free variables, the satis-
faction of ϕ by a first-order structure M when x0 = n0, . . . , xm = nm, denoted
as M, n0, . . . , nm |= ϕ(x0, . . . , xm), is defined following the standard first-order
semantics. State sequences over Σ map naturally into such structures. Given a
word σ ∈ (2Σ)∗ or σ ∈ (2Σ)ω, we denote as (σ)s the corresponding first-order
structure. Given a formula ϕ(x) with exactly one free variable, the language of
ϕ, denoted as L(ϕ), is the set of words σ ∈ (2Σ)ω such that (σ)s, 0 |= ϕ. Sim-
ilarly, the language of finite words of ϕ, denoted as L<ω(ϕ), is the set of finite
words σ ∈ (2Σ)+ such that (σ)s |= ϕ. We denote as JFOK and JFOK<ω the set of
languages of infinite and finite words, respectively, definable by a FO formula.

Given a class of languages of finite words JLK<ω, we denote as JLK<ω · (2Σ)ω
the set of languages JLK<ω ·(2Σ)ω = {L ·(2Σ)ω | L ∈ JLK<ω}. We recall now some
known results.

Proposition 1 (Kamp [10] and Gabbay [8]).
JLTLK = JFOK and JLTLK<ω = JFOK<ω.

Finally, we state a normal form for LTL-definable safety/co-safety languages.

Proposition 2 (Chang et al. [5], Thomas [19]). A language L ∈ JLTLK is
safety (resp. co-safety) if and only if it is the language of a formula of the form
Gα (resp. Fα), where α ∈ LTLP.

3 Safety-FO and coSafety-FO

In this section we introduce the core contribution of the paper, i.e., two fragments
of FO that precisely capture Safety-LTL and coSafety-LTL, respectively, and we
prove this relationship. A summary of the results provided by the paper is given
in Fig. 1.

Definition 4 (Safety-FO). The logic Safety-FO is generated by the following
grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃y(x < y < z ∧ ϕ1) | ∀y(x < y → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate, and ϕ1 and
ϕ2 are Safety-FO formulas.

248 A. Cimatti et al.

JcoSafety-FOK

JcoSafety-LTL(−X̃)K<ω · (2Σ)ω

JcoSafety-LTLK

JcoSafety-LTLK<ω · (2Σ)ω

JLTLK ∩ coSAFETY

JLTLK ∩ SAFETY JSafety-LTLK

Lem
m
a
8

Lemmas 6 and 7

Le
m
m
a
2

C
or
ol
la
ry

1

Lemma 1

=

=
Chang et al. [5]

=

JcoSafety-LTLK<ω⊋JcoSafety-LTL(−X̃)K<ω

Theorem 4

JLTLK<ω

JFOK<ω JcoSafety-FOK<ω

Lemma 7

Kamp Corollary 1

⊋

Fig. 1. Summary of the results of the paper, about languages over infinite words on
the left, and over finite words on the right. Solid arrows are own results. Dashed arrows
are known from literature.

Definition 5 (coSafety-FO). The logic coSafety-FO is generated by the following
grammar:

atomic := x < y | x = y | x ̸= y | P (x) | ¬P (x)
ϕ := atomic | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃y(x < y ∧ ϕ1) | ∀y(x < y < z → ϕ1)

where x, y, and z are first-order variables, P is a unary predicate, and ϕ1 and
ϕ2 are coSafety-FO formulas.

We need to make a few observations on the syntax of the two fragments.
First of all, note how any formula of Safety-FO is the negation of a formula
of coSafety-FO and vice versa. Then, note that the two fragments are defined
in negated normal form, i.e., negation only appears on atomic formulas. The
particular kind of existential and universal quantifications allowed are the cul-
prit of these fragments. In particular Safety-FO restricts any existentially quan-
tified variable to be bounded between two already quantified variables. The
same applies to universal quantification in coSafety-FO. Moreover Safety-FO and
coSafety-FO formulas are future formulas, i.e., the quantifiers can only range
over values greater than already quantified variables. These two features are
essential to precisely capture Safety-LTL and coSafety-LTL. Finally, note that
the comparisons in the guards of the quantifiers are strict, but non-strict com-
parisons can be used as well. In particular, ∃y(x ≤ y ∧ ϕ) can be rewritten as
ϕ[y/x] ∨ ∃y(x < y ∧ ϕ), where ϕ[y/x] is the formula obtained by replacing all
occurrences of y with x. Similarly, ∀z(x ≤ z ≤ y → ϕ) can be rewritten as
ϕ[z/x] ∧ ϕ[z/y] ∧ ∀z(x < z < y → ϕ).

To prove the relationship between Safety-LTL, coSafety-LTL, and these frag-
ments, we focus now on coSafety-FO. By duality, all the results transfer to
Safety-FO. We focus on coSafety-FO because the unbounded quantification is ex-
istential, and it is easier to reason about the existence of prefixes than on all the
prefixes at once. We start by observing that, since the weak tomorrow operator,
over infinite words, coincides with the tomorrow operator, the following holds.

Observation 1. JcoSafety-LTLK = JcoSafety-LTL(−X̃)K

A first-order logic characterisation of safety and co-safety languages 249

When reasoning over finite words, the weak tomorrow operator plays a crucial
role, since it can be used to recognize when we are at the last position of a word.
In fact, the formula σ, i |= X̃⊥ is true if and only if i = |σ|−1, for any σ ∈ (2Σ)∗.

Now, let us note that, thanks to the absence of the weak tomorrow operator,
we can in some sense reduce ourselves to reasoning over finite words.

Lemma 1. JcoSafety-LTL(−X̃)K = JcoSafety-LTL(−X̃)K<ω · (2Σ)ω

Proof. We have to prove that, for each formula ϕ ∈ coSafety-LTL(−X̃), it holds
that:

L(ϕ) = L<ω(ϕ) · (2Σ)ω

We proceed by induction on the structure of ϕ. For the base case, consider
ϕ ≡ p ∈ Σ. The case for ϕ ≡ ¬p is similar. Let σ ∈ L(p). It holds that σ0 |= p
and σ0 · σ′ |= p, for all σ′ |= (2Σ)ω, and in particular for σ′ = σ[1,∞). This is
equivalent to say that σ ∈ L<ω(ϕ) · (2Σ)ω. For the inductive step:

1. Let ϕ ≡ ϕ1 ∧ ϕ2. Suppose that σ ∈ L(ϕ). Obviously, σ |= ϕ1 and σ |=
ϕ2, and therefore σ ∈ L(ϕ1) and σ ∈ L(ϕ2). By the inductive hypothesis,
σ ∈ L<ω(ϕ1) · (2Σ)ω and σ ∈ L<ω(ϕ2) · (2Σ)ω. This means that there exist
two indices i, j ∈ N such that σ[0,i] |= ϕ1 and σ[0,j] |= ϕ2. Let m be the
greatest between i and j. It holds that σ[0,m] |= ϕ1 ∧ ϕ2. Therefore σ ∈
L<ω(ϕ1 ∧ ϕ2) · (2Σ)ω.

2. Let ϕ ≡ ϕ1 ∨ ϕ2 and let σ ∈ L(ϕ). We have that σ |= ϕ1 or σ |= ϕ2.
Without loss of generality, we consider the case that σ |= ϕ1 (the other case
is specular). By the inductive hypothesis, σ ∈ L<ω(ϕ1) · (2Σ)ω. Therefore, it
also holds that σ ∈ L<ω(ϕ1 ∨ ϕ2) · (2Σ)ω.

3. Let ϕ ≡ Xϕ1 and let σ ∈ L(Xϕ1). By the semantics of the tomorrow operator,
it holds that σ[1,∞) |= ϕ1. By the inductive hypothesis, σ[1,∞) ∈ L<ω(ϕ1) ·
(2Σ)ω. This means that there exists an index i ≥ 1 such that σ[1,i] |= ϕ1.
Therefore, it also holds that the state sequence σ[0,i] = σ0 ·σ[1,i] satisfies Xϕ1
over finite words, that is, σ[0,i] |= Xϕ1. This means that σ ∈ L<ω(Xϕ1)·(2Σ)ω.

4. Let ϕ ≡ ϕ1Uϕ2. Let σ ∈ L(ϕ). By the semantics of the until operator, it holds
that there exists an index i ∈ N such that σ[i,∞) |= ϕ2 and σ[j,∞) |= ϕ1 for all
0 ≤ j < i. By the inductive hypothesis, we have that σ[i,∞) ∈ L<ω(ϕ2)·(2Σ)ω
and σ[j,∞) ∈ L<ω(ϕ1) · (2Σ)ω for all 0 ≤ j < i. This means that there exists
an index i ∈ N and i + 1 indices k0, . . . , ki ∈ N such that σ[i,ki] |= ϕ2 and
σ[j,kj] |= ϕ1 for all 0 ≤ j < i. Let m be the greatest between k0, . . . , ki. It
holds that there exists an index i ∈ N such that σ[i,m] |= ϕ2 and σ[j,m] |= ϕ1
for all 0 ≤ j < i. Therefore, σ ∈ L<ω(ϕ1 U ϕ2) · (2Σ)ω.

The same property applies to coSafety-FO as well.

Lemma 2. JcoSafety-FOK = JcoSafety-FOK<ω · (2Σ)ω

Proof. We have to prove that, for each formula ψ ∈ coSafety-FO with one
free variable, it holds that L(ψ) = L<ω(ψ) · (2Σ)ω. We proceed by induction,

250 A. Cimatti et al.

but with a more general statement. Let ϕ(x1, . . . , xk) have k free variables.
We prove by induction on ϕ that for any infinite state sequence σ such that
(σ)s, n1, . . . , nk |= ϕ(x1, . . . , xk), there exists a prefix σ[0,i] of σ such that for
all σ′ ∈ (2Σ)ω, (σ[0,i]σ

′)s, n1, . . . , nk |= ϕ(x1, . . . , xk). The base case considers
the four kinds of atomic formulas. If (σ)s, n1, n2 |= x1 < x2, then n1 < n2

and we know that (σ[0,n2]σ
′)s, n1, n2 |= x1 < x2 for all σ′ ∈ (2Σ)∗. The case of

x1 = x2 is similar. Now, if (σ)s, n1 |= P (x1), then p ∈ σn1
and we know that

(σ[0,n1]σ
′)s, n1 |= P (x1) for all σ′ ∈ (2Σ)∗. The case for ¬P (x1) is similar. For

the inductive step:

1. if (σ)s, n1, . . . , nk |= ϕ1(x1, . . . , xk)∧ϕ2(x1, . . . , xk), by the induction hypoth-
esis we know that there are two prefixes σ[0,i] and σ[0,j] such that, respec-
tively, (σ[0,i]σ

′)s, n1, . . . , nk |= ϕ1(x1, . . . , xk) and (σ[0,j]σ
′′)s, n1, . . . , nk |=

ϕ2(x1, . . . , xk), for all σ
′, σ′′ ∈ (2Σ)∗. Then, supposing w.l.o.g. that i ≤ j, we

know that (σ[0,j]σ
′′), n1, . . . , nk |= ϕ1(x1, . . . , xk) ∧ ϕ2(x1, . . . , xk). The case

for ϕ1(x1, . . . , xk) ∨ ϕ2(x1, . . . , xk) is similar.
2. If (σ)s, n1, . . . , nk |= ∃xk+1(xu < xk+1 ∧ ϕ1(x1, . . . , xk+1)) for some 1 ≤
u ≤ k, then there exists an nk+1 > nu such that (σ)s, n1, . . . , nk+1 |=
ϕ1(x1, . . . , xk+1). This implies that (σ[0,i]σ

′), n1, . . . , nk+1 |= ϕ1(x1, . . . , xk+1)
for some i ≥ 0 and all σ′ ∈ (2Σ)∗, by the induction hypothesis. It follows
that (σ[0,i]σ

′), n1, . . . , nk |= ∃xk+1(xi < xk+1 ∧ ϕ1(x1, . . . , xk+1)).
3. if (σ)s, n1, . . . , nk |= ∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1)) for some

1 ≤ u, v ≤ k, then for all nk+1 with nu < nk+1 < nv it holds that
(σ)s, n1 . . . , nk+1 |= ϕ1(x1, . . . , xk+1). Then, for the induction hypothesis,
for all nk+1 with nu < nk+1 < nv there is a prefix σ[0,ink+1

] such that

(σ[0,ink+1
]σ

′)s, n1, . . . , nk+1 |= ϕ1(x1, . . . , xk+1) for all σ′ ∈ (2Σ)∗. Then, if

n∗ = maxnu<nk+1<nv
(ink+1

), it holds that:

(σ[0,n∗]σ
′)s, n1, . . . , nk |= ∀xk+1(xu < xk+1 < xv → ϕ1(x1, . . . , xk+1))

Now, let ψ(x) be a coSafety-FO formula with exactly one free variable x.
Thanks to the above induction we can conclude that each infinite state sequence
σ such that (σ)s, 0 |= ϕ(x) is of the form σ[0,i] · σ′, where (σ[0,i])

s |= ϕ(x), and
this implies that L(ψ) = L<ω(ψ) · (2Σ)ω.

It is worth to note that Lemmas 1 and 2 show that coSafety-LTL(−X̃) and
coSafety-FO are insensitive to infiniteness as defined by De Giacomo et al. [9].

Then, we can focus on coSafety-LTL(−X̃) and coSafety-FO on finite words. If
we can prove that JcoSafety-LTL(−X̃)K<ω = JcoSafety-FOK<ω, we are done. At
first, we show how to encode coSafety-LTL(−X̃) formulas into coSafety-FO.

Lemma 3. JcoSafety-LTL(−X̃)K<ω ⊆ JcoSafety-FOK<ω

Proof. Let L ∈ JcoSafety-LTL(−X̃)K<ω, and let ϕ ∈ coSafety-LTL(−X̃) such that
L = L<ω(ϕ). By following the semantics of the operators in ϕ, we can obtain an
equivalent coSafety-FO formula ϕFO. We inductively define the formula FO(ϕ, x),
where x is a variable, as follows:

A first-order logic characterisation of safety and co-safety languages 251

– FO(p, x) = P (x), for each p ∈ Σ
– FO(¬p, x) = ¬P (x), for each p ∈ Σ
– FO(ϕ1 ∧ ϕ2, x) = FO(ϕ1, x) ∧ FO(ϕ2, x)
– FO(ϕ1 ∨ ϕ2, x) = FO(ϕ1, x) ∨ FO(ϕ2, x)
– FO(Xϕ1, x) = ∃y(x < y ∧ y = x+ 1 ∧ FO(ϕ1, y))

where y = x+ 1 can be expressed as ∀z(x < z < y → ⊥).
– FO(ϕ1 U ϕ2, x) = ∃y(x ≤ y ∧ FO(ϕ2, y) ∧ ∀z(x ≤ z < y → FO(ϕ1, z)))

For each ϕ ∈ coSafety-LTL(−X̃), the formula FO(ϕ, x) has exactly one free vari-
able x. It is easy to see that for all finite state sequences σ ∈ (2Σ)∗, it holds that
σ |= ϕ if and only if (σ)s, 0 |= FO(ϕ, x), and FO(ϕ, x) ∈ coSafety-FO. Therefore,
L ∈ JcoSafety-FOK<ω.

It is time to show the opposite direction, i.e., that any coSafety-FO formula
can be translated into a coSafety-LTL(−X̃) formula which is equivalent over finite
words. To prove this fact we adapt a proof of Kamp’s theorem by Rabinovich [15].
Kamp’s theorem is one of the fundamental results about temporal logics, which
states that LTL corresponds to FO in terms of expressiveness. Here, we prove a
similar result in the context of co-safety languages. The proof goes by introducing
a normal form for FO formulas, and showing that (i) any coSafety-FO formula
can be translated into such normal form and (ii) any formula in normal form
can be straightforwardly translated into a coSafety-LTL(−X̃) formula. We start
by introducing such a normal form.

Definition 6 (∃∀-formulas). An ∃∀-formula ϕ(z0, . . . , zm) with m free vari-
ables is a formula of this form:

ϕ(z0, . . . , zm) := ∃x0 . . . ∃xn
(

x0 < x1 < · · · < xn ordering constraints

∧ z0 = x0 ∧
m∧

k=1

(zk = xik) binding constraints

∧
n∧

j=0

αj(xj) punctual constraints

∧
n∧

j=1

∀y(xj−1 < y < xj → βj(y))
)

interval constraints

where ik ∈ {0, . . . , n} for each 0 ≤ k ≤ m, and αj and βj, for each 1 ≤ j ≤ n,
are quantifier-free formulas with exactly one free variable.

Some explanations are due. Each ∃∀-formula states a number of requirements
for its free variables and for its quantified variables. Through the binding con-
straints, the free variables are identified with a subset of the quantified variables
in order to uniformly state the punctual and interval constraints, and the or-
dering constraints which sort all the variable in a total order. Note that there
is no relationship between n and m: there might be more quantified variables

252 A. Cimatti et al.

than free variables, or less. Note as well that the binding constraint z0 = x0 is
always present, i.e., at least one free variable has to be the minimal element of
the ordering. This ensures that ∃∀-formulas are always future formulas.

We say that a formula of coSafety-FO is in normal form if and only if it is a
disjunction of ∃∀-formulas. To see how formulas in normal form make sense, let
us immediately show how to translate them into coSafety-LTL(−X̃) formulas.

Lemma 4. For any formula ϕ(z) ∈ coSafety-FO in normal form, with a single
free variable, there exists a formula ψ ∈ coSafety-LTL(−X̃) such that L<ω(ϕ(z)) =
L<ω(ψ).

Proof. We show how any ∃∀-formula is equivalent to an coSafety-LTL(−X̃)-
formula, over finite words. Since each formula in normal form is a disjunction of
∃∀-formulas, and since coSafety-LTL(−X̃) is closed under disjunction, this implies
the proposition. Let ϕ(z) be a ∃∀-formula with a single free variable. Having only
one free variable, ϕ(z) is of the form:

∃x0 . . . ∃xn
(
x0 < · · · < xn ∧ z = x0

∧
n∧

j=0

αj(xj) ∧
n∧

j=1

∀y(xj−1 < y < xj → βj(y))
)

Now, let Ai be the temporal formulas corresponding to αi and Bi be the ones
corresponding to βi. Recall that αi and βi are quantifier free with only one free
variable, hence this correspondence is trivial. Since z is the first time point of
the ordering mandated by the formula, we only need future temporal operators
to encode ϕ into a coSafety-LTL(−X̃) formula ψ defined as follows:

ψ ≡ A0 ∧ X(B0 U (A1 ∧ X(B1 U A2 ∧ . . .X(Bn−1 U An) . . .)))

It can be seen that σ, k |= ψ if and only if (σ)s, k |= ϕ(z), for each σ ∈ (2Σ)+

and each k ≥ 0. Thus, L<ω(ϕ(z)) = L<ω(ψ).

Two differences between our ∃∀-formulas and those used by Rabinovich [15]
are crucial: first, we do not have unbounded universal requirements, but all
interval constraints use bounded quantifications, hence we do not need the always
operator to encode them; second, our ∃∀-formulas are future formulas, hence we
only need future operators to encode them.

We now show that any coSafety-FO formula can be translated into normal
form, that is, into a disjunction of ∃∀-formulas.

Lemma 5. Any coSafety-FO formula is equivalent to a disjunction of ∃∀-formulas.

Proof. Let ϕ be a coSafety-FO formula. We proceed by structural induction on
ϕ. For the base case, for each atomic formula ϕ(z0, z1) we provide an equivalent
∃∀-formula ψ(z0, z1):

1. if ϕ ≡ z0 < z1 then ψ ≡ ∃x0∃x1(z0 = x0 ∧ z1 = x1 ∧ x0 < x1);
2. if ϕ ≡ z0 = z1, then ψ ≡ ∃x0(z0 = x0 ∧ z1 = x0).

A first-order logic characterisation of safety and co-safety languages 253

3. if ϕ ≡ z0 ̸= z1, we can note that ϕ ≡ z0 < z1 ∨ z1 < z0 and then apply
Item 1;

4. If ϕ ≡ P (z0) then we define ψ := ∃x0(z0 = x0 ∧ P (x0)). Similarly if ϕ ≡
¬P (z0).

For the inductive step:

1. The case of a disjunction is trivial.
2. If ϕ(z0, . . . , zk) is a conjunction, by the inductive hypothesis each conjunct is

equivalent to a disjunction of ∃∀-formulas. By distributing the conjunction
over the disjunction we can reduce ourselves to the case of a conjunction
ψ1(z0, . . . , zk)∧ψ2(z0, . . . , zk) of two ∃∀-formulas. In this case we have that:

ψ1 ≡ ∃x0 . . . ∃xn
(
x0 < · · · < xn ∧ z0 = x0 ∧ . . .

)
ψ2 ≡ ∃xn+1 . . . ∃xm(xn+1 < · · · < xm ∧ z0 = xn+1 ∧ . . .)

Since the set of quantified variables in ψ1 is disjoint from the set of quan-
tified variables in ψ2, we can distribute the existential quantifiers over the
conjunction ψ1 ∧ ψ2, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+1 . . . ∃xm(
x0 < · · · < xn ∧ xn+1 < · · · < xm ∧ z0 = x0 ∧ z0 = xn+1 ∧ . . .

)
Note that we can identify x0 and xn+1, obtaining:

ψ1 ∧ ψ2 ≡ ∃x0 . . . ∃xn∃xn+2, . . . ∃xm(
x0 < · · · < xn ∧ x0 < xn+2 < · · · < xm ∧

z0 = x0 ∧
k∧

i=1

(zi = xj′′i) ∧
m∧

i=0,i ̸=n+1

αi(xi)∧

m∧
i=1,i ̸=n+1

i ̸=n+2

∀y(xi−1 < y < xi → βi(y)) ∧ ∀y(x0 < y < xn+2 → βn+2)
)

Now, to turn this formula into a disjunction of ∃∀-formulas, we consider
all the possible interleavings of the variables that respect the two imposed
orderings and explode the formula into a disjunction that consider each such
interleaving. Let X = {x0, . . . , xn, xn+2, . . . , xm} and let Π be the set of all
the permutations of X compatible with the orderings x0 < · · · < xn and
x0 < xn+1 < · · · < xm. For any π ∈ Π, π(0) = 0. Now, ψ1 ∧ψ2 becomes the
disjunction of a set of ∃∀-formulas ψπ, for each π ∈ Π, defined as:

ψπ ≡ ∃xπ(0) . . . ∃xπ(m)(
xπ(0) < · · · < xπ(m) ∧

z0 = x0 ∧
k∧

i=1

(zi = xπ(j′′i)) ∧
m∧
i=0

αi(xi)∧

m∧
i=0

∀y(xπ(i−1) < y < xπ(i) → β∗
i (y))

)

254 A. Cimatti et al.

where β∗
i suitably combines the formulas β according to the interleaving of

the orderings of the original variables, and is defined as follows:

β∗
i =

{
βπ(i) if both π(i), π(i− 1) ≤ n or both π(i), π(i− 1) > n

βπ(i) ∧ βπ(i−1) if π(i) ≤ n and π(i− 1) > n or vice versa

Then we have that ψ1 ∧ ψ2 ≡
∨

π∈Π(ψπ), which is a disjunction of ∃∀-
formulas.

3. Let ϕ(z0, . . . , zm) ≡ ∃zm+1 . (zi < zm+1 ∧ ϕ1(z0, . . . , zm, zm+1)), for some
0 ≤ i ≤ m. By the inductive hypothesis, this is equivalent to the formula
∃zm+1(zi < zm+1 ∧

∨j
k=0 ψk(z0, . . . , zm, zm+1)), where ψk(z0, . . . , zm, zm+1)

is a ∃∀-formula, for each 0 ≤ k ≤ j, that is:

∃zm+1 . (zi < zm+1 ∧
j∨

k=0

(∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

By distributing the conjunction over the disjunction, we obtain:

∃zm+1 . (

j∨
k=0

((zi < zm+1) ∧ ∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

and by distributing the existential quantifier over the disjunction, we have:

j∨
k=0

(∃zm+1((zi < zm+1) ∧ ∃x0 . . .∃xnk
ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

)))

Since the subformula zi < zm+1 does not contain the variables x0, . . . , xn,
we can push it inside the existential quantification, obtaining:

j∨
k=0

(∃zm+1 . ∃x0 . . .∃xnk
. ((zi < zm+1) ∧ ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
)))

Now we divide in cases:
(a) suppose that the formula ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
) contains the fol-

lowing conjuncts: zi = xli and zm+1 = xlm+1 , with li = lm+1. It holds
that these formulas are in contradiction with the formula zi < zm+1,
that is:

(zi < zm+1) ∧ (zi = xli) ∧ (zm+1 = xlm+1
) ≡ ⊥

Therefore, the disjunct (zi < zm+1) ∧ ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) is
equivalent to ⊥, and thus can be safely removed from the disjunction.

(b) suppose that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) contains the fol-
lowing conjuncts: zi = xli , zm+1 = xlm+1 (with li ̸= lm+1), and xlm+1 <
· · · < xli . As in the previous case, it holds that:

(zi < zm+1) ∧ (zi = xli) ∧ (zm+1 = xlm+1
) ∧ (xlm+1

< · · · < xli) ≡ ⊥

Thus, also in this case, this disjunct can be safely removed from the
disjunction.

A first-order logic characterisation of safety and co-safety languages 255

(c) otherwise, it holds that the formula ψ′
k(z0, . . . , zm+1, x0, . . . , xnk

) con-
tains the following conjuncts: zi = xli , zm+1 = xlm+1

(with li ̸= lm+1),
and xli < · · · < xlm+1

. Therefore, the subformula zi < zm+1 is redun-
dant, and can be safely removed from ψ′

k(z0, . . . , zm+1, x0, . . . , xnk
). The

resulting formula is a ∃∀-formula.

After the previous transformation, we obtain:

j′∨
k=0

(∃zm+1 . ∃x0 . . .∃xnk
. ψ′′

k (z0, . . . , zm+1, x0, . . . , xnk
))

Finally, since each formula ψ′′
k (z0, . . . , zm+1, x0, . . . , xnk

) contains the con-
junct zm+1 = xlm+1

, we can safely remove the quantifier ∃zm+1. We obtain
the formula:

j′∨
k=0

(∃x0 . . .∃xnk
. ψ′′

k (z0, . . . , zm, x0, . . . , xnk
))

which is a disjunction of ∃∀-formulas.

4. Let ϕ(z0, . . . , zm) ≡ ∀zm+1(zi < zm+1 < zj → ϕ1(z0, . . . , zm, zm+1)), for
some 0 ≤ i, j ≤ m. By the induction hypothesis we know that ϕ1 is equivalent
to a disjunction

∨
k ψk where ψk are ∃∀-formulas, i.e., each ψk is of the form:

ψk ≡ ∃x0, . . . , xn
(
x0 < . . . < xn ∧ z0 = x0 ∧

m+1∧
l=1

(zl = xul
) ∧

n∧
l=0

αl(xl) ∧
n∧

l=1

∀y(xl−1 < y < xl → βl(y))
)

We now note that we can suppose w.l.o.g. that the ordering constraint and
the binding constraint of ψk imply that zi, zm+1 and zj are ordered con-
secutively, i.e., zi < zm+1 < zj with no other variable in between. That is
because otherwise the constraints would be in conflict with the guard of the
universal quantification and the disjunct could be removed from the disjunc-
tion. Take for example a disjunct of ψk with an ordering constraint of the
type zi < zh < zm+1, for some h. The existence of such a zh is not guaran-
teed for each zm+1 between zi and zj because when zm+1 = zi + 1 there is
no value between zi and zi + 1 (we are on discrete time models). That said,
we can now isolate all the parts of ψk that talk about zm+1, bringing them
out of the existential quantification, obtaining ψk ≡ θk ∧ ηk, where:

θk ≡ zi < zm+1 < zj

∧ α(zm+1) ∧ ∀y(zi < y < zm+1 → β(y)) ∧ ∀y(zm+1 < y < zi → β′(y))

256 A. Cimatti et al.

ηk ≡ ∃x0, . . . , xn
(
x0 < . . . < xn ∧ z0 = x0 ∧

m∧
l=1

(zl = xul
)∧

n∧
l=0

l ̸=um+1

αl(xl) ∧
n∧

l=1
l−1 ̸=ui
l ̸=uj

∀y(xl−1 < y < xl → βl(y))
)

Now, we have ϕ ≡ ∀zm+1(zi < zm+1 < zj →
∨

k(θk ∧ ηk)). We can dis-
tribute the head of the implication over the disjunction, and then over the
conjunction, obtaining:

ϕ ≡ ∀zm+1

(∨
k

((zi < zm+1 < zj → θk) ∧ (zi < zm+1 < zj → ηk))
)

In order to simplify the exposition, we now show how to proceed in the case
of two disjuncts, which is easily generalizable. So suppose we have:

ϕ ≡ ∀zm+1

(
∨
(zi < zm+1 < zj → θ1) ∧ (zi < zm+1 < zj → η1)

(zi < zm+1 < zj → θ2) ∧ (zi < zm+1 < zj → η2)

)

Now we can a) distribute the disjunction over the conjunction (i.e., convert
in conjunctive normal form in the case of multiple disjuncts), b) factor out
the head of the implications and c) distribute the universal quantification
over the conjunction, obtaining:

ϕ ≡


∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)

∧ ∀zm+1(zi < zm+1 < zj → θ1 ∨ η2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ θ2)
∧ ∀zm+1(zi < zm+1 < zj → η1 ∨ η2)


Now, note that η1 and η2 do not contain zm+1 as a free variable, because we
factored out all the parts mentioning zm+1 into θ1 and θ2 before. Therefore
we can push them out from the universal quantifications, obtaining:

ϕ ≡


∀zm+1(zi < zm+1 < zj → θ1 ∨ θ2)

∧ ∀zm+1(zi < zm+1 < zj → θ1) ∨ η2
∧ ∀zm+1(zi < zm+1 < zj → θ2) ∨ η1
∧ ¬∃zm+1(zi < zm+1 < zj) ∨ η1 ∨ η2


Now, note that ¬∃zm+1(zi < zm+1 < zj) is equivalent to zi = zj∨zj = zi+1,
which is the disjunction of two formulas that can be turned into ∃∀-formulas.
Since both η1 and η2 are already ∃∀-formulas and since we already know how
to deal with conjunctions and disjunctions of ∃∀-formulas, it remains to show
that the universal quantifications in the formula above can be turned into

A first-order logic characterisation of safety and co-safety languages 257

∃∀-formulas. Take ∀zm+1(zi < zm+1 < zj → θ1), i.e.:

∀zm+1

zi < zm+1 < zj →

zi < zm+1 < zj

∧ α(zm+1)

∧ ∀y(zi < y < zm+1 → β(y))

∧ ∀y(zm+1 < y < zj → β′(y))


Note that the first conjunct of the consequent can be removed, since it is
redundant. Now, this formula is requesting β(y) for all y between zi and
zm+1, but with zm+1 that ranges between zi and zj − 1, hence effectively
requesting β(y) to hold between zi and zj . Similarly for β′(y), which has to
hold for all y between zi + 1 and zj .
Hence, it is equivalent to:

zi = zj

∨ zj = zi + 1

∨ ∃xi+1(zi < xi+1 ∧ xi+1 = zi + 1 ∧ zj = xi+1 + 1 ∧ α(xi+1))

∨ ∃xi∃xi+1∃xj−1∃xj



xi < xi+1 < xj−1 < xj

∧ zi = xi ∧ zj = xj

∧ α(xi+1) ∧ α(xj−1)

∧ ∀y(xi < y < xi+1 → ⊥)

∧ ∀y(xj−1 < y < xj → ⊥)

∧ ∀y(xi < y < xj−1 → α(y) ∧ β(y))
∧ ∀y(xi+1 < y < xj → α(y) ∧ β′(y))


which is a disjunction of a ∃∀-formula and others that can be turned into
disjunctions of ∃∀-formulas. The reasoning is at all similar for ∀zm+1(zi <
zm+1 < zj → θ1 ∨ θ2).

Any coSafety-FO formula can be translated into a disjunction of ∃∀-formulas by
Lemma 5, and then to a coSafety-LTL(−X̃) formula by Lemma 4. Together with
Lemma 3, we obtain the following.

Corollary 1. JcoSafety-FOK<ω = JcoSafety-LTL(−X̃)K<ω

We are now ready to state the main result of this section.

Theorem 1. JcoSafety-LTLK = JcoSafety-FOK

Proof. We know that JcoSafety-LTLK = JcoSafety-LTL(−X̃)K<ω · (2Σ)ω by Ob-
servation 1 and Lemma 1. Since JcoSafety-LTL(−X̃)K<ω = JcoSafety-FOK<ω by
Corollary 1, we have that JcoSafety-LTL(−X̃)K<ω · (2Σ)ω = JcoSafety-FOK<ω ·
(2Σ)ω. Then, by Lemma 2 we have that JcoSafety-FOK<ω ·(2Σ)ω = JcoSafety-FOK,
hence JcoSafety-LTLK = JcoSafety-FOK.

Corollary 2. JSafety-LTLK = JSafety-FOK

258 A. Cimatti et al.

4 Safety-FO captures LTL-definable safety languages

In this section, we prove that coSafety-FO captures LTL-definable co-safety lan-
guages. By duality, we have that Safety-FO captures LTL-definable safety lan-
guages, and by the equivalence shown in the previous Section, this provides a
novel proof of the fact that Safety-LTL captures LTL-definable safety languages.
We start by characterizing co-safety languages in terms of LTL over finite words.

Lemma 6. JLTLK ∩ coSAFETY = JLTLK<ω · (2Σ)ω

Proof. (⊆) By Proposition 2 we know that each language L ∈ JLTLK∩coSAFETY
is definable by a formula of the form Fα where α ∈ LTLP. Hence for each σ ∈ L
there exists an n such that σ, n |= α, hence σ[0,n], n |= α. Note that σ[n+1,∞]

is unconstrained. By replacing all the since/yesterday/weak yesterday operators
in α with until/tomorrow/weak tomorrow operators, we obtain an LTL formula
αr such that (σ[0,n])

r, 0 |= αr (where σr is the reverse of σ). Since LTL captures
star-free languages [12] and star-free languages are closed by reversal, there is
also an LTL formula β such that σ[0,n], 0 |= β. Hence L = L<ω(β) · (2Σ)ω, and
we proved that JLTLK ∩ coSAFETY ⊆ JLTLK<ω · (2Σ)ω.

(⊇) Given L ∈ JLTLK<ω · (2Σ)ω, we know L = L<ω(β) · (2Σ)ω for some LTL
formula β. Hence, for each σ ∈ L there is an n such that σ[0,n], 0 |= β. Since
LTL captures star-free languages and star-free languages are closed by reversal,
there is an LTL formula αr such that (σ[0,n])

r, 0 |= αr. Now, by replacing all
the until/tomorrow/weak tomorrow operators in αr with since/yesterday/weak
yesterday operators, we obtain an LTLP formula α such that σ[0,n], n |= α. Hence,
σ is such that there is an n such that σ, n |= α, i.e., σ |= Fα. Therefore, by
Proposition 2, L ∈ JLTLK ∩ coSAFETY, and this in turn implies that JLTLK<ω ·
(2Σ)ω ⊆ JLTLK ∩ coSAFETY.

Now, we show that, over finite words, universal temporal operators are unneeded.

Lemma 7. JLTLK<ω = JSafety-LTLK<ω = JcoSafety-LTLK<ω

Proof. Since Safety-LTL and coSafety-LTL are fragments of LTL, we only need
to show one direction, i.e., that JLTLK<ω ⊆ JSafety-LTLK<ω and JLTLK<ω ⊆
JcoSafety-LTLK<ω. At first, we show that universal temporal operators are not
needed over finite words. For each LTL formula ϕ, we can build an equivalent
coSafety-LTL formula with only existential temporal operators. The globally op-
erator can be replaced by means of an until operator whose existential part
always refers to the last position of the word. In turn, this can be done with the
formula X̃⊥, which is true only at the final position:

Gϕ ≡ ϕ U (ϕ ∧ X̃⊥)

Similarly, the release operator can be expressed by means of a globally operator
in disjunction with an until operator:

ϕ1 R ϕ2 ≡ Gϕ2 ∨ (ϕ2 U (ϕ1 ∧ ϕ2)) ≡
(
ϕ2 U (ϕ2 ∧ X̃⊥)

)
∨
(
ϕ2 U (ϕ1 ∧ ϕ2)

)

A first-order logic characterisation of safety and co-safety languages 259

Hence JLTLK<ω = JcoSafety-LTLK<ω. Now, if we exploit the duality between the
eventually/until and the globally/release operators, we obtain:

Fϕ ≡ ϕR (ϕ ∨ X⊤)

ϕ1 U ϕ2 ≡ ϕ2 R (ϕ2 ∨ X⊤) ∧ ϕ2 R (ϕ1 ∨ ϕ2)

Hence JLTLK<ω = JSafety-LTLK<ω.

Then, we relate coSafety-LTL on finite words and coSafety-FO.

Lemma 8. JcoSafety-LTLK<ω · (2Σ)ω = JcoSafety-FOK

Proof. (⊆) We have that JcoSafety-LTLK<ω = JLTLK<ω by Lemma 7, and this
implies that JcoSafety-LTLK<ω · (2Σ)ω = JLTLK<ω · (2Σ)ω, and JcoSafety-LTLK<ω ·
(2Σ)ω = JFOK<ω · (2Σ)ω by Proposition 1. Now, let ϕ ∈ FO, and suppose w.l.o.g.
that ϕ is in negated normal form. We define the formula ϕ′(x, y), where x and
y are two fresh variables that do not occur in ϕ, as the formula obtained from
ϕ by a) replacing each subformula of ϕ of type ∃zϕ1 with ∃z(x ≤ z ∧ ϕ1),
and b) by replacing each subformula of ϕ of type ∀zϕ1 with ∀z(x ≤ z < y →
ϕ1). Now, consider the formula ψ ≡ ∃y(x ≤ y ∧ ϕ′(x, y)). Note that ψ is a
coSafety-FO formula. When interpreted over infinite words, the models of ψ are
exactly those containing a prefix that belongs to L<ω(ϕ), with the remaining
suffix unconstrained, that is L(ψ) = L<ω(ϕ) ·(2Σ)ω, hence JFOK<ω · (2Σ)ω ⊆
JcoSafety-FOK, and this implies that JcoSafety-LTLK<ω · (2Σ)ω ⊆ JcoSafety-FOK.

(⊇) We know by Lemma 2 that JcoSafety-FOK = JcoSafety-FOK<ω · (2Σ)ω.
Since coSafety-FO formulas are also FO formulas, we have JcoSafety-FOK ⊆
JFOK<ω · (2Σ)ω. By Proposition 1 and Lemma 7, we obtain that JcoSafety-FOK ⊆
JcoSafety-LTLK<ω · (2Σ)ω.

We are ready now to state the main result.

Theorem 2. JLTLK ∩ coSAFETY = JcoSafety-FOK

Proof. We know that JLTLK∩ coSAFETY = JLTLK<ω · (2Σ)ω by Lemma 6. Then,
by Lemma 7 we know that JLTLK<ω = JcoSafety-LTLK<ω, and this in turn im-
plies that JLTLK<ω · (2Σ)ω = JcoSafety-LTLK<ω · (2Σ)ω. Since JcoSafety-LTLK<ω ·
(2Σ)ω = JcoSafety-FOK by Lemma 8, we conclude that JLTLK ∩ coSAFETY =
JcoSafety-FOK.

This result together with Theorem 1 allow us to conclude the following.

Theorem 3. JSafety-LTLK = JLTLK ∩ SAFETY

Note that by Observation 1 and Lemma 1 on one hand, and by Lemmas 6
and 7 on the other, the question of whether JSafety-LTLK = JLTLK∩SAFETY can
be reduced to whether JcoSafety-LTLK<ω ·(2Σ)ω = JcoSafety-LTL(−X̃)K<ω ·(2Σ)ω.
If coSafety-LTL and coSafety-LTL(−X̃) were equivalent over finite words, this
would already prove Theorem 3. However, we can prove this is not the case.

Theorem 4. JcoSafety-LTLK<ω ̸= JcoSafety-LTL(−X̃)K<ω

260 A. Cimatti et al.

Proof. Note that in coSafety-LTL(−X̃) we only have existential temporal modali-
ties and we cannot hook the final position of the word without the weak tomorrow
operator. For these reasons, given a coSafety-LTL(−X̃) formula ϕ, with a simple
structural induction we can prove that for each σ ∈ (2Σ)+ such that σ |= ϕ, it
holds that σσ′ |= ϕ for any σ′ ∈ (2Σ)+, i.e., all the extensions of σ satisfy ϕ
as well. This implies that L<ω(ϕ) is either empty (i.e., if ϕ is unsatisfiable) or
infinite. Instead, by using the weak tomorrow operator to hook the last position
of the word, we can describe a finite non-empty language, for example as in the
formula ϕ ≡ a∧X(a∧ X̃⊥). The language of ϕ is L(ϕ) = {aa}, including exactly
one word, hence L(ϕ) cannot be described without the weak tomorrow operator.

Note that Theorem 4 does not contradict Theorem 3, that is, it does not
imply that JcoSafety-LTLK<ω · (2Σ)ω ̸= JcoSafety-LTL(−X̃)K<ω · (2Σ)ω. For exam-
ple, consider again the formula a ∧ X(a ∧ X̃⊥). It cannot be expressed without
the weak tomorrow operator, yet it holds that: L<ω(a ∧ X(a ∧ X̃⊥)) · (2Σ)ω =
L<ω(a ∧ Xa) · (2Σ)ω.

5 Conclusions

In this paper, we gave a first-order characterization of safety and co-safety lan-
guages, by means of two fragments of first-order logic, Safety-FO and coSafety-FO.
These fragments of S1S[FO] provide a very natural syntax and are expressively
complete with regards to LTL-definable safety and co-safety languages.

The core theorem establishes a correspondence between Safety-FO (resp.,
coSafety-FO) and Safety-LTL (resp., coSafety-LTL), and thus it can be viewed
as a special version of Kamp’s theorem for safety (resp., co-safety) properties.
Thanks to these new fragments, we were able to provide a novel, compact, and
self-contained proof of the fact that Safety-LTL captures LTL-definable safety lan-
guages. Such a result was previously proved by Chang et al. [5], but in terms of
the properties of a non-trivial transformation from star-free languages to LTL by
Zuck [21]. As a by-product, we provided a number of results that relate the con-
sidered languages when interpreted over finite and infinite words. In particular,
we highlighted the expressive power of the weak tomorrow temporal modality,
showing it to be essential in coSafety-LTL over finite words.

Different equivalent characterizations of LTL are known, in terms of (i) first-
order logic, (ii) regular expressions, (iii) automata, and (iv) monoids (see the
summary by Thomas in [19]). This work focuses on the first item, but for LTL-
definable safety languages. A natural follow-up would be to investigate the other
items, looking for what kind of automata (resp., regular expressions, monoids)
captures exactly safety and co-safety LTL-definable languages. While on finite
traces simple characterizations in terms of automata and syntactic monoids exist,
the infinite-traces scenario is more complex: there exists a characterization of
LTL in terms of counter-free automata [13] and the one for safety ω-regular
languages seems not to be difficult (see e.g., terminal automata [4, 18]), but
their combination requires to have a canonical (minimal) representation of a
(Muller/Rabin/Streett) automata corresponding to any ω-regular language.

A first-order logic characterisation of safety and co-safety languages 261

References

1. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electronic
Notes in Theoretical Computer Science 66(2), 160–177 (2002)

2. Buchi, J.R.: Weak second-order arithmetic and finite automata. Journal of Sym-
bolic Logic 28(1) (1963)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: The
collected works of J. Richard Büchi, pp. 425–435. Springer (1990)

4. Cerná, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking.
In: Rovan, B., Vojtás, P. (eds.) Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science 2003. Lecture Notes in Computer
Science, vol. 2747, pp. 318–327. Springer (2003). https://doi.org/10.1007/978-3-
540-45138-9 26

5. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) Proceedings of the 19th International Colloquium on Automata,
Languages and Programming. Lecture Notes in Computer Science, vol. 623, pp.
474–486. Springer (1992). https://doi.org/10.1007/3-540-55719-9 97

6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. pp. 854–860. IJCAI/AAAI (2013)

7. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence. pp. 1558–1564. AAAI Press (2015)

8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. pp. 163–173 (1980)

9. Giacomo, G.D., Masellis, R.D., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence. pp. 1027–1033. AAAI
Press (2014)

10. Kamp, J.A.W.: Tense logic and the theory of linear order. University of California,
Los Angeles (1968)

11. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

12. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Workshop on Logic
of Programs. pp. 196–218. Springer (1985)

13. McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

14. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57. IEEE (1977)

15. Rabinovich, A.: A Proof of Kamp’s theorem. Logical Methods in Computer Science
Volume 10, Issue 1 (Feb 2014). https://doi.org/10.2168/LMCS-10(1:14)2014,
https://lmcs.episciences.org/730

16. Sherman, R., Pnueli, A., Harel, D.: Is the interesting part of process logic uninter-
esting? A translation from PL to PDL. SIAM J. Comput. 13(4), 825–839 (1984).
https://doi.org/10.1137/0213051

17. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing 6(5), 495–511 (1994)

18. Strejcek, J.: Linear temporal logic: Expressiveness and model checking. Ph.D. the-
sis, Faculty of Informatics, Masaryk University in Brno (2004)

262 A. Cimatti et al.

https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.2168/LMCS-10(1:14)2014
https://lmcs.episciences.org/730
https://doi.org/10.1137/0213051

19. Thomas, W.: Safety-and liveness-properties in propositional temporal logic: char-
acterizations and decidability. Banach Center Publications 1(21), 403–417 (1988)

20. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A Symbolic Approach to
Safety LTL Synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) Proceedings of
the 13th International Haifa Verification Conference. Lecture Notes in Computer
Science, vol. 10629, pp. 147–162. Springer (2017). https://doi.org/10.1007/978-3-
319-70389-3 10

21. Zuck, L.: Past temporal logic. Weizmann Institute of Science 67 (1986)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

A first-order logic characterisation of safety and co-safety languages 263

https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
http://creativecommons.org/licenses/by/4.0/

First-order separation over countable ordinals⋆

Thomas Colcombet1 , Sam van Gool1 , and Rémi Morvan2(�)

1 IRIF, Université de Paris & CNRS, Paris, France
{thomas.colcombet,vangool}@irif.fr

2 École normale supérieure Paris-Saclay, Gif-sur-Yvette, France
fistname.lastname@ens-paris-saclay.fr

Abstract. We show that the existence of a first-order formula separa-
ting two monadic second order formulas over countable ordinal words is
decidable. This extends the work of Henckell and Almeida on finite words,
and of Place and Zeitoun on ω-words. For this, we develop the algebraic
concept of monoid (resp. ω-semigroup, resp. ordinal monoid) with aperio-
dic merge, an extension of monoids (resp. ω-semigroup, resp. ordinal
monoid) that explicitly includes a new operation capturing the loss of
precision induced by first-order indistinguishability. We also show the
computability of FO-pointlike sets, and the decidability of the covering
problem for first-order logic on countable ordinal words.

Keywords: Regular languages · Separation, Pointlike sets · Countable
Ordinals · First-order logic · Monadic second-order logic

A full version of this paper can be found on arXiv. This document contains
internal hyperlinks, and is best read on an electronic device.

1 Introduction

In this paper, we establish the decidability of FO-separability over countable
ordinal words:

Theorem 1. There is an algorithm which, given two regular languages of count-
able ordinal words K,L, either:

– answers ‘yes’, and outputs an FO-separator which is an FO-formula φ which
separates K from L, i.e. such that u |= φ for all u ∈ K, and v |= ¬φ for
all v ∈ L, or

– answers ‘no’, and outputs a witness function, i.e., a computable function
taking as input an FO-sentence φ and returning a pair of words (u, v) ∈ K×L
such that u |= φ if and only if v |= φ.

⋆ This work was supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (ERC DuaLL, grant
agreement No. 670624), and by the DeLTA ANR project (ANR-16-CE40-0007).

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 264–284, 2022.
https://doi.org/10.1007/978-3-030-99253-8_14

http://orcid.org/0000-0001-6529-6963
http://orcid.org/0000-0002-6360-6363
http://orcid.org/0000-0002-1418-3405
https://arxiv.org/abs/2201.03089
https://cordis.europa.eu/project/id/670624
https://cordis.europa.eu/project/id/670624
https://anr.fr/Projet-ANR-16-CE40-0007
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_14&domain=pdf

The decidability of FO-separability was previously only known for finite
words [19,2,25,17] and for words of length ω [25]. Countable ordinal words are
sequences of letters that are indexed by a countable total well-ordering, i.e.,
up to isomorphism, by a countable ordinal. There is a natural notion of regu-
lar languages over these objects which can be equivalently described in terms of
logic (either monadic second-order logic or weak monadic second-order logic), au-
tomata (Büchi introduced a notion of automata for countable ordinal words [13],
which was studied in more detail by Wojciechowski [39] and which generalises
Choueka’s automata [15] for words of length at most ωn—the fact that Choueka’s
automata can be seen as a restriction of Büchi’s automata for countable ordinals
was proven by Bedon [5]), rational expressions (introduced by Wojciechowski
[40]), or algebra (recognisable by finite ordinal monoids—introduced by Bedon
and Carton [8]). A detailed survey of the equivalence between all these notions
can be found in Bedon’s thesis [6].

Our algorithm follows the approach initiated by Henckell, and constructs the
FO-pointlike sets in an ordinal monoid that recognises the two input languages
simultaneously. FO-pointlike sets are subsets of a monoid whose elements are
inherently indistinguishable by first-order logic. Our completeness proof for the
algorithm follows a scheme similar to the one followed by Place and Zeitoun in the
context of finite and ω-words [25], which was inspired by Wilke’s characterisation
of FO-definable languages [38]. We had to make several substantial changes
to this approach for the proofs to generalize from finite and ω-words to the
setting of countable ordinal words. A seemingly slight modification of the notion
of saturation (Definition 8) allows for a careful redesign of several of the core
lemmas in the proof of completeness, and in particular the construction of an
FO-approximant in Section 5 below.

Related work This work lies in a line of research that aims to obtain a decid-
able understanding of the expressive power of subclasses of the class of regular
languages. The seminal work in this area is the Schützenberger-McNaughton-
Papert theorem [34,22] which effectively characterizes the languages of finite
words definable in first-order logic as the ones which have an aperiodic syntactic
monoid. This theorem was at the origin of a large body of work that studies
classes of languages through the corresponding classes of monoids, including for
instance Simon’s result characterising piecewise-testable languages via J -trivial
monoids [36]. FO-pointlike sets are also known in the literature as aperiodic
pointlike sets, and were first studied and shown to be computable by Henckell
[19], in the context of the Krohn-Rhodes semigroup complexity problem. The
computability of pointlike sets was shown to be equivalent to the decidability of
the covering problem by Almeida [2]. Alternative proofs of separation and cov-
ering problems for FO were given recently in [25,17], and, ever since Henckell’s
work, the computability of FO-pointlike sets was also extended to pointlike sets
for other varieties—for example [4] for the variety of finite groups, [3] for the
variety of J -trivial finite semigroups and [18] for varieties of finite semigroups
determined by a variety of finite groups; also see [18] for further references. Place
and Zeitoun recently used pointlike sets, in the form of covering problems [27],

First-order separation over countable ordinals 265

to resolve long-standing open membership problems for the lower levels of the
dot-depth and of the Straubing-Thérien hierarchies [26,28,29].

Another, orthogonal, line of research consists in the extension of the notions
of regularity (logic/automata/rational expressions/algebra) to models beyond
finite words. This is the case for finite or infinite trees [30]. In this paper, we are
concerned with words that go beyond finite, such as words of length ω [12,37,24],
of countable ordinal length [6,5], of countable scattered3 length [31,32], or of
general countable length [30,35,14].

These two branches have also been studied jointly, and first-order logic was
characterised on words of length ω [23], of countable ordinal length [7], of count-
able scattered length [10] (and in [9] for first-order augmented with quantifiers
over Dedekind cuts), and for words of countable length [16] (as well as other
logics [16,21,1]). Prior to the current work, the questions of computing the FO-
pointlike sets and deciding FO-separation for languages of infinite words had
only been investigated for words of length ω [25].

Structure of the document In Section 2, we introduce important definitions for
manipulating infinite words in algebraic terms (ordinal monoids and their pow-
erset), and in logical terms (first-order logic and first-order definable maps). In
Section 3, we describe the algorithm, and in particular its core, a saturation
construction. The correctness of the algorithm is then proved in Section 4, and
the completeness in Section 5. In Section 6, we show two stronger results that
arise from the same technique: the decidability of the covering problem and the
computability of pointlikes. Section 7 concludes.

2 Preliminaries

2.1 Ordinals

A linear ordering is a set equipped with a total order. It is countable (resp.
finite) if the underlying set is countable (resp. finite). Let α and β be two linear
orderings. A morphism from α to β is a monotonic function, and an isomorphism
between α and β is a bijective morphism. The (ordered) sum of two linear orders
α and β is denoted by α + β and is defined, as usual, on the disjoint union of the
linear orders α and β, by further postulating that every element of α is below
every element of β. The product of two linear orders is denoted by α · β and is
defined to be the right-to-left lexicographic ordering on the Cartesian product
of the two orders, i.e., (x, y) ⩽ (x′, y′) iff y < y′ or y = y′ and x ⩽ x′. The n-fold
product of α with itself is denoted by αn. A linear ordering is well-founded when
it does not contain an infinite strictly decreasing sequence. An ordinal is a well-
founded linear ordering, considered only up to isomorphism of linear orderings.
The empty linear ordering, the linear ordering with a single element and the
linear ordering of natural numbers are all ordinals, and are denoted 0, 1 and ω,
respectively. The class of all ordinals is itself totally ordered by the embedding
3 A linear ordering is scattered if it does not contain a dense subordering.

266 T. Colcombet et al.

relation: α ≼ β means that there exists an injective monotonic function from α
to β. The relation ≺ denotes the strict ordering associated with ≼. An ordinal
is a successor ordinal if it has a maximum, and a limit ordinal otherwise.

2.2 Ordinal words

Given a set X, a word w over X is a map from some linear ordering to X.
The linear ordering is called the domain of w, and denoted dom(w). A word is
countable (resp. finite, resp. scattered, resp. ω-word), if its domain is countable
(resp. finite, resp. scattered, resp. ω). In this paper, a countable ordinal word
is a word that has a countable and ordinal domain (hence, the countability
assumption in silently assumed throughout the paper). The set of all finite words
over X is denoted by X∗, and the collection of all countable ordinal words over
X is denoted by Xord. Similarly, the set of finite non-empty words is denoted
by X+ and the collection of non-empty countable ordinal words is denoted by
Xord+. The concatenation of two countable ordinal words u and v over X is the
word u ·v : dom(u) + dom(v) → X over X defined by (u ·v)ι := uι if ι ∈ dom(u)
and (u · v)ι := vι if ι ∈ dom(v). If w is a countable ordinal word, we define its
omega iteration, denoted by wω, as the word with domain dom(w) · ω defined
by (wω)(ι,n) := wι for every ι ∈ dom(w) and n ∈ ω. For example, if a, b ∈ X,
then the omega iteration (ab)ω of the two-letter word ab is the word ababab · · ·
with domain 2 · ω = ω.

2.3 Ordinal monoids

A semigroup is a set S equipped with an associative binary product, denoted by ·.
A monoid is a semigroup with a distinguished neutral element for the product,
denoted as 1. An element x ∈ S is called idempotent if x2 = x. In a finite finite
semigroup S, every element x ∈ S has a unique idempotent power, denoted by4

xidem, which we recall is the limit of the ultimately constant series n 7→ xn!.
We also denote xidem+k, for k integer, the limit of the ultimately constant series
n 7→ xn!+k. Note that xidem is the identity element of the unique maximal group
inside the subsemigroup generated by x. A finite semigroup is aperiodic (we
equivalently write group-trivial) if aidem = aidem+1 for all of its elements a.

We now extend the notion of monoid to obtain an algebraic structure in which
one can evaluate a product indexed by any countable ordinal. Let Σ be any set,
and α a countable ordinal. For any word (wι)ι<α over the set Σord of countable
ordinal words—i.e. (wι)ι<α is a word whose letters are words over Σ— we define
flat(wι | ι < α) to be the word over Σ with domain

∑
ι<α dom(wι), which has

the letter (wι)κ ∈ Σ at position (ι, κ), for every ι ∈ α and κ ∈ dom(wι).

4 The standard notation is xω, but this notation conflicts with the linear ordering ω.
It is sometimes denoted xπ or x! when in the context of infinite words. We find the
notation xidem more self-explanatory.

First-order separation over countable ordinals 267

Definition 2. An ordinal monoid5 is a pair M = (M,π) where M is a set and
π : Mord → M is a function, called generalised product, such that:

– π(x) = x for every x ∈ M , and
– π((π(uι))ι<α) = π(flat((uι)ι<α)) for every word (uι)ι<α ∈ (Mord)ord.

The second axiom is called generalised associativity. An ordinal monoid mor-
phism is a map between ordinal monoids preserving the generalised product.
An ordinal monoid is ordered if it is equipped with an order ⩽ that makes π
monotonic, i.e. such that u ⩽ v implies π(u) ⩽ π(v), in which ⩽ is extended
letter-by-letter to words in Mord.

Given a set Σ (the alphabet), an ordinal monoid M = (M,π), a letter-
to-letter map σ : Σ → M extended to σord : Σord → Mord, and F ⊆ M , the
language L ⊆ Σord recognised by (M, σ, F) is

L = {u ∈ Σord : π(σord(u)) ∈ F},

and a language L ⊆ Σord is called recognisable if it is recognised by some such
tuple (M, σ, F). We recall that recognisable languages of ordinal words coincide
with the ones definable in monadic second-order logic, or definable by suitable
automata. These languages are called regular. Example 9 below will illustrate
this concept.

We now recall a finite presentation of finite ordinal monoids (originally for
ordinal semigroups), first given by Bedon [6] by extending a similar result es-
tablished by Perrin and Pin [24, prop II.5.2] for ω-semigroups6. Let (S, π) be an
ordinal monoid. We define the constant 1 and two functions · : S × S → S and
−ω : S → S by

1 := π(ε) x · y := π(xy) and xω := π(xω) = π(

ω times︷ ︸︸ ︷
xxx · · ·) .

The following proposition lets us interchangeably regard an ordinal monoid M
as either a pair (M,π) or as a quadruple (M, 1, ·,−ω), that we refer to as its
presentation.

Proposition 3 ([6, Thm. 3.5.6], originally for ordinal semigroups). In
a finite ordinal monoid the generalised product is uniquely determined by the
operations 1, · and −ω.

An important construction on which our proof relies is the power ordinal
monoid : given an ordinal monoid (M,π), we equip the powerset P(M) of M
with a generalised product π : P(M)ord → P(M) defined by

π((Xι)ι<κ) := {π((xι)ι<κ) | xι ∈ Xι for all ι < κ}
for all words (Xι)ι<κ ∈ (P(M))ord.

5 The object should probably be called a ‘countable ordinal monoid’ since its intent is
to model countable ordinal words. However the naming becomes clumsy for ‘finite
countable ordinal monoids’...

6 The finitary reprensation of ω-semigroups is usually called a Wilke algebra, which is
the algebraic structure introduced by Wilke in [37] to recognise regular ω-languages.

268 T. Colcombet et al.

Observe that if M is a finite ordinal monoid, then so is P(M). We can
compute a finite representation of the power ordinal monoid P(M) of M from
a finite representation of M . Indeed,

1 = {1}, X · Y = {x · y | x ∈ X, y ∈ Y }, and Xω = {u · vω | u, v ∈ X+}

for all X,Y ∈ P(M). The two first properties are trivial while the third one can
be proven using the infinite Ramsey’s theorem—this is a classical argument used
to give finite representation of infinite structures, see e.g. [24, Theorem II.2.1].
Note that this power ordinal monoid is indeed an ordinal monoid. It is even an
ordered ordinal monoid when equipped with the inclusion ordering.

2.4 First-order logic

Over a fixed (finite) alphabet Σ, we define the set of first-order logic formulæ
or FO-formulæ for short, by the grammar:

φ ::= ∃x. φ | ∀x. φ | φ ∧ φ | φ ∨ φ | ¬φ | x < y | a(x)

where x, y range over some fixed infinite set of variables, and a over Σ. Free
variables are defined as usual, and an FO-sentence is a formula with no free
variables. In our setting, a model is a countable ordinal word, and a valuation
over this model is a total map from variables to the domain of the word. We
define, for any word w and any valuation ν, the semantic relation w, ν |= φ of
first-order logic on countable ordinal words by structural induction on the FO-
formula φ, by interpreting variables as positions in the word and propositions of
the form a(x) as “the letter at position x is an a”. If φ is an FO-sentence, then
the semantics of φ over a word w does not depend on the valuation, and thus
we write w |= φ or w ̸|= φ. When w |= φ we say that w satisfies φ, or also that
φ accepts w.

A language L ⊆ Σord is said to be FO-definable if L = {w ∈ Σord | w |= φ}
for some FO-sentence φ. For example, the language of words over the alphabet
{a, b, c} such that every ‘a’ is at a finite distance from a ‘b’ is defined by the
FO-sentence ∀x.a(x) → ∃y.b(y) ∧ finite(x, y), where:

isSuccessor(z) ::= ∃y.y < z ∧ (∀x. x < z → x ⩽ y)

finite(x, y) ::= ∀z.(x < z ⩽ y ∨ y < z ⩽ x) → isSuccessor(z) .

Bedon [7] extended the Schützenberger-McNaughton-Papert theorem [34,22]
to countable ordinal words.

Proposition 4 (Bedon’s theorem [7, Theorem 3.4]). A language of count-
able ordinal words is FO-definable if and only if it is recognised by a finite ape-
riodic ordinal monoid.

Let L ⊆ Σord. A function f : L → X whose codomain X is a finite set is said
to be FO-definable when every preimage f−1[x], with x ∈ X, is an FO-definable

First-order separation over countable ordinals 269

language. Note that if f is FO-definable, then its domain L is necessarily an
FO-definable language.

For example, the function Σ∗ → Z/2Z, sending a word w ∈ Σ∗ to its length
modulo 2, is not FO-definable. On the other hand, for a fixed letter a ∈ Σ, the
total function sending a word w ∈ Σord+ to ⊤ if w contains the letter ‘a’ and to
⊥ otherwise is FO-definable.

A useful tool to manipulate words is the notion of condensation — see, e.g.,
[33, §4] for an introduction to the subject. A condensation of a countable ordinal
α is an equivalence relation ∼ over α whose equivalence classes are convex. Note
that the quotient of an countable ordinal by a condensation is still a countable
ordinal.

A condensation formula φ(x, y) is a formula which is interpreted as a con-
densation of the domain over all countable ordinal words, i.e. for every word
w ∈ Σord, the relation defined on dom(w) by ι ∼φ κ if and only if w, [x 7→
ι, y 7→ κ] |= φ(x, y) is a condensation. A condensation formula φ(x, y) induces a
map:

φ̂ : Σord → (Σord+)ord

where for every u ∈ Σord, φ̂(u) is a word whose domain is dom(w)/∼φ, and
such that for every class I ∈ dom(w)/∼φ, the I-th letter of φ̂(u) is the word
(uι)ι∈I—hence flat(φ̂(u)) = u.

For example, the formula finite(x, y) is a condensation formula, called finite
condensation. The function φ̂finite : Σ

ord → (Σord)ord that it induces sends the
word ababab · · · cdcdcd · · · abc ∈ Σord of length ω · 2 + 3 to the 3-letter word
(ababab · · ·)(cdcdcd · · ·)(abc). Observe that for every word w ∈ Σord, every letter
of φ̂finite(w) is a word of length ω, except possibly for the last letter (if the word
has one), which can be finite.

Given two FO-definable functions—one that describes “local transformations”
and another that described how to glue these local transformations together—
the following lemma allows us to build a new FO-definable function. It is one of
the key ingredients in our proof of Theorem 1.

Lemma 5. Let A,B,C be finite sets. Let φ(x, y) be a condensation FO-formula
over A, let f : Aord+ → B and g : Bord → C be FO-definable functions. Then,
the map

g ◦φ f : Aord → C

u 7→ g

 ∏
i∈dom(φ̂(u))

f(φ̂(u)i)


is FO-definable.

270 T. Colcombet et al.

3 The algorithm

In this section we describe the algorithm behind Theorem 1. We first introduce
the key notion of saturation in Section 3.1, and formalise the algorithm in Sec-
tion 3.2.

3.1 The saturation construction

Until the end of Section 3.1, we fix a finite ordinal monoid M = (M, ·, 1,−ω).
The saturation construction is at the heart of the algorithm, both in this pa-

per, and in previous work. We introduce the necessary definitions. Note however
that in our case, we do not close the definition under subsets as is usually done.
This change, which may look minor, is in fact key for our proof to go through in
the case of countable ordinals, and we find it also simplifies some points in the
setting of finite words. We first recall an essential operation on P(M) that we
denote −grp. Applied to a set X ⊆ M , it computes the union of all the elements
that belong to the maximal group in the subsemigroup of P(M) generated by X.

Definition 6. Let X ⊆ M . Define

Xgrp =
⋃
k∈N

X idem+k =⋆
⋂
n∈N

⋃
m≥n

Xm.

Note that the ⋆ equality holds: Left to right inclusion comes from the fact that
X idem+k = Xm holds for infinitely many values of m, while the other inclusion
stems from the fact that Xm can be written as X idem+k for some k whenever m
is sufficiently large.

Some important properties of this operation are the following.

Lemma 7. The operation −grp is monotonic, and for all A,B ⊆ M , and all
integers k,

Aidem+k ⊆ Agrp, (A · B)grp = A · (B · A)grp · B ,

and Agrp · Agrp = (Agrp)grp = Agrp.

The core of the algorithm computes the closure under −grp and all the oper-
ations of the algebra of the images of the letters.

Definition 8. Let A ⊆ P(M). The set ⟨A⟩grp,ord ⊆ P(M) is defined to be the
least set containing A, {1}, and closed under ·, grp and ω.7

This definition is close in spirit to what is called saturation in previous works,
with the difference that we do not take the downward closure, and that we close
under the operation −ω. Despite this difference, we sometimes call ⟨A⟩grp,ord the
saturation.

Observe that the ordinal monoid M is aperiodic if and only if

⟨{{x} | x ∈ M}⟩grp,ord = {{x} | x ∈ M} .
7 Recall that we showed that in a power ordinal monoid, the operation −ω is com-

putable.

First-order separation over countable ordinals 271

3.2 The algorithm

We are now ready to describe the core of the algorithm that is claimed to exist
in Theorem 1. Let K and L be two regular languages of countable ordinal words
over the alphabet Σ. The algorithm is:

1. Let M, σ, FK , FL be such that K is recognised by (M, σ, FK) and L by
(M, σ, FL).

2. Compute Sat := ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord (inside P(M)).
3. If FK ∩X ̸= ∅ and FL ∩X ̸= ∅ for some X ∈ Sat, answer ‘no’. Otherwise

answer ‘yes’.

aωaa∗ aωa∗ aω
∗

a,
aa∗

1∗
the
group
Z/2Z

· 1 a aa aω aωa aωaa

1 1 a aa aω aωa aωaa
a a aa a aω aωa aωaa
aa aa a aa aω aωa aωaa
aω aω aωa aωaa aω aωa aωaa
aωa aωa aωaa aωa aω aωa aωaa
aωaa aωaa aωa aωaa aω aωa aωaa

−ω 1 aω aω aω aω aω

⟨{{a}}⟩grp,ord = {{1}, {a}, {aa}, {a, aa}, {aω}, {aωa}, {aωaa}, {aωa, aωaa}}

Fig. 1. Egg-box diagram of a finite ordinal monoid M recognising J , K and L (left),
multiplication table and ω-iteration of M (right) and saturation (bottom).

Example 9. We illustrate the saturation construction and the algorithm on the
following three languages over the singleton alphabet {a}:

J = {infinite words whose longest finite suffix has even length},
K = {infinite words whose longest finite suffix has odd length},

and L = { words that do not have a last letter}.

It is classical that J and K are not FO-definable, while L is defined by the
formula ∀x. ∃y. y > x. We can build a finite ordinal monoid M recognising all
three languages: it has six elements, 1, a, aa, aω, aωa and aωaa. Its presentation
its described Figure 1. Naturally, the letter a is mapped to σ(a) = a. Then
J , K and L are recognised by FJ := {aω, aωaa}, by FK := {aωa} and by
FL := {1, aω}, respectively.

The languages K and L are FO-separable: in fact L is an FO-separator of
K and L. On the other hand, J and K are not FO-separable, as witnessed

272 T. Colcombet et al.

by the saturation algorithm. Indeed, the saturation ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord
contains all singletons, and furthermore {a, aa} = {a}grp. As a consequence, it
also contains {aωa, aωaa} = {a}ω · {a, aa}. This last set intersects both FJ and
FK .

The rest of the paper is dedicated to establishing the validity of this approach.
In Section 4, we prove Proposition 12 stating that if the algorithm answers ‘no’,
then the languages cannot be separated, as described in Theorem 1. In Section 5,
we prove Corollary 16 stating that if the algorithm answers ‘yes’, then it is
possible to construct an FO-separator sentence as described in Theorem 1. In
Section 6, we shall package the results of Sections 4 and 5 differently, concluding
that we have in fact computed the pointlike sets, and that we can also decide
the more general covering problem.

4 When the algorithm says ‘no’

In this section, we establish the correctness of the algorithm, i.e., when the al-
gorithm answers ‘no’, we have to prove that the two input languages cannot
be separated by an FO-definable language, and that we can produce a witness
function. This is established in Proposition 12. The proof follows standard ar-
guments.

The quantifier depth, a.k.a. quantifier rank, of an FO-formula is the maximal
number of nested quantifiers in the formula. Two words u, v ∈ Σord are said
to be FOk-equivalent, denoted by u ≡FOk

v, if every FO-sentence of quantifier
depth at most k accepts u if and only if it accepts v.

Proposition 10. Let k ∈ N.

– For u, u′, v, v′ ∈ Σord, if u ≡FOk
u′ and v ≡FOk

v′ then uv ≡FOk
u′v′,

– for all Σord-valued sequences (un)n∈N and (vn)n∈N, if un ≡FOk
vn for all

n ∈ N, then flat(un | n ∈ N) ≡FOk
flat(vn | n ∈ N), and

– for all n ⩾ 2k − 1, for all u ∈ Σord, un ≡FOk
un+1.

This can be proved, for example, by using Ehrenfeucht-Fraïssé games—see
e.g. [33, Lemma 6.5 & Corollary 6.9] for a proof of the first and third items ;
the proof of the second item is similar8. Note that the first two items are also
immediate corollaries of the Feferman-Vaught theorem [20, Theorem 1.3]. Note
that the third property can be used to prove that every FO-definable language
is recognised by an aperiodic finite ordinal monoid—this is the easy direction of
Bedon’s theorem [7].

Throughout the rest of this section, we fix K and L, two regular languages of
countable ordinal words over an alphabet Σ. Recall that the algorithm computes
the subset Sat := ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord of P(M), where M is a finite ordinal
monoid recognizing both K and L.
8 Moreover, note that the first item can be deduced from the second item by taking
un = vn = ε for n ≥ 2.

First-order separation over countable ordinals 273

We begin with a lemma which states that to all sets that belong to Sat
can be effectively associated witnesses of indisinguishability (we shall see in
Proposition 30 that what we have proved is that the elements in Sat are pointlike
sets).

Lemma 11. There exists a computable function which takes as input a number
k ∈ N and an element X ∈ Sat, and produces an X-indexed sequence of ordinal
words (ux)x∈X ∈ (Σord)X such that,

– π(σord(ux)) = x for all x ∈ X, and
– ux ≡FOk

ux′ for all x, x′ ∈ X.

The proof is by structural induction on the definition of Sat, making use of
the two first items of Proposition 10 for composing witnesses, and of furthermore
the third item for treating the −grp operation.

From the above lemma, one can easily deduce that when the algorithm an-
swers ‘no’, there is indeed an obstruction to the fact that K and L can be
FO-separated.

Proposition 12. Assume that the algorithm answers ‘no’ when run with input
languages K and L. Then there is a witness function which computes, for any
FO-sentence φ, a pair of words (u, u′) ∈ K × L such that u |= φ if and only if
u′ |= φ. In particular, K and L cannot be FO-separated.

Proof. Since the algorithm answered ‘no’, pick a pair (x, x′) ∈ FK×FL such that
x, x′ ∈ X for some X ∈ Sat. Now, for any FO-sentence φ, using the function of
Lemma 11 with k the quantifier depth of φ, we can compute a sequence (ux)x∈X

of ordinal words. Now define u := ux and u′ := ux′ . Then u ≡FOk
u′, so that

u |= φ if and only if u′ |= φ. Also, π(σord(u)) = x ∈ FK and π(σord(u′)) = x′ ∈
FL, so u ∈ K and u′ ∈ L.

Example 13 (Continuing Example 9). Recall that J and K are not FO-separable.
Because of the set {aωa, aωaa} ∈ ⟨{σ(a) | a ∈ Σ}⟩grp,ord, the algorithm outputs
‘no’, and can return, to witness the FO-inseparability of the two languages the
computable map φ 7→ (aωa2

k+1, aωa2
k+2) ∈ J ×K, where k denoted the quan-

tifier depth of φ. To prove that aωa2
k+1 ≡FOk

aωa2
k+2, one can simply use the

first and third items of Proposition 10.

5 When the algorithm says ‘yes’

We now establish the completeness part of the proof of the main theorem, The-
orem 1. The goal of this proof is to establish that if the algorithm answers ‘yes’,
it is indeed possible to produce an FO-separator (Corollary 16).

This is the part of the proof that differs most substantially from previous
works on separation. In Section 5.1, we abstract the question with the notion of
ordinal monoids with merge, and we introduce the notion of FO-approximants
which are FO-definable over-approximations of the product. The key result,

274 T. Colcombet et al.

Lemma 15, states their existence for all finite ordinal monoid with merge. Corol-
lary 16 follows immediately. The proof of Lemma 15 is then established in Sec-
tion 5.2 for words of finite or ω length. Building on these simpler cases, the
general case is the subject Section 5.3.

5.1 Merge operators and FO-approximants

We abstract in this section the ordinal P(M) equipped with the −grp operator
into a new algebraic structure. A finite ordinal monoid with merge M = (M, 1,⩽
, ·,ω ,grp) consists of:

– a presentation of an ordered ordinal monoid (M, 1,⩽, ·,ω), together with
– a monotonic merge operator −grp : M → M such that for all a, b ∈ M , and

all integers k,

aidem+k ⩽ agrp, (aidem)grp = aidem,

agrp · agrp = (agrp)grp = agrp, and (a · b)grp = a · (b · a)grp · b .

The following lemma is an immediate consequence of Lemma 7.

Lemma 14. Both (P(M), {1},⊆, ·,ω ,grp) and (Sat, {1},⊆, ·,ω ,grp) are ordinal
monoids with merge.

The idea behind ordinal monoids with merge is that not only there is a
product operation as for every ordinal monoid, but also an FO-definable over-
approximation for it. This is the concept of FO-approximant that we introduce
now. Given a an FO-definable language L ⊆ Mord, an FO-approximant of π
over L is an FO-definable map ρ : L → M such that:

π(u) ⩽ ρ(u), for all u ∈ L.

The key result concerning ordinal monoids with merge is the existence of a total
FO-approximant:

Lemma 15. There is an FO-approximant ρ over Mord for all ordinal monoids
with merge M.

An example of an FO-approximant can be found in Example 26. Before
establishing Lemma 15, let us explain why it is sufficient for concluding the
proof of Theorem 1 in the case the algorithm answers ‘yes’.

Corollary 16. If the algorithm answers ‘yes’, there exists an FO-separator.

Proof. By Lemmas 14 and 15, there exists an FO-approximant ρ : Aord →
⟨A⟩grp,ord over the power ordinal monoid P(M), where A = {{σ(a)} | a ∈ Σ}.
Now define the language

S := {u ∈ Σord | ρ(σ̃ord(u)) ∩ FK ̸= ∅}
where σ̃ord(u) := ({σ(ui)})i∈dom(u) ∈ Aord for all u ∈ Σord.

First-order separation over countable ordinals 275

Note first that since ρ is FO-definable, this language is FO-definable. Let us
show that it separates K from L.

For every u ∈ K, FK ∋ π(σord(u)) ⊆ ρ(σ̃ord(u)), and as a consequence
ρ(σ̃ord(u)) ∩ FK ̸= ∅. We have proved K ⊆ S.

Conversely, consider some u ∈ L. We have FL ∋ π(σord(u)) ∈ ρ(σ̃ord(u)) ∈
⟨A⟩grp,ord, and thus ρ(σ̃ord(u))∩FL ̸= ∅. Since the algorithm returns ‘yes’, this
means that there is no set in ⟨A⟩grp,ord that intersects both FK and FL. In our
case, this means that ρ(σ̃ord(u))∩FK = ∅, proving that u ̸∈ S. We have proved
L ∩ S = ∅.

Overall, S is an FO-separator for K and L.

Remark 17. Notice how the “difficult” implication of Bedon’s theorem (Propo-
sition 4) can be easily deduced from Lemma 159: recall that this implication
consists in showing that a regular language L ⊆ Σord, recognised by some
triplet (M, σ, F) with M is aperiodic is definable in first-order logic. Indeed,
by aperiodicity of M, the operation grp applied to a singleton {a} yields the sin-
gleton {aidem}. Hence, the set ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord = {{π ◦ σord(u)} | u ∈
Σord} consists only of singletons, and as a consequence, all FO-approximants
ρ (and in particular the one constructed in Lemma 15) maps a word u to π(u).
Hence, π is an FO-definable map, and thus L is an FO-definable language.

The rest of this section is devoted to establishing Lemma 15. The construction
is based on subresults showing the existence of FO-approximants over subsets
of Mord; first for finite and ω-words in Section 5.2, and finally for words of any
countable ordinal length in Section 5.3. But beforehand, we shall introduce some
more definitions and elementary results.

In what follows we use the notation ⟨−⟩grp,ord from Definition 8, interpreted
in a generic ordinal monoid with merge, as well as some variants. Let A ⊆ M .
We define ⟨A⟩+ as the closure of A under ·, ⟨A⟩grp+ as the closure of A under ·
and −grp, and ⟨A⟩grp∗ as ⟨A⟩grp+∪{1}. We define ⟨A⟩grp,ord+ as the closure of A
under ·, grp and ω. Note that thanks to the identities of ordinal monoids with
merge, we have ⟨A⟩grp,ord = ⟨A⟩grp,ord+ ∪ {1}. Moreover, we have the following
identities10:

Proposition 18. Let M be an ordinal monoid with merge. For every A ⊆ M,

⟨A⟩grp+ = A⟨A⟩grp∗ = ⟨A⟩grp∗A and ⟨A⟩grp,ord+ = A⟨A⟩grp,ord .

Proof. Note, by definition, that ⟨A⟩grp∗ = ⟨A⟩grp+ ∪ {1}, so

A⟨A⟩grp∗ = A⟨A⟩grp+ ∪A ⊆ ⟨A⟩grp+.

The converse inclusion ⟨A⟩grp+ ⊆ A⟨A⟩grp∗ is obtained by induction. Let b ∈
⟨A⟩grp+. If b ∈ A, then b ∈ A⟨A⟩grp∗ since 1 ∈ ⟨A⟩grp∗. If c = cd with c, d ∈
9 Similarly, for finite words, Schützenberger-McNaughton-Papert’s theorem is a con-

sequence of Henckell’s algorithm for aperiodic pointlikes—see e.g. [25, Corollary 4.8]
10 Notice the similarity with the (trivial) identities A+ = AA∗ = A∗A and Aord+ =

AAord.

276 T. Colcombet et al.

⟨A⟩grp+, then, by induction, c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp∗, thus b =
a(c′d) ∈ A⟨A⟩grp∗ since a ∈ A and c′d ∈ ⟨A⟩grp∗. Finally, if b = cgrp, then, again
by induction, c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp∗, and thus b = cgrp =
ccgrp = a(c′cgrp) ∈ A⟨A⟩grp∗.

The equality ⟨A⟩grp+ = ⟨A⟩grp∗A is symmetric.
The identity ⟨A⟩grp,ord+ = A⟨A⟩grp,ord is similar. The new case in the induc-

tion is if some b ∈ ⟨A⟩grp,ord+ is of the form cω, then, by induction hypothesis,
c = ac′ for some a ∈ A and c′ ∈ ⟨A⟩grp,ord, and thus b = cω = ccω = a(c′cω) ∈
A⟨A⟩grp,ord.

Proposition 19. If there are FO-approximants over K and L respectively, then
there exist effectively FO-approximants over K ∪ L and KL.

5.2 Construction of FO-approximants for words of finite and
ω-length

First, we show how to construct FO-approximants for finite words. It serves at
the same time as a building block for more complex cases, as a way to show the
proof mechanisms in simpler cases, as well as to comment on differences with
previous works.

Lemma 20. Let A ⊆ M , then either

– a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+, for some a ∈ A,
– ⟨A⟩grp+ · a ⊊ ⟨A⟩grp+, for some a ∈ A, or
– ⟨A⟩grp+ has a maximum.

Proof. Assume the two first items do not hold. Because of the non-first-one, the
map x 7→ a · x is surjective on ⟨A⟩grp+, for all a ∈ A. Since ⟨A⟩grp+ is finite,
this means that it is bijective on ⟨A⟩grp+. Hence it is also bijective on ⟨A⟩+. The
negation of the second item has a symmetric consequence. Together we get that
⟨A⟩+ is a group. Let I be its neutral element. Note first that for all x ∈ ⟨A⟩+,
I = xk for some k, and hence, I ⩽ xgrp. Set now a1, . . . , an to be the elements
in A, and define: M = (agrp1 · agrp2 · · · agrpn)grp.

By the above remark ai = Ii−1 · ai · In−i ⩽ agrp1 · agrp2 · · · agrpn ⩽ M for
all i. Since furthermore for all x, y ⩽ M , x · y ⩽ M and xgrp ⩽ M , it follows
that z ⩽ M for all z ∈ ⟨A⟩grp+.

A similar lemma is used in [25], but concludes with the existence of a pseudo-
group as the third item.

Lemma 21. For all a ∈ M there exists an FO-approximant from a+ to ⟨{a}⟩grp+.

Construction. Let k be such that aidem = ak. Define

ρ(

length n︷ ︸︸ ︷
a · · · a) =

{
an if n < k,
agrp otherwise.

First-order separation over countable ordinals 277

We can now use this for proving the finite word case.

Lemma 22. For all A ⊆ M there exists an FO-approximant from A+ to ⟨A⟩grp+.

Proof. We use a double induction on |⟨A⟩grp+| and |A|. The induction is guided
by Lemma 20. The base case is A = ∅, and the nowhere defined FO-approximant
proves it.

First case: a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+ for some a ∈ A. This part of the proof is
similar to [25, Lemma 6.7]. Let B ::= A∖ {a}.

We first construct an FO-approximant from a+B+ to a · ⟨A⟩grp+. Indeed, we
know by Lemma 21 that there is an FO-approximant from a+ to ⟨{a}⟩grp+ ⊆ a ·
⟨A⟩grp∗. We also know by induction11 that there is an FO-approximant from B+

to ⟨B⟩grp+ ⊆ ⟨A⟩grp+. Thus by Proposition 19, there exists effectively an FO-
approximant τ from a+B+ to a · ⟨A⟩grp∗ · ⟨A⟩grp+ ⊆ a · ⟨A⟩grp+.

We now provide an FO-approximant for (a+B+)+ (which is FO-definable),
and for this, define the condensation FO-formula φ(x, y) that expresses that “two
positions x and y are equivalent if the subword on the interval [x, y] belongs to
a∗B∗” (this can be expressed in first-order logic). Over a word u ∈ (a+B+)+,
each of the condensation classes belong to a+B+ and its image under τ be-
longs to a · ⟨A⟩grp+. Furthermore, still by induction hypothesis12, there is an
FO-approximant from (a · ⟨A⟩grp+)+ to ⟨A⟩grp+. By Lemma 5, we thus obtain
an FO-definable map from (a+B+)+ to ⟨A⟩grp+. It is an FO-approximant by
construction.

Using the above case and Proposition 19, it can be easily extended to an
FO-approximant from A+ = AB∗(a+B+)∗a∗ to ⟨A⟩grp+.

Second case: ⟨A⟩grp+ · a ⊊ ⟨A⟩grp+. This case is symmetric to the first case.
Third case: ⟨A⟩grp+ has a maximum M . Then the constant map that sends

every word u ∈ A∗ to M is an FO-approximant over A∗.

Following similar ideas, we can treat the case of ω-words. We define here
⟨A⟩grp,ω as the elements of the form {a · bω | a, b ∈ ⟨A⟩grp+}—or, equivalently,
⟨A⟩grp,ω = (⟨A⟩grp+)ω.

Lemma 23. Let M be an ordinal monoid with merge. For all A ⊆ M , there
exists an FO-approximant from Aω to ⟨A⟩grp,ω.

5.3 Construction of FO-approximants for countable ordinal words

As for the finite case, the proof revolves around a carefully designed case distinc-
tion. This one is more complex to establish, and makes use of Green’s relations
and a precise understanding of the properties of ordinal monoids with merge.

Lemma 24 (Trichotomy principle). Let M be a finite ordinal monoid with
merge and A ⊆ M , then either
11 Indeed, |B| < |A|.
12 This time, we can use the induction hypothesis because |⟨(a · ⟨A⟩grp+)+⟩grp+| <

|⟨A⟩grp+|. Indeed, by Proposition 18, ⟨(a · ⟨A⟩grp+)+⟩grp+ ⊆ (a · ⟨A⟩grp+)+⟨(a ·
⟨A⟩grp+)+⟩grp∗ ⊆ a · ⟨A⟩grp+ ⊊ ⟨A⟩grp+.

278 T. Colcombet et al.

– a · ⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+, for some a ∈ A,
– ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+, or
– x · y = y and xω = yω, for all x, y ∈ ⟨A⟩grp,ord+.

The above lemma is key in the proof of the existence of an FO-approximant.

Lemma 25. For all a ∈ M, there exists an FO-approximant over aord.

The proof follows a similar structure as the one for Lemma 22 for the finite case.
This time, Lemma 24 is the key argument that makes the induction progress,
playing the same role as Lemma 20 in the finite case. Note, however, that the
second items in Lemmas 20 and 24 are very different in structure. And indeed,
this entails a different argument for constructing the FO-approximant. It is based
on performing in one step the condensation of all the maximal factors of order-
type ω.

Example 26 (Continuing Example 13). An FO-approximant ρ of π over aord in
the ordinal monoid defined in Example 9 can be defined for all u ∈ {a}ord as:

ρ(u) :=


{1} if dom(u) is empty,
{a, aa} if dom(u) is finite and non-empty,
{aω} if dom(u) is a non-zero limit ordinal,
{aωa, aωaa} if dom(u) is an infinite successor ordinal.

Lemma 27. For all A ⊆ M, there exists an FO-approximant from Aord+ to
⟨A⟩grp,ord+.

Proof. We prove the result by induction on |⟨A⟩grp,ord+| and |Aord+|. The base
case A = ∅ is trivial. If A is non-empty, following Lemma 24, there are three
cases to treat.

First case: There exists a ∈ A such that a · ⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+. This
case is as in the proof for finite words, Lemma 22, using Lemma 25 in place of
Lemma 21. The key reason why the proof remains valid is because the hypothesis
a·⟨A⟩grp,ord+ ⊊ ⟨A⟩grp,ord+ implies |⟨(a·⟨A⟩grp,ord+)ord+⟩grp,ord+| < |⟨A⟩grp,ord+|
by Proposition 1813.

Second case14: ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+. By Lemma 23, there is an
FO-approximant from Aω to ⟨A⟩grp,ω. By induction hypothesis15, we have an
FO-approximant from (⟨A⟩grp,ω)ord+ to ⟨⟨A⟩grp,ω⟩grp,ord+ ⊆ ⟨A⟩grp,ord+. Since
13 More precisely, we are using the property ⟨B⟩grp,ord+ = B⟨B⟩grp,ord of Proposi-

tion 18. By thinking of elements of ⟨B⟩grp,ord+ as “countable ordinal words with
merge”, this property is simply saying that every “countable ordinal word with
merge” has a first letter. However, countable ordinal words need not have a last
letter: this is what makes an hypothesis of the form ⟨A⟩grp,ord+ · a ⊊ ⟨A⟩grp,ord+
unusable—and this is the motivation behind the trichotomy principle Lemma 24.

14 Note here that it is different from the second case in the proof of Lemma 22.
15 Indeed, ⟨⟨A⟩grp,ω⟩grp,ord+ ⊊ ⟨A⟩grp,ord+.

First-order separation over countable ordinals 279

the formula finite(x, y) is a condensation FO-formula, we obtain by Lemma 5
an FO-approximant from (Aω)ord+ → ⟨A⟩grp,ord+. Using Proposition 19 and
Lemma 22, we easily extend it to an FO-approximant from Aord+ = A(Aω)ordA∗

to ⟨A⟩grp,ord+.
Third case: x · y = y and xω = yω, for all x, y ∈ ⟨A⟩grp,ord+. Then the

product over A sends a countable ordinal word u ∈ Aord+ to its last letter if
the word has a last letter, and to the unique omega power of ⟨A⟩grp,ord+ if the
word has no last letter. Since the languages of the form Aord+a where a ∈ A and
{u ∈ Aord+ | dom(u) is a limit ordinal} all are FO-definable, it follows that the
product over A is FO-definable.

6 Related problems

In this section, we solve two related problems: the decidability of the cover-
ing problem (Proposition 28), and the computability of pointlike sets (Proposi-
tion 30). Both are direct applications of the key lemmas presented above.

The FO-covering problem asks, given regular languages, in our case of count-
able ordinal words, L,K1, . . . ,Kn, to determine if there exist FO-definable lan-
guages C1, . . . , Cn such that L ⊆ ∪iCi and Ci ∩ Ki = ∅ for all i—see [27] for
more details. In general, separation problems trivially reduce to covering prob-
lems, since L and K are separable if and only if there is a solution to the covering
problem for the instance (L,K). In the other direction, there is no known ex-
ample of a variety with decidable separation problem but undecidable covering
problem. We show that a further consequence of the above results is that the
FO-pointlike sets in a finite ordinal monoid (see Definition 29) are computable,
from which we deduce:

Proposition 28. The FO-covering problem for countable ordinal words is de-
cidable.

Let us now introduce, and explain, the relation with pointlike sets. The FOk-
closure of a word u is the set [u]FOk

which contains all words that are FOk-
equivalent to u.

Definition 29. Given a finite ordinal monoid M the FO-pointlike sets of a
map σ : Σ → M are defined by

PlFO(σ) ::=
⋂
k∈N

↓
{
π(σord([u]FOk

)) | u ∈ Σord
}
,

where ↓ X denotes the downward closure of X.

The definition of pointlike sets is in fact more general16: given a variety of
finite semigroups V one can define a notion of pointlike sets with respect to this
16 In the following discussion, we focus on finite words, but the notion of variety—of

algebras, or of languages—can be extended to countable ordinal words [8] and many
other settings [11, §4].

280 T. Colcombet et al.

variety. Almeida observed that the separation problem for the variety V—given
two regular languages, can they be separated by a V-recognisable language?—is
decidable if and only if the V-pointlikes of size 2 of every morphism are com-
putable [2, Prop. 3.4]. The covering problem also has an algebraic counterpart:
it is decidable for the variety V if and only if, for every morphism, the collection
of all V-pointlike sets of this morphism is computable [2, Prop. 3.6]17. Hence,
the fact that FO-covering and FO-separation are decidable for finite words is
simply a corollary of Henckell’s theorem on aperiodic pointlikes [19, Fact 3.7 &
Fact 5.31], stating that they are computable. Place & Zeitoun’s simpler proof
of the decidability of FO-covering for finite words and for ω-words [25] relies
on the same principle.18 Unsurprisingly, our result can be interpreted in the
same way: we are implicitly showing the following property, from which one can
immediately deduce the computability of PlFO(σ).

Proposition 30. Given a finite ordinal monoid M and σ : Σ → M ,

PlFO(σ) = ↓ ⟨{{σ(a)} | a ∈ Σ}⟩grp,ord.

7 Conclusion

In this paper, we have studied the problem of FO-separation over words of count-
able ordinal length. Our proof is based on the work of Place and Zeitoun over
words of length ω [25]. We build an FO-approximant using essentially the same
technique as Place and Zeitoun. However a key difference is that for finite words
and ω-words, the proof relies on a case distinction (Lemma 20) which is concep-
tually similar to the characterisation of groups as semigroups whose translations
are bijective. This was no longer sufficient for countable ordinal words because
of ω-iterations. In this situation, our new case distinction (Lemma 24) captures
the subtle interaction of ω-iteration with groups in finite ordinal monoids. In
particular, a difference with previously known algorithms is that we do not close
the saturation under subset. This a priori innocuous difference has significant
consequences on the proof of completeness, yielding some simplifications in the
finite and ω-case, and necessary for the proof to be extendable to all ordinals.

Of course, the next step is to go to longer words, in particular scattered
countable words, or even better to all countable words. Here, there are conceptual
difficulties, and let us stress also that, starting from scattered countable words,
first-order logic and first-order logic with access to Dedekind cuts begin to have
a different expressiveness. Thus several notions of separation have to be studied.

References

1. Adsul, B., Sarkar, S., Sreejith, A.V.: First-order logic and its infinitary quantifier
extensions over countable words (2021)

17 Beware: there is a typo in the statement of the first item of the proposition.
18 There is a difference in terminology: they refer to the PlFO(φ) as “optimal imprint

with respect to FO on φ”.

First-order separation over countable ordinals 281

2. Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen
54(1), 531–552 (1999)

3. Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO-
Theoretical Informatics and Applications 31(5), 457–482 (1997)

4. Ash, C.J.: Inevitable graphs: a proof of the type II conjecture and some related
decision procedures. International Journal of Algebra and Computation 1(01), 127–
146 (1991)

5. Bedon, N.: Finite automata and ordinals. Theoretical Computer Science 156(1),
119–144 (1996). https://doi.org/10.1016/0304-3975(95)00006-2

6. Bedon, N.: Langages reconnaissables de mots indexés par des ordinaux. Theses,
Université de Marne la Vallée (Jan 1998), https://tel.archives-ouvertes.fr/
tel-00003586

7. Bedon, N.: Logic over words on denumerable ordinals. Journal of Computer and
System Sciences 63(3), 394–431 (2001). https://doi.org/10.1006/jcss.2001.1782

8. Bedon, N., Carton, O.: An Eilenberg theorem for words on countable or-
dinals. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN’98: Theoretical In-
formatics. pp. 53–64. Springer Berlin Heidelberg, Berlin, Heidelberg (1998).
https://doi.org/10.1007/BFb0054310

9. Bedon, N., Rispal, C.: Schützenberger and Eilenberg theorems for words on linear
orderings. Journal of Computer and System Sciences 78(2), 517–536 (Mar 2012).
https://doi.org/10.1016/j.jcss.2011.06.003

10. Bès, A., Carton, O.: Algebraic Characterization of FO for Scattered Lin-
ear Orderings. In: Bezem, M. (ed.) Computer Science Logic (CSL’11) -
25th International Workshop/20th Annual Conference of the EACSL. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 12, pp. 67–81.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011).
https://doi.org/10.4230/LIPIcs.CSL.2011.67

11. Bojańczyk, M.: Recognisable languages over monads. In: Potapov, I. (ed.) Devel-
opments in Language Theory. pp. 1–13. Springer International Publishing, Cham
(2015), https://arxiv.org/abs/1502.04898v1

12. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr .), pp. 1–11.
Stanford Univ. Press, Stanford, Calif. (1962)

13. Büchi, J.R.: The monadic second order theory of ω1, pp. 1–127. Springer Berlin
Heidelberg (1973). https://doi.org/10.1007/BFb0082721

14. Carton, O., Colcombet, T., Puppis, G.: An algebraic approach to MSO-definability
on countable linear orderings (May 2018). https://doi.org/10.1017/jsl.2018.7

15. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-
tapes. Journal of Computer and System Sciences 17(1), 81–97 (1978)

16. Colcombet, T., Sreejith, A.V.: Limited set quantifiers over countable linear order-
ings. In: Proceedings, Part II, of the 42nd International Colloquium on Automata,
Languages, and Programming - Volume 9135. pp. 146–158. ICALP 2015, Springer-
Verlag, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_12

17. van Gool, S.J., Steinberg, B.: Merge decompositions, two-sided Krohn–Rhodes,
and aperiodic pointlikes. Canadian Mathematical Bulletin 62(1), 199–208 (2019).
https://doi.org/10.4153/CMB-2018-014-8

18. Gool, S., Steinberg, B.: Pointlike sets for varieties determined by groups. Advances
in Mathematics 348, 18–50 (2019). https://doi.org/10.1016/j.aim.2019.03.020

19. Henckell, K.: Pointlike sets: the finest aperiodic cover of a finite semigroup. Journal
of Pure and Applied Algebra 55(1), 85–126 (1988). https://doi.org/10.1016/0022-
4049(88)90042-4

282 T. Colcombet et al.

https://doi.org/10.1016/0304-3975(95)00006-2
https://tel.archives-ouvertes.fr/tel-00003586
https://tel.archives-ouvertes.fr/tel-00003586
https://doi.org/10.1006/jcss.2001.1782
https://doi.org/10.1007/BFb0054310
https://doi.org/10.1016/j.jcss.2011.06.003
https://doi.org/10.4230/LIPIcs.CSL.2011.67
https://arxiv.org/abs/1502.04898v1
https://doi.org/10.1007/BFb0082721
https://doi.org/10.1017/jsl.2018.7
https://doi.org/10.1007/978-3-662-47666-6_12
https://doi.org/10.4153/CMB-2018-014-8
https://doi.org/10.1016/j.aim.2019.03.020
https://doi.org/10.1016/0022-4049(88)90042-4
https://doi.org/10.1016/0022-4049(88)90042-4

20. Makowsky, J.A.: Algorithmic uses of the Feferman–Vaught theo-
rem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004).
https://doi.org/10.1016/j.apal.2003.11.002

21. Manuel, A., Sreejith, A.V.: Two-variable logic over countable linear orderings. In:
Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26,
2016 - Kraków, Poland. LIPIcs, vol. 58, pp. 66:1–66:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.66,
https://doi.org/10.4230/LIPIcs.MFCS.2016.66

22. McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press (1971)
23. Perrin, D.: Recent results on automata and infinite words. In: International Sym-

posium on Mathematical Foundations of Computer Science. pp. 134–148. Springer
(1984). https://doi.org/10.1007/BFb0030294

24. Pin, J.E., Perrin, D.: Infinite Words: Automata, Semigroups, Logic and Games.
Elsevier (2004), https://hal.archives-ouvertes.fr/hal-00112831

25. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Log-
ical Methods in Computer Science 12 (2016). https://doi.org/10.2168/LMCS-
12(1:5)2016

26. Place, T., Zeitoun, M.: The complexity of separation for levels in concatenation
hierarchies. In: Ganguly, S., Pandya, P. (eds.) 38th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 122, pp.
47:1–47:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.47

27. Place, T., Zeitoun, M.: The covering problem. Logical Methods in Computer
Science Volume 14, Issue 3 (Jul 2018). https://doi.org/10.23638/LMCS-
14(3:1)2018

28. Place, T., Zeitoun, M.: On all things star-free. In: 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019), https://arxiv.org/abs/1904.11863v1

29. Place, T., Zeitoun, M.: Separation for dot-depth two. Logical Methods in Com-
puter Science Volume 17, Issue 3 (Sep 2021). https://doi.org/10.46298/lmcs-
17(3:24)2021

30. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

31. Rispal, C.: Automates sur les ordres linéaires : Complémentation. Theses, Uni-
versité de Marne la Vallée (Dec 2004), https://tel.archives-ouvertes.fr/
tel-00720658

32. Rispal, C., Carton, O.: Complementation of Rational Sets on Countable Scattered
Linear Orderings. International Journal of Foundations of Computer Science 16(4),
767–786 (2005), https://hal.archives-ouvertes.fr/hal-00160985

33. Rosenstein, J.G.: Linear orderings. Academic press (1982)
34. Schützenberger, M.: On finite monoids having only trivial subgroups. Information

and Control 8(2), 190–194 (1965). https://doi.org/10.1016/S0019-9958(65)90108-7
35. Shelah, S.: The monadic theory of order. Ann. of Math. (2) 102(3), 379–419 (1975)
36. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and

Formal Languages. pp. 214–222. Springer Berlin Heidelberg, Berlin, Heidelberg
(1975)

37. Wilke, T.: An algebraic theory for regular languages of finite and infinite words.
International Journal of Algebra and Computation 03(04), 447–489 (1993).
https://doi.org/10.1142/S0218196793000287

First-order separation over countable ordinals 283

https://doi.org/10.1016/j.apal.2003.11.002
https://doi.org/10.4230/LIPIcs.MFCS.2016.66
https://doi.org/10.4230/LIPIcs.MFCS.2016.66
https://doi.org/10.1007/BFb0030294
https://hal.archives-ouvertes.fr/hal-00112831
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.47
https://doi.org/10.23638/LMCS-14(3:1)2018
https://doi.org/10.23638/LMCS-14(3:1)2018
https://arxiv.org/abs/1904.11863v1
https://doi.org/10.46298/lmcs-17(3:24)2021
https://doi.org/10.46298/lmcs-17(3:24)2021
https://tel.archives-ouvertes.fr/tel-00720658
https://tel.archives-ouvertes.fr/tel-00720658
https://hal.archives-ouvertes.fr/hal-00160985
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1142/S0218196793000287

38. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 99. pp. 32–46. Springer Berlin Heidelberg, Berlin, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3_3

39. Wojciechowski, J.: Classes of transfinite sequences accepted by nondeterministic
finite automata. Fundamenta informaticæ 7(2), 191–223 (1984)

40. Wojciechowski, J.: Finite automata on transfinite sequences and regular expres-
sions. Fundamenta informaticæ 8(3-4), 379–396 (1985)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

284 T. Colcombet et al.

https://doi.org/10.1007/3-540-49116-3_3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A Faithful and Quantitative Notion of Distant
Reduction for Generalized Applications

José Esṕırito Santo1(�) , Delia Kesner2,3(�) , and Löıc Peyrot2(�)

1 Centro de Matemática, Universidade do Minho, Portugal
jes@math.uminho.pt

2 Université de Paris, CNRS, IRIF, Paris, France
{kesner,lpeyrot}@irif.fr

3 Institut Universitaire de France (IUF), France

Abstract. We introduce a call-by-name lambda-calculus λJ with gen-
eralized applications which integrates a notion of distant reduction that
allows to unblock β-redexes without resorting to the permutative con-
versions of generalized applications. We show strong normalization of
simply typed terms, and we then fully characterize strong normalization
by means of a quantitative typing system. This characterization uses a
non-trivial inductive definition of strong normalization –that we relate
to others in the literature–, which is based on a weak-head normalizing
strategy. Our calculus relates to explicit substitution calculi by means of
a translation between the two formalisms which is faithful, in the sense
that it preserves strong normalization. We show that our calculus λJ
and the well-know calculus ΛJ determine equivalent notions of strong
normalization. As a consequence, ΛJ inherits a faithful translation into
explicit substitutions, and its strong normalization can be characterized
by the quantitative typing system designed for λJ , despite the fact that
quantitative subject reduction fails for permutative conversions.

Keywords: Lambda-calculus · Generalized applications · Quantitative types

1 Introduction

(Pure) functional programming can be understood by means of a universal model
of computation known as the λ-calculus, which is in tight correspondence, by
means of the so-called Curry-Howard isomorphism, with propositional intuition-
istic logic in Gentzen’s natural deduction style. The Curry-Howard isomorphism
emphasizes the fact that proof systems on one hand, and programming languages
on the other, are two mathematical and computational facets of the same ob-
ject. The λ-calculus with generalized applications (ΛJ), introduced by Joachim-
ski and Matthes [8], is an extension of the λ-calculus which can be seen as the
Curry-Howard counterpart of van Plato’s natural deduction with generalized
elimination rules [11].

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 285–304, 2022.
https://doi.org/10.1007/978-3-030-99253-8_15

http://orcid.org/0000-0002-6348-5653
http://orcid.org/0000-0003-4254-3129
http://orcid.org/0000-0002-1398-7460
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_15&domain=pdf

A generalized application in ΛJ is written t(u, y.r). It intuitively means that t
is applied to u in the context of the substitution { /y}r. The conversion of the β-
redex (λx.t)(u, y.r) then produces two (nested) substitutions {{u/x}t/y}r. But
some β-redexes can be blocked by the syntax, e.g. in the term t(u, y.r)(u′, y′.r′),
where the (potential) application of r = λx.s to u′ remains hidden. An iterated
generalized application t(u, y.r)(u′, y′.r′) may be rearranged as t(u, y.r(u′, y′.r′))
by a permutative conversion called π. Rule π is then an unblocker of stuck β-
redexes: the contractum t(u, y.(λx.s)(u′, y′.r′)) unveils the desired application
of r to u′. Rule π, together with rule β, allows natural deduction proofs to
be brought to a “fully normal” form [11] enjoying the subformula property.
Computationally, ΛJ defines a call-by-name operational semantics; a call-by-
value variant has been proposed in [5], but this is out of the scope of this paper.

Strong normalization w.r.t. the two rules β and π has been characterized by
typability with (idempotent) intersection types by Matthes [10]: a term is typable
if and only if it is strongly normalizing. However, this characterization is just
qualitative. A different flavor of intersection types, called non-idempotent, offers a
more powerful quantitative characterization of strong normalization, in the sense
that the length of the longest reduction sequence to normal form starting at a
typable term t is bound by the size of its type derivation. However, quantitative
types were never used in the framework of generalized applications, and it is our
purpose to propose and study one such typing system.

Quantitative types allow for simple combinatorial proofs of strong normal-
ization, without any need to use reducibility or computability arguments. More
remarkably, they also provide a refined tool to understand permutative rules. For
instance, in ΛJ , rule π is not quantitatively sound (i.e. π does not enjoy quanti-
tative subject reduction), although π becomes valid in an idempotent framework.
Hence, a good question is: how can we unblock redexes to reach normal forms
in a quantitative model of computation based on generalized applications?

Our solution is to adopt the paradigm of distant reduction [2] coming from
explicit substitution (ES) calculi, which extends the key concept of β-redex, so
that we may find the λ-abstraction hidden under a sequence of nested generalized
applications. This is essentially similar to adopting a different permutation rule,
converting t(u, y.λz.s) to λz.t(u, y.s). However, the permutation rule is mostly a
way to overcome syntactical limitations, while distant β is a way to put emphasis
on the computational behavior of the calculus: it is at the β-step that resources
are consumed, not during the permutations.

The syntax of the ΛJ-calculus will thus be equipped with an operational call-
by-name semantics given by distant β, but without π. The resulting calculus
is called λJ . As a major contribution, we prove a characterization of strong
normalization in terms of typability in our quantitative system. In such proof,
the soundness result (typability implies strong normalization) is obtained by
combinatorial arguments, with the size of typing derivations decreasing at each
step. For the completeness result (strong normalization implies typability) we
need an inductive characterization of the terms that are strongly normalizing
for distant β: this is a non-trivial technical contribution of the paper.

286 J. Esṕırito Santo, D. Kesner, L. Peyrot

As mentioned above, we draw inspiration for our distant β rule from calculi
with explicit substitutions, having in mind the usual translation of t(u, y.r) to the
explicit substitution [tu/y]r (a let-binding of tu over y in r). As such, we expect
the dynamic behavior of our calculus to be faithful to explicit substitutions.
Such translation, however, does not in general preserve strong normalization.
Indeed, in a β-redex (λx.t)(u, y.r), the interaction of λx.t with the argument u
is materialized by the internal substitution in the contractum term {{u/x}t/y}r,
as mentioned before. But such interaction is elusive: if the external substitution
is vacuous (that is, if y is not free in r), β-reduction will simply throw away the λ-
abstraction λx.t and its argument u, whereas (λx.t)u may reduce in the context
of the explicit substitution [(λx.t)u/y]r. The different interaction between the
abstraction and its argument in the two mentioned models of computation has
important consequences. For instance, let δ◦ := λx.x(x,w.w) be the encoding
of δ = λx.xx as a ΛJ-term. Then, if y /∈ r and r is normal, the only thing the
term δ◦(δ◦, y.r) can do is to reduce to r, whereas δδ may reduce forever in the
context of the vacuous explicit substitution [δδ/y]r.

That is why we propose a new, type-preserving, encoding of terms with gen-
eralized applications into terms with explicit substitutions. Using this new en-
coding and quantitative types, we show that strong normalization of the source
term with generalized applications is equivalent to the strong normalization of
the target term with explicit substitutions.

As a final contribution, we compare λJ-strong normalization to that of other
calculi, including the original ΛJ . We extract new results for the latter, as a
faithful translation to ES, and a new normalizing strategy. Moreover, we obtain
a quantitative characterization of ΛJ-strong normalization, where the bound for
reduction given by the size of type derivations only holds for β (and not for π).

Plan of the paper. Sec. 2 presents our calculus with distant β. Sec. 3
provides an inductive characterization of strongly normalizing terms. Sec. 4 is
about non-idempotent intersection types. Sec. 5 shows the faithful translation
to ES. Sec. 6 contains the comparisons with other calculi. Sec. 7 concludes. Full
proofs are available in [6].

2 A Calculus with Generalized Applications

In this section we define our calculus λJ with generalized applications and give
some introductory observations on strong normalization in that system.

2.1 Syntax and Semantics

We start with some general notations. Given a reduction relation →R, we write
→∗R (resp. →+

R) for the reflexive-transitive (resp. transitive) closure of →R. A
term t is said to be in R-normal form (written R-nf) iff there is no t′ such that
t→R t′. A term t is said to be R-strongly normalizing (written t ∈ SN (R))
iff there is no infinite R-sequence starting at t. R is strongly normalizing iff every
term is R-strongly normalizing. When R is finitely branching, ||t||R denotes the

Quantitative Distant Reduction for Generalized Applications 287

maximal length of an R-reduction sequence to R-nf starting at t, for every
t ∈ SN (R).

The set of terms generated by the following grammar is denoted by TJ .

(Terms) t, u, r, s ::= x | λx.t | t(u, x.r)

The term t(u, x.r) is called a generalized application, and the part x.r is some-
times referred as the continuation of that application. Free variables of terms are
defined as usual, notably fv(t(u, x.r)) := fv(t)∪ fv(u)∪ fv(r) \{x}. We also work
modulo α-conversion, denoted =α, so that bound variables can be systematically
renamed. We use I to denote the identity function λz.z.

We introduce contexts (terms with one occurrence of the hole ♦) and the
special distant contexts:

(Contexts) C ::= ♦ | λx.C | C(u, x.r) | t(C, x.r) | t(u, x.C)
(Distant Contexts) D ::= ♦ | t(u, x.D)

The term C〈t〉 denotes C where ♦ is replaced by t, so that capture of variables
may eventually occur. Given a rewriting rule R ⊆ TJ × TJ , →R denotes the
reduction relation generated by the closure of R under all contexts.

We say that t has an abstraction shape iff t = D〈λx.u〉. The substitution op-
eration is capture-avoiding and defined as usual, in particular {u/x}(t(s, y.r)) :=
({u/x}t)({u/x}s, y.{u/x}r).

2.2 Towards a Call-by-Name Operational Semantics

The TJ -syntax can be equipped with different rewriting rules, as discussed in the
introduction. We use the generic notation TJ [R] to denote the calculus given by
the syntax TJ equipped with the reduction relation →R.

Now, if we consider t0 := t(u′, y′.λx.s)(u, y.r) in the calculus TJ [β], where

(λx.s)(u, y.r) 7→β {{u/x}s/y}r

we can see that the term t0 is stuck since the subterm λx.s is not close to u.
This is when the following rule π, plays the role of an unblocker of β-redexes:

t(u, y.r)(u′, y′.r′) 7→π t(u, y.r(u
′, y′.r′))

Indeed, t0 →π t(u
′, y′.(λx.s)(u, y.r)) →β t(u

′, y′.{{u/x}s/y}r). More generally,
given t1 := D〈λx.s〉(u, y.r), with D 6= ♦, a sequence of π-steps reduces the term
t1 above to D〈(λx.s)(u, y.r)〉. A further β-step produces D〈{{u/x}s/y}r〉. So, the
original ΛJ-calculus [8], which is exactly TJ [β, π], has a derived notion of distant
β rule, based on π, which can be specified by the following rule:

D〈λx.s〉(u, y.r) 7→ D〈{{u/x}s/y}r〉 (1)

However, π-reduction is not only about unblocking redexes, as witnessed
by D〈x〉(u, y.r) →∗π D〈x(u, y.r)〉. So it is reasonable to keep terms of the form

288 J. Esṕırito Santo, D. Kesner, L. Peyrot

D〈x〉(u, y.r) without reducing them further, as those π-steps do not contribute
to unblock more β-redexes. The absence of terms of the form D〈λx.s〉(u, y.r)
gives already a reasonable notion of normal form which, in particular, already
enjoy the subformula property, as will be seen in Sec. 2.3.

Still, we will not reduce as in (1) because such rule, as well as π itself, does
not admit a quantitative semantics (c.f. Sec. 4.3). We then choose to unblock
β-redexes with the following rule p2 instead4:

t(u′, y′.λx.s) 7→p2 λx.t(u
′, y′.s)

so that t1 given above reduces in several p2-steps to (λx.D〈s〉)(u, y.r), which can
now be further reduced with β since it is no longer stuck. If we reduce it, we
obtain {{u/x}D〈s〉/y}r; and since free variables in u cannot be captured by D,
this is equal to {D〈{u/x}s〉/y}r. We thus obtain our distant rule:

Definition 1. We write λJ for our new calculus TJ [dβ], where the distant β-
rule is defined as follows:

D〈λx.t〉(u, y.r) 7→dβ {D〈{u/x}t〉/y}r

A reduction step t1 →dβ t2 is said to be erasing iff the reduced dβ-redex in
t1 is of the form D〈λx.t〉(u, y.r) with x /∈ fv(t) or y /∈ fv(r).

It is obvious that→dβ⊂→+
β,p2

. Some other variants of the p2-rule are possible,

like D〈λx.t〉(u, y.r) 7→ (λx.D〈t〉)(u, y.r) or D〈λx.t〉 7→p2 λx.D〈t〉, in both cases for
D 6= ♦, but we do not develop them. However, while most of the paper is about
λJ , brief comparisons with the calculi ΛJ and TJ [β, p2] are considered in Sec.6.

2.3 Some (Un)typed Properties of λJ

Lemma 1. The grammar m characterizes dβ-normal forms.

m ::= x | λx.m | mvar(m, x.m) mvar ::= x | mvar(m, x.mvar)

We already saw that, once β is generalized to dβ, π is not needed anymore
to unblock β-redexes; the next Lemma says that π preserves dβ-nfs, so it does
not bring anything new to dβ-nfs either. The proof uses Lem. 1, and it proceeds
by simultaneous induction on m and mvar.

Lemma 2. If t is a dβ-nf, and t→π t
′, then t′ is a dβ-nf.

Let us discuss now some properties related to (simple) typability for general-
ized applications [8], a system that we call ST . Recall the following typing rules,
where σ, ρ, τ ::= a | σ → ρ, and a belongs to a set of base type variables:

Γ, x : σ ` x : σ

Γ, x : σ ` t : ρ

Γ ` λx.t : σ → ρ

Γ ` t : ρ→ τ Γ ` u : ρ Γ, y : τ ` r : σ

Γ ` t(u, y.r) : σ

We write Γ
ST t : σ if there is a type derivation in system ST ending in
Γ ` t : σ. In the following result, we refer to simple types as formulas.

4 Rule p2 is used in [7,3] along with two other permutation rules p1 and p3 to reduce
TJ -terms to a fragment isomorphic to natural deduction.

Quantitative Distant Reduction for Generalized Applications 289

Lemma 3 (Subformula Property). If Φ = Γ
ST m : τ then every formula
in the derivation Φ is a subformula of τ or a subformula of some formula in Γ .

Proof. The lemma is proved together with another statement: If Ψ = Γ
ST
mvar : τ then every formula in Ψ is a subformula of some formula in Γ . The proof
is by simultaneous induction of Φ and Ψ .

We close this section with the following:

Theorem 1. If t is simply typable, i.e. Γ
ST t : σ, then t ∈ SN (dβ).

The proof is by a map into the λ-calculus which produces a simulation when the
λ-calculus is equipped with the following σ-rules [13]:

(λx.M)NN ′ 7→σ1
(λx.MN ′)N (λx.λy.M)N 7→σ2

λy.(λx.M)N

3 Inductive Characterization of Strong Normalization

In this section we give an inductive characterization of strong normalization
(ISN) for λJ and prove it correct. This characterization will be useful to show
completeness of the type system that we are going to present in Sec. 4.1, as well
as to compare strong normalization of λJ to the ones of Tλ[β, p2] and ΛJ .

3.1 ISN in the λ-Calculus Through Weak-Head Contexts

As an introduction, we first look at the case of the ISN for the λ-calculus
(ISN (β)), on which our forthcoming definition of ISN (dβ) elaborates. A usual
way to define ISN (β) is by the following rules [12], where the general notation
tr abbreviates (. . . (tr1) . . .)rn for some n ≥ 0.

r1, . . . , rn ∈ ISN (β)

xr ∈ ISN (β)

t ∈ ISN (β)

λx.t ∈ ISN (β)

{u/x}tr, u ∈ ISN (β)

(λx.t)ur ∈ ISN (β)

One shows that t ∈ SN (β) if and only if t ∈ ISN (β).
The reduction strategy underlying the definition of ISN (β) is the following

one: reduce terms to weak-head normal form, and then iterate reduction inside
the components of the weak-head normal form, without any need to come back
to the head of the term. Weak-head normal terms are of two kinds: (neutral
terms) n ::= x | nt and (answers) a ::= λx.t. Neutral terms cannot produce
any head β-redex. On the contrary, answers can create a β-redex when given at
least one argument. In the case of the λ-calculus, these are only abstractions.
If the term is not a weak-head term, a redex can be located with a weak-head
context W ::= ♦ | Wt. These concepts allow a different definition of ISN (β).

x ∈ ISN (β)

n, t ∈ ISN (β)

nt ∈ ISN (β)

t ∈ ISN (β)

λx.t ∈ ISN (β)

W〈{u/x}t〉, u ∈ ISN (β)

W〈(λx.t)u〉 ∈ ISN (β)

Weak-head contexts are an alternative to the meta-syntactic notation r of vectors
of arguments. Notice that there is one rule for each kind of neutral term, one
rule for answers and one rule for terms which are not weak-head normal forms.

290 J. Esṕırito Santo, D. Kesner, L. Peyrot

3.2 ISN for dβ

We define ISN (dβ) with the same methodology as before. Hence, we first have
to define neutral terms, answers and weak-head contexts.

Definition 2. We consider the following grammars:

(Neutral terms) n ::= x | n(u, x.n)
(Answers) a ::= λx.t | n(u, x.a)

(Neutral distant contexts) Dn ::= ♦ | n(u, x.Dn)
(Weak-head contexts) W ::= ♦ | W(u, x.r) | n(u, x.W)

Notice that n and a are disjoint and stable by dβ-reduction. Also Dn (W.

Example 1 (Decomposition). Let t = x1(x2, y1.I(I, z.I))(x3, y.II). Then, there
are two decompositions of t in terms of a redex r and a weak-head context W:
either W = ♦ and r = t, or W = x1(x2, y1.♦)(x3, y.II) and r = I(I, z.I). In both
cases t = W〈r〉. We will rule out the first possibility by defining next a restriction
of the β-rule, securing uniqueness of such kind of decomposition in all cases.

The strategy underlying our definition of ISN (dβ) will be the weak-head
strategy →wh, defined as the closure under W of the following restricted β-rule:

Dn〈λx.t〉(u, y.r) 7→ {Dn〈{u/y}t〉/y}r.

The restriction of D to a neutral distant context Dn is what allows determinism
of our forthcoming Def. 3.

Lemma 4. The reduction →wh is deterministic.

As in the case of the λ-calculus, weak-head normal forms are either neutral
terms or answers. This time, answers are not only abstractions, but also abstrac-
tions under a (neutral) distant context. Because of distance, these terms can also
create a dβ-redex when applied to an argument, as seen in the next example.

Example 2. Consider again term t of Ex. 1. If the third form in the grammar
of W was disallowed, then it would not be possible to write t as W〈r〉, with r a
restricted redex. In that case, the reduction strategy associated with ISN (dβ)
would consider t as a weak-head normal form, and start reducing the subterms
of t, including I(I, z.I). Now, the latter would eventually reach I and suddenly
the whole term t′ = x1(x2, y1.I)(x3, y.r

′) would be a weak-head redex again:
the typical separation between an initial weak-head reduction phase and a later
internal reduction phase, as it is the case in the λ-calculus, would be lost in our
framework. This is a subtle point due to the distant character of rule dβ which
explains the complexity of Def. 2.

Lemma 5. Let t ∈ TJ . Then t is in wh-normal form iff t ∈ n ∪ a.

Our inductive definition of strong normalization follows.

Quantitative Distant Reduction for Generalized Applications 291

Definition 3 (Inductive Strong Normalization). We consider the follow-
ing inductive predicate:

x ∈ ISN (dβ)
(snvar)

n, u, r ∈ ISN (dβ) r ∈ wh-nf

n(u, x.r) ∈ ISN (dβ)
(snapp)

t ∈ ISN (dβ)

λx.t ∈ ISN (dβ)
(snabs)

W〈{Dn〈{u/x}t〉/y}r〉, Dn〈t〉, u ∈ ISN (dβ)

W〈Dn〈λx.t〉(u, y.r)〉 ∈ ISN (dβ)
(snbeta)

Notice that every term can be written according to the conclusions of the previ-
ous rules, so that the grammar t, u, r ::= x | λx.t | n(t, x.r) | W〈Dn〈λx.t〉(u, y.s)〉,
with r ∈ wh-nf, also defines the syntax TJ . Moreover, at most one rule in the
previous definition applies to each term, i.e. the rules are deterministic. An
equivalent, but non-deterministic definition, can be given by removing the side
condition “r ∈ wh-nf” in rule (snapp). Indeed, this (weaker) rule would overlap
with rule (snbeta) for terms in which the weak-head context lies in the last con-
tinuation, as for instance in x(u, y.y)(u′, y′.II). Notice the difference with the
λ-calculus: the head of a term with generalized applications can be either on the
left of the term (as in the λ-calculus), or recursively on the left in a continuation.
We conclude with the following result.

Theorem 2. SN (dβ) = ISN (dβ).

4 Quantitative Types Characterize Strong Normalization

We proved that simply typable terms are strongly normalizing in Sec. 2.3. In this
section we use non-idempotent intersection types to fully characterize strong
normalization, so that strongly normalizing terms are also typable. First we
introduce the typing system, next we prove the characterization and finally we
study the quantitative behavior of π and give in particular an example of failure.

4.1 The Typing System

We now define our quantitative type system ∩J for TJ -terms and we show that
strong normalization in λJ exactly corresponds to ∩J typability.

Given a countable infinite set BTV of base type variables a, b, c, . . ., we define
the following sets of types:

(types) σ, τ, ρ ::= a ∈ BTV | M → σ
(multiset types)M,N ::= [σi]i∈I where I is a finite set

The empty multiset is denoted []. We use |M| to denote the size of the multiset,
thus ifM = [σi]i∈I then |M| = |I|. We introduce a choice operator on multiset
types: if M 6= [], then #(M) = M, otherwise #([]) = [σ], where σ is an
arbitrary type. This operator is used to guarantee that there is always a typing
witness for all the subterms of typed terms.

292 J. Esṕırito Santo, D. Kesner, L. Peyrot

Typing environments (or just environments), written Γ,∆,Λ, are func-
tions from variables to multiset types assigning the empty multiset to all but a fi-
nite set of variables. The domain of Γ is given by dom(Γ) := {x | Γ (x) 6= []}. The
union of environments, written Γ∧∆, is defined by (Γ∧∆)(x) := Γ (x)t∆(x),
where t denotes multiset union. This notion is extended to several environments
as expected, so that ∧i∈IΓi denotes a finite union of environments (∧i∈IΓi is to
be understood as the empty environment when I = ∅). We write Γ\\x for the
environment such that (Γ\\x)(y) = Γ (y) if y 6= x and (Γ\\x)(x) = []. We write
Γ ;∆ for Γ ∧∆ when dom(Γ) ∩ dom(∆) = ∅. A sequent has the form Γ ` t : σ,
where Γ is an environment, t is a term, and σ is a type.

The type system ∩J is given by the following typing rules.

(var)
x : [σ] ` x : σ

Γ ;x :M ` t : σ
(abs)

Γ ` λx.t :M→ σ

(Γi ` t : σi)i∈I I 6= ∅
(many)

∧i∈IΓi ` t : [σi]i∈I

Γ ` t : #([Mi → τi]i∈I) ∆ ` u : #(ti∈IMi) Λ;x : [τi]i∈I ` r : σ
(app)

Γ ∧∆ ∧ Λ ` t(u, x.r) : σ

The use of the choice operator in rule (app) is subtle. If I is empty, then the
multiset [Mi → τi]i∈I typing t as well as the multiset ti∈IMi typing u are both
empty, so that the choice operator must be used to type both terms. If I is not
empty, then the multiset typing t is non-empty as well. However, the multiset
typing u may or not be empty, e.g. if [[]→ α] types t.

System ∩J lacks weakening: it is relevant.

Lemma 6 (Relevance). If Γ
 t : σ, then fv(t) = dom(Γ).

Notice that the typing rules (and the choice operator) force all the subterms
of a typed term to be also typed. Moreover, if I = ∅ in rule (app), then the
types of t and u are not necessarily related. Indeed, let δ◦ := λy.y(y, w.w) in
t0 := δ◦(δ◦, x.z). Then t0 is dβ-strongly-normalizing so it must be typed in
system ∩J . However, since the set I of x : [τi]i∈I in the typing of r = z is
necessarily empty (c.f. Lem. 6), then the unrelated types #([Mi → τi]i∈I) and
#(ti∈IMi) of the two occurrences of δ◦ witness to the fact that these subterms
will never interact during the reduction of t0. Indeed, the term t0 can be typed
as follows, where ρi := [[σi]→ σi, σi]→ σi and τi := [σi]→ σi, for i = 1, 2:

∅ ` δ◦ : ρ1

∅ ` δ◦ : [ρ1]
(many)

∅ ` δ◦ : ρ2

∅ ` δ◦ : [ρ2]
(many)

z : [τ];x : [] ` z : τ
(var)

z : [τ] ` δ◦(δ◦, x.z) : τ
(app)

where δ◦ is typed with ρi as follows:

y : [τi] ` y : τi
(var)

y : [τi] ` y : [τi]
(many)

y : [σi] ` y : σi
(var)

y : [σi] ` y : [σi]
(many)

w : [σi] ` w : σi
(var)

y : [[σi]→ σi, σi] ` y(y, w.w) : σi

∅ ` λy.y(y, w.w) : [[σi]→ σi, σi]→ σi
(abs)

(app)

Quantitative Distant Reduction for Generalized Applications 293

We write Γ
∩J t : σ or simply Γ
 t : σ if there is a derivation in system ∩J
ending in Γ ` t : σ. For n ≥ 1, we write Γ
n∩J t : σ or simply Γ
n t : σ if there
is a derivation in system ∩J ending in Γ ` t : σ and containing n occurrences of
rules in the set {(var), (abs), (app)}.

4.2 The Characterization of dβ-Strong Normalization

The soundness Lem. 9 is based on Lem. 8, based in turn on Lem. 7.

Lemma 7 (Substitution Lemma). Let t, u ∈ TJ with x ∈ fv(t). If both
Γ ;x :M
n t : σ and ∆
m u :M hold, then Γ ∧∆
k {u/x}t : σ where k =
n+m− |M|.

Lemma 8 (Non-Erasing Subject Reduction). Let Γ
n1

∩J t1 : σ. If t1 →dβ

t2 is a non-erasing step, then Γ
n2

∩J t2 : σ with n1 > n2.

Lemma 9 (Soundness for λJ). If t is ∩J-typable, then t ∈ SN (dβ).

The completeness Lem. 13 is based on Lem. 10 and Lem. 12, this last based
in turn on Lem. 11.

Lemma 10 (Typing Normal Forms).

1. For all t ∈ m, there exists Γ , σ such that Γ
∩J t : σ.

2. For all t ∈ mvar, for all σ, there exists Γ such that Γ
∩J t : σ.

Lemma 11 (Anti-Substitution). If Γ
 {u/x}t : σ where x ∈ fv(t), then
there exist Γt, Γu and M 6= [] such that Γt;x :M
 t : σ, Γu
 u :M and
Γ = Γt ∧ Γu.

Lemma 12 (Non-Erasing Subject Expansion). If Γ
∩J t2 : σ and t1 →dβ

t2 is a non-erasing step, then Γ
∩J t1 : σ.

Lemma 13 (Completeness for λJ). If t ∈ SN (dβ), then t is ∩J-typable.

We finally obtain:

Theorem 3 (Characterization). System ∩J characterizes strong normal-
ization, i.e. t is ∩J-typable if and only if t is →dβ-normalizing. Moreover, if
Γ
n t : σ then the number of reduction steps in any reduction sequence from t
to normal form is bounded by n.

Proof. Soundness holds by Lem. 9, while completeness holds by Lem. 13. The
bound is given by Thm. 9 in the long version [6].

294 J. Esṕırito Santo, D. Kesner, L. Peyrot

4.3 Why π Is Not Quantitative

In the introduction we discussed that π is rejected by the quantitative type
systems ∩J for CBN. This happens in the critical case when x /∈ fv(r) and
y ∈ fv(r′) in t0 = t(u, x.r)(u′, y.r′) →π t(u, x.r(u′, y.r′)) = t1. Let us see a
concrete example.

Example 3. We take t1 = x(y, a.z)(w, b.b(b, c.c)) →π x(y, a.z(w, b.b(b, c.c))) =
t2. Let ρ1 = [σ] → τ and ρ2 = [σ] → [τ] → τ . For each i ∈ {1, 2} let ∆i = x :
[σ1]; y : [σ2]; z : [ρi]. Consider

Ψ =

b : [[τ]→ τ]
 b : [[τ]→ τ] b : [τ]
 b : [τ] c : [τ] ` c : τ

b : [[τ]→ τ, τ] ` b(b, c.c) : τ

and the derivation Φi for i ∈ {1, 2}:

Φi =

x : [σ1]
 x : [σ1] y : [σ2]
 y : [σ2] z : [ρi] ` z : ρi

∆i ` x(y, a.z) : ρi

Then, for the term t1, we have the following derivation:

Φ1 Φ2

∆1 ∧∆2 ` x(y, a.z) : [ρ1, ρ2] w : [σ, σ]
 w : [σ, σ] Ψ

Γ1 ` x(y, a.z)(w, b.b(b, c.c)) : τ

where Γ1 = z : [ρ1, ρ2];w : [σ, σ];x : [σ1, σ1]; y : [σ2, σ2].
While for the term t2, we have:

x : [σ1]
 x : [σ1] y : [σ2]
 y : [σ2] Φ

Γ2 ` x(y, a.z(w, b.b(b, c.c))) : τ

where

Φ =

z : [ρ1, ρ2]
 z : [ρ1, ρ2] w : [σ, σ]
 w : [σ, σ] Ψ

Γ2 ` z(w, b.b(b, c.c)) : τ

and Γ2 = z : [ρ1, ρ2];w : [σ, σ];x : [σ1]; y : [σ2].
Thus, the multiset types of x and y in Γ1 and Γ2 resp. are not the same.

Despite the fact that the step t1 →π t2 does not erase any subterm, the typing
environment is losing quantitative information.

Notice that by replacing non-idempotent types by idempotent ones, subject re-
duction (and expansion) would work for π-reduction: by assigning sets to vari-
ables instead of multisets, Γ1 and Γ2 would now represent the same object.

Despite the fact that quantitative subject reduction fails for some π-steps,
the following weaker property is sufficient to recover (qualitative) soundness of
our typing system ∩J w.r.t. the reduction relation →β,π. Soundness will be used
later in Sec. 6 to show equivalence between SN (dβ) and SN (β, π).

Quantitative Distant Reduction for Generalized Applications 295

Lemma 14 (Typing Behavior of π-Reduction). Let Γ
n1

∩J t1 : σ. If t1 =
t(u, x.r)(u′, y.r′) 7→π t2 = t(u, x.r(u′, y.r′)), then there are n2 and Σ v Γ such
that Σ
n2

∩J t2 : σ with n1 ≥ n2.

Lemma 15 (Soundness for ΛJ). If t is ∩J-typable, then t ∈ SN (β, π).

5 Faithfulness of the Translation

As discussed in the introduction, the natural translation [4] of generalized appli-
cations into ES is not faithful. In this section we define an alternative encoding
and prove it faithful: a term in TJ is dβ-strongly normalizing iff its alternative
encoding is strongly normalizing in the ES framework. In a later subsection, we
use this connection with ES to establish the equivalence between strong normal-
ization w.r.t. dβ and (β, p2).

5.1 Explicit Substitutions

We define the syntax and semantics of an ES calculus borrowed from [1] to
which we relate λJ . It is a simple calculus where β is implemented in two in-
dependent steps: one creating a let-binding, and another one substituting the
term bound. It has a notion of distance which allows to reduce redexes such
as ([N/x](λy.M))P →dB [N/x][P/y]M , where the ES [N/x] lies between the
abstraction and its argument. Terms and list contexts are given by:

(TES) M,N,P,Q ::= x | λx.M |MN | [N/x]M
(List contexts) L ::= ♦ | [N/x]L

The calculus λES is defined by TES [dB, s] (closed under all contexts) where:

L〈λx.M〉N 7→dB L〈[N/x]M〉 [N/x]M 7→s {N/x}M

Now, consider the (naive) translation from TJ to TES [4]:

x? := x (λx.t)? := λx.t? t(u, y.r)? := [t?u?/y]r?

According to this translation, the notion of distance in λES corresponds to our
notion of distance for λJ . For instance, the application t(u, x.·) in the term
t(u, x.λy.r)(u′, z.r′) can be seen as a substitution [t?u?/x]· inserted between the
abstraction λy.r and the argument u′. But how can we now (informally) relate π
to the notions of existing permutations for λES? Using the previous translation,
we can see that t0 = t(u, x.r)(u′, y.r′) 7→π t(u, x.r(u

′, y.r′)) = t1 simulates as

t?0 = [([t?u?/x]r?)u′?/y]r′? → [[t?u?/x](r?u′?)/y]r′? → [t?u?/x][r?u′?/y]r′? = t?1.

The first step is an instance of a rule in ES known as σ1: ([u/x]t)v 7→
[u/x](tv), and the second one of a rule we call σ4: [[u/x]t/y]v 7→ [u/x][t/y]v.
Quantitative types for ES tell us that only rule σ1, but not rule σ4, is valid for a
call-by-name calculus. This is why it is not surprising that π is rejected by our
type system, as detailed in Sec. 4.3.

The alternative encoding we propose is as follows (noted ∗ instead of ?):

296 J. Esṕırito Santo, D. Kesner, L. Peyrot

Definition 4 (Translation from TJ to TES).

x∗ := x (λx.t)
∗

:= λx.t∗ t(u, x.r)
∗

:= [t∗/xl][u∗/xr]{xlxr/x}r∗

Notice the above π-reduction t0 → t1 is still simulated: t∗0 →2
σ4
t∗1.

Consider again the counterexample to faithfulness already discussed in the
introduction, given by t := δ◦(δ◦, y.r) with y /∈ fv(r), where δ◦ = λx.x(x,w.w).
The term t is a dβ-redex, whose contraction throws away the two copies of δ◦. The
naive translation of t gives [δ◦∗δ◦∗/y]r?, which clearly diverges in λES. The alter-
native encoding of t is [δ◦∗/yl][δ◦∗/yr]{ylyr/y}r∗, which is just [δ◦∗/yl][δ◦∗/yr]r∗,
because y /∈ fv(r∗). The only hope to have an interaction between the two copies
of δ◦∗ in the previous term is to execute the ES, but such executions will just
throw away those two copies, because yl, yr /∈ fv(r∗). This gives an intuitive idea
of the faithfulness of our encoding.

5.2 Proof of Faithfulness

We need to prove the equivalence between two notions of strong normalization:
the one of a term in λJ and the one of its encoding in λES. While this proof can
be a bit involved using traditional methods, quantitative types will make it very
straightforward. Indeed, since quantitative types correspond exactly to strong
normalization, we only have to show that a term t is typable exactly when its
encoding is typable, for two appropriate quantitative type systems.

For λES, we will use the following system [9]:

Definition 5 (The Type System ∩ES).

(var)
x : [σ] ` x : σ

Γ ;x :M ` t : σ
(abs)

Γ ` λx.M :M→ σ

(Γi `M : σi)i∈I I 6= []
(many)

∧i∈IΓi `M : [σi]i∈I

Γ `M :M→ σ ∆ ` N : #(M)
(app)

Γ ∧∆ `MN : σ

Γ ;x :M `M : σ ∆ ` N : #(M)
(sub)

Γ ∧∆ ` [N/x]M : σ

Theorem 4. Let M ∈ TES. Then M is typable in ∩ES iff M ∈ SN (dB, s).

A simple induction on the type derivation shows that the encoding is sound.

Lemma 16. Let t ∈ TJ . Then Γ
∩J t : σ =⇒ Γ
∩ES t∗ : σ.

We show completeness by a detour through the encoding of TES to TJ :

Definition 6 (Translation from TES to TJ).

x◦ := x (MN)
◦

:= M◦(N◦, x.x)
(λx.M)

◦
:= λx.M◦ ([N/x]M)

◦
:= I(N◦, x.M◦)

Quantitative Distant Reduction for Generalized Applications 297

The two following lemmas, shown by induction on the type derivations, give
in particular that t∗ typable implies t typable.

Lemma 17. Let M ∈ TES. Then Γ
∩ES M : σ =⇒ Γ
∩J M◦ : σ.

Lemma 18. Let t ∈ TJ . Then Γ
∩J t∗◦ : σ =⇒ Γ
∩J t : σ.

Putting all together, we get this equivalence:

Corollary 1. Let t ∈ TJ . Then Γ
∩J t : σ ⇐⇒ Γ
∩ES t∗ : σ.

This corollary, together with the two characterization theorems 3 and 4,
provides the main result of this section:

Theorem 5 (Faithfulness). Let t ∈ TJ . Then t ∈ SN (dβ) ⇐⇒ t∗ ∈
SN (dB, s).

6 Equivalent Notions of Strong Normalization

In the previous section, we related strong dβ-normalization with strong normal-
ization of ES. In this section we will compare the various concepts of strong
normalization that are induced on TJ by β, dβ, (β, p2) and (β, π). This compar-
ison will make use of several results obtained in the previous sections, and will
obtain new results about the original calculus ΛJ .

6.1 β-Normalization Is Not Enough

We discussed in Sec. 2.2 about the unblocking property of π and p2. From the
point of view of normalization, this means that TJ [β] has premature normal
forms and that SN (β) (SN (dβ). To illustrate this purpose we give an exam-
ple of a TJ -term which normalizes when only using rule β, but diverges when
adding permutation rules or distance. We write Ω the term δ◦(δ◦, x.x), where
δ◦ = λy.y(y, z.z), so that Ω →β Ω. Now, let us take t := w(u,w′.δ◦)(δ◦, x.x).
Although this term is normal in TJ [β], the second δ◦ is actually an argument for
the first one, as we can see with a π permutation:

t→π w(u,w′.δ◦(δ◦, x.x)) = w(u,w′.Ω) := t′

Thus t→π t
′ →β t

′ which implies t /∈ SN (β, π). We can also unblock the redex
in t by a p2-permutation moving the inner λx up:

t→p2 (λy.w(u,w′.y(y, z.z)))(δ◦, x.x)→β t
′

Thus t →p2→β t
′ →β t

′ and thus t /∈ SN (β, p2). We get the same thing in a
unique dβ-step: t→dβ t

′.
In all the three cases, β-strong normalization is not preserved by the permu-

tation rules, as there is a term t ∈ SN (β) such that t /∈ SN (β, π), t /∈ SN (β, p2)
and t /∈ SN (dβ).

298 J. Esṕırito Santo, D. Kesner, L. Peyrot

6.2 Comparison with β + p2

We now formalize the fact that our calculus TJ [dβ] is a version with distance
of TJ [β, p2], so that they are equivalent from a normalization point of view. For
this, we will establish the equivalence between strong normalization w.r.t. dβ
and (β, p2), through a long chain of equivalences. One of them is Thm. 5, that
we have proved in the previous section; the other is a result about σ-rules in the
λ-calculus – which is why we have to go through the λ-calculus again.

Definition 7 (Translation from TES to Tλ).

x] := x (λx.M)] := λx.M] (MN)] := M]N] [N/x]M] := (λx.M])N]

Lemma 19. Let M ∈ TES. Then M ∈ SN (dB, s) =⇒ M] ∈ SN (β).

Proof. For typability in the λ-calculus, we use the type system S ′λ with choice
operators in [9], which we rename here ∩S. It can be seen as a restriction of our
system ∩ES to λ-terms. Suppose M ∈ SN (dB, s). By Thm. 4 M is typable in
∩ES, and it is straightforward to show that M] is typable in ∩S. Moreover, M]

typable implies that M] ∈ SN (β) [9], which is what we want.

For t ∈ TJ , let t� := t∗]. So, we are just composing the alternative encoding
of generalized application into ES with the map into λ-calculus just introduced.
The λ-term t� may be given by recursion on t as follows:

x� = x (λx.t)� = λx.t� t(u, y.r)� = (λyr.(λyl.{ylyr/y}r�)t�)u�

Lemma 20. t� ∈ SN (β, σ2) =⇒ t ∈ SN (β, p2).

Proof. Because (·)� produces a strict simulation from TJ to Tλ. More precisely:
(i) if t1 →β t2 then t�1 →+

β t
�
2 ; (ii) if t1 →p2 t2 then t�1 →2

σ2
t�2 .

Theorem 6. Let t ∈ TJ . Then t ∈ SN (β, p2) iff t ∈ SN (dβ).

Proof. We prove that the following conditions are equivalent: 1) t ∈ SN (β, p2).
2) t ∈ SN (dβ). 3) t∗ ∈ SN (dB, s). 4) t� ∈ SN (β). 5) t� ∈ SN (β, σ2). Now,
1) =⇒ 2) is because →dβ⊂→+

β,p2
. 2) =⇒ 3) is by Thm. 5. 3) =⇒ 4) is by

Lem. 19. 4) =⇒ 5) is showed in [13]. 5) =⇒ 1) is by Lem. 20.

6.3 Comparison with β + π

We now prove the equivalence between strong normalization for dβ and for (β, π).
One of the implications already follows from the properties of the typing system.

Lemma 21. Let t ∈ TJ . If t ∈ SN (dβ) then t ∈ SN (β, π).

Proof. Follows from the completeness of the typing system (Lem. 13) and sound-
ness of ∩J for (β, π) (Lem. 15).

Quantitative Distant Reduction for Generalized Applications 299

The proof of the other implication requires more work, organized in 4 parts: 1)
A remark about ES. 2) A remark about translations of ES into the ΛJ-calculus.
3) Two new properties of strong normalization for (β, π) in ΛJ . 4) Preservation
of strong (β, π)-normalization by a certain map from the set TJ into itself.

The remark about explicit substitutions is this:

Lemma 22. For all M ∈ TES, M ∈ SN (dB, s) iff M ∈ SN (B, s).

The translation ◦ in Def. 6 induces a simulation of each s-reduction step
on TES into a β-reduction step on TJ , but cannot simulate the creation of an
ES effected by rule B. A solution is to refine the translation ◦ for applications,
yielding the following alternative translation:

x• := x (λx.M)
•

:= λx.M•

(MN)
•

:= I(N•, y.M•(y, z.z)) [N/x]M
•

:= I(N•, x.M•)

Since the clause for ES is not changed, simulation of each s-reduction step
by a β-reduction step holds as before. The improvement lies in the simulation
of each B-reduction step:

((λx.M)N)
•

= I(N•, y.(λx.M•)(y, z.z))→β I(N•, y.{y/x}M•) =α ([N/x]M)
•

This strict simulation gives immediately:

Lemma 23. For all M ∈ TES, if M• ∈ SN (β) then M ∈ SN (B, s).

We now prove two properties of strong normalization for (β, π) in ΛJ . Fol-
lowing [10], SN (β, π) admits an inductive characterization ISN (β, π), which
uses the following inductive generation for TJ -terms:

t, u, r ::= xS | λx.t | (λx.t)SS S ::= (u, y.r)

Hence S stands for a generalized argument, while S denotes a possibly empty
list of S’s. The definition of ISN (β, π) is given below. Notice that at most one
rule applies to a given term, so the rules are deterministic (and thus invertible).

(var)
x ∈ ISN (β, π)

u, r ∈ ISN (β, π)
(hvar)

x(u, z.r) ∈ ISN (β, π)

t ∈ ISN (β, π)
(lambda)

λx.t ∈ ISN (β, π)

x(u, y.rS)S ∈ ISN (β, π)
(pi)

x(u, y.r)SS ∈ ISN (β, π)

{{u/x}t/y}rS ∈ ISN (β, π) t, u ∈ ISN (β, π)
(beta)

(λx.t)(u, y.r)S ∈ ISN (β, π)

A preliminary fact is the following:

Lemma 24. SN (β, π) is closed under prefixing of arbitrary π-reduction steps:

t→π t
′ and t′ ∈ SN (β, π)

t ∈ SN (β, π)

ırito Santo, D. Kesner, L. Peyrot300 J. Esṕ

Given that SN (β, π) = ISN (β, π), the “rule” in Lem. 24, when written with
ISN (β, π), is admissible for the predicate ISN (β, π). Now, consider:

u, r ∈ ISN (β, π)
(I)

{y(u, z.z)/x}r ∈ ISN (β, π)

{{{u/y}t/z}r/x}r ∈ ISN (β, π) t, u ∈ ISN (β, π) x /∈ fv(t, u, r)
(II)

{(λy.t)(u, z.r)/x}r ∈ ISN (β, π)

Notice rule II generalizes rule (beta): just take r = xS, with x /∈ S.
The two new properties of strong normalization for (β, π) in ΛJ are contained

in the following Lemma.

Lemma 25. Rules I and II are admissible rules for the predicate ISN (β, π).

We now move to the fourth part of the ongoing reasoning. Consider the map
from TJ to itself obtained by composing (·)∗ : TJ → TES with (·)• : TES → TJ .
Let us write t† := t∗•. A recursive definition is also possible, as follows:

x† = x λx.t† = λx.t† t(u, y.v)† = I(t†, y1.I(u†, y2.{y1(y2, z.z)/y}v†))

Lemma 26. If t ∈ SN (β, π) then t† ∈ SN (β, π).

Proof. Heavy use is made of Lem. 24 and Lem. 25.

All is in place to obtain the desired result:

Theorem 7. Let t ∈ TJ . t ∈ SN (dβ) iff t ∈ SN (β, π).

Proof. The implication from left to right is Lem. 21. For the converse, suppose
t ∈ SN (β, π). By Lem. 26, t† ∈ SN (β, π). Trivially, t† ∈ SN (β). Since t† = t∗•,
Lem. 23 gives t∗ ∈ SN (B, s). By Lem. 22, t∗ ∈ SN (dB, s). By an equivalence in
the proof of Thm. 6, t ∈ SN (dβ).

6.4 Consequences for ΛJ

The comparison with λJ gives new results about the original ΛJ (a quantitative
typing system characterizing strong normalization, and a faithful translation into
ES) as immediate consequences of Thms. 3, 5, and 7.

Corollary 2. Let t ∈ TJ . (1) t ∈ SN (β, π) iff t is ∩J-typable. (2) t ∈ SN (β, π)
iff t∗ ∈ SN (dB, s).

Beyond strong normalization, ΛJ gains a new normalizing strategy, which
reuses the notion of weak-head normal form introduced in Sec. 3.2. We take the
definitions of neutral terms, answer and weak-head context W given there for λJ ,
in order to define a new weak-head strategy and a new predicate ISN for ΛJ .
The strategy is defined as the closure under W of rule β and of the particular
case of rule π where the redex has the form n(u, x.a)S5.

5 Notice how a redex has the two possible forms (λx.t)S or n(u, x.a)S, that can be
written as aS, that is, the form Dn〈λx.t〉S of a weak-head redex in λJ

Quantitative Distant Reduction for Generalized Applications 301

Definition 8. Predicate ISN is defined by the rules (snvar), (snapp), (snabs)
in Def. 3, together with the following two rules (which replace rule (snbeta)):

W〈n(u, y.aS)〉 ∈ ISN
(snredex1)

W〈n(u, y.a)S〉 ∈ ISN

W〈{{u/x}t/y}r〉, t, u ∈ ISN
(snredex2)

W〈(λx.t)(u, y.r)〉 ∈ ISN

The corresponding normalization strategy is organized as usual: an initial phase
obtains a weak-head normal form, whose components are then reduced by in-
ternal reduction. Is this new strategy any good? The last theorem of the paper
answers positively:

Theorem 8. Let t ∈ TJ . t ∈ ISN iff t ∈ ISN (β, π).

7 Conclusion

Contributions. This paper presents and studies several properties of the call-
by-name λJ-calculus, a formalism implementing an appropriate notion of distant
reduction to unblock the β-redexes arising in generalized application notation.

Strong normalization of simple typed terms was shown by translating the λJ
into the λ-calculus. A full characterization of strong normalization was developed
by means of a quantitative type system, where the length of dβ-reduction to
normal form is bound by the size of the type derivation of the starting term. An
inductive definition of dβ-strong normalization was defined and proved correct
in order to achieve this characterization. It was also shown how the traditional
permutative rule π is rejected by the quantitative system, thus emphasizing the
choice of dβ-reduction for a quantitative generalized application framework.

We have also defined a faithful translation from the λJ-calculus into ES.
The translation preserves strong normalization, in contrast to the traditional
translation to ES e.g. in [4]. Last but not least, we related strong normalization
of λJ with that of other calculi, including in particular the original ΛJ . New
results for the latter were found by means of the techniques developed for λJ . In
particular, a quantitative characterization of strong normalization was developed
for ΛJ , where the bound of reduction given by the size of type derivations only
holds for β-steps (and not for π-steps).

Future work. Regarding call-by-name for generalized applications, this pa-
per opens new questions. We studied a new calculus λJ , proposed as an al-
ternative to the original ΛJ , but we also mentioned some possible variants in
Sec. 2.2, notably a calculus based on rule (1), and β + p2 (used as a technical
tool in Sec. 6). The first option seems to have the flavor of ΛJ whereas the
β+ p2 option seems to have the flavor of λJ . It remains to be seen what are the
advantages and drawbacks of the latter one with respect to λJ .

Regarding call-by-value, we plan to develop the quantitative semantics in
the presence of generalized applications, starting from the calculus proposed in
[5]. Further unification between call-by-name and call-by-value with the help
of generalized applications could be considered in the setting of the polarized
lambda-calculus [4].

ırito Santo, D. Kesner, L. Peyrot302 J. Esṕ

References

1. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: Ti-
wari, A. (ed.) 23rd International Conference on Rewriting Techniques and Applica-
tions (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan. LIPIcs, vol. 15,
pp. 6–21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

2. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H. (eds.)
Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual
Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6247, pp. 381–395. Springer (2010)

3. Esṕırito Santo, J., Frade, M.J., Pinto, L.: Structural proof theory as rewriting. In:
Pfenning, F. (ed.) Term Rewriting and Applications. pp. 197–211. Lecture Notes
in Computer Science, Springer (2006)

4. Esṕırito Santo, J.: Delayed substitutions. In: Lecture Notes in Computer Science,
pp. 169–183. Springer Berlin Heidelberg (2007)

5. Esṕırito Santo, J.: The call-by-value lambda-calculus with generalized applications.
In: CSL. LIPIcs, vol. 152, pp. 35:1–35:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2020)

6. Esṕırito Santo, J., Kesner, D., Peyrot, L.: A faithful and quantitative notion of
distant reduction for generalized applications. CoRR abs/2201.04156 (2022)

7. Esṕırito Santo, J., Pinto, L.: Permutative conversions in intuitionistic multiary
sequent calculi with cuts. In: Hofmann, M. (ed.) Typed Lambda Calculi and Ap-
plications. pp. 286–300. Lecture Notes in Computer Science, Springer (2003)

8. Joachimski, F., Matthes, R.: Standardization and confluence for a lambda calculus
with generalized applications. In: Rewriting Techniques and Applications, pp. 141–
155. Springer Berlin Heidelberg (2000)

9. Kesner, D., Vial, P.: Non-idempotent types for classical calculi in natural deduction
style. Log. Methods Comput. Sci. 16(1) (2020)

10. Matthes, R.: Characterizing strongly normalizing terms of a calculus with gener-
alized applications via intersection types. In: Rolim, J.D.P., Broder, A.Z., Corra-
dini, A., Gorrieri, R., Heckel, R., Hromkovic, J., Vaccaro, U., Wells, J.B. (eds.)
ICALP Workshops 2000, Proceedings of the Satelite Workshops of the 27th Inter-
national Colloquium on Automata, Languages and Programming, Geneva, Switzer-
land, July 9-15, 2000. pp. 339–354. Carleton Scientific, Waterloo, Ontario, Canada
(2000)

11. von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Log.
40(7), 541–567 (2001)

12. van Raamsdonk, F.: Confluence and normalisation for higher-order rewriting.
Ph.D. thesis, Vrije Universiteit Amsterdam (May 1996)

13. Regnier, L.: Une équivalence sur les lambda-termes. Theor. Comput. Sci. 126(2),
281–292 (1994)

Quantitative Distant Reduction for Generalized Applications 303

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

ırito Santo, D. Kesner, L. Peyrot304 J. Esṕ

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

http://creativecommons.org/licenses/by/4.0/

Modal Logics and Local Quantifiers:
A Zoo in the Elementary Hierarchy

Raul Fervari1 and Alessio Mansutti2(�)

1 CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
rfervari@unc.edu.ar

2 Department of Computer Science, University of Oxford, Oxford, UK
alessio.mansutti@cs.ox.ac.uk

Abstract. We study a family of modal logics interpreted on tree-like
structures, and featuring local quantifiers ∃kp that bind the proposition p
to worlds that are accessible from the current one in at most k steps.
We consider a first-order and a second-order semantics for the quanti-
fiers, which enables us to relate several well-known formalisms, such as
hybrid logics, S5Q and graded modal logic. To better stress these con-
nections, we explore fragments of our logics, called herein round-bounded
fragments. Depending on whether first or second-order semantics is con-
sidered, these fragments populate the hierarchy 2NExp ⊂ 3NExp ⊂ · · ·
or the hierarchy 2AExppol ⊂ 3AExppol ⊂ · · ·, respectively. For formulae
up-to modal depth k, the complexity improves by one exponential.

1 Introduction

From a traditional perspective, modal logics [10] are formalisms to reason about
different modes of truth. However, another view consists of seeing these logics
as computationally well-behaved fragments of first-order logic and second-order
logic (see e.g., [1] for a discussion). Some examples of well-known modal log-
ics with a good balance between expressivity and computational complexity
are graded modal logic (GML) [5,28], whose satisfiability problem is PSpace-
complete; and the temporal logics LTL, CTL and CTL∗ whose satisfiability prob-
lems are complete for PSpace, Exp and 2Exp, respectively [31,19,25].

A family of logics that elude this nice computational picture is that made
of modal logics enriched with first-order or second-order propositional quanti-
fiers ∃p, which update the set of worlds of a Kripke structure that satisfy the
propositional symbol p. The literature of modal logics featuring quantification
over propositional symbols can be traced back to [12,26,18]. All these works
show that, in spite of the simplicity of the principle, propositional quantifica-
tion leads to undecidability very quickly. One of the few exceptions is the logic
S5Q, i.e. S5 enriched with second-order propositional quantifiers, which enjoys
an exponential-size small model property, and is thus decidable [22,18]. Here,
the success in finding a well-behaved framework for propositional quantification
is due to the fact that S5 has a very restricted class of models. In modern lit-
erature, the family of hybrid logics [2] is one of the most relevant approaches

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 305–324, 2022.
https://doi.org/10.1007/978-3-030-99253-8_16

http://orcid.org/0000-0003-0360-0725
http://orcid.org/0000-0002-1104-7299
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_16&domain=pdf

offering first-order propositional quantification. Most hybrid logics provide oper-
ators ↓i that binds the current world to the proposition i, and @i that allows
to jump to the world bound to i. This form of quantification is very expres-
sive, and leads to undecidability over standard Kripke structures [3]. To regain
decidability, one can restrict the logic to syntactical fragments that avoid the
quantification patters �↓ and ♦↓♦, or restrict the interpretation to models in
which each world has at most two successors [14]. Again, one can also simply
consider S5 models: the hybrid logic with ↓ and @ on S5 is known to admit an
NExp-complete satisfiability problem [30].

Recent works shed new lights on the role of propositional quantifiers. From
a model theoretical perspective, a revision about the different forms of propo-
sitional quantification has been put forward in [9]. Novel algebraic insights on
S5 with propositional quantification have been discovered in [17]. From a com-
putational perspective, [6] shows that second-order propositional quantification
is enough to obtain Tower-complete (hence, non-elementary decidable, [29])
logics on tree-like structures. This last result is of interest, as the second-order
logic QCTLtX considered in [6] subsumes several other modal logics with forms of
quantification “in disguise”, such as the aforementioned GML, as well as modal
separation logics [16], ambient logics [13] and team logics [21]. However, when
translated into QCTLtX, the good computational properties of these logics are
lost, and the Tower-hardness of QCTLtX prevents us to grasp the real capabil-
ities of their (often restricted) form of propositional quantifications.

Contributions. The overall message of [6] is that the computational power of
propositional quantification in the context of modal logic deserves to be better
understood. Driven by this message, we investigate from a unified perspective a
family of logics interpreted on tree-like models, featuring a very intuitive form
of propositional quantification: the local quantifier ∃kp , with k ≥ 1 integer,
that binds the propositional symbol p to world(s) occurring within distance k
from the current point of evaluation. More precisely, we look at two families
of modal logics: the family ML(∃1FO),ML(∃2FO), · · · , where ML(∃kFO) extends the
basic modal logic ML with the first-order local quantifier ∃kp binding p to ex-
actly one world occurring within distance k of the current world; and the fam-
ily ML(∃1SO),ML(∃2SO), · · · , where ML(∃kSO) extends ML with the second-order local
quantifier ∃kp binding p to a set of worlds occurring within distance k.

As previously mentioned, in introducing these logics our aim is to better
understand the similarities and differences between the various modal logics fea-
turing propositional quantification, especially when it comes to their complexity.
This analysis cannot be done using Tower-complete logics like QCTLtX, as finer
complexity classes are required. In this sense, it is worth to notice that our
framework features the logic ML(∃∞SO), whose quantifier ∃∞p binds p to arbitrary
worlds reachable from the current one. This is exactly the logic QCTLtX. Because
of this connection and of similarities with other frameworks, e.g. [7], we argue
that even if we restrict ourselves to quantifiers ∃k with small k, the complexity
does not improve. In fact, ML(∃2FO) is already Tower-complete, although we
defer this result to an extended version of the paper, due to the lack of space.

306 R. Fervari and A. Mansutti

Consequently, to pursue our goal of a fine-grained analysis of the computational
power of propositional quantification in modal logic, in this paper we focus on
a syntactical restriction for ML(∃kFO) and ML(∃kSO) where the local quantifiers
are round-bounded (Sec. 2). Roughly speaking, under the round-bounded con-
dition, ML(∃kFO) and ML(∃kSO) formulae can be split into parts having k nested
modalities. Quantifiers belonging to one part of the formula do not interact with
quantifiers from other parts of the formula. The following results are established.

Theorem 1. The sat. problem for round-bounded ML(∃kFO) is (k+1)NExp-com-
plete. It is kNExp-complete for formulae of ML(∃kFO) of modal depth k.

Theorem 2. The sat. problem for round-bounded ML(∃kSO) is (k+1)AExppol-
complete. It is kAExppol-complete for formulae of ML(∃kSO) of modal depth k.

Here and along the paper, given natural numbers k, n ≥ 1, we write t for the
tetration function inductively defined as t(0, n) def= n and t(k, n) = 2t(k−1,n).
Intuitively, t(k, n) defines a tower of exponentials of height k. Then, kNExp
is the class of all problems decidable by a non-deterministic Turing machine
running in time t(k, f(n)), for some polynomial f , on each input of length n;
whereas kAExppol is the class of all problems decidable with an alternating
Turing machine [15] in time t(k, f(n)) and performing at most g(n) alterna-
tions, for some polynomials f, g, on each input of length n. For all k ≥ 1,
kNExp ⊆ kAExppol ⊆ Tower, as we recall that Tower is the class of all
problems decidable with a Turing machine running in time t(g(n), f(n)) for
some polynomial f and elementary function g, on each input of length n [29].
The lower bounds of Thms. 1 and 2 are established by reduction from suitable
tiling problems (Sec. 3). The upper bounds are established by designing a quanti-
fier elimination procedure that yields a (k + 1)ExpSpace small-model property
for round-bounded ML(∃kSO), and a kExpSpace small-model property for the set
of formulae of ML(∃kSO) of modal depth k (Sec. 4). The round-bounded condition
does not change the set of formulae of ML(∃1FO) and ML(∃1SO), and thus, as a
corollary, we characterise the complexity of these logics:

Corollary 1. (I) The sat. problem for ML(∃1FO) is 2NExp-complete.
(II) The sat. problem for ML(∃1SO) is 2AExppol-complete.

As promised, our framework yields a refined analysis on the power of proposi-
tional quantification in modal logic, which we compare to previous known results
in Sec. 2. Quite surprisingly, we show that, on tree-like models, modal logic en-
riched with propositional quantifiers is as expressive as graded modal logic. More-
over, we establish that S5Q is AExppol-complete (refining the previous results
from [22,18]), and that hybrid logic with ↓ and @ on trees is Tower-complete.

2 Preliminaries

The symbol N (resp. N+) denotes the set of natural numbers including (resp.
excluding) zero, N denotes the set N ∪ {∞}, where n < ∞, ∞ + n = ∞ and
n mod ∞ = n for all n ∈ N, and N+

def= N \ {0}. We write |S| ∈ N for the size of
a set S. Finally, let AP = {p, q, r, . . . } be a countable set of atomic propositions.

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 307

Kripke structures. A Kripke structure is a triple K = (W, R,V) where W is
a non-empty set of worlds, V : AP → 2W is a valuation, and R ⊆ W × W
is a binary accessibility relation. A Kripke-style forest is a Kripke structure
whose accessibility relation R is such that its inverse R−1 is functional and
acyclic. In particular, the graph described by K is a collection of disjoint trees,
where R encodes the child relation. We write R(w) for the set of children of w,
i.e. {w′ ∈ W : (w,w′) ∈ R}. For i ∈ N, Ri is the i-th composition of R: R0 is the
identity map onW, and Ri+1 def= {(w,w′) ∈ W×W : (w,w′′) ∈ Ri and (w′′, w′) ∈
R, for some w′′ ∈ W}. For n,m ∈ N, R[n,m] def=

⋃m
j=nR

j , and R∗ def= R[0,∞] is the
Kleene closure of R. For W ′ ⊆ W , V[p ← W ′] is the valuation obtained from
V by updating to W ′ the set assigned to p ∈ AP. A pointed forest (K, w) is a
Kripke-style finite forest K together with one of its worlds w.

Modal logic with local quantifiers. For k ∈ N+ written in unary, we introduce the
modal logic ML(∃k), whose formulae ϕ, ψ, χ, etc., are from the grammar below:

ϕ,ψ := > | p | ϕ ∧ ψ | ¬ϕ | ♦ϕ | ∃kpϕ, where p ∈ AP.

We call ∃kp a local (existential) quantifier. We are interested in two interpre-
tations for the logic ML(∃k), one where the local quantifier ∃kp performs a
first-order quantification, and one where it performs a second-order one. For
simplicity, ML(∃kFO) (resp. ML(∃kSO)) stands for ML(∃k) interpreted under first-
order (resp. second-order) semantics. The basic modal logic ML is obtained by
removing the constructor ∃kpϕ from the grammar.

Let (K, w) be a pointed forest, where K = (W, R,V). For formulae of ML(∃kFO),
the satisfaction relation |= is defined as follows (Boolean cases are omitted):

K, w |= p ⇔ w ∈ V(p); K, w |= ♦ϕ ⇔ there is w′ ∈ R(w) s.t. K, w′ |= ϕ;

K, w |= ∃kpϕ⇔ there is w′ ∈ R[0,k](w) such that (W, R,V[p← {w′}]), w |= ϕ.

An atomic proposition p is said to be a nominal for (K, w) whenever |V(p)| = 1.
Additionally, p is i-local whenever V(p) ⊆ Ri(w). In particular, the first-order
quantification ∃kpϕ leads to ϕ being evaluated in a pointed forest where p is
an i-local nominal for some i ∈ [0, k]. Given a nominal p, we call w ∈ V(p) the
world corresponding to p, and often denote it by wp.

For formulae of the second-order logic ML(∃kSO), the interpretation of the ML
fragment remains as for ML(∃kFO), whereas we reinterpret the local quantifier as:

K, w |= ∃kpϕ⇔ there is a set W ′ ⊆ R[0,k](w) s.t. (W, R,V[p←W ′]), w |= ϕ.

The contradiction ⊥ and connectives ∨, ⇒ and ⇔ are defined as usual. Below,
let ϕ and ψ be two formulae of ML(∃k). The local universal quantifier ∀kpϕ
and the modality �ϕ are defined as ¬∃kp¬ϕ and ¬♦¬ϕ, respectively. We de-
fine ♦0ϕ def= ϕ, and given i ∈ N, ♦i+1ϕ def= ♦i♦ϕ. Similarly, �iϕ def= ¬♦i¬ϕ. We
write @i

pϕ for ♦i(p∧ϕ). If p is a nominal, the formula @i
pϕ states that p is i-local,

and that its corresponding world satisfies ϕ. We define |0ϕ def= ϕ and �0ϕ def= ϕ,
and given i ∈ N, |i+1 ϕ def= ϕ ∨ ♦|i ϕ and �i+1ϕ def= ϕ ∧ � �i ϕ. We use the
operator precedence {¬,♦,�, ∃k, ∀k,@i

p} < {∧,∨} < {⇒,⇔}, and sometimes

308 R. Fervari and A. Mansutti

write “:” after a local quantifier with the intuitive meaning that the formula
on the right of “:” should be enclosed in brackets, e.g. ∃2p : ϕ ∧ ψ abbreviates
∃2p (ϕ∧ψ). Given i ∈ N, we write ϕ[ψ ←i χ] for the formula obtained from ϕ by
simultaneously substituting with χ each occurrence of the formula ψ appearing
under the scope of exactly i nested modalities.

The length of ϕ, denoted with |ϕ|, is the number of symbols needed to repre-
sent ϕ. The modal depth md(ϕ) of ϕ is the maximal number of nested modalities
occurring in ϕ. We write bp(ϕ) for the set of bound propositions of ϕ, i.e. propo-
sitions p that occur in a quantifier ∃kp inside ϕ. We say that ϕ is well-quantified
whenever each subformula ∃kpψ of ϕ quantifies on a different p ∈ AP, and every
occurrence of p in ψ appears under the scope of at most k modalities. One can
translate every formula into a well-quantified one at no cost: atomic proposi-
tions can be renamed, and occurrences of a quantified atomic proposition that
are under the scope of more than k modalities can be replaced with ⊥.

We write ϕ ≡FO ψ (resp. ϕ ≡SO ψ) whenever ϕ and ψ are equivalent under
their first-order (resp. second-order) semantics, i.e. they are satisfied by the same
pointed forests. When clear from the context or true under both semantics, we
drop the subscripts and write ϕ ≡ ψ. Notice that ∃kpϕ ≡ ∃k+1p (ϕ ∧�k+1¬p),
and thus ML(∃k) is a syntactical fragment of ML(∃k+1), and it is able to express
all the local quantifiers ∃1p , . . . , ∃kp .

Round-bounded fragment. As discussed in Sec. 1, in this paper we focus on a
syntactical restriction for ML(∃k) where the local quantifiers are round-bounded.
The round-bounded formulae of ML(∃k) are those generated from the symbol ϕk0
of the grammar below (j ∈ N):

ϕkj , ψ
k
j := > | p | ϕkj ∧ψkj | ¬ϕkj | ♦ϕkj+1 | ∃k−(jmod k)pϕkj , where p ∈ AP.

In a round-bounded formula of ML(∃k), quantifiers appearing under the scope
of j modalities are restricted to ∃k−(j mod k), e.g. ∃3p♦∃2q ♦∃1r♦∃3pϕ is a
round-bounded formula of ML(∃3), provided that ϕ is also in this fragment,
whereas ∃3p♦∃3q ϕ is not round-bounded. The round-bounded condition does
not change the set of formulae of ML(∃1) and ML(∃∞). Besides, every formula of
ML(∃∞) of modal depth k is equivalent to a round-bounded formula of ML(∃k),
of similar size, since given a formula ϕ of ML(∃∞), we have ∃∞pϕ ≡ ∃md(ϕ)pϕ.

Our framework of local quantifiers enables us to derive connections with other
modal logics featuring some form of quantification, which we now briefly discuss.

Graded modal logic. A logic that has been shown related to different forms of
quantification is the graded modal logic GML [5], that extends ML with modalities
♦≥` (` ∈ N), with semantics: K, w |= ♦≥`ϕ ⇔ |{w′ ∈ R(w) | K, w′ |= ϕ}| ≥ `.
GML has a tree model property, i.e., each of its satisfiable formulae is satisfied
by a pointed forest. Then, by syntactically replacing each ♦≥`ϕ occurring in

a GML formula by ∃1x1, . . . , x` : (
∧`
i=0

∧`
j=i+1 @1

xi
¬xj) ∧�((

∨`
i=0 xi)⇒ ϕ), one

shows that GML embeds in ML(∃1FO). At this point, it is worth noting that,
for all k ∈ N+, ML(∃kFO) can be embedded into ML(∃kSO) by replacing, in a well-
quantified formula of ML(∃kFO), each occurrence of ∃kpϕ with the ML(∃kSO) formula

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 309

∃kp : ϕ∧uniqk(p), where uniqk(p) def= |kp∧∀kq : |k(p∧ q)⇒ �k(p⇒ q) states
that there is at most one world satisfying p that is reachable from the current one
in at most k steps. Hence, ML(∃kSO) captures GML, and in fact the converse also
holds, as we discover when proving Thm. 2. The corollary below is established.

Corollary 2. For k ∈ N+, ML(∃kFO), ML(∃kSO) and GML are equally expressive.

This result is surprising, as it implies that QCTLtX from [6] is as expressive as
GML, and that in the context of modal logics, second-order propositional quan-
tifiers do not yield any additional expressive power compared to first-order ones.

Connections with S5Q. The sat. problem of S5Q [18,22] is equireducible to the
sat. problem for formulae of ML(∃1SO) of modal depth 1. Briefly, any satisfiable
formula of S5Q is satisfied by a Kripke structure (W, R,V) where R =W ×W ,
and S5Q enriches ML with quantifiers ∃p which, by virtue of the relation R,
are essentially the quantifiers ∃1p from ML(∃1SO). We can simulate the models
of S5Q by using a pointed forest (K, w) with accessibility relation R′ such that
R′(w) = W. The current world of the S5Q model is simulated with a 1-local
nominal x for (K, w). Then, the translation τ from S5Q to ML(∃1SO) is simple:
τ(♦ϕ) = ∃1x : ♦x ∧ uniq1(x) ∧ τ(ϕ), binding the nominal x to a new world;
τ(p) = @1

xp, and otherwise τ is homomorphic. A similar translation can be given
from formulae of ML(∃1SO) with modal depth 1 to S5Q. Following Thm. 2, this
allows us to characterise the complexity of S5Q left open in [18].

Corollary 3. The sat. problem for S5Q is AExppol-complete.

Connections with hybrid logics. Hybrid logics [3] are among the most studied
modal logics featuring first-order propositional quantification. Given a set of
nominals NOM ⊆ AP, the hybrid logic HL(↓,@) extends ML with the binder ↓i
and the satisfaction operator @i (where i ∈ NOM), having the semantics below:

(W, R,V), w |= ↓i.ϕ ⇔ (W, R,V[i← {w}]), w |= ϕ;
(W, R,V), w |= @iϕ ⇔ (W, R,V), wi |= ϕ, where V(i) = {wi}.

ML(∃kFO) embeds in HL(↓,@) by replacing with ↓i.|k↓p.@iϕ each occurrence
of ∃kpϕ appearing in an ML(∃kFO) formula. This translation is (only) exponential
in k, and so by uniform reduction for all k ∈ N+, and by Rabin’s theorem [27]
for the upper bound, Thm. 1 implies the following result.

Corollary 4. The sat. problem for HL(↓,@) on forests is Tower-complete.

3 Lower bounds for ML(∃k
FO) and ML(∃k

SO)

In this section, we establish the lower bounds of Thms. 1 and 2, which follow by
reduction from the k-exp alternating multi-tiling problem. While we will intro-
duce this problem in due time, the main difficulty in establishing the reduction
is defining, for all k, n ∈ N+ given in unary, a formula type(k, n) that, whenever
satisfied by a pointed forest (K, w), forces w to have t(k, n) children, each of

310 R. Fervari and A. Mansutti

w

b

p2
p1
(3)

b

p2
¬p1
(2)

b

¬p2
p1
(1)

¬b

¬p2
¬p1
(0)

n2(w) = 14

(n1(.))

w′

. . . < <

b

(t(k, n)− 1)

b

(2)

¬b
(1)

b

(0)

. . . nk+1(w′) = (1 · · · 101)2

(nk(.))

type(k − 1, n) worlds

Fig. 1: Two worlds w and w′ satisfying type(1, 2) and type(k, n), respectively.

them encoding a different number in [0, t(k, n)− 1]. To establish Thms. 1 and 2,
it is essential that type(k, n) is of size polynomial in k and n, has modal depth
k, it is in ML(∃1FO) for k = 1, and is in round-bounded ML(∃k−1FO) for all k ≥ 2.
The formula type(k, n) is inspired by the homonymous formula defined in [6] to
show that QCTLtX is Tower-hard, and later adapted in [7] to modal separation
logics. With respect to both these works, our definition of type(k, n) poses two
serious challenges. First, [6,7] rely on second-order quantification, whereas we
only use first-order. Second, in [6,7] the formula type(k, n) is of size exponential
in k, whereas our formula is of polynomial size. To achieve both improvements,
we rely on a novel gadget that simulates binary addition with carry.

Numeric encoding. First of all, let us define how numbers are encoded by worlds
of a pointed forest, following the presentation of [6]. Fix n + 1 distinct atomic
propositions p1, . . . , pn, b, and consider a Kripke-style forest K = (W, R,V).
Given j ∈ [1, k] and w ∈ W , we write nj(w) for the number in [0, t(j, n) − 1]
encoded by w. For j = 1, we represent n1(w) ∈ [0, 2n − 1] by using the truth
values of the propositions p1, . . . , pn, where the proposition pi is responsible
for the i-th least significant bit of the number. That is, n1(w) def=

∑
{2i−1 :

i ∈ [1, n] and w ∈ V(pi)}. For j > 1, the number nj(w) is represented by the
binary encoding of the truth values of the atomic proposition b on the children
of w, where a child w′ ∈ R(w) with nj−1(w′) = i from [0, t(j − 1, n) − 1] is
responsible for the (i + 1)-th least significant bit of the number encoded by w.
Formally, nj(w) def=

∑
{2i : nj−1(w′) = i and w′ ∈ V(b), for some w′ ∈ R(w)}.

With respect to this encoding of numbers, the forthcoming formula type(k, n)
shall satisfy the specification given by the lemma below, which guarantees that
in a pointed forest (K, w) satisfying type(k, n), the numbers encoded by the
children of w span all over [0, t(k, n)− 1]. This is illustrated in Fig. 1.

Lemma 1. A pointed forest (K, w), with K = (W, R,V), satisfies type(k, n) iff
1. for all i ∈ [0, t(k, n)−1] there is exactly one world w′ ∈ R(w) s.t. nk(w′) = i;
2. if k > 1, then for every w′ ∈ R(w), K, w′ |= type(k − 1, n).

Addition with carry. In defining type(k, n), the main challenge lies in how to
express the condition (1) of Lemma 1. In [6,7], this boils down to the defini-
tion of formulae that express (in)equalities between the numbers encoded by
distinct w1, w2 ∈ R(w), e.g. nk(w1) < nk(w2) or nk(w1) = nk(w2) + 1. Unfor-
tunately, these formulae are tree-recursive on k, meaning that multiple (possi-
bly negated) occurrences of the inequalities for the case k − 1 are required to

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 311

Formula: Expected Semantics: Assumptions:

0j nj(w) = 0 The world w is the current world, which is assumed
to satisfy type(j, n). The world wp corresponds to
the i-local nominal p ∈ {x, y, z, c}, and is assumed
to satisfy type(k − i, n).

1j nj(w) = 1
Ej nj(w) = t(j, n)− 1

add i
k(x, y, z, c) +k−i+1(wx, wy, wz, wc)

Fig. 2: Auxiliary formulae used in the definition of type(k, n), where i = k = 1 or i < k.

define the inequalities for the case k. Overall, this induces an exponential blow-
up on |type(k, n)|. To avoid this blow-up, instead of relying on these inequali-
ties we consider a quaternary relation +k(w1, w2, w3, w4) that holds whenever
nk(w1)+nk(w2) = nk(w3) and nk(w4) represents the sequence of carries needed
to perform nk(w1)+nk(w2) in binary, on t(k−1, n) bits. For instance, for 4-bits
numbers n1(w1) = 3 = (0011)2, n1(w2) = 5 = (0101)2, n1(w3) = 8 = (1000)2
and n1(w4) = 14 = (1110)2, the tuple (w1, w2, w3, w4) is in +1, as

1 1 1 0
0 0 1 1 +
0 1 0 1
1 0 0 0

: w4 (sequence of carries of the sum)
: w1

: w2

: w3

corresponds to the table for the binary addition with carry of 3 + 5 = 8. By
looking at the elementary algorithm for addition, a direct characterisation of
+k is as follows. Let nk(w1) = (xm . . . x1)2, nk(w2) = (ym . . . y1)2, nk(w3) =
(zm . . . z1)2, nk(w4) = (cm . . . c1)2, where m = t(k − 1, n), and xi, yi, zi and ci
are the i-th least significant digits in the binary encoding of nk(w1), nk(w2),
nk(w3), nk(w4), respectively. Then, +k(w1, w2, w3, w4) holds if and only if

A. c1 = 0 and at most one among cm, xm and ym is 1,
B. for every i ∈ [2,m], ci = maj(xi−1, yi−1, ci−1),
C. for every i ∈ [1,m], zi = (xi ⊕ yi)⊕ ci,

(†)

where maj(ϕ,ψ, χ) def= (ϕ∧ψ)∨(ϕ∧χ)∨(ψ∧χ) and ϕ⊕ψ def= (ϕ∨ψ)∧¬(ϕ∧ψ) are
the standard Boolean functions majority and exclusive or, respectively. When it
comes to capturing +k with an ML(∃kFO) formula, the key property is that the
conditions (A), (B) and (C) can be checked with first-order quantification, by
going through the binary encodings of nk(w1),nk(w2),nk(w3) and nk(w4) bit by
bit, as one would do to check if an addition with carry was performed correctly.

A schema for type(k, n). We move to the definition of type(k, n). In view of
its specification given in Lemma 1, the formula is defined recursively on k. For
simplicity, we extend type(k, n) to k = 0, and define it as >. To express the
condition (1) of Lemma 1, we rely on the auxiliary formulae presented in Fig. 2,
which we later define. For k, n ∈ N+, we define type(k, n) as:

�type(k − 1, n) ∧ ♦0k ∧ ♦1k ∧ ♦Ek ∧
∀1x∀1y (♦y ∧@1

x¬y⇒ ∃1z∃1c : ♦c ∧@1
z¬0k ∧ (add1

k(x, z, y, c) ∨ add1
k(y, z, x, c))).

Whereas the first conjunct of type(k, n) clearly encodes the condition (2) of
Lemma 1, the remaining part of the formula forces the condition (1) by saying
that the current world w has three children encoding the numbers 0, 1 and

312 R. Fervari and A. Mansutti

t(k, n)− 1, respectively, and that for every two children wx, wy of w, if wx 6= wy

(subformula ♦y∧@1
x¬y) then there is a child wz of w such that nk(wz) 6= 0, and

nk(wx)+nk(wz) = nk(wy) or nk(wy)+nk(wz) = nk(wx). Hence, in combination
with ♦0k, ♦1k and ♦Ek, the last conjunct of type(k, n) not only states that
distinct children of w must encode different numbers, but also that every number
of [0, t(k, n)− 1] must be encoded by some child of w.

To effectively construct type(k, n), what is left is to define the formulae
in Fig. 2. Given how the numbers nk(.) are encoded, the definitions of 0k, 1k and
Ek are simple. For the case k = 1, we define 01

def=
∧n
j=1¬pj , 11

def= (p1 ∧
∧n
j=2¬pj)

and E1
def=
∧n
j=1pj . For k ≥ 2, we define instead: 0k

def= �¬b, 1k
def= �(b ⇒ 0k−1),

and Ek
def= �b. The main difficulty lies in how to define add ik, which requires a

recursive definition. Below, we consider three cases. First, we consider the base
case i = k = 1 and define add1

1 by only using the local quantifiers ∃1. After-
wards, we consider the case 1 ≤ i < k − 1 and define the formula add ik by using
local quantifiers ∃1, . . . , ∃k−1. This formula relies on the definition of add i+1

k ,
which we assume to be defined by inductive reasoning. Lastly, we consider the
only remaining case of i = k − 1, and define addk−1k by using quantifiers ∃k−1
and ∃1, and without relying on the definition of add1

1. This case is left for last
as it is somewhat more involved than the other two cases, and some ingenuity is
required to define addk−1k without relying on the local quantifiers ∃k. The ad-hoc
treatment of this case is however fundamental, as it leads to type(k, n) being a
round-bounded formula of the logic ML(∃k−1FO), for every k ≥ 2.

Case: i = k = 1. Recall that the numbers n1(.) are encoded using the truth
values of p1, . . . , pn ∈ AP. Then, add1

1 simply follows the constraints (†) of +1:

add1
1(x, y, z, c) def= @1

c¬p1 ∧
∧

q∈{x,y,c}
(
@1

qpn ⇒
∧

r∈{x,y,c}\{q}@
1
r¬pn

)
(A)

∧
∧n

i=2

(
@1

cpi ⇔ maj(@1
xpi−1,@

1
ypi−1,@

1
cpi−1)

)
(B)

∧
∧n

i=1

(
@1

zpi ⇔
(
(@1

xpi ⊕@1
ypi)⊕@1

cpi
))

(C)

Case: 1 ≤ i < k − 1. To define add ik, we assume by inductive reasoning that
the formula add i+1

k is correctly defined, following its specification in Fig. 2. We
specialise add i+1

k to define the two auxiliary formulae below:

eq i+1
k (x, y) def= ∃i+1z, c : ♦i+1c ∧@i+1

z 0k−i ∧ add i+1
k (y, z, x, c);

succi+1
k (x, y) def= ∃i+1z, c : ♦i+1c ∧@i+1

z 1k−i ∧ add i+1
k (y, z, x, c).

Given x and y be two (i+1)-local nominals for (K, w), with corresponding worlds
wx and wy, if K, w′ |= type(k − i, n) for some w′ ∈ Ri(w), then:

– K, w |= eq i+1
k (x, y) if and only if nk−i(wx) = nk−i(wy);

– K, w |= succi+1
k (x, y) if and only if nk−i(wx) = nk−i(wy) + 1.

Notice that the semantics of succi+1
k and eq i+1

k is given under the hypothesis
that a world in Ri(w) satisfies type(k − i, n). This extra hypothesis ensures
that the local quantifiers ∃i+1z and ∃i+1c used to define succi+1

k and eq i+1
k

quantify over a set of worlds encoding all the numbers in [0, t(k−(i+1), n)−1],

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 313

so that no possible addition with carry is missing. In defining add ik(x, y, z, c),
this hypothesis is clearly satisfied, as the worlds corresponding to the i-local
nominals x, y, z and c are assumed to satisfy type(k − i, n).

By relying on succi+1
k and eq i+1

k , we define add ik(x, y, z, c) again by following

the characterisation (†) of +k−i+1, as shown below (where X def= {x, y, c}):

∀i+1x, y, z, c, g : @i
x♦x ∧ @i

y♦y ∧ @i
z♦z ∧ @i

c(♦c ∧ ♦g) ⇒
(A): @i+1

c (0k−i ⇒ ¬b) ∧
(
(
∧
q∈X@i+1

q Ek−i)⇒
∧
q∈X

(
@i+1
q b⇒

∧
r∈X\{q}@

i+1
r ¬b

))
(B): ∧

(
eq i+1
k (x, y) ∧ eq i+1

k (y, c) ∧ succi+1
k (g, c)⇒

(
@i+1

g b⇔ maj(@i+1
x b,@i+1

y b,@i+1
c b)

))
(C): ∧

(
eq i+1
k (x, y) ∧ eq i+1

k (y, z) ∧ eq i+1
k (z, c)⇒

(
@i+1

z b⇔ ((@i+1
x b⊕@i+1

y b)⊕@i+1
c b)

))
.

The first line of add ik binds the propositions x, y, z, and c and g to children of x,
y, z and c, respectively. Afterwards, the formula follows closely the constraints
in (†). For instance, the last conjunct characterises the condition (C) by saying
that whenever we consider children wx, wy, wz and wc of wx, wy, wz and wc

respectively, if j = nk−i(wx) = nk−u(wy) = nk−i(wz) = nk−i(wc) for some
j ∈ N, then n2(wz)[j] = ((n2(wx)[j]⊕ n2(wy)[j])⊕ n2(wc)[j]), where n2(w)[j] is
the (j + 1)-th least significant digit of the number encoded by a world w.

Case: i = k − 1. To complete the definition of add ik, what is left is to define
addk−1k by only using quantifiers ∃k−1 and ∃1. Below, the worlds wx, wy, wz and
wc, corresponding to the (k−1)-local nominals x, y, z and c, satisfy type(1, n),
and so accordingly with n2(.) they encode a number by looking at the value of
the proposition b in their children, which themselves encode a number n1(.). To
properly define addk−1k (x, y, z, c), we rely on the fact that these children encode
n-bits numbers, with n given in unary. Then, instead of employing a quantifier
∃k to refer to one of these children, we can rely on n + 1 local quantifiers ∃k−1
to copy the values of p1, . . . , pn and b of a child directly on its parent. For
instance, to check if wx and wy have children encoding the same numbers and
equisatisfying b, one can follow the steps below, also sketched in Fig. 3:
1. using ∃k−1, we quantify over fresh propositional symbols rv1, . . . , r

v
n and qv,

with v ∈ {x, y}, to modify the truth of these symbols on wx and wy;
2. using @k−1

x , we move the evaluation point to wx. We check that the truth
of the propositions rx1, . . . , r

x
n, qx on wx is mirroring the truth of p1, . . . , pn, b

on a child of wx. For this, we rely on the formula copy((rx1, . . . , r
x
n), qx) that,

for an n-tuple of atomic propositions r = (r1, . . . , rn) and q ∈ AP, is defined
as: copy(r, q) def= ∃1u : ♦u ∧ (q ⇔ @1

ub) ∧
∧n
i=1(ri ⇔ @1

upi). This step is also
done (in parallel) for wy, by relying on copy((ry1, . . . , r

y
n), qy);

3. with respect to the initial point of evaluation w, we check that the truth of
the propositions rx1, . . . , r

x
n, qx on wx corresponds to the truth of ry1, . . . , r

y
n, qy

on wy, i.e. @k−1
x qx ⇔ @k−1

y qy and @k−1
x rxi ⇔ @k−1

y ryi , for all i ∈ [1, n].

This idea of copying information about children of wx, wy, wz and wc directly

in these four worlds is at the base of our definition of addk−1k , which we now

formalise. Similarly to n1(.), for an n-tuple of symbols r = (r1, . . . , rn), nr(w) def=∑
{2i−1 : i ∈ [1, n], w ∈ V(ri)} stands for the n-bits number encoded by the world

w by looking at the truth values of r1, . . . , rn. Given a second n-tuple of atomic

314 R. Fervari and A. Mansutti

w

x y

(1)

rx,qx ry,qy

x(2)

p,b:

rx,qx:

=

w

x y

(3)

rx,qx: ry,qy:

=

Fig. 3: Steps to check if two children of wx and wy encoding the same n1(.) equisatisfy b.

propositions s = (s1, . . . , sn), we introduce the formulae succ(r@x, s@y) def=∨n
i=1

(
@k−1

x ri∧@k−1
y ¬si∧

∧i−1
j=1(@k−1

x ¬rj∧@k−1
y sj)∧

∧n
j=i+1(@k−1

x rj ⇔ @k−1
y sj)

)
and eq(r@x, s@y) def=

∧n
i=1(@k−1

x ri ⇔ @k−1
y si), having the following semantics:

– K, w |= eq(r@x, s@y) if and only if nr(wx) = ns(wy); and

– K, w |= succ(r@x, s@y) if and only if nr(wx) = ns(wy)+1.

The correctness of succ(r@x, s@y) follows from standard arithmetical properties:
for two n-bits numbers a and b represented as binary bit vectors with most
significant digit first, a = b + 1 holds iff a = c10 and b = c01 hold for a prefix
c ∈ {0, 1}∗ and bit vectors of same length 0 ∈ {0}∗ and 1 ∈ {1}∗.

The definition of addk−1k (x, y, z, c) is given below, where X def= {x, y, c} and

for v ∈ {x, y, z, c, g}, rv def= (rv1, . . . , r
v
n) and ∀k−1rv is short for ∀k−1rv1 . . . ∀k−1rvn.

∀k−1rx, qx, ry, qy, rz, qz, rc, qc, rg, qg :
∧

v∈{x,y,z,c}@
k−1
v copy(rv, qv) ∧ @k−1

c copy(rg, qg) ⇒
(A): @k−1

c �(01 ⇒ ¬b) ∧
∧
q∈X@k−1

q

(
♦(E1 ∧ b)⇒

∧
r∈X\{q}@

k−1
r �(E1 ⇒ ¬b)

)
(B): ∧

(
eq(rx@x, ry@y) ∧ eq(ry@y, rc@c) ∧ succ(rg@c, rc@c)

⇒
(
@k−1

c qg ⇔ maj(@k−1
x qx,@

k−1
y qy,@

k−1
c qc)

))
(C): ∧

(
eq(rx@x, ry@y) ∧ eq(ry@y, rz@z) ∧ eq(rz@z, rc@c)

⇒
(
@k−1

z qz ⇔
(
(@k−1

x qx ⊕@k−1
y qy)⊕@k−1

c qc
)))

.

Notice that this formula first quantifies over fresh atomic propositions rv and
qv, with v ∈ {x, y, z, c, g}⊆AP, so that the worlds wx, wy, wz, wc copy the truth
of p1, . . . , pn and b of some of their children w.r.t. the fresh atomic propositions
(see subformula

∧
v∈{x,y,z,c}@k−1

v copy(rv, qv) ∧ @k−1
c copy(rg, qg)). Afterwards,

the formula follows very closely the constraints (†) of +2.
By induction on i, we show that add ik respects the specification from Fig. 2.

Lemma 2. Let (K, w) be a pointed forest, and x, y, z, c be four i-local nominals
for (K, w), with corresponding worlds wx, wy, wz and wc. If K, wp |= type(k−i, n)

for every p ∈ {x, y, z, c}, then K, w |= add ik(x, y, z, c) iff +k−i+1(wx, wy, wz, wc).

Making add ik polynomial. At this stage, add ik (i < k − 1) has size exponential
in k, as it is recursively defined using multiple occurrences of add i+1

k (appearing
inside eq i+1

k and succi+1
k). However, all these occurrences have the same polarity,

i.e. they all appear positively in the antecedents of the implications for the
conditions (B) or (C). This property allows us to rely on a recursion trick by
Fisher and Rabin [20] to obtain a polynomial size formulation of add ik. In a
nutshell, given a first-order formula ϕ(x) free in the tuple of variables x, the
trick consists in rewriting ψ def= ϕ(y) ∧ ϕ(z) as ∀x : (x = y ∨ x = z) ⇒ ϕ(x), so

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 315

that the size of ψ becomes only |ϕ(x)| plus a constant, instead of being roughly
twice |ϕ(x)|. In a similar way, one can treat arbitrary formulae, as long as all
occurrences of ϕ(x) have the same polarity, as it is the case of add i+1

k . The
(simple) manipulation of the formula add ik using this trick directly leads to a
definition of type(k, n) of size polynomial in k and n.

Multi-tiling. The definition of type(k, n) provides the key technical step required
to show the lower bounds of Thms. 1 and 2. Using this formula, both theorems
can be proved by suitable reductions from the k-exp alternating multi-tiling
problem (kAMTP), as we now briefly discuss.

A multi-tiling system P is a tuple (T , T0, Tacc,H,V,M, n) where T is a finite
set of tile types, T0, Tacc ⊆ T are sets of initial and accepting tiles, respectively,
n ∈ N+ (written in unary) is the dimension of the system, and H,V,M⊆ T ×T
are the horizontal, vertical and multi-tiling matching relations, respectively.

Fix k ∈ N+. We write Σ̂ for the set of words of length t(k, n) over an al-
phabet Σ. The initial row I (f) of a map f : [0, t(k, n) − 1]2 → T is the word

f(0, 0), f(0, 1), . . . , f(0, t(k, n)−1) from T̂ . A tiling for the grid [0, t(k, n)−1]2 is
a tuple (f1, f2, . . . , fn) such that, for all ` ∈ [1, n], the following conditions hold:

maps. f` : [0, t(k, n)− 1]2 → T assigns a tile type to each position of the grid;

init & acc. I (f`) ∈ T̂0, and fn(t(k, n)− 1, j) ∈ Tacc for some 0 ≤ j < t(k, n);
hori. (f`(i, j), f`(i+ 1, j)) ∈ H, for every i ∈ [0, t(k, n)− 2] and 0 ≤ j < t(k, n);
vert. (f`(i, j), f`(i, j + 1)) ∈ V , for every j ∈ [0, t(k, n)− 2] and 0 ≤ i < t(k, n);
multi. if ` < n then (f`(i, j), f`+1(i, j)) ∈M for every 0 ≤ i, j < t(k, n).

The kAMTP takes as input P and a quantifier prefix Q = (Q1, · · · , Qn) ∈ {∃, ∀}n,

and accepts whenever the statement “Q1w1 ∈ T̂0 . . . Qnwn ∈ T̂0 : there is a tiling
(f1, . . . , fn) of [0, t(k, n)− 1]2 s.t. I (f`) = w` for all ` ∈ [1, n]” is true.

The AExppol-completeness of kAMTP for k = 1 can be traced back to [11].
The proof therein is independent from the size of the grid, and can be eas-
ily adapted to show kAExppol-completeness for arbitrary k (see [24] for a self-
contained presentation). The problem is kNExp-complete if we fix Q to only con-
tain existential quantifiers. For the lower bound of Thm. 1, we reduce kAMTP on
instances with Q ∈ {∃}n to the sat. problem of ML(∃kFO), so that the translation
produces a formula of ML(∃1FO) of modal depth 1 for the case k = 1, and otherwise
a round-bounded formula from ML(∃k−1SO) of modal depth k. For Thm. 2 we get
a similar reduction, from instances of the kAMTP with arbitrary Q to ML(∃kSO).

The first step is to define an ML(∃kFO) formula grid(k, n) that, when satisfied
by a pointed forest (K, w), forces the children of w to encode every position in
the grid [0, t(k, n)− 1]2, together with a formula tiling(k,P) that characterises
the various tiling conditions. Fortunately, both these formulae can be defined as
in [7], modulo very minor changes. Briefly, each child w′ of w shall encode a dif-
ferent pair of numbers (nHk (w′),nVk (w′)) representing a position in the grid. The
number of bits required to represent nHk (w′) and nVk (w′) is the same as nk(.),
which allows us to define grid(k, n) by slightly updating type(k, n). In particular,
nHk (w′) and nVk (w′) can be encoded requiring w′ to satisfy type(k − 1, n), and by

316 R. Fervari and A. Mansutti

using fresh symbols pH1 , . . . , p
H
n , b

H and pV1 , . . . , p
V
n , b
V to encode (nHk (w′),nVk (w′)).

For k = 1, the horizontal position is nH1 (w′) def= {2i−1 : i ∈ [1, n] and w′ ∈ V(pHi)}.
For k ≥ 2, nHk (w′) def=

∑
{2i : ∃w′′ ∈ R(w′) s.t. nk−1(w′′) = i and w′′ ∈ V(bH)}.

The vertical position nVk (w′) is defined in a similar way. Notice that, in the case
of k ≥ 2, nHk (w′) and nVk (w′) are defined in terms of nk−1(w′′), and thus using
the t(k − 1, n) children of w′. For tiling(k,P), we see each tile type t ∈ T as
an atomic proposition, and consider n distinct copies t(1), . . . , t(n) ∈ AP of it,
so that the maps f1, . . . , fn can be encoded using just the set of worlds forced
by grid(k, n). In particular, for every i ∈ [1, n], each child w′ shall satisfy exactly
one proposition in {t(i) : t ∈ T }, encoding the fact that fi(n

H
k (w′),nVk (w′)) = t.

Following the above specification, the toolkit of formulae in Fig. 2 can be eas-
ily adapted to express properties of the horizontal and vertical positions encoded
by a world, leading to the definition of grid(k, n) and tiling(k,P). For instance,
given G ∈ {H,V} and ϕ ∈ {0k, 1k,Ek} we define the formula ϕG as follows: for
k = 1 we set ϕG def= ϕ[pi ←0 p

G
i : i ∈ [1, n]], and for k ≥ 2 we set ϕG def= ϕ[b←1 b

G].
Then, w′ satisfies the formula 1Hk ∧ 0Vk whenever (nHk (w′),nVk (w′)) = (1, 0).

Lemma 3. The ML(∃kFO) formula grid(k, n) ∧ tiling(k,P) is satisfiable if and
only if kAMTP accepts on input (P,Q), with Q ∈ {∃}n.

For the lower bound of Thm. 2, it remains to show how to capture in ML(∃kSO)
the arbitrary prefixes of quantification Q = (Q1, . . . , Qn) of kAMTP. Compared
to [6,7], novel machinery is required to perform this step. As ML(∃kSO) captures
ML(∃kFO), we now see grid(k, n) and tiling(k,P) as formulae of ML(∃kSO). For each
tile type t ∈ T , we consider an additional set of copies t(n+1), . . . , t(2n) ∈ AP. We

also define t(i) def= (t
(i)
1 , . . . , t

(i)
r), where T = {t1, . . . , tr}. We use the propositions

in t(n+i) to simulate the quantifier Qi, which we recall quantifies over the possible
initial rows I (fi) ∈ T̂0 of the map fi. If Qi = ∃, we simulate this form of
quantification with the following shortcut, parametric on ϕ:

Ei(ϕ) def= ∃1t(n+i) : ϕ ∧�(0Hk ⇒
∨
t∈T0(t(n+i) ∧

∧
s∈T \{t} ¬s(n+i))).

Here, the last conjunct states that each world encoding a position (0, j) of the
grid, for some j ∈ [0, t(k, n) − 1], satisfies exactly one proposition t(n+i) with
t ∈ T0. For Qi = ∀, we just define Ai(ϕ) def= ¬Ei(¬ϕ). Then, the prefix of
quantification Q is captured by Q(ϕ) def= Q1(Q2(. . . Qn(ϕ))), where Qi(ϕ) def=
Ei(ϕ) if Qi = ∃, else Qi(ϕ) def= Ai(ϕ). In deciding whether K, w |= Q(ϕ) holds for
a pointed forest (K, w) satisfying grid(k, n), the satisfaction of ϕ is checked w.r.t.
a model where each world encoding a position (0, j) of the grid satisfies exactly
one t(n+i) with t ∈ T0, for all i ∈ [1, n]. In terms of tilings, this corresponds

to having set the initial row I (fi) ∈ T̂0 of each of the maps fi. We now want
to tile the remaining part of the grid by finding a suitable instantiation for ϕ.
To do so, we quantify over all t(1), . . . t(n), searching for an arrangement of
these propositions that satisfies tiling(k,P) and such that, on worlds encoding
a position (0, j) of the grid, the satisfaction of propositions in t(i) mirrors the
satisfaction of the corresponding propositions in t(n+i). In formula:

tiling(k,P) def= ∃1t(1), . . . , t(n) : tiling(k,P)∧�(0Hk ⇒
∧n
i=1

∨
t∈T (t(i) ⇔ t(n+i))).

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 317

Lemma 4. The ML(∃kSO) formula grid(k, n)∧Q(tiling(k,P)) is satisfiable if and
only if kAMTP accepts on input (P,Q).

Round-boundedness. In defining type(k, n), we made sure to respect the fol-
lowing round-boundedness condition: type(1, n) has modal depth 1 and belongs
to ML(∃1FO), whereas for every k ≥ 2, type(k, n) is a round-bounded formula
of ML(∃k−1FO) of modal depth k. The same holds for grid(k, n), tiling(k,P) and
Q(tiling(k,P)). Then, Lemmas 3 and 4 imply the lower bounds of Thms. 1 and 2.

4 Upper bounds via a small-model property for ML(∃k
SO)

In this section, we establish the following small model property.

Proposition 1. Each satisfiable round-bounded formula ϕ in ML(∃kSO) is satis-
fied by a pointed forest with t(k+1,O(|ϕ|)) worlds. Each satisfiable ϕ in ML(∃kSO)
with md(ϕ) ≤ k is satisfied by a pointed forest with t(k,O(|ϕ|3)) worlds.

As the logic ML(∃kSO) captures ML(∃kFO), Prop. 1 transfers to the latter logic.
With this result at hand, the upper bounds of Thm. 1 and Thm. 2 easily follow.
Consider a round-bounded formula ϕ of either ML(∃kSO) of ML(∃kFO) (the argu-
ments for a formula of modal depth k are similar). First, we guess a pointed
forest (K, w) with bounds as in Prop. 1. This can be done in (k+1)NExp. Then,
we check whether (K, w) satisfies ϕ. For ML(∃kSO), by seeing this logic as a frag-
ment of monadic second-order logic, this can be done in polynomial time in the
sizes of (K, w) and ϕ by using an alternating Turing machine that performs |ϕ|
many alternations. As (K, w) has (k+1)-exponential size with respect to |ϕ|, the
whole algorithm runs in (k+1)AExppol. For ML(∃kFO), we rely on the fact that
there is a deterministic algorithm for the model checking problem of first-order
logic that runs in time O(|ϕ| ·M |ϕ|) where M is the size of the model. From the
bounds on (K, w) we conclude that the procedure for ML(∃kFO) is in (k+1)NExp.

Prop. 1 is shown through a quantifier elimination (QE) procedure that trans-
lates every formula of ML(∃kSO) into an equivalent formula from GML, establish-
ing Cor. 2 as a by-product. Without loss of generality, in this section we extend
ML(∃kSO) with graded modalities ♦≥jϕ, with j ∈ N given in unary, and see the
modality ♦ as a shortcut for ♦≥1. Recall that a GML formula ♦≥jϕ can be
represented with an ML(∃kSO) formula of size O(j + |ϕ|) (Sec. 2).

Parameters of a formula. Fig. 4 introduces a set of parameters for a ML(∃kSO)
formula ϕ, which we rely on to establish Prop. 1. For instance, for ϕ = (p∨♦≥3r)∧
(q∨♦≥5♦≥2q) we have ap(1, ϕ) = {r}, gsf(0, ϕ) = {♦≥3r,♦≥5♦≥2q}, msf(1, ϕ) =
{r,♦≥2q}, gsf(1, ϕ) = {♦≥2q}, gr(0, ϕ) = 5 and bd(0, ϕ) = 8. Note that every
GML formula ϕ is a Boolean combination of formulae from ap(0, ϕ) ∪ gsf(0, ϕ),
and for every d ∈ N, bd(d, ϕ) ≤ gr(d, ϕ) · |msf(d+ 1, ϕ)|.

For a set of formulae Φ = {ϕ1, . . . , ϕn}, we define C(Φ) to be the set of
all complete conjunctions of possibly negated formulae of Φ. Formally, C(Φ) def=
{γ1 ∧ · · · ∧ γn : for all i ∈ [1, n], γi ∈ {ϕi,¬ϕi}}, and we fix C(∅) = {>}. Given
P ⊆fin AP we refer to the formulae in C(P) as ρ1,ρ2, · · · .

318 R. Fervari and A. Mansutti

ap(d, ϕ) : set of atomic propositions of ϕ in the scope of exactly d graded modalities.
gsf(d, ϕ) : set of subformulae ♦≥jψ of ϕ, in the scope of exactly d graded modalities.
msf(d, ϕ) : set of maximal subformulae of ϕ in the scope of d graded modalities:

msf(0, ϕ) = {ϕ}, and ψ ∈ msf(d+ 1, ϕ) iff ♦≥jψ ∈ gsf(d, ϕ) for some j ∈ N.
gr(d, ϕ) : largest j ∈ N such that either j = 0 or ♦≥jψ ∈ gsf(d, ϕ), for some ψ.

bd(d, ϕ) : for d = 0 and let gsf(0, ϕ) = {♦≥j1ψ1, . . . ,♦≥jnψn}, bd(0, ϕ) def= j1 + · · ·+jn.

For d ≥ 1, bd(d, ϕ) def= max {bd(d− 1, ψ) : ψ ∈ msf(1, ϕ)}.

Fig. 4: Parameters of an ML(∃k) formula ϕ (d ∈ N).

Normal forms. We introduce a set of normal forms that are used by our QE
procedure. An ML(∃kSO) formula ϕ is in prenex normal form if it is of the form
Q1p1Q2p2 . . . Qnpnψ where Qi ∈ {∃k, ∀k} and ψ is in GML. If ψ is instead in
ML(∃kSO) but all quantifiers are under the scope of at least k modalities, we
say that ϕ is in prenex normal form up to k. An ML(∃kSO) formula ϕ is in prenex
round-bounded (p.r.b.) form if ϕ is round-bounded and, for all i ∈ N, all formulae
in msf(i · k, ϕ) are in prenex normal form up to k. E.g., given a p.r.b. formula
ψ in ML(∃2SO), ∃2p ∃2q ♦♦∃2r ψ is in p.r.b. form, while ∃2p♦∃1q ♦∃2r ψ is not.
Thanks to the equivalences below one can translate each round-bounded formula
ϕ of ML(∃kSO) into an equivalent well-quantified p.r.b. formula of size O(|ϕ|):

♦∃k−1pϕ ≡ ∃kp♦ϕ, �∃k−1pϕ ≡SO ∃kp�ϕ, for k ≥ 2. (‡)
Similarly, every ϕ in ML(∃kSO) of modal depth at most k can be translated into
a well-quantified prenex formula of ML(∃kSO) having size O(|ϕ|). Notice that the
second equivalence in (‡) only holds on pointed forests and for the logic ML(∃kSO).
It does not hold for arbitrary Kripke structures, nor for ML(∃kFO).

Our QE procedure translates each formula of ML(∃kSO) into a GML formula
in disjoint normal form (called good formulae in [23, Def. 8.5]) for which it is easy
to estimate bounds on the size of the smallest satisfying pointed forest, if any. We
say that a set {ϕ1, . . ., ϕn} of formulae in GML is a disjoint set over P ⊆fin AP
whenever for all i, j ∈ [1, n], we have ϕi = ρi ∧ γi and ϕj = ρj ∧ γj , where
ρi,ρj ∈ C(P), ap(0, γi)∩P = ap(0, γj)∩P = ∅, and either γi ≡ γj or (γi∧γj) ≡⊥.
By taking ρi and ρj up-to commutativity and associativity of ∧, a disjoint set
over P is also a disjoint set over any P′ ⊂ P. We say that ϕ is in disjoint normal
form (DisjNF) if for every d ∈ [0,md(ϕ)], msf(d, ϕ) is a disjoint set over ∅.

Proposition 2 ([23], Lemma 8.7). Each satisfiable GML formula ϕ in DisjNF
is satisfied by a pointed forest with at most (maxd∈N(bd(d, ϕ)) + 1)md(ϕ) worlds.

To translate a well-quantified p.r.b. formula ϕ from ML(∃kSO) into a GML
formula in DisjNF, we consider the largest i ∈ N for which msf(i · k, ϕ) is non-
empty, and inductively translate, for each j = i, i − 1, · · · , 0, all formulae in
msf(j · k, ϕ) into equivalent ones in GML. At each of these i + 1 rounds, the
following two steps are applied at most k times:
1. Let ` = min{r ∈ N+ : all formulae of msf(j · k, ϕ) are in ML(∃rSO)}. We up-

date all ψ ∈ msf(j · k, ϕ) so that msf(`, ψ) becomes a disjoint set over bp(ψ).
2. By manipulating all quantified propositions of the formulae in msf(`, ψ), we

translate ψ into a formula of either GML (if ` = 1) or ML(∃`−1SO) (if ` ≥ 2).

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 319

At the end of the round, msf(j · k, ϕ) solely contains GML formulae in DisjNF,
and the next round considers the set msf((j−1)·k, ϕ), that now contains ML(∃kSO)
formulae in prenex normal form. The QE procedure has thus three key steps,
which we now formalise: (I) manipulating a formula ϕ so that msf(j, ϕ) becomes
a disjoint set, (II) eliminating the quantifier ∃1 obtaining a formula from GML,
and (III) reducing the elimination of ∃` to the elimination of ∃`−1 (for ` ≥ 2).

Step (I): making a single set disjoint. Let j ∈ N+ and P ⊆fin AP. We show how
to transform a GML formula ϕ into an equivalent formula ψ such that msf(j, ψ)
is a disjoint set over P. Two strategies are possible, which will be combined and
carefully chosen in order to obtain the bounds required by Prop. 1.

The first strategy considers the set S def= C(P ∪ ap(j, ϕ) ∪ gsf(j, ϕ)), which is
disjoint over P (and so over ∅), and rewrites ϕ into an equivalent formula ψ with
msf(j, ψ) ⊆ S. Consider γ ∈ msf(j, ϕ). By definition of C(.),

∨
χ∈S χ is a tautol-

ogy, and since γ is a Boolean combination of formulae in ap(j, ϕ) ∪ gsf(j, ϕ), for
all χ ∈ S the formula γ ∧χ is equivalent to either ⊥ or χ. Then, γ ≡

∨
χ∈T χ for

some T ⊆ S. Notice that γ ∈ msf(j, ϕ) holds if and only if ♦≥iγ ∈ gsf(j − 1, ϕ),
for some i ∈ N. By relying on the equivalence of GML

♦≥i(χ1 ∨ χ2) ≡
∨
i=i1+i2

(♦≥i1χ1 ∧ ♦≥i2χ2), whenever χ1 ∧ χ2 ≡⊥,
we rewrite ♦≥iγ into a Boolean combination of formulae ♦≥i′χ with i′ ≤ i and
χ ∈ T ⊆ S. These steps are applied to all the formulae in msf(j, ϕ).

The second strategy is as follows: for each γ ∈ msf(j, ϕ) and ρ ∈ C(P), let
γρ

def= γ[p←0 v : v ∈ {>,⊥}, p ∈ P, and v = > iff p occurs positively in ρ]. No-
tice that ap(0, γρ) ∩ P = ∅. As ρ gives a polarity to all propositions in P,

we have ρ ∧ γ ≡ ρ ∧ γρ. Set T def= C({γρ : γ ∈ msf(j, ϕ),ρ ∈ C(P)}). Consider

S ′ def= C(P ∪ T), which is a disjoint set over P, and replay the arguments used for S
in the first strategy to rewrite ϕ into an equivalent formula ψ with msf(j, ψ) ⊆ S ′.

While both strategies keep most of the parameters of Fig. 4 unchanged (one
exception being ap(j, ψ) ⊆ ap(j, ϕ)∪P), they yield profoundly different bounds
on the size of msf(j, ψ). Because of the definition of S, from the first strategy
we obtain |msf(j, ψ)| ≤ 2|P|+|ap(j,ϕ)|+|gsf(j,ϕ)|, where we highlight the exponential
dependence on |gsf(j, ϕ)|, and thus on the number of outermost graded modal-
ities appearing in formulae of msf(j, ϕ). From the definition of S ′, the second

strategy yields |msf(j, ψ)| ≤ 2|P|+2|P|·|msf(j,ϕ)|. Here, |msf(j, ψ)| does not depend
on gsf(j, ϕ), but it is doubly exponential in |P|. Remarkably, in both strategies
gsf(j, ψ) ⊆ gsf(j, ϕ), thus if msf(j+1, ϕ) is a disjoint set over ∅, so is msf(j+1, ψ).
This property is essential, as it allows us to bring the full formula in DisjNF.

Step (II): eliminating ∃1. Given a well-quantified formula ϕ = ∃1pϕ′, where ϕ′

is in GML and msf(1, ϕ) is a disjoint set over P, and p ∈ P, it is quite easy to
eliminate the quantifier ∃1p and produce a formula ψ in GML equivalent to ϕ
and such that msf(1, ψ) is a disjoint set over P \ {p}. We sketch here the main
points. First, from standard axioms of propositional calculus and by distributing
∃1p over ∨, we obtain a representation of ϕ as a disjunction of formulae of the
form ∃1p (ρ ∧ γ) with ρ ∈ C(ap(0, ϕ)) and γ ∈ C(gsf(0, ϕ)). We eliminate the

320 R. Fervari and A. Mansutti

quantifier ∃1 from every such disjunct ∃1p (ρ ∧ γ). Below, let χ be an arbitrary
formula with p 6∈ ap(0, χ). First, using the equivalences ∃1p (p∧χ) ≡SO ∃1pχ and
∃1p (¬p∧χ) ≡SO ∃1pχ, we get rid of the occurrences of p in ρ, obtaining a formula
ρ′ ∈ C(ap(0, ϕ) \ {p}). Next, we remove p from γ thanks to the equivalences:

∃1p : ♦≥i(p ∧ χ) ∧ ♦≥j(¬p ∧ χ) ≡SO ♦≥i+jχ;
∃1p : ¬♦≥i(p ∧ χ) ∧ ¬♦≥j(¬p ∧ χ) ≡SO ¬♦≥i+j−1χ.

We obtain a GML formula γ′ such that ∃1p (ρ∧γ) ≡SO ρ
′∧γ′. Size-wise, Step (II)

preserves all the parameters of Fig. 4 except gr(0, ψ) ≤ 2 · gr(0, ϕ).

Step (III): from ∃k+1 to ∃k. Consider a well-quantified ML(∃kSO) formula ϕ′ hav-
ing all quantifiers appearing outside the scope of graded modalities, and with the
set msf(k+1, ϕ′) disjoint over P. Given p ∈ P, we translate ϕ def= ∃k+1pϕ′ into an
equivalent well-quantified ML(∃kSO) formula ψ having all quantifiers outside the
scope of graded modalities, and with the set msf(k + 1, ψ) disjoint over P \ {p}.
This is done by replacing ∃k+1p with multiple ∃k. The first step is to single
out the occurrences of p under the scope of k+1 modalities by replacing them
with a fresh symbol p̃ and splitting ∃k+1p into ∃kp and ∃k+1p̃ . We get ϕ ≡SO

∃kp ∃k+1p̃ ϕ′′ where ϕ′′ = ϕ′[p←k+1 p̃]. Let gsf(k, ϕ′′) = {♦≥k1χ1, . . . ,♦≥knχn}.
From the properties of ϕ′, no proposition from bp(ϕ′′) appears in the GML for-
mulae χ1, . . . , χn. Using fresh propositions q1, . . . , qn, we rewrite ϕ as

∃kp ∃k+1p̃ ∃kq1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧�k
∧n
i=1(qi ⇔ ♦≥kiχi).

Essentially, the subformula �k
∧n
i=1(qi ⇔ ♦≥kiχi) constraints each qi to be

true in exactly those worlds satisfying ♦≥kiχi. This allows us to replace with
qi all occurrences of ♦≥kiχi appearing in ϕ′′ under the scope of k modalities
(first conjunct of the formula above), without changing the semantics of ϕ. By
definition, ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] has modal depth at most k, and thus
the proposition p̃ does not occur in it. We reorder the existential prefix of the
formula and, by distributing ∃k+1p̃ , conclude that ϕ is equivalent to:

∃kp, q1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧ ∃k+1p̃�k
∧n
i=1(qi ⇔ ♦≥kiχi).

Lastly, we eliminate ∃k+1p̃ , obtaining the aforementioned ML(∃kSO) formula ψ.
Using the second equivalence in (‡), we rewrite ∃k+1p̃�k

∧n
i=1(qi ⇔ ♦≥kiχi) into

�k∃1p̃
∧n
i=1(qi ⇔ ♦≥kiχi). Since {χ1, . . . , χn} is a set of formulae form GML that

is disjoint over (P \ {p}) ∪ {p̃}, by applying Step (II) one computes a formula
ψ′ in GML equivalent to ∃1p̃

∧n
i=1(qi ⇔ ♦≥kiχi) and such that msf(1, ψ′) is a

disjoint set over P \ {p}. Then, the (output) formula ψ is defined as follows:

ψ def= ∃kp, q1, . . . , qn : ϕ′′[♦≥kiχi ←k qi : 1 ≤ i ≤ n] ∧�kψ′.

Down to GML, inductively. The manipulation we just described yield the cru-
cial inductive argument that allows us to translate any well-quantified prenex
formula of ML(∃kSO) into a formula of GML. Inductively on k, consider a well-
quantified formula ϕ = Q1p1 . . . Qnpnϕ

′ where each Qi ∈ {∃k, ∀k}, the for-
mula ϕ′ is in GML and msf(k, ϕ) is a disjoint set over {p1, . . . , pn}. If k = 1,
we repeatedly apply Step (II) to translate ϕ into a GML formula. If k ≥ 2,

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 321

starting from pn down to p1, we apply Step (III) to translate ϕ into a well-
quantified prenex formula χ from ML(∃k−1SO). Afterwards, we rely on the first
strategy of Step (I) to make the set msf(k − 1, χ) disjoint over bp(χ), and in-
ductively obtain a GML formula ψ equivalent to ϕ. For a sake of conciseness, let
|ϕ|k

def= max(k, |
⋃
i∈[0,k] ap(i, ϕ)|, maxi<k gr(i, ϕ)). Fundamentally, the formula ψ

has the same modal depth as ϕ, and for every i ∈ [0, k − 1] it satisfies:

gr(i, ψ) ≤ t(k − 1, 28·|ϕ|k · |msf(k, ϕ)|); msf(i, ψ) ≤ t(k − 1, 28·|ϕ|k · |msf(k, ϕ)|).
With these bounds at hand, Prop. 1 follows from Steps (I)–(III) and Prop. 2.

First, consider the case of a well-quantified prenex formula ϕ in ML(∃k) of
modal depth k. Using the first strategy from Step (I), we translate ϕ into
an equivalent formula ψ such that the set msf(k, ψ) is disjoint over bp(ϕ) and
has size exponential in |ϕ|. We apply the inductive argument discussed above,
and translate ψ into a GML formula χ in DisjNF with md(χ) ≤ md(ϕ) and

bd(d, χ) ≤ gr(d, χ) · |msf(d+ 1, χ)|) ≤ t(k,O(|ϕ|2)) for all d ∈ N. By Prop. 2,

whenever satisfiable, ϕ is satisfied by a pointed forest with at most t(k,O(|ϕ|3))
worlds. The case of general p.r.b. formulae of ML(∃kSO) is similar, but we need
to appeal to the second strategy of Step (I) to stop the chain of exponential
blow-ups. For simplicity, let us consider the case of ϕ being a well-quantified
p.r.b. formula of modal depth at most 2k. The arguments used for this case can
be adapted for formulae of arbitrary modal depth. First, we look at the formulae
of msf(k, ϕ), whose modal depth is at most k, and eliminate all local quantifiers
from each of these formulae, as described above. In doing so, |gsf(k, ϕ)| witnesses
a k-exponential blow-up, but the size of msf(k, ϕ) is unchanged. We consider the
quantification prefix of ϕ, and eliminate all its quantifiers over P to produce an
equivalent formula from GML. The first step is to make the set msf(k, ϕ) a disjoint
set over P. Because of the k-exponential blow-up on gsf(k, ϕ), the first strategy
of Step (I) is of no use. We appeal to the second one, which modifies msf(k, ϕ)
into a disjoint set of size only doubly-exponential in the size of the original for-
mula ϕ. By relying on the inductive reasoning discussed above, we produce the
equivalent GML formula in DisjNF. Because of the doubly-exponential bound
on msf(k, ϕ), this elimination is exponentially worse than the one done for for-
mulae of modal depth at most k. Then, appealing to Prop. 2 yields Prop. 1.

5 Further connections

In introducing ML(∃kFO) and ML(∃kSO), one of our goals is to provide a common
framework to relate several modal logics featuring propositional quantification
in disguise. Apart from the relations stated in Sec. 2, in an extended version of
this work we aim at establishing connections between ML(∃1SO) and propositional
team logics [21], propositional logic of dependence [32] and ambient logics [13];
as well as connections bwteen ML(∃∞FO) and sabotage logics [8,4].

Acknowledgments. R. Fervari is supported by CONICET project PIP
11220200100812CO, and by the LIA SINFIN. A. Mansutti is supported by
the ERC project ARiAT (Grant agreement No. 852769).

322 R. Fervari and A. Mansutti

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic 27(3), 217–274
(1998)

2. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation
and complexity. The Journal of Symbolic Logic 66(3), 977–1010 (2001)

3. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, Studies in
logic and practical reasoning, vol. 3, pp. 821–868. North-Holland (2007)

4. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
Journal of the IGPL 23(4), 601–627 (2015)

5. Barnaba, M.F., Caro, F.D.: Graded modalities. Studia Logica 44(2), 197–221
(1985)

6. Bednarczyk, B., Demri, S.: Why propositional quantification makes modal logics
on trees robustly hard? In: Logic in Computer Science. pp. 1–13. IEEE (2019)

7. Bednarczyk, B., Demri, S., Fervari, R., Mansutti, A.: Modal logics with composi-
tion on finite forests: Expressivity and complexity. In: Logic in Computer Science.
pp. 167–180. ACM (2020)

8. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathe-
matical Reasoning. LNCS, vol. 2605, pp. 268–276 (2005)

9. Blackburn, P., Braüner, T., Kofod, J.: Remarks on Hybrid Modal Logic with Propo-
sitional Quantifiers, pp. 401–426. No. 4 in Logic and Philosophy of Time (2020)

10. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics,
Studies in logic and practical reasoning, vol. 3. Elsevier (2006)

11. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: On the complexity of model
checking for syntactically maximal fragments of the interval temporal logic HS
with regular expressions. In: GandALF’17. EPTCS, vol. 256, pp. 31–45 (2017)

12. Bull, R.A.: On modal logic with propositional quantifiers. The Journal of Symbolic
Logic 34(2), 257–263 (1969)

13. Calcagno, C., Cardelli, L., Gordon, A.: Deciding validity in a spatial logic for trees.
In: International Workshop on Types in Languages Design and Implementation.
pp. 62–73. ACM (2003)

14. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In:
Ong, L. (ed.) Computer Science Logic. pp. 339–354 (2005)

15. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM
28(1), 114–133 (1981)

16. Demri, S., Fervari, R.: The power of modal separation logics. Journal of Logic and
Computation 29(8), 1139–1184 (2019)

17. Ding, Y.: On the logics with propositional quantifiers extending s5Π. In: Advances
in Modal Logic. pp. 219–235. College Publications (2018)

18. Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)
19. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: ACM Sym-

posium on Theory of Computing. p. 286–294 (1977)
20. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arith-

metic. In: Complexity of Computation, SIAM–AMS Proceedings. pp. 27–41 (1974)
21. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional

logics in team semantic. ACM Transactions on Computational Logic 19(1), 2:1–
2:14 (2018)

22. Kaplan, D.: S5 with quantifiable propositional variables. The Journal of Symbolic
Logic 35(2), 355 (1970)

Modal Logics and Local Quantifiers: A Zoo in the Elementary Hierarchy 323

23. Mansutti, A.: Reasoning with Separation Logics: Complexity, Expressive Power,
Proof Systems. Ph.D. thesis, Université Paris-Saclay (December 2020)

24. Mansutti, A.: Notes on kAExp(pol) problems for deterministic machines (2021)
25. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfia-

bility for fragments of CTL and CTL*. Electronic Notes in Theoretical Computer
Science 223, 201–213 (2008)

26. Prior, A.: Past, Present and Future. Oxford Books (1967)
27. Rabin, M.: Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society 41, 1–35 (1969)
28. de Rijke, M.: A note on graded modal logic. Studia Logica 64(2), 271–283 (2000)
29. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Transactions on

Computation Theory 8(1), 3:1–3:36 (2016)
30. Schneider, T.: The complexity of hybrid logics over restricted frame classes. Ph.D.

thesis, Friedrich Schiller University of Jena (2007)
31. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

Journal of the ACM 32(3), 733–749 (1985)
32. Yang, F., Väänänen, J.: Propositional logics of dependence. Annals of Pure and

Applied Logic 167(7), 557–589 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

324 R. Fervari and A. Mansutti

http://creativecommons.org/licenses/by/4.0/

Temporal Stream Logic modulo Theories∗

Bernd Finkbeiner , Philippe Heim� , and Noemi Passing

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner, philippe.heim, noemi.passing}@cispa.de

Abstract. Temporal stream logic (TSL) extends LTL with updates and
predicates over arbitrary function terms. This allows for specifying data-
intensive systems for which LTL is not expressive enough. In the se-
mantics of TSL, functions and predicates are left uninterpreted. In this
paper, we extend TSL with first-order theories, enabling us to specify
systems using interpreted functions and predicates such as incrementa-
tion or equality. We investigate the satisfiability problem of TSL mod-
ulo the standard underlying theory of uninterpreted functions as well as
with respect to Presburger arithmetic and the theory of equality: For all
three theories, TSL satisfiability is neither semi-decidable nor co-semi-
decidable. Nevertheless, we identify three fragments of TSL for which the
satisfiability problem is (semi-)decidable in the theory of uninterpreted
functions. Despite the undecidability, we present an algorithm – which
is not guaranteed to terminate – for checking the satisfiability of a TSL
formula in the theory of uninterpreted functions and evaluate it: It scales
well and is able to validate assumptions in a real-world system design.

1 Introduction

Linear-time temporal logic (LTL) [32] is one of the standard specification lan-
guages to describe properties of reactive systems. The success of LTL is largely
due to its ability to abstract from the detailed data manipulations and to fo-
cus on the change of control over time. In data-intensive applications, such as
smartphone apps, LTL is, however, often not expressive enough to capture the
relevant properties. When specifying a music player app, for instance, we would
like to state that if the user leaves the app, the track that is currently playing
will be stored and will resume playing once the user returns to the app.

To specify data-intensive systems, extensions of LTL such as Constraint LTL
(CLTL) [6] and, more recently, Temporal Stream Logic (TSL) [15] have been
proposed. In CLTL, the atomic propositions of LTL are replaced with atomic
constraints over a concrete domain D and an interpretation for relations. Relat-
ing variables with the equality relation, such as x = y, denoting that the value

∗This work was partially supported by the German Research Foundation (DFG)
as part of the Collaborative Research Center “Foundations of Perspicuous Software
Systems” (TRR 248, 389792660), and by the European Research Council (ERC) Grant
OSARES (No. 683300). Philippe Heim and Noemi Passing carried out this work as PhD
candidates at Saarland University, Germany.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 325–346, 2022.
https://doi.org/10.1007/978-3-030-99253-8_17

http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-5433-8133
http://orcid.org/0000-0001-7781-043X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_17&domain=pdf

of x is equal to the value of y, allows for specifying assignment-like statements. In
this paper, however, we focus on the logic TSL to specify data-intensive systems.

TSL extends LTL with updates and predicates over arbitrary function terms.
An update Jx ֋ f(y)K denotes that the result of applying function f to variable y
is assigned to variable x. For the music player app, for instance, the update
Jpaused ֋ track(current)K specifies that the track that is currently playing,
obtained by applying function track to variable current , is stored in variable
paused . Updates are the main characteristic of TSL that differentiates it from
other first-order extensions of LTL: They allow for specifying the evolution of
variables over time. Thus, programs can be represented in TSL and therefore,
for instance, the model checking problem can be encoded.

In the semantics of TSL, functions and predicates are left uninterpreted,
i.e., a system satisfies a TSL formula if the formula evaluates to true for all
possible interpretations of the function and predicate symbols. This semantics
has proven especially useful in the synthesis of reactive programs [15,17], where
the synthesis algorithm builds a control structure, while the implementation
of the functions and predicates is either done manually or provided by some
library. One exemplary success story of TSL-based specification and synthesis of
a reactive system is the arcade game Syntroids [17] realized on an FPGA.

In this paper, we define and investigate the satisfiability problem of TSL
modulo the standard underlying theory of uninterpreted functions and with re-
spect to other first-order theories such as the theory of equality and Presburger
arithmetic. Intuitively, a TSL formula ϕ is satisfiable in a theory T if there is
an execution satisfying ϕ that matches the function applications and predicate
constraints of an interpretation in T . TSL validity in T is dual: A TSL formula ϕ

is valid in a theory T if, and only if, ¬ϕ is unsatisfiable in T .

For LTL, satisfiability is decidable [37] and efficient algorithms for check-
ing the satisfiability of an LTL formula have been implemented in tools like
Aalta [25]. Satisfiability checking has numerous applications in the specification
and analysis of reactive systems, such as identifying inconsistent system require-
ments during the design process, comparing different formalizations of the same
requirements, and various types of vacuity checking. TSL satisfiability checking
extends these applications to data-intensive systems.

We present an algorithm for checking the satisfiability of a TSL formula in the
theory of uninterpreted functions. It is based on Büchi stream automata (BSAs),
a new kind of ω-automata that we introduce in this paper. BSAs can handle the
predicates and updates occurring in TSL formulas. Similar to the relationship
between LTL formulas and nondeterministic Büchi automata, BSAs are an au-
tomaton representation of TSL formulas, i.e., there exists an equivalent BSA
for every TSL formula. Given a TSL formula ϕ, our algorithm constructs an
equivalent BSA Bϕ and then tries to prove satisfiability and unsatisfiability in
parallel: For proving satisfiability, it searches for a lasso that ensures consistency
of the function terms in an accepting run of Bϕ. If such a lasso is found, ϕ is
satisfiable. For proving unsatisfiability, the algorithm discards inconsistent runs
of Bϕ. If no accepting run is left, ϕ is unsatisfiable.

326 B. Finkbeiner et al.

The algorithm does not always terminate. In fact, we show that TSL satisfi-
ability is neither semi-decidable nor co-semi-decidable in the theory of uninter-
preted functions. Thus, no complete algorithm exists. The undecidability result
extends to the theory of equality and Presburger arithmetic. There exist, how-
ever, (semi-)decidable fragments of TSL in the theory of uninterpreted functions:
For satisfiable formulas with a single variable as well as satisfiable reachability
formulas, our algorithm is guaranteed to terminate. For slightly more restricted
reachability formulas, satisfiability is decidable.

We have implemented the algorithm and evaluated it, clearly illustrating its
applicability: It terminates within one second on many randomly generated for-
mulas and scales particularly well for satisfiable formulas. Moreover, it is able to
check realistic benchmarks for consistency and to (in-)validate their assumptions.
Most notably, we successfully validate the assumptions of a Syntroids module.

A preliminary version of this paper has been published on arXiv [13]. This al-
ready lead to further research on TSL modulo theories: Maderbacher and Bloem
show that the synthesis problem for TSL modulo theories is undecidable in
general and present a synthesis procedure for TSL modulo theories based on a
counter-example guided LTL synthesis loop [27].

Further details and proofs are available in the full version of this paper [14].

2 Preliminaries

We assume time to be discrete. A value can be of arbitrary type and we denote
the set of all values by V. The Boolean values are denoted by B ⊆ V. Given n

values, an n-ary function f : Vn → V computes a new value. An n-ary predicate
p : Vn → B determines whether a property over n values is satisfied. The sets of
all functions and predicates are denoted by F and P ⊆ F , respectively. Constants
are both functions of arity zero and values. Starting from 0, we denote the i-th
position of an infinite word σ by σi and the i-th component of a tuple t by πi(t).

To argue about functions and predicates, we use a term based notation. Func-
tion terms τf are constructed from variables and functions, recursively applied
to a set of function terms. Predicate terms τp are constructed by applying a
predicate to function terms. The sets of all function and predicate terms are
denoted by TF and TP ⊆ TF , respectively. Given sets ΣF , ΣP of function and
predicate symbols with ΣP ⊆ ΣF , a set V of variables, and a set V of values, let
〈·〉 : V ∪ ΣF → V ∪ F be an assignment function assigning a concrete function
(predicate) to each function (predicate) symbol and an initial value to each vari-
able. We require 〈v〉 ∈ V, 〈f〉 ∈ F , and 〈p〉 ∈ P for v ∈ V , f ∈ ΣF , p ∈ ΣP . The
evaluation χ〈·〉 : TF → V ∪ B of function terms is defined by χ〈·〉(v) := 〈v〉 for
v ∈ V , and by χ〈·〉(f(τ0, . . . , τn)) := 〈f〉(χ〈·〉(τ0), . . . , χ〈·〉(τn)) for f ∈ ΣF ∪ΣP .

Functions and predicates are not tied to a specific interpretation. To restrict
the possible interpretations, we utilize first-order theories. A first-order theory T

is a tuple (ΣF , ΣP ,A), where ΣF and ΣP are sets of function and predicate sym-
bols, respectively, and A is a set of closed first-order logic formulas over ΣF , ΣP ,
and a set of variables V . For an introduction to first-order logic, we refer to the

Temporal Stream Logic modulo Theories 327

full version [14]. The elements of A are called the axioms of T and ΣF ∪ΣP is
called the signature of T . A model M for a theory T = (ΣF , ΣP ,A) is a tuple
(V, 〈·〉), where V is a set of values and 〈·〉 is an assignment function as introduced
above. Furthermore, (V, 〈·〉) is required to entail ϕA for each axiom ϕA ∈ A. The
set of all models of a theory T is denoted by Models(T).

In the remainder of this paper, we focus on the following three theories: The
theory of uninterpreted functions TU is a theory without any axioms, i.e., every
symbol is uninterpreted. It allows for arbitrarily many function and predicate
symbols. The theory of equality TE additionally includes equality, i.e., its ax-
ioms enforce the equality symbol = to indeed represent equality. The theory of
Presburger arithmetic TN implements the idea of numbers. Its axioms define the
constants 0 and 1 as well as equality and addition.

3 Temporal Stream Logic modulo Theories

In this section, we introduce Temporal Stream Logic modulo theories, an exten-
sion of the recently introduced logic Temporal Stream Logic (TSL) [15] with
first-order theories. First, we recap the main idea of TSL as well as its syntax
and semantics. Afterwards, we extend TSL with first-order theories and define
the basic notions of satisfiability and validity for TSL formulas modulo theories.

3.1 Temporal Stream Logic

Temporal Stream Logic (TSL) [15] is a temporal logic that separates tempo-
ral control and pure data. Data is represented as infinite streams of arbitrary
type. TSL allows for checks and manipulations of streams on an abstract level:
It focuses on the control flow and abstracts away concrete implementation de-
tails. The temporal structure of the data is expressed by temporal operators as
in LTL [32]. TSL is especially designed for reactive synthesis and thus distin-
guishes between uncontrollable input streams and controllable output streams,
so-called cells. In this paper, this distinction is not necessary since we consider
TSL independent of its usage in synthesis. Thus, we use the notions of streams
and cells as synonyms. The finite set of all cells is denoted by C.

In TSL, we use functions f ∈ F to modify cells and predicates p ∈ P to
perform checks on cells. The cells c ∈ C serve as variables for function terms.
The sets of all function and predicate terms over ΣF , ΣP , and C are denoted by
TF and TP . TSL formulas are built according to the following grammar:

ϕ,ψ := true | ¬ϕ | ϕ ∧ ψ | ϕ | ϕU ψ | τp | Jc ֋ τf K

where c ∈ C, τp ∈ TP , and τf ∈ TF . An update Jc ֋ τf K denotes that the value
of the function term τf is assigned to cell c. The value of τf may depend on
the value of the cells occurring in τf . The temporal operators ϕ and ϕU ψ are
similar to the ones in LTL. We define ϕ = true U ϕ and ϕ = ¬ ¬ϕ.

Since functions and predicates are represented symbolically, they are not tied
to a specific implementation. To assign an interpretation to them, we use an

328 B. Finkbeiner et al.

assignment function 〈·〉 : C∪ΣF → V ∪F , where V is a set of values. We require
〈c〉 ∈ V, 〈f〉 ∈ F and 〈p〉 ∈ P for c ∈ C, f ∈ ΣF , and p ∈ ΣP Note that 〈·〉 also
assigns an initial value to each cell. Terms can be compared syntactically with
the equivalence relation ≡. The set of all assignments of cells c ∈ C to function
terms τf ∈ TF is denoted by C. A computation ς ∈ Cω is an infinite sequence
of assignments of cells to function terms, capturing the behavior of cells over
time. The satisfaction of a TSL formula ϕ with respect to ς, a set of values V,
an assignment function 〈·〉, and a time step t is defined by:1

ς, t |=V,〈·〉 ¬ϕ :⇔ ς, t 6|=V,〈·〉 ϕ

ς, t |=V,〈·〉 ϕ ∧ ψ :⇔ ς, t |=V,〈·〉 ϕ ∧ ς, t |=V,〈·〉 ψ

ς, t |=V,〈·〉 ϕ :⇔ ς, t+ 1 |=V,〈·〉 ϕ

ς, t |=V,〈·〉 ϕU ψ :⇔ ∃t′′ ≥ t.∀t ≤ t′ < t′′. ς, t′ |=V,〈·〉 ϕ ∧ ς, t′′ |=V,〈·〉 ψ

ς, t |=V,〈·〉 Jc ֋ τK :⇔ ςt(c) ≡ τ

ς, t |=V,〈·〉 p(τ0, . . . , τm) :⇔ χ〈·〉(η(ς, t, p(τ0, . . . , τm))),

where η : Cω × N× TF → TF is a symbolic evaluation function defined by

η(ς, t, c) =

{
c if t = 0

η(ς, t− 1, ςt−1(c)) if t > 0

η(ς, t, f(τ0, . . . , τm)) = f(η(ς, t, τ0), . . . , η(ς, t, τm))

We call (ς,V, 〈·〉) an execution. The satisfaction of a predicate depends on
the current and the past steps in the computation. For updates, the satisfaction
depends solely on the current step. While updates are only checked syntactically,
the satisfaction of predicates depends on the given assignment 〈·〉. An execution
(ς,V, 〈·〉) satisfies a TSL formula ϕ, denoted ς |=V,〈·〉 ϕ, if ς, 0 |=V,〈·〉 ϕ holds.

Example 1. Suppose that we have a single cell x, i.e., C = {x}. Consider the
computation ς = ({λc.f(x)})ω, i.e., f(x) is assigned to cell x in every time step.
Let V = N be the set of values and let 〈·〉 be an assignment function such that the
initial value of x is 1, function f corresponds to incrementation, and predicate p

determines whether its argument is even (true) or odd (false). Consider the TSL
formula ϕ := Jx ֋ f(x)K ∧ ¬p(x) ∧ p(x). By the semantics of TSL, we have
ς, 0 |=V,〈·〉 ϕ if, and only if, (ς0(x) = f(x)) ∧ (¬〈p〉(〈x〉)) ∧ (〈p〉(〈f〉(〈x〉))) holds.
The first conjunct clearly holds by construction of ς. Since 1 is odd and 1+1 = 2
is even, the other two conjuncts hold as well for the chosen assignment function.
Hence, (ς,V, 〈·〉) satisfies ϕ for ς = ({λc.f(x)})ω, V = N and 〈·〉.

A computation ς is called finitary with respect to ϕ, denoted finϕ(ς), if for
all cells c ∈ C and for all points in time t, either ςt(c) ≡ c holds, or there is
an update Jc ֋ τK in ϕ such that ςt(c) ≡ τ , i.e., a finitary computation only
contains updates occurring in ϕ and self-updates. For ς and ϕ from Example 1,
for instance, ς is finitary with respect to ϕ.

1Note that we use a slightly different, but equivalent, definition than [15]: Instead
of evaluating the function and predicate symbols on the fly, we construct the whole
term first and then evaluate it recursively using the evaluation function χ〈·〉.

Temporal Stream Logic modulo Theories 329

3.2 Extending TSL with Theories

In this paper, we extend TSL with first-order theories. That is, we restrict the
possible interpretations of predicate and function symbols to a theory. Hence,
we define the notions of satisfiability and validity of a TSL formula modulo a
theory T . Intuitively, a TSL formula ϕ is satisfiable in a theory T if there exists
an execution satisfying ϕ whose domain and assignment function represent a
model in T , i.e., that entail all axioms of T . Formally:

Definition 1 (TSL Satisfiability). Let T = (ΣF , ΣP ,A) be a theory and let ϕ
be a TSL formula over ΣF , ΣP , and C. We call ϕ satisfiable in T if, and only if,
there exists an execution (ς,V, 〈·〉), such that ς |=V,〈·〉 ϕ and (V, 〈·〉) ∈ Models(T)
hold. If additionally finϕ(ς) holds, then ϕ is called finitary satisfiable in T .

Intuitively, a formula ϕ is valid in a theory T , if for all executions and all
matching models of the theory the formula is satisfied. Formally:

Definition 2 (TSL Validity). Let T = (ΣF , ΣP ,A) be a theory and let ϕ be
a TSL formula over ΣF , ΣP , and C. The formula ϕ is called valid in T if, and
only if, for all executions (ς,V, 〈·〉) with (V, 〈·〉) ∈ Models(T), we have ς |=V,〈·〉 ϕ.
If ς |=V,〈·〉 ϕ holds for all executions (ς,V, 〈·〉) with both (V, 〈·〉) ∈ Models(T) and
finϕ(ς), then ϕ is called finitary valid in T .

It follows directly from their definitions that (finitary) TSL satisfiability and
(finitary) TSL validity are dual. Thus, we focus on TSL satisfiability in the
remainder of this paper as the results can easily be extended to TSL validity.

Theorem 1 (Duality of TSL Satisfiability and Validity). Let ϕ be a TSL
formula over ΣF , ΣP , and C and let T = (ΣF , ΣP ,A) be a theory. Then, ϕ is
(finitary) satisfiable in T if, and only if, ¬ϕ is not (finitary) valid in T .

4 TSL modulo TU Satisfiability Checking

In this section, we investigate the satisfiability of TSL modulo the theory of
uninterpreted functions TU . Since TU has no axioms, there are no restrictions
on how a model for TU evaluates the function and predicate symbols. The only
condition is that the evaluated symbols are indeed functions. Therefore, we have
(ς,V, 〈·〉) ∈ Models(TU) for all executions. Thus, finding some execution satisfy-
ing a TSL formula ϕ is sufficient for showing that ϕ is satisfied in TU :

Lemma 1. Let ϕ be a TSL formula over ΣF , ΣP , and C. If there exists an
execution (ς,V, 〈·〉) with ς |=V,〈·〉 ϕ, then ϕ is satisfiable in TU . If additionally
finϕ(ς) holds, then ϕ is finitary satisfiable in TU .

In the following, we introduce an (incomplete) algorithm for checking the
satisfiability of a TSL formula ϕ in the theory of uninterpreted functions. By

330 B. Finkbeiner et al.

Lemma 1, it suffices to find an execution satisfying ϕ to prove its satisfiabil-
ity in TU . To search for such an execution, we introduce Büchi stream au-
tomata (BSAs), a new kind of ω-automata that reads executions and allows
for dealing with predicates and updates. BSAs are, similar to the connection
between LTL and Büchi automata, an automaton representation for TSL. Then,
we present the algorithm for checking satisfiability in TU based on BSAs.

4.1 Büchi Stream Automata

Intuitively, a Büchi stream automaton (BSA) is an ω-automaton with Büchi
acceptance condition that reads infinite executions instead of infinite words.
Furthermore, it is able to deal with predicates and updates occurring in TSL
formulas. To do so, the transitions of a BSA are labeled with guards and update
terms. Intuitively, the former define which predicates need to hold when taking
the transition. The latter define how the corresponding cells are updated when
taking the transition. Formally, a BSA is defined as follows:

Definition 3 (Büchi Stream Automaton). Let ΣF , ΣP be sets of function
and predicate symbols, respectively, and let C be a finite set of cells. A Büchi
Stream automaton B over ΣF , ΣP , and C is a tuple (Q,Q0, F, •,G,U , δ), where
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of
accepting states, • is a fresh term symbol such that • 6∈ C∪ΣF ∪ΣP , G ⊆ TP is
a finite set of predicate terms over ΣF , ΣP , and C, called guards, U ⊆ TF ∪{•}
is a finite set of function terms over ΣF , ΣP , and C, called update terms, and
δ ⊆ Q× (G → B)× (C → U)×Q is a finite transition relation.

Note that by requiring the update terms U to be a finite set of function
terms, not all executions can be read by a BSA: Non-finitary executions contain
updates with function terms that do not occur in the given TSL formula. Thus,
they may require infinitely many update terms. Therefore, we introduce the fresh
term symbol • 6∈ C∪ΣF ∪ΣP . If a transition in a BSA assigns • to a cell c ∈ C,
then any function term can be assigned to c. This allows for reading non-finitary
executions while maintaining finite representability of BSAs.

Example 2. Consider the three BSAs depicted in Figure 1. If B1 is in state q0 and
p(x) holds, then cell x is updated with f(x) and B1 chooses nondeterministically
to either stay in q0 or to move to the accepting state q1. In contrast, B2 is
deterministic. Yet, it is incomplete: In both q0 and q1, no guard is satisfied if
¬p(x) holds. Hence, B2 gets stuck, preventing satisfaction of the Büchi winning
condition for any execution containing ¬p(x). The BSA B3 makes use of the
fresh term symbol •: If p(x) holds, any function term can be assigned to x.

Given sets ΣF , ΣP , C and a BSA B = (Q,Q0, F, •,G,U , δ) over ΣF , ΣP , C,
an infinite word c ∈ (Q × (G → B) × (C → U) × Q)ω is called run of B if, and
only if, the first state of c is an initial state, i.e., π1(c0) ∈ Q0, and both ct ∈ δ

and π4(ct) = π1(ct+1) hold for all points in time t ∈ N0. Intuitively, a run c is an
infinite sequence of tuples (q, g, u, q′) encoding transitions in the BSA: q is the

Temporal Stream Logic modulo Theories 331

q0 q1

¬p(x):
Jx ֋ f(x)K

p(x):
Jx ֋ f(x)K

p(x):
Jx ֋ f(x)K

¬p(x):
Jx ֋ f(x)K

(a) BSA B1

q0 q1

p(x), p(f(x)):
Jx ֋ f(x)K

p(x),¬p(f(x)):
Jx ֋ f(x)K

p(x), p(f(x)):
Jx ֋ f(x)K

p(x),¬p(f(x)):
Jx ֋ f(x)K

(b) BSA B2

q0

p(x):
Jx ֋ •K

(c) BSA B3

Fig. 1: Three exemplary Büchi stream automata. Accepting states are marked
with double circles. Guards are highlighted in red, update terms in blue.

source state, q′ is the target state, g determines which predicate terms hold, and
u defines which updates are performed when taking the transition. A run c is
called accepting if it contains infinitely many accepting states, i.e., for all points
in time t ∈ N0, there exists a t′ > t such that π1(ct′) ∈ F holds.

Example 3. Let g1(p(x)) = true, g2(p(x)) = false, and u(x) = f(x). The infi-
nite word c = (q0, g1, u, q1)(q1, g2, u, q0)(q0, g1, u, q1)(q1, g2, u, q0) . . . is a run of
BSA B1 from Figure 1a. It is accepting as it visits q1 infinitely often.

The characteristics of a BSA are its predicates and updates. Thus, it is not
sufficient to solely consider accepting runs since the constraints produced by
the predicates might be inconsistent. Therefore, we define the execution of a
BSA that only permits consistent accepting runs. Intuitively, given a run c of a
BSA B, an execution of c consists of a computation ς ∈ Cω, a domain V, and an
assignment 〈·〉 such that the updates in ς match the updates in c and such that
the recursive evaluation of a predicate term using 〈·〉 matches its truth value
in ς. To capture the constraints accumulated in ς as well as their truth values,
we define the constraint trace ̺ : (τp ×B)ω of ς and c: Formally, ̺ for ς and c is
defined by ̺t := ∅ if t = 0, and ̺t := ̺t−1∪{(η(ς, t−1, τp), π2(ct−1)(τp)) | τp ∈ G}
if t > 0. As an example, reconsider the computation ς from Example 1 and the
run c of BSA B1 from Example 3. The constraint trace of ς and c is given
by ̺ = ∅{(p(x), true)}{(p(x), true), (p(f(x)), false)} A constraint trace ̺ is
called consistent if there is no predicate term τp ∈ TP such that both (τp, true)
and (τp, false) occur in

⋃
t∈N0

̺t. ̺ from the example above is consistent. Using
constraint traces, we now formally define the execution of a BSA:

Definition 4 (Execution of a BSA). Let ΣF and ΣP be sets of function
and predicate symbols, respectively, and let C be a finite set of cells. Let B be a
BSA over ΣF , ΣP , and C and let c be a run of B. Let ς ∈ Cω be an infinite
computation and let 〈·〉 : C ∪ ΣF → V ∪ F be an assignment function. Let ̺ be
the constraint trace of ς and c. We call (ς,V, 〈·〉) execution for c if (1) for all
points in time t ∈ N0 and all cells c ∈ C, we have either π3(ct)(c) = ςt(c) or
π3(ct)(c) = •, and (2) for all (τp, b) ∈

⋃
t∈N0

̺t, we have χ〈·〉(τp) = b.

332 B. Finkbeiner et al.

Note that the second requirement can only be fulfilled if the constraint trace
is consistent. Consider the computation ς and the assignment function 〈·〉 from
Example 1, the run c of B1 from Example 3, and the constraint trace ̺ of ς and
c given above. Then, (ς,N, 〈·〉) is an execution for c: Since in both ς and c, cell
x is always updated with f(x), the updates in ς and c coincide at every point in
time. Furthermore, by construction of 〈·〉, the constraints of ̺ match the truth
values obtained by recursively evaluating 〈·〉 for all predicate terms.

We define two languages of a BSA B: The symbolic language L(B) is the set
of all executions that have a respective accepting run, i.e., (ς,V, 〈·〉) ∈ L(B) if,
and only if, there exists an accepting run c such that (ς,V, 〈·〉) is an execution
for c. The language LT (B) in a theory T is the set of all executions whose domain
and assignment function additionally form a model in T , i.e., (ς,V, 〈·〉) ∈ LT (B)
if, and only if, (ς,V, 〈·〉) ∈ L(B) and (V, 〈·〉) ∈ Models(T).

We call a BSA B = (Q,Q0, F, •,G,U , δ) finitary if • 6∈ U holds. Hence, every
run c of a finitary BSA, has a unique computation ς and thus a unique constraint
trace ̺. Therefore, for a finite prefix cp of c, we can compute its execution effect
effect(cp) := (λc. η(ς, |cp|, c), ̺|cp|) from cp itself, i.e., without considering ς and ̺

explicitly. Intuitively, cp’s execution effect consists of the function terms assigned
to the cells during the execution of cp as well as the constraints and their truth
values on the transitions taken with cp in the BSA. The BSAs B1 and B2, depicted
in Figure 1, are finitary while B3 is not. Since B1 is finitary, consider the prefix
cp = (q0, g1, u, q1)(q1, g2, u, q0) of the run c of B1 presented in Example 3. Its exe-
cution effect is given by effect(cp) = (λc.f(f(x)), {(p(x), true), (p(f(x)), false)}).

An LTL formula ϕ can be translated into a nondeterministic Büchi automa-
ton (NBA) Aϕ with L(ϕ) = L(Aϕ) [38]. An analogous relation exists between
TSL formulas and BSAs: A TSL formula ϕ can be translated into an equiva-
lent BSA Bϕ: First, we approximate ϕ by an LTL formula ϕLTL, similarly to
the approximation described in [15]. The main idea of the approximation is to
represent every function and predicate term as well as every update occurring
in ϕLTL by an atomic proposition and to add conjuncts that ensure that exactly
one update is performed for every cell in every time step. Second, we build an
equivalent NBA AϕLTL

from ϕLTL. Third, we construct a BSA Bϕ from AϕLTL

by, intuitively, translating the atomic propositions back into predicate terms and
updates and by dividing them into guards and update terms, while maintaining
the structure of the NBA AϕLTL

. The full construction of an equivalent BSA Bϕ

from a TSL formula ϕ is given in the full version [14].

Theorem 2 (TSL to BSA Translation). Given a TSL formula ϕ, there
exists an equivalent (finitary) Büchi stream automaton B such that for all theo-
ries T , LT (B) 6= ∅ holds if, and only if, ϕ is (finitary) satisfiable in T .

For instance, the TSL formula ϕ1 := Jx ֋ f(x)K ∧ (p(x) ∧ ¬p(x)) is
finitary satisfiable in a theory T if, and only if, LT (B1) 6= ∅ holds for the BSA B1

from Figure 1a. Analogously, ϕ2 := (Jx ֋ f(x)K ∧ p(x)) ∧ ¬p(f(x)), and
ϕ3 := p(x) correspond to the BSAs B2 and B3 from Figure 1b and Figure 1c.

Temporal Stream Logic modulo Theories 333

Algorithm 1: Algorithm for Checking TSL modulo TU Satisfiability

Input: ϕ: TSL Formula
Output: SAT, UNSAT

1 B := Finitary BSA for ϕ as defined in Theorem 2;
2 R := Set of runs of B;
3 Function SatSearch
4 for pref .recω ∈ {c | c ∈ R ∧ accepting(c)} do
5 (vp,):=effect(pref);
6 (vr, P):=effect(pref .rec);

7 if SMT

((

∧

(tp,v)∈P

{

tp if v = true

¬tp if v = false

)

∧
∧

c∈C

vp(c) = vr(c)

)

=SAT then

8 return SAT

9 Function UnsatSearch
10 for n ∈ N0 do
11 for c ∈ {c | c ∈ finiteSubwords(R) ∧ |c| = n} do
12 (, P):=effect(c);
13 if ∃tp. (tp, true), (tp, false) ∈ P then
14 R := R \ {c′ | ∃m ∈ N0. ∀0 ≤ i < n. c′i+m = ci}

15 if {c | c ∈ R ∧ accepting(c)} = ∅ then
16 return UNSAT

17 return parallel(SatSearch, UnsatSearch)

4.2 An Algorithm for TSL modulo TU Satisfiability Checking

Utilizing BSAs, we present an algorithm for checking the satisfiability of a TSL
formula in the theory of uninterpreted functions TU in the following. First, recall
that finitary computations only perform self-updates or updates that occur in
the given TSL formula. Since there are only finitely many cells, the behavior
of finitary computations is thus restricted to a finite set of possibilities in each
step. Hence, reasoning with finitary computations is easier than reasoning with
non-finitary ones. In the algorithm, we make use of the fact that satisfiability
can be reduced to finitary satisfiability in the theory of uninterpreted functions,
enabling us to focus on finitary computations. The main idea of the reduction is
to introduce a new cell for each cell of a given TSL formula. The new cells then
capture the values that are constructed by the non-finitary parts of a computa-
tion. The proof is given in the full version [14].

Lemma 2. Let ϕ be a TSL formula. Then, there is a TSL formula ϕfin such
that ϕ is satisfiable in TU if, and only if, ϕ ∧ ϕfin is finitary satisfiable in TU .

Algorithm 1 shows the algorithm for checking TSL modulo TU satisfiability.
It directly works on Büchi stream automata. First, an equivalent BSA B is
generated for the input formula ϕ. Then, in parallel, SatSearch tries to prove
that ϕ is satisfiable in TU while UnsatSearch tries to prove unsatisfiability of ϕ.

334 B. Finkbeiner et al.

SatSearch enumerates all lasso-shaped accepting runs pref.recω of B, i.e.,
accepting runs consisting of a finite prefix pref and a finite recurring part rec that
is repeated infinitely often. Both pref and rec need to end in the same state of B.
Then, the execution effects of pref and pref.rec are computed. SatSearch checks
if it is possible to satisfy all predicate constraints induced by pref.rec under the
condition that, for each cell, pref and pref.rec construct equal function terms.
For this, it utilizes an SMT solver to check the satisfiability of a quantifier-free
first-order logic formula, encoding the consistency requirement, in the theory of
equality. If the check succeeds, adding rec to pref des not create an inconsistency
and hence repeating rec infinitely often is consistent. Therefore, there exists an
execution for pref.recω and thus ϕ is finitary satisfiable in TU by Lemma 1.

UnsatSearch computes the execution effect of finite subwords of runs of B and
checks whether they are consistent. If a subword is inconsistent, then every run
that contains this subword is inconsistent. Hence, there do not exist executions
for these runs and therefore they are removed from the set of candidate runs. If
there is no accepting candidate run left, then B has an empty symbolic language
and thus, by Theorem 2, ϕ is unsatisfiable in TU .

Example 4. Consider the finitary BSAs B1 and B2 from Figures 1a and 1b as
well as their respective TSL formulas ϕ1 := Jx ֋ f(x)K ∧ (p(x) ∧ ¬p(x))
and ϕ2 := ((Jx ֋ f(x)K∧p(x))∧ ¬p(f(x)). If we execute Algorithm 1 on ϕ1,
SatSearch considers the accepting lasso q0 → q1 → q0 in B1 at some point.
Then, pref = ε and rec = (q0, g1, u, q1)(q1, g2, u, q0). Note that pref.rec is the
finite prefix cp of a run of B1 from Example 3. Thus, effect(pref.rec) is given by
(λc.f(f(x)), {(p(x), true), (p(f(x)), false)}). Since effect(pref) = (λc.c, ∅) holds,
SatSearch generates the query p(x)∧¬p(f(x))∧ x = f(f(x)) which is satisfiable
in TE . Hence, we can repeat the lasso q0 → q1 → q0 infinitely often without
getting any inconsistent constraints and thus ϕ1 is satisfiable.

If we execute Algorithm 1 on ϕ2, UnsatSearch checks at some point wether
in B2 the transition sequence q0 → q1 followed by the upper self-loop is con-
sistent. This is not the case as it requires p(f(x)) to be true (first transition)
and false (second transition): We have ̺1 = {(p(x), true), (p(f(x)), false)} and
̺2 = ̺1 ∪ {(p(f(x)), true), (p(f(f(x))), true)} by definition of the constraint
trace. UnsatSearch also checks the transition sequence q0 → q1 followed by the
lower self-loop which is also inconsistent. Hence, there is no consistent transition
after q0 → q1 and thus there is no valid accepting run. Hence, ϕ2 is unsatisfiable.

Note that the presentation of Algorithm 1 omits implementation details such
as the enumeration of accepting loops and the implementation of the infinite
set R. A more detailed description addressing these issues is given in [14].

Algorithm 1 is correct. Intuitively, it terminates with SAT if the constraint
trace ̺ of the unique computation ς of pref.recω is consistent. Hence, ̺ defines
an assignment 〈·〉 such that (ς,V, 〈·〉) is an execution of pref.recω, implying satis-
fiability of ϕ in TU . If the algorithm terminates with UNSAT, then all accepting
runs of the BSA are inconsistent and thus no finitary execution satisfying ϕ

exists. For the proof, we refer the reader to the full version [14].

Temporal Stream Logic modulo Theories 335

Theorem 3 (Correctness of Algorithm 1). Let ϕ be a TSL formula. If
Algorithm 1 terminates on ϕ with SAT, then there exists an execution (ς,V, 〈·〉)
such that both ς |=V,〈·〉 ϕ and finϕ(ς) hold. If Algorithm 1 terminates with UN-
SAT, then for all executions (ς,V, 〈·〉) with finϕ(ctr), ς 6|=V,〈·〉 ϕ holds.

5 Undecidability of TSL modulo TU Satisfiability

The algorithm for TSL satisfiability checking in TU presented in the previous sec-
tion does not necessarily terminate. In this section, we show that no complete al-
gorithm exists: The satisfiability of a TSL formula in the theory of uninterpreted
functions TU (TSL-TU -SAT) is neither semi-decidable nor co-semi-decidable:

Theorem 4 (Undecidability of TSL-TU -SAT). The satisfiability (validity)
problem of TSL in TU is neither semi-decidable nor co-semi-decidable.

The main intuition behind the undecidability result is that we can encode
numbers with TSL in the theory of uninterpreted functions. That is, we are able
to encode incrementation, resetting some variable to zero, and equality. We only
give the encoding here, for the proof of its correctness we refer to [14].

Lemma 3. Let f be a unary function, let =̂ be a binary predicate, and let z be
a constant. Let fx(z) correspond to applying f x-times to z. There exists a TSL
formula ϕnum such that every execution entailing ϕnum requires from its models
that for all a, b ∈ N0, a = b holds if, and only if, fa(z) =̂ f b(z) holds.

Proof (Sketch). We construct ϕnum = ϕ1 ∧ ϕ2 as follows: The first conjunct is
defined by ϕ1 := Je ֋ zK ∧ (Je ֋ f(e)K ∧ e =̂ e). Let

ϕeq := (x =̂ b) → (Jx ֋ zK ∧ Jb ֋ f(b)K ∧ ¬ (b =̂ f(b)) ∧ ¬ (f(b) =̂ b))

ϕneq := ¬ (x =̂ b) → (Jx ֋ f(x)K ∧ Jb ֋ bK ∧ ¬ (x =̂ f(b)) ∧ ¬ (f(b) =̂ x)) .

Then, ϕ2 is defined by ϕ2 := Jx ֋ zK ∧ Jb ֋ zK ∧ (ϕeq ∧ ϕneq).

Intuitively, f corresponds to incrementation, z to resetting a variable to zero,
and =̂ to equality: ϕ1 ensures that fn(z) =̂ fn(z) holds for all n ∈ N0. In
contrast, ϕ2 ensures that if a 6= b holds, then ¬(fa(z) =̂ f b(z)): Starting with
x = b = z, ϕ1 ensures that x =̂ b holds initially. Then, ϕeq resets x to z and
“increments” b, while ensuring that ¬(fk(z) =̂ fk+1(z)) holds, where b = fk(z).
Then, ¬(x =̂ b) holds and thus ϕneq “increments” x until it reaches b = fk+1(z),
while ensuring that ¬(fk+1(z) =̂ f ℓ(z)) holds for all ℓ < k + 1.

Using this encoding in TSL modulo TU , we can construct a TSL formula ϕG

for every Goto-program G such that ϕG ∧ϕnum is satisfiable in TU if, and only
if, G terminates on every input. Intuitively, ϕG “simulates” G on different inputs
by starting with input zero and incrementing the input if the halting location was
reached. The temporal operators of TSL allow for requiring that G terminates
infinitely often. The construction of ϕG is given in the full version [14]. Since
the universal halting problem for Goto programs is neither semi-decidable nor

336 B. Finkbeiner et al.

co-semi-decidable, the same undecidability result follows for the satisfiability of
a TSL formula modulo TU , proving Theorem 4.

Since the theory of Presburger arithmetic TN allows for incrementation, re-
setting a variable to zero, and equality, we can reuse the TSL formula ϕG from
above to reduce the universal halting problem for Goto programs to TSL satis-
fiability modulo TN (TSL-TN-SAT), proving undecidability of TSL-TN-SAT. Note
that this result holds for other theories that can express incrementation, reset,
and equality, for instance Peano Arithmetic, as well.

Theorem 5 (Undecidability of TSL-TN-SAT). The satisfiability (validity)
problem of TSL in TN is neither semi-decidable nor co-semi-decidable.

Furthermore, equality allows for encoding incrementation and resetting a
variable to zero. Hence, similarly to TU , there exists a TSL formula ϕenc that, if
entailed, enforces a binary function and a constant to behave as incrementation
and a reset, respectively. The construction of ϕenc is given in the full version [14].
Thus, the TSL formula ϕG constructed as above for a Goto program G ensures
that ϕG ∧ ϕenc is satisfiable in the theory of equality TE if, and only if, G
terminates on every input. Hence, undecidability of TSL-TE-SAT follows:

Theorem 6 (Undecidability of TSL-TE-SAT). The satisfiability (validity)
problem of TSL in TE is neither semi-decidable nor co-semi-decidable.

6 (Semi-)Decidable Fragments

In Section 5, we showed that TSL satisfiability is undecidable in TU . In this
section, however, we identify fragments of TSL on which Algorithm 1 terminates
for certain inputs. In fact, we present one fragment for which TSL-TU -SAT is
decidable and two fragments for which TSL-TU -SAT is semi-decidable.

First, we consider the TSL reachability fragment, i.e., the fragment of TSL
that only permits the next operator and the eventually operator as temporal
operators. In our applications, this fragment corresponds to finding counterex-
amples to safety properties. For satisfiable reachability formulas, Algorithm 1
terminates. The main idea behind the termination is that the BSA of a reacha-
bility formula has an accepting lasso-shaped run and since ϕ is satisfiable, this
run is consistent. For the proof, we refer to the full version [14].

Lemma 4. Let ϕ be a TSL formula in the reachability fragment. If ϕ is finitary
satisfiable in TU , then Algorithm 1 terminates on ϕ.

Restricting the reachability fragment further, we consider TSL formulas with
updates, predicates, logical operators, next operators, and at most one top-level
eventually operator. Such formulas are either completely time-bounded or they
are of the form ϕ = ϕ′, where ϕ′ is time-bounded. In the dual validity problem,
such formulas correspond to invariants on a fixed time window, a useful property
for many applications. Algorithm 1 is guaranteed to terminate for satisfiable and
unsatisfiable formulas of the above form if a suitable BSA is constructed. Such a

Temporal Stream Logic modulo Theories 337

suitable BSA has a single accepting state q indicating that the time-bounded part
has been satisfied. Intuitively, a suitable BSA ensures that all runs reaching q are
accepting and that only finitely many transition sequences lead to q. Then, if ϕ is
unsatisfiable, Algorithm 1 is able to exclude all transition sequences leading to q

and thus to terminate. A BSA with infinitely many transition sequences leading
to q, in contrast, may cause the algorithm to diverge as it may consider infinitely
many consistent subsequences before finding the inconsistent one yielding the
exclusion of the sequences leading to q. A suitable BSA exists for every TSL
formula in the considered fragment. For the proof, including a more detailed
description of suitable BSAs, we refer to the full version [14].

Lemma 5. Let ϕ be a TSL formula with only logical operators, predicates, up-
dates, next operators, and at most one top-level eventually operator. Algorithm 1
terminates on ϕ if it picks a suitable respective BSA.

Note that Algorithm 1 is only a formal decider for this fragment if we ensure
that a suitable BSA is always generated. In practice, we experienced that this
is usually the case even without posing restrictions on the BSA construction.
Lastly, we consider a fragment of TSL that does not restrict the temporal struc-
ture of the formula but the number of used cells. For TSL formulas with a single
cell, Algorithm 1 always terminates on satisfiable inputs:

Lemma 6. Let ϕ be a TSL formula such that |C| = 1. If ϕ is finitary satisfiable
in the theory of uninterpreted functions, then Algorithm 1 terminates on ϕ.

Intuitively, restricting the TSL formula to use only a single cell prevents
us from simulating arbitrary computations and thus from reducing from the
universal halting problem of Goto programs as in the general undecidability
proof. The formal proof, given in the full version [14], however, is unrelated to
the above intuition. Combining the three observations, we obtain the following
(semi-)decidability results for the satisfiability of fragments of TSL modulo TU :

Theorem 7. The satisfiability problem of TSL formulas in TU is (1) semi-
decidable for the reachability fragment of TSL, (2) decidable for formulas consist-
ing of only logical operators, predicates, updates, next operators, and at most one
top-level eventually operator, and (3) semi-decidable for formulas with one cell.

7 Evaluation

We implemented the algorithm for checking TSL modulo TU satisfiability2. We
used TSL tools3 to handle TSL, spot [11] to transform the approximated LTL for-
mulas into NBAs, SyFCo [20] for LTL transformations, and z3 [31] to solve SMT
queries. The implementation follows the extended algorithm described in [14].
Since in some cases the default optimizations of spot produce a large overhead in

2https://github.com/reactive-systems/tsl-satisfiability-modulo-theories
3https://github.com/reactive-systems/tsltools

338 B. Finkbeiner et al.

https://github.com/reactive-systems/tsl-satisfiability-modulo-theories
https://github.com/reactive-systems/tsltools

0 5 10 15

102

103

104

105

TO (60s)

Scaling Factor n

T
im

e(
m
s)

ϕsat

ϕunsat

Fig. 2: Execution times in milliseconds
of the scalability benchmark series.

0 200 400 600

102

103

104 TO (30s)

Accumulated Instances

T
im

e(
m
s)

Fig. 3: Execution times in milliseconds
of the random benchmark series.

computation time, we first execute it with these and if this does not terminate
within 20s, we execute it without optimizations. We evaluated the implementa-
tion on three benchmark classes and a machine with an AMD Ryzen 7 processor,
using a virtual machine with two logical cores and 6 GB of RAM.

Scalability Benchmark Series. We test the scalability of the algorithm with pa-
rameterized decidable benchmarks. The timeout is one minute. Note that spot
can always perform its optimizations. The satisfiable benchmarks are defined by
ϕsat(n) := (Jx ֋ f(x)K) ∧ (¬p(x)) ∧

(∧n
i=0

p(f i(x))
)
. The parameter n cor-

responds to the number of updates that have to be performed to find a satis-
fiable lasso. By Lemma 6, the algorithm always terminates. The TSL formula
ϕunsat(n) := ((q(x) ↔ ¬q(fn(x))))∧ (Jx ֋ f(x)K)∧ (q(x)∧ n q(x)) defines
the unsatisfiable benchmarks. The parameter n corresponds to the “distance”
in time and number of updates of the conflict causing unsatisfiability. The algo-
rithm always terminates. The results are shown in Figure 2. The algorithm scales
particularly well for the satisfiable formulas. However, the experiments indicate
an exponential complexity of the algorithm for the unsatisfiable formulas.

Random Benchmark Series. We implemented a random TSL formula generator
that uses spot ’s ltlrand to generate random LTL formulas and then substitutes
the atomic propositions with random updates and predicates. The generated
TSL formulas have one to three cells, one to three different updates and one to
three different predicates. For the LTL formulas generated by ltlrand we use
tree sizes from 5 to 95 in steps of five. For each of the tree sizes, we generate 30
formulas; 570 in total. The execution times are shown in Figure 3. On many for-
mulas, the algorithm terminates within one second. The implementation returns
SAT for 513 of the 570 formulas. It times out after 30s on 29 formulas. How-
ever, the timeouts already occur in the automaton construction, both with and
without spot ’s optimizations. Only 28 formulas are unsatisfiable. For 25 of these
unsatisfiable formulas, the intermediate LTL approximation formula is already
unsatisfiable, i.e., only for three formulas there is some conflict due to updates
and predicate evaluation.

Temporal Stream Logic modulo Theories 339

Table 1: Execution times in seconds of the application benchmark series.
Benchmark Result Time

Chain SAT 7.06
Filter UNSAT 0.33
Gamemodechooser Ass. UNSAT 35.55
Holding Arbiter SAT 11.75
Small Holding Arbiter SAT 36.69
P. T. Arbiter UNSAT 56.03
Approx. P. T. Arbiter UNSAT 940.03

Benchmark Result Time

Inductive Ass. UNSAT 0.25
One Of Two UNSAT 1.20
One Of Three UNSAT 4.25
Injector UNSAT 1.52
Invariant Holding UNSAT 2.33
Scheduler UNSAT 3.87

Applications Benchmark Series. These benchmarks correspond to checking con-
sistency of a specification and validating assumptions of a system. Hence, they
illustrate how satisfiability results can aid the system design. The results are
presented in Table 1. We introduce two of the benchmarks in more detail here.
The other, slightly larger, ones, including different kinds of arbiters, a scheduler,
and modules of the Syntroids [17] arcade game, are described in [14].

The Chain benchmark considers a compound system of two chained modules
m1 and m2 that receive an input value, store it, and forward it to the next
system: ϕi := (Jmemi ֋ iniK ∧ Jini+1 ֋ memiK) for i ∈ {1, 2}. To simulate
the input of the first module, we use an update with an uninterpreted function:
ϕinp := Jin1 ֋ f(in1)K. We require that if some property p holds on m1’s
input, p also needs to hold hold on m2’s output: ϕspec := (p(in1) → p(in3)).
Our algorithm determines within 8s that (ϕinp ∧ϕ1 ∧ϕ2)∧¬ϕspec is satisfiable,
detecting an inconsistency: If m1 stores some value on which p holds, it may
overwrite it before m2 copies it, preventing the value to reach m2’s output.

The Filter benchmark studies a system that “passes through” an input value
to a cell if it fulfills a certain property p and holds the previous value otherwise:
ϕfilter := Jout ֋ d()K∧ ((p(in) → Jout ֋ inK)∧ (¬p(in) → Jout ֋ outK)),
where d is a constant representing an initial default value. The default value
fulfills p, i.e., ϕfact := p(d()). As for the chain, ϕinp := Jin ֋ f(in)K
simulates the input. The filter is valid if p holds on all outputs after the ini-
tialization: ϕspec := p(out). Within 400ms, the algorithm confirms that
(ϕinp ∧ ϕfact ∧ ϕfilter) ∧ ¬ϕspec is unsatisfiable, validating the filter.

8 Related Work

Linear-time temporal logic (LTL) [32] is one of the most popular specification
languages for reactive systems. It is based on an underlying assertion logic, such
as propositional logic, which is extended with temporal modalities. Satisfiability
of propositional LTL has long known to be decidable [37] and there are efficient
tools for LTL satisfiability checking [36,25].

While propositional LTL is very common, especially in hardware verification,
LTL with richer assertion logics, such as first-order logic and various theories,
have long been used in verification (cf. [28]). Temporal Stream Logic (TSL) [15]

340 B. Finkbeiner et al.

was introduced as a new temporal logic for reactive synthesis. In the original
TSL semantics, all functions and predicates are uninterpreted. TSL synthesis
is undecidable in general, even without inputs or equality, but can be under-
approximated by the decidable LTL synthesis problem [15]. TSL has been used
to specify and synthesize an arcade game realized on an FPGA [17].

Constraint LTL (CLTL) [6] extends LTL with the possibility of expressing
constraints between variables at bounded distance. A constraint system D con-
sists of a concrete domain and an interpretation of relations on the domain.
In Constraint LTL over D (CLTL(D)), one can relate variables with relations
defined in D. Similar to updates in TSL, CLTL can specify assignment-like state-
ments by utilizing the equality relation. Like for all constraints allowing for a
counting mechanism, LTL with Presburger constraints, i.e., CLTL(Z,=,+), is
undecidable [6]. However, there exist decidable fragments such as LTL with finite
constraint systems [4] and LTL with integer periodicity constraints [5]. Permit-
ting constraints between variables at an unbounded distance leads to undecid-
ability even for constraint systems that only allow equality checks on natural
numbers. Restricting such systems to a finite number of constraints yields decid-
ability again [9]. In TSL modulo theories, a theory is given from which a model
can be chosen. In CLTL, in contrast, the concrete model is fixed. Therefore, TSL
modulo theories cannot be encoded into CLTL in general.

LTL has been extended with the freeze operator [8,7], allowing for storing
an input in a register. Then, the stored value can be compared with a current
value for equality. Freeze LTL with two registers is undecidable [26,10] . For flat
formulas, i.e., formulas where the possible occurrences of the freeze operator are
restricted, decidability is regained [10]. Similar to the freeze operator, updates
in TSL allow for storing values in cells and in TSL modulo the theory of equality
the equality check can be performed. In TSL, we can perform computations on
the stored values which is not possible in freeze LTL. Hence, freeze LTL can
be seen as a special case of TSL. Constraint LTL has been augmented with the
freeze operator as well [10]. For an infinite domain equipped with the equality
relation, it is undecidable. For flat formulas, decidability is regained [10].

The temporal logic of actions (TLA) [24] is designed to model computer
systems. States are assignments of values to variables and actions relate states.
Actions can, similar to updates in TSL, describe assignments of variables. A TLA
formula may contain state functions and predicates. Actions and state functions
are combined with the temporal operators and . In contrast to TSL, and U
are not permitted. The validity problem for the propositional fragment of TLA,
i.e., with uninterpreted functions and predicates, is PSPACE complete [35].

Similar to temporal logics, dynamic logic [33,19] is an extension of modal
logic to reason about computer programs. Dynamic logic allows for stating that
after action a, it is necessarily the case that p holds, or it is possible that p

holds. Compound actions can be build up from smaller actions. In propositional
dynamic logic (PDL) [16], data is omitted, i.e., its terms are actions and propo-
sitions. PDL satisfiability is decidable in EXPTIME [34]. First-order dynamic
logic (FODL) [18] allows for including data: First-order quantification over a

Temporal Stream Logic modulo Theories 341

first-order structure, the so-called domain of computation, is allowed. Dynamic
logic does not contain temporal operators such as or . Since we consider
reactive systems, i.e., systems that continually interact with their environment,
temporal logics are better suited than dynamic logics for our setting.

Symbolic automata (see e.g. [2,3]) and register automata [21] are extensions
of finite automata that are capable of handling large or infinite alphabets. Reg-
ister automata have additionally been considered over infinite words in some
works (see e.g. [8,22,12]). Similar to BSAs, transitions of symbolic automata are
labeled with predicates over a domain of alphabet symbols. Register automata
are equipped with a finite amount of registers that, similar to cells in BSAs, can
store input values. Symbolic register automata (SRAs) [1] combine the features
of both automata models. BSAs have the additional ability to modify the stored
values and thus to perform actual computations on them. Moreover, they read
infinite instead of finite words. Thus, SRAs can be seen as a special case of BSAs.

More recently, the verification of uninterpreted programs has been investi-
gated [29]. Uninterpreted programs are similar toWhile-programs with equality
and uninterpreted functions and predicates. They are annotated with assump-
tions. The verification of uninterpreted programs is undecidable in general; for
the subclass of coherent uninterpreted programs, however, it is decidable [29].
The verification problem has been extended with theories, i.e., with axioms over
the functions and predicates [30]. Adding axioms to coherent uninterpreted pro-
grams preserves decidability for some axioms, e.g., idempotence, while it yields
undecidability for others, e.g., associativity. The synthesis problem for uninter-
preted programs is undecidable in general, but decidable for coherent ones [23].

9 Conclusion

We have extended Temporal Stream Logic (TSL) with first-order theories and
formalized the satisfiability and validity of a TSL formula in a theory. While we
show that TSL satisfiability is neither semi-decidable nor co-semi-decidable in
the theory of uninterpreted functions TU , the theory of equality TE , and Pres-
burger arithmetic TN, we identify three fragments for which satisfiability in TU

is (semi-)decidable: For reachability formulas as well as for formulas with a sin-
gle cell, TSL satisfiability in TU is semi-decidable. For slightly more restricted
reachability formulas, it is decidable. Moreover, we have presented an algorithm
for checking the satisfiability of a TSL formula in the theory of uninterpreted
functions that is based on Büchi stream automata, an automaton representation
of TSL formulas introduced in this paper. Satisfiability checking has various ap-
plications in the specification and analysis of reactive systems such as identifying
inconsistent requirements during the design process. We have implemented the
algorithm and evaluated it on three different benchmark series, including con-
sistency checks and assumption validations: The algorithm terminates on many
randomly generated formulas within one second and scales particularly well for
satisfiable formulas. Moreover, it is able to prove or disprove consistency of re-
alistic benchmarks and to validate or invalidate their assumptions.

342 B. Finkbeiner et al.

References

1. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic Register Automata.
In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 11561, pp. 3–21. Springer (2019),
https://doi.org/10.1007/978-3-030-25540-4 1

2. D’Antoni, L., Veanes, M.: The Power of Symbolic Automata and Transducers. In:
Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 10426, pp. 47–67. Springer (2017),
https://doi.org/10.1007/978-3-319-63387-9 3

3. D’Antoni, L., Veanes, M.: Automata modulo Theories. Commun. ACM 64(5), 86–
95 (2021), https://doi.org/10.1145/3419404

4. Demri, S.: Linear-time Temporal Logics with Presburger Constraints:
An Overview. J. Appl. Non Class. Logics 16(3-4), 311–348 (2006),
https://doi.org/10.3166/jancl.16.311-347

5. Demri, S.: LTL Over Integer Periodicity Constraints. Theor. Comput. Sci. 360(1-
3), 96–123 (2006), https://doi.org/10.1016/j.tcs.2006.02.019

6. Demri, S., D’Souza, D.: An Automata-Theoretic Approach to Constraint LTL. Inf.
Comput. 205(3), 380–415 (2007), https://doi.org/10.1016/j.ic.2006.09.006

7. Demri, S., D’Souza, D., Gascon, R.: A Decidable Temporal Logic of Repeating
Values. In: Artëmov, S.N., Nerode, A. (eds.) Logical Foundations of Computer
Science, International Symposium, LFCS 2007, New York, NY, USA, June 4-7,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4514, pp. 180–194.
Springer (2007), https://doi.org/10.1007/978-3-540-72734-7 13

8. Demri, S., Lazic, R.: LTL with the Freeze Quantifier and Register Automata. In:
21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings. pp. 17–26. IEEE Computer Society (2006),
https://doi.org/10.1109/LICS.2006.31

9. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint
LTL: Decidability and Complexity. In: 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005,
Burlington, Vermont, USA. pp. 113–121. IEEE Computer Society (2005),
https://doi.org/10.1109/TIME.2005.28

10. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint
LTL: Decidability and Complexity. In: 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005,
Burlington, Vermont, USA. pp. 113–121. IEEE Computer Society (2005),
https://doi.org/10.1109/TIME.2005.28

11. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A Framework for LTL and ω-Automata Manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9938, pp. 122–129 (2016),
https://doi.org/10.1007/978-3-319-46520-3 8

12. Exibard, L., Filiot, E., Reynier, P.: Synthesis of Data Word Transducers. Log.
Methods Comput. Sci. 17(1) (2021), https://lmcs.episciences.org/7279

13. Finkbeiner, B., Heim, P., Passing, N.: Temporal Stream Logic modulo Theories.
CoRR abs/2104.14988v1 (2021), https://arxiv.org/abs/2104.14988v1

Temporal Stream Logic modulo Theories 343

https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/3419404
https://doi.org/10.3166/jancl.16.311-347
https://doi.org/10.1016/j.tcs.2006.02.019
https://doi.org/10.1016/j.ic.2006.09.006
https://doi.org/10.1007/978-3-540-72734-7_13
https://doi.org/10.1109/LICS.2006.31
https://doi.org/10.1109/TIME.2005.28
https://doi.org/10.1109/TIME.2005.28
https://doi.org/10.1007/978-3-319-46520-3_8
https://lmcs.episciences.org/7279
https://arxiv.org/abs/2104.14988v1

14. Finkbeiner, B., Heim, P., Passing, N.: Temporal Stream Logic mod-
ulo Theories (Full Version). CoRR abs/2104.14988v2 (2021),
https://arxiv.org/abs/2104.14988v2

15. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal Stream Logic:
Synthesis Beyond the Bools. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Veri-
fication - 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561,
pp. 609–629. Springer (2019), https://doi.org/10.1007/978-3-030-25540-4 35

16. Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of Reg-
ular Programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979),
https://doi.org/10.1016/0022-0000(79)90046-1

17. Geier, G., Heim, P., Klein, F., Finkbeiner, B.: Syntroids: Synthesizing a Game for
FPGAs using Temporal Logic Specifications. In: 2019 Formal Methods in Com-
puter Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019. pp.
138–146. IEEE (2019), https://doi.org/10.23919/FMCAD.2019.8894261

18. Harel, D.: First-Order Dynamic Logic, Lecture Notes in Computer Science, vol. 68.
Springer (1979), https://doi.org/10.1007/3-540-09237-4

19. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and Completeness in Log-
ics of Programs (Preliminary Report). In: Hopcroft, J.E., Friedman, E.P., Harri-
son, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, May 4-6, 1977, Boulder, Colorado, USA. pp. 261–268. ACM (1977),
https://doi.org/10.1145/800105.803416

20. Jacobs, S., Klein, F., Schirmer, S.: A High-level LTL Synthesis Format: TLSF
v1.1. In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. EPTCS, vol. 229, pp. 112–
132 (2016), https://doi.org/10.4204/EPTCS.229.10

21. Kaminski, M., Francez, N.: Finite-Memory Automata. Theor. Comput. Sci. 134(2),
329–363 (1994), https://doi.org/10.1016/0304-3975(94)90242-9

22. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded Synthesis of Register Trans-
ducers. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for Verification
and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA,
October 7-10, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11138,
pp. 494–510. Springer (2018), https://doi.org/10.1007/978-3-030-01090-4 29

23. Krogmeier, P., Mathur, U., Murali, A., Madhusudan, P., Viswanathan, M.: De-
cidable Synthesis of Programs with Uninterpreted Functions. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12225, pp. 634–657. Springer (2020),
https://doi.org/10.1007/978-3-030-53291-8 32

24. Lamport, L.: The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994), https://doi.org/10.1145/177492.177726

25. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL Satisfiability Checking
Revisited. In: Sánchez, C., Venable, K.B., Zimányi, E. (eds.) 2013 20th In-
ternational Symposium on Temporal Representation and Reasoning, Pensacola,
FL, USA, September 26-28, 2013. pp. 91–98. IEEE Computer Society (2013),
https://doi.org/10.1109/TIME.2013.19

26. Lisitsa, A., Potapov, I.: Temporal Logic with Predicate λ-Abstraction. In: 12th In-
ternational Symposium on Temporal Representation and Reasoning (TIME 2005),
23-25 June 2005, Burlington, Vermont, USA. pp. 147–155. IEEE Computer Society
(2005), https://doi.org/10.1109/TIME.2005.34

344 B. Finkbeiner et al.

https://arxiv.org/abs/2104.14988v2
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1145/800105.803416
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-030-01090-4_29
https://doi.org/10.1007/978-3-030-53291-8_32
https://doi.org/10.1145/177492.177726
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1109/TIME.2005.34

27. Maderbacher, B., Bloem, R.: Reactive Synthesis Modulo Theo-
ries Using Abstraction Refinement. CoRR abs/2108.00090 (2021),
https://arxiv.org/abs/2108.00090

28. Manna, Z., Pnueli, A.: Verification of Concurrent Programs: The Temporal Frame-
work. In: Boyer, R.S., Moore, J.S. (eds.) The Correctness Problem in Computer
Science. Academic Press, London (1981)

29. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable Verification of Unin-
terpreted Programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (2019),
https://doi.org/10.1145/3290359

30. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s Decidable About Program
Verification Modulo Axioms? In: Biere, A., Parker, D. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12079, pp. 158–177. Springer
(2020), https://doi.org/10.1007/978-3-030-45237-7 10

31. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008),
https://doi.org/10.1007/978-3-540-78800-3 24

32. Pnueli, A.: The Temporal Logic of Programs. In: Annual Symposium on Founda-
tions of Computer Science, 1977. pp. 46–57. IEEE Computer Society (1977)

33. Pratt, V.R.: Semantical Considerations on Floyd-Hoare Logic. In: 17th An-
nual Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976. pp. 109–121. IEEE Computer Society (1976),
https://doi.org/10.1109/SFCS.1976.27

34. Pratt, V.R.: A Practical Decision Method for Propositional Dynamic Logic: Pre-
liminary Report. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P.,
Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of
Computing, May 1-3, 1978, San Diego, California, USA. pp. 326–337. ACM (1978),
https://doi.org/10.1145/800133.804362

35. Ramakrishna, Y.S.: On the Satisfiability Problem for Lamport’s Propositional
Temporal Logic of Actions and Some of Its Extensions. Fundam. Informaticae
24(4), 387–405 (1995), https://doi.org/10.3233/FI-1995-2444

36. Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bosnacki,
D., Edelkamp, S. (eds.) Model Checking Software, 14th International
SPIN Workshop, Berlin, Germany, July 1-3, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4595, pp. 149–167. Springer (2007),
https://doi.org/10.1007/978-3-540-73370-6 11

37. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-
ics. J. ACM 32(3), 733–749 (1985), https://doi.org/10.1145/3828.3837

38. Vardi, M.Y., Wolper, P.: Reasoning About Infinite Computations. Inf. Comput.
115(1), 1–37 (1994), https://doi.org/10.1006/inco.1994.1092

Temporal Stream Logic modulo Theories 345

https://arxiv.org/abs/2108.00090
https://doi.org/10.1145/3290359
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1145/800133.804362
https://doi.org/10.3233/FI-1995-2444
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1145/3828.3837
https://doi.org/10.1006/inco.1994.1092

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

346 B. Finkbeiner et al.

http://creativecommons.org/licenses/by/4.0/

The Different Shades of Infinite Session Types ∗

Simon J. Gay1 , Diogo Poças2(�) , and Vasco T. Vasconcelos2

1 School of Computing Science, University of Glasgow, UK
simon.gay@glasgow.ac.uk

2 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
{dmpocas,vmvasconcelos}@ciencias.ulisboa.pt

Abstract. Many type systems include infinite types. In session type
systems, infinite types are important because they specify communi-
cation protocols that are unbounded in time. Usually infinite session
types are introduced as simple finite-state expressions recX.T or by non-
parametric equational definitions X .

= T . Alternatively, some systems of
label- or value-dependent session types go beyond simple recursive types.
However, leaving dependent types aside, there is a much richer world of
infinite session types, ranging through various forms of parametric equa-
tional definitions, to arbitrary infinite types in a coinductively defined
space. We study infinite session types across a spectrum of shades of grey
on the way to the bright light of general infinite types. We identify four
points on the spectrum, characterised by different styles of equational
definitions, and show that they form a strict hierarchy by establishing
bidirectional correspondences with classes of automata: finite-state, 1-
counter, pushdown and 2-counter. This allows us to establish decidability
and undecidability results for type formation, type equivalence and dual-
ity in each class of types. We also consider previous work on context-free
session types (and extend it to higher-order) and nested session types,
and locate them on our spectrum of infinite types.

Keywords: Infinite types · Recursive types · Session types · Automata and
formal language theory

1 Introduction

Session types [19,20,23,38] are an established approach to specifying commu-
nication protocols, so that protocol implementations can be verified by static
typechecking or dynamic monitoring. The simplest protocols are finite: for ex-
ample, ?int.!bool.end describes a protocol in which an integer is received, then a
boolean is sent, and that’s all. Most systems of session types, however, include

∗Supported by EPSRC EP/T014628/1 “Session Types for Reliable Distributed
Systems”, by FCT PTDC/CCI-CIF/6453/2020 “Safe Concurrent Programming
with Session Types”, and by the LASIGE Research Unit UIDB/00408/2020 and
UIDP/00408/2020. A full version is available at https://arxiv.org/abs/2201.08275 [16].

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 347–367, 2022.
https://doi.org/10.1007/978-3-030-99253-8_18

http://orcid.org/0000-0003-3033-9091
http://orcid.org/0000-0002-5474-3614
http://orcid.org/0000-0002-9539-8861
mailto:simon.gay@glasgow.ac.uk
mailto:dmpocas@ciencias.ulisboa.pt
mailto:vmvasconcelos@ciencias.ulisboa.pt
https://arxiv.org/abs/2201.08275
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_18&domain=pdf

equi-recursive types for greater expressivity. A type that endlessly repeats the
simple send-receive protocol is X such that X .

= ?int.!bool.X, which can also
be specified by recX.?int.!bool.X. More realistic examples usually combine re-
cursion and choice, as in Y such that Y .

= &{go: ?int.!bool.Y , quit : end} which
offers a choice between go and quit operations, each with its own protocol. A
natural observation is that session types look like finite-state automata, but
some systems from the literature go beyond the finite-state format: for exam-
ple, context-free session types [39] and nested session types [9,10], as well as
label-dependent session types [40] and value-dependent session types [41].

Even without introducing dependent types, a range of definitional formats
can be considered for session types, presumably with varying degrees of expres-
sivity, but they have never been systematically studied. That is the aim of the
present paper. We consider various forms of parameterised equational defini-
tions, illustrated by six running examples. Because our formal system only has
one base type, the terminated channel type end, the running examples simply
use end (or skip for context-free session types) as a representative basic message
type that could otherwise be bool or int.

Our study of classes of infinite types should be generally applicable; we make
it concrete by concentrating on session types where (potential) infinite types
occur naturally. For the sake of uniformity, all our non-finite session types are
introduced by equations, rather than, say, rec-types. Equations may be further
parameterized, thus accounting for types that go beyond recursive types. The
examples below illustrate the different kinds of parameterized equations we use.

Example 1 (No parameters). Type Tloop is X with equation X .
= !end.X. Intu-

itively Tloop = !end.!end . . . continuously outputs values of type end.

Example 2 (One natural number parameter). Assuming z and s as the natural
number constructors and N as a variable over natural numbers, type Tcounter is
X〈z〉 with equations

X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} Y 〈z〉 .= end

X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉} Y 〈sN〉 .= !end.Y 〈N〉

A sequence of n inc operations followed by a dump triggers a reply of n end
output messages.

Example 3 (Context-free types). With type skip used either to finish a session
or to move to the next operation, type Ttree is X with equation

X
.
= &{leaf : skip, node: X; ?skip;X}

The leaf choice terminates the reception of a binary tree of skip values and
the node choice triggers the reception of a (left) tree, followed by ?skip (root),
followed by a (right) tree. Even though the development in the rest of the paper
considers higher-order types (where messages may convey arbitrary types rather
than skip alone), for simplicity our example is first-order.

348 S. Gay et al.

Example 4 (One list parameter). Assuming σ and τ as symbols and S as a
variable over sequences of symbols (with ε the empty sequence), type Tmeta is
X〈ε〉 with equations

X〈ε〉 .= &{addOut: X〈σ〉, addIn: X〈τ〉}
X〈σS〉 .= &{addOut: X〈σσS〉, addIn: X〈τσS〉, pop: !end.X〈S〉}
X〈τS〉 .= &{addOut: X〈στS〉, addIn: X〈ττS〉, pop: ?end.X〈S〉}

Type Tmeta records simple protocols composed of !end and ?end messages. Sym-
bol σ in a parameter to a type identifier X denotes an output message and
symbol τ an input message. The protocol behaves as a stack with two distinct
push operations (addOut and addIn). The symbol (σ or τ) at top of the stack
determines whether a pop operation triggers !end or ?end, respectively.

Example 5 (Nested types). Taking α as a variable over types, type Tnest is Xε

with equations

Xε
.
= &{addOut: Xout〈Xε〉, addIn: Xin〈Xε〉}

Xout〈α〉
.
= &{addOut: Xout〈Xout〈α〉〉, addIn: Xin〈Xout〈α〉〉, pop: !end.α}

Xin〈α〉
.
= &{addOut: Xout〈Xin〈α〉〉, addIn: Xin〈Xin〈α〉〉, pop: ?end.α}

Type identifiers such as Xε, Xout, Xin take an arbitrary but fixed number of
arguments. Type Tnest behaves as Tmeta in Example 4. The alignment should be
clear if we take, e.g. Xout〈Xin〈α〉〉 for X〈στS〉, with σ denoting output and τ
denoting input. Type identifiers Xout and Xin play the roles of stack symbols
(symbols at the top of the stack, σ or τ); type variable α denotes the lower part
of the stack (S in Example 4).

Example 6 (Two natural number parameters). Type Titer is X〈z,z〉 with

X〈z,N ′〉 .= ?end.Y 〈z,sN ′〉 Y 〈N,z〉 .= X〈N,z〉
X〈sN,N ′〉 .= !end.X〈N,sN ′〉 Y 〈N,sN ′〉 .= Y 〈sN,N ′〉

Informally, writing !endn for a sequence of n output end messages, these defini-
tions give Titer = ?end.!end1.?end.!end2.?end.!end3. . .

It is intuitively clear that Examples 2 and 4 to 6 cannot be expressed without
parameters. It is perhaps less clear that each definitional style in Examples 1, 2,
4 and 6 is strictly more expressive than the previous one. This is the main result
of the paper. We establish a hierarchy from finite session types all the way up
to non-computable types that have no representation at all. The latter certainly
exist, because for every infinite binary expansion of a real number between zero
and one there is a session type derived by mapping 0 to send and 1 to receive
— for cardinality reasons, almost all of these types are non-computable.

Our methodology is to develop the connection between session types and au-
tomata, in particular between progressively more expressive definitional styles
of types and progressively more powerful classes of automata. We also consider

The Different Shades of Infinite Session Types 349

the formal language class corresponding to each class of automata, and the de-
cidability of important properties such as contractiveness, type formation, type
equivalence and type duality. Our results are summarised in the table below,
establishing a hierarchy of session types in parallel to the Chomsky hierarchy of
languages, where by a 1-counter language, we mean a language accepted by a
(deterministic) 1-counter automaton and where DCFL abbreviates deterministic
context-free languages. The final row of the table emphasises that it is impos-
sible to give an explicit example of a non-computable type or to even state the
decision problems.

Context-free and 1-counter types are incomparable. Essentially, both models
lie between levels 2 and 3 of the Chomsky hierarchy and correspond to different
restrictions of deterministic pushdown automata. Context-free types correspond
to constraining automata with a single state, whereas 1-counter types correspond
to constraining the stack to have a single symbol.

Type class Example Contractiveness Type duality / Language model
equivalence

Finite !end.end Polytime Polytime Finite languages
Recursive Tloop Polytime Polytime Regular languages
1-counter Tcounter Polytime Polytime 1-counter languages

HO context-free Ttree Polytime Decidable Open3

Pushdown Tmeta Polytime Decidable DCFL
Nested Tnest Polytime Decidable DCFL

2-counter Titer Undecidable Undecidable Decidable languages
Non-computable — — — General languages

Our main contributions can be summarized as follows.

– We propose three novel formal systems for representing session types (1-
counter, pushdown, 2-counter), show that they are strictly more expressive
than recursive session types, and that each system is strictly more expressive
than the previous one (Theorem 1).

– We show that nested session types [9] are equivalent to pushdown session
types (Theorem 1).

– We introduce higher-order context-free session types and show that they
stand between recursive and pushdown types, strictly (Theorem 1).

– We characterize each of the novel session types in our paper by a corre-
sponding class in the Chomsky hierarchy of languages. Notably, we show
that each model captures precisely the power of the corresponding class of
automata (Theorem 2). This is in contrast with the results of Das et al. [9],
who only show (in one direction) that nested session types can be simulated
by deterministic pushdown automata.

– We prove that type formation, type equivalence and type duality are de-
cidable up to pushdown session types (Theorem 3), but undecidable for 2-

3Possibly languages accepted by a single-state pushdown automata with empty
stack acceptance.

350 S. Gay et al.

Polarity and view

] ::= ? | ! ? ::= & | ⊕

Type formation T type

end type (T-End)
T type U type

] T .U type
(T-Msg)

T` type (∀` ∈ L)
?{` : T`}`∈L type

(T-Choice)

Type equivalence T ' T

end ' end (E-End)

T ' U V 'W
]T .V '] U.W (E-Msg)

Tl ' Ul (∀` ∈ L)
?{` : T`}`∈L ' ?{` : U`}`∈L

(E-Choice)

Duality S ⊥ S

? = ! ! = ? & = ⊕ ⊕ = &

end ⊥ end (D-End)
T ' U V ⊥W
]T .V ⊥] U.W

(D-Msg)

T` ⊥ U` (∀` ∈ L)
?{` : T`}`∈L ⊥ ?{` : U`}`∈L

(D-Choice)

Fig. 1. Finite and infinite types.

counter session types (Theorem 4). This implies that equivalence for higher-
order context-free session types is decidable. The decidability results are not
entirely unexpected, given that type equivalence for nested session types was
recently shown to be decidable [9], and that these are equivalent to pushdown
types. However, our proofs are independent of Das et al. [9].

Organization of the paper In Section 2 we introduce the various classes of ses-
sion types. In Section 3 we explain how to associate to each given type a labelled
infinite tree, as well as a set which we call the language of traces of that type.
We also present our results on the strict hierarchy of types and state how pre-
viously studied classes of types fit into this hierarchy (Theorem 1). In Section 4
we describe how to convert a type into an automaton accepting its traces. In
Section 5 we travel in the converse direction, i.e., from an automata into the cor-
responding type, and present a characterisation theorem of the different types in
our hierarchy (Theorem 2). We then present our main algorithmic results: type
formation, type equivalence and type duality are all decidable up to pushdown
types (Theorem 3), and undecidable for 2-counter types (Theorem 4). Due to
space constraints, all proofs and additional details can be found in the extended
version of our paper at arXiv [16].

2 Shades of types

The finite world Finite types are in Fig. 1. The syntax of types is introduced
via formation rules, paving the way for infinite types. Session types comprise
the terminated type end, the input type ?T .U (input a value of type T and

The Different Shades of Infinite Session Types 351

Type contractivity (ind.) T contr

end contr (C-End)
] T .U contr (C-Msg)

?{` : T`}`∈L contr (C-Choice)

X
.
= T T contr

X contr
(C-Id)

New formation rules (coind.) T type

X
.
= T T contr T type

X type
(T-Id)

New equivalence rules (coind.) T ' T

X
.
= U U contr U ' T

X ' T (E-ConsL)

X
.
= U U contr T ' U

T ' X (E-ConsR)

New duality rules (coind.) T ⊥ T

X
.
= U U contr U ⊥ T

X ⊥ T (D-IdL)

X
.
= U U contr T ⊥ U

T ⊥ X (D-IdR)

Fig. 2. Recursive types. Extends Fig. 1.

continue as U), the output type !T .U (output a value of type T and continue
as U), external choice &{` : T`}`∈L (receive a label k ∈ L and continue as Tk)
and internal choice ⊕{` : T`}`∈L (select a label k ∈ L and continue as Tk). To
avoid repeating similar rules, we use the symbol] to denote either ? or !, and the
symbol ? to denote either & or ⊕. At this point type equivalence is essentially
syntactic equality, but the rule format allows for seamless extensions to infinite
settings. Types, type equivalence and duality are all standard [15,20,44]. Note
that rule D-Msg defines duality with respect to type equivalence: !T .V and
?U.W are dual types iff the type being exchanged is the same (T ' U) and the
continuations are dual (V ⊥W).

For finite types all judgements in Fig. 1 are interpreted inductively. For ex-
ample, we can show that !(?end.end).!end.end is a type by exhibiting a finite
derivation ending with this judgement.

The recursive world Recursive types suggest the first glimpse of infinity. The
details are in Fig. 2. Recursion is given via equations, rather than µ-types for
example, for easier extension. Towards this end, we introduce type identifiers X
and equations of the form X

.
= T . The set of type identifiers is finite. We further

assume at most one equation for each type, so that there are finitely many type
equations. Every valid type T is required to be contractive, that is T contr.
Contractiveness ensures that types reveal a type constructor after finitely many
unfolds, and excludes undesirable cycles that don’t describe any behaviour, e.g.
cycles of the form {X .

= Y , Y
.
= Z,Z

.
= X}. Contractiveness is inductive: we

look for finite derivations for T contr judgements. A coinductive interpretation of
the rules would allow to conclude X contr given an equation X .

= X. In contrast,
type formation, type equivalence and duality are now interpreted coinductively.

For example, no finite derivation would allow showing that Tlooptype. Instead
we proceed by showing that set {end, !end.X,X} is backward closed [34] for the
rules for T type in Fig. 2, given that !end.X, the right-hand side of the equation
for X, is contractive.

352 S. Gay et al.

Natural numbers

n ::= z | sn

New contractivity rules (ind.) T contr

X〈z〉 .= T T contr

X〈z〉 contr (C-z)

X〈sN〉 .= T T [n/N] contr

X〈sn〉 contr (C-s)

New formation rule (coind.) T type

X〈z〉 .= T T contr T type

X〈z〉 type (T-z)

X〈sN〉 .= T T [n/N] contr T [n/N] type

X〈sn〉 type
(T-s)

New equivalence rules (coind.) T ' T

X〈z〉 .= U U contr U ' T
X〈z〉 ' T (E-zL)

X〈sN〉 .= U U [n/N] contr U [n/N] ' T
X〈sn〉 ' T

(E-sL)

Fig. 3. 1-counter types. Extends Fig. 2; removes X; adds X〈n〉. Right versions of rules
E-zL and E-sL omitted. New rules for duality obtained from those for equivalence by
replacing ' by ⊥.

The 1-counter world The next step takes us to equations parameterised on
natural numbers. The details are in Fig. 3. Natural numbers are built from
the nullary constructor z and the unary constructor s. We discuss the changes
from the recursive world in Fig. 2. Given a variable N on natural numbers,
to each type identifier X we associate at most two equations, X〈z〉 .

= T and
X〈sN〉 .= U . The rules for recursive types are naturally adapted to 1-counter
types. Here again, type formation requires a suitable notion of contractiveness
to exclude cycles of equations that never reach a type identifier, e.g. cycles of
the form {X〈sN〉 .= Y 〈s sN〉, Y 〈sN〉 .= X〈N〉}. The right-hand-side of an equa-
tion X〈sN〉 .= T is not necessarily a type for it may contain natural number
variables (N in particular). However, if n is a natural number, then T [n/N]
(that is, T with occurrences of N replaced by n) should be a type (cf. rule
T-s). Again, to prove that Tcounter type, we show backward closure of the set
{X〈n〉, Y 〈n〉, end, !end.Y 〈n〉,&{inc : X〈sn〉, dump: Y 〈n〉} | n nat} for the type
formation rules.

Higher-order context-free session types A little detour takes us to context-free
session types, proposed by Thiemann and Vasconcelos [39] (see also Almeida et
al. [1]). Here we follow the distilled presentation of Almeida et al. [2], extending
types to the higher-order setting (that is, allowing ?T and !T for an arbitrary
type T instead of just basic type skip).

The pushdown world The next extension replaces natural numbers by finite
sequences s of symbols σ taken from a given stack alphabet. The details are in
Fig. 4. We use ε to denote the empty sequence. The extension from 1-counter
is straightforward. Parameters to type identifiers are now sequences of symbols,
rather than natural numbers; all the rest remains the same. Once again, to show
that Tmeta type, we proceed coinductively.

The Different Shades of Infinite Session Types 353

Strings
s ::= ε | σs

New contractive rules (ind.) T contr

X〈ε〉 .= T T contr

X〈ε〉 contr (C-z)

X〈σS〉 .= T T [s/S] contr

X〈σs〉 contr (C-s)

New formation rules (coind.) T type

X〈ε〉 .= T T contr T type

X〈ε〉 type (T-z)

X〈σS〉 .= T T [s/S] contr T [s/S] type

X〈σs〉 type
(T-s)

New equivalence rules (coind.) T ' T

X〈ε〉 .= U U contr U ' T
X〈ε〉 ' T (E-zL)

X〈σS〉 .= U U [s/S] contr U [s/S] ' T
X〈σs〉 ' T

(E-sL)

Fig. 4. Pushdown types. Extends Fig. 2; removes X; adds X〈s〉. Right versions of rules
E-zL and E-sL omitted. For duality, proceed as in Fig. 3.

Nested session types A class of types that turns out to be equivalent to pushdown
types was recently proposed by Das et al. [9]. The main idea is to have type
identifiers that are applied not to natural numbers or to sequences of symbols
but to types themselves, and to let type identifiers take a variable (but fixed)
number of parameters.

The 2-counter world 2-counter types extend the 1-counter types by introducing
equations parameterised on two natural numbers, rather than one. The new rules
are a straightforward adaptation of those in Fig. 3 for 1-counter types and are
thus omitted. To show that Titer type, we proceed coinductively.

The infinite world The final destination takes us to arbitrary, coinductive, in-
finite types. The details are in Fig. 1, except that all judgements not explicitly
marked are taken coinductively. No equations (of any sort) are needed, just plain
infinite types. We also allow choices with an infinite number of branches.

Infinite types arise by interpreting the syntax rules coinductively, which gives
rise to potentially infinite chains of interactions. The structure of these arbitrary,
coinductively defined, infinite types does not need to follow any pattern (e.g. it
does not need to repeat itself), and arguably, the best way to think about these
objects are as labelled infinite trees (Section 3). Such objects do not have in
general a finite representation (or finite encoding), which can be shown by a
simple cardinality argument. Hence the need for finding suitable subclasses of
infinite types that can be represented and can be used in practice.

We can think of a type in two possible ways: as (one of) its representation(s),
which is great for practical purposes as we can reason about types by reasoning
about their representations; or as the underlying, possibly infinite, coinductive
object which is being represented, which is suitable for developing a theory of
types, in particular for comparing different models with one another.

354 S. Gay et al.

3 Types, trees and traces

It should be clear that the constructions defined in Section 2 form some sort of
type hierarchy; this section studies the hierarchy. In any case, every type lives
in the largest universe; that of arbitrary, coinductively defined, infinite types.

To each type one can associate a labelled infinite tree [14,32]. This tree can
in turn be expressed by the language of words encoding its paths. Let L be the
set of labels used in choice types. Following Pierce [32, Definition 21.2.1], a tree
is a partial function t ∈ ({d, c} ∪ L)∗ → {end, ?, !,&L,⊕L | L ⊆ L} subject to
the following constraints (σ ranges over symbols and π over strings of symbols):

– t(ε) is defined;
– if t(πσ) is defined, then t(π) is defined;
– if t(π) = ? or t(π) = !, then t(πσ) is defined for σ ∈ {d, c} and undefined for

all other σ;
– if t(π) = &L or t(π) = ⊕L, then t(πσ) is defined for σ ∈ L and undefined for

all other σ;
– if t(π) = end, then t(πσ) is undefined for all σ.

The labels d and c are abbreviations for data and continuation, corresponding
to the two components of session types for messages.

If all sets L in a tree are finite, the tree is finitely branching. The tree gen-
erated by a (finite or infinite) type is coinductively defined as follows.

treeof(] Td.Tc)(ε) =] treeof(?{` : T`}`∈L)(ε) = ?L

treeof(] Td.Tc)(dπ) = treeof(Td)(π) treeof(?{` : T`}`∈L)(`π) = treeof(T`)(π)

treeof(] Td.Tc)(cπ) = treeof(Tc)(π) treeof(end)(ε) = end

A path in a tree t is a word obtained by combining the symbols in the
domain and the range of t. Given a symbol σ ∈ {?, !,&L,⊕L | L ⊆ L} in
the codomain of t (but different from end), and a symbol τ ∈ {d, c}∪L, let 〈σ, τ〉
denote the combination of both symbols, viewed as a letter over the alphabet
{?, !,&L,⊕L | L ⊆ L} × ({d, c} ∪ L). For simplicity in exposition, we often drop
the angular brackets and the subscript L on the label set, and write, for example,
?c instead of 〈?, c〉, ⊕l instead of 〈⊕L, l〉, etc.

Given a string π in the domain of a tree t, we can define the word patht(π)
recursively as patht(ε) = ε and patht(πτ) = patht(π) · 〈t(π), τ〉. We say that a
string π is terminal wrt to t if t(π) = end. For terminal strings, we can further
define dpatht(π) = patht(π) · end.

Finally, we can define the language of (the paths in) a tree t as the set
{patht(π) | π ∈ dom(t)} ∪ {dpatht(π) | π ∈ dom(t), π is terminal wrt t}. The
language of (the traces of) a type T , denoted by L(T), is the language of
treeof(T). Note that the traces of types are defined over the following alpha-
bet.

Σ = {?, !,&L,⊕L | L ⊆ L} × ({d, c} ∪ L) ∪ {end} (1)

The Different Shades of Infinite Session Types 355

!

end !

end !

end ...

d c

d c

d c

L(Tloop) = {ε, !d, !d · end,
!c, !c·!d, !c·!d · end, !c·!c,
!c·!c·!d, !c·!c·!d · end,
!c·!c·!c, . . .}

Fig. 5. The tree and the language of type Tloop.

&

& end

& !

... ! end end

end !

end end

inc dump

inc dump

inc dump d c

d c

d c

L(Tcounter) = {ε, &inc, &dump, &dump · end,
&inc ·&inc, &inc ·&dump,

&inc ·&dump·!d,
&inc ·&dump·!d · end,
&inc ·&dump·!c,
&inc ·&dump·!c · end,
&inc ·&inc ·&inc,

&inc ·&inc ·&dump,

&inc ·&inc ·&dump·!d, . . .}

Fig. 6. The tree and the language of type Tcounter.

&

end &

? &

? ...end &

end ... end ...

leaf node

leaf node

leaf noded c

leaf node d c

L(Ttree) = {ε, &leaf, &leaf · end, &node,

&node ·&leaf, &node ·&node,

&node ·&leaf·?d,
&node ·&leaf·?d · end,
&node ·&leaf·?c,
&node ·&node ·&leaf,

&node ·&node ·&node, . . .}

Fig. 7. The tree and the language of type Ttree.

Figure 5 depicts (a finite fragment of) the tree corresponding to treeof(Tloop)
(Example 1) and (some of the words in) its language L(Tloop). Type Tcounter (Ex-
ample 2) describes an interaction that keeps track of a counter. Finite fragments
of the corresponding tree and language are depicted in Fig. 6. Type Ttree (Ex-
ample 3) describes the reception of a binary tree of end values. Finite fragments
of the corresponding tree and language are depicted in Fig. 7.

In the above examples, the language L(T) is closed under prefixes. This holds
for a general type T , since elements of L(T) correspond to paths in treeof(T).

Proposition 1. If w ∈ L(T) and u is a prefix of w then u ∈ L(T).

356 S. Gay et al.

Another immediate observation is that treeof (resp. L) is an embedding from
the class of all types to the class of all trees (resp. all languages).

Proposition 2. Let T and U be two types. The following are equivalent: a)
T ' U ; b) treeof(T) = treeof(U); c) L(T) = L(U).

Proposition 2 tells us that two types are equivalent iff they have the same
traces. In general, trace equivalence is a notion weaker than bisimulation [34].
However, both notions coincide for deterministic transition systems. The syntax
of (infinite) session types is in fact deterministic (e.g. given a label ` for a choice,
there can only be one type that continues from &`), which explains our result.

Section 2 introduces eight classes of types. We now distinguish them by means
of subscripts: finite types (T typef , Fig. 1), recursive types (T typer, Fig. 2), 1-
counter types (T type1, Fig. 3), context-free types (T typec), pushdown types
(T typep, Fig. 4), nested types (T typen), 2-counter types (T type2) and coin-
ductive, infinite types (T type∞, Fig. 1 with rules interpreted coinductively).
To each class of types we introduce the corresponding class of languages. For
example, Tr is the set {L(T) | T typer}. The strict hierarchy result is as follows:

Tf (Tr (T1 (Tp (T2 (T∞

We remark that the last step in the chain of strict inclusions is obtained by
a cardinality argument, since the set T∞ is uncountable. This shows an even
stronger statement: for any finite representation system (including the systems
Tf to T2, as well as Tc and Tn), there is an infinite, uncountable set of types that
cannot be represented by that system.

We now turn our attention to nested types (T typen), which turn out to be
equivalent to pushdown types, and further establish equivalent sub-hierarchies
inside both classes, parameterised by the ‘complexity’ of the corresponding rep-
resentations. For pushdown session types, a natural measure of complexity is the
number of type identifiers required to represent a given type. This number can
be arbitrarily large, but always finite. For a given n ∈ N, we let Tn

p denote the
subset corresponding to those types that can be represented with at most n type
identifiers. When n = 0, there are no identifiers, and we can only represent finite
types. As n increases, so does the expressivity of our constructions, and we have
the infinite chain of inclusions4

Tf = T0
p (T1

p ⊆ T2
p ⊆ · · · ⊆ Tp.

Similarly, for nested session types we can define a hierarchy by looking at the
arities of the type identifiers used. For a given n ∈ N, we let Tn

n denote the subset
corresponding to the nested session types whose type identifiers have arity at
most n. When n = 0 all type identifiers are constant, and we recover the class
of recursive types. As n increases, so does the expressivity, and we also have an
infinite chain of inclusions4

Tr = T0
n (T1

n ⊆ T2
n ⊆ · · · ⊆ Tn.

4Although not proven, we conjecture that all inclusions are strict.

The Different Shades of Infinite Session Types 357

It turns out that these hierarchies are one and the same (with the exception
of the bottom level), so that we have 4

Tf = T0
p (Tr = T0

n (T1
p = T1

n ⊆ T2
p = T2

n ⊆ · · · ⊆ Tp = Tn.

Higher-order context-free types (denoted by Tc) lie between levels 0 and 1
in the sub-hierarchies above, i.e., they can represent recursive types, and can
be represented by pushdown session types using at most one type identifier, or
equivalently, by nested session types with either constant or unary type identi-
fiers, so that we have

Tr (Tc (T1
p = T1

n.

We have a stronger observation than the inclusion Tc (T1
p. Context-free

session types are included in pushdown session types which have only one type
identifierX, and where the equationX〈ε〉 .= end accounts for the only occurrence
of end. The latter means that the type ends iff the state X〈ε〉 is reached, that
is, iff the stack is empty. Thus, we can intuitively think of context-free session
types as pushdown types with a single identifier and an empty stack acceptance
criterion. This observation points to the fact that the qualifier ‘context-free’ in
the so called context-free session types is a misnomer [9].

The result below summarises the entire hierarchy.

Theorem 1 (Inclusions).

Tf = T0
p (Tr = T0

n (T1 (Tp = Tn (T2 (T∞(
⊆

Tc (T1
p = T1

n ⊆ T2
p = T2

n ⊆ · · ·

4 From types to automata

This section describes procedures to convert types in different levels of the hier-
archy (recursive systems, 1-counter, pushdown and 2-counter) into automata at
the same level. All constructions follow the same guiding principles, so we focus
on the bottom level of the hierarchy (recursive systems) and then highlight the
main differences as we advance in the hierarchy.

All automata that we consider are deterministic and total, i.e., the transition
functions are such that any input word has a well-defined, unique computation
path. We use the alphabet Σ defined in (1). Standard references in automata
theory are Hopcroft and Ullman’s book [22] and Valiant’s PhD thesis [42].

Recursive types and finite-state automata Following the usual notation, a (de-
terministic) finite-state automaton is given by a set Q of states, with a specified
initial state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a set A ⊆ Q of
accepting states. Given a finite word a1a2 · · · an, its execution by the automaton
yields the sequence of states s0, s1, . . . , sn where s0 = q0 and si+1 = δ(si, ai+1).
A word is accepted by the automaton if its execution ends in an accepting state.

358 S. Gay et al.

The definition of finite-state automata can be augmented into other types of
automata. Essentially: in a 1-counter automata we have access to a counter (with
operations for incrementing, decrementing, and checking whether the counter is
non-zero), in addition to the current state; in a pushdown automata we have
access to a stack (with operations for pushing a symbol, popping a symbol, and
observing the top symbol of the stack); in a 2-counter automata, we have access
to two counters.

Suppose we are given a system of recursive equations {Xi
.
= Ti}i∈I over a set

X = {Xi}i∈I (which may or may not be contractive, i.e., define a type). Our first
step is to convert this system into a normal form in which every right-hand side
is either a identifier X, or a single application of one of the type constructors end,
?X.Y , !X.Y , &{` : X`}`∈L or ⊕{` : X`}`∈L. We can do this by introducing fresh,
intermediate identifiers as needed. Essentially, whenever we have an equation
X

.
= ?T1.T2 where T1, T2 are not identifiers, we add two new identifiers X ′, X ′′,

replace the above equation by X .
= ?X ′.X ′′, and add two new equations X ′ .= T1

and X ′′ .= T2. The process is similar for the other type constructors. By doing
this repeatedly, we “break down” a long equation into many small equations. The
number of new identifiers is linear in the size of the original system of equations.

Given such a system, we construct a finite-state automaton (over the alpha-
bet Σ) as follows. The automaton has a state qX for every type identifier X,
and two additional states: an ‘end’ state qend and an ‘error’ state qerror. The tran-
sitions from qerror are described by qerror

a→ qerror for every symbol a. Similarly,
the transitions at qend are described by qend

a→ qerror for every symbol a. The
transitions at state qX are given by the corresponding equation for identifier X,
in the obvious way. Some examples:

– If our system contains equation X .
= Y , we have the ε-transition qX

ε→ qY .
– If our system contains X .

= !Y .Z, we have the reading transitions qX
!d→ qY ,

qX
!c→ qZ , and qX

a→ qerror for any a 6= !d, !c.
– If our system contains X .

= ⊕{l : X,m : Y }, we have the reading transitions
qX
⊕l→ qX , qX

⊕m→ qY and qX
a→ qerror for any a 6= ⊕l,⊕m.

– If our system contains X .
= end, we have the reading transitions qX

end→ qend
and qX

a→ qerror for any a 6= end.

We define all states other than qerror to be accepting states.5 Notice that the
finite-state automaton described above is an automaton with possible ε-moves.
Although, by definition, deterministic finite-state automata do not permit ε-
moves, in our case paths of ε-moves are uniquely determined and always reach a
state without outgoing ε-transitions (they cannot become stuck in a loop, assum-
ing type contractivity). We can convert the given automaton into an equivalent
automaton without ε-moves by ‘shortcutting’ such moves. Formally, suppose a

5We need all states to be accepting, since we might need to look at finite traces to
distinguish between two types. For example, X .

= &{a: X} and Y .
= &{b: Y } define

non-equivalent types that have no finite terminating paths.

The Different Shades of Infinite Session Types 359

qX qY qend!c
!d end

X
.
= !end.X

Fig. 8. An automaton for Tloop with initial state qX . All depicted states are accepting.

state X has an outgoing ε-transition to Y ; by construction, it is X’s only out-
going transition. Assuming X and Y are different states, we can change every
transition entering X and make it enter Y instead; finally, we can remove state
X (hence removing the ε-transition from X).

We show in Fig. 8 the automaton that corresponds to type Tloop (Example 1).
Every missing transition points to qerror which is not shown. In our examples, all
depicted states are accepting, so we omit the usual double circle notation.

1-counter types For 1-counter systems, the only difference in the above construc-
tion is that instead of non-parameterised identifiers our equations now involve
terms of the form X〈z〉, X〈s z〉, X〈N〉, X〈sN〉, etc. We assume for simplicity
that the identifiers appearing in these equations are restricted as follows: if the
left-hand side of an equation is of the form X〈z〉, then the identifiers appearing
in the right-hand side must be of the form X ′〈z〉 or X ′〈s z〉 (with X ′ possibly
different from X); and if the left-hand side of an equation is of the form X〈sN〉,
then the identifiers appearing in the right-hand side must be of the form X ′〈N〉,
X ′〈sN〉 or X ′〈s sN〉. Any system can be converted into this form by adding
finitely many new equations, e.g. X〈z〉 .= Y 〈s s s z〉 can be rewritten as

X〈z〉 .= X ′〈s z〉 X ′〈sN〉 .= X ′′〈s sN〉 X ′′〈sN〉 .= Y 〈s sN〉

and X〈sN〉 .= Y 〈z〉 can be rewritten as

X〈sN〉 .= X ′〈N〉 X ′〈sN〉 .= X ′〈N〉 X ′〈z〉 .= Y 〈z〉.

We can convert a 1-counter type into a (deterministic) 1-counter automaton,
so that the transition function depends on whether the counter value is zero
(corresponding to a left-hand side of the form X〈z〉) or positive (corresponding
to a left-hand side of the form X〈sN〉). Furthermore, the changes in the counter
value along the identifiers are incorporated by changes in the counter value along
the automaton. For example, take equation X〈sN〉 .= Y 〈N〉. The corresponding
transition from (qX , s, ε) to qY decrements the counter.

For illustration purposes, we show how to construct a 1-counter automaton
accepting L(Tcounter) from Example 2. First, we need to convert the equation
for Y 〈sN〉 into normal form. We add an extra identifier Z and write

X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉}
Y 〈z〉 .= end Y 〈sN〉 .= !Z〈sN〉.Y 〈N〉
Z〈z〉 .= end Z〈sN〉 .= end

The corresponding automaton has states qX , qY , qZ , one for each type identifier
X,Y , Z, as well as an additional state qend. The outgoing transitions for state qX

360 S. Gay et al.

X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} Y 〈z〉 .= end

X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉} Y 〈sN〉 .= !end.Y 〈N〉

qX qY qZ qend

·,&inc | +

·,&dump |=

s, !c | −

s, !d |= ·, end |=

z, end |=

Fig. 9. A 1-counter automaton for type Tcounter = X〈z〉. The initial configuration is
(qX , 0). Here a transition δ(q, g, a) = (o, q′) is denoted by an arc from q to q′ with label
g, a | o, where g ∈ {z, s}, a ∈ {ε}∪Σ, and o ∈ {=,+,−}. If both g = z and g = s lead to
the same transition, then we use the symbol · to refer to both transitions. All depicted
states are accepting, and non-depicted transitions lead to a non-accepting sink state.

are the same regardless of the counter value: either read &inc, incrementing the
counter and staying in qX ; or read &dump, keeping the counter value and moving
to qY . For state qY , if the counter is zero, we can read end while moving to state
qend. On the other hand, if the counter is non-zero, we can read !d, keeping the
counter value and moving to qZ ; or read !c, decrementing the counter value and
staying in qY . Finally, for state qZ we can only read end and move to state qend.
Whatever we write in the equation for Z〈z〉 is irrelevant, as this configuration is
unreachable. All of this gives the automaton in Fig. 9.

Pushdown types Pushdown systems are similar, but now the behaviour of a
identifier is specified by |∆| + 1 equations, where ∆ is the stack alphabet; one
equation for each possible symbol at the top of the stack, and one equation for
the case that the stack is empty. Accordingly, we use a (deterministic) pushdown
automaton to simulate the stack contents by means of push and pop operations.
The transitions from a state qX and a given stack indicator in {ε} ∪∆ are once
more given by the corresponding equation with X as the type identifier on the
left-hand side. Fig. 10 shows a pushdown automaton accepting L(Tmeta).

2-counter types The translation to 2-counter automata is as for the 1-counter
case, but now the behaviour is specified by one of four different cases, depend-
ing on which of the two counters is zero or non-zero. Accordingly, we use a
(deterministic) 2-counter automaton with the appropriate transition function.

5 From automata to types

The construction in Section 4 explains how we can build an automaton from
a system of equations at some level in the hierarchy. If X〈σ〉 typep, then the

The Different Shades of Infinite Session Types 361

X〈ε〉 .= &{addOut: X〈σ〉, addIn: X〈τ〉}
X〈σS〉 .= &{addOut: X〈σσS〉, addIn: X〈τσS〉, pop: !end.X〈S〉}
X〈τS〉 .= &{addOut: X〈στS〉, addIn: X〈ττS〉, pop: ?end.X〈S〉}

q0

q1

q2

q3 q4
·,⊕addOut | +α
·,⊕addIn | +β

α,⊕pop
| −

β,⊕pop | −

·, !d |=

·, ?d |=

·, end |=

·, !c |=

·, ?c |=

Fig. 10. A pushdown automaton for type Tmeta = X〈ε〉. The initial configuration is
(q0, ε). A transition δ(q, g, a) = (o, q′) is denoted by an arc from q to q′ with label
g, a | o, where g ∈ {ε}∪∆, a ∈ {ε}∪Σ, and o ∈ Op. If all choices of g lead to the same
transition, we use · to stand for all transitions. All depicted states are accepting.

language of the type given by X〈σ〉 is the language accepted by the automaton
with initial configuration (qX , σ) (and similarly for recursive, 1-counter, and 2-
counter types). Conversely, given an automaton which accepts the language of
traces of a type, we can construct the corresponding system of equations that
specifies that type. This allow us to obtain a complete correspondence between
classes of types and different models of computation based on automata theory.
The following result is stronger than previous similar results which only show a
forward implication [9]. Recall that a language is said to be regular if it is the
set of words accepted by some finite-state automaton. We also say that a tree is
regular if it has a finite number of distinct subtrees.

Theorem 2 (Types, traces and automata).

1. T typer iff L(T) is regular iff treeof(T) is regular.
2. T type1 iff L(T) is accepted by a 1-counter automaton.
3. T typep iff L(T) is a deterministic context-free language.
4. T type2 iff L(T) is decidable.

We can now address the decidability of the key problems of type formation,
type equivalence and type duality for our various classes of type languages.

Theorem 3 (Decidability results).

1. Problems T typer, T type1 and T typep are all decidable in polynomial time.
2. Problems T 'r U , T '1 U and T 'p U are all decidable.
3. Problems T ⊥r U , T ⊥1 U and T ⊥p U are all decidable.

362 S. Gay et al.

We are also able to prove that these problems are undecidable for 2-counter
types, since Theorem 2 also provides a construction from automata to systems
of equations, and the corresponding problems for automata are undecidable.

Theorem 4 (Undecidability results).
Problems T type2, T '2 U and T ⊥2 U are all undecidable.

6 Related work

The first papers on session types by Honda [19] and Takeuchi et al. [38] feature
finite types only. Recursive types were introduced later [20] using µ-notation.
Gay and Hole [15] introduce algorithms for deciding duality and subtyping of
finite-state session types, based on bisimulation. Much of the literature on ses-
sion types, surveyed by Hüttel et al. [23], uses the same approach. The natural
decision algorithms for duality and subtyping presented by Gay and Hole were
shown to be exponential in the size of the types by Lange and Yoshida [27], due
to reliance on syntactic unfolding. Our polytime complexity for recursive type
equivalence follows from the equivalence algorithm for finite-state automata by
Hopcroft and Karp [21], and thus has quadratic complexity in the description
size, improving on Gay and Hole. Lange and Yoshida use an automata-based
algorithm to also achieve quadratic complexity for checking subtyping.

We use a coinductive formulation of infinite session types. This approach has
some connections with the work of Keizer et al. [25] who present session types
as states of coalgebras. Their types are restricted to finite-state recursive types,
but they do address subtyping and non-linear types, two notions that we do not
take into consideration. Our coinductive presentation avoids explicitly building
coalgebras, and follows Gay et al. [17], solving problems with duality in the
presence of recursive types [5,17,28].

We have not addressed the problem of deciding subtyping, but the panorama
is not promising. Subtyping is known to be decidable for recursive types Tr [15]
and undecidable for context-free types Tc [31] or nested types with arity at most
one T1

n [10], hence for pushdown types with one type constructor T1
p (Theorem 1).

The undecidability proof of the subtyping problem for context-free session types
reduces from the inclusion problem for simple deterministic languages, which was
shown to be undecidable by Friedman [13]. That for nested session types reduces
from the inclusion problem for Basic Process Algebra [4], which was shown to
be undecidable by Groote and Hüttel [18]. Given that 1-counter types T1 and
pushdown types with one type constructor T1

p are incomparable (Theorem 1),
the problem of subtyping for 1-counter types remains open.

Dependent session types have been studied for binary session types [40,41],
for multi-party session types [12,29,45] and for polymorphic, nested session types
[9]. Although our parameterised type definitions have some similarities with
definitions in some dependently typed systems, we do not support the connection
between values in messages and parameters in types, and we have not yet studied
how the types that can be expressed in dependent systems fit into our hierarchy.

The Different Shades of Infinite Session Types 363

Connections between multiparty session types and communicating finite-
state automata have been explored by Deniélou and Yoshida [11] but the in-
vestigation has not been extended to other classes of automata.

Solomon [37] studies the connection between inductive type equality for
nested types and language equality for DPDAs and shows that the equivalence
problem for nested types is as hard as the equivalence problem for DPDAs, an
open problem at the time. We follow a similar approach but define type equiva-
lence as a bisimulation rather than as language equivalence.

Many of the main results in this paper borrow from the theory of automata,
developed in the mid-20th century. Here our standard reference is the book
by Hopcroft and Ullman [22], where the notions of finite-state, pushdown, and
counter automata can be found. 1-counter automata were studied in detail in
Valiant’s PhD thesis [42]. To prove the equivalence between types and automata,
we need to convert automata to satisfying certain properties; similar techniques
have appeared in Kao et al. [24] and Valiant and Paterson [43]. Our proofs
of decidability of type equivalence make use of the corresponding results for
automata [8,21,33,35,36,43]; we specifically mention Sénizergues’ impressive re-
sult on equivalence of deterministic pushdown automata [36], a work which
granted him the Gödel Prize in 2002. Finally, the strict hierarchy results use
textbook pumping lemmas for regular languages (due to Rabin and Scott [33])
and context-free languages (due to Bar-Hillel et al. [3] and Kreowski [26]), as well
as a somewhat less known result for 1-counter automata (due to Boasson [7]).

7 Conclusion

We introduce different classes of session types, some new, others from the lit-
erature, under a uniform framework and place them in n hierarchy. We further
study different type-related problems—formation, equivalence and duality—and
show that these relations are all decidable up to and including pushdown types.

Much remains to be done. From the point of view of programming languages,
one should investigate whether decidability results translate into algorithms that
may be incorporated in compilers. Even if subtyping is known to be undecidable
for most systems “above” that of recursive types, the problem remains open
for 1-counter types, an interesting avenue for further investigation. Our study
of classes of infinite types may have applications beyond session types. One
promising direction is that of non regular datatypes for functional programming
(or polymorphic recursion schemes [30]), such as nested datatypes [6].

We have not addressed the decidability of the type checking problem. Type
checking is known to be decidable for finite types, recursive, context-free and
nested session types. Given that type checking for nested session types is incor-
porated in the RAST language [9], a natural first step would be to investigate
how to translate 1-counter and pushdown processes into that language.

364 S. Gay et al.

References

1. Almeida, B., Mordido, A., Thiemann, P., Vasconcelos, V.T.: Polymorphic context-
free session types. CoRR abs/2106.06658 (2021), https://arxiv.org/abs/2106.
06658

2. Almeida, B., Mordido, A., Vasconcelos, V.T.: Deciding the bisimilarity of context-
free session types. In: TACAS. LNCS, vol. 12079, pp. 39–56. Springer (2020). https:
//doi.org/10.1007/978-3-030-45237-7_3

3. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Sprachtypologie und Universalienforschung 14, 143–172 (1961)

4. Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation semantics. In:
Linear Time, Branching Time and Partial Order in Logics and Models for Con-
currency. LNCS, vol. 354, pp. 50–122. Springer (1988). https://doi.org/10.1007/
BFb0013021

5. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types.
Logical Methods in Computer Science 12(2) (2016). https://doi.org/10.2168/
LMCS-12(2:10)2016

6. Bird, R.S., Meertens, L.G.L.T.: Nested datatypes. In: MPC. LNCS, vol. 1422, pp.
52–67. Springer (1998). https://doi.org/10.1007/BFb0054285

7. Boasson, L.: Two iteration theorems for some families of languages. Journal of
Computer and System Sciences 7(6), 583–596 (1973)

8. Böhm, S., Göller, S., Jancar, P.: Equivalence of deterministic one-counter automata
is nl-complete. In: STOC. pp. 131–140. ACM (2013). https://doi.org/10.1145/
2488608.2488626

9. Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Nested session types. In:
ESOP. LNCS, vol. 12648, pp. 178–206. Springer (2021). https://doi.org/10.1007/
978-3-030-72019-3_7

10. Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Subtyping on nested polymorphic
session types. CoRR abs/2103.15193 (2021), https://arxiv.org/abs/2103.15193

11. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata.
In: ESOP. LNCS, vol. 7211, pp. 194–213. Springer (2012). https://doi.org/10.1007/
978-3-642-28869-2_10

12. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty ses-
sion types. Log. Methods Comput. Sci. 8(4) (2012). https://doi.org/10.2168/
LMCS-8(4:6)2012

13. Friedman, E.P.: The inclusion problem for simple languages. Theor. Comput. Sci.
1(4), 297–316 (1976). https://doi.org/10.1016/0304-3975(76)90074-8

14. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. J. Funct.
Program. 12(6), 511–548 (2002). https://doi.org/10.1017/S0956796802004318

15. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

16. Gay, S.J., Poças, D., Vasconcelos, V.T.: The different shades of infinite session
types. CoRR abs/2201.08275 (2022), https://arxiv.org/abs/2201.08275

17. Gay, S.J., Thiemann, P., Vasconcelos, V.T.: Duality of session types: The final
cut. In: PLACES. EPTCS, vol. 314, pp. 23–33 (2020). https://doi.org/10.4204/
EPTCS.314.3

18. Groote, J.F., Hüttel, H.: Undecidable equivalences for basic process algebra. Inf.
Comput. 115(2), 354–371 (1994). https://doi.org/10.1006/inco.1994.1101

19. Honda, K.: Types for dyadic interaction. In: CONCUR. LNCS, vol. 715, pp. 509–
523. Springer (1993). https://doi.org/10.1007/3-540-57208-2_35

The Different Shades of Infinite Session Types 365

https://arxiv.org/abs/2106.06658
https://arxiv.org/abs/2106.06658
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/BFb0013021
https://doi.org/10.1007/BFb0013021
https://doi.org/10.1007/BFb0013021
https://doi.org/10.1007/BFb0013021
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://arxiv.org/abs/2103.15193
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1016/0304-3975(76)90074-8
https://doi.org/10.1016/0304-3975(76)90074-8
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1017/S0956796802004318
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://arxiv.org/abs/2201.08275
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1006/inco.1994.1101
https://doi.org/10.1006/inco.1994.1101
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 122–138. Springer (1998). https://doi.org/10.1007/BFb0053567

21. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Tech. rep., Cornell University (1971)

22. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company (1979)

23. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

24. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,
or both. Theoretical Computer Science 410(47-49), 5010–5021 (2009)

25. Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: A coalgebraic view on
session types and communication protocols. In: ESOP. LNCS, vol. 12648, pp. 375–
403. Springer (2021). https://doi.org/10.1007/978-3-030-72019-3_14

26. Kreowski, H.J.: A pumping lemma for context-free graph languages. In: Interna-
tional Workshop on Graph Grammars and Their Application to Computer Science.
pp. 270–283. Springer (1978)

27. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: TACAS.
LNCS, vol. 9636, pp. 833–850. Springer (2016). https://doi.org/10.1007/
978-3-662-49674-9_52

28. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP. pp. 434–447. ACM (2016). https://doi.org/10.1145/2951913.2951921

29. de Muijnck-Hughes, J., Brady, E.C., Vanderbauwhede, W.: Value-dependent ses-
sion design in a dependently typed language. In: PLACES. EPTCS, vol. 291, pp.
47–59 (2019). https://doi.org/10.4204/EPTCS.291.5

30. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: International
Symposium on Programming. LNCS, vol. 167, pp. 217–228. Springer (1984). https:
//doi.org/10.1007/3-540-12925-1_41

31. Padovani, L.: Context-free session type inference. ACM Trans. Program. Lang.
Syst. 41(2), 9:1–9:37 (2019). https://doi.org/10.1145/3229062

32. Pierce, B.C.: Types and programming languages. MIT Press (2002)
33. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM journal

of research and development 3(2), 114–125 (1959)
34. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-

sity Press (2012). https://doi.org/10.1017/CBO9780511777110
35. Sénizergues, G.: The equivalence problem for deterministic pushdown automata is

decidable. In: ICALP’97. LNCS, vol. 1256, pp. 671–681. Springer (1997). https:
//doi.org/10.1007/3-540-63165-8_221

36. Sénizergues, G.: L (a)= l(b)? decidability results from complete formal systems.
Theoretical Computer Science 251(1-2), 1–166 (2001)

37. Solomon, M.H.: Type definitions with parameters. In: POPL. pp. 31–38. ACM
Press (1978). https://doi.org/10.1145/512760.512765

38. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. LNCS, vol. 817, pp. 398–413. Springer (1994). https://doi.
org/10.1007/3-540-58184-7_118

39. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: ICFP. pp. 462–475
(2016). https://doi.org/10.1145/2951913.2951926

40. Thiemann, P., Vasconcelos, V.T.: Label-dependent session types. Proc. ACM Pro-
gram. Lang. 4(POPL), 67:1–67:29 (2020). https://doi.org/10.1145/3371135

366 S. Gay et al.

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1145/3229062
https://doi.org/10.1145/3229062
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1145/512760.512765
https://doi.org/10.1145/512760.512765
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3371135

41. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP. pp. 161–172. ACM (2011). https://doi.org/10.1145/
2003476.2003499

42. Valiant, L.G.: Decision procedures for families of deterministic pushdown au-
tomata. Ph.D. thesis, University of Warwick (1973)

43. Valiant, L.G., Paterson, M.S.: Deterministic one-counter automata. Journal of
Computer and System Sciences 10(3), 340–350 (1975)

44. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/j.ic.2012.05.002

45. Yoshida, N., Deniélou, P., Bejleri, A., Hu, R.: Parameterised multiparty session
types. In: FOSSACS. LNCS, vol. 6014, pp. 128–145. Springer (2010). https://doi.
org/10.1007/978-3-642-12032-9_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

The Different Shades of Infinite Session Types 367

https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1007/978-3-642-12032-9_10
http://creativecommons.org/licenses/by/4.0/

Complete and tractable machine-independent
characterizations of second-order polytime

Emmanuel Hainry1 , Bruce M. Kapron2 , Jean-Yves Marion1, and
Romain Péchoux1�

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2 University of Victoria, Victoria, BC, Canada

{hainry,marion,pechoux}@inria.fr bmkapron@uvic.ca

Abstract. The class of Basic Feasible Functionals BFF is the second-
order counterpart of the class of first-order functions computable in poly-
nomial time. We present several implicit characterizations of BFF based
on a typed programming language of terms. These terms may perform
calls to imperative procedures, which are not recursive. The type disci-
pline has two layers: the terms follow a standard simply-typed discipline
and the procedures follow a standard tier-based type discipline. BFF con-
sists exactly of the second-order functionals that are computed by typable
and terminating programs. The completeness of this characterization sur-
prisingly still holds in the absence of lambda-abstraction. Moreover, the
termination requirement can be specified as a completeness-preserving
instance, which can be decided in time quadratic in the size of the pro-
gram. As typing is decidable in polynomial time, we obtain the first
tractable (i.e., decidable in polynomial time), sound, complete, and im-
plicit characterization of BFF, thus solving a problem opened for more
than 20 years.

Keywords: Basic feasible functionals · Type 2 · Second-order · Polyno-
mial time · Tiering · Safe recursion

1 Introduction

Motivations. The class of second-order functions computable in polynomial
time was introduced and studied by Mehlhorn [27], building on an earlier pro-
posal by Constable [10]. Kapron and Cook characterized this class using oracle
Turing machines, giving it the name Basic Feasible Functionals (BFF):

Definition 1 ([19]). A functional F is in BFF, if there are an oracle Turing
machine M and a second-order polynomial3 P such that M computes F in time
bounded by P (|f |, |x|), for any oracle f and any input x.4

Since then, BFF was consensually considered as the natural extension to second-
order of the well-known class of (first-order) polynomial time computable func-
tions, FP. Notions of second-order polynomial time, while of intrinsic interest,

3 Second-order polynomials are a type-2 analogue of ordinary polynomials.
4 The size of an oracle f is a first-order function defined by |f |(n) = max|y|≤n |f(y)|.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 368–388, 2022.
https://doi.org/10.1007/978-3-030-99253-8_19

http://orcid.org/0000-0002-9750-0460
http://orcid.org/0000-0002-3295-543X
http://orcid.org/0000-0003-0601-5425
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_19&domain=pdf

have also been applied in a range of areas, including structural complexity the-
ory [27], resource-bounded topology [29], complexity of total search problems [5],
feasible real analysis [21], and verification [14].

Starting with Cobham’s seminal work [9], there have been several attempts to
provide machine-independent characterizations of complexity classes such as (P
and) FP, that is, characterizations based on programming languages rather than
on machines. Beyond the purely theoretical aspects, the practical interest of such
characterizations is to be able to automatically guarantee that a program can
be executed efficiently and in a secure environment. For these characterizations
to hold, some restrictions are placed on a given programming language. They
ensure that a program can be simulated by a Turing machine in polynomial time
and, therefore, corresponds to a function in FP. This property is called soundness.
Conversely, we would like any function in FP to be computable by a program
satisfying the restrictions. This property is called (extensional) completeness. For
automation to be possible, it is necessary that the characterizations studied be
tractable; that is, decidable in polynomial time. Moreover, they should preferably
not require a prior knowledge of the program complexity. One speaks then of
implicit characterization insofar as the programmer does not have to know an
explicit bound on the complexity of the analyzed programs.

In the first-order setting, different restrictions and techniques have been de-
veloped to characterize the complexity class FP. One can think, among others, of
the safe recursion and ramified recursion techniques for function algebras [6,24],
of interpretation methods for term rewrite systems [8], or of light and soft linear
logics typing-discipline for lambda-calculi [15,4,3].

In the second-order setting, a machine-independent characterization of BFF
was provided in [16]. This characterization uses the tier-based (i.e., safe/ramified
recursion-based) type discipline introduced in [26] on imperative programs for
characterizing FP and can be restated as follows:

BFF = λ(JSTK)2,

JSTK denotes the set of functions computed by typable and terminating pro-
grams; λ denotes the lambda closure, that is, for a given set of functionals X,
λ(X) is the set of functionals denoted by simply-typed lambda-terms using con-
stants in X; X2 is the restriction of X to second-order functionals. Type inference
for JSTK is fully automatic and can be performed in time cubic in the size of the
analyzed program. However the above characterization has two main weaknesses:

– It is not complete: As JSTK (BFF, the typed language alone is not complete
for BFF and a lambda closure (i.e., λ(X)) of functionals computed by typable
and terminating programs is required to ensure completeness.

– It is not tractable: the set JSTK relies on a termination assumption and it
is unclear whether the characterization sill holds for a decidable or, for that
matter, tractable termination technique.

Thus, providing a tractable, implicit, sound, and complete programming lan-
guage for characterizing second-order polynomial time is still an open problem.

Complete and tractable characterizations of BFF 369

Contributions. Our paper provides the first solution to this problem, open
for more than 20 years. To this end, we introduce a higher-order programming
language and design a suitable typing discipline that address the two weaknesses
described above. The lambda closure requirement for completeness is removed
by designing a suitable programming language that consists of a layer of simply-
typed terms that can perform calls to a layer of imperative and non-recursive
procedures following a tier-based type discipline. This language allows for some
restricted forms of procedure composition that are handled by the simply-typed
terms and also allows for some restricted forms of oracle composition that are
managed through the use of closures, syntactic elements playing the role of first-
order abstractions with free variables. The termination criterion is specified as
a completeness-preserving instance, called SCPS, of a variant of Size Change
Termination [23] introduced in [7] that can be checked in time quadratic in the
size of the analyzed program. The main contributions of this paper are:

– A programming language in which typable (SAFE) and terminating (SN)
programs capture exactly BFF (Theorem 2).

– A restriction to lambda-free programs, called rank-0 programs, such that
typable (SAFE0) and terminating (SN) programs still capture exactly BFF

(Theorem 3); hence showing that lambda-abstraction only provides a syn-
tactic relaxation, and corresponds to a conservative extension in terms of
computable functions.

– A proof that type inference for SAFE is P-complete, and a type inference
procedure running in time cubic in the program size for SAFE0 (Theorem 4).

– A simple termination criterion, called SCPS, preserving soundness and com-
pleteness of the characterizations both for SAFE and for SAFE0 (Theorem 5)
that can be checked in quadratic time.

– A complete characterization of BFF in terms of typable (SAFE) and termi-
nating (SCPS) programs (Theorem 6) that captures strictly more programs
(Example 1) than [16], and is decidable in P-time.

The contributions of the paper are a non-trivial extension of existing works:

– The critical Programming Language design decisions rely mostly on the no-
tion of continuation, that fixes a given oracle (closure) for once in the im-
perative layer. If the oracle were allowed to be updated inside a while loop,
depending on some local value, then the language would yield a class beyond
BFF, by computing exponential functions.

– It is a surprising result that the characterization of BFF still holds in the ab-
sence of lambda-abstraction as a basic construct of the proposed program-
ming language, in particular that completeness does not rely on lambda-
abstractions. This is an important improvement over [16] and [20], both of
which required external lambda-closure.

– The type system is designed so that each procedure is typed exactly once.
Types are not unique, but this does not prevent type inference from being
polytime, as exhibiting one type is sufficient. The tractability of type in-
ference is obtained by combining the tractabilities of type inference in the
tier-based layer and in the simply-typed layer [25].

370 E. Hainry et al.

– The particular choice of the termination criterion SCPS was made to show
that termination can be specified as a tractable/feasible criterion while pre-
serving completeness. This is also a new result. SCPS may include nested
loops (as described in [7]) and can be replaced by any termination crite-
rion capturing the programs of our completeness proof. SCPS was chosen
for its tractability, but not only: the SCP criterion of [7] ensures termina-
tion by using an error state which breaks the control flow. This control-flow
break damages the non-interference property needed for tier-based typing to
guarantee time complexity bounds.

Leading example. The program ce of Example 1 will be our leading example,
as it computes a function known to be in BFF−JSTK (i.e., it computes a function
in BFF and not in JSTK, see [20]). This program will be shown to be in SAFE0

and, consequently, in SAFE and to terminate with SCPS.

Example 1 (Program ce). Let W be the set of words. Let the operator ε of arity
0 represent the empty word constant, let the operator != test whether or not
its arguments are distinct, and let the operator pred remove the first letter of a
word. The binary operator � truncates and pads the size of its first operand to the
size of its second operand plus 1. When the boxed variables X and y are fed with
the inputs f ∈W→W and w ∈W, respectively, program ce calls procedure KS

in the term t. Program ce computes |w| (i.e., the size of the word w) bounded
iterations of f ◦ f through the iteration of the assignment z := X2(z � w) in
procedure KS. The bound on the output size of each iteration is computed by
the first assignment w := X1(ε � ε) of KS and is equal to f(1) (that is, f(Jε � εK),
with Jε � εK=1; JeK being the result of evaluating the expression e).

box [X,y] in

declare

KS(X1, X2, v) {

var w,z;

w := X1(ε � ε);

z := ε;
while (v != ε) {

v := pred(v);
z := X2(z � w)

}

return z

}

in call KS({x → X @ x}, {x → X @ (X @ x)}, y)

ce
Procedure p

Term t

Statement st’

Statement st

Related work. Several tools providing machine-independent characterizations
of distinct complexity classes have been developed in the field of Implicit Com-

Complete and tractable characterizations of BFF 371

putational Complexity (ICC). Most of these tools are restricted to the study of
first-order complexity classes. Whereas light logic approaches can deal with pro-
grams at higher types, their applications are restricted to first-order complexity
classes such as FP [15,4,3]. Interpretation methods were extended to higher-order
polynomials in [2] to study FP and adapted in [13] and [17] to characterize BFF.
However, these characterizations are not decidable as they require checking of
second-order polynomial inequalities. [12] and [18] study characterizations of BFF
in terms of a simple imperative programming language that enforces an explicit
external bound on the size of oracle outputs within loops. The corresponding
restriction is not implicit by nature and is impractical from a programming per-
spective as the size of oracle outputs cannot be predicted. In this paper, the
bound is programmer friendly because it is implicit and it only constrains the
size of the oracle input.

2 A second-order language with imperative procedures

The syntax and semantics of the programming language designed to capture the
complexity class BFF are introduced in this section. Programs of this language
consist in second-order terms in which imperative procedures are declared and
called. These procedures have no global variables, are not recursive, and their
parameters can be of order 1 (oracles) or 0 (local variables). Oracles are in read-
only mode: they cannot be declared and, hence, modified inside a procedure.
Oracles can only be composed at the term level through the use of closures,
first-order abstractions that can be passed as parameters in a procedure call.

Syntax. When we refer to a type-i syntactic element e (a variable, an expression,
a statement, ...), for i ∈ N, we implicitly assume that the element e denotes some
function of order i over words as basic type. We will sometimes write ei in order
to make the order explicit. For example, e0 denotes a word. This notion will be
formally defined in Section 3. Let e denote a (possibly empty) tuple of n elements
e1, . . . , en, where n is given by the context. Let |e| denote the length of tuple e,
i.e., |e| , n. Let πi, i ≤ |e|, denote the projectors on tuples, i.e., πi(e) , ei.

Let V be a set of variables that can be split into three disjoint sets V =
V0]V1]V≥2. The type-0 variables in V0 will be denoted by lower case letters
x, y, . . . and the type-1 variables in V1 will be denoted by upper case letters
X, Y, . . . Variables in V of arbitrary type will be denoted by letters a, b, a1, a2,

Let O be a set of (type-1) operators op of fixed arity ar(op) that will be used
both in infix and prefix notations for notational convenience and that are always
fully applied, i.e., applied to a number ar(op) of operands.

The programs are defined by the grammar of Figure 1. A program is either a
term t0, a procedure declaration declare p in prog, or the declaration of a boxed
variable a, called box, followed by a program: box [a] in prog. Boxed variables
will represent the program inputs.

In Figure 1, there are three constructor/destructor pairs for abstraction and
application; each of them playing a distinct rôle:

372 E. Hainry et al.

– λa.t and t1@t2 are the standard abstraction and application on terms.

– The application of a type-1 variable X within a statement is called an oracle
call, written X(e1 � e2), where e1 is called the input data, e2 is called the
input bound, and e1 � e2 is called the input. The corresponding abstraction
is called a closure, a type-1 map of the shape {x → t0}, where the type-0
term t may contain free variables.

– A procedure declaration P(X, x){[var y;] st return x} is an abstraction
that computes type-2 functions mapping type-1 and type-0 inputs (X and
x, respectively) to a type-0 output (x). The procedure calls of the shape
call P(c, t0) are the corresponding applications and take closures as type-1
inputs and terms as type-0 inputs.

Type-0 var. x, y, u, v, w . . . ∈ V0

Type-1 var. X, Y, X1, X2, . . . ∈ V1

Variables a, b, a1, a2, . . . ∈ V = V0] V1] V≥2

Operators op, � ∈ O
Expressions e, e1, e2, . . . ::= x | op(e) | X(e1 � e2)
Statements st, st1, . . . ::= skip | x := e | st1; st2 | if(e){st1} else {st2}

| while(e){st}
Procedures p, p1, p2, . . . ::= P(X, x){[var y;] st return x}
Terms t, t1, t2, . . . ::= a | λa.t | t1@t2 | call P(c, t0)
Closures c, c1, c2, . . . ::= {x→ t0}
Programs prog ::= t0 | declare p in prog | box [a] in prog

Fig. 1: Syntax of type-2 programs

For some syntactic element e of the language, let V(e) ⊆ V be the set of
all variables occurring in e. A variable is free if it is not under the scope of an
abstraction and it is not boxed. A program is closed if it has no free variable.

For a given procedure declaration p = P(X, x){[var y;] st return x}, define
the procedure name of p by n(p) , P. Define also body(P) , st, local(P) , {y},
and param(P) , {X, x}. body(P) is called the body of procedure P. The variables
in local(P) are called local variables and the variables in param(P) are called
parameters. Finally, define Proc(t) (and Proc(prog)) to be the set of procedure
names that are called within the term t (respectively program prog).

Throughout the paper, we will restrict our study to closed programs in nor-
mal form. These consist of programs with no free variable that can be written
as follows box [X, x] in declare p in t, for some term t such that the follow-
ing well-formedness conditions hold: (i) There are no name clashes. (ii) There
are no free variables in a given procedure. (iii) Any procedure call has a corre-
sponding procedure declaration. A closed program in normal form of the shape
box [X, x] in declare p in t0, for some type-0 term t, will compute a type-2

Complete and tractable characterizations of BFF 373

functional. The typing discipline presented in Section 3 will restrict the analysis
to such programs.

Operational semantics. Let W = Σ∗ be the set of words over a finite alphabet
Σ such that {0, 1} ⊆ Σ. The symbol ε denotes the empty word. The length
of a word w is denoted |w |. Given two words w and v in W let v .w denote
the concatenation of v and w . For a given symbol a ∈ Σ, let an be defined
inductively by a0 = ε and an+1 = a.an. Let E be the sub-word relation over W,
which is defined by v E w , if ∃u, u ′ ∈W, w = u.v .u ′.

For a given word w ∈ W and an integer n, let w�n be the word obtained by
truncating w to its first min(n, |w|) symbols and then padding with a word of
the form 10k to obtain a word of size exactly n + 1. For example, 1001�0 = 1,
1001�1 = 11, 1001�2 = 101, and 1001�6 = 1001100. Define ∀v ,w ∈W, J�K(v, w) =
v�|w|. Padding ensures that |J�K(v, w)| = |w |+1. The syntax of programs enforces
that oracle calls are always performed on input data padded by the input bound
and, consequently, oracle calls are always performed on input data whose size
does not exceed the size of the input bound plus one.

A total function JopK : War(op) → W is associated with each operator op of
arity ar(op). Constants may be viewed as operators of arity zero. We define two
classes of operators called neutral and positive depending on the total function
they compute. This categorization of operators will be used by our type system
as the admissible types for operators will depend on their category.

An operator op, computing the total function JopK : War(op) →W, is:

– neutral if:
1. either JopK is constant, i.e., ar(op) = 0;
2. JopK : War(op) → {0, 1} is a predicate;
3. or ∀w ∈War(op), ∃i ≤ ar(op), JopK(w)E wi;

– positive if ∃cop ∈ N s.t.: ∀w ∈War(op), |JopK(w)| ≤ max1≤i≤ar(op) |wi|+ cop.

As neutral operators are always positive, in the sequel, we reserve the name
positive for those operators that are positive but not neutral.

In what follows, let f, g, . . . denote total functions in W → W. A store µ
consists of the disjoint union of a map µ0 from V0 to W and a map µ1 from
V1 to total functions in W → W. For i ∈ {0, 1}, µi is called a type-i store. Let
dom(µ) be the domain of the store µ. Let µ[x← w] denote the store µ′ satisfying
µ′(b) = µ(b), for all b 6= x, and µ′(x) = w . This notation is extended naturally
to type-1 variables µ[X ← f] and to sequences of variables µ[x ← w , X ← f].
Finally, let µ∅ denote the empty store.

Let ↓ denote the standard big-step call-by-name reduction relation on terms
defined by: if t1 ↓ λa.t and t{t2/a} ↓ v then t1@t2 ↓ v, where {t2/a} is the stan-
dard substitution and where v can be a type-0 variable x, a lambda-abstraction
λa.t, a type-1 variable application X@t, or a procedure call call P(c, t0).

A continuation is a map φ from V1 to Closures, i.e., φ(X) = {x → t0} for
some type-1 variable X, some type-0 variable x, and some type-0 term t0. Let
X 7→ c with |X| = |c|, be a notation for the continuation mapping each Xi ∈ V1

to the closure ci.

374 E. Hainry et al.

Given a set of procedures σ, a store µ, and a continuation φ, we define three
distinct kinds of judgments: (σ, µ, φ, e)→exp w for expressions, (σ, µ, φ, st)→st

µ′ for statements, and (σ, µ, prog) →env w for programs. The big-step opera-
tional semantics of the language is described in Figure 2.

A program prog = box [X, x] in declare p in t0 computes the second-order

partial functional JprogK ∈ (W→W)|X| →W|x| →W, defined by:

JprogK(f,w) = w iff (∅, µ∅[x← w , X← f], prog)→env w .

In the special case where JprogK is a total function, the program prog is
said to be terminating (strongly normalizing). We will denote by SN the set of
terminating programs. For a given set of programs S, let JSK denote the set of
functions computed by programs in S. Formally, JSK = {JprogK | prog ∈ S}.

Example 2. Consider the program ce provided in Example 1, where:

JεK() = ε ∈W, J!=K(w , v) =

{
1 if v = w

0 otherwise,
JpredK(v) =

{
ε if v = ε

u if v = a.u

Program ce is in normal form and computes the second-order functional
F : (W → W) → W → W defined by: ∀f ∈ W → W, ∀w ∈ W, F (f)(w) =
F|w |(f), where Fn is defined recursively as F0(f) = ε and Fn+1(f) = (f ◦
f)(J�K(Fn(f), f(1)) = (f ◦ f)(Fn(f)�|f(1)|). That is a function that composes
the input function 2|w | times f while restricting its input to a fixed size |f(1)|
every other iteration. Indeed, JεK() = ε and J�K(ε, ε) = ε�|ε| = 1. Consequently,
the oracle bound w in the oracle call X2(z � w) is bound to value f(1) in the store
by the statement w := X1(ε � ε).

Observe that the operators ε, != and pred are all neutral. An example of
positive operator can be given by the successor operators defined by JsuciK(v) =
i.v , for i ∈ {0, 1}. These operators are positive since |JsuciK(v)| = |i.v | = |v |+1.

3 Type system

Tiers and typing environments. Let W be the type of words in W. Simple
types over W are defined inductively by T, T′, . . . ::= W | T→ T. Let TW be the set
of simple types over W. The order of a simple type in TW is defined inductively by:
ord(T) = 0, if T = W, and ord(T) = max(1 + ord(T1), ord(T2)), if T = T1 → T2.

Tiers are elements of the totally ordered set (N,�,0,∨,∧), where N =
{0,1,2, . . .} is the set of natural numbers, � is the standard ordering on integers,
and ∨ and ∧ are the max and min operators over integers. Let ≺ be defined by
≺ := � ∩ 6=. We use the symbols k,k′, . . . ,k1,k2, . . . to denote tier variables.
For a finite set of tiers, {k1, . . . ,kn}, let ∨ni=1ki (∧ni=1ki, respectively) denote
k1 ∨ . . . ∨ kn (k1 ∧ . . . ∧ kn, respectively). A first-order tier is of the shape
k1 → . . .→ kn → k′, with ki,k

′ ∈ N.
A simple typing environment ΓW is a finite partial map from V to TW, which

assigns simple types to variables.

Complete and tractable characterizations of BFF 375

(Var)
(σ, µ, φ, x)→exp µ(x)

(σ, µ, φ, e)→exp w
(Op)

(σ, µ, φ, op(e))→exp JopK(w)

(σ, µ, φ, e1)→exp v (σ, µ, φ, e2)→exp u φ(X) = {x→ t0} (σ, µ[x← J�K(v , u)], t0)→env w
(Orc)

(σ, µ, φ, X(e1 � e2))→exp w

(a) Expressions

(Skip)
(σ, µ, φ, skip)→st µ

(σ, µ, φ, st1)→st µ
′ (σ, µ′, φ, st2)→st µ

′′

(Seq)
(σ, µ, φ, st1; st2)→st µ

′′

(σ, µ, φ, e)→exp w
(Asg)

(σ, µ, φ, x := e)→st µ[x← w]

(σ, µ, φ, e)→exp w (σ, µ, φ, stw)→st µ
′ w ∈ {0, 1}

(Cond)
(σ, µ, φ, if(e){st1} else {st0})→st µ

′

(σ, µ, φ, e)→exp 0
(Wh0)

(σ, µ, φ, while(e){st})→st µ

(σ, µ, φ, e)→exp 1 (σ, µ, φ, st; while(e){st})→st µ
′

(Wh1)
(σ, µ, φ, while(e){st})→st µ

′

(b) Statements

t0 ↓ x
(TVar)

(σ, µ, t0)→env µ(x)

t0 ↓ X@t01 (σ, µ, t01)→env w
(OA)

(σ, µ, t0)→env µ(X)(w)

t0 ↓ call P(c, t0) (σ, µ, t0)→env w (σ, µ[x← w , y← ε], X 7→ c, st)→st µ
′

(Call)
(σ ∪ {P(X, x){var y; st return z}}, µ, t0)→env µ

′(z)

(c) Type-0 terms

(σ ∪ {p}, µ, prog)→env w
(Dec)

(σ, µ, declare p in prog)→env w

(σ, µ, prog)→env w a ∈ dom(µ)
(Box)

(σ, µ, box [a] in prog)→env w

(d) Programs

Fig. 2: Big step operational semantics

376 E. Hainry et al.

A variable typing environment Γ is a finite partial map from V0 to N, which
assigns single tiers to type-0 variables.

An operator typing environment ∆ is a mapping that associates to some
operator op and some tier k ∈ N a set of admissible first-order tiers ∆(op)(k)
of the shape k1 → . . .→ kar(op) → k′.

A procedure typing environment Ω is a mapping that associates to each pro-
cedure name P a pair 〈Γ,k〉 consisting of a variable typing environment Γ and
a triplet of tiers k. Let Ωi , πi(Ω), i ∈ {1, 2}.

Let dom(Γ), dom(ΓW), dom(∆), and dom(Ω) denote the sets of variables
typed by Γ and ΓW, the set of operators typed by ∆, and the set of procedures
typed by Ω, respectively.

For a procedure typing environment Ω, it will be assumed that for every
P ∈ dom(Ω), param(P) ∪ local(P) ⊆ dom(Ω1(P)).

While operator and procedure typing environments are global, i.e., defined
for the whole program, variable typing environments are local, i.e., relative to
the procedure under analysis. In a program typing judgment, the simple typing
environment can be viewed as the typing environment for the main program.

Typing judgments and type system. The typing discipline includes two
distinct kinds of typing judgments: Procedure typing judgments Γ,∆ ` o :
(k,kin,kout) and Term typing judgments ΓW, Ω,∆ ` prog : T, with k,kin,kout ∈
N, o ∈ Expressions ∪ Statements, and T ∈ TW.

The meaning of the procedure typing judgment is that the expression tier
(or statement tier) is k, the innermost tier is kin, and the outermost tier is
kout. The innermost (resp. outermost) tier is the tier of the innermost (resp.
outermost) while loop guard where the expression or statement is located. The
meaning of term typing judgments is that the program prog is of simple type T

under the operator typing environment ∆, the procedure typing environment Ω
and the simple typing environment ΓW.

A program prog (or term t) is of type-i, if ΓW, Ω,∆ ` prog : T (ΓW, Ω,∆ `
t : T) can be derived for some typing environments and type T s.t. ord(T) = i.

The type system for the considered programming language is provided in Fig-
ure 3. A well-typed program is a program that can be given the type (W→ W)→
W → W, i.e., the judgment ΓW, Ω,∆ ` prog : (W→ W) → W → W can be derived
for the environments ΓW, Ω,∆. Consequently, a well-typed program is a type-i
program, for some i ≤ 2, computing a functional.

For a given typing judgment j, a typing derivation π3 j is a tree whose root
is the (procedure or term) typing judgment j and whose children are obtained
by applications of the typing rules of Figure 3. The name π will be used alone
whenever mentioning the root of a typing derivation is not explicitly needed. A
typing sub-derivation of a typing derivation π is a subtree of π.

Intuitions. We now give some brief intuition to the reader on the type discipline
in the particular case where exactly two tiers, 0 and 1, are involved. The type
system splits program variables, expressions, and statements between the two
disjoint tiers :

Complete and tractable characterizations of BFF 377

Γ (x) = k
(E-VAR)

Γ,∆ ` x : (k,kin,kout)

k1 → · · · → k|e| → k ∈ ∆(op)(kin) ∀i ≤ |e|, Γ,∆ ` ei : (ki,kin,kout)
(E-OP)

Γ,∆ ` op(e) : (k,kin,kout)

Γ,∆ ` e1 : (k,kin,kout) Γ,∆ ` e2 : (kout,kin,kout) k ≺ kin ∧ k � kout
(E-OR)

Γ,∆ ` X(e1 � e2) : (k,kin,kout)

(S-SK)
Γ,∆ ` skip : (0,kin,kout)

Γ,∆ ` st : (k,kin,kout)
(S-SUB)

Γ,∆ ` st : (k+1,kin,kout)

Γ,∆ ` st1 : (k,kin,kout) Γ,∆ ` st2 : (k,kin,kout)
(S-SEQ)

Γ,∆ ` st1; st2 : (k,kin,kout)

Γ,∆ ` x : (k1,kin,kout) Γ,∆ ` e : (k2,kin,kout) k1 � k2
(S-ASG)

Γ,∆ ` x := e : (k1,kin,kout)

Γ,∆ ` e : (k,kin,kout) Γ,∆ ` st1 : (k,kin,kout) Γ,∆ ` st0 : (k,kin,kout)
(S-CND)

Γ,∆ ` if(e){st1} else {st0} : (k,kin,kout)

Γ,∆ ` e : (k,kin,k) Γ,∆ ` st : (k,k,k) 1 � k
(S-WINIT)

Γ,∆ ` while(e){st} : (k,kin,0)

Γ,∆ ` e : (k,kin,kout) Γ,∆ ` st : (k,k,kout) 1 � k � kout
(S-WH)

Γ,∆ ` while(e){st} : (k,kin,kout)

(a) Tier-based typing rules for expressions and statements

ΓW, Ω,∆ ` X : W→ W ΓW, Ω,∆ ` x, y, x : W
(PR-DEC)

ΓW, Ω,∆ ` P(X, x){[var y;] st return x} : (W→ W)→ W→ W

ΓW, Ω,∆ ` P(X, x){. . .} : (W→ W)→ W→ W ΓW, Ω,∆ ` c : W→ W ΓW, Ω,∆ ` t : W
(P-CALL)

ΓW, Ω,∆ ` call P(c, t) : W

ΓW(a) = T
(P-VAR)

ΓW, Ω,∆ ` a : T

ΓW] {a : T}, Ω,∆ ` t : T′

(P-ABS)
ΓW, Ω,∆ ` λa.t : T→ T′

ΓW, Ω,∆ ` t1 : T→ T′ ΓW, Ω,∆ ` t2 : T
(P-APP)

ΓW, Ω,∆ ` t1@t2 : T′

ΓW, Ω,∆ ` prog : T Γ,∆ ` body(n(p)) : (k,kin,kout) Ω(n(p)) = 〈Γ, (k,kin,kout)〉
(P-DEC)

ΓW, Ω,∆ ` declare p in prog : T

ΓW] {x : W}, Ω,∆ ` t : W
(P-CLOS)

ΓW, Ω,∆ ` {x→ t} : W→ W

ΓW] {a : T}, Ω,∆ ` prog : T′

(P-BOX)
ΓW, Ω,∆ ` box [a] in prog : T→ T′

(b) Simple typing rules for procedures, terms, closures and programs

Fig. 3: Tier-based type system

378 E. Hainry et al.

– 0 corresponds to a program component whose execution may result in a
memory increase (in size) and that cannot control the program flow.

– 1 corresponds to a program component whose execution cannot result in a
memory increase and that may control the program flow.

The type system of Figure 3 is composed of two sub-systems. The typing rules
provided in Figure 3b enforce that terms follow a standard simply-typed disci-
pline. The typing rules of Figure 3a will implement a standard non-interference
type discipline à la Volpano et al. [30] on the expression (and statement) tier,
preventing data flows from tier 0 to tier 1. The transition between the two sub-
type-systems is performed in the rule (P-DEC) of Figure 3b that checks that
the procedure body follows the tier-based type discipline once and for all in a
procedure declaration.

In Figure 3a, as tier 1 data cannot grow (but can decrease) and are the only
data driving the program flow, the number of distinct memory configurations on
such data for a terminating procedure is polynomial in the size of the program
input (i.e., number of symbols). Hence a typable and terminating procedure has
a polynomial step count (in the sense of [11]), i.e., on any input, the execution
time of a procedure is bounded by a first-order polynomial in the size of their
input and the maximal size of any answer returned by an oracle call.

The innermost tier is used to implement a declassification mechanism on
operators improving the type-system’s expressive power: an operator may be
typed differently depending on its calling context (the statement where it is
applied). This is the reason why more than 2 tiers can be used in general.

The outermost tier is used to ensure that oracles are only called on inputs of
bounded size. This latter restriction on oracle calls enforces a semantic restric-
tion, called finite lookahead revision, introduced in [22,20] and requiring that,
during each computation, the number of calls performed by the oracle on an
input of increasing size is bounded by a constant.

Let MPT be the class of second-order functionals computable by an oracle
Turing machine with a polynomial step count and a finite lookahead revision.
[20] shows that BFF = λ(MPT)2. The type system of Figure 3 ensures that each
terminating procedure of a well-typed program computes a function in MPT.

Safe programs. In this section, we restrict the set of admissible operators to
prevent programs admitting exponential growth from being typable. A program
satisfying such a restriction will be called safe.

An operator typing environment ∆ is safe if for each op ∈ dom(∆) such
that ar(op) > 0, op is neutral or positive, JopK is a polynomial time computable
function, and for each k ∈ N, and for each k1 → . . .kar(op) → k′ ∈ ∆(op)(k),
the two conditions below hold:

1. k′ � ∧ar(op)i=1 ki � ∨ar(op)i=1 ki � k,
2. if op is a positive operator then k′ ≺ k.

Example 3. Consider the operators !=, pred, and suci discussed in Example 1
and an operator typing environment ∆ that is safe and such that !=, pred, suci

Complete and tractable characterizations of BFF 379

∈ dom(∆). We can set ∆(!=)(1) , {1→ 1→ 1}∪{k→ k′ → 0 | k,k′ � 1}, as
!= is neutral. However 1→ 0→ 1 /∈ ∆(!=)(1) as it breaks Condition 1) above
(i.e., 1 6� 1 ∧ 0).

We can also set ∆(pred)(2) , {2→ k | k � 2}∪{1→ k | k � 1}∪{0→ 0}.
We also have ∆(suci)(1) = {1 → 0,0 → 0}. 1 → 1 /∈ ∆(suci)(1) as suci is a
positive operator and, due to Condition 2) above, the operator output tier has
to be strictly smaller than 1.

Given a simple typing environment ΓW, a procedure typing environment Ω,
and a safe operator typing environment ∆, a program prog is a safe program if
it is well-typed for these environments, i.e., ΓW, Ω,∆ ` prog : (W→ W)→ W→ W

can be derived. Let SAFE be the set of safe programs.

Example 4. We consider the program ce of Example 1. We define the operator
typing environment ∆ by∆(!=)(2) , {1 → 1 → 1}, ∆(pred)(1) , {1 → 1},
and ∆(ε)(2) , {0,1}. As the three operators !=, pred, and ε are neutral, the
environment ∆ is safe. We define the simple typing environment ΓW by ΓW(w) ,
W, ∆(v) , W, ∆(z) , W, ΓW(X1) , W → W, and ΓW(X2) , W → W. We define the
variable typing environment Γ by Γ (w) , 1, ∆(v) , 1, ∆(z) , 0. Finally, define
the procedure typing environment Ω by Ω(KS) , 〈Γ, (1,2,1)〉. Using the rules
of Figure 3, the following typing judgement can be derived ΓW, Ω,∆ ` ce :
(W→ W)→ W→ W. Hence ce ∈ SAFE.

4 Characterizations of the class of Basic Feasible
Functionals

Safe and terminating programs. In this section, we show that typable (safe)
and terminating programs capture exactly the class of basic feasible functionals.

For a given set of functionals S, let S2 be the restriction of S to second-order
functionals and let λ(S) be the set of functions computed by closed simply-typed
lambda terms using functions in S as constants. Formally, let λ(S) be the set
of functions denoted by the set of closed simply-typed lambda terms generated
inductively as follows:

– for each type τ , variables xτ , yτ , . . . are terms,
– each functional F ∈ S of type τ , F τ is a term,
– for any term tτ

′
and variable xτ , λxτ .tτ

′
is a term of type τ → τ ′,

– for any terms tτ→τ
′

and sτ , tτ→τ
′
sτ is a term of type τ ′.

Each lambda term of type τ represents a function of type τ and terms are
considered up to β and η equivalences. λ(S)2 is called the second-order simply-
typed lambda closure of S.

Given a simple typing environment ΓW, a safe operator typing environment ∆,
and a triplet of tiers (k,kin,kout), a procedure p , P(X, x){[var y;] st return x}
is safe if it is well-typed for these environments, i.e ΓW, ∆ ` st : (k,kin,kout) can
be derived using the rules of Figure 3. P computes a second-order partial func-
tional JPK ∈ (W→W)|X| →W|x| →W, defined by JPK(f,w) = w iff ({p}, µ∅[x←

380 E. Hainry et al.

w , X ← f], call P(X, x)) →env w (see Figure 2). If JPK is a total function, then
the procedure terminates. Let ST be the set of safe and terminating procedures.

The characterization of BFF in terms of safe and terminating procedures
discussed in the introduction can be stated as follows.

Theorem 1 ([16]). λ(JSTK)2 = BFF.

We are now ready to state a first characterization of BFF in terms of safe
(SAFE) and terminating (SN) programs, showing that the external simply-typed
lambda-closure of Theorem 1 can be removed.

Theorem 2. JSN ∩ SAFEK2 = BFF.

We want to highlight that the characterization of Theorem 2 is not just
“moving” the simply-typed lambda-closure inside the programming language by
adding a construct for lambda-abstraction. Indeed, the soundness of this result
crucially depends on some choices on the language design that we have enforced:
the restricted ability to compose oracles using closures, and the read-only mode
of oracles inside a procedure call, implemented through continuations.

Safe and terminating rank-r programs. More importantly, we also show
that this characterization is still valid in the absence of lambda-abstraction.

A safe program prog w.r.t. to a typing derivation π is a rank-r program,
if for any typing sub-derivation π′ 3 ΓW, Ω,∆ ` λa.t : T of π, it holds that
ord(T) ≤ r. In other words, all lambda-abstractions are at most type-k terms,
for k ≤ r. In particular, a rank-(r+ 1) program, for r ≥ 1, has variables that are
at most type-r variables. Rank-0 and rank-1 programs may have both type-0 and
type-1 variables as these variables can still be captured by closures, procedure
declarations, or boxes.

For a given set S of well-typed programs, let Sr be the subset of rank-r
programs in S, i.e., Sr , {prog ∈ S | prog is a rank-r program}. For example,
SAFEr denotes the set of safe rank-r programs. It trivially holds that SAFE =
∪r∈NSAFEr. The rank is clearly not uniquely determined for a given program. In
particular, any rank-r program is also a rank-(r+ 1) program. Consequently, for
any set S of well-typed programs and any i ≤ j, it trivially holds that Si ⊆ Sj .

Example 5. Program ce of Example 1 is in SAFE0. Indeed, ce ∈ SAFE, cf. Ex-
ample 4, and ce is a rank-0 program, as it does not use any lambda-abstraction.

Now we revisit the syntax and semantics of safe rank-0 programs in SAFE0.
The programs are generated by the syntax of Figure 1, where the terms are all
of type-0 and redefined by:

Terms t0, t01, t
0
2, . . . ::= x | X@t0 | call P(c, t0)

Moreover, there is no longer a need for call-by-name reduction in the big step
operational semantics. As a consequence, the rules (TVar), (OA), and (Call) of
Figure 2c can be replaced by the following simplified rules:

(TVar0)
(σ, µ, x)→env µ(x)

(σ, µ, t01)→env w
(OA0)

(σ, µ, X@t01)→env µ(X)(w)

Complete and tractable characterizations of BFF 381

(σ, µ, t0)→env w (σ, µ[x← w , y← ε], X 7→ c, st)→st µ
′

(Call0)
(σ ∪ {P(X, x){var y; st return z}}, µ, call P(c, t0))→env µ

′(z)

We are now ready to characterize BFF in terms of safe and terminating rank-0
programs.

Theorem 3. JSN ∩ SAFE0K = BFF.

Hence the characterization of Theorem 2 is just a conservative extension
of Theorem 3: lambda-abstractions, viewed as a construct of the programming
language, allow for more expressive power in the programming discipline but do
not capture more functions. As lambda-abstraction is fully removed from the
programming language, this also shows that the simply-typed lambda closure
of Theorem 1 can be simulated through restricted oracle compositions in our
programming language (using closures and continuations). Moreover, the full
hierarchy of safe and terminating rank-r programs collapses.

Corollary 1. ∀r ∈ N, JSN ∩ SAFErK = BFF.

Tractable type inference. Let the size |prog| of the program prog be the
total number of symbols in prog. Type inference is tractable for safe programs.

Theorem 4. Given a program prog and a safe operator typing environment ∆,

– deciding whether prog ∈ SAFE holds is a P-complete problem.
– deciding whether prog ∈ SAFE0 holds can be done in time O(|prog|3).

Tractability of type inference is a nice property of the type system. Showing
prog ∈ SN is at least as hard as showing the termination of a first-order program,
hence Π0

2 -hard in the arithmetical hierarchy. Therefore, the characterizations of
Theorems 1, 2, and 3 are unlikely to be decidable, let alone tractable.

5 A completeness-preserving termination criterion

In this section, we show that the undecidable termination assumption (SN) can
be replaced with a criterion, called SCPS, adapted from the Size-Change Termi-
nation (SCT) techniques of [23], that is decidable in polynomial time and that
preserves the completeness of the characterizations. We first show that studying
safe program termination can be reduced to the study of procedure termination.

Lemma 1. For a given prog ∈ SAFE, if there exists P ∈ Proc(prog) that
terminates, then prog is terminating.

Hence, ensuring the termination of any procedure of a given safe program is
a sufficient condition for the program to terminate. The converse trivially does
not hold as, for example, a procedure with an infinite loop may be declared and
not be called within a given safe program.

382 E. Hainry et al.

Size-Change Termination. SCT relies on the fact that if all infinite execu-
tions imply an infinite descent in a well-founded order, then no infinite execu-
tion exists. To apply this fact for proving termination, [23] defines Size-Change
Graphs (SCGs) that exhibit decreases in the parameters of function calls and
then studies the infinite paths in all possible infinite sequences of calls. If all
those infinite sequences have at least one strictly decreasing path, then the pro-
gram must terminate for all inputs. While SCT is PSpace-complete, [7] develops
a more effective technique, called SCP, that is in P. The SCP technique is strong
enough for our use case. In the literature, SCT and SCP are applied to pure func-
tional languages. As we shall enforce termination of procedures, we will follow
the approach of [1] adapting SCT to imperative programs.

First, we distinguish two kinds of operators that will enforce some (strict)
decrease. An operator op is (strictly) decreasing in i, for i ≤ ar(op), if ∀w ∈W,
w 6= ε, |JopK(w)| ≤ |wi| (|JopK(w)| < |wi|, respectively) and JopK(ε) = ε. For
operators of arity greater than 2, i may not be unique but will be fixed for each
operator in what follows.

For simplicity, we will assume that assignments of the considered programs
are flattened, that is for any assignment x := e, either e = y ∈ V0, or e = op(x),
with x ∈ V0, or e = X(y � z), with y, z ∈ V0 and X ∈ V1. Notice that, by using
extra type-0 variables, any program can be easily transformed into a program
with flattened assignments, while preserving semantics and safety properties.

For each assignment of a procedure P, we design a bipartite graph, called a
SCG, whose nodes are type-0 variables in (local(P)∪param(P))∩V0 and arrows
indicates decreases or stagnation from the old variable to the new. If a variable
may increase, then the new variable will not have an in-arrow.

The bipartite graph is generated for any flattened assignment x := e by:

– for each y, y 6= x, we draw arrows from left y to right y.
– If e = y, we draw an arrow from left y to right x.
– If e = op(x), with op a:
• decreasing operator in i, we draw an arrow from xi to x.
• strictly decreasing operator in i, we draw a “down-arrow” from xi to x.

In all other cases (neutral and non-decreasing operators, positive operators, or-
acle calls), we do not draw arrows. We will name this SCG graph G(x := e).
Finally, for a set V of variables, GV will denote the SCG obtained as a subgraph
of G restricted to the variables of V .

Example 6. Here are the SCGs associated to simple assignments of a procedure
with three type-0 variables x, y, z using a strictly decreasing operator in 1 (pred),
a decreasing operator (min) in 1, a positive operator (+1), and an oracle call.

y := pred(x) y := min(x, y) x := x + 1 x := X(y � z)

x x

y y

z z

↓
x x

y y

z z

x x

y y

z z

x x

y y

z z

Complete and tractable characterizations of BFF 383

The language L(st) of (potentially infinite) sequences of SCG associated
with the statement st is defined inductively as an ∞-regular expression.

L(x := e) , G(x := e) L(if(e){st1}else{st2}) , L(st1) + L(st2)

L(st1; st2) , L(st1).L(st2) L(while(e){st1}) , L(st1)∞

where, following the standard terminology for automata [28], L(st)∞ is defined
by L(st)∞ , L(st)∗+L(st)ω. In the composition of SCGs, we are interested in
paths that advance through the whole concatenated graph. Such a path implies
that the final value of the destination variable is of size at most equal to the
initial value of the source variable. If the path contains a down-arrow, then the
size of the corresponding words decreases strictly.

Following the terminology of [7], a (potentially infinite) sequence of SCGs
has a down-thread if the associated concatenated graph contains a path spanning
every SCG in the sequence and this path includes a down-arrow.

Example 7. Consider the statement st , y := pred(x); y := min(x, y); x := x+
1; x := X(y � z), whose SCGs are described in Example 6. The concatenated
graph obtained from the (unique and finite) sequence of SCGs in L(st) is pro-
vided below. It contains a down-thread (the path from x to y).

x x x x x

y y y y y

z z z z z

↓

A (potentially infinite) sequence of SCGs is fan-in free if the in-degree of nodes
is at most 1. By construction, all the considered SCGs are fan-in free.

Safety and Polynomial Size-Change. Unfortunately, programs with down-
threads can loop infinitely in the ε state. To prevent this, we restrict the analysis
to cases where while loops explicitly break out when the decreasing variable
reaches ε, that is procedures with while loops of the shape while(x != ε){st}.

For a given set V of variables, we will say that st satisfies the simple graph
property for V if for any while loop while(x != ε){st′} in st all sequences
of SCGs GV1 G

V
2 . . . such that G1G2 . . . ∈ L(st′) are fan-in free and contain a

down-thread from x to x. A procedure is in SCPS if its statement satisfies the
simple graph property for the set of variables in while guards. A program is in
SCPS if all its procedures are in SCPS.

Example 8. The program ce of Example 1 is in SCPS. The language L(body(KS))
corresponding to the body of procedure KS is equal to G1.G2.(G3.G4)∞, where
the SCGs Gi are defined as follows:

384 E. Hainry et al.

G1 G2 G3 G4

w := X1(ε � ε) z := ε v := pred(v) z := X2(z � w)

v v

w w

z z

v v

w w

z z

v v

w w

z z

↓ v v

w w

z z

First, the procedure body satisfies the syntactic restrictions on programs (flat-
tened expressions and restricted while guards). Moreover, the procedure body
satisfies the simple graph property for {v} as there is always a down-thread on
the path from v to v in (G3.G4)∞ and any corresponding sequence is fan-in free.
Consequently, the program ce is in SCPS ∩ SAFE0, by Example 5.

SCPS preserves completeness on safe programs for BFF.

Theorem 5. JSCPS ∩ SAFE0K = JSCPS ∩ SAFEK = BFF.

While in general deciding if a program satisfies the size-change principle is
PSpace-complete, SCPS can be checked in quadratic time and, consequently, we
obtain the following results.

Theorem 6. Given a program prog and a safe operator typing environment,

– deciding whether prog ∈ SCPS ∩ SAFE is a P-complete problem.
– deciding whether prog ∈ SCPS ∩ SAFE0 can be done in time O(|prog|3).

6 Conclusion and future work

We have presented a typing discipline and a termination criterion for a program-
ming language that is sound and complete for the class of second-order polytime
computable functionals, BFF. This characterization has three main advantages:
1) it is based on a natural higher-order programming language with imperative
procedures; 2) it is pure as it does not rely on an extra semantic requirements
(such as taking the lambda closure); 3) belonging to the set SCPS ∩ SAFE can
be decided in polynomial time. The benefits of tractability is that our method
can be automated. However the expressive power of the captured programs is
restricted. This drawback is the price to pay for tractability and we claim that
the full SCT method, known to be PSpace-complete, could be adapted in a more
general way to our programming language in order to capture more programs at
the price of a worse complexity. Moreover, any termination criterion based on
the absence of infinite data flows with respect to some well-founded order could
work and preserve completeness of our characterizations. Another issue of inter-
est is to study whether the presented approach could be extended to characterize
BFF in a purely functional language. We leave these open issues as future work.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their suggestions and comments. Bruce M. Kapron’s work was supported
in part by NSERC RGPIN-2021-02481.

Complete and tractable characterizations of BFF 385

References

1. Avery, J.: Size-change termination and bound analysis. In: Hagiya, M., Wadler, P.
(eds.) FLOPS 2006. Lecture Notes in Computer Science, vol. 3945, pp. 192–207.
Springer (2006). https://doi.org/10.1007/11737414 14

2. Baillot, P., Dal Lago, U.: Higher-order interpretations and program complexity.
Inf. Comput. 248, 56–81 (2016). https://doi.org/10.1016/j.ic.2015.12.008

3. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theor.
Comput. Sci. 411(2), 470–503 (2010). https://doi.org/10.1016/j.tcs.2009.09.015

4. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: Logic in Computer Science, LICS 2004. pp. 266–275. IEEE (2004).
https://doi.org/10.1109/LICS.2004.1319621

5. Beame, P., Cook, S.A., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative
complexity of NP search problems. J. Comput. Syst. Sci. 57(1), 3–19 (1998).
https://doi.org/10.1006/jcss.1998.1575

6. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of
the polytime functions. Computational Complexity 2, 97–110 (1992).
https://doi.org/10.1007/BF01201998

7. Ben-Amram, A.M., Lee, C.S.: Program termination analysis in polyno-
mial time. ACM Trans. Program. Lang. Syst. 29(1), 5:1–5:37 (2007).
https://doi.org/10.1145/1180475.1180480

8. Bonfante, G., Marion, J., Moyen, J.: Quasi-interpretations a way to
control resources. Theor. Comput. Sci. 412(25), 2776–2796 (2011).
https://doi.org/10.1016/j.tcs.2011.02.007

9. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1965)

10. Constable, R.L.: Type two computational complexity. In: Proceedings of the 5th
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,
Texas, USA. pp. 108–121. ACM (1973). https://doi.org/10.1145/800125.804041

11. Cook, S.A.: Computability and complexity of higher type functions. In: Logic
from Computer Science. pp. 51–72. Springer (1992). https://doi.org/10.1007/978-
1-4612-2822-6 3

12. Cook, S.A., Kapron, B.M.: Characterizations of the basic feasible functionals of fi-
nite type. In: 30th Annual Symposium on Foundations of Computer Science (FOCS
1989). pp. 154–159. IEEE (1989). https://doi.org/10.1109/SFCS.1989.63471

13. Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Characterizing polynomial time
complexity of stream programs using interpretations. Theor. Comput. Sci. 585,
41–54 (2015). https://doi.org/10.1016/j.tcs.2015.03.008

14. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning
- 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7364, pp. 286–300.
Springer (2012). https://doi.org/10.1007/978-3-642-31365-3 23

15. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998).
https://doi.org/10.1006/inco.1998.2700

16. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: A tier-based typed pro-
gramming language characterizing feasible functionals. In: LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany,
July 8-11, 2020. pp. 535–549 (2020). https://doi.org/10.1145/3373718.3394768

386 E. Hainry et al.

https://doi.org/{10.1007/11737414_14}
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1016/j.tcs.2009.09.015
https://doi.org/10.1109/LICS.2004.1319621
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1007/BF01201998
https://doi.org/10.1145/1180475.1180480
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1145/800125.804041
https://doi.org/10.1007/978-1-4612-2822-6{_}3
https://doi.org/10.1007/978-1-4612-2822-6{_}3
https://doi.org/10.1109/SFCS.1989.63471
https://doi.org/10.1016/j.tcs.2015.03.008
https://doi.org/{10.1007/978-3-642-31365-3{_}23}
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1145/3373718.3394768

17. Hainry, E., Péchoux, R.: Theory of higher order interpretations and application to
basic feasible functions. Log. Methods Comput. Sci. 16(4) (2020), https://lmcs.
episciences.org/6973

18. Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the ba-
sic feasible functionals (part I). J. Funct. Program. 11(1), 117–153 (2001).
https://doi.org/10.1017/S0956796800003841

19. Kapron, B.M., Cook, S.A.: A new characterization of mehlhorn’s polynomial time
functionals (extended abstract). In: 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1-4 October 1991. pp. 342–347. IEEE
(1991). https://doi.org/10.1109/SFCS.1991.185389

20. Kapron, B.M., Steinberg, F.: Type-two polynomial-time and restricted looka-
head. In: Logic in Computer Science, LICS 2018. pp. 579–588. ACM (2018).
https://doi.org/10.1145/3209108.3209124

21. Kawamura, A., Cook, S.A.: Complexity theory for operators in
analysis. ACM Trans. Comput. Theory 4(2), 5:1–5:24 (2012).
https://doi.org/10.1145/2189778.2189780

22. Kawamura, A., Steinberg, F.: Polynomial running times for polynomial-time oracle
machines. In: 2nd International Conference on Formal Structures for Computation
and Deduction, FSCD 2017. pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.23

23. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) POPL 2001. pp. 81–92. ACM
(2001). https://doi.org/10.1145/360204.360210

24. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fun-
dam. Inform. 19(1/2), 167–184 (1993)

25. Mairson, H.G.: Linear lambda calculus and ptime-completeness. J. Funct. Program.
14(6), 623–633 (2004). https://doi.org/10.1017/S0956796804005131

26. Marion, J.: A type system for complexity flow analysis. In: Logic in Com-
puter Science, LICS 2011. pp. 123–132. IEEE Computer Society (2011).
https://doi.org/10.1109/LICS.2011.41

27. Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comp. Sys. Sci.
12(2), 147–178 (1976). https://doi.org/10.1016/S0022-0000(76)80035-9

28. Nivat, M., Perrin, D.: Automata on infinite words, vol. 192. Springer Science &
Business Media (1985)

29. Townsend, M.: Complexity for type-2 relations. Notre Dame J. Formal Log. 31(2),
241–262 (1990). https://doi.org/10.1305/ndjfl/1093635419

30. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of computer security 4(2-3), 167–187 (1996). https://doi.org/10.3233/JCS-
1996-42-304

Complete and tractable characterizations of BFF 387

https://lmcs.episciences.org/6973
https://lmcs.episciences.org/6973
https://doi.org/10.1017/S0956796800003841
https://doi.org/10.1109/SFCS.1991.185389
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.4230/LIPIcs.FSCD.2017.23
https://doi.org/10.1145/360204.360210
https://doi.org/10.1017/S0956796804005131
https://doi.org/10.1109/LICS.2011.41
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1305/ndjfl/1093635419
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

388 E. Hainry et al.

http://creativecommons.org/licenses/by/4.0/

Variable binding and substitution
for (nameless) dummies

André Hirschowitz1 , Tom Hirschowitz2� , Ambroise Lafont3 , and Marco
Maggesi4

1 Univ. Côte d’Azur, CNRS, LJAD, 06103, Nice, France
2 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry,

France
3 University of New South Wales, Sydney, Australia

4 Università degli Studi di Firenze, Italy

Abstract. By abstracting over well-known properties of De Bruijn’s
representation with nameless dummies, we design a new theory of syntax
with variable binding and capture-avoiding substitution. We propose it
as a simpler alternative to Fiore, Plotkin, and Turi’s approach, with
which we establish a strong formal link. We also show that our theory
easily incorporates simple types and equations between terms.

Keywords: syntax · variable binding · substitution · category theory

1 Introduction

There is a standard notion of signature for syntax with variable binding called
binding signature. Such a signature consists of a set of operation symbols, to-
gether with, for each of them, a binding arity. A binding arity is a list (𝑛1, . . . , 𝑛𝑝)
of natural numbers, whose meaning is that the considered operation has 𝑝 ar-
guments, with 𝑛𝑖 variables bound in the 𝑖th argument, for all 𝑖 ∈ {1, . . . , 𝑝}.

Example 1.

– 𝜆-abstraction has binding arity (1) (one argument, with one bound variable);
– application has binding arity (0, 0) (two arguments, with no bound variable);
– unary explicit substitution 𝑒[𝑥 ↦→ 𝑓] has binding arity (1, 0) (two arguments,

with one variable bound in the first and none in the second).

There are several possible representations of the syntax specified by a bind-
ing signature, most of them benefiting from good semantical understanding.
The traditional, nominal representation has been nicely framed within nominal
sets [12]. The representation by De Bruijn levels, a.k.a. nested datatypes [5,1],
is well-understood thanks to presheaf models [11], as is higher-order abstract
syntax [19]. However, one of the oldest representations, using De Bruijn’s idea
of modelling variables with nameless dummies, does not benefit from any se-
mantical framework. This may be related to the fact that it is often perceived

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 389–408, 2022.
https://doi.org/10.1007/978-3-030-99253-8_20

http://orcid.org/0000-0003-2523-1481
http://orcid.org/0000-0002-7220-4067
http://orcid.org/0000-0002-9299-641X
http://orcid.org/0000-0003-4380-7691
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_20&domain=pdf

as low-level and error-prone [4]. Our goal in this paper is to equip De Bruijn’s
representation with a suitable semantical framework.

Let us start by stressing some of the features of this representation, for some
fixed binding signature 𝑆.

Inductive definition The set DB𝑆 of terms is the least fixed point of a suitable
endofunctor on sets, derived from 𝑆. In particular, there is a variables map
𝑣 : N → DB𝑆 and, for each operation 𝑜 in 𝑆 with binding arity (𝑛1, . . . , 𝑛𝑝),
a map 𝑜DB𝑆

: DB𝑝

𝑆
→ DB𝑆.

Substitution DB𝑆 is equipped with a (parallel) substitution map

−[−] : DB𝑆 ×DBN
𝑆 → DB𝑆,

which satisfies three standard substitution lemmas (associativity, left and
right unitality).
Furthermore, substitution is compatible with operations, in the sense that
it satisfies the following crucial binding conditions: for each operation 𝑜

with binding arity (𝑛1, . . . , 𝑛𝑝), 𝑒1, . . . , 𝑒𝑝 ∈ DB𝑆, and 𝑓 : N → DB𝑆,

𝑜DB𝑆
(𝑒1, . . . , 𝑒𝑝) [𝑓] = 𝑜DB𝑆

(𝑒1 [⇑𝑛1 𝑓], . . . , 𝑒𝑝 [⇑𝑛𝑝 𝑓]), (1)

where ⇑ is a unary operation defined on DBN
𝑆 by

(⇑ 𝜎) (0) = 𝑣(0)
(⇑ 𝜎) (𝑛 + 1) = 𝜎(𝑛) [𝑝 ↦→ 𝑣(𝑝 + 1)].

In the present work, by abstracting over these properties, we propose a simple
theory for syntax with variable binding, which we summarise as follows.

De Bruijn monad (§2) A De Bruijn monad consists of a set 𝑋, equipped with
variables and substitution maps, say 𝑣 : N → 𝑋 and −[−] : 𝑋 × 𝑋N → 𝑋,
satisfying the abstract counterparts of the above substitution lemmas.

De Bruijn 𝑆-algebra ADe Bruijn 𝑆-algebra5 is a De Bruijn monad (𝑋,−[−], 𝑣)
equipped with operations from the signature 𝑆, satisfying the abstract coun-
terpart of the above binding condition.

The term De Bruijn 𝑆-algebra We define the set DB𝑆 by an abstract coun-
terpart of the above inductive definition. The substitution map −[−] : DB𝑆×
DBN

𝑆 → DB𝑆 is then the unique map satisfying left unitality and the binding
conditions. Furthermore, it satisfies both other substitution lemmas, hence
upgrades DB𝑆 into a De Bruijn 𝑆-algebra.

Category of De Bruijn 𝑆-algebras (§3) De Bruijn 𝑆-algebras are the ob-
jects of a category 𝑆 -DBAlg, whose morphisms are all maps between under-
lying sets that commute with variables, substitution, and operations.

Initial-algebra Semantics Finally, DB𝑆 is initial in 𝑆 -DBAlg, which provides
a relevant induction/recursion principle.

5 There is a slightly different notion of De Bruijn algebra in the literature, see the
related work section.

390 A. Hirschowitz et al.

We thus propose a theory for syntax with substitution, which is an alterna-
tive to the mainstream initial-algebra semantics of Fiore et al.’s [11]. We have
experienced the simplicity of our theory by formalising it not only in Coq, but
also in HOL Light, which does not support dependent types.

Our theory is similar to the mainstream theory [11], in the following aspects.

– Our and their basic definitions of syntax can be recast using relative monads:
De Bruijn monads are monads relative to the functor 1 → Set selecting N,
while Fiore et al.’s substitution monoids are monads relative to the full and
faithful embedding into Set of the category of finite ordinals and arbitrary
maps between them.

– We find (Theorem 3, §4) that both approaches, in their own ways, include
exotic models, and that when freed from them, our category of De Bruijn
𝑆-algebras and their category of 𝑆-models become equivalent. In this sense,
both semantics differ only marginally.

– In §5, we show how De Bruijn 𝑆-algebras can be defined by resorting to (a
slight generalisation [6] of) pointed strong endofunctors, in the spirit of [11].

– Their framework accomodates simple types and equations [7]; we also provide
such extensions of our theory in §6 and §7.

Related work

Abstract frameworks for variable binding One of the mainstream such frame-
works is [11]. This has been our main reference and in §5 we establish a strong
link between this framework and our proposal. This link could probably be ex-
tended to variants such as [17,18,3].

In a more recent work, Allais et al. [1] introduce a universe of syntaxes,
which essentially corresponds to a simply-typed version of binding signatures.
Their framework is designed to facilitate the definition of so-called traversals,
i.e., functions defined by structural induction, “traversing” their argument. We
leave for future work the task of adapting our approach to such traversals.

In a similar spirit, let us mention the recent work of Gheri and Popescu [13],
which presents a theory of syntax with binding, mechanised in Isabelle/HOL.
Potential links with our approach remain unclear to us at the time of writing.

Finally, the categories of well-behaved objects obtained in §4 are technically
very close to nominal sets [12]: finite supports appear in the action-based presen-
tation of nominal sets, while pullback preservation appears in their sheaf-based
presentation. And indeed, any well-behaved presheaf yields a nominal set, and so
does any well-behaved De Bruijn monad. However, these links are not entirely
satisfactory, because they do not account for substitution. The reason is that
the only categorical theory of substitution that we know of for nominal sets, by
Power [24], is operadic rather than monadic, so we do not immediately see how
to extend the correspondence.

Proof assistant libraries Allais et al. [1] mechanise their approach in Agda. In
the same spirit, the presheaf-based approach was recently formalised [9].

Variable binding and substitution for (nameless) dummies 391

De Bruijn representation benefits from well-developed proof assistant li-
braries, in particular Autosubst [26,27]. They introduce a notion of De Bruijn
algebra, and design a sound and complete decision procedure for their equational
theory, which they furthermore implement for Coq.

Our notion of De Bruijn algebra differs from theirs, notably in that their
substitutions are finitely generated. Our approach makes the theoretical devel-
opment significantly simpler, but of course finite generation is crucial for their
main purpose, namely decidability.

General notation

We denote by 𝐴∗ =
∑

𝑛∈N 𝐴𝑛 the set of finite sequences of elements of 𝐴, for
any set 𝐴. In any category C, we tend to write [𝐶, 𝐷] for the hom-set C(𝐶, 𝐷)
between any two objects 𝐶 and 𝐷. Finally, for any endofunctor 𝐹, 𝐹 - alg denotes
the usual category of 𝐹-algebras and morphisms between them.

2 De Bruijn monads

In this section, we start by introducing De Bruijn monads. Then, we define lifting
of assignments, the binding conditions, and the models of a binding signature 𝑆

in De Bruijn monads, De Bruijn 𝑆-algebras. Finally, we construct the term De
Bruijn 𝑆-algebra.

2.1 Definition of De Bruijn monads

We start by fixing some terminology and notation, and then give the definition.

Definition 1. Given a set 𝑋, an 𝑋-assignment is a map N → 𝑋. We some-
times merely use “assignment” when 𝑋 is clear from context.

Notation 21. Consider any map 𝑠 : 𝑋 × 𝑌N → 𝑍.

– For all 𝑥 ∈ 𝑋 and 𝑔 : N → 𝑌 , we write 𝑥 [𝑔]𝑠 for 𝑠(𝑥, 𝑔), or even 𝑥 [𝑔] when 𝑠

is clear from context.
– Furthermore, 𝑠 gives rise to the map

𝑋N × 𝑌N → 𝑍N

(𝑓 , 𝑔) ↦→ 𝑛 ↦→ 𝑠(𝑓 (𝑛), 𝑔).

We use similar notation for this map, i.e., 𝑓 [𝑔] (𝑛) := 𝑓 (𝑛) [𝑔]𝑠.

Definition 2. A De Bruijn monad is a set 𝑋, equipped with

– a substitution map 𝑠 : 𝑋 × 𝑋N → 𝑋, which takes an element 𝑥 ∈ 𝑋 and an
assignment 𝑓 : N → 𝑋, and returns an element 𝑥 [𝑓], and

– a variables map 𝑣 : N → 𝑋,

satisfying, for all 𝑥 ∈ 𝑋, and 𝑓 , 𝑔 : N → 𝑋:

392 A. Hirschowitz et al.

– associativity: 𝑥 [𝑓] [𝑔] = 𝑥 [𝑓 [𝑔]],
– left unitality: 𝑣(𝑛) [𝑓] = 𝑓 (𝑛), and
– right unitality: 𝑥 [𝑣] = 𝑥.

Example 2. The set N itself is clearly a De Bruijn monad, with variables given
by the identity and substitution N×NN → N given by evaluation. This is in fact
the initial De Bruijn monad, as should be clear from the development below.

Example 3. The set Λ := 𝜇𝑋.N+𝑋+𝑋2 of 𝜆-terms forms a De Bruijn monad. The
variables map N → Λ is the obvious one, while the substitution map Λ×ΛN → Λ

is less obvious but standard. In Example 5, as an application of Theorem 2, we
will characterise this De Bruijn monad by a universal property.

2.2 Lifting assignments

Given a De Bruijn monad 𝑀, we define an operation called lifting on its set of
assignments N → 𝑀. It is convenient to stress that only part of the structure of
De Bruijn monad is needed for this definition.

Definition 3. Consider any set 𝑀, equipped with maps 𝑠 : 𝑀 × 𝑀N → 𝑀 and
𝑣 : N → 𝑀. For any assignment 𝜎 : N → 𝑀, we define the assignment ⇑ 𝜎 : N →
𝑀 by (⇑ 𝜎) (0) = 𝑣(0)

(⇑ 𝜎) (𝑛 + 1) = 𝜎(𝑛) [↑],
where ↑ : N → 𝑋 maps any 𝑛 to 𝑣(𝑛 + 1).

Remark 1. Both ⇑ and ↑ depend on 𝑀 and (part of) (𝑠, 𝑣). Here, and in other
similar situations below, we abuse notation and omit such dependencies for read-
ability.

Of course we may iterate lifting:

Definition 4. Let ⇑0 𝐴 = 𝐴, and ⇑𝑛+1 𝐴 =⇑ (⇑𝑛 𝐴).

2.3 Binding arities and binding conditions

Our treatment of binding arities reflects the separation between the first-order
part of the arity, namely its length, which concerns the syntax, and the binding
information, namely the binding numbers, which concerns the compatibility with
substitution.

Definition 5.

– A first-order arity is a natural number.
– A binding arity is a sequence (𝑛1, . . . , 𝑛𝑝) of natural numbers, i.e., an

element of N∗.
– The first-order arity |𝑎 | associated with a binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝) is

its length 𝑝.

Let us now axiomatise what we call an operation of a given binding arity.

Variable binding and substitution for (nameless) dummies 393

Definition 6. Let 𝑎 = (𝑛1, . . . , 𝑛𝑝) be any binding arity, 𝑀 be any set, 𝑠 : 𝑀 ×
𝑀N → 𝑀, and 𝑣 : N → 𝑀 be any maps. An operation of binding arity 𝑎 is a
map 𝑜 : 𝑀 𝑝 → 𝑀 satisfying the following 𝑎-binding condition w.r.t. (𝑠, 𝑣):

∀𝜎 : N → 𝑀, 𝑥1, . . . , 𝑥𝑝 ∈ 𝑀, 𝑜(𝑥1, . . . , 𝑥𝑝) [𝜎] = 𝑜(𝑥1 [⇑𝑛1 𝜎], . . . , 𝑥𝑝 [⇑𝑛𝑝 𝜎]).
(2)

Remark 2. Let us emphasise the dependency of this definition on 𝑣 and 𝑠 – which
is hidden in the notations for substitution and lifting.

2.4 Binding signatures and algebras

In this section, we recall the standard notions of first-order (resp. binding) sig-
natures, and adapt the definition of algebras to our De Bruijn context. Let us
first briefly recall the former.

Definition 7. A first-order signature consists of a set 𝑂 of operations,
equipped with an arity map ar : 𝑂 → N.

Definition 8. For any first-order signature 𝑆 := (𝑂, ar), an 𝑆-algebra is a set
𝑋, together with, for each operation 𝑜 ∈ 𝑂, a map 𝑜𝑋 : 𝑋ar (𝑜) → 𝑋.

Let us now generalise this to binding signatures.

Definition 9.

– A binding signature [23] consists of a set 𝑂 of operations, equipped with
an arity map ar : 𝑂 → N∗. Intuitively, the arity of an operation specifies the
number of bound variables in each argument.

– The first-order signature |𝑆 | associated with a binding signature 𝑆 := (𝑂, ar)
is |𝑆 | := (𝑂, |ar |), where |ar | : 𝑂 → N maps any 𝑜 ∈ 𝑂 to |ar (𝑜) |.

Example 4. The binding signature for 𝜆-calculus has two operations lam and
app, of respective arities (1) and (0, 0). The associated first-order signature has
two operations lam and app, of respective arities 1 and 2.

Let us now present the notion of De Bruijn 𝑆-algebra:

Definition 10. For any binding signature 𝑆 := (𝑂, ar), a De Bruijn 𝑆-algebra
is a De Bruijn monad (𝑋, 𝑠, 𝑣) equipped with an operation 𝑜𝑋 of binding arity
ar (𝑜), for all 𝑜 ∈ 𝑂.

In order to state our characterisation of the term model, we associate to any
binding signature an endofunctor on sets, as follows.

Definition 11. The endofunctor Σ𝑆 associated to a binding signature (𝑂, ar) is
defined by Σ𝑆 (𝑋) =

∑
𝑜∈𝑂 𝑋 |ar (𝑜) |.

Remark 3. The induced endofunctor just depends on the underlying first-order
signature.

394 A. Hirschowitz et al.

Remark 4. As is well known, for any binding signature, the initial (N + Σ𝑆)-
algebra has as carrier the least fixed point 𝜇𝐴.N + Σ𝑆 (𝐴).

The following theorem defines the term model of a binding signature.

Theorem 1. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote
the initial (N+Σ𝑆)-algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) →
DB𝑆. Then,

(i) There exists a unique map 𝑠 : DB𝑆 ×DB𝑆
N → DB𝑆 such that

– for all 𝑛 ∈ N and 𝑓 : N → DB𝑆, 𝑠(𝑣(𝑛), 𝑓) = 𝑓 (𝑛), and
– for all 𝑜 ∈ 𝑂, the map 𝑜DB𝑆

satisfies the ar (𝑜)-binding condition w.r.t.
(𝑠, 𝑣).

(ii) This map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a De Bruijn 𝑆-algebra.

Proof. We have proved the result in both HOL Light [22] and Coq [20].

Remark 5. Point (i) may be viewed as an abstract form of recursive definition
for substitution in the term model. The theorem thus allows us to construct
the term model of a signature in two steps: first the underlying set, constructed
as the inductive datatype 𝜇𝑍.N + Σ𝑆 (𝑍), and then substitution, defined by the
binding conditions viewed as recursive equations.

Remark 6. We hope that our mechanisations [22,20] may be useful for future
developments based on De Bruijn representation, to automatically generate the
correct syntax and substitution from a suitable signature. This will have the
advantage of reducing what needs to be read to make sure that the development
actually does what is claimed. Normally, this part includes the whole definition
of syntax and substitution, while our framework reduces it to only the binding
signature. Our mechanisations may in fact be used for this purpose on existing
developments, to certify the syntax and substitution, leaving only the binding
signature for the reader to check.

Example 5. For the binding signature of 𝜆-calculus (Example 4), the carrier of
the initial model is 𝜇𝑍.N + 𝑍 + 𝑍2, and substitution is defined inductively by:

𝑣(𝑛) [𝜎] = 𝜎(𝑛)
𝜆(𝑒) [𝜎] = 𝜆(𝑒[⇑ 𝜎])

(𝑒1 𝑒2) [𝜎] = 𝑒1 [𝜎] 𝑒2 [𝜎] .

3 Initial-algebra semantics of binding signatures in De
Bruijn monads

In this section, for any binding signature 𝑆, we organise De Bruijn 𝑆-algebras
into a category, 𝑆 -DBAlg, and prove that the term De Bruijn 𝑆-algebra is initial
therein.

Variable binding and substitution for (nameless) dummies 395

3.1 A category of De Bruijn monads

Let us start by organising general De Bruijn monads into a category:

Definition 12. A morphism (𝑋, 𝑠, 𝑣) → (𝑌, 𝑡, 𝑤) between De Bruijn monads is
a set-map 𝑓 : 𝑋 → 𝑌 commuting with substitution and variables, in the sense
that for all 𝑥 ∈ 𝑋 and 𝜎 : N → 𝑋 we have 𝑓 (𝑥 [𝜎]) = 𝑓 (𝑥) [𝑓 ◦ 𝜎] and 𝑓 ◦ 𝑣 = 𝑤.

Remark 7. More explicitly, the first axiom says: 𝑓 (𝑠(𝑥, 𝜎)) = 𝑡 (𝑓 (𝑥), 𝑓 ◦ 𝜎).

Notation 31. De Bruijn monads and morphisms between them form a category,
which we denote by DBMnd.

Let us conclude this subsection by briefly mentioning a categorical point of
view on the category of De Bruijn monads for the categorically-minded reader,
in terms of relative monads [2].

Proposition 1. The category DBMnd is canonically isomorphic to the category
of monads relative to the functor 1 → Set picking N.

Remark 8. Canonicity here means that the isomorphism lies over the canonical
isomorphism [1, Set] � Set.

According to the theory of [2], this yields:

Corollary 1. The tensor product 𝑋 ⊗𝑌 := 𝑋 ×𝑌N induces a skew monoidal [28]
structure on Set, and DBMnd is precisely the category of monoids therein.

Proof. To see this, let us observe that, by viewing any set 𝑋, in particular N,
as a functor 1 → Set, one may compute the left Kan extension of 𝑋 along N,
which is a functor LanN (𝑋) : Set → Set. By the standard formula for left Kan
extensions [21], we have LanN (𝑋) (𝑌) � 𝑋 × 𝑌N = 𝑋 ⊗ 𝑌 . The result thus follows
by [2, Theorems 4 and 5].

3.2 Categories of De Bruijn algebras

In this section, for any binding signature 𝑆, we organise De Bruijn 𝑆-algebras
into a category 𝑆 -DBAlg.

Let us start by recalling the category of 𝑆-algebras for a first-order 𝑆:

Definition 13. For any first-order signature 𝑆, a morphism 𝑋 → 𝑌 of 𝑆-
algebras is a map between underlying sets commuting with operations, in the
sense that for each 𝑜 ∈ 𝑂, letting 𝑝 := ar (𝑜), we have 𝑓 (𝑜𝑋 (𝑥1, . . . , 𝑥𝑝)) =

𝑜𝑌 (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑝)).
We denote by 𝑆 - alg the category of 𝑆-algebras and morphisms between them.

We now exploit this to define De Bruijn 𝑆-algebras:

Definition 14. For any binding signature 𝑆, a morphism of De Bruijn 𝑆-algebras
is a map 𝑓 : 𝑋 → 𝑌 between underlying sets, which is a morphism both of De
Bruijn monads and of |𝑆 |-algebras. We denote by 𝑆 -DBAlg the category of De
Bruijn 𝑆-algebras and morphisms between them.

396 A. Hirschowitz et al.

Theorem 2. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote
the initial (N+Σ𝑆)-algebra. Then, the De Bruijn 𝑆-algebra structure of Theorem 1
on DB𝑆 makes it initial in 𝑆 -DBAlg.

Proof. We have proved the result in both HOL Light [22] and Coq [20].

4 Relation to presheaf-based models

The classical initial-algebra semantics introduced in [11] associates in particular
to each binding signature 𝑆 a category, say Φ𝑆 -Mon of models, while we have
proposed in §3 an alternative category of models 𝑆 -DBAlg. In this section, we
are interested in comparing both categories of models.

In fact, we find that both include exotic models, in the sense that we do
not see any loss in ruling them out. And when we do so, we obtain equivalent
categories.

4.1 Trimming down presheaf-based models

First of all, in this subsection, let us recall the mainstream approach we want to
relate to, and exclude some exotic objects from it.

Presheaf-based models We start by recalling the presheaf-based approach.
The ambient category is the category of functors [F, Set], where F denotes the
category of finite ordinals, and all maps between them. As is well-known, this
category is equivalent to the category [Set, Set] 𝑓 of finitary endofunctors on
sets, and inherits from it a substitution monoidal structure. By construction,
monoids for this monoidal structure are equivalent to finitary monads on sets.

The idea is then to interpret binding signatures 𝑆 as endofunctors Φ𝑆 on
[F, Set], and to define models as monoids equipped with Φ𝑆-algebra structure,
satisfying a suitable compatibility condition.

The definition of Φ𝑆 relies on an operation called derivation:

Definition 15 (Endofunctor associated to a binding signature).

– Let the derivative 𝑋 ′ of any functor 𝑋 : F → Set be defined by 𝑋 ′(𝑛) =

𝑋 (𝑛 + 1).
– Furthermore, let 𝑋 (0) = 𝑋, and 𝑋 (𝑛+1) = (𝑋 (𝑛)) ′.
– For any binding arity 𝑎 = (𝑛1, . . . , 𝑛𝑝), let Φ𝑎 (𝑋) = 𝑋 (𝑛1) × . . . × 𝑋 (𝑛𝑝) .
– For any binding signature 𝑆 = (𝑂, ar), let Φ𝑆 =

∑
𝑜∈𝑂 Φar (𝑜) .

Proposition 2. Through the equivalence with finitary functors, derivation be-
comes 𝐹 ′(𝐴) = 𝐹 (𝐴 + 1), for any finitary 𝐹 : Set → Set and 𝐴 ∈ Set.

Example 6. For the binding signature 𝑆𝜆 of Example 4 for 𝜆-calculus we get
Φ𝑆𝜆 (𝑋) (𝑛) = 𝑋 (𝑛)2 + 𝑋 (𝑛 + 1).

Variable binding and substitution for (nameless) dummies 397

Next, we want to express the relevant compatibility condition between alge-
bra and monoid structure. For this, let us briefly recall the notion of pointed
strength, see [11,10] for details.

Definition 16. A pointed strength on an endofunctor 𝐹 : C → C on a mo-
noidal category (C, ⊗, 𝐼, 𝛼, 𝜆, 𝜌) is a family of morphisms 𝑠𝑡𝐶, (𝐷,𝑣) : 𝐹 (𝐶) ⊗ 𝐷 →
𝐹 (𝐶 ⊗ 𝐷), natural in 𝐶 ∈ C and (𝐷, 𝑣 : 𝐼 → 𝐷) ∈ 𝐼/C, the coslice category below
𝐼, satisfying two coherence conditions.

The next step is to observe that binding signatures generate pointed strong
endofunctors.

Definition 17. The derivation endofunctor 𝑋 ↦→ 𝑋 ′ on [F, Set] has a pointed
strength, defined through the equivalence with finitary functors by

𝐺 (𝐹 (𝑋) + 1)
𝐺 (𝐹 (𝑋)+𝑣1)−−−−−−−−−−→ 𝐺 (𝐹 (𝑋) + 𝐹 (1))

𝐺 [𝐹 (𝑖𝑛1) ,𝐹 (𝑖𝑛2)]−−−−−−−−−−−−−−−→ 𝐺 (𝐹 (𝑋 + 1)).

Product, coproduct, and composition of endofunctors lift to pointed strong end-
ofunctors, which yields:

Corollary 2 ([11,10]). For all binding signatures 𝑆, Φ𝑆 is pointed strong.

At last, we arrive at the definition of models.

Definition 18. For any pointed strong endofunctor 𝐹 on C, an 𝐹-monoid is
an object 𝑋 equipped with 𝐹-algebra and monoid structure, say 𝑎 : 𝐹 (𝑋) → 𝑋,
𝑠 : 𝑋 ⊗ 𝑋 → 𝑋, and 𝑣 : 𝐼 → 𝑋, such that the following pentagon commutes.

𝐹 (𝑋) ⊗ 𝑋 𝐹 (𝑋 ⊗ 𝑋) 𝐹 (𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋, (𝑋,𝑣)

𝑎⊗𝑋

𝐹 (𝑠)

𝑠

𝑎

A morphism of 𝐹-monoids is a morphism in C which is a morphism both of
𝐹-algebras and of monoids. We let 𝐹 -Mon denote the category of 𝐹-monoids
and morphisms between them.

Example 7. For the binding signature 𝑆𝜆 of Example 4, a Φ𝑆𝜆 -monoid is an ob-
ject 𝑋, equipped with maps 𝑋 ′ → 𝑋 and 𝑋2 → 𝑋, and compatible monoid struc-
ture. Compatibility describes how substitution should be pushed down through
abstractions and applications.

Well-behaved presheaves The exoticness we want to rule out only concerns
the underlying functor of a model, so we just have to define well-behaved functors
in [F, Set].

Well-behavedness for a functor 𝑇 : F → Set is about getting closed terms
right. More precisely, for some finite sets 𝑚 and 𝑛, an element of 𝑇 (𝑚 + 𝑛) which
both exists in 𝑇 (𝑚) and 𝑇 (𝑛) should also exist in 𝑇 (∅), and uniquely so. This
says exactly that 𝑇 should preserve the pullback

398 A. Hirschowitz et al.

∅ 𝑛

𝑚 𝑚 + 𝑛.

Remark 9. The reader might wonder about other, i.e., non-empty pullbacks. But
these are automatically preserved, by [29, Proposition 2.1].

Definition 19.

– A functor F → Set is well-behaved iff it preserves binary intersections, or
equivalently empty binary intersections. Let [F, Set]wb denote the full sub-
category spanned by well-behaved functors.

– For any binding signature 𝑆, an object of Φ𝑆 -Mon is well-behaved iff the
underlying functor is. Let Φ𝑆 -Monwb denote the full subcategory spanned by
well-behaved objects.

Example 8. As an example of a non well-behaved finitary monad, consider the
monad 𝐿 of 𝜆-calculus but edited so that 𝐿 (∅) = ∅.

The important result for comparing the presheaf-based approach with ours
is the following.

Proposition 3. The subcategory Φ𝑆 -Monwb includes the initial object.

Proof. Roughly, closed terms are isomorphic to terms in two free variables that
use neither the first, nor the second.

Remark 10. In most natural situations, all models are in fact well-behaved [16,
Proposition 5.17].

4.2 Trimming down De Bruijn monads

Let us now turn to well-behaved De Bruijn algebras. Here well-behavedness
is about finitariness. However, it may not be immediately clear how to define
finitariness of a De Bruijn monad.

Definition 20. A De Bruijn monad (𝑋, 𝑠, 𝑣) is finitary iff each of its elements
𝑥 ∈ 𝑋 has a (finite) support 𝑁𝑥 ∈ N, in the sense that for all 𝑓 : N → N fixing
the first 𝑁𝑥 numbers, the corresponding renaming 𝑣 ◦ 𝑓 fixes 𝑥.

Example 9. By Proposition 4 below, the initial 𝑆-algebra is finitary, for any
binding signature 𝑆. For a counterexample, consider the greatest fixed point
𝜈𝐴.N+Σ𝑆 (𝐴), for any 𝑆 with at least one operation with more than one argument.
E.g., if 𝑆 has an operation of binding arity (0, 0), like application in 𝜆-calculus,
then the term 𝑣(0) (𝑣(1) (𝑣(2) . . .)) does not have finite support.

Definition 21. For any binding signature 𝑆, let 𝑆 -DBAlgwb denote the full
subcategory spanning De Bruijn 𝑆-algebras whose underlying De Bruijn monad
is finitary.

Proposition 4. The subcategory 𝑆 -DBAlgwb includes the initial object.

Variable binding and substitution for (nameless) dummies 399

4.3 Bridging the gap

Wemay at last state the relationship between initial-algebra semantics of binding
signatures in presheaves and in De Bruijn monads:

Theorem 3. Consider any binding signature 𝑆. The subcategories Φ𝑆 -Monwb

and 𝑆 -DBAlgwb are equivalent.

Proof. See [16, Appendix A].

Remark 11. The moral of this is that, if one removes exotic objects from both
Φ𝑆 -Mon and 𝑆 -DBAlg, then one obtains equivalent categories, which both
retain the initial object. Thus, the two approaches to initial-algebra semantics
of binding signatures differ only marginally.

Restricting attention to well-behaved objects, we may thus benefit from the
strengths of both approaches. Typically, in De Bruijn monads, free variables
need to be computed explicitly, while presheaves come with intrinsic scoping,
as terms are indexed by sets of potential free variables. Conversely, in some
settings, observational equivalence may relate programs with different sets of
free variables [25]. In such cases, it is useful to have all terms collected in one
single set. This needs to be computed (and involves non-trivial quotienting) in
presheaves, while it is direct in De Bruijn monads.

5 Strength-based interpretation of the binding conditions

In the previous section, we have compared the category 𝑆 -DBAlg of models
of a binding signature in De Bruijn monads with the standard category of Φ𝑆-
monoids [11]. In this section, we establish a different kind of link, by showing
that, for any binding signature 𝑆, both categories 𝑆 -DBAlg and Φ𝑆 -Mon are
instances of a common categorical construction. We have seen that the standard
category Φ𝑆 -Mon is constructed from the pointed strong endofunctor Φ𝑆, so we
would like a similar construction of 𝑆 -DBAlg. However, pointed strong endo-
functors live on monoidal categories [11,10], while we have seen in Corollary §1
that N and the tensor product only equip Set with skew monoidal structure. In
order to bridge this gap, we resort to a generalisation of pointed strengths to
skew monoidal categories proposed by Borthelle et al. [6].

We give a condensed account: the interested reader is referred to [16, §6].
The starting point is that the endofunctor Σ𝑆 associated to any given binding

signature 𝑆 may be equipped with a family of maps

dbs𝑆 : Σ𝑆 (𝑋) ⊗ 𝑌 → Σ𝑆 (𝑋 ⊗ 𝑌).

However, in order for such a map to be well-defined, we need to assume that
𝑌 features variables and renaming, i.e., that it is a pointed N-module, as we
now introduce:

Definition 22.

400 A. Hirschowitz et al.

– An N-module is a set 𝑋 equipped with an action 𝑋 × NN = 𝑋 ⊗ N → 𝑋. of
the monoid NN.

– For such an action 𝑟 : 𝑋 × NN = 𝑋 ⊗ N → 𝑋, we generally denote 𝑟 (𝑥, 𝑓) by
𝑥 [𝑓]𝑟 , or merely 𝑥 [𝑓] when clear from context.

– A morphism of N-modules is a map between underlying sets, commuting with
action in the obvious sense.

– A pointed N-module is an N-module (𝑋, 𝑟), equipped with a map 𝑣 : N → 𝑋

which is a morphism of N-modules.
– A morphism of pointed N-modules is a map commuting with action and point,

in the obvious sense.
– Let N -ModN denote the category of pointed N-modules.

Example 10. Any De Bruijn monad (𝑋, 𝑠, 𝑣) (in particular N itself) has a canon-
ical structure of pointed N-module given by 𝑣 and 𝑟 (𝑥, 𝑓) = 𝑥 [𝑣 ◦ 𝑓].

We may now define the map dbs𝑆. Lifting of assignments (Definition 3)
straightforwardly generalises to pointed N-modules. Recalling the definition

Σ𝑆 (𝑋) =
∑︁
𝑜∈𝑂

𝑋 𝑝𝑜 ,

where ar (𝑜) = (𝑛𝑜1 , . . . , 𝑛𝑜𝑝𝑜) for all 𝑜 ∈ 𝑂, we thus simply have:

Definition 23. For any binding signature 𝑆 = (𝑂, ar), the De Bruijn strength
dbs𝑆 of the induced endofunctor Σ𝑆 is defined by

Σ𝑆 (𝑋) ⊗ 𝑌 → Σ𝑆 (𝑋 ⊗ 𝑌)
((𝑜, (𝑥1, . . . , 𝑥𝑝𝑜)), 𝜎) ↦→ (𝑜, ((𝑥1, ⇑𝑛1 𝜎), . . . , (𝑥𝑝𝑜 , ⇑𝑛𝑝𝑜 𝜎))),

for all sets 𝑋 and pointed N-modules 𝑌 , with again ar (𝑜) = (𝑛𝑜1 , . . . , 𝑛𝑜𝑝𝑜).
The fact that any De Bruijn monad is in particular a pointed N-module by

Example 10 enables the definition of models in the strength-based approach:

Definition 24. For any binding signature 𝑆, a Σ𝑆-monoid is an object 𝑋,
equipped with monoid and Σ𝑆-algebra structure, say 𝑠 : 𝑋 ⊗ 𝑋 → 𝑋, 𝑣 : N → 𝑋,
and 𝑎 : Σ𝑆 (𝑋) → 𝑋, making the following pentagon commute.

Σ𝑆 (𝑋) ⊗ 𝑋 Σ𝑆 (𝑋 ⊗ 𝑋) Σ𝑆 (𝑋)

𝑋 ⊗ 𝑋 𝑋

dbs𝑆,𝑋,𝑋

𝑎⊗𝑋

Σ𝑆 (𝑠)

𝑠

𝑎 (3)

A morphism of Σ𝑆-monoids is a map which is both a monoid and a Σ𝑆-algebra
morphism.

Let Σ𝑆 -Mon denote the category of Σ𝑆-monoids and morphisms between
them.

Remark 12. In [16], this definition is framed in a more general context, notably
emphasising the fact that dbs𝑆 is in fact a structural strength on the endo-
functor Σ𝑆.

Variable binding and substitution for (nameless) dummies 401

We may at last relate the initial-algebra semantics of §3 with the strength-based
approach:

Proposition 5. For any binding signature 𝑆 = (𝑂, ar) and De Bruijn monad
(𝑀, 𝑠, 𝑣) equipped with a map 𝑜𝑀 : 𝑀 𝑝 → 𝑀 for all 𝑜 ∈ 𝑂 with ar (𝑜) = (𝑛1, . . . , 𝑛𝑝),
the following are equivalent:

(i) each map 𝑜𝑀 : 𝑀 𝑝 → 𝑀 satisfies the 𝑎-binding condition w.r.t. (𝑠, 𝑣);
(ii) the corresponding map Σ𝑆𝑀 → 𝑀 renders the pentagon (3) commutative.

Corollary 3. For any binding signature 𝑆, we have an isomorphism Σ𝑆 -Mon �
𝑆 -DBAlg of categories over Set.

This readily entails the following (bundled) reformulation of Theorems 1 and 2.

Corollary 4. Consider any binding signature 𝑆 = (𝑂, ar), and let DB𝑆 denote
the initial (N+Σ𝑆)-algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) →
DB𝑆. Then:

(i) There exists a unique substitution map 𝑠 : DB𝑆 ⊗ DB𝑆 → DB𝑆 such that

– the map N⊗DB𝑆

𝑣⊗DB𝑆−−−−−−→ DB𝑆 ⊗DB𝑆

𝑠−→ DB𝑆 coincides with the left unit
of the skew monoidal structure (𝑛, 𝑓) ↦→ 𝑓 (𝑛), and

– the pentagon (3) (with Σ := Σ𝑆) commutes.

(ii) This substitution map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a Σ𝑆-monoid.

(iii) This Σ𝑆-monoid is initial in Σ𝑆 -Mon.

Proof. Let Mon(Set) denote the category of monoids in Set for the skew monoi-
dal structure. We have an equality Mon(Set) = DBMnd of categories, and the
algebra structure Σ𝑆 (DB𝑆) → DB𝑆 is merely the cotupling of the maps 𝑜DB𝑆

of
Theorem 1. This correspondence translates one statement into the other.

Remark 13. This result hints at a potential push-button proof of Theorems 1
and 2 (and Corollary 4). Indeed, it is almost an instance of [6, Theorem 2.15]:
the latter is stated for general skew monoidal categories instead of merely Set,
but does not directly apply in the present setting, because it assumes that the
tensor product is finitary in the second argument.

6 Simply-typed extension

In this section, we extend the framework of §2–3, which is untyped, to the simply-
typed case. The development essentially follows the same pattern, replacing sets
with families.

We fix in the whole section a set T of types, and call T-sets the objects of
SetT. A morphism 𝑋 → 𝑌 is a family (𝑋 (𝜏) → 𝑌 (𝜏))𝜏∈T of maps.

402 A. Hirschowitz et al.

6.1 De Bruijn T-monads

In this subsection, we define the typed analogue of De Bruijn monads.

The role of N will be played in the typed context by the following T-set.

Definition 25. Let N ∈ SetT be defined by N(𝜏) = N.

Remark 14. This provides a countable set of variables at each type, which may
not quite be what the reader would have called “typed De Bruijn representation”.
An inconvenience of this representation is that an “erasure” map from typed to
untyped terms appears to need to rely on a bijection T × N � N for “renaming”
variables. In particular, not all indices can be preserved by such a map.

Definition 26. Given a T-set 𝑋, an 𝑋-assignment is a morphism N → 𝑋.
We sometimes merely use “assignment” when 𝑋 is clear from context.

The analogue of the tensor product 𝑋⊗𝑌 = 𝑋×𝑌N will be played by [N, 𝑌] ·𝑋,
i.e., the iterated self-coproduct of 𝑋, with one copy per 𝑌 -assignment.

Notation 61. For coherence with the untyped case, we tend to write an element
of ([N, 𝑌] · 𝑋) (𝜏) as (𝑥, 𝑓), with 𝑥 ∈ 𝑋 (𝜏) and 𝑓 : N → 𝑌 .

Furthermore, Notation 21 straightforwardly adapts to the typed case.

The definition of De Bruijn monads generalises almost mutatis mutandis :

Definition 27. A De Bruijn T-monad is a T-set 𝑋, equipped with

– a substitution morphism 𝑠 : [N, 𝑋] · 𝑋 → 𝑋, which takes an element 𝑥 ∈ 𝑋

and an assignment 𝑓 : N → 𝑋, and returns an element 𝑥 [𝑓], and
– a variables morphism 𝑣 : N → 𝑋,

such that for all 𝑥 ∈ 𝑋, and 𝑓 , 𝑔 : N → 𝑋, we have

𝑥 [𝑓] [𝑔] = 𝑥 [𝑓 [𝑔]] 𝑣(𝑛) [𝑓] = 𝑓 (𝑛) 𝑥 [𝑣] = 𝑥.

Example 11. The set ΛST of simply-typed 𝜆-terms with free variables of type 𝜏

in N×{𝜏}, considered equivalent modulo 𝛼-renaming, forms a De Bruijn monad.
Variables N → ΛST are given by mapping, at any 𝜏, any 𝑛 ∈ N to the variable
(𝑛, 𝜏). Substitution [N,ΛST] · ΛST → ΛST is standard, capture-avoiding substi-
tution. One main purpose of this section is to characterise ΛST by a universal
property, and reconstruct it categorically.

Morphisms generalise straightforwardly, and we get:

Proposition 6. De Bruijn T-monads and morphisms between them form a cat-
egory DBMnd(T).

Variable binding and substitution for (nameless) dummies 403

6.2 Initial-algebra semantics

We now adapt the initial-algebra semantics of §3 to the typed case. Let us start
by generalising lifting to the typed case. This relies on a typed form of lifting,
which acts on all variables of a given type, leaving all other variables untouched.

Definition 28. Let (𝑋, 𝑠, 𝑣) denote any De Bruijn T-monad. We first define a
typed analogue ↑𝜏 of the ↑ of Definition 3, as below left, and then the lifting of
any assignment 𝜎 : N → 𝑋 as below right.

(↑𝜏)𝜏 (𝑛) = 𝑣𝜏 (𝑛 + 1)
(↑𝜏)𝜏′ (𝑛) = 𝑣𝜏′ (𝑛) (if 𝜏 ≠ 𝜏′)

(⇑𝜏 𝜎)𝜏 (0) = 𝑣𝜏 (0)
(⇑𝜏 𝜎)𝜏 (𝑛 + 1) = 𝜎𝜏 (𝑛) [↑𝜏]

(⇑𝜏 𝜎)𝜏′ (𝑛) = 𝜎𝜏′ (𝑛) [↑𝜏] (if 𝜏 ≠ 𝜏′).

Finally, for any sequence 𝛾 = (𝜏1, . . . , 𝜏𝑛) of types, we define ⇑𝛾 𝜎 inductively,
by ⇑𝜀 𝜎 = 𝜎 and ⇑𝛾,𝜏 𝜎 =⇑𝜏 (⇑𝛾 𝜎), where 𝜀 denotes the empty sequence.

We then generalise first-order and binding arities. The main point is:

Definition 29. A binding arity is an element of (T∗ × T)∗ × T, i.e., a tuple
(((𝛾1, 𝜏1), . . . , (𝛾𝑝 , 𝜏𝑝)), 𝜏), where each 𝛾𝑖 ∈ T∗ is a list of types, and each 𝜏𝑖, as

well as 𝜏, are types, thought of as an inference rule
𝛾1 ` 𝜏1 . . . 𝛾𝑝 ` 𝜏𝑝

` 𝜏
·

Example 12. The binding signature for simply-typed 𝜆-calculus has two opera-
tions lam𝜏,𝜏′ and app𝜏,𝜏′ for all types 𝜏 and 𝜏′, of respective arities

𝜏 ` 𝜏′

` 𝜏 → 𝜏′
and

` 𝜏 → 𝜏′ ` 𝜏

` 𝜏′
·

This allows us to generalise binding conditions, as follows.

Definition 30. Let 𝑎 = (((𝛾1, 𝜏1), . . . , (𝛾𝑝 , 𝜏𝑝)), 𝜏) be any binding arity, and
𝑀 be any set equipped with morphisms 𝑠 : [N, 𝑀] · 𝑀 → 𝑀 and 𝑣 : N → 𝑀.
An operation of binding arity 𝑎 is a map 𝑜 : 𝑀 (𝜏1) × . . . × 𝑀 (𝜏𝑝) → 𝑀 (𝜏)
satisfying the following 𝑎-binding condition w.r.t. (𝑠, 𝑣):

∀𝜎 : N → 𝑀, 𝑥1, . . . , 𝑥𝑝 ∈ 𝑀 (𝜏1) × . . . × 𝑀 (𝜏𝑝),
𝑜(𝑥1, . . . , 𝑥𝑝) [𝜎] = 𝑜(𝑥1 [⇑𝛾1 𝜎], . . . , 𝑥𝑝 [⇑𝛾𝑝 𝜎]). (4)

We may now generalise signatures and their models.

Definition 31. A T-binding signature consists of a set 𝑂 of operations,
equipped with an arity map 𝑂 → (T∗ × T)∗ × T.

Definition 32. Consider any T-binding signature 𝑆 := (𝑂, ar). A De Bruijn
𝑆-algebra consists of a De Bruijn T-monad (𝑋, 𝑠, 𝑣), together with algebra struc-
ture on 𝑋 for the underlying first-order signature |𝑆 |, in the obvious sense, such
that for all 𝑜 ∈ 𝑂 with arity ar (𝑜) = (((𝛾1, 𝜏1), . . . , (𝛾𝑝 , 𝜏𝑝)), 𝜏), the structural
map 𝑜𝑋 : 𝑋 (𝜏1) × . . . × 𝑋 (𝜏𝑝) → 𝑋 (𝜏) satisfies the ar (𝑜)-binding condition w.r.t.
(𝑠, 𝑣).

We denote by 𝑆 -DBAlg the category of De Bruijn 𝑆-algebras and (the obvious
notion of) morphisms between them.

404 A. Hirschowitz et al.

Finally, following the untyped case, we may associate to each signature an endo-
functor Σ𝑆, and we have the following typed extension of the initiality theorem.

Theorem 4. For any T-binding signature 𝑆, let DB𝑆 denote the initial (N+Σ𝑆)-
algebra, with structure maps 𝑣 : N → DB𝑆 and 𝑎 : Σ𝑆 (DB𝑆) → DB𝑆, inducing
maps 𝑜DB𝑆

: DB𝑆 (𝜏1) × . . . × DB𝑆 (𝜏𝑝) → DB𝑆 (𝜏) for all 𝑜 ∈ 𝑂 with ar (𝑜) =

(((𝛾1, 𝜏1), . . . , (𝛾𝑝 , 𝜏𝑝)), 𝜏). Then:

(i) There exists a unique map 𝑠 : [N,DB𝑆] · DB𝑆 → DB𝑆 such that
– for all 𝜏 ∈ T, 𝑛 ∈ N, and 𝑓 : N → DB𝑆, 𝑠𝜏 (𝑣𝜏 (𝑛), 𝑓) = 𝑓𝜏 (𝑛), and
– for all 𝑜 ∈ 𝑂, the map 𝑜DB𝑆

satisfies the ar (𝑜)-binding condition w.r.t.
(𝑠, 𝑣).

(ii) This map turns (DB𝑆 , 𝑣, 𝑠, 𝑎) into a De Bruijn 𝑆-algebra.
(iii) This De Bruijn 𝑆-algebra is initial in 𝑆 -DBAlg.

Example 13. While we saw in Example 12 that the De Bruijn monad of simply-
typed 𝜆-calculus terms admits a simple signature, there is another relevant,
related monad, whose elements at any type are values of that type. (Indeed,
values are closed under value substitution.) It is relatively straightforward to
design a binding signature for this De Bruijn monad, following [15].

7 Equations

In this section, we introduce a notion of equational theory for specifying (typed)
De Bruijn monads, following ideas from [8].

Definition 33. A De Bruijn equational theory consists of

– two binding signatures 𝑆 and 𝑇 , and
– two functors 𝐿, 𝑅 : 𝑆 -DBAlg → 𝑇 -DBAlg over DBMnd(T), i.e., making the

following diagram commute serially, where 𝑈𝑆 and 𝑈𝑇 denote the forgetful
functors.

𝑆 -DBAlg 𝑇 -DBAlg

DBMnd(T)

𝐿,𝑅

𝑈𝑆 𝑈𝑇

Example 14. Recalling the binding signature 𝑆Λ for 𝜆-calculus from Example 4,
let us define a De Bruijn equational theory for 𝛽-equivalence. We take 𝑇𝛽 = (1, 0),
and for any De Bruijn 𝑆Λ-algebra 𝑋,

– 𝐿 (𝑋) has as structure map (𝑒1, 𝑒2) ↦→ app(lam(𝑒1), 𝑒2) while
– 𝑅(𝑋) has as structure map (𝑒1, 𝑒2) ↦→ 𝑒1 [𝑒2 · id].

(Here 𝑒2 · id denotes the assignment 0 ↦→ 𝑒2, 𝑛 + 1 ↦→ 𝑣(𝑛).)

Definition 34. Given an equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), a De Bruijn 𝐸-
algebra is a De Bruijn 𝑆-algebra 𝑋 such that 𝐿 (𝑋) = 𝑅(𝑋).

Let 𝐸 -DBAlg denote the category of 𝐸-algebras, with morphisms of De Bruijn
𝑆-algebras between them.

Variable binding and substitution for (nameless) dummies 405

Remark 15. The category 𝐸 -DBAlg is an equaliser of 𝐿 and 𝑅 in CAT.

Let us now turn to characterising the initial De Bruijn 𝐸-algebra, for any De
Bruijn equational theory 𝐸 . For this, we introduce the following relation.

Definition 35. For any De Bruijn equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), with 𝑆 =

(𝑂, ar) and 𝑇 = (𝑂 ′, ar ′), let DB𝑆 denote the initial (N+Σ𝑆)-algebra. We define
∼𝐸 to be the smallest equivalence relation on DB𝑆 satisfying the following rules,

𝑜′
𝐿 (DB𝑆) (𝑒1, . . . , 𝑒𝑝) ∼𝐸 𝑜′

𝑅 (DB𝑆) (𝑒1, . . . , 𝑒𝑝)

𝑒1 ∼𝐸 𝑒′1 . . . 𝑒𝑞 ∼𝐸 𝑒′𝑞

𝑜DB𝑆
(𝑒1, . . . , 𝑒𝑞) ∼𝐸 𝑜DB𝑆

(𝑒′1, . . . , 𝑒′𝑞)

for all 𝑒, 𝑒1, . . . in DB𝑆, 𝑜
′ ∈ 𝑂 ′ with |ar ′(𝑜′) | = 𝑝, and 𝑜 ∈ 𝑂 with |ar (𝑜) | = 𝑞.

Example 15. For the equational theory of Example 14, the first rule instantiates
precisely to the 𝛽-rule, while the second enforces congruence.

Theorem 5. For any equational theory 𝐸 = (𝑆, 𝑇, 𝐿, 𝑅), 𝐸 -DBAlg admits an
initial object, whose carrier set is the quotient DB𝑆/∼𝐸 .

Proof. This has been mechanised in Coq [20] and HOL [22].

Example 16. The initial model for the equational theory of Example 14 is the
quotient of 𝜆-terms in De Bruijn representation by 𝛽-equivalence.

Remark 16. In [16, §9], we mention an equivalent way of defining De Bruijn
equational theories in terms of modules.

8 Conclusion

We have proposed a simple, set-based theory of syntax with variable binding,
which associates a notion of model (or algebra) to each binding signature, and
constructs a term model following De Bruijn representation. The notion of model
features a substitution operation. We have experienced the simplicity of this
theory by implementing it in both Coq and HOL Light.

We have furthermore equipped the construction with an initial-algebra se-
mantics, organising the models of any binding signature into a category, and
proving that the term model is initial therein.

We have then studied this initial-algebra semantics in a bit more depth, in
two directions. We have first established a formal link with the mainstream,
presheaf-based approach [11], proving that well-behaved models (in a suitable
sense on each side of the correspondence) agree up to an equivalence of categories.
We have then recast the whole initial-algebra semantics into the mainstream,
abstract framework of [11,10]. Finally, we have shown that our theory extends
easily to a simply-typed setting, and smoothly incorporates equations.

406 A. Hirschowitz et al.

References

1. Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type and
scope safe universe of syntaxes with binding: their semantics and proofs. Pro-
ceedings of the ACM on Programming Languages 2(ICFP), 90:1–90:30 (2018).
https://doi.org/10.1145/3236785

2. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. Log-
ical Methods in Computer Science 11(1) (2015). https://doi.org/10.2168/LMCS-
11(1:3)2015

3. Arkor, N., McDermott, D.: Abstract clones for abstract syntax. In: Kobayashi,
N. (ed.) Proc. 6th International Conference on Formal Structures for Computa-
tion and Deduction. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 195, pp. 30:1–30:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.FSCD.2021.30

4. Berghofer, S., Urban, C.: A head-to-head comparison of de bruijn indices and
names. Electronic Notes in Theoretical Computer Science 174(5), 53–67 (2007).
https://doi.org/10.1016/j.entcs.2007.01.018

5. Bird, R.S., Paterson, R.: De bruijn notation as a nested
datatype. Journal of Functional Programming 9(1), 77–91 (1999).
https://doi.org/10.1017/S0956796899003366

6. Borthelle, P., Hirschowitz, T., Lafont, A.: A cellular Howe theorem. In:
Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) Proc. 35th
ACM/IEEE Symposium on Logic in Computer Science ACM (2020).
https://doi.org/10.1145/3373718.3394738

7. Fiore, M.P., Hur, C.K.: Second-order equational logic. In: Proceedings of the 19th
EACSL Annual Conference on Computer Science Logic (CSL 2010) (2010)

8. Fiore, M., Hur, C.K.: On the construction of free algebras for equational systems.
Theoretical Computer Science 410, 1704–1729 (2009)

9. Fiore, M., Szamozvancev, D.: Formal metatheory of second-order abstract syn-
tax. Proceedings of the ACM on Programming Languages 6(POPL) (2022).
https://doi.org/10.1145/3498715

10. Fiore, M.P.: Second-order and dependently-sorted abstract syntax. In: LICS. pp.
57–68. IEEE (2008). https://doi.org/10.1109/LICS.2008.38

11. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In:
Proc. 14th Symposium on Logic in Computer Science IEEE (1999)

12. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: Proc. 14th Symposium on Logic in Computer Science IEEE (1999)

13. Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings:
Extended version. Journal of Automated Reasoning 64(4), 641–675 (2020).
https://doi.org/10.1007/s10817-019-09522-2

14. Hirschowitz, A., Hirschowitz, T., Lafont, A.: Modules over monads and operational
semantics. In: Ariola, Z.M. (ed.) Proc. 5th International Conference on Formal
Structures for Computation and Deduction. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 167, pp. 12:1–12:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.12

15. Hirschowitz, A., Hirschowitz, T., Lafont, A.: Modules over monads and operational
semantics (2021), submitted expanded version of [14]

16. Hirschowitz, A., Hirschowitz, T., Lafont, A., Maggesi, M.: Variable binding and
substitution for (nameless) dummies (2021), https://amblafont.github.io/articles/
debruijn-extended.pdf, preprint

Variable binding and substitution for (nameless) dummies 407

https://doi.org/10.1145/3236785
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.1016/j.entcs.2007.01.018
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://amblafont.github.io/articles/debruijn-extended.pdf
https://amblafont.github.io/articles/debruijn-extended.pdf

17. Hirschowitz, A., Maggesi, M.: Modules over monads and linearity. In: Proc. 14th
International Workshop on Logic, Language, Information and Computation LNCS,
vol. 4576, pp. 218–237. Springer (2007). https://doi.org/10.1007/3-540-44802-0 3

18. Hirschowitz, A., Maggesi, M.: Modules over monads and initial se-
mantics. Information and Computation 208(5), 545–564 (2010).
https://doi.org/10.1016/j.ic.2009.07.003

19. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proc. 14th
Symposium on Logic in Computer Science IEEE (1999)

20. Lafont, A.: Initial algebra semantics for de Bruijn monads in Coq. https://github.
com/amblafont/binding-debruijn (2021)

21. Mac Lane, S.: Categories for the Working Mathematician. No. 5 in Graduate Texts
in Mathematics, Springer, 2nd edn. (1998)

22. Maggesi, M.: Initial algebra semantics for de Bruijn monads in HOL Light. https:
//github.com/maggesi/dbmonad/tree/master/De Bruijn (2021)

23. Plotkin, G.: An illative theory of relations. In: Cooper, R., et al. (eds.) Situation
Theory and its Applications. p. 133–146. No. 22 in CSLI Lecture Notes, Stanford
University (1990)

24. Power, J.: Abstract syntax: Substitution and binders: Invited address.
Electronic Notes in Theoretical Computer Science 173, 3–16 (04 2007).
https://doi.org/10.1016/j.entcs.2007.02.024

25. Sangiorgi, D., Walker, D.: The 𝜋-calculus – A Theory of Mobile Processes. Cam-
bridge University Press (2001)

26. Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de Bruijn terms and
parallel substitutions. In: Urban, C., Zhang, X. (eds.) Proc. 6th International Con-
ference on Interactive Theorem Proving. LNCS, vol. 9236, pp. 359–374. Springer
(2015). https://doi.org/10.1007/978-3-319-22102-1 24

27. Stark, K., Schäfer, S., Kaiser, J.: Autosubst 2: reasoning with multi-sorted de bruijn
terms and vector substitutions. In: Mahboubi, A., Myreen, M.O. (eds.) Proc. 8th
International Conference on Certified Programs and Proofs. pp. 166–180. ACM
(2019). https://doi.org/10.1145/3293880.3294101

28. Szlachányi, K.: Skew-monoidal categories and bialgebroids. Advances in Mathe-
matics 231, 1694–1730 (2012). https://doi.org/10.1016/j.aim.2012.06.027

29. Trnková, V.: Some properties of set functors. Commentationes Mathematicæ Uni-
versitatis Carolinæ 10(2), 323–352 (1969)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

408 A. Hirschowitz et al.

https://doi.org/10.1007/3-540-44802-0_3
https://doi.org/10.1016/j.ic.2009.07.003
https://github.com/amblafont/binding-debruijn
https://github.com/amblafont/binding-debruijn
https://github.com/maggesi/dbmonad/tree/master/De_Bruijn
https://github.com/maggesi/dbmonad/tree/master/De_Bruijn
https://doi.org/10.1016/j.entcs.2007.02.024
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1016/j.aim.2012.06.027
http://creativecommons.org/licenses/by/4.0/

Uniform Guarded Fragments

Reijo Jaakkola(�)

Tampere University, Tampere, Finland
reijo.jaakkola@tuni.fi

https://reijojaakkola.github.io

Abstract. In this paper we prove that the uniform one-dimensional
guarded fragment, which is a natural polyadic generalization of guarded
two-variable logic, has the Craig interpolation property. We will also
prove that the satisfiability problem of uniform guarded fragment is
NExpTime-complete.

Keywords: Guarded fragment · Interpolation · Satisfiability problem.

1 Introduction

The guarded fragment GF is a well studied fragment of first-order logic FO,
which was introduced by Andréka, van Benthem and Németi [1] as a generaliza-
tion of modal logic. Informally speaking, GF is obtained from FO by requiring
that all quantification must be relativised by FO-atoms, which is motivated
by the observation that ”quantificaction” in modal logics is relativised by ac-
cessability relations. Like modal logic, GF behaves well both computationally
and model-theoretically. In particular, it is decidable, it has a (generalized) tree-
model property and it satisfies various preservation theorems [1,7].

We say that a logic L has Craig interpolation property (CIP), if for every two
formulas ϕ and ψ of L we have that if ϕ |= ψ, then there exists a third formula
— the interpolant — χ of L, so that ϕ |= χ, χ |= ψ and χ contains only relation
symbols which occur in both ϕ and χ. CIP is widely regarded as a property
that a ”nice” logic should have and for (reasonable logics with compactness)
it implies several other desirable model-theoretic properties such as Projective
Beth Definability and Robinson’s consistency theorem [1,4,13,19].

It is well-known that various modal logics have CIP [1,6,19], while GF fails
to have it [11]. This is somewhat surprising, given that GF is a very natural
generalisation of modal logic, and certainly raises the question of how the syn-
tax of GF should be modified so as to obtain a logic which does have CIP, and
which also behaves well both computationally and model-theoretically. One op-
tion would be to extend further the expressive power of GF , and in this direction
we have the guarded negation fragment, which has CIP, is decidable and shares
with GF various desirable model-theoretic properties [2].

The other option (and the one which is more relevant for this paper) is
to investigate fragments of GF . In this direction we also have a positive result,

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 409–427, 2022.
https://doi.org/10.1007/978-3-030-99253-8_21

http://orcid.org/0000-0003-4714-4637
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_21&domain=pdf

namely that GF2 — the two-variable fragment of GF — has CIP [11]. Given this
result, it is natural to ask whether there exists a polyadic extension of GF2 which
would also have CIP, where by a polyadic extension we mean intuitively a logic
which contains GF2 and can express non-trivial properties of polyadic relations.
Indeed, it seems rather unlikely that there would not be such an extension, since
it is well-known that there are polyadic modal logics which have CIP [1].

In [9] the uniform one-dimensional fragment UF1 was introduced, which is
a very natural polyadic extension of the two-variable fragment FO2 of FO.
Roughly speaking, UF1 is obtained from FO by requiring that each maximal
existential (or universal) block of quantifiers leaves at most one variable free and
that when forming boolean combinations of formulas with more than one free
variable, the formulas need to have exactly the same set of variables. Formulas
satisfying the first restriction are called one-dimensional, while formulas satis-
fying the second restriction are called uniform. In [16] it was proved that UF1

has the finite model property and the complexity of its satisfiability problem is
NExpTime-complete, which is the same as for FO2 [8]. The research around
UF1 and its variants has been quite active, see for instance [12,14,15,17,18].

Given that UF1 is a polyadic extension of FO2, the guarded UF1 is a natural
candidate for being a polyadic extension of GF2 with CIP. As the first main result
of this paper we will prove that guarded UF1 does, in fact, have CIP. Our proof
follows closely the argument given in [11] for proving that GF2 has CIP, the
main technical difference being that the proof presented in [11] uses crucially
the fact that in the case of GF2 we can assume live sets to have size at most
two, while in our case we have to deal with live sets of arbitrary size.

Since the research around modal-like fragments of FO is largely motivated
by the fact that their satisfiability problems are often decidable, it is natural
to also study the complexity of the satisfiability problem of the guarded UF1,
which was in fact already done in [15]. More precisely it was proved in [15] that
the satisfiability problem of one-dimensional GF is in NExpTime, while it is
already NExpTime-hard for guarded UF1. These results left open the problem
of determining the complexity of uniform GF and as the second main result of
this paper we will prove that the satisfiability problem of uniform GF is also in
NExpTime (and hence it is NExpTime-complete).

We also emphasize that as a necessary by-product of this second technical
result, we isolate the uniformity restriction imposed to formulas of UF1 as an
independent syntactical restriction and provide a formal definition for it (which
so far has been missing from the literature). 1 We believe that uniformity is
an important and a natural syntactical restriction (at least) in the context of
fragments of FO. Indeed, in addition to UF1 there are several known decidable
fragments of FO which satisfy this restriction up to some degree, such as the
one-binding fragments introduced in [20] and the ordered logic introduced in [10].
We hope that the results presented in this paper provide further motivation for
the study of various uniform fragments of FO.

1 To be precise, we only define what it means for a formula to be uniform in the
context of GF ; however, it is easy to extend this definition for other logics.

410 Reijo Jaakkola

The structure of this paper is as follows. After the preliminaries in Section 2,
we define a notion of bisimulation for UGF1 and establish its basic properties in
Section 3. After this we will prove that UGF1 has CIP in Section 4. In Section
5 we will establish that the complexity of the satisfiability problem of uniform
GF is NExpTime-complete. The final Section will list some new problems that
the research conducted in this paper raises.

2 Preliminaries

2.1 Notation

In this paper we will work with vocabularies which do not contain constants
and function symbols. We will also assume that there are no relation symbols
of arity 0. We will use the Fraktul capital letters to denote structures, and the
corresponding Roman letters to denote their domains. Given a model A and
C ⊆ A, we will use A � C to denote the restriction of A to the set C. Given two
structures A and B, we will use A ≤ B to denote that A is a substructure of B.

Occasionally we will identify tuples a = (a1, . . . , an) with sets {a1, . . . , an},
which allows us to use notations such as b ∈ a and a = X, where X is a set. Given
two tuples a and b of the same length, we will use a 7→ b and p : a→ b to denote
the mapping induced by the relation ai 7→ bi. Given a tuple a = (a1, . . . , an) and
a unary function f , we will use f(a) to denote the tuple (f(a1), . . . , f(an)). Given
a positive integer n we will denote [n] = {1, . . . , n}. Finally, if a = (a1, . . . , an)
and k ≥ n and µ : [k] → [n] is a surjection, we will use aµ to denote the tuple
(aµ(1), . . . , aµ(k)).

2.2 Types and Tables

The following definitions are standard in the context of UF1 and were first
introduced in [16]. Let σ be a vocabulary. Given a set X = {x1, . . . , xn} of
distinct variables and a k-ary relation R ∈ σ, we say that an atomic formula
R(xi1 , . . . , xik) is an X-atom over σ, if X = {xi1 , . . . , xik}. If α is an X-atom,
then α and ¬α are both X-literals over σ. A 1-type over σ is a maximal satisfi-
able set of {x}-literals over σ. We identify 1-types π with conjunctions of their
elements ∧

π(x)

A k-table is a tuple 〈ρ, π1, . . . , πk〉, where each π` is a 1-type over σ, while ρ
is a maximal satisfiable set of {x1, . . . , xk}-literals over σ. We identify k-tables
〈ρ, π1, . . . , πk〉 with conjunctions∧

ρ(x1, . . . , xk) ∧
∧

1≤`≤k

π`(x`).

Let A be a σ-model. Given a 1-type π over σ, we say that a ∈ A realizes π if
π is the unique 1-type so that A |= π[a]; we denote by tpσA[a] the (unique) 1-type

Uniform Guarded Fragments 411

π over σ which is realized by a in A. For distinct elements a1, . . . , ak ∈ A we
will use tpσA[a1, . . . , ak] to denote the (unique) k-table over σ which is realized
by the tuple (a1, . . . , ak).

2.3 Syntax of Uniform Fragments of GF

Given a vocabulary σ, we define GF [σ] to be the smallest set F which satisfies
the following requirements.

– F contains all the atomic formulas over σ, which includes also equalities
between variables.

– If ϕ,ψ ∈ F , then ¬ϕ ∈ F and (ϕ ∧ ψ) ∈ F .
– If ψ(x) ∈ F , where each free variable of ψ occurs in the tuple x, then

∃y(α(x) ∧ ψ(x)) ∈ F ,

where y ⊆ x and α is an atomic formula over σ.

If the vocabulary σ is irrelevant or known from the context, then we will simply
use GF to denote GF [σ].

Next we will give a formal definitions for the syntactical notions of one-
dimensionality and uniformity. We will start by making the technical remark
that we will define recursively the set of subformulas Sf(ϕ) of ϕ ∈ GF otherwise
in a standard way, except that for formulas of the form ϕ := ∃y(α(x) ∧ ψ(x)),
we define Sf(ϕ) to be

{∃y(α(x) ∧ ψ(x))} ∪ Sf((α(x) ∧ ψ(x))).

In other words, we treat each maximal sequence of existential quantification as
a single logical operator.

Definition 1. Let ϕ ∈ GF be a formula. We say that ϕ is one-dimensional, if
every subformula of ϕ of the form

∃y(α(x) ∧ ψ(x))

has at most one free variable. In other words each maximal sequence of (guarded)
existential quantification leaves at most one variable free.

Next we will define what it means for a formula of GF to be uniform. The
precise definition turns out to be somewhat technical, and we will start with the
following auxiliary definition.

Definition 2. Let X be a (possibly empty) set of variables and let σ be a vocab-
ulary. A relative X-atom over σ is a formula ψ of GF [σ] which satisfies one of
the following conditions.

1. ψ is a sentence.
2. ψ has a one free variable which belongs to X.

412 Reijo Jaakkola

3. ψ is of the form x = y, where x, y ∈ X.
4. ψ is an X-atom over σ.
5. ψ is of the form ∃z(α(x)∧ψ(x)) and the set of its free variables is precisely

X.

With the aid of this definition we are in a position where we can define the
notion of uniformity formally.

Definition 3. Let ϕ ∈ GF [σ] be a formula. We say that ϕ is uniform, if every
subformula ψ of ϕ is a boolean combination of relative X-atoms, where X is the
set of free variables of ψ.

Remark 1. Consider a uniform quantifier-free formula ψ(x1, . . . , xk) of GF [σ].
Let A be a σ-model and let (a1, . . . , ak) be a tuple of not necessarily distinct
elements. Then whether or not

A |= ψ(a1, . . . , ak)

holds depends only on the table of (c1, . . . , c`), where (c1, . . . , c`) is an arbitrary
enumeration of the set of distinct elements of (a1, . . . , ak).

The definition of uniformity is somewhat technical, but the following exam-
ples should clarify the intuition behind it.

Example 1. Let σ = {S,R, P}, where S is a ternary relation symbol, R is a
binary relation symbol and P is a unary relation symbol. The formula

∃x∃y(P (x) ∧R(x, y) ∧ S(x, y, y) ∧R(y, x) ∧ P (y)))

is both uniform and one-dimensional. On the other hand the formula

∃x∃y(∃z(S(x, y, z) ∧ P (z)) ∧R(x, y) ∧ S(x, y, x))

is uniform but not one-dimensional. Finally, the formula

∃x∃y∃w(R(x, y) ∧ ∃zS(x,w, z))

is neither one-dimensional nor uniform.

Example 2. The standard translation of polyadic modal logic into FO results in
formulas of the form

∃x1 . . . ∃xk(R(x0, x1, . . . , xk) ∧
∧

1≤`≤k

ψ`(x`))

which are uniform and one-dimensional [5].

We will use UGF to denote the set of formulas of GF which are uniform
and UGF1 to denote the set of formulas of GF which are both uniform and
one-dimensional. Throughout this paper we will use ϕ(x1, . . . , xn), where all the
variables in the tuple (x1, . . . , xn) are distinct, to denote a formula of either
UGF1 or UGF such that either {x1, . . . , xn} is precisely the set of free variables
of ϕ or ϕ has at most one free variable which belongs to {x1, . . . , xn} or ϕ is of
the form xi = xj , where 1 ≤ i, j ≤ n.

Uniform Guarded Fragments 413

2.4 Interpolation

We start by recalling the definition of the Craig interpolation property.

Definition 4. Given a logic L, we say that L has the Craig interpolation prop-
erty (CIP), if for every ϕ ∈ L[σ] and ψ ∈ L[τ] we have that ϕ |= ψ implies that
there exists an interpolant χ ∈ L[σ ∩ τ] for this entailment, i.e., a sentence for
which ϕ |= χ and χ |= ψ hold.

It is well-known that the full GF fails to have CIP. The known examples of
sentences which demonstrate this can be used to make the following observation.

Proposition 1. The one-dimensional GF does not have CIP.

Proof. Consider the following sentences, which are simple variants of the formu-
las used in [13].

ϕ := ∃x∃y∃z(G(x, y, z) ∧R(x, y) ∧R(y, z) ∧R(z, x))

ψ := ∀x∀y(R(x, y)→ (A(x)↔ ¬A(y)))

Notice that both of these sentence are one-dimensional. Now one can show, using
essentially the same argument as the one used in Example 1 in [13], that there
is no interpolant for the implication ϕ |= ¬ψ.

We remark that, in the context of fragments of FO, CIP is usually defined
for formulas instead of sentences (as we have defined it). We could have also
formulated it for formulas, but we decided to work with sentences for simplicity.

3 Bisimulation for UGF1

Given two models A and B, and tuples c ∈ An and d ∈ Bn we will use

(A, c) ≡σ (B, d)

to denote the fact that for every ϕ(x1, . . . , xn) ∈ UGF1 we have that

A |= ϕ(c1, . . . , cn) ⇐⇒ B |= ϕ(d1, . . . , dn).

The purpose of this section is to define a corresponding notion of bisimulation for
UGF1 which captures the above equivalence relation. We will start by defining
a suitable notion of partial isomorphism.

Definition 5. Let A and B be models, and let X := {a1, . . . , an} ⊆ A and
Y ⊆ B. A bijection p : X → Y , is called a uniform partial σ-isomorphism
between A and B, if

tpσA[a1, . . . , an] = tpσB[p(a1), . . . , p(an)].

414 Reijo Jaakkola

Quantification in GF over a model A is restricted to live subsets of A, i.e.,
subsets of A which are either singletons or are contained in a single tuple a ∈ RA,
for some R ∈ σ. In the case of UGF1 we will need the following modified version
of the notion of live set, which takes into account the requirement that our
formulas are uniform.

Definition 6. Let A be a model and let X ⊆ A. We say that X is σ-live, if either
|X| ≤ 1 or there exists R ∈ σ and (a1, . . . , an) ∈ RA so that X = {a1, . . . , an}.

We are now ready to define the notion of bisimulation for UGF1.

Definition 7. Let Z be a non-empty set of uniform partial σ-isomorphism be-
tween two structures A and B. Let c ∈ An and d ∈ Bn be tuples. We say that
Z is a uniform guarded σ-bisimulation between (A, c) and (B, d), if for every
p : X → Y ∈ Z the following conditions hold:

(cover) There exists h ∈ Z with c = dom(h) so that h(c) = d.
(forth) For any a ∈ X and a σ-live set X ′ ⊆ A, with a ∈ X ′, there exists

q : X ′ → Y ′ ∈ Z so that
p(a) = q(a).

(back) For any b ∈ Y and a σ-live set Y ′ ⊆ B, with b ∈ Y ′, there exists
q : X ′ → Y ′ ∈ Z so that

p−1(b) = q−1(b).

If there exists a guarded σ-bisimulation between (A, c) and (B, d), then we denote
this by (A, a) ∼σ (B, b).

In what follows we will often refer to uniform guarded bisimulations simply
as guarded bisimulations. The following two lemmas establish that our notion of
bisimulation is correct, the first of which can proved in a standard manner by
using induction.

Lemma 1. Let A and B be models, and let c ∈ An and d ∈ Bn be tuples so that
(A, c) ∼σ (B, d). Then (A, c) ≡σ (B, d).

For the proof of the second lemma we need to recall the definition of ω-
saturated model. A elementary n-type over a vocabulary σ is a consistent set
of first-order formulas (not necessarily quantifier-free) with free variables in
{x1, . . . , xn}. Given a σ-model A, we say that it is ω-saturated, if for every
tuple a ∈ An of elements of A we have that each elementary n-type over the
extended vocabulary σ ∪ {a1, . . . , an}, where each ai denotes a constant to be
interpreted as the element ai, which is finitely consistent with the FO-theory of
(A, a), is realized in (A, a). It is well-known that every σ-model, where σ is finite
and relational, has an ω-saturated elementary extension [3].

Lemma 2. Let A and B be two ω-saturated models, and let c ∈ An and d ∈ Bn
be tuples so that (A, c) ≡σ (B, d). Then (A, c) ∼σ (B, d).

Uniform Guarded Fragments 415

Proof. Consider the following set

Z := {p : a→ b | (A, a) ≡σ (B, b)}.

We claim that Z is a guarded σ-bisimulation between (A, c) and (B, d). We first
note that by assumption c 7→ d ∈ Z, and hence Z satisfies (cover). Z also clearly
consists of uniform partial σ-isomorphism between A and B. What remains to
be proved is that Z also satisfies (forth) and (back). Since these two cases are
analogous, we will concentrate on (forth).

Let p : a→ b ∈ Z, a ∈ X and X ′ := {c1, . . . , cm} ⊆ A be a σ-live set so that
a ∈ X ′. For simplicity we will assume that a = c1. Consider now the following
elementary m-type

Σ := {ϕ(p(a), x2, . . . , xm) ∈ UGF1[σ ∪ {p(a)}] | A |= ϕ(a, c2, . . . , cm)}.

We claim that Σ is realized in (B, p(a)). Since B is ω-saturated, it suffices to
show that each finite subset of Σ is realized in (B, p(a)). Let

ψ1(p(a), x2, . . . , xm), . . . , ψr(p(a), x2, . . . , xm) ∈ Σ.

Since X ′ is σ-live, there exists an atomic formula α(x1, . . . , xm) over σ with the
property that

A |= ∃x2 . . . ∃xm(α(a, x2, . . . , xm) ∧
∧

1≤i≤r

ψi(a, x2, . . . , xm)).

Note that Definition 6 guarantees that this is indeed a formula of UGF1[σ]. Since
(A, a) ≡σ (B, b), we know that

B |= ∃x2 . . . ∃xm(α(p(a), x2, . . . , xm) ∧
∧

1≤i≤r

ψi(p(a), x2, . . . , xm)).

Thus {ψ1(p(a), x2, . . . , xm), . . . , ψr(p(a), x2, . . . , xm)} is satisfiable in (B, p(a)),
and hence Σ is satisfiable in (B, p(a)), say by the tuple (p(a), d2, . . . , dm). Now
c 7→ d ∈ Z is the mapping we were after.

Remark 2. Using the two previous lemmas one prove in a standard manner that
UGF1 is the maximal fragment of FO which is invariant under uniform guarded
bisimulation, see for example [2].

4 Proof that UGF1 has CIP

In this section we will prove that UGF1 has CIP. We will start with the following
lemma.

Lemma 3. Let σ and τ be signatures, and let ϕ ∈ UGF1[σ] and ψ ∈ UGF1[τ].
Suppose that there is no χ ∈ UGF1[σ ∩ τ] with the property that ϕ |= χ and
χ |= ψ. Then there is a σ-model A and a τ -model B with the property that
A |= ϕ, B 6|= ψ and A ≡σ∩τ B.

416 Reijo Jaakkola

Proof. Essentially the same argument as the one used in the proof of Theorem
4.1 in [2] gives the result.

To give a high level overview of the rest of the proof, suppose that the as-
sumption of Lemma 3 holds for sentences ϕ and ψ, which implies in particular
that there are models A and B so that A ∼σ∩τ B. Now, what we want to prove
is that ϕ ∧ ¬ψ is satisfiable. To do this, we will follow a standard approach in
modal logic [2,11] by constructing an amalgam U which has the property that
U ∼σ A and U ∼τ B. In particular, it will be a model of ϕ ∧ ¬ψ, since A |= ϕ
and B |= ¬ψ.

Suppose now that A ∼σ∩τ B and let Z be a guarded (σ ∩ τ)-bisimulation
which witnesses it. Given a pair (a, b) we will use (a, b) ∈ Z to denote the fact
that there exists p ∈ Z with the property that a = dom(p) and p(a) = b. In
other words the relation ai 7→ bi induces a uniform partial (σ ∩ τ)-isomorphism
which belongs to Z.

Before describing the construction of U, we need to introduce some additional
notation. Given two tuples a and b of the same length, we will let (a⊗ b) denote
the following tuple:

((a1, b1), . . . , (an, bn))

Given (a⊗ b), we say that it is left-good, if for every 1 ≤ i < j ≤ n we have that
if ai = aj , then bi = bj .

2 Similarly we say that (a⊗ b) is right-good, if for every
1 ≤ i < j ≤ n we have that if bi = bj , then ai = aj . Finally we say that (a⊗ b)
is good if it is left-good and right-good. Note that if (a⊗ b) is of length n, k ≥ n
and µ : [k] → [n] is a surjection, then we have that if (a ⊗ b) is left-good, then
so is (a⊗ b)µ. Analogous observation of course holds for right-good and good.

As the domain of the amalgam U we will take the set U = {(a, b) ∈ A× B |
(a, b) ∈ Z}, while the interpretations of relation symbols will be defined as
follows. First, for every R ∈ σ ∩ τ we define that

(a⊗ b) ∈ RU iff a ∈ RA and (a, b) ∈ Z

Then, for every R ∈ (σ\τ) we define that (a⊗ b) ∈ RU iff a ∈ RA and one of the
following conditions holds:

– (a, b) ∈ Z.
– (a⊗ b) is left-good and a is not (σ ∩ τ)-live.

Similarly, for every R ∈ (τ\σ) we define that (a⊗ b) ∈ RU iff b ∈ RB and one of
the following conditions holds:

– (a, b) ∈ Z.
– (a⊗ b) is right-good and b is not (σ ∩ τ)-live.

This concludes the construction of U. This construction is similar to the one
given in [11] with the exception that we require tuples that are not (σ ∩ τ)-live
to be either right-good or left-good.

2 In other words, if (a⊗ b) is left-good, then the projection (a⊗ b) 7→ a is an injection.

Uniform Guarded Fragments 417

We now define

Z1 := {(a⊗ b) 7→ a | (a⊗ b) is σ-live in U.}

and

Z2 := {(a⊗ b) 7→ b | (a⊗ b) is τ -live in U.}

Note that if (a ⊗ b) is σ-live, then by construction it is also left-good (and an
analogous observation obviously holds for τ -live tuples in U).

Lemma 4. Z1 consists of uniform partial σ-isomorphism between U and A, and
Z2 consists of uniform partial τ -isomorphism between U and B.

Proof. We will only consider the case of Z1, since the case of Z2 is analogous.
Let (a⊗ b) 7→ a ∈ Z1, where the length of (a⊗ b) is n. We will separately check
that this mapping preserves 1-types and n-ary atomic formulas.

Let 1 ≤ i ≤ n and suppose that

((ai, bi), . . . , (ai, bi)) ∈ RU,

where R ∈ σ. By construction we know that (ai, . . . , ai) ∈ RU. Suppose then
that

(ai, . . . , ai) ∈ RA.

Since by definition of U we have that (ai, bi) ∈ Z, we can conclude that

((ai, bi), . . . , (ai, bi)) ∈ RU.

Thus (ai, bi) and ai have the same 1-types over σ.
We will then verify that the mapping preserves n-ary atomic formulas. Let

R ∈ σ be a k-ary relation, where k ≥ n, and let µ : [k] → [n] be a surjection.
We need to show that (a ⊗ b)µ ∈ RU iff aµ ∈ RA. Again, the left to right
direction follows immediately from the definition of U, so we will concentrate on
the direction from right to left. First we note that if a is not (σ ∩ τ)-live, then
we are done, since then also aµ is not (σ ∩ τ)-live.

Thus we can assume that a is (σ ∩ τ)-live. Now, due to the definition of Z1,
we know that (a⊗ b) is σ-live in U. Hence, by definition of U, and the fact that a
is (σ ∩ τ)-live, we know that (a, b) ∈ Z, which is the same as (aµ, bµ) ∈ Z. Now
we can deduce, due to the definition of U, that (a ⊗ b)µ ∈ RU. This, together
with the fact that (a ⊗ b) 7→ a preserves 1-types over σ, allows us to conclude
that tpσU[a⊗ b] = tpσA[a].

Lemma 5. Z1 is a guarded σ-bisimulation between U and A, and Z2 is a
guarded τ -bisimulation between U and B.

Proof. Again, we will only consider the case of Z1, since the case of Z2 is analo-
gous. Due to Lemma 4 we just need to verify (back) and (forth) conditions. Let
(a⊗ b) 7→ a ∈ Z1, where the length of a and b is n.

418 Reijo Jaakkola

(forth) Let (ai, bi) ∈ X and let X ′ ⊆ U be a σ-live set so that (ai, bi) ∈ X ′. Since
X ′ is σ-live, we know that it is of the form {(c1, d1), . . . , (cm, dm)}, with
(c⊗ d) being left-good. Now (c⊗ d) 7→ c ∈ Z1 is the required mapping.

(back) Let ai ∈ Y and let Y ′ ⊆ A be a σ-live set so that ai ∈ Y . For concrete-
ness, suppose that Y ′ = {c1, . . . , cm}. Consider first the case that Y ′ is
not (σ ∩ τ)-live in A. For every 2 ≤ i ≤ m we will pick an element di
so that (ci, di) ∈ Z. Note that such elements exists since each singleton
is a live element. By construction {(c1, d1), . . . , (cm, dm)} is σ-live, and
hence (c⊗ d) 7→ c ∈ Z1 is the required mapping we were after.
Suppose then that Y ′ is (σ ∩ τ)-live in A. Since (ai, bi) ∈ U , we know
that (ai, bi) ∈ Z. Since Z is a guarded (σ∩ τ)-bisimulation, there exists
a set {d1, . . . , dm} ⊆ B so that (c, d) ∈ Z and (ai, bi) ∈ (c ⊗ d). In
particular (c ⊗ d) is σ-live in U, and hence (c ⊗ d) 7→ d ∈ Z1, which is
the mapping we were after.

Theorem 1. UGF1 has Craig interpolation property.

Proof. Let ϕ ∈ UGF1[σ] and ψ ∈ UGF1[τ] be sentences so that ϕ |= ψ, but
there is no interpolant for this entailment. By lemma 3 there exists a σ-model
A and a τ -model B such that A |= ϕ, B 6|= ψ and A ≡σ∩τ B. Take ω-saturated

elementary extensions Â and B̂ of A and B. Since Â ≡σ∩τ B̂, by lemma 2 we
have that Â ∼σ∩τ B̂. Using the construction presented in this section there exists
a (σ∪τ)-model U with the property that U ∼σ Â and U ∼τ B̂. Thus U |= ϕ∧¬ψ,
i.e. ϕ∧¬ψ is consistent, which is a contradiction with the assumption that ϕ |= ψ.

5 Complexity of uniform GF

In this section we will prove that the complexity of the satisfiability problem of
uniform GF is in NExpTime. Since it was proved in [15] that the complexity
of the satisfiability problem of UGF1 is NExpTime-hard, this upper bound is
sharp.

5.1 Scott normal form

As usual, we will start by arguing that we can restrict our attention to sentences
which are in a certain normal form. The normal form that we will use here has a
somewhat awkward form, but the proof of Lemma 6 should clarify why we chose
to use it.

Definition 8. Let ϕ be a sentence of UGF . We say that ϕ is in normal form,
if it has the following shape∧

t∈T
∃zλt(z) ∧

∧
i∈I
∀x(αi(x)→ ∃y(βi(x, y) ∧ ψi(x, y)))

∧
∧
j∈J
∀x(κj(x)→ (θj(x)→ ∀y(γj(x, y)→ ψj(x, y)))),

Uniform Guarded Fragments 419

where T, I, J are non-empty (finite) sets, λt, αi, βi, κj and γj are atomic for-
mulas and ψi, θj and ψj are quantifier-free formulas.

Remark 3. In the definition of the normal form we do not require that the tuples
y are necessarily non-empty, i.e., we allow formulas of the form ∀x(αi(x) →
ψi(x)) in our normal forms. However, we do require that the tuples x are non-
empty, and hence we do not allow formulas of the form ∃y(βi(y)∧ψi(y)), where
the length of y is more than one.

If ϕ is a sentence of UGF in normal form, then we refer to its conjuncts of
the form

∀x(αi(x)→ ∃y(βi(x, y) ∧ ψi(x, y)))

as the existential requirements and we will use ϕ∃i to denote them. Given a model
A, an existential requirement ϕ∃i and a ∈ αA

i we say that a tuple c is a witness
for ϕ∃i and a if

A |= βi(a, c) ∧ ψi(a, c).

Conjuncts of the form

∀x(κj(x)→ (θj(x)→ ∀y(γj(x, y)→ ψj(x, y))))

will be referred to as the universal requirements and we will use ϕ∀j to denote
them.

Using standard renaming techniques one can establish the following.

Lemma 6. There is a polynomial nondeterministic procedure, taking as its input
a sentence ϕ ∈ UGF [σ] and producing a sentence ϕ′ ∈ UGF [σ′] in normal form,
where σ′ ⊃ σ, such that

1. if A |= ϕ for some model A, then there is a run of the procedure producing
a normal form ϕ′ such that A′ |= ϕ′ for some expansion A′ of A to the
vocabulary σ′,

2. if the procedure has a run producing ϕ′ and A′ |= ϕ′, for some A′, then the
σ-reduct A of A′ satisfies ϕ.

Proof. We will essentially follow the proof of lemma 1 in [15], with some small
technical modifications. Let ϕ ∈ UGF [σ] be a sentence, which w.l.o.g contains
only existential quantification. Let ψ be the innermost formula of ϕ which starts
with a block of existential quantifiers. If ψ is a sentence, we will nondeterminis-
tically either replace it with ⊥ or > and add ψ or ¬ψ (depending on our guess)
as a conjunct to the resulting formula. Suppose then that ψ is a formula of the
form

∃y(α(x, y) ∧ ψ(x, y)).

Since ϕ was a sentence, ψ occurs in a scope of another formula of the form

∃z(α′(x) ∧ ψ′(x)),

420 Reijo Jaakkola

where z ⊆ x. Let α′ be the guard of the innermost such formula. We will now
replace ϕ with the following formula

ϕ[ψ(x)/R(x)] ∧ ∀x(R(x)→ ∃y(α(x, y) ∧ ψ(x, y)))

∧∀x(α′(x)→ (¬R(x)→ ∀y(α(x, y)→ ¬ψ(x, y)))),

where ϕ[ψ(x)/R(x)] is the sentence obtained from ϕ by replacing the previously
mentioned subformula ψ(x) with the atomic formula R(x) which has a fresh
relation symbol R. It is straightforward to verify that the resulting sentence is
equi-satisfiable with ϕ.

Now one can repeat the above procedure until one is left with a sentence of
the form ∧

t∈T
∃x(αt(x) ∧ ψt(x)) ∧

∧
i∈I

ϕ∃i ∧
∧
j∈J

ϕ∀j ,

where each ϕ∃i is an existential requirement, while each sentence ϕ∀j is an univer-
sal requirement. Now one can replace each conjunct ∃x1 . . . ∃xn(α(x1, . . . , xn) ∧
ψt(x1 . . . xn)) with a sentence of the form

∃xλt(x) ∧ ∀x1(λt(x1)→ ∃x2 . . . ∃xn(αt(x1, . . . , xn) ∧ ψt(x1, . . . , xn))),

where λt is a fresh unary relation symbol. The resulting sentence is clearly equi-
satisfiable with the original sentence and furthermore it is in normal form.

5.2 Satisfiability Witnesses

A standard technique in proving that the complexity of the satisfiability problem
of a given fragment of FO is in NExpTime is to show that each satisfiable
sentence of this fragment has a finite model of size at most exponential with
respect to the length of the sentence [8,12,15,16]. However, in the case of UGF
it seems to be easier to show that we can associate to each of its sentences ϕ
a different type of certificate, which is still at most exponential with respect to
the length of the sentence, and which can be used to construct a (potentially
infinite) model for ϕ.

Definition 9. Let ϕ ∈ UGF [σ] be a sentence in normal form, P be a set of
1-types over σ and π ∈ P . A pair (A, c), where c ∈ A, is called a (P, π)-witness
for ϕ, if it satisfies the following requirements.

1. tpA[c] = π.
2. For every a ∈ A we have that tpA[a] ∈ P .
3. For every existential requirement ϕ∃i and for every tuple a which contains c

we have that if A |= αi(a), then there exists a witness for ϕi and a.
4. For every universal requirement ϕ∀j and for every tuple a which contains c

we have that if A |= κj(a) ∧ θj(a), then for every tuple b we have that

A |= γj(a, b)→ ψj(a, b).

Uniform Guarded Fragments 421

Here the intuition is that a (P, π)-witness (A, c) is a local certificate; it certifies
that we can provide witnesses for tuples which contain the element c. The main
idea now is that if we have a (P, π)-witness for each π ∈ P , then we can use
them to construct a proper model for ϕ.

Definition 10. Let ϕ ∈ UGF [σ] be a sentence in normal form. A set of 1-types
P over σ is a witness for ϕ, if it satisfies the following two requirements.

1. For every conjunct ∃zλt(z) there exists π ∈ P so that λt(x) ∈ π.
2. For every π ∈ P there exists a (P, π)-witness for P .

The following lemmas prove that an existence of a witness for ϕ is equivalent
with the satisfiability of ϕ.

Lemma 7. Let ϕ ∈ UGF be a sentence in normal form. If ϕ is satisfiable, then
there exists a witness for it.

Proof. Suppose that A |= ϕ. As the set of 1-types P we can take the set

{tpA[a] | a ∈ A}.

Clearly for every conjunct ∃zλt(z) there exists a suitable 1-type in P . Towards
verifying the second requirement let π ∈ P and let c ∈ A be an element which
realizes π. Then (A, c) is clearly a (P, π)-witness for ϕ.

Lemma 8. Let ϕ ∈ UGF be a sentence in normal form. If there exists a witness
for ϕ, then it is satisfiable.

Proof. For simplicity we will assume that ϕ contains exactly one conjunct of the
form ∃zλt(z). Let P be a witness for ϕ. Thus for every π ∈ P there exists a
pair (Aπ, c) which is a (P, π)-witness for ϕ. Our goal is to use these witnesses to
construct a sequence of models

A1 ≤ A2 ≤ A3 ≤ . . .

so that their union is a model of ϕ.
Let π ∈ P be a 1-type so that π |= λt. As the model A1 we will take the

model which contains a single element with 1-type π. Suppose then that we have
defined An in such a way that each 1-type realized in An belongs to P . To define
the model An+1 we will proceed as follows. Given a ∈ An, we will use Wa to
denote the set Aπ − {c}, where Aπ refers to the domain of the model in the
(P, π)-witness (Aπ, c) of π := tpAn [a]. Without loss of generality we will assume
that the sets Wa are pairwise disjoint. Now we will define An+1 as follows.

– The domain of the model is

An ∪
⋃
a∈An

W ∗a

– An+1 � An is defined to be isomorphic with An.

422 Reijo Jaakkola

– For each a ∈ An and for each {c1, . . . , cm} ⊆Wa, we define that

tpAn+1
[a, c1, . . . , cm] := tpAπ [c, c1, . . . , cm],

where π is the 1-type of a.
– For every tuple (a1, . . . , am) and a m-ary relation R for which we have not

yet defined whether (a1, . . . , am) belongs to RAn+1 , we will simply define
that it does not belong to it.

The last step guarantees that if a tuple, which contains more than one element,
is live in An+1, then it was already alive in one of the models Aπ. It is straight-
forward to verify that the union of the models (An)n<ω is indeed a model of
ϕ.

5.3 Complexity of UGF

Although the size of a witness for ϕ is clearly only exponential with respect to
|ϕ|, we do not yet have any upper bounds on the time it takes to verify that it
really is a witness for ϕ. The following lemma gives us such a bound.

Lemma 9. Let ϕ ∈ UGF be a sentence in normal form and let σ denote the
vocabulary of ϕ. Let P be a set of 1-types over σ and π ∈ P . If there exists a
(P, π)-witness for ϕ, then there exists one in which the size of the model is at

most 2|ϕ|
O(1)

.

Proof. Let (A, c) be a (P, π)-witness for ϕ and let m = max{ar(R) | R ∈ σ}.
Note that m ≤ |ϕ|. Our goal is to construct a sequence

B1 ≤ · · · ≤ Bm

of models so that (Bm, c) is a (P, π)-witness for ϕ and |Bm| ≤ 2|ϕ|
O(1)

. As the
model B1 we will take the model which contains a single element with 1-type π;
let e denote this element.

Before moving forward, we will introduce one auxiliary definition. Let a =
(a1, . . . , an) and b = (b1, . . . , bn) be tuples of elements from two models A and
B. Let {c1, . . . , cm} denote the set of distinct elements in a. We say that a and
b are similar, if the mapping p : a → b, which was the mapping induced by the
relation ai 7→ bi, is a bijection and furthermore

tpA[c1, . . . , cn] = tpB[p(c1), . . . , p(cn)].

Suppose now that we have defined Bk, where k < m, and in such a way that
for each σ-live tuple b for which tpBk

[b] has been defined, there exists a similar
tuple a which consists of elements of A. Given an existential requirement ϕ∃i of ϕ
and a tuple b ∈ αBk

i , which contains the element e, we say that b is a i-defect if
there exists no witness for ϕ∃i and b in the model Bk. By construction, for each
i-defect b we can find a tuple a of elements of A so that b and a are similar. In
particular a ∈ αA

i , and hence there exists a witness c for ϕ∃i and a in A; let Wb,i

Uniform Guarded Fragments 423

denote the set of elements in c which were not contained in a. Without loss of
generality we will assume that the sets Wb,i are pairwise disjoint. Now we will
define Bk+1 as follows.

– The domain of the model is

Bk ∪
⋃
i∈I

⋃
b an i-defect

Wb,i

– Bk+1 � Bk is defined to be isomorphic with Bk.
– For each i-defect b and a set Wb,i = {c1, . . . , cn} we define that

tpBk+1
[d1, . . . , dr, c1, . . . , cn] = tpA[p(d1), . . . , p(dr), c1, . . . , cn],

where (d1, . . . , dr) enumerates all the elements occurring in b and p : b→ a.
– For every tuple (b1, . . . , bn) and a n-ary relation R for which we have not yet

defined whether (b1, . . . , bn) belongs to RBk+1 , we will simply define that it
does not belong to it.

This completes the construction of the models B1, . . . ,Bm. To bound the
size of Bm, we first note that |Bk+1| ≤ |Bk| + |ϕ||Dk|, where Dk denotes the
number of defects in Bk. By construction, for every defect (d1, . . . , dr) of Bk

the set {d1, . . . , dr} is a σ-live set which is not contained in B`, for any ` < k. If
k = 1, then the number of such σ-live sets is one, and if k > 1, then the number
of such σ-live sets is Dk−1. Since each σ-live set is of size at most |ϕ|, there are at

most |ϕ||ϕ||ϕ|Dk−1 = 2|ϕ|
O(1)

Dk−1 defects in Bk, i.e., Dk ≤ 2|ϕ|
O(1)

Dk−1. Since

m ≤ |ϕ|, we have that Dk ≤ 2|ϕ|
O(1)

, for any k < m, and hence |Bm| ≤ 2|ϕ|
O(1)

.
Thus what remains to be proven is that (Bm, e) is a (P, π)-witness for ϕ.

Here the only non-trivial requirement that we need to verify is that Bm satisfies
the second item in definition 9. So, let ϕ∃i be an existential requirement and let
b = (b1, . . . , bn) ∈ αBm

i be a tuple which contains e. We can clearly assume that
n < m. It suffices to show that b is contained in Bk, for some k < m, since then
by construction we know that it has a witness in Bm.

Aiming for a contradiction, suppose that b is contained in Bm, but it is not
contained in Bk for any k < m. By construction we know that, since b is σ-live,
we assigned a table to some tuple (b′1, . . . , b

′
r), where (b′1, . . . , b

′
r) enumerates the

set of distinct elements of (b1, . . . , bn). Again, by construction we know that we
assigned a table to the tuple (b′1, . . . , b

′
r), because we wanted to provide a witness

for some tuple (d1, . . . , ds), which contains e and for which {d1, . . . , ds} is a strict
subset of {b′1, . . . , b′r}.3

Now observe that (d1, . . . , ds) is a σ-live tuple containing e, which is contained
in Bm−1 but is not contained in Bk for any k < m−1. Indeed, if it were contained
in Bk, for some k < m−1, then by construction we would have provided a witness
for it in the model Bk+1, i.e., (b1, . . . , bn) would have been contained in Bk+1.
But now we are in a position which is the same as the one that we started in; in

3 If it were not, there would have been no need to provide a witness for it.

424 Reijo Jaakkola

particular, we can repeat the above argument. After repeating the argument (at
least) (n− 1)-times we would end up with the conclusion that e is contained in
some Bk, where k > 1, but it is not contained in B1, which would be an obvious
contradiction.

Now we can prove the main theorem of this section.

Theorem 2. The satisfiability problem of UGF is NExpTime-complete.

Proof. The lower bound follows from the proof of Theorem 3 in [15]. We will give
an informal description of a non-deterministic procedure running in exponential
time which determines whether a given sentence ϕ ∈ UGF is satisfiable. It starts
by converting ϕ into an equi-satisfiable sentence ϕ′ ∈ UGF in normal form, after
which it guesses a set of 1-types P over the vocabulary of ϕ′ and for each π ∈ P
a (P, π)-witness (A, c) for ϕ, where the size of A is at most 2|ϕ|

O(1)

. Lemmas 6, 7,
8 and 9 guarantee that this procedure is correct. Since |P | ≤ 2|ϕ|, the algorithm
runs in exponential time with respect to |ϕ|.

6 Conclusions

In this paper we have proved two results of quite distinct flavour on uniform
guarded fragments. The first result was that although GF fails to have Craig
interpolation, its one-dimensional uniform fragment does have it. The second re-
sult was that the complexity of the satisfiability problem of the uniform guarded
fragment is NExpTime-complete. The results presented in this paper suggest
several new research questions, but here we will mention just two of them.

The first question is whether or not the uniform GF has Craig interpolation
property. While the correctness of the amalgam construction presented in Section
4 rests on the assumption of one-dimensionality, we have not been able to show
that uniform GF would not have Craig interpolation property. This has led the
author to conjecture that the uniform GF does in fact have Craig interpolation
property.

The second question is whether or not uniform GF has the exponential model
property (note that if uniform GF would have an exponential model property,
then one would obtain Theorem 2 for free). As we saw in the proof of Lemma
9, the requirement of uniformity essentially prevents uniform GF from enforcing
long paths, and this seems to suggest that uniform GF can only enforce expo-
nentially long paths (which it can enforce, since it contains standard modal logic
with the global diamond). Because of this, the author conjectures that uniform
GF has the exponential model property.

Acknowledgements

The author wishes to thank Bartosz Bednarczyk for several helpful discussions on
interpolation and fragments of first-order logic, and for suggesting the problem

Uniform Guarded Fragments 425

of determining the complexity of the satisfiability problem of uniform guarded
fragment. The author also wishes to thank Antti Kuusisto for pointing out rather
silly mistakes in the original definitions of uniformity and the uniform guarded
bisimulation. Finally, the author wishes to thank the anonymous reviewers for
their useful remarks which improved the presentation of this paper.

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic 27, 217–274 (1998)

2. Bárány, V., Benedikt, M., Cate, B.T.: Some model theory of guarded negation.
The Journal of Symbolic Logic 83, 1307 – 1344 (2018)

3. Bell, J., Slomson, A.: Models and Ultraproducts: An Introduction. Dover Books
on Mathematics Series, Dover Publications (2006)

4. van Benthem, J.: The many faces of interpolation. Synthese 164(3), 451–460 (2008)
5. Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-

retical Computer Science, Cambridge University Press (2001)
6. Gabbay, D.M.: Craig’s interpolation theorem for modal logics. In: Hodges, W. (ed.)

Conference in Mathematical Logic — London ’70. pp. 111–127. Springer Berlin
Heidelberg, Berlin, Heidelberg (1972)

7. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64(4),
1719–1742 (1999)

8. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-
order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)

9. Hella, L., Kuusisto, A.: One-dimensional fragment of first-order logic. In: Advances
in Modal Logic. vol. 10, pp. 274–293 (08 2014)

10. Herzig, A.: A new decidable fragment of first order logic. In: 3rd Logical Biennial
Summer School and Conference in Honour of SC Kleene (1990)

11. Hoogland, E., Marx, M.: Interpolation and definability in guarded fragments. Stu-
dia Logica: An International Journal for Symbolic Logic 70(3), 373–409 (2002)

12. Jaakkola, R.: Ordered Fragments of First-Order Logic. In: 46th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 202, pp. 62:1–62:14 (2021)

13. Jung, J.C., Wolter, F.: Living without beth and craig: Definitions and interpolants
in the guarded and two-variable fragments. 2021 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS) pp. 1–14 (2021)

14. Kieronski, E.: One-Dimensional Logic over Words. In: 25th EACSL Annual Con-
ference on Computer Science Logic (CSL 2016). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 62, pp. 38:1–38:15 (2016)

15. Kieronski, E.: One-Dimensional Guarded Fragments. In: 44th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 138, pp. 16:1–16:14 (2019)

16. Kieronski, E., Kuusisto, A.: Complexity and expressivity of uniform one-
dimensional fragment with equality. In: 39nd International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2014). Lecture Notes in Com-
puter Science, vol. 8634, pp. 365–376 (2014)

17. Kierónski, E., Kuusisto, A.: Uniform One-Dimensional Fragments with One Equiv-
alence Relation. In: 24th EACSL Annual Conference on Computer Science Logic
(CSL 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 41, pp.
597–615 (2015)

426 Reijo Jaakkola

18. Kieronski, E., Kuusisto, A.: One-Dimensional Logic over Trees. In: 42nd Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 83, pp. 64:1–
64:13 (2017)

19. Marx, M.: Interpolation in modal logic. In: Proceedings of the 7th Interna-
tional Conference on Algebraic Methodology and Software Technology. p. 154–163.
AMAST ’98, Springer-Verlag, Berlin, Heidelberg (1999)

20. Mogavero, F., Perelli, G.: Binding Forms in First-Order Logic. In: 24th EACSL
Annual Conference on Computer Science Logic (CSL 2015). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 41, pp. 648–665 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Uniform Guarded Fragments 427

http://creativecommons.org/licenses/by/4.0/

Sweedler Theory of Monads

Dylan McDermott1(�) , Exequiel Rivas2 , and Tarmo Uustalu1,2

1 Dept. of Computer Science, Reykjavik University, Reykjavik, Iceland
2 Dept. of Software Science, Tallinn University of Technology, Tallinn, Estonia

dylanm@ru.is, exequiel.rivas@ttu.ee, tarmo@ru.is

Abstract. Monad-comonad interaction laws are a mathematical con-
cept for describing communication protocols between effectful compu-
tations and coeffectful environments in the paradigm where notions of
effectful computation are modelled by monads and notions of coeffect-
ful environment by comonads. We show that monad-comonad interac-
tion laws are an instance of measuring maps from Sweedler theory for
duoidal categories whereby the final interacting comonad for a monad
and a residual monad arises as the Sweedler hom and the initial residual
monad for a monad and an interacting comonad as the Sweedler copower.
We then combine this with a (co)algebraic characterization of monad-
comonad interaction laws to derive descriptions of the Sweedler hom and
the Sweedler copower in terms of their coalgebras resp. algebras.

Keywords: (co)monads · (co)algebras · interaction laws · runners ·
duoidal categories · Sweedler operations

1 Introduction

The monad-comonad interaction laws of Katsumata et al. [16] are a mathemat-
ical concept for formalizing ways in which effectful programs (e.g., programs
reading from and writing to a store, programs making nondeterministic choices)
can be run. The idea is that effectful programs issue requests to the outside
world; they can thus run on machines that can service such requests. Programs
denote computations, machines implement environments. Notions of computa-
tion are modelled by monads in the manner first explained by Moggi [23], while
notions of environment can be modelled by comonads. Interaction laws model
protocols of cooperation between computations and environments. Ideally, inter-
action should result in a return value and a final state. But it may be that some
effects cannot be serviced, in which case interaction yields a residual computa-
tion of a return value and a final state; another monad is then needed to model
the suitable notion of residual computation. A monad-comonad interaction law
is therefore given by a monad T , a comonad D and a monad R on a symmetric
monoidal category with a family of maps TX ⊗DY → R(X ⊗ Y) natural in X
and Y and agreeing with the (co)units and (co)multiplications. If R = Id, we
have a non-residual interaction law.

It is natural to ask for useful methods for recognizing and constructing
monad-comonad interaction laws. Specifically, it would be useful to find: a final

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 428–448, 2022.
https://doi.org/10.1007/978-3-030-99253-8_22

http://orcid.org/0000-0002-6705-1449
http://orcid.org/0000-0002-2114-624X
http://orcid.org/0000-0002-1297-0579
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_22&domain=pdf

monad for a given interacting comonad and residual monad; a final interacting
comonad for a given monad and residual monad; or an initial residual monad
for a given monad and interacting comonad.

In this paper, we show how to find these universal (co)monads, elaborating on
some ideas and results from prior work on interaction [16,33]. We emphasize that
the most important structural foundation for interaction laws is the duoidal [10,2]
interrelationship of the composition and Day convolution monoidal structures in
endofunctor categories. It is so significant that some central statements about
interaction laws can be made on the level of monoids and comonoids in general
symmetric closed duoidal categories, completely suppressing any specifics about
monads and comonads. In fact, it turns out that monad-comonad interaction
laws are an instance of measuring maps from the Sweedler theory for duoidal
categories as developed by López Franco and Vasilakopoulou [20]. The universal
(co)monads are instances of the operations studied in this theory. In particular,
the final interacting comonad is an instance of the Sweedler hom and the initial
residual monad is an instance of the Sweedler copower.

To obtain results about monad-comonad interaction specifically, we combine
this general perspective with the characterization of monad-comonad interac-
tion laws by Uustalu and Voorneveld [33] as functors between the categories of
(co)algebras of the (co)monads involved. This allows us to describe the Sweedler
hom and the Sweedler power via their categories of (co)algebras in terms of what
we call stateful and continuation-based runners.

We also discuss an enriched version of monad-comonad interaction laws, of
which strong monad-comonad interaction laws are a special case. In this case,
both kinds of runners of an enriched monad on a self-enriched category can be
viewed as its algebras in another enriched category.

The paper is organized as follows. First, in Sect. 2, we review the basics
of monad-comonad interaction laws. In Sect. 3, we show that monad-comonad
interaction laws, the universal interacting comonad and the universal residual
monad are an instance of measuring maps, the Sweedler hom and the Sweedler
copower in symmetric closed duoidal categories. We then review the (co)algebraic
perspective on monad-comonad interaction laws in Sect. 4, and apply it to derive
(co)algebraic characterizations of the Sweedler hom and the Sweedler copower
in Sect. 5. In Sect. 6, we comment on enriched monad-comonad interaction laws.
We review some background category theory literature and related semantics
work in Sect. 7. New material is primarily in Sects. 5, 6; some statements in
Sect. 4 are also new.

We assume from the reader familiarity with the use of (strong) monads in
mathematical semantics to model notions of effectful computation, and familiar-
ity with the basics of the categorical machinery we need (monads and comonads,
symmetric monoidal closed categories, accessibility [21,1], enrichment [17]).

2 Monad-Comonad Interaction Laws

We begin by reviewing the basics of monad-comonad interaction laws [16].

Sweedler Theory of Monads 429

Consider a symmetric monoidal closed category (C, I,⊗,⊸), e.g., a Cartesian
monoidal closed category, e.g., Set.

A (residual) functor-functor interaction law is given by endofunctors F , G,
H on C together with a family of maps

ϕX,Y : FX ⊗GY → H(X ⊗ Y)

natural in X, Y . We speak of a non-residual interaction law when H = Id.
A map between (residual) functor-functor interaction laws (F,G,H, ϕ) and
(F ′, G′, H ′, ϕ′) is given by natural transformations f : F → F ′, g : G′ → G
and h : H → H ′ satisfying the equation

FX ⊗ GY
ψX,Y // H(X ⊗ Y)

hX⊗Y
��

FX ⊗ G′Y

FX⊗gY 33

fX⊗G′Y
++
F ′X ⊗ G′Y

ψ′
X,Y // H′(X ⊗ Y)

Functor-functor interaction laws form a category that has a monoidal structure
based on endofunctor composition.

A (residual) monad-comonad interaction law is given by a monad T , a
comonad D and a monad R on C with a family of maps

ψX,Y : TX ⊗DY → R(X ⊗ Y)

natural in X, Y , that additionally satisfies the equations

X ⊗ Y X ⊗ Y

ηRX,Y

��
X ⊗ DY

id⊗εY 55

ηX⊗id))
TX ⊗ DY

ψX,Y// R(X ⊗ Y)

TTX ⊗ DDY
ψTX,DY// R(TX ⊗ DY)

RψX,Y// RR(X ⊗ Y)

µRX,Y

��
TTX ⊗ DY

id⊗δY 44

µX⊗id **
TX ⊗ DY

ψX,Y // R(X ⊗ Y)

(Every such interaction law gives a functor-functor interaction law
(UT,UD,UR,ψ), where U sends (co)monads to their underlying functors.)
When R = Id, we speak of a non-residual interaction law. A map between (resid-
ual) monad-comonad interaction laws (T,D,R, ψ) and (T ′, D′, R′, ψ′) is given by
a monad map T → T ′, a comonad map D′ → D and a monad map R→ R′ that
make a map between the underlying functor-functor interaction laws. Monad-
comonad interaction laws form a category isomorphic to the category of monoid
objects in the category of functor-functor interaction laws.

Example 1. Let C = Set (or any SMCC). Take TX = S ⇒ (S ×X) (the state
monad) and DX = S0× (S0 ⇒ X) (the costate monad). There is a non-residual
monad-comonad interaction law of T , D when S = S0 and more generally when
S, S0 come with a lens structure get : S0 → S, put : S0 × S → S0; in fact, these
laws are in bijection with lenses.

Let C = Set (or any extensive category that also has the relevant initial
algebras and final coalgebras). Take FX = 1 + X2 and T the free monad on

430 D. McDermott et al.

F , so TX ∼= µX ′.X + 1 + X ′2 (leaf-labelled nullary-binary trees). The only
comonad D that can interact with T non-residually is DY ∼= 0. If we take
RZ = 1 + Z, we have an R-residual interaction law of T and D for example for
DY ∼= νY ′.Y × (2× Y ′) (node-labelled bitstreams), i.e., the cofree comonad for
GY = 2× Y .

See [16,33] for further examples and their intuitive meaning for semantics.

Some equivalent formulations of interaction laws will be useful. Due to the
bijections

FX ⊗GY → H(X ⊗ Y) nat. in X, Y

C(X ⊗ Y, Z) → C(FX ⊗GY,HZ) nat. in X, Y , Z

C(X,Y ⊸ Z) → C(FX,GY ⊸ HZ) nat. in X, Y , Z

F (Y ⊸ Z) → GY ⊸ HZ nat. in Y , Z

an H-residual functor-functor interaction law of F , G is the same as a family of
maps

ϕY,Z : F (Y ⊸ Z) → GY ⊸ HZ

natural in Y , Z. Under this view, the equation required of a functor-functor
interaction law map (f, g, h) between (F,G,H, ϕ) and (F ′, G′, H ′, ϕ′) becomes

F (Y ⊸ Z)

fY⊸Z ��

ϕY,Z // GY ⊸ HZ

gY ⊸hZ��
F ′(Y ⊸ Z)

ϕ′Y,Z// G′Y ⊸ H′Z

An R-residual monad-comonad interaction law of T ,D is the same as a family
of maps

ψY,Z : T (Y ⊸ Z) → DY ⊸ RZ

natural in Y , Z satisfying

Y ⊸ Z

ηY⊸Z
��

Y ⊸ Z

εY ⊸ηRZ��
T (Y ⊸ Z)

ψY,Z// DY ⊸ RZ

TT (Y ⊸ Z)

µY⊸Z
��

TψY,Z// T (DY ⊸ RZ)
ψDY,RZ// DDY ⊸ RRZ

δY ⊸µRZ��
T (Y ⊸ Z)

ψY,Z // DY ⊸ RZ

Suppose F,G,H : C → C are such that the coends and ends

(F ⋆ G)Z =
∫X,Y C(X ⊗ Y,Z) • (FX ⊗GY) =

∫ Y
F (Y ⊸ Z)⊗GY

(G−⋆ H)X =
∫
Y,Z

C(X,Y ⊸ Z) ⋔ (GY ⊸ HZ) =
∫
Y
GY ⊸ H(X ⊗ Y)

exist. (F ⋆ G is called the Day convolution.) Then, because of the bijections∫ X,Y C(X ⊗ Y, Z) • (FX ⊗GY) → HZ nat. in Z

C(X ⊗ Y, Z) → C(FX ⊗GY,HZ) nat. in X, Y , Z

C(X,Y ⊸ Z) → C(FX,GY ⊸ HZ) nat. in X, Y , Z

FX →
∫
Y,Z

C(X,Y ⊸ Z) ⋔ (GY ⊸ HZ) nat. in X

Sweedler Theory of Monads 431

an H-residual functor-functor interaction law of F,G turns out to be the same
as a natural transformation F ⋆ G → H or F → G −⋆ H. An R-residual
monad-comonad interaction law of T , D is the same as a natural transformation
UT ⋆ UD → UR satisfying certain equations and also—by way of a particularly
concise characterization—the same as a monad map T → D−⋆R where D−⋆R
is a certain canonical monad with UD −⋆ UR as the underlying functor.

Now, if C is locally presentable and F,G,H are accessible, then F ⋆ G and
G−⋆H are guaranteed to exist and be accessible. Writing [C,C]a for the category
of accessible endofunctors on C, we obtain functors ⋆ : [C,C]a× [C,C]a → [C,C]a
and −⋆ : [C,C]opa × [C,C]a → [C,C]a. Together with J ∈ [C,C]a defined by JZ =
C(I, Z) • I, the functor ⋆ equips [C,C]a with a symmetric monoidal structure.
We also get that − ⋆ G ⊢ G −⋆ −, i.e., this structure is closed.3 The functor
−⋆ : [C,C]opa × [C,C]a → [C,C]a is lax monoidal wrt. the composition monoidal
structure on [C,C]a. That UD −⋆ UR carries a monad structure if D is an
accessible comonad and R is an accessible monad is a consequence of this.

These observations suggest the possibility of abstraction by switching to a
more general setting. Instead of considering [C,C]a, we can consider an arbi-
trary category D equipped with a monoidal structure and a symmetric monoidal
structure that suitably agree. The appropriate notion of agreement is duoidal-
ity [10,2]. We will next consider this abstraction and see that monad-comonad
interaction laws are the measuring maps of an instance of López Franco and
Vasilakopoulou’s Sweedler theory for duoidal categories [20].

3 Sweedler Theory for Duoidal Categories

We review the Sweedler theory for duoidal categories [20] and show that monads
provide an instance.

Assume a symmetric duoidal category (D, I, ⋄, J, ⋆), i.e., a symmetric
monoidal category in MonCAToplax, that is also closed in the sense that − ⋆G
has a right adjoint G−⋆− in CAT. Explicitly, this means that we have a cate-
gory D equipped with a monoidal structure (I, ⋄), a symmetric monoidal closed
structure (J, ⋆,−⋆) and structural laws

J → I J → J ⋄ J
I ⋆ I → I (F ⋄G) ⋆ (H ⋄K) → (F ⋆ H) ⋄ (G ⋆K)

satisfying appropriate equations witnessing oplax monoidality of J : 1 → D and
⋆ : D × D → D as functors between monoidal categories for the (I, ⋄) monoidal
structure on D.
3 If C is locally κ-presentable with the κ-presentable objects closed under I and ⊗,
then the κ-accessible endofunctors on C form a monoidal category with ⋆ as tensor.
Garner and López Franco [13, Sect. 8.1] show that this monoidal category is closed,
but their closed structure is different from ours. Our G−⋆ H has the property that
natural transformations F → G−⋆H are H-residual functor-functor interaction laws
of F,G even if F is not accessible; this is not the case for Garner and López Franco’s.
This is why we do not restrict to fixed κ, and instead use all of [C,C]a.

432 D. McDermott et al.

The internal hom object F −⋆ I is called the dual of F . Stretching this ter-
minology, the object F −⋆ H can be called the dual of F wrt. H.

We write Mon(D) (respectively Comon(D)) for the categories of monoids
(resp. comonoids) in D wrt. the (I, ⋄) monoidal structure.

The composition monoidal and Day convolution symmetric monoidal closed
structures (Id, ·) and (J, ⋆,−⋆) on [C,C]a yield an example of such a symmetric
duoidal category D. The categories Mon([C,C]a) and Comon([C,C]a) are those
of accessible monads and comonads.

The object J has a comonoid structure J → I, J → J ⋄ J , and the functor
−⋆ : Dop × D → D is lax monoidal wrt. the (I, ⋄) monoidal structure. The
operations

⋆ : D× D → D
−⋆ : Dop × D → D

lift to

⋆ : Comon(D)×Comon(D) → Comon(D) tensor of comonoids
−⋆ : (Comon(D))op ×Mon(D) → Mon(D) power of a monoid

in the sense that

Comon(D) × Comon(D)
⋆ //

U×U
��

Comon(D)

U

��
D × D

⋆ // D

(Comon(D))op × Mon(D)
−⋆ //

Uop×U
��

Mon(D)

U

��
Dop × D

−⋆ // D

via

ε = D0 ⋆ D1
ε0⋆ε1 // I ⋆ I // I

δ = D0 ⋆ D1
δ0⋆δ1 // (D0 ⋄D0) ⋆ (D1 ⋄D1) // (D0 ⋆ D1) ⋄ (D0 ⋆ D1)

η = I // I −⋆ I
ε−⋆ηR // D −⋆ R

µ = (D −⋆ R) ⋄ (D −⋆ R) // (D ⋄D)−⋆ (R ⋄R)
δ−⋆µR // D −⋆ R

Comonoid maps D0 ⋆ D1 → D are the same as maps ψ : UD0 ⋆ UD1 → UD
satisfying

D0 ⋆ D1

ψ //
ε0⋆ε1

��

D

ε

��
I ⋆ I // I

D0 ⋆ D1

ψ //

δ0⋆δ1 ��

D

δ

��
(D0 ⋄ D0) ⋆ (D1 ⋄ D1)

// (D0 ⋆ D1) ⋄ (D0 ⋆ D1)
ψ⋄ψ // D ⋄ D

(omitting the Us in the equations). Such maps ψ could be called D-residual
comonoid-comonoid interaction laws of D0, D1.

Monoid maps T → D −⋆ R are in bijection with maps ψ : UT ⋆ UD → UR
that satisfy

I ⋆ I // I

ηR

��
I ⋆ D

I⋆ε 55

η⋆D))
T ⋆ D

ψ // R

(T ⋄ T) ⋆ (D ⋄ D) // (T ⋆ D) ⋄ (T ⋆ D)
ψ⋄ψ// R ⋄ R

µR

��
(T ⋄ T) ⋆ D

(T⋄T)⋆δ 44

µ⋆D **
T ⋆ D

ψ // R

Sweedler Theory of Monads 433

(again omitting the Us in the equations), which are known as measuring maps
from T to R by D and which we can also call R-residual monoid-comonoid
interaction laws of T , R.

The three Sweedler operations

C : (Comon(D))op ×Comon(D) → Comon(D) internal hom of comonoids
▷ : Comon(D)×Mon(D) → Mon(D) Sweedler copower of a monoid

M : (Mon(D))op ×Mon(D) → Comon(D) Sweedler hom of monoids
(univ. measuring comonoid)

are everywhere defined by the following adjunctions if the adjoints exist.

Comon(D)
−⋆D1 �� ⊣

Comon(D)

C(D1,−)

\\ Mon(D)
D▷−

�� ⊣

Mon(D)

D−⋆−
\\ Comon(D)

−▷T
�� ⊣

Mon(D)

M(T,−)

\\

They are defined for specific pairs of (co)monoids if the universal objects specified
by the following bijections exist.

D0 ⋆ D1 → D

D0 → C(D1, D)

UT ⋆ UD → UR meas.

T → D −⋆ R
D ▷ T → R

D → M(T,R)

The comonoid M(T, I) is called the Sweedler dual of the monoid T .
By definition, the comonoid C(D1, D) is the final comonoid interacting with

the comonoid D1 D-residually. The Sweedler hom M(T,R) is the final R-
residually interacting comonoid for the monoid T . The Sweedler copower D▷T
is the initial residual monoid for monoid-comonoid interactions of T and D.

If the Sweedler operations are everywhere defined, for which it suffices that
D is locally presentable [20, Thm. 20], then the category (Comon(D), J, ⋆, C) is
symmetric monoidal closed and the category (Mon(D),▷,−⋆,M) is copowered,
powered and enriched over (Comon(D), J, ⋆, C). However, local presentability
of C is not enough for local presentability (or even accessibility) of [C,C]a (for
example, [Set,Set]a is not accessible). In Sect. 5, we return to the question of
everywhere-definedness of the Sweedler operations for [C,C]a.

The Sweedler theory perspective allows us to establish some facts about
interaction laws of free monads very easily. For example, we can straightforwardly
derive a characterization of measuring maps from the free monoid F ∗ on F
(assuming it exists).

Proposition 1. Measuring maps U(F ∗)⋆UD → UR are in bijection with maps
F ⋆ UD → UR.

Proof. This is witnessed by the following chain of bijections.

F ⋆ UD → UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
U(F ∗) ⋆ UD → UR meas. ⊓⊔

434 D. McDermott et al.

Similarly, we can calculate closed-form expressions for the Sweedler hom from
a free monoid and the Sweedler copower of a free monoid. Here G† denotes the
cofree comonoid on G (if it exists).

Proposition 2. (i) M(F ∗, R) ∼= (F −⋆ UR)†. (ii) D ▷ F ∗ ∼= (F ⋆ UD)∗.

Proof. (i) As witnessed by the chain of bijections on the left below, comonoid
maps D → M(F ∗, R) and comonoid maps D → (F −⋆ UR)† are in bijection
naturally in D. (ii) The chain of bijections on the right below composes to a
bijection natural in R between monoid maps D ▷ F ∗ → R and monoid maps
(F ⋆ UD)∗ → R.

D → (F −⋆ UR)†

UD → F −⋆ UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
D → M(F ∗, R)

(F ⋆ UD)∗ → R

F ⋆ UD → UR

F → UD −⋆ UR

F → U(D −⋆ R)

F ∗ → D −⋆ R
D ▷ F ∗ → R ⊓⊔

Example 2. Let C = Set. (i) Take F = 0, then F ∗ ∼= Id. We can calculate
F −⋆ UR ∼= 1, therefore M(F ∗, R) ∼= Id, for any monad R.

Next take FX = X2, then F ∗X ∼= µX ′. X + X ′2 (these are leaf-labelled
binary trees). We can calculate (F −⋆ UR)Y ∼= R (2× Y), hence M(F ∗, R)Y ∼=
νY ′. Y × R (2 × Y ′) (node-labelled streams of bits for R = Id, node-labelled
nonempty colists of bits for RZ = 1 + Z).

Finally, take FX = 1 + X2, then F ∗X ∼= µX ′. X + 1 + X ′2 (leaf-labelled
nullary-binary trees). We calculate (F −⋆ UR)Y ∼= R 0 × R (2 × Y), hence
M(F ∗, R)Y ∼= νY ′. Y × R 0 × R (2 × Y ′). For R = Id and any R such
that R 0 ∼= 0, this means that M(F ∗, R) ∼= 0. For RZ = 1 + Z, we get
M(F ∗, R)Y ∼= νY ′. Y × (1 + 2× Y ′) (node-labelled nonempty colists of bits).

(ii) Take F = 0, then F ⋆ ∼= Id. We can calculate (F ⋆ UD) ∼= 0, hence
D ▷ F ∗ ∼= Id, for any comonad D.

Take FX = X2, then F ∗X ∼= µX ′. X +X ′2. We can calculate (F ⋆UD)Z ∼=
D (Z2), therefore (D ▷ F ∗)Z ∼= µZ ′. Z +D (Z ′2).

Take FX = 1 + X2, then F ∗X ∼= µX ′. X + 1 + X ′2. We can calculate
(F ⋆ UD)Z ∼= D 1 +D (Z2), therefore (D ▷ F ∗)Z ∼= µZ ′. Z +D 1 +D (Z ′2).

These examples generalize to any wellpointed, locally presentable C with
exponentials, when R and D are strong.

In exactly the same way as above, comonoid maps D0 ⋆ D1 → G† are in
bijection with maps UD0 ⋆ UD1 → G, and C(D1, G

†) ∼= (UD1 −⋆ G)†.
In the rest of this paper, we ignore comonad-comonad interaction laws and

the internal hom of comonads since they are not our main focus. But develop-
ments similar to those for monad-comonad interaction laws and the Sweedler
hom of monads and the Sweedler copower of a monad in Sects. 4, 5) below can
be carried out for them as well.

Sweedler Theory of Monads 435

4 Monad-comonad Interaction Laws (Co)algebraically

We now return to monad-comonad interaction laws specifically and explain the
(co)algebraic perspective developed in [33]. (Props. 4 and 6 did not appear in
[33].) First, monad-comonad interaction laws admit the following useful charac-
terization in terms of (co)algebras of the (co)monads involved.

Proposition 3. R-residual monad-comonad interaction laws ψ of T , D are in
bijection with functors Ψ : (Coalg(D))op×Alg(R) → Alg(T) that internal-hom
carriers, i.e., satisfy

(Coalg(D))op ×Alg(R)
Ψ //

Uop×U
��

Alg(T)

U
��

Cop × C ⊸ // C

Proof (sketch). Given an interaction law ψ, the functor Ψ is defined by

Ψ((Y, χ), (Z, ζ)) = (Y ⊸ Z, T (Y ⊸ Z)
ψ // DY ⊸ RZ

χ⊸ζ // Y ⊸ Z)

Conversely, given a functor Ψ , the corresponding interaction law ψ is defined by

ψ = T (Y ⊸ Z)
T (εY⊸ηRZ) // T (DY ⊸ RZ)

ξ // DY ⊸ RZ

where (DY ⊸ RZ, ξ) = Ψ((DY, δY), (RZ, µ
R
Z)). ⊓⊔

We remark that such functors Ψ are completely determined by their action on
(co)free (co)algebras. To be precise, there is a bijection between these functors
and functors Ψ ′ : (CoKl(D))op ×Kl(R) → Alg(T) that satisfy

(CoKl(D))op ×Kl(R)
Ψ ′

//

Kop×K
��

Alg(T)

U
��

Cop × C ⊸ // C

where K : CoKl(D) → C is the left adjoint of the coKleisli adjunction of D and
K : Kl(R) → C is the right adjoint of the Kleisli adjunction of R.

The following reformulations of Prop. 1 enable a smooth derivation of further
characterizations of monad-comonad interaction laws in terms of what we call
runners, introduced next.

Corollary 1. R-residual interaction laws of T , D are in bijection with functors
Ψ : Coalg(D) → [Alg(R),Alg(T)]op satisfying

Coalg(D)

U
��

Ψ // [Alg(R),Alg(T)]op

[Alg(R),U]op

��
C

(Y 7→Y⊸−)op // [C,C]op
[U,C]op // [Alg(R),C]op

436 D. McDermott et al.

and also with functors Ψ : Alg(R) → [Coalg(D)op,Alg(T)] satisfying

Alg(R)

U
��

Ψ // [(Coalg(D))op,Alg(T)]

[(Coalg(D))op,U]
��

C
(Z 7→−⊸Z) // [Cop,C]

[Uop,C] // [(Coalg(D))op,C]

Stateful Runners

Say that an R-residual stateful runner of T is an object Y ∈ C together with a
family of maps

θX : TX ⊗ Y → R(X ⊗ Y)

natural in X satisfying

X ⊗ Y

ηX⊗Y
��

X ⊗ Y

ηRX⊗Y��
TX ⊗ Y

θX // R(X ⊗ Y)

TTX ⊗ Y

µX⊗Y
��

θTX // R(TX ⊗ Y)
RθX // RR(X ⊗ Y)

µRX⊗Y��
TX ⊗ Y

θX // R(X ⊗ Y)

Maps (Y, θ) → (Y ′, θ′) between stateful runners are maps f : Y → Y ′ satisfying
R(X ⊗ f) ◦ θX = θ′X ◦ (TX ⊗ f). Stateful runners form a category SRunR(T).

R-residual stateful runners of T with carrier Y are in bijection with monad
maps T → StRY where StRY is the R-transformed state monad for state object Y
defined by StRYX = Y ⊸ R(X ⊗ Y).

They are also in bijection with functors Θ : Alg(R) → Alg(T) that internal-
hom Y with the carrier, i.e., satisfy

Alg(R)
Θ //

U ��

Alg(T)

U��
C

Y⊸− // C

Proof (sketch). Given a stateful runner θ, the functor Θ is defined by

Θ(Z, ζ) = T (Y ⊸ Z)
θY⊸Z // Y ⊸ R((Y ⊸ Z)⊗ Y)

Y⊸Rev// Y ⊸ RZ
Y⊸ζ // Y ⊸ Z

Conversely, given a functor Θ, the stateful runner θ is

θX = TX
T coev // T (Y ⊸ X ⊗ Y)

T (Y⊸ηRX⊗Y)
// T (Y ⊸ R(X ⊗ Y))

ξ // Y ⊸ R(X ⊗ Y)

where (Y ⊸ R(X ⊗ Y), ξ) = Θ(R(X ⊗ Y), µR
X⊗Y). ⊓⊔

This observation is strengthened by the following proposition that also talks
about stateful runner maps.

Proposition 4. The following is pullback square:

SRunR(T)

U ��

// [Alg(R),Alg(T)]op

[Alg(R),U]op
��

C
(Y 7→Y⊸−)op // [C,C]op

[U,C]op // [Alg(R),C]op

Sweedler Theory of Monads 437

Combining Prop. 4 with Cor. 1, we obtain a characterization of monad-
comonad interaction laws in terms of stateful runners.

Proposition 5. R-residual monad-comonad interaction laws T , D are in a bi-
jection with functors Ψ : Coalg(D) → SRunR(T) preserving carriers, i.e.,
satisfying

Coalg(D)

U ''

Ψ // SRunR(T)

UvvC

Continuation-Based Runners

A D-fuelled continuation-based runner of T is an object Z ∈ C together with a
family of maps

θX : D(X ⊸ Z) → TX ⊸ Z

natural in X satisfying

D(X ⊸ Z)

εX⊸Z
��

θX // TX ⊸ Z

ηX⊸Z

��
X ⊸ Z X ⊸ Z

D(X ⊸ Z)

δX⊸Z ��

θX // TX ⊸ Z

µX⊸Z

��
DD(X ⊸ Z)

DθX // D(TX ⊸ Z)
θTX // TTX ⊸ Z

These runners form a category CRunD(T).
D-fuelled continuation-based runners of T with carrier Z are in bijection with

monad maps T → CntDZ , where CntDZ is the D-transformed continuation monad
for answer object Z defined by CntDZX = D(X ⊸ Z) ⊸ Z.

Continuation-based runners are also in bijection with functors Θ :
(Coalg(D))op → Alg(T) that internal-hom the carrier with Z, i.e., that sat-
isfy

(Coalg(D))op
Θ //

Uop

��

Alg(T)

U��
Cop −⊸Z // C

Moreover:

Proposition 6. The following is a pullback square:

CRunD(T)

U
��

// [(Coalg(D))op,Alg(T)]

[(Coalg(D))op,U]
��

C
Z 7→−⊸Z // [Cop,C]

[Uop,C] // [(Coalg(D))op,C]

Combining this proposition with Cor. 1, we obtain:

Proposition 7. R-residual monad-comonad interaction laws of T , D are in
bijection with functors Ψ : Alg(R) → CRunD(T) that preserve carriers, i.e.,
that satisfy

Alg(R)

U ''

Ψ // CRunD(T)

UuuC

438 D. McDermott et al.

5 Combining Sweedler Theory and the (Co)algebraic
Perspective

We now combine our (co)algebraic observations with Sweedler theory.

Sweedler Hom

By definition, the Sweedler hom between monads T , R, if it exists, is the comonad
M(T,R) together with an monad-comonad interaction law υ such that, for any
other comonad D and monad-comonad interaction law ψ, there exists a unique
comonad map g : D → M(T,R) satisfying

TX ⊗DY
TX⊗gY

//

ψX,Y

++
TX ⊗M(T,R)Y

υX,Y
// R(X ⊗ Y)

Comonad maps D → D′ are in bijection with functors Coalg(D) →
Coalg(D′) that preserve carriers. Therefore, by Prop. 5, the Sweedler hom,
if it exists, is the comonad M(T,R) together with a carrier-preserving functor
Υ : Coalg(M(T,R)) → SRunR(T) such that, for any other comonad D and
carrier-preserving functor Ψ : Coalg(D) → SRunR(T), there exists a unique
carrier-preserving functor Γ : Coalg(D) → Coalg(M(T,R)) such that

Coalg(D)
Γ

//

Ψ

++

U ..

Coalg(M(T,R))
Υ

//

U ((

SRunR(T)

UwwC

It follows that, if (SRunR(T), U) is strictly comonadic, then M(T,R) exists
and (Coalg(M(T,R)), U) ∼= (SRunR(T), U). (Should (SRunR(T), U) fail to
be strictly comonadic, then M(T,R) may still exist, but with different algebras.)
Easy calculations show that U strictly creates equalizers of U -split pairs. Hence,
by the dual of Beck’s monadicity theorem, U is strictly comonadic if it is a left
adjoint. Under our assumptions on C, T and R from Sect. 2, all is well.

Theorem 1. If C is locally presentable and T and R are accessible mon-
ads on C, then SRunR(T) is locally presentable and the forgetful functor
U : SRunR(T) → C is a left adjoint. Hence the Sweedler hom M(T,R) ex-
ists, is accessible, and satisfies (Coalg(M(T,R)), U) ∼= (SRunR(T), U).

Proof (sketch). We first show that SRunR(T) is locally presentable. The func-
tor U : SRunR(T) → C strictly creates colimits by easy calculations, and hence
SRunR(T) is cocomplete. For local presentability, it therefore remains to show
that SRunR(T) is accessible, which we do by appealing to the fact that ac-
cessible categories are closed under inserters and equifiers. The category of F -
coalgebras, for any accessible endofunctor F on C, is an inserter of accessible

Sweedler Theory of Monads 439

functors, and is therefore accessible by [1, Thm. 2.72]. For each Y , families
of maps θX : TX ⊗ Y → R(X ⊗ Y) natural in X are in bijection with maps
χ : Y → (T −⋆ R)Y , so that R-residual stateful runners of T are equivalently
coalgebras (Y, χ) of the functor T −⋆ R, satisfying two equations. One equation
is an equality between two maps Y → (Id−⋆ R)Y , the other between two maps
Y → ((T · T) −⋆ R)Y . It follows that SRunR(T) is isomorphic to a full sub-
category of the category coalg(T −⋆ R) of (T −⋆ R)-coalgebras, and that this
full subcategory is the joint equifier of two natural transformations of accessible
functors coalg(T −⋆R) → coalg(Id−⋆R) and of two natural transformations of
accessible functors coalg(T −⋆ R) → coalg((T · T)−⋆ R). Accessible categories
are closed under equifiers of natural transformations of accessible functors [1,
Lemma 2.76], so SRunR(T) is accessible and hence locally presentable.

As a colimit-preserving functor between locally presentable categories, U is a
left adjoint by Freyd’s special adjoint functor theorem, thus strictly comonadic.
The induced comonad is the Sweedler hom M(T,R). Accessibility of M(T,R)
follows from accessibility of the adjoints (the right adjoint by [1, Prop. 2.23]). ⊓⊔

Example 3. Let C = Set. Take TX = XS (the reader monad for state object S).
R-residual stateful runners of T are objects Y with families of maps XS × Y →
R(X×Y) natural in X or, equivalently, maps Y → R(S×Y) constrained by two
equations. For R = Id or R = 1+−, these are in bijection with maps Y → S. The
comonad with such structured objects Y as coalgebras, which is the Sweedler
hom of T and R, is DY = S × Y (the coreader monad for S). For a general
accessible monad R, the Sweedler hom can be described as a subcomonad of the
cofree comonad DY = νY ′. Y ×R(S × Y ′).

Take TX = X+ = µX ′.X × (1 + X ′) (the nonempty list monad with con-
catenation as multiplication, free semigroup monad). R-residual stateful runners
of T are objects Y with families of maps X+ × Y → R(X × Y) natural in X
satisfying two equations or, equivalently, maps (X ×X)× Y → R(X × Y) con-
strained by one equation or, equivalently, maps Y → R(Y + Y) coassociative
wrt. the coproduct monoidal structure of Kl(R), i.e., making Y into a cosemi-
group. For R = Id, the corresponding comonad is the cofree cosemigroup (wrt.
the coproduct monoidal structure on Set) comonad. Its underlying functor is
DY ∼= Y × (Y + Y).

These examples generalize to any wellpointed, locally presentable C with
exponentials, when R is a strong monad.

Sweedler Copower

The Sweedler copower of a monad T by a comonad D, if it exists, is by definition
the monad D ▷ T together with a monad-comonad interaction law υ such that,
for any other monad R and monad-comonad interaction law ψ, there exists a
unique monad map g : D ▷ T → R satisfying

TX ⊗DY
υX,Y

//

ψX,Y

**
(D ▷ T)(X ⊗ Y)

gX⊗Y
// R(X ⊗ Y)

440 D. McDermott et al.

Monad maps R′ → R are in bijection with functors Alg(R) → Alg(R′) that
preserve carriers. Therefore, by Prop. 7, the Sweedler copower, if it exists, is
the monad D ▷ T together with a carrier-preserving functor Υ : Alg(D ▷ T) →
CRunD(T) such that, for any other monad R and carrier-preserving functor
Ψ : Alg(R) → CRunD(T), there exists a unique carrier-preserving functor
Γ : Alg(R) → Alg(D ▷ T) such that

Alg(R)
Γ

//

Ψ

**

U ..

Alg(D ▷ T)
Υ

//

U ''

CRunD(T)

UwwC

Consequently, if (CRunD(T), U) is strictly monadic, then D ▷ T exists and
(Alg(D▷T), U) ∼= (CRunD(T), U). This is the case as soon as U is a right ad-
joint by Beck’s strict monadicity theorem, because U is easily verified to strictly
create U -split coequalizers.

Theorem 2. If C is locally presentable and T and D are accessible, then
CRunD(T) is locally presentable and the forgetful functor U : CRunD(T) → C
is a right adjoint. Hence the Sweedler copower D ▷ T exists, is accessible, and
satisfies (Alg(D ▷ T), U) ∼= (CRunD(T), U).

Proof (sketch). The proof is similar to that of Thm. 1. The functor U strictly cre-
ates limits, so CRunD(T) is complete. The category CRunD(T) is isomorphic
to a full subcategory of the category of algebras of the functor D ⋆ T , form-
ing a joint equifier. Categories of algebras of accessible endofunctors on C are
inserters of accessible functors, and hence form accessible categories. It follows
that CRunD(T) is also accessible, and hence locally presentable. The functor
U strictly creates κ-filtered colimits, where κ is such that Id ⋆ T , D ⋆ T , and
(D ·D) ⋆ T are κ-accessible; in particular, U is accessible. Since U also strictly
creates limits, it is therefore a right adjoint by [1, Theorem 1.66]. The induced
monad is the Sweedler copower D▷T , which is accessible because both adjoints
are. ⊓⊔

Example 4. Let C = Set. Take TX = M ×X where (M,u, ∗) is a monoid (the
writer monad) and DY = S×Y (the coreader comonad). D-fuelled continuation-
based runners of T are objects Z with families of maps S×ZX → ZM×X natural
in X or, equivalently, maps (S ×M) × Z → Z, subject to two equations. The
monad with such structured objects Z as algebras, which is the Sweedler copower
of T and D, is the writer monad for the free monoid on S ×M quotiented by
(s, a) ∗ (s, b) = (s, a ∗ b) and u = (s, u).

6 Enriched Interaction Laws

In Sects. 2, 4, 5 above, we worked with (a full subcategory of) the category [C,C]
of endofunctors on a SMCC C and natural transformations between them, and
abstracted it to a duoidal category D in Sect. 3.

Sweedler Theory of Monads 441

An alternative is to proceed from an SMCC (V, I,⊗,⊸) (copowered over
itself by ⊗ and enriched and powered by ⊸) and another category C that is at
least copowered or enriched over V, or possibly both or even powered too. In
this setting, a V-enriched functor-functor interaction law is given by V-enriched
endofunctors F on V and G and H on C together with either a family of maps
ϕX,Y : FX •GY → H(X • Y) in C that are V-natural in X ∈ V and Y ∈ C or,
equivalently, a family of maps ϕY,Z : F (C(Y,Z)) → C(GY,HZ) in V that are
V-natural in Y, Z ∈ C.

Two cases are of special interest.

– V = Set: Then the requirements that the category C, the functors F , G,
H and the natural transformation ϕ be V-enriched are automatically met,
but differently from the main setting of this paper, F is an endofunctor on
a generally different category than G and H.

– V = C: Then the requirements that the functors F , G, H and the natural
transformation ϕ be V-enriched become real restrictions, but F , G,H remain
endofunctors all on the same category.

The only case where the enriched setting agrees with the main one of this
paper of Sects. 2–5, i.e., the concept of interaction law where there are no non-
vacuous enrichment requirements and the endofunctors involved are all on the
same category, is the intersection of the above two: V = C = Set.

A more general situation in which the two settings do not differ too much is
when V = C and C is monoidally wellpointed. Then all functors with codomain
C are uniquely C-enriched (but may fail to admit an enrichment) and all natural
transformations between C-enriched functors with codomain C are C-enriched.

In the case V = C, which is probably the most interesting case for mathe-
matical semantics applications, the duoidal abstraction of Sect. 3 still applies.
We can take D to be (a suitable full subcategory of) C-[C,C], where C-[C,C] is
the ordinary category of C-functors C → C (strong endofunctors).

In the case of a general V, the simple duoidal abstraction ceases to apply. We
need to switch to an action ⋆ : W× D → D (in MonCAToplax) of a symmetric
duoidal category (W, IW, ⋄W, JW, ⋆W) on a monoidal category (D, I, ⋄) together
with a functor −⋆ : Dop×D → W such that −⋆G ⊢ G−⋆− (in CAT). Crucially,
the action ⋆ comes with structural laws

IW ⋆ I → I (F ⋄W G) ⋆ (H ⋄K) → (F ⋆ H) ⋄ (G ⋆K)

witnessing oplaxity of ⋆. Similarly to the simple duoidal situation, we get that
⋆ and −⋆ lift to functors ⋆ : Comon(W) × Comon(D) → Comon(D) and
−⋆ : (Comon(D))op × Mon(D) → Mon(W) and can then define measuring
maps and Sweedler-like operations and ask if they are everywhere defined.

The instantiation is given by (suitable full subcategories of) W = V-[V,V],
D = V-[C,C] and

(F ⋆ G)Z =
∫X,Y C(X • Y,Z) • (FX •GY) =

∫ Y
F (C(Y,Z)) •GY

(G−⋆ H)X =
∫
Y,Z

(X ⊸ C(Y,Z)) ⊸ C(GY,HZ) =
∫
Y
C(GY,H(X • Y))

where the integral signs now stand for V-enriched coends and ends.

442 D. McDermott et al.

Runners as Generalized Algebras

Enriched monad-comonad interaction laws can be characterized as enriched func-
tors between categories of (co)algebras analogously to Props. 3, 5, 7. But one
pleasant feature of the enriched setting is that enriched versions of both state-
ful and continuation-based runners of T can be described as algebras of T in a
generalized sense.

Suppose we are given an SMCC V (copowered over itself by ⊗ and enriched
and powered by ⊸) and a V-enriched monad T on V. For a category K that is
enriched and powered over V, we say that an algebra of T in K as an object Y of
K together with family of maps χX : X ⋔ Y → TX ⋔ Y in K that is V-enriched
natural in X ∈ V and satisfies the equations

X ⋔ Y
χX // TX ⋔ Y

ηX⋔Y

��
X ⋔ Y

X ⋔ Y

χX
��

χX // TX ⋔ Y

µX⋔Y

��
TX ⋔ Y

χTX // TTX ⋔ Y

If V has enough limits, then these form a V-category Alg(T,K), and there is a
forgetful V-functor U : Alg(T,K) → C. (The limits are required to carve out
the object of algebra maps (Y, χ) → (Y ′, χ′) from the hom-object K(Y, Y ′).)

An algebra like this is equivalently an object Y ∈ K together with a V-
enriched monad map T → KntY where KntYX = K(X ⋔ Y, Y). If V = K, an
algebra of T in this sense is the same as an algebra in the standard sense. In this
case, we have KntYX = (X ⊸ Y) ⊸ Y .

Enriched runners of T turn out to be algebras of T in this generalized sense.
Given a category C enriched and copowered over V and a V-enriched monad R
on C, an V-enriched R-residual stateful runner of T is an object Y ∈ C together
with a family of maps θX : TX • Y → R(X • Y) in C V-natural in X ∈ V and
satisfying two equations. Enriched stateful runners of T are in bijection with
algebras of T in (Kl(R))op.

Proof (sketch). The statement is wellformed since, as soon as C is V-enriched
and copowered by a functor • : V ⊗ C → C, we have that Kl(R) is V-enriched
and copowered by a functor V⊗Kl(R) → Kl(R) that agrees with • on objects.
Therefore (Kl(R))op is V-enriched and powered by the opposite of that functor.
We have the following chain of bijections:

TX • Y → R(X • Y) in C V-nat. in X

TX • Y → X • Y in Kl(R) V-nat. in X

X ⋔ Y → TX ⋔ Y in (Kl(R))op V-nat. in X ⊓⊔

The statement about the category of enriched stateful runners is:

Proposition 8. If Alg(T, (Kl(R))op) exists as a V-category, then so does
V-SRunR(T), and the following is a pullback square (in V-CAT).

V-SRunR(T)

U ��

// (Alg(T, (Kl(R))op)op

Uop

��
C J // Kl(R)

Sweedler Theory of Monads 443

In the special case when V = C and R = IdC, we get (Coalg(MC(T, Id), U) ∼=
((Alg(T,Cop))op, Uop) (“coalgebras” of the C-monad T).

By the same token, given a V-enriched and powered category C and a V-
enriched comonad D on C, we can define what an V-enriched D-fuelled contin-
uation based runner of T is: an object Z ∈ C together with a family of maps
θX : D(X ⋔ Z) → TX ⋔ Z in C that is V-natural in X ∈ V and satisfies
two equations. Enriched continuation-based runners of T are in bijection with
algebras of T in the coKleisli category of D. Moreover:

Proposition 9. If Alg(T,CoKl(D)) exists as a V-category, then so does
V-CRunD(T), and the following is a pullback square:

V-CRunD(T)

U ��

// Alg(T,CoKl(D))

U��
C J // CoKl(D)

7 Related Work

In semantics work, the use of monads as notions of computation was pioneered
by Moggi [23], but the first to study comonads (or algebraic theories comod-
elled) as notions of environment (not under that name) were Shkaravska and
Power [29]. This work was developed further by Plotkin and Power [24] and
then Møgelberg and Staton [22] (who considered the enriched setting). Stateful
runners appeared in Uustalu’s paper [32], who noticed that nonresidual stateful
runners of a set monad induced by an algebraic theory are in bijection with
coalgebras of the comonad induced by the same theory (comodels). The concept
of monad-comonad interaction law was distilled by Katsumata et al. [16], who
also noticed that the universal interacting comonad of a monad is an instance
of the Sweedler hom from Sweedler theory for duoidal categories; they calcu-
lated the dual and Sweedler dual for a number of cases. Uustalu and Voorneveld
[33] noticed the bijection between monad-comonad interaction laws and suit-
able functors between categories of (co)algebras and that, in addition to stateful
runners, monad-comonad interaction laws relate to continuation-based runners.
Garner [12,11] further developed this thread. In particular, he gave a formula
for the Sweedler duals of polynomial monads, and demonstrated properties of
the dual/Sweedler dual (costructure/cosemantics) adjunction for accessible Set-
(co)monads, such as its idempotency. He also pointed out that, when T and
R are accessible Set-monads, the coalgebras of the Sweedler hom M(T,R) are
algebras of T in (Kl(R))op with, as maps between them, maps in Set that
J : Set → Kl(R) sends to algebra maps.

Independently, and earlier than in the semantics community, monad-comonad
interaction laws were discovered among functional programmers by Kmett [19]
and Freeman [8].

There is a disconnected and more mature thread of work in universal alge-
bra started by Freyd [9] (or even Kan [15]), and continued by Tall and Wraith

444 D. McDermott et al.

[31,34] and Bergman and Hausknecht [5], studying functors from coalgebras of
a covariety to algebras (like those of our Prop. 3) in the case V = Set, R = IdC
of our enriched setting. (There are also textbook expositions, by Popescu and
Popescu [26, Ch. 3] and Bergman [4, Ch. 10].) Strangely, this thread seems to
have never been picked up in semantics work. It was not cited in the work by
Power and coauthors [29,24], and the later authors (except Garner) have been
unaware of it.

Sweedler’s original work [30] was for (co)algebras over a field. Anel and Joyal
[3] studied the Sweedler theory in great detail for dg-(co)algebras [3]. It was
abstracted for (co)monoids in symmetric monoidal closed categories by Porst
and Street [28] and Hyland et al. [14] (the internal hom of comonoids is older
and goes back to Porst [27]) and then generalized for duoidal categories by López
Franco and Vasilakopoulou [20]. A typical example duoidal structure on a functor
category is given by the Day convolution and pointwise tensor. Garner and López
Franco [13] considered the example of composition and the Day convolution of
endofunctors (κ-accessible for a fixed κ).

We do not know the earliest reference to generalized algebras of a monad,
in particular, coalgebras of a monad. The latter were considered by Poinsot and
Porst [25] (and models of algebraic theories elsewhere than Set are standard).

8 Conclusion and Future Work

We have studied universal (co)monads for monad-comonad interactions. We have
shown that an elegant setting for such a study on a more general level is pro-
vided by Sweedler theory for general duoidal categories as developed by López
Franco and Vasilakopoulou [20]. But for results about monad-comonad inter-
action specifically it is fruitful to combine it with the (co)algebraic perspective
on monad-comonad interaction laws [33]. This makes it possible to characterize
the universal (co)monads defined by Sweedler operations via their categories of
(co)algebras in terms of different flavors of runners.

We have witnessed that there is the choice of whether to work with ordinary
monad-comonad interaction laws or with the enriched version. It remains to
be seen which option yields a richer or more useful theory. An issue with the
enriched option is that we know little about accessibility for enriched categories,
although some studies exist (e.g., [18,6,7]).

We refrained from discussing it in this paper altogether, but of course one can
specifically study interaction laws of monads and comonads specified by algebraic
theories. We intend to do this in a sequel paper. We also plan to explain properly
the significance for semantics of the constructions of this paper by describing in
detail how they work on semantics-motivated examples and what this means.

Acknowledgements We thank Niels Voorneveld for many useful discussions.
Richard Garner’s work is an endless source of inspiration. D.M. and T.U. were
supported by the Icelandic Research Fund project grant no. 196323-053, T.U.
also by the Estonian Research Council team grant no. PRG1210. E.R. was sup-
ported by the Estonian Research Council personal grant no. PSG659.

Sweedler Theory of Monads 445

References

1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, London
Math. Soc. Lecture Note Series, vol. 189. Cambridge University Press (1994)

2. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras, CRM
Monograph Series, vol. 29. Amer. Math. Soc. (2010)

3. Anel, M., Joyal, A.: Sweedler theory of (co)algebras and the bar-cobar construction.
arXiv eprint 1309.6952 [math.CT] (2013), https://arxiv.org/abs/1309.6952

4. Bergman, G.M.: An Invitation to General Algebra and Universal Construc-
tions. Universitext, Springer (2015). https://doi.org/10.1007/978-3-319-11478-1,
author’s revised version at https://math.berkeley.edu/∼gbergman/245/

5. Bergman, G.M., Hausknecht, A.O.: Cogroups and Co-rings in Categories of Asso-
ciative Rings, AMS Mathematical Surveys and Monographs, vol. 45. Amer. Math.
Soc. (1996)

6. Bird, G.J.: Limits in 2-Categories of Locally-Presented Categories. Ph.D. thesis,
University of Sydney (1984)

7. Borceux, F., Quinteiro, C.: Enriched accessible categories. Bull. Austral. Math.
Soc. 54, 489–501 (1996). https://doi.org/10.1017/s0004972700021900

8. Freeman, P.: Comonads as spaces (a series of blog posts) (2016), https://blog.
functorial.com/posts/2016-08-07-Comonads-As-Spaces.html

9. Freyd, P.: Algebra valued functors in general and tensor products in particular.
Coll. Math. 14(1), 89–106 (1966). https://doi.org/10.4064/cm-14-1-89-106

10. Garner, R.: Understanding the small object argument. Appl. Categ. Struct. 17(3),
247–285 (2009). https://doi.org/10.1007/s10485-008-9137-4

11. Garner, R.: Stream processors and comodels. In: Gadducci, F., Silva, A. (eds.)
Proc. of 9th Conf. on Algebra and Coalgebra in Computer Science, CALCO 2021
(Salzburg, Aug./Sept. 2021), Leibniz Int. Proc. in Informatics, vol. 211, pp. 15:1–
15:17. Dagstuhl Publishing (2021). https://doi.org/10.4230/lipics.calco.2021.15

12. Garner, R.: The costructure-cosemantics adjunction for comodels
for computational effects. Math. Struct. Comput. Sci. (to appear).
https://doi.org/10.1017/s0960129521000219

13. Garner, R., López Franco, I.: Commutativity. J. Pure Appl. Algebra 204(2), 1707–
1751 (2016). https://doi.org/10.1016/j.jpaa.2015.09.003

14. Hyland, M., López Franco, I., Vasilakopoulou, C.: Hopf measuring comonoids
and enrichment. Proc. London Math. Soc. 115(3), 1118–1148 (2017).
https://doi.org/10.1112/plms.12064

15. Kan, D.M.: On monoids and their dual. Bol. Soc. Mat. Mexicana, Ser. 2 3, 52–61
(1958)

16. Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and
comonads. In: Proc. of 35th Ann. ACM/IEEE Symp. on Logic in Com-
puter Science, LICS 2020 (Saarbrücken, July 2020), pp. 604–618. ACM (2020).
https://doi.org/10.1145/3373718.3394808

17. Kelly, G.M.: Basic Concepts of Enriched Category Theory, London Math. Soc.
Lecture Note Series, vol. 64. Cambridge University Press (1982), reprinted (2005)
as: Reprints in Theory and Applications of Categories 10, http://www.tac.mta.ca/
tac/reprints/articles/10/tr10abs.html

18. Kelly, M.G.: Structures defined by finite limits in the enriched context, I. Cahiers
Topol. Géom. Différentielle Catégoriques 23(1), 3–42 (1982)

19. Kmett, E.: Monads from comonads (a series of blog posts) (2011), http://comonad.
com/reader/2011/monads-from-comonads/

446 D. McDermott et al.

https://arxiv.org/abs/1309.6952
https://doi.org/10.1007/978-3-319-11478-1
https://math.berkeley.edu/~gbergman/245/
https://doi.org/10.1017/s0004972700021900
https://blog.functorial.com/posts/2016-08-07-Comonads-As-Spaces.html
https://blog.functorial.com/posts/2016-08-07-Comonads-As-Spaces.html
https://doi.org/10.4064/cm-14-1-89-106
https://doi.org/10.1007/s10485-008-9137-4
https://doi.org/10.4230/lipics.calco.2021.15
https://doi.org/10.1017/s0960129521000219
https://doi.org/10.1016/j.jpaa.2015.09.003
https://doi.org/10.1112/plms.12064
https://doi.org/10.1145/3373718.3394808
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://comonad.com/reader/2011/monads-from-comonads/
http://comonad.com/reader/2011/monads-from-comonads/

20. López Franco, I., Vasilakopoulou, C.: Duoidal categories, measuring comonoids
and enrichment. arXiv eprint 2005.01340 [math.CT] (2020), https://arxiv.org/abs/
2005.01340

21. Makkai, M., Paré, R.: Accessible Categories: The Foundations of Categorical Model
Theory: The Foundations of Categorical Model Theory, Contemporary Mathemat-
ics, vol. 104. Amer. Math. Soc. (1989)

22. Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Methods Comput. Sci.
10(1) (2014). https://doi.org/10.2168/lmcs-10(1:17)2014

23. Moggi, E.: Computational lambda-calculus and monads. In: Proc. of 4th Ann.
Symp. on Logic in Computer Science, LICS ’89, pp. 14–23. IEEE Press (1989).
https://doi.org/10.1109/lics.1989.39155

24. Plotkin, G., Power, J.: Tensors of comodels and models for operational
semantics. Electron. Notes Theor. Comput. Sci. 218, 295–311 (2008).
https://doi.org/10.1016/j.entcs.2008.10.018

25. Poinsot, L., Porst, H.E.: Internal coalgebras in cocomplete categories: Generaliz-
ing the Eilenberg-Watts theorem. J. Algebra Appl. 20(9), art. 2510165 (2021).
https://doi.org/10.1142/s0219498821501656

26. Popescu, N., Popescu, L.: Theory of Categories. Editura Academiei / Sijthoff &
Noordhoff Int. Publishers (1979)

27. Porst, H.E.: On categories of monoids, comonoids, and bimonoids. Quaest. Math.
31(2), 127–139 (2008). https://doi.org/10.2989/qm.2008.31.2.2.474

28. Porst, H.E., Street, R.: Generalizations of the Sweedler dual. Appl. Categ. Struct.
24, 619–647 (2016). https://doi.org/10.1007/s10485-016-9450-2

29. Power, J., Shkaravska, O.: From comodels to coalgebras: State and
arrays. Electron. Notes Theor. Comput. Sci. 106, 297–314 (2004).
https://doi.org/10.1016/j.entcs.2004.02.041

30. Sweedler, M.E.: Hopf Algebras. Math. Lecture Note Series, W. A. Benjamin (1969)
31. Tall, D.O., Wraith, G.C.: Representable functors and operations

on rings. Proc. London Math. Soc., Ser. 3 20(4), 619–643 (1970).
https://doi.org/10.1112/plms/s3-20.4.619

32. Uustalu, T.: Stateful runners for effectful computations. Electron. Notes Theor.
Comput. Sci. 319, 403–421 (2015). https://doi.org/10.1016/j.entcs.2015.12.024

33. Uustalu, T., Voorneveld, N.: Algebraic and coalgebraic perspectives on interaction
laws. In: d. S. Oliveira, B.C. (ed.) Proc. of 18th Asian Symp. on Programming Lan-
guages and Systems, APLAS 2020 (Fukuoka, Nov./Dec. 2020), Lect. Notes Com-
put. Sci., vol. 12470, pp. 186–205. Springer (2020). https://doi.org/10.1007/978-3-
030-64437-6 10

34. Wraith, G.C.: Algebraic Theories (Lectures Autumn 1969, Revised Version of
Notes), Lecture Note Series, vol. 22. Aarhus Universitet, Matematisk Institut
(1975)

Sweedler Theory of Monads 447

https://arxiv.org/abs/2005.01340
https://arxiv.org/abs/2005.01340
https://doi.org/10.2168/lmcs-10(1:17)2014
https://doi.org/10.1109/lics.1989.39155
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1142/s0219498821501656
https://doi.org/10.2989/qm.2008.31.2.2.474
https://doi.org/10.1007/s10485-016-9450-2
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1112/plms/s3-20.4.619
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1007/978-3-030-64437-6_10
https://doi.org/10.1007/978-3-030-64437-6_10

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

448 D. McDermott et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

http://creativecommons.org/licenses/by/4.0/

Model Checking Temporal Properties of
Recursive Probabilistic Programs

Tobias Winkler� , Christina Gehnen , and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany
{tobias.winkler,katoen}@cs.rwth-aachen.de

christina.gehnen@rwth-aachen.de

Abstract. Probabilistic pushdown automata (pPDA) are a standard
operational model for programming languages involving discrete ran-
dom choices, procedures, and returns. Temporal properties are useful for
gaining insight into the chronological order of events during program
execution. Existing approaches in the literature have focused mostly on
ω-regular and LTL properties. In this paper, we study the model check-
ing problem of pPDA against ω-visibly pushdown languages that can
be described by specification logics such as CaRet and are strictly more
expressive than ω-regular properties. With these logical formulae, it is
possible to specify properties that explicitly take the structured com-
putations arising from procedural programs into account. For example,
CaRet is able to match procedure calls with their corresponding future
returns, and thus allows to express fundamental program properties like
total and partial correctness.

Keywords: Probabilistic Recursive Programs · Model Checking · Prob-
abilistic Pushdown Automata · Visibly Pushdown Languages · CaRet.

1 Introduction

Probabilistic programs extend traditional programs with the ability to flip coins
or, more generally, sample values from probability distributions. These programs
can be used to encode randomized algorithms and randomized mechanisms in
security [7] in a natural way. The interest in probabilistic programs has signif-
icantly increased in recent years. To a large extent, this is due to the search
in AI for more expressive and succinct languages than probabilistic graphical
models for Bayesian inference [17]. Probabilistic programs have many applica-
tions [24]. They are used in, amongst others, machine learning, systems biology,
security, planning and control, quantum computing, and software–defined net-
works. Probabilistic variants of many programming languages exist.

Procedural programs allow for declaration of procedures—small independent
code blocks—and the ability to call procedures from one another, possibly in

This work is supported by the DFG research training group 2236 UnRAVeL and the
ERC advanced research grant 787914 FRAPPANT.

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 449–469, 2022.
https://doi.org/10.1007/978-3-030-99253-8_23

http://orcid.org/0000-0003-1084-6408
http://orcid.org/0000-0002-6548-3432
http://orcid.org/0000-0002-6143-1926
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_23&domain=pdf

proc void infectYoung() {
y := uniform(0, 3)

repeat y times {
infectYoung() }

e := uniform(0, 2)

repeat e times {
f := infectElder() }

return }

proc bool infectElder() {
y := uniform(0, 1)

repeat y times {
infectYoung() }

e := uniform(0, 4)

repeat e times {
infectElder() }

f := bernoulli(0.01); return f }

Fig. 1. Recursive probabilistic program modeling the outbreak of an infectious disease.
uniform(a, b) stands for the discrete uniform distribution on [a, b].

a recursive fashion. Most common programming languages such as C, Python,
or Java support procedures. It is thus not surprising that recursion is a key in-
gredient in many modern probabilistic programming languages (PPL). In fact,
many early approaches to extend Bayesian networks focused on incorporating
recursion [26,19,11,27]. Randomized algorithms such as Hoare’s quicksort with
random pivot selection can be straightforwardly programmed using recursion.
Recursion is also a first-class citizen in modeling rule-based dependencies be-
tween molecules or populations in systems biology (e.g., modeling reproduction).

Y E

Y 1.5 1

E 0.5 2

Fig. 2. Example infec-
tion rates by age groups.

This paper studies the automated verification of
probabilistic pushdown automata [14] (pPDA) as an
explicit-state operational model of procedural proba-
bilistic programs against temporal specifications. As a
motivating example, let us consider a simple epidemio-
logical model for the outbreak of an infectious disease
in a large population where the number of susceptible
individuals can be assumed to be infinite. Our example
model distinguishes young and elderly persons. Each affected individual infects
a uniformly distributed number of others, with varying rates (expected values)
according to the age groups (Figure 2). The fatality rate for infected elderly and
young persons is 1% and 0%, respectively. Initially, we assume there is a single in-
fected young person, i.e., the overall program is started by calling infectYoung().
It is an easy task for any working programmer to specify this model as a dis-
crete probabilistic program with mutually recursive procedures (Figure 1). Note
that this program can be easily amended to more realistic models involving, e.g.,
more age or gender groups, other distributions, hospitalization rate, etc.

The operational behavior of programs such as the one in Figure 1 can be
naturally described by pPDA. The technical details of such a translation are
beyond the scope of this paper but let us provide some intuition (more details can
be found e.g. in [2]). Roughly, the local states of the procedures—the valuation of
the local variables and the position of the program counter—constitute both the
state space and the stack alphabet of the automaton. Procedure calls correspond
to push transitions in the automaton in such a way that the program’s procedure

450 T. Winkler, C. Gehnen, J.-P. Katoen

stack is simulated by the automaton’s pushdown stack, i.e., the current local
state is saved on top of the stack. Accordingly, returning from a procedure
corresponds to taking a pop transition in order to restore the local state of the
caller. Returning a value can be handled similarly. Clearly, if the reachable local
state spaces of the involved procedures are finite, then the resulting automaton
will be finite as well.

A number of relevant questions such as “Will the virus eventually become
extinct?” (termination probability) or “What is the expected number of fatali-
ties?” (expected costs) can be decided on finite pPDA (see [9] for a survey). In
this work, we focus on temporal properties, e.g., questions that involve reasoning
about the chronological order of certain events of interest during the epidemic.
An example are chains of infection: For instance, we might ask

What is the probability that eventually a young person with only young
persons in their chain of infection passes the virus on to an elderly person
who then dies?

On the level of the program in Figure 1, this corresponds to the probability
of reaching a global program configuration where the call stack only contains
infectYoung() invocations and during execution of the current infectYoung(),
the local variable f is eventually set to true. This requires reasoning about the
nestings of calls and returns of a computation. In fact, in order to decide if
f = true in the current procedure, we must “skip” over all calls within it and
only consider their local return values. This requirement and many others can
be rather naturally expressed in the logic CaRet [3], an extension of LTL:

♦g (�−pY ∧ pY ∧ ♦af) .

Here, pY is an atomic proposition that holds at states which correspond to being
in procedure infectYoung , and f indicates that f = true. Intuitively, the above
formula states that eventually (outer ♦g), the computation reaches a (global)
state where only infectYoung is on the call stack and the current procedure is
infectYoung as well (�−pY ∧ pY), and moreover the local—aka abstract—path
within in the current procedure reaches a state where f is true (♦af). Such
properties are in general context-free but not always regular and thus cannot be
expressed in LTL [3].

Technical Contribution. We are given a (finite) pPDA ∆ and a CaRet formula
ϕ and we are interested in determining the probability that a random trajec-
tory of ∆ satisfies ϕ. In order for this problem to be decidable [13], we need to
impose a mild visibility restriction on ∆, yielding a probabilistic visibly push-
down automaton (pVPA). Just like several previous works on model checking
pPDA against ω-regular specifications [14,10,21], we follow the automata-based
approach (see Figure 3). More specifically, we first translate ϕ into an equiva-
lent non-deterministic Büchi visibly pushdown automaton [4] (VPA) A and then
determinize it using a result of [22]. The resulting DVPA D uses a so-called
stair-parity [22] acceptance condition that is strictly more expressive than stan-
dard parity or Muller DVPA [4]. Stair-parity differs from usual parity in that

Model Checking Temporal Properties of Recursive Probabilistic Programs 451

CaRet
formula ϕ

Büchi
NVPA A

Stair-parity
DVPA D

Product
∆×D

pVPA ∆Program
Step chain
M∆×D

ETR

Fig. 3. Chain of reductions used in this paper. ETR stands for existential theory of the
reals, i.e., the existentially quantified fragment of the FO-theory over (R,+, ·,≤).

it only considers certain positions—called steps [22]—of an infinite word where
the stack height never decreases again. We then construct a standard product
∆×D. Here, the visibility conditions ensure that the automata synchronize their
stack actions, yielding a product automaton that uses a single stack instead of
two independent ones, which would lead to undecidability [13]. Finally, we are
left with computing a stair-parity acceptance probability in the product, which
is itself a pPDA. This is achieved by constructing a specific finite Markov chain
associated to ∆×D, called step chain in this paper. Intuitively, the step chain
jumps from one step of a run to the next, and therefore we only need to evalu-
ate standard parity rather than stair-parity on the step chain. The idea of step
chains is due to [14] where they were used to show decidability against deter-
ministic non-pushdown Büchi automata. For constructing the step chain, certain
termination probabilities of the pPDA need to be computed. These are in general
algebraic numbers that cannot always be expressed by radicals [16], let alone by
rationals. However, the relevant problems are still decidable via an encoding in
the existential fragment of the FO-theory of the reals (ETR) [21].

The resulting main contributions of this paper are complexity results, sum-
marized in Figure 4, and algorithms for quantitative model checking of pPDA
against ω-VPL given in terms of either deterministic automata, non-deterministic
automata, or as CaRet formulae. As common in the literature, we consider the
special case of qualitative, or almost-sure (a.-s.), model checking separately. To
the best of our knowledge, none of these problems was known to be decidable be-
fore. The work of [13] proved decidability of model checking against deterministic
Muller VPA which capture a strict subset of the CaRet-definable languages [4].
As a lemma of independent interest, we show that the step chain can be used for
checking all kinds of measurable properties defined on steps, even beyond parity.

Related work. We have already mentioned various works on recursion in prob-
abilistic graphical models (and PPL) as well as on verifying pPDA and the
equivalent model of recursive Markov chains [16]. The analysis of these models
focuses on reachability probabilities, ω-regular properties or (fragments of) prob-
abilistic CTL, expected costs, and termination probabilities. The computation
of termination probabilities in recursive Markov chains and variations thereof
with non-determinism is supported by the software tool PReMo [29]. Our pa-
per can be seen as a natural extension from checking pPDA against ω-regular
properties to ω-visibly pushdown languages. In contrast to these algorithmic ap-
proaches, various deductive reasoning methods have been developed for recursive

452 T. Winkler, C. Gehnen, J.-P. Katoen

ω-VPL given in terms of ... qualitative quantitative

Deterministic stair-parity VPA [Theorem 3] in PSPACE in PSPACE

Non-deterministic Büchi VPA [Theorem 4] EXPTIME-compl. in EXPSPACE

CaRet formula [Theorem 5] in 2EXPTIME in 2EXPSPACE

Fig. 4. Complexity results of this paper.

probabilistic programs. Proof rules for recursion were first provided in [20], and
later extended to proof rules in a weakest-precondition reasoning style [23,25].
Olmedo et al. [25] also address the connection to pPDA and provide proof rules
for expected run-time analysis. A mechanized method for proving properties
of randomized algorithms, including recursive ones, for the Coq proof assistant
is presented in [5]. The Coq approach is based on higher–order logic using a
monadic interpretation of programs as probabilistic distributions.

Organization. We review the basics about VPA and CaRet in Section 2. Section 3
introduces probabilistic visibly pushdown automata (pVPA). The stair-parity
DVPA model checking procedure is presented in Section 4, and the results for
Büchi VPA and CaRet in Section 5. We conclude the paper in Section 6.

2 Visibly Pushdown Languages

We fix some general notation for words first. Given a non-empty alphabet Σ, let
Σ∗ be the set of finite words (this includes the empty word ε), and let Σω be the
set of infinite words over Σ. For i ≥ 0, the i-th symbol of a word w ∈ Σ∗ ∪Σω

is denoted w(i) if it exists. |w| denotes the length of w.

2.1 Visibly Pushdown Automata

A finite alphabet Σ is called a pushdown alphabet if it is equipped with a partition
Σ = Σcall] Σint] Σret into three—possibly empty—subsets of call, internal,
and return symbols. A visibly pushdown automaton [4] (VPA) over Σ is like
a standard pushdown automaton with the additional syntactic restriction that
reading a call or return symbol triggers a push or a pop transition, respectively.
Reading an internal symbol, on the other hand, does not affect the stack at all.

Definition 1 (VPA [4]). Let Σ be a pushdown alphabet. A visibly pushdown
automaton (VPA) over Σ is a tuple A = (S, s0, Γ, ⊥, δ, Σ) with S a finite set
of states, s0 ∈ S an initial state, Γ a finite stack alphabet, ⊥ ∈ Γ a special
bottom-of-stack symbol, and δ = (δcall, δint, δret) a triple of relations

δcall ⊆ (S×Σcall)× (S×Γ-⊥) , δint ⊆ (S×Σint)×S , δret ⊆ (S×Σret×Γ)×S

Model Checking Temporal Properties of Recursive Probabilistic Programs 453

where Γ-⊥ = Γ \ {⊥}. For s, t ∈ S, Z ∈ Γ , and a ∈ Σ, we use the shorthand

notations s
a−→ tZ, s

a−→ t, sZ
a−→ t to indicate that there exist transitions

(s, a, t, Z) ∈ δcall, (s, a, t) ∈ δint, (s, a, Z, t) ∈ δret, respectively. Note that e.g.

s
a−→ tZ implies implicitly that a ∈ Σcall and Z 6= ⊥, and similar for internal

and return transitions. Intuitively, call transitions push a new symbol Z onto
the stack, internal transitions ignore the stack, and return transitions pop the
topmost symbol Z from the stack (unless Z = ⊥, in which case nothing is
popped). A configuration of VPA A is a tuple (s, γ) ∈ S × Γ ∗, written more
succinctly as sγ in the sequel. Let w ∈ Σω be an infinite input word. An infinite
sequence ρ = s0γ0, s1γ1 . . . of configurations is called a run of A on w if s0γ0 =
s0⊥ and for all i ≥ 0, exactly one of the following cases applies:

– w(i) ∈ Σcall and γi+1 = γiZ for some Z ∈ Γ-⊥ such that si
w(i)−−−→ si+1Z; or

– w(i) ∈ Σint and γi+1 = γi and si
w(i)−−−→ si+1; or

– w(i) ∈ Σret and γi+1Z = γi for some Z ∈ Γ-⊥ such that siZ
w(i)−−−→ si+1, or

γi = γi+1 = ⊥ and si⊥
w(i)−−−→ si+1.

A Büchi acceptance condition for A is a subset F ⊆ S. A VPA equipped with
a Büchi condition is called a Büchi VPA. An infinite word w ∈ Σω is accepted
by a Büchi VPA if there exists a run s0γ0, s1γ1, . . . of A on w such that si ∈ F
for infinitely many i ≥ 0. The ω-language of words accepted by a Büchi VPA A
is denoted L(A) ⊆ Σω.

Definition 2 (ω-VPL [4]). Let Σ be a pushdown alphabet. L ⊆ Σω is an
ω-visibly pushdown language (ω-VPL) if L = L(A) for a Büchi VPA A over Σ.

A VPA is deterministic (DVPA) if it has exactly one run on each input word.
In this case, δcall, δint, and δret can be viewed as (total) functions. As for standard
NBA, the class of languages recognized by Büchi DVPA is a strict subset of
the languages recognized by non-deterministic Büchi VPA. Unlike in the non-
pushdown case, DVPA with Muller or parity conditions are also strictly less
expressive than non-deterministic Büchi VPA [4]. A deterministic automaton
model for ω-VPL was given in [22]. It uses a so-called stair-parity acceptance
condition which is the topic of the next subsection.

2.2 Steps and Stair-parity Conditions

Let us fix a pushdown alphabet Σ and a VPA A over Σ. Consider a run ρ =
s0γ0, s1γ1, . . . of A on an infinite word w ∈ Σω. We define the stack height of the
i-th configuration as sh(ρ(i)) = |γi| − 1 (the bottom symbol ⊥ does not count
to the stack height). The stair-parity condition relies on the notion of steps :

Definition 3 (Step). Let ρ be a run of A. Position i ≥ 0 is a step of ρ if

∀n ≥ i : sh(ρ(n)) ≥ sh(ρ(i)) .

454 T. Winkler, C. Gehnen, J.-P. Katoen

s0 s1
c, Z

⊥, r
Z, r
τ

⊥, r
Z, r
τ

c, Z

τ r c τ τ c r c c r r c c c r r r ...
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

Z
Z Z Z Z

Z Z Z Z Z Z Z Z Z ...
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ...

s0 s1 s1 s0 s1 s1 s0 s1 s0 s0 s1 s1 s0 s0 s0 s1 s1 s1 ...

Fig. 5. Left: An example VPA (in fact, a DVPA) with Γ = {Z,⊥} over input alphabet
Σ = { c }] { τ }] { r }. Transitions labeled c, Z are call transitions which push Z on
the stack, the transitions labeled with τ are internal ones that ignore the stack, and
those labeled Z, r and ⊥, r are return transitions that are only enabled if Z (⊥, resp.)
is on top of the stack; when executing Z, r we also pop Z from the stack. However, the
special bottom-of-stack symbol ⊥ can never be popped (see e.g. pos. 1). Right: The
unique run of the DVPA on input word τ r c τ τ c r c2 r2 c3 r3 Steps are underlined.

Abusing terminology, we may also refer to the configurations at the step positions
of a run as steps.

Example 1. Figure 5 depicts a DVPA and the initial fragment of its unique run
ρ on the input word τ r c τ τ c r c2 r2 c3 r3 The step positions are underlined,
i.e., positions 0-5, 7, 11, and 17 are steps. Note that if ρ(i) = s⊥ for some s ∈ S
then i is a step, i.e., bottom configurations are always steps.

Steps play a central role in the rest of the paper. We therefore explain some
of their fundamental properties.

– If positions i < j are adjacent steps, then sh(ρ(j))− sh(ρ(i)) ∈ { 0, 1 }, i.e.,
the stack height from one step to the next increases by either zero or one.
More precisely, if the symbol at step position i is internal (e.g. i = 0, 3, 4
in Figure 5) or a return (e.g. i = 1) then the next step is simply the next
configuration j = i+ 1 and the stack height does not increase. If the symbol
at position i is a call, then one of two cases occurs: Either the call has
no matching future return (e.g. i = 2); in this case, the next step is the
next configuration j = i + 1. Otherwise the call is eventually matched (e.g.
i = 5, 7, 11) and the next step j > i + 1 occurs after the corresponding
matching return is read and has the same stack height.

– Each infinite run has infinitely many steps since the above discussion also
implies that each step has a successor. Notice though that the difference be-
tween two adjacent step positions may grow unboundedly as in the example.

– As a consequence, the stack height at the steps either grows unboundedly or
eventually stabilizes (the latter occurs in Figure 5).

Remark 1. One can also define the steps of a word w ∈ Σω as the positions where
a run of any arbitrary VPA on w has a step. Due to the visibility restriction,
the actual behaviour of the VPA does not influence the step positions [22]. In
other words, the step positions are predetermined by the input word. Thus, we
can also speak of the stack height sh(w(i)) of word w at position i.

Model Checking Temporal Properties of Recursive Probabilistic Programs 455

We need one last notion before defining stair-parity. The footprint of an
infinite run ρ = s0γ0, s1γ1, . . . is the infinite sequence ρ↓Steps = sn0

sn1
. . . ∈ Sω

where for all i ≥ 0 the position ni is the i-th step of ρ. Phrased differently,
ρ↓Steps is the projection of the run ρ onto the states occurring at its steps. For
the example run in Figure 5 (right), ρ↓Steps = s0s1s1s0s

ω
1 .

Definition 4 (Stair-parity [22]). Let A be a VPA over pushdown alphabet
Σ. A stair-parity acceptance condition for A is defined in terms of a priority
function Ω : S → N0. i.e. A word w ∈ Σω is accepted if A has a run ρ on ω s.t.

min { k ∈ N0 |
∞
∃ i : Ω(ρ↓Steps(i)) = k }

is even. The language accepted by A is denoted L(A).

Example 2. The DVPA in Figure 5 with Ω(s0) = 1 and Ω(s1) = 2 accepts

Lrepbdd = {w ∈ Σω | ∃B ≥ 0,
∞
∃ i ≥ 0: sh(w(i)) ≤ B } ,

the language of repeatedly bounded words [22], i.e., words whose stack height (cf.
Remark 1) is infinitely often at most a constant B. It is known that Lrepbdd is
not expressible by DVPA with usual parity conditions [4].

Theorem 1 ([22, Thm. 1]). For every non-deterministic Büchi VPA A there

exists a deterministic stair-parity DVPA D with 2O(|S|2) states such that L(A) =
L(D). Moreover, D can be constructed in exponential time in the size of A.

It was also shown in [22] that stair-parity DVPA characterize exactly the class of
ω-VPL (and are thus not more expressive than non-deterministic Büchi VPA).

2.3 CaRet, a Temporal Logic of Calls and Returns

Specifying requirements directly in terms of automata is tedious in practice.
CaRet [3] is an extension of Linear Temporal Logic (LTL) that can be used to
describe ω-VPL. Its syntax is defined as follows:

Definition 5 (CaRet [3]). Let AP be a finite set of atomic propositions. The
logic CaRet adheres to the grammar

ϕ := p | ϕ ∨ ϕ | ¬ϕ | ©gϕ | ϕUgϕ | ©aϕ | ϕUaϕ | ©−ϕ | ϕU−ϕ ,

where p ∈ AP ∪ { call, int, ret }.

Other common modalities such as ♦b and �b for b ∈ { g, a,−} are defined as
usual via ♦bϕ = true Ub ϕ, and �bϕ = ¬♦b¬ϕ. We briefly explain the seman-
tics of CaRet, the formal definition can be found in [3] or the full version [28].
We assume familiarity with LTL. CaRet formulae are interpreted over infinite
words from the pushdown alphabet Σ = 2AP × { call, int, ret }. ©g and Ug are
the standard next and until modalities from LTL (called global next and until

456 T. Winkler, C. Gehnen, J.-P. Katoen

0

1 2

3 4

5 ...©g

cal
l

©g/a

int

©−

©g

cal
l

©−

©a

©g

int

©−

©g/a

ret

©−

©−

Fig. 6. CaRet’s various next modalities applied to the initial fragment of an example
word. Call, internal, and return positions are depicted as boxes, circles, and rhombs,
resp. Note that ©a of position 3 is undefined because ©g is a return.

in CaRet). CaRet extends LTL by two key operators, the caller modality ©−
and the abstract successor ©a, see Figure 6. The former is a past modality that
refers to the position of the last pending call. For internal and return symbols,
the abstract successor©a behaves like©g unless the latter is a return, in which
case ©a is undefined (e.g. pos. 3 in the example). On the other hand, the ab-
stract successor of a call symbol is its matching return if it exists, or undefined
otherwise. The until modalities U− and Ua are defined over the paths induced
by the callers and abstract successors, respectively. Note that the caller path
is always finite and the abstract path can be either finite or infinite. A prime
application of CaRet is to state Hoare-like total correctness of a procedure F [3]:

ϕtotal = �g (call ∧ p ∧ pF → ©a q)

where p and q are atomic propositions that hold at the states where the pre- and
post-condition is satisfied, respectively, and pF is an atomic proposition marking
the calls to F . Another example is the language of repeatedly bounded words
from Example 2; it is Lrepbdd = L(♦g�g(call → ©aret)). Further examples are
given in [3]. The language defined by a CaRet formula ϕ is denoted L(ϕ).

Theorem 2 ([1, Thm. 5.1]). CaRet-definable languages are ω-VPL: For each
CaRet formula ϕ there exists a (non-deterministic) Büchi VPA A such that
L(ϕ) = L(A), and A can be constructed in time 2O(|ϕ|).

The above theorem is well-known in the literature [1,2] even though it is usually
stated for Nested Word Automata (NWA) which are equivalent to VPA, and
it is more common to state a space bound on A rather than a time bound
for the construction. The theorem also applies to more expressive extensions of
CaRet [1] which we do not consider here for the sake of simplicity.

3 Probabilistic Visibly Pushdown Automata

As explained in the introductory section, we employ probabilistic pushdown au-
tomata [14] (pPDA) as an operational model for procedural probabilistic pro-

Model Checking Temporal Properties of Recursive Probabilistic Programs 457

grams. pPDA thus play a fundamentally different role in this paper than VPA
(cf. Definition 1): While the former are used to model the system, the latter en-
code the specification. Consequently, our pPDA do not read an input word like
VPA do, but instead take their transitions randomly, according to fixed probabil-
ity distributions. In this way, they define a probability space over their possible
traces, i.e., runs projected on their labeling sequence. These traces constitute the
input words of the VPA. In order for the model checking problems to be decid-
able [13], a syntactic visibility restriction related—but not exactly analogous—to
the one required by VPA needs to be imposed on pPDA. In a nutshell, the con-
dition is that each state only has outgoing transitions of one type, i.e., push,
internal, or pop. This means that the stack operation is visible in the states
(recall that for VPA, the stack operation is visible in the input symbol). This
restriction is not severe in the context of modeling programs (see Remark 2 fur-
ther below) and leads to our notion of probabilistic visibly pushdown automata
(pVPA) which we now define formally.

Given a finite set X, we write D(X) = { f : X → [0, 1] |
∑
a∈X f(a) = 1 }

for the set of probability distributions on X.

Definition 6 (pVPA). A probabilistic visibly pushdown automaton (pVPA)
is a tuple ∆ = (Q, q0, Γ, ⊥, P, Σ, λ) where Q is a finite set of states partitioned
into Q = Qcall]Qint]Qret, q0 ∈ Q is an initial state, Γ is a finite stack alphabet,
⊥ ∈ Γ is a special bottom-of-stack symbol, P = (Pcall, Pint, Pret) is a triple of
functions with signature

Pcall : Qcall → D(Q× Γ-⊥) , Pint : Qint → D(Q) , Pret : Qret × Γ → D(Q) ,

Σ = Σcall]Σint]Σret is a pushdown alphabet, and λ : Q→ Σ is a state labeling
function consistent with the visibility condition, i.e., for all type ∈ {call, int, ret}
and all q ∈ Q, we have that q ∈ Qtype iff λ(q) ∈ Σtype.

Intuitively, the behavior of a pVPA ∆ is as follows. If the current state q is a call
state, then the probability distribution Pcall(q) determines a random successor
state and stack symbol to be pushed on the stack (⊥ cannot be pushed). Simi-
larly, if the current state is internal, then Pint(q) is the distribution over possible
successor states and the stack is ignored completely. Lastly, if the current state is
a return state and symbol Z ∈ Γ is on top of the stack, then Pret(q, Z) once again
determines the probability distribution of successor states, and additionally Z
is removed from the stack. Similar to VPA, the bottom symbol ⊥ is the only
exception to this rule, it can never be removed. Thus, pVPA are a generalization
of labeled Markov chains, which correspond to the special case Q = Qint.

We now define the semantics of pVPA more formally. For q, r ∈ Q,Z ∈ Γ and

p > 0 we use the shorthand notations q
p−→ rZ, q

p−→ r, and qZ
p−→ r to indicate

that Pcall(q)(r, Z) = p, Pint(q)(r) = p, and Pret(q, Z)(r) = p, respectively. As for
VPA, a configuration of a pVPA is an element qγ ∈ Q×Γ ∗. An (infinite) run of
a pVPA is a sequence of configurations ρ = q0γ0, q1γ1, . . . such that q0γ0 = q0⊥
and for all i ≥ 0 we have that either

1. qi ∈ Qcall, γi+1 = γiZ for some Z ∈ Γ-⊥ and qi
p−→ qi+1Z;

458 T. Winkler, C. Gehnen, J.-P. Katoen

2. qi ∈ Qint, γi+1 = γi and qi
p−→ qi+1; or

3. qi ∈ Qret, γi+1Z = γi for some Z ∈ Γ-⊥ and qiZ
p−→ qi+1, or γi+1 = γi and

qi⊥
p−→ qi+1 (because the bottom symbol ⊥ is never popped).

Note that our pVPA only produce infinite runs and do not simply “terminate”
upon reaching the empty stack as in e.g. [14]. In fact, in our case the stack
cannot be empty due to the special bottom symbol ⊥ that can never be popped.
We have chosen to avoid finite pVPA runs for compatibility with CaRet which
describes ω-languages per definition. Nonetheless, terminating behavior can be
easily simulated in our framework by moving to a dedicated sink state once the
pVPA attempts to pop ⊥ for the first time.

The set of all runs of a pVPA ∆ is denoted Runs∆. We extend ∆’s labeling
function λ to runs ρ ∈ Runs∆ by applying it to each state along ρ individually,
yielding a word λ(ρ) ∈ Σω. Steps of pVPA runs are defined as in Definition 3.
An example pVPA and its possible runs are depicted in Figure 7 on page 14.

We can view the set of all configurations Q×Γ ∗ as the (infinite) state space
of a discrete-time Markov chain. In this way, we obtain a probability space
(Runs∆,F ,P) via the usual cylinder set construction [6, Ch. 10].

Remark 2. The visibility restriction of our pVPA is slightly different from the
definition given in [13] which requires all incoming transitions to a state to be of
the same type, i.e., call, internal, or return. Our definition, on the other hand, im-
poses the same requirement on the states’ outgoing transitions. We believe that
our condition is more natural for pVPA obtained from procedural programs,
such as the one in Figure 1. In fact, programs where randomness is restricted
to internal statements such as x := bernoulli(0.5) or x := uniform(0, 3) nat-
urally comply with our visibility condition because all call and return states of
such programs are deterministic and thus cannot violate visibility. However, the
alternative condition of [13] is not necessarily fulfilled for such programs.

We can now formally state our main problem of interest:

Definition 7 (Probabilistic CaRet Model Checking). Let AP be a finite
set of atomic propositions, ϕ be a CaRet formula over AP , ∆ be a pVPA with
labels from the pushdown alphabet Σ = 2AP × { call, int, ret }, and θ ∈ [0, 1] ∩Q.
The quantitative CaRet Model Checking problem is to decide whether

P({ ρ ∈ Runs∆ | λ(ρ) ∈ L(ϕ) }) ≥? θ .

The qualitative CaRet Model Checking problem is the special case where θ = 1.

The probabilities in Definition 7 are well-defined as ω-VPL are measurable [22].

4 Model Checking against Stair-parity DVPA

In this section, we show that model checking pVPA (Definition 6) against VPL
given in terms of a stair-parity DVPA (Definition 4) is decidable. This is achieved
by first computing an automata-theoretic product of the pVPA and the DVPA
and then evaluating the acceptance condition in the product automaton.

Model Checking Temporal Properties of Recursive Probabilistic Programs 459

4.1 Products of Visibly Pushdown Automata

In general, pushdown automata are not closed under taking products as this
would require two independent stacks. However, the visibility conditions on VPA
and pVPA ensure that their product is again an automaton with just a single
stack because the stack operations (push, nop, or pop) are forced to synchronize.

We now define the product formally. An unlabeled pVPA is a pVPA where
the labeling function λ and alphabet Σ are omitted.

Definition 8 (Product ∆×D). Let ∆ = (Q, q0, Γ, ⊥, P, Σ, λ) be a pVPA,
and D = (S, s0, Γ

′, ⊥, δ, Σ) be a DVPA over pushdown alphabet Σ. The product
of ∆ and D is the unlabeled pVPA

∆×D = (Q×S, (q0, s0), Γ×Γ ′, 〈⊥,⊥〉, P∆×D) ,

where P∆×D is the smallest set of transitions satisfying the following rules for
all q, r ∈ Q, Z ∈ Γ , s, t ∈ S, and Y ∈ Γ ′:

q
p−→∆ rZ ∧ s

λ(q)−−−→D tY
(q, s)

p−→∆×D (r, t)〈Z, Y 〉
q
p−→∆ r ∧ s

λ(q)−−−→D t
(q, s)

p−→∆×D (r, t)

qZ
p−→∆ r ∧ sY

λ(q)−−−→D t
(q, s)〈Z, Y 〉 p−→∆×D (r, t)

.

(call) (internal) (return)

If the DVPA D is equipped with a priority function Ω : S → N0, then we extend
Ω to Ω′ : Q× S → N0 via Ω′(q, s) = Ω(s).

It is not difficult to show that ∆×D is indeed a well-defined pVPA and moreover
satisfies the following property (the proof is standard, see [28]):

Lemma 1 (Soundness of ∆ × D). Let ∆ be a pVPA and D be a stair-
parity DVPA with priority function Ω, both over pushdown alphabet Σ. Then
the product pVPA ∆×D with priority function Ω′ as in Definition 8 satisfies

P({ ρ ∈ Runs∆ | λ(ρ) ∈ L(D) }) = P({ ρ ∈ Runs∆×D | ρ↓Steps ∈ ParityΩ′ }),

where ParityΩ′ denotes the set of words in (Q×S)ω satisfying the standard parity
condition defined by Ω′. Moreover, ∆×D can be constructed in polynomial time.

Remark 3. It is not actually important that the product satisfies the visibility
condition. All techniques we apply to the product also work for general pPDA.

4.2 Stair-parity Acceptance Probabilities in pVPA

Lemma 1 effectively reduces model checking pVPA against stair-parity DVPA to
computing stair-parity acceptance in the product, which is again an (unlabeled)
pVPA. We therefore focus on pVPA in this section and do not consider DVPA.

Throughout the rest of this section, let ∆ = (Q, q0, Γ, ⊥, P) be an unlabeled
pVPA. On the next pages we describe the construction of a finite Markov chain
M∆ that we call the step chain of ∆. Loosely speaking,M∆ simulates jumping
from one step (see Definition 3) of a run of ∆ to the next. A similar idea first
appeared in [14]. Our construction, however, differs from the original one in
various aspects. We discuss this in detail in Remark 5 further below.

460 T. Winkler, C. Gehnen, J.-P. Katoen

Steps as events. For all n ∈ N0, we define a random variable V (n) on Runs∆
whose value is either the state q of ∆ at the n-th step, or the extended state q⊥
in the special case where the n-th step occurs at a bottom configuration of the
form q⊥, for some q ∈ Q. We denote the set of all such extended states with
Q⊥ = { q⊥ | q ∈ Q }. Formally, V (n) : Runs∆ → Q ∪Q⊥ is defined as

V (n)(ρ) =

{
q if stepn(ρ) = qγ and γ 6= ⊥
q⊥ if stepn(ρ) = q⊥ ,

where stepn(ρ) denotes the configuration at the n-th step of ρ. Note that
V (0) = q0⊥ because the first position of a run is always a step.

Lemma 2. For all n ∈ N0 and v ∈ Q ∪Q⊥, the event V (n) = v is measurable,
and thus V (n) is a well-defined random variable.

We can view the sequence V (0), V (1) . . . of random variables as a stochastic
process. It is intuitively clear that for all n ∈ N0, the value of V (n+1) depends
only on V (n), but not on V (i) for i < n. This is due to the more general observa-
tion that the state q at any step configuration qγ (with γ 6= ⊥) fully determines
the future of the run because being a step already implies that no symbol in γ
can ever be read as reading it implies popping it from the stack. In particular, q
determines the probability distribution over possible next steps. A similar obser-
vation applies to bottom configurations of the form q⊥. Phrased in probability
theoretical terms, the process V (0), V (1) . . . has the Markov property, i.e.,

P(V (n)=vn | V (n−1)=vn−1 ∧ . . . ∧ V (0)=v0) = P(V (n)=vn | V (n−1)=vn−1) (1)

holds for all values of v0, . . . , vn such that the above conditional probabilities are
well-defined 1. This was proved in detail in [14]. It is also clear that the Markov
process is time-homogeneous in the sense that

P(V (n+1) = v | V (n) = v′) = P(V (n′+1) = v | V (n′) = v′)

holds for all n, n′ ∈ N0 for which the two conditional probabilities are well-
defined. The following example provides some intuition on these facts.

Example 3. Consider the pVPA in Figure 7 (left). The initial fragments of its
two equiprobable runs are depicted in the middle. In this example, it is easy
to read off the next-step probabilities P(V (n) = vn | V (n−1) = vn−1) for all
n ∈ N0 and vn, vn−1 ∈ Q ∪ Q⊥. They are summarized in the Markov chain on
the right. For example, V (0) = q0⊥ holds with probability 1, and V (1) = q1 and
V (1) = q3⊥ hold with probability 1/2 each because the second step occurs either
at position 1 with configuration q1⊥Z or at position 3 with configuration q3⊥,

1 A conditional probability is well-defined if the condition, i.e., the event on the right
hand side of the vertical bar, has positive probability. Expressions like the one in
(1) are thus not necessarily well-defined because the probability that V (n−1) = vn−1

might be zero for certain values of n and vn−1.

Model Checking Temporal Properties of Recursive Probabilistic Programs 461

q0 q1

q2

q3

1, Z

1/2

1/2

1, Z

Z, 1
⊥, 1

0 1 2 3 4 5

...
Z ...

Z Z ...
Z Z Z Z ...

⊥ ⊥ ⊥ ⊥ ⊥ ...
q0 q1 q2 q2 q2 ...

Z Z
⊥ ⊥ ⊥ ⊥ ⊥ ...
q0 q1 q3 q3 q3 ...

q0⊥

q3⊥

q1 q2

1/2

1/2

1

1

1

Fig. 7. Left: An example (unlabeled) pVPA ∆. Call, internal, and return states are
depicted as squares, circles, and rhombs, respectively. The format of the transition
labels is analogous to Figure 5 (left). Middle: Initial fragments of the two possible runs
of ∆. Steps are underlined. Right: Its step Markov chainM∆ (Definition 10, page 15).

q → r q⊥ → r q⊥ → r⊥ q → r⊥

q ∈ Qcall
[r↑]
[q↑]

(∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r]+

∑
Z

Pcall(q, rZ)
) ∑

Z

Pcall(q, rZ)[r↑]
∑
r′,Z

Pcall(q, r
′Z)[r′Z↓r] 0

q ∈ Qint
[r↑]
[q↑]Pint(q, r) 0 Pint(q, r) 0

q ∈ Qret n/a 0 Pret(q⊥, r) n/a

Fig. 8. Next-step probabilities of the step Markov chain. Ptype for type ∈ { call, int, ret }
are the probabilities of the pVPA’s call, internal, and return transitions, respectively.
The values [r′Z↓r] and [q↑] are the return and diverge probabilities from Definition 9.

and both options are equally likely. The case P(V (2) = q2 | V (1) = q1) = 1 is
slightly more interesting: Given that a configuration q1γ with γ 6= ⊥ is a step,
we know that the next state must be q2 (which is then also a step). Even though
there is a transition from q1 to q3 in ∆, the next state cannot be q3 because the
latter is a return state which would immediately decrease the stack height of γ.
This shows that, intuitively speaking, conditioning on being a step influences the
probabilities of a state’s outgoing transitions.

Probabilities of next steps, returns, and diverges. Our next goal is to
provide expressions for the next-step probabilities P(V (n+1) = v′ | V (n) = v) as
we did in Example 3. It turns out that those can be stated in terms of the return
and diverge probabilities of ∆.

Definition 9. Let p, q ∈ Q, Z ∈ Γ , and γ ∈ Γ ∗. We define

– the return probability [pZ↓q] as the probability to reach configuration qγ from
pγZ without visiting another configuration of the form rγ for some r ∈ Q in
between; and

– the diverge probability [p↑] as the probability to never decrease the stack
height below |γZ| when starting in pγZ, i.e., [p↑] = 1−

∑
q∈Q[pZ↓q].

462 T. Winkler, C. Gehnen, J.-P. Katoen

Note that [p↑] is indeed independent of Z because the only way to read Z is by
popping it from the stack which decreases the stack height. The diverge proba-
bilities are closely related to steps. Indeed, the probability that a configuration
pγ with γ 6= ⊥ is a step is equal to [p↑]. For example, in the pVPA in Figure 7
the configuration q1⊥Z is a step with probability [q1↑] = 1/2.

It is known that the return and diverge probabilities are in general non-
rational. As a minimal example, consider a pVPA that repeats the following
steps until emptying its stack or getting stuck: (i) It pushes four symbols with
probability 1/6, or (ii) pops one symbol with probability 1/2, or (iii) gets stuck
otherwise. The resulting return probability is the least solution of x = (1/6)x5 +
1/2, a non-rational number that is not even solvable by radicals [16, Thm. 3.2(1)].

Remark 4. The terms return and diverge are natural. When modeling procedural
probabilistic programs as pVPA, [pZ↓q] is just the probability to eventually
return from local state p of the current procedure to local state q of the calling
procedure (the return address is stored on the stack in Z). Similarly, [p↑] is
the probability that the current procedure diverges, i.e., it never returns to the
calling context. Clearly, this is independent of the return address.

Lemma 3. The conditional next-step probabilities in Figure 8 are correct in the
sense that if P(V (n+1) = v′ | V (n) = v) is defined for n ∈ N0 and v, v′ ∈ Q∪Q⊥
then it is equal to the probability in the respective column “ v → v′ ”.

Proof sketch. We only provide some intuition for two important cases; formal
derivations are in [28]. Let r ∈ Q be arbitrary.

– If q ∈ Qint then P(V (n+1) = r | V (n) = q) = Pint(q, r)[r↑]/[q↑]: Suppose that
the n-th step takes place at position i of the run. Since the n-th step occurs
at an internal state q, the n+1-st step must necessarily occur immediately
at position i+1. The factor P (q, r)[r↑] is proportional to the probability
to take an (internal) transition from q to r and then diverge in r, which is
necessary in order for the next configuration to be a step. However, the values
{P (q, r)[r↑] | r ∈ Q } do not form a probability distribution in general. This
justifies the division by the normalizing constant [q↑] =

∑
r∈Q P (q, r)[r↑].

– If q ∈ Qcall then P(V (n+1) = r⊥ | V (n) = q⊥) =
∑
r′,Z Pcall(q, r

′Z)[r′Z↓r]: If
the n-th step occurs at bottom configuration q⊥, then the n+1-st step can
only occur at bottom configuration r⊥ if the symbols pushed by q’s outgoing
transitions are eventually popped. The expression in the sum equals the
probability to take a push-transition from q to r′ that pushes Z onto the
stack multiplied by the probability to return from r′ (with Z on top) to r.

The step chain. It is convenient to view the stochastic process V (0), V (1) . . .
as an explicit (graphical) Markov chain.

Definition 10 (The Step Chain M∆). M∆ is the Markov chain with states

M = { q ∈ Qcall ∪Qint | [q↑] > 0 } ∪ Q⊥ ,

Model Checking Temporal Properties of Recursive Probabilistic Programs 463

τ

r c

1/3 2/3

Z, 2/3
⊥, 2/3

1/3, Z

Z, 1/3
⊥, 1/3 2/3, Z

τ⊥

r⊥ c⊥ c

τ
1/3 2/3

1/3

2/3

1/3

1/6

1/2

1

1

Fig. 9. Left: Example pVPA with the following return-diverge probabilities: [cZ↓c] =
1/6, [cZ↓r] = 1/12, [rZ↓r] = 1/3, [rZ↓c] = 2/3, and [c↑] = 3/4, [τ↑] = 1/2, [r↑] = 0.
Even though it is the case here, these probabilities are not always rational [16]. Right:
Its step Markov chain according to Definition 10. The transition probabilities can be
computed using the return and diverge probabilities and Figure 8.

initial state q0⊥, and for all v, v′ ∈ M , the probability of transition v → v′ is
defined according to Figure 8.

Figure 9 depicts a non-trivial pVPA and its step chain. In this example, all re-
turn and diverge probabilities are rational. In general, however, the return and di-
verge probabilities (Definition 9) are algebraic numbers that are not always ratio-
nal or even expressible by radicals [16]. As a consequence, one cannot easily per-
form numerical computations on the step chain. However, the probabilities can
be encoded implicitly as the unique solution of an existential theory of the reals
(ETR) formula, i.e. an existentially quantified FO-formula over (R,+, ·,≤) [14].
Since the ETR is decidable, many questions about the step chain are still decid-
able as well. We will make use of this in Theorem 3 below.

The property of M∆ that is most relevant to us is given by the following
Lemma 4. We call ρ⇓Steps = V (0)(ρ)V (1)(ρ) . . . the extended footprint of run ρ.

Lemma 4 (Soundness of M∆). Let ∆ be a pVPA with step chain M∆. Let
M be the states of the step chain and consider a measurable set R ⊆Mω. Then

P({ ρ ∈ Runs∆ | ρ⇓Steps ∈ R }) = P(R) .

Proof sketch. For basic cylinder sets of the form R = w ·Mω for some w ∈M∗,
the claim follows from the Markov property (1) together with the correctness of
the transition probabilities ofM∆ according to Lemma 3. For other measurable
sets, it can be shown by induction over the levels of the Borel hierarchy [28].

Remark 5. The step chain as presented here differs from the original definition
in [14] in at least two important aspects. First, we have to take the semantics
of our special bottom symbol ⊥ into account. This is why our chain uses a
subset of Q ∪ Q⊥ as states—it must distinguish whether a step occurs at a
bottom configuration. The pPDA in [14], on the other hand, may have both
finite and infinite runs, and this needs to be handled differently in the step chain.
Second, we use step chains for a different purpose than [14], namely to show that
general measurable properties defined on steps—this includes stair-parity—can
be evaluated on pVPA (Lemma 4).

464 T. Winkler, C. Gehnen, J.-P. Katoen

τs0 rs1

cs1

cs0 rs0

1/3

2/3

〈∗, ∗〉, 1/3
〈∗,
∗〉,

2/3

2/3, 〈Z,Z〉

1/3, 〈Z,Z〉

2/3, 〈Z,Z〉
1/3, 〈Z,Z〉

〈∗, ∗〉, 2/3

〈∗, ∗〉, 1/3

τs0⊥ rs1⊥

cs1⊥ cs1

cs0

1/3

2/3

1/3

2/3

1/3

1/6

1/2
1/3

2/3

2/3

1/3

Fig. 10. Left: The product of the pVPA from Figure 9 (left) and the DVPA from
Figure 5 (left) on page 7. Right: Its step chain according to Definition 10. The dashed
region is the only BSCC. It violates the parity condition Ω(s0) = 1 and Ω(s1) = 2
inherited from the DVPA (see Example 2 on page 8) since every run reaching the BSCC
visits cs0 infinitely often with probability 1. Only reachable states are depicted.

Putting it all together. We can now prove the main result of this section.

Theorem 3. Let ∆ be a pVPA and let D be a stair-parity DVPA, both over the
same pushdown alphabet Σ. Then for all θ ∈ [0, 1] ∩ Q, the problem
P({ρ ∈ Runs∆ | λ(ρ) ∈ L(D)}) ≥? θ is decidable in PSPACE.

Proof sketch. We first construct the product ∆ × D according to Definition 8.
By Lemma 1 we need to compute the stair-parity acceptance probability of
∆×D. Lemma 4 reduces this to computing a usual parity acceptance probability
in the step chain M∆×D. This can be achieved through finding the bottom
strongly connected components (BSCC) of M∆×D, classifying them as good
(the minimum priority of a BSCC state is even) or otherwise bad, and running a
standard reachability analysis wrt. the good states. See Figure 10 for an example.
The remaining technical difficulty is that the transition probabilities of M∆×D
are not rational in general. However, this can be dealt with using the fact that
these probabilities are expressible in the ETR [14] (see [28] for the details).

4.3 Probabilistic One-counter Automata

A probabilistic visibly one-counter automaton (pVOC) is the special case of
a pVPA with unary stack alphabet, i.e., |Γ-⊥| = 1. For example, the pVPA
in Figure 9 (left) is a pVOC. For many problems, better complexity bounds are
known for pVOC than for the general case. In particular, [p↑] > 0 can be decided
in P [9, Thm. 4]. We can exploit this to improve Theorem 3 in the pVOC case:

Corollary 1. Let ∆ be a pVOC and D be a stair-parity DVPA over pushdown
alphabet Σ. The problem P({ρ ∈ Runs∆ | λ(ρ) ∈ L(D)}) =? 1 is decidable in P.

Model Checking Temporal Properties of Recursive Probabilistic Programs 465

Corollary 1 implies that there exist efficient algorithms for many properties
of pVOC-expressible random walks on N0. In fact, a.-s. satisfaction of each fixed
visibly-pushdown property can be decided in P. For instance, using the DVPA
from Figure 5 we can decide if a random walk is a.-s. repeatedly bounded.

5 Model Checking against Büchi VPA and CaRet

With Theorems 1 and 3 it follows immediately that quantitative model checking
of pVPA against non-deterministic Büchi VPA is decidable in EXPSPACE. We
can improve the complexity in the qualitative case:

Theorem 4. Let ∆ be a pVPA and A be a (non-deterministic) Büchi VPA over
the same pushdown alphabet. The problem P({ρ ∈ Runs∆ | λ(ρ) ∈ L(A)}) =? 1
is EXPTIME-complete.

In the above result, membership in EXPTIME relies on the fact that one can
construct the underlying graph of a step chainM∆×D in time exponential in the
size of ∆ but polynomial in the size of D; see [28]. EXPTIME-hardness follows
from [15, Thm. 8]. In fact, qualitative model checking of pPDA against non-
pushdown Büchi automata is also EXPTIME-complete [15]. With Theorems 1
to 4 we immediately obtain the following complexity results for CaRet model
checking:

Theorem 5. The quantitative and qualitative probabilistic CaRet model check-
ing problems (Def. 7) are decidable in 2EXPSPACE and 2EXPTIME, respectively.

Both problems are known to be EXPTIME-hard [30].

6 Conclusion

We have presented the first decidability result for model checking pPDA—an op-
erational model of procedural discrete probabilistic programs—against CaRet,
or more generally, against the class of ω-VPL. We heavily rely on the deter-
minization procedure from [22] and the notion of a step chain used in previous
works. These two constructions turn our to be natural match.

We conjecture that our complexity bounds are not the best possible which is
often the case in purely automata-based model checking. Future work is thus to
investigate whether the doubly-exponential complexity can be lowered to singly-
exponential, e.g. by generalizing the automata-less algorithm from [30]. Other
topics are to explore to what extent algorithms for probabilistic CTL can be
generalized to the branching-time variant of CaReT [18], to consider more ex-
pressive logics such as visibly LTL [8] or OPTL [12], and to study the interplay
of conditioning and recursion [27] through the lens of pPDA.

Acknowledgement. The authors thank Christof Löding for his pointer to stair-
parity VPA, and the anonymous reviewers for their constructive feedback.

466 T. Winkler, C. Gehnen, J.-P. Katoen

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.:
First-Order and Temporal Logics for Nested Words. In: 22nd IEEE Sym-
posium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wro-
claw, Poland, Proceedings. pp. 151–160. IEEE Computer Society (2007).
https://doi.org/10.1109/LICS.2007.19

2. Alur, R., Bouajjani, A., Esparza, J.: Model Checking Procedural Programs. In:
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 541–572. Springer (2018). https://doi.org/10.1007/978-3-319-10575-
8 17

3. Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested Calls and Re-
turns. In: Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp.
467–481. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2 35

4. Alur, R., Madhusudan, P.: Visibly Pushdown Languages. In: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June
13-16, 2004. pp. 202–211. ACM (2004). https://doi.org/10.1145/1007352.1007390

5. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algo-
rithms in Coq. Sci. Comput. Program. 74(8), 568–589 (2009).
https://doi.org/10.1016/j.scico.2007.09.002

6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
7. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic Relational Rea-

soning for Differential Privacy. ACM Trans. Program. Lang. Syst. 35(3), 9:1–9:49
(2013). https://doi.org/10.1145/2492061

8. Bozzelli, L., Sánchez, C.: Visibly Linear Temporal Logic. J. Autom. Reason. 60(2),
177–220 (2018). https://doi.org/10.1007/s10817-017-9410-z

9. Brázdil, T., Esparza, J., Kiefer, S., Kucera, A.: Analyzing probabilistic
pushdown automata. Formal Methods Syst. Des. 43(2), 124–163 (2013).
https://doi.org/10.1007/s10703-012-0166-0

10. Brázdil, T., Kucera, A., Strazovský, O.: On the Decidability of Temporal Properties
of Probabilistic Pushdown Automata. In: STACS 2005, 22nd Annual Symposium
on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3404, pp. 145–157.
Springer (2005). https://doi.org/10.1007/978-3-540-31856-9 12

11. Casini, L., Illari, P.M., Russo, F., Williamson, J.: Recursive Bayesian Networks.
Theoria. Revista de Teoria, Historia y Fundamentos de la Ciencia 26(1), 5–33
(2008)

12. Chiari, M., Mandrioli, D., Pradella, M.: Operator precedence tempo-
ral logic and model checking. Theor. Comput. Sci. 848, 47–81 (2020).
https://doi.org/10.1016/j.tcs.2020.08.034

13. Dubslaff, C., Baier, C., Berg, M.: Model checking probabilistic systems
against pushdown specifications. Inf. Process. Lett. 112(8-9), 320–328 (2012).
https://doi.org/10.1016/j.ipl.2012.01.006

14. Esparza, J., Kucera, A., Mayr, R.: Model Checking Probabilistic Pushdown Au-
tomata. In: 19th IEEE Symposium on Logic in Computer Science (LICS 2004),
14-17 July 2004, Turku, Finland, Proceedings. pp. 12–21. IEEE Computer Society
(2004). https://doi.org/10.1109/LICS.2004.1319596

Model Checking Temporal Properties of Recursive Probabilistic Programs 467

https://doi.org/10.1109/LICS.2007.19
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1145/2492061
https://doi.org/10.1007/s10817-017-9410-z
https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1007/978-3-540-31856-9_12
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1016/j.ipl.2012.01.006
https://doi.org/10.1109/LICS.2004.1319596

15. Etessami, K., Yannakakis, M.: Algorithmic Verification of Recursive Probabilis-
tic State Machines. In: Tools and Algorithms for the Construction and Analysis of
Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3440,
pp. 253–270. Springer (2005). https://doi.org/10.1007/978-3-540-31980-1 17

16. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM 56(1), 1:1–1:66 (2009).
https://doi.org/10.1145/1462153.1462154

17. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering, FOSE
2014, Hyderabad, India, May 31 - June 7, 2014. pp. 167–181. ACM (2014).
https://doi.org/10.1145/2593882.2593900

18. Gutsfeld, J.O., Müller-Olm, M., Nordhoff, B.: A Branching Time Variant of CaRet.
In: Model Checking Software - 25th International Symposium, SPIN 2018, Malaga,
Spain, June 20-22, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10869, pp. 153–170. Springer (2018). https://doi.org/10.1007/978-3-319-94111-0 9

19. Jaeger, M.: Complex Probabilistic Modeling with Recursive Relational
Bayesian Networks. Ann. Math. Artif. Intell. 32(1-4), 179–220 (2001).
https://doi.org/10.1023/A:1016713501153

20. Jones, C.: Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh,
UK (1990), http://hdl.handle.net/1842/413

21. Kucera, A., Esparza, J., Mayr, R.: Model Checking Probabilistic Pushdown Au-
tomata. Log. Methods Comput. Sci. 2(1) (2006). https://doi.org/10.2168/LMCS-
2(1:2)2006

22. Löding, C., Madhusudan, P., Serre, O.: Visibly Pushdown Games. In: FSTTCS
2004: Foundations of Software Technology and Theoretical Computer Science,
24th International Conference, Chennai, India, December 16-18, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3328, pp. 408–420. Springer (2004).
https://doi.org/10.1007/978-3-540-30538-5 34

23. McIver, A., Morgan, C.: Partial correctness for probabilistic demonic programs.
Theor. Comput. Sci. 266(1-2), 513–541 (2001). https://doi.org/10.1016/S0304-
3975(00)00208-5

24. van de Meent, J., Paige, B., Yang, H., Wood, F.: An Introduction to Probabilistic
Programming. CoRR abs/1809.10756 (2018), http://arxiv.org/abs/1809.10756

25. Olmedo, F., Kaminski, B.L., Katoen, J., Matheja, C.: Reasoning about Recursive
Probabilistic Programs. In: Proceedings of the 31st Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016.
pp. 672–681. ACM (2016). https://doi.org/10.1145/2933575.2935317

26. Pfeffer, A., Koller, D.: Semantics and Inference for Recursive Probability Models.
In: Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on on Innovative Applications of Artificial Intelligence,
July 30 - August 3, 2000, Austin, Texas, USA. pp. 538–544. AAAI Press / The
MIT Press (2000), http://www.aaai.org/Library/AAAI/2000/aaai00-082.php

27. Stuhlmüller, A., Goodman, N.D.: A Dynamic Programming Algorithm for Infer-
ence in Recursive Probabilistic Programs. CoRR abs/1206.3555 (2012), http:
//arxiv.org/abs/1206.3555

28. Winkler, T., Gehnen, C., Katoen, J.: Model Checking Temporal Properties of
Recursive Probabilistic Programs. CoRR abs/2111.03501 (2021), https://arxiv.
org/abs/2111.03501

468 T. Winkler, C. Gehnen, J.-P. Katoen

https://doi.org/10.1007/978-3-540-31980-1_17
https://doi.org/10.1145/1462153.1462154
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-319-94111-0_9
https://doi.org/10.1023/A:1016713501153
http://hdl.handle.net/1842/413
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.1007/978-3-540-30538-5_34
https://doi.org/10.1016/S0304-3975(00)00208-5
https://doi.org/10.1016/S0304-3975(00)00208-5
http://arxiv.org/abs/1809.10756
https://doi.org/10.1145/2933575.2935317
http://www.aaai.org/Library/AAAI/2000/aaai00-082.php
http://arxiv.org/abs/1206.3555
http://arxiv.org/abs/1206.3555
https://arxiv.org/abs/2111.03501
https://arxiv.org/abs/2111.03501

29. Wojtczak, D., Etessami, K.: PReMo : An Analyzer for Probabilistic Recursive Mod-
els. In: Tools and Algorithms for the Construction and Analysis of Systems, 13th
International Conference, TACAS 2007, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March
24 - April 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4424, pp.
66–71. Springer (2007). https://doi.org/10.1007/978-3-540-71209-1 7

30. Yannakakis, M., Etessami, K.: Checking LTL Properties of Recursive Markov
Chains. In: Second International Conference on the Quantitative Evaluaiton of
Systems (QEST 2005), 19-22 September 2005, Torino, Italy. pp. 155–165. IEEE
Computer Society (2005). https://doi.org/10.1109/QEST.2005.8

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Model Checking Temporal Properties of Recursive Probabilistic Programs 469

https://doi.org/10.1007/978-3-540-71209-1_7
https://doi.org/10.1109/QEST.2005.8
http://creativecommons.org/licenses/by/4.0/

Author Index

Angluin, Dana 1
Antonopoulos, Timos 1
Ascari, Flavio 21

Baier, Christel 40
Balasubramanian, A. R. 61
Blondin, Michael 81
Boisseau, Guillaume 101
Boker, Udi 120, 140
Broadbent, Anne 161
Bruni, Roberto 21

Caltais, Georgiana 184
Castelnovo, Davide 205
Chistikov, Dmitry 225
Cimatti, Alessandro 244
Colcombet, Thomas 264

Esparza, Javier 81

Fervari, Raul 305
Finkbeiner, Bernd 325
Fisman, Dana 1
Funke, Florian 40

Gadducci, Fabio 205
Gay, Simon J. 347
Geatti, Luca 244
Gehnen, Christina 449
George, Nevin 1
Gigante, Nicola 244
Gori, Roberta 21
Guillou, Lucie 61

Haase, Christoph 225
Hainry, Emmanuel 368
Heim, Philippe 325
Hirschowitz, André 389
Hirschowitz, Tom 389
Hojjat, Hossein 184

Jaakkola, Reijo 409

Kapron, Bruce M. 368
Karvonen, Martti 161
Katoen, Joost-Pieter 449
Kesner, Delia 285

Lafont, Ambroise 389
Lehtinen, Karoliina 120, 140

Maggesi, Marco 389
Mansutti, Alessio 225, 305
Marion, Jean-Yves 368
McDermott, Dylan 428
Miculan, Marino 205
Montanari, Angelo 244
Morvan, Rémi 264
Mousavi, Mohammad Reza 184

Passing, Noemi 325
Péchoux, Romain 368
Peyrot, Loïc 285
Piedeleu, Robin 101
Piribauer, Jakob 40
Poças, Diogo 347

Rivas, Exequiel 428

Santo, José Espírito 285
Sickert, Salomon 140

Tonetta, Stefano 244
Tunç, Hünkar Can 184

Uustalu, Tarmo 428

van Gool, Sam 264
Vasconcelos, Vasco T. 347

Weil-Kennedy, Chana 61
Winkler, Tobias 449

Ziemek, Robin 40

	ETAPS Foreword
	Preface
	Organization
	Parameterized Verification to the Rescue of Distributed Algorithms (Abstract of Invited Talk)
	Contents
	Representing Regular Languages of Infinite Words Using Mod 2 Multiplicity Automata
	1 Introduction
	2 Preliminaries
	2.1 NFAs, UFAs, DFAs, NBAs, UBAs, SUBAs, and DBAs
	2.2 LTL formulas
	2.3 M2MAs
	2.4 Size lower bounds for DFAs, M2MAs and NFAs

	3 M2MAs as representations of regular languages
	3.1 M2MAs: procedures for operations and properties
	3.2 Conciseness comparisons for regular languages

	4 Representing regular omega-languages using regularlanguages
	5 Conciseness comparisons for regular omega-languages
	5.1 Size increases for LTL formulas
	5.2 Size increases for DBAs, NBAs, SUBAs

	6 Empirical results
	6.1 SUBAs to minimized M2MAs and DFAs
	6.2 NBAs and DBAs to minimized M2MAs
	6.3 LTL formulas to minimized M2MAs

	7 Summary and conclusions
	References

	Limits and difficulties in the design of under-approximation abstract domains
	1 Introduction
	2 Background
	3 Integer Domains
	3.1 Infinite Integer Domain
	3.2 Finite Integer Domain

	4 Arbitrary domains
	4.1 Local Requirements for Impossibility
	4.2 Global Requirements for Impossibility

	5 On the necessity of high surjectivity hypothesis
	6 Conclusions and Future Works
	References

	On probability-raising causality in Markov decision processes
	1 Introduction
	2 Preliminaries
	3 Strict and global probability-raising causes
	3.1 Examples and simple properties of probability-raising causes
	3.2 Related work

	4 Checking the existence of PR causes and the PR conditions
	4.1 Checking the strict probability-raising condition and the existence of causes
	4.2 Checking the global probability-raising condition

	5 Quality and optimality of causes
	5.1 Quality measures for causes
	5.2 Computation schemes for the quality measures for fixed cause set
	5.3 Quality-optimal probability-raising causes

	6 Conclusion
	References

	Parameterized Analysis of Reconfigurable Broadcast Networks
	1 Introduction
	2 Preliminaries
	2.1 Multisets
	2.2 Reconfigurable Broadcast Networks
	2.3 Cubes and Counting Sets

	3 Reachability sets of counting sets
	3.1 Symbolic graph
	3.2 Properties of the symbolic graph

	4 The PSPACE Theorem
	5 Application 1: Almost-sure coverability
	5.1 The almost-sure coverability problem
	5.2 A characterization of almost-sure coverability
	5.3 PSPACE-completeness of the almost-sure coverability problem

	6 Application 2: Computation by RBN
	6.1 RBN Protocols
	6.2 Expressivity

	References

	Separators in Continuous Petri Nets
	1 Introduction
	2 Preliminaries
	2.1 Separators and bi-separators

	3 A characterization of unreachability
	4 Separators as certificates
	4.1 Locally closed bi-separators

	5 Constructing locally closed bi-separators
	6 Checking locally closed bi-separators is in NC
	7 Bi-separators for set-to-set unreachability
	8 Conclusion
	References

	Graphical Piecewise-Linear Algebra
	1 Introduction
	2 Preliminaries
	2.1 Props and Symmetric Monoidal Theories
	2.2 Ordered Props and Symmetric Monoidal Inequality Theories
	2.3 Graphical Polyhedral Algebra

	3 Symmetric Monoidal Semi-Lattice Theories
	4 The Theory of Piecewise-Linear Relations
	4.1 Syntax and Semantics
	4.2 Equational Theory
	4.3 Completeness Theorem

	5 Generating Piecewise-Linear Relations
	5.1 The n-Fold Union Generators
	5.2 The Simplest Non-Convex Diagram
	5.3 The Semantics of a Diode
	5.4 Alternative generators: max, ReLu and abs
	5.5 Conclusion

	6 Case Study: Electronic Circuits
	References

	Token Games and History-Deterministic Quantitative Automata
	1 Introduction
	2 Preliminaries
	3 Token Games
	4 Deciding History-Determinism via One-Token Games
	5 Deciding History-Determinism via Two Token Games
	5.1 G₂ on LimSup and LimInf Automata
	5.2 G₂ Characterises HDness for LimSup and LimInf Automata

	6 Conclusions
	Acknowledgments
	References

	On the Translation of Automatato Linear Temporal Logic
	1 Introduction
	2 Preliminaries
	3 Unary Alphabet
	4 General Alphabet
	4.1 Cascaded Automata
	4.2 Encoding Reachability within Reset Cascades by LTL Formulas
	4.3 Depth and Length Analysis
	4.4 Translating Deterministic Counter-Free Automata to LTL

	5 Conclusions
	References

	Categorical composable cryptography
	1 Introduction
	1.1 Related work

	2 Resource theories
	3 Cryptography as a resource theory
	4 Computational security
	5 Applications
	6 Outlook
	References

	DyNetKAT: An Algebra of Dynamic Networks
	1 Introduction
	2 Language Design
	2.1 Brief Overview of NetKAT
	2.2 Design Decisions
	2.3 DyNetKAT Syntax
	2.4 DyNetKAT Semantics

	3 Semantic Results
	4 A Framework for Safety
	5 Implementation
	6 Experimental Evaluation
	7 Conclusions
	References

	A new criterion for M, N-adhesivity, with an application to hierarchical graphs
	1 Introduction
	2 M,N-adhesivity via creation of (co)limits
	2.1 M, N-adhesive categories
	2.2 A new criterion for M, N-adhesivity
	2.3 Comma categories

	3 Some paradigmatic examples
	3.1 Directed (acyclic) graphs
	3.2 Tree Orders
	3.3 Various kinds of hierarchical graphs

	4 Conclusions
	References

	Quantifier elimination for counting extensions of Presburger arithmetic
	1 Introduction
	2 Presburger arithmetic with counting quantifiers
	3 A quantifier elimination procedure for PAC
	4 Discussion, summary of results and roadmap
	5 The monadically-guarded fragment of PAC
	6 Eliminating monadically-guarded counting quantifiers
	7 The monadically-guarded fragment is in doubly exponential space
	8 A complexity characterisation
	9 Conclusion
	References

	A first-order logic characterisation of safety and co-safety languages
	1 Introduction
	2 Preliminaries
	3 Safety-FO and coSafety-FO
	4 Safety-FO captures LTL-definable safety languages
	5 Conclusions
	References

	First-order separation over countable ordinals
	1 Introduction
	2 Preliminaries
	2.1 Ordinals
	2.2 Ordinal words
	2.3 Ordinal monoids
	2.4 First-order logic

	3 The algorithm
	3.1 The saturation construction
	3.2 The algorithm

	4 When the algorithm says ‘no’
	5 When the algorithm says ‘yes’
	5.1 Merge operators and FO-approximants
	5.2 Construction of FO-approximants for words of finite andω-length
	5.3 Construction of FO-approximants for countable ordinal words

	6 Related problems
	7 Conclusion
	References

	A Faithful and Quantitative Notion of Distant Reduction for Generalized Applications
	1 Introduction
	2 A Calculus with Generalized Applications
	2.1 Syntax and Semantics
	2.2 Towards a Call-by-Name Operational Semantics
	2.3 Some (Un)typed Properties of λJ

	3 Inductive Characterization of Strong Normalization
	3.1 ISN in the λ-Calculus Through Weak-Head Contexts
	3.2 ISN for dβ

	4 Quantitative Types Characterize Strong Normalization
	4.1 The Typing System
	4.2 The Characterization of dβ-Strong Normalization
	4.3 Why π Is Not Quantitative

	5 Faithfulness of the Translation
	5.1 Explicit Substitutions
	5.2 Proof of Faithfulness

	6 Equivalent Notions of Strong Normalization
	6.1 β-Normalization Is Not Enough
	6.2 Comparison with β + p2
	6.3 Comparison with β + π
	6.4 Consequences for ΛJ

	7 Conclusion
	References

	Modal Logics and Local Quantifiers:A Zoo in the Elementary Hierarchy
	1 Introduction
	2 Preliminaries
	3 Lower bounds for ML(9kFO) and ML(9kSO)
	4 Upper bounds via a small-model property for ML(9kSO)
	5 Further connections
	References

	Temporal Stream Logic modulo Theories
	1 Introduction
	2 Preliminaries
	3 Temporal Stream Logic modulo Theories
	3.1 Temporal Stream Logic
	3.2 Extending TSL with Theories

	4 TSL modulo TU Satisfiability Checking
	4.1 Buchi Stream Automata
	4.2 An Algorithm for TSL modulo TU Satisfiability Checking

	5 Undecidability of TSL modulo TU Satisfiability
	6 (Semi-)Decidable Fragments
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	The Different Shades of Infinite Session Types
	1 Introduction
	2 Shades of types
	3 Types, trees and traces
	4 From types to automata
	5 From automata to types
	6 Related work
	7 Conclusion
	References

	Complete and tractable machine-independent characterizations of second-order polytime
	1 Introduction
	2 A second-order language with imperative procedures
	3 Type system
	4 Characterizations of the class of Basic Feasible Functionals
	5 A completeness-preserving termination criterion
	6 Conclusion and future work
	References

	Variable binding and substitution for (nameless) dummies
	1 Introduction
	2 De Bruijn monads
	2.1 Definition of De Bruijn monads
	2.2 Lifting assignments
	2.3 Binding arities and binding conditions
	2.4 Binding signatures and algebras

	3 Initial-algebra semantics of binding signatures in De Bruijn monads
	3.1 A category of De Bruijn monads
	3.2 Categories of De Bruijn algebras

	4 Relation to presheaf-based models
	4.1 Trimming down presheaf-based models
	4.2 Trimming down De Bruijn monads
	4.3 Bridging the gap

	5 Strength-based interpretation of the binding conditions
	6 Simply-typed extension
	6.1 De Bruijn T-monads
	6.2 Initial-algebra semantics

	7 Equations
	8 Conclusion
	References

	Uniform Guarded Fragments
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Types and Tables
	2.3 Syntax of Uniform Fragments of GF
	2.4 Interpolation

	3 Bisimulation for UGF1
	4 Proof that UGF1 has CIP
	5 Complexity of uniform GF
	5.1 Scott normal form
	5.2 Satisfiability Witnesses

	6 Conclusions
	Acknowledgements
	References

	Sweedler Theory of Monads
	1 Introduction
	2 Monad-Comonad Interaction Laws
	3 Sweedler Theory for Duoidal Categories
	4 Monad-comonad Interaction Laws (Co)algebraically
	5 Combining Sweedler Theory and the (Co)algebraic Perspective
	6 Enriched Interaction Laws
	7 Related Work
	8 Conclusion and Future Work
	References

	Model Checking Temporal Properties of Recursive Probabilistic Programs
	1 Introduction
	2 Visibly Pushdown Languages
	2.1 Visibly Pushdown Automata
	2.2 Steps and Stair-parity Conditions
	2.3 CaRet, a Temporal Logic of Calls and Returns

	3 Probabilistic Visibly Pushdown Automata
	4 Model Checking against Stair-parity DVPA
	4.1 Products of Visibly Pushdown Automata
	4.2 Stair-parity Acceptance Probabilities in pVPA
	4.3 Probabilistic One-counter Automata

	5 Model Checking against Büchi VPA and CaRet
	6 Conclusion
	References

	Author Index

