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Preface

“Applied Signal Processing” is a textbook mainly for students, who are studying
in the Medicine and Technology, Electrical Engineering, Electronics Engineering,
Computer Engineering and Biomedical Engineering Disciplines. The main objec-
tive of this book is to provide the students with a solid basis for the analysis and pro-
cessing of analog and digital signals emanating from either deterministic or stochas-
tic systems. This book is the outcome of more than two decades of my experience in
teaching signal processing. For more than ten years, I have been teaching ‘Applied
Signal Processing’ course to Medicine and Technology students at the Technical
University of Denmark (Department of Health Technology). It introduces the basic
concepts, definitions, analysis and implementation of signal processing techniques
as well as signal processing systems. Since the digital signal processing techniques
have evolved from its analog counterpart, the book begins by explaining the con-
cepts in analog signal processing first and then moves towards digital signal pro-
cessing. This will help the students to gain a general overview of the whole subject
and establish links between the various concepts. In addition, understanding the
classical analog signal processing techniques would certainly make it easy for the
students to understand the digital signal processing counterpart. The book uses a
number of good illustrations to explain the fundamental concepts in both analog
and digital signal processing along with examples and numerous exercise problems.

The book is divided into seventeen chapters that covers the fundamentals of most
signal processing concepts. In the introduction chapter, some basic signals as well
as descriptions of some of the most commonly referred types of biomedical signals,
such as the electroencephalogram (EEG), electrocardiogram (ECG), electromyo-
gram (EMG), etc., are provided. In Chapter 2, the fundamental concepts of power

xv
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and energy as well as their evaluations for different types (periodic/aperiodic) of sig-
nals is provided. Fourier series representation of periodic signals as well as its impor-
tant properties are provided in Chapter 3. In Chapter 4, the Fourier representation
of aperiodic analog signals, that is, the Fourier transform is explained. The deriva-
tion of Fourier transform and its important properties are also explained here. As
complex signals are the building blocks for the synthesis of different types of signals,
the fundamentals of complex signals is dealt with in Chapter 5. This chapter also
introduces the concept of Hilbert transform and analytic signals. The fundamentals
of analog systems, especially that of linear time invariant (LTI) systems is provided
in Chapter 6. The process of generating digital signals from analog signals by sam-
pling and quantization techniques are introduced in the next Chapter. In Chapter
8, the fundamentals of the z-transform are introduced for the analysis of discrete-
time signals. Discrete-time Fourier transform (DTFT) as well as its relationships to
Laplace transform and z-transform are explained in Chapter 9. The fundamentals
of digital systems are described in detail in Chapter 10. Some of the most impor-
tant implementation schemes for the digital systems (both finite impulse response
(FIR) systems as well as infinite impulse response (IIR) systems) are provided in
the next Chapter. The discrete Fourier transform (DFT) techniques are developed
in Chapter 12 followed by the concept and derivation of fundamental algorithms
for fast Fourier transform (FFT) in Chapter 13. Design methods for digital filters
(both FIR and IIR) are provided in Chapter 14. A detailed description of random/s-
tochastic processes and characterization methods for random signals are provided
in Chapter 15. In Chapter 16, the fundamentals of analog and digital modulation
schemes as well as detection methods are explained. The final chapter introduces
the power spectrum estimation methods, which could be applied to signals of both
analog and digital types. The effect of windowing, spectral leakage, and spectral
smoothing are also explained in this chapter.

While the main focus of this book is on the fundamentals of digital signal pro-
cessing, the understanding of these topics greatly enriches our confident use and
further development of the design and analysis of digital systems for various engi-
neering and medical applications. This book will also equip students to further
their studies/research in advanced topics in signal processing.
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Notations

[·] indicates discrete valued independent variable, e.g., x[n].
(·) indicates continuous valued independent variable, e.g., x(t).

• Complex numbers
|c| Magnitude of complex quantity c.
arg{c} Phase angle of complex quantity c.
Re{c}, Real{c} Real part of c.
Im{c}, Imag{c} Imaginary part of c.
c∗ Complex conjugate of c.

• Complex functions
ARG{c(ω)} Principal value of the phase (−π < ARG{c(ω)} ≤ π ).
arg{c(ω)} Unwrapped phase (no jumps of 2π ).

• Lower-case functions denote time-domain quantities, e.g., x(t), w[n].
• Upper-case functions denote frequency or transform domain quantities.

X [k] Discrete Fourier transform coefficients for x[n].
X [k] Fourier series coefficients for x(t).
X (e jω) Discrete-time Fourier transform of x[n].
X (�) Fourier transform of x(t).
X (z) z−transform of x[n].

• Boldface lower-case symbols denote vector quantities, e.g., q.
• Boldface upper-case symbols denote matrix quantities, e.g., A.
• Subscript s indicates continuous-time representation of a discrete-time signal.

xix
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xs(t) continuous-time representation for x[n].
Xs(�) Fourier transform of xs(t).

• Arctan refers to the four quadrant inverse tangent function and produces a
value between −π and π radians.
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Principal Symbols

j or i Square root of −1.
Ts Sampling interval of Ts in seconds.
N Fundamental period for discrete-time signals in samples.
� (Angular) frequency for continuous-time signals in

radians/second.
ω (Angular) frequency for discrete-time signals in radians.
�p Fundamental (angular) frequency for continuous-time periodic

signal in radians/second.
ωp (Angular) frequency for discrete-time periodic signal in radians.
f (Cyclic) frequency of signals (continuous/discrete-time) in Hz.
f p Fundamental (cyclic) frequency of periodic signals

(continuous/discrete-time) in Hz.
fs Sampling (cyclic) frequency (= 1

Ts
) in Hz.

f̃ Normalized (cyclic) frequency (= f
fs

).
u(t), u[n] Step function of unit amplitude.
δ(t), δ[n] Unit impulse.
∗ or ⊗ Denotes convolution operation.
� Circular convolution.

sinc(u) sin(πu)
πu .

γxx (τ ) Auto-correlation function (ACF) of analog random signal, x(t).
γxy(τ ) Cross-correlation function (CCF) between two analog random

signals, x(t) and y(t).
rxx (τ ) ACF of periodic/aperiodic analog signal, x(t).
rxy(τ ) CCF between two periodic/aperiodic analog signals, x(t) and

y(t).
0xx ( f ) Power spectra of analog random signal, x(t).
0xy( f ) Cross power spectra of two analog random signals, x(t) and y(t).
Sxx ( f ) Power (energy) spectra of periodic/aperiodic analog signal, x(t).
Sxy( f ) Cross power (energy) spectra of two periodic/aperiodic analog

signals, x(t) and y(t).
γxx [m] ACF of discrete-time random signal, x[n].
γxy[m] CCF between two discrete-time random signals, x[n] and y[n].
rxx [m] ACF of periodic/aperiodic discrete-time signal, x[n].
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rxy[m] CCF between two periodic/aperiodic discrete-time signals, x[n]
and y[n].

0xx ( f̃ ) Power spectra of discrete-time random signal, x[n].
0xy( f̃ ) Cross power spectra of two discrete-time random signals, x[n]

and y[n].
Sxx ( f̃ ) Power (energy) spectra of periodic/aperiodic discrete-time signal,

x[n].
Sxy( f̃ ) Cross power (energy) spectra of two periodic/aperiodic

discrete-time signals, x[n] and y[n].
mx Ensemble Mean of the random signal, x(t).

Cxx (τ ) Covariance function of the random signal, x(t).
γ̃xx (τ ) ACF of ergodic random signal, x(t).
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Signal Representation and Notation

A summary of various notational conventions used in Digital Signal Processing
(DSP) for representing signals and spectra is provided below.

Units

In this book, time ‘t ’ is always the physical unit of time in seconds (s). The time
‘n’, ‘m’, or ‘k’ are in units of samples (counting integer numbers having no units).
Time ‘t ’, is a continuous real variable. The physical time ‘t ’ corresponding to time
‘n’ samples is given by,

t = nTs,

where, Ts is the sampling interval in seconds.
For frequencies, we have two physical units: (i) cycles/second (Hertz (Hz)), and

(ii) radians/second (rad/sec). One cycle equals 2π radians, which is 360◦. There-
fore, f Hz is the same frequency as 2π f rad/sec.

For example, a periodic signal with a period of p seconds has a frequency of
f p =

1
p Hz, and a radian frequency of 2π

p rad/sec. The sampling rate, fs , is the
reciprocal of the sampling period Ts , i.e.,

fs =
1
Ts

Hz.
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Chapter 1

Introduction

Signal processing is an interdisciplinary subject which has application in almost
all scientific fields. There are mainly two subfields to signal processing: (i) Analog
signal processing and (ii) Digital signal processing. Analog signal (continuous in
time and amplitude) processing is the processing performed on analog signals to
extract various types of information from the signal. Typical examples which uses
analog signal processing include crossover filters in loudspeakers, ‘Bass’, ‘Treble’
and ‘Volume’ controls on stereos, old televisions, old radios, audio tapes, old land-
line telephones, video cassette recorders, etc. Digital signal (discrete in time and
amplitude) processing, on the other hand, is the use of digital processing on signals
to perform a wide variety of signal processing operations by computers or more
specialized digital signal processors to extract the relevant information. Digital sig-
nal processing applications include audio and speech processing, sonar, radar and
other sensor array processing, spectral density estimation, statistical signal process-
ing, digital image processing, data/image compression, video/audio coding, signal
processing for telecommunications, control systems, biomedical engineering, and
seismology, etc., to list a few.

The enormous advancement in technology, especially in digital technology dur-
ing the last couple of decades has revolutionized the way technology has been
exploited in many scientific fields and digital health field in biomedical engineering
(medicine and technology) is one of the most benefited. In digital health, digital
signal processing plays a significant role to research and innovate technologies by

1
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working on the various digital bio-signals to revolutionize healthcare and life science
for the society, in order to enhance the efficiency of healthcare delivery and make
personalized and precise treatment for individuals.

Biomedical signals are the observations of physiological activities of organisms.
It ranges from gene and protein sequences, to neural and cardiac rhythms, to tis-
sue and organ images. Examples of some of the most commonly used biomedical
signals are:

• Electrocardiogram (ECG) – are recordings of the electrical potentials induced
by the presence of time-varying electrical activity in cardiac muscles,

• Electromyogram (EMG) – are recordings by placing electrodes in, on, or near
a muscle and amplifying the electric potential that results from the generation
and propagation of action potentials along muscle fibers,

• Eelectroretinogram (ERG) – are recordings of the electrical responses of var-
ious cell types in the retina,

• Electrooculogram (EOG) – are recordings of the electrical potentials associ-
ated with the eye-ball and eye-lid movements,

• Electrogastrogram (EGG) – are recordings of the electrical signals that travel
through the stomach muscles,

• Electroencephalogram (EEG) – are recordings of the electrical activities of
the brain by placing electrodes on the scalp, and

• Electrocorticogram (ECoG) – are recordings of the signals directly from the
cortex.

Signal processing essentially is the manipulation of signals for the purpose of
(i) extracting information (amplitude, frequency, or phase) from the signal, (ii)
extracting information about the relationships of two (or more) signals, or (iii)
producing alternative representation (time or frequency domain) of the signal. The
motivations for processing these signals include: (i) removing unwanted signal com-
ponents (noise/artefacts) that are corrupting the signal of interest, (ii) rendering it
in a more obvious or more useful form, and (iii) predict future values of the signal
in order to anticipate the behaviour of its source (modelling). When these process-
ing methods are applied to the types of signals listed above or similar, it becomes
biomedical signal processing. Whatever may be the types/sources of signals, the
basic processing methods are similar as in one is interested to estimate the basic
signal characteristics such as its amplitude (power), frequency, and phase.

This book introduces the basic tools and techniques required for the design and
implementation of systems that process analog and digital signals. This book also
lays a strong foundation for advanced studies in biomedical engineering, medicine
and technology, and digital signal processing. The main topics covered in this book
help us to: (i) Use common Fourier transform (FT) pairs and properties to deter-
mine the FT of complex analog and digital signals, (ii) Relate spectra of periodic
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and aperiodic analog and digital signals and plot these using correct physical units
such as Hertz and Volt, (iii) Determine the auto- and cross-correlation functions of
analog and digital random signals, (iv) Analyze zero-pole diagrams to determine the
causality and stability of linear time-invariant systems, (v) Use the z-transform to
calculate the impulse response and the transfer function of a linear time-invariant
system, (vi) Determine and analyze the quantization errors in analog-to-digital con-
version, (vii) Design simple low-pass, high-pass, band-pass, band-stop and notch
filters, using windowing, frequency sampling, optimization methods, as well as fil-
ter transformation rules, and (viii) Find the power spectra of random/deterministic
signals using non-parametric and parametric spectral estimation methods. Knowl-
edge in these topics will enable anyone, for example, to apply signal processing
techniques to signals emanating from biological systems (for example, ECG, EEG,
etc.) and design procedures to estimate parameters such as the heart rate, blood
velocity and profile of blood flow, etc.

In this chapter, we discuss some of the very fundamental aspects in the study of
signals and signal processing.

1.1 What is a Signal?

A signal can be considered to be the result of observing a physical phenomenon
and converting it into its equivalent electrical format. Thus, formally, a signal is a
function of one or more variables that conveys the information on the nature of a
physical phenomenon (i.e., current or voltage as a function of e.g., time). Consider
the following practical scenarios:

• A microphone converts our speech into an electrical signal. This signal can be
used to record our speech or for making our speech heard to a large group of
people through an amplifier and loudspeaker.

• A temperature sensor connected to the boiler in a chemical plant measures
the temperature continuously and converts the temperature readings into an
electrical signal. This signal can be used to display the temperature for moni-
toring by the plant engineer or can be recorded for later use.

• A security camera placed at a building site captures the images of all the
objects that come under its view and converts these images into electrical sig-
nals and stores them in a database for later review.

• The ECG signals recorded by placing electrodes on the chest of a patient/sub-
ject convey the information on the condition of his/her heart.

In short, any time-varying phenomenon which conveys some information is a signal.
The usefulness of the information conveyed by a signal depends on the application
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Figure 1.1. Sinusoidal signal.

Figure 1.2. Exponentially decaying signal.

under consideration. Thus, in general, a signal can be considered as a function of
time. We can also have signals that are functions of quantities other than time, such
as distance, temperature, height, etc. To specify a signal, we need to specify the value
of the signal at all the instants of time under consideration. Consider some typical
example signals below, that one encounter in signal processing.

1. A sinusoidal signal (Fig. 1.1) is mathematically described by,

x(t) = A sin(2π f pt + φ) (1.1)

where A denotes the amplitude (e.g., A = 3), f p denotes the frequency in
Hertz or cycles/second (e.g., f p = 50H z), and φ denotes the phase of the
sinusoid (e.g., φ = π

4 radians, which is equivalent to1 45 degrees). Thus, x(t)
gives the value of the signal at time instant t and this value can be calculated
using the expression on the right-hand side (RHS) of Eq. (1.1) for any value
of t (if the values of A, f p and φ are given).

2. An exponentially decaying signal (Fig. 1.2) can be defined mathematically by,

y(t) =
{

Ae−αt for t ≥ 0
0 for t < 0

(1.2)

where A denotes the value of the signal at t = 0 and α is a positive number
(α = 2.1 in this case) that controls the speed with which the signal value

1. Note: [angle in degrees] = [angle in radians]×180/π .
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Figure 1.3. Unit rectangular pulse.

Figure 1.4. Unit step signal.

Figure 1.5. Signum function.

decays towards zero. Larger the value of α, faster it reaches towards zero and
vice versa.

3. The unit rectangular pulse signal (Fig. 1.3) is given by,

rect(t) =
{

1 for −0.5 ≤ t ≤ +0.5
0 otherwise

(1.3)

4. The unit step (function) signal (Fig. 1.4) is given by,

u(t) =
{

1 for t ≥ 0
0 for t < 0

(1.4)

5. The signum function signal (Fig. 1.5) is given by,

sgn(t) =
{
+1 for t ≥ 0
−1 for t < 0

(1.5)

6. A triangular pulse signal (Fig. 1.6) is given by,

y(t) =


1+ t for −1 ≤ t < 0
1− t for 0 ≤ t < +1
0 otherwise

(1.6)
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Figure 1.6. Triangular pulse.

§ Plot the time-shifted versions u(t−2) and u(t+2) of u(t) and compare these plots with
u(t) in Fig. 1.4. Comment on your observations.

1.2 Classification of Signals

There are several ways by which signals can be classified.

1.2.1 Analog or Digital Signals

This classification is based on the values allowed for the time ‘t ’ and signal ‘x(t)’.
A strictly analog signal has its time and amplitude continuous, whereas a digital
signal has its time and amplitude discrete.

• Continuous-Time Signals: A signal is said to be a ‘continuous-time signal’ if
it is defined (or, if it exists) at all the instants of time during any interval under
consideration. Examples are the signals given in Eqs. (1.1)–(1.6) above.

• Discrete-Time Signals: A signal is said to be a ‘discrete-time signal’ if it
is defined only at discrete set of instants of time rather than all the time
instants.

We can generate discrete-time signals from continuous-time signals by, for
example, sampling the signals at regular instants of time given by kTs , where k
is an integer and Ts is the time duration between any two adjacent samples.
Thus, the discrete-time version of the sinusoidal signal in Eq. (1.1) can be
given by,

x[k] = x(kTs) = [x(t) at t = kTs]

= A sin(2π f pkTs + φ),

for k = . . . ,−2,−1, 0, 1, 2, 3, . . . .

(1.7)

Figure 1.7 illustrates both the continuous (blue) and discrete-time (red) sig-
nals corresponding to the sinusoidal signal defined in Eq. (1.1).
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Figure 1.7. Sinusoidal signal (continuous-time and discrete-time).

We use the notation x[k] to represent a discrete-time signal2 since this
signal is defined only at the discrete-time instants, kTs . Since this notation,
x[k], does not explicitly show what the time interval Ts is between adjacent
samples, we may provide this information by specifying the ‘sample rate’ in
the form of ‘number of samples per second’. Thus, if fs is the sample rate, then
we have Ts = 1/ fs .

Another example of such a signal is the discrete-time unit step signal
given by,

u[k] =
{

1 for k = 0, 1, 2, 3, . . .
0 for k < 0

(1.8)

§ Since most of the real-world signals are continuous-time signals, why should we
be interested in the study of discrete-time signals?
§ Are there real-world signals that are discrete-time in nature?

• Continuous-Value Signals: A signal is said to be a ‘continuous-value signal’ if
its value is allowed to be anywhere in a given range. For example, the value
of the sinusoidal signal in Eq. (1.1) varies between the range −A and +A,
and the value of the signal in Eq. (1.2) varies between 0 and +A. So, these
are continuous-value signals.

• Discrete-Value Signals: A signal is said to be a ‘discrete-value signal’ if its value
is restricted to a discrete set of values rather than all the values in a given range.
An example for a discrete-value signal can be constructed as follows.

Let Bk for k = 0, 1, 2, . . . . represents a sequence of binary data. That is,
Bk can take only two values and let these values be either ‘1’ or ‘0’. Thus, this
sequence of binary data form a discrete-time signal given by,

z[k] = Bk, (1.9)

where the signal exists at time instants kTs (here, 1/Ts specifies the data rate,
i.e., number of bits per second ) and its value at any such instant is either ‘1’

2. Other notation used for representing discrete-time signals is xk .
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Figure 1.8. Discrete-time discrete-value signals.

Figure 1.9. Continuous-time discrete-value signals.

or ‘0’. In other words, z[k] is a discrete-time discrete-value signal. An example
of such a signal is shown in Fig. 1.8. You may note that values of the signals
are either ‘1’ or ‘0’ and it exists at discrete time instances.

• Continuous-time Discrete-value Signals: We can also have continuous-time
discrete-value signals. For example, we can convert the discrete-time discrete-
value signal z[k] in Eq. (1.9) into a continuous-time discrete-value signal as
follows:

z̃(t) = 0.9Bk for kTs ≤ t < (k + 1)Ts . (1.10)

Here, the multiplication factor, 0.9 is just an arbitrary scalar constant.
In other words, during the time interval kTs ≤ t < (k + 1)Ts , we get

z̃(t) =
{

0.9 if Bk = 1,
0 if Bk = 0.

(1.11)

Thus, we see that z̃(t) is a continuous-time discrete-value signal and it takes
only two values ‘0.9’ and ‘0’ at any time instant t . This signal z̃(t) is illustrated
in Fig. 1.9 above.

§ Let the binary data sequence Bk be given by [0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0] for
k = 0, 1, 2, . . . , 10. Using the definitions of signals given in Eqs. (1.9) and (1.10),
draw the resulting ‘discrete-time discrete-value signal’ z(k) and ‘continuous-time
discrete-value signal’ z̃(t).
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Figure 1.10. Discrete-time discrete-value signals.

• Discrete-time Discrete-value Signals: We can also generate discrete-value
signals through the process of quantization. For example, consider the
discrete-time continuous-value sinusoidal signal x[k] given in Eq. (1.7). We
can convert this into a discrete-value signal using the following quantization
operation, assuming the amplitude to be A = 3:

x̃[k] =


−1 if −3 ≤ x[k] < −1

0 if −1 ≤ x[k] < +1
+1 if +1 ≤ x[k] ≤ +3

(1.12)

Thus, we see that x̃[k] is a discrete-time discrete-value signal and it takes only
one of the three values {−1, 0, 1} at any time instant kTs (or, time index k).
The corresponding signal is illustrated in Fig. 1.10.

In general, continuous-time continuous-value signals are also known as ana-
log signals and discrete-time discrete-value signals are known as digital signals.

§ Examine the kind of signal processing interface you will need to set-up to store your
speech signal in a computer.

1.2.2 Periodic and Aperiodic Signals

A periodic signal repeats itself with some period Tp in the time domain. That is, if
x(t) is a periodic signal, it must obey the following relation for any integer k:

x(t + kTp) = x(t) for all t. (1.13)

The sinusoidal signal given in Eq. (1.1) is an example of a periodic signal. Its period
is given by Tp = 1/ f p.

A periodic signal can be completely specified by specifying its period and defining the
signal during one period. For example, a triangular periodic signal of period 2 seconds
can be defined by defining one period during the time interval 0 ≤ t < 2 as follows:

x(t) =
{

t for 0 ≤ t < +1,
2− t for +1 ≤ t < +2.

(1.14)
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§ Plot the triangular periodic signal defined in Eq. (1.14).

The signals that are not periodic are called non-periodic or aperiodic signals. The
exponentially decaying signal considered in Eq. (1.2) and the signal z̃(t) given by
Eq. (1.10) are examples of aperiodic signals.

1.2.3 Deterministic and Random Signals

Deterministic signals are the ones whose values can be predicted exactly, and there is
no uncertainty about the value of these signals at any given time. Such signals can be
usually described by mathematical expressions. For example, the sinusoidal signal
given by Eq. (1.1), the exponentially decaying signal given by Eq. (1.2) and the
triangular periodic signal given by Eq. (1.14) are examples of deterministic signals.

A random signal is one whose values cannot be predicted exactly because of some
uncertainty caused by physical phenomena. We may not be able to exactly describe
random signals using mathematical expressions. Some examples of random signals
are as follows.

• The noise that is picked up by a radio/TV receiver.
• The output of a coin-tossing experiment.
• The signal received by a mobile phone is random due to the random

(and time-varying) nature of the channel.
• The number of passengers arriving at any given time at an international

airport.

1.2.4 Real and Complex Signals

A real signal is one whose values are real numbers. All the signals we considered so
far in this chapter are real signals.

A complex signal is one whose values are complex numbers. A typical example is
the complex sinusoid defined as,

x(t) = Ae j (2π f0t+φ), (1.15)

where j =
√
−1. The parameters A, f0, and φ denote the amplitude, frequency

and phase, respectively, of the complex sinusoid. Using the Euler’s identity

e j z
= cos(z)+ j sin(z), (1.16)

we can express the complex sinusoid in Eq. (1.15) in the form

x(t) = A cos(2π f0t + φ)+ j A sin(2π f0t + φ). (1.17)
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On the other hand, using this identity, we can express real sinusoids as3

A cos(2π f0t + φ) = A

(
e j (2π f0t+φ)

+ e− j (2π f0t+φ)

2

)
, (1.18)

A sin(2π f0t + φ) = A

(
e j (2π f0t+φ)

− e− j (2π f0t+φ)

2 j

)
. (1.19)

Noting that e− j (2π f0t+φ)
= e j[2π(− f0)t−φ] and 1/j = − j = e− jπ/2, we can

conclude the following:

§ A real ‘cos’ sinusoid of amplitude A, frequency f0 and phase φ can be obtained by sum-
ming two complex sinusoids of amplitudes {A/2, A/2}, frequencies { f0,− f0} and phases
{φ,−φ}. For the same amplitudes and frequencies, we get a real ‘sin’ sinusoid if the phases
are {φ−π/2,−φ+π/2}. Thus, complex sinusoids act as building blocks for real signals.
This means that real signals can be constructed by combining complex sinusoids.

Different views of the complex sinusoid in Eq. (1.15) with φ = 0 is shown in
Fig. 1.11. In the figure, a(t) is the instantaneous magnitude, and θ(t) is the instan-
taneous angle/phase of the complex sinusoid. The real component, A cos(2π f0t),
is the projection of the complex sinusoid onto the real axis and the imaginary com-
ponent, A sin(2π f0t), is the projection of the complex sinusoid onto the imaginary
axis in a complex plane. This is illustrated in the 3D view of the complex sinusoid
(phasor) in the figure.

1.3 Typical Real World Biomedical Signals

There are hundreds or thousands of types of biomedical signals, that one can think
of, from a living organism. In this section, however, some of the most commonly
referred types of biomedical signals are briefly described.

1.3.1 Electroencephalogram (EEG)

It is a recording of the electrical activity of the brain by placing electrodes on the
scalp. The recorded waveforms reflect the cortical electrical activity generated by the
firing of brain cells neurons. The amplitude of EEG activities are quite small, mea-
sured in microvolts to millivolts. The main frequency contents of EEG waveforms
are Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), and Beta (12–35 Hz).

3. Note: cos(z) =
[
e j z
+e− j z ]
2 and sin(z) =

[
e j z
−e− j z ]
2 j .
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Figure 1.11. Different views of the phasor Ae j2π f0 t .

Delta waves: It tends to be the highest in amplitude and the lowest in frequency.
It is the dominant rhythm in infants and in stages 3 and 4 of sleep in adults.
It may occur focally with subcortical lesions and in general distribution with dif-
fuse lesions, metabolic encephalopathy hydrocephalus or deep midline lesions. It is
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Figure 1.12. EEG delta wave.

Figure 1.13. EEG theta wave.

Figure 1.14. EEG alpha wave.

usually most prominent frontally in adults and posteriorly in children. A delta wave
segment for four seconds is shown in Fig. 2.1.

Theta waves: It is classified as “slow” EEG activity. It is perfectly normal in chil-
dren and in sleep but abnormal in awake adults. It can be seen as a manifestation
of focal subcortical lesions. It can also be seen in generalized distribution in diffuse
disorders such as metabolic encephalopathy or some instances of hydrocephalus.
In Fig. 1.13, a small segment of a typical theta wave is provided.

Alpha waves: Figure 1.14 illustrates a segment of alpha EEG waves. Is usually best
seen in the posterior regions of the head on each side, being higher in amplitude on
the dominant side. It appears when closing the eyes and relaxing, and disappears
when opening the eyes or alerting by any mechanism (thinking, calculating). It is
the major rhythm seen in normal relaxed adults. It is present during most of life
especially during teenage years and after.

Beta waves: As you may see from Fig. 1.15, it is the “fast” EEG activity. It has
higher frequency and lower amplitude. It is usually seen on both sides of the brain in
symmetrical distribution and is most evident frontally. It may be absent or reduced
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Figure 1.15. EEG beta wave.

Figure 1.16. ECG signal.

in areas of cortical damage. It is generally regarded as a normal rhythm. It is the
dominant rhythm in patients who are alert or anxious or have their eyes open.

1.3.2 Electrocardiogram (ECG)

It is the recording of the electrical activities of the heart based on skin surface elec-
trode measurements. An example of a typical ECG waveform for a normal adult is
shown in Fig. 1.16. ECG offers a low-cost non-invasive investigation of the heart,
commonly used for the detection of heart arrhythmia and conduction disturbances.
It can also be used to to investigate the heart morphology to discover hypertrophy
or myocardial infraction.

1.3.3 Electrooculogram (EOG)

It is a technique for measuring the corneo-retinal standing potential that exists
between the front and the back of the human eye. Primary applications are in oph-
thalmological diagnosis and in recording eye movements.

To measure eye movements, pairs of electrodes are typically placed either above
and below the eye or to the left and right of the eye. If the eye moves from centre
position towards one of the two electrodes, this electrode “sees” the positive side
of the retina and the opposite electrode “sees” the negative side of the retina. Con-
sequently, a potential difference occurs between the electrodes. Assuming that the
resting potential is constant, the recorded potential is a measure of the eye’s position.
An example of eye-blink EOGs for ten seconds long is illustrated in Fig. 1.17.
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Figure 1.17. EOG (eye blinks) signal.

Figure 1.18. A typical ERG signal.

1.3.4 Electroretinogram (ERG)

It measures the electrical responses of various cell types in the retina, including the
photo receptors, inner retinal cells, and the ganglion cells. Electrodes are placed on
the surface of the cornea or on the skin beneath the eye to measure retinal responses.
Retinal pigment epithelium (RPE) responses are measured with an EOG test with
skin-contact electrodes placed near the canthi. During a recording, the patient’s eyes
are exposed to standardized stimuli and the resulting signal is displayed showing
the time course of the signal’s amplitude (voltage). Signals are very small, and their
amplitudes are in the range of typically nano volts to micro volts. The ERG is com-
posed of electrical potentials contributed by different cell types within the retina,
and the stimulus conditions (flash or pattern stimulus, whether a background light
is present, and the colours of the stimulus and background) can elicit stronger
response from certain components. A typical ERG signal is shown in Fig. 1.18.

1.3.5 Electromyogram (EMG)

This is an electrodiagnostic technique for evaluating and recording the electrical
activity produced by skeletal muscles. An EMG detects the electric potential gen-
erated by muscle cells when these cells are electrically or neurologically stimulated.
These signals can be analysed to detect medical abnormalities, activation level, or
recruitment order, or to analyse the biomechanics of human or animal movements.
In computer science, EMG is also used as middle-ware in gesture recognition
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Figure 1.19. A typical EMG signal segment.

towards allowing the input of physical action to a computer as a form of human-
computer interaction. Figure 1.19 shows an illustration of a typical EMG signal.

As mentioned earlier, the most important characteristics of a signal are the power,
frequency and phase. In the next chapter, the definition of power and energy of
signals and the ways to estimate them are briefly described.

1.4 Concluding Remarks

The following points can be deduced from the discussions we have had in this
chapter.

• Definitions of some of the most common types of signals were provided with
illustrations.

• Ways of classifying signals were provided.
• Most of the practical real-world signals are aperiodic and random in nature.
• Complex sinusoids act as building blocks in the study of real signals.
• Examples of typical biomedical signals were provided.



DOI: 10.1561/9781680839791.ch2

Chapter 2

Power and Energy

According to physics, power is defined as the rate of doing work, it is the work
done in unit time. Energy, on the other hand, is a quantitative property that must
be transferred to an object in order for it to perform some work. Hence, energy is
defined as the strength to do any kind of physical activity. Thus, energy is the ability
to do work. Here, in this chapter, the following points are discussed in detail:

• Definition and meaning of energy and power for signals, and computations
of these quantities for typical examples of signals.

• Detailed understanding of sinusoidal (real and complex) signals.

2.1 Power and Energy of Signals

Consider the simple electric circuit shown in Fig. 2.1 below. Here a resistance of
R � is connected to a voltage source x(t). A current flows through the circuit,
which makes the resistance to dissipate some power in the form of heat.

Here, x(t) is the voltage source connected to a resistor of resistance R �. Then,
we know that, the instantaneous power (p(t)) delivered to the resistor is given by

p(t) = |x(t)|
2

R . If R = 1�, we get the instantaneous power of the signal x(t) at time
t as,

p(t) = |x(t)|2. (2.1)

17
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Figure 2.1. A resistor connected to a voltage source.

For real-valued signals, the instantaneous power is given by x2(t). However, in
Eq. (2.1), we use |x(t)|2 (instead of x2(t)) so as to account for complex-valued
signals. Since power is energy per unit time, we get the energy (e) of the signal x(t)
over the time interval t1 < t < t2 as,

et1→t2 =

∫ t2

t1
p(t)dt =

∫ t2

t1
|x(t)|2dt. (2.2)

Consequently, we get the average power of the signal x(t) over the time interval
t1 < t < t2 as

pt1→t2 =
et1→t2

t2 − t1
=

1
t2 − t1

∫ t2

t1
|x(t)|2dt. (2.3)

Extending the definition in Eq. (2.2) to the complete time interval
−∞ < t <∞, we can get the total energy (or, energy) of the signal x(t) as,

e = lim
T→∞

∫ T/2

−T/2
|x(t)|2dt. (2.4)

Here, for the sake of convenience and without losing generality, we have used t1 =
−

T
2 and t2 = T

2 , where T denotes an arbitrary time interval. Similarly, we can get
the average power (or, power) of the signal x(t) as

p = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt. (2.5)
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§ If a signal x(t) is periodic with period Tp, show that its power can be computed using
one of the following expressions,

p =



1
Tp

∫ Tp
0 |x(t)|

2dt, or

1
Tp

∫ Tp/2
−Tp/2 |x(t)|

2dt, or

1
Tp

∫ t0+Tp
t0

|x(t)|2dt.

(2.6)

and it is equivalent to Eq. (2.5). Here, t0 is any arbitrary time point. Show also that its
energy is infinity.
§ Examine the power and energy of the signals given in Eqs. (1.1)–(1.6).

2.2 Energy Signals and Power Signals

Signals are also classified according to their energy and power. Signals with non-zero
finite power are known as power signals. Similarly, signals with non-zero finite energy
are known as energy signals.

§ Show that the energy of a power signal should be infinity, and the power of an energy
signal should be zero.
§ Can a signal be simultaneously a power signal and energy signal?
§ Classify the signals given in Eqs. (1.1)–(1.6) into energy or power signals.

We shall now use the expressions for the power and energy defined earlier to
determine the power and energy of real and complex sinusoidal signals.

2.2.1 Single Real Sinusoid

Let us first consider the case of a real sinusoid given by,

x(t) = A cos(2π f0t + φ).

where, A, f0, and φ, are the amplitude, frequency and phase, respectively of the
sinusoid. We get the instantaneous power as,

p(t) = |x(t)|2 = A2 cos2(2π f0t + φ),

=
A2

2
[1+ cos(4π f0t + 2φ)], (2.7)



20 Power and Energy

as cos2(z) = 1
2 [1+ cos(2z)]. Without loss of generality, we can take the time

interval T in Eqs. (2.4) and (2.5) as T = mT0 where m is an integer and T0 =
1
f0

is the period of the sinusoid. Since cos(4π f0t + 2φ) is periodic with period T0/2,
and the positive and negative half-cycles of cos(4π f0t + 2φ) have equal areas,
we get ∫ T/2

−T/2
cos(4π f0t + 2φ)dt = 0. (2.8)

To understand Eq. (2.8), let T = mT0. Then, we get (since f0T0 = 1)∫ T/2

−T/2
cos(4π f0t + 2φ)dt =

sin(4π f0t + 2φ)
4π f0

∣∣∣∣mT0/2

−mT0/2
,

= α sin(2π f0mT0 + 2φ)− α sin(−2π f0mT0 + 2φ),

= α sin(2mπ + 2φ)+ α sin(2mπ − 2φ),

= α sin(2φ)− α sin(2φ) = 0,

where α = 1
4π f0

. This can also be easily seen (intuitively) by the fact that the
areas over the positive half-cycles and negative half-cycles are equal for the function
cos(4π f0t + 2φ) over an interval that is an integer multiple of its period.

Therefore, we get the power and energy of a real sinusoid of amplitude A (any
non-zero frequency and any phase) as

p = lim
T→∞

1
T

∫ T/2

−T/2

A2

2
dt =

A2

2
(2.9)

e = lim
T→∞

∫ T/2

−T/2

A2

2
dt = ∞. (2.10)

§ Show that the power and energy of the signal x(t) = A sin(2π f0t + φ) are also given
by Eqs. (2.9) and (2.10).

2.2.2 Single Complex Sinusoid

Next, let us consider the case of a complex sinusoid given by

x(t) = Ae j (2π f0t+φ). (2.11)

We get the instantaneous power as

p(t) = |x(t)|2 = A2 (2.12)
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as
∣∣e j z

∣∣2 = cos2(z) + sin2(z) = 1. Therefore, we get the power and energy of a
complex sinusoid of amplitude A (any frequency and any phase) as

p = lim
T→∞

1
T

∫ T/2

−T/2
A2dt = A2 (2.13)

e = lim
T→∞

∫ T/2

−T/2
A2dt = ∞. (2.14)

2.2.3 Sum of Complex Sinusoids

Let us consider the signal obtained by summing two complex sinusoids as,

x(t) = A1e j (2π f1t+φ1) + A2e j (2π f2t+φ2), (2.15)

where {A1, A2}, { f1, f2} and {φ1, φ2} represent the amplitudes, frequencies
and phases, respectively, of the two sinusoids. Then, we get the instantaneous
power as,1

p(t) = |x(t)|2 = x(t)x∗(t)

=

[
A1e j (2π f1t+φ1) + A2e j (2π f2t+φ2)

]
×

[
A1e− j (2π f1t+φ1) + A2e− j (2π f2t+φ2)

]
= A2

1 + A1 A2

[
e j (2π( f1− f2)t+φ1−φ2) + e− j (2π( f1− f2)t+φ1−φ2)

]
+ A2

2

= A2
1 + 2A1 A2 cos(2π( f1 − f2)t + φ1 − φ2)+ A2

2. (2.16)

Note that cos(2π( f1 − f2)t + φ1 − φ2) is periodic with period T0 =
1

| f1− f2|
.

Therefore, by choosing T = mT0 (m being an integer), we get,∫ T/2

−T/2
cos(2π( f1 − f2)t + φ1 − φ2)dt = 0. (2.17)

Therefore, we get the power of the sum of two complex sinusoids of different frequencies
{ f1, f2} and amplitudes {A1, A2} (and any phase) as,

p = lim
T→∞

1
T

∫ T/2

−T/2
A2dt = A2

1 + A2
2. (2.18)

As before, the corresponding energy of x(t) is infinity.

1. Here, x∗(t) denotes complex conjugate of x(t).
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§ Examine the power of the sum of two complex sinusoids given in Eq. (2.15) in the case
where f1 = f2. Assume that A1 6= A2 and φ1 6= φ2.
§ Express a real sinusoid of frequency f0 as the sum of two complex sinusoids with frequencies
f0 and − f0. Then, using Eq. (2.16), show that the power of a real sinusoid of amplitude
A is equal to A2

2 .

We can easily generalize the above results to determine the power of a signal consist-
ing of the sum of M complex sinusoids with different frequencies. Let the signal be
given by,

x(t) =
M∑

i=1

Ai e j (2π fi t+φi ), (2.19)

where Ai , fi and φi represent the amplitude, frequency and phase, respectively, of
the i th sinusoid (for i = 1, 2, . . . ,M). Then, we get the power of x(t) as,

p =
M∑

i=1

A2
i = A2

1 + A2
2 + · · · + A2

M . (2.20)

2.2.4 Sum of Real Sinusoids

Consider the signal obtained by summing two real sinusoids as

x(t) = A1 cos(2π f1t + φ1)+ A2 cos(2π f2t + φ2), (2.21)

where {A1, A2}, { f1, f2} and {φ1, φ2} represent the amplitudes, frequencies and
phases, respectively, of the two sinusoids, with f1 6= f2. Using Euler’s identity, we
can write x(t) as,

x(t) = α1e j (2π f1t+φ1) + α1e j (2π(− f1)t−φ1),

+α2e j (2π f2t+φ2) + α2e j (2π(− f2)t−φ2), (2.22)

where α1 = A1/2 and α2 = A2/2. Since f1, − f1, f2 and − f2 are distinct
frequencies, we can use Eq. (2.20) to obtain the power of x(t). Thus, we get the
power of the sum of two real sinusoids of different frequencies { f1, f2} and amplitudes
{A1, A2} (and any phase) as,

p = α2
1 + α

2
1 + α

2
2 + α

2
2 =

A2
1

2
+

A2
2

2
. (2.23)

As before, we can generalize the above results to determine the power of a signal
consisting of the sum of M real sinusoids with different frequencies. Let the signal
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be given by,

x(t) =
M∑

i=1

Ai cos(2π fi t + φi ) (2.24)

where Ai , fi and φi represent the amplitude, frequency and phase, respectively, of
the i th sinusoid (for i = 1, 2, . . . ,M). Then, we get the power of x(t) as,

p =
M∑

i=1

A2
i

2
=

A2
1

2
+

A2
2

2
+ · · · +

A2
M

2
. (2.25)

§ Derive Eq. (2.23) without using Euler’s identity.2

An important step in the study and/or analysis of signals is to express the signals
in the form of sum of many complex sinusoids and to identify which frequencies
have dominant contribution. This task is called the spectrum estimation. The funda-
mental tool that facilitates spectrum estimation is Fourier transform and its variants.
Fourier series – the variant of Fourier transform when applied to periodic signals is
discussed in the next chapter.

2.3 Concluding Remarks

Based on the discussions above, the following conclusions can be derived:

• The power of a signal consisting of a sum of sinusoids (real or complex) is given
by the sum of the powers of the individual sinusoids, if the frequencies of
these sinusoids are different.

• The phases of the sinusoids have no effect on the power if the frequencies of
the sinusoids are different. If the frequencies of any two sinusoids are equal,
then their phases will have an effect on the total power [11].

2. For this, first show that the instantaneous power of x(t) can be obtained as,

p(t) = A2
1

1+ cos(4π f1t + 2φ1)

2
+ A2

2
1+ cos(4π f2t + 2φ2)

2

+ A1 A2

[
cos(2π( f1 + f2)t + φ̃1)+ cos(2π( f1 − f2)t + φ̃2)

]
, (2.26)

where φ̃1 = φ1 + φ2 and φ̃2 = φ1 − φ2. In doing this derivation, the following identities will be useful:
2 cos(A) cos(B) = cos(A + B) + cos(A − B) and 2 sin(A) cos(B) = sin(A + B) + sin(A − B). Then,
using an appropriate choice of integration interval T , argue that the integration of all the ‘cos(·)’ terms in
Eq. (2.26) will become zero.
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Exercises

2.1. The delta function δ(t) in Fig. P2.1 is a “generalized” function and is fre-
quently used in signal processing. Find its energy.

Figure P2.1. Delta function.

2.2. The process of modulation shown in Fig. P2.2 below is frequently used
to “up convert” the frequency of a signal to a higher value so that it can
be more efficiently transmitted over a channel. Are the energy of x(t) and
y(t) the same?

Figure P2.2. Modulation scheme.

2.3. Convert the following complex numbers into polar form, that is, in the
form of s = ρe jφ . Here, ρ is the magnitude of s and φ is the phase of s.

(a) s1 = 4+ j5
(b) s2(t) = a(t)+ jb(t)
(c) s3(t) = 10 cos

(
20π t + π

4

)
2.4. Convert the following complex numbers into rectangular form, that is, in

the form of s = x+ j y. Here, x is the real part of s and y is the imaginary
part of s.

(a) s1 = 2e j8

(b) s2 = 2ke jπk/3

(c) s3(t) = <
[
10e j (20t+5)], where < denotes the real part of a complex

number.
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2.5. Determine whether or not each of the following signals is periodic. If the
signal is periodic, determine its fundamental period.

(a) x1(t) = cos(4t)+ sin(6t)
(b) x2(t) = cos t + sin

(√
2t
)

(c) x3(t) = e j[(π/2)t−1]

2.6. Determine whether the following signals are energy signals, power signals
or neither.

(a) x1(t) = e−at u(t), where a > 0 and u(t) is the unit step function
(b) x2(t) = tu(t).
(c) x3(t) = a cos(ω0t + φ)





DOI: 10.1561/9781680839791.ch3

Chapter 3

Fourier Series

The study of signals and systems using sinusoidal representations is known as
Fourier analysis (named after the French mathematician Jean Baptiste Joseph
Fourier, who developed Fourier series). In this chapter, we discuss the representa-
tion of periodic signals in terms of sinusoids. This lays the foundation for spectrum
estimation, which is one of the most important topics in the study and applications
of signals and systems. Since each sinusoid corresponds to a single frequency, the
representation of signals using sinusoids leads us to frequency-domain understanding
and interpretation of signals.

Frequency-domain representation of signals is very necessary as well as useful in
practical applications and theoretical studies. For example, we should know what
are the frequencies present in a signal, before we can design a communication sys-
tem to reliably transmit this signal. An important advantage of frequency-domain
representation is that it is often easy to see certain signal characteristics when we
examine the signal in this domain, compared to the time-domain. Figure 3.1 illus-
trates this for a signal consisting of sinusoids and noise.

In Fig. 3.1, the signal, x(t), is synthesized by combining three sinusoids of dif-
ferent amplitudes and frequencies along with white Gaussian noise1 as shown in

1. Will be described in a later chapter of this book.

27
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Figure 3.1. Time plot of sum of three real sinusoids (at frequencies 20 Hz, 30 Hz, 50 Hz)

and noise (top) and its frequency spectrum (bottom) in the frequency domain.

the following equation:

x(t) = A1 sin(2π f1t)+ A2 sin(2π f2t)+ A3 sin(2π f3t)+ n(t), (3.1)

where A1, A2, A3 are respectively 4, 2.5 and 1.5. The corresponding three frequen-
cies, f1, f2, f3 are 20Hz, 30Hz and 50Hz. n(t) in Eq. (3.1) is the white Gaussian
noise added to the sinusoids. The signal (top; time domain) and its frequency spec-
trum2 (bottom; frequency domain) are shown in Fig. 3.1. It can be observed that
while it is not possible to infer either the number of sinusoids or their frequen-
cies from the time-domain plot, the frequency-domain spectrum clearly conveys
this information. The relative amplitudes of the sinusoids are also clearly visible
from the frequency domain spectrum. The background noise spectrum also can be
clearly seen in the frequency domain and it spans the complete frequency range.
This illustration clearly explains the importance of Fourier representation of signals.

In this chapter, the following points will be discussed in detail.

• The role of sinusoids as basic building block for synthesizing signals.
• Representation of periodic signals using sinusoids (real or complex), leading

to the concept of frequency-domain representation of signals.

2. Distribution of frequencies in the signal.
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• The definition and interpretation of spectrum, and interpreting signals based
on their spectra.

• Various properties of Fourier series representation, and their use in practice.
• Limitations of Fourier series representation.

3.1 Introduction to Fourier Series

Consider the vector Er shown in Fig. 3.2. It connects the origin O(0, 0) to the point
P(x, y), in the X−Y plane. Here, x and y are the X -coordinate and Y -coordinate
of the point P . The vector Er can be expressed as,

Er = x · Exu + y · Eyu, (3.2)

where Exu and Eyu are unit vectors (i.e., vectors of length 1.0) along X and Y axes,
respectively. In other words, given any vector Er connecting the origin O(0, 0) to
a point ‘P(x, y)’ in the X − Y plane, we can express this vector as a sum of scaled
unit vectors along the X and Y axes; the scale factors (i.e., x and y) can be obtained
by determining the components of Er along X and Y axes. Thus, we are able to
represent all vectors in the X − Y plane in terms of the two unit vectors Exu and Eyu .

§ A special feature of this representation is that the vectors Exu and Eyu , which we have chosen
as fundamental components, are perpendicular (or, orthogonal) to each other.

This representation is convenient because manipulation and interpretation of vec-
tors can now be done in terms of the standard vectors Exu and Eyu , which are easy to handle
and interpret.

Fourier series does a representation of the type explained above for the case of
periodic signals. In place of the unit vectors Exu and Eyu , Fourier series uses complex

Figure 3.2. Vector Er in rectangular coordinates representation.
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sinusoids as the basic/fundamental signals for representing periodic signals.3 Since
a complex sinusoid e j�p t is associated with a specific frequency �p (2π f p; f p is
the cyclic frequency of the sinusoid), we can generate any arbitrary signal by adding
many complex sinusoids of different frequencies, with appropriate amplitude and
phase for each sinusoid. In particular, we note the following:

§ For a periodic signal x(t) with period Tp (or, frequency f p = 1/Tp), the complex
sinusoids that are required to represent x(t) are only those at the frequencies k f p for
k = 0,±1,±2, . . . .

3.2 Why Fourier Series?

It is good for us to ask ourselves the following questions:

§ Why do we want to express signals using Fourier series?
§ How does the knowledge of Fourier series benefit us in practical applications involving
signals and systems?

Let us consider the case of having to transmit a signal x(t) (e.g., speech, video,
data files, outputs of some sensors, etc.,) from one place to another. We expect the
transmission medium (e.g., telephone cables, optical fiber cables, wireless medium,
etc.,) to deliver the signal faithfully to the receiver. We can not check this by simply
looking at the time-domain signal x(t). One easy way to check this is to examine
the frequencies present in x(t), which can be done by using a tool such as Fourier
series. By examining the values of the Fourier series coefficients Xk , we can know
the maximum frequency (with non-negligible amplitude) present in the signal. Let
the maximum frequency be 100 KHz (kilo Hertz) in a particular application. Then,
we should look for a suitable transmission medium that will not attenuate frequencies up
to 100 KHz. Thus, we can ensure that the chosen transmission medium faithfully
transports the signal to the destination.

This example shows that the knowledge of frequency-domain representation of sig-
nals can be very helpful in practical applications. Even though most of the useful

3. We will study later that complex sinusoids of different frequencies are orthogonal to each other. Mathemat-
ically, this means the following:∫

∞

−∞

A1e j (2π f1t+φ1)A2e− j (2π f2 t+φ2)dt = 0 if f1 6= f2. (3.3)
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practical signals are non-periodic in nature, the study of periodic signals forms the
foundation for the study of non-periodic signals.

3.3 Fourier Series: Definition and Interpretation

Let x(t) be a periodic signal with period Tp (or, frequency f p = 1/Tp). Then,
based on the discussion at the end of Section 3.1, we get the Fourier series repre-
sentation for x(t) as,

x(t) =
∞∑

k=−∞

Xke jk�p t , (3.4)

= · · · + X−2e− j2�p t
+ X−1e− j�p t

+ X0

+ X1e j�p t
+ X2e j2�p t

+ · · · .

where, Xks are the Fourier coefficients and k�ps are harmonics of the fundamen-
tal frequency �p. Comparing Eq. (3.4) with Eq. (3.2), we find that the complex
sinusoids e jk�p t take the place of the unit vectors Exu and Eyu , and the coefficients
Xks take the place of the scale factors x and y.

We have the following remarks on the Fourier series representation given in
Eq. (3.4).

• Complex sinusoids are used as component signals to express the given periodic
signal x(t).

• Frequencies of the complex sinusoids are given by k�p or 2πk f p where f p =

1/Tp and k = 0,±1,±2, . . ..
• �p is called the fundamental frequency (Note: k�p with k = 1) and k�p is

called the kth harmonic frequency.
• For all periodic signals with a given period Tp, we can state the following:

– The complex sinusoids that constitute the Fourier series are the same for all the
signals and are given by e jk�p t for k = 0,±1,±2, . . . .

– But the set of coefficients {Xk} will be different for each signal.

• The coefficients Xk are obtained as follows: Consider,∫ Tp

0
x(t)e− jm�p t dt =

∫ Tp

0

[
∞∑

k=−∞

Xke jk�p t

]
e− jm�p t dt

=

∞∑
k=−∞

Xk

∫ Tp

0
e j (k−m)�p t dt, (3.5)
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where m is an arbitrary integer. Since�pTp = 2π f pTp = 2π , and e jn2π
=

1 for integer n, we get∫ Tp

0
e j (k−m)�p t dt =

e j2π(k−m)
− 1

j�p(k − m)
=

{
0 if k 6= m
Tp if k = m.

(3.6)

Substituting Eq. (3.6) in Eq. (3.5), we get∫ Tp

0
x(t)e− jm�p t dt = Tp Xm ⇒ Xm =

1
Tp

∫ Tp

0
x(t)e− jm�p t dt.

(3.7)

This implies that

Xk =
1

Tp

∫ Tp

0
x(t)e− jk�p t dt. (3.8)

The interval of integration should be one period and this period can be taken
to be anywhere on the time axis. That is either [0, Tp], or [−Tp/2, Tp/2],
etc. In general, it can be taken as [tp, tp + Tp] where tp is any arbitrary real
number.

• Because Xk is a complex number, we can express it as

Xk = |Xk |e jθk , (3.9)

where |Xk | =
√

X2
k,r + X2

k,i is the magnitude of the complex quantity and

θk = tan−1
(

Xk,i
Xk,r

)
is the phase of the complex quantity. Here, Xk = Xk,r +

j Xk,i with Xk,r and Xk,i being the real and imaginary parts, respectively, of
Xk . Thus, |Xk | and θk give the magnitude and phase, respectively, of the complex
sinusoid Xke jk�p t at frequency k�p.

• The coefficient Xk gives the strength (i.e., amplitude and phase) of the kth

harmonic e jk�p t in the given signal x(t).

§ The set of coefficients {Xk} gives the frequency composition of the given signal. That
is, by observing the values of Xk , we can know which all frequencies (or, complex
sinusoids) are required to construct the signal x(t) and what is the amplitude and
phase of each sinusoid.

In other words, we can say that

§ Fourier series gives a frequency-domain representation of periodic signals.
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In summary, if x(t) is periodic and satisfies the Dirichlet conditions,4 it can be
represented in a Fourier series as in Eq. (3.4), where the coefficients Xk are specified
by Eq. (3.8). So, the frequency analysis of continuous-time periodic signals are
summarized below:

• The synthesis equation:

x(t) =
∞∑

k=−∞

Xke jk�p t . (3.10)

• The analysis equation:

Xk =
1

Tp

∫ Tp

0
x(t)e− jk�p t dt. (3.11)

• Magnitude spectrum of x(t): It is the plot5 of |Xk | vs k. That is, it is the
distribution of the amplitudes of the sinusoids as a function of the frequency.
Note that the index k actually is an indicator of the frequency k�p.

• Phase spectrum of x(t): It is the plot of θk vs k (i.e., distribution of phase
vs frequency).

• Power spectrum of x(t): Since |Xk |
2 is the power of the kth harmonic,6 the

plot of |Xk |
2 vs k gives the power spectrum (i.e., distribution of power vs

frequency) of x(t).
• Power of x(t): Since the complex sinusoids that constitute the signal x(t) are

at different frequencies (i.e., k�p, k = 0,±1,±2, . . .), we get the power of
x(t) as7

p =
∞∑

k=−∞

|Xk |
2. (3.12)

4. Dirichlet conditions for Fourier series:

• x(t) must be absolutely integrable over a period, and
• x(t)must have a finite number of exterma in any given time interval, i.e., there must be a finite number

of maxima and minima in the interval.

5. The term ‘spectrum’ is usually used to refer to the distribution of some quantity as a function of frequency.

6. Recall from Chapter 2 (see Section 2.2.2) that the power of a complex sinusoid is equal to the magnitude
square of its amplitude.

7. Recall from Chapter 2 (see Section 2.2.3) that the power of a signal consisting of a sum of sinusoids is equal
to the sum of the powers of the individual sinusoids, if the frequencies of the sinusoids are different.
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Therefore, we get (using the definition of power in Eq. (2.5) of Chapter 2)

p =
1

Tp

∫ Tp/2

−Tp/2
|x(t)|2dt =

∞∑
k=−∞

|Xk |
2. (3.13)

Eq. (3.13) is known as Parseval’s Theorem for periodic signals. That is, we

can use either time-domain expression
(

1
Tp

∫ Tp/2
−Tp/2 |x(t)|

2dt
)

or frequency-

domain expression
(∑
∞

k=−∞ |Xk |
2) for computing the power of a (periodic)

signal, depending upon which is easier to use.

§ Let x(t) and y(t) be periodic signals with periods Tx and Ty , respectively, and
z(t) = x(t)+ y(t). Examine if z(t) is periodic and if it is periodic, what is its period.
§ If x(t) is periodic with period Tx , argue that the Fourier series representation given in
Eq. (3.4) can’t contain a complex sinusoid at frequency that is not an integer multiple
of 1/Tx .

3.4 Properties of Fourier Series

We shall now briefly look at some of the important properties of Fourier series (FS).
Knowing these properties will make it easy for us i) to evaluate FS of complicated
signals, and ii) to predict the nature of signals based on their spectra and vice versa.

Let x(t) and y(t) be periodic signals with period Tp and FS coefficients Xk and
Yk , respectively. That is,

x(t) =
∞∑

k=−∞
Xke jk�p t , y(t) =

∞∑
k=−∞

Yke jk�p t

Xk =
1

Tp

Tp∫
0

x(t)e− jk�p t dt, Yk =
1

Tp

Tp∫
0

y(t)e− jk�p t dt .

3.4.1 Linearity

Let us construct a signal z(t) as linear combination of x(t) and y(t). That is,

z(t) = αx(t)+ βy(t), (3.14)

where α and β are two scalars (real or complex). Clearly, z(t) is also periodic with
period Tp. Then, how are the FS coefficients, Zk , of z(t) related to that of x(t)
and y(t)?
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By the definition of FS, we get

Zk =
1

Tp

∫ Tp

0
z(t)e− jk�p t dt

=
1

Tp

∫ Tp

0
[αx(t)+ βy(t)] e− jk�p t dt

=
1

Tp

∫ Tp

0
αx(t)e− jk�p t dt +

1
Tp

∫ Tp

0
βy(t)e− jk�p t dt

= α
1

Tp

∫ Tp

0
x(t)e− jk�p t dt + β

1
Tp

∫ Tp

0
y(t)e− jk�p t dt

= αXk + βYk . (3.15)

Thus, FS coefficients of linear combination of signals are given by the corresponding
linear combination of the FS series coefficients of the individual signals.

3.4.2 Time Shifting

Let z(t) = x(t − t0) where t0 is an arbitrary time offset.8 Then, as before, we get

Zk =
1

Tp

∫ Tp

0
z(t)e− jk�p t dt =

1
Tp

∫ Tp

0
x(t − t0)e− jk�p t dt

=
1

Tp

∫ Tp−t0

−t0
x(u)e− jk�p(u+t0)du : u = t − t0

= e− jk�p t0 1
Tp

∫ Tp−t0

−t0
x(u)e− jk�pudu

= e− jk�p t0 Xk (3.16)

This implies that:

|Zk | = |e− jk�p t0 Xk | = |e− jk�p t0 | · |Xk | = |Xk |, (3.17)

{Phase of Zk} = {Phase of Xk} − k�pt0. (3.18)

Thus, shifting the signal in time-domain results in a phase change in the frequency-
domain, while the magnitude spectrum remains unaffected.

8. If t0 > 0, then z(t) is obtained by shifting x(t) to the right by t0 on the time axis. This is also known as
delaying x(t) by t0. If t0 < 0, then z(t) will be left-shifted (or, advanced in time) version of x(t).



36 Fourier Series

3.4.3 Frequency Shifting or Modulation

Let z(t) = e jm�p t x(t) where m is an arbitrary integer. Then, we get

Zk =
1

Tp

∫ Tp

0

[
e jm�p t x(t)

]
e− jk�p t dt

=
1

Tp

∫ Tp

0
x(t)e− j (k−m)�p t dt

= Xk−m . (3.19)

As an example, let m = 10 and f p = 10 K H z. Then, Eq. (3.19) implies that mul-
tiplying x(t) by e jm�p t results in shifting the spectrum to the right by 10m KHz
(kilo Hertz) = 0.1 MHz (mega Hertz). This principle is used in communication
systems for shifting a signal from one frequency range to another for transmission
purpose.

3.4.4 Time Reversal

Let z(t) = x(−t), time-reversed x(t). Then, we get9

Zk =
1

Tp

∫ Tp

0
x(−t)e− jk�p t dt

= −
1

Tp

∫
−Tp

0
x(u)e jk�pudu : u = −t

=
1

Tp

∫ 0

−Tp

x(u)e jk�pudu =
1

Tp

∫ 0

−Tp

x(u)e− j (−k)�pudu

= X−k . (3.20)

That is, reversing a signal in time-domain results in reversing its spectrum in frequency-
domain.

3.4.5 Even-Symmetric Signal

Let x(t) be an even-symmetric signal. That is, x(−t) = x(t). Let us examine the
Fourier series (FS) coefficients of x(t).

9. Recall that
∫ b

a x(t)dt = −
∫ a

b x(t)dt for any given function x(t).
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Consider X−k given by (let T̃ = Tp/2),

X−k =
1

Tp

∫ T̃

−T̃
x(t)e jk�p t dt

=
−1
Tp

∫
−T̃

T̃
x(−u)e− jk�pudu : u = −t

=
1

Tp

∫ T̃

−T̃
x(u)e− jk�pudu : x(−u) = x(u)

= Xk (3.21)

This implies that:

|X−k |e jθ−k = |Xk |e jθk . (3.22)

That is, the phase and magnitude spectra of an even-symmetric signal are even-
symmetric. Thus, we have,

|X−k | = |Xk |, and θ−k = θk . (3.23)

3.4.6 Odd-Symmetric Signal

Let x(t) be an odd-symmetric signal. That is, x(−t) = −x(t). Then, proceeding
as above, we get,

X−k = −Xk (3.24)

This means that,

|X−k |e jθ−k = −|Xk |e jθk = |Xk |e j (θk±π)

H⇒ |X−k | = |Xk |, and θ−k = θk ± π. (3.25)

That is, the magnitude spectrum of an odd-symmetric signal is even-symmetric.

3.4.7 Real Signal

Let x(t) be a real signal. That is, x∗(t) = x(t). Then, proceeding as above, we get

X−k = X∗k , (3.26)

which implies

|X−k |e jθ−k = |Xk |e− jθk

H⇒ |X−k | = |Xk |, and θ−k = −θk . (3.27)
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That is, the magnitude spectrum of a real signal is even-symmetric and phase spec-
trum is odd-symmetric.

From Eqns. (3.23), (3.25) and (3.27), we can conclude the following:

• For a real signal, irrespective of any symmetry, the magnitude spectrum is even-
symmetric and the phase spectrum is odd-symmetric.

• The phase spectrum of an even-symmetric real signal is 0 or±π for all frequencies.
That is, the FS coefficients Xk are purely real.
E.g., x(t) = A1 cos(100π t) + A2 cos(300π t) + A3 cos(1000π t) where
A1, A2 and A3 are real numbers.

• The phase spectrum of an odd-symmetric real signal is odd-symmetric and the
phase values are given by±π/2. That is, the FS coefficients Xk are purely imag-
inary.
E.g. x(t) = A1 sin(100π t) + A2 sin(300π t) + A3 sin(1000π t) where
A1, A2 and A3 are real numbers.

3.5 Real Fourier Series

Let x(t) be a real periodic signal.10 Then, using Eq. (3.4), write its Fourier series as,

x(t) =
∞∑

k=−∞

Xke jk�p t
= · · · + X−2e− j2�p t

+ X−1e− j�p t

+ X0 + X1e j�p t
+ X2e j2�p t

+ · · ·

= X0 +
[

X−1e− j�p t
+ X1e j�p t

]
+

[
X−2e− j2�p t

+ X2e j2�p t
]
+ · · · . (3.28)

Since X−k = X∗k as x(t) is real, we get

X−ke− jk�p t
+ Xke jk�p t

= X∗k e− jk�p t
+ Xke jk�p t

= 2 · Real
[

Xke jk�p t
]

= 2Xk,r cos(k�pt)− 2Xk,i sin(k�pt), (3.29)

10. The material in Section 3.5 helps us to understand how the Fourier series simplifies when we consider only
real signals.
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where Xk,r and Xk,i are the real and imaginary parts, respectively, of Xk (i.e., Xk =

Xk,r + j Xk,i ). Substituting Eq. (3.29) in Eq. (3.28), we get

x(t) = X0 + 2
[
X1,r cos(�pt)− X1,i sin(�pt)

]
+ 2

[
X2,r cos(2�pt)− X2,i sin(2�pt)

]
+ · · ·

= X0 + 2
∞∑

k=1

Xk,r cos(k�pt)− 2
∞∑

k=1

Xk,i sin(k�pt)

= a0 +

∞∑
k=1

ak cos(k�pt)+
∞∑

k=1

bk sin(k�pt) (3.30)

where the coefficients a0, ak and bk for k = 1, 2, . . . ,∞ are given by (let T̃ =
Tp/2)

a0 = X0 =
1

Tp

∫ T̃

−T̃
x(t)dt (3.31)

ak = 2Xk,r =
2

Tp
Real

[∫ T̃

−T̃
x(t)e− jk�p t dt

]

=
2

Tp

∫ T̃

−T̃
x(t) cos(k�pt)dt (3.32)

bk = −2Xk,i =
−2
Tp

Imag

[∫ T̃

−T̃
x(t)e− jk�p t dt

]

=
2

Tp

∫ T̃

−T̃
x(t) sin(k�pt)dt. (3.33)

Thus, Eqns. (3.30)–(3.33) shows that a real signal can be represented using a real FS
where the basic signals are real sinusoids rather than complex sinusoids, and the FS
coefficients {a0, ak, bk} are real scalars.

Let us consider the following special cases:

• x(t) is Real and Even-Symmetric: Then, it is easy to show that bk = 0 for
all k. Therefore, we get from Eq. (3.30)

x(t) = a0 +

∞∑
k=1

ak cos(k�pt). (3.34)
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• x(t) is Real and Odd-Symmetric: Then, it is easy to show that a0 = 0 and
ak = 0 for all k. Therefore, we get from Eq. (3.30)

x(t) =
∞∑

k=1

bk sin(k�pt). (3.35)

3.6 Examples of Fourier Series Evaluation

We shall now present a few examples to illustrate i) how to evaluate the
FS coefficients, and ii) how to exploit the properties of FS while evaluating
the FS.
Example 1: Consider an example of a periodic square wave signal (Fig. 3.3(a)) of
period Tp = 0.5. One period of the signal is defined as,

x(t) =
{

1 for 0 ≤ t < 0.25
0 for 0.25 ≤ t < 0.5.

(3.36)

Figure 3.3. Periodic signal and its Fourier spectrum. (a) the periodic signal (real),

(b) Magnitude spectrum, and (c) Phase spectrum.
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Note that Tp = 0.5, f p = 1/Tp = 2, �p = 2π f p = 4π . Since x(t) is zero
during 0.25 ≤ t < 0.5, we get the complex FS coefficients as11

X0 =
1

0.5

∫ 0.5

0
x(t)dt =

1
0.5

∫ 0.25

0
dt = 0.5.

Xk =
1

Tp

∫ Tp

0
x(t)e− jk�p t dt =

1
0.5

∫ 0.5

0
x(t)e− jk�p t dt

= 2
∫ 0.25

0
x(t)e− j4πkt dt + 2

∫ 0.5

0.25
x(t)e− j4πkt dt

= 2
∫ 0.25

0
e− j4πkt dt + 0 = 2

e− j4πkt

− j4πk

∣∣∣∣0.25

0
=

1− e− jπk

j2πk
. (3.37)

Therefore, we get (since e jπ
= −1 = e− jπ )

X0 = 0.5,

X1 =
1
jπ , X−1 =

1
− jπ

X2 = 0, X−2 = 0

X3 =
1

j3π , X−3 =
1
− j3π

X4 = 0, X−4 = 0

X5 =
1

j5π , X−5 =
1
− j5π

...
...

We see that X−k = X∗k , which should be so since the signal x(t) is real. Figure 3.3
also shows the magnitude spectrum (|Xk | vs k; Fig. 3.3(b)) and phase spectrum
(θk vs k; Fig. 3.3(c)) of the given signal, x(t). It can be seen that the magnitude
spectrum is symmetric and the phase spectrum is anti-symmetric.
Example 2: Let us construct a signal y(t) (Fig. 3.4(a)) using the above signal
x(t) as,

y(t) = x(t + 0.125).

Note that y(t) is obtained by shifting x(t) to the left by 0.125. It is easy to see that
the resulting y(t) is a real even-symmetric signal with period Tp = 0.5. One period

11. Since Xk =
1

Tp

∫ t0+Tp
t0

x(t)e− jk�p t dt , where t0 can be anything, we should choose t0 such that the resulting

expression for x(t) in the interval [t0, t0 + Tp] is easy to integrate.
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of y(t) is given by

y(t) =
{

1 for −0.125 ≤ t < +0.125
0 for +0.125 ≤ t < +0.375.

(3.38)

As before, we get the complex FS coefficients of y(t) as

Y0 =
1

0.5

∫ 0.375

−0.125
x(t)dt = 2

∫ 0.125

−0.125
dt = 0.5

Yk =
1

0.5

∫ 0.375

−0.125
x(t)e− jk�p t dt = 2

∫ 0.125

−0.125
e− j4kπ t dt

= 2
e− j4πkt

− j4πk

∣∣∣∣0.125

−0.125
=

sin(πk/2)
πk

. (3.39)

Therefore, we get (since sin(kπ) = 0)

Y0 = 0.5,

Y1 =
1
π , Y−1 =

1
π

Y2 = 0, Y−2 = 0

Y3 =
−1
3π , Y−3 =

−1
3π

Y4 = 0, Y−4 = 0

Y5 =
1

5π , Y−5 =
1

5π

...
...

We see that Y−k = Y ∗k = Yk , which should be so since the signal y(t) is real and
even-symmetric. The corresponding magnitude and phase spectrum are shown in
Figs. 3.4(b) and 3.4(c), respectively. Here again, the magnitude spectrum is sym-
metric. The phase spectrum, unlike in Example 1, is symmetric as the signal y(t)
is real and symmetric.
Example 3: Construct another signal z(t) (Fig. 3.5(a)) using the above x(t) as,

z(t) = x(t)− 0.5.

Note that z(t) is obtained by subtracting 0.5 from x(t) for all values of t . This
results in pulling down the waveform by 0.5. It is easy to see that the resulting z(t)
is a real and odd-symmetric signal with period Tp = 0.5. One period of z(t) is
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Figure 3.4. Periodic signal and its Fourier spectrum. (a) the periodic signal (real and

even-symmetric), (b) Magnitude spectrum, and (c) Phase spectrum.

given by,

z(t) =

{
−0.5 for −0.25 ≤ t < 0

+0.5 for 0 ≤ t < 0.25.
(3.40)

We get the complex FS coefficients of z(t) as,

Z0 =
1

0.5

∫ 0.25

−0.25
x(t)dt

= 2
∫ 0

−0.25
(−0.5)dt + 2

∫ 0.25

0
(0.5)dt = 0

Zk = 2
∫ 0.25

−0.25
x(t)e− jk�p t dt

= 2
∫ 0

−0.25
(−0.5)e− j4kπ t dt + 2

∫ 0.25

0
(0.5)e− j4kπ t dt

= −
e− j4πkt

− j4πk

∣∣∣∣0
−0.25

+
e− j4πkt

− j4πk

∣∣∣∣0.25

0
=

1− cos(πk)
j2kπ

. (3.41)
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Figure 3.5. Periodic signal and its Fourier spectrum. (a) the periodic signal (real and

odd-symmetric), (b) Magnitude spectrum, and (c) Phase spectrum.

Therefore, we get (since cos(π) = −1 and cos(2π) = 1)

Z0 = 0

Z1 =
1
jπ , Z−1 =

1
− jπ

Z2 = 0, Z−2 = 0

Z3 =
1

j3π , Z−3 =
1
− j3π

Z4 = 0, Z−4 = 0

Z5 =
1

j5π , Z−5 =
1
− j5π

...
...

Thus, we see that Z−k = Z∗k = −Zk , which should be so since the signal z(t)
is real and odd-symmetric. As can be seen from Fig. 3.5, the magnitude spectrum
(Fig. 3.5(b)) is once again symmetric and the phase spectrum (Fig. 3.5(c)) is anti-
symmetric. Also, the even indexed (i.e., k = 0,±2,±4, . . .) Fourier coefficients
are all zeros and the corresponding phases are also zeros.

§ Use the properties of FS to verify the above results for Yk and Zk . Isn’t this a much easier
approach?
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3.7 Limitations of Fourier Series

We shall now point out some limitations of Fourier series.

3.7.1 Gibbs Phenomenon

Let us define a signal x̃(t) as

x̃(t) =
N∑

k=−N

Xke jk�p t

where N is a positive integer. Based on the definition of FS in Eq. (3.4), we expect
x̃(t) to converge to x(t) as N →∞. Indeed, this happens if the signal x(t) is con-
tinuous, i.e., there are no discontinuities in the signal waveform (e.g., the triangular
periodic signal defined in Section 1.2.2).

However, the situation is different when the signal contains discontinuities, as
in a periodic square-wave signal as in Examples 1, 2 and 3). For such signals, as
N → ∞, x̃(t) converges to x(t) for all values of t except at points of disconti-
nuities. “Overshoots” appear near the discontinuities. This is known as Gibbs phe-
nomenon. As N → ∞, the height of the overshoot remains constant, while its
width approaches zero. Thus, as N →∞, the energy in the overshoots approaches
zero, and hence the power of x̃(t) approaches that of x(t).

§ Why does Gibbs phenomenon occur?

3.7.2 Dirichlet Conditions

For a periodic signal x(t) to be represented by Fourier series, it must satisfy the
following conditions (for any t0).

• It must be absolutely integrable over the interval [t0, t0 + Tp]. That is,∫ t0+Tp

t0
|x(t)| dt <∞. (3.42)

• It must have a finite number of maxima and minima over the interval [t0, t0+
Tp].

• It must have a finite number of discontinuities, all of finite size, over the
interval [t0, t0 + Tp].

These are known as Dirichlet conditions for existence of FS.
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So far, we have discussed the FS representation of periodic signals only. Almost
all of the real-life signals are aperiodic in nature. How do we find the Fourier rep-
resentation of such aperiodic signals? This is what is explained in the next chapter.

3.8 Concluding Remarks

We can make the following concluding remarks based on the material presented
above.

• Fourier series gives a frequency-domain representation of periodic signals.
It can be used to assess the effective bandwidth of periodic signals.

• Spectra of periodic signals are discrete-frequency in nature.
• The properties of Fourier series can be used to simplify the effort (integration,

computations etc.) necessary in evaluating the Fourier series coefficients.
• For real signals, the complex Fourier series can be expressed as a real Fourier

series where the basic/fundamental signals are real sinusoids instead of com-
plex sinusoids.

• For real even-symmetric or odd-symmetric signals, the Fourier series coeffi-
cients also have certain well defined symmetry properties. These properties
can be exploited to simplify the computations or to verify the solutions.

Exercises

3.1. The waveform shown in Fig. P3.1 is the periodic voltage of a signal gen-
erator. Find the Fourier coefficients and write down the terms of the series
through the 6th harmonic.

Figure P3.1.

3.2. The rectangular wave in Fig. P3.1 is modified as follows. The positive part
of the wave now extends from 0 to 1 and the negative part from 1 to 3 s,
and this pattern is repeated. In addition, the positive amplitude becomes
3Q/2 and the negative amplitude −Q/2.
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(a) Find the coefficients of the Fourier series.
(b) Write down the terms of the series through the third harmonic.

3.3. A square wave periodic signal is shown in Fig. P3.3 without an origin of
time.

(a) Select a time origin to make the resulting function even, and deter-
mine the Fourier coefficients. Choose the one period integration
interval in such a way that the evaluation of the integrals is simplified.
Note how the harmonic amplitudes vary with the number.

Figure P3.3.

(b) For the square wave in Fig. P3.3, choose the origin of time in order
to make the function an odd function and hence derive its Fourier
coefficients.

3.4. (a) Determine the coefficients of a series of sines representing the square
wave in Fig. P3.3 with a proper choice of the time origin.

(b) Confirm your result, using the cosine series found in problem 3.3(a)
with an appropriate shift of the time origin

3.5. The graph sketched in Fig. P3.4 represents half of a periodic function.
Sketch the second half of the function so that

(a) The function is even
(b) The function is odd

Figure P3.4.

(c) Carry out a development of the Fourier series similar to the one car-
ried out in the case of an even function to show that the bk coeffi-
cients in the Fourier series representation of an odd function can be
determined by integrating over only the positive half-period and then
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multiplying by 2. You should obtain the following result:

ak = 0

bk =
4
T

∫ T/2

0
f (t) sin(k�pt)dt

3.6. Consider the full-wave rectified sinusoid signal (xa(t)) in Fig. P3.5. Here,
A is the maximum amplitude of xa(t).

Figure P3.5.

(a) Derive an expression for the Fourier spectrum (Xk ’s for k =
0,±1,±2,±3, . . .) of the signal, xa(t) (Hint: Using the param-
eters provided in the figure, find an expression for the full-wave rec-
tified sinusoid signal xa(t) and then work on it).

(b) Determine the average power (p) of the signal, xa(t).
(c) Plot the power spectral density of xa(t) (i.e., the plot of |Xk |

2 as
a function of k = 0,±1,±2,±3, . . .). Show the plot for k =
0,±1,±2, and ±3.

(d) Prove the validity of Parseval’s relation (i.e., the average power esti-
mated directly from xa(t) is equal to the power estimated from the
Fourier coefficients) for this signal.

3.7. Find the Fourier series for the following functions:

(a) 8 sin(7t),
(b) cos(2t)+ sin(4t),
(c) sin2(t).

3.8. A periodic signal x(t) = x(−t) is real, symmetric about t = 0. It
has a period Tp =

2π
�p

. Show that its Fourier series, x(t) = . . . +

X−1e−1 j�p t
+ X0e0 j�p t

+ X1e1 j�p t
+ . . . , degenerates to become a

cosine series of the form, x(t) = a0+ 2a1cos(�pt)+ 2a2 cos(2�pt)+
. . . , where a0, a1, . . . are real.

3.9. A signal that is sometimes used in communications systems is the raised
cosine pulse. Figure P3.9 shows a signal x(t) that is a periodic sequence
of these raised cosine pulses with equal spacing between them.
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Figure P3.9.

(a) Show that the first three terms in the Fourier series expansion of x(t)
are given by,

x(t) =
1
2
+

8
3π

cos(π t)+
1
2

cos(2π t)+ . . .

3.10. Show that the Fourier series coefficients for the signal x(t) shown in
Fig. P3.10 below are given by,

Xk =
2

kπ

[
1− cos

(
kπ
2

)]
sin

(
kπ
2

)

Figure P3.10.

(a) Hence, show that

Xk =


2

kπ for k = . . . , 1, 5, 9, . . .
−

2
kπ for k = . . . , 3, 7, 11, . . .

0 for k = . . . , 0, 2, 4, 6, 8, . . .

(b) Then show that the Fourier series expansion for the signal can be
written as,

x(t) =
4
π

∞∑
m=0

(−1)m

2m + 1
cos ((2m + 1)π t).
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Chapter 4

Fourier Transform

In Chapter 3, we discussed Fourier series as a tool for frequency-domain representa-
tion of periodic signals. But, most of the signals in practical situations/applications
are non-periodic (or, aperiodic) in nature. In this chapter, we discuss the representa-
tion of non-periodic signals in terms of sinusoids. The resulting frequency-domain rep-
resentation is known as Fourier transform. Clearly, the Fourier transform approach
has much more practical relevance and use compared to Fourier series. As a special
case, we also consider periodic signals as well.

In this chapter, the following important points are discussed in detail.

• The role of sinusoids as basic building block for synthesizing signals.
• Representation of aperiodic signals using sinusoids.
• The continuous-frequency nature of the spectra of aperiodic signals, as compared

to the discrete-frequency spectra of periodic signals.
• Various properties of Fourier transform representation, and their use in practice.
• Concept of impulse function and its use in signal processing.
• Fourier transform of periodic signals.
• Fourier transform as a fundamental tool for spectral estimation.

51
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4.1 Introduction to Fourier Transform

Let x(t) be a periodic signal with period Tp. Then, from our discussion of Fourier
series in Chapter 3, we may recall the following points (with f p =

1
Tp

and
�p = 2π f p).

• Fourier series representation of x(t) is given by,

x(t) =
∞∑

k=−∞

Xke jk�p t , (4.1)

Xk =
1

Tp

∫ T/2

−Tp/2
x(t)e− jk�p t dt, (4.2)

for k = 0,±1,±2, . . . .
• Complex sinusoids of frequencies

{· · · ,−3�p,−2�p,−�p, 0, �p, 2�p, 3�p, · · · }

and corresponding (complex) amplitudes

{· · · , X−3, X−2, X−1, X0, X1, X2, X3, · · · }

are used as component signals to express the signal x(t).
• The Fourier coefficient Xk gives the strength (i.e., magnitude and phase) of

the kth harmonic e jk�p t in the given signal x(t). In other words, Fourier
series gives a frequency-domain representation of periodic signals.

• The magnitude spectrum (i.e., |Xk | vs k), which is the distribution of the
amplitudes of the sinusoids as a function of frequency, gives explicit informa-
tion on the frequencies present in x(t) (Note: k indicates the frequency k�p).
The magnitude spectrum can be used to assess the effective bandwidth of the
signal. Effective bandwidth refers to the maximum frequency present in x(t)
with non-negligible amplitude.

But, Fourier series representation is applicable for periodic signals only. Since most
of the practical signals we deal with are non-periodic in nature, a natural question
arises:

How to deal with non-periodic signals?

The answer to this question is Fourier transform.

§ Fourier transform is the approach to obtain frequency-domain representation of non-
periodic signals.
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4.2 Fourier Transform: Development and Interpretation

Let x(t) be a non-periodic signal. Note that a non-periodic signal can be consid-
ered as a periodic signal where the period is infinity. We shall use this principle for
deriving Fourier transform based on our knowledge of Fourier series.

Let us construct a periodic signal x p(t) (shown in Fig. 4.1(b)) with period Tp
by periodically repeating the non-periodic signal x(t) (shown in Fig. 4.1(a)) as1

x p(t) = x(t) for − Tp
2 < t < Tp

2

and x p(t + mTp) = x p(t) for any integer m.
(4.3)

Hence, we can write a Fourier series representation for x p(t) as

x p(t) =
∞∑

k=−∞

Xke jk�p t (4.4)

Xk =
1

Tp

∫ T0/2

−T0/2
x p(t)e− jk�p t dt, (4.5)

for k = 0,±1,±2, . . . . Now, based on Eqs. (4.3), (4.4) and (4.5), we have the
following remarks (with f p =

1
Tp

).

Figure 4.1. Construction of the periodic signal, x p(t) of period Tp shown in (b), using the

non-periodic signal, x(t) (a).

1. Without loss of generality, it is assumed that x(t) = 0 for |t | > Tp
2 .
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• As Tp → ∞ (or, f p → 0), the periodic signal x p(t) will approach the
non-periodic signal x(t).

• Let f1 < f < f2 denote a small frequency range. The number of complex
sinusoids (i.e., e jk�p t ) in x p(t) which lie in this range is given by f2− f1

f p
.

Then, consider the following.

– As Tp →∞, the number of complex sinusoids that fall within the small
frequency range tends to infinity.

– The power of the signal is given by the sum of |Xk |
2 of all the sinusoids

that make up the signal. Since the power of a given signal x(t) is fixed,2 it
is easy to see that the values of |Xk |

2 must tend to zero as3 Tp →∞.
– Therefore, we cannot use Xk to denote the frequency-domain representa-

tion of x p(t) (or, x(t)) as Tp →∞.

• Let us define

X (k f p)
1
= Tp Xk =

Xk

f p
⇒ Xk = f p X (k f p). (4.6)

Then, as Tp →∞, we have

x p(t)→ x(t), f p → d f, k f p → f,

Xk → X ( f )d f, Xk Tp → X ( f ),
(4.7)

where d f is an arbitrarily small frequency (almost zero) and f is the
continuous-frequency variable.

§ Examine the units of Xk and X ( f ).

• Using Eq. (4.6), we can rewrite Eqs. (4.4) and (4.5) as

x p(t) =
∞∑

k=−∞

[
f p X (k f p)

]
e j2πk f p t (4.8)

Tp Xk =

∫ Tp/2

−Tp/2
x p(t)e− j2πk f p t dt. (4.9)

2. The power of a non-periodic finite-energy signal is zero.

3. For example, consider the frequency region from 100Hz to 110Hz, and the following values of f p : 10Hz,
1Hz, 0.1Hz, 0.01Hz, 0.001Hz, 0.0001Hz, . . . . Then, as f p keeps decreasing, the number of harmonics
that fall between 100Hz and 110Hz keeps increasing.
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With Tp →∞ and substituting Eq. (4.7) in Eqs. (4.8) and (4.9), we get,

x(t) =
∫
∞

−∞

[X ( f )d f ] e j2π f t
=

∫
∞

−∞

X ( f )e j2π f t d f (4.10)

X ( f ) =
∫
∞

−∞

x(t)e− j2π f t dt. (4.11)

Eq. (4.11) is called the forward Fourier transform (the analysis equation). That
is, getting the frequency-domain X ( f ) from the time-domain x(t). Equation
(4.10) is called the inverse Fourier transform (the synthesis equation). That
is, getting the time-domain x(t) from the frequency-domain4 X ( f ).

We have the following remarks on the Fourier transform representation given in
Eqs. (4.10) and (4.11).

• Complex sinusoids of all frequencies (i.e., −∞ < f < ∞; continuous-
variable) are required for representing non-periodic signals. But the Fourier
transform X ( f ) will be different for each signal.

• The amplitudes of the complex sinusoids used in Fourier transform are given
by X ( f )d f , compared to Xk in Fourier series (Note: d f is arbitrarily close
to zero).

• Because X ( f ) is a complex number, we can express it as

X ( f ) = |X ( f )|e jθ( f ) (4.14)

where |X ( f )| =
√

X2
r ( f )+ X2

i ( f ) (4.15)

and θ( f ) = tan−1
(

X i ( f )
Xr ( f )

)
(4.16)

Here, X ( f ) = Xr ( f )+ j X i ( f ) with Xr ( f ) and X i ( f ) being the real and
imaginary parts, respectively, of X ( f ).

– Magnitude Spectrum of x(t): It is the plot of |X ( f )| vs f (i.e., distribution
of magnitude vs frequency).

4. The inverse and forward Fourier transform equations can also be expressed in terms of the radian frequency
variable � = 2π f as,

x(t) =
1

2π

∫
∞

−∞

X
(
�

2π

)
e j�t d� (4.12)

X
(
�

2π

)
=

∫
∞

−∞

x(t)e− j�t dt. (4.13)
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– Phase Spectrum of x(t): It is the plot of θ( f ) vs f (i.e., distribution of
phase vs frequency).

• The Fourier transform X ( f ) gives the frequency composition of the given
signal x(t). That is,

§ By observing the function X ( f ), we can know which all frequencies (or, frequency
regions) are required to construct the signal x(t).
§ Fourier transform gives a frequency-domain representation of non-periodic signals.

• Energy (density) Spectrum of x(t): As shown earlier in Chapter 2, we get the
energy of the signal x(t) as (see Eq. (2.4)),

e =
∫
∞

−∞

|x(t)|2dt =
∫
∞

−∞

|X ( f )|2d f. (4.17)

Eq. (4.17) is known as the Parseval’s Theorem for non-periodic signals, which
says that we can use either time-domain expression or frequency-domain
expression for computing the energy of a signal, depending upon which is
easier to use.

Therefore, the energy density spectrum (i.e., distribution of energy vs
frequency) of x(t) is given by |X ( f )|2. Consequently, the energy of x(t) in a
frequency range f3 < f < f4 can be obtained by,

∫ f4

f3

|X ( f )|2d f. (4.18)

Example: Consider an example of a rectangular pulse signal (‘x(t) = rect(t)’,
shown in Fig. 4.2(a)) defined as follows:

x(t) =
{

1 for |t | ≤ 0.5
0 for |t | > 0.5.

(4.19)

Its Fourier transform is calculated as,

X ( f ) =
∫
∞

−∞

x(t)e− j2π f t dt

=

∫ 0.5

−0.5
e− j�t dt =

[
e− j�t

− j�

]0.5

−0.5
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Figure 4.2. FT of rectangular pulse: (a) x(t) = rect(t), and (b) Fourier Spectrum (X ( f ) =
sinc( f )).

=
e− j0.5�

− e j0.5�

− j�
=
−2 j sin(0.5�)
− j�

=
sin(0.5�)

0.5�
=

sin(π f )
π f

= sinc( f ). (4.20)

Figure 4.2(b) shows sinc( f ) as a function of frequency ( f ). It can be seen
that the maximum of sinc( f ) is 1.0 and it occurs at f = 0. It can also be seen
that the first zero crossings (on either side of the frequency axis) of sinc( f ) is
at 1 and −1, respectively, which corresponds to the reciprocal of the width (T )
of the rectangular pulse. In this case, T = 1. The subsequent zero crossings are at
frequencies fk = k/T ; k = ±2,±3, . . . . The width of the main lobe of sinc( f )
is 2

T . As T increases, the main lobe width decreases and vice versa. In the limiting
case when T →∞, the sinc function becomes an impulse function.

4.3 Properties of Fourier Transform

The FT theorems and properties are tabulated and is available in Appendix B. We
shall now briefly look at some of the important properties of Fourier transform
(FT). Let x(t) and y(t) be two non-periodic signals with FTs X ( f ) and Y ( f ),
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respectively. That is,

x(t) =
∫
∞

−∞

X ( f )e j2π f t d f, y(t) =
∫
∞

−∞

Y ( f )e j2π f t d f

X ( f ) =
∫
∞

−∞

x(t)e− j2π f t dt, Y ( f ) =
∫
∞

−∞

y(t)e− j2π f t dt.

4.3.1 Linearity

Let us construct a new signal z(t) as the linear combination of x(t) and y(t).
That is,

z(t) = αx(t)+ βy(t), (4.21)

where α and β are two scalars (real or complex). Then, we can obtain the FT of
z(t) as

Z( f ) =
∫
∞

−∞

z(t)e− j2π f t dt

=

∫
∞

−∞

[αx(t)+ βy(t)] e− j2π f t dt

=

∫
∞

−∞

αx(t)e− j2π f t dt +
∫
∞

−∞

βy(t)e− j2π f t dt

= α

∫
∞

−∞

x(t)e− j2π f t dt + β
∫
∞

−∞

y(t)e− j2π f t dt

= αX ( f )+ βY ( f ). (4.22)

Thus, FT of a linear combination of signals is given by the corresponding linear com-
bination of the FTs of the individual signals.

4.3.2 Time Shifting

Let z(t) = x(t − t0) where t0 is an arbitrary time offset. Then, the FT of z(t) is
given by

Z( f ) =
∫
∞

−∞

z(t)e− j2π f t dt =
∫
∞

−∞

x(t − t0)e− j2π f t dt

=

∫
∞

−∞

x(u)e− j2π f (u+t0)du : u = t − t0
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= e− j2π f t0
∫
∞

−∞

x(u)e− j2π f udu

= e− j2π f t0 X ( f ). (4.23)

Let θz( f ) and θx ( f ) be the phase spectra of z(t) and x(t), respectively. Then, we
can express Eq. (4.23) as

|Z( f )|e jθz( f )
= e− j2π f t0 |X ( f )|e jθx ( f )

= |X ( f )|e j (θx ( f )−2π f t0) (4.24)

H⇒ |Z( f )| = |X ( f )|, and (4.25)

θz( f ) = θx ( f )− 2π f t0. (4.26)

Thus, we see that shifting a signal in time-domain results in a phase change in the
frequency-domain, while the magnitude spectrum remains unaffected. Note also that
this phase change is a linear function of frequency.

4.3.3 Frequency Shifting or Modulation

Let z(t) = e j2π f0t x(t) where f0 is a given non-zero frequency. Then, we get its
FT as

Z( f ) =
∫
∞

−∞

[
e j2π f0t x(t)

]
e− j2π f t dt

=

∫
∞

−∞

x(t)e− j2π( f− f0)t dt

= X ( f − f0), (4.27)

by the definition of FT.
The frequency shifting property of the FT is illustrated in Fig. 4.3. It can be seen

that the spectrum of z(t) is a frequency shifted (to the right in the frequency axis)
version of |X ( f )|. On the other hand, if the frequency shift is by − f0, then the
spectrum would shift to the left in the frequency axis. The corresponding spectrum
would be, Z( f ) = X ( f + f0). As an example, let f0 = 1 MHz. Then, Eq. (4.27)
implies that multiplying x(t) by e j2π f0t results in shifting the spectrum to the right
by 1 MHz. This principle is used in communication systems for shifting a signal
from one frequency range to another for transmission purpose.
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Figure 4.3. Illustration of ‘frequency shifting’ property of the Fourier transform.

(a) spectra of x(t), and (b) spectra of z(t) = e j2π f0 t x(t).

4.3.4 Time Reversal

Let z(t) = x(−t). Then, we get

Z( f ) =
∫
∞

−∞

x(−t)e− j2π f t dt

= −

∫
−∞

∞

x(u)e j2π f udu: u = −t

=

∫
∞

−∞

x(u)e j2π f udu =
∫
∞

−∞

x(u)e− j2π(− f )udu

= X (− f ). (4.28)

That is, reversing a signal in time-domain results in reversing its spectrum in the
frequency-domain.

4.3.5 Time Scaling

Let z(t) = x(t/a) where a is a real number. This is called time-scaling. This results
in z(t) being an expanded or compressed version of 5 x(t).

5. To see this, define t ′ = t/a and, for example, consider the interval −10 < t < 10. If a = 2, then this
interval in t corresponds to the interval −5 < t ′ < 5 in t ′. Similarly, if a = 0.5, it corresponds to the
interval −20 < t ′ < 20 in t ′. Thus, |a| > 1 results in expanding the signal x(t) and |a| < 1 results in
compressing the signal x(t).
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The FT of z(t) is derived for the case of a > 0 and is given by,

Z( f ) = aX (a f ). (4.29)

Let us now consider the case when a < 0. Noting that a = −|a| when a < 0, we get

Z( f ) =
∫
∞

−∞

x(t/a)e− j2π f t dt

= a
∫
−∞

∞

x(u)e− j2π f audu : u = t/a

= −|a|
∫
−∞

∞

x(u)e− j2π(a f )udu

= |a|
∫
∞

−∞

x(u)e− j2π(a f )udu

= |a|X (a f ). (4.30)

Comparing Eqs. (4.29) and (4.30), we see that we can take |a|X (a f ) as the FT of
the time-scaled signal x(t/a) for any a (i.e., a > 0 or a < 0).

Note that X (a f ) results in scaling in the frequency-domain. In particular, we
note the following:

• Case 1: |a| > 1 - Results in expanding x(t) in time-domain and compressing
X ( f ) in frequency-domain.

• Case 2: |a| < 1 - Results in compressing x(t) in time-domain and expanding
X ( f ) in frequency-domain.

Example: Consider an example of a rectangular pulse (‘x(t) = rect(t)’)

(Fig. 4.4(a)) and its time scaled pulse z(t) = x
( t

1.5

)
as shown in Fig. 4.4(b) below.

The first rect signal has a width of T = 1 second and the second one has a width
of T = 1.5 seconds. The corresponding spectra are shown in Figs. 4.4(c) and
4.4(d), respectively. As explained earlier, z(t) is a time-expanded version of x(t)
and correspondingly, its FT, Z( f ) is a frequency compressed version of X ( f ).
This is clear from the two sinc functions in the figure. The maximum ampli-
tude of the sinc function in Fig. 4.4(c) is 1.0 and the zero crossings of it occurs
in frequencies fk = k/1.0; k = ±1,±2, . . .. For the second sinc func-
tion in Fig. 4.4(d), which corresponds to the FT of time-expanded rect function
(z(t)), the frequency compression is very clear. Its zero crossings are at frequencies,
fk = k/1.5; k = ±1,±2, . . . . The maximum amplitude of the sinc function
is 1.5 (see Eq. (4.30)), which is the time-scaling factor.
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Figure 4.4. FT of rectangular pulses: (a) rect(t) (b) rect( t
1.5 ), (c) Fourier spectrum of

rect(t), and (d) Fourier spectrum of rect( t
1.5 ).

4.3.6 Time Scaling and Delay

Let z(t) = x
( t−t0

a

)
where t0 and a are real numbers. Clearly, z(t) is a time-scaled

and time-shifted version of x(t). The FT of z(t) (assuming a > 0 for convenience)
is given by

Z( f ) =
∫
∞

−∞

x
(

t − t0
a

)
e− j2π f t dt

= a
∫
∞

−∞

x(u)e− j2π f (au+t0)du : u = (t − t0)/a

= ae− j2π f t0
∫
∞

−∞

x(u)e− j2π(a f )udu

= ae− j2π f t0 X (a f ). (4.31)

As before, if a < 0, then we would get,

Z( f ) = |a|e− j2π f t0 X (a f ). (4.32)
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Figure 4.5. Amplitude scaled and shifted rectangular function.

Example: Let us apply the time scaling and delaying to the problem of a rectangular
pulse as given in the following expression:

z(t) =
{

7 for 2 ≤ t ≤ 4
0 for t < 2, t > 4.

(4.33)

Figure 4.5 illustrates the given function z(t). Clearly, this signal is a time-scaled
and time-shifted version of the standard rect(t) function which is defined as

rect(t) =
{

1 for −0.5 ≤ t ≤ 0.5
0 for t < −0.5, t > 0.5.

(4.34)

So, we can express z(t) as

z(t) = 7rect

(
t − t0

a

)
. (4.35)

Comparing the waveforms of z(t) and rect(t), we see that the points t = −0.5
and t = 0.5 in rect(t) correspond to t = 2 and t = 4, respectively, in z(t).
That is,

(t − t0)/a = −0.5 when t = 2 (4.36)

(t − t0)/a = +0.5 when t = 4. (4.37)

So, we can determine t0 and a by solving the equations:

2 = −0.5a + t0 and 4 = 0.5a + t0

which results in t0 = 3 and a = 2. Therefore, we get

z(t) = 7rect

(
t − 3

2

)
. (4.38)



64 Fourier Series

Since the FT of rect(t) is sinc( f ), we can get the FT of z(t) using Eq. (4.31) as

Z( f ) = 7
[
2e− j2π f 3sinc(2 f )

]
= 14e− j6π f sinc(2 f ). (4.39)

4.3.7 Time Differentiation

Let z(t) = dx(t)
dt . To determine the FT of z(t), recall from Eq. (4.10) the inverse

FT expression:

x(t) =
∫
∞

−∞

X ( f )e j2π f t d f. (4.40)

Differentiating both sides of this equation, we get

dx(t)
dt
=

∫
∞

−∞

X ( f )
[
e j2π f t ( j2π f )

]
d f

=

∫
∞

−∞

[ j2π f X ( f )] e j2π f t d f. (4.41)

Eq. (4.41) is in the form of a standard inverse FT where the time-domain signal is
dx(t)

dt with its corresponding FT j2π f X ( f ). Therefore, we get the FT of z(t) as,

Z( f ) = j2π f X ( f ). (4.42)

From Eq. (4.42), we note that differentiation in time-domain results in attenuating
low-frequency part of the spectrum and amplifying high-frequency part of the spectrum
in frequency-domain. In particular,6 note that Z(0) = 0 whether or not X (0) = 0
at f = 0.

4.3.8 Duality

If X ( f ) is the FT of x(t), then the FT of X (t) is given by7 x(− f ). Similarly, the
FT of X (−t) is given by x( f ). Using this, we can easily see that the FT of sinc(t)
is rect( f ), since we know that the FT of rect(t) is sinc( f ).
Example: Consider an example of a rectangular pulse signal (‘X ( f ) = rect(f )’,
in the frequency domain as shown in Fig. 4.6(a)) defined as follows:

X ( f ) =
{

1 for | f | ≤ 0.5
0 for | f | > 0.5.

(4.43)

6. Note that X (0) is the total area under x(t) (i.e.,
∫
∞

−∞
x(t)dt).

7. Prove this by applying simple change of variables in Eq. (4.11).
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Figure 4.6. FT of rectangular pulse in the frequency domain: (a) rect( f ), (b) Fourier spec-

trum (sinc(t)).

By taking the inverse Fourier transform, we get

x(t) =
∫
∞

−∞

X ( f )e j2π f t d f

=

∫ 0.5

−0.5
e jωt d f =

[
e jωt

j2π t

]0.5

−0.5

=
e j2π0.5t

− e j2π0.5t

j2π t
=

2 j sin(π t)
j2π t

=
sin(π t)
π t

= sinc(t). (4.44)

The resulting sinc function is plotted in Fig. 4.6(b). This explains the duality
property of the FT.

4.3.9 Symmetric Signals

As in the case of Fourier series, the FT X ( f ) also has some special features when
x(t) is real and/or symmetric. We list them below:

• Real x(t): That is, x∗(t) = x(t). Then, we will have X (− f ) = X∗( f ).
This results in even-symmetric magnitude spectrum and odd-symmetric phase
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spectrum:

|X (− f )| = |X ( f )|, θ(− f ) = −θ( f ). (4.45)

• Real and Even-Symmetric x(t): That is, x∗(t) = x(t) and x(−t) = x(t).
Then, we will have,

X (− f ) = X∗( f ) = X ( f ). (4.46)

That is, X ( f ) is real and even-symmetric. The phase θ( f ) is either 0 or±π .
• Real and Odd-Symmetric x(t): That is, x∗(t) = x(t) and x(−t) = −x(t).

Then, we will have,

X (− f ) = −X ( f ) = X∗( f ). (4.47)

That is, X ( f ) is imaginary and odd-symmetric. The phase θ( f ) is ±π/2.
• Real X ( f ): That is, X∗( f ) = X ( f ). Then, we will have,

x(−t) = x∗(t). (4.48)

That is, x(t) is conjugate-symmetric.
• Real and Even-Symmetric X ( f ): That is, X∗( f ) = X ( f ) and X (− f ) =

X ( f ). Then, we will have,

x(−t) = x∗(t) = x(t). (4.49)

That is, x(t) is real and even-symmetric.

A summary of the symmetry properties for the FT is shown in Fig. 4.7.

4.4 Fourier Transform of Periodic Signals

Recall that the main motivation for the development of FT is that Fourier series
cannot be used to obtain frequency-domain representation of non-periodic sig-
nals. While FT is applicable for non-periodic signals, we could ask the following
question:

Is Fourier transform also applicable for periodic signals?

The answer is ‘yes’ and we look into some details of this in this section.
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Figure 4.7. Summary of symmetry properties of FT.

4.4.1 Difficulty with Sinusoids

Consider a complex sinusoid given by,

x(t) = Ae j (2π f0t+θ)
= Ãe j2π f0t , (4.50)

where A, f0 and θ are the real-amplitude, frequency and phase, respectively, and
Ã = Ae jθ . Then, it is easy to see that the Fourier series coefficients of x(t) are
given by,

Xk =

{
Ã for k = 1
0 for k 6= 1.

(4.51)

That is, the frequency-domain representation of a complex sinusoid has only one
non-zero value and this corresponds to the frequency of the sinusoid.

We may also apply the standard FT approach for determining the FT of the
complex sinusoid given above. Let X ( f ) denote its FT. Based on our knowledge
of the signal Ãe j2π f0t and its Fourier series, we know that X ( f ) can be non-zero
only at the frequency f = f0. Further, we also know that its FT X ( f ) should obey
the following (see Eq. (4.17))

e =
∫
∞

−∞

|x(t)|2dt =
∫
∞

−∞

|X ( f )|2d f, (4.52)

because of the Parseval’s theorem. On the other hand, for the complex sinusoid
Ãe j2π f0t , the energy is clearly infinity. This implies that its FT X ( f ) at f = f0
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Figure 4.8. Impulse function.

should be also infinity! (since X ( f ) in this case is non-zero only at f = f0).
In other words, we should have

lim
d f→0

|X ( f0)|
2d f = ∞ (4.53)

where d f is an arbitrarily small frequency interval around f = f0. To handle this
very special and difficult situation, we need to understand the concept behind the
so-called impulse function.

4.4.2 Impulse Function

The impulse function (denoted by δ(t)) and illustrated in Fig. 4.8 is defined as,

δ(t) =
{

1.0 for t = 0
0 elsewhere

(4.54)

We also note that ∫
∞

−∞

δ(t)dt = 1. (4.55)

So, δ(t) is a function having infinite amplitude and zero width such that its area is
equal to 1. An impulse sitting at t = t0 is given by δ(t − t0). We may also define
the impulse function using a limiting form as8

lim
1→0

{
δ(t) =

1
1

for 0 ≤ t < 1

}
. (4.57)

8. The definitions given in Eqs. (4.54), (4.55), and (4.57) can be generalized to the case of the impulse δ(t−t0)
sitting at t = t0 as

δ(t − t0) = 0 for t 6= t0 (4.56a)∫
∞

−∞
δ(t − t0)dt = 1 (4.56b)

lim
1→0

{
δ(t − t0) = 1

1 for t0 ≤ t < t0 +1
}
. (4.56c)
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4.4.3 Properties of Impulse Function

Based on the above introduction to impulse function, we can list the following
properties.

• Unit Area: As defined by Eq. (4.55), the area under an impulse function is
equal to 1 (for any t0):

∫
∞

−∞

δ(t − t0)dt = 1. (4.58)

• Sampling Property: By multiplying a signal with an impulse function, we can
obtain the value of the signal at the location of the impulse. That is,

x(t)δ(t − t0) = x(t0)δ(t − t0) = x(t0). (4.59)

Consequently, a discrete-time signal x(nTs) can be obtained from a
continuous-time signal x(t) by multiplying x(t) with a train (or, sequence)
of impulses spaced Ts apart. That is,

y(t) = x(t)×
∞∑

n=−∞

δ(t − nTs) =

∞∑
n=−∞

x(nTs)δ(t − nTs)

= · · · + x(−2Ts)δ(t + 2Ts)+ x(−Ts)δ(t + Ts)+ x(0)δ(t)

+x(Ts)δ(t − Ts)+ x(2Ts)δ(t − 2Ts)+ · · · (4.60)

That is,

y(t) =
{

x(kTs)δ(t − kTs) if t = kTs
0 if t 6= kTs .

(4.61)

for k = . . . ,−2,−1, 0, 1, 2, . . . and Ts is the sampling interval.9 Thus, y(t)
is a discrete-time signal, that is, non-zero only at the discrete-time instants
kTs , k = 0,±1,±2, . . . .

9. There is yet another property known as shifting property of impulse function. We will study this later.
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• Flat Fourier Transform: The FT of δ(t − t0) is given by10

F [δ(t − t0)] =
∫
∞

−∞

δ(t − t0)e− j2π f t dt

=

∫
∞

−∞

δ(t − t0)e− j2π f t0dt : Eq. (4.59)

= e− j2π f t0
∫
∞

−∞

δ(t − t0)dt

= e− j2π f t0, (4.62)

because of Eq. (4.58). Thus, the magnitude of the FT of δ(t − t0) is flat
over the complete frequency range (−∞ < f < ∞) and its phase is given by
−2π f t0.

4.4.4 Fourier Transform of Sinusoids

Since the FT of a time-domain impulse δ(t − t0) is e− j2π f t0 , let us examine what
is the inverse FT of an impulse δ( f − f0) in frequency-domain, where f0 is a
frequency offset. Using Eq. (4.10), we obtain11

F−1 [δ( f − f0)] =
∫
∞

−∞

δ( f − f0)e j2π f t d f

=

∫
∞

−∞

δ( f − f0)e j2π f0t d f : Eq. (4.59)

= e j2π f0t
∫
∞

−∞

δ( f − f0)d f

= e j2π f0t , (4.63)

which is nothing but a complex sinusoid of frequency f0. Thus,

§ The FT of a complex sinusoid of frequency f0 is an impulse δ( f − f0) located at frequency
f0.

Generalizing this to the complex sinusoid x(t) = Ãe j2π f0t given in Eq. (4.50), we
get its FT as

F
[

Ãe j2π f0t
]
= Ãδ( f − f0). (4.64)

10. The notation ‘F [x(t)]’ refers to the ‘Fourier transform of x(t)’.

11. The notation ‘F−1 [X ( f )]’ refers to the ‘inverse FT of X ( f )’.
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Since the FT given in Eq. (4.64) is an impulse function (which has infinite
amplitude), we see that this satisfies Eq. (4.53).

4.4.5 Fourier Transform of Periodic Signals

We shall now use the result in Eq. (4.64) to determine the FT of any periodic signal.
Let x(t) be a periodic signal with period Tp =

1
f p

, where f p is the frequency of
the periodic signal, and Fourier series representation given by

x(t) =
∞∑

k=−∞

Xke j2πk f p t . (4.65)

Since e j2πk f p t is a complex sinusoid of frequency k f p, using the linearity property
of FT, we can get the FT of x(t) as

X ( f ) = F [x(t)] = F

[
∞∑

k=−∞

Xke j2πk f p t

]

=

∞∑
k=−∞

F
[

Xke j2πk f p t
]

=

∞∑
k=−∞

XkF
[
e j2πk f p t

]

=

∞∑
k=−∞

Xkδ( f − k f p). (4.66)

That is,

X ( f ) =
{

Xkδ( f − k f p) if f = k f p
0 if f 6= k f p.

(4.67)

for k = . . . ,−2,−1, 0, 1, 2, . . . and f p is the fundamental frequency. Thus, we
see that

§ The FT of a periodic signal exists only at frequencies corresponding to its harmonics k f p.
For this reason, such spectra are also known as line spectra.

In other words, knowledge of the Fourier series coefficients is sufficient to determine the
FT of periodic signals.
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4.5 Dirichlet Conditions

A signal x(t) that satisfies the following conditions is guaranteed to have a Fourier
transform:

• It must be absolutely integrable. That is,

∫
+∞

−∞

|x(t)| dt <∞. (4.68)

• It must have only finite number of maxima and minima within any finite
interval.

• It must have only finite number of discontinuities, all of finite size, within
any finite interval.

These conditions are known as Dirichlet conditions for existence of FT.

4.6 Fourier Transform Summary

In Table 4.1, we summarize the key properties of Fourier transform for continuous-
time signals.

In Table 4.2, we give the Fourier transforms of some of the most commonly used
signals.

Recall that u(t) is the unit step function which is defined as

u(t) =
{

1 for t ≥ 0
0 for t < 0

(4.69)

Therefore, the meaning of the expression e−at u(t) is as follows:

e−at u(t) =
{

e−at for t ≥ 0
0 for t < 0.

(4.70)

Thus, the one-line expression e−at u(t) is an easier way to express the 2-line equa-
tion given by Eq. (4.70).
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Table 4.1. Properties of Fourier transform.

Property Time domain Frequency domain

Linearity αx(t)+ βy(t) αX ( f )+ βY ( f )

Time shifting x(t − t0) e− j2π f t0 X ( f )

Time Scaling x (t/a) |a|X (a f )

Time shifting x
( t−t0

a

)
|a|e− j2π f t0 X (a f )

and Time Scaling

Time reversal x(−t) X (− f )

Frequency shifting e j2π f0t x(t) X ( f − f0)

Modulation x(t) cos(2π f0t)
X ( f − f0)+ X ( f + f0)

2
Modulation x(t) sin(2π f0t)

X ( f − f0)− X ( f + f0)

2 j

Differentiation
dx(t)

dt
j2π f X ( f )

Real Signal x∗(t) = x(t) X (− f ) = X∗( f )

Real and x∗(t) = x(t) = x(−t) X (− f ) = X∗( f ) = X ( f )

Even-Symmetric

Real and x∗(t) = x(t) = −x(−t) X (− f ) = X∗( f ) = −X ( f )

Odd-Symmetric

Table 4.2. Fourier transform of selected signals.

Time domain Frequency domain

x(t) X ( f ) =
∫
∞

−∞

x(t)e− j2π f t dt

rect(t) sinc( f ) =
sin(π f )
π f

δ(t) 1

δ(t − t0) e− j2π f t0

e j2π f0t δ( f − f0)

e−at u(t)
1

a + j2π f
if a > 0
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4.7 Concluding Remarks

• Fourier transform can be used to give frequency-domain representation of
non-periodic as well as periodic signals. In contrast to this, Fourier series can
be used only for periodic signals.

• Fourier transform of non-periodic signals are continuous in the frequency-
domain, whereas that of periodic signals is discrete (line spectra).

• Fourier transform can be used to assess the effective bandwidth of signals.
• The various properties of Fourier transform can be used to simplify the effort

(integration, computations etc.) necessary in evaluating the Fourier transform
or to verify the solutions.

Exercises

4.1. Consider the continuous signals shown in Fig. P4.1.

Figure P4.1.

(a) Find the spectrum of the signals in Fig. P4.1 using exclusively (only)
the spectra of basic signals in combination with the appropriate prop-
erties of the Fourier transform.

(b) Sketch roughly the amplitude spectra of x1(t), x2(t), x3(t) and x4(t).
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4.2. The analog signal in Fig. P4.2(a) represents the impulse response of a
biological system. The amplitude of the corresponding transfer function
(H( f ), the Fourier transform of the impulse response h(t)) is determined
in two ways, and the results are depicted in Fig. P4.2(b) and Fig. P4.2(c),
respectively.

Figure P4.2.

Express |H( f )| for f = 0 of h(t). Using the result argue which of the
results is incorrect.

4.3. An ultrasound system for investigation of the blood flow in the body uses
a pulse given by:

p(t) = v(t) sin(2π f0t).

Here, f0 is the frequency of the pulse and v(t) is the Hamming window
given by,

v(t) =
{

0.54+ 0.46 cos
(
π t

T

)
for |t | < T

0 otherwise
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The spectrum of v(t) is

V ( f ) =
1.08− 0.64T 2 f 2

2π f
(
1− 4T 2 f 2

) sin(2π f T ).

The window (v(t)) and its amplitude spectra (V ( f )) are shown in
Fig. P4.3.

Figure P4.3.

Write down how one can find the spectrum P( f ) of p(t) out from
V ( f ) by using appropriate properties of the Fourier transform. Show that
P( f ) is concentrated around f = ± f0, when T � 1

f0
.

4.4. To estimate the blood velocity, two identical pulses (p(t)) are transmit-
ted one after the other separated by Tpr f seconds. Two signals y1(t) and
y2(t) are received, respectively. For the sake of simplicity, it is assumed
that the zero time instance (t = 0) for the two signals y1(t) and y2(t)
coincides with the time instance when the respective pulses have been
transmitted. The signal reflected by the blood can be approximated with
a single reflector with reflection coefficient a, such that the received signal
from the first pulse transmission can be written as:

y1(t) = ap(t − t0)+ gv(t),

where a and t0 are real positive constants. gv(t) is the signal received
from the tissue surrounding the blood. At the next pulse transmission,
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the received signal is:

y2(t) = ap(t − t0 − ts)+ gv(t),

where

ts =
2Vb

c
Tpr f .

Vb is the speed of the blood, c is the speed of propagation of ultrasound
signal. Figure P4.4 shows the two received signals.

Figure P4.4.

(a) The signal from the tissue, gv(t) is much stronger than the signal
from the blood. To remove its influence, the two received signals are
subtracted from each other. The resulting signal is denoted as d(t).
Show that gv(t) is not present in the signal d(t). Write down the
spectrum D( f ) expressed through P( f ), a, t0 and ts .

(b) In the last question, we assume that Vb = 0.75m/s and c = 1500
m/s. For real applications, Tpr f = 200µs, f0 = 5Mhz, and T =
2µs. Explain why d(t) has no spectral components for | f | = f0,
for the chosen parameters. Derive and give your reasons, that if one
chooses other values for T and Tpr f , then this situation can be
avoided.
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4.5. Determine the signals that have the following Fourier transform (FT):

(a)

X (�) =
{

0 for 0 ≤ |�| ≤ �p
1 for �p ≤ |�| ≤ π.

(b)

X (�) = cos2(�).

(c)

X (�) =
{

1 for �p −
δ�
2 ≤ |�| ≤ �p +

δ�
2

0 otherwise.

(d) For the spectrum given in Fig. P4.5 below:

Figure P4.5.

4.6. A single pulse emitted by a medical device for imaging purpose is shown
in Fig. P4.6. Suggest a mathematical expression for the pulse. Write down
a formula from which its energy can be calculated. Suggest a reasonable
upper bound for this energy. What is the pulse’s power?

4.7. The pulse in Question 4.6 is found to have a one-sided magnitude spec-
trum as shown in Fig. P4.7. Suggest a value for f0. Will the phase spec-
trum of the signal be 0? If the device is emitting a series of these pulses at
the rate of one pulse per 107 seconds, sketch the magnitude spectrum.

4.8. Consider the block diagram representation of a linear time-invariant
(LTI) system as shown in Fig. P4.8. Here x(t) and y(t) are the input
and output, respectively of the system. h(t) in the picture is the impulse
response of the system. The system function H( f ) (Fourier transform of
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Figure P4.6.

Figure P4.7.

h(t)) is given by,

H( f ) = cos

(
π

2 fc
f
)

rect

(
f

2 fc

)
.

Here, t is the time variable, f is the frequency variable and fc is a given
specific frequency in Hz.

Figure P4.8.

(a) Determine the impulse response h(t) of the system (Hint: h(t) ↔
H( f ) and F−1 [rect( f )] = sinc(t)).

4.9. Two periods of a periodic signal, x(t), are shown in Fig. P4.9.

(a) Write an expression for x(t) and determine its Fourier transform,
X ( f ).

(b) Another signal, y(t), is constructed as y(t) = x(t)+x(t−1). Is y(t)
periodic? Justify your answer.
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Figure P4.9.

(c) Using your solution to Question (a), determine the Fourier transform
of the signal, y(t), given in Question (b).

(d) Let z(t) = x(t) + x(−t). Without doing any derivations, give the
Fourier transform, Z( f ), of z(t). Justify your answer.

4.10. Consider the pulse signal, x(t), shown in Fig. P4.10.

Figure P4.10. Caption

(a) Write down the expression for x(t).

Based on the signal x(t) shown in Fig. P4.10, a new signal y(t) is
defined as

y(t) = x(t) for − 1 < t ≤ 0

= 0 otherwise

(b) Determine the Fourier transform, Y ( f ), of y(t) and using Y ( f ),
develop an approach to obtain the Fourier transform, X ( f ) of x(t)
(Hint: Express x(t) in terms of y(t)).

(c) Fourier transform of rect(t) is sinc( f ). Use this information to
obtain the Fourier transform, X ( f ), of x(t) shown in Fig. P4.10.
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4.11. Part of a signal with biological origin consists of two full periods of a
sinusoidal signal. This partial signal is denoted as g(t) and can be seen in
Fig. P4.11, where f0 = 3kHz, and d is a positive constant.

Figure P4.11.

(a) Show that the spectrum G( f ) of the signal can be written as

G( f ) =
d
π f0
×

sin
(

2π f
f0

)
1−

(
f
f0

)2 e jk1,

where k1 depends on f . Then, find k1. (Do not calculate Fourier
integrals.)

(b) The biological system sends the signal gp(t) consisting of g(t)
repeated with a period T , in other words:

gp(t) =
∞∑

m=−∞

g(t − mT ).

Sketch the numerical values of the spectrum G p(k)12 of gp(t), for
frequencies below 8kHz. Give the frequencies of the spectral compo-
nents, when T = 1ms. Explain qualitatively, how the magnitude of
the spectrum (|G p(k)|) changes when T assumes different values in
the interval from 1ms to 2/3ms.

(c) The biological system can maintain the RMS {gp(t)}13 approxi-
mately constant in the said-interval of T , by changing d.

12. G p(k) = ck , where ck are the coefficients of the Fourier series.

13. RMS means the ’root-mean-square’ value and can be calculated as
√

1
T

∫
T g2

p(t)dt .
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Find RMS{gp(t)} for T = 1ms. Derive how d must change as a
function of T and f0, so that RMS{gp(t)} is kept constant for 2

3 ms
≤ T ≤ 1ms.

4.12. A signal x(t) is defined as

x(t) = e j2π t for 0 ≤ t ≤ 1

= 0 otherwise

(a) Determine the Fourier transform, X ( f ), of x(t).
(b) Let y(t) = w(t)e j2π t . Determine w(t) such that y(t) is same as

x(t) given in Problem 1. Determine the Fourier transform, W ( f ),
of w(t). Express the Fourier transform, Y ( f ), of y(t) in terms of
W ( f ). Show that the resulting Y ( f ) is same as X ( f ) obtained from
Question (a).

(c) Draw the magnitude and phase spectra of x(t).

4.13. Find the Fourier transform of the half-cosine pulse defined as,

x(t) = rect

(
t
T

)
a cos

(
π t
T

)
.

4.14. A single raised cosine pulse is defined as,

rect(t) [1+ cos(2π t)].

Find its Fourier spectrum.
4.15. The spectrum of the Gaussian pulse x(t) shown in Fig. P4.12 is X ( f ).

Figure P4.12.

(a) Express d X ( f )
d f in terms of X ( f ).

(b) Find the shape of X ( f ) if d X ( f )
d f = −

2π2

3 f X ( f ).
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Chapter 5

Complex Signals

A number of signal processing applications make use of the complex signals. Some
examples include the characterization of the Fourier transform, blood velocity esti-
mations, and modulation of signals in telecommunications. Furthermore, a num-
ber of signal processing concepts are easier to derive, explain and understand using
complex notation. It is much easier, for example to add the phases of two complex
exponentials such as x(t) = e jφ1e jφ2 , than to manipulate trigonometric formula,
such as cos(φ1) cos(φ2) in the rectangular representation.

In this chapter, the following points are discussed in detail:

• Complex signals in general.
• Fourier spectrum of complex signals.
• Linear processing of complex signals.
• Hilbert transform and their properties.
• Analytic signals and their use.

5.1 Introduction to Complex Signals

A complex analog signal x(t) is formed by the signal pair {xR(t), x I (t)}, where
both xR(t) (real part) and x I (t) (imaginary part) are real signals. The relationship
between these signals for a complex signal is given by,

x(t) = xR(t)+ j x I (t), (5.1)

83
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Figure 5.1. Illustration of the relationship between the real (xR) and imaginary (x I ) parts

of the complex number x and its magnitude (a) and phase (θ).

where j =
√
−1. A complex discrete [or digital] signal x[n] is defined in a similar

manner,

x[n] = xR[n]+ j x I [n]. (5.2)

A complex number x can be represented by its real (xR) and imaginary (x I ) parts
or by its magnitude (a = |x |) and phase (θ = 6 x), respectively. The relationship
between these parameters is illustrated in Fig. 5.1. The real part, xR , is the projec-
tion of x onto the real axis and the imaginary part, x I , is the projection of x onto
the imaginary axis.

Complex signals (as a function of time) are defined in both continuous time (t)
and discrete time (n) as shown below:

x(t) = a(t)e jθ(t) and x[n] = a[n]e jθ [n]. (5.3)

Here, the various quantities are provided in the table below:

Table 5.1. Various quantities associated with complex signals.

Continuous time Discrete time

a(t) =
√

x2
R(t)+ x2

I (t) a[n] =
√

x2
R[n]+ x2

I [n]

θ(t) = arctan x I (t)
xR(t)

θ [n] = arctan x I [n]
xR [n]

xR(t) = a(t) cos(θ(t)) xR[n] = a[n] cos(θ [n])

x I (t) = a(t) sin(θ(t)) x I [n] = a[n] sin(θ [n])

The magnitudes a(t) and a[n] are also known as the envelopes of x(t) and x[n],
respectively.
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5.1.1 Some Useful Rules and Identities

Many applications require the conversion of the complex number between the rect-
angular (trigonometric) form and phasor (polar) form. The conversion is done by
Euler’s formula:

e jθ
= cos(θ)+ j sin(θ) (5.4)

cos(θ) =
e jθ
+ e− jθ

2
(5.5)

sin(θ) =
e jθ
− e− jθ

2 j
(5.6)

Table 5.2 below shows some useful identities.

Table 5.2. Some useful identities.

a θ ae jθ

1 0 e j0
= 1

1 ±π e± jπ
= −1

1 ±nπ e± jnπ
= −1; n odd integer

1 ±2π e± j2π
= 1

1 ±2nπ e± jn2π
= 1; n integer

1 ±
π
2 e± j π2 = ± j

1 ±
nπ
2 e± j nπ

2 = ± j; n = 1, 5, 9, 13, . . .

1 ±
nπ
2 e± j nπ

2 = ∓ j; n = 3, 7, 11, 15, . . .

5.1.2 Phasors

The word phasor is often used by mathematicians to denote any complex number.
In engineering, it is frequently used to denote a complex exponential function of
constant modulus and linear phase, that is a function of pure harmonic behavior.
Here is an example of such a phasor:

x(t) = Ae j2π f0t , (5.7)

which has a constant modulus A and a linearly varying phase. It is not uncommon
that the modulus and phase are plotted separately. Different ways to depict the
phasors are illustrated in Fig. 5.2.
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Figure 5.2. Different views of the phasor Ae j2π f0 t .
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A phasor, whose real part is an even function and imaginary part is an odd func-
tion is said to be Hermitian. A phasor whose real and imaginary parts are odd, is
said to be an anti-Hermitian.

5.2 Spectrum of Complex Signals

The spectrum of a complex signal can be found by the Fourier method. In the
following, we will derive the spectrum X ( f ) of the complex signal x(t) = xR(t)+
j x I (t) as a linear combination of the spectra X R( f ) and X I ( f ) of the real valued
signals xR(t) and x I (t), respectively.

One consequence of the fact that x(t) or x[n] is complex, is that the typical
odd/even symmetry of the spectrum are lost. It is easy to demonstrate that the
following expression is valid for complex signals:

x∗(t)↔ X∗(− f ) and x∗[n]↔ X∗(− f ) (5.8)

where x∗(t) is the complex conjugate of x(t), and (↔) represents a Fourier
transform pair.

Let the complex signal x(t) be expressed as,

x(t) = xR(t)+ j x I (t). (5.9)

Let the spectra of the real and imaginary parts be X R( f ) and X I ( f ), respec-
tively. i.e., xR(t) ↔ X R( f ) and x I (t) ↔ X I ( f ). The real part of x(t) can be
expressed as1:

xR(t) =
1
2

(
x(t)+ x∗(t)

)
. (5.10)

Using the linearity property of the Fourier transform, we get

X R( f ) =
1
2

(
X ( f )+ X∗(− f )

)
(5.11)

In a similar way, we get

x I (t) = − j
1
2

(
x(t)− x∗(t)

)
(5.12)

and

X I ( f ) = − j
1
2

(
X ( f )− X∗(− f )

)
. (5.13)

Similar expressions can be derived for discrete complex signals as well.

1. Remember that (a + jb)∗ = (a − jb).
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Table 5.3. Properties of the FT for analog complex signals.

Let x(t)↔ X ( f ); x1(t)↔ X1( f ); and x2(t)↔ X2( f )

Property Time and Frequency Domain

Linearity ax1(t)+ bx2(t)↔ aX1( f )+ bX2( f )

Symmetry X (t)↔ x(− f )

Scaling x(kt)↔ 1
|k| X

(
f
k

)
Time reversal x(−t)↔ X (− f )

Time shifting x(t + t0)↔ X ( f )e j2π f t0

Frequency shift x(t)e−2π f0t
↔ X ( f + f0)

Time differentiation d p x(t)
dt p ↔ ( j2π t)p X ( f )

Frequency differentiation (− j2π t)px(t)↔ d p X ( f )
d f p p is a real number.

Convolution x1(t)⊗ x2(t)↔ X1( f )X2( f ) x1(t)x2(t)↔ X1( f )⊗ X2( f )

Parseval’s theorem
∫
∞

−∞
x1(t)x∗2 (t)dt =

∫
∞

−∞
X1( f )X∗2( f )d f

Table 5.4. Properties of the FT for digital complex signals.

Let x[n]↔ X ( f ); x1[n]↔ X1( f ); x2[n]↔ X2( f )

Property Time and Frequency Domain

Linearity ax1[n]+ bx2[n]↔ aX1( f )+ bX2( f )

Time reversal x[−n]↔ X (− f )

Time shifting x[n + n0]↔ X ( f )e j2π f n0Ts ; Ts is the sampling period.

Frequency shift x[n]e−2π f0nTs ↔ X ( f + f0)

Differentiation ( j2πnTs)
px[n]↔ d p X ( f )

d f p

Convolution x1[n]⊗ x2[n]↔ X1( f )X2( f ) x1[n]x2[n]↔ X1( f )⊗ X2( f )

Parseval’s theorem
∑
∞

−∞
x1[n]x∗2 [n] = 1

fs

∫ fs/2
− fs/2 X1( f )X∗2( f )d f

5.2.1 Properties of the Fourier Transform of Complex Signals

The basic set of properties of the Fourier transform for real signals is also valid for
complex signals. Table 5.3 gives a short overview of the properties of the Fourier
transform for analog complex signals. Table 5.4 gives the corresponding properties
for the digital complex signals.
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5.3 Linear Processing of Complex Signals

A complex signal consists of two real signals – one for the real part and the other
for the imaginary part. The linear processing of a complex signal, such as filtration
with a linear time-invariant (LTI) filter, corresponds to applying the processing to
both the real and imaginary parts of the signal.

The filtering of the complex signal xR(t) + j x I (t) with a filter whose impulse
response h(t) is real, is equivalent to two filtering operations – one for the real part
and the other for the imaginary part as follows:

h(t)⊗ (xR(t)+ j x I (t)) = h(t)⊗ xR(t)+ j (h(t)⊗ x I (t)). (5.14)

Here, ⊗ denotes the convolution operation. If the filter has a complex impulse
response (i.e., h(t) = h R(t)+ jh I (t)), then the operation corresponds to four real
filtering operations as shown in Fig. 5.3.

Example of an often-used digital filter with complex impulse response is the one
given by,

hm[n] =
1
N

e jm 2π
N nTs ; 0 ≤ n ≤ N − 1, (5.15)

where Ts is the sampling time and m is an integer. N in Eqn. (5.15) is the length
of the filter. The filter coefficients are clearly complex. The transfer function of the
filter is derived as,

Hm( f ) =
1
N

(
sinπ( f N Ts − m)
sinπ( f Ts − m/N )

)
e− jπ(N−1)( f Ts−m/N ). (5.16)

From this equation, it is clear that the filter transfer function is a function of the
parameter m.

Figure 5.3. Filtering of complex signals.
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Figure 5.4. Impulse response and transfer function of the complex filter for parameter set

{N ,m} = {16, 2}; (a) Real part of the impulse response, (b) Imaginary part of the impulse

response, (c) Magnitude response of the filter, and (d) Phase response of the filter.

Figure 5.4 illustrates both the impulse response and the transfer function of the
filter for parameter set {N ,m} = {16, 2}. The real (h2R[n]) and imaginary (h2I [n])
components of the impulse response of the filter is shown in Figs. 5.4(a) and (b),
respectively. Its magnitude response is shown in Fig. 5.4(c) and the phase response
in Fig. 5.4(d).

5.4 Hilbert Transform

Signal processing is a fast growing area today and a desired effectiveness in uti-
lization of bandwidth and energy makes the progress even faster. Special signal
processors have been developed to make it possible to implement the theoretical
knowledge in an efficient way. Signal processors are nowadays frequently used in
equipment for radio, transportation, medicine, production, etc.

In 1743 a famous Swiss mathematician named Leonard Euler (1707–1783)
derived the formula,

e j x
= cos(x)+ j sin(x). (5.17)
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Nearly 150 years later, the physicist Arthur E. Kennelly and the scientist Charles P.
Steinmetz used this formula to introduce the complex notation of harmonic wave-
forms in electrical engineering, that is

e j�t
= cos(�t)+ j sin(�t). (5.18)

Later on, in the beginning of the 20th century, the German scientist David Hilbert
(1862–1943) finally showed that the function sin(�t) in Eq. (5.18) is the Hilbert
transform of cos(�t) in the same equation. This gave us the ±π2 phase-shift oper-
ator, which is a basic property of the Hilbert transform.

A real function, x(t), and its Hilbert transform, xH (t), are related to each other
in such a way that they together create the so called strong analytic signal. The strong
analytic signal can be written with an amplitude and a phase where the derivative of
the phase can be identified as the instantaneous frequency. The Fourier transform
of the strong analytic signal gives us a one-sided spectrum in the frequency domain.
It is not hard to see that a function and its Hilbert transform also are orthogonal.
This orthogonality is not always realized in applications because of truncation in
numerical calculations. However, a function and its Hilbert transform has the same
energy and therefore the energy can be used to measure the calculation accuracy of
the approximated Hilbert transform.

Hilbert Transform – Definition: Signal xH (t) obtained from a real signal x(t)
by shifting the phase angles of all spectral components of x(t) by ±90 degrees is
known as the Hilbert transform of the signal. That is,

xH (t) =
1
π

∫
∞

−∞

x(τ )
t − τ

dτ, (5.19)

and the inverse Hilbert transform is given by,

x(t) = −
1
π

∫
∞

−∞

xH (τ )

t − τ
dτ. (5.20)

5.4.1 Hilbert Transform as a Filter

The Hilbert transform, xH (t), defined in the time domain is the convolution
between the Hilbert transformer 1

π t and the function x(t). That is,

xH (t) = x(t)⊗
1
π t
, (5.21)
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Figure 5.5. Impulse response (Top), magnitude response (Middle) and phase response

(Bottom) of the Hilbert transformer.

where ⊗ denotes the convolution operation and 1
π t is the Hilbert transform oper-

ator. We have,

1
π t
↔ − jsgn( f ), (5.22)

Fourier transform pair, where

− jsgn( f ) =


e− jπ/2 f > 0
0 f = 0
e jπ/2 f < 0

(5.23)

The impulse response, h(t) = 1
π t , of the Hilbert transform operator and the corre-

sponding frequency response are shown in Fig. 5.5. It can be seen that the impulse
response has a discontinuity at t = 0 and it is inversely proportional to t . Its mag-
nitude response |H( f )| is constant (= 1) throughout the frequencies. The phase
response is−π2 for positive values of the frequencies and+π2 for negative values of
the frequencies. Also, there is a discontinuity of the phase response at f = 0.

Example: The Hilbert transform of rectangular pulse train is shown in Fig. 5.6.
As can be seen from the figure, the Hilbert transform becomes infinite at the dis-
continuities of the rectangular pulse train.
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Figure 5.6. Hilbert transform of a rectangular pulse train.

5.4.2 Properties of Hilbert Transform

• The Hilbert transform of a constant is zero.
• The Hilbert transform of a Hilbert transform of a function is the negative of

the original function.
• A function and its Hilbert transform are orthogonal over the infinite interval.
• The Hilbert transform of a real function is a real function.
• The Hilbert transform of a sine function is a cosine function, the Hilbert

transform of a cosine function is the negative of the sine function.
• The Hilbert transform of an even function is an odd function and the Hilbert

transform of an odd function is an even function.
• The Hilbert transform of the convolution of the two functions is the convo-

lution of one with the Hilbert transform of the other.

• Linearity:

H{ax1(t)+ bx2(t)} = axH1(t)+ bxH2(t), (5.24)

where a and b are scalar constants and H is the Hilbert transform operator.
• Time shift:

H{x(t + t0)} = xH (t + t0). (5.25)

• Applying two times the Hilbert transform gives the original signal:

H{H{x(t)}} = −x(t). (5.26)

• The inverse Hilbert transform:

x(t) = H−1
{xH (t)} = −

∫
∞

−∞

xH (t)
π(t − u)

du = xH (t)⊗
−1
π t
. (5.27)
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• Even/Odd Property:

x(t) even⇔ xH (t) odd

x(t) odd⇔ xH (t) even (5.28)

• Conservation of energy:∫
∞

−∞

x2(t)dt =
∫
∞

−∞

x2
H (t)dt. (5.29)

• Orthogonality: ∫
∞

−∞

x(t)xH (t)dt = 0. (5.30)

• Time-derivative:

H
{

dx(t)
dt

}
=

d
dt

H{x(t)}. (5.31)

• Convolution:

H {x(t)⊗ y(t)} = x(t)⊗ yH (t) = xH (t)⊗ y(t). (5.32)

5.5 Analytic Signals

An analytic signal (denoted as zx (t) of an analog signal x(t)) is a signal whose
spectrum is one sided. For analog signals, this means that their spectrum is ≡ 0 for
f > 0 or f < 0. Analytic discrete time signals have a spectrum which is ≡ 0
for − fs

2 < f < 0 and in the corresponding parts of the periodic spectrum, or

0 < f < fs
2 and the corresponding parts of the periodic spectrum. This condition

for an analytic signal gives the connection between the real and imaginary parts of
the complex signal.

5.5.1 Analytic Analog Signals

If a real signal x(t) with frequency spectrum X ( f ) is taken as a starting point, then
the following relations will be valid for the respective analytic signal, zx (t), and its
spectrum:

zx (t)↔ Zx ( f ) =


2X ( f ) for f > 0
X ( f ) for f = 0
0 for f < 0.

(5.33)
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This relation can be expressed in a more compact form as2:

Zx ( f ) = [1+ sgn( f )] X ( f ). (5.34)

Since sgn( f ) is the Fourier spectrum of the function j 1
π t ( j 1

π t ↔ sgn( f )),
then the above equation is equivalent to:

zx (t) =
(
δ(t)+ j

1
π t

)
⊗ x(t). (5.35)

Here, we introduce the signal xH (t), known as the Hilbert transform of x(t) and
given by,

xH (t) = x(t)⊗
1
π t
. (5.36)

It can be seen that

zx (t) = x(t)+ j xH (t). (5.37)

Notice that the complex conjugate z∗x (t) is also analytic with spectrum given by,

Z∗x ( f ) =


0 for f > 0
X ( f ) for f = 0
2X ( f ) for f < 0.

(5.38)

and that consequently:

x(t) =
1
2

(
zx (t)+ z∗x (t)

)
. (5.39)

If zx (t) is written in the form,

zx (t) = az(t)e jθz(t) (5.40)

then

x(t) = az(t) cos(θz(t)) and xH (t) = az(t) sin(θz(t)). (5.41)

If the analytic signal zx (t) is filtered using a filter with real impulse response,
then the output signal y(t) will be:

y(t) = h(t)⊗ zx (t) = h(t)⊗ x(t)+ jh(t)⊗ xH (t). (5.42)

2. sgn(t) returns the sign of the argument. It returns +1 if t > 0, −1 if t < 0, and 0 if t = 0.
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If the Hilbert transform of h(t) is denoted by hH (t), then one gets:

y(t) = x(t)⊗ (h(t)+ jhH (t)) = x(t)⊗ zH (t), (5.43)

where zH (t) is the Hilbert transform of h(t).
This operation is sometimes useful when one wants to work with analytic signals,

but has only a real signal to start with. Notice that hH (t) is usually noncausal .
Using the symmetry property of the Fourier transform, it can be shown that the

real and imaginary parts of the spectrum of a real signal form a Hilbert pair, that is
each can be obtained from the other using a Hilbert transform. This, and a number
of other properties of the Hilbert transform can be found in the Section 5.4.2. The
symbol H is used to denote the Hilbert transform, i.e., xH (t) = H{x(t)}.

5.5.2 Analytic Discrete-time Signals

If a real discrete-time signal x[n]↔ X ( f ) is used as a basis, then the corresponding
analytic signal3 zx [n] will be given as

zx [n]↔ Zx ( f ) =


2X ( f ) for p fs < f < (2p + 1) fs

2
X ( f ) for f = p fs
0 otherwise

(5.44)

where p is an integer and fs is the sampling frequency. Let us consider the following
spectrum:

zx [n]↔ Zx ( f ) =


+1 for p fs < f < (2p + 1) fs

2
0 for f = p fs

−1 for (2p − 1) fs
2 < f < p fs .

(5.45)

The discrete-time signal that corresponds to this spectrum is

j
2

nπ
sin2

(
n
π

2

)
. (5.46)

It follows directly that

zx [n] =
(
δ[n]+ j

2
nπ

sin2
(

n
π

2

))
⊗ x[n]. (5.47)

3. The use of the term analytic in relation to discrete-time signals leads to mathematical difficulties. Many of
them can, however, be circumvented if one applies the fact, that a given digital signal corresponds to an
equivalent analog signal.
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By the analogy with the relation in Eqn. (5.36), we denote the signal

xH [n] = x[n]⊗ j
2

nπ
sin2

(
n
π

2

)
(5.48)

as the Hilbert transform of x[n]. The relation between zx [n], x[n] and xH [n] is
given by,

zx [n] = x[n]+ j xH [n]. (5.49)

Similar to Section 10.3.7, it can be shown that

h[n]⊗ zh[n] = x[n]⊗ zh[n], (5.50)

where

zh[n] = h[n]+ jhH [n] = h[n]+ jh[n]⊗
2

nπ
sin2

(
n
π

2

)
. (5.51)

5.6 Instantaneous Amplitude and Frequency

Let us consider the band-limited real signal g(t) with a band width fg. The ampli-
tude spectrum of such a signal is shown in the left subplot of Fig. 5.7. For this par-
ticular case, an analytic signal can be created by frequency-shifting the spectrum of
the signal with an offset f0, where | f0| > fg. This operation is illustrated in the
second sub-plot of Fig. 5.7. In other words, we create a signal z0(t) = g(t)e j2π f0t ,
which is analytic if | f0| > fg. It can be represented as real and imaginary parts as:

z0(t) = g0(t)+ jg0H (t), (5.52)

where g0H (t) is the Hilbert transform of the real signal g0(t) = g(t) cos(2π f0t).
Using the Euler’s relations, we find that

g0(t) = g(t) cos(2π f0t) and g0H (t) = g(t) sin(2π f0t). (5.53)

If we assume that g(t) gets only non-negative values (g(t) ≥ 0), then it follows
immediately that:

az(t) = g(t) and θz(t) = 2π f0t, (5.54)

where, az(t) is the envelope of the analytic signal and θz(t) is the phase of the
analytic signal. The instantaneous amplitude of z0(t) is then g(t), and the value
θ
′

z(t)/2π =
1

2π
dθz(t)

dt is said to be the instantaneous frequency of the signal.
An example of an analytic analog signal and its various parameters are shown in

Fig. 5.8.
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Figure 5.7. Construction of an analytic signal.

Figure 5.8. Instantaneous amplitude and phase for an analytic signal; (a) the analytic sig-

nal, g0(t), (b) Signal and its envelope (or instantaneous amplitude) (az(t) in red), (c) Hilbert

transform, g0H (t), and (d) Instantaneous phase, θz(t).

In the case that g(t) can be both positive and negative, the amplitude az(t)
will be the absolute value of g(t), i.e., az(t) = |g(t)|. The phase θz(t) of such
analytic signal will jump from ±π in those time instances, when g(t) changes its
sign. The first derivative with respect to time, θ

′

z(t), will still be proportional to the
instantaneous frequency, except for the points of discontinuity. This is illustrated
in Fig. 5.9.
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Figure 5.9. Instantaneous amplitude and phase for an analytic signal with a point of dis-

continuity; (a) the analytic signal, g0(t), (b) Signal and its envelope (or instantaneous

amplitude) (az(t) in red), (c) Hilbert transform, g0H (t), and (d) Instantaneous phase, θz(t).

This figure clearly shows the phase jump in the instantaneous phase plot
(Fig. 5.9(d)) at the point of discontinuity in the analytic signal.

The concepts of instantaneous amplitude and frequency can be transferred for-
mally to the typical case, in which the analytic signal z(t) is given in the form
az(t)e jθz(t). Figure 5.10 shows an example in which θz(t) varies non-linearly in
time.

These concepts are also applied to non-analytic signals, and the same can be
defined for discrete-time signals as well. The phase of the signal is given by:

θz(t) = arctan

(
xH (t)
x(t)

)
. (5.55)

The instantaneous frequency is proportional to the derivative of the phase with
respect to time, and can be found from:

θ ′z(t)
2π
=

1
2π

(
x(t)x ′H (t)− xH (t)x ′(t)

x2(t)+ x2
H (t)

)
. (5.56)
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Figure 5.10. Instantaneous amplitude and phase for an analytic signal with non-linear

variation of the phase (θz(t)); (a) the analytic signal, g0(t), (b) Signal and its envelope (or

instantaneous amplitude) (az(t) in red), (c) Hilbert transform, g0H (t), and (d) Instantaneous

phase, θz(t).

5.7 Concluding Remarks

• Introduced both the analog and discrete complex signals.
• Fourier transform of complex signals were discussed in detail.
• Theory of linear processing of complex signals introduced.
• Hilbert transform and its properties were discussed in detail.
• The concept of analytic signals and instantaneous amplitude and frequency

were also introduced.

Exercises

5.1. Consider the real signal x(t) with spectrum X ( f ). Some properties of the
Hilbert transform y(t) = H{x(t)} = 1

π t ⊗ x(t) are to be investigated.
The impulse response of the Hilbert transformer is indicated by h(t).

(a) Give H( f ) ↔ h(t) and sketch the magnitude and phase of H( f ).
How does the Hilbert transform affect |X ( f )| and arg{X ( f )}?
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(b) Is y(t) real, imaginary or complex? What symmetry does the Hilbert
transform of the even part xe(t) and the odd part xo(t) have?

(c) Compute the Hilbert transform of the Fourier series

x(t) =
A0

2
+

∞∑
k=1

[ak cos( f0kt)+ bk sin( f0kt)], f0 > 0.

5.2. Given the signal x(t) = fg
π ×

1−cos( fg t)
fg t and its Hilbert transform xH (t) =

H{x(t)}.
(a) Calculate and sketch X ( f ) ↔ x(t). (Note: use the multiplication

theorem of the Fourier transform.)
(b) Determine X H ( f ) ↔ xH (t) graphically and calculate xH (t). (Note:

consider the discussion on the Hilbert transform in time-domain and
frequency-domain)

(c) Let xa(t) = x(t) + j xH (t). Which special property exhibits
Xa( f )↔ xa(t)?

(d) Calculate Xa( f ) formally in dependence on X ( f ).

5.3. For �0 > 0, calculate the Hilbert transform in the frequency domain for
the following functions:

(a) e j�0t ,
(b) sin�0t ,
(c) cos�0t , and
(d) cos 2�0t .

5.4. What is the connection between the energy of a signal x(t) and its Hilbert
transformed signal xH (t)? Assume that the signal has no DC component.
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Chapter 6

Analog Systems

In Chapters 1 to 4, we studied about signals and representation of signals in time
and frequency domains. The focus of this chapter is analog systems that work with
these signals. We will find that Fourier transform (FT) is a very useful tool in work-
ing with and understanding systems.

In a general sense, we may define a system as anything that performs a function.
That is, it operates on something and produces something else. We may also say that a
system is anything that responds (by producing an output) when excited or stimulated
(by an input). The schematic of a system with input signal x(t) and output signal
y(t) is shown in Figure 6.1. A system can be an electrical system (e.g., electrical
circuits), a mechanical system (e.g., automobile engines), a biological system (e.g.,
human vocal tract or heart or brain, etc.), a computer system, etc.

In this chapter, we will discuss the following topics in detail.
• Classification of systems.
• Characterization (time-domain and frequency-domain) of systems, leading

to the concepts of convolution, impulse response and frequency response.
• Processing and analysis of signals using systems (filters).
• Determination of impulse response or frequency response of systems, and

output of a system for given input, etc.
• Importance of sinusoids and FT in the study of systems.
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Figure 6.1. A system with input signal x(t) and output signal y(t).

6.1 Classification of Systems

We give below a few ways of classifying systems.

6.1.1 Continuous-Time or Discrete-Time Systems

Just as we have continuous-time and discrete-time signals, we can also define
continuous-time and discrete-time systems. A continuous-time system oper-
ates on continuous-time inputs and produces continuous-time outputs (e.g.,
mobile-phone, communication channel, etc.). Similarly, a discrete-time system oper-
ates on discrete-time inputs and produces discrete-time outputs (e.g., computers,
digital filters, etc.). In this chapter, we will only be considering continuous-time
systems.

6.1.2 Time-Invariant Systems

Let y(t) be the output of a system when the input is x(t). Then, the system is said
to be time-invariant if its output is y(t − t0) when the input is x(t − t0). That is,
in time-invariant systems, a time-shift in the input results in the same time-shift in its
output, without changing the shape of the output.

6.1.3 Causal Systems

A system is said to be causal if its output at any instant t0 depends on its input x(t)
for time t ≤ t0 only. That is, the output of a causal system depends only on the present
and past values of its input.

6.1.4 Linear or Non-linear Systems

Let y1(t) and y2(t) be the outputs of a system when the inputs are x1(t) and x2(t),
respectively. Then, the system is said to be linear if its output is αy1(t) + βy2(t)
(where α and β are scalars) when the input is αx1(t)+βx2(t). That is, linear systems
obey the principle of superposition. Non-linear systems do not obey the principle of
superposition.
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6.2 Description of a System

Consider a linear system whose output is y(t) when the input is x(t). If we want
to use this system in any particular application, we need to know beforehand what
function this system is performing. In other words, we need to have a description of
the system. There are different ways to describe a system, some of which are listed
below.

6.2.1 Input-Output Equation

We may describe a system by stating how the output is related to its input. For exam-
ple, we have

y(t) = 7x(t)+ 8x(t − 3). (6.1)

6.2.2 Frequency Response

We may describe a system by specifying its frequency response. Frequency response
(denoted by H( f )) is given by the ratio of the Fourier transforms of the output to input.
For example, the frequency response of the system described in Eq. (6.1) is given by1

H( f ) =
Y ( f )
X ( f )

= 7+ 8e− j3�. (6.2)

6.2.3 Impulse Response

We may describe a system by specifying its impulse response. Impulse response
(denoted by h(t)) of a system is its response (or output) when the input is an impulse
δ(t) at time t = 0. For example, the impulse response of the system described in
Eq. (6.1) is given by2

h(t) = y(t)|x(t)=δ(t) = 7δ(t)+ 8δ(t − 3). (6.3)

Recall that the frequency response H( f ) of a system is the FT of its impulse response
h(t). Therefore, the impulse response of a system can be obtained by determining the

1. To determine the FT Y ( f ) of y(t) given by Eq. (6.1), apply the linearity property of FT. That is,

F [y(t)] = F [7x(t)+ 8x(t − 3)] = 7F [x(t)]+ 8F [x(t − 3)]

⇒ Y ( f ) = 7X ( f )+ 8e− j3�X ( f ) =
[
7+ 8e− j3�

]
X ( f )

since F [x(t − t0)] = e− j�t0 X ( f ). Thus, we have Y ( f ) = H( f )X ( f ) for linear systems.

2. The notation y(t)|x(t)=δ(t) means “y(t) when x(t) = δ(t)”.
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Figure 6.2. RC circuit.

inverse FT of its frequency response. Note that Eq. (6.2) is the FT of Eq. (6.3) since
F [δ(t − t0)] = e− j�t0 .

Note that from the linear system theory, the output y(t) of a system can be obtained
by convolving the input x(t) with its impulse response h(t). That is, we have3

y(t) = x(t)⊗ h(t) =
∫
∞

−∞

x(τ )h(t − τ)dτ (6.4a)

=

∫
∞

−∞

h(τ )x(t − τ)dτ. (6.4b)

§ Determine the output y(t) of the system specified by Eqs. (6.1)–(6.3) for the following
inputs: x(t) = 10 for all t , x(t) = 3e j�0t , x(t) = 10+ 3 cos(�0t).
§ In the RC-circuit (Fig. 6.2), note that y(t) = x(t) − Ri(t) where i(t) is the current
flowing through the resistor R. Noting that i(t) = C dy(t)

dt , determine the frequency response
of the circuit.

6.3 Why Study of Systems is Important?

In many practical applications, we will need to deal with systems and their inputs
and outputs. Broadly speaking, in most of the practical applications, we will need
to do one or more of the following three tasks.

6.3.1 System Identification

This deals with acquiring the knowledge of the system. For example, to properly design
the transmitter and receiver in a communication system, we should have a very

3. For the sake of clarity, I am using the notation ‘⊗’ to denote convolution, though some text books uses ‘∗’
to denote convolution.
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good understanding of the channel (or medium) through which the signal propa-
gates. The channel may be described by means of its frequency response or impulse
response (ignoring the noise). So, as a first step to designing the transmitter/re-
ceiver, we need to develop a mechanism to obtain the channel characteristics. This
may be done, for example, by transmitting a known signal, x(t) and measuring the
corresponding output, y(t). From x(t) and y(t), H( f ), the system function can
be found as, H( f ) = Y ( f )

X ( f ) , thus identifying the system.

6.3.2 Output Evaluation

This deals with evaluating the output (y(t)) of a system (for specific inputs, x(t))
if its frequency response (H( f )) or impulse response (h(t)) is known. This can be
done either using Y ( f ) = X ( f )H( f ) or using the convolution operation as in
Eq. (6.4). In the above example of a communication system, once we know the
channel, we can use it to simulate the transmission of various signals and understand
how the output will be for each of these signals. This will help us to design the
receiver and signals.

6.3.3 Input Estimation

This deals with estimating the input, x(t), of a system if its output, y(t) and the
knowledge of the frequency response, H( f ) or impulse response, h(t) of the system are
given. This may be done, for example, using X ( f ) = Y ( f )

H( f ) . We could use such
an approach in the above example of a communication system to determine the
transmitted signal.

The topics covered in this chapter equip us with the basic knowledge necessary
to understand and perform the above tasks.

6.4 Frequency Response

Since Y ( f ) = H( f )X ( f ), we can write

|Y ( f )| = |H( f )| · |X ( f )|, θy( f ) = θx ( f )+ θh( f ) (6.5)

where θy( f ), θx ( f ) and θh( f ) are the phase characteristics of Y ( f ), X ( f ) and
H( f ), respectively. Equation (6.5) clearly shows how the system is affecting the
input. In other words, we can shape the spectrum of a signal x(t) by passing this signal
through an appropriately chosen filter. For example, consider a signal x(t) whose
spectrum is as shown in Figure 6.3(a). Let us specify two filters H1( f ) and H2( f )
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as4 (see Figures 6.3(b) and (c))

|H1( f )| =
{

1 for | f | ≤ 30
0 for | f | > 30.

(6.6)

|H2( f )| =
{

1.75 for 80 ≤ | f | ≤ 95
0 for 80 > | f | > 95.

(6.7)

Let y1(t) and y2(t) be the outputs of these filters when x(t) is applied to their
inputs. Then, we get

Y1( f ) = H1( f )X ( f ) and Y2( f ) = H2( f )X ( f ). (6.8)

With H1( f ) and H2( f ) given as above, we find that

Y1( f ) =
{

X ( f ) for | f | ≤ 30
0 for | f | > 30.

(6.9)

Y2( f ) =
{

1.75X (F) for 80 ≤ | f | ≤ 95
0 for 80 > | f | > 95.

(6.10)

Thus, we find that using the filters H1( f ) and H2( f ), we are able to extract different
frequency regions in the spectrum of the input signal x(t) (see Figures 6.3(d) and (e)).

The above principle can be generalized to transform a given signal x(t) into
another signal y(t) with any specific characteristics we desire. What we need to do
is to select an appropriate filter H( f ) such that Y ( f ) = H( f )X ( f ) satisfies our
requirements. To illustrate this, we consider an example below.

Example: In an experiment aimed at recording a particular electrical activity of the
human body, the signal obtained from the bio-medical sensor is x(t) given by

x(t) = d(t)+ p(t)+ n(t).

Here, d(t) is the desired bio-medical signal and its spectrum lies in the frequency
band | f | ≤ 30, p(t) is the 50 Hz power-line interference signal whose spectrum
consists of two lines at f = ±50 Hz, and n(t) is a noise pick-up whose spectrum
lies in the band | f | ≤ 300. We want to use some filters to clean up the signal x(t)
(i.e., reject the interference and reduce the noise) so as to obtain a better estimate of d(t).

Solution: Because the spectrum of the interference p(t) lies outside the spectrum of
the desired signal d(t), we can easily reject this interference by passing x(t) through

4. The notation 80 ≤ | f | ≤ 95 means −95 ≤ f ≤ −80 and 80 ≤ f ≤ 95. Further, | f | ≤ 30 means
−30 ≤ f ≤ 30, and | f | > 30 means −30 > f > 30.
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Figure 6.3. Example of a signal x(t) being filtered by filters H1( f ) and H2( f ), resulting in

outputs y1(t) and y2(t), respectively.

the filter H1( f ) specified in Eq. (6.6). Let y1(t) be the resulting output. Then,
y1(t) satisfies Eq. (6.9). Since Y1( f ) is zero for | f | > 30, we find that filtering
by H1( f ) also helps to reject all the noise that lies in the frequency region 30 <
| f | < 300. Thus, we can write the output y1(t) as5

y1(t) = d(t)+ ñ(t),

where ñ(t) is the result of filtering the noise n(t)with H1( f ). Further, the spectrum
of ñ(t) is now limited to | f | ≤ 30, from | f | ≤ 300. Thus, we find that the
output signal y1(t) is a much cleaner version compared to the original recorded signal
x(t) since the interference has been totally rejected and the noise has been significantly
reduced.

5. Note that Y1( f ) = H1( f )X ( f ) = H1( f ) [D( f )+ P( f )+ N ( f )] = H1( f )D( f ) + H1( f )P( f ) +
H1( f )N ( f ) = D( f )+ 0+ Ñ ( f ) where Ñ ( f ) = H1( f )N ( f ). Taking inverse FT, we get y1(t).
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§ Assume that a signal x(t) is passed separately through two filters whose outputs are
given by

y(t) = x(t)+ x(t − T ) (6.11a)

z(t) = x(t)− x(t − T ) (6.11b)

where T denotes a time-shift. Determine the expressions for the impulse responses and fre-
quency responses of the two filters generating y(t) and z(t). Verify that the first filter atten-
uates the signal x(t) around the frequency 1/(2T ) Hz, and the second filter attenuates the
signal x(t) around the frequency6 0 Hz.

6.5 Sinusoidal Input to Linear Systems

Let x(t) and y(t) be the input and output, respectively, of a linear system whose
frequency response is given by H( f ). Let us choose the input to be a complex
sinusoid given by

x(t) = A0e j (2π f0t+θ0) ⇒ X ( f ) = A0e jθ0δ( f − f0) (6.12)

where A0, f0 and θ0 are the amplitude, frequency and phase, respectively, of the
sinusoid. Then, the filter output is given by

Y ( f ) = X ( f )H( f ) = A0e jθ0δ( f − f0)H( f )

= A0e jθ0 H( f0)δ( f − f0) (6.13)

H⇒ y(t) = A0e jθ0 H( f0)e j2π f0t
= H( f0)

[
A0e j (2π f0t+θ0)

]
= H( f0)x(t) (6.14)

= A0|H( f0)|e j (2π f0t+θ0+θh( f0)) (6.15)

where θh( f0) is the phase of H( f0), i.e., H( f0) = |H( f0)|e jθh( f0). We note the
following from Eqs. (6.13)–(6.15):

• When the input of a linear system is a sinusoid of frequency f0, the resulting
output is also a sinusoid at the same frequency f0, with a different amplitude
and phase.

• Amplitude and phase of the output sinusoid are A0|H( f0)| and θ0+θh( f0),
respectively. That is, the input amplitude and phase are changed by the

6. To determine the impulse responses, set the input to δ(t). Show that h1(t) = δ(t) + δ(t − T ), H1( f ) =
1+e− j2π f T , |H1( f )|2 = 4 cos2(π f T ), and h2(t) = δ(t)−δ(t−T ), H2( f ) = 1−e− j2π f T , |H2( f )|2 =
4 sin2(π f T ).
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magnitude and phase, respectively, of the filter frequency response H( f ) at
f = f0.

6.5.1 Generalization to Multiple Sinusoids

We now generalize the above result to the case where the input x(t) consists of a
sum of M sinusoids rather than one sinusoid. That is,

x(t) =
M∑

i=1

Ai e j (2π fi t+θi ) (6.16)

⇒ X ( f ) =
M∑

i=1

Ai e jθi δ( f − fi ) (6.17)

where Ai , fi and θi are the amplitude, frequency and phase, respectively, of the i th

sinusoid. The filter output is given by,

Y ( f ) = X ( f )H( f ) =
M∑

i=1

Ai e jθi δ( f − fi )H( f )

=

M∑
i=1

Ai e jθi H( fi )δ( f − fi ) (6.18)

H⇒ y(t) =
M∑

i=1

Ai H( fi )e j (2π fi t+θi ) (6.19)

=

M∑
i=1

Ai |H( fi )|e j (2π fi t+θi+θh( fi )) (6.20)

where θh( fi ) is the phase of H( fi ), i.e., H( fi ) = |H( fi )|e jθh( fi ). Based on these
results, we can conclude the following.

§ The output of a linear system cannot contain a frequency that is not present at its input.

6.6 Partial Fraction Approach

It is often necessary for us to find the time-domain output y(t) of a system from
its FT, Y ( f ) or the impulse response h(t) of a system from its frequency response
H( f ). This is a trivial task if the frequency-domain expression looks like the ones
given in Tables 4.1 or 4.2 (see Section 17.6). However, often, the expressions are
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not as simple as these. In such cases, the method of partial fraction is used to express
a complicated expression in the form of a sum of several simple expressions whose inverse
transforms can be found based on table look-up.

Let Y ( f ) be a complicated expression whose inverse FT we want to find. The
method of partial fraction determines scalars α1, α2, · · · , αm such that Y ( f ) can
be written as

Y ( f ) = α1Y1( f )+ α2Y2( f )+ · · · + αmYm( f ) (6.21)

where Y1( f ), Y2( f ), · · · , Ym( f ) are simple expressions whose inverse transforms
are known. Then, we can get the inverse FT of Y ( f ) as,

y(t) = α1y1(t)+ α2 y2(t)+ · · · + αm ym(t) (6.22)

where yi (t) is the inverse FT of Yi ( f ) for i = 1, 2, . . . ,m.

Example: As an example, let us consider the problem where we have

Y ( f ) =
1

(1+ j�)(3+ j�)
. (6.23)

While we know the inverse Fourier transforms of 1
1+ j� and 1

3+ j� , it is not easy
to determine the inverse Fourier transform of their product. So, express Y ( f ) as a
sum of these easy factors as

Y ( f ) =
1

(1+ j�)(3+ j�)
=

a
1+ j�

+
b

3+ j�
(6.24)

where the scalars a and b are to be determined. To determine a and b, combine
the last two terms on the right-hand-side (RHS) of Eq. (6.24) to result in

1
(1+ j�)(3+ j�)

=
3a + b + j�(a + b)
(1+ j�)(3+ j�)

. (6.25)

Since the denominators are the same on both sides of Eq. (6.25), the numerators also
must be the same on both sides. Noting that the numerator on RHS is a polynomial
in the variable �, we can equate the coefficients of �0, �1, �2, · · · on both sides.
Doing this, we get

3a + b = 1 and j (a + b) = 0. (6.26)
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Solving these two equations for a and b, we get a = 1/2 and b = −1/2. Therefore,
we get from Eq. (6.24)

Y ( f ) =
0.5

1+ j�
−

0.5
3+ j�

(6.27)

H⇒ y(t) = 0.5e−t u(t)− 0.5e−3t u(t), (6.28)

since e−ct u(t) (with c > 0) is the inverse FT of 1/(c + j�).

6.7 Convolution

The output of a linear time invariant (LTI) system for any input, x(t), can be found
by convolution operation between the input, x(t) and the system impulse response
(or system function), h(t). Consider a linear system with frequency response
H( f ) ↔ h(t). Then, we know that its output (in frequency-domain) is given
by,

Y (F) = X ( f )H( f ), (6.29)

where X ( f ) is the FT of the input, x(t). The inverse FT of both sides of Eq. (6.29)
is given by the convolution of the filter impulse response h(t) with the input x(t) as,

y(t) = x(t)⊗ h(t)

=

∫
∞

−∞

x(τ )h(t − τ)dτ =
∫
∞

−∞

h(τ )x(t − τ)dτ. (6.30)

It is also to be noted that convolution is commutative. This implies that y(t) =
h(t)⊗ x(t) = x(t)⊗h(t). This means that the order in which these two functions
convoluted does not influence the output.

6.7.1 Convolution Explained

The convolution operation is explained briefly in the following:

Figure 6.4. Convolution explained.
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Let x(t) in Fig. 6.5 be a continuous time function of time, which is input to
a LTI system. The output y(t) of the system is the convolution of x(t) with the
system function h(t). This is explained here.

At time τ , consider the interval [τ , τ +4τ ]. For sufficiently small4τ , the area
under x(t) inside the interval (shaded area in Fig. 6.5) can be approximated by an
impulse function of strength x(τ )4τ .

By definition, the response of a LTI system to an unit impulse at t = 0 (i.e.,
δ(t)) is h(t). Therefore, the response of the system to an impulse (delta) function
of strength x(τ )4τ occurring at t = τ is,

4y(t) = x(τ )h(t − τ)4τ. (6.31)

In the limiting case as 4τ → 0, apply the principle of superposition to obtain
the overall system response to the input x(t) as,

y(t) =
∫
∞

−∞

dy(t) =
∫
∞

−∞

x(τ )h(t − τ)dτ. (6.32)

This is the convolution operation and is denoted as y(t) = x(t) ∗ h(t) or y(t) =
x(t)⊗ h(t).

We can get the second integral expression from the first integral in Eq. (6.30) by
applying a change of variables of the form u = t − τ . Note that the integration is
done with respect to the variable τ . In other words, inside the integral, t acts like a
constant. For example, the expression for computing y(t) at instant t = 2 is

y(2) =
∫
∞

−∞

h(τ )x(2− τ)dτ. (6.33)

Let us examine x(t − τ).

Let z(τ ) = x(−τ). (6.34)

Then, x(t − τ) = x (−(τ − t)) = z(τ − t) (6.35)

H⇒ y(t) =
∫
∞

−∞

z(τ − t)h(τ )dτ. (6.36)

Eqs. (6.34)−(6.36) implies the following approach to compute the filter output
y(t) for any value of t .

• First, construct z(τ ) by time-reversing x(τ ).
• If t > 0, then x(t − τ) is obtained by shifting z(τ ) to the right by t . That

is, shift x(−τ) to the right by t .
• If t < 0, then x(t − τ) is obtained by shifting z(τ ) to the left by t . That is,

shift x(−τ) to the left by t .
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• Compute y(t) by integrating the product z(τ − t)h(τ ) over the complete
range of τ for which this product is non-zero.

Figure 6.5. Illustration of the convolution operation of two functions in the time domain.

Eqs. (6.29) and (6.30) show that multiplying two signals in frequency-domain is
equivalent to convolving these signals in time-domain.7 Thus, we have two approaches
for computing the filter output y(t) given x(t) and h(t), and are given below.

• Use the convolution integral given by Eq. (6.30).
• Determine the Fourier transforms X ( f ) and H( f ), and find the inverse

transform of the product X ( f )H( f ).

We can use either of these approaches, depending on which is easier to implement
in the given application/problem.

7. Similarly, multiplying two signals in time-domain is equivalent to convolving them in frequency-domain.
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A graphical illustration of the convolution operation of two functions (h(t) and
x(t)) is given in Fig. 6.5.

6.8 Shifting Property of Impulse Function

Let us consider the convolution of a signal x(t) with an impulse δ(t − t0) located
at t = t0. We obtain,

x(t)⊗ δ(t − t0) =
∫
∞

−∞

x(t − τ)δ(τ − t0)dτ,

=

∫
∞

−∞

x(t − t0)δ(τ − t0)dτ,

= x(t − t0)
∫
∞

−∞

δ(τ − t0)dτ,

= x(t − t0), (6.37)

where we used the sampling property of impulse function to get the second line
and the unit-area property of impulse function to get the last line (see Eqs. (4.59)–
(4.61) in Chapter 4). Equation (6.37) implies that convolving a signal x(t) with an
impulse δ(t − t0) results in shifting the signal to the location of the impulse. This is
known as the shifting property of impulse function.

Using this property, it is easy for us to examine what happens in frequency-domain
when we do sampling in time-domain. Let us sample a continuous-time signal x(t) at
the rate of fs = 1/Ts samples/second. (see Eqs. (4.59)–(4.61) in Chapter 4). This

is done by multiplying x(t) with a periodic impulse train i(t) =
∞∑

n=−∞

δ(t − nTs)

of period Ts , resulting in,

y(t) = x(t)× i(t) = x(t)
∞∑

n=−∞

δ(t − nTs). (6.38)

FT of the impulse train is given by,

I ( f ) = F [i(t)] = fs

∞∑
k=−∞

δ( f − k fs). (6.39)
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FT of the sampled signal y(t) can be obtained by convolving X ( f ) with I ( f ),
resulting in

Y ( f ) = X ( f )⊗ I ( f ) = X ( f )⊗

[
fs

∞∑
k=−∞

δ( f − k fs)

]

= fs

∞∑
k=−∞

[X ( f )⊗ δ( f − k fs)]

= fs

∞∑
k=−∞

X ( f − k fs)

= fs [· · · + X ( f + 2 fs)+ X ( f + fs)+ X ( f )

+X ( f − fs)+ X ( f − 2 fs)+ · · · ] . (6.40)

Thus, Y ( f ) is periodic with period fs , and is obtained by adding periodically shifted
copies of X ( f ). See Fig. 6.6 for illustration of these spectra. It can be seen that
the spectra of the sampled signal repeats (with a period, fs) on either side of the
frequency axis and are scaled by the sampling frequency, fs .

§ Based on Figure 6.6, suggest an approach to reconstruct the analog signal x(t) from its
samples. What is the minimum possible sampling frequency?

Figure 6.6. Spectra of (a) continuous-time signal x(t), (b) sampled version of x(t) with

sampling frequency fs .
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6.9 Concluding Remarks

We can make the following concluding remarks based on the material presented
above.

• Fourier transform (FT) is a very useful (and powerful) tool in the study of
systems.

• Frequency response of a system specifies how the system is going to shape the
input signal.

• The output of a linear system cannot contain a frequency that is not present
in its input.

• The output of a linear system can be determined either using time-domain
computations (i.e., convolution of input signal x(t) and system impulse
response h(t)) or using frequency-domain computations (i.e., multiplying
the Fourier transforms of x(t) and h(t), and finding the inverse FT of the
product).

• Partial fraction approach is very useful to determine the inverse Fourier trans-
forms of complicated frequency-domain expressions.

Exercises

6.1. (a) An analog linear system has an impulse response h(t) = e−at u(t),
where a is a real constant and u(t) is a unit step function. Use con-
volution to find the response of the system (y(t)) to a unit step input
(i.e., x(t) = u(t), here x(t) denotes the input to the system).

(b) Sketch the magnitude and phase response of the system. Determine
the 3dB bandwidth of the system.

6.2. Determine the convolution of x(t) and ua(t), where x(t) is any signal.
Derive the expression for the convolution of x(t) with a time-shifted unit
step function u(t − t0), where t0 is the time delay.

6.3. The impulse response of an analog system is given by h(t) = u(t) −
u(t − 2). Use convolution to find the response of this system to an input
x(t) = u(t)− u(t − 3).

6.4. (a) An engineer is contemplating the use of a Gaussian pulse of the form

x(t) = e−(
t
c )

2
, where c is a suitable constant related to the pulse

width, for transmitting digital information in a mobile communi-
cation system. The engineer finds that the spectrum of this pulse is
X ( f ) = be−(πc f )2 , where b is a constant and it depends on c. Sketch
the pulse and its spectrum for c = 5. Using energy argument or
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Parseval’s theorem, derive a formula that can be used for calculating
the constant b from c. Derive equations from which the −3 dB pulse
width and the −3 dB bandwidth can be found.

(b) The Gaussian pulse in Question 6.4(a) is convolved with itself. Show
that the resulting waveform is also Gaussian. Has the −3 dB pulse
width increased? If yes, by how much?

6.5. An engineer designed a filter whose impulse response h(t) is given by (αt),
where α is a real positive scalar.

(a) When the engineer passed the signal x(t) = cos(200π t) through the
designed filter, he observed that the filter output, y(t), becomes zero
(for all t) for some choice of α. For some other choice of α, the output
becomes a scaled version of the input (i.e., y(t) = βx(t), where β is
a real scalar). Analyse this problem and determine the ranges of values
of α such that the output will be a scaled version of the input. What
is the expression for β?

(b) Assume that α is chosen from the range determined from Question
(a). Determine the power and energy of the input and output of the
filter. Plot the magnitude and phase spectra of the input and output
of the filter.

6.6. In this problem, we consider a system for measuring the speed of objects.
The operation is as follows. The system sends a radio-frequency (RF) pulse
p(t), like the one shown in Fig. P6.1 below:

Figure P6.1. RF pulse (p(t)).

The signal is reflected by the object, whose velocity is being measured and
the echo arrives at the receiver at time t0. The received signal is given by:

g(t) = a × p(αt − t0).

The shape of the signal is modified due to the motion of the object.
The constant α is given by:

α = 1+
2v
c
=

c + 2v
c

,
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where v is the speed of the object and c is the speed of propagation of the
ultrasound signal which is assumed to be much larger than the speed of
the object which is being measured, i.e., c � v. a and t0 are positive real
constants. The RF pulse p(t) is given by:

p(t) =

{
sin(2π f0t) for 0 ≤ t ≤ M

f0

0 otherwise,

where f0 is a positive real number and M is a positive integer number.
It can be assumed that M � 1 in the rest of the problem.

(a) Show how the spectrum P( f ) of p(t) can be found through the use of
appropriate theorems and properties of the Fourier transform. Express
the spectrum as a function of f0 and M . Sketch the amplitude den-
sity spectrum |P( f )|, and denote the placement of maxima and zeros
(minima) in the spectrum.

(b) Find the spectrum G( f ) of g(t), using P( f ) as a starting point and
applying appropriate theorems and properties of the Fourier trans-
form. Express the spectrum as a function of a, α, f0, M and t0. Show
that the spectrum has maxima at f = ±α f0. Sketch the amplitude
density spectrum of the received signal for α = 1.1, when the relevant
parameters are fixed.

(c) The received signal is processed by the system shown in Fig. P6.2
below.

Figure P6.2. Detector scheme.

First the signal g(t) is multiplied by the complex signal gd(t) =
e− j2π f0t

= cos(2π f0t) − j sin(2π f0t). Then the resulting signals are
passed through ideal low-pass filters. These low-pass filters remove all spec-
tral components over the frequency f0, and have an amplification of 1 in
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the pass-band. The result of this processing is the complex signal:

g1(t) = gr (t)+ jgi (t).

Sketch the amplitude spectrum of the complex signal g1(t) for v =
+0.05 × c and for v = −0.05 × c, by fixing the relevant parameters
(choosing appropriate values). Show that the sign (positive or negative) of
v can be found from the maximum value in the amplitude spectrum of the
signal g1(t).
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Chapter 7

Sampling and Digital Signals

In practical applications of signals and systems, we often need to measure signals
and analyse them to discover the characteristics of the signals and/or systems present
in the particular application under consideration. For example, in the receiver of
a communication system, we would depend a lot on the received signal to under-
stand the nature of the channel through which the signal propagation takes place.
Another example would be the non-invasively collected ECG signals from the chest
sensors/electrodes of a subject/patient to process and diagnose the condition of the
heart.

Most of the signals that we encounter in practice are analog in nature, i.e.,
continuous-time and continuous-amplitude signals. On the other hand, we use the
power of digital computers and digital signal processors to do the analysis and/or
processing of these signals, which require signals in the digital (i.e., discrete-time
and discrete-amplitude signals) format. So, it becomes necessary to convert the ana-
log signals into digital signals and this is done through the processes of sampling
and quantization. The device which does sampling and quantization is known as
the analog-to-digital converter (ADC).

It is very important to ensure that we do not lose any information through the
process of sampling; otherwise, the inferences that we make about the analog signal
based on our analysis of the sampled signal will not be useful. Since the process
of quantization results in loss of accuracy in the signal amplitude, it is extremely
important to design the quantizer to minimize this error.

123
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The following topics are discussed in detail in this chapter.
• Theoretical concepts behind sampling of signals:

– Relation between sampling frequency and signal bandwidth.
– Concept of aliasing.
– Reconstruction of analog signal from samples.
– Nyquist’s sampling theorem.

• Design aspects of quantizer.
• Definition and properties of Fourier transform (or spectrum) for discrete-

time signals.
• Use of z-transform in the study of discrete-time signals.

7.1 Sampling of Analog Signals

Let xa(t) represent an analog signal and let Xa( f ) be its Fourier transform such
that

|Xa( f )| = 0 for | f | > B. (7.1)

That is, xa(t) is a band-limited signal, and the maximum frequency component
in1 xa(t) is at ±B Hz.

Let us sample the continuous-time signal xa(t) at the rate of fs samples per
second, i.e., with a sampling interval of Ts = 1/ fs seconds. This is shown in
Fig. 7.1 below. An example of the signal xa(t) and its sampled versions are shown in
Fig. 7.2. As can be seen, the sampled signals, x[n] takes values of xa(t) at instances,
t = nTs , where n = 0,±1,±2, . . . .

Recall from Chapter 6 that sampling can be done by multiplying xa(t) with a
periodic train of impulses spaced at Ts seconds. This periodic impulse train and its

Figure 7.1. Schematic representation of periodic sampling of an analog signal.

1. For the signal xa(t) with its Fourier spectrum given by Eq. (7.1), we say that the 2-sided bandwidth is 2B,
or the one-sided bandwidth is B.
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Figure 7.2. Example of an analog signal xa(t) and its sampled version, x[n]. (a) Analog

signal and (b) Sampled (discrete-time) signal.

Fourier transform are given by,

i(t) =
∞∑

n=−∞

δ(t − nTs) (7.2)

I ( f ) = fs

∞∑
k=−∞

δ( f − k fs). (7.3)

We get the sampled signal as,

xs(t) = xa(t)
∞∑

n=−∞

δ(t − nTs) =

∞∑
n=−∞

xa(nTs)δ(t − nTs)

=

∞∑
n=−∞

x[n]δ(t − nTs) (7.4)
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= · · · + x[−2]δ(t + 2Ts)+ x[−1]δ(t + Ts)+ x[0]δ(t)

+x[1]δ(t − Ts)+ x[2]δ(t − 2Ts)+ · · · , (7.5)

where we denote the samples of xa(t) by x[n]. That is,

x[n] 1= xa(nTs) = [xa(t) at t = nTs], (7.6)

where n is an integer in the range [−∞,+∞]. At instants other than the sampling
instants, i.e., t 6= nTs , note that xs(t) = 0.

Noting that Fourier transform of the product of two signals (in the time domain)
is equal to the convolution of the Fourier transforms of the two signals (in the
Fourier/frequency domain), the Fourier transform of the sampled signal can be
obtained as

X ( f ) = Xa( f )⊗ I (F)

= Xa( f )⊗

[
fs

∞∑
k=−∞

δ( f − k fs)

]

= fs

∞∑
k=−∞

[Xa( f )⊗ δ( f − k fs)] (7.7)

= fs

∞∑
k=−∞

Xa( f − k fs)

= fs [· · · + Xa( f + 2 fs)+ Xa( f + fs)+ Xa( f )

+Xa( f − fs)+ Xa( f − 2 fs)+ · · · ]. (7.8)

Thus, X ( f ) is obtained by adding periodically the shifted copies of Xa( f ).
Figure 7.3 illustrates this for two choices of the sampling frequencies. Using Fig. 7.3,
we can deduce several concepts underlying discrete-time signals.2

It can be seen from the above figure, that the spectra of the sampled signals
overlap each other when the sampling frequency ( f2) is less than 2B (Fig. 7.3(c).
On the other hand, if the sampling frequency is greater than 2B, (Fig. 7.3(b)), the
spectra does not overlap, making it easier to reconstruct the original signal from the
sampled signal.

2. Since we have not quantized the values of the samples x[n] into discrete-amplitude, strictly speaking, we
should call x[n] as a discrete-time signal (or sequence) and not digital signal.
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Figure 7.3. Spectra of signals before and after sampling (with different sampling fre-

quencies): (a) Analog signal xa(t) with 2-sided bandwidth 2B, (b) Sampled signal x1[n]
with sampling frequency f1 > 2B, and (c) Sampled signal x2[n] with sampling frequency

f2 < 2B.

7.2 Signal Reconstruction from Samples

To address the problem of reconstruction of a continuous-time signal from its sam-
ples, we ask the following questions.

Is it possible to perfectly reconstruct the analog signal xa(t) from its sam-
ples x[n]? How can this be done? In other words, how can we obtain the
spectrum Xa( f ) of the analog signal from the spectrum X ( f ) of the sam-
pled signal? What conditions must be satisfied for perfect reconstruction to
be possible? Conversely, what are the conditions which make perfect recon-
struction impossible?

Using Fig. 7.3, we shall answer these questions.
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7.2.1 Perfect Reconstruction

Consider Fig. 7.3(b). Since the sampling frequency f1 is chosen to be greater
than 2B, observe that the spectrum f1 Xa( f ) in the frequency range [−B,+B]
is not affected by the higher frequency spectral images f1 X ( f + k f1) for k =
±1,±2, . . . .

Let us pass the samples x[n] through an ideal low-pass filter (LPF) whose fre-
quency response is given by,

H( f ) =

{ 1
f1

for − 0.5 f1 ≤ f ≤ 0.5 f1

0 otherwise.
(7.9)

The impulse response of this LPF is given by,

h(t) = F−1 [H( f )] = sinc( f1t). (7.10)

Therefore, we get the output of the LPF as,

x̂a(t) = {x[n]} ⊗ h(t) = xs(t)⊗ h(t)

=

∞∑
n=−∞

x[n]sinc( f1(t − nTs)). (7.11)

It is easy to see from Eq. (7.8) and Fig. 7.3(b) that the spectrum of the LPF output
will be Xa( f ). That is, the signal x̂a(t) at the LPF output will be same as the
original analog signal xa(t).

§ Perfect reconstruction of the analog signal xa(t) from its samples taken at sampling rate
f1 is possible if the sampling rate is chosen to be greater than or equal to twice the maximum
frequency B of xa(t). That is,

Sampling rate ≥ 2B. (7.12)

This is known as Nyquist’s sampling theorem. The frequencies 2B and B are known as
Nyquist rate and Nyquist frequency, respectively, of the signal xa(t).

§ If f1 ≥ 2B, then perfect reconstruction of xa(t) from its samples x[n], taken at rate f1,
can be done by passing the samples through an ideal low-pass filter with cut-off frequencies
±0.5 f1 and gain 1/ f1.

7.2.2 Spectral Aliasing

Consider Fig. 7.3(c). In this case, the sampling rate f2 does not obey Eq. (7.12).
As a result, the higher frequency spectral images f2 Xa( f + f2) and f2 Xa( f − f2)
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Figure 7.4. Illustration of aliasing.

Figure 7.5. Use of anti-aliasing filter to avoid aliasing. If f2 is the sampling rate, then the

low-pass filter limits the bandwidth of xa(t) to [−0.5 f2, 0.5 f2], resulting in x̃a(t).

overlap with the the spectrum f2 Xa( f ) in the range [−B,+B]. This is called
spectral aliasing. Because of aliasing, it is easy to see that we cannot recover the
original spectrum Xa( f ) from X ( f ).

§ Perfect reconstruction of an analog signal xa(t) from its samples (x[n]) is impossible if
the sampling rate is less than twice the maximum frequency B of the signal xa(t). That is,

Sampling rate < 2B. (7.13)

An example of aliasing is illustrated in Fig. 7.4, where two sinusoids with fre-
quencies f1 = 1/8 Hz and f2 = −7/8 Hz yield identical samples when sampled at
fs = 1 Hz. This means that, when the signals are reconstructed from the sampled
signal, it will never be able to obtain the original signal.

7.2.3 Anti-Aliasing Filtering

We can avoid aliasing by pre-filtering the signal xa(t) by a low-pass filter to limit the
bandwidth of the signal to satisfy the condition given by Eq. (7.12). This filtering
should be done before sampling, as shown in Fig. 7.5. Such a filter is known as
anti-aliasing filter or bandlimiting filter. In Fig. 7.5, the spectrum of the samples
x̃[n] is free from aliasing with respect to the signal x̃a(t). That is, the signal x̃a(t)
(not xa(t)!) can be perfectly reconstructed from the samples x̃[n].

From power and complexity considerations, it is good to use an anti-aliasing filter
to band-limit the signal, so that the sampling rate can be reduced, thus reducing the
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complexity of the whole process. However, this may result in loss of information
which can never be recovered from the samples.

7.2.4 Choice of Sampling Frequency

Selection of the sampling frequency involves several tradeoffs.

• Sampling rate should be as low as possible to minimize (i) memory required
to store the data, (ii) bandwidth required to transmit the data, (iii) power
required to process the data at high-speed, (iv) cost required to design and
fabricate components/devices to operate at high-speed, etc.

• Sampling rate should be as high as possible (i) to avoid aliasing, (ii) to relax
the sharp cut-off characteristics required of filters used for bandlimiting the
signals, etc.

7.3 Quantization

As mentioned earlier, digitization of signals involves sampling and quantization,
which are performed by a device known as the analog-to-digital converter (ADC).
In this section, we shall briefly touch upon quantization.

The process of converting a discrete-time continuous amplitude signal into a
digital signal by expressing each sample value as a finite number of digits is called
quantization. The task of the quantizer is to convert the input sample x[n], which
is continuous-valued, into a discrete-valued format. A simple quantizer, known as
the uniform quantizer, is described here.

Let the dynamic range of the input samples x[n] be [−xmax , xmax ] with
xmax > 0, being the maximum value of the signal. The quantizer divides this
dynamic range into L equal intervals (also known as quantization step-size or reso-
lution) of length 1 = 2xmax

L , and i th interval is given by,

[di−1, di ] with di = −xmax + i1, (7.14)

for i = 1, . . . , L . This is illustrated in Fig. 7.8(b). The discrete-valued output of
the quantizer is given by the middle-point of each interval. Therefore, we get the
quantizer output as

xq [n] =
di−1 + di

2
if x[n] ∈ [di−1, di ]. (7.15)

If we have b-bit quantizer, then L = 2b+1 and every sample xq [n] will be repre-
sented using a b-bit binary-word. Thus, with a sampling rate of fs , the number of
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Figure 7.6. Schematic diagram of quantizer (actual system).

Figure 7.7. Mathematical model of quantization noise (mathematical model).

bits generated per second will be b fs . Clearly, more the number of bits per sample
used in the quantizer, less will be the error incurred in quantization, and more will
be the storage space and/or speed required to handle the generated data.

7.3.1 Quantization of Continuous-Amplitude Signals

A digital signal is a sequence of numbers (samples) in which each number is rep-
resented by a finite number of digits (finite precision). The error introduced in
representing the continuous-valued signal by a finite set of discrete-value levels is
called quantization error or quantization noise. Figure 7.6 illustrates the block dia-
gram of an actual quantizer and its mathematical model is given in Fig. 7.7.

We denote the quantizer operation on the samples x[n] as Q[x[n]] and the
sequence of quantized samples as xq [n]. Hence,

xq [n] = Q[x[n]]. (7.16)

The quantization error is a sequence eq [n] defined as

eq [n] = xq [n]− x[n]. (7.17)

The quantization process is illustrated with an example below. Let us consider
the discrete-time signal

x[n] =
{

0.9n for n ≥ 0
0 for n < 0

(7.18)

obtained by sampling the analog exponential signal xa(t) = 0.9t , t ≥ 0 with a
sampling frequency fs = 1H z (see Fig. 7.8(a)). Observation of Table 7.1, which
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Figure 7.8. Illustration of quantization.

shows the values of the first 10 samples of x[n], reveals that the description of the
sample value x[n] requires n significant digits.

Let us assume that we want to use only one significant digit. To eliminate the
excess digits, we can either simply discard the extra digits (truncation) or discard
them by rounding the resulting number (rounding). The resulting xq [n] corre-
sponding to the truncation and rounding operations are given in Table 7.1. We dis-
cuss here the quantization by rounding.

The rounding process is graphically illustrated in Fig. 7.8(b). The values allowed
in the digital signal are the quantization levels, whereas the distance 4 between
two successive quantization levels is the quantization step-size or resolution. The
rounding quantizer assigns each sample of x[n] to the nearest quantization level.
In contrast, a quantizer that performs truncation would have assigned each sample
of x[n] to the quantization level below it. The quantization error in rounding is
limited to the range of −4/2 to 4/2, that is

−
4

2
≤ eq [n] ≤

4

2
(7.19)

In other words, the instantaneous quantization error cannot exceed half of the
quantization step-size (see Table 7.1).
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Table 7.1. Numerical illustration of quantization with one significant digit

using truncation or rounding.

x[n] xq [n] xq [n] eq [n]

n Discrete-time signal (Truncation) (Rounding) (Rounding)

0 1 1.0 1.0 0.0

1 0.9 0.9 0.9 0.0

2 0.81 0.8 0.8 −0.01

3 0.729 0.7 0.7 −0.029

4 0.6561 0.6 0.7 0.0439

5 0.59049 0.5 0.6 0.00951

6 0.531441 0.5 0.5 −0.031441

7 0.4782969 0.4 0.5 0.0217031

8 0.43046721 0.4 0.4 −0.03046721

9 0.387420489 0.3 0.4 0.012579511

If xmin and xmax represent the minimum and maximum values of x[n] and L
is the number of quantization levels, then

4 =
xmax − xmin

L − 1
=

R
L − 1

(7.20)

The numerator of Eq. (7.20) is defined as the dynamic range (R) of the signal. In our
example, xmax = 1.0, xmin = 0, and L = 11, which makes 4 = 0.1. Note that
if the dynamic range is fixed, increasing L results in a decrease of the quantization
step-size. Thus the quantization error decreases and the accuracy of the quantizer
increases. If the quantizer has b + 1 bits of accuracy and the quantizer covers the
entire range R, the quantization step is

4 =
R

2b+1 . (7.21)

7.3.2 Analysis of Quantization Errors

To determine the effects of quantization on the performance of an ADC, we adopt
a statistical approach because the quantization error is assumed to be random in
nature. We model this error as noise that is added to the original (unquantized)
signal (see Fig. 7.8(b)). If the input analog signal is within the range of the quantizer,
the quantization error eq [n] is bounded in magnitude (i.e., |eq [n]| < 4/2), and
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Figure 7.9. Probability density function for the quantization error.

the resulting error is called the granular noise. When the input falls outside the
range of the quantizer (clipping), eq [n] becomes unbounded and results in overload
noise. The following analysis is based on the assumption that there is no overload
noise.

To carry out the analysis, we make the following assumptions about the statistical
properties of eq [n]:

• The error eq [n] is uniformly distributed over the range −42 ≤ eq [n] ≤ 42 .
• The error sequence eq [n] is a stationary white noise process.3 In other words,

the error eq [n] and error eq [m] for m 6= n are uncorrelated.4

• The error sequence eq [n] is uncorrelated with the signal sequence x[n].
• The signal sequence x[n] is zero mean and stationary.

Under these assumptions, the effect of the additive noise eq [n] on the desired
signal can be quantified by evaluating the signal-to-quantization-noise (power) ratio
(SQNR), which can be expressed on a logarithmic scale (in dB) as

SQNR = 10 log10

(
px

pn

)
(7.22)

where px = σ
2
x = E[x2[n]] is the signal power and pn = σ

2
e = E[e2

q [n]] is the
power of the quantization noise. Here, E[.] is the expectation operation.

If the quantization error is uniformly distributed5 in the range (−4/2, 4/2)
as shown in Fig. 7.9, the mean value of the error is zero and the variance

3. This will be discussed in a later chapter.

4. This will be discussed in a later chapter.

5. Details of uniform PDF can be seen in Appendix B.
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(the quantization noise power) is,

pn = σ
2
e =

∫
4/2

−4/2
e2 p(e)de =

1
4

∫
4/2

−4/2
e2de =

4
2

12
. (7.23)

By combining Eq. (7.21) with Eq. (7.23) and substituting the result into
Eq. (7.22), the expression for SQNR becomes

SQNR = 10 log10

(
px

pn

)
= 20 log10

(
σx

σe

)
, (7.24)

= 20 log10(σx )− 20 log10(σe),

= 20 log10(σx )− 20 log10(4)+ 10 log10(12); ∵ σe =
4
√

12
,

= 20 log10(σx )− 20 log10

(
R

2b+1

)
+ 10.79; ∵ 4 =

R
2b+1 ,

= 20 log10(σx )− 20 log10(R)+ 6.02b + 16.81,

= 6.02b + 16.81− 20 log10

(
R
σx

)
dB. (7.25)

This equation shows that the SQNR depends on the range R of the ADC and
the statistics of the input signal. Equation (7.25) shows that each additional bit (b)
in the quantizer increases the SQNR by ≈ 6dB.

7.4 Concluding Remarks

• Theory behind sampling an analog signal is described.
• Spectral relationships between the analog and sampled signals described in

detail with illustrations.
• The function of anti-aliasing filters in sampling is explained.
• Conditions for perfect reconstruction of signals from sampled signals are

described.
• Quantization process and the analysis of errors associated with it has been

discussed in detail.
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Exercises

7.1. In this problem, consider a band-limited continuous-time signal xa(t) and
its echo xa(t − τ), where τ is a time-delay, arrive simultaneously at a TV
receiver. The received analog signal is modelled as,

ra(t) = xa(t)+ αxa(t − τ), |α| < 1.

This signal is processed by the system shown in Fig. P7.1 to generate
the analog signal ya(t) (In the figure, ADC: Analog to Digital Converter,
DAC: Digital to Analog Converter, and fs : Sampling frequency).

Figure P7.1.

(a) Is it possible to specify fs and H(z) so that ya(t) = xa(t) (i.e., remove
the “ghost” xa(t − τ) of xa(t) from the received signal, ra(t))? If yes,
discuss the choice of fs and H(z).

In the following, it is assumed that the signal xa(t) has the spec-
trum as shown in Fig. P7.2. Here, B is the one-sided bandwidth of
the signal xa(t). This signal is passed through two systems as shown
in Fig. P7.3(a) and P7.3(b), respectively (In Fig. P7.3(a) and P7.3(b),
(.)2 represents the squaring operation).

Figure P7.2.

(b) Sketch the spectra of y[n] and s[n] in Fig. P7.3(a) and Fig. P7.3(b),
respectively if the sampling frequency fs = 2B is chosen.
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Figure P7.3.

(c) Determine y1(t) and y2(t) if xa(t) = cos 2π f0t , f0 = 20H z and
fs = 50H z. Are there any relationship between y1(t) and y2(t)?
(Hint: cos2(θ) = 1

2 [1+ cos(2θ)])

7.2. Consider the spectrum (base-band) Xa( f ) of an analog signal xa(t) as
shown in Fig. P7.4. Using a scaled impulse train, Ts

∑
∞

n=−∞ δ(t − nTs),
the analog signal xa(t) is sampled to produce the discrete-time signal x[n].
Here, Ts is the periodicity of the impulse train. fc in the figure is the one-
sided bandwidth of the signal xa(t).

Figure P7.4.

(a) For this signal xa(t), what is the minimum sampling time Ts that
results in alias-free spectrum (X ( f )) of the sampled signal, x[n]? Plot
the corresponding spectrum X ( f ).

In the following, it is assumed that fc = 104Hz and the signal
xa(t) is modulated using a complex exponential e j�0t , where �0 =

π × 105 rad/sec (the arrangement shown in Fig. P7.5) to produce the
modulated signal y(t).
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Figure P7.5.

(b) Sketch the Fourier spectrum Y ( f ) of the modulated signal y(t).
(c) The modulated signal y(t) is then sampled and passed through a

reconstruction filter (with filter impulse response h(t)) that demod-
ulates y(t) so that xa(t) can be retrieved at the output. What are the
possible sampling frequencies? Sketch the ideal |H( f )| for a suitable
reconstruction filter, h(t). |.| here represents the magnitude (abso-
lute value).

7.3. Normal and over-sampling ADC (analog to digital converter) with and
without anti-aliasing filter: The block diagram in Fig. P7.6 shows different
steps in sampling and reconstructing an analog signal, xa(t).

Figure P7.6.
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The signal xa(t) has a bandwidth | f | < 5 Hz. It is digitized at 10 Hz
to give x[n]. To re-construct xa(t) (the reconstructed signal is is denoted
as x̂a(t)), x[n] is passed into an ideal DAC (digital to analog converter)
as shown. The output xs(t) = . . . + x(0)δ(t) + x(1)δ

(
t − 1

10

)
+ . . .

(continuous-time representation of x[n]) of the ideal DAC gives a pulse
which approximates an impulse for every x[n]. Various signals (xa(t),
x[n], and xs(t)) are depicted in Fig. P7.6. Sketch the spectrum after DAC.
Determine a suitable filter (h(t)) that can recover xa(t) from the DAC out-
put (i.e., from xs(t)).

7.4. Ideal and zeroth-order hold DAC: An ideal DAC converts x[n] to an
impulse train xs(t). A practical DAC on the other hand converts x[n] into
a step waveform xD A(t) as shown in Fig. P7.7 (i.e., a practical DAC gives
a pulse of width 1/ fs seconds instead of an impulse for every x[n]; fs is
the sampling frequency). See that xD A(t) = xs(t) ⊗ rect(10t). Relate
X D A( f ) to X ( f ). How can this zeroth order hold effect be compensated?

Figure P7.7.

7.5. The amplitude spectrum of one analog signal is shown in Fig. P7.8. The
signal is sampled with a sampling interval Ts = 140ms (milliseconds).

Sketch roughly the amplitude spectrum of the sampled signal in the
frequency range below 10Hz. Comment on the choice of sampling interval.

7.6. (a) Sketch x[n] = . . . , 0, 0, e−0.3, e−0.6, e−0.9, e−1.2, . . . , with x[0] =
e−0.3. Write down and sketch the continuous-time representation of
x[n], assuming that a sampling frequency of 0.2 Hz has been used.
Determine the z-transform and spectrum of x[n].

(b) The signal, x[n], in Question (a) is obtained from sampling an analog
signal, xa(t), directly. Using the exponential and unit step functions,
suggest how xa(t)may look like. Give two possible answers. Can x[n]
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Figure P7.8.

be used to recover xa(t) perfectly? Why? By using a perfect D/A con-
verter and an anti-aliasing filter, an analog signal, xb(t), is generated
from x[n]. Write down a formula from which xb(t)may be calculated.



DOI: 10.1561/9781680839791.ch8

Chapter 8

z-Transform of Discrete Time Signals

Laplace transform is the concept of transforming a function of time into a function
of frequency. For the analysis of continuous time LTI systems, Laplace transform
has been used extensively. The variable used in the Laplace transform is s = σ+ j�,
which represents a complex frequency, i.e., it is frequency with a real and imaginary
part. The general expression for the two-sided Laplace transform of a continuous-
time signal x(t) is given by,

X (s) =
∫
∞

−∞

x(t)e−st dt, (8.1)

where the integral is taken as a line integral along a suitable closed contour in the
complex s−plane. To learn more about Laplace transform, one may refer [8].

z-transform is the discrete-time version of the Laplace transform. Here, we use
the variable z = re jθ , which is complex (with magnitude |z| = r , and 6 z = θ )
instead of s. By applying the z-transform to a sequence of data points, we create
an expression that allows us to perform frequency-domain analysis of discrete-time
signals.

With the z-transform, we can create transfer functions for digital systems, and
we can find (and plot) poles and zeros on a complex plane for stability analysis. It
can be used for finding the output of a system to an input, estimating the input
signals based on the outputs and the transfer function of the system. The inverse

141
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z-transform allows us to convert a z-domain transfer function into a difference equa-
tion that can be implemented in a computer or in a digital signal processor.

8.1 z-Transform

The z-transform of a discrete-time signal x[n] is defined as,

X (z) =
∞∑

n=−∞

x[n]z−n (8.2)

where z = re jθ is a complex variable, r = |z| and θ = 6 z. Then X (z) can be
expressed as,

X (z)|z=re jθ =

∞∑
n=−∞

x[n]r−ne− jθn (8.3)

Associated with each X (z) is its region of convergence (ROC) which is the set
of values of z for which X (z) attains a finite value in the complex z-plane. In the
ROC of X (z), |X (z)| <∞. But

|X (z)| =

∣∣∣∣∣
∞∑

n=−∞

x[n]r−ne− jθn

∣∣∣∣∣
=

∞∑
n=−∞

∣∣∣x[n]r−ne− jθn
∣∣∣ = ∞∑

n=−∞

∣∣x[n]r−n∣∣. (8.4)

The problem of finding the ROC for X (z) is equivalent to determining the range
of values of r for which the sequence x[n]r−n is absolutely summable. To elaborate,
let us express Eq. (8.4) as,

|X (z)| =
−1∑

n=−∞

∣∣x[n]r−n∣∣+ ∞∑
n=0

∣∣∣∣ x[n]
rn

∣∣∣∣,
=

∞∑
n=1

∣∣x[−n]rn∣∣+ ∞∑
n=0

∣∣∣∣ x[n]
rn

∣∣∣∣. (8.5)

If X (z) converges in some region of the complex plane, both summations in
Eq. (8.5) must be finite in that region. If the first sum in Eq. (8.5) converges, there
must exist values of r small enough such that the product sequence x[−n]rn , for
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Figure 8.1. ROC for X (z) and its corresponding causal and anti-causal components.

1 ≤ n ≤ ∞, is absolutely summable. Therefore, the ROC for the first sum consists
of all points in a circle of radius r1, where r1 <∞, as illustrated in Fig. 8.1(a). On
the other hand, if the second sum in Eq. (8.5) converges, there must exist values
of r large enough such that the sequence x[n]/rn , for 0 ≤ n ≤ ∞, is absolutely
summable. Hence the ROC for the second sum in Eq. (8.5) consists of all points
outside a circle of radius r > r2, as illustrated in Fig. 8.1(b).

Since the convergence of X (z) requires that both sums in Eq. (8.5) be finite,
it follows that the ROC of X (z) is generally specified as the annular region in the
z-plane, r2 < r < r1, which is the common region where both sums are finite (see
Fig. 8.1(c)). On the other hand, if r2 > r1, there is no common ROC for the two
sums and hence X (z) does not exist.
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Figure 8.2. (a) The right-sided exponential signal, x[n] = αnu[n], and (b) the ROC of X (z).

8.2 Discrete-time Signal Types and z-Transforms

Below, some common discrete-time signal types and their corresponding
z-transforms are explained.

8.2.1 Right-Sided Sequences

The sequence x[n] is said to be right sided if x[n] = 0 for n less than a finite value.
For such sequences, the ROC is the exterior of a circle.

E .g., x[n] = αnu[n] H⇒ X (z) =
1

1− αz−1 . (8.6)

Here, 0 < α < 1. The ROC (Fig. 8.2(b)) corresponds to
∣∣αz−1

∣∣ < 1 or |z| > |α|.

8.2.2 Left-Sided Sequences

The sequence x[n] is said to be left sided if x[n] = 0 for n greater than a finite
value. For such sequences, the ROC is the interior of a circle.

E .g., x[n] = −αnu[−n − 1] H⇒ X (z) = −
α−1z

1− α−1z
. (8.7)

Here again, 0 < α < 1 and the ROC corresponds to |α−1z| < 1 or |z| < |α|.
This is shown in Fig. 8.3(b).

8.2.3 Two-Sided Sequences

For a two-sided sequence (i.e., x[n] for n = −∞, . . . ,∞), the ROC is a ring
formed by the intersection of the ROCs corresponding to the right-sided and
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Figure 8.3. (a) The left-sided exponential signal, x[n] = −αnu[−n − 1], and (b) the

ROC of X (z).

left-sided parts of the sequence.

E .g., x[n] = αnu[n]+ bnu[−n − 1]

⇒ X (z) =
1

1− αz−1 +
b−1z

1− b−1z
=

z
z − α

+
z

b − z
. (8.8)

In determining the convergence of X (z), we consider two cases:

• |b| < |α|: In this case, the two ROCs do not overlap, as shown in Fig. 8.4(a).
Consequently, we can not find values of z for which both power series con-
verge simultaneously. Clearly, in this case, X (z) does not exist.

• |b| > |α|: Clearly, in this case there is a ring in the z-plane where both
power series converge simultaneously, as shown in Fig. 8.4(b). The ROC cor-
responds to |α| < |z| < |b|.

8.2.4 Finite Duration Sequences

For a finite duration sequence (i.e., x[n] for n = n1, . . . , n2 where −∞ < n1 <

n2 <∞), the ROC is the entire z-plane, except possibly the points z = 0 and/or
z = ∞.

§ Are FIR filters stable? Why?

8.3 Properties of ROC

There are several important properties for the ROCs, which are listed below:

• Bounded by circles (dependent only on |z|)
• Connected and bounded by poles or by∞. (ROC cannot contain a pole.)
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Figure 8.4. The ROC for the z-transform of both-sided exponential signal x[n] = αnu[n]+
bnu[−n − 1].

• If x[n] is absolutely summable, then the ROC contains the unit circle, the
system has a DTFT and is said to be “stable”.

• A stable and causal sequence (system) has all its poles inside the unit circle.
• Right-sided infinite sequence: ROC lies outside the outermost pole. If also

causal, then the ROC includes |z| = ∞.
• Left-sided infinite sequence: ROC lies inside the innermost pole. If also anti-

causal, then the ROC includes |z| = 0.
• Two-sided infinite sequence: ROC lies between the two poles. The ROC does

not include |z| = 0 or |z| = ∞.
• Finite-length sequence: Always converges. ROC always includes

0 < |z| <∞. ROC includes 0 if sequence is anti-causal, or includes ∞ if
causal.

The properties of z-transform and z-transform pairs are provided as tables in
Appendix B.
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8.4 Relationship to Fourier Transform

With z = re jω where r = |z| and ω = tan−1 [=(z)/<(z)], we get

X
(

re jω
)
=

∞∑
n=−∞

[
x[n]r−n] e− jωn, (8.9)

where, =(z) is the imaginary part of z and <(z) is the real part of z. We can infer
the following from Eq. (8.9):

• z-Transform of a sequence x[n] is equal to the Fourier transform of the
sequence x[n]r−n . Therefore, z-transform can exist even when Fourier trans-
form may not exist.

• Fourier transform of a sequence x[n] is equal to the z-transform evaluated
on the unit circle in the complex plane (i.e., z = e jω when r = |z| = 1).

8.4.1 Common z-Transforms and Properties of z-Transform

The z-transforms of some of the elementary signals are given in Table 8.1. Table
8.2 lists some of the properties of z-transforms that will be useful in the study of
signals. In Table 8.2, X (z), X1(z) and X2(z) are the z-transforms of x[n], x1[n]
and x2[n], respectively. The contour ‘c1’ indicated in the table is a closed contour

Table 8.1. Some common z-transform pairs.

Signal z-Transform ROC

δ[n] 1 all z

u[n]
1

1− z−1 |z| > 1

anu[n]
1

1− az−1 |z| > |a|

anu[−n]
1

1− a−1z
|z| < |a|

−anu[−n − 1]
1

1− az−1 |z| < |a|

cos(ω0n)u[n]
1− z−1 cos(ω0)

1− 2z−1 cos(ω0)+ z−2 |z| > 1

sin(ω0n)u[n]
z−1 sin(ω0)

1− 2z−1 cos(ω0)+ z−2 |z| > 1

nu[n]
z−1(

1− z−1
)2 |z| > 1
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Table 8.2. Properties of the z-transform for discrete-time signals.

Property Time domain z domain

Linearity a1x1[n]+ a2x2[n] a1 X1(z)+ a2 X2(z)

Time shifting x[n − k] z−k X (z)

Time reversal x[−n] X
(
z−1)

Conjugation x∗[n] X∗ (z∗)

Scaling in time domain an x[n] X
(
a−1z

)
Differentiation in nx[n] −z

d X (z)
dz

frequency domain

Convolution x1[n]⊗ x2[n] X1(z)X2(z)

Correlation x1[n]⊗ x∗2 [−n] X1(z)X∗2 (1/z
∗)

Multiplication x1[n]x2[n]
1

2π j

∫
c1

X1(v)X2 (z/v) v−1dv

(complex convolution)

in the ROC of X1(v)X2 (z/v). If we choose the contour of integration as the unit
circle z = e jω, we get (since z∗ = e− jω

= z−1)

x[n] = x1[n]⊗ x∗2 [−n] ⇒ X (z) = X1(z)X∗2(z). (8.10)

x[n] = x1[n]⊗ x∗1 [−n] ⇒ X (z) = |X1(z)|2 . (8.11)

8.5 Inverse z-Transform

The inverse z-transform is formally defined by (using Cauchy’s integral theorem
[12])

x[n] =
1

2π j

∫
c

X (z)zn−1dz (8.12)

where ‘c’ is a closed counter-clockwise contour in the ROC of X (z). Three popular
approaches for obtaining the inverse z-transform are:

• Direct evaluation of Eq. (8.12) by contour integration,
• Partial fraction expansion and table look-up,
• Power series expansion method.
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8.5.1 Inverse z-Transform by Contour Integration

For rational z-transforms, the contour integral can be evaluated using Cauchy’s
residue theorem as

x[n] = sum of the residues of X (z)zn−1 at the poles

of X (z)zn−1 inside the contour c.

In general, if p0 is a pole of X (z)zn−1 (inside contour c) repeated m times, then
the residue of X (z)zn−1 at p0 is given by

Res(z = p0) =
1

(m − 1)!

[
dm−1ψ(z)

dzm−1

]
z=p0

(8.13)

where ψ(z) = (z − p0)
m X (z)zn−1.

Example: Consider H(z) = 1
1−az−1 with |z| > |a|. Then,

H(z)zn−1
=

zn−1

1− az−1 =
zn

z − a
. (8.14)

We take the contour c as a circle at radius greater than |a|. For n ≥ 0, the only pole
inside c is z = a. Therefore ψ(z) = (z − a)H(z)zn−1

= zn and m = 1. Hence,
we get

h[n] = Res(z = a) = zn∣∣
z=a = an for n ≥ 0. (8.15)

For n < 0, inside c, there is a single pole at z = a and |n|-times repeated pole at
z = 0. Let n = −1. Then, ψ(z) = 1

z for the pole z = a, and ψ(z) = 1
z−a for the

pole at z = 0. Therefore, with n = −1 and m = 1, we get

h[−1] = Res(z = a)+ Res(z = 0) =
1
z

∣∣∣∣
z=a
+

1
z − a

∣∣∣∣
z=0
= 0. (8.16)

Now, let n = −2. Then, ψ(z) = 1
z2 for the pole z = a, and ψ(z) = 1

z−a for the
twice-repeated pole at z = 0. Therefore, with n = −2, we get

h[−2] = Res(z = a)+ Res(z = 0)

=
1
z2

∣∣∣∣
z=a
+

d
dz

(
1

z − a

)∣∣∣∣
z=0
= 0. (8.17)

Similarly, it can be shown that h[n] = 0 for all n < 0. Thus, we get h[n] = anu[n]
as the inverse z-transform of the given H(z).
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8.5.2 Inverse z-Transform by Partial Fraction Expansion

In this approach, the given X (z) is expressed as a linear combination of simpler
terms as below.

X (z) = a1 X1(z)+ a2 X2(z)+ · · · + aK X K (z) (8.18)

where X i (z), i = 1, 2, . . . , K , are simpler z-transform expressions whose inverse
transforms (i.e., xi [n], i = 1, 2, . . . , K ) are easily available or known in the form
of a table look-up, and ai , i = 1, 2, . . . , K , are scalars. Then, we get,

x[n] = a1x1[n]+ a2x2[n]+ · · · + aK xK [n]. (8.19)

This approach is particularly useful when X (z) is a rational function. Let X (z) be
a proper rational function1 with z = p1 being a simple pole (i.e., non-repeated) and
z = p2 being a pole repeated m times. That is,

X (z) =
1(

1− p1z−1
) (

1− p2z−1
)m = zm+1

(z − p1) (z − p2)
m . (8.20)

Clearly, X (z)
z is a proper rational function. Its partial fraction expansion is given by,

X (z)
z
=

a1

z − p1
+

m∑
k=1

a2k

(z − p2)k
. (8.21)

Its residues, a1 and a2k are found as follows:

a1 = (z − p1)
X (z)

z

∣∣∣∣
z=p1

, (8.22)

a2k =
1

(m − k)!
×

dm−k

dzm−k

[
(z − p2)

m X (z)
z

]∣∣∣∣
z=p2

(8.23)

for k = 1, 2, . . . ,m.

1. In proper rational functions, the degree of the numerator polynomial is less than that of the denominator.
If the given rational function is not proper, then it can be written as the sum of a polynomial of finite

length and a proper rational function. For example, X (z) = 1+3z−1
+(11/6)z−2

+(1/3)z−3

1+(5/6)z−1+(1/6)z−2 = 1 + 2z−1
+

(1/6)z−1

1+(5/6)z−1+(1/6)z−2 .
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Example: Consider X (z) = 1
1−1.5z−1+0.5z−2 with |z| > 1. Then,

X (z) =
z2

z2 − 1.5z + 0.5
=

z2

(z − 0.5)(z − 1)
(8.24)

⇒
X (z)

z
=

z
(z − 0.5)(z − 1)

=
a1

z − 0.5
+

a2

z − 1

a1 = (z − 0.5)
X (z)

z

∣∣∣∣
z=0.5

=
z

z − 1

∣∣∣∣
z=0.5

= −1

a2 = (z − 1)
X (z)

z

∣∣∣∣
z=1
=

z
z − 0.5

∣∣∣∣
z=1
= 2

⇒ X (z) =
−z

z − 0.5
+

2z
z − 1

=
−1

1− 0.5z−1 +
2

1− z−1

⇒ x[n] = −(0.5)nu[n]+ 2u[n]. (8.25)

8.5.3 Inverse z-Transform by Power Series Expansion

Given a z-transform with its corresponding ROC, we expand X (z) into a power
series of the form

X (z) =
∞∑

n=−∞

cnz−n, (8.26)

which converges in the given ROC. Then, it follows from the uniqueness of the
z-transform that x[n] = cn for all n. For rational X (z), this expansion may be
performed by long division. To simplify this process, we may convert the given
rational X (z) into simpler functions using the method of partial fractions and then
apply the long division approach.

Example: Consider X (z) = 1
1−1.5z−1+0.5z−2 with two cases of ROCs given by

(a) |z| > 1 and (b) |z| < 0.5.
In Case (a), the ROC is the exterior of the circle |z| = 1. Therefore, the underly-

ing sequence x[n] must be a right-sided one. Therefore, we should seek for a power
series expansion in the negative powers of z. By doing the polynomial division of
the numerator of X (z) by its denominator, we get,

X (z) = 1+
3
2

z−1
+

7
4

z−2
+

15
8

z−3
+

31
16

z−4
+ · · · (8.27)

⇒ x[n] =

{{
1, 3

2 ,
7
4 ,

15
8 ,

31
16 , · · ·

}
for n = 0, 1, 2, . . .

0 for n < 0.
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In Case (b), the ROC is the interior of the circle |z| = 0.5. Therefore, the
sequence x[n] must be a left-sided one. Therefore, we should seek for a power series
expansion in the positive powers of z. For this, the long division is done as,

X (z) =
1

0.5z−2 − 1.5z−1 + 1
= 2z2

+ 6z3
+ 14z4

+ 30z5
+ 62z6

+ · · · (8.28)

⇒ x[n] =
{
{2, 6, 14, 30, 62, · · · } for n = −2,−3,−4,−5, . . .
0 for n ≥ −1.

(8.29)

8.6 Concluding Remarks

• The z-transform, the associated ROCs, and its properties explained in detail.
• Methods for finding the inverse z-transform discussed.
• z-transform and its relationship to Fourier transform explained.

Exercises

8.1. Spectra of finite length sequences.

(a) Find the z-transform and the spectrum of the finite length geometric
sequence:

x[n] = . . . , 0, α0, α1, . . . , α7, 0, 0, . . .

(b) Find the z-transform and the spectrum of the finite length sinusoid:

x[n] = . . . , 0, e0 j2π0.2, e1 j2π0.2, . . . , e10 j2π0.2, 0, 0, . . .

(c) Find the z-transform and the spectrum of the finite length reciprocally
decaying sequence:

x[n] = . . . , 0, 1,
1
2
,

1
3
,

1
4
. . .

(d) Spectrum of conjugated and reversed signal: x[n] has a spectrum of
X ( f ) = e

√
− f . Find the spectra of x∗[n] and x[−n].

(e) Signal with conjugated spectrum: x[n] has a spectrum of X ( f ) =
√

cos( f ). Find the signal that has a spectrum of X∗( f ).

8.2. Inverse z-transform from partial fraction and long division.

(a) Find the signal x[n] with z-transform X (z) = z
z2+3z+2 .
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(b) Use long division to express X (z) = z2

(z−1)2 as a function of z−1, and
find x[n].

8.3. Consider the system (mixer of two signals) shown in Fig. P8.3 below:
The signals x1(t) and x2(t) are given by:

Figure P8.3. Mixer.

x1(t) = 2 sin(2π f1t)u(t)

x2(t) = 3 sin(2π f2t)u(t),

where u(t) is the unit step function defined by:

u(t) =
{

0 when t < 0
1 when t ≥ 0.

The frequencies f1 and f2 are 1kHz and 2kHz, respectively. The sampling
frequency fs is 8kHz.

(a) Find the z-transform of ys[n].
(b) Sketch the zero-pole diagram of the output of the system. Label the

zeros and the poles.
(c) The analog signal y(t) is a linear combination of two oscillations with

frequencies f3 = f2 − f1 and f4 = f2 + f1. A digital filter can
be designed from the zero-pole diagram by placing zeros and poles at
appropriate places. Suggest a digital filter that removes the signal oscil-
lating at the frequency f3 from the discrete-time signal ys[n]. Write
down the z-transform of the filter H(z).

(d) Write down the expression for the transfer function H( f ) of the filter.
Provide a labeled sketch of |H( f )|.

8.4. Inverse z-transform from partial fraction and long division.

(a) Find the signal x[n] with z-transform X (z) = z
z2+3z+2 .

(b) Use long division to express X (z) = z2

(z−1)2 as a function of z−1, and
find x[n].
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Chapter 9

Fourier Spectra of Discrete-Time Signals

The Discrete Time Fourier Transform (DTFT), a member of the Fourier transform
family, is often used to analyse samples of analog aperiodic signals. From discrete
samples, DTFT produces a function of frequency that is a periodic summation
of the continuous Fourier transform of the original analog signals. As we will see,
DTFT is a continuous function of frequency, and a discrete version of it is the dis-
crete Fourier transform (DFT), which will be discussed in detail in a later chapter.

9.1 Spectra of Discrete-Time Signals

The spectrum of a discrete-time signal indicates how the signal may be thought of as
being composed of discrete-time complex exponentials. It describes the frequencies,
amplitudes, and phases of these exponentials that combine to create the discrete-
time signal. The individual complex exponential functions that sum up to give the
signal are called the complex exponential components.

Observe from Figure 7.3 that the spectrum X ( f ) of a sampled signal is periodic
with period equal to the sampling frequency fs . This can also be easily verified using
Eq. (7.8) by showing that

X ( f + m fs) = X ( f ) for any integer m. (9.1)

155
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Thus, sampling a signal in time-domain results in periodicity in the frequency-
domain. Note that this periodicity of the spectrum is irrespective of whether or not
the original analog signal xa(t) is periodic.

9.1.1 Discrete-Time Fourier Transform (DTFT)

Noting from Eq. (7.4) that the sampled signal x[n] has a continuous-time repre-
sentation given by,

xs(t) =
∞∑

n=−∞

x[n]δ(t − nTs), (9.2)

where Ts =
1
fs

is the sampling time and fs is the sampling frequency. We can
determine its Fourier transform as,

X ( f ) 1= F[x[n]] = F[xs(t)],

=

∫
∞

−∞

[
∞∑

n=−∞

x[n]δ(t − nTs)

]
e− j2π f t dt,

=

∞∑
n=−∞

x[n]
∫
∞

−∞

δ(t − nTs)e− j2π f t dt,

=

∞∑
n=−∞

x[n]e− j2π f nTs , (9.3)

since
∫
∞

−∞
δ(t − nTs)e− j2π f t dt = e− j2π f nTs . Equation (9.3) gives the expres-

sion1 for determining the Fourier transform of any discrete-time signal. This is also
known as discrete-time Fourier transform (DTFT), as opposed to the continuous-
time Fourier transform (CTFT) we studied in Chapter 4. In DTFT, note that
time is discrete and frequency is continuous. The Fourier series we studied in
Chapter 3 is also known as continuous-time Fourier series (CTFS). For discrete-
time periodic signals, we can define the so-called discrete-time Fourier series
(DTFS).

As in Chapter 4, the plot of |X ( f )| vs f gives the magnitude spectrum of x[n],
and the plot of the phase of X ( f ) vs f gives the phase spectrum of x[n].

1. Using Eq. (9.3), it is also easy to see that X ( f + m fs) = X ( f ) for any integer m, since e j2πm
= 1 and

fs Ts = 1.
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9.1.2 Inverse DTFT

Given the Fourier transform X ( f ), we can obtain the time-domain signal x[n] as,2

x[n] = Ts

∫ fs/2

− fs/2
X ( f )e j2π f nTs d f. (9.4)

Equation (9.4) gives the expression for determining the inverse Fourier transform
in the case of discrete-time signals. Because the spectrum of a discrete-time signal is
periodic, the evaluation of inverse DTFT involves integration over one period (i.e.,
[−0.5 fs, 0.5 fs]) of the spectrum only. This is unlike in the case of continuous-
time signals where the evaluation of inverse Fourier transform requires integration
of the spectrum over the complete frequency range [−∞,∞].

9.2 Normalized Frequency Representation

Because the spectrum X ( f ) is periodic with period fs =
1
Ts

, it is enough to
describe X ( f ) over one period given by [−0.5 fs, 0.5 fs] (or [0, fs]). Therefore,
for the sake of convenience of representation, it is common to normalize the fre-
quency variable f by the sampling frequency fs (i.e., f

fs
) and it is denoted as, f̃ .

In this normalized notation, one period of the spectrum spans the frequency range
[−0.5,+0.5]. Correspondingly, the normalized sampling frequency and normalized
sampling period are given as 1 Hz and 1 second, respectively.

In the normalized domain, i.e., with fs = 1 and Ts = 1, we can express the
forward and inverse Fourier transforms as,

X ( f̃ ) =
∞∑

n=−∞

x[n]e− j2π f̃ n (9.5)

x[n] =
∫ 0.5

−0.5
X ( f̃ )e j2π f̃ nd f̃ . (9.6)

2. Equation (9.4) for inverse DTFT can be obtained as follows:∫ fs/2

− fs/2
X ( f )e j2π f mTs d f =

∫ fs/2

− fs/2

[
∞∑

n=−∞

x[n]e− j2π f nTs

]
e j2π f mTs d f

=

∞∑
n=−∞

x[n]
∫ fs/2

− fs/2
e j2π f [m−n]Ts d f = fs x[m]

since the quantity
∫ fs/2
− fs/2 e j2π f [m−n]Ts d f is equal to fs if m = n, and is equal to 0 if m 6= n.
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Note that the X ( f̃ ) in Eq. (9.5) is periodic with period 1.0, because of the nor-
malization. To obtain the DTFT expressions with unnormalized frequency (i.e.,
Eqs. (9.3) and (9.4)) from Eqs. (9.5) and (9.6), scale the frequency axis by the
actual sampling frequency.3

9.3 Effect of Sampling Frequencies on the Spectrum

Consider a continuous-time signal xa(t) that is band-limited to [−50, 50]Hz as
shown in Fig. 9.1(a). Let x1[n] denote the samples of xa(t) at sampling rate
200 Hz, i.e., sampling period T1 =

1
200 seconds. The spectrum X1( f ) of x1[n] is

shown in Fig. 9.1(b). Let us also create another sample-sequence x2[n] from x1[n]
by artificially increasing the spacing between the samples of x1[n] to T2 = 2T1 =

1
100 . Then, we obtain

X1( f ) =
∞∑

n=−∞

x1[n]e− j2π f nT1 (9.7)

X2( f ) =
∞∑

n=−∞

x2[n]e− j2π f nT2

=

∞∑
n=−∞

x1[n]e− j2π(2 f )nT1

= X1(2 f ). (9.8)

Thus, the spectrum X2( f ) of x2[n] is a compressed version of the spectrum X1( f )
of x1[n], as illustrated in Fig. 9.1(c).

§ Changing the sampling rate of a discrete-time signal results in scaling of the frequency
axis: increase in sampling frequency results in expanding the frequency axis and decrease in
sampling frequency results in compressing the frequency axis.

On the other hand, if we had directly sampled the analog signal xa(t) at a rate of
100 Hz to produce the sequence x3[n], the resulting spectrum (X3( f )) would be
as shown in Fig. 9.1(d). It is interesting to compare the spectra shown in Figs. 9.1(c)
and (d).

3. That is, replace the normalized frequency variable f̃ in Eqs. (9.5) and (9.6) by f Ts where f is the unnor-
malized frequency.
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Figure 9.1. Illustration of the effect of different sampling frequencies: (a) spectrum of

the analog signal xa(t), (b) spectrum of x1[n], obtained by sampling xa(t) at 200 Hz,

(c) spectrum of x2[n], which is obtained from x1[n] by taking the sampling frequency as

100 Hz, and (d) spectrum of x3[n], which is obtained by sampling xa(t) at 100 Hz.

9.4 Frequency-Domain and Time-Domain Signal
Properties

So far, we have introduced several methods for the frequency analysis of signals.
Several methods are necessary to accommodate different types of signals. To sum-
marize, the following frequency analysis tools have been introduced:

• The Fourier series for continuous-time periodic signals (FS),
• The Fourier transform for continuous-time aperiodic signals (FT),
• The Fourier series for discrete-time periodic signals (DTFS), and
• The Fourier transform for discrete-time aperiodic signals (DTFT).

Figure 9.2 summarizes the analysis and synthesis formulae for these types of
signals.

As we can see, there are two time-domain characteristics that determine the type
of signal spectrum we obtain. These are whether the time variable is continuous or
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Figure 9.2. Summary of the analysis and synthesis formulae for different types of signals.

discrete, and whether the signal is periodic or aperiodic. The summary is,

• Continuous-time signals have aperiodic spectra.
• Discrete-time signals have periodic spectra.
• Periodic signals have discrete spectra.
• Aperiodic finite energy signals have continuous spectra.

9.5 Analysis of Discrete-Time Signals

In this section, we shall briefly introduce some tools (including DTFT) for the
analysis of discrete-time signals.

9.5.1 Common Discrete-Time Signals

A number of basic signals appear often in the study of discrete-time signals and
systems. They are listed below.

• Unit Impulse Signal: It is denoted by δ[n] and defined as

δ[n] =
{

1 for n = 0
0 for n 6= 0.

(9.9)

This is also known as Kronecker delta function.4

4. The delta function (or, impulse function) δ(t) we studied in Chapter 4, where t denotes continuous-time,
is known as the Dirac delta function.
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• Unit Step Signal: It is denoted by u[n] and defined as

u[n] =
{

1 for n ≥ 0
0 for n < 0.

(9.10)

• Exponential Signal: It is defined as

x[n] = an for all n (9.11)

where a is a scalar.
• Sinusoidal Signal: It is given by

x[n] = A cos(2π f̃ n + θ) for all n (9.12)

where A is the amplitude, f̃ ∈ [−0.5, 0.5] is the normalized frequency, and
θ ∈ [0, 2π ] is the phase.

• Periodic Signals: A discrete-time signal x[n] is said to be periodic with period
N (N is a positive integer) if,

x[n] = x[n + k N ], for any integer k. (9.13)

9.5.2 Elementary Manipulations

Let x[n] be a discrete-time signal. The following shifting operations are often
required while working with signals.

• Time Delayed Version: The signal y[n] = x[n − 2] is obtained by delaying
x[n] by 2 samples in time. That is, shift x[n] to the right on the time axis by
2 samples.

• Time Advanced Version: The signal y[n] = x[n+2] is obtained by advancing
x[n] by 2 samples in time. That is, shift x[n] to the left on the time axis by
2 samples.

• Time Reversed Version: The signal y[n] = x[−n] is obtained by reflecting
x[n] on the time axis with respect to the origin n = 0.

The signal y[n] = x[−n + 2] is obtained by time-reversing x[n] and
shifting to the right by 2 samples (Note: y[n] = z[n − 2] where z[n] =
x[−n]).

The signal y[n] = x[−n − 2] is obtained by time-reversing x[n] and
shifting to the left by 2 samples (Note: y[n] = z[n+2] where z[n] = x[−n]).
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9.5.3 Laplace Transform and z-Transform

The Laplace transform is the generalization of Fourier transform and for a signal
x(t), the Laplace transform is given by,

X (s) =
∫
∞

−∞

x(t)e−st dt (9.14)

where s = σ + j�. The inverse Laplace transform is,

x(t) =
1

2π j

∫ σ+∞

σ−∞
X (s)est ds (9.15)

Now, from Eq. (9.14), we have,

X (s) =
∫
∞

−∞

x(t)e−st dt (9.16)

= lim
Ts→0

∞∑
n=−∞

x(nTs)
(

esTs
)−n

(9.17)

where Ts is the sampling time. Equation (9.17), is the z-transform and is given by

X (z) =
∞∑

n=−∞

x[n]z−n (9.18)

where

x[n] = x(nTs) (9.19)

z = esTs = e(σ+ j�)Ts , (9.20)

= eσTs × e j�Ts = re jω, (9.21)

where r = eσTs and ω = �Ts (or f̃ = f Ts). Here ω is the angular frequency of
the discrete-time signal. When Ts = 1, then r = eσ and ω = � (or f̃ = f ).

The relation between s-plane and z-plane is shown in Fig. 9.3. The j�
(frequency) axis in the s-plane becomes a unit circle in the z-plane. Unit circle
becomes the frequency (ω) axis in the z-plane. The entire left half of the s-plane
is mapped into the unit circle and the right half of the s-plane is mapped into the
exterior of the unit circle.
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Figure 9.3. Relation between s-plane and z-plane.

9.5.4 z-Transform and DTFT

Recall from Chapter 4 that certain conditions must be satisfied by a signal if its
Fourier transform should exist. Similarly, some conditions must be satisfied for the
existence of DTFT also. On the other hand, the z-transform (ZT) is applicable to a
much broader category of discrete-time signals and systems compared to DTFT. In
simple words, the broader scope of applicability of ZT compared to DTFT follows
from the following fact:

§ DTFT is based on representation of signals (and systems) using complex sinusoids e j2π f̃ n ,
whereas ZT is based on representation of signals (and systems) using complex exponentials
zn , where z is a complex scalar.

Therefore, the ZT of a discrete-time signal x[n] is defined as

X (z) =
∞∑

n=−∞

x[n]z−n
=

∞∑
n=−∞

[
x[n]r−n] e− j2π f̃ n (9.22)

where z = re j2π f̃ is a complex variable5 with r = |z| and 2π f̃ being the phase
of z. Setting |z| = r = 1 in Eq. (9.22), we get,

X (z)||z|=r=1 =

∞∑
n=−∞

x[n]e− j2π f̃ n
= X ( f̃ ). (9.23)

5. Strictly speaking, z should be defined as re j2π f Ts where Ts denotes the sampling period. However, we

assume that we are working with normalized frequency ( f̃ ) and hence we use z = re j2π f̃ .
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In the complex z-plane, |z| = 1 corresponds to a circle of radius 1 with centre at
the origin. Therefore, we can state the following.6

§ The DTFT X ( f̃ ) of a discrete-time signal x[n] can be obtained by evaluating its ZT
X (z) on the unit circle in the z-plane (i.e., by setting z = e j2π f̃ in X (z)).

9.5.4.1 Region of Convergence (ROC) of ZT

The ZT X (z) exists when the infinite sum in Eq. (9.22) converges to a finite value.
For this to happen, we must have

∞∑
n=−∞

∣∣x[n]r−n∣∣ <∞. (9.24)

The range of r for which Eq. (9.24) is satisfied is known as the ROC of the ZT
of x[n]. Therefore, when we give the ZT of a signal, we should also specify its
corresponding ROC. In view of Eq. (9.23), we can say that the DTFT of x[n] will
exist only if the ROC of the ZT of x[n] contains the unit circle |z| = 1.

9.5.4.2 Properties of ZT and DTFT

We shall now look at some of the properties of ZT and DTFT. Let x[n] and y[n]
be two discrete-time signals with ZTs X (z) and Y (z), respectively, and DTFTs
X ( f̃ ) and Y ( f̃ ), respectively.

• Linearity: Let p[n] = αx[n]+ βy[n] where α and β are two scalars. Then,
we can easily show that

P(z) = αX (z)+ βY (z) H⇒ P( f̃ ) = αX ( f̃ )+ βY ( f̃ ). (9.25)

Thus, ZT and DTFT are linear transforms.
• Time Shifting: Let p[n] = x[n − k] where k is an arbitrary integer. Then,

we get (with m = n − k)

P(z) =
∞∑

n=−∞

x[n − k]z−n
=

∞∑
m=−∞

x[m]z−m−k

6. In view of the notation ‘X (z)’ used for representing ZT, a better notation for DTFT would have been

‘X
(

e j2π f̃
)

’. However, in this book, we stick to the notation X ( f̃ ) for DTFT.
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= z−k
∞∑

m=−∞

x[m]z−m
= z−k X (z).

⇒ P(z) = z−k X (z), P( f̃ ) = e− j2π f̃ k X ( f̃ ). (9.26)

In view of Eq. (9.26), z−1 is known as 1-sample delay operator. As in Chapter
4, the only effect of shifting a signal in time-domain is a linear phase change
in the frequency-domain (no change in magnitude spectrum).

• Time Reversal: Let p[n] = x[−n]. Then, we get (with m = −n)

P(z) =
∞∑

n=−∞

x[−n]z−n
=

−∞∑
m=∞

x[m]zm

=

∞∑
m=−∞

x[m]
(

z−1
)−m

= X (z−1).

⇒ P(z) = X (z−1), P( f̃ ) = X (− f̃ ). (9.27)

• Frequency Shifting: Let p[n] = e j2π f̃1nx[n] where f̃1 is a given frequency.
Then, we get

P( f̃ ) =
∞∑
−∞

[
e j2π f̃1nx[n]

]
e− j2π f̃ n

=

∞∑
−∞

x[n]e− j2π( f̃− f̃1)n

= X ( f̃ − f̃1). (9.28)

• Symmetric Signals: For symmetric signals (even or odd), DTFT has same
features as the CTFT in Chapter 4.

• Scaling in Time-Domain: Let p[n] = anx[n] where a is a scalar. Then, we
get (with m = −n)

P(z) =
∞∑

n=−∞

anx[n]z−n
=

∞∑
n=−∞

x[n]
(

a−1z
)−n

= X (a−1z). (9.29)

Example 1: x[n] = anu[n] (a is a scalar). This is called a right-sided sequence,
because,

x[n] =
{

an for n ≥ 0
0 for n < 0.

(9.30)
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Then, we can obtain its ZT as,

X (z) =
∞∑

n=−∞

anu[n]z−n
=

∞∑
n=0

anz−n
=

∞∑
n=0

(
az−1

)n

= 1+
(

az−1
)1
+

(
az−1

)2
+

(
az−1

)3
+ · · ·

=
1

1− az−1 if
∣∣∣az−1

∣∣∣ < 1. (9.31)

The ROC of this X (z) is given by |az−1
| < 1, i.e., |z| > |a|. In other words,

X (z) given by Eq. (9.31) will be finite only for the region specified by |z| > |a|.
To obtain the corresponding DTFT, substitute z = e j2π f̃ in X (z), resulting in

X ( f̃ ) =
1

1− ae− j2π f̃
with |a| < 1. (9.32)

Thus, we see that the DTFT of the signal anu[n] will exist only if |a| < 1. This
implies that the DTFT does not exist for the unit step u[n] since this corresponds
to |a| = 1. However, the ZT exists even if |a| = 1 and is given by 1

1−z−1 with the
ROC |z| > 1.

Example 2: y[n] = −anu[−n− 1] (a is a scalar). This is called a strictly left-sided
sequence, because

y[n] =
{
−an for n ≤ −1
0 for n ≥ 0.

(9.33)

Following the similar steps as in Example 1, we can obtain the ZT and DTFT of
y[n] as

Y (z) = −
a−1z

1− a−1z
with |z| < |a| (9.34)

=
1

1− az−1 with |z| < |a| (9.35)

Y ( f̃ ) =
1

1− ae− j2π f̃
with |a| > 1. (9.36)

Comparing Eqs. (9.31) and (9.34)−(9.36), we see how important is the specifica-
tion of ROC when working with ZTs. Two signals may have the same ZTs, but
could be different in their respective ROCs. Again, we see that the DTFT does not
exist for u[−n− 1] since this corresponds to |a| = 1. However, the ZT exists with
|a| = 1 and is given by 1

1−z−1 with ROC |z| < 1.
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§ Show that the ZT of p[n] = anu[−n] (a is a scalar) is given by 1
1−a−1z with ROC

|z| < |a|. Examine the DTFT in this case.

9.6 Concluding Remarks

• A bandlimited continuous-time signal of 2-sided bandwidth 2B can be
perfectly reconstructed from its samples taken at rate not less than 2B sam-
ples/second. An ideal low-pass filter of 2-sided bandwidth 2B can be used to
reconstruct the continuous-time signal from its samples.

• The sampling process leads to spectral aliasing if the sampling rate is less than
2B, and it is impossible to reconstruct the original analog signal from these
samples. Aliasing can be prevented by using an anti-aliasing filter to band-
limit the signal prior to sampling.

• Choice of the sampling frequency and quantizer resolution involves several
trade-offs.

• Fourier transform of a discrete-time signal (i.e., DTFT) is periodic with
period equal to the sampling frequency.

• The DTFT can also be obtained by evaluating the z-transform (ZT) on the
unit circle.

• It is convenient to use normalized frequency representation while dealing
with DTFT and ZT of discrete-time signals.

• It is very important to specify the ROC while specifying the ZT of signals.

Exercises

9.1. Sketch the numerical values of the spectra for the signals (Fig. P9.1) in
the frequency domain below 5kHz. Depict both the frequencies and the
relative amplitude of the respective frequency components.

(a) The signal g0(t) in Fig. P9.1 is given by,

g0(t) = a cos(2π f0t),

where f0 = 200Hz and a = 1 is a real constant.
(b) The signal gs(t) in Fig. P9.1 is given by,

gs(t) =
∞∑

n=−∞

g0(t)δ(t − nTs),

where Ts = 800µs.
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Figure P9.1.

(c) The signal g1(t) in Fig. P9.1 is given by,

g1(t) =
{

g0(nTs) for nTs < t < (n + 1
2 )Ts

0 otherwise,

where Ts = 800µs.
(d) The signal g2(t) in Fig. P9.1 is given by,

g2(t) =
{

g0(t) for nTs < t < (n + 1
2 )Ts

0 otherwise,

where Ts = 800µs.

9.2. Spectra of finite length sequences.

(a) Find the z-transform and the spectrum of the finite length geometric
sequence:

x[n] = . . . , 0, α0, α1, . . . , α7, 0, 0, . . .

(b) Find the z-transform and the spectrum of the finite length sinusoid:

x[n] = . . . , 0, e0 j2π0.2, e1 j2π0.2, . . . , e10 j2π0.2, 0, 0, . . .



Concluding Remarks 169

(c) Find the z-transform and the spectrum of the finite length reciprocally
decaying sequence:

x[n] = . . . , 0, 1,
1
2
,

1
3
,

1
4
. . .

(d) Spectrum of conjugated and reversed signal: x[n] has a spectrum of

X ( f̃ ) = e
√
− f̃ . Find the spectra of x∗[n] and x[−n].

(e) Signal with conjugated spectrum: x[n] has a spectrum of X ( f̃ ) =√
cos( f̃ ). Find the signal that has a spectrum of X∗( f ).

9.3. Sampling of rectangular, unit step and exponential waveforms:

(a) The signal xa(t) (shown in Fig. P9.3(a)) is sampled at a rate of 5 sam-
ples per second (i.e., fs = 5Hz). Write down and sketch the con-
tinuous and discrete-time representation of the sampled signal. Write
down their spectra.

Figure P9.3.

(b) A sampling rate of 0.2Hz is used to sample the unit step signal ua(t)
shown in Fig. P9.3(b). Write down and sketch the continuous and
discrete-time representations of the sampled signal. Write down their
spectra.

(c) An analog signal xa(t) = e−2t ua(t) (where ua(t) is the unit step
function) is sampled at a rate of fs Hz to generate the corresponding
discrete-time signal, x[n]. Estimate the spectra of both xa(t) and x[n].
Are these different? Why? What should fs be for these to have roughly
the same shape?
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9.4. Figure P9.4 shows the spectrum Xa( f ) of an analog signal xa(t). As you
can see, all the frequency components lie in the low frequency region
(i.e., low pass spectrum). Sketch the digital spectrum if the signal xa(t)
is sampled at 50 Hz.

Figure P9.4.

9.5. The spectrum (Xa( f ) ) given in Fig. P9.5 is that of a real and band pass
signal xa(t). It has a bandwidth of 40 Hz, but its highest frequency com-
ponent is 120 Hz. The signal is sampled at 100 Hz. Sketch the digital
spectrum and comment.

Figure P9.5.

9.6. An analog signal xa(t) is corrupted by an additive noise va(t). Their power
spectra (Sxx ( f ) and0vv( f ), respectively) are given in Fig. P9.6. Design an
optimum digitization system (sampling system) for the signal which gives
the best SNR (signal to noise ratio).

Figure P9.6.
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9.7. The signal xa(t) has a spectrum (Xa( f )) as shown in Fig. P9.7. Only the
part within | f | < 20 is important. Design a digitization system to sample
xa(t) without using any anti-aliasing LPF (low pass filter) and also with no
aliasing effects. Comment on the advantages and disadvantages.

Figure P9.7.

(a) Design a digitization system to sample xa(t) in Fig. P9.7 at the lowest
possible sampling rate.

(b) If we sample xa(t) in Fig. P9.7 directly at 50 Hz, will the important
part of xa(t) be preserved?

9.8. Consider the analog signal:

xa(t) = te−t u(t),

where u(t) is the unit step function, also known as the Heaviside function
defined as:

u(t) =
{

0 for t < 0
1 for t ≥ 0.

The spectrum of the analog signal is given as:

te−t u(t)↔
1

(1+ j2π f )2
.

The function and its spectrum are shown in Fig. P9.8.

(a) Determine the spectrum of the sampled signal x[n] = xa(nTs), where
Ts is the sampling period.

(b) Plot the signals x[n] = xa(nTs) for Ts = 1/3 sec and Ts = 1 sec, and
their spectra.

(c) Plot the continuous-time signal x̂a(t) after reconstruction with ideal
band-limited interpolation.
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Figure P9.8. Plot of xa(t) (top) and |Xa( f )| (bottom)

9.9. The real signal gm(t) has a real spectrum Gm( f ), which is shown in
Fig. P9.9, where the median frequency f0 is a constant and the bandwidth
B = f0

8 .

Figure P9.9.

(a) Sketch gm(t) roughly (groft).
(b) The signal gm(t) is converted to a digital signal gm[n] through a sam-

pling operation. The sampling interval is Ts =
3

4 f0
. Does the chosen

sampling frequency obey the sampling theorem? If not, suggest a sam-
pling interval/frequency, that fulfils the sampling criterion. Sketch the
spectrum of gm[n] in the frequency range below 2 f0, when Ts =

3
4 f0

.
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Chapter 10

Digital Systems

The contents of this chapter can be considered as the digital (strictly speaking,
discrete-time) counter-part of the analog systems we studied in Chapter 6. So, we
will find that the fundamentals behind the topics discussed in this chapter are same
or significantly similar to that in Chapter 6.

Since the scope of our study is limited to systems whose inputs and outputs are
signals, we may define system as a device that is designed to process its input signals
in a specified manner and generate output signals that meet well defined objectives.
Therefore, we may consider these systems as generalization of filters. For example,
we may design filters (or, systems)

• to extract information about specific quantities of interest from noisy data
(e.g., enhancing a desired signal buried in noise, recovering the transmitted
data bits from received noisy signal etc.),

• to aid in tracking dynamic physical processes (e.g., missile guidance, jamming
the radar of an enemy vehicle etc.),

• to aid in medical diagnosis by analyzing the measured biomedical signals (e.g.,
ECG, EEG, etc.), and

• to find efficient representation of signals (e.g., compression of speech and
image data, etc.).

173
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Figure 10.1. Block diagram of a practical signal processing system.

To introduce the relevance of the topics discussed in this chapter, we start
with Fig. 10.1 which shows the block diagram of a practical signal processing
system, highlighting the main sub-systems. The objective of any system is to pro-
cess measured signals for the purpose of either extracting some important infor-
mation or to transform the signal to another suitable form. Due to the many
advantages of doing this processing in digital domain, it is now very common to
use a digital signal processor (DSP) as the main processing unit in practical sys-
tems, as illustrated in Fig. 10.1. Let us take the processing of speech signals as an
example.

• Input Transducer: In the case of speech signal, the input transducer is a micro-
phone that converts the acoustic (sound) waves into an electrical signal, x(t).

• Signal Conditioner: This is an analog circuit that prepares the signal for
subsequent processing. The signal conditioning tasks involve band-limiting
the measured signal to reject the noise outside the signal bandwidth
(e.g., [−5,+5] kHz) of interest, amplify the signal to match the dynamic
range required by the circuits that follow this unit etc. The band-limiting
operation also serves to prepare the signal for sampling without aliasing. This
is what we have discussed earlier as the anti-aliasing filtering operation/pro-
cess.

• Analog-to-Digital Converter (ADC): As discussed in Chapter 7, the ADC
performs the tasks of sampling the analog signal xa(t) and digitizing the
resulting samples using a quantizer. The ADC output samples, x[n], are in
the form of binary data-words (e.g., 5 or 6 bits per sample).

• Digital Signal Processor (DSP): This is the heart of the system, and its pur-
pose is to process the digitized signal, x[n], from the ADC. The DSP may be
designed, for example, to identify what word/sentence was spoken, to iden-
tify who is the speaker, to find a compressed representation for the recorded



Digital Systems 175

signal, to convert the signal into a form suitable for transmission, to extract
some parameters from the signal, to improve the signal-to-noise ratio of the
signal, to detect and suppress certain interferences, etc.

– The DSP may be in the form of a software programme or hardware digital
circuit.

– The DSP unit may reside inside a digital computer or it may be a stand-
alone unit. Binary (i.e., {0,1}) representation is used for the data (or signal
samples) within the DSP.

– While the DSP unit is designed to perform a specified task, the main
constraints that must be taken into account during its design are hard-
ware complexity, computational complexity, required speed of operation,
required accuracy in the results, etc.

– The main components of the digital circuits (or software programme)
within the DSP are adders, multipliers, and delay elements. Using these three
basic building blocks, all types of operations can be implemented.

• Digital-to-Analog Converter (DAC): This is the unit that converts the pro-
cessed signal, y[n], from the digital domain to the analog domain. It first
converts the samples y[n], which are in the form of binary data-words, into
real numbers that represent voltage levels. The resulting sequence of samples
is passed through a reconstruction filter (e.g., low-pass filter) to generate an
analog speech signal ya(t). The function of DAC is thus the reverse of the
function of ADC.

• Output Transducer: The output transducer, for example, a loud-speaker, con-
verts the signal ya(t) into a sound wave that we can listen.

Our focus in this chapter is the study of the various fundamental aspects under-
lying the DSP unit in Fig. 10.1. We use ‘digital system’ to refer to any sub-system
(or, operation) that is part of the DSP unit. By studying this chapter, we should be
able to receive clarity and understanding on the following.

• Classification of digital systems:

– linear or non-linear,
– time-invariant or time-variant,
– causal or non-causal,
– stable or unstable

• Characterizing digital systems in time-domain and frequency-domain.
• Determining the output of a system for a given input, or determining the

input of a system for a given output.
• Use of z-transform (ZT) in the study of digital signals and systems.
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10.1 Input-Output Description of Systems

Consider, Fig. 10.2 which shows a digital system with input signal1 x[n] and output
signal y[n]. For the sake of convenience, we use the representation ‘D[x[n]]’ to
denote the ‘output of the digital system when the input is x[n]’. Therefore, we can
write

y[n] 1= D[x[n]].

For example, consider the input-output relationship for an accumulator2 as
shown below:

y[n] =
n∑

k=−∞

x[k] =
n−1∑

k=−∞

x[k]+ x[n] (10.1)

= y[n − 1]+ x[n]. (10.2)

We see that from Eq. (10.1), the output at time n = n0 depends not only on the
input at time n = n0, but also on x[n] at times n = n0 − 1, n0 − 2, and so on.
From Eq. (10.2), we find that the system computes the current value of the output
by adding (accumulating) the current value of the input to the past value of the
output.

Let us have a close look at this simple system. Suppose that we are given the input
signal x[n] for n ≥ n0, and we wish to determine the output y[n] for n ≥ n0. For
n = n0, n0 + 1, . . . , Eq. (10.2) gives,

y[n0] = y[n0 − 1]+ x[n0], (10.3)

y[n0 + 1] = y[n0]+ x[n0 + 1], (10.4)

Figure 10.2. A digital system with input signal x[n] and output signal y[n].

1. We assume the normalized frequency representation throughout this chapter. So, the actual sampling fre-
quency and sampling period are suppressed in the representations that we use here.

2. An accumulator basically computes the running sum of all the past input values up to the present time,
y[n] =

∑n
k=−∞ x[k] = x[n]+ x[n − 1]+ . . . .
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and so on. Note that we have a problem in computing y[n0], as it depends on
y[n0 − 1]. However,

y[n0 − 1] =
n0−1∑

k=−∞

x[k]. (10.5)

That is, y[n0− 1] “summarizes” the effect on the system from all the inputs which
had been applied to the system before time n0. Thus the response of the system for
n ≥ n0 to the input x[n] that is applied at time n0 is the combined result of this
input and all inputs that had been applied previously to the system. Consequently,
y[n], n ≥ n0 is not uniquely determined by the input x[n] for n ≥ n0.

The additional information required to determine y[n] for n ≥ n0 is the initial
condition y[n0 − 1]. This value summarizes the effect of all previous inputs to
the system. Thus, this initial condition together with the input sequence x[n] for
n ≥ n0 uniquely determine the output sequence y[n] for n ≥ n0. If the initial
condition is zero, we say that the system is initially relaxed.

10.2 Block Diagram Representation of Discrete-Time
Systems

To build the block-diagram representation of discrete-time systems, we need to
define the following basic building blocks:

• An Adder: Figure 10.3 illustrates a system (adder) that performs the addition
of two signal sequences to form (the sum) another sequence. Here, the inputs
to the adder is x1[n] and x2[n] and its output is y[n] = x1[n] + x2[n].
Note that it is not necessary to store the sequences in order to perform the
operation. In other words, the addition operation is memoryless.

• A Constant Multiplier: This operation is depicted in Fig. 10.4, and simply
represents applying a scale factor on the input x[n]. The output of this system
is, y[n] = ax[n], where a is a scalar. This operation is also memoryless.

Figure 10.3. Graphical representation of an adder.
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Figure 10.4. Graphical representation of a scalar multiplier.

Figure 10.5. Graphical representation of a signal multiplier.

Figure 10.6. Graphical representation of the unit delay element.

Figure 10.7. Graphical representation of the unit advance element.

• A Signal Multiplier: Figure 10.5 illustrates the multiplication of two signal
sequences (x1[n] and x2[n]) to form another sequence, y[n] = x1[n]×x2[n].
This again is a memoryless operation.

• A Unit Delay Element: It is a special system that simply delays the input by
one sample. Figure 10.6 illustrates such a system. We can see that the output
of the system is stored in memory at time n−1 and is recalled from memory
at time n to form y[n] = x[n − 1]. This requires a memory and the use of
the symbol3 z−1 denote the unit delay.

• A Unit Advance Element: This unit advances the input x[n] ahead by one
sample (Fig. 10.7). It may be noted that such a system is physically impossible
in real-time, since it involves looking into the future of the signal.

10.3 Classification of Digital Systems

There are several ways to classify digital systems, as we did for analog systems.
We briefly describe below the different classes.

3. The use of this symbol z−1 is apparent from the discussion on z−transform.
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10.3.1 Static and Dynamic Systems

A systemD[·] is said to be static or memoryless if its output at any instant n depends
at most on the input sample at the same time, but not on past or future samples of
the input. That is,

y[n] = D[x[n]]. (10.6)

Some examples are,

y1[n] = ax[n], (10.7)

y2[n] = nx[n]+ bx3[n]. (10.8)

A system is said to be dynamic if it has memory. If the output of a system at time
n is completely determined by the input samples in the interval from n − N to
n (N ≥ 0), the system is said to have a memory of length N (finite memory). If
N = 0, the system is static. If N = ∞, the system is said to have infinite memory.
Some examples are shown below:

y1[n] = x[n]+ 3x[n − 1], (10.9)

y2[n] =
N∑

k=0

x[n − k], (10.10)

y3[n] =
∞∑

k=0

x[n − k]. (10.11)

Here y1[n] is a dynamic system with finite memory of N = 1, y2[n] is again a
finite memory (N ) dynamic system, and y3[n] is a dynamic system with infinite
memory.

10.3.2 Linear Systems

A system D[·] is said to be linear if it satisfies the principle of superposition. That
is, the system response to a linear combination of inputs should be equal to the
linear combination of the system response to each of the input. Let y1[n] and y2[n]
be the outputs of the system corresponding to the input signals x1[n] and x2[n],
respectively. That is, y1[n] = D[x1[n]] and y2[n] = D[x2[n]]. Then, the system
is linear if,

D [αx1[n]+ βx2[n]] = αD[x1[n]]+ βD[x2[n]],

= αy1[n]+ βy2[n], (10.12)

for any arbitrary input signals x1[n] and x2[n], and any arbitrary scalars α and β.
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10.3.3 Time-Invariant Systems

A system D[·] is said to be time-invariant if its input-output characteristics do not
change with time. That is,

D[x[n]] = y[n] H⇒ D[x[n − k]] = y[n − k] (10.13)

for any input signal x[n] and any time-shift k. Time-invariant digital systems are
also known as shift-invariant systems.

10.3.4 Causal Systems

A system D[·] is said to be causal if its output (y[n]) at any given time depends
only on the inputs at that time and past (i.e., x[n], x[n − 1], x[n − 2], · · · ). If a
system does not satisfy this condition, it is called non-causal.

10.3.5 Stable Systems

A system D[·] is said to be stable in the sense of bounded-input bounded-output
(BIBO), if its output is bounded in magnitude when it is excited by an input that
is bounded in magnitude.

The condition that the input sequence x[n] and the output sequence y[n] are
bounded is translated mathematically to mean that there exist some finite numbers
Mx and My , such that

|x[n]| ≤ Mx <∞, |y[n]| ≤ My <∞ (10.14)

for all n. If for some bounded input sequence x[n], the output is unbounded
(infinite), the system is classified as unstable.

10.3.6 Physically Realizable Systems

There are two properties of systems that are closely related to the physical realiz-
ability of systems. They are the causality and stability. Stable and causal systems are
all physically realizable.

10.3.7 Linear Time-Invariant (LTI) Systems

The class of LTI systems is very important in many applications. A system D[·] is
said to be linear time-invariant (LTI) if it is linear and time-invariant. That is, for
the signals we considered above, we should have

D [αx1[n − l]+ βx2[n − k]] = αy1[n − l]+ βy2[n − k] (10.15)
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for any arbitrary input signals x1[n] and x2[n], any arbitrary scalars α and β, and
any arbitrary integers l and k.

10.4 Outputs of LTI Systems (Convolution)

We shall now derive an expression for the output of LTI systems. Let us assume
that the system D[·] given in Fig. 10.2 is a LTI system. Further, let h[n] denote
the impulse response of this system, which is obtained by setting the input, x[n],
to a unit impulse at n = 0, i.e., δ[n]. That is,4

h[n] = y[n]|x[n]=δ[n] = D[δ[n]]. (10.16)

Let us consider an arbitrary input signal, as shown in Fig. 10.8. Observe from
the figure that the sample x[k] at instant n = k can be expressed in the form of a scaled
version of a shifted unit impulse as x[k]δ[n − k] since

x[k]δ[n − k] =
{

x[k] if n = k
0 if n 6= k.

(10.17)

Therefore, we can express any sample of the signal as5

x[n] = · · · + x[−1]δ[n + 1]+ x[0]δ[n]

+x[1]δ[n − 1]+ x[2]δ[n − 2]+ · · · (10.18)

Figure 10.8. Any signal x[n] can be considered as the sum of scaled unit impulses sitting

at each value of n. For example, the sample x[2] at n = 2 can be expressed as a signal

x2[n] = x[2]δ[n − 2], which is zero for all n 6= 2. Similarly, the sample x[−3] at n = −3 can be

expressed as a signal x−3[n] = x[−3]δ(n + 3), which is zero for all n 6= −3.

4. The definition of impulse response given by Eq. (10.16) is applicable for any general system. This definition
is not restricted to LTI systems.

5. Verify the validity of Eq. (10.18) by evaluating the left and right sides for any value of n. For example, if we
put n = 1, then only the term x[1]δ[n − 1] will remain on the right-side.



182 Digital Systems

Observe that Eq. (10.18) expresses x[n] as the sum of scaled and shifted unit
impulses, the scale factors being the sample values x[k] for each k. Since the system
is LTI, we can obtain its output for the input x[k]δ[n − k] as

D[x[k]δ[n − k]] = x[k]D[δ[n − k]]

= x[k]h[n − k]. (10.19)

Therefore, we can obtain the output for the input, x[n], as

y[n] = D[x[n]] = D [· · · + x[−1]δ[n + 1]+ x[0]δ[n]

+x[1]δ[n − 1]+ x[2]δ[n − 2]+ · · · ]

= · · · +D [x[−1]δ[n + 1]]+D [x[0]δ[n]]

+D [x[1]δ[n − 1]]+D [x[2]δ[n − 2]]+ · · ·

= · · · + x[−1]h[n + 1]+ x[0]h[n]

+x[1]h[n − 1]+ x[2]h[n − 2]+ · · · (10.20)

which can be expressed in compact form as

y[n] =
∞∑

m=−∞

x[m]h[n − m] 1= x[n]⊗ h[n]. (10.21)

Eq. (10.21) is known as the discrete-time convolution of sequences {x[n]} and {h[n]}.
It can also be expressed as

y[n] =
∞∑

m=−∞

h[m]x[n − m] 1= h[n]⊗ x[n]. (10.22)

§ The output of a LTI system is given by the convolution of its impulse response, h[n], with
the input, x[n].

Note from Eq. (10.22) that y[n] will depend upon the future sample x[n + 1]
if h[−1] 6= 0. Generalizing this, we can say that a LTI system is causal if and only if
its impulse response, h[n], is zero for n < 0. All physical systems are causal systems
since they are unable to look into the future.
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It can be shown that a LTI system will be BIBO (Bounded Input Bounded
Output) stable if its impulse response satisfies the absolutely summable condition6

∞∑
n=−∞

|h[n]| <∞. (10.23)

Note that

|H( f̃ )| =

∣∣∣∣∣
∞∑

n=−∞

h[n]e− j2π f̃ n

∣∣∣∣∣ <
∞∑

n=−∞

|h[n]|. (10.24)

In view of Eqs. (10.23) and (10.24), we can say the following:
A LTI system is BIBO stable if and only if the Fourier transform (DTFT), H( f̃ ),

of its impulse response exists (i.e., |H( f̃ )| < ∞) for all f̃ . That is, the region of
convergence (ROC) of the z−transform, H(z), of h[n] must include the unit circle.

For physical realizability, a LTI system must be both causal and stable. That is, its
impulse response must satisfy

h[n] = 0 for n < 0 (10.25)

and

∞∑
n=0

|h[n]| <∞. (10.26)

10.5 Interconnection of Digital Systems

Digital systems can be interconnected to build larger systems. There are basically
two ways by which they can be interconnected: in cascade (series) or in parallel.

In a cascade interconnection (Fig. 10.9), the output of the first system is

y1[n] = D1[x[n]], (10.27)

6. Let x[n] be a bounded input, with |x[n]| < β <∞. Then, we get

|y[n]| =

∣∣∣∣∣
∞∑

m=−∞

h[m]x[n − m]

∣∣∣∣∣ <
∞∑

m=−∞

|h[m]x[n − m]|

=

∞∑
m=−∞

|h[m]| · |x[n − m]| < β

∞∑
m=−∞

|h[m]|.

Therefore, for y[n] to remain bounded, i.e., |y[n]| <∞, we should have Eq. (10.23) satisfied.
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Figure 10.9. Cascading of two discrete-time linear systems.

and the output of the second system is,

y[n] = D2[y1[n]],

= D2{D1[x[n]]}. (10.28)

We observe that the two systems D1 and D2 can be combined or consolidated to a
single system with overall system function

Dc ≡ D1D2. (10.29)

Consequently, the output of the combined system can be expressed as

y[n] = Dc[x[n]]. (10.30)

In general, the order in which the operations D1 and D2 are performed is
important. That is,

D1D2 6= D2D1 (10.31)

for arbitrary systems. However, if the systems are LTI, then Dc is time invariant
and D1D2 = D2D1. That is the order in which the systems process the signal is
not important.

In the parallel interconnection (Fig. 10.10), the output of the system D1 is y1[n]
and that of the system D2 is y2[n]. Hence the total output of the (parallel) inter-
connected system is,

y[n] = y1[n]+ y2[n],

= D1[x[n]]+D2[x[n]],

= (D1 +D2)[x[n]],

= Dp[x[n]], (10.32)

where Dp = D1 +D2.
Just like we construct larger systems by interconnecting smaller ones, a larger

system can be decomposed into smaller subsystems for the purpose of analysis and
easy implementation (we shall see this later).
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Figure 10.10. Parallel interconnection of two discrete-time linear systems.

10.6 Properties of Convolution and Interconnection
of LTI Systems

Here, we investigate some important properties of convolution and interpret them
in terms of interconnecting LTI systems. We have,

y[n] = x[n]⊗ h[n] =
∞∑

k=−∞

x[k]h[n − k] (10.33)

where⊗ represents the convolution operation. In Eq. (10.33), the impulse response
h[n] is folded and shifted. The input to the system is x[n]. We also know that,

y[n] = h[n]⊗ x[n] =
∞∑

k=−∞

h[k]x[n − k]. (10.34)

Here, it is the input signal which is folded and shifted. The property embodies in
Eq. (10.33) and Eq. (10.34) is called the commutative law. That is

x[n]⊗ h[n] = h[n]⊗ x[n]. (10.35)

Alternatively, we may interpret this form of the convolution formula as a result of
interchanging the roles of x[n] and h[n]. In other words, we may regard x[n] as
the impulse response of the system and h[n] as the input signal.

10.6.1 Identity and Shifting Properties

We also note that the unit sample response δ[n] is the identity element for convo-
lution, that is

y[n] = x[n]⊗ δ[n] = x[n]. (10.36)

If we shift δ[n] by k, the convolution sequence is also shifted by k, that is

x[n]⊗ δ[n − k] = y[n − k] = x[n − k]. (10.37)
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10.6.2 Associative Law

This law states that,

[x[n]⊗ h1[n]]⊗ h2[n] = x[n]⊗ [h1[n]⊗ h2[n]] . (10.38)

From a physical point of view, we can interpret x[n] as the input to a LTI system
with impulse response h1[n]. The output of the system, y1[n], becomes the input
to a second LTI system with impulse response h2[n]. Then the output is,

y[n] = y1[n]⊗ h2[n],

= [x[n]⊗ h1[n]]⊗ h2[n], (10.39)

which is precisely the left-hand side (LHS) of Eq. (10.38). Thus the LHS of
Eq. (10.38) corresponds to having two LTI systems in cascade. Now, the right-hand
side (RHS) of Eq. (10.38) indicates that the input x[n] is applied to an equivalent
system having an impulse response, say h[n], which is equal to the convolution of
h1[n] and h2[n]. That is

h[n] = h1[n]⊗ h2[n], (10.40)

and

y[n] = x[n]⊗ h[n]. (10.41)

Furthermore, since the convolution operation satisfies the commutative prop-
erty, one can interchange the order of the two systems with responses h1[n] and
h2[n] without altering the overall input-output relationship. Associative law can
be extended for more than two systems easily. Thus, if we have L , LTI systems with
impulse responses h1[n], h2[n], . . . , hL [n] in cascade, there is an equivalent LTI
system having an impulse response, h[n] = h1[n]⊗ h2[n]⊗ . . .⊗ hL [n].

Conversely, any LTI system can be decomposed into a cascade interconnection
of subsystems.

10.6.3 Distributive Law

According to this law, we have,

x[n]⊗ [h1[n]+ h2[n]] = x[n]⊗ h1[n]+ x[n]⊗ h2[n]. (10.42)

Interpreted physically, this law implies that if we have two LTI systems with
impulse responses h1[n] and h2[n] which are excited by the same input signal x[n]
(or in a sense these two systems are connected in parallel), the sum of the two
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responses is identical to the response of the overall system with impulse response

h[n] = h1[n]+ h2[n]. (10.43)

Thus the overall system is viewed as a parallel combination of the two individual
LTI systems. This can be generalized to the parallel combination of L , LTI systems.
The overall system will have an impulse response,

h[n] =
L∑

j=1

h j [n]. (10.44)

Conversely, any LTI system can be decomposed into parallel interconnection of
subsystems.

10.7 Characterizing Digital Systems

There are several ways to characterize (i.e., describe or represent) digital systems.
Our discussion in this section is limited to only LTI systems.

10.7.1 Difference Equations and Block Diagram

We can describe a system by specifying how its output, y[n], is related to its input,
x[n], which, in general, has the form,

y[n] = D [y[n − 1], . . . , y(n − N ), x[n], . . . , x[n − M]] (10.45)

where D[.] denotes some function of the quantities in brackets. Specifically, for a
LTI system, the general form of the input-output relationship is,

y[n] = −
N∑

k=1

ak y[n − k]+
M∑

k=0

bk x[n − k] (10.46)

where {ak} and {bk} are constant parameters that specifies the system and are inde-
pendent of x[n] and y[n]. The relationship in Eq. (10.46) is called a difference
equation and is one of the ways to characterize the behaviour of a discrete-time LTI
system.

For example, we have a system described by the following equations:

y[n] = 5v[n]+ 6v[n − 1]+ 7v[n − 2] (10.47a)

v[n] = x[n]− 3v[n − 1]− 4v[n − 2]. (10.47b)

Eqs. (10.47a) and (10.47b) are known as the difference equations that represent the
underlying system. If we are given the input samples x[n], it is very straightforward
to compute the samples of the output, y[n], using the above equations.
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Observe that the implementation of Eq. (10.47) consists of the three basic
units: adders, multipliers, and delays. Recall that z−1 represents the 1-sample delay
operator.

The complexity of a digital system refers to the number of multiplications and
additions it must perform during each sample interval. Since the input samples,
x[n], are coming at some rate (e.g., 1000 samples/second), it is necessary that the
system is able to finish all the computations required to determine the output at
time instant n before the next sample, x[n+ 1], arrives. For obvious reasons, mul-
tiplication is much more costly to perform compared to addition. Sometimes, the
number of delay elements is also considered while specifying the complexity.

10.7.2 Recursive and Non-recursive Digital Systems

Systems whose output depends on several past outputs as well as the present and
several past inputs are called recursive systems. Equation (10.45) represents a causal
and practically realizable recursive system. If y[n] depends only on the present and
past inputs, then

y[n] = D [x[n], x[n − 1], . . . , x[n − M]] . (10.48)

Such systems are called non-recursive.

10.7.3 Transfer Function

Transfer function (denoted as H(z)) of a LTI system is given by the ratio of the
z−transforms of its output to input. That is

H(z) =
Y (z)
X (z)

(10.49)

where X (z) is the z-transform (ZT) of the input x[n] and Y (z) is the7 ZT of the
output y[n].

7. Using Eq. (10.21), we can determine the ZT of the output, y[n], of a LTI system with impulse response,
h[n], as (with p = n − m)

Y (z) =
∞∑

n=−∞

y[n]z−n
=

∞∑
n=−∞

∞∑
m=−∞

x[m]h[n − m]z−n

=

∞∑
p=−∞

∞∑
m=−∞

x[m]h[p]z−(p+m)
=

∞∑
p=−∞

h[p]z−p
∞∑

m=−∞

x[m]z−m

= H(z)X (z). (10.50)

Thus, we get the transfer function, H(z), as defined in Eq. (10.49).
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Recall from Chapter 8 that8 Z[x[n − k]] = z−k X (z). Using this and the lin-
earity property of ZT, we can obtain the transfer function of the system given by
Eq. (10.47) as follows:

Y (z) = Z [5v[n]+ 6v[n − 1]+ 7v[n − 2]]

= 5Z[v[n]]+ 6Z[v[n − 1]]+ 7Z[v[n − 2]]

= 5V (z)+ 6z−1V (z)+ 7z−2V (z)

=

[
5+ 6z−1

+ 7z−2
]

V (z) (10.51a)

V (z) = Z [x[n]− 3v[n − 1]− 4v[n − 2]]

= X (z)− 3z−1V (z)− 4z−2V (z)

⇒ X (z) =
[
1+ 3z−1

+ 4z−2
]

V (z) (10.51b)

V (z) =
X (z)

1+ 3z−1 + 4z−2 (10.51c)

⇒ H(z) =
Y (z)
X (z)

=
5+ 6z−1

+ 7z−2

1+ 3z−1 + 4z−2 . (10.51d)

Using Eq. (10.51d), we can obtain another difference equation for the output as
follows. Using Eq. (10.51d), we can write[

1+ 3z−1
+ 4z−2

]
Y (z) =

[
5+ 6z−1

+ 7z−2
]

X (z)

⇒ Y (z)+ 3z−1Y (z)+ 4z−2Y (z) = 5X (z)+ 6z−1 X (z)

+7z−2 X (z). (10.52a)

Taking inverse ZT on both sides of Eq. (10.52a), we get

y[n]+ 3y[n − 1] + 4y[n − 2] = 5x[n]+ 6x[n − 1]+ 7x[n − 2]

H⇒ y[n] = 5x[n]+ 6x[n − 1]+ 7x[n − 2]

− 3y[n − 1]− 4y[n − 2]. (10.52b)

The expression for the output, y[n], given by Eq. (10.52b) is recursive in nature, as
y[n] depends on its own past values.

8. The notation Z[x[n]] implies ‘the z-transform (ZT) of x[n].’
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Eq. (10.51d) shows that, in general, we can express the transfer function of a
digital system as the ratio of two polynomials in z as

H(z) =
N (z)
D(z)

=

M∑
l=0

bl z−l

N∑
k=0

akz−k

, (10.53)

where bl for l = 0, 1, . . . ,M , and ak for k = 0, 1, . . . , N , are the coefficients
of the polynomials N (z) and D(z), respectively. Note that these coefficients corre-
spond to the multiplication factors in the block-diagram9 of the system.

10.7.4 Poles and Zeros

The values of z at which H(z) becomes infinity are known as the poles of H(z).
Similarly, the values of z at which H(z) becomes zero are known as the zeros
of H(z). Therefore, the poles and zeros of H(z) can be obtained by determining
the roots of its denominator and numerator polynomials, respectively. Since H(z)
becomes∞ at its poles, it is clear that all the poles of H(z) must lie outside its
ROC.

For the H(z) given in Eq. (10.51d), we get the poles as {(−1.5 +
j1.323), (−1.5− j1.323)} and zeros as {(−0.6+ j1.02), (−0.6− j1.02)}. It can
be seen that both the numerator and denominator polynomials are of 2nd degree
and hence there exits two roots each. Note that the poles and zeros occur in complex
conjugate pairs since the polynomial coefficients are real.

A plot of the poles and zeros is known as the pole-zero diagram. The pole-zero
diagram for the system in Eq. (10.51d) is illustrated in Fig. 10.11. It can be seen
that both the poles and zeros lie outside the unit circle.

§ From the pole-zero diagram of a transfer function, is it possible to obtain the expression
for the transfer function?

Poles of Causal and Stable LTI Systems: Let us consider a causal LTI system with
impulse response given by h[n] = anu[n], where a is a scalar. Recall from the exam-
ple on the right-sided sequence in Section 8.1, that this results in H(z) = 1

1−az−1 ,
which has one pole at z = a and ROC is given by |z| > |a|. Thus, the ROC does
not include the pole. On the other hand, recall that the ROC of a stable system must

9. Will be discussed in detail in the next chapter.
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Figure 10.11. Pole-zero diagram. Here, the poles are denoted by×s and zeros are denoted

by ◦s.

include the unit circle. This implies that we should have |a| < 1 for this system
to be stable. In other words, the poles of a causal and stable system must lie inside the
unit circle.

10.7.5 Frequency Response

Frequency response (denoted H( f̃ )) of a LTI system is given by the Fourier trans-
form of its impulse response, h[n]. It can also be obtained by evaluating the transfer
function, H(z), on the unit circle. That is,

H( f̃ ) = H(z)|z=e j2π f̃ =
Y (z)
X (z)

∣∣∣∣
z=e j2π f̃

=
Y ( f̃ )

X ( f̃ )
(10.54a)

=

∑
n

h[n]e− j2π f̃ n. (10.54b)

Thus, frequency response is equal to the ratio of the discrete-time Fourier trans-
forms (DTFT) of the output and input. It is easy to see that H( f̃ ) is periodic with
period equal to the normalized sampling frequency 1 (Note: X ( f̃ ) and Y ( f̃ ) are
periodic).

We say that a digital system is real if the coefficients of the numerator and
denominator polynomials (N (z), D(z)) in its transfer function are real. This is
equivalent to saying that the impulse response, h[n], is real, i.e., h∗[n] = h[n].
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Noting that
(

e j2π f̃
)∗
= e− j2π f̃ , we can write using Eq. (10.54b)

H∗( f̃ ) =

[∑
n

h[n]e− j2π f̃ n

]∗
=

∑
n

h∗[n]
(

e− j2π f̃ n
)∗

=

∑
n

h[n]e j2π f̃ n
= H(− f̃ ). (10.55)

Thus, for real systems, the magnitude of H( f̃ ) is even-symmetric and phase of
H( f̃ ) is odd-symmetric. That is,

|H( f̃ )| = |H(− f̃ )| and θ(− f̃ ) = −θ( f̃ ), (10.56)

where θ( f̃ ) is the phase of H( f̃ ). As before, |H( f̃ )| and θ( f̃ ) are known as the
magnitude spectrum and phase spectrum, respectively, of the system specified by
the transfer function, H(z).

10.7.6 Impulse Response

By definition, we get the impulse response as the system output (i.e., y[n] = h[n]),
when we set the input as x[n] = δ[n]. That is,

X (z) = 1 and X ( f̃ ) = 1. (10.57)

Using this in Eqs. (10.49) and (10.54), we get

Y (z) = H(z) and Y ( f̃ ) = H( f̃ ). (10.58)

Thus, the impulse response (denoted as h[n]) of a system can be obtained by
finding

• either the inverse DTFT of its frequency response, H( f̃ ),
• or the inverse ZT of its transfer function, H(z).

That is,

h[n] = F−1[H( f̃ )] =
∫ 0.5

−0.5
H( f̃ )e j2π f̃ d f̃ . (10.59)

h[n] = Z−1[H(z)]. (10.60)
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10.7.7 Systems with Finite-Duration and Infinite-Duration
Impulse Response

It is possible to subdivide the class of LTI systems into two types: Finite-duration
impulse response (FIR) and Infinite-duration impulse response (IIR). Thus an FIR
system has an impulse response which is zero outside some finite interval. Without
loss of generality, we focus our attention on causal FIR systems, so that

h[n] = 0, n < 0 and n ≥ M. (10.61)

The convolution formula for such a system reduces to

y[n] =
M−1∑
k=0

h[k]x[n − k]. (10.62)

In contrast, an IIR LTI system has an infinite duration impulse response and the
output (convolution formula) is,

y[n] =
∞∑

k=0

h[k]x[n − k]. (10.63)

10.8 Determination of System Output

Consider a LTI system with impulse response h[n] and transfer function H(z). It
becomes often necessary to determine the output, y[n], of the system for a given
input, x[n]. We can do this by any of the following methods.

• Transfer Function Approach: From H(z) (the transfer function) and X (z)
(z-transform of the input, x[n]), the z-transform of the output, Y (z) is
obtained as Y (z) = H(z) ·X (z). The corresponding output y[n] is obtained
by taking the inverse ZT of Y (z).

• Frequency Response Approach: Given H( f̃ ), we can determine y[n] by

finding the inverse DTFT of H( f̃ )X ( f̃ ).
• Convolution Approach: Given h[n] and x[n], the output is calculated as,

y[n] = h[n]⊗ x[n].
• Difference Equation Approach: Given H(z), we can form the difference

equations and determine the output, y[n], as illustrated by Eq. (10.52).
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10.8.1 Transfer Function Approach

Since Y (z) = H(z)X (z), if we are given the system transfer function (H(z)), we
can obtain the output, y[n], by determining the inverse ZT of H(z)X (z). Often,
this is not an easy task, since the expression H(z)X (z) may not be simple enough
to write its inverse ZT by inspection. This occurs when Y (z) has two or more poles
(i.e., denominator is of degree 2 or more). In such cases, we resort to the method
partial fractions as described in Chapter 8 (see Section 8.5.2).

Let Y (z) be a complicated expression whose inverse ZT we want to find. The
method of partial fraction determines scalars α1, α2, · · · , αm such that Y (z) can
be written as,

Y (z) = α1Y1(z)+ α2Y2(z)+ · · · + αmYm(z), (10.64)

where Y1(z), Y2(z), · · · , Ym(z) are simple expressions whose inverse transforms are
known. Then, we can get the inverse ZT of Y (z) as,

y[n] = α1y1[n]+ α2 y2[n]+ · · · + αm ym[n] (10.65)

where yi [n] is the inverse ZT of10 Yi (z) for i = 1, 2, . . . ,m. The scalars α1, α2,
· · · , αm can be determined by following the method we outlined in Chapter 8.

Determination of Impulse Response, h[n]: In some applications, we may want to
determine the impulse response, h[n], of the system. As Eq. (10.60) shows, we can
obtain h[n] by finding the inverse ZT of H(z). If H(z) is not a simple function (i.e.,
it has more than one pole), we can use the method of partial fraction to obtain h[n].

10.8.2 Convolution Approach

Given h[n], we can determine y[n] by convolving h[n] with x[n] as (see
Eqs. (10.21) and (10.22))

y[n] =
∞∑

m=−∞

x[m]h[n − m] =
∞∑

m=−∞

h[m]x[n − m]. (10.66)

We have also seen that (see Eq. (10.50)) convolution in time-domain is equivalent to
multiplication in frequency-domain, as given by

Y (z) = H(z)X (z) or Y ( f̃ ) = H( f̃ )X ( f̃ ). (10.67)

These relations are very useful while working with signals and systems.

10. While applying the partial fraction approach, we must ensure that the expression for Y (z) is a proper rational
function. That is, the degree of the numerator polynomial is less than that of the denominator.
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The dual of the relations in Eqs. (10.66)–(10.67) arise when we consider mul-
tiplying two signals in time-domain. Recall that the multiplication in time-domain
results in convolution in frequency-domain. That is, if y[n] is obtained as y[n] =
x[n]h[n], then we have

Y ( f̃ ) = F[x[n]h[n]] = X ( f̃ )⊗ H( f̃ ) (10.68)

=

∫ 0.5

−0.5
X (u)H( f̃ − u)du (10.69)

=

∫ 0.5

−0.5
H(u)X ( f̃ − u)du. (10.70)

Since X ( f̃ ) and H( f̃ ) are periodic, the convolution depicted by Eqs. (10.68)–
(10.70) are known as circular convolution. This is because, the H( f̃ − u) and
X ( f̃ − u) are equivalent to circularly shifting one period of these spectra. As a
result, for any value of f̃ in Y ( f̃ ), the integration involves one complete period
each from both X ( f̃ ) and H( f̃ ).

10.8.3 Difference Between Linear and Circular Convolutions

Let a[n] and b[n] be N -point data sequences which are zero for n outside
{0, 1, . . . , N − 1}. The linear convolution between a[n] and b[n] is given by

p1[n] = a[n]⊗ b[n] =
N−1∑
l=0

a(l)b(n − l) (10.71)

where a[n] = 0 and b[n] = 0 if n 6∈ {0, 1, . . . , N − 1}. The circular convolution
between a[n] and b[n] is given by,

p2[n] = a[n]� b[n] =
N−1∑
l=0

ã(l)b̃(n − l) (10.72)

where ã[n] and b̃[n] are obtained by periodically extending a[n] and b[n], respec-
tively.

10.9 Concluding Remarks

We conclude this chapter with the following remarks.

• Digital signal processing plays a very important role in many practical appli-
cations involving signals and systems.
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• Linear time-invariant (LTI) systems can be characterized by impulse response,
frequency response, transfer function, etc.

• Output of a LTI system can be obtained by convolving its impulse response
with the input.

• Convolution in time-domain is equivalent to multiplication in frequency-
domain, and multiplication in time-domain is equivalent to convolution in
frequency-domain.

• A LTI system is stable if and only if the unit circle is inside the region of con-
vergence of its transfer function. This is equivalent to saying that its frequency
response must exist (be finite) for all frequencies.

• A causal LTI system is stable if and only if all the poles of its transfer function
lie inside the unit circle.

• Physical realizability requires stability and causality.

Exercises

10.1. The output y[n] of a digital system is related to its input x[n] by,

y[n] = 0.98y[n − 1]+ 0.02x[n].

Find the system transfer function H(z) and the impulse response h[n].
10.2. The transfer function of a digital system is given by,

H(z) =
0.03

1− 0.97z−1 .

Sketch the magnitude response for | f̃ | < 1 Hz. Is H(z) a low-pass
system?

10.3. In a biomedical engineering system, the power (p[n]) of the real signal
x[n] is determined as

p[n] = 0.02
[
x2[n]+ 0.98x2[n − 1]+ 0.982x2[n − 2]+ . . .

]
.

Show that this is equivalent to squaring x[n] and passing this x2[n] into
a filter with transfer function H(z) given by,

H(z) =
0.02

1− 0.98z−1 .

10.4. The output y[n] of a digital system is related to its input x[n] by the
following difference equation:

y[n] = 0.98y[n − 1]+ 0.02x2[n].
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If x[n] is a real white noise sequence with power (p[n]) 3, find the mean
value of y[n] in the steady state.

10.5. The transfer function (H(z)) of an all-pass system is given in the equa-
tion below.

H(z) =
1− 0.8z
z − 0.8

(a) Plot the pole-zero diagram and the magnitude response of the sys-
tem.

(b) Determine the phase response of H(z) in Question (a) and check
if it is negative over the positive main band.

10.6. The impulse response h[n] of a digital system is as shown below:

h[n] =
{

1 for 2 ≤ n ≤ 4
0 otherwise,

Find the output y[n] of the system for the following input x[n]:

x[n] =
{

1 for 0 ≤ n ≤ 2
0 otherwise,

10.7. For a digital system, the impulse response h[n] = δ[n − 2]. Find the
output y[n] of the system for the given input x[n]:

x[n] =


1 for n = 0, 2
2 for n = 1
0 otherwise,

10.8. The response y[n] of a digital system to an impulse input (i.e., x[n] =
δ[n]) is given by,

y[n] =


1 for n = 0
2 for n = 1
0 otherwise.

Find the impulse response (h[n]) and frequency response (H( f̃ )) of the
system. Using convolution, find the output of the system if the input is
x[n] = e j2π f1n .

10.9. We would like to implement an ideal low-pass filter with frequency
response H( f̃ ) as shown in Fig. P10.9 below. Find the impulse response
h[n] of the filter. Express y[n] in terms of h[n] and the input x[n]. Is
this filter implementable?
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Figure P10.9. Frequency response of ideal low-pass filter.

10.10. Two digital linear systems with system impulse responses h1[n] and
h2[n] are connected in parallel as shown in Fig. P10.10. Here x[n] is
the input to the system and y[n] is the overall output of the system.
y1[n] is the output of the first system to the input x[n] and y2[n] is the
corresponding output from the second system. Find the overall impulse
and frequency responses (h[n] and H( f̃ ), respectively) of the system.

Figure P10.10. Parallel connection of two digital linear systems.

10.11. Figure P10.11 shows the cascading of two linear digital systems with
impulse responses h1[n] and h2[n], respectively. Here x[n] is the input
to the system and y[n] is the overall output of the system. y1[n] is the
output of the first system to the input x[n] and y[n] is the output from
the second system whose input is the output y1[n] from the first sys-
tem. Find the overall impulse and frequency responses (h[n] and H( f̃ ),
respectively) of the system.

Figure P10.11. Cascading of two digital linear systems.

10.12. A FIR (finite impulse response) system has an impulse response h[n]
(given below) that is finite in length and symmetrical about the centre.
Find its magnitude response (|H( f̃ )|). Show that it is a linear phase
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system or arg[H( f̃ )] ∝ f̃ , where f̃ is the frequency.

h[n] =


5 for n = 0, 3
7 for n = 1, 2
0 otherwise.

10.13. A causal system is one whose output y[n] depends on the present input
x[n] and its past values x[n − 1], x[n − 2], . . . . A non-causal system
has output that depends on future inputs and is not implementable. Is
H(z) = 4z + 1+ 2z−1

+ 3z−3 causal?
10.14. A system has input x[n], output y[n], and H(z) = 5z2

+ 1+ 2z−2
+

3z−3. The system is not causal as H(z)’s expansion has 5z2 term. Can
the system be made causal and implementable by adding delays?

10.15. The decimator (with a compression ratio of 2) shown in Fig. P10.15 is
used to reduce data rate and the sampling frequency from 8 to 4 Hz.

Figure P10.15. Decimator (compression ratio 2).

(a) Show that Y ( f̃ ) = 0.5
[

X ( f̃ )+ X ( f̃ + 4)
]
.

(b) From Y ( f̃ ) = 0.5
[

X ( f̃ )+ X ( f̃ + 4)
]

above, draw the input and
output spectra.

10.16. The operation of a digital filter with impulse response hN [n] and a trans-
fer function HN ( f ) is described by the following difference equation:

y[n] = x[n]−
1
N

N∑
k=1

x[n − k],

where x[n] is the input signal to the filter, y[n] is the output and N is a
positive constant.

(a) Find and sketch the impulse response of the filter, hN [n], when
N = 1 (i.e., h1[n]) and N = 2 (i.e., h2[n]).

(b) Write down HN ( f ) and sketch |H1( f )| in the frequency range 0 <
f < fs/2, where fs is the sampling frequency.

(c) The operation of the filter can be verbally described as: “Subtrac-
tion of the moving average of the last N samples from the newest
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sample of x[n]”. Describe qualitatively how |HN ( f )| changes with
increasing N .

10.17. In this exercise, we will consider a device for recording the electrical
signals from the heart (electrocardiogram, ECG). Simplified periodic
signals are used in the development of the device. These signals are given
by:

g(t) = g1(t)+ g2(t)+ g3(t),

where

g1(t) =
{

a sin(2π f1t) for T1 ≤ t ≤ 2.5T1
0 otherwise

g2(t) =
{

b sin(2π f1t) for 1.5T1 ≤ t ≤ 2T1
0 otherwise

g3(t) =
{

c sin(2π f2t) for 4T1 ≤ t ≤ 4T1 + 0.5T2
0 otherwise,

where the signals g1(t), g2(t), g3(t), and g(t) are all periodic with a
period T = 1s. Furthermore, we have the following periods: T1 = 1/ f1
and T2 = 1/ f2, where f1 = 8Hz and f2 = 2Hz. A single period
of the signal g(t) is shown in Fig. P10.17 (top) and the corresponding
amplitude spectrum is shown in Fig. P10.17 (bottom). It is assumed that
the spectral component above 90Hz are negligibly small.

Figure P10.17. Signal g(t) (top) and its Amplitude spectrum |G( f )| (bottom).
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(a) Express the power of the signal g(t) as a function of a, b, and c,
and suggest a sampling frequency such that there is an equivalence
between the analog and the discrete-time periodic signals.

(b) We assume in the following, that the noise generated by the mea-
surement process has negligibly little power, and is without any sig-
nificance. The sampling frequency is chosen to be 200Hz, so that it
is suitable for the consequent signal processing steps. A 50Hz inter-
ference signal is also present in the measured signal. It comes from
the electric power net, and it should be removed by means of digital
signal processing techniques. The following digital filter is used for
the purpose:

h[n] = δ[n]− h1[n],

where

h1[n] =

{ 1
N cos(2π f3nTs) for 0 ≤ n ≤ 2M − 1

0 otherwise,

where f3 = 50Hz, Ts is the sampling period and M is a positive
integer number. Write down the transfer function of the filter, and
show that it removes the spectral component at 50Hz. Explain the
influence of the filter’s length 2M on its transfer function.

10.18. An analog signal of biological origin can be described by the following
expression:

g0(t) = g(t)× cos(2π f0t),

where f0 is a constant, and g(t) is a real signal, that can be seen in
Fig. P10.18(a). g(t) has a complex spectrum G( f ), and |G( f )| is
shown in Fig. P10.18(b) for positive frequencies (i.e., f > 0). Only the
portion of the spectrum, in which the spectral components |G( f )| have
significant value (> 0) is depicted. After doing some measurements, it
can be concluded that |G(0)| = A, |G(50)| = A/5, and T0 = 100 ms.

(a) Give an expression of how to find A from g(t), and give reasons
why A 6= 0. Provide a labeled sketch of the spectrum of g0(t)
by labelling the appropriate amplitude and frequency values, when
f0 = 1750Hz.
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(a)

(b)

Figure P10.18. (a) Signal g(t) (b) Complex Spectrum.

(b) A mathematical model of the signal g(t) is needed for experiments.
The modelled signal (denoted as ga(t)) is chosen to be:

ga(t) = g1(t)+ g2(t),

where

g1(t) =
{

a sin(2π f1t) for |t | < T0
0 otherwise,

and

g2(t) =
{

b for |t | < T0
0 otherwise.

In these expressions, a, b, and f1 are constants. The magnitude
(the value) of 2T0 f1 is a suitable integer number. The spectrum of
ga(t) is denoted as Ga( f ). Show that the real part of Ga( f ) is
dependent only on g2(t), and that the imaginary part of Ga( f )
is dependent only on g1(t). Give an expression for calculating the
energy of ga(t), and show that its energy is the sum of energies of
g1(t) and g2(t).

(c) Argue that 50Hz will be an appropriate choice for f1. Next, cal-
culate the ratio between a and b for this value of f1, so that
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|Ga( f )| becomes a reasonable approximation of |G( f )| for fre-
quencies f = 0 and f = 50Hz.

(d) g(t) is converted to the discrete-time signal gd [n], which has a com-
plex spectrum Gd( f ). The sampling interval is Ts = 4ms. Find
the sampling frequency and sketch |Gd( f )| in the frequency range
below 500Hz (i.e., 0 ≤ f ≤ 500). Discuss whether the condi-
tions in the sampling theorem are fulfilled. Discuss if other values
for Ts can be chosen, such that there is equivalence between g(t)
and gd [n].

10.19. In this exercise you will create a robust scheme to additive noise edge
detector. In many applications, the edge of the pulse must be detected.
Other applications require the removal of the low frequencies present
in the signal. In both cases this can be done by a system with impulse
response h1[n] which performs differentiation on the incoming data:

y[n] = x[n]− x[n − 1],

where x[n] is the input and y[n] is the output of the system. A slightly
more sophisticated version is the system with an impulse response h2[n]
which processes the incoming signal as follows:

y[n] = x[n + 1]− 2x[n]+ x[n − 1].

(a) Provide labelled sketches of the impulse responses h1[n] and h2[n].
Sketch also their transfer functions H1( f̃ ) and H2( f̃ ) in the fre-
quency range f̃ ∈ {−1

2 ,
1
2 }, where f̃ is the normalized digital

frequency, i.e., f̃ = f
fs

( fs is the sampling frequency).
(b) Show that h2[n] = h1[n]⊗ h1[n + 1], where ⊗ denotes the con-

volution. [Hint: You may want to use the equivalence between con-
volution in time domain and multiplication in frequency domain
combined with the rule for time-shifting.]

(c) The input x[n] to a system is often corrupted by additive noise as
illustrated in Fig. P10.19(a). In this figure, the output of the system
is y[n] = x[n]⊗ h2[n]. The input is x[n] = p[n] + d[n], where
p[n] is the signal of interest and d[n] is the additive noise.

Assume that the input to the system, p[n] is as shown in
Fig. P10.19(b) and that there is no noise, i.e., d[n] = 0. Provide a
labeled sketch of y[n], the output of the system.

(d) Assume that the input to the system p[n] is the same as in Question
10.19(c). Let there be noise this time, d[n] = −δ[n + 1]. Sketch
the output of the system for x[n] = p[n]+ d[n].
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(a)

(b)

Figure P10.19.

(e) To remove noise, a filter with impulse response hs[n] is placed
before h2[n] as shown in Fig. P10.20(a). The impulse response
hs[n] is shown in Fig. P10.20(b).

(a)

(b)

Figure P10.20.

Sketch the output of the combined system for the same input
signal as in Question 10.19(c).

10.20. A MP3 player implements a simple tone control function by passing
an audio signal, x[n], into a linear filter with filter function H1(z) =

1
(1−0.9z−1)

to produce y1[n]. Subsequently, this y1[n] is passed through
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a second linear filter, H2(z) = (1− z−1), to produce y2[n]. By sketch-
ing their magnitude responses, determine whether the two outputs will
enhance the bass or treble of the input.

10.21. Consider the five pole-zero diagrams in Fig. P10.21. Each plot corre-
sponds to a discrete-time linear time-invariant (LTI) system function,
whose unit sample response is real. Each plot is drawn to scale. (Note that

(a) (b)

(c) (d)

(e)

Figure P10.21. Pole-zero diagrams.
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you have all the information to solve the equations in this problem, although
some of the poles and zeros are not labelled ).

(a) Which plot(s) can have a region of convergence (ROC) so that it
corresponds to a causal and stable system? Explain.

(b) Consider the block diagram shown in Fig. P10.22. H(z) is
described by one or more of the pole-zero plots A − E from
Fig. P10.21. G(z), which does not correspond to any of the pole-
zero plots A − E is a system such that w[n] = x[n].

Figure P10.22. Cascaded systems.

(c) Which plot(s) correspond to H(z) such that both H(z) and G(z)
are causal and stable? Explain.

10.22. The block schematic of a LTI digital system is shown in Figure P10.23.
Here x[n] and y[n] are the input and output, respectively of the system
and h[n] is the system impulse response. The system is described by the
difference equation, y[n] = x[n] − ax[n − 1]. Here, a is a real scalar
variable.

Figure P10.23.

(a) Determine the system function, H(z) = Y (z)
X (z) and hence derive its

impulse response, h[n]. Here, X (z) and Y (z) are the z−transforms
of x[n] and y[n], respectively.

10.23. Figure P10.24 below shows the block diagram (arranged in parallel
structure) of a causal LTI digital system with one input, x[n], and one
output, y[n]. In the figure, z−1 represents a unit sample delay.

(a) Derive the transfer function, H(z) = Y (z)
X (z) , for the given system.

Find also its impulse response, h[n] (Hint: Use the rule in finding
the overall system function, H(z) of systems connected in parallel).

(b) Draw the transposed direct form II structure of the system and ver-
ify that both the original and the transposed system have the same
transfer function.

(c) Draw the pole-zero diagram of the system and comment on its sta-
bility.
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Figure P10.24.

10.24. The z−plane pole-zero diagram for a certain digital system is shown in
Fig. P10.25. The system has unity gain at DC (i.e., H(z) = 1 at z = 1).

Figure P10.25.

(a) Determine the system function, H(z) in the form

H(z) = A

[(
1+ a1z−1) (1+ b1z−1

+ b2z−2)(
1+ c1z−1

) (
1+ d1z−1 + d2z−2

)],
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giving numerical values for the parameters A, a1, b1, b2, c1, d1, and
d2 (Please note that the parameter, A in H(z) is to set the DC gain
of H(z) to unity).

(b) Draw the direct form II (canonic form) structure of the complete
system.

(c) Draw the cascade form structure of the system. Make each sec-
tion canonic, with real coefficients. Also, make sure that the max-
imum order of the sections in cascade form to be two (i.e., 2nd
order systems) (Hint: Consider H(z) in Question 3.1 as, H(z) =
AH1(z)H2(z), with the numerical values of the parameters substi-
tuted. Here, H1(z) is a first order recursive system and H2(z) is a
second order recursive system).

10.25. Consider the implementation of a causal linear time-invariant (LTI)
recursive system as shown in Fig. P10.26. Here x[n] and y[n] are the
input and output, respectively of the system. In the figure, the symbol
z−1 denotes a unit sample delay and Q is a positive number ≤ 1 (i.e.,
0 < Q ≤ 1). The system is assumed to be “at rest”, i.e., y[n] = 0 for
n < 0.

Figure P10.26.

(a) Show that the output y[n] = D/Q for large values of the time
index n when the input x[n] = D, where D is a positive constant.
(Hint: Find y[n] for n = 0, 1, 2, . . . , etc., and develop a general
series expression for y[n], in terms of D, Q, and n. The requested
solution can be derived from this.)

(b) Find the impulse response, h[n] = I Z T {H(z)}, of the system and
prove that the system in Figure P1 is stable if Q is in the range
0 < Q ≤ 1. I Z T here refers to the inverse z−transform and H(z)
is the system transfer function.
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(c) Determine the frequency response, H( f ), of the system in Figure
P1 and show that its DC (0 Hz) gain, H(0), is in the range 1 ≤
H(0) <∞ for a given value of Q.

10.26. Figure P10.27 shows the block diagram of a causal LTI digital system
with one input, x[n], and one output, y[n]. In the figure, z−1 represents
a unit sample delay.

Figure P10.27.

(a) Derive the transfer function, H(z), for the given system, sketch the
pole-zero distribution in the z-domain and comment on its stability.

(b) Draw the direct form-I implementation structure of the given sys-
tem.

(c) Reconfigure the system implementation structure in the standard
canonic (direct form-II) form and draw it.

(d) Determine the system response, y[n], to an input x[n] =(3
4

)n
u[n], where u[n] is the discrete-time unit step function defined

as,

u[n] =
{

1 for n ≥ 0
0 for n < 0.

10.27. Figure P10.28 shows the complete block diagram representation of a LTI
system. Here X(z) and Y(z) are the z−transforms of the input (x[n])
and output (y[n]), respectively of the system. In the figure, z−1 repre-
sents a unit sample delay and K , α, β, and γ are scalar constants. W1,
W2 and W3 in the figure are temporary (intermediate) variables.

In the following, the value of γ is chosen to be −1.

(a) Determine the system function H(z) = Y (z)
X (z) .

(b) Is the structure provided in Fig. P10.28 canonic? If not, draw the
canonic structure of the given LTI system.
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Figure P10.28.

(c) What should be the value of the multiplier coefficient K so that
H(z) has unity gain (i.e., all-pass) in all the frequencies.

(d) If the values of α = 1, β = 0.5, γ = −1 and K is chosen to be the
one obtained from Question (c), sketch the pole-zero distribution
in the z-domain and comment on the stability of the system.

10.28. A researcher uses the derivative operator (filter) specified as w[n] =
x[n] − x[n − 1], where x[n] is the input and w[n] is the output of
the filter. The result is then passed through the moving-average (MA)
filter given by y[n] = 1

3 [w[n]+ w[n − 1]+ w[n − 2]], where y[n] is
the final output desired.

(a) Derive the transfer functions (in the z−domain) of the two filters
individually as well as that of the combination.

(b) Derive the impulse response of each filter and that of the combina-
tion. Plot the three signals.

(c) Does it matter which of the two filters is placed first? Why (not)?
(d) The signal described by the samples

x[n] = {. . . , 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, . . .} is applied to
the system. Here the first non-zero input corresponds to n = 0.
Derive the values of the final output signal.
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Chapter 11

Implementation of Digital Systems

This chapter focuses on the realization of LTI discrete-time systems either in
software or hardware. Various structures for the realizations of FIR and IIR discrete-
time systems are discussed in detail. Some of the important structures are the cas-
cade, parallel, and lattice structures. A computationally efficient frequency-sampling
realization of FIR system is also included in the discussion.

11.1 Structures for the Realization of Discrete-Time
Systems

The important class of LTI discrete-time systems characterized by the general con-
stant coefficient difference equation is considered here.

y[n] = −
N∑

k=1

ak y[n − k]+
M−1∑
k=0

bk x[n − k]. (11.1)

By taking the z−transform of Eq. (11.1), the LTI system can also be characterized
by the rational system function as,

H(z) =
∑M−1

k=0 bkz−k

1+
∑N

k=1 akz−k
, (11.2)

211
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which is a ratio of two polynomials in z−1. From Eq. (11.2), we obtain the zeros and
poles of the system function, which depend on the choice of the system parameters
{ak} and {bk}. These parameters also determine the frequency response characteris-
tics of the system. In this chapter, we shall show that Eq. (11.1) and Eq. (11.2) can
be implemented in different ways depending on the form in which these two char-
acterizations are arranged. The major factors that influence the choice of specific
realizations are the computational complexity, memory requirements, and finite-word-
length effects in computations.

The implementation of digital systems (both FIR and IIR types) require three
basic operations: (i) multiplication, (ii) addition, and (iii) signal delaying.

The structures for FIR systems are described first followed by the structures
for IIR systems. Alternative structures for both FIR and IIR systems are discussed
towards the end of this chapter.

11.2 Structures for FIR Systems

The FIR system is described by the difference equation

y[n] =
M−1∑
k=0

bk x[n − k], (11.3)

or, equivalently the system function

H(z) =
M−1∑
k=0

bkz−k . (11.4)

The unit sample response (impulse response) of the FIR system is identical to
the coefficients {bk}, that is,

h[n] =
{

bn, for 0 ≤ n ≤ M − 1,
0 Otherwise

(11.5)

The implementation/realization schemes1 discussed in the following sections
are:

• Direct form realization,
• Cascade form realization,

1. The FIR system can be realized by the discrete Fourier transform (DFT) method as well.
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Figure 11.1. Direct-form realization of FIR system.

• Frequency-sampling realization, and
• Lattice realization

11.2.1 Direct-Form Structure

This structure (illustrated in Fig. 11.1) follows immediately from the non-recursive
difference equation (Eq. (11.3)) or, equivalently by the convolution summation

y[n] =
M−1∑
k=0

h[k]x[n − k]. (11.6)

It may be noted that the direst form structure requires M−1 memory locations,
M multiplications and M − 1 additions per each output point. It is also known as
transversal or tapped-delay-line (TDL) structure.

When the FIR system is linear-phase, then h[n] = ±h[M − 1− n]. If h[n] =
+h[M − 1− n], it is called an even symmetric linear phase FIR system and if h[n] =
−h[M − 1− n], it is called an odd symmetric linear phase FIR system.

Expanding Eq. (11.6), we get the difference equation relating the input x[n]
and output y[n] of the FIR system,

y[n] = h[0]x[n]+ h[1]x[n − 1]+ . . .+ h[M − 1]x[n − M − 1]. (11.7)

For an even symmetric linear phase FIR system, the summation in Eq. (11.7)
can be written as,

y[n] = h[0] (x[n]+ x[n − M − 1])+ h[1] (x[n − 1]+ x[n − M − 2])+ . . . .
(11.8)

The direct form realization/implementation of the system in Eq. (11.8) is shown
in Fig. 11.2, where the order of the filter M is odd. It can be seen that the number
of multiplications is reduced to M/2 when M even and (M − 1)/2 when M odd.
The number of delay (memory) units remain the same in both the structures.
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Figure 11.2. Direct-form realization of linear-phase FIR system when M Odd.

11.2.2 Cascade-Form Structure

This realization follows from the system function in Eq. (11.2). The system func-
tion is arranged in such a way that it becomes the product of several 2nd order FIR
systems as,

H(z) =
K∏

k=1

Hk(z), (11.9)

where

Hk(z) = bk0 + bk1z−1
+ bk2z−2, k = 0, 1 . . . , K (11.10)

and K is the integer part of (M + 1)/2. The filter parameter b0 may be equally
distributed among the K filter sections, such that b0 = b10b20 . . . bK 0 or it may be
assigned to a single filter section. The zeros of H(z) are grouped in pairs to produce
the second order FIR systems of the form in Eq. (11.10). It is always desirable to
form pairs of complex-conjugate roots so that the coefficients {bki } are real valued.
If the roots are real-valued, they can be grouped in any manner. The block dia-
gram representation of the cascade form realization (Fig. 11.3(a)) along with the
basic second-order section (Fig. 11.3(b)) are shown in Fig. 11.3. The second-order
section is the implementation of Eq. (11.10).

In the case of linear-phase FIR filters, the symmetry in h[n] implies that the
zeros of H(z) also exhibit a form of symmetry. In particular, if zk and z∗k are a pair
of complex-conjugate zeros, then 1

zk
and 1

z∗k
are also a pair of complex conjugate

zeros (see Fig. 11.4). Consequently, we gain some simplifications by forming fourth
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(a)

(b)

Figure 11.3. Cascade-form realization of a FIR system (a) and realization of each second

order section (b).

Figure 11.4. Symmetry of zero locations for a linear-phase FIR filter.

order sections of the FIR system

Hk(z) = ck0(1− zkz−1)(1− z∗k z−1)

(
1−

1
zk

z−1
)(

1−
1
z∗k

z−1
)
,

= ck0 + ck1z−1
+ ck2z−2

+ ck1z−3
+ ck0z−4,

= ck0(1+ z−4)+ ck1(z−1
+ z−3)+ ck2z−2, (11.11)
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Figure 11.5. 4th-order section in cascade-form realization of an FIR system.

where the coefficients {ck1} and {ck2} are functions of zk . Thus, by combining two
pairs of zeros to form a fourth order filter section, we have reduced the number of
multiplications from 6 (for two second-order systems) to 3. Figure 11.5 illustrates
the basic fourth-order FIR filter structure (implementation of Eq. (11.11)).

11.2.3 Frequency-Sampling Structure

This is an alternative structure for a FIR filter in which the parameters that char-
acterize the filter are the values of the desired frequency response instead of the
impulse response h[n]. To derive the frequency sampling structure, we specify the
desired frequency response at a set of equally spaced frequencies, namely,

ωk =
2πk
M
,


k = 0, 1, . . . , M−1

2 , M odd,

k = 0, 1, . . . , M
2 − 1, M even

(11.12)

and solve for the impulse response h[n] of the FIR filter. Here M is the number of
frequency points on the unit circle. Figure 11.6 illustrates the frequency sampling
procedure, where M = 12.

Once h[n] is obtained, we can write the frequency response as

H(ω) =
M−1∑
n=0

h[n]e− jωn (11.13)
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Figure 11.6. Illustration of frequency sampling.

and the values of H(ω) at frequencies ωk =
2πk
M are simply (for k =

0, 1, . . . ,M − 1),

H [k] = H
(

2πk
M

)
=

M−1∑
n=0

h[n]e− j 2πk
M n. (11.14)

The set of values {H [k]} are called the frequency samples of H(ω) and it corre-
sponds to the M−point DFT of {h[n]}.

By inverting Eq. (11.14), h[n] can be expressed in terms of the frequency sam-
ples as

h[n] =
1
M

M−1∑
k=0

H [k]e j 2πk
M n, n = 0, 1, . . . ,M − 1. (11.15)

As can be seen from Eq. (11.15), it is the IDFT of the sequence {H [k]}. Now,
we use this h[n] to find its z−transform and we have,

H(z) =
M−1∑
n=0

h[n]z−n

=

M−1∑
n=0

[
1
M

M−1∑
k=0

H [k]e j 2πk
M n

]
z−n. (11.16)
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By interchanging the order of the two summations in Eq. (11.16) and perform-
ing the summation over the index n, we get

H(z) =
M−1∑
k=0

H [k]

[
1
M

M−1∑
n=0

(
e j 2πk

M z−1
)n
]

=
1− z−M

M

M−1∑
k=0

H [k]

1− e j 2πk
M z−1

. (11.17)

Thus, the system function H(z) is characterized by the set of frequency samples
{H [k]} instead of {h[n]}.

We can view this FIR filter realization as a cascade of two filters. That is, H(z) =
H1(z)H2(z). Here, H1(z) is an all-zero filter with the system function

H1(z) =
1− z−M

M
. (11.18)

Its zeros are located at equally spaced points on the unit circle at zk =

e j 2πk
M , k = 0, 1, . . . ,M − 1.
The second filter H2(z) with the system function

H2(z) =
M−1∑
k=0

H [k]

1− e j 2πk
M z−1

(11.19)

consists of a parallel bank of M single-pole filters with resonant frequencies (pole

locations), pk = e j 2πk
M , k = 0, 1, . . . ,M − 1.

Note that the pole locations and zero locations are same on the unit circle and
they occur at ωk =

2πk
M , which are the frequencies at which the desired frequency

response is specified. This cascade realization is illustrated in Fig. 11.7. The imple-
mentation of the two sub-systems (H1(z) and H2(z)) are clearly marked in the
figure.

11.2.4 Lattice Structure for FIR Systems

This structure is used extensively in digital speech processing and in the imple-
mentation of the adaptive filters because of its modular structure. Let us begin the
development of lattice structure by considering a sequence of FIR filters with system
functions

Hm(z) = Am(z), m = 0, 1, . . . ,M − 1 (11.20)
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Figure 11.7. Frequency-sampling realization of an FIR system.

where, by definition Am(z) is a polynomial of the form,

Am(z) = 1+
m∑

k=1

αm[k]z−k, m ≥ 1, (11.21)

and A0(z) = 1. The unit sample response of the mth filter is hm[0] = 1 and
hm[k] = αm[k], k = 1, 2, . . . ,m. The subscript m on the polynomial Am(z)
denotes the degree of the polynomial. For mathematical convenience, we define
αm[0] = 1.

If x[n] is the input sequence to the filter Am(z) and y[n] is the output sequence,
then

y[n] = x[n]+
m∑

k=1

αm[k]x[n − k]. (11.22)
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(a)

(b)

Figure 11.8. Two direct-form structures of an FIR system (prediction filter).

Two direct-form realizations of this FIR filter are shown in Fig. 11.8. The struc-
tures shown in Fig. 11.8 are related to the topic of linear prediction,2 where

x̂[n] = −
m∑

k=1

αm[k]x[n − k] (11.23)

is the one-step forward predicted value of x[n], using the m past inputs, and y[n] =
x[n]− x̂[n], given by Eq. (11.22), represents the prediction error sequence. In this
context, the top filter structure (Fig. 11.8(a)) is called the prediction error filter.

Now, suppose that we have a filter of order m = 1. The output of such a filter is

y[n] = x[n]+ α1[1]x[n − 1]. (11.24)

This output can also be obtained from the first order or single-stage lattice filter,
illustrated in Fig. 11.9, by exciting both of the inputs by x[n] and selecting the
output from the top branch. Thus, the output is exactly Eq. (11.24), if we select
K1 = α1[1]. The parameter K1 in the lattice filter is called the reflection coefficient.

The different parameters of the above scheme are:

f0[n] = g0[n] = x[n]

f1[n] = f0[n]+ K1g0[n − 1] = x[n]+ K1x[n − 1] (11.25)

g1[n] = K1 f0[n]+ g0[n − 1] = K1x[n]+ x[n − 1]

2. J. Makhoul, “Linear prediction: A tutorial review”, Proceedings of the IEEE, vol.63, No.5, pp.561–580, 1975.
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Figure 11.9. Single-stage lattice filter.

Figure 11.10. Two-stage lattice filter.

Now, consider a FIR filter for which m = 2. The output for this case from the
direct form structure (Eq. (11.22)) is

y[n] = x[n]+ α2[1]x[n − 1]+ α2[2]x[n − 2]. (11.26)

By cascading two single-stage lattice structures as shown in Fig. 11.10, it is pos-
sible to obtain the same output as in Eq. (11.26). Indeed, the output from the first
stage is,

f1[n] = x[n]+ K1x[n − 1], (11.27)

g1[n] = K1x[n]+ x[n − 1]. (11.28)

The output from the second stage is,

f2[n] = f1[n]+ K2g1[n − 1], (11.29)

g2[n] = K2 f1[n]+ g1[n − 1]. (11.30)

By substituting for f1[n] and g1[n], we can show that

f2[n] = x[n]+ K1(1+ K2)x[n − 1]+ K2x[n − 2]. (11.31)

This equation is identical to the output of the direct-form FIR filter as given by
Eq. (11.26), if we equate the coefficients as

α2[2] = K2, α2[1] = K1(1+ K2) (11.32)
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(a)

(b)

Figure 11.11. (M − 1)-stage lattice filter.

or, equivalently,

K2 = α2[2], K1 =
α2[1]

(1+ α2[2])
(11.33)

Thus, the reflection coefficients K1 and K2 of the lattice filter can be obtained from
the coefficients {αm[k]} of the direct-form realization.

Continuing like this, by induction, we can show the equivalence between an
mth order direct-form FIR filter and an m-order of m-stage lattice filter. The
lattice filter is generally described by the following set of order-recursive equations
(for m = 1, 2, . . . ,M − 1),

f0[n] = g0[n] = x[n], (11.34)

fm[n] = fm−1[n]+ Km gm−1[n − 1], (11.35)

gm[n] = Km fm−1[n]+ gm−1[n − 1]. (11.36)

Then the output of the (M − 1)-stage lattice filter corresponds to the output of a
(M − 1)-order FIR filter, that is,

y[n] = fM−1[n]. (11.37)

Figure 11.11(a) shows a (M − 1)-stage lattice filter in block diagram and
Fig. 11.11(b) shows one of the stages in the block diagram, where the computa-
tions are specified by Eq. (11.35) and Eq. (11.36).

As a consequence of the equivalence between an FIR filter and a lattice filter, the
output fm[n] of an m−stage filter can be expressed as

fm[n] =
m∑

k=0

αm[k]x[n − k], αm[0] = 1 (11.38)
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Since Eq. (11.38) is a convolution sum, the z-transform relationship is

Fm(z) = Am(z)X (z) (11.39)

or

Am(z) =
Fm(z)
X (z)

=
Fm(z)
F0(z)

(11.40)

The other output component from the lattice, namely, gm[n], can also be
expressed in the form of a convolution sum as in Eq. (11.38), by choosing another
set of coefficients {βm[k]}.

From Eq. (11.28), we note that the filter coefficients for the lattice filter that
produces f1[n] are {1, K1} = {1, α1[1]} while the coefficients for the filter with
output g1[n] are {K1, 1} = {α1[1], 1}. That means they are in reverse order. If we
consider the two-stage filter, with the output given by Eq. (11.30), we find that
g2[n] can be expressed in the form,

g2[n] = α2[2]x[n]+ α2[1]x[n − 1]+ x[n − 2], (11.41)

where, the filter coefficients are {α2[2], α2[1], 1} and the coefficients of the filter
that produces the output f2[n] are {1, α2[1], α2[2]}. Here again, the filter coeffi-
cients are in reverse order. From this development, for an m-stage lattice filter, we
have

gm[n] =
m∑

k=0

βm[k]x[n − k]. (11.42)

where the filter coefficients

βm[k] = αm[m − k], k = 0, 1, . . . ,m (11.43)

with βm[m] = 1.
In the context of linear prediction, let us assume that the data x[n], x[n −

1], . . . , x[n − m + 1] is used to linearly predict the signal value x[n − m] by
the use of a linear filter with coefficients {−βm[k]}. Then the predicted value is

x̂[n − m] = −
m−1∑
k=0

βm[k]x[n − k]. (11.44)

Since the data run in reverse order through the predictor, the prediction per-
formed in Eq. (11.44) is called the backward prediction. In contrast, the FIR filter
with system function Am(z) is called a forward predictor.
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In the z-transform domain, Eq. (11.42) becomes

Gm(z) = Bm(z)X (z) (11.45)

or,

Bm(z) =
Gm(z)
X (z)

(11.46)

where Bm(z) represents the system function of the FIR filter with coefficients
{βm[k]}. That is,

Bm(z) =
m∑

k=0

βm[k]z−k (11.47)

Since βm[n] = αm[m − k], Eq. (11.47) may be expressed as

Bm(z) =
m∑

k=0

αm[m − k]z−k

=

m∑
l=0

αm[l]zl−m

= z−m
m∑

l=0

αm[l]zl

= z−m Am(z−1) (11.48)

This relationship implies that the zeros of the FIR filter with system function
Bm(z) are simply the reciprocals of the zeros of Am(z). Hence Bm(z) is called the
reciprocal or reverse polynomial of Am(z).

Now that we have established this interesting relationships between the direct-
form FIR filter and the lattice structure, let us return to the recursive lattice equa-
tions (11.34) through (11.36) and transfer them to the z-domain. Thus we have
(for m = 1, 2, . . . ,M − 1),

F0(z) = G0(z) = X (z) (11.49)

Fm(z) = Fm−1(z)+ Kmz−1Gm−1(z), (11.50)

Gm(z) = Km Fm−1(z)+ z−1Gm−1(z). (11.51)
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If we divide each equation by X (z), we get the desired results in the form (for
m = 1, 2, . . . ,M − 1),

A0(z) = B0(z) = 1, (11.52)

Am(z) = Am−1(z)+ Kmz−1 Bm−1(z), (11.53)

Bm(z) = Km Am−1(z)+ z−1 Bm−1(z). (11.54)

In the matrix form,[
Am(z)
Bm(z)

]
=

[
1 Km

Km 1

] [
Am−1(z)

z−1 Bm−1(z)

]
. (11.55)

Conversion of lattice coefficients to direct-form filter coefficients: The direct form FIR
filter coefficients {αm[k]} can be obtained from the lattice coefficients {Ki } by using
the following relations (for m = 1, 2, . . . ,M − 1):

A0(z) = B0(z) = 1, (11.56)

Am(z) = Am−1(z)+ Kmz−1 Bm−1(z), (11.57)

Bm(z) = z−m Am(z−1). (11.58)

The solution is obtained recursively, beginning with m = 1. Thus we obtain a
sequence of (M − 1) FIR filters, one for each value of m.

Conversion of direct-form filter coefficients to lattice coefficients: Suppose that we are
given the FIR filter coefficients for the direct-form realization or, equivalently,
the polynomial Am(z), and we wish to determine the corresponding lattice fil-
ter parameters {Ki }. For the m-stage lattice, we immediately obtain the parameter
Km = αm[m]. To obtain Km−1, we need the polynomials Am−1(z) since, in gen-
eral, Km is obtained form the polynomial Am(z) for m = M − 1,M − 2, . . . , 1.
Consequently, we need to compute the polynomials Am(z) starting from m =
M − 1 and “stepping down” successively to m = 1. The desired recursive relation
for the polynomials is easily determined from Eq. (11.53) and Eq. (11.54) as,

Am(z) = Am−1(z)+ Kmz−1 Bm−1(z)

= Am−1(z)+ Km
[
Bm(z)− Km Am−1(z)

]
. (11.59)

If we solve for Am−1(z), we get,

Am−1(z) =
Am(z)− Km Bm(z)

1− K 2
m

, m = M − 1,M − 2, . . . , 1. (11.60)
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Thus, we compute all lower-degree polynomials Am(z) beginning with AM−1(z)
and obtain the desired lattice coefficients from the relation Km = αm[m]. We
observe that the procedure works only if |Km | 6= 1 for m = 1, 2, . . . ,M − 1.

Estimation of the Reflection coefficients: From the step-down recursive equation
(Eq. (11.60)), it is easy to obtain a formula for recursively estimating the reflec-
tion coefficients, Km , beginning with m = M − 1 and stepping down to m = 1.
For m = M − 1,M − 2, . . . , 1, we have

Km = αm[m], αm−1[0] = 1 (11.61)

αm−1[k] =
αm[k]− Kmβm[k]

1− K 2
m

(11.62)

=
αm[k]− αm[m]αm[m − k]

1− α2
m[m]

, 1 ≤ k ≤ m − 1. (11.63)

As mentioned above, the recursive equation in (11.62) breaks down if any lattice
parameters |Km | = 1. If this occurs, it is indicative of the fact that the polyno-
mial Am−1(z) has a root on the unit circle. Such a root can be factored out from
Am−1(z) and the iterative process in Eq. (11.62) is carried out for the reduced order
system.

11.3 Structure for IIR Systems

We consider four different IIR system structures described by the difference equa-
tion (Eq. (11.1)) or equivalently, by the system function (Eq. (11.2)). We are going
to discuss the four main realization structures of the IIR systems, that are:

• Direct-form structures,
• Cascade-form structures,
• Parallel-form structures, and
• Lattice structures

11.3.1 Direct-Form Structures

The rational system function in Eq. (11.2) that characterizes an IIR system can be
viewed as two systems in cascade, that is,

H(z) = H1(z)H2(z), (11.64)
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Figure 11.12. Direct Form I realization of IIR system.

where H1(z) is an all-zero system which consists of the zeros of H(z), and H2(z)
is an all-pole system consisting of the poles of H(z). That is,

H1(z) =
M−1∑
k=0

bkz−k
=

M̃∑
k=0

bkz−k, (11.65)

and

H2(z) =
1

1+
∑N

k=1 akz−k
. (11.66)

In Eq. (11.65), M − 1 in the summation is replaced with M̃ for notational
simplicity in the subsequent sections. Since H1(z) is an FIR system, its direct-form
realization was discussed already in the Section 11.2.1 (see Fig. 11.1). By attaching
the second system in cascade with H1(z), we obtain the Direct Form I realization of
the IIR system and it is depicted in Fig. 11.12. This realization requires M̃+N+1
multiplications, M̃ + N additions, and M̃ + N memory locations.

If the all-pole filter (H2(z)) is placed before the all-zero filter (H1(z)), a more
compact structure is obtained as explained below.
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If we consider a 1st order system, Eq. (11.1), becomes

y[n] = −a1y[n − 1]+ b0x[n]+ b1x[n − 1], (11.67)

which is realized as in Fig. 11.13(a) (Direct Form I structure). This realization
uses separate delays (memory) for both the input and output signal samples. As
we explained here, this system can be considered as the cascade of two LTI systems.
The first system is a non-recursive system (all-zero) described by

v[n] = b0x[n]+ b1x[n − 1], (11.68)

whereas the second system is a recursive (all-pole) system described by

y[n] = −a1y[n − 1]+ v[n]. (11.69)

It is known that interchanging the order of the cascaded LTI systems does not
change the overall response of the system [8]. So, by interchanging/swapping the
all-zero and all-pole systems, we obtain an alternative realization of the system in
Eq. (11.67). The resulting structure of the system is shown in Fig. 11.13(b). From
this figure, we obtain the following two difference equations

w[n] = −a1w[n − 1]+ x[n], (11.70)

y[n] = b0w[n]+ b1w[n − 1], (11.71)

which provide an alternative algorithm for computing the output of the system
described by Eq. (11.67). A close observation of Fig. 11.13(b) reveals that the
two memory elements contain the same input w[n] and hence the same output
w[n−1]. Hence, these two memory elements are replaced by a singe unit as shown
in Fig. 11.13(c). Compared to the Direct Form I structure, the new structure is more
efficient in terms of the memory requirements. It is called the Direct Form II struc-
ture. This idea can be extended to the general LTI system described in Eq. (11.1)
and is shown in Fig. 11.14. This structure requires M̃ + N + 1 multiplications,
M̃+N additions, and maximum of {M̃, N }memory locations. Since this structure
minimizes the number of memory units, it is also known as canonical structure.

11.3.2 Cascade-Form Structure

By assuming N ≥ M̃ , the IIR system in Eq. (11.2) can be factored into a cascade
of second-order subsystems, such that H(z) can be expressed as,

H(z) =
K∏

k=1

Hk(z) (11.72)
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(a)

(b)

(c)

Figure 11.13. Steps in converting from the Direct Form I realization in (a) to the Direct

Form II realization in (c).

where K is the integer part of (N + 1)/2. Hk(z) has the general form

Hk(z) =
bk0 + bk1z−1

+ bk2z−2

1+ ak1z−1 + ak2z−2 . (11.73)

As in the case of FIR systems based on a cascade form realizations, the parameter
b0 can be distributed equally among the K filter sections.

The coefficients {aki } and {bki } in the second-order subsystems are real. This
implies that in forming the subsystems or quadratic factors in Eq. (11.73),

• We should group together a pair of complex-conjugate poles and a pair of
complex-conjugate zeros.
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Figure 11.14. Direct Form II realization of IIR system (M = N − 1).

• The pairing of two complex-conjugate poles with a pair of complex-conjugate
zeros or real-valued zeros to form the sub-systems can be done arbitrarily.

• Any two real-valued zeros can be paired together to form a quadratic factor
and, likewise, any two real-valued poles can be paired together to form the
quadratic factor.

This means that the roots of the numerator as well as the denominator of
Eq. (11.73) may consist of either a pair of real roots or a pair of complex conjugate
roots.

If N > M̃ , some of the subsystems have either bk2 = 0, or bk1 = 0, or
bk2 = bk1 = 0 for some k. Furthermore, if N is odd, one of the subsystems,
say Hk(z), must have ak2 = 0, so that the sub-system is of first order. To preserve
the modularity in the implementation of H(z), it is often preferable to use the
basic second-order subsystems in the cascade structure and have some zero-valued
coefficients in some of the sub-systems.

The general form of the cascade structure is illustrated in Fig. 11.15. If we use
the Direct Form II structure for each of the sub-systems, the computational algo-
rithm for realizing the IIR system is described by the following set of equations
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(a)

(b)

Figure 11.15. Cascade structure of second-order system (a) and realization of each

second-order section (b).

(for k = 1, 2, . . . , K ):

y0[n] = x[n], (11.74)

wk[n] = −ak1wk[n − 1]− ak2wk[n − 2]+ yk−1[n], (11.75)

yk[n] = bk0wk[n]+ bk1wk[n − 1]+ bk2wk[n − 2], (11.76)

y[n] = yK [n]. (11.77)

11.3.3 Parallel-Form Structure

This structure of the IIR systems is developed based on the partial fraction expan-
sion of H(z). By assuming N = M̃ , the partial fraction expansion can be written as

H(z) = C +
N∑

k=1

Ak

1− pkz−1 , (11.78)

where {pk} are the poles, {Ak} are the residues, and C = bN
aN

. The structure implied
by Eq. (11.78) is shown in Fig. 11.16. It consists of a parallel bank of single-pole
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Figure 11.16. Parallel structure of IIR system.

filters. In general, some of the poles of H(z)may be complex valued and the corre-
sponding Ak ’s are also complex valued. To avoid multiplications by complex num-
bers, we can combine complex conjugate poles to form two-pole sub-systems. In
addition, we can combine, in arbitrary manner, pairs of real-valued poles to form
two-pole sub-systems. Each of these sub-systems has the form

Hk(z) =
bk0 + bk1z−1

1+ ak1z−1 + ak2z−2 . (11.79)

The overall function can now be expressed as

H(z) = C +
K∑

k=1

Hk(z). (11.80)

The Direct Form II structure of the individual second-order sections which are the
basic building blocks for H(z) is shown in Fig. 11.17. The parallel form realization
of the IIR system is described by (for k = 1, 2, . . . , K ):

wk[n] = −ak1wk[n − 1]− ak2wk[n − 2]+ x[n], (11.81)

yk[n] = bk0wk[n]+ bk1wk[n − 1], (11.82)

y[n] = Cx[n]+
K∑

k=1

yk[n]. (11.83)



Structure for IIR Systems 233

Figure 11.17. Structure of second-order section in a parallel IIR system realization.

11.3.4 Lattice Structure for IIR Systems

Let us begin with an all-pole system with the system function,

H(z) =
1

1+
∑N

k=1 aN [k]z−1
=

1
AN (z)

. (11.84)

The direct form realization of this system is illustrated in Fig. 11.18. The corre-
sponding difference equation for the IIR system is

y[n] = −
N∑

k=1

aN [k]y[n − k]+ x[n]. (11.85)

It is interesting to note that if we interchange the roles of input and output (i.e.,
interchange x[n] and y[n]), we obtain

x[n] = −
N∑

k=1

aN [k]x[n − k]+ y[n], (11.86)

or, equivalently,

y[n] = x[n]+
N∑

k=1

aN [k]x[n − k]. (11.87)

We note that this equation describes an FIR system having the system func-
tion H(z) = AN (z), while the system described by the difference equation in
Eq. (11.85) represents an IIR system with the system function H(z) = 1

AN (z)
.

That means, one system can be obtained from the other simply by interchanging
the roles of input and output.
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Figure 11.18. Direct form realization of an all-pole system.

Based on this, we shall use the all-zero (FIR) lattice described in Section 11.2.4
to obtain a lattice structure for the all-pole IIR system by interchanging the roles
of input and output. First, we take the all-zero lattice filter illustrated in Fig. 11.11
and then redefine the input as

x[n] = fN [n], (11.88)

and the output as

y[n] = f0[n]. (11.89)

These are exactly the opposite of the definitions of the all-zero lattice filter. These
definitions, dictate that the quantities { fm[n]} be computed in descending order
[i.e., fN [n], fN−1[n], . . .]. This computations can be accomplished by rearrang-
ing the recursive equation (Eq. (11.35)) and thus solving for fm−1[n] in terms of
fm[n], that is,

fm−1[n] = fm[n]− Km gm−1[n − 1], m = N , N − 1, . . . , 1 (11.90)

Equation (11.36) for gm[n] remains unchanged. The resulting set of equations are
(for m = N , N − 1, . . . , 1):

fN [n] = x[n], (11.91)

fm−1[n] = fm[n]− Km gm−1[n − 1], (11.92)

gm[n] = Km fm−1[n]+ gm−1[n − 1], (11.93)

y[n] = f0[n] = g0[n]. (11.94)

The corresponding structure is shown in Fig. 11.19.

11.4 Signal Flow Graphs and Transposed Structures

A signal flow graph provides an alternative, but equivalent graphical representa-
tion to a block diagram structure that we have been using to illustrate various
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Figure 11.19. Lattice structure for an all-pole IIR system.

system realizations. The basic elements of a flow graph are branches and nodes. A
signal flow graph is basically a set of directed branches that connect at nodes. By
definition, the signal out of a branch is equal to the branch gain (system func-
tion) times the signal into the branch. Furthermore, the signal at a node of a
flow graph is equal to the sum of the signals from all branches connecting to the
node.

11.4.1 Transposed Structure of IIR Systems

To illustrate these basic notions, let us consider a two-pole and two-zero IIR sys-
tem illustrated in block diagram form in Fig. 11.20(a). This block diagram can be
converted to the signal flow graph as shown in Fig. 11.20(b). We note that the flow
graph contains 5 nodes labeled 1 to 5. Two of the nodes (1,3) are summing nodes
(i.e., they contain adding units) and the other three nodes representing branching
points. Branch transmittances are indicated for the branches in the flow graph. A
delay is indicated by the branch transmittance z−1. When the branch transmittance
is unity, it is left unlabelled. The input to the system originates at a source node and
the output signal is extracted at a sink node.

One technique that is useful in deriving new structures for FIR and IIR systems
stems from the transposition or flow-graph reversal theorem. This theorem states that
if we reverse the directions of all branch transmittances and interchange the input
and output in the flow graph, the system function remains unchanged. The result-
ing structure is called a transposed structure or transposed form.

For example, the transposition of the signal flow graph in Fig. 11.20(b) is illus-
trated in Fig. 11.21(a). The corresponding block diagram realization of the trans-
posed form is shown in Fig. 11.21(b). It is interesting to note that the transposition
of the original flow graph resulted in branching nodes becoming adding nodes, and
vice versa.

Let us apply this theorem to a Direct Form II structure. First, we reverse all the
signal flow directions in Fig. 11.14 with (M = N ). Second, we change nodes into
adders, adders into nodes, and finally, we interchange the input and the output.
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Figure 11.20. Second-order filter structure (a) and its signal flow graph (b).

The resulting transposed Direct Form II structure is shown in Fig. 11.22. This can
be redrawn as in Fig. 11.23. which shows the input on the left and the output on
the right.

The transposed Direct Form II realization can be described by the set of differ-
ence equations (for k = 1, 2, . . . , N − 1 and assuming M̃ = N ):

y[n] = w1[n − 1]+ b0x[n], (11.95)

wk[n] = wk+1[n − 1]− ak y[n]+ bk x[n], (11.96)

wN [n] = bN x[n]− aN y[n]. (11.97)

It is also clear from observing Fig. 11.23 that the above set of difference equations
is equivalent to a single difference equation as follows

y[n] = −
N∑

k=1

ak y[n − k]+
M̃∑

k=0

bk x[n − k] (11.98)
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Figure 11.21. Signal flow graph (a) Its filter structure (b).

Finally, we observe that the transposed Direct Form II structure require the same
amount of computational complexity (multiplications, additions, and memory
units) as the original Direct Form II structure.

11.4.2 Transposed Structure of FIR Systems

Although our discussion has been concerned with the general IIR systems, it is inter-
esting to note that an FIR system obtained by setting ak = 0, k = 1, 2, . . . , N in
Eq. (11.98), also has a transposed direct form structure as illustrated in Fig. 11.24.
This realization may be described by the set of difference equations (for k =
M − 1,M − 2, . . . , 1):

wM̃ [n] = bM̃ x[n] (11.99)

wk[n] = wk+1[n − 1]+ bk x[n] (11.100)

y[n] = w1[n − 1]+ b0x[n] (11.101)
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Figure 11.22. Transposed direct-form II structure.

Figure 11.23. Transposed direct-form II structure.
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Figure 11.24. Transposed FIR structure.

11.5 Concluding Remarks

In this chapter, various schemes for the implementation of FIR and IIR systems
were discussed in detail. Alternate structures were also discussed. They are:

• The structures for FIR systems include:

– Direct form structure
– Cascade-form structure
– Frequency sampling structure, and
– Lattice structure

• For IIR systems, the structures were:

– Direct-form I structure
– Direct-form II structure or Canonical structure
– Parallel-form structure, and
– Lattice structure.

• Transposed structures for FIR as well as IIR systems.

Exercises

11.1. A second order digital filter is implemented using Direct Form II struc-
ture as shown in Fig. P11.1. Here a0, a1, a2, b1, and b2 are the filter
coefficients, x[n] is the input and y[n] is the output.

(a) Determine the difference equation relating the input and the output
and the frequency response of the filter.

(b) Write down the pseudo-code for implementing the filter in Ques-
tion (a). Comment on the implementation complexity.
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Figure P11.1. Direct form II structure of 2nd order digital filter.

11.2. The transfer function of a second order filter is given by:

H( f ) =
a0 + a1e− j2π f Ts + a2e− j4π f Ts

1+ b1e− j2π f Ts + b2e− j4π f Ts
,

where the filter coefficients a0, a1, a2, b1, and b2 are real numbers, and
Ts is the sampling interval. The input and output signal of the filter are
x[n] and y[n], respectively.

(a) Write down the system function H(z) of the filter. Write down the
difference equation that describes the operation of the filter. Draw
the block diagram of the filter using Direct Form II.

(b) In the following, we will consider a simplified version of the filter
for which a1 = 0 and a2 = 0. Furthermore, the sampling interval
is Ts = 250µs, b1 = −2r cos(β) and b2 = r2, where 0 < r ≤ 1,
and 0 ≤ β ≤ π . The impulse response of the simplified filter can
be written as:

h[n] = a0
sin([n + 1]β)

sin(β)
rn,

and is valid when n ≥ 0. Find the pair of values a0 and β, for
which the amplification of the filter at f = 1kHz is 1, and the
amplification for frequencies 0 and 2kHz is the same (i.e., |H(0)| =
|H(2kHz)|).

(c) Find the impulse response (h[n]) of the filter for β = 0. Examine
whether the filter is stable for all values of r in the given interval,
when β = 0.
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(d) The signal x[n] is applied at the input of the filter. x[n] is the sam-
pled version of the periodic analog signal x(t) given by:

x(t) = d1 cos(2π f0t)+ d2 cos(4π f0t),

where f0, d1, and d2 are constants. Find which frequency compo-
nents are present in the output signal y[n] within the frequency
range 0− 2kHz, when f0 = 9.5kHz.

11.3. A digital filter (recursive) is implemented using Direct Form II as shown
in Fig. P11.3. The filter coefficients a and b are constants, and the input
and the output signals are denoted as x[n] and y[n], respectively. The
sampling interval is denoted as Ts . The symbol z−1 in the figure repre-
sents a unit sample delay.

Figure P11.3.

(a) Draw the block diagram of the filter implemented in Direct Form I.
Write down the difference equation that describes the operation of
the filter. Find the system function H(z) and the transfer function
H( f ) expressed as functions of a, b, and Ts .

(b) For the rest of the problem, we assume that x[n] is a real digital
signal, and that a and b are given by

a = e j 2πm
N ,

b = 2 cos

(
2πm

N

)
= e j 2πm

N + e− j 2πm
N ,

where m and N are integer constants. The output signal y[n] is
complex, i.e., y[n] = yR[n]+ j yI [n].

Find the complex impulse response h[n] of the filter (use the
complex expression for b).
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(c) The Discrete Fourier transform (DFT) can be realized as a filter
bank. The mth coefficient of the DFT (calculated at digital fre-
quency fm =

m
N , where 0 ≤ m ≤ N − 1) is the output of a

filter with an impulse responde hm[n]. Show the first N values of
h[n] have a simple relation to hm[n].

11.4. This problem considers a filter, which approximates an ideal low-pass
filter with an impulse response (unit sample response) h[n] and a transfer
function H( f ) = |H( f )|e jθ( f ), where θ( f ) = arg(H( f )). The
non-zero values of the impulse response are given in the table below.
The impulse response is equal to zero (h[n] = 0) for all other time
instances, n.

n 1 3 5 7 8 9 11 13 15
h[n] −

1
128

1
32 −

11
128

5
16

1
2

5
16 −

11
128

1
32 −

1
128

The width of the filter’s pass-band is approximately fg
2 , where fg =

fs
2 =

1
2Ts

. The two constants fs and Ts are the sampling frequency and
sampling interval, respectively. Within its pass-band, the filter has no
zeros.

(a) Find H( f ) at the three frequencies 0, fg
2 , and fg. Explain why

the phase, arg(H( f )) of the transfer function of the filter is lin-

ear below f = fg
2 and sketch arg(H( f )) in this region.

11.5. The operation of a digital filter can be described by the following differ-
ence equation:

y[n] = a0x[n]+ a2x[n − 2]+ b1y[n − 1],

where x[n] is the input signal to the filter and y[n] is its output signal.
a0, a2, and b1 are real constants. The sampling interval for the digital
signal is Ts .

(a) Draw the block diagram of the filter implemented in Direct Form I
and in Direct Form II. Then show that the impulse response of the
filter is:

h[n] =


0 for n < 0
a0 for n = 0
a0b1 for n = 1
a0bn

1 + a2bn−2
1 for n ≥ 2.

(b) Write down the condition under which the filter is stable. Write
down the transfer function H( f ) of the filter.
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In the following question, the sampling interval is chosen to be
Ts = 500µs. The following digital signal is applied at the input of
the filter:

x[n] = sin(2π f1nTs),

where f1 = 3.5kHz. The filter coefficients a0, a2, and b1 are set to
be a0 = a2 = b1 =

1
2 for the next question.

(c) Give the placement and the amplitudes of the components of y[n]
in the amplitude spectrum for frequencies in the range 0 to 2kHz.

11.6. In this problem, we will consider a series of identical filters whose inputs
and outputs are cascaded as shown in Fig. P11.6(a), and the digital input
and output signals are x[n] and y[n], respectively.

(a)

(b)

Figure P11.6.

The input signal to the i th filter is denoted as xi [n] and its output
signal, yi [n]. The input signal to the i th stage xi [n] is the output from
the (i−1)th stage yi−1[n], i.e., xi [n] ≡ yi−1[n]. Figure P11.6(b) shows
the block diagram of a single section (i th section) from the filter, where
a0, a1, and a2 are real constants, and Ts is the sampling interval.

(a) For the first question, the cascade filter consists of N identical sec-
tions, where N is a positive integer number. Give an expression for
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the impulse response hi [n] and the transfer function Hi ( f ) of a sin-
gle section expressed through the filter coefficients a0, a1, a2, and
Ts . Express the combined impulse response h[n] through hi [n] and
the combined transfer function H( f ) through Hi ( f ).

(b) Here, the number of sections N is chosen to be 2. Write down the
impulse response h[n] of the total filter expressed as a function of
a0, a1, and a2. Draw a block diagram of the (total) filter realized in
Direct Form I.

(c) The signal x[n] at the input of the filter comes from an analog to
digital converter (ADC). At the input of the ADC, the following
periodic signal is applied:

x(t) = d0 cos(2π f0t)+ d1 cos(2π f1t),

where d0, d1, f0, and f1 are real constants. The conversion to the
digital signal can be assumed to be exact (without quantization
errors). The sampling frequency is 1.5kHz, and f0 = 9.5kHz, and
f1 = 2.3kHz. Give the frequencies of those frequency components
that are present in the frequency range from −1.5kHz to 3kHz.

11.7. In this problem, we will consider a digital low-pass filter described by
the following difference equation:

y[n] = aN x[n − N ]+
N−1∑
q=0

[
aq x[n − q]+ aq x[n − 2N + q]

]
,

where N is a positive integer number, and aq and aN are real num-
bers. The amplitude of the transfer function of the filter is shown in
Fig. P11.7. Here, fg =

1
2Ts

, where Ts is the sampling interval of the
signal x[n].

Figure P11.7.
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(a) Explain why the impulse response of the filter is symmetric around
n = N and draw a block diagram of the filter realized in Direct
Form I. Sketch the phase of the transfer function of the filter for
| f | < 0.2 fg, when N = 32.

(b) Using the given low-pass filter as a basis, design a new complex fil-
ter (with complex coefficients), which lets the frequency compo-
nents from 0.3 fg to 0.7 fg pass with an unaltered amplitude and
suppresses the components at negative frequencies. Write down the
impulse response of the complex filter expressed as a function of fg,
N , aq , and aN . Sketch the amplitude of the transfer function of the
filter in the frequency range from −2 fg to 2 fg in the same way as
shown in Fig. P11.7.

11.8. In a “talking dictionary” system, the “lattice” filter shown in Fig. P11.8 is
used to generate a synthetic speech signal y[n] from an input excitation
x[n] created from the acoustic template of the word to be spoken.

(a) Derive the transfer function of the filter and write a pseudo-code
programme for implementing the filter directly (at the expense of 2
multiply operations per sample).

Figure P11.8.

(b) The direct implementation of the lattice filter in Fig. P11.8 requires
2 multiplication operations per sample. Since multiplication is dif-
ficult to implement in hardware and is a time-consuming opera-
tion, a creative engineer attempts to implement the filter using just
1 multiply operation per sample. Can this be done? How would you
propose to do this? Rewrite the programme if necessary.

11.9. Consider the block diagram representation of a causal linear time invari-
ant (LTI) system shown in Fig. P11.9. Here x[n] and y[n] are the input
and output, respectively of the system. In the figure, the symbol z−1

denotes a unit sample delay and v[n] is an intermediate variable.

(a) Derive the transfer function H(z) for the given system and draw
the direct form-I implementation structure of the system.
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Figure P11.9.

(b) Reconfigure the system implementation structure in the form of a
standard canonic (Direct Form-II) structure and compare its imple-
mentation complexity to that of the Direct Form I implementation
scheme.

(c) Sketch the pole-zero distribution of the system in the Z -domain
and comment on its stability.

(d) Derive an expression for the impulse response h[n] of the system
and plot the first five samples (i.e., the numerical values of h[n] for
n = 0, 1, 2, 3, and 4) as a function of n.

11.10. Consider the block schematic of a linear time-invariant (LTI) digital
system as shown in Fig. P11.10. Here x[n] and y[n] are the input and
output, respectively of the system. h[n] is the impulse response of the
system.

Figure P11.10.

The system function H(z) = Y (z)
X (z) is given by,

H(z) =
1− 0.36z−2

1+ 0.1z−1 − 0.72z−2 ,

where z−1 represents a unit sample delay and X (z) and Y (z) are the
z-transforms of the input and output, respectively.

(a) Draw the “transposed Direct Form II” structure for the given sys-
tem.

(b) Determine whether the system is stable or not.
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(c) Assume that the overall system (H(z)) is realized by cascading two
first-order sub-systems (H1(z) and H2(z)). Draw the respective
Direct Form I structures for H1(z) and H2(z).

(d) Derive the impulse response h[n] of the overall system.

11.11. Consider the block diagram representation of the cascade of three causal
first-order linear time-invariant (LTI) systems shown in Fig. P11.11.

Figure P11.11.

The system functions for the sub-systems are:

H1(z) =
2+ 0.1z−1

1+ 0.4z−1 , H2(z) =
3+ 0.2z−1

1− 0.3z−1 , H3(z) =
1

1− 0.2z−1 .

(a) Determine the transfer function, H(z), of the overall system as a
ratio of two polynomials in z−1.

(b) Determine the difference equation characterizing the overall system.
(c) Sketch the pole-zero distribution of H(z) in the z-domain and com-

ment on its stability.
(d) Develop a parallel form realization of the overall system with each

parallel section containing a single pole.
(e) Derive the impulse response h[n] of the overall system in a closed

form.

11.12. Consider the block diagram representation of a second-order filter
shown in Fig. P11.12. Here x[n] and y[n] are the input and output,
respectively of the filter. The parameters α, β, and γ are scalars. The
symbol z−1 denotes unit sample delay.

(a) Derive the transfer function H(z) for the given filter and draw the
direct form-I implementation structure of the filter.

(b) Reconfigure the filter in the form of a standard second-order
canonic (Direct Form-II) structure and compare its implementation
complexity to that of the Direct Form I implementation scheme.

(c) Sketch the pole-zero distribution of the filter in the Z -domain and
comment on its stability (Assume α = 0.5, β = 2, and γ = 1).

(d) Derive the impulse response h[n] of the filter.

11.13. Consider the block diagram representation of a second-order filter
shown in Fig. P11.13. Here x[n] and y[n] are the input and output,
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Figure P11.12.

respectively of the filter. The system function H(z) (z−transform of
h[n]) of the filter is given by,

H(z) =
1+ 2z−1

+ z−2

1− 0.75z−1 + 0.125z−2 .

The symbol z−1 in H(z) denotes a unit sample delay.

Figure P11.13.

(a) Determine the difference equation that relates the output y[n] to
the input x[n]. Draw the Direct Form I implementation structure
of the filter.

(b) Reconfigure the filter in the form of a standard second-order
canonic (Direct Form II) structure and compare its implementation
complexity to the Direct Form I implementation scheme.

(c) The system function H(z) for the given second order filter can be
considered as the cascade of two first order recursive systems, H1(z)
and H2(z), respectively. From H(z), identify the first order recur-
sive systems H1(z) and H2(z) and draw the cascade form structure
for H(z). Make sure to use Direct Form II structures for H1(z) and
H2(z).

(d) As an alternative to factoring the numerator and denominator poly-
nomials in H(z), this rational function can be written as a partial
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fraction expansion resulting in the parallel form realization of the
second order system. Derive and draw the parallel form structure of
H(z) with first order sub-sections.

(e) By making appropriate assumptions (initial rest), derive the expres-
sion for the impulse response (h[n]) of the filter.

11.14. Consider the second-order filter depicted by the block diagram in
Fig. P11.14. Here x[n] and y[n] are the input and output, respectively
of the filter and α1 and α2 are the filter coefficients. The symbol z−1 in
the figure denotes a unit sample delay. The transfer function and impulse
response of the filter are denoted by H(z) and h[n], respectively. The
sampling interval Ts of the digital signal is assumed to be normalized to
unity.

Figure P11.14.

(a) Derive the expression for the transfer function H(z) of the filter.
Comment on the type of the filter (i.e., low-pass, high-pass, all-pass,
band-pass, or band-stop etc.) based on its frequency response.

(b) Reconfigure the filter in the form of a standard second-order
canonic (Direct Form II) structure and compare its implementation
complexity to the realization given in Fig. P11.14.

In the following, we will assume that α1 = −
3
4 and α2 =

1
8 .

(c) Sketch the pole-zero distribution of the filter in the Z−domain and
comment on the stability of the filter.

(d) By making appropriate assumptions (initial rest), write out the
expressions (computation not required) for the first six values of
the impulse response of the filter (i.e., h[n] for n = 0, 1, . . . , 5).

11.15. A digital filter (H(z)) is constructed by cascading two simple filters with
transfer functions H1(z) = 1

2 (1− z−2) and H2(z) = 1
1− 1

4 z−1− 1
8 z−2 .



250 Implementation of Digital Systems

(a) Derive the transfer function H(z) of the resulting filter and draw
its pole-zero diagram.

(b) Comment on the stability of the filter H(z)
(c) Draw the Direct Form II realization of the filter H(z)
(d) Compute the first six values of the impulse response (h[n]) of the

filter.

11.16. A digital filter is described by the following difference equation

y[n] =
1
2

y[n − 1]+ x[n]

where y[n] is the output and x[n] is the input to the system.

(a) Derive the transfer function H(z) of the resulting filter and draw
its pole-zero diagram.

(b) Draw the Direct Form II realization of the system and comment on
its stability.
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Chapter 12

Discrete Fourier Transform

In many practical signal processing applications, Discrete Fourier Transform (DFT)
is the most important transform method used to perform Fourier analysis. Mathe-
matically, DFT converts a finite input sequence of equally spaced samples of a signal
into a sequence (same length) of equally spaced samples of the DTFT, which is a
complex valued function of frequency. The interval at which the DTFT is sampled
is the reciprocal of the length of the input sequence. An inverse DFT (IDFT) is
a Fourier series, using the DTFT samples as coefficients of complex sinusoids at
the corresponding DTFT frequencies. It has the same sample values as the original
input sequence. The DFT, therefore, provides the frequency domain representa-
tion of the original input sequence. If the original sequence spans all the non-zero
values of a signal, its DTFT is continuous (and periodic), and the DFT provides
discrete samples of one cycle of the signal. If the original sequence is one cycle of a
periodic signal, the DFT provides all the non-zero values of one DTFT cycle.

So far in this book, we have discussed three different frequency-domain repre-
sentations for time-domain signals:

• Continuous-Time Fourier Series (CTFS; Chapter 3):
To determine the spectra of continuous-time periodic signals. These signals
result in discrete-frequency spectra.

• Continuous-Time Fourier Transform (CTFT; Chapter 4): To determine the
spectra of continuous-time non-periodic signals. These signals result in

251
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continuous-frequency spectra. The CTFS can be considered as a special case
of CTFT for periodic signals.

• Discrete-Time Fourier Transform (DTFT; Chapter 9): To determine the
spectra of discrete-time non-periodic (and periodic) signals. These signals
result in continuous-frequency spectra which are periodic.

In this chapter, the objective is the computation of the Fourier spectra of finite-
duration sampled signals. This arises from the fact that the signal measured in any
practical application will be finite in duration. We are expected to use this finite-
duration record of the signal to make inferences on the spectrum of the original
signal (e.g., speech or bio-medical signals), which may be infinite in duration (in
reality). Therefore, it is of interest to know how the finite data length of the mea-
sured record affects the computed spectrum.

The following points will be discussed in detail in this chapter.

• How does computing the spectrum at discrete values of frequency (i.e., sam-
pling in frequency domain) affect the signal in time domain?

• Frequency-domain representation of periodic discrete-time signals.
• Frequency-domain representation of finite-duration discrete-time signals.
• The relevance of periodicity in time domain to computation of the spectra

of discrete-time finite-duration signals.
• What precautions should be taken to guarantee that the computed spectrum

is close to the actual spectrum?

12.1 Practical Aspects of Spectrum Computation

There are mainly two limitations associated with practical computation of
spectra.

• The signal is recorded for a finite duration in time. This effect can be exam-
ined using the method of windows.

• The spectrum is computed for discrete values of the frequency. This is equiv-
alent to sampling the spectrum in frequency domain.

12.1.1 Spectra of Windowed Signals

Let xa(t) be a continuous-time signal of very large duration. Further, let x[n]
denote the samples of this signal, taken at the rate of fs =

1
Ts

samples/second
(i.e., Ts is the sampling period). Thus, we have

x[n] = xa(nTs), for −∞ < n <∞. (12.1)
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The measured record of samples (data) in a particular experiment is given by

y[n] = x[n] for n = 0, 1, . . . , N − 1. (12.2)

In other words, the signal is observed for a finite duration of time from t = 0 to
t = [N − 1]Ts . Therefore, we can express the measured signal as

y[n] = x[n]w[n] = xa(nTs)w[n] (12.3)

where w[n] is a window function defined as

w[n] =
{

1 for n = 0, 1, . . . , N − 1
0 otherwise.

(12.4)

Thus, we find that

y[n] =
{

x[n] for n = 0, 1, . . . , N − 1
0 otherwise.

(12.5)

Using Eq. (12.3), we can express the spectrum (DTFT) of y[n] as

Y ( f̃ ) = X ( f̃ )�W ( f̃ ) =
∫ 0.5

−0.5
X (u)W ( f̃ − u)du (12.6)

where � denotes ‘circular convolution’ (also known as ‘periodic convolution’),
W ( f̃ ) is the DTFT of w[n] and is given by

W ( f̃ ) =
∞∑

n=−∞

w[n]e− j2π f̃ n
=

N−1∑
n=0

w[n]e− j2π f̃ n

=
1− e− j2π f̃ N

1− e− j2π f̃
= e− jπ(N−1) f̃

(
sin(π f̃ N )

sin(π f̃ )

)
. (12.7)

Clearly, we will get Y ( f̃ ) = X ( f̃ ) only if W ( f̃ ) = δ( f̃ ), which will happen
only when N → ∞. Thus, we find that the finite data length causes the computed
spectrum, Y ( f̃ ), to be different from the actual spectrum, X ( f̃ ).

12.1.2 Sampling in Frequency-Domain: Derivation of DFT

Here, we will derive the expression for the DFT of a sampled signal.
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The spectrum, Y ( f̃ ), of the measured data is given by1

Y ( f̃ ) =
N−1∑
n=0

y[n]e− j2π f̃ n, 0 ≤ f̃ < 1.0 (12.8)

Even though the frequency, f̃ , varies continuously in the range [0, 1.0], in practice,
we evaluate the spectrum, Y ( f̃ ), only at discrete values of the frequency, given by{

0, 1 f̃ , 21 f̃ , · · · , (N − 2)1 f̃ , (N − 1)1 f̃
}

(12.9)

where 1 f̃ = 1
N .

Define Yk = Y (k1 f̃ ) = Y
( k

N

)
. Then, we can obtain from Eq. (12.8)

Yk =

N−1∑
n=0

y[n]e
− j2π

(
k
N

)
n
, (12.10)

for k = 0, 1, . . . , N − 1. Since e− j2π k
N n is periodic in k with period N

(i.e., e− j2π k+N
N n

= e− j2π k
N n), we see that Yk is periodic with period N

(i.e., Yk+N = Yk).
Let l ∈ {0, 1, 2, . . . , N − 1}, i.e., l is an integer in the range 0, 1, · · · , N − 1.

Then, consider the following2:

N−1∑
k=0

Yke j2π k
N l
=

N−1∑
k=0

[N−1∑
n=0

y[n]e
− j2π

(
k
N

)
n
]

e j2π k
N l

=

N−1∑
n=0

y[n]
N−1∑
k=0

e j2π k
N [l−n]

1. In Eq. (12.8), for the sake of convenience, we use the period defined by 0 ≤ f̃ < 1.0 instead of −0.5 ≤
f̃ < 0.5 for our analysis.

2. Note the following.

N−1∑
k=0

e j2π k
N [l−n]

= N if l = n

=
1− e j2π N

N [l−n]

1− e j2π 1
N [l−n]

= 0 if l 6= n.

⇒

N−1∑
k=0

e j2π k
N [l−n]

= Nδ[l − n].



Practical Aspects of Spectrum Computation 255

=

N−1∑
n=0

y[n] [Nδ[l − n]] = N y[l]

⇒ y[n] =
1
N

N−1∑
k=0

Yke j2π k
N n (12.11)

for n = 0, 1, . . . , N − 1. Since e− j2π k
N n is also periodic in n with period N

(i.e., e− j2π k
N [n+N ]

= e− j2π k
N n), we see that y[n] is periodic with period N (i.e.,

y[n + N ] = y[n]). We have the following remarks.

• Sampling of the spectrum causes the time-domain signal to be periodic (i.e., y[n+
N ] = y[n]). The period is given by the inverse of the sampling period used for
sampling the spectrum (i.e., 1

1 f̃
). In other words, the DFT treats the finite-

duration signal {y[0], y[1], y[2], · · · , y[N − 1]} as one period of a periodic
signal with period N .

• But the original measured signal record (i.e., y[n] for n = 0, 1, . . . , N −
1) is not periodic! That is, discretizing the frequency axis (i.e., f̃ =

0, 1/N , 2/N , . . . , [N − 1]/N ) has the effect of making the input signal y[n]
appear as though it is a periodic discrete-time signal with period N .

• The above observed property is the dual of the sampling theorem3 we studied
in Chapter 7. We saw in Chapter 7 that sampling in time domain results in
periodicity in frequency domain. The derivation above shows that sampling in
frequency domain results in periodicity in time domain.

• Equations (12.10) and (12.11) define the DFT pair of equations. Equation
(12.10) defines the forward DFT, and Eq. (12.11) defines the inverse DFT
(IDFT).

• For a finite-duration signal, y[n], of length N samples, its DFT is obtained by
evaluating its DTFT (defined in Chapter 9) at frequency resolution 1/N . That is,

Yk = Y ( f̃ )
∣∣∣

f̃=k/N
= Y

(
k
N

)
, (12.12)

where Y ( f̃ ) denotes the DTFT of y[n]. The resulting DFT spectrum, Yk , is
periodic with period N .

3. If you wish to explore the meaning of aliasing in time domain caused by sampling in frequency domain, use
1 f̃ = 1/M in Eq. (12.9). The frequency grid is then given by {0, 1 f̃ , 21 f̃ , · · · , (M − 2)1 f̃ , (M −
1)1 f̃ } and M will be the period in time and frequency domains. Then, aliasing will occur in the time
domain if M < N . For example, let N = 5 and M = 3. Then, one period of the aliased signal (i.e., left-side
of Eq. (12.11)) will be {y[0]+ y[3], y[1]+ y[4], y[2]}.
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Since there is a close connection between DFT and periodic discrete-time signals,
we shall next explore the frequency-domain representation of discrete-time periodic
signals.

12.2 Discrete Fourier Series (DFS)

In Chapter 3, we studied Fourier series as a frequency-domain representation of
continuous-time periodic signals. In this section, we explore a similar representation
for discrete-time periodic signals.

Let x[n] for n = 0, 1, . . . , N , be one period of a discrete-time periodic signal
with period N . Then, using Eqs. (12.10) and (12.11), we can obtain the DFT
equations

Xk =

N−1∑
n=0

x[n]e− j2π k
N n, (12.13)

x[n] =
1
N

N−1∑
k=0

Xke j2π k
N n, (12.14)

for k = 0, 1, 2, . . . , N − 1 and n = 0, 1, 2, . . . , N − 1. We have the following
remarks.

• We have

x[n + N ] = x[n] and Xk+N = Xk . (12.15)

• The periodicity in time domain imposed by the IDFT computation in
Eq. (12.14) is naturally satisfied by x[n], since we chose x[n] to be a periodic
signal with period N .

• Equation (12.14) is the Fourier series representation of the periodic sig-
nal x[n] using N discrete-time complex sinusoids at frequencies 0, 1/N ,
2/N , · · · , (N −1)/N . Therefore, Eq. (12.13) is known as the forward DFS
and Eq. (12.14) as the inverse DFS.

• Because e j2π k+N
N n
= e j2π k

N n , we need only N complex sinusoids with fre-
quencies k/N , k = 0, 1, 2, . . . , N − 1, in the Fourier series representation
(Eq. (12.14)).

• We call Eqs. (12.13) and (12.14) as DFS equations when the original x[n] is
periodic. We call these as DFT equations when the original x[n] is not periodic
(aperiodic).
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12.2.1 Derivation of DFS

Let xa(t) be a continuous-time periodic signal with period Tp = 1/ f p, where f p is
its fundamental frequency. Therefore, using Fourier series, we can express xa(t) as

xa(t) =
∞∑

k=−∞

X̃ke j2πk f p t (12.16)

where X̃k are the Fourier series coefficients. It is easy to see that we can construct
a discrete-time periodic signal, x[n], with period N from xa(t) by sampling xa(t)
with sampling rate fs = N f p. That is,

x[n] = xa(nTs) with Ts =
1
fs
=

1
N f p

(12.17)

where Ts is the sampling period. Using Eq. (12.16), we can express x[n] as

x[n] = xa(nTs) =

∞∑
k=−∞

X̃ke j2πk f pnTs

=

∞∑
k=−∞

X̃ke j2π k
N n, (12.18)

since f pTs = 1/N . Express k as k = l N + m, where l ranges from −∞ to +∞
and m = 0, 1, 2, . . . , N − 1. Then,

e j2π k
N n
= e j2π l N+m

N n
= e j2πlne j2π m

N n
= e j2π m

N n.

Using these, we can express the right side of Eq. (12.18) as

∞∑
k=−∞

X̃ke j2π k
N n
=

∞∑
l=−∞

N−1∑
m=0

X̃l N+me j2π l N+m
N n,

=

N−1∑
m=0

[
∞∑

l=−∞

X̃l N+m

]
e j2π m

N n,

=
1
N

N−1∑
m=0

Xme j2π m
N n, (12.19)

where

Xm = N
∞∑

l=−∞

X̃l N+m . (12.20)
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Substituting Eq. (12.19) in Eq. (12.18), we get

x[n] =
1
N

N−1∑
k=0

Xke j2π k
N n, (12.21)

for n = 0, 1, 2, . . . , N − 1. Further, we have

N−1∑
n=0

x[n]e− j2π l
N n
=

N−1∑
n=0

[
1
N

N−1∑
k=0

Xke
j2π

(
k
N

)
n
]

e− j2π l
N n,

=
1
N

N−1∑
k=0

Xk

N−1∑
n=0

e j2π n
N [k−l],

=
1
N

N−1∑
k=0

Xk [Nδ[k − l]] = Xl,

⇒ Xk =

N−1∑
n=0

x[n]e− j2π k
N n, (12.22)

for k = 0, 1, . . . , N − 1. Equation (12.22) is the forward DFS and Eq. (12.21)
is the inverse DFS. Comparing Eqs. (12.22) and (12.21) with Eqs. (12.13) and
(12.14), respectively, we again see that the Fourier series representation of a discrete-
time periodic signal is same as the DFT of one period of this signal.

12.2.2 Periodicity and Circular Shift of DFT

Recall that DFT makes the finite-length signal x[n] of N samples to appear periodic
with period N . That is,

x[n + m N ] = x[n] for any integer m (12.23)

with n = 0, 1, 2, . . . , N −1. This is illustrated in Figure 12.1(a) which shows the
periodically repeated version of the signal x[n] for N = 6. Figure 12.1(b) illustrates
another way of showing the periodic signal x[n]. Each period is arranged with N
equally spaced points on a circle, in the counter clockwise direction. Therefore,
the different periods of the signal, wrap around this circle, as illustrated for three
periods in Fig. 12.1.

Taking a closer look at Fig. 12.1 will reveal that circularly shifting a N -point signal
{x[0], x[1], · · · , x[N − 1]} is equivalent to linearly shifting its periodic version. For
example, let x̃[n] = x[n − 2]. Then, using Fig. 12.1(a), one period of x̃[n] for
n = 0, 1, . . . , N − 1 is given by {x[−2], x[−1], x[0], · · · , x[3]} which is same
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(a)

(b)

Figure 12.1. Illustration of the time-domain periodicity caused by DFT for a N-point signal

record x[n] with N = 6. (a) linear representation and (b) circular representation.

as {x[4], x[5], x[0], · · · , x[3]}. This can also be obtained from Figure 12.1(b) by
starting from the index ‘4’ [n − 2+ N ] with n = 0, N = 6) and completing one
circle in the counterclockwise direction.

12.3 Properties of DFT and DFS

We shall now discuss some properties of DFT and DFS. Since DFT and DFS are
essentially the same, we shall only refer to DFT in this section.
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Let x[n] and y[n] be two discrete-time signals of length N with DFTs Xk and
Yk , respectively. That is,

Xk =

N−1∑
n=0

x[n]e− j2π k
N n, Yk =

N−1∑
n=0

y[n]e− j2π k
N n

x[n] =
1
N

N−1∑
k=0

Xke j2π k
N n, y[n] =

1
N

N−1∑
k=0

Yke j2π k
N n

for n = 0, 1, 2, . . . , N − 1 and k = 0, 1, 2, . . . , N − 1.

12.3.1 Linearity

Let p[n] = αx[n] + βy[n] where α and β are two scalars. Then, we can easily
show that

Pk = αXk + βYk . (12.24)

Thus, DFT is a linear transform.

12.3.2 Time Shifting

Let p[n] = x[n − n0] where n0 ∈ {0, 1, . . . , N − 1}. Then, we get (with m =
n − n0)

Pk =

N−1∑
n=0

x[n − n0]e− j2π k
N n
=

N−1−n0∑
m=−n0

x[m]e− j2π k
N [m+n0]

= e− j2π k
N n0

N−1−n0∑
m=−n0

x[m]e− j2π k
N m

= e− j2π k
N n0 Xk (12.25)

since x[m]e− j2π k
N m is periodic with period N . Thus, as in earlier chapters, the only

effect of shifting a signal in time domain is a linear phase change in the frequency
domain (no change in magnitude spectrum).

12.3.3 Time Reversal

Let p[n] = x[−n]. Then, we get (with m = N − n)

Pk =

N−1∑
n=0

x[−n]e− j2π k
N n
=

N−1∑
n=0

x[N − n]e− j2π k
N n
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=

N∑
m=1

x[m]e− j2π k
N [N−m]

=

N∑
m=1

x[m]e j2π k
N m

= X−k . (12.26)

12.3.4 Frequency Shifting

Let p[n] = e j2π l
N nx[n] with l ∈ {0, 1, . . . , N − 1}. Then, we get

Pk =

N−1∑
n=0

e j2π l
N nx[n]e− j2π k

N n
=

N−1∑
n=0

x[n]e− j2π k−l
N n

= Xk−l . (12.27)

12.3.5 Circular Convolution

Let p[n] denote the ‘circular convolution’ of x[n] and y[n] given by

p[n] = x[n]� y[n] =
N−1∑
l=0

x[l]y[n − l]. (12.28)

Then, we get (with m = n − l)

Pk =

N−1∑
n=0

[N−1∑
l=0

x[l]y[n − l]

]
e− j2π k

N n

=

N−1∑
l=0

x[l]
N−1−l∑
m=−l

y[m]e− j2π k
N [m+l]

=

N−1∑
l=0

x[l]e− j2π k
N l

N−1−l∑
m=−l

y[m]e− j2π k
N m

= XkYk . (12.29)

Thus, in the case of DFT, circular convolution in time domain results in multi-
plication in frequency domain. This is unlike in CTFT and DTFT where linear
convolution4 in time domain results in multiplication in frequency domain.

4. Difference between linear and circular convolutions: Let a[n] and b[n] be N -point data sequences which
are zero for n outside {0, 1, . . . , N − 1}. The linear convolution between a[n] and b[n] is given by

p1[n] = a[n]⊗ b[n] =
N−1∑
l=0

a[l]b[n − l]
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Similarly, we can show that multiplication in time domain results in circular
convolution of DFTs. That is,

q[n] = x[n]y[n] (12.30)

⇒ Qk =
Xk � Yk

N
=

1
N

N−1∑
l=0

XlYk−l . (12.31)

12.3.6 Real Symmetric Signals

If x[n] is real, i.e., x[n] = x∗[n], then

X∗k = X−k = X N−k . (12.32)

If x[n] is real and even-symmetric, i.e., x[n] = x[−n] = x∗[n], then the DFT
Xk will be purely real:

Xk = X−k = X∗k = X N−k . (12.33)

If x[n] is real and odd-symmetric, i.e., x[n] = −x[−n] = x∗[n], then the DFT
Xk will be purely imaginary:

Xk = −X−k = −X∗k = −X N−k . (12.34)

12.4 DFT of Sinusoidal Signals

Consider the continuous-time signal xa(t) obtained by adding two complex sinu-
soids with amplitudes {A1, A2} and frequencies { f1, f2} as

xa(t) = A1e j2π f1t
+ A2e j2π f2t . (12.35)

Let us sample this signal at rate fs samples/second such that there is no aliasing in
the frequency domain. This can be ensured by choosing5 fs > max{2| f1|, 2| f2|}.

where a[n] = 0 and b[n] = 0 if n 6∈ {0, 1, . . . , N − 1}. The circular convolution between a[n] and b[n]
is given by

p2[n] = a[n]� b[n] =
N−1∑
l=0

ã[l]b̃[n − l]

where ã[n] and b̃[n] are obtained by periodically extending a[n] and b[n], respectively. In writing
Eq. (12.28), it is assumed that x[n] and y[n] are periodic because of DFT.

5. For complex signals, the sampling frequency for no aliasing can be smaller than twice the maximum fre-
quency in the signal. For example, if f1 = −50 Hz and f2 = 120 Hz, then it is easy to verify that any
sampling rate fs > 170 samples/second is sufficient to guarantee no aliasing. This is because the spectra of
complex signals may not be symmetric.
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Then, we get the sampled signal as (with sampling period Ts =
1
fs

)

x[n] = xa(nTs) = A1e j2π f̃1n
+ A2e j2π f̃2n (12.36)

where f̃1 =
f1
fs

and f̃2 =
f2
fs

. Let us examine the DFT of this signal x[n] for a
N -sample record.

Xk =

N−1∑
n=0

[
A1e j2π f̃1n

+ A2e j2π f̃2n
]

e− j2π k
N n

= A1

N−1∑
n=0

e
j2π

(
f̃1−

k
N

)
n
+ A2

N−1∑
n=0

e
j2π

(
f̃2−

k
N

)
n
. (12.37)

Consider the following cases.

Case 1: The frequencies f1 and f2 are such that

k1

N
=

f1

fs
and

k2

N
=

f2

fs
(12.38)

where k1 and k2 belong to {0, 1, . . . , N − 1}. In this case, we get the DFT from
Eq. (12.37) as

Xk = N A1δ[k − k1]+ N A2δ[k − k2] (12.39)

This implies that

Xk =


N A1 if k = k1
N A2 if k = k2
0 otherwise.

(12.40)

Case 2: The frequencies f1 and f2 do not satisfy Eq. (12.38) for any k1, k2 in
{0, 1, . . . , N − 1}. In this case, we get the DFT from Eq. (12.37) as

Xk = A1
1− e

j2π
(

N f̃1−k
)

1− e
j2π

(
f̃1−

k
N

) + A2
1− e

j2π
(

N f̃2−k
)

1− e
j2π

(
f̃2−

k
N

)
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= A1e
jπ [N−1]

(
f̃1−

k
N

) sin
(
π(k − N f̃1)

)
sin
(
π(k/N − f̃1)

)

+A2e
jπ [N−1]

(
f̃2−

k
N

) sin
(
π(k − N f̃2)

)
sin
(
π(k/N − f̃2)

) . (12.41)

Case 3: The frequency f1 satisfies Eq. (12.38) and f2 does not satisfy Eq. (12.38).
In this case, we get the DFT from Eq. (12.37) as

Xk = N A1δ[k − k1]

+A2e
jπ [N−1]

(
f̃2−

k
N

) sin
(
π(k − N f̃2)

)
sin
(
π(k/N − f̃2)

) . (12.42)

Based on the above, we can infer the following.

• The DFT will result in the expected spectrum of two discrete lines at f̃1 and
f̃2 only if the frequencies of the sinusoids, ( f1, f2), and the choice of the
sampling frequency, ( fs), and data length, N , satisfy the condition given by
Eq. (12.38).

• This condition ensures that the normalized frequencies of the sinusoids cor-
respond to two of the frequencies (k/N ) at which the DFT is evaluated.

• Since Eq. (12.38) implies that N = k1 fs
f1
=

k2 fs
f2

, this is also equivalent to
saying that the data length N contains an integer number of periods of the
signal xa(t). This is because Eq. (12.38) is equivalent to the following:

N Ts = k1T1 = k2T2 (12.43)

where T1 = 1/ f1 and T2 = 1/ f2 are the periods of the two sinusoids, and
N Ts is the time duration over which the signal is observed and sampled.

12.5 Concluding Remarks

We conclude this chapter with the following remarks.

• DFT is a tool for computing the spectrum of signals in practical applications.
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• DFT computes the spectrum at discrete frequencies, which are equally
spaced, based on finite data records. The spacing between the frequencies
are given by 1/N where N is the length of the data record.

• The sampling of the spectrum by DFT causes the signal to appear periodic
in time domain with period N , even though the original signal record is not
periodic.

• DFT for a signal record {x[n]} of N samples is the same as the DFS of a peri-
odic signal which is a periodic extension of the signal record {x[n]}. In other
words, the DFT treats the finite-duration signal {x[0], x[1], x[2], · · · , x[N−
1]} as one period of a periodic signal with period N .

• Because of the periodicity in time domain caused by DFT, multiplication of
the DFTs of two finite-length sequences becomes equivalent to their circular
convolution in time domain. Similarly, multiplication of the data sequences
in time domain becomes equivalent to circular convolution of their DFTs.

• The DFT of a sinusoidal signal will indicate the actual frequencies of the
sinusoids only if the normalized frequencies of the sinusoids fall exactly on
the frequencies at which the DFT is evaluated.

Exercises

12.1. Let us consider the use of DFT to compute the autocorrelation of the
complex-valued sequence x[n], that is,

rxx [m] =
1
N

N−m−1∑
n=0

x∗[n]x[n + m], m ≥ 0

Suppose the size M of the DFT is much smaller than that of the data
length N . Specifically, assume that N = K M .

(a) Determine the steps needed to section x[n] and compute rxx [m]
for−(M/2)+1 ≤ m ≤ (M/2)−1, by using 4K M−point DFTs
and one M−point IDFT.

(b) Now, consider the following three sequences x1[n], x2[n], and
x3[n], each of duration M . Let the sequence x1[n] and x2[n] have
arbitrary values in the range 0 ≤ n ≤ (M/2) − 1, but be zero for
(M/2) ≤ n ≤ M − 1. the sequence x3[n] is defined as

x3[n] =
{

x1[n], 0 ≤ (M/2)− 1
x2
[
n − M

2

]
(M/2) ≤ n ≤ M − 1
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Determine a simple relationship among the M−point DFTs X1[k],
X2[k] and X3[k].

(c) By using the result in part (b), show how the computation of the
DFTs in part (a) can be reduced in number from 4K to 2K .

12.2. (a) Find the 89 point DFT of x[n] = e j2π 15
89 n .

(b) Find the 89 point DFT of x[n] = e j2π 15.7
89 n .

(c) The 128 point DFT of e j2π f1n has a magnitude of

|X [k]| =

∣∣∣∣∣∣
sin
[
π
(

k
128 − f̃1

)
128

]
sin
[
π
(

k
128 − f̃1

)]
∣∣∣∣∣∣

Find |X [k]| for f̃1 =
15

128 and 15.5
128 .

(d) An analog signal xa(t) = e jπ100t is digitized at 500 Hz sampling
rate to generate the discrete-time signal x[n]. Use N− point DFT
to sketch the magnitude spectrum for N = 4, 6, and 8.

12.3. A sampling rate of fs Hz is used to generate the discrete-time signal
x[n] from the analog signal xa(t) = e−2t ua(t), where ua(t) denoting
the unit step function. Find the spectra of x[n] using the N− point
DFT. What happens when N is large?

12.4. (a) The 6-point DFT X [0], X [1], . . . , X [5] of x[n] is given by

X [k] =
5∑

n=0

x[n]e− j2π nk
6 , k = 0, 1, . . . , 5

Ignoring the range for k, show that X [k] is periodic and has a period
of 6.

(b) The 7-point DFT of x[n] is 1, 2, 3, 4, 5, 6, 7. Find the 7-point

DFT of y[n] = x[n]e j2π 2
7 n .

12.5. (a) Consider the 6-point DFT X [0], X [1], . . . , X [5] of a real signal
x[n]. Relate X [5] to X [1] and X [4] to X [2]. Show that X [0] and
X [3] are real.

(b) The 6-point DFT X [0], X [1], . . . , X [5] of a real signal x[n] satisfy
X [5] = X∗[1], X [4] = X∗[2], X [0] = real and X [3] = real.
Sketch the DFT spectrum.

12.6. (a) Sketch the 6-point DFT spectrum of x[n] = 2 cos
(
2π n

6

)
.

(b) Find the 9-point DFT of x[n] = 2 cos(2π0.2n)+ 3 sin(2π0.3n).
12.7. Find the DFT of x[n], which is given by 4, 2, -2, 0, 2, -2.
12.8. In this problem, let X [k] be the N -point DFT (Discrete Fourier

Transform) of the real-valued N -point sequence x[n], 0 ≤ n ≤ N−1.
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We define a 2N -point sequence y[n] as

y[n] =
{

x
[n

2

]
for n even

0 for n odd.

(a) Express the 2N -point DFT Y [k] of y[n] in terms of X [k] (Hint:
Use the appropriate “twiddle factor” to derive the DFT. For exam-

ple, the twiddle factor WN is defined as WN = e− j 2π
N ).)

In the following, it is assumed that the N -point DFT X [k] of
x[n] is bandlimited. That is, X [k] = 0 for k0 ≤ k ≤ N − k0,
where k0 < N is a positive integer constant. We insert (L − 1)N
more zeros in the middle of X [k] to obtain the following L N -point
DFT:

X ′[k] =


X [k] for 0 ≤ k ≤ k0 − 1
0 for k0 ≤ k ≤ L N − k0
X [k + N − L N ] for L N − k0 + 1 ≤ k ≤ L N − 1,

where L is a positive integer constant.
(b) Show that Lx ′[Ln] = x[n], 0 ≤ n ≤ N − 1, where x ′[n] is the

IDFT (inverse DFT) of X ′[k] (Hint: Use the appropriate “twiddle
factor” to derive the DFT and IDFT).

In the following, it is assumed that N = 7 and x[n] = 1 for
n = 0, 1, . . . , N − 1. The z−transform X (z) of x[n] is sampled
at 5 points on the unit circle to obtain the corresponding 5 DFT
coefficients X ′[k], k = 0, 1, . . . , 4. This is obtained by substitut-

ing z = e j 2π
5 in the expression for X (z).

(c) Determine the IDFT x ′[n] of X ′[k], compare it with the original
sequence x[n] and comment on the results.

12.9. Consider the continuous-time signal, xa(t) = 2 cos(80π t) +
2 sin(90π t). We want to use discrete Fourier transform (DFT) for exam-
ining the spectrum of this signal.

(a) For this signal, what is the minimum possible sampling frequency
that results in alias-free spectrum?

(b) Derive the relation between sampling frequency and DFT-size N so
that the DFT spectrum is free from spectral leakage (i.e., the DFT
spectrum contains exactly four non-zero values corresponding to
the frequencies present in xa(t)). (Note: You may use the results
available for complex sinusoids to derive this.)
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(c) If the sampling frequency is chosen as 91 samples/second, what is
the minimum possible value for N so that the DFT spectrum is free
from spectral leakage?

(d) Assume that the signal xa(t) is sampled at the rate of 100 sam-
ples/second. Consider the following two cases. In Case 1, you are
given 50 samples. In Case 2, you are given 555 samples. Will there
be spectral leakage if we compute DFT in these two cases? In which
of these cases you prefer to use a non-rectangular window while
computing the DFT spectrum? Justify your answer.
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Chapter 13

Fast Fourier Transform

Fast Fourier transforms (FFT) are widely used algorithms in digital signal process-
ing for applications in several fields including almost all engineering disciplines,
science, and mathematics. The basic ideas for the FFT algorithms were proposed
by Cooley and Tukey in 1965 [13]. In 1994, Gilbert Strang described the FFT as
the most important numerical algorithm of our lifetime.1 In an article that was pub-
lished in 2000 in the IEEE magazine on Computing in Science and Engineering,
FFT algorithm was listed as one of the top 10 Algorithms of the 20th century.2

In the last chapter, the DFT and IDFT algorithms were derived. It can be seen
that for finding the DFT of a sequence of length N , it requires N 2 multiplications,
which is quite high as N increases. Fast Fourier transform (FFT) is an algorithm
that computes the DFT of a sequence, or its IDFT with as low as N

2 log2 N mul-
tiplications. This means that the FFT algorithm(s) are much faster than the DFT
algorithm, especially when the length of the input sequence N increases.

In this chapter, the fundamental steps in the development of a Radix-2 FFT
algorithm is described in detail.

1. G.Strang, “Wavelets”, American Scientist, vol. 82, no. 3, 1994, pp. 250–255. JSTOR, www.jstor.
org/stable/29775194

2. J. Dongarra and F. Sullivan, “Guest Editors Introduction to the top 10 algorithms”, IEEE Magazine on
Computing in Science & Engineering. vol. 2, No. 1, pp. 22–23, 2000.
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13.1 Fast Fourier Transform (FFT)

The FFT is a computationally efficient approach to compute the DFT spectrum.
For example, the computation of a N -point DFT (i.e., Xk , k = 0, 1, 2, . . . , N−1)
will require N 2 complex multiplications (and N (N − 1) complex additions). This
can be quite costly for large values of N .

The principle behind FFT can be explained using a 15-point DFT example
shown later in this section. Since the computational complexity of DFT is propor-
tional to the square of the number of samples, the basic principle behind FFT is
to transform the problem of computing a N -point DFT into that of computing
DFTs of smaller sizes (‘Divide -and-conquer’ approach), and using these smaller-
sized DFTs to obtain the required N -point DFT.

13.1.1 Direct Computation of DFT

Given a sequence of data {x[n]} of length N , its N -point DFT sequence {X [k]}
(complex valued) is calculated according to,

X [k] =
N−1∑
n=0

x[n]W kn
N , 0 ≤ k ≤ N − 1 (13.1)

where

WN = e− j 2π
N (13.2)

is the twiddle factor.
In general, the sequence {x[n]} is also assumed to be complex valued. The IDFT

becomes,

x[n] =
1
N

N−1∑
k=0

X [k]W−nk
N , 0 ≤ n ≤ N − 1. (13.3)

Since the DFT and IDFT involves basically the same type of computations, the
method to efficiently compute DFT also applies to IDFT as well.

It can be seen that for the N point DFT, it requires N 2 complex multiplica-
tions (4N 2 real multiplications) and N 2

− N complex additions (2N (2N − 1) =
4N 2
−2N real additions). This makes the direct computation of DFT highly inef-

ficient especially when N is large. By exploiting the symmetry (W k+N/2
N = −W k

N )
and periodicity (W k+N

N = W k
N ) properties of the phase factor WN , an efficient

algorithm (known collectively as FFT) can be derived.
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13.1.2 Divide-and-Conquer Approach

This approach is based on the decomposition of an N -point DFT into successively
smaller DFTs. Assuming that N is not a prime number, it is possible to factor N as
the product of two integers as,

N = L M (13.4)

The assumption that N is not a prime number is not restrictive, since we can pad
any sequence with zeros to ensure a factorization as above.

The sequence {x[n]}, 0 ≤ n ≤ N−1, can be stored either in a one-dimensional
array indexed by n or as a two-dimensional array indexed by the row index, l (0 ≤
l ≤ L − 1) and column index, m (0 ≤ m ≤ M − 1) as shown in the following
Tables 13.1 and 13.2.

Thus, the sequence {x[n]} can be stored in a rectangular array in the following
two different ways, each of which depends on the mapping of index n to the indices
[l,m].

If we select the mapping,

n = Ml + m, (13.5)

it leads to the arrangement in which the first row consists of the first M elements of
x[n], the second row consists of the next M elements of x[n], and so on, as shown
in the Table 13.3 (row-wise).

Table 13.1. Storing of the data in one-

dimensional array.

n 0 1 2 · · · N − 1

x x[0] x[1] x[2] · · · x[N − 1]

Table 13.2. Two-dimensional data array for storing the data sequence.

l \ m 0 1 2 · · · M − 1

0 x[0, 0] x[0, 1] x[0, 2] · · · x[0,M − 1]

1 x[1, 0] x[1, 1] x[1, 2] · · · x[1,M − 1]

2 x[2, 0] x[2, 1] x[2, 2] · · · x[2,M − 1]
...

...
...

... · · ·
...

L − 1 x[L − 1, 0] x[L − 1, 1] x[L − 1, 2] · · · x[L − 1,M − 1]
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Table 13.3. Row-wise arrangements for the data arrays.

l \ m 0 1 · · · M − 1

0 x[0] x[1] · · · x[M − 1]

1 x[M] x[M + 1] · · · x[2M − 1]

2 x(2M) x[2M + 1] · · · x[3M − 1]
...

...
... · · ·

...

L − 1 x[[L − 1]M] x[[L − 1]M + 1] · · · x[L M − 1]

Table 13.4. Column-wise arrangements for the data arrays.

l \ m 0 1 · · · M − 1

0 x[0] x[L] · · · x[[M − 1]L]

1 x[1] x[L + 1] · · · x[[M − 1]L + 1]

2 x[2] x[L + 2] · · · x[[M − 1]L + 2]
...

...
... · · ·

...

L − 1 x[L − 1] x[2L − 1] · · · x[L M − 1]

On the other hand, the mapping

n = l + mL (13.6)

stores the first L elements of x[n] in the first column, the next L elements in the
second column, and so on, as shown in the Table 13.4 (column-wise):

A similar arrangement can be used to store the computed DFT values as well.
In particular, the mapping is from the index k to a pair of indices [p, q], where
0 ≤ p ≤ L − 1 and 0 ≤ q ≤ M − 1. If we select the mapping k = Mp + q, the
DFT (X [k]) is stored row-wise and if the mapping is k = q L + p, then the DFT
is stored column-wise.

Now, suppose that x[n] is mapped into the rectangular array x[l,m] and X [k]
is mapped into the corresponding rectangular array X [p, q]. Then the DFT can be
expressed as a double sum over the elements of the rectangular array multiplied by
the corresponding phase vectors. To be specific, let us adopt a column-wise mapping
for x[n] and row-wise mapping for the DFT. Then,

X [p, q] =
M−1∑
m=0

L−1∑
l=0

x[l,m]W (Mp+q)(mL+l)
N . (13.7)
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However, W Nmp
N = 1, W mq L

N = W mq
N/L = W mq

M , and W Mpl
N = W pl

N/M = W pl
L .

With these simplifications, the above equation can be expressed as

X [p, q] =
L−1∑
l=0

{
W lq

N

[M−1∑
m=0

x[l,m]W mq
M

]}
W lp

L . (13.8)

This expression involves the computation of DFTs of length M and L . To see
this, let us subdivide the computations into three steps:

• First, we compute the M-point DFTs

F[l, q] =
M−1∑
m=0

x[l,m]W mq
M , 0 ≤ q ≤ M − 1, (13.9)

for each of the rows l = 0, 1, . . . , L − 1.
• Second, compute a new rectangular array G[l, q] defined as

G[l, q] = W lq
N F[l, q] (13.10)

for 0 ≤ l ≤ L − 1 and 0 ≤ q ≤ M − 1.
• Finally, compute the L-point DFTs

X [p, q] =
L−1∑
l=0

G[l, q]W lp
L , (13.11)

for each column q = 0, 1, . . . ,M − 1, of the array G[l, q].

By looking at the procedure, one may feel that the outlined procedure is more
complex than the direct computation of the DFT. However, by evaluating the
computational complexity of Eq. (13.8), this doubt can be cleared. The first step
involves the computation of L DFTs, each of M points (L M2 complex multi-
plications and L M(M − 1) complex additions). The second step requires L M
complex multiplications. The final step in the computation requires M L2 com-
plex multiplications and M L(L − 1) complex additions. So, there are a total of
N (M + L + 1) complex multiplications and N (M + L − 2) complex additions,
where N = M L . The number of complex multiplications has been reduced from
N 2 to N (M + L + 1) and the number of complex additions has been reduced
from N (N −1) to N (M+ L−2). For example, suppose N = 1000 and we select
L = 2 and M = 500. Then instead of having to perform 106 complex multipli-
cations, this approach reduces to 503, 000 complex multiplications (a reduction of
≈50%). The number of additions is also reduced by a factor of 2.
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When N is a highly composite number, that is, N can be factored into a product
of prime numbers of the form

N = r1r2 . . . rν (13.12)

then the decomposition above can be repeated (ν−1)more times. This procedure
results in smaller DFTs, which, in turn, leads to a more efficient computational
algorithm.

Example 1: Given the input x[n] of length 15, find the 15 point DFT of the
sequence.

The given input sequence is x[0], x[1], . . . , x[14]. N = 15. Since N = 5×3 =
15, we select L = 5 and M = 3 so that the 15 point sequence is stored column-wise
as follows:

Row 1: x[0, 0] = x[0] x[0, 1] = x[5] x[0, 2] = x[10]

Row 2: x[1, 0] = x[1] x[1, 1] = x[6] x[1, 2] = x[11]

Row 3: x[2, 0] = x[2] x[2, 1] = x[7] x[2, 2] = x[12]

Row 4: x[3, 0] = x[3] x[3, 1] = x[8] x[3, 2] = x[13]

Row 5: x[4, 0] = x[4] x[4, 1] = x[9] x[4, 2] = x[14]

Now, we compute the 3-point DFTs for each of the five rows giving us the fol-
lowing 5× 3 array:

F[0, 0] F[0, 1] F[0, 2]

F[1, 0] F[1, 1] F[1, 2]

F[2, 0] F[2, 1] F[2, 2]

F[3, 0] F[3, 1] F[3, 2]

F[4, 0] F[4, 1] F[4, 2]

The next step is to multiply each of the terms F[l, q] by the phase factors
W lq

N = W lq
15, 0 ≤ l ≤ 4 and 0 ≤ q ≤ 2. This results in the following 5 × 3

array:

Column 1 Column 2 Column 3
G[0, 0] G[0, 1] G[0, 2]
G[1, 0] G[1, 1] G[1, 2]
G[2, 0] G[2, 1] G[2, 2]
G[3, 0] G[3, 1] G[3, 2]
G[4, 0] G[4, 1] G[4, 2]
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Figure 13.1. Computation of N = 15-point DFT by means of 3-point and 5-point DFTs.

The final step is to compute the 5-point DFTs for each of the three columns.
This gives the desired values of the DFT in the form

X [0, 0] = X [0] X [0, 1] = X [1] X [0, 2] = X [2]

X [1, 0] = X [3] X [1, 1] = X [4] X [1, 2] = X [5]

X [2, 0] = X [6] X [2, 1] = X [7] X [2, 2] = X [8]

X [3, 0] = X [9] X [3, 1] = X [10] X [3, 2] = X [11]

X [4, 0] = X [12] X [4, 1] = X [13] X [4, 2] = X [14]

Figure 13.1 illustrates the computational steps. It may be noted that the input
sequence is in shuffled order, whereas the output sequence is in normal order.
Input sequence order: x[0], x[5], x[10], x[1], x[6], x[11], x[2], x[7], x[12],
x[3], x[8], x[13], x[4], x[9], x[14].

To summarize, the steps involved in the algorithm are:

Algorithm 1:

• Store the signal column-wise.
• Compute the M-point DFT of each row.

• Multiply the resulting array by the phase factors W lq
N .

• Compute the L-point DFT of each column.
• Read the resulting array row-wise.

Algorithm 2:

• Store the signal row-wise.
• Compute the L-point DFT of each column.
• Multiply the resulting array by the phase factors W pm

N .
• Compute the M-point DFT of each row.
• Read the resulting array column-wise.
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13.2 Radix-2 FFT Algorithm

In the previous sub-section, we have shown that the N -point DFT can be efficiently
computed by factoring N as the product of prime numbers r1, r2, . . . , rν . One of
the special case is when r1 = r2 = . . . = rν ≡ r , so that N = rν . In such a case,
the DFTs are of the same size (r ) and the computation of the N -point DFT has a
regular pattern. Here, the number r is called the radix of the FFT algorithm. When
r = 2, the resulting FFT algorithm is termed the radix-2 FFT algorithm.

Let us consider the computation of the N = 2ν point DFT by divide-and-
conquer approach. We select M = N/2 and L = 2. This selection results in
splitting the N point data sequence into two N/2 point data sequences f1[n] and
f2[n], corresponding to the even-numbered and odd-numbered samples of x[n],
respectively as

f1[n] = x[2n], n = 0, 1, . . . ,
N
2
− 1, (13.13)

f2[n] = x[2n + 1]. (13.14)

Here f1[n] and f2[n] are obtained by decimating x[n] by a factor of 2 and hence
the resulting FFT algorithm is called the decimation-in-time algorithm.

Now, the N -point DFT can be expressed in terms of the DFTs of the decimated
sequences as follows:

X [k] =
N−1∑
n=0

x[n]W kn
N , k = 0, 1, . . . , N − 1,

=

∑
n even

x[n]W kn
N +

∑
n odd

x[n]W kn
N ,

=

N/2−1∑
m=0

x[2m]W 2mk
N +

N/2−1∑
m=0

x[2m + 1]W k[2m+1]
N . (13.15)

But W 2
N = WN/2. With this substitution, the above Eq. becomes

X [k] =
N/2−1∑
m=0

f1[m]W mk
N/2 +W k

N

N/2−1∑
m=0

f2[m]W mk
N/2,

= F1[k]+W k
N F2[k], k = 0, 1, . . . , N − 1. (13.16)

where F1[k] and F2[k] are the N/2-point DFTs of f1[n] and f2[n], respectively.
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Figure 13.2. First step in the decimation-in-time algorithm.

Since F1[k] and F2[k] are periodic with period N/2, we have F1[k + N/2] =
F1[k] and F2[k + N/2] = F2[k]. In addition, the factor W k+N/2

N = −W k
N .

Hence, Eq. (13.16) can be expressed as (for k = 0, 1, . . . , N
2 − 1),

X [k] = F1[k]+W k
N F2[k], (13.17)

X
[

k +
N
2

]
= F1[k]−W k

N F2[k]. (13.18)

It can be seen that to compute the N -point DFT of x[n], by this process,
the number of complex multiplications has been reduced to 2(N/2)2 + N/2 =
N 2/2+ N/2 compared to N 2 (for direct computation); a reduction of a factor of
≈2 for large N .

Figure 13.2 illustrates the first step in the decimation-in-time algorithm.
Having performed the decimation-in-time once, we can repeat the process for

each of the sequences f1[n] and f2[n]. Thus f1[n] would result in two N/4 point
sequences. The number of complex multiplications to compute F1[k] and F2[k]
is now reduced to N 2/4 + N/2. To compute X [k] using F1[k] and F2[k], we
require another N/2 complex multiplications. Consequently, the number of mul-
tiplications is reduced again by a factor of 2 to N 2/4+ N .

This process can be repeated until the resulting sequences are reduced to one-
point sequences. For N = 2ν , this decimation can be performed ν = log2 N times.
Thus the total number of complex multiplications reduces to (N/2) log2 N . The
number of complex additions is N log2 N . A comparison of the computational
complexity for the direct computation of the DFT versus the FFT algorithm for
different N is provided in Table 13.5.
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Table 13.5. Comparison of the computational complexity for

the direct computation of the DFT versus the FFT algorithm.

N N 2 (DFT) N
2 log2 N (FFT) Improvement factor

4 16 4 4.0

8 64 12 5.3

64 4096 192 21.3

256 65536 1024 64.0

1024 1048576 5120 204.8

Figure 13.3. Three stages in the computation of an N = 8-point DFT.

For illustration, Fig. 13.3 depicts the computation of an N = 8-point DFT.
This is achieved in three stages, beginning with 4 two-point DFTs, then 2 four-
point DFTs and finally, one 8-point DFT. The combination of the smaller DFTs
to form the larger DFT is illustrated in Fig. 13.4.

Observe that the basic computation performed at every stage, is to take two com-
plex numbers, say the pair [a, b], multiply b with W r

N , and then add and subtract
the product from a to form the two new complex numbers (A, B). This basic com-
putation is called the butterfly (Fig. 13.5) structure because the flow-graph resembles
a butterfly.

Each butterfly involves one complex multiplication and two complex addi-
tions. For N = 2ν , there are N/2 butterflies per stage of the computation pro-
cess and log2 N stages, which results in (N/2) log2 N complex multiplications and
N log2 N complex additions.

An important observation is concerned with the order of the input data
sequence after it is decimated (ν − 1) times. Consider the case where N = 8.
After the first decimation, we get the sequence order as x[0], x[2], x[4], x[6],
x[1], x[3], x[5], x[7]. After the second decimation, the order becomes x[0],
x[4], x[2], x[6], x[1], x[5], x[3], x[7]. This shuffling of the input data sequence
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Figure 13.4. Eight-point decimation-in-time FFT algorithm.

Figure 13.5. Basic butterfly computation in the decimation-in-time FFT algorithm.

has a well-defined order as can be seen from Fig. 13.6 and Table 13.6. By express-
ing the data index n in binary form, we note that the order of the decimated data
sequence is easily obtained by reading the binary representation in the reverse order.

Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, is obtained by using the divide-and-conquer approach with the choice
of M = 2 and L = N/2. This choice implies a column-wise storage of the input
data sequence [5].

§ Radix-4 FFT Algorithms: When the number of data points (N ) in the DFT is a power
of 4 (i.e., N = 4ν), we can of course always use a radix-2 algorithm for the computation.
However, for this case it is more efficient to employ a radix-4 FFT algorithm.
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Figure 13.6. Shuffling of the data and bit reversal.

Table 13.6. Shuffling of the data and bit reversal.

Original order [n] n2n1n0 n1n0n2 n0n1n2 Shuffled order

0 000 000 000 0

1 001 010 100 4

2 010 100 010 2

3 011 110 110 6

4 100 001 001 1

5 101 011 101 5

6 110 101 011 3

7 111 111 111 7

13.2.1 Applications of FFT Algorithms

Basically, the FFT algorithm is used as an efficient means to compute the DFT and
IDFT of sequences. Other applications include linear filtering, correlation, and
spectrum analysis [5].
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13.3 Concluding Remarks

We conclude this chapter with the following remarks.

• The fast Fourier transform is a computationally efficient means of computing
DFT, requiring only N

2 log2 N multiplications, compared with N 2 required
for direct computation.

Exercises

13.1. To efficiently compute the 256 point FFT of two real signas x[n]
and y[n], we form w[n] = x[n] + j y[n] and compute W [k]. Can
X [3], X [253], Y [3] and Y [253] be found from W [3] and W [253]?

13.2. To compute the 64-point FFT of x[0], . . . , x[63], we divide x[n] into
four sequences:

x0[n] = x[0], x[4], . . .

x1[n] = x[1], x[5], . . .

x2[n] = x[2], x[6], . . .

x3[n] = x[3], x[7], . . .

Can the 64-point FFT of X [k] be found from combining the 16-point
FFTs of these sequences?

13.3. Dual Tone Frequency Modulation (DTMF) is used in touch-tone keypad.
Pressing ‘1’ gives two real sinusoids at 697 and 1209 Hz. Pressing other
keys give two sinusoids at other frequencies. Consider a simpler two key
single tone system. ‘1’ gives a 506 Hz and ‘2’ gives a 1215 Hz tone. We
need to detect the keys or tones every 0.01 seconds or so. We need to
sample at 8 kHz as the telephone speech has a bandwidth of up to about
4 kHz.

Figure P13.3.
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(a) If DFT is to be used in this case, what should the DFT size be?
(b) Suppose a 79 point DFT is used in Question (a) above. Sketch the

DFT spectrum for the signal shown in Fig. P13.3 below and indicate
whether the keys will be detected.
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Chapter 14

Design of Digital Filters

A digital filter is a LTI discrete-time system that is realized using finite precision
arithmetic. The design of digital filters involves three basic and independent steps:

• The specification of the desired properties of the system.
• The approximation of these specifications using a causal discrete-time system.
• The realization of these specifications using finite precision arithmetic.
In the filter design process, we determine the coefficients of a causal FIR or IIR

filter that closely approximates the desired frequency response specifications. The
issue of which type of filter to design, FIR or IIR, depends on the application as
well as the specifications of the desired frequency response. In practice, FIR filters
are employed in problems where there is a requirement of linear phase characteris-
tics within the pass-band of the filter. If such requirements are not specified, either
an IIR or FIR filter may be employed. However, as a general rule, an IIR filter
has lower side-lobes in the stop-band than the FIR filter having the same num-
ber of parameters. For this reason, if some phase distortion is either tolerable or
unimportant, an IIR filter is preferable, primarily because of its fewer parameters
for implementation. Further it require less memory and has lower computational
complexity.

283
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14.1 Characteristics of Practical Frequency-Selective
Filters

Figure 14.1 illustrates the desired frequency response characteristics of different
types of filters. Ideal filters are non-causal and hence physically unrealizable for real-
time signal processing applications. Causality implies that the frequency response
characteristics H(ω) of the filter cannot be zero, except at a finite set of points in the
frequency range. In addition, H(ω) cannot have an infinitely sharp cut-off from
pass-band to stop-band, that is H(ω) cannot drop from unity to zero abruptly.
In this chapter, we limit our discussions to the design of the class of LTI systems
specified by the difference equation

y[n] = −
N∑

k=1

ak y[n − k]+
M−1∑
k=0

bk x[n − k], (14.1)

Figure 14.1. Ideal frequency response characteristics of different types of filters.
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Figure 14.2. Magnitude characteristics of physically realizable filters.

which are causal and physically realizable. Such systems have a frequency response

H(ω) =
∑M−1

k=0 bke− jωk

1+
∑N

k=1 ake− jωk
. (14.2)

Although the ideal filter characteristics are desirable, they are not absolutely nec-
essary in most practical applications. If we relax these conditions, it is possible to
realize causal filters that approximate the ideal filters. The magnitude characteristics
of such a filter ( low-pass) is shown in Fig. 14.2. In the pass-band and stop-band
of the filter, you may note that the magnitude response is deviated from the ideal
characteristics. These deviations are specified by the pass-band (denoted as δ1) and
stop-band (denoted as δ2) ripples. It may also be noted that there exist a transition
band (ωs − ωp) in a practical filter where as it is absent in an ideal filter.

In any filter design problem, we can specify, (i) the maximum tolerable pass-band
ripple, (ii) the maximum tolerable stop-band ripple, (iii) pass-band edge frequency
(ωp), and (iv) the stop-band edge frequency (ωs). Based on these specifications,
we can select the parameters {ak} and {bk} in the frequency response characteristics
given by Eq. (14.2), which best approximates the desired specifications. The degree
to which H(ω) approximates the specifications depends on the criterion used in
the selection of the filter coefficients {ak} and {bk} as well as on N and M .

14.2 Design of FIR Filters

In this section, we discuss three different methods for the design of linear phase
FIR digital filters. They are:
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• Windowing
• Frequency Sampling
• Optimization Method

14.2.1 Symmetric and Anti-symmetric FIR Filters

An FIR filter of length M with input x[n] and output y[n] can be described by the
difference equation

y[n] = b0x[n]+ b1x[n − 1]+ . . .+ bM−1x[n − M + 1] =
M−1∑
k=0

bk x[n − k],

(14.3)

where {bk} is the set of filter coefficients. Alternatively, the output of the filter can
be described as the convolution of the input and the filter’s impulse response h[n].
Thus we have,

y[n] =
M−1∑
k=0

h[k]x[n − k]. (14.4)

Here, the lower and upper limits of the convolution sum reflect the causality and
finite-duration characteristics of the filter. Clearly Eq. (14.3) and Eq. (14.4) are
identical in their form and hence bk = h[k], k = 0, 1, . . . ,M − 1. The filter can
also be characterized by its system function

H(z) =
M−1∑
k=0

h[k]z−k . (14.5)

The roots of the above polynomial constitutes the zeros of the filter.
An FIR filter has linear phase if it satisfies the condition

h[n] = ±h[M − 1− n], n = 0, 1, . . . ,M − 1. (14.6)

When the symmetry (+) and anti-symmetry (−) conditions are incorporated in
Eq. (14.5), we have,

H(z) = h[0]+ h[1]z−1
+ . . .+ h[M − 1]z−[M−1] (14.7)

H⇒ H(z) =
{

z−[M−1]/2 {hodd} for M odd
z−[M−1]/2 {heven} for M even

(14.8)
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Figure 14.3. Symmetry of zero locations for a linear-phase FIR filter.

where

hodd = h
[

M − 1
2

]
+

M−3
2∑

n=0

h[n]
[

z
(

M−1−2n
2

)
± z
−

(
M−1−2n

2

)]
, (14.9)

heven =

M
2 −1∑
n=0

h[n]
[

z
(

M−1−2n
2

)
± z
−

(
M−1−2n

2

)]
. (14.10)

Now, if we substitute z−1 for z in Eq. (14.5) and multiply both sides of the
equation by z−[M−1], we get

z−[M−1] H(z−1) = ±H(z). (14.11)

This implies that the roots of the polynomial H(z) are identical to the roots of
the polynomial H(z−1). That is, the roots of H(z) must occur in reciprocal pairs.
That is if z1 is a root or zero of H(z), then 1/z1 is also a root. Furthermore, if the
impulse response h[n] of the filter is real, then the complex valued roots must occur
in conjugate pairs. Hence if z1 is a complex valued root, then z∗1 is also a root. H(z)
also has a root at 1/z∗1. Figure 14.3 shows all these for the case of a linear phase FIR
filter.

The frequency response characteristics H(ω) of the linear-phase FIR filters are
obtained by evaluating Eq. (14.8) on the unit circle.
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When h[n] = h[M − 1− n] (i.e., symmetric linear phase FIR filter): H(ω) can
be expressed as

H(ω) = Hr (ω)e
− jω

[
M−1

2

]
, (14.12)

where Hr (ω) is a real function of ω and can be expressed as

Hr (ω) = h
[

M − 1
2

]
+ 2

M−3
2∑

n=0

h[n] cosω

[
M − 1

2
− n

]
, (14.13)

when M is odd.

Hr (ω) = 2

M
2 −1∑
n=0

h[n] cosω

[
M − 1

2
− n

]
, (14.14)

when M is even.
The phase characteristics of the filter for both odd and even M are

2(ω) =


−ω

[M−1
2

]
, if Hr (ω) > 0

−ω
[M−1

2

]
+ π, if Hr (ω) < 0.

(14.15)

When h[n] = −h[M − 1− n] (i.e., anti-symmetric linear phase FIR filter): The
unit sample response is anti-symmetric. For M odd, the centre point of the anti-
symmetric h[n] is n = M−1

2 . Hence,

h
[

M − 1
2

]
= 0. (14.16)

However, if M is even, each term in h[n] has a matching term of opposite sign.
The frequency response of this anti-symmetric FIR filter is

H(ω) = Hr (ω)e
j
[
−ω

[
M−1

2

]
+
π
2

]
, (14.17)

where

Hr (ω) = 2

M−3
2∑

n=0

h[n] sinω

[
M − 1

2
− n

]
, (14.18)
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when M is odd and

Hr (ω) = 2

M
2 −1∑
n=0

h[n] sinω

[
M − 1

2
− n

]
, (14.19)

when M is even. The corresponding phase characteristics of the the filter are

2(ω) =


π
2 − ω

[M−1
2

]
, if Hr (ω) > 0

3π
2 − ω

[M−1
2

]
, if Hr (ω) < 0

(14.20)

These general frequency response formulas can be used to design linear-phase
FIR filters with symmetric and anti-symmetric impulse responses. The number of
filter coefficients that specify the frequency response for different types of filters is
shown in Table 14.1 below:

Table 14.1. Number of filter coefficients

that specify the frequency response of dif-

ferent types of FIR filters.

Filter type M odd M even

Symmetric M+1
2

M
2

Anti-symmetric M−1
2 , M

2

h
[M−1

2

]
= 0

14.2.2 Design of Linear-Phase FIR Digital Filters Using
Windowing

We begin with the desired frequency response specification Hd(ω) and determine
the corresponding unit sample response hd [n]. We have (Hd(ω)↔ hd [n]),

Hd(ω) =

∞∑
n=0

hd [n]e− jωn, (14.21)

where

hd [n] =
1

2π

∫ π

−π
Hd(ω)e jωn. (14.22)

So, given Hd(ω), the unit sample response hd [n] can be evaluated using
Eq. (14.22). In general, this hd [n] is infiñte in duration and must be truncated
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at some point, say at n = M − 1, to provide a finite length (order M) FIR filter.
This truncation is equivalent to multiplying hd [n] by a finite “rectangular window”,
defined as

w[n] =
{

1 for n = 0, 1, . . . ,M − 1
0 otherwise

(14.23)

Thus the unit sample response of the FIR filter becomes

h[n] = hd [n]w[n] (14.24)

which means that,

h[n] =
{

hd [n] for n = 0, 1, . . . ,M − 1
0 otherwise

(14.25)

We have to see the effect of this multiplication on the desired frequency response
Hd(ω). To see this, recall the multiplication in time domain is equivalent to the
convolution of Hd(ω) and W (ω) =

∑M−1
n=0 w[n]e− jωn (Fourier transform of

w[n]) in the frequency domain. Thus,

H(ω) =
1

2π

∫ π

−π
Hd(ν)W (ω − ν)dν (14.26)

We have

W (ω) =

M−1∑
n=0

e− jωn

=
1− e− jωM

1− e− jω

= e− jω[M−1]/2
(

sin(ωM/2)
sin(ω/2)

)
. (14.27)

This function has a magnitude response

|W (ω)| =
| sin(ωM/2)|
| sin(ω/2)|

, − π ≤ ω ≤ π (14.28)

and a piece-wise linear phase

2(ω) =

{
−ω

[M−1
2

]
when sin(ωM/2) ≥ 0

−ω
[M−1

2

]
+ π, when sin(ωM/2) < 0.

(14.29)

The magnitude response of the window function is shown in Fig. 14.4 for
M = 31 and M = 61. The width of the main lobe is 4π

M . Hence as M increases, the



Design of FIR Filters 291

Figure 14.4. Frequency response for rectangular window of length (a) M = 31, (b) M = 61.

main lobe becomes narrower. However, the side-lobes of |W (ω)| are relatively high
and remain unaffected by an increase in M . In fact, even though the width of each
side-lobe decreases with an increase in M the height of each side-lobe increases with
an increase in M in such a manner that the area under each side-lobe remains invari-
ant to changes in M . This characteristic behaviour is not evident from Fig. 14.4
because W (ω) has been normalized by M such that the normalized peak values of
the side lobes remain invariant to an increase in M . The characteristics of the rect-
angular window plays a significant role in determining the frequency response of the
truncated unit impulse response. Specifically, the convolution of Hd(ω)with W (ω)

has the effect of smoothing Hd(ω). As M increases, W (ω) becomes narrower, and
the smoothing is reduced. On the other hand, the large side lobes of W (ω) result
in some undesirable ringing1 effects in the FIR filter frequency response H(ω) and
also in relatively large side lobes of H(ω). These undesirable effects can be mini-
mized by using other types of windows that do not contain abrupt discontinuities
in their time-domain characteristics, and have correspondingly low side lobes in
their frequency domain characteristics.

Several popular non-rectangular window types are listed in Table 14.2. Figure
14.5 illustrates the time-domain characteristics of those windows for length M =
61. The frequency response characteristics of the most commonly used non-
rectangular windows, such as, Hanning, Hamming, and Blackman windows for
different window lengths are illustrated in Figs.14.6 through Fig. 14.8.

All of these window functions have significantly lower side-lobes compared to
the rectangular window. However, for the same value of M , the width of the main
lobe is also wider compared to the rectangular window. As a result, these window
functions provide more smoothing and as a result, the transition region in the FIR
filter is wider. To reduce the width of this transition region, we can simply increase

1. Gibb’s phenomenon discussed earlier.
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Table 14.2. Time domain description of popular window functions of length M .

Name of Window Time-domain Sequence (w[n])

Kaiser
I0

[
α

√(
M−1

2

)2
−

(
n− M−1

2

)2
]

I0

[
α
(

M−1
2

)]
Bartlett 1−

2|n− M−1
2 |

M−1

Blackman 0.42− 0.5 cos 2πn
M−1 + 0.08 cos 4πn

M−1

Tukey 1
2

[
1+ cos

(
n−(1+a)(M−1)/2
(1−α)(M−1)/2 π

)]
α(M − 1)/2 ≤

∣∣∣n − M−1
2

∣∣∣ ≤ M−1
2

Hamming 0.54− 0.46 cos 2πn
M−1

Hanning 1
2

(
1− cos 2πn

M−1

)
Triangular 1−

2|n− M−1
2 |

M−1

Gaussian exp

(
−

1
2

(
n−M/2
σM/2

)2
)
; 0 ≤ n ≤ M and σ ≤ 0.5

Parzen w0

(
n − M

2

)
, 0 ≤ n ≤ M

w0(n) =

1− 6
(

n
(M+1)/2

)2 (
1− |n|

(M+1)/2

)
, 0 ≤ n ≤ M+1

4

2
(

1− |n|
(M+1)/2

)3
, M+1

4 ≤ |n| ≤ M+1
2

Bohman1 sin
(πn

M
)
= cos

(πn
M −

π
2
)
, 0 ≤ n ≤ M.

Chebyshev 1
M+1

∑M
k=0 W0(k)e

j 2πk(n−M/2)
M+1 , 0 ≤ n ≤ M,

W0(k) =
TM

(
β cos

(
πk

M+1

))
TM (β)

, 0 ≤ k ≤ M,

Tn(x) =


cos
(

n cos−1(x)
)

if − 1 ≤ x ≤ 1,

cosh
(

n cosh−1(x)
)

if x ≥ 1,

(−1)n cosh
(

n cosh−1(−x)
)

if x ≤ −1.

1This window function is also known as the half-sine window or half-cosine window.

the length of the window, which results in higher order filter. Table 14.3 summarizes
the important frequency domain features of the various window functions.

Example: Suppose that we want to design a symmetric low-pass linear phase FIR
filter having the following (desired) frequency response:

Hd(ω) =

{
1e− jω[M−1]/2 for 0 ≤ |ω| ≤ ωc
0 otherwise
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Figure 14.5. Shapes of different types of windows.

Figure 14.6. Frequency response for Hanning window of length (a) M = 31, (b) M = 61.

A delay of [M−1]/2 units is incorporated into Hd(ω) in anticipation of forcing
the filter to be of length M . The corresponding sample response is

hd [n] =
1

2π

∫ ωc

−ωc

e
jω
[
n−M−1

2

]
dω

=
sinωc

[
n − M−1

2

]
π
[
n − M−1

2

] , n 6=
M − 1

2
. (14.30)
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Figure 14.7. Frequency response for Hamming window of length (a) M = 31, (b) M = 61.

Figure 14.8. Frequency response for Blackman window of length (a) M = 31, (b) M = 61.

Table 14.3. Important frequency characteristics of most

commonly referred types of windows.

Approx. transition
Window width of main lobe Peak side lobe (dB)

Rectangular 4π
M −13

Bartlett 8π
M −25

Hanning 8π
M −31

Hamming 8π
M −41

Blackman 12π
M −57

Clearly, hd [n] is non-causal and infinite duration. If we multiply hd [n] by the
rectangular window (of length M), we obtain a FIR filter of length M having the
unit sample response

h[n] =
sinωc

[
n − M−1

2

]
π
[
n − M−1

2

] , 0 ≤ n ≤ M − 1, n 6=
M − 1

2
. (14.31)
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Figure 14.9. Low-pass FIR filter designed with rectangular window: (a) M = 61 and (b)

M = 101.

If M is selected to be odd, the value of h[n] at n = [M − 1]/2 is

h
[

M − 1
2

]
=
ωc

π
. (14.32)

The magnitude of the frequency response H(ω) of this low pass filter (with cut off
ωc = 0.1) for M = 61 and M = 101 is illustrated in Fig. 14.9. The relatively large
oscillations (ripples) near the band edge is due to the Gibbs phenomenon (more
when use the rectangular window). As the filter length increases, the transition band
decreases and the transition from pass band to stop band becomes sharper.

For a comparison, the magnitude responses of the same filter designed using
different types of windows (Rectangular, Hamming, Blackman, and Kaiser) with a
filter length, M = 61, are shown in Figs. 14.10(a)–(d). It may be observed that the
design with rectangular window provides the sharp cut off characteristics however,
its side lobe levels are the highest among the 4 characteristics. The width of the main
lobe of the filter characteristics for the designs with non-rectangular windows (Figs.
14.10(b)–(d)) are higher than that with the rectangular window. On the other hand,
the side lobes, as you can see, are much lower for these designs compared to the
rectangular window. Gibb’s phenomenon is clearly visible in the case of rectangular
window (Fig. 14.10(a)).
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Figure 14.10. Low-pass FIR filter designed with different types of windows of length

M = 61: (a) Rectangular window, (b) Hamming window, (c) Blackman window, and (d)

Kaiser window.

14.2.3 Design of Linear-Phase FIR Filters by the Frequency
Sampling Method

Remember the frequency sampling structure of the FIR systems which we have
discussed earlier in Section 11.2.3. In this method of FIR filter design, we specify
the desired frequency response Hd(ω) at a set of M equally spaced frequencies,
namely,

ωk =
2πk
M
, (14.33)

where k = 0, 1, . . . , M−1
2 for odd values of M , k = 0, 1, . . . , M

2 − 1 for even
values of M and solve for the impulse response h[n] of the FIR filter. To reduce
side lobes, the frequency specifications in the transition band may be optimized
(numerically) by using linear programming techniques.

To simplify the computations, we can exploit the symmetry property of the sam-
pled frequency response. Let us begin with the desired frequency response of the
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FIR filter,

Hd(ω) =

M−1∑
n=0

h[n]e− jωn. (14.34)

Suppose that we specify the frequency response of the filter at the frequencies given
by Eq. (14.33). Then from Eq. (14.34), we get (for k = 0, 1, . . . ,M − 1),

Hd [k] ≡ Hd

(
2πk
M

)
,

≡

M−1∑
n=0

h[n]e− j 2πk
M n. (14.35)

Taking the inverse of Eq. (14.35) will give h[n]. Multiplying both sides of

Eq. (14.35) by e j 2πk
M m, m = 0, 1, . . . ,M − 1 and taking the sum over k =

0, 1, . . . ,M − 1, the right-hand side of this equation reduces to Mh[m]. Thus we
obtain (for n = 0, 1, . . . ,M − 1),

h[n] =
1
M

M−1∑
k=0

Hd [k]e j 2πk
M n. (14.36)

Note that Eq. (14.35) is the DFT of the sequence {h[n]} and Eq. (14.36) is its
IDFT.

Since h[n] is real, we can easily show that the frequency samples Hd [k] satisfy
the symmetry condition

Hd [k] = H∗d [M − k]. (14.37)

This symmetry condition along with the symmetry of h[n] can be used to reduce
the frequency specifications from M to (M + 1)/2 points for odd values of M and
M/2 points for even values of M . This reduces the computational requirement
considerably. In particular, if Eq. (14.17) is simplified at the frequencies, ωk =
2πk
M , k = 0, 1, . . . ,M − 1, we obtain,

Hd [k] = Hr

(
2πk
M

)
e

j
[
β π2−

2πk
2M [M−1]

]
, (14.38)

where β = 0 when {h[n]} is symmetric and β = 1 when {h[n]} is anti-symmetric.
A simplification occurs by defining a set of real frequency samples {G[k]}

G[k] = (−1)k Hr

(
2πk
M

)
, k = 0, 1, . . . ,M − 1. (14.39)
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We use Eq. (14.39) in Eq. (14.38) to eliminate Hr (ωk). Thus we obtain,

Hd [k] = G[k]e jπ(−1)ke
j
[
β π2−

2πk
2M [M−1]

]
. (14.40)

Now the symmetric condition for Hd [k] in Eq. (14.37) translates into a cor-
responding symmetry condition for G[k], which can be exploited by substituting
into Eq. (14.36), to simplify the expressions for the FIR filter impulse response
{h[n]} for the two cases β = 0 and β = 1. The results are summarized below:

When h[n] = h[M − 1− n] (symmetric: β = 0):

Hd [k] = G[k]e j πk
M , k = 0, 1, . . . ,M − 1

G[k] = (−1)k Hr

(
2πk
M

)
; G[k] = −G[M − k]

M odd:

h[n] =
1
M

G[0]+ 2

M−1
2∑

k=1

G[k] cos
2πk
M

(
n +

1
2

). (14.41)

M even:

h[n] =
1
M

G[0]+ 2

M
2 −1∑
k=1

G[k] cos
2πk
M

(
n +

1
2

). (14.42)

When h[n] = −h[M − 1− n] (anti-symmetric: β = 1)):

Hd [k] = G[k]e j π2 e j πk
M , k = 0, 1, . . . ,M − 1

G[k] = (−1)k Hr

(
2πk
M

)
; G[k] = G[M − k]

M odd:

h[n] = −
2
M

M−1
2∑

k=1

G[k] sin
2πk
M

(
n +

1
2

)
. (14.43)

M even:

h[n] =
1
M

(−1)n+1G
(

M
2

)
− 2

M
2 −1∑
k=1

G[k] sin
2πk
M

(
n +

1
2

).
(14.44)
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Example: Determine the coefficients of a linear-phase FIR filter of length M = 15
which has a symmetric unit sample response and frequency response that satisfies
the conditions

Hr

(
2πk
15

)
=


1 for k = 0, 1, 2, 3
0.4 for k = 4
0 for k = 5, 6, 7

(14.45)

Since h[n] is symmetric, we use the corresponding formula from the four cases
described earlier. In this case,

G[k] = (−1)k Hr

(
2πk
15

)
, k = 0, 1, . . . , 7 (14.46)

The result of this computation is

h[0] = −0.014112893 = h[14]

h[1] = −0.001945309 = h[13]

h[2] = 0.04000004 = h[12]

h[3] = 0.01223454 = h[11]

h[4] = −0.09138802 = h[10]

h[5] = −0.01808986 = h[9]

h[6] = 0.3133176 = h[8]

h[7] = 0.52 = h[7]

The frequency response characteristic of this filter is shown in Fig. 14.11. We
should emphasize that Hr (ω) is exactly equal to the values given by the specifica-
tions above at ωk =

2πk
15 .

14.2.4 Design of Optimum Equiripple Linear-Phase FIR Filters

The window method and the frequency sampling method are relatively simple
techniques for the design of linear-phase FIR filters. However, they have some dis-
advantages which may render them undesirable for some applications. They are:

• Lack of precise control of the critical frequencies such as ωp and ωs . We have
to accept whatever values we obtain after the design.

• We cannot specify both δ1 and δ2 ripple factors simultaneously. Either we
have to specify δ1 = δ2 in the window method or we can optimize only δ2
in the frequency sampling method.

• The approximation errors between the ideal and the actual responses is not
uniformly distributed in the frequency bands. It is higher near the band
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Figure 14.11. Impulse response and frequency response of the linear-phase FIR filter

(Example 2).

edges and lower in frequency regions away from band edges. By distribut-
ing the error uniformly, we can obtain a lower-order filter satisfying the same
specifications.

To overcome these problems, an optimization method, named as the Parks–M-
cClellan algorithm for the design of FIR filters have been proposed.2 The goal of
the algorithm is to minimize the error in the pass and stop bands by utilizing the
Chebyshev approximation. It has become a standard method for FIR filter design.

The optimization method described in this section is formulated as a Chebyshev
approximation problem. In this method, the weighted approximation error
between the desired frequency response and the actual frequency response is spread
evenly across the pass-band and the stop-band of the filter by minimizing the
maximum error.

To describe the design procedure, let us consider the design of a low pass
linear-phase FIR filter with a pass-band edge frequency ωp and stop-band edge

2. J.H. McClellan and T.W. Parks, “A personal history of the Parks-McClellan algorithm”, IEEE Signal Process-
ing Magazine, vol. 22, No. 2, pp. 82–86, 2005.
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frequency ωs . From the general specifications given in Fig. 14.2, we can write

1− δ1 ≤ Hr (ω) ≤ 1+ δ1, |ω| ≤ ωp, (14.47)

and

− δ2 ≤ Hr (ω) ≤ δ2, |ω| > ωs . (14.48)

Here, δ1 and δ2 represents the pass-band and stop-band ripples, respectively. The
remaining filter parameter is its length M .

Let us focus on the four different cases that result in a linear-phase FIR filter. To
derive a standard (compact) objective function for all these four cases, the following
manipulations are suggested:

• Case 1: h[n] = h[M − 1− n] (symmetric) and M odd: In this case, the
real valued frequency response characteristics is

Hr (ω) = h
[

M − 1
2

]
+ 2

M−3
2∑

n=0

h[n] cosω

[
M − 1

2
− n

]
. (14.49)

If we let k =
[M−1

2

]
− n and define a new set of filter parameters {a[k]} as

a[k] =
{

h
[M−1

2

]
for k = 0,

2h
[M−1

2 − k
]

for k = 1, 2, . . . , M−1
2 ,

(14.50)

then Eq. (14.49) reduces to the compact form

Hr (ω) =

M−1
2∑

k=0

a[k] cosωk. (14.51)

• Case 2: h[n] = h[M − 1− n] (symmetric) and M even:

Hr (ω) = 2

M
2 −1∑
n=0

h[n] cosω

[
M − 1

2
− n

]
(14.52)

By letting k =
[M

2

]
− n and defining a new set of filter parameters {b[k]} as

b[k] = 2h
[

M
2
− k

]
, k = 1, 2, . . . ,M/2 (14.53)
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Then, Eq. (14.52) becomes

Hr (ω) =

M
2∑

k=1

b[k] cosω

[
k −

1
2

]
(14.54)

This can be further modified to

Hr (ω) = cos
ω

2

M
2 −1∑
k=0

b̃[k] cosωk, (14.55)

where

b̃[0] =
1
2

b[1] (14.56)

b̃[k] = 2b[k]− b̃[k − 1], k = 1, 2, . . . ,
M
2
− 2 (14.57)

b̃
[

M
2
− 1

]
= 2b

[
M
2

]
. (14.58)

• Case 3: h[n] = −h[M − 1− n] (anti-symmetric) and M odd:

Hr (ω) = 2

M−3
2∑

n=0

h[n] sinω

[
M − 1

2
− n

]
(14.59)

By setting k =
[M−1

2

]
− n and define a new set of filter parameters {c[k]} as

c[k] = 2h
[

M − 1
2
− k

]
, k = 1, 2, . . . , [M − 1]/2 (14.60)

Then Eq. (14.59) becomes

Hr (ω) =

M−1
2∑

k=1

c[k] sinωk (14.61)

This is further modified to

Hr (ω) = sinω

M−3
2∑

k=0

c̃[k] cosωk (14.62)
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where

c̃
[

M − 3
2

]
= c

[
M − 1

2

]
, (14.63)

c̃
[

M − 5
2

]
= 2c

[
M − 3

2

]
, (14.64)

... =
...

c̃[k − 1]− c̃[k + 1] = 2c[k], 2 ≤ k ≤
M − 5

2
, (14.65)

c̃[0]+
1
2

c̃[2] = c[1]. (14.66)

• Case 4: h[n] = −h[M − 1− n] (anti-symmetric) and M even:

Hr (ω) = 2

M
2 −1∑
n=0

h[n] sinω

[
M − 1

2
− n

]
(14.67)

A change of summation index by setting k = M
2 − n combined with a defi-

nition of a new set of filter parameters {d[k]} according to

d[k] = 2h
[

M
2
− k

]
, k = 1, 2, . . . ,

M
2

(14.68)

This results in

Hr (ω) =

M
2∑

k=1

d[k] sinω

[
k −

1
2

]
(14.69)

This can be further modified to

Hr (ω) = sin
ω

2

M
2 −1∑
k=0

d̃[k] cosωk (14.70)

where,

d̃
[

M
2
− 1

]
= 2d

[
M
2

]
, (14.71)
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d̃[k − 1]− d̃[k] = 2d[k], 2 ≤ k ≤
M
2
− 1, (14.72)

d̃[0]−
1
2

d̃[1] = d[1]. (14.73)

We note that the rearrangements in Case 2, Case 3, and Case 4 have allowed
us to express Hr (ω) in a more compact form as

Hr (ω) = Q(ω)P(ω), (14.74)

where Q(ω) and P(ω) for each case is shown in Table 14.4 below.

Table 14.4. Filter types and the correspond-

ing Q(ω) and P(ω) functions.

Filter type Q(ω) P(ω)

Case 1 1
∑[M−1]/2

k=0 a[k] cosωk

Case 2 cos ω2
∑(M/2)−1

k=0 b̃[k] cosωk

Case 3 sinω
∑(M−3)/2

k=0 c̃[k] cosωk

Case 4 sin ω
2

∑(M/2)−1
k=0 d̃[k] cosωk

It may be noted that here P(ω) has a common form

P(ω) =
L∑

k=0

α[k] cosωk, (14.75)

with {α[k]} representing the parameters of the filter which are linearly related to the
unit sample response h[n] of the FIR filter and the upper limit in the summation
L is different for different cases as can be seen from the table.

In addition to the common framework given above, we also define the real-
valued desired frequency response Hdr (ω) (unity in the pass-band and zero in the
stop-band. See Fig. 14.1 for the illustration of Hdr (ω) for different types filters.)
and the weighting function W (ω) on the approximation error. This W (ω) allows
us to choose the relative size of the errors in the different frequency bands. In
particular, it is convenient to normalize W (ω) to unity in the stop-band and set
W (ω) = δ2/δ1 in the pass-band, that is,

W (ω) =

{
δ2
δ1

ω in the pass-band
1 ω in the stop-band

(14.76)
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The weighted approximation error is defined as

E(ω) = W (ω) [Hdr (ω)− Hr (ω)]

= W (ω) [Hdr (ω)− Q(ω)P(ω)]

= W (ω)Q(ω)
[

Hdr (ω)

Q(ω)
− P(ω)

]
= Ŵ (ω)

[
Ĥdr (ω)− P(ω)

]
(14.77)

for all four different types of linear-phase FIR filters.
Given the error function E(ω), the Chebyshev approximation problem is to

determine the filter parameters {α[k]} that minimizes the maximum absolute value
of E(ω) over the frequency bands in which the approximation is to be performed.
In mathematical terms, this can be written as

min
over[α[k]]

[
max
ω∈S
|E(ω)|

]
= min

over[α[k]]
[xx] , (14.78)

where

xx = max
ω∈S

∣∣∣∣∣Ŵ (ω)

[
Ĥdr (ω)−

L∑
k=0

α[k] cosωk

]∣∣∣∣∣ (14.79)

In Eq. (14.78), S is the set (disjoint union) of frequency bands over which the
optimization is to be performed. This set consists of the pass-bands and stop-bands
of the desired filter.

The solution to the optimization problem in Eq. (14.78) is given by Parks and
McClellan (1972) by applying the alternation3 theorem to the theory of Chebyshev
approximation.

To elaborate on the alternation theorem, let us consider the design of a low-
pass filter with pass-band 0 ≤ ω ≤ ωp and stop-band ωs ≤ ω ≤ π . Since the
desired frequency response Hdr (ω) and the weighting function W (ω) are piece-
wise constant, we have,

d E(ω)
dω

=
d

dω
{W (ω) [Hdr (ω)− Hr (ω)]}

= −
d Hr (ω)

dω
= 0 (14.80)

3. Alternation Theorem: Let S be a compact subset of the interval [0, π). A necessary and sufficient
condition for P(ω) in Eq. (14.75) to be unique, best weighted Chebyshev approximation to H̃dr (ω) in
S, is that the error function E(ω) exhibit at least L + 2 extremal frequencies in S. That is, there must
exist at least L + 2 frequencies {ωi } in S such that ω1 < ω2 < . . . < ωL+2, E(ωi ) = −E(ωi+1), and
|E(ωi )| = maxω∈S |E(ω)|, i = 1, 2, . . . , L + 2.
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Consequently, the frequencies {ωi } corresponding to the peaks of E(ω) also corre-
sponds to peaks at which Hr (ω)meets the error tolerance. Since Hr (ω) is a trigono-
metric polynomial of degree L , for Case 1, for example,

Hr (ω) =

L∑
k=0

α[k] cosωk

=

L∑
k=0

α[k]

[ k∑
n=0

βnk(cosω)n
]

=

L∑
k=0

α′[k](cosω)k . (14.81)

It follows that Hr (ω) can have at most L−1 local maxima and minima in the open
interval 0 < ω < π . In addition, ω = 0 and ω = π are usually extrema of Hr (ω)

and, also, of E(ω). Therefore, Hr (ω) has at most L + 1 extremal frequencies.
Furthermore, the band edge frequencies ωp and ωs are also extrema of E(ω) since
|E(ω)| is maximum at ω = ωp and ω = ωs . Hence there are at most L + 3
extremal frequencies in E(ω) for the unique, best approximation of the ideal low-
pass filter. On the other hand, the alternation theorem states that there are at least
L+2 extremal frequencies in E(ω). Thus the error function for the low-pass filter
design has either L + 3 or L + 2 extrema.

The alternation theorem guarantees a unique solution for the optimization prob-
lem in Eq. (14.78). At the desired extremal frequencies {ωn}, we have the set of
equations,

Ŵ (ωn)[Ĥdr (ωn)− P(ωn)] = [−1]nδ, n = 0, 1, . . . , L + 1 (14.82)

where δ is the maximum value of the error function E(ω). If we select W (ω) by
Eq. (14.76), it follows that δ = δ2. The set of linear equations in Eq. (14.82) can
be rearranged as

P(ωn)+
[−1]nδ

Ŵ (ωn)
= Ĥdr (ωn), n = 0, 1, . . . , L + 1 (14.83)

where

P(ωn) =

L∑
k=0

α[k] cosωnk (14.84)
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Figure 14.12. Flowchart of Remez algorithm.

Here, {α[k]} and δ are the parameters to be determined by solving the L + 1
equations (Eq. (14.83)). Initially we do not know either the set of extremal fre-
quencies {ωn} or the parameters {α[k]} and δ. An iterative approach,4 known as
re Remez Exchange Algorithm can be used to solve for the parameters [5]. In this
algorithm, by guessing the set of extremal frequencies, determine P(ω) and δ and
then compute the error function E(ω). From this E(ω), we determine another set
of L+2 extremal frequencies and repeat the process iteratively until it converges to

4. Rabiner et al. (1975) have proposed a more efficient method.
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the optimal set of extremal frequencies. Figure 14.12 shows the flowchart of Remez
algorithm.

A computer programme written by Parks and McClellan is available for design-
ing linear-phase FIR filters of different types using the optimization method just
described in this sub-section.

The Remez programme requires a number of input parameters which determine
the filter characteristics. The following parameters must be specified:

• NFILT: Filter length (M)
• JTYPE: Type of filter (1 (multiple passband/stopband), 2 (differentiator), 3

(Hilbert transformer))
• NBANDS: Number of frequency bands (2–10)
• LGRID: Grid density for interpolating the error function E(ω) (default

value is 16)
• EDGE: Frequency bands specified by lower and upper cutoff frequencies (up

to maximum of 10 bands)
• FX: Array of maximum size 10 that specifies the desired frequency response

in each band
• WTX: Array of maximum size 10 that specifies the weight function in each

band

Example: Design a low-pass filter of length M = 61 with a pass-band frequency
f p = 0.1 and a stop-band frequency fs = 0.15.

The low pass filter is a two band filter with pass band edge frequencies (0, 0.1)
and stop-band edge frequencies (0.15, 0.5). The desired response is (1,0) and the
weight function is arbitrarily selected as (1,1).

NFILT = 61, JTYPE = 1,NBANDS = 2(0.0, 0.1, 0.15, 0.5),FX =
1.0, 0.0,WTX = 1.0, 1.0

The impulse response and the frequency response of the designed filter are shown
in Fig. 14.13. The resulting filter has a stop band attenuation of−56dB and a pass
band ripple of 0.0135 dB.

If we increase the length of the filter to 101, keeping all the other parameters
same, the resulting filter has an impulse response and frequency response as shown
in Fig. 14.14. Here, the stop-band attenuation is −85dB and the pass-band ripple
has reduced to 0.00046 dB.

14.3 Design of IIR Filters

IIR filters have infinite-duration impulse responses. It is easy to match those to ana-
log filters which generally have infinitely-long impulse response. There are several
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Figure 14.13. Impulse response and frequency response of the designed filter in

Example.

methods that can be used for the design of IIR filters. The techniques described in
this section are all based on converting an analog filter into a digital filter. Here,
three such schemes are discussed. They are:

• Design by approximation of derivatives
• Design by impulse invariance (preserves the shape of the impulse response)
• Design by bilinear transformation (preserves the system function

representation)

14.3.1 Design of IIR Filters From Analog Filters

Analog filter design is a mature and well-developed field. We begin the design of
a digital filter in the analog domain and then convert the design into the digital
domain by complex-valued mapping.

An analog filter can be described by its system function,

Ha(s) =
B(s)
A(s)

=

∑M
k=0 βksk∑N
k=0 αksk

(14.85)
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Figure 14.14. Impulse response and frequency response of the designed filter in

Example.

where, αk and βk are the filter coefficients, or by its impulse response, which is
related to Ha(s) by the Laplace transform

Ha(s) =
∫
∞

−∞

h(t)e−st dt. (14.86)

An analog filter having the rational system function Ha(s) can be described by
the linear constant coefficient differential equation as

N∑
k=0

αk
dk y(t)

dtk =

M∑
k=0

βk
dk x(t)

dtk (14.87)

where x(t) and y(t) are the input and output, respectively of the system.
Each of these three equivalent characterization of an analog filter leads to alter-

native methods for converting them into the digital domain.
We recall that an analog LTI system with system function Ha(s) is stable if all

its poles lie in the left half of the s-plane. Accordingly, if the conversion technique
is to be effective, it should posses the following desirable properties:

• The j� axis in the s-plane should map into the unit circle in the z-plane.
This means that the frequencies in s and z domains are directly related.
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Figure 14.15. Frequency domain equivalent.

• The LHP of the s-plane should map into the interior of the unit circle in
the z-plane. Thus a stable analog filter will be converted into a stable digital
filter.

In the design of IIR filters, we shall specify the desired filter characteristics for
the magnitude response only and accepts the phase response that is obtained from
the design methodology.

14.3.2 IIR Filter Design by Approximation of Derivatives

It is known that a differential equation can be approximated by an equivalent dif-
ference equation. This approach is used to find the equivalent difference equa-
tion representation of Eq. (14.87). The derivative dy(t)

dt at time instant t = nTs is
approximated by the difference equation as follows:

dy(t)
dt

∣∣∣∣
t=nTs

=
y(nTs)− y(nTs − Ts)

Ts

=
y[n]− y[n − 1]

Ts
(14.88)

where Ts is the sampling interval and y[n] ≡ y(nTs). The analog differentiator
with its output dy(t)

dt has a system function H(s) = s, while its digital counterpart

has the system function H(z) = 1−z−1

Ts
(see Fig. 14.15). The frequency domain

equivalent for the relationship in Eq. (14.88) is

s =
1− z−1

Ts
. (14.89)



312 Design of Digital Filters

The second derivative is replaced by the second difference equation as below:

d2 y(t)
dt2

∣∣∣∣
t=nTs

=
y[n]− 2y[n − 1]+ y[n − 2]

T 2
s

(14.90)

In the frequency domain, it is equivalent to

s2
=

1− 2z−1
+ z−2

T 2
s

=

(
1− z−1

Ts

)2

. (14.91)

Similarly, the kth derivative of y(t) results in the equivalent frequency domain
relationship

sk
=

(
1− z−1

Ts

)k

. (14.92)

Hence the system function for the digital IIR filter obtained as a result of the
approximation of the derivatives by finite difference is

H(z) = Ha(s)|s= 1−z−1
Ts

(14.93)

Implications: The mapping from s-plane to z-plane as given in Eq. (14.89) or
equivalently,

z =
1

1− sTs
. (14.94)

If we substitute s = j� in the above equation, we get

z =
1

1+�2T 2
s
+ j

�Ts

1+�2T 2
s
. (14.95)

As � varies from −∞ to∞, the corresponding locus of points in the z-plane is
a circle of radius 0.5 and with centre at (0.5, 0), as illustrated in Fig. 14.16.

It can be shown that the mapping in Eq. (14.94) takes points on the LHP of the
s-plane into corresponding points inside this circle in the z-plane, and points in
the RHP of the s-plane are mapped into points outside this circle. So, though the
mapping preserves the stability, the range of frequencies are limited and as a result,
the mapping is restricted to the design of low-pass and band-pass filters having
relatively small resonant frequencies. It is not possible, for example, to transform a
high-pass analog filter into a corresponding high-pass digital filter.
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Figure 14.16. The mapping from s-plane to z-plane.

To overcome this problem, a L th order difference equation has been proposed
as follows:

dy(t)
dt

∣∣∣∣
t=nTs

=

L∑
k=1

αk
y(nTs + kTs)− y(nTs − kTs)

Ts
, (14.96)

where αk are a set of parameters that can be chosen to optimize the approximation.
The resulting mapping is

s =
1
Ts

L∑
k=1

αk(zk
− z−k). (14.97)

When z = e jω, we have

s = j
2
Ts

L∑
k=1

αk sinωk, (14.98)

which is purely imaginary. Thus,

� =
2
Ts

L∑
k=1

αk sinωk, (14.99)

is the resulting mapping between the two frequency variables. By proper choice of
the αk ’s, it is possible to map the j�-axis into the unit circle. Furthermore, the
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points in the LHP of the s-plane is mapped into the unit circle. The problem here
is the selection of the αk ’s which is in general a difficult one.

14.3.3 IIR Filter Design by Impulse Invariance

In this method, the objective is to design an IIR filter having a unit sample response
h[n] that is the sampled version of the impulse response ha(t) of the analog filter.
That is,

h[n] ≡ ha(nTs), n = 0, 1, . . . (14.100)

where Ts is the sampling interval. Using the rule of the spectrum of a sampled
signal, the spectral relationship of Eq. (14.100) can be shown to be

H( f ) = fs

∞∑
k=−∞

Ha( f − k fs) (14.101)

where f is the analog frequency, fs = 1/Ts is the sampling frequency. As you
can see, a scaled version (scaled by fs) of the original spectrum repeats on either
side of the frequency axis at a rate of fs Hz.

Equation (14.101) can be written as a function of the normalized frequency,
f̃ = f

fs
as follows:

H( f̃ ) = fs

∞∑
k=−∞

Ha

((
f̃ − k

)
fs

)
(14.102)

Equation (14.102) is also equivalently

H(ω) = fs

∞∑
k=−∞

Ha((ω − 2πk) fs), (14.103)

where ω = 2π f̃ . This equation can be re-written as,

H(�Ts) =
1
Ts

∞∑
k=−∞

Ha

(
�−

2πk
Ts

)
, (14.104)

as the analog and digital frequencies are related by ω = �Ts or e jω
= e j�Ts . Since

z = e jω on the unit circle, s = j� on the imaginary axis, we have the mapping
z = esTs .

Figure 14.17 depicts the frequency responses of a low-pass analog filter and the
corresponding digital filter. It is noted that the sampling interval Ts is to be chosen
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Figure 14.17. Frequency response Ha(�) of the analog filter and the corresponding digital

filter with aliasing.

small enough to avoid the effects of aliasing. It is also clear that the impulse invari-
ance method is inappropriate for designing high-pass filters due to the spectrum
aliasing that results form the sampling process.

To investigate the mapping of points between the two planes, we rely on a gen-
eralization of Eq. (14.104) which relates the z-transform of h[n] to the Laplace
transform of ha(t). The relationship is

H(z)|z=esTs =
1
Ts

∞∑
k=−∞

Ha

(
s − j

2πk
Ts

)
(14.105)

where

H(z) =
∞∑

n=0

h[n]z−n (14.106)

H(z)|z=esTs =

∞∑
n=0

h[n]e−sTsn (14.107)

Note that when s = j�, Eq. (14.105) reduces to Eq. (14.104). Let us consider
the mapping of points from s-plane to the z-plane implied by the relation z = esTs .
If we substitute s = σ + j� and express the complex variable z in polar form, we
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get

re jω
= eσTs e j�Ts (14.108)

Clearly, we must have

r = eσTs (14.109)

ω = �Ts (14.110)

Correspondingly, σ < 0 implies that 0 < r < 1 and σ > 0 implies r > 1.
When σ = 0, we have r = 1. Therefore, the LHP of the s-plane is mapped inside
the unit circle in z-plane and the RHP in s-plane is mapped to the outside of the
unit circle in the z-plane.

Also, the j�-axis is mapped onto the unit circle in z domain. However, the
mapping of the j�-axis onto the unit circle is not one-to-one. Since ω is unique
over the range (−π, π), the mapping ω = �Ts implies that the interval − π

Ts
≤

� ≤ π
Ts

maps into the corresponding values of −π ≤ ω ≤ π . Furthermore, the
frequency interval π

Ts
≤ � ≤ 3 πTs

also maps into the interval −π ≤ ω ≤ π

and, in general, so does the interval (2k − 1) πTs
≤ � ≤ (2k + 1) πTs

, when k is an
integer. This means that the mapping from the analog frequency� to the frequency
variable ω in the digital domain is many-to-one, which reflects the effect of aliasing
due to sampling. Figure 14.18 illustrates this.

Figure 14.18. The mapping in impulse invariance method.
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To explore further the effect of the impulse invariance method on the charac-
teristics of the resulting filter, let us express the system function of the analog filter
in partial fraction form. On the assumption that the poles of the analog filter are
distinct, we can write

Ha(s) =
N∑

k=1

ck

s − pk
, (14.111)

where, pk ’s are the poles of the analog filter and ck ’s are the residues. Hence,

ha(t) =
N∑

k=1

ckepk t , t ≥ 0. (14.112)

If we sample ha(t) periodically at t = nTs , we have

h[n] = ha(nTs)

=

N∑
k=1

ckepknTs . (14.113)

Now with the substitution of Eq. (14.113), the system function of the resulting
digital IIR filter becomes,

H(z) =
∞∑

n=0

h[n]z−n

=

N∑
k=1

ck

∞∑
n=0

(
epk Ts z−1

)n
(14.114)

The inner sum in Eq. (14.114) converges because pk < 0 and yields

∞∑
n=0

(
epk Ts z−1

)n
=

1
1− epk Ts z−1 (14.115)

Therefore the system function of the digital filter is

H(z) =
N∑

k=1

ck

1− epk Ts z−1 . (14.116)

The poles of the digital filter is

zk = epk Ts , k = 1, 2, . . . , N . (14.117)
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Although the poles are mapped according to Eq. (14.117), the zeros in the two
domains do not satisfy the same relationship. Therefore the impulse invariance
method does not correspond to the simple mapping of the points given by z = esTs .

14.3.3.1 Design Procedure

Given the filter specifications (ωp,ωs , etc.), we have to follow the following steps:

• Choose Ts and determine the analog frequencies

�p =
ωp

Ts
(14.118)

and

�s =
ωs

Ts
(14.119)

• Design an analog filter Ha(s) using the specifications (Butterworth,
Chebyschev, or elliptic).

• Using partial fraction approach, find

Ha(s) =
N∑

k=1

ck

s − pk
(14.120)

• Transform the analog poles pk into digital poles epk Ts to obtain the digital
filter

H(z) =
N∑

k=1

ck

1− epk Ts z−1 . (14.121)

Example: Transform Ha(s) = s+1
s2+5s+6 into a digital filter using the impulse invari-

ant technique in which Ts = 0.1.
We have

Ha(s) =
s + 1

s2 + 5s + 6
=

2
s + 3

−
1

s + 2
, (14.122)

by partial fraction approach.
Poles are p1 = −3 and p2 = −2. We get H(z) as

H(z) =
2

1− e−3Ts z−1 −
1

1− e−2Ts z−1

=
1− 0.8966z−1

1− 1.5595z−1 + 0.6065z−2 (14.123)
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Note: The advantages of the impulse invariant mapping are that it is a stable design
and that frequencies� and ω are linearly related (ω = �Ts). But the disadvantage
is that we should expect some aliasing of the analog frequency response, and in
some cases this aliasing is unacceptable. Hence, this design method is useful only
when the analog filter is essentially band-limited to a low-pass or band-pass filter.

14.3.4 IIR Filter Design by the Bilinear Transformation

The two methods ((i) method of approximation of derivatives and (ii) the impulse
invariance method) of the IIR filter designs discussed have severe limitation in that
they are appropriate only for low-pass filters and a limited class of band-pass filters.
The bilinear method overcomes this limitation.

• The bilinear transformation is a conformal mapping that transforms the j�-
axis onto the unit circle in the z-domain only once, thus avoiding the aliasing
of frequency components.

• All points in the LHP of the s-plane are mapped inside the unit circle and
all points in the RHP of the s-plane are mapped into corresponding points
outside the unit circle in the z-plane.

• This method preserves the system function representation as well.

Let us consider an analog linear filter with system function

H(s) =
b

s + a
(14.124)

This system is also characterized by the differential equation

dy(t)
dt
+ ay(t) = bx(t). (14.125)

Instead of using the difference equation approach, suppose that we integrate the
derivative and approximate the integral by the trapezoidal formula [9]. Thus

y(t) =
∫ t

t0
y′(t)dt + y(t0), (14.126)

where y′(t) denotes the 1st derivative of y(t). By applying the trapezoidal formula
at t = nTs and t0 = nTs − Ts , the approximation of Eq. (14.126) becomes

y(nTs) =
Ts

2
[y′(nTs)+ y′(nTs − Ts)]+ y(nTs − Ts). (14.127)
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Now the differential equation in (14.125) evaluated at t = nTs yields

y′(nTs) = −ay(nTs)+ bx(nTs). (14.128)

We use Eq. (14.128) to substitute for the derivative in Eq. (14.127) and thus
obtain a difference equation for the equivalent discrete-time system. With y[n] ≡
y(nTs) and x[n] ≡ x(nTs), we get(

1+
aTs

2

)
y[n]−

(
1−

aTs

2

)
y[n − 1] =

bTs

2
(x[n]+ x[n − 1])

(14.129)

The z-transform of this difference equation is(
1+

aTs

2

)
Y (z)−

(
1−

aTs

2

)
z−1Y (z) =

bTs

2
(1+ z−1)X (z) (14.130)

Hence, the system function of the equivalent digital filter is

H(z) =
Y (z)
X (z)

=

(
bTs
2

)
(1+ z−1)

1+
(

aTs
2

)
−

(
1− aTs

2

)
z−1

(14.131)

or, equivalently

H(z) =
b

2
Ts

(
1−z−1

1+z−1

)
+ a

(14.132)

Comparing Eqs. (14.124) and (14.132), we get the mapping from s-plane to
the z-plane as

s =
2
Ts

(
1− z−1

1+ z−1

)
. (14.133)

This is called the bilinear transformation.

14.3.4.1 Characteristics of the bilinear transformation

To investigate the characteristics of the transformation, let z = re jω and s =
σ + j�. Then Eq. (14.133) can be expressed as

s =
2
Ts

(
r2
− 1

1+ r2 + 2r cosω
+ j

2r sinω

1+ r2 + 2r cosω

)
(14.134)
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From this, we get,

σ =
2
Ts

(
r2
− 1

1+ r2 + 2r cosω

)
, (14.135)

� =
2
Ts

(
2r sinω

1+ r2 + 2r cosω

)
. (14.136)

From these equations, we note that if r < 1, then σ < 0, and if r > 1, then σ > 0.
Hence, the LHP in s-plane maps into the interior of the unit circle in the z-plane
and the RHP in s-plane maps to the outside of the unit circle. When r = 1, then
σ = 0 and

� =
2
Ts

(
sinω

1+ cosω

)
(14.137)

=
2
Ts

tan
(ω

2

)
(14.138)

or, equivalently

ω = 2 tan−1
(
�Ts

2

)
. (14.139)

This relationship between the frequency variables in the two domains is called
“frequency warping” and is illustrated in Fig. 14.19. We observe that the entire
range in � is mapped only once into the range −π ≤ ω ≤ π . However, the
mapping is highly non-linear. We observe a frequency compression or frequency
warping due to the non-linearity of the arctangent function. It is also interesting
to note that the bilinear transformation maps the point s = ∞ into the point
z = −1. Consequently, the single-pole low-pass filter in Eq. (14.124), which has a
zero at s = ∞, results in a digital filter that has a zero at z = −1.

14.3.4.2 Consequences of Frequency Warping

It is easy to verify that the bilinear transform gives a one-to-one, order-preserving,
conformal mapping between the analog frequency axis s = j� and the digital

Figure 14.19. Relation between ω and � in bilinear transformation.
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frequency axis z = e j�Ts , where Ts is the sampling interval. Therefore, the ampli-
tude response takes on exactly the same values over both frequency axes, with the
only problem being a frequency warping such that equal increments along the unit
circle in the z-plane correspond to larger and larger bandwidths along the j� axis
in the s-plane. The frequency warping is certainly unavoidable in any one-to-one
map because the analog frequency axis ( j�) is infinite while the digital frequency
axis (unit circle) is finite. The relation between the analog and digital frequency
axes can be seen in Figs.14.19 and 14.20 as well as in the following equations.

�p =
2
Ts

tan
(ωp

2

)
, (14.140)

and

�s =
2
Ts

tan
(ωs

2

)
. (14.141)

This is illustrated in Fig 14.20 below.

Figure 14.20. Consequence of frequency warping.
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Here, the good news is that we do not have to worry about frequency aliasing.
On the other hand, the bad news is that we have to account for frequency warping
when we start from a discrete-time (digital) filter specification.

14.3.4.3 Design Procedure

Given the filter specifications (ωp, ωs , etc.), to design the digital filter, we have the
following steps:

• Choose Ts (usually set as 1) and determine the analog frequencies

�p =
2
Ts

tan
(ωp

2

)
(14.142)

and

�s =
2
Ts

tan
(ωs

2

)
(14.143)

• Design an analog filter Ha(s) using the specifications (Butterworth,
Chebyschev, or Elliptic) to meet the specifications.

• Finally, set

H(z) = Ha

(
2
Ts

1− z−1

1+ z−1

)
(14.144)

Example: Transform Ha(s) = s+1
s2+5s+6 into a digital filter using the bilinear trans-

formation technique. Choose Ts = 1.
Using the transformation, we have

H(z) = Ha

(
2
Ts

1− z−1

1+ z−1

∣∣∣∣
Ts=1

)
(14.145)

= Ha

(
2

1− z−1

1+ z−1

)
(14.146)

=

2 1−z−1

1+z−1 + 1(
2 1−z−1

1+z−1

)2
+ 5

(
2 1−z−1

1+z−1

)
+ 6

(14.147)

Simplifying,

H(z) =
3+ 2z−1

− z−2

20+ 4z−1 =
0.15+ 0.1z−1

− 0.05z−2

1+ 0.2z−1 . (14.148)
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Once H(z) is obtained, all the analysis, as well as its implementation schemes
of the filter can be performed.

14.4 Concluding Remarks

In this chapter, the most commonly used methods for the design of both FIR and
IIR filters were discussed in detail. They are:

• For the design of FIR filters

– Windowing method,
– Frequency sampling method, and
– Optimization method.

• For IIR Filters

– Approximation of derivatives method,
– Impulse invariance method, and
– Bilinear transformation method.

Exercises

14.1. This problem deals with the design of IIR (infinite impulse response) dig-
ital filter from respective analog filter whose transfer function is given as

H(s) =
s

s2 + 400s + 2× 105

where s = σ + j� is the Laplace variable.

(a) Using the method of approximation of derivatives, design a digital
IIR filter (that is, determine the system function H(z) and the corre-
sponding difference equation relating the input, x[n] and the output,
y[n] of the filter) to simulate the analog filter given by H(s) above.
Use a sampling rate of 1 kHz (that is, fs = 1000).

(b) Using the method of bilinear transformation, design a digital IIR fil-
ter (that is, determine the system function H(z) and the correspond-
ing difference equation relating the input, x[n] and the output, y[n]
of the filter) to simulate the analog filter given by H(s) above. Use
the same sampling rate of fs = 1000 here as well.

(c) Compare and comment on the IIR system functions derived using
these two methods.
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14.2. Use the frequency sampling method to design an FIR filter whose fre-
quency responses goes through the points as given in table below:

k 0 1 2 3 4 5 6 7

H
(

e j 2πk
8

)
0 1 j 0 0 0 − j 1

14.3. Using bilinear transformation, design a digital low-pass Butterworth filter
with a 3dB cut-off frequency of 2kHz and minimum attenuation of 30dB
at 4.25kHz for a sampling rate of 10kHz.
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Chapter 15

Random Signals

The type of signals that we have been dealing with in the previous chapters are deter-
ministic in nature, i.e., signals which may be described by mathematical expressions
and whose behaviour does not contain any uncertainty or randomness. Typical
examples of deterministic signals are 2 cos(100π t+π/4), u(t−2), δ(t)−δ(t−5),
e−2t u(t), e−4|t |, etc.

In this chapter, we study the class of signals known as random signals. Unlike
deterministic signals, the random signals have some randomness or uncertainty asso-
ciated with them. The study of random signals is very important since many of the
signals in the real world are random in nature.

In this chapter, the following points are discussed in detail.

• What causes randomness in signals?
• How to characterize or describe random signals?
• Meaning of statistics (or, averages) such as mean, variance, power, correlation,

power spectrum, etc.
• Linear filtering of random signals.
• Concept of white noise.

327
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15.1 Introduction

In engineering, we often encounter signals that do not have a precise mathemat-
ical description, since they develop as random functions of time. Sometimes this
random behaviour may be caused by a single variable, but often it is the conse-
quence of interactions of many random variables. An example is the thermal noise
which is generated by the random movement of electrons in an electric conductor.
Another example would be the response of brain cells (neurons) to external stim-
ulus, like auditory/visual/tactile, etc. In other cases, the causes of randomness are
not clear and a description is not possible, but the signal is characterized by means
of measurements only.

A random time function may be a desired signal (information), such as an audio
or video signal, or it may be an unwanted signal that is unintentionally added to a
desired signal and disturbs the desired signal. The desired signal can be considered
as a random signal and the unwanted signal the noise. However, the latter often
does not behave like noise in the classical sense, but it is more like interference.
This means that it is an information bearing signal but undesired. In all cases, a
description of the signals is required in order to be able to analyse its impact on
the performance of the system under study. The random character as a function of
time makes the signals difficult to describe and the same hold for signal processing
or filtering. Nevertheless, there is a need for characterizing these signals by a few
deterministic parameters that enable the system to assess the performance of the
system.

Consider the following examples of random signals:

• The signals received by the antenna in a radio/TV receiver is the transmitted
signal mixed with noise, where the noise is random in nature.

• When we speak into a microphone, the signal that enters the microphone is
not only our speech but also the random noise that is present in the acoustic
environment.

• If you say your name several times, the speech signal that you produce each
time is not exactly the same. There is some randomness associated with the
speech production mechanism in your vocal tract, even though we hear you
saying the same name again and again.

• The output of a sinusoidal signal generator is given by

x(t) = A cos(2π f0t + θ). (15.1)

The amplitude A and frequency f0 can be set by us and are hence determinis-
tic. On the other hand, the phase θ is random and it can be anywhere in the
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interval [0, 2π ]. Each time we switch on the signal generator, the starting
phase of the signal is different and unpredictable. This randomness in the
phase makes x(t) a random signal.

Thus, there is a lot of randomness in the real world around us.

15.2 Stochastic Process

In probability theory, a random variable x is a rule that assigns a number to every
outcome of an experiment, such as, for example, rolling a die. This random variable
is associated with a sample space S, such that according to a well-defined procedure
to each event s in the sample space, a number is assigned to x and is denoted by
x(s). For stochastic process, on the other hand, a time function x(t, s) is assigned
to every outcome in the sample space. Within the framework of the experiment, the
family (or ensemble) of all possible functions that can be realized is called a stochastic
process. A specific realization out of this family is denoted as xn(t) and is called a
sample function of the stochastic process. In general, the subscript n is omitted in
representing a sample function. Figure 15.1 shows a few sample functions that are
supposed to form an ensemble.

Figure 15.1. A few sample functions of a stochastic process.
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This figure gives an example of a finite number of possible realizations, but an
ensemble may consist of infinite number of realizations. A stochastic process pro-
duces a random variable that arises from giving t , a fixed value with s being variable.
This means that the random variable x(t1, s) = x(t1) is found by considering the
family of realizations at the fixed point in time t1 (see Fig. 15.1). Instead of x(t1)we
may use the notation x1. The random variable x1 describes the statistical properties
of the process at the instant of time t1. The expectation of x1 (denoted as E[x1]) is
called the ensemble mean or the expected value or the mean of the stochastic process
(at the instant of time t1). Since t1 is an arbitrarily chosen time, the mean of the
process will in general may not be same, i.e., it may have different values at differ-
ent time instances. Finally, a stochastic process may represent a single number by
giving both t and s fixed values.

The phrase stochastic process may therefore have four different interpreta-
tions as:

• A family (or ensemble) of time functions. Both t and s are variables.
• A single time function called a sample function or a realization of the stochas-

tic process. Then t is a variable and s is fixed.
• A random variable; t is fixed and s is variable.
• A single number; both t and s are fixed.

Different classes of stochastic processes may be distinguished. They are classified
on the basis of the characteristics of the realization values of the process x and the
time parameter t . Both can be either continuous or discrete, in any combination.
Then we have the following four classes:

• Continuous stochastic process: Both the values of x(t) and t are continuous.
• Discrete-time processes: The values of x(t) are continuous, whereas time t is

discrete. These processes are also called continuous random sequences.
• Discrete stochastic processes: Here the values of x(t) are discrete but the time

axis is continuous.
• Discrete random sequence: Both the values of x(t) and t are discrete.

15.2.1 Continuous Stochastic Processes

For this class of processes, it is assumed that in principle the following holds:

−∞ < x(t) <∞ and −∞ < t <∞ (15.2)

An example of this class is already given by Figure 15.1. This could be an ensem-
ble of realizations of a thermal noise process produced by a resistor.
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Figure 15.2. Ensemble of sample functions of the stochastic process A cos(2π f0t + θ), with

θ uniformly distributed in the interval (0, 2π ].

Another example is the process described by the following equation:

x(t) = A cos(2π f0t + θ). (15.3)

with A, and f0 constant and θ a random variable with a uniform probability density
function on the interval (0, 2π ]. In this example, the number of realizations is in
fact uncountable, as θ assumes continuous values. An ensemble of sample functions
is shown in Fig. 15.2.

15.2.2 Discrete-Time Processes (Continuous Random
Sequences)

As an example of this type of process, we can imagine sampling the process that is
shown in Fig. 15.1. Let us suppose that to this process ideal sampling is applied at
equidistant points in time with sampling period Ts (the ideal sampling means that
the values at Ts are replaced by delta functions of amplitude x(nTs)). The process
that is produced in this way is shown in Fig. 15.3, where the sample values are
presented by means of the length of the samples.

Another important example of the discrete-time process is the so-called Poisson
process, where there are no equidistant samples in time but the processes produce
samples at random points in time.
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Figure 15.3. Example of a discrete-time stochastic process.

15.2.3 Discrete Stochastic Processes

Two examples are presented here:

Example 1: The ensemble or realizations consists of a set of constant time func-
tions. According to the outcome of an experiment, one of these constants may be
chosen. This experiment can be, for example, the rolling of a die. In this case, the
number of realizations can be six (n = 6), equal to the number of faces of a die.
Each of the outcomes, s ∈ {1, 2, 3, 4, 5, 6} has a one-to-one correspondence to
one of these numbered constant functions of time. The ensemble is depicted in
Fig. 15.4.

Example 2: Another important stochastic process is the random data (bits) signal.
It is produced by many data sources and is described by

x(t) =
∑

n

An p(t − nT − φ). (15.4)

where {An} are the data bits that are randomly chosen from the set An ∈ {+1,−1}.
The rectangular pulse p(t) of width T serves as the carrier of the information.
Now φ is supposed to be uniformly distributed in the bit interval (0, T ], so that
all data sources of the family have the same bit period, but these periods are not
synchronized. The ensemble is shown in Fig. 15.5.
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Figure 15.4. Ensemble of sample functions of the stochastic process constituted by a

number of constant time functions.

Figure 15.5. Ensemble of sample functions of the stochastic process x(t) =
∑

n An p(t −
nT − φ), with φ uniformly distributed in the interval (0, T ].
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Figure 15.6. Example of a discrete random sequence.

15.2.4 Discrete Random Sequences

The discrete random sequence can be imagined to result from sampling a discrete
stochastic process. Figure 15.6 shows the result of sampling the random data signal
from Example 2.

15.3 Deterministic Function vs Stochastic Process

The concept of the stochastic process does not conflict with the theory of deter-
ministic functions. It should be recognized that a deterministic function can be
considered as a special case of a stochastic process. This is elucidated by consider-
ing the example given in Eq. (15.3). If the random variable θ is given the probability
density function fθ (θ) = δ(θ), then the stochastic process reduces to the function
cos(2π f0t). The given probability density function is actually a discrete one with
a single outcome.

In fact, the ensemble of the process reduces in this case to a family comprising
merely one member. This is a general rule; when the probability density function of
a stochastic process that is governed by a single random variable consists of a single
delta function, then a deterministic function results. This way of generalization
avoids the often confusing discussion on the difference between a deterministic
function on the one hand and a stochastic process on the other hand. In view of
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the consideration presented here, they can actually be considered as members of
the same class, namely the class of stochastic process.

The random processes are characterized by statistical measures, which are
described in the following sections.

15.4 Probability, Cumulative Distribution Function
and Probability Density Function

The set of possible outcomes of a random experiment is called the sample space. An
element in the sample space is called a sample point. Each outcome of a random
experiment corresponds to a sample point. Subset of the sample space are called
events, and events consisting of a single element (sample point) are called elemen-
tary events.

Probability is a number, associated with the events according to some appropriate
probability law. The probability assigned to the event s from the sample space S
(s ∈ S) is denoted as P(s) and has a value between 0 and 1 (0 ≤ P(s) ≤ 1).
In order to be a valid probability assignment, the following three axioms must be
satisfied:

• P(s) ≥ 0 for every event s ∈ S.
• P(s) = 0 for the certain event S.
• For any two mutually exclusive events s1 and s2, P(s1∪s2) = P(s1)+P(s2).

In signal processing applications, it is the probabilistic description of the random
variable, rather than the statistical characterization of events in the sample space,
that is generally of interest. It is therefore more convenient to have a probability
law assigned to the random variable itself. For a fixed value of the time parameter
(say t1), the cumulative probability distribution function (CDF) or, for short, the
distribution function of the random variable x1 is defined by

Fx (x1; t1)
1
= P{x(t1) ≤ x1}. (15.5)

From this notation, it follows that Fx may be a function of the value of t1 that
has been chosen.

For two random variables x1 = x(t1) and x2 = x(t2), the 2nd order joint
probability distribution function can be derived as the two-dimensional extension
of the the above equation as follows:

Fx (x1, x2; t1, t2)
1
= P{x(t1) ≤ x1, x(t2) ≤ x2}. (15.6)
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Similarly, this can be extended to the N th-order joint cumulative probability
distribution function as

Fx (x1, . . . , xN ; t1, . . . , tN )
1
= P{x(t1) ≤ x1, . . . , x(tN ) ≤ xN }. (15.7)

The corresponding (joint) probability density functions (PDF) are found by taking
the derivatives respectively of the above equations as shown below:

fx (x1; t1)
1
=
∂Fx (x1; t1)

∂x1
, (15.8)

fx (x1, x2; t1, t2)
1
=
∂2 Fx (x1, x2; t1, t2)

∂x1∂x2
, (15.9)

fx (x1, . . . , xN ; t1, . . . , tN )
1
=
∂N Fx (x1, . . . , xN ; t1, . . . , tN )

∂x1, . . . , ∂xN
. (15.10)

Statistical Independence: Two processes x(t) and y(t) are called statistically inde-
pendent if the set of random variables {x(t1), x(t2), . . . , x(tN )} is independent of
the set of random variables {y(t ′1), y(t ′2), . . . , y(t ′M)}, for each arbitrary choice of
the time parameters {t1, t2, . . . , tN ; t ′1, t ′2, . . . , t ′M}. Independence implies that the
joint probability density function can be factored in the following way

fx,y(x1, . . . , xN ; y1, . . . , yM ; t1, . . . , tN ; t ′1, . . . , t ′M)

= fx (x1, . . . , xN ; t1, . . . , tN ). fy(y1, . . . , yM ; t ′1, . . . , t ′M). (15.11)

Thus, the joint probability density function of two independent processes is
written as the product of the two marginal probability density functions.

15.5 Description of Random Signals

One of the main issues in the study of random signals is: how to describe or char-
acterize random signals? This problem arises because of the randomness associated
with such signals. For example, if the speech signal you produce is different each
time you speak your name, how can we present a single waveform as the signal cor-
responding to your name? Each record of the signal is similar to one another, and
yet different, with some unpredictable variability associated with each record. So,
we may consider taking an average of several records and present that as the speech
signal corresponding to your name.

Consider another example of waiting to board a bus that is scheduled to arrive
at 8.30a.m. daily. If we keep track of the exact arrival time of the bus each day, we
will find that there is some amount of variability associated with the arrival time.
If we observe the arrival pattern of the bus for several days, we can estimate the
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average arrival time and the associated variability (e.g., ±3 minute, ±30 seconds,
etc. with respect to the average). The variability in the arrival time depends on many
factors such as driver’s mood, condition of the bus, weather, traffic flow etc. These
factors are clearly random in nature and these give rise to the randomness in the
arrival time of the bus. In summary, we can say the following.

§ Associated with every random signal, there are some physical phenomena which cause
randomness. While these physical phenomena may not be observable, what we can observe
and measure are the effects causes by them, which are the random signals.

The above examples show that we have to use averages to characterize the features
of random signals. Averages are also called statistics. Just as we need to observe the
arrival time on several days for estimating the average arrival time, we need to observe
several copies of a random signal before we can estimate the averages associated with it.

Two of the most commonly used statistical averages are mean and correlation,
which are the first and the second order statistics, respectively, of a random process.
In practical applications, very often, these two averages are sufficient to make con-
clusions or assessments about the observed random signals. So, we will look into
the definition and meaning of these averages.

• Mean of a Random Process: This is the most simple of all the averages. Let x(t)
be an analog random signal. Its mean, denoted by mx , is the average value of
x(t) and is given by

mx = E[x(t)] =
∫

c
x fx (x; t)dx, (15.12)

where fx (x; t) is the PDF of the random variable x(t), E[·] denotes the sta-
tistical expectation operator, and c defines the complete range of the random
variable x(t). Observe that the mean may be a function of the time index t .

Linearity of Mean: It is easy to verify from Eq. (15.12) that mean is a linear
operator. If x(t) and y(t) are two random signals, then for any two scalars α
and β,

E [αx(t)+ βy(t)] = αE [x(t)]+ βE [y(t)]. (15.13)

Thus, the mean of a linear combination of signals is equal to the same linear
combination of the means of the respective signals.

• Auto correlation of a Random Process: The autocorrelation function (ACF) of
a stochastic process is defined as the correlation E[x1x2] of the two random
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variables x1 = x(t1) and x2 = x(t2). It is defined as

γxx (t1, t2) = E[x(t1)x∗(t2)] =
∫

c

∫
c

x1x∗2 fx (x1, x2; t1, t2)dx1dx2

(15.14)

where fx (x1, x2; t1, t2) is the joint PDF of the random variables x1 and x2.
Observe that the autocorrelation may be a function of the time indices t1
and t2.

Substituting t1 = t and t2 = t1 + τ , Eq. (15.14) becomes

γxx (t, t + τ) = E[x(t)x∗(t + τ)]. (15.15)

• Cross-correlation function (CCF) between two random processes: It is defined as

γxy(t, t + τ) = E[x(t)y∗(t + τ)]. (15.16)

§ Prove the following:

γxx (t2, t1) = γ ∗xx (t1, t2) (15.17)

and γyx (t2, t1) = γ ∗xy(t1, t2). (15.18)

15.6 Stationary Processes

We can say that a stochastic process is stationary if its statistical properties do not
depend on the time parameter. There are several types of stationarity like strict-sense
stationarity, wide-sense stationarity, etc.

15.6.1 First-Order Stationary Processes

A stochastic process is called first-order stationary process if the first-order PDF is
independent of time. That is,

fx (x1; t1) = fx (x1; t1 + τ) (15.19)

holds for all values of τ . As a result of this property, the mean mx of such process
is constant (i.e., it is independent of time).

15.6.2 Second-Order Stationary Processes

A stochastic process is called second-order stationary process if the two-dimensional
PDF

fx (x1, x2; t1, t2) = fx (x1, x2; t1 + τ, t2 + τ), (15.20)
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for all values of τ . It is easy to verify that the above equation is only a function of the
time difference t2 − t1 and does not depend on the absolute time. In order to gain
that insight, put τ = −t1. A process that is second-order stationary is first-order
stationary as well, since the second-order joint PDF uniquely determines the lower
order (first-order in this case) PDF.

15.6.3 N th-Order Stationary Processes

By extending the reasoning from the last subsection to N random variables, we
arrive at the N th-order stationary process. For such processes, the N th-order joint
PDF is independent of time shift. i.e.,

fx (x1, . . . , xN ; t1, . . . , tN ) = fx (x1, . . . , xN ; t1 + τ, . . . , tN + τ) (15.21)

for all values of τ . Such processes are stationary for all orders k ≤ N . An N th-order
stationary process where N can have an arbitrary large value is called a strict-sense
stationary process. A random process {x(t)} is said to be stationary in the strict-sense
if all of its statistical averages or characteristics do not change with a shift in the
time origin. That is, the joint PDF of {x(t1), x(t2), . . . , x(tN )} depends only on
the differences between the time indices {t1, t2, . . . , tN } and not on the actual value
of each index.

15.6.4 Wide-Sense Stationary (WSS) Processes

Since the two-dimensional joint PDF for a second-order stationary process depends
only on the time difference (τ = t2 − t1), the autocorrelation function will also be
a function of the difference τ . Then Eq. (15.15) can be written as

γxx (t, t + τ) = γxx (τ ). (15.22)

The mean and the autocorrelation function of a stochastic process are often the
most important characterizing features. It becomes easier if these two quantities
do not change in absolute time. A second order stationary process guarantees this
independence but at the same time places severe demands on the process. Therefore,
we define a broader class of stochastic process, the so called wide sense stationary
process. So, a random process {x(t)} is said to be stationary in the wide-sense (or,
weakly stationary) if its mean and autocorrelation do not change with a shift in the
time origin. That is, it satisfies the following conditions:

E[x(t)] = mx = constant (15.23)

E[x(t)x(t + τ)] = γxx (τ ). (15.24)
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It is clear that a second-order stationary process is also wide-sense stationary. The converse,
however, is not necessarily true.

15.6.5 Jointly WSS Random Processes

The random processes {x(t)} and {y(t)} are said to be jointly stationary in the wide
sense if they are individually WSS and their cross-correlation γxy(t, t + τ) depends
only on τ not on the absolute time parameter. Therefore, we have

γxy(t, t + τ) = E[x(t)y(t + τ)] = γxy(τ ). (15.25)

15.6.6 Properties of γxx (τ )

If a process is at least WSS, its autocorrelation function exhibits the following prop-
erties:

• |γxx (τ )| ≤ γxx (0). This means that |γxx (τ )| attains its maximum value
when τ = 0.

To prove this property, let us consider the expression

E[{x(t)± x(t + τ)}2] = E[x2(t)+ x2(t + τ)± 2x(t)x(t + τ)]

= 2{γxx (0)± γxx (τ )} (15.26)

Since the expectation E[{x(t)± x(t+τ }2] is taken over the squared value of
a certain random variable, this expectation should be ≥ 0. Thus the proof.

• Symmetry property (γxx (−τ) = γxx (τ )). i.e., γxx (τ ) is an even function
of τ .

To prove this property, substitute t ′ = t + τ in the definition of the
autocorrelation function. Then,

γxx (τ ) = E[x(t)x(t + τ)] = E[x(t ′ − τ)x(t ′)]

= E[x(t ′)x(t ′ − τ)] = γxx (−τ) (15.27)

• γxx (0) = E[x2(t)] = σ 2
x +m2

x . This property follows immediately from the
definition of γxx (τ ) by inserting τ = 0 (Eq. (15.24)). It may also be noted
that

γxx (0) = E[x2(t)] = px = σ
2
x + m2

x , (15.28)

where px is the power of the random process x(t). σ 2
x is the variance.

• If x(t) has no periodic component, then γxx (τ ) comprises a constant term
which is equal to E[x(t)]2. i.e., lim|τ |→∞ γxx (τ ) = E[x(t)]2

= m2
x .
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Figure 15.7. Example of an ACF.

Proof : From a physical point of view, most processes have the property that
the random variables x(t) and x(t + τ) are independent when τ → ∞.
From the definition of the autocorrelation, it follows that

lim
τ→∞

γxx (τ ) = lim
τ→∞

E[x(t)x(t + τ)]

= E[x(t)]E[x(t + τ)]

= mx mx = m2
x (15.29)

Figure 15.7 shows a typical ACF with the properties just discussed. The
negative values of the ACF in this figure show that for these values, the shift
τ of the expected value E{x(t + τ)x(t)} is negative. It means that with a
separation τ , x(t + τ) and x(t) are expected to have opposite signs. Like
large positive values of the ACF, large negative values also indicate a strong
relationship between the values of x(t). The lower bound, −σ 2

x +m2
x is not

reached in this example. The properties such as the maximum value of the
ACF, lower bound and the symmetry hold for all stationary random signals.
The uncorrelation at very high values of τ holds when distantly separated
values do not correlate.

• If x(t) has a periodic component, then γxx (τ ) will comprise a periodic com-
ponent as well, and which has the same periodicity.

Proof : Periodic processes may be decomposed into cosine and sine compo-
nents according to the Fourier analysis. It therefore suffices to consider the
autocorrelation function of one such component:

E[cos(ωt − θ) cos(ωt +ωτ − θ)] =
1
2

E[cos(ωτ)+ cos(2ωt +ωτ − 2θ)]
(15.30)

Since our considerations are limited to WSS, the autocorrelation function
should be independent of the absolute time t , and thus the expectation of the



342 Random Signals

Figure 15.8. Typical ECG waveform (a) and its ACF (biased estimate) (b).

last term of the latter expression should be zero. Thus only the term compris-
ing cos(ωτ) remains after taking the expectation, which proves this property.

Figure 15.8 shows an example ECG waveform (Fig. 15.8(a)) for 10 seconds and
its corresponding ACF (estimated) (Fig. 15.8(b)). It can be seen that the maximum
of the ACF happens at τ = 0. Because of the repetitive (not exactly periodic)
nature of the ECG waveforms, the ACF also shows some kind of repetitiveness.
The Matlab function xcorr is used to find a biased estimate of the ACF of the
ECG signal.

15.6.7 Properties of γxy(τ )

If two processes x(t) and y(t) are jointly WSS, then the cross-correlation function
exhibits the following properties:

• γxy(−τ) = γyx (τ ).

Proof : In the definition of the cross-correlation function, replace t − τ by t ′

and after some manipulations, we get

γxy(−τ) = E[x(t)y(t − τ)] = E[x(t ′ + τ)y(t ′)]

= E[y(t ′)x(t ′ + τ)] = γyx (τ ) (15.31)
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• |γxy(τ )| ≤
√
γxx (0)γyy(0).

To prove this property, we consider the expectation of the process {x(t)+
cy(t + τ)}2, where c is a constant; i.e., we investigate

E[{x(t)+ cy(t + τ)}2] = E[X ] = γxx (0)+ c2γyy(0)+ 2cγxy(τ ).

(15.32)

where

E[X ] = E[x2(t)+ c2 y2(t + τ)+ 2cx(t)y(t + τ)],

= E[x2(t)]+ c2 E[y2(t + τ)]+ 2cE[x(t)y(t + τ)].

(15.33)

This latter expression is a quadratic form in c, and since it is the expecta-
tion of a quantity squared, this quantity can never be less than 0. As a result,
the discriminant cannot be positive; i.e.,

γ 2
xy(τ )− γxx (0)γyy(0) ≤ 0. (15.34)

This implies that,

|γxy(τ )| ≤
√
γxx (0)γyy(0). (15.35)

• |γxy(τ )| ≤
1
2 [γxx (0)+ γyy(0)].

Proof : This property is a consequence of the well-known fact that the arith-
metic mean of two positive numbers is always greater than or equal to their
geometric mean.

Example: Based on the correlation function, it is possible to measure the distance of
an object from a transmitter. This example explains the scheme in detail. Consider
the system shown in Fig. 15.9 where a signal source produces a random signal, being
a realization of a stochastic process. Let us assume that the process is WSS. The
signal is applied to a transmitter that produces a wave in a transmission medium;
let it be an acoustic wave or an electromagnetic wave denoted by x(t). Let us further
assume that the transmitted wave strikes a distant object which reflects (partly) the
wave. Then the reflected wave will travel backwards to the position of the measuring
equipment. The receiver at the measuring equipment receives this signal, denoted
as y(t). These signals x(t) and y(t) can be applied to a correlator that estimates
the cross-correlation function γxy(τ ) given by,

γxy(τ ) = E[x(t)y(t + τ)] = E[x(t)αx(t − T + τ)] = αγxx (τ − T )

(15.36)
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Figure 15.9. Set up for measuring a distance based on the correlation function.

Figure 15.10. (a) The autocorrelation function of the transmitted signal x(t) and (b)

the measured cross-correlation function (between the transmitted signal, x(t) and the

received signal, y(t)) of the distance measuring set up.

where y(t) = αx(t−T ) is the delayed and attenuated version of x(t), T is the total
travel time. Figure 15.10 shows the autocorrelation and cross-correlation functions.
We will be able to estimate the distance (d) of the object from the transmitter if
we know the propagation velocity (v) of the wave in the medium and the time, T
using the relation, 2d = v× T , where 2d is the distance travelled during the time
period of T units.

15.6.8 Independent, Uncorrelated, and Orthogonal Processes

The random processes {x(t)} and {y(t)} are said to be

• Independent if the random variables {x(t1), x(t2), . . . , x(tm)} are mutually
independent1 of the random variables {y(t

′

1), y(t
′

2), . . . , y(t
′

m)} for all m.
• Uncorrelated if E[x(t)y(t + τ)] = mx .m y for all t and τ .

1. The set of random variables x1, x2, . . . , xm are said to be independent if their joint PDF is separable. That
is, fx1x2 ···xm (x1, x2, . . . , , xm) = fx1 (x1) fx2 (x2) · · · fxm (xm).
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• Orthogonal if γxy(t, t + τ) = 0 for all t and τ .

Thus, zero-mean orthogonal processes are also uncorrelated.

§ Examine why independent processes are also uncorrelated, while uncorrelated processes
need not be independent.

15.6.9 Covariance Functions

Correlations of random processes after removing the mean are called covariances.
For stationary processes, the auto- and cross-covariances are given by

Cxx (τ ) = E [(x(t)− mx )(x(t + τ)− mx )] = γxx (τ )− m2
x . (15.37)

Cxy(τ ) = E
[
(x(t)− mx )(y(t + τ)− m y)

]
= γxy(τ )− mx m y . (15.38)

For random signals, the signal samples become less correlated as they become more
and more separated in time. Therefore,

lim
τ→∞

γxx (τ ) = m2
x ⇒ lim

τ→∞
Cxx (τ ) = 0, (15.39)

provided the process x(t) does not have a periodic component.
The symmetry properties of correlation and covariance functions are useful in

signal analysis:

γxx (τ ) = γxx (−τ), Cxx (τ ) = Cxx (−τ) (15.40)

γxy(τ ) = γyx (−τ), Cxy(τ ) = Cyx (−τ). (15.41)

Further (when τ = 0),

γxx (0) = E
[
|x(t)|2

]
= px (15.42)

Cxx (0) = E
[
|x(t)− mx |

2
]
= σ 2

x (15.43)

|γxx (τ )| ≤ γxx (0) for all τ. (15.44)

where, px is the average power of x(t). Note that σ 2
x is the variance of x(t). When

the mean of the random process is zero, the correlation functions are same as the
covariance functions.

15.7 Physical Interpretation of Process Parameters

In the previous sections, stochastic processes have been described from a mathe-
matical point of view. In practice, we want to relate these descriptions to physical
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concepts such as signal, represented, for example, by a voltage or a current. In these
cases, the following physical interpretations are connected to the parameters of the
stochastic processes:

• The mean mx = E[x(t)] is proportional to the d.c. component of the signal
• The squared mean value m2

x = {E[x(t)]}2 is proportional to the power in
the d.c. component (px(DC)) of the signal.

• The mean squared value E[x2(t)] is proportional to the total average power
of the signal.

• The variance σ 2
x = E[x2(t)]− m2

x is proportional to the power in the time
varying components of the signal, i.e., the a.c. power.

• The standard deviation σx is the square root of the mean squared value of the
time-varying components, i.e., the root-mean-square (r.m.s) value.

15.8 Gaussian Random Processes

We will now briefly describe some properties of Gaussian2 random processes which
are very useful in the study of signal processing and communication systems.

Definition: The (real-valued) process {x(t)} is said to be a Gaussian process if it
has the following PDF:

fx (x) =
1

σx
√

2π
exp

[
−
(x − mx )

2

2σ 2
x

]
. (15.45)

When considering two jointly Gaussian random variables x and y, the joint PDF
becomes,

fxy(x, y) =
1

2πσxσy
√

1− ρ2
exp

{
−1

2(1− ρ2)
[xx]

}
(15.46)

where,

[xx] =

[
(x − mx )

2

σ 2
x

−
2ρ(x − mx )(y − m y)

σxσy
+
(y − m y)

2

σ 2
y

]
(15.47)

and ρ is the correlation coefficient defined by,

ρ =
E
[
(x − mx )(y − m y)

]
σxσy

. (15.48)

2. More details on Gaussian PDF can be found in Appendix B.
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For N jointly Gaussian random variables, the random vector x = {x1, x2,

· · · , xN }
T has a jointly Gaussian PDF as shown below:

fx1,x2,...,xN (x) =
1√

(2π)N |Cx |
exp

(
−
(x−mx )

T C−1
xx (x−mx )

2

)
(15.49)

where Cxx = E
[
(x−mx )(x−mx )

T ] and mx = E[x] are the auto-covariance
matrix and mean, respectively, of x, and |Cxx | denotes the determinant of Cxx .
Further,

Cxx = E[xxT ]−mx mT
x = 0xx −mx mT

x (15.50)

where 0xx is the autocorrelation matrix of x.

15.8.1 Properties of Gaussian Random Processes

• For Gaussian random processes, the knowledge of the mean and auto-
correlation function gives a complete description of the process. This is because
the joint PDF of a Gaussian process has only the mean vector and autocor-
relation matrix as the two parameters.

• If a Gaussian process {x(t)} is passed through a LTI system, the output pro-
cess {y(t)} will also be a Gaussian process. This is because linear combinations
of Gaussian random variables is also Gaussian.

• For Gaussian random processes, wide-sense stationarity and strict-sense station-
arity are equivalent. This follows from the fact that Gaussian PDF uses only
up to second order statistics (mean and autocorrelation).

• For Gaussian random processes, uncorrelatedness and independence are equiv-
alent.

This is because the exponent (x − mx )
T C−1

xx (x − mx ) in the joint PDF
becomes

∑N
i=1 Cxx (i, i)(xi − mxi )

2 when the process is uncorrelated. This
results in the joint PDF becoming a product of the N marginal PDFs.

15.9 Complex Stochastic Processes

A complex stochastic process is defined by,

z(t) = x(t)+ j y(t) (15.51)

with x(t) and y(t) are real stochastic processes. Such a process is said to be station-
ary if x(t) and y(t) are jointly stationary. Expectation and autocorrelation function
of a complex stochastic process is defined as

E[z(t)] = E[x(t)+ j y(t)] = E[x(t)]+ j E[y(t)] (15.52)
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and

γzz(t, t + τ) = E[z(t)z∗(t + τ)] (15.53)

where ∗ indicates the complex conjugate.
For the autocovariance function, the above Eq. (15.53) can be used, where z(t)

is replaced with z(t)− E[z(t)]. This yields

Czz(t, t + τ) = γzz(t, t + τ)− E[z(t)]E∗[z(t + τ)] (15.54)

The cross-correlation function of two complex processes p(t) and q(t) reads

γpq(t, t + τ) = E[p(t)q∗(t + τ)] (15.55)

and the cross-covariance function is found from Eq. (15.56) below:

C pq(t, t + τ) = γpq(t, t + τ)− E[p(t)]E∗[q(t + τ)]. (15.56)

One may wonder why the correlation functions of complex processes are defined
in the way it has been done in Eqs. (15.53) and (15.55). The explanation for this
arises from an engineering point of view; the given expressions of the correlation
functions evaluated for τ = 0 have to result in the expectation of the squared
process for real processes.

15.10 Ergodic Processes

Estimation of ensemble averages of a random process requires a large number of
realizations of the process. This is not feasible since we usually have only one real-
ization of the process in any practical situation. Using one realization, all that we
can obtain are time averages. Therefore, if the process is ergodic, we can replace the
ensemble averages by time averages.

A stationary random process is said to be ergodic if its ensemble averages are equal
to time averages. It has to satisfy the following conditions:

m̃x = x(t) = E[x(t)] = mx (15.57)

γ̃xx (τ ) = x(t)x(t + τ) = E[x(t)x(t + τ)] = γxx (τ ) (15.58)

where, m̃x = x(t) and γ̃xx (τ ) = x(t)x(t + τ) are the time averages of the mean
and autocorrelation, respectively of the ergodic random process x(t). By assuming
ergodicity, a number of important statistical properties (such as the mean and auto-
correlation) of a process may be estimated from the observation of a single available
realization.
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15.10.1 Mean

For an ergodic process x(t), the time averaged mean is given by

m̃x = x(t) = lim
T→∞

1
T

∫ T/2

−T/2
x(t)dt, (15.59)

where T is the observation period.

15.10.2 Correlation

Correlation and power spectrum are other two closely related statistics of random
signals. We will introduce correlation for the ergodic process in this subsection and
power spectrum in the next subsection.

Cross-Correlation: The time averaged cross-correlation between two random sig-
nals x(t) and y(t) is defined as

γ̃xy(τ ) = x∗(t)y(t + τ)

= lim
T→∞

1
T

∫ T/2

−T/2
x∗(t)y(t + τ)dt (15.60)

where τ is a time shift. That is, γ̃xy(τ ) is a measure of the similarity between x(t)
and y(t + τ). In several applications, we would like to know the value of τ at
which the cross-correlation γ̃xy(τ ) becomes maximum.3 In other words, γ̃xy(τ ) is
a measure of how much information does x(t) have about y(t + τ). If x(t) and
y(t) are independent signals, then there is no correlation or dependence between
them. Hence, for independent or uncorrelated signals, we can write,

γ̃xy(τ ) = x∗(t)y(t + τ) = x(t)
∗
· y(t + τ)

= x(t)
∗
· y(t) = m̃∗x · m̃ y (15.61)

where m̃ y is the mean of y(t). We have the following remarks.

• If γ̃xy(τ ) = m̃∗x · m̃ y for all values of τ , then we say that the signals x(t) and
y(t) are uncorrelated signals.

3. For example, when we transmit a signal s(t), let the received signal be y(t) = s(t − τ0) + n(t) where τ0
is a time-delay caused by the channel and n(t) is the channel noise. At the receiver, we may want to know
the value of τ0. To determine this, we can compute the cross-correlation γ̃sy(τ ) = s∗(t)y(t + τ). Then, we
will find that |γ̃sy(τ )| will have a peak when τ = τ0.
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Figure 15.11. Illustration of the steps involved in estimating the CCF between two finite

duration functions.

• If x(t) and y(t) are uncorrelated signals with either m̃x = 0 or m̃ y = 0, then
we have

γ̃xy(τ ) = 0 for all τ (15.62)

Power [αx(t)+ βy(t)] = |α|2 px + |β|
2 py (15.63)

where α and β are two scalars, and px and py are the powers of x(t) and
y(t), respectively. With α = 1 = β, Eq. (15.63) becomes,

Power [x(t)+ y(t)] = px + py . (15.64)

That is, power of a sum of uncorrelated zero-mean signals is equal to the sum of
the individual powers.

Figure 15.11 illustrates the process of estimation of cross-correlation function
(CCF) between two functions x(t) and y(t).
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Autocorrelation: When y(t) = x(t), we get from Eq. (15.60)

γ̃xx (τ ) = x∗(t)x(t + τ) = lim
T→∞

1
T

∫ T/2

−T/2
x∗(t)x(t + τ)dt (15.65)

and this is called the autocorrelation of x(t). Thus, γ̃xx (τ ) is a measure of the
similarity of x(t) with its shifted version. That is, it is a measure of the redun-
dancy (or, self-similarity) within x(t). Based on this interpretation, we can state
the following.

• Autocorrelation γ̃xx (τ ) becomes maximum when τ = 0, since the maximum
self-similarity occurs when we do not shift the signal. Further, note from
Eq. (15.65) that

γ̃xx (0) = x∗(t)x(t) = |x(t)|2 = px = Power. (15.66)

Thus, power of the signal is equal to autocorrelation with no time shift (i.e.,
τ = 0). Thus, we have

|γ̃xx (τ )| ≤ γ̃xx (0) for all τ. (15.67)

• In general, autocorrelation or self-similarity decreases as τ becomes large.
So, from Eq. (15.61), we get

γ̃xx (τ ) = |m̃x |
2
= |Mean|2 for large τ. (15.68)

The steps involved in the estimation of the ACF of a signal, x(t) is illustrated in
Fig. 15.12.

15.10.3 Variance and Power

Power and variance are closely related to each other and hence we shall consider
them together in this subsection. The power of a random signal x(t) is the average
of the magnitude-square of the signal, i.e., it is the mean-square value |x(t)|2 of the
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Figure 15.12. Illustration of the steps involved in estimating the ACF of a finite duration

function.

signal. Denoting the power by p̃x , we get

Power, p̃x = |x(t)|2 = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt. (15.69)

The variance (denoted by σ̃ 2
x ) of a random signal is the power of the signal after

removing the mean, i.e., it is the power of x(t)− m̃x . So, we get

Variance, σ̃ 2
x = |x(t)− m̃x |

2
= lim

T→∞

1
T

∫ T/2

−T/2
|x(t)− m̃x |

2 dt. (15.70)

Variance is a measure of the spread in the signal amplitude with respect to its mean.
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Relation between Power and Variance: Note that

|x(t)− m̃x |
2
= |x(t)|2 − m̃x · x∗(t)− m̃∗x · x(t)+ |m̃x |

2 (15.71)

where x∗(t) and m̃∗x are complex conjugates of x(t) and m̃x , respectively. Since m̃x
is independent of t , and the mean of x∗(t) is m̃∗x , we get

m̃x · x∗(t) = m̃x · x∗(t) = m̃x · x(t)
∗
= |m̃x |

2 (15.72)

m̃∗x · x(t) = |m̃x |
2 , |m̃x |

2
= |m̃x |

2 . (15.73)

Using Eqn. (15.71) in Eq. (15.70), we can express the variance as

Variance, σ 2
x = |x(t)− m̃x |

2
= |x(t)|2 − |m̃x |

2 (15.74)

⇒ Variance = Power− |Mean|2 . (15.75)

Eq. (15.10.3) shows that power and variance of a signal are equal if its mean is zero.
Thus, for signals with zero mean, we have

Variance = Power = Mean-square value = |x(t)|2. (15.76)

It is easy to verify that the power and variance of the sinusoidal random signal in

Eq. (15.1) are equal and is given by A2

2 .
Because of the squaring operation in Eqs. (15.69) and (15.70), the power and

variance are not linear operators. That is,

Power [αx1(t)+ βx2(t)] 6= αPower [x1(t)]+ βPower [x2(t)]. (15.77)

Similar equation holds for variance also.

§ Examine if ergodocity implies stationarity, or vice versa?

Two stochastic processes x(t) and y(t) are jointly ergodic if the individual pro-
cesses are ergodic and if the time-averaged cross-correlation function equals the
statistical cross-correlation. That is,

γ̃xy(τ ) = x(t)y(t + τ) = E[x(t)y(t + τ)] = γxy(τ ) (15.78)
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Figure 15.13. Signal x(t) and its truncated version xT (t).

If we have only one realization of a random process x(t), we can assume it
to be ergodic (unless otherwise specified) for further analysis where its time aver-
ages becomes ensemble averages. This means that γ̃xx (τ ) = γxx (τ ), m̃x = mx ,
etc. Hence, in the rest of the book, the time averages are replaced with ensemble
averages.

15.11 Power Spectrum

The statistics that we have considered so far (i.e., mean, power, variance, and cor-
relation) are related to the time-domain description of the random signal. While
mean, power and variance are constants, correlation is a function of the time-
shift τ . On the other hand, power spectrum (or power spectral density (PSD))
is a frequency-domain statistic. The power spectrum of the random signal x(t) is
defined as,

0xx ( f ) = lim
T→∞

1
T
|XT ( f )|2 (15.79)

where XT ( f ) =
∫
∞

−∞

xT (t)e− j2π f t dt =
∫ T/2

−T/2
x(t)e− j2π f t dt.

(15.80)

Here, xT (t) is nothing but x(t) truncated to the interval [−T
2 ,

T
2 ] as shown in

Fig. 15.13.
The power spectrum 0xx ( f ) gives the distribution of the power in x(t) with fre-

quency. For example, the power of x(t) in the frequency band [ f1, f2] is given by
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the integral
∫ f2

f1
0xx ( f )d f . So, the total power in x(t) can be expressed as

Power, px =

∫
∞

−∞

0xx ( f )d f = γxx (0) = |x(t)|2. (15.81)

Equation (15.81) shows the various ways (time-domain and frequency-domain)
of expressing the total power in x(t).

Wiener-Khinchin Theorem: This theorem relates the autocorrelation and power
spectrum. For stationary random processes, the power spectral density (PSD)
0xx ( f ) and autocorrelation function are Fourier transforms of each other. That
is, we have

0xx ( f ) =
∫
∞

−∞

γxx (τ )e− j2π f τdτ (15.82)

or γxx (τ ) =

∫
∞

−∞

0xx ( f )e j2π f τd f. (15.83)

Thus, to determine the power spectrum, it is enough that we determine the autocor-
relation and then find its Fourier transform. This approach can be used to estimate
power spectrum of measured random signals.

Some features of the PSD are listed below.

• The PSD 0xx ( f ) is always real and non-negative.
• The PSD of a real-valued random process is even symmetric. That is,
0xx ( f ) = 0xx (− f ). This may not be true for complex-valued processes.

• Im{0xx ( f )} ≡ 0. Here, Im{.} is defined as the imaginary part of the quan-
tity within the braces.

• The quantity 1
2π0xx ( f )d f is the average contribution of the frequency com-

ponents in the range [ f, f + d f ] to the total power. We also note that

γxx (0) = E
[
|x(t)|2

]
=

1
2π

∫ π

−π
0xx ( f )d f. (15.84)

The Cross-Power Spectrum: The cross-power spectrum can be defined as the
Fourier transform of the cross-correlation function.

0xy( f ) =
∫
∞

−∞

γxy(τ )e− j2π f τdτ (15.85)

or γxy(τ ) =

∫
∞

−∞

0xy( f )e j2π f τd f. (15.86)
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15.12 Linear Filtering of Random Signals

In practical applications, we often need to filter random signals. For example, in
communication systems, we need to filter the signal at the transmitter to ensure that
the transmitted signal does not exceed the allocated bandwidth. At the receiver, we
need to filter the received signal to reject noise and interferences that are outside
the signal bandwidth of interest, as well as to shape the signal according to some
requirements. Similarly, the measured signals in all practical applications are first
passed through some filters to appropriately condition the signal.

§ In the design and analysis of systems (e.g., transmitter, receiver, front-end filters, etc.), it is
required to know how the various statistics (e.g., mean, power, variance, correlation, power
spectrum) change due to these filtering operations.

Let y(t) be the output of the filter with impulse response h(t), when the input is
x(t). Further, let yT (t) be the output when the input is xT (t), where xT (t) is as
defined in Section 15.11. Then, we get

y(t) = x(t)⊗ h(t) =
∫
∞

−∞

h(t ′)x(t − t ′)dt ′ (15.87)

yT (t) = xT (t)⊗ h(t), YT ( f ) = H( f )XT ( f ). (15.88)

Using the definitions of mean, power and correlation, we shall now examine the
various statistics of the output signal4 y(t).

Mean: We get the mean of y(t) as

m y = y(t) =
∫
∞

−∞

h(t ′)x(t − t ′)dt ′ =
∫
∞

−∞

h(t ′)x(t − t ′)dt ′

= mx

∫
∞

−∞

h(t ′)dt ′ (15.89)

since mean mx = x(t) = x(t − t ′) is independent of time.

4. What is important in Section 15.12 is the meaning of the results. The derivation of the formulas may be
omitted.
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Power Spectrum: We get the power spectrum of y(t) as

0yy( f ) = lim
T→∞

1
T
|YT ( f )|2 = lim

T→∞

1
T
|H( f )XT ( f )|2

= |H( f )|2 lim
T→∞

1
T
|XT ( f )|2 = |H( f )|20xx ( f ) (15.90)

since H( f ) is independent of T and 0xx ( f ) is the power spectrum of the input
signal x(t).

Autocorrelation: Using Eq. (15.83), we can get the autocorrelation of y(t) by
taking the inverse Fourier transform of power spectrum 0yy( f ). Since multipli-
cation in frequency domain is equivalent to convolution in time domain, we get

γyy(τ ) = F−1 [0yy( f )
]
= F−1

[
|H( f )|20xx ( f )

]
= F−1

[
|H( f )|2

]
⊗ F−1 [0xx ( f )] = rhh(τ )⊗ γxx (τ ) (15.91)

where rhh(τ ) is the inverse Fourier transform of5
|H( f )|2. Please note that h(t),

the impulse response of the filter is a deterministic process and its ACF is denoted
as rhh(τ ).

Power: We get the power of y(t) as

py = γyy(0) =
∫
∞

−∞

0yy( f )d f =
∫
∞

−∞

|H( f )|20xx ( f )d f. (15.92)

Cross-Correlation: Using Eq. (15.87), we get the cross-correlation γxy(τ ) between
input x(t) and output y(t) as

γxy(τ ) = x∗(t)y(t + τ) = x∗(t)
∫
∞

−∞

x(t + τ − t ′)h(t ′)dt ′

=

∫
∞

−∞

x∗(t)x(t + τ − t ′)h(t ′)dt ′

=

∫
∞

−∞

γxx (τ − t ′)h(t ′)dt ′ = γxx (τ )⊗ h(τ ). (15.93)

5. Note that |H( f )|2 = H( f )H∗( f ), and the Fourier transform of h∗(−t) is H∗( f ). Therefore, we get
rhh(τ ) = F−1 [

|H( f )|2
]
= F−1[H( f )]⊗F−1 [H∗( f )

]
= h(t)⊗ h∗(−t).
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Thus, Eqs. (15.89) to (15.93) show that the output statistics can be obtained from
the input statistics and knowledge of the filter.

15.13 White Noise

White noise (denoted as n(t)) is a random signal whose power spectrum is flat over
all the frequencies.6 That is, we have

0nn( f ) = K for all f, (15.94)

where, K is just a scalar variable which specifies the value of the power spectrum at
each frequency. Thus, all the frequencies have equal weight in the power spectrum of
white noise. Taking inverse Fourier transform of 0nn( f ), we get the autocorrelation
of white noise as

γnn(τ ) = K δ(τ ) (15.95)

⇒ γnn(τ ) = 0 for all τ 6= 0. (15.96)

Thus, the autocorrelation of white noise is zero for all τ except τ = 0, i.e.,
white noise is uncorrelated even for an arbitrarily small time shift. For this reason,
white noise is said to be a completely uncorrelated signal (or, highly random signal).
In view of Eq. (15.68), Eq. (15.96) implies that the mean of white noise must
be zero.

Eq. (15.94) implies that the power of white noise is infinity. Clearly, such a sig-
nal cannot exist in practice. Nevertheless, white noise is used extensively in the
development and analysis of several practical systems (e.g., communication sys-
tems which assume the channel noise to be white) since the bandwidth of the noise
is much much larger than the bandwidth of the underlying desired signal. So, as far as
the signal is concerned, the noise appears like a white noise, even though it is not truly
white.

White Noise Processes: The random process {n[n]} is said to be a white noise
process if its PSD is flat over all the frequencies, i.e., if 0nne jw is a constant for
f ∈ [−π, π]. Therefore, its autocorrelation is given by,

γnn[k] =
1

2π

∫ π

−π
(constant)e− jωkdω (15.97)

6. The thermal noise caused by a resistor has a power spectrum that is flat over a really wide bandwidth.
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This means that,

γnn[k] =
{

0 if k 6= 0
σ 2

n if k = 0.
(15.98)

Therefore, we may also say that {n[n]} is a white noise process if its mean is zero,
and n[n] and n[m] are uncorrelated for n 6= m. It is called strictly white if its mean
is zero, and n[n] and n[m] are independent for n 6= m.

§ It is often assumed that the noise observed in most of the communications channels is white
and Gaussian. Is this justifiable?
§ In discrete-time processing, we use discrete-time white noise in place of continuous-time
white noise. Examine the relation between these two noises.

15.14 Properties of ACF

Some of the important properties of ACFs for different types (random, periodic
and aperiodic) of signals (x(t)) is provided in Table 15.1 below.

Table 15.1. Important properties of ACF.

Random Signals Periodic Signals Aperiodic Signals

γxx (τ ) = γxx (−τ) rxx (τ ) = rxx (−τ) rxx (τ ) = rxx (−τ)

|γxx (τ )| ≤ γxx (0) |rxx (τ )| ≤ rxx (0) |rxx (τ )| ≤ rxx (0)

limτ→∞ γxx (τ ) rxx (τ ) = rxx (τ + Tp) limτ→∞ rxx (τ ) = x2
∞

= m2
x = px(DC)

px = γxx (0) = m2
x + σ

2
x px = rxx (0) px = rxx (0)

γyy(τ ) = rhh(τ )⊗ γxx (τ ) ryy(τ ) = rhh(τ )⊗ rxx (τ ) ryy(τ ) = rhh(τ )⊗ rxx (τ )

In the Table 15.1, Tp is the period of the periodic signal. px(DC) is the power of
the d.c component of the signal. Similar properties exists for discrete-time signals
as well.

15.15 Properties of CCF

Some of the important properties of CCFs for different types (random, periodic,
and aperiodic) of signals (x(t) and y(t)) is provided in Table 15.2 below.
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Table 15.2. Important properties of CCFs.

Random Signals Periodic Signals Aperiodic Signals

γxy(τ ) = γxy(−τ) rxy(τ ) = rxy(−τ) rxy(τ ) = rxy(−τ)

γxy(τ ) ≤
√
γxx (0)γyy(0) rxy(τ ) ≤

√
rxx (0)ryy(0) rxy(τ ) ≤

√
rxx (0)ryy(0)

2|γxy(τ )| ≤ γxx (0)+ γyy(0) 2|rxy(τ )| ≤ rxx (0)+ ryy(0) 2|rxy(τ )| ≤ rxx (0)+ ryy(0)

limτ→∞ γxy(τ ) = mx m y rxy(τ ) = rxy(τ + Tp) limτ→∞ rxy(τ ) = x∞y∞

γxy(τ ) = mx m y rxy(τ ) = 0, ∀τ rxy(τ ) = x∞y∞

uncorrelated if no common frequencies uncorrelated

γyx (τ ) = h(τ )⊗ γxx (τ ) ryx (τ ) = h(τ )⊗ rxx (τ ) ryx (τ ) = h(τ )⊗ rxx (τ )

15.16 Properties of Power Spectra

Some of the important properties of power spectra for different types (random,
periodic, and aperiodic) of signals (x(t)) is provided in Table 15.3 below.

Table 15.3. Important properties of Power Spectra.

Random Signals Periodic Signals Aperiodic Signals

0xx ( f ) = 0xx (− f ) Sxx (k) = Sxx (−k) Sxx ( f ) = Sxx (− f )

px =
∫
∞

−∞
0xx ( f )d f px =

∑
∞

k=−∞ Sxx (k) px =
∫
∞

−∞
Sxx ( f )d f

px =
∫ 1/2
−1/2 0xx ( f̃ )d f̃ px(DC) = Sxx (0)

0xx ( f ) = limTp→∞
1

Tp
Sxx (k) = |X (k)|2 ≥ 0 Sxx ( f ) = |X ( f )|2 ≥ 0

E
[
|X ( f )|2

]
≥ 0

X ( f ) =
∫ Tp

0 x(t)e− j2π f t dt

Const. real spec., m2
xδ( f ) Real discrete spec at f = k

Tp
Const. real spec., x2

∞δ( f )

0yy( f ) = |H( f )|20xx ( f ) Syy(k) = |H(k/Tp)|
2Sxx (k) Syy( f ) = |H( f )|2Sxx ( f )

15.17 Properties of Cross-Power Spectra

Some of the important properties of cross-power spectra for different types
(random, periodic, and aperiodic) of signals (x(t) and y(t)) is provided in
Table 15.4 below.
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15.18 Concluding Remarks

We can make the following concluding remarks based on the material presented in
this chapter.

• The signals that we encounter in many of the real-world practical applications
are random in nature.

• Characterization of random signals are done by means of specifying averages
(or statistics) such as mean, power, correlation, etc.

• When a random signal is applied to the input of a linear filter, the statistics of
the output random signal can be computed from the knowledge of the input
statistics and the filter impulse/frequency response.

• The power spectrum of white noise is flat over all the frequencies. Therefore,
white noise is a completely uncorrelated signal.

Exercises

15.1. Starting with the continuous time-average definition of the autocorre-
lation function (ACF), prove that the Fourier Transform of the ACF is
the power spectral density (PSD) of the signal.

15.2. A signal x(t) is transmitted through a channel. The received signal y(t)
is scaled, shifted, and noisy version of x(t) given as y(t) = αx(t −
t0)+ η(t), where α is a scale factor, t0 is the time delay and η(t) is the
noise. Assume that the noise process has zero mean and is statistically
independent of the signal process, and that all process are stationary.

(a) Derive expressions for the mean and the ACF of y(t) in terms of
the statistics of x(t) and η(t).

15.3. Derive an expression for the ACF of the signal x(t) = sin(ω0t). Use the
time-average definition of the ACF. From the ACF, derive an expression
for the PSD of the signal. Show all steps.

15.4. A rhythmic episode of a theta (θ ) wave in an EEG (electroencephalo-
gram - brain signals) signal is approximated by a researcher to be a sine
wave of frequency 5Hz. The signal is sampled at 100 Hz.

(a) Draw a schematic representation of the ACF of the episode for
delays up to 0.5 seconds. Label the time axis in samples and in sec-
onds.

(b) Draw a schematic representation of the PSD of the episode. Label
the frequency axis in Hz.



Concluding Remarks 363

15.5. A digital random signal x1[n] gets the values of 0 and 1 with equal prob-
ability equal to 0.5. The signal x1[n] is assumed to be ergodic. The sam-
ples of the signal x1[n] and x1[m] are uncorrelated when n 6= m.

(a) Find and sketch the one dimensional probability density function
fx (x1) of the signal and calculate the mean and the power of the
signal.

(b) Show that the autocorrelation function (ACF) of x1[n] is

γx1x1[k] =
{

c for k = 0
d otherwise,

and find the constants c and d . Sketch one period of the power
spectrum of the signal.

(c) The digital random signal x0[n] is derived from x1[n] so that x0[n]
gets the value 1 when x1[n] = 0, and the value 0 when x1[n] = 1.

The cross-correlation γx1x0[k] between x1[n] and x0[n] is given
by

γx1x0[k] =
{

0 for k = 0
d otherwise.

Sketch one period of the cross power spectrum 0x1x0( f̃ ), and find
the cross-correlation function γx0x1[k] between x0[n] and x1[n].
Finally, find the ACF and the power spectrum of the digital random
signal y[n] = x1[n]− x0[n].

15.6. Consider the analog random signal x(t) with a rectangular probability
density function. The ACF of x(t) is given by,

γxx (τ ) = Aδ(τ ),

where A is a positive real constant.
The signal x(t) is filtered by a filter whose impulse response is

given by

h(t) =
{ a

T for 0 ≤ t ≤ T
d otherwise,

where a and T are positive real constants. The result of the filtration is
the random signal y(t).

(a) Find the mean value E{x(t)} of x(t) and the transfer function
H( f ) of h(t) expressed in terms of a and T . Find an expression
for the ACF of h(t) expressed in a and T .
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(b) Find the ACF γyy(τ ) of y(t) and its power spectrum 0yy( f )
expressed by a, A and T .

(c) What is the probability density function that y(t) can be assumed
to have, and find the mean and the standard deviation of y(t)
expressed by a, A and T .

(d) The analog signal y(t) is converted to a digital signal after the filtra-
tion with an ideal low-pass filter, whose transfer function is given by:

Hlp( f ) =
{

1 for | f | < 4/T
d otherwise.

The noise generated in the sampling process is assumed to have neg-
ligible power, and unimportant in our further considerations. Sug-
gest the minimum possible sampling frequency expressed in terms
of T , so that the analog and the digital signals are equivalent. Sketch
the power spectrum (0yy( f̃ )) of the sampled signal. Give the ampli-
tude of the spectrum at f = 0 expressed by A, a and T . Note the
zeros in the power spectrum for | f | < 12

T for the chosen sampling
frequency.

15.7. The autoregressive (AR) process generator consists of a digital genera-
tor of white noise followed by a time-invariant recursive digital filter as
shown in Fig. P15.7.

Figure P15.7.

The output from the white noise generator is denoted by x[n] and
has a power px and a mean value E{x[n]} = 0. The ACF and power
spectrum of x[n] are denoted by γxx [k] and 0xx ( f̃ ), respectively. The
output y[n] of the digital filter is found by:

y[n] = x[n]+
Q∑

q=1

bq y[n − q],

where Q is a positive integer number, and bq are real constants. The
impulse response of the filter is denoted by h[n], its transfer function by
H( f̃ ) and the sampling interval by Ts . The ACF and power spectrum
of y[n] are denoted by γyy[k] and 0yy( f̃ ), respectively.
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(a) Draw a block diagram of the filter implemented in direct form II,
and write down H( f̃ ) expressed by bq and Ts . Show that the filter
is causal, and that h[0] = 1.

(b) Write down 0xx ( f̃ ) expressed by px , and sketch γxx [k]. Find
γyy[k] and py expressed by px and h[n]. Determine E{y[n]}.

(c) Because the filter is time invariant, we can shift in time both the
input and the output so that we get:

y[n + k] = x[n + k]+
Q∑

q=1

bq y[n + k − q],

where k is an arbitrary integer number. Show that

γxy[k] = γxx [k]+
Q∑

q=1

bqγxy[k − q],

where γxy[k] is the CCF between x[n] and y[n]. Explain why
γxy[k] = 0 for k < 0, and find γxy[k] when Q = 1.

(d) Show that

γyy[k] = γxy[−k]+
Q∑

q=1

bqγyy[k − q],

and hereby derive γyy[k] expressed by γxy[k] and h[n]. Write a
system (set) of equations, from which bq can be found, when γyy[k]
is known.

15.8. In this problem, we will consider an analog random ergodic signal
x(t). x(t) has a normally distributed probability density function fx (x)
given by

fx (x) =
k2
√
π

e−k2
2(x−k1)

2
.

The ACF γxx (τ ) of x(t) is:

γxx (τ ) = px e−2π fx |τ |,

where k1, k2, and fx are real constants, and px is the power of the signal.

(a) Find k1 and then express k2 through px . Write down the power
density spectrum 0xx ( f ) of the signal expressed through px and
fx (x) (Do not solve any Fourier integrals.)
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(b) x(t) is applied at the input of a frequency independent amplifier
(same amplification for all frequencies). The output of the amplifier
is denoted as y(t) and is given by:

y(t) = αx(t)+ z(t),

where α is a positive real constant and z(t) is a new random signal,
which reflects the (for example) the overloading (no need to worry
about this term as far as this problem is concerned) of the amplifier.
Find the ACF γyy(τ ) of y(t) and the CCF γxy(τ ) between x(t)
and y(t). Give the conditions under which γxy(τ ) = αγxx (τ ),
and then find the power py of y(t), when this condition is fulfilled.

15.9. Starting with the continuous time-average definition of the autocorre-
lation function (ACF), prove that the Fourier Transform of the ACF is
the power spectral density (PSD) of the signal.

15.10. The block schematic of a LTI digital system is shown in Figure P15.8.
Here x[n] and y[n] are the input and output, respectively of the system
and h[n] is the system impulse response. The system is described by the
difference equation, y[n] = x[n] − ax[n − 1]. Here, a is a real scalar
variable.

Figure P15.8.

It is assumed that x[n] is real and zero mean wide-sense stationary
(WSS) random process with variance σ 2

x and its autocorrelation function
(ACF), γxx [k], for delay k is defined as, γxx [k] = E [x[n]x[n − k]],
where E[.] denotes the expectation operation.

(a) Show that the variance σ 2
y of the output is given by,

σ 2
y = σ

2
x

[
1+ a2

− 2aρxx [1]
]
,

where ρxx [1] = γxx [1]
γxx [0] is the normalized ACF.

(b) Show that σ 2
y attains its minimum value of σ 2

x
[
1− ρ2

xx [1]
]

for
a = ρxx [1] (Hint: minimize σ 2

y with respect to a).
(c) What is the condition under which σ 2

y < σ 2
x ?
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15.11. The block schematic of a LTI digital system is shown in Fig. P15.9. Here,
x[n] and y[n] are the input and output, respectively of the system. h[n]
is the impulse response of the system.

Figure P15.9.

The system is described by the difference equation,

y[n] = 0.8y[n − 1]+ x[n]+ x[n − 1].

x[n] is a wide-sense stationary (WSS) random process with zero mean
(i.e., E[x[n]] = mx = 0) and its autocorrelation function (ACF),
γxx [k], for delay k is given by,

γxx [k] =
(

1
2

)|k|
.

(a) Determine the system function, H(z), and hence derive its impulse
response, h[n].

(b) Determine the power spectral density (PSD),0yy( f̃ ), of the output
y[n]. Here f̃ is the normalized frequency variable. (Hint: You may
use “the theory of linear filtering of random signals” to derive the
output PSD.)

(c) Derive an expression for the ACF, γyy[k] of the output y[n]. (Hint:
Use “Wiener-Khinchin theorem” to find γyy[k] from 0yy( f̃ ). You
may have to use partial fraction expansion of 0yy( f̃ ) here.)

(d) Determine the variance, σ 2
y , of the output y[n]. (Hint: Use prop-

erties of the ACF, γyy[k], to determine the variance.)

15.12. Figure P15.10 shows a system with one input (x(t)) and one output
(y(t)). As can be seen from the figure, it has two complex constants
A and B. v(t) in the figure is an intermediate variable. Assume that
x(t) is a stationary complex random process with mean zero and an
autocorrelation function (ACF) γxx (τ ) defined as γxx (τ ) = E[x(t +
τ)x∗(t)]. Here, * denotes the complex conjugation.

(a) Derive the expressions for the ACF (γyy(τ )) of y(t) and the cross-
correlation function (CCF) γxv(τ ) between x(t) and v(t) in terms
of γxx (τ ) and the complex constants A and B.

In the following (Fig. P15.11), the system in Fig. P15.10 has been
modified to a two inputs (x(t) and w(t)) two outputs (y(t) and
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Figure P15.10.

w(t)) system, where w(t) is another stationary complex random
process with mean zero and ACF γww(τ ) = E[w(t + τ)w∗(t)].
The CCF between x(t) and w(t), γxw(τ ) = E[x(t + τ)w∗(t)] is
also given. As can be seen in the figure, the summation and multi-
plication operations has been swapped within the system.

Figure P15.11.

Using the known parameters, γxx (τ ), γww(τ ), γxw(τ ), A, and
B,

(b) Derive an expression for the ACF (γyy(τ )) of y(t).
(c) Derive expressions for the CCFs γyw(τ ) between y(t) and w(t)

and γwy(τ ) between w(t) and y(t).
(d) Derive expressions for the CCFs γxy(τ ) between x(t) and y(t) and

γyx (τ ) between y(t) and x(t).

15.13. Consider the block diagram representation of a LTI system as shown in
Figure P2. Here x[n] and y[n] are the input and output, respectively of
the system. h[n] is the impulse response of the system. The difference
equation relating the input and the output of the system is given by,

y[n] = ay[n − 1]+ x[n].

Here, a is a scalar variable.
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Figure P15.12.

(a) Determine the system function H(z), which is the z-transform of
h[n] and suggest the range of values of a for which the system is
stable.

(b) Determine the first three (3) samples (i.e., h[0], h[1], and h[2]) of
h[n] in terms of the variable a and hence determine the first three
(3) values (i.e., rhh[0], rhh[1] and rhh[2]) of the autocorrelation
sequence rhh[k] of h[n] in terms of a (Hint: By definition, rhh[k] =∑
∞

n=−∞ h[n]h[n + k]; for k = 0,±1,±2, . . .).

In the following, the value of a is chosen to be 1
2 in the input-

output relationship of the LTI system. The system is excited with
an input x[n] =

(1
4

)n
u[n], where u[n] is a unit step function.

(c) Derive the expressions for the autocorrelation sequence rxx [k] of
the input sequence x[n] and the cross-correlation sequence rxy[k]
between the input x[n] and the output y[n] of the system (Hint:
We have rxx [k] and Rxx (z) are z-transform pairs and Rxx (z) =
X (z)X (z−1) and Rxy(z) = X (z)Y (z−1)).

(d) Derive the expressions for the autocorrelation sequence ryy[k] of
the output sequence y[n] (Hint: Ryy(z) = Y (z)Y (z−1)).

15.14. Consider the block diagram representation of a linear time-invariant
(LTI) system as shown in Fig. P15.13. Here x(t) and y(t) are the input
and output, respectively of the system. h(t) in the picture is the impulse
response of the system. The system function H( f ) (Fourier transform
of h(t)) is given by,

H( f ) = cos

(
π

2 fc
f
)

rect

(
f

2 fc

)
.

Here, t is the time variable, f is the frequency variable and fc is a given
specific frequency in Hz.

Figure P15.13.
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(a) Derive an expression for the autocorrelation function (ACF), rhh(τ )

of the system. Here τ is the delay variable (Hint: Make use of the
Wiener-Khinchin theorem that relates the power spectrum and the
ACF).

(b) At the system input, a signal is applied with power spectral density
0xx ( f ) = N0 + K δ( f ). Here, N0 and K are scalars and δ( f ) is
an impulse function. Find the ACF of the input signal, γxx (τ ) and
its mean value mx .

(c) For the output signal y(t), find the power py by using the sta-
tistical characteristics of the input and the system (Hint: Use the
rhh(τ ) and γxx (τ ) derived in Questions (a) and (b), respectively
as well as the theory discussed in the linear filtering of random sig-
nals topic).

15.15. This problem involves the use of cross-correlation to detect a signal in
noise and estimate the time delay in the signal. A signal x[n] consists
of a pulsed sinusoid corrupted by a stationary zero mean white noise
sequence. That is,

x[n] = y[n − n0]+ w[n], 0 ≤ n ≤ N − 1

where w[n] is the noise (white) with variance σ 2
w, N is the length of the

data. The pulsed sinusoidal signal is given by,

y[n] =
{

A cos(ω0n), 0 ≤ n ≤ M − 1
0, otherwise.

Here, A is the amplitude of the sinusoid and M is the pulse duration.
The length M is chosen in such a way that the pulsed sinusoid has integer
number of periods of the cosine waveform in it. The frequency ω0 of
the sinusoid is known but the delay n0, which is a positive integer, is
unknown, and is to be determined by cross-correlating x[n] with y[n].
Assume that N > M + n0.

Let

rxy[m] =
N−1∑
n=0

x[n]y[n − m],

denote the cross-correlation sequence between x[n] and y[n]. In the
absence of noise, this function exhibits a peak at delay m = n0. Thus
the time-delay n0 is determined with no error. The presence of noise
however can lead to errors in determining the unknown delay.
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(a) For m = n0, determine the expected value, E
(
rxy[n0]

)
. (Note:

In the calculations, you may make use of the trigonometric iden-
tity cos2(ω0n) = 1

2 [1+ cos(2ω0n)] and that the double frequency
term averages to zero. That is, M � 2π

ω0
.)

In the following question, we assume that the variance of rxy[n0]
(i.e., var[rxy[n0]]), due to the presence of noise is given by,

var[rxy[n0]] =
M A2

2
σ 2
w.

(b) Determine the signal-to-noise ratio (S NR), defined as,

SNR =

(
E[rxy[n0]]

)2
var[rxy[n0]]

.

(c) Discuss what is the effect of the pulse duration M on the SNR?

15.16. This problem considers a random process y[n] that is generated by filter-
ing a zero mean white noise x[n], with a time-invariant filter as shown in
Fig. P15.14. The sampling interval Ts of the digital signal is normalized
to unity. The symbol z−1 in the figure represents a unit sample delay.

Figure P15.14.

(a) Write down the difference equation describing the filter shown in
Fig. P15.14. Derive the transfer function H(z) (in the z-domain)
and the impulse response h[n] of the filter.

(b) Sketch the magnitude response of the filter for | f | ≤ 1. Is H(z) a
low-pass system (filter)?

In the following, we will assume that the variance of x[n] is
σ 2

x = 1.
(c) Find the power spectrum 0yy( f̃ ) of the output signal y[n]. Then

find the autocorrelation γyy[k] of y[n].
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15.17. In a biomedical research laboratory, a researcher assumes the recorded
electrical activities of the brain (EEG, electroencephalogram) to be a
stationary random process and is denoted as x(t).

(a) Starting with the continuous time-average definition of the auto-
correlation function (ACF), prove that the Fourier Transform of the
ACF is the power spectral density (PSD) of the signal, x(t). Show
all steps.

(b) The signal x(t) is transmitted to another research laboratory
through a channel. The received signal y(t) is modelled as a scaled,
shifted, and noisy version of x(t) given as y(t) = αx(t− t0)+η(t),
where α is a scale factor, t0 is the time delay and η(t) is the noise.
Assume that the noise process has zero mean and is statistically inde-
pendent of x(t), and that all process are stationary. Using the ensem-
ble average definitions, derive expressions for the mean and the ACF
of y(t) in terms of the statistics of x(t) and η(t) . Show all steps.

(c) If the researcher approximates x(t) to be a sine wave of frequency
ω0 radians/second. That is, x(t) = sin(ω0t), using the time-average
definition of the ACF, derive an expression for the PSD of the signal.
Show all steps.

15.18. A digital filter is described by the following difference equation

y[n] =
1
2

y[n − 1]+ x[n]

where y[n] is the output and x[n] is the input to the system. The filter
is excited with an input x[n] =

(1
4

)n
u[n], where u[n] is the unit step

sequence.

(a) Determine the autocorrelation sequences rxx [m], ryy[m], rhh[m],
and the cross-correlation sequence rxy[m], where m is the delay.

15.19. The N -point DFT of a random sequence x[n] is

X [k] =
N−1∑
n=0

x[n]e− j2πnk/N , k = 0, 1, . . . , N − 1.

Assume that E[x[n]] = 0 and E[x[n]x∗[n + m]] = σ 2
x δ[m]

[i.e., x[n] is a white noise process].

(a) Determine the variance of the sequence X [k].
(b) Determine the autocorrelation of the sequence X [k].
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Chapter 16

Modulation

As you may recall, in Chapters 2 to 5, we studied about signals and systems and
their representation in time and frequency domains. In this chapter, we will use
these concepts to study modulation which is a very important part of radar (commu-
nication systems) and medical ultrasound scanners (biomedical systems). In such
systems, the strength of the received signal is related to the object that has reflected
the transmitted pulse. Most importantly, we want to illustrate how a strong founda-
tion in signals and systems makes it very easy for us to understand the various theoretical
and practical aspects of modulation.

By studying this chapter, we should be able to receive clarity and understanding
on the following.

• The reason for using modulation in communication/ultrasound systems.
• Different type of modulation schemes, and the advantages and disadvantages

of these schemes.
• Important trade-offs underlying the design of communication/ultrasound

systems.
• Principles of analog and digital modulation, envelope demodulation, coher-

ent demodulation, matched filtering, etc.

373
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16.1 Introduction

Let x(t) be a real-valued message signal (e.g., speech signal) that we want to trans-
mit. Then, modulation is the process of impressing or loading x(t) onto another sig-
nal c(t) called as the ‘carrier signal’ which will carry x(t) from the transmitter to the
receiver. The carrier signal is usually of the form

c(t) = Ac cos(2π fct + θc) (16.1)

where Ac, fc, and θc denote the amplitude, frequency and phase of the carrier. We
can impress x(t) onto c(t) by making x(t) modify any of these three parameters.
As a result, we have three main categories of modulation schemes:

• Amplitude Modulation (AM),
• Frequency Modulation (FM), and
• Phase Modulation (PM).

The message signal is also known as modulating signal. The signal obtained by
impressing the message onto the carrier is known as modulated carrier. The pro-
cess of recovering the message signal from the modulated carrier is known as
demodulation.

16.1.1 Base-Band and Pass-Band Signals

Let the one-sided bandwidth of x(t) be B Hz. That is,1

|X ( f )| = 0 for | f | > B (16.2)

where X ( f ) is the Fourier transform (FT) of x(t). Signals such as x(t) whose
spectra lie in the vicinity of f = 0 (e.g., speech, biomedical signals etc.) are called
base-band (or low-pass) signals. On the other hand, suppose we create a signal y(t)
by multiplying x(t) with c(t). The spectrum of y(t) will then consist of bands
of width 2B around fc and − fc (see Figure 16.4(a)–(b)).2 Such signals whose
spectra lie in bands away from f = 0 (e.g., signals transmitted by hand-phones)
are called pass-band (or band-pass) signals. The process of modulation effectively
converts base-band signals into pass-band signals.

1. The carrier frequency fc is assumed to be much larger than the message bandwidth B, i.e., fc � B.

2. If y(t) = x(t)c(t) with c(t) given by (16.1), we get

Y ( f ) =
Ac

2
e jθc X ( f − fc)+

Ac

2
e− jθc X ( f + fc). (16.3)
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16.1.2 Why Modulation?

Or why use a high frequency carrier?
Modulation of a carrier c(t) by a message signal x(t) is done to achieve one or

more of the following objectives.

• Matching between Signal and Channel: To shift the frequency band of the
message signal to the pass-band of the channel so that spectrum of the trans-
mitted signal matches the characteristics of the channel.

• Antenna Size and Efficiency: For efficient transmission of signals, the
antenna size should be comparable to the signal wavelength. Shifting the
low-pass signals to higher frequencies using modulation allows antennas of
practical sizes.

– For example, consider the transmission of electromagnetic (EM) waves
through space using antennas. The wavelength of an EM wave is given by

λ = c
f =

3×108

f . It can be shown that the length of the antenna required
to efficiently transmit the EM wave is ≈ λ.

– For voice signal at a frequency f = 3 kHz, λ is 100000m.
– If f = 300 MHz, length of the antenna is 1m.
– Higher the frequency of the carrier, the smaller the length of the antenna

required. For example, a cellular (mobile) phone.
– High frequency EM waves can propagate through atmosphere without

much attenuation. For example, the space satellites use carrier frequency
typically of the order of GHz.

• Transmission of Multiple Messages: To make provision for the transmission
of multiple message signals, for example, by shifting the signals to adjacent
frequency bands around the carrier frequency (i.e., frequency division multi-
plexing).

• Noise Immunity: To expand the signal bandwidth so as to increase immunity
(resistance) to noise during transmission.

• Frequency Assignment: Using modulation, we can assign different frequency
bands to different transmitting stations and/or programmes so that several
stations and programmes can be simultaneously supported.

16.1.3 Choice of Modulation Scheme

The choice of modulation scheme depends on several factors such as,

• Characteristics (e.g., bandwidth) and number of message signals to be
transmitted.



376 Modulation

• Channel characteristics (e.g., type of transmission medium, channel
disturbances).

• Performance requirements (e.g., received signal strength).
• Complexity and cost (e.g., complexity and cost of hardware, power, and

bandwidth requirements).

The two most important resources in communication systems are channel
bandwidth and transmission power. The trade-off between cost and performance in
communication systems is mainly determined by these two resources.3 The vari-
ous modulation schemes require different combinations of bandwidth and power,
and hence these schemes offer different trade-offs between cost and performance.
Depending upon the kind of trade-off that is affordable in a particular application,
we choose the type of modulation scheme.

We will now briefly discuss the principles, motivation, and main features of some
of the modulation schemes.

16.2 Amplitude Modulation (AM)

In AM, we change the amplitude of the carrier c(t) using the message signal x(t).
This is the most simplest to all modulation schemes to understand as well as to
implement. We will explore a few types of AM schemes:

• conventional AM,
• AM with suppressed carrier (AM-SC),
• single side-band AM (SSB-AM), and
• quadrature AM (QAM).

These schemes provide different compromises among bandwidth, power, complex-
ity and performance. Without loss of generality, we assume, that Ac = 2 and
θc = 0 in this section. That is, the carrier is given by

c(t) = 2 cos(2π fct). (16.4)

16.2.1 Conventional AM (Conv-AM)

The Conv-AM modulated signal is given by

y(t) = 2 [α + x(t)] cos(2π fct) (16.5)

3. Complexity of the transmitter and receiver is another major aspect that influences the cost performance
trade-off.
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Figure 16.1. A simple envelope detector (demodulator) circuit.

where α is chosen such that

α + x(t) > 0 for all t. (16.6)

The purpose of the condition on α is to facilitate a simple mechanism, known as
envelope detection, for demodulation.

§ Let x(t) be a periodic square wave signal, whose one period is given by

x(t) =

{
+1 for 0 ≤ t < 0.5T0

−1 for 0.5T0 ≤ t < T0
(16.7)

where T0 � 1/ fc. Draw the Conv-AM signal y(t) for (a) α = 0 and (b) α = 1.5.
Comment on the amplitude envelopes of the modulated signal in the two cases.

16.2.1.1 Demodulation by Envelope Detection

Equation (16.6) ensures that we can recover α + x(t) from y(t) by tracking the
variations in the positive envelope (i.e., positive peak amplitude)4 of y(t). Since α
is known, we can recover x(t) from α + x(t). This is known as envelope detection.
Thus, the receiver for Conv-AM is quite simple consisting of a half-wave rectifier
followed by a low-pass filter (shown in Fig. 16.1).5

Figure 16.1 illustrates a simple envelope detection scheme. In this figure, D
represents the rectifier, C is the capacitor and R is the resistor across which the
output is taken. Input in this figure is an example of a modulated signal and the
output is the extracted message signal. A (typical) modulating signal (Fig. 16.2(a))
and its envelope (Fig. 16.2(d)) is shown in Fig. 16.2. The original message signal

4. If Eq. (16.6) is not satisfied, then the positive envelope of y(t) will be proportional to |α + x(t)| instead of
α + x(t). Clearly, it is not possible to recover x(t) from |α + x(t)|.

5. For envelope detection to be accurate, the time constant τ of LPF must obey 1
fc
� τ � 1

B (i.e., small ‘charg-
ing time constant’ and large ‘discharging time constant’). This helps the LPF to reject the high-frequency
carrier and noise, while capturing the low-frequency message signal. The time constant gives an indication
of the speed with which the circuit can respond to changes.



378 Modulation

Figure 16.2. Signals associated with an envelope detector: (a) Modulating signal, x(t),
(b) Modulated signal, y(t), (c) Signal at the output of the rectifier in the circuit, and (d)

Detected signal (marked in red) at the output of the envelope detector plotted along

with the modulated signal.

can be retrieved from the output (marked in red) signal by performing some signal
processing techniques.

If the signal x(t) is such that −xmax < x(t) < xmax , then Eq. (16.6) implies
that we should choose α such that α > xmax . Defining the modulation index for
Conv-AM as

β1 =
xmax

α
, (16.8)

we see that envelope detection is possible only if 0 < β1 < 1.

16.2.1.2 Spectra of Signals

The spectrum of y(t) is given by6

Y ( f ) = [αδ( f )+ X ( f )]⊗ [δ( f − fc)+ δ( f + fc)]

= α [δ( f − fc)+ δ( f + fc)]+ [X ( f − fc)+ X ( f + fc)]. (16.9)

6. Note: Recall that F [2 cos(2π fct)] = δ( f − fc) + δ( f + fc), F [α] = αδ( f ), and F [x(t)y(t)] =
X ( f )⊗ Y ( f ). Here, F denotes Fourier transform and ⊗ denotes convolution.
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Figure 16.3. Spectra of signals in conventional AM: (a) message signal x(t), (b) unmodu-

lated carrier c(t), and (c) modulated (transmitted) signal y(t).

Figure 16.3 shows the spectra of x(t), c(t) and y(t). Observe that the bands
occupied by y(t) are

− fc − B < f < − fc + B, fc − B < f < fc + B. (16.10)

Thus, we see that transmission using Conv-AM requires double the bandwidth of
the original message signal. Further, in addition to transmitting the message signal,
we are also sending the carrier with power 2α2, thus requiring extra transmission
power.

16.2.1.3 Summary of Conv-AM

• The receiver is very simple (i.e., envelope detector), requiring no sophisticated
approaches for demodulation.

• Requires extra power to transmit the carrier (i.e., αc(t) in Eq. (16.5)) to
facilitate envelope detection.

• Requires double the bandwidth of the message signal.
• The extra power required to transmit the carrier increases with decrease in the

modulation index (or, increase in α). But lower modulation index improves
noise immunity.
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Figure 16.4. Spectra of signals in AM with suppressed carrier (AM-SC): (a) message sig-

nal x(t), (b) modulated (transmitted) signal y(t), and (c) LPF input z(t). The LPF output is

same as that in (a).

The different AM schemes we discuss below make the system more efficient in the
use of bandwidth and power.

16.2.2 AM with Suppressed Carrier (AM-SC)

To save power, the AM-SC scheme chooses not to send the carrier component αc(t)
along with the message in Eq. (16.5). The modulated signal and its spectrum in
AM-SC are given by

y(t) = 2x(t) cos(2π fct) (16.11)

Y ( f ) = X ( f )⊗ [δ( f − fc)+ δ( f + fc)]

= [X ( f − fc)+ X ( f + fc)] . (16.12)

Figure 16.4(b) shows this spectrum. As in Conv-AM, the AM-SC also needs
double the bandwidth of the original message signal. However, as Eq. (16.12)
shows, the AM-SC transmits only the message signal component and hence, unlike
Conv-AM, it does not waste power to transmit the carrier component.
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16.2.2.1 Coherent Demodulation

Unlike in Conv-AM, we cannot now recover x(t) from the positive envelope
of y(t). But observe from Fig. 16.4 that if we multiply y(t) with the carrier
cos(2π fct), we will get a X ( f ) in the base-band. That is,

z(t) = y(t) cos(2π fct) = 2x(t) cos2(2π fct)

= x(t) [1+ cos(2π2 fct)]

⇒ Z( f ) = X ( f )+
X ( f − 2 fc)+ X ( f + 2 fc)

2
. (16.13)

Figure 16.4(c) shows the spectrum Z( f ). Since the spectra X ( f − 2 fc) and
X ( f + 2 fc) are situated around ±2 fc, we can eliminate these by filtering z(t)
with a LPF with cut-off frequency just above B Hz. Then, the LPF output will be
same as x(t). This is illustrated in Fig. 16.4(c).

For the above demodulation approach to work satisfactorily, the phase and fre-
quency of the carrier used for demodulation at the receiver must be exactly same as that
used for modulation at the transmitter. This is known as coherent demodulation. Any
mismatch in phase and/or frequency of the carriers at transmitter and receiver will
result in distortion in the recovered signal.7 Therefore, it is very important to have
special circuits at the receiver for generating the synchronous carrier. This makes the
receiver expensive in systems where coherent demodulation is necessary.

§ Use cos(2π f̃ct+θ) for demodulating the received AM-SC signal, where f̃c = fc+1 f
and θ 6= 0, with 1 f being an offset in the receiver carrier frequency. Using time domain
as well as frequency-domain analysis, examine the effect of 1 f and θ on demodulation.

16.2.2.2 Compromise Approaches

To ease the problem of generating synchronous carrier, various approaches can be
adopted.

• Approach 1: Send a weak carrier along with the AM-SC signal.
• Approach 2: Send the carrier, once in a while, as pilot tones.

The receiver could use the information about carrier to generate synchronous car-
rier. In this way, it is possible to strike an acceptable compromise between cost (i.e.,
extra transmission power) and receiver complexity.

7. Phase mismatch results in amplitude distortion and frequency mismatch results in frequency shift in the
recovered message signal.
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Figure 16.5. Spectra of signals in single side-band AM (SSB-AM): (a) message signal x(t),
(b) AM-SC modulated signal with both side-bands, (c) upper side-band signal yu(t), and

(d) lower side-band signal yl (t).

16.2.2.3 Summary of AM-SC

• It transmits only the frequency-shifted message signal. Thus, compared to
Conv-AM, the AM-SC scheme is power efficient.

• Requires double the bandwidth of the message signal.
• Receiver becomes complicated (and hence expensive) since it needs circuits

for generating local carrier that is precisely synchronous with the carrier at
the transmitter. It also must account for any changes in the carrier frequen-
cy/phase that arise due to the channel.

• The receiver complexity due to coherent demodulation can be minimized
by resorting to the approaches of sending the carrier information using pilot
tones or weak carrier.
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16.2.3 Single Side-Band AM (SSB-AM)

The SSB-AM scheme is an improvement over AM-SC to save bandwidth. Observe
from Fig. 16.5(b) (this is same as Fig. 16.4(b)) that the transmitted signal in AM-
SC consists of two copies of the original message spectrum X ( f ) shifted to + fc
and − fc. We note the following from Fig. 16.5(b).

• The spectrum shown in (blue) solid line (i.e., frequency bands [− fc −

B,− fc] and [ fc, fc + B] in Fig. 16.5(b)) contains complete information
on the message X ( f ). This part is shown separately in Fig. 16.5(c) and is
called the upper side-band.

• The spectrum shown in (blue) dotted line (i.e., frequency bands [− fc,− fc+

B] and [ fc − B, fc] in Fig. 16.5(b)) also contains complete information on
the message X ( f ). This part is shown separately in Fig. 16.5(d) and is called
the lower side-band.

• The upper and lower side-band signals contain exactly the same (and com-
plete) information as the message signal x(t).

• So, it is enough to transmit only one of the side-band signals. Thus,
the bandwidth required for SSB-AM transmission is same as the message
bandwidth.

The upper side-band signal yu(t) and lower side-band signal yl(t) can be gen-
erated as

yu(t) = x(t) cos(2π fct)− x̂(t) sin(2π fct) (16.14)

yl(t) = x(t) cos(2π fct)+ x̂(t) sin(2π fct) (16.15)

where x̂(t) is−90◦ phase-shifted version of x(t) (obtained by passing x(t) through
the so-called ‘Hilbert transformer’ filter). SSB-AM also uses coherent demodulation
at the receiver.

16.2.3.1 Summary of SSB-AM

• Transmits only one side-band of the frequency-shifted message signal. Thus,
SSB-AM is efficient in both power as well as bandwidth.

• The receiver is complicated due to the requirement to have coherent demod-
ulation, just as in the case of AM-SC.

• SSB-AM systems require a 90◦ phase-shifter filter and/or band-pass filters
with sharp cut-off characteristics (to filter the side-bands), which are costly
to realize.
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16.2.4 Quadrature AM (QAM)

While the SSB-AM scheme saves bandwidth by cutting-off one of the redundant
side-bands, its implementation can be costly because of the special filters needed.
On the other hand, the QAM approach addresses the bandwidth efficiency issue
by not cutting-off a side-band but by sending two message signals p(t) and q(t)
(instead of only one message) in the same bandwidth.

To ensure separability of the signals p(t) and q(t) at the receiver, they are
modulated using two carriers8 cos(2π fct) and sin(2π fct), respectively. The QAM
modulated signal y(t) and its spectrum are given by9

y(t) = 2p(t) cos(2π fct)− 2q(t) sin(2π fct) (16.16)

Y ( f ) = [P( f − fc)+ j Q( f − fc)]

+ [P( f + fc)− j Q( f + fc)] (16.17)

where P( f ) and Q( f ) are the spectra of p(t) and q(t), respectively.

16.2.4.1 QAM Demodulation

Coherent demodulation is used for recovering p(t) and q(t) from the received
y(t). Coherent demodulation using the carrier cos(2π fct) followed by low-pass
filtering results in p(t). This can be seen as follows.

p̃(t) = y(t) cos(2π fct)

= 2p(t) cos2(2π fct)− 2q(t) sin(2π fct) cos(2π fct)

= p(t)+ [p(t) cos(2π2 fct)− q(t) sin(2π2 fct)] . (16.18)

The spectra of p(t) cos(2π2 fct) and q(t) sin(2π2 fct) are located around ±2 fc.
Therefore, passing p̃(t) through a LPF with bandwidth B will recover p(t) and
eliminate the components around ±2 fc. Similarly, coherent demodulation using
− sin(2π fct) followed by low-pass filtering results in q(t).

16.2.4.2 Complex Representation of QAM

The QAM modulation and demodulation operations can be expressed in equivalent
complex representation as below. Noting that10 cos(θ) = Re

{
e jθ} and− sin(θ) =

8. Since cos(2π fct + 90◦) = − sin(2π fct), the carriers cos(2π fct) and sin(2π fct) are known as in-phase
and quadrature carriers, respectively.

9. Note: Recall that F [2 sin(2π fct)] = [δ( f − fc)− δ( f + fc)] /j = − jδ( f − fc)+ jδ( f + fc).

10. Here, Re{x} denotes the ‘real-part’ of the complex quantity x .
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Re
{

je jθ}, we get

2p(t) cos(2π fct) = Re
{

2p(t)e j2π fct
}
,

−2q(t) sin(2π fct) = Re
{

2 jq(t)e j2π fct
}
,

⇒ y(t) = Re
{

2p(t)e j2π fct
+ 2 jq(t)e j2π fct

}
,

= Re
{

2v(t)e j2π fct
}
, (16.19)

where v(t) = p(t) + jq(t). Equation (16.19) implies that p(t) and q(t) can
be QAM modulated by modulating the complex signal p(t) + jq(t) using the
complex carrier e j2π fct and taking real part of the resulting signal.

16.2.4.3 How about the Demodulation

Note that

ỹ(t) = y(t)e− j2π fct
= 2Re

{
v(t)e j2π fct

}
e− j2π fct

=

[
v(t)e j2π fct

+ v∗(t)e− j2π fct
]

e− j2π fct

= v(t)+ v∗(t)e− j2π(2 fc)t (16.20)

⇒ L P F {ỹ(t)} = v(t) = p(t)+ jq(t). (16.21)

Thus, QAM demodulation is equivalent to coherently demodulating y(t) using
the complex carrier e− j2π fct and low-pass filtering the result.

§ Examine the spectra of signals at various stages in QAM modulator and demodulator.

16.2.4.4 Summary of QAM

• Transmits two messages in the same bandwidth using in-phase and quadra-
ture carriers. Thus, QAM is efficient in both power as well as bandwidth.

• The receiver is complicated due to the requirement to have coherent demod-
ulation, just as in AM-SC and SSB-AM.

• In hardware complexity, QAM is simpler than SSB-AM.

16.3 Frequency Modulation (FM)

In FM, the message signal x(t) is impressed onto the carrier by changing the instan-
taneous frequency of the carrier. FM has the advantage (compared to AM) of better
resistance to noise, as noise affects amplitude much more seriously than frequency.
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However, this advantage comes at the price of increased requirement on the channel
bandwidth for transmitting FM signals.

The instantaneous frequency fi (t) and instantaneous phase θi (t) of the modu-
lated carrier in FM are given by

fi (t) = fc + kcx(t) (16.22)

⇒ θi (t) = 2π
∫ t

−∞

fi (τ )dτ (16.23)

= 2π fct + 2πkc

∫ t

−∞

x(τ )dτ, (16.24)

where kc is known as frequency sensitivity of the frequency modulator and it deter-
mines the sensitivity of the instantaneous carrier frequency fi (t) to the message
signal x(t). The resulting modulated signal is given by

y(t) = Ac cos(θi (t))

= Ac cos

(
2π fct + 2πkc

∫ t

−∞

x(τ )dτ
)
, (16.25)

where Ac is a constant amplitude.11 Equations (16.22) and (16.25) show that
demodulation of a FM signal involves determining the instantaneous frequency fi (t)
of the FM signal and then subtracting the constant carrier frequency fc from fi (t).

16.3.1 Bandwidth in FM Systems

From Eq. (16.22), we get the maximum deviation of the instantaneous frequency
from fc as

1 fmax = kcxmax where xmax = max {|x(t)|}. (16.26)

Then, the modulation index in FM is defined as

β =
Maximum Deviation in Carrier Frequency

Bandwidth of Message Signal

=
1 fmax

B
=

kcxmax

B
, (16.27)

11. In phase modulation (PM), x(t) is used to directly modify the phase of the carrier as θi (t) = 2π fct+kp x(t)
where kp is the phase sensitivity parameter of the modulator. The resulting phase modulated signal is given
by y(t) = Ac cos(θi (t)) = Ac cos

(
2π fct + kp x(t)

)
.
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where B is the bandwidth of x(t). Thus, we see that the frequency sensi-
tivity parameter kc has significant influence on the bandwidth of FM sig-
nals. The required transmission bandwidth increases with increase in kc, and
vice versa.

16.3.2 Narrow-Band and Wide-Band FM

With1θ(t) = θi (t)−2π fct , the FM signal given by Eq. (16.25) can be written as

y(t) = Ac cos(θi (t)) = Ac cos (2π fct +1θ(t)) (16.28)

= Ac cos (2π fct) cos (1θ(t))

−Ac sin (2π fct) sin (1θ(t)) (16.29)

1θ(t) = 2πkc

∫ t

−∞

x(τ )dτ = β
2πB
xmax

∫ t

−∞

x(τ )dτ, (16.30)

since kc = Bβ/xmax . Depending on the maximum value of |1θ(t)|, we classify
the FM into narrow-band FM and wide-band FM.

• Narrow-Band FM: This corresponds to the situation where |1θ(t)| � 1 for
all t . This happens when the modulation index β � 1. Under this condition,
the FM signal in Eq. (16.29) can be approximated as12

y(t) ≈ Ac cos (2π fct)− Ac1θ(t) sin (2π fct) (16.31)

which is similar to Conv-AM signal with1θ(t) as the message signal. Thus,
bandwidth of narrow-band FM is similar to that of Conv-AM.

• Wide-Band FM: When the value of β is not very small (i.e., |1θ(t)| is not
small), then the spectrum of the resulting FM signal occupies a much wider
band. This bandwidth expansion is the price that we pay for increased noise
immunity in FM.13

In the next section, the matched filter methods for the demodulation operation
is discussed in detail.

12. Note: cos(θ) ≈ 1 and sin(θ) ≈ θ when |θ | � 1.

13. Clearly, narrow-band FM does not enjoy the noise immunity provided by wide-band FM.
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Figure 16.6. Illustration of a FM Radar scheme.

Figure 16.7. Matched filter scheme.

16.4 Detection (demodulation) by Matched Filter

Many systems are based on the transmission and reception (detection) of pulses.
Radar and medical ultrasound scanners are examples of such systems. In such sys-
tems, the strength of the received signal is related to the object that has reflected
the transmitted pulse. For example, a radar receives a stronger signal from bigger
objects and weaker signals from smaller objects (Fig. 16.6). Such signals are often
corrupted by noise, and it is therefore desirable to maximize the useful signals at the
same time minimize the unwanted signals. A filter that is able to achieve the above
objective is called the matched filter and in this section, the principle of matched
filter scheme is discussed in detail.

Let us assume that the received signal r(t) can be written as,

r(t) = x(t)+ n(t) (16.32)

where x(t) is the desired response from the system - for example the echo from a
single reflector, n(t) is the noise. We also assume that there is no correlation between
x(t) and n(t). We want now a linear and time-invariant (LTI) filter (h(t) as shown
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in Fig. 16.7) which maximizes the ratio between the power of the desired signal and
that of the noise at a given time instant tm . This ratio is defined as,

SNp =
|y(tm)|2

E{n2
0(tm)}

, (16.33)

where

y(t) = x(t)⊗ h(t) (16.34)

is the filtered desired signal. y(tm) in Eq. (16.33) is the value of the signal at time
instant tm . h(t) is the impulse response of the matched filter, y(t) is the output of
the matched filter without the noise, and n0(t) = h(t)⊗ n(t) is the filtered noise.

If we assume the noise to be stationary, we can replace tm with t and the ratio in
Eq. (16.33) can be expressed in the frequency domain as,

|y(tm)|2

E{n2
0(t)}

=
|
∫
+∞

−∞
X ( f )H( f )e j2π f tm d f |2∫

+∞

−∞
0nn( f )|H( f )|2d f

(16.35)

Since n(t) is assumed stationary, its power is independent of time. 0nn( f ) is the
power spectrum of the noise. If we assume that the noise is white, then we get,

|y(tm)|2

E{n2
0(t)}

=
|
∫
+∞

−∞
X ( f )H( f )e j2π f tm d f |2

σ 2
n
∫
+∞

−∞
|H( f )|2d f

(16.36)

where σ 2
n = 0nn( f ) is the constant power density spectrum of the white noise. If

we apply the Schwartz’s inequality, we get∣∣∣∣∫ +∞
−∞

X ( f )H( f )e j2π f tm d f
∣∣∣∣2 ≤ ∫ +∞

−∞

|H( f )|2d f
∫
+∞

−∞

|X ( f )e j2π f tm |2d f

(16.37)

where the equality is achieved only for

H( f ) = k1

(
X ( f )e j2π f tm

)∗
= k1 X∗( f )e− j2π f tm , (16.38)

where, k1 is a constant. The maximum of the ratio is therefore reached when
Eq. (16.38) is fulfilled. In this case, we have (assuming k1 = 1)

|y(tm)|2

E{n2
0(t)}

≤

∫
+∞

−∞
|H( f )|2d f

∫
+∞

−∞
|X ( f )e j2π f tm |2d f

σ 2
n
∫
+∞

−∞
|H( f )|2d f

≤

∫
+∞

−∞
|X ( f )|2d f

σ 2
n

=
E
σ 2

n
(16.39)
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Here, E =
∫
+∞

−∞
|X ( f )|2d f is the energy of the signal, x(t). We used the fact

that
∫
|p|2d f =

∫
p.p∗d f and the factor e j2π f tm is of no significance. At the

moment of detection, the magnitude of the filter output for the desired signal is
proportional to its energy, E .

The Fourier transform of the filter which maximizes the peak amplitude of the output
signal relative to the noise is hence given by

H( f ) = k1 X∗( f )e− j2π f tm (16.40)

which in the time domain is

h(t) = k1x(tm − t). (16.41)

The LTI filter is a time-reversed and delayed version of the original noise-free
signal. The time delay tm is chosen so that the filter is causal. This means that the
filter impulse response (h(t)) is matched to the desired signal (x(t)), and hence the
name ‘Matched Filter’.

16.5 Detection of Binary Signals in Noise

Detecting signals in the presence of noise is a common task. In radars, one wants to
decide whether there is an air-plane at time instant tm , and in telecommunications
one wants to decide which symbol is being received.

For example consider a simplified case of the binary signal x(t) as having the
value either 0 or 1. When x(t) has passed through the matched filter h(t) we get
the value K , when x(t) has the value 1. In other words, at time instant tm , we can
have at the output of the matched filter either

y1(tm) = K + n0(tm) (16.42)

or

y1(tm) = n0(tm) (16.43)

when x(t) has passed through a noisy channel and then filtered by the matched
filter h(t) (see Fig. 16.8). We must have a threshold to decide whether the received
signal is 0 or 1. Let the value of the threshold be µ. This means that we assume
x(tm) equal to 1 when y1(tm) ≥ µ and is 0 when y1(tm) < µ.

There are two possibilities for error because of the noise. Either the noise n0(tm)
can decrease the value of y1(tm), so that it becomes less thanµ although x(tm) = 1,
or y1(tm) > µ although x(tm) = 0. The first error means that a pulse is not
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Figure 16.8. Matched filtering of binary signals: x(t) is the transmitted message (binary)

signal, n(t) is the noise, which is getting added to x(t) to generate the received signal,

r(t). r(t) ∗ x(−t) is the filtering (convolution) operation between the received signal and

the matched filter (with impulse response, h(t) = x(−t)). It also can be seen as the cross-

correlation between the received signal and the transmitted signal.

detected ( false negative) and the second error means that we detect a signal which
is actually not there (false positive).

An example with Gaussian noise is shown in Fig. 16.9. The hatched area illus-
trates how large the two possibilities are. It can be seen that there will be errors
independent of the choice of µ. The total probability of error depends on how
often 0 and K are present in the signal. If K is infrequent, then the false negative
error will be small. The total probability of error is

P f = P0 P f0 + PK P fK , (16.44)

where P0 is the probability that x(tm) = 0, and P f0 is the probability that
n0(tm) > µ. Because there are only two symbols (0,1), we get

P f = P0 P f0 + (1− P0)P fK . (16.45)

If we have the same probability for 0 and K , then we get

P f =
1
2

(
P f0 + P fK

)
. (16.46)

If the probability density function of the noise is symmetric about its mean value,
then P f0 = P fK , and the threshold µ = K/2 since both types of the error have
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Figure 16.9. Probability density functions for the signal y1(t).

the same weight. The two probabilities P f0 and P fK , for the case of Gaussian noise
are given by,

P f = P f0 = P fK =

∫
∞

µ

1
√

2πσn
e
{
−ξ2

2σ2
n
}

dξ, (16.47)

and are dependent on µ and σn , where σn is the standard deviation of the noise
n0(t). The probability for error is shown as a function of K

2σn
in Fig. 16.10.

However, the probability of the two symbols is often not equal and the choice of a
threshold is not easy.

The output of the matched filter at time instant tm is a signal whose amplitude is
proportional to the energy of the transmitted pulse. If there is no echo, for example
a radar pulse reflected by an air-plane, then only noise is present. This is a situation
equivalent to that is given in Eq. (16.43). Therefore, we have the same probability
of error, and the same method for determining the threshold value can be used.
Hence K

2σn
is the ratio between the energy of the received signal to twice the RMS

value of the matched filtered noise.
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Figure 16.10. Probability of bit error with Gaussian noise, when the probability of the two

bits (symbols) are equal.

Often in radar systems, PK is much smaller than P0 and PK is usually unknown.
Hence, the threshold value is usually determined empirically.

So far, we have discussed the analog modulation schemes. The remaining of this
chapter is devoted for the discussion on digital modulation schemes.

16.6 Digital Modulation

Many applications require the transmission of a digital signal via a modem, network
or digital broadcasting. This section deals with the topic of transmission of digital
data (bits) stream. Just as we have different approaches to modulate analog signals,
we need approaches that can convert the stream of bits into waveforms that are
suitable for transmission. There are three basic modulation types:

• Amplitude (ASK - Amplitude Shift Keying),
• Frequency (FSK - Frequency Shift Keying), and
• Phase (PSK - Phase Shift Keying).

Let the sequence {b1, b2, b3, b4, b5, · · · } denote a stream of bits at the rate of
1
Tb

bits/second, i.e., Tb is the duration of one bit. Each bit bn is either a ‘1’ or a
‘0’. We first convert this bit sequence into analog signals and then modulate these
signals using any of the approaches discussed above.
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16.6.1 Amplitude Shift Keying (ASK)

This is the simplest modulation scheme for digital data. It is a special case of AM.
For the given data, an analog signal is generated as

r(t) =
{
+1 for (n − 1)Tb ≤ t < nTb if bn = 1
−1 for (n − 1)Tb ≤ t < nTb if bn = 0.

(16.48)

That is, we convert bit ‘1’ into a positive pulse and bit ‘0’ into a negative pulse, of
width Tb each. Then, r(t) is obtained by concatenating the pulses corresponding
to the bits in the sequence. The waveform r(t) is modulated using AM to result in
the modulated signal

p(t) = r(t)A sin(2π fct), (16.49)

where fc is the career frequency and A is its amplitude. Since r(t) sin(2π fct) is
equivalent to switching the carrier amplitude to +1 or −1 during each bit interval
depending on the value of the bit, this scheme is called “ASK”. It is also known as
“On-Off Keying (OOK)” if the pulse amplitude r(t) is made zero when bn = 0,
which is equivalent to switching ON and OFF the carrier if the bit is ‘1’ and ‘0’,
respectively.

The OOK signal corresponding to the binary string 10101011 is shown in
Fig. 16.11. The top graph shows the ideal signal, and the bottom one shows the
OOK signal.

When the signal is received after transmission, the binary data stream must
be recreated. This can be done by applying a matched filter, and then determin-
ing whether 0 or 1 has been sent. If the probability for 0 and 1 are equal, the
threshold value for detection is set to E/2, where E is the energy of the pulse
p(t). (K in Eq. (16.42) corresponds to E , hence the probability of error is given
in Fig. 16.10.)

Example: The AM signal shown in the top graph in Fig. 16.11 is sent over a tele-
phone channel with infinite bandwidth. The channel adds noise with Gaussian
PDF and a constant power density of 10−4 W/Hz with a bandwidth of fn = 5 kHz.
Find the error probability.

The energy of the signal after matched filtering is

E =
∫ 4/ fc

0
A2 sin2(2π fct)dt

=
A2

2π fc

[
x
2
−

sin 2x
4

]8π

0
=

2A2

fc
. (16.50)
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Figure 16.11. ASK signal for the binary sequence 10101011 sent with fc = 250 Hz and

T = 4/ fc = 16 ms. (a) Original digital signal (bit stream) and (b) ASK signal with two

amplitudes.

As we know, the matched filter is a time-reversed version of the sent pulse. Its
amplitude transfer function has a maximum value (amplification) exactly at the
frequency of the transmitted pulse ( f = fc). The transfer function is concentrated
at f = fc and the amplification decreases for higher values of f . If we assume
that the amplification is negligible for f > fc, we can find the power of the noise
through Parseval’s equation:

pn =

∫
∞

−∞

|H( f )|20nn( f )d f = 0nn(0)
∫ Fn

−Fn

|H( f )|2d f

≈ 0nn(0)
∫
∞

−∞

|H( f )|2d f = 0nn(0)
∫
∞

−∞

h2(t)dt = 0nn(0)
2A2

fc

(16.51)

where 0nn( f ) is the power density of the noise. The equation assumes that the
noise is white and overestimates its noise. The ratio E

2σn
is

σn =
√

pn =

√
0nn(0)

2A2

fc
(16.52)

E
2σn
=

2A2

fc

2
√
0nn(0)2A2

fc

=

√
A2

20nn(0) fc
(16.53)
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Figure 16.12. ASK signal for the binary sequence 10101011 sent with fc = 250 Hz and T =
4/ fc = 16 ms. (a) The top graph shows the ideal ASK signal, (b) The ASK signal with noise

added, and (c) The signal after passing through a matched filter. The horizontal line in

this graph depicts the threshold value of E/2, and the vertical line depict the detection

moments.

Substituting the given values in the above equation, we get

E
2σn
=

√
12

2× 10−4 × 1200
= 6.2d B. (16.54)

The probability for error is 2 × 10−2 (from Fig. 16.10). The various signals are
shown in Fig. 16.12. for the binary sequence 10101011. If the amplitude of the
pulse is increased from 1 to 2 volts, we get a ratio of 12dB and the probability for
detection error falls to 8× 10−5, which is a significant improvement.

The probability of error is also dependent on whether the detection is performed
at the right moment. It is therefore important that the receiver and transmitter are
synchronized.

If the noise is white, then a simple relation for calculating the error probability
can be derived. It gives insight in to the influence of the noise and the filter. If
the noise is white, the power density is constant and the power of the noise after
filtering is

pn = 0nn(0)E (16.55)
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where E is the energy of the pulse p(t). We get the following ratio:

E
2σn
=

E
2
√
0nn(0)E

=

√
E

40nn(0)
. (16.56)

In other words, the probability of error is determined by the ratio between the energy
of the transmitted pulse and the power density of the noise introduced by the transmission
channel.

16.6.2 Frequency Shift Keying (FSK)

Digital information can be transmitted using pulses with different centre frequen-
cies. We sent p1(t) for the symbol ‘1’ and p0(t) for the symbol ‘0’ as follows:

p1(t) =
{

A sin(2π f1t) for (n − 1)Tb ≤ t < nTb if bn = 1
0 otherwise

(16.57)

p0(t) =
{

A sin(2π f0t) for (n − 1)Tb ≤ t < nTb if bn = 0
0 otherwise

(16.58)

where f1Tb and f0Tb are integers.
The binary string 10101011 is sent as shown in Fig. 16.13. We shift between

frequency values and the method therefore is called the FSK. The individual FSK
signals p0(t) and p1(t), corresponding to bits 0 and 1 are shown in Fig. 16.14.

Two matched filters are used for the detection: one for each pulse type. At the
moment of detection, the value of the signal from the filters is proportional to the
value of the energy of the transmitted pulse. Energy of the two pulses are equal
because they are equally long. Let this be E . One possible detection method is
shown in Fig. 16.15. The received signal goes through the two matched filters whose
outputs get subtracted. This processing step can be written as

y(t) = x(t)⊗ h1(t)− x(t)⊗ h2(t)

= x(t)⊗ (h1(t)− h2(t)). (16.59)

Here, we neglected the presence of noise. At the moment of detection (tm), we get:

y(tm) =
∫
∞

−∞

x(τ )(h1(tm − τ)− h2(tm − τ))dτ (16.60)
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Figure 16.13. FSK signal for the binary sequence 10101011 sent with f1 = 4 Hz, f0 = 2 Hz

and T = 16 ms. (a) The original (transmitted) signal (bit stream) and (b) The FSK signal

with two frequencies for bits 1 and 0.

Figure 16.14. FSK signal for the binary sequence 10101011 sent with f1 = 4 Hz, f0 = 2 Hz

and T = 16 ms. (a) The FSK signal with two frequencies for bits 1 and 0, (b) The FSK

signal for bit 0 alone, and (c) The FSK signal for bit 1 alone.
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Figure 16.15. Detector used for FSK modulation.

where h1(tm − t) = p1(tm − tm + t) = p1(t) (See Eq. (16.41)) and h2(tm − t) =
p0(tm − tm + t) = p0(t). At the moment of detection tm = 0, we get a signal

y(0) =
∫ Tb

0
A sin(2π f1τ)(A sin(2π f1τ)− A sin(2π f0τ))dτ, (16.61)

when ‘1’ is received and the signal is noise-free. This can be re-written as

y(0) = E −
∫ Tb

0
A sin(2π f1τ)A sin(2π f0τ)dτ

= E −
A2

2

∫ Tb

0
(cos(2π( f1 − f0)τ )− cos(2π( f1 + f0)τ ))dτ

= E −
A2

2

∫ Tb

0
(cos(2π24 f τ)− cos(2π( f0 +4 f )τ ))dτ.

(16.62)

The value of the last integral will be 0, if we integrate over an integer number of
periods of a sinusoidal signal with frequency 4 f = f1− f0

2 . This is fulfilled when
2Tb4 f = k, where k is an integer number, and the two signals (A sin(2π f1t) and
A sin(2π f0t)) are said to be orthogonal.

A similar derivation can be carried out for the symbol ‘0’. We get,

y(0) =
∫ Tb

0
A sin(2π f0τ)(A sin(2π f1τ)− A sin(2π f0τ))dτ

= −E (16.63)

The value that we get out of this detector is either E or−E depending on which
pulse has been sent, when the two signals are orthogonal. The threshold value can
be set to zero.



400 Modulation

The noise present in the signal is also being filtered and the power of the remain-
ing noise (at the output) is

pn =

∫
∞

−∞

|H1( f )− H2( f )|20nn( f )d f, (16.64)

where0nn( f ) is the power density of the noise and H1( f ) and H2( f ) are the trans-
fer functions of the two matched filters. If we assume that the noise has constant
power in the pass-band of the two filters, we get

pn = 0nn(0)
∫
∞

−∞

|H1( f )− H2( f )|2d f. (16.65)

The last term in the above equation can be written as

=

∫
∞

−∞

(H1( f )− H2( f ))(H∗1 ( f )− H∗2 ( f ))d f

=

∫
∞

−∞

(
|H1( f )|2 + |H2( f )|2 − H1( f )H∗2 ( f )− H∗1 ( f )H2( f )

)
d f.

(16.66)

The last two terms are equal to the signal p1(t) convolved with a time-reversed
version of the signal p0(t), and the result is 0, since the two signals are orthogonal.
We get hereby,

pn = 0nn(0)
∫
∞

−∞

[|H1( f )|2 + |H2( f )|2]d f = 20nn(0)E . (16.67)

This means that the power of the noise is doubled by the subtraction.
The error probability can be found as in the case of ASK from Fig. 16.10. The

threshold is set to 0. Hence, only noise samples with magnitude higher than E
will cause an error. The power of the noise is doubled by the subtraction and the
probability will be dependent on the ratio E/

√
2σn . The ratio which determines

the probability of error can be shown to be√
E2

2σn
=

√
E2

20nn(0)E
=

√
E

20nn(0)
. (16.68)

In other words, we get 3dB improvement by using FSK rather than ASK.

16.6.3 Phase Shift Keying (PSK)

PSK is based on a shift in the phase of the signal, which is determined by the sym-
bol (bit) being transmitted. When only two symbols are sent, the phase is shifted
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Figure 16.16. PSK signal for the binary sequence 10101011 sent at fc = 250 Hz and T =
2/ fc = 16 ms. (a) Original digital signal (bit stream), and (b) The corresponding PSK

signal.

between π and 0. The signal corresponding to the binary sequence 10101011 is
shown in Fig. 16.16. The individual PSK signals corresponding to bits 0 and 1 are
shown in Fig. 16.17.

A matched filter is used to recover the signal. The output of the filter is propor-
tional to E when the received symbol is ‘1’ and −E when the received symbol is
‘0’. The detection threshold is set to 0, if the two symbols are equally probable. The
power of the noise at the output of the filter is pn = σ

2
n = 0nn(0)E . The ampli-

tude of the noise must be larger than E to cause a false detection. The ratio which
determines the probability of error is

E
σn
=

√
E2

0nn(0)E
=

√
E

0nn(0)
, (16.69)

which represents a 6dB improvement compared to ASK. This means that for
the case given in the Example, we can transmit signals with an amplitude of 1
volt and achieve error probability of 8 × 10−5 by using PSK instead of ASK
(2× 10−2 ).
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Figure 16.17. Individual PSK signals for the bits 1 and 0 for the binary sequence 10101011.

(a) Ideal PSK signal, (b) The PSK signal for bit 0, and (c) The PSK signal for bit 1.

16.7 2-Bit Quadrature Amplitude Modulation (QAM)

The principles described here can be extended to n-bit QAM as well. Recall that
the motivation for the development of QAM is to save bandwidth. In the same way,
the 2-bit QAM is an approach to send more data bits (compared to ASK) through
a channel of given bandwidth. This is explained below.

• The sequence of bits {b1, b2, b3, b4, b5, · · · } is first converted into a
sequence of symbols {s1, s2, s3, s4, · · · } where the symbols are defined by
grouping 2 bits each as s1 = {b1, b2}, s2 = {b3, b4}, s3 = {b5, b6}, s4 =

{b7, b8}, and so on. Thus, the time-duration of each symbol is Ts = 2Tb.
• The sequence of symbols is then converted into two analog signals as

r(t) =
{
+1 for (n − 1)Ts ≤ t < nTs if sn,1 = 1
−1 for (n − 1)Ts ≤ t < nTs if sn,1 = 0

(16.70)

q(t) =
{
+1 for (n − 1)Ts ≤ t < nTs if sn,2 = 1
−1 for (n − 1)Ts ≤ t < nTs if sn,2 = 0

(16.71)

where sn,1 and sn,2 are the first and second bits, respectively, in the symbol
sn = {sn,1, sn,2}. That is, each symbol results in two pulses of widths Ts each.



Concluding Remarks 403

• The resulting waveforms r(t) and q(t) are modulated using QAM and the
modulated signal is given by

y(t) = 2r(t) cos(2π fct)− 2q(t) sin(2π fct). (16.72)

Since Ts = 2Tb, we get 1/Ts = 0.5/Tb. That is, the symbol-rate (i.e.,
number of symbols/second) is only half of the bit rate. For example, a bit rate
of 10000 bits/second results in a symbol-rate of 5000 symbols/second. Therefore,
the channel bandwidth we need to send the symbols using 2-bit QAM is only
half of the bandwidth that we need to send the bits using ASK. Thus, the QAM
approach can be used to achieve high data-rate transmission in bandwidth constrained
channels.

16.8 Concluding Remarks

We can make the following concluding remarks based on the material presented in
this chapter.

• Modulation is needed for matching the signal to the channel, and to support
the transmission of several messages over a given channel.

• Modulation of a message onto a carrier is done by changing either the ampli-
tude, frequency or phase of the carrier according to the message signal.

• While conventional AM is the most simple approach, it is inefficient in the
use of power and bandwidth.

• AM-SC, SSB-AM, and QAM are efficient versions of AM. These approaches
need coherent demodulation which makes the receiver complicated.

• FM has the advantage of noise immunity, which is obtained at the expense
of increased bandwidth.

• The principle of matched filter for detection is described in detail.
• A demo Matlab programme, to show the application of Hilbert transform in

communication is given in Appendix A.

Exercises

16.1. A message signal m(t) = 20 cos(2π t), modulates a carrier c(t) =
50 cos(100π t) to give a single-sideband wave. Determine the modulated
waves when

(a) only the upper sideband is transmitted,
(b) only the lower sideband is transmitted.
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16.2. An FM wave is described by s(t) = 100 cos[π2000000t + 0.005 cos
(π1000t)].

(a) Determine the instantaneous frequency of s(t).
(b) What is the maximum frequency deviation?
(c) What is the modulating message signal?
(d) What is the modulation index?

16.3. Sketch the digitally modulated waveforms for an input binary sequence
1011010011, where the carrier frequency fc equals the bit rate, 1/Tb,
and Tb is the bit interval, using

(a) Amplitude Shift Keying (ASK)
(b) 2-bit Quadrature Amplitude Modulation (QAM)

Note: Assume that the pair of bits 00, 10, 11, and 01 are repre-
sented by phase shifts equal to 0, π/2, π , and 3π/2.

16.4. In creating a wireless home stereo system, an engineer is faced with the
problem of sending two signals, xL(t) and xR(t), for the left and right
audio channels respectively, to another room. A senior engineer suggests
using a modulated signal, y(t), whose amplitude is modulated by xL(t)
using conventional AM and whose frequency is modulated by xR(t) using
FM at a carrier frequency of f0 Hz.

(a) Write down the form for y(t). To evaluate the system, a test tone
at 1 kHz is applied to both channels of the system. Write down an
expression from which the spectrum of y(t) can be calculated. Is this
expression mathematically tractable?

(b) Suggest how xL(t) can be demodulated from y(t) of Question (a). Is
coherent demodulation essential in the recovery of xL(t) and xR(t)
from y(t)? Which of the two channel signals will have a higher qual-
ity in the presence of noise and multi-path propagation? Explain your
answer. If it is desired that both channels should have the same qual-
ity in using the basic modulation scheme outlined, suggest how this
can be done.

16.5. An audio signal s(t) with the spectrum S(�) (shown in Fig. P16.1) is to
be transmitted in a communication scheme. In order to save the band-
width, the signal spectrum is assumed to be 0 for |�| > �g = 2π × 4
kHz.

(a) Give the spectrum of the modulated signal sM(t) if the signal s(t)
is modulated by cos(�0t) as shown in Fig. P16.2. Here �0 is the
modulating frequency.
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Figure P16.1.

Figure P16.2.

(b) How much bandwidth does SM(�) use compared to S(�)? (Note:
Represent it as a ratio of the bandwidth of SM(�) to the bandwidth
of S(�))

(c) To overcome the disadvantage observed in Question (b), the sig-
nal is transmitted according to the modulation scheme shown in
Fig. P16.3. This is the single sideband (SSB) modulation scheme
which takes advantage of the redundancy present in the spectrum
of the real signal s(t). Draw the spectrum of SE M(�) and determine
the bandwidth saving (if any) in the SSB scheme compared to the
scheme in Question (a).

Figure P16.3.
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Chapter 17

Power Spectrum Estimation

In statistical signal processing and physics, the spectral density, power spectral den-
sity (PSD), or energy spectral density (ESD), is a positive real function of a fre-
quency variable associated with a stationary stochastic process, or a deterministic
function of time. They have dimensions of power per Hz, or energy per Hz, respec-
tively. It is often called simply the spectrum of the signal. Intuitively, the spectral
density captures the frequency content of a stochastic process and helps identify the
periodicity in the process.

Power spectrum estimation methods can be divided generally into two classes:
classical methods or non-parametric methods (based on the periodogram) and
modern methods or parametric methods (based on models). In this chapter, we
are going to discuss the following methods of power spectrum estimation:

• Classical methods or Non-parametric methods

– Periodogram approach,
– Bartlett Method, Blackman & Tukey method, and
– Welch Method.

• Modern methods OR Parametric methods

– AR (autoregressive),
– MA (moving average), and
– ARMA (autoregressive and moving average)

407
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Also, topics such as, DFT for spectrum estimation, windowing for spectrum
estimation, time and frequency resolutions and spectral smoothing, are also dealt
with in detail.

One of the major problems in spectrum estimation is the finite length of the
available data, which will be discussed in the following section.

17.1 Estimation of Spectra from Finite Data

The availability of data only for a finite length is a major limitation on the qual-
ity of the power spectrum estimate. When dealing with statistically stationary sig-
nals, longer data record results in better estimate of the spectra. For non-stationary
signals, the length of the data selected is determined by the rapidity of the time
variations of signal statistics.

One of the problems that we encounter with the classical power estimation meth-
ods using a finite-length data is the distortion of the spectrum from the actual. This
problem occurs in the computation of spectra for both deterministic as well as ran-
dom signal. First, we discuss the effects on a finite data of deterministic signal,
which is easier to observe and then consider random signals.

17.1.1 Computation of the ESD

Let us consider the computation of the spectrum of a deterministic signal from
a finite sequence of data. The sequence x[n] is usually the result of sampling a
continuous time signal xa(t) at some uniform sampling rate fs . Our objective is
to obtain an estimate of the true spectrum from a finite x[n].

Recall that if xa(t) is a finite energy signal, that is,

E =
∫
∞

−∞

|xa(t)|2dt < ∞ (17.1)

then its Fourier transform exists and is given by,

Xa( f ) =
∫
∞

−∞

xa(t)e− j2π f t dt. (17.2)

From Parseval’s theorem, we have

E =
∫
∞

−∞

|xa(t)|2dt =
∫
∞

−∞

|Xa( f )|2d f. (17.3)

The quantity |Xa( f )|2 represents the distribution of the signal energy as a
function of the frequency, and hence is called the energy spectrum density (ESD)
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of the signal, denoted as Sxx ( f ), which is given as,

Sxx ( f ) = |Xa( f )|2. (17.4)

The total energy (E) in the signal is simply the integral of Sxx ( f ) over all f .
It is also interesting to note that Sxx ( f ) can be viewed as the Fourier transform

(FT) of another function rxx (τ ), the autocorrelation function of the finite energy
signal xa(t), defined as

rxx (τ ) =

∫
∞

−∞

x∗a (t)xa(t + τ)dτ. (17.5)

Indeed, it easily follows that,∫
∞

−∞

rxx (τ )e− j2π f τdτ = Sxx ( f ) = |Xa( f )|2 (17.6)

so that rxx (τ ) and Sxx ( f ) are a Fourier transform pairs.
Now suppose that we compute the ESD of the signal xa(t) from its samples

(x[n], −∞ < n <∞) taken at the rate fs ( fs > 2B, B is the bandwidth of the
signal in Hz). We have the FT,

X (ω) =
∞∑

n=−∞

x[n]e− jωn (17.7)

or, equivalently,

X ( f ) =
∞∑

n=−∞

x[n]e− j2π f nTs . (17.8)

Recall that X ( f ) can be expressed in terms of Xa( f ) as

X ( f ) = fs

∞∑
k=−∞

Xa( f − k fs). (17.9)

In the absence of aliasing, within the fundamental frequency range | f | ≤ fs/2, we
have

X ( f ) = fs Xa( f ), | f | ≤ fs/2. (17.10)

Hence the spectrum of the sampled signal is identical to the spectrum of the analog
signal. As a result, the ESD of the sampled signal is

Sxx ( f ) = |X ( f )|2 = f 2
s |Xa( f )|2. (17.11)



410 Power Spectrum Estimation

Figure 17.1. Two ways of estimation of the ESD.

We can proceed further by noting that the autocorrelation of the sampled signal
defined by,

rxx [k] =
∞∑

n=−∞

x∗[n]x[n + k] (17.12)

has the Fourier transform (Wiener-Khinchin theorem)

Sxx ( f̃ ) =
∞∑

k=−∞

rxx [k]e− j2πk f̃ , (17.13)

where f̃ = f
fs

, fs is the sampling frequency. Hence the ESD can be obtained by
the Fourier transform of the autocorrelation of sequence x[n]. So, there are two
distinct methods for computing the ESD of the signal xa(t) from its samples x[n]
(See Fig. 17.1). One is the direct method, where we compute the Fourier transform
of x[n] and then

Sxx ( f̃ ) = |X ( f̃ )|2 =

∣∣∣∣∣
∞∑

n=−∞

x[n]e− j2π f̃ n

∣∣∣∣∣
2

. (17.14)

The second approach is the indirect method, which requires two steps. First the
estimation of the autocorrelation rxx [k] using x[n] and then the Fourier transform
of rxx [k] to obtain the ESD (Eq. (17.13)).

In practice, however, we have only finite duration sequence x[n], 0 ≤ n ≤
N −1, for computing the spectrum of the signal. In effect, limiting the duration of
the sequence is equivalent to multiplying x[n] by a rectangular window of length
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Figure 17.2. Spectrum obtained by convolving an M = 61 rectangular window with the

ideal low pass spectrum in the example.

N . Thus we have,

x̃[n] = x[n]w[n] =
{

x[n] for 0 ≤ n ≤ N − 1
0 otherwise.

Recall that multiplication of two sequences in the time domain is equivalent to the
convolution of their spectra in the frequency domain. Hence,

X̃( f̃ ) = X ( f̃ )⊗W ( f̃ ) =
∫ 1/2

−1/2
X (α)W ( f̃ − α)dα. (17.15)

Recall from our discussion on filter design (Section 10.3.2) that convolution
of the window function W ( f̃ ) with X ( f̃ ) smoothes the spectrum, provided that
the spectrum of W ( f̃ ) is relatively narrow compared to X ( f̃ ). But this condition
implies that the window w[n] be sufficiently long (i.e., N must be large). More
over, even if W ( f̃ ) is narrow compared to X ( f̃ ), its convolution with the side-
lobes of W ( f̃ ) results in side-lobe energy (spectral leakage) in X̃( f̃ ), in frequency
bands where the actual spectrum is zero.

Example: A signal with spectrum

X ( f̃ ) =
{

1 for | f̃ | ≤ 0.1
0 otherwise.

is convolved with a rectangular window of length N = 61. The spectra X̃( f̃ )
is shown in Fig. 17.2. The width of the main lobe of the rectangular window is
4ω = 4π/61 or 4 f̃ = 2/61, which is narrow compared to X ( f̃ ). The energy
leakage due to the high side lobe levels as well as broadening (smearing) of X ( f̃ )
outside the range (| f̃ | ≤ 0.1) is clearly seen.
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Figure 17.3. Spectrum obtained by convolving an M = 61 Blackman window with the ideal

low pass spectrum in the example.

Figure 17.4. Two narrow-band signal spectra.

If we use another window (for example, the Blackman window) instead of the
rectangular window, the spectrum X̃( f̃ ) will be as sown in Fig. 17.3. Here, the
leakage has been reduced considerably, however, the spectrum has been widened
by almost 50%.

So, the spectral leakage can be reduced by choosing windows that have low
side-lobes. Though such window functions reduce the side-lobes, they result in
an increase in smoothing or broadening the spectral characteristics of X ( f̃ ).
This will be a problem in cases where we wish to resolve signals with closely
spaced frequency components. For example, the signals with spectral character-
istic X ( f̃ ) = X1( f̃ )+ X2( f̃ ), as shown in Fig. 17.4 cannot be resolved as two
separate signals unless the width of the window function is significantly narrower
than the frequency separation 4 f̃ .

It is clear that the ESD of the windowed sequence x̃[n] is an approximation
of the desired spectrum of the sequence x[n]. The spectral density obtained from
x̃[n] is

Sx̃ x̃ ( f̃ ) = |X̃( f̃ )|2 =

∣∣∣∣∣
N−1∑
n=0

x̃[n]e− j2π f̃ n

∣∣∣∣∣
2

. (17.16)
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The spectrum given by Eq. (17.16) can be computed numerically at a set of N
frequency points by means of the DFT. Thus (for k = 0, 1, . . . , N − 1),

X̃ [k] =
N−1∑
n=0

x̃[n]e
− j2π

(
k
N

)
n
. (17.17)

Then

|X̃ [k]|2 = Sx̃ x̃ ( f̃ )| f̃=k/N = Sx̃ x̃

(
k
N

)
(17.18)

and hence

Sx̃ x̃

(
k
N

)
=

∣∣∣∣∣
N−1∑
n=0

x̃[n]e
− j2π

(
k
N

)
n

∣∣∣∣∣
2

, (17.19)

which is a distorted version of the true spectrum Sxx
( k

N

)
.

In the next section, we are going to discuss the power spectrum estimation of
stationary random/stochastic signals.

17.2 Estimation of the Autocorrelation and Power
Spectrum of Random Signals: The Periodogram

The finite energy signals considered in the previous section has Fourier transform
possible and are characterized by the ESD. On the other hand, the stationary ran-
dom process do not have finite energy and hence do not possess a Fourier transform.
Such signals have finite average power and hence are characterized by the power
spectral density (PSD). If x(t) is a stationary random process, its autocorrelation
function is,

γxx (τ ) = E[x∗(t)x(t + τ)]. (17.20)

The PSD is the Fourier transform of the autocorrelation function1

0xx ( f ) =
∫
∞

−∞

γxx (τ )e− j2π f τdτ. (17.21)

In practice, we may have only one realization of the random process from which
we have to estimate the power spectrum of the process. Also, we do not know
γxx (τ ) and as a result, Eq. (17.21) cannot be computed to obtain 0xx ( f ). On

1. By Wiener-Khintchin theorem.
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the other hand, from one realization of the random process, we can compute the
time-averaged autocorrelation function,

γ̃xx (τ ) =
1

2T0

∫ T0

−T0

x∗(t)x(t + τ)dt, (17.22)

where 2T0 is the observation interval. If the stationary random process is ergodic in
the mean and autocorrelation function, then

γxx (τ ) = lim
T0→∞

γ̃xx (τ )

= lim
T0→∞

1
2T0

∫ T0

−T0

x∗(t)x(t + τ)dt. (17.23)

Furthermore, the Fourier transform of γ̃xx (τ ) provides an estimate 0̃xx ( f ) of the
PSD, that is,

0̃xx ( f ) =
∫ T0

−T0

γ̃xx (τ )e− j2π f τdτ

=
1

2T0

∫ T0

−T0

[∫ T0

−T0

x∗(t)x(t + τ)dt
]

e− j2π f τdτ

=
1

2T0

∣∣∣∣∫ T0

−T0

x(t)e− j2π f t dt
∣∣∣∣2 . (17.24)

The actual PSD is the expected value of 0̃xx ( f ) in the limiting case,

0xx ( f ) = lim
T0→∞

E

[
1

2T0

∣∣∣∣∫ T0

−T0

x(t)e− j2π f t dt
∣∣∣∣2
]
. (17.25)

From Eq. (17.22) and Eq. (17.24), we see that there are two possible approaches
to compute 0̃xx ( f ), the direct method as given by Eq. (17.24) and the indirect
method, in which first obtain γ̃xx (τ ) (Eq. (17.22)) and then compute its Fourier
transform to find the PSD.

We shall now consider the estimation of the power spectrum from samples
x[n] (0 ≤ n ≤ N − 1) of a single realization of the random process. We assume
that the signal is sampled at fs > 2B, where B is the highest frequency contained
in the PSD of the random process.

The time-averaged autocorrelation sequence is (unbiased estimate)

γ̃ ′xx [m] =
1

N − m

N−m−1∑
n=0

x∗[n]x[n + m], m = 0, 1, . . . , N − 1 (17.26)



Estimation of the Autocorrelation and Power Spectrum 415

and for negative values of m, we have γ̃ ′xx [m] = [γ̃ ′xx [−m]]∗. Then we compute
the Fourier transform

0̃′xx ( f̃ ) =
N−1∑

m=−N+1

γ̃ ′xx [m]e− j2π f̃ m . (17.27)

The normalization factor N − m in Eq. (17.26) results in an estimate with mean
value

E[γ̃ ′xx [m]] =
1

N − m

N−m−1∑
n=0

E[x∗[n]x[n + m]]

= γxx [m], (17.28)

where γxx [m] is the true (statistical) autocorrelation of the sequence x[n]. Hence,
γ̃ ′xx [m] is an unbiased estimate and its variance is approximately,2

var[γ̃ ′xx [m]] ≈
N

[n − m]2

∞∑
n=−∞

[
|γxx [n]|2 + γ ∗xx [n − m]γxx [n + m]

]
.

(17.29)
Clearly, limN→∞ var[γ̃ ′xx [m]] = 0 provided that

∑
∞

n=−∞ |γxx [n]|2 < ∞.
Since E[γ̃ ′xx [m]] = γxx [m] and the variance of the estimate converges to zero as
N →∞, the estimate γ̃ ′xx [m] is said to be consistent.

For large values of m, the estimate γ̃ ′xx [m] in Eq. (17.26) has a large variance,
especially when m approaches N . Because in this case, only fewer number of data
points are available for the estimate. As an alternative to Eq. (17.26), one could use

γ̃xx [m] =


1
N

N−m−1∑
n=0

x∗[n]x[n + m] for 0 ≤ m ≤ N − 1

1
N

N−1∑
n=|m|

x∗[n]x[n + m] for m = −1,−2, . . . , 1− N

(17.30)

2. This result is given by Jenkins and Watts (Spectral Analysis and its Applications, Holden-Day San Francisco,
1968).
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which has a bias of |m|γxx [m]
N , since its mean value is

E[γ̃xx [m]] =
1
N

N−m−1∑
n=0

E[x∗[n]x[n + m]]

=
N − |m|

N
γxx [m] =

(
1−
|m|
N

)
γxx [m]. (17.31)

However, this estimate has a smaller variance given approximately as (because
1
N ≤

N
[n−m]2 )

var[γ̃xx [m]] ≈
1
N

∞∑
n=−∞

[
|γxx [n]|2 + γ ∗xx [n − m]γxx [n + m]

]
. (17.32)

We observe that γ̃xx [m] is asymptotically unbiased, that is lim
N→∞

E[γ̃xx [m]] =

γxx [m] and its variance converges to zero as N →∞. Hence, the estimate γ̃xx [m]
is also a consistent estimate of γxx [m].

We shall use the estimate γ̃xx [m] (Eq. (17.30)) in our treatment of power spec-
trum estimation and the estimate of the PSD is

0̃xx ( f̃ ) =
N−1∑

m=−(N−1)

γ̃xx [m]e− j2π f̃ m . (17.33)

Substituting for γ̃xx [m] from Eq. (17.30), Eq. (17.33) becomes

0̃xx ( f̃ ) =
1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e− j2π f̃ n

∣∣∣∣∣
2

=
1
N
|X ( f̃ )|2, (17.34)

where X ( f̃ ) is the Fourier transform of x[n]. This well-known form of the PSD
estimate is called the periodogram.3

An illustration of the periodogram approach to the PSD estimation of a data
x[n] of length N samples is provided in Fig. 17.5.
From Eq. (17.33), the average value of the periodogram estimate 0̃xx ( f̃ ) is

E[0̃xx ( f̃ )] = E

 N−1∑
m=−(N−1)

γ̃xx [m]e− j2π f̃ m



3. Introduced by Schuster (1898) to detect and measure “hidden periodicities” of the data.
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Figure 17.5. Periodogram approach to the estimation of PSD.

=

N−1∑
m=−(N−1)

E[γ̃xx [m]]e− j2π f̃ m

=

N−1∑
m=−(N−1)

(
1−
|m|
N

)
γxx [m]e− j2π f̃ m (17.35)

The interpretation that we give to Eq. (17.35) is that the mean of the estimated
spectrum is the Fourier transform of the windowed autocorrelation function,

˜̃γxx [m] =
(

1−
|m|
N

)
γxx [m], (17.36)

where the window function is the triangular (Bartlett) window. Hence

E[0̃xx ( f̃ )] =
∞∑

m=−∞

˜̃γxx [m]e− j2π f̃ m
=

∫ 1/2

−1/2
0xx (α)WB( f̃ − α)dα

(17.37)

where WB( f̃ ) is the spectral characteristics of the Bartlett window. The relation
in Eq. (17.37) shows that the mean of the estimated spectrum is the convolution
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of the true PSD 0xx ( f̃ ) with WB( f̃ ). Hence, the mean of the estimated power
spectrum is a smoothed version of the true spectrum and it suffers the spectral
leakage problems.

We observe that the estimated spectrum is asymptotically unbiased, that is,

lim
N→∞

E

 N−1∑
m=−(N−1)

γ̃xx [m]e− j2π f̃ m

 = ∞∑
m=−∞

γxx [m]e− j2π f̃ m
= 0xx ( f̃ )

However, in general, the variance of the estimate 0̃xx ( f̃ ) does not decay to zero
as N →∞. For example, when the data sequence is Gaussian random process, the
variance is easily shown to be [5],

var [0̃xx ( f̃ )] = 02
xx ( f̃ )

1+

(
sin 2π f̃ N

N sin 2π f̃

)2
, (17.38)

which in the limit as N →∞, becomes,

lim
N→∞

var [0̃xx ( f̃ )] = 02
xx ( f̃ ). (17.39)

Hence, we conclude that the periodogram is not a consistent estimate of the true
PSD (i.e., it does not converge to the true PSD).

17.2.1 Summary of the Periodogram based PSD Estimation

• The estimated autocorrelation γ̃xx [m] is a consistent estimate of the true
autocorrelation function.

• 0̃xx ( f̃ ), the periodogram which is the Fourier transform of γ̃xx [m] is not a
consistent estimate of the true PSD.

• It is observed that 0̃xx ( f̃ ) is an asymptotically unbiased estimate of 0xx ( f̃ ),
but for a finite duration sequence, the mean value of 0̃xx ( f̃ ) contains a bias,
which from Eq. (17.37) is evident as a distortion of the true power spectrum.

• The estimated spectrum suffers from the smoothing effects and the leakage
problem thus limiting the ability to resolve closely spaced frequencies.

17.2.2 Use of DFT in Power Spectrum Estimation

The estimated ESD, Sx̃ x̃ ( f̃ ) and the periodogram, 0̃xx ( f̃ ), provided in
Eqs. (17.16) and (17.34), respectively can be computed by the use of DFT and
FFT algorithms. If we have N data points, the DFT computation provides samples



Estimation of the Autocorrelation and Power Spectrum 419

of the periodogram

0̃xx

(
k
N

)
=

1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e
− j2π

(
k
N

)
n

∣∣∣∣∣
2

, k = 0, 1, . . . , N − 1 (17.40)

at frequencies f̃k =
k
N .

In practice, however, such a sparse sampling of the spectrum does not provide a
very good representation of the continuous spectrum estimate 0̃xx ( f̃ ). By padding
zeros, the effective length of the sequence is increased and the spectrum at other
frequencies are also can be estimated. Thus, if we increase the length of the sequence
to L points by zero padding, the L-point DFT is

0̃xx

(
k
L

)
=

1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e
− j2π

(
k
L

)
n

∣∣∣∣∣
2

, k = 0, 1, . . . , L − 1. (17.41)

It may be noted that increasing the data length by zero padding (L > N )
and computing DFT does not improve the frequency resolution4 in the spectral
estimate. It helps us to interpolate the spectral values at more frequency points.

Example: A sequence of N = 16 samples is obtained by sampling an analog signal
consisting of two frequency components. The resulting discrete-time signal is

x[n] = sin(2π(0.145)n)+ cos(2π(0.145+4 f̃ )n), n = 0, 1, . . . , 15,

(17.42)

where4 f̃ is the frequency separation. Evaluate the PSD, 0̃xx ( f̃ ) = 1
N |X ( f̃ )|2 at

the frequencies f̃k = k/L , k = 0, 1, . . . , L − 1 for L = 16, 32, 64, and 256 for
values of 4 f̃ = 0.06 and 0.01.

The evaluated PSD for the given cases are illustrated in Figs.17.6 and 17.7. In
Fig. 17.6, as you can see, the frequency separation between the two sinusoids is
4 f̃ = 0.06 and hence the DFT spectrum clearly show two peaks closer to the
actual frequencies of the sinusoids. Increasing the number of points in the DFT
does not improve the frequency resolvability, however, the spectrum becomes more
smoother. This is pretty clear in Fig. 17.7, where the frequency separation between
the two sinusoids is only 4 f̃ = 0.01. Here, the DFT spectrum fails to resolve
the two frequencies even though the DFT lengths has been increased to 256. The
spectrum, however, becomes smoother as in the first case.

4. Frequency resolution in the spectral estimate is determined by the data length N .
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Figure 17.6. Spectra of two sinusoids with frequency separation 4 f̃ = 0.06.

Figure 17.7. Spectra of two sinusoids with frequency separation 4 f̃ = 0.01.
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17.3 Non-parametric Methods for Power Spectrum
Estimation

These methods are the classical methods developed by Bartlett (1948), Blackman
and Tukey (1958), and Welch (1967). These methods make no assumption about
how the data were generated and hence the name non-parametric.

Since the estimates are based entirely on finite record of data (N ), the frequency
resolution of these methods is, at best, equal to the spectral width of the rectangular
window of length N , which is ≈1/N at the −3d B points.

First, we describe the estimates and then derive the mean and variance of each.

17.3.1 The Bartlett Method: Averaging the Periodograms

For reducing the variance in the periodogram approach, Bartlett suggested this
method and it involves three steps.

• The N -point sequence is subdivided into K non-overlapping segments of
length M . That is,

xi [n] = x[n + i M], (17.43)

where, i = 0, 1, . . . , K − 1 and n = 0, 1, . . . ,M − 1.
• Compute the periodogram for each segment.

0̃(i)xx ( f̃ ) =
1
M

∣∣∣∣∣
M−1∑
n=0

xi [n]e− j2π f̃ n

∣∣∣∣∣
2

, i = 0, 1, . . . , K − 1

(17.44)

• Average the periodograms for K segments to obtain the Bartlett power spec-
tral estimate

0̃B
xx ( f̃ ) =

1
K

K−1∑
i=0

0̃(i)xx ( f̃ ). (17.45)

An illustration of these steps in Bartlett method of power spectrum estimation
is provided in Fig. 17.8.
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Figure 17.8. Bartlett method to the estimation of PSD.

Now, the statistical properties of the power spectrum estimates can be easily
estimated.

Mean:

E[0̃B
xx ( f̃ )] =

1
K

K−1∑
i=0

E[0̃(i)xx ( f̃ )] (17.46)

= E[0̃(i)xx ( f̃ )]. (17.47)

From Eq. (17.35) and Eq. (17.37), we have the expected value of the single
periodogram as

E[0̃(i)xx ( f̃ )] =
M−1∑

m=−(M−1)

(
1−
|m|
M

)
γxx [m]e− j2π f̃ m

=
1
M

∫ 1/2

−1/2
0xx (α)

(
sinπ( f̃ − α)M

sinπ( f̃ − α)

)2

dα (17.48)
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where, WB( f̃ ) = 1
M

(
sinπ f̃ M
sinπ f̃

)2
is the frequency characteristics of the Bartlett

window.5

From Eq. (17.48), we observe that the true spectrum is now convolved with
WB( f̃ ). The effect of reducing the length of the data from N to M(= N

K ) results
in a window whose spectral width has been increased by a factor of K . As a result,
the frequency resolution has been reduced by a factor K . However, the advantage
is the reduced variance as shown below.

Variance:

var [0̃B
xx ( f̃ )] =

1
K 2

K−1∑
i=0

var [0̃(i)xx ( f̃ )]

=
1
K
var [0̃(i)xx ( f̃ )]. (17.49)

If we use Eq. (17.38) in Eq. (17.49), we get,

var [0̃B
xx ( f̃ )] =

1
K
02

xx ( f̃ )

1+

(
sin 2π f̃ M

M sin 2π f̃

)2
. (17.50)

This means that the variance of the Bartlett power spectrum estimate is reduced
by the factor K compared to the periodogram approach.

17.3.2 The Welch Method: Averaging Modified Periodogram

Welch made two modifications to the Bartlett method:

• Made the data segments to overlap, which can be represented as (for n =
0, 1, . . . ,M − 1 and i = 0, 1, . . . , L − 1):

xi [n] = x[n + i D] (17.51)

where i D is the starting point of the i th sequence. For example, if D = M/2,
there is 50% overlap between successive data segments.

• Window the data segments prior to computing the periodogram. The result
is a “modified” periodogram.

5. The Bartlett window is given by

wB [n] =
{

1− |m|M for |m| ≤ M − 1
0 otherwise
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Figure 17.9. Welch’s method to the estimation of PSD.

This is illustrated in Fig. 17.9.
The Welch power spectrum estimate is

0̃W
xx ( f̃ ) =

1
L

L−1∑
i=0

˜̃0(i)xx ( f̃ ) (17.52)

where,

˜̃0(i)xx ( f̃ ) =
1

MU

∣∣∣∣∣
M−1∑
n=0

xi [n]w[n]e− j2π f̃ n

∣∣∣∣∣
2

, i = 0, 1, . . . , L − 1

(17.53)

where U is a normalization factor for the power in the window function and is
selected as U = 1

M
∑M−1

n=0 w
2[n].
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Mean:

E[0̃W
xx ( f̃ )] =

1
L

L−1∑
i=0

E[ ˜̃0(i)xx ( f̃ )]

= E[ ˜̃0(i)xx ( f̃ )]. (17.54)

But the expected value of the modified periodogram is

E[ ˜̃0(i)xx ( f̃ )] =
1

MU

M−1∑
n=0

M−1∑
m=0

w[n]w[m]E[xi [n]x∗i [m]]e− j2π f̃ [n−m]

=
1

MU

M−1∑
n=0

M−1∑
m=0

w[n]w[m]γxx [n − m]e− j2π f̃ [n−m] (17.55)

Using γxx [n] =
∫ 1/2
−1/2 0xx (α)e j2παndα in Eq. (17.55), we get,

E[ ˜̃0(i)xx ( f̃ )] =
1

MU

∫ 1/2

−1/2
0xx (α) [bb] dα

=

∫ 1/2

−1/2
0xx (α)W ( f̃ − α)dα (17.56)

where,

bb =
M−1∑
n=0

M−1∑
m=0

w[n]w[m]e− j2π [n−m]( f̃−α) (17.57)

and by definition W ( f̃ ) = 1
MU

∣∣∣∑M−1
n=0 w[n]e− j2π f̃ n

∣∣∣2. The normalization factor

U ensures that
∫ 1/2
−1/2 W ( f̃ )d f̃ = 1.

Variance:

var [0̃W
xx ( f̃ )] =

1
L2

L−1∑
i=0

L−1∑
j=0

E[ ˜̃0(i)xx ( f̃ ) ˜̃0( j)
xx ( f̃ )]− {E[0̃W

xx ( f̃ )]}2 (17.58)

In the case of no overlap between successive data segments (i.e., L = K ), Welch
has shown that

var [0̃W
xx ( f̃ )] =

1
L
var [ ˜̃0(i)xx ( f̃ )]

≈
1
L
02

xx ( f̃ ). (17.59)
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In the case of 50% overlap between the data segments (L = 2K ), the variance
of the Welch power spectrum estimate with the Bartlett window is shown to be [5]

var [0̃W
xx ( f̃ )] ≈

9
8L
02

xx ( f̃ ). (17.60)

17.3.3 The Blackman and Tukey Method: Smoothing
the Periodogram

In this method, the sample autocorrelation sequence is windowed6 first and
then Fourier transformed to give the estimate of the power spectrum. Thus, the
Blackman-Tukey (BT) estimate is

0̃BT
xx ( f̃ ) =

M−1∑
m=−(M−1)

γ̃xx [m]w[m]e− j2π f̃ m (17.61)

where the window function w[n] has length 2M − 1 and zero for |m| ≥ M . With
this definition of w[n], the limits on the sum in Eq. (17.61) can be extended to
(−∞,∞). Hence the frequency domain equivalent expression for Eq. (17.61) is
the convolution integral

0̃BT
xx ( f̃ ) =

∫ 1/2

−1/2
0̃xx (α)W ( f̃ − α)dα (17.62)

where 0̃xx ( f̃ ) is the periodogram. It is clear from Eq. (17.62) that the effect of
windowing the autocorrelation is to smooth the periodogram estimate, thus decreasing
the variance in the estimate at the cost of reducing the resolution. An illustration
of the proposed method is provided in Fig. 17.10.

The window function w[n] should be symmetric (even) about n = 0 to ensure
that the estimate of the power spectrum is real. Furthermore, it is desirable to select
the window spectrum to be non-negative, that is, W ( f̃ ) ≥ 0, | f̃ | ≤ 1/2. This
condition ensures that the estimated spectrum 0̃BT

xx ( f̃ ) ≥ 0 for | f̃ | ≤ 1/2, which
is a desirable property of any spectral estimate.

Mean:

E[0̃BT
xx ( f̃ )] =

∫ 1/2

−1/2
E[0̃xx (α)]W ( f̃ − α)dα. (17.63)

6. The rationale for windowing γ̃xx [m] is that, for large lags, the estimation are less reliable because a smaller
number (N − m) of data points enter the estimate. For m → N , the variance of γ̃xx [m] is very high and
hence the estimates should be given less weighting.
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Figure 17.10. Blackman and Tukey method to the estimation of PSD.

Substituting for E[0̃xx (α)] (from Eq. (17.37)) in the above equation, we get the
double convolution integral

E[0̃BT
xx ( f̃ )] =

∫ 1/2

−1/2

∫ 1/2

−1/2
0xx (θ)WB(α − θ)W ( f̃ − α)dαdθ. (17.64)

Equivalently, in the time domain, the expected value is

E[0̃BT
xx ( f̃ )] =

M−1∑
m=−(M−1)

E[γ̃xx [m]]w[m]e− j2π f̃ m

=

M−1∑
m=−(M−1)

γxx [m]wB[m]w[m]e− j2π f̃ m

(17.65)

where wB[n] is the Bartlett window. Clearly, the length of w[n] should be such
that M � N . That is, w[n] should be narrower than wB[n] to provide additional
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smoothing of the periodogram. Under this condition, Eq. (17.64) becomes,7

E[0̃BT
xx ( f̃ )] ≈

∫ 1/2

−1/2
0xx (θ)W ( f̃ − θ)dθ. (17.66)

The mean of the PSD estimate using Blackman and Tukey method is a
smoothed PSD.
Variance: The approximate expression for the variance is given by [5],

var [0̃BT
xx ( f̃ )] ≈ 02

xx ( f )
[

1
N

∫ 1/2

−1/2
W 2(θ)dθ

]

≈ 02
xx ( f )

 1
N

M−1∑
m=−(M−1)

w2[m]

. (17.67)

The following table gives an overview of the mean and variance of the power
estimates using the different non-parametric methods discussed in this section.

Method Mean Variance

Periodogram
∫ 0.5
−0.5 0xx (α)WB( f̃ − α)dα 02

xx ( f̃ )
[

1+
(

sin 2π f̃ N
N sin 2π f̃

)2
]

Bartlett 1
M

∫ 0.5
−0.5 0xx (α)WB( f̃ − α)dα 1

K 0
2
xx ( f̃ )

[
1+

(
sin 2π f̃ N
N sin 2π f̃

)2
]

Welch
∫ 0.5
−0.5 0xx (α)W ( f̃ − α)dα ≈

1
L0

2
xx ( f̃ ) (no overlap)

Blackman
∫ 0.5
−0.5 0xx (α)W ( f̃ − α)dα 02

xx ( f̃ )
[

1
N

∫ 0.5
−0.5 W 2(θ)dθ

]
& Tukey

17.3.4 Performance Characteristics of Non-parametric Power
Spectrum Estimates

The quality of the Bartlett, Welch, and Blackman and Tukey power spectral esti-
mates are compared by using the ratio of the square of mean of the power spectrum
estimates to its variance as shown in the equation below:

Q A =
{E[0̃A

xx ( f̃ )]}2

var [0̃A
xx ( f̃ )]

(17.68)

7. Since
∫ 1/2
−1/2 WB(α − θ)W ( f̃ − α)dα =

∫ 1/2
−1/2 WB(α)W ( f̃ − θ − α)dα ≈ W ( f̃ − θ).
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where, A = B, W or BT for the three power spectrum estimates. Table below
shows this comparison. It also shows the FFT based computational requirement for
each of these methods. Here N is the length of the data and 4 f̃ is the frequency
resolution (measured at the −3d B point).

Asymptotically, the periodogram is characterized by the quality factor

Q P =
02

xx ( f )
02

xx ( f )
= 1. (17.69)

It is fixed (= 1) and independent of data length N (another indication of poor
quality of power spectrum estimation using periodogram).

Computational
Methods Quality Factor Requirements (FFT)

Bartlett 1.11N4 f̃ N
2 log2

0.9
4 f̃

Welch ( 50% overlap) 1.39N4 f̃ N log2
5.12
4 f̃

Blackman-Tukey 2.34N4 f̃ N log2
1.28
4 f̃

We end the non-parametric methods of power spectrum estimation here. In the
next section, the some of the modern (parametric) methods of power spectrum
estimation are discussed.

17.4 Parametric Methods for Power Spectrum Estimation

The non-parametric methods for the power estimation are relatively simple, well
understood, and easy to compute using DFT or FFT. However, they have the fol-
lowing limitations:

• They require long data records to get better frequency resolution.
• They suffer from spectral leakage due to windowing. This often masks the

weak signals that are present in the data.
• The inherent assumption that the autocorrelation estimate γ̃xx [m] is zero for

m ≥ N (where N is the data length) is unrealistic. This assumption limits
the frequency resolution and the quality of the power spectrum estimate.

• The inherent assumption that the data are periodic with period N in the
periodogram estimate is unrealistic.

The parametric methods do not require such assumptions. In fact, these meth-
ods extrapolate γ̃xx [m] for m ≥ N . Extrapolation is possible if we have some a
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priori information on how the data were generated. Hence, a model for the signal
generation is constructed using a number of parameters from the observed data.
The model and the estimated parameters are then used to compute the PSD. The
modeling approach eliminates the need for windowing and hence avoid the spec-
tral leakage which provides a better frequency resolution compared to the FFT
approach. This is especially better for time-varying or transient process where the
data length (N ) is very short and limited.

The parametric methods are based on modeling the data sequence x[n] as the
output of a linear system characterized by a rational system function of the form

H(z) =
B(z)
A(z)

=

∑q
k=0 bkz−k

1+
∑p

k=1 akz−k
. (17.70)

The corresponding difference equation is

x[n] = −
p∑

k=1

ak x[n − k]+
q∑

k=0

bkw[n − k], (17.71)

wherew[n] is the input sequence to the system and x[n] is the output of the system
which is observable.

If x[n] is characterized as stationary random process, then w[n] is also assumed
to be stationary random process and hence the PSD of the data is

0xx ( f̃ ) = |H( f̃ )|20ww( f̃ ), (17.72)

where 0ww( f̃ ) is the PSD of w[n] and H( f̃ ) is the frequency response of the
model.

Since our objective is to estimate 0xx ( f̃ ), it is convenient to assume that w[n]
is zero mean white noise sequence with autocorrelation γww[m] = σ 2

wδ[m], where
σ 2
w = E[|w[n]|2] is the variance. Then,

0xx ( f̃ ) = σ 2
w|H( f̃ )|2 = σ 2

w

|B( f̃ )|2

|A( f̃ )|2
. (17.73)

So, in the model-based (Parametric) approach, the spectrum estimation proce-
dure consists of two steps. First, from the data sequence {x[n]}, 0 ≤ n ≤ N − 1,
estimate the parameters {ak} and {bk} of the model. Then, from these estimates,
compute the power spectrum according to Eq. (17.73).

It may be noted that the random process x[n] generated by the pole-zero model
in Eq. (17.70) or Eq. (17.71) is called an ARMA process of order (p, q) and is
denoted as ARMA(p, q). If q = 0 and b0 = 1, the resulting system model has a
system function H(z) = 1/A(z) and its output x[n] is called an AR(p) process.
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The third possible model is obtained by setting A(z) = 1, so that H(z) = B(z).
The output of this system is called a MA(q) process.

Before describing the methods for estimating the parameters in AR(p), MA(q),
and ARMA(p, q) models, it is useful to establish the relationship between the
model parameters and the autocorrelation sequence γxx [m]. In addition, we relate
the AR model parameters to the coefficients in a linear predictor (LP) for the pro-
cess x[n].

17.4.1 Relationships Between the Autocorrelation
and the Model Parameters

For the ARMA(p, q) process, the relationship is given by [5],

γxx [m] =


−

p∑
k=1

akγxx [m − k] for m > q

−

p∑
k=1

akγxx [m − k]+ σ 2
w

∑q−m
k=0 h[k]bk+m for 0 ≤ m ≤ q

γ ∗xx [−m] for m < 0.
(17.74)

From Eq. (17.74), for m > q, the set of linear equations for determining the
model parameters {ak} are

(AA)


a1
a2
...

ap

 = −

γxx [q + 1]
γxx [q + 2]

...

γxx [q + p]

 (17.75)

where

AA =


γxx [q] γxx [q − 1] . . . γxx [q − p + 1]

γxx [q + 1] γxx [q] . . . γxx (q − p + 2)
...

...
...

...

γxx [q + p − 1] γxx [q + p − 2] . . . γxx [q]


An interpretation of the relationship in Eq. (17.75) is that the values of the auto-

correlation γxx [m] for m > q are uniquely determined from the pole parameters
{ak} and the values of γxx [m] for 0 ≤ m ≤ p. Hence, the linear system model
automatically extends the values of γxx [m] for m > p.

The {ak}’s obtained from Eq. (17.75) will not help in determining the MA
parameters {bk} as it requires the knowledge of the impulse response h[n].

If we adopt an AR(p) model for the observed data, the relationship between
the AR parameters and the autocorrelation is obtained form Eq. (17.74) by setting
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q = 0. Thus we get,

γxx [m] =


−

p∑
k=1

akγxx [m − k] for m > 0

−

p∑
k=1

akγxx [m − k]+ σ 2
w for m = 0

γ ∗xx [−m] for m < 0.

(17.76)

In this case, the AR parameters are obtained from the solution of the Yule-Walker
or normal equations (shown below).

γxx [0] γxx [−1] . . . γxx [−p + 1]
γxx [1] γxx [0] . . . γxx [−p + 2]
...

...
...

...

γxx [p − 1] γxx [p − 2] . . . γxx [0]




a1
a2
...

ap

 = −

γxx [1]
γxx [2]
...

γxx [p]


(17.77)

and the variance can be obtained from ( Eq. 17.76, m = 0)

σ 2
w = γxx [0]+

p∑
k=1

akγxx [−k] (17.78)

Usually, Eqs. (17.77) and (17.78) are combined into a single matrix equation as


γxx [0] γxx [−1] . . . γxx [−p]
γxx [1] γxx [0] . . . γxx [−p + 1]
...

...
...

...

γxx [p] γxx [p − 1] . . . γxx [0]




1
a1
...

ap

 =

σ 2
w

0
...

0

 (17.79)

It may be noted that the correlation matrix in Eq. (17.79) is Toeplitz,8 and it can
be efficiently inverted using the Levinson-Durbin algorithm.9

Thus all the system parameters in the AR(p) model are easily determined from
the knowledge of the autocorrelation sequence γxx [m] for 0 ≤ m ≤ p. Further-
more, Eq. (17.76) can be used to extend the autocorrelation sequences beyond
m > p, once the {ak} are obtained.

8. For a Toeplitz matrix, we have Ai, j = Ai−1, j−1, where Ai, j is the (i, j)th element of A.

9. This is a computationally efficient recursive algorithm for estimating the model parameters.
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For the MA(q) model for the observed data, the relationship between the auto-
correlation and {bk} are given by [5]

γxx [m] =


σ 2
w

∑q
k=0 bkbk+m for 0 ≤ m ≤ q

0 for m > q
γ ∗xx [−m] for m < 0.

(17.80)

17.4.2 AR Method of Power Spectrum Estimation

In this method, first estimate the AR parameters and then the power spectrum can
be estimated.

17.4.2.1 Yule-Walker Method of AR Power Spectrum Estimation

In this method, the biased estimate of the autocorrelation (Eq. (17.81)) is used
to ensure that the matrix is positive semi-definite and hence to ensure stable AR
model.

γ̃xx [m] =
1
N

N−m−1∑
n=0

x∗[n]x[n + m], m ≥ 0. (17.81)

The Levinson-Durbin algorithm [10] can be used to recursively estimate the
model parameters. The corresponding power spectrum estimate is

0̃Y W
xx ( f̃ ) =

σ̂ 2
wp

|1+
∑p

k=1 âp[k]e− j2π f̃ k |2
(17.82)

where âp[k] are the estimates of the AR parameters obtained from the Levinson-
Durbin recursion and

σ̂ 2
wp = Ê f

p = γ̃xx [0]
p∏

k=1

[
1− |âp[k]|2

]
(17.83)

is the estimated minimum mean-square value for the pth order predictor.

17.4.2.2 The Burg Method of AR Power Spectrum Estimation

The major advantages of Burg’s method are high frequency resolution, stability,
and computational efficiency [10]. This method is based on the minimization of
the forward and backward errors in linear predictors, with the constraint that the
AR parameters satisfy the Levinson-Durbin recursion.
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From the available data x[n], n = 0, 1, . . . , N − 1, let us consider the forward
and backward linear prediction estimates of order m, given as

x̂[n] = −
m∑

k=1

am[k]x[n − k] (17.84)

x̂[n − m] = −
m∑

k=1

a∗m[k]x[n + k − m] (17.85)

where am[k], 0 ≤ k ≤ m−1, m = 0, 1, . . . , p, are the predictor coefficients. The
corresponding forward and backward prediction errors are fm[n] = x[n]− x̂[n],
and gm[n] = x[n−m]− x̂[n−m], respectively. The least-squares error that is to
be minimized to estimate the prediction coefficients subject to the constraint that
it satisfies the Levinson-Durbin recursion is

εm =

N−1∑
n=m

[
| fm[n]|2 + |gm[n]|2

]
. (17.86)

The Levinson-Durbin recursion is given by (for 1 ≤ k ≤ m − 1 and
1 ≤ m ≤ p),

am[k] = am−1[k]+ Kma∗m−1[m − k] (17.87)

where Km = am[m] is the mth reflection coefficient in the lattice filter realization
of the predictor. The minimization of εm with respect to the complex-valued Km
results in (for m = 1, 2, . . . , p),

K̂m =
−
∑N−1

n=m fm−1[n]g∗m−1[n − 1]
1
2
∑N−1

n=m
[
| fm−1[n]|2 + |gm−1[n − 1]|2

] . (17.88)

The term in the numerator of Eq. (17.88) is an estimate of the cross-correlation
between the forward and backward prediction errors. With the normalization factor
in the denominator, it is apparent that Km < 1, so that the all-pole model obtained
is stable.

We note that the denominator in Eq. (17.88) is simply the least-squares esti-
mate of the forward and backward errors, E f

m−1 and Eb
m−1, respectively. Hence

Eq. (17.88) can be expressed as (for m = 1, 2, . . . , p)

K̂m =
−
∑N−1

n=m fm−1[n]g∗m−1[n − 1]
1
2

[
Ê f

m−1 + Êb
m−1

] , (17.89)
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where Ê f
m−1 + Êb

m−1 = Êm is an estimate of the total squared error Em . It was
shown that the denominator term in Eq. (17.89) can be computed in a recursive
fashion according to [10]

Êm = (1− |K̂m |
2)Êm−1 − | fm−1[m − 1]|2 − |gm−1[m − 2]|2 (17.90)

To summarize, the Burg algorithm computes the reflection coefficients in the
equivalent lattice structure as specified by Eqs. (17.89) and (17.90), and the
Levinson-Durbin algorithm is used to obtain the AR parameters. The power spec-
trum estimate is,

0̃BU
xx ( f̃ ) =

Ê p

|1+
∑p

k=1 âp[k]e− j2π f̃ k |2
. (17.91)

17.4.2.3 Selection of AR Model Order (p)

How do we choose the value of p? Too low an order result in a highly smoothed
spectrum and too high a value introduce spurious peaks in the spectrum. The mean-
square value of the residual error (σ̂ 2

wp) can be used as a measure to choose an
optimum model order. The characteristics of this error is that it decreases as the
model order increases. We can monitor the rate of decrease and decide to terminate
the process when the rate of decrease becomes relatively slow.

Some of the popular methods are:

• Akaike’s final prediction error (FPE) criteria, where the order is selected to
minimize the performance index

F P E(p) = σ̂ 2
wp

(
N + p + 1
N − p − 1

)
, (17.92)

where σ̂ 2
wp is the estimated variance of the linear prediction (one-step) error.

• Akaike’s Information Criteria (AIC), based on selecting the order that
minimizes

AI C(p) = ln σ̂ 2
wp +

2p
N
. (17.93)

Note that σ̂ 2
wp decreases and therefore ln σ̂ 2

wp also decreases as p increases.

However, 2p
N increases in p. Hence, a minimum value is obtained for some

p.
• Rissanen’s Minimum Description Length (MDL) criteria, where MDL is

defined as

M DL(p) = N ln σ̂ 2
wp + p ln N . (17.94)
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• Parzen’s Criterion Autoregressive Transfer (CAT), defined as

C AT (p) =

(
1
N

p∑
k=1

1
σ̄ 2
wk

)
−

1
σ̂ 2
wp
, (17.95)

where

σ̄ 2
wk =

N
N − k

σ̂ 2
wk . (17.96)

The order p corresponding to the minimum of C AT (p) is to be chosen as
the AR order.

17.4.3 MA Model for Power Spectrum Estimation

The parameters in an MA(q) model are related to the statistical autocorrelation
γxx [m] by Eq. (17.80). However,

B(z)B(z−1) = D(z) =
q∑

m=−q

dmz−m (17.97)

where the coefficients {dm} are related to the MA parameters by [5]

dm =

q−|m|∑
k=0

bkbk+m, |m| ≤ q. (17.98)

Clearly, then (from Eq. (17.80)),

γxx [m] =
{
σ 2
wdm for |m| ≤ q

0 for |m| > q
(17.99)

and the power spectrum for the MA(q) process is

0M A
xx ( f̃ ) =

q∑
m=−q

γxx [m]e− j2π f̃ m . (17.100)

It is clear from these equations that we do not have to solve for the MA param-
eters {bk} to estimate the power spectrum. The estimate γ̃xx [m] for |m| ≤ q is
enough. From such estimates, we can compute the MA power spectrum, given by

0̃M A
xx ( f̃ ) =

q∑
m=−q

γ̃xx [m]e− j2π f̃ m . (17.101)
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§ An alternative method for determining {bk} is based on a high order AR approximation
to MA process.

The order q of the MA model may be determined empirically by AIC as
described in the previous subsection. The criteria is to choose the order which gives
the minimum of

AI C[q] = ln σ̂ 2
wq +

2q
N
, (17.102)

where σ̂ 2
wq is an estimate of the variance of the white noise.

17.4.4 ARMA Model for Power Spectrum Estimation

The ARMA model is particularly appropriate when the signal has been corrupted
by noise. For example, suppose that the data x[n] is generated by an AR system,
where the system output is corrupted by white noise. The z-transform of the auto-
correlation of the resultant signal can be expressed as

0xx (z) =
σ 2
w

A(z)A(z−1)
+ σ 2

n

=
σ 2
w + σ

2
n A(z)A(z−1)

A(z)A(z−1)
(17.103)

where σ 2
n is the variance of the additive noise. Therefore the process x[n] is

ARMA(p, p), where p is the order of the AR process.
From Eq. (17.75), for lags |m| > q, the equation involves only the AR param-

eters. Using the estimates of γxx [m], we can solve Eq. (17.77) to obtain âk . For
high-order models, however, this approach is likely to provide poor estimates of
the parameters because of the poor estimates of the autocorrelation values at larger
lags. Hence, this method is not recommended.

A more reliable method is to construct an over-determined set of linear equa-
tions for m > q, and to use the method of least-squares [14]. To elaborate, suppose
the autocorrelation (γxx [m]) can be accurately estimated up to lag M > p + q.
Then, we can write the following set of linear equations:

(AAA)


a1
a2
...

ap

 = −

γxx [q + 1]
γxx [q + 2]

...

γxx [m]

 (17.104)
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where

AAA =


γxx [q] γxx [q − 1] . . . γxx [q − p + 1]

γxx [q + 1] γxx [q] . . . γxx (q − p + 2)
...

...
...

...

γxx [M − 1] γxx [M − 2] . . . γxx [M − p]


or equivalently,

Rxx a = −rxx (17.105)

where Rxx is the matrix of autocorrelations, rxx is the vector of autocorrelations,
and a is the vector of AR parameters.

Since the autocorrelation matrix Rxx is of dimension (M − q) × p, and M −
q > p, we can use the least-squares criterion to solve for the parameter vector a.
The result is,

â = −(RT
xx Rxx )

−1RT
xx rxx (17.106)

This procedure is called the least-squares modified Yule-Walker method. A weight-
ing factor can also be applied to the autocorrelation sequence to deemphasize the
less reliable estimates for large lags.

Once the parameters for the AR part of the model have been estimated as indi-
cated above, we have the system

Â(z) = 1+
p∑

k=1

âkz−k . (17.107)

The sequence x[n] can now be filtered by the FIR filter Â(z) to yield the
sequence

v[n] = x[n]+
p∑

k=1

âk x[n − k], n = 0, 1, . . . , N − 1. (17.108)

The cascade of the ARMA(p, q) model with Â(z) is approximately the MA(q)
process generated by B(z). Hence we can apply the MA estimate given in the pre-
ceding section to obtain the MA spectrum. To be specific, the filtered sequence
v[n] for p ≤ n ≤ N − 1 is used to form the estimated correlation sequences
γ̃vv[m], from which we obtain the MA spectrum

0̃M A
vv ( f̃ ) =

q∑
m=−q

rvv[m]e− j2π f̃ m . (17.109)
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Finally, the estimated ARMA power spectrum is

0̃ARM A
xx ( f̃ ) =

0̃M A
vv ( f̃ )

|1+
∑p

k=1 âke− j2π f̃ k |2
. (17.110)

The order (p, q) of the ARMA model can be selected by using the following
AIC index:

AI C(p, q) = ln σ̂ 2
wpq +

2(p + q)
N

(17.111)

where σ̂ 2
wpq is an estimate of the variance of the input error.

17.5 Discrete-Time White Noise

In Chapter 15, we studied about continuous-time white noise. In this section, we
shall study about discrete-time white noise. A discrete-time signal x[n] is said to be a
white noise if its power spectrum is flat over the complete frequency range. That is, the
power spectrum is given by

0xx ( f̃ ) = σ 2
x − 0.5 ≤ f̃ < 0.5. (17.112)

Here, f̃ denotes the normalized frequency. Since x[n] is a discrete-time signal, its
power spectrum 0xx ( f̃ ) is periodic with period equal to 1 (i.e., normalized sampling
frequency). Consequently, the power of x[n] is given by,

px =

∫ 0.5

−0.5
0xx ( f̃ )d f̃ = σ 2

x . (17.113)

Taking the inverse DTFT of the power spectrum, we get the autocorrelation of
x[n] as

γxx [m] = x[n]x[n + m] = σ 2
x δ[m] (17.114)

This implies that

γxx [m] =
{
σ 2

x if m = 0
0 if m 6= 0.

(17.115)

where m is an integer. Thus, the samples of a discrete-time white noise are com-
pletely uncorrelated with each other. Equation (17.112) requires that the mean of
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x[n] must be zero. Therefore, for discrete-time white noise, we have

Power spectrum, 0xx ( f̃ ) = σ 2
x for all f̃ (17.116)

Autocorrelation, γxx [m] = σ 2
x δ[m] (17.117)

Mean, mx = 0 (17.118)

Power, px = |x[n]|2 = σ 2
x (17.119)

Variance, σ 2
x = |x[n]− mx |2 = px . (17.120)

Thus, while the continuous-time white noise is an idealistic signal that does not
exist in practice (nor can it be physically generated), the discrete-time white noise
can be generated.10

17.6 DFT for Spectrum Estimation

In Chapter 12, we introduced the discrete Fourier transform (DFT) as a practical
tool for estimating the spectra of signals. Recall the following from our study on
DFT.

• The DFT computes the spectrum at discrete frequencies, which are equally spaced,
based on finite data records. The spacing between the frequencies are given by
1/N where N is the length of the data record.

• The DFT treats the finite data record {x[0], x[1], x[2], · · · , x[N −1]} as one
period of a periodic signal with period N .

• The DFT spectrum, X [k], is equivalent to sampling the DTFT spectrum, X ( f ),
of the finite data record {x[0], x(1), x(2), · · · , x[N − 1]} at frequencies given
by 0, 1/N , 2/N , · · · , (N − 1)/N .

• The DFT of a sinusoidal signal will indicate the actual frequencies of the sinusoids
only if the normalized frequencies of the sinusoids fall exactly on the frequencies
at which the DFT is evaluated.

Thus, when we use DFT to do spectrum estimation, we must know how the period-
icity assumption of DFT and the value of N affect the estimated spectrum. There-
fore, in the following sections, the objective is to throw light on the various trade-offs
that result from the periodicity assumption in DFT and the choice of N .

10. Let the power of a discrete-time white noise be σ 2
x and let the underlying sampling frequency be fs . Then,

in terms of un-normalized frequency, the power spectral density of the discrete-time white noise is given by
σ 2

x / fs
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By studying these sections, we should be able to receive clarity and understanding
on the following.

• Why windows are required in spectrum estimation? Which are the typical
window functions?

• How does the choice of the window function and the value of N control the
trade-off between spectral resolution and spectral leakage?

• When should leakage be given priority over resolution?
• How does the choice of N affect frequency and time resolutions?
• Issues that underlie spectral smoothing.

17.7 Windows and Spectrum Estimation

Let x[n] denote the samples of a continuous-time signal of very large duration. In a
particular experiment, we capture N samples of this signal and are given by

y[n] = x[n] for n = 0, 1, . . . , N − 1. (17.121)

We can also express the measured signal as

y[n] = x[n]w[n] (17.122)

where

w[n] =
{

1 for n = 0, 1, . . . , N − 1
0 otherwise

(17.123)

is known as a rectangular window of duration N . Thus, we find that

y[n] =
{

x[n] for n = 0, 1, . . . , N − 1
0 otherwise

(17.124)

Thus, the window function makes y[n] to be zero outside the time-span of the window.

17.7.1 Periodicity Assumption of DFT

Using Eq. (17.122), we can express the spectrum (DTFT) of y[n] as

Y ( f̃ ) = X ( f̃ )�W ( f̃ ) =
∫ 0.5

−0.5
X (u)W ( f̃ − u)du. (17.125)
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Figure 17.11. Illustration of windowing on the computed spectrum of a complex sinusoid

at normalized frequency 0.4. (a) X ( f̃ ) is the actual spectrum of the complex sinusoid,

(b) W ( f̃ ) is the spectrum of the rectangular window for length N = 25, and (c) Y ( f̃ ) =
W ( f̃ − 0.4) is the computed spectrum of the complex sinusoid based on N = 25 samples.

All the spectra are computed using the expression of DTFT.

For the sake of illustration, we choose x[n] = e j2π f̃1n , i.e., a complex sinusoid at
normalized frequency f̃1. Then, we have

x[n] = e j2π f̃1n and X ( f̃ ) = δ( f̃ − f̃1). (17.126a)

Using Eq. (17.126a) in Eq. (17.125), we get

Y ( f̃ ) =
∫ 0.5

−0.5
δ(u − f̃1)W ( f̃ − u)du = W ( f̃ − f̃1). (17.126b)

Thus, because of the finite data effect, the spectrum of the complex sinusoid computed
based on N samples is given by the shifted spectrum of the window. That is, instead of
an impulse sitting at f̃ = f̃1 as the signal spectrum, the finite data effect causes the
spectrum to take the shape of the window spectrum. This is illustrated in Figure
17.11 for f̃1 = 0.4 and a rectangular window of length N = 25.

The spectrum of the rectangular window is given by

W ( f̃ ) =
∞∑

n=−∞

w[n]e j2π f̃ n
=

N−1∑
n=0

w[n]e j2π f̃ n

=
1− e j2π f̃ N

1− e j2π f̃
= e jπ(N−1) f̃ sin(π f̃ N )

sin(π f̃ )
. (17.127)

Therefore, the peak of |W ( f̃ )| occurs at f̃ = 0 and the zero-crossings of |W ( f̃ )|
occur at f̃ = l

N for non-zero l = ±1,±2, . . . .
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Figure 17.12. Illustration of the effect of periodicity and choice of N on the DFT spectrum

for the spectrum of a complex sinusoid at normalized frequency 0.4. (a) DTFT Y ( f̃ ) com-

puted for N = 10, (b) DFT Yk computed for N = 10, (c) DTFT Y ( f̃ ) computed for N = 11,

(d) DFT Yk computed for N = 11.

Since DFT is obtained by sampling the DTFT at f̃ = k
N , we get

Y [k] = Y
(

k
N

)
= W

(
k
N
− f̃1

)
= e

jπ(N−1)
(

k
N − f̃1

)
sin(π(k − N f̃1))

sin(π(k − N f̃1)/N )
. (17.128)

Therefore, if N is chosen such that N f̃1 is an integer (in the range 0, 1, . . . , N − 1),
then we will find that

|Y [k]| =
{

W [0] for k = N f̃1

0 for k 6= N f̃1.
(17.129)

For the complex sinusoid at f̃1 = 0.4 and N = 10, we have N f̃1 = 4. Therefore,
the DFT spectrum will contain a peak at k = 4 and will be zero for all other values
of k = 0, 1, 2, 3, 5, 6, 7, 8, 9. This is shown in Fig. 17.12 using the red ‘o’.

On the other hand, if we choose N such that N f̃1 is not an integer in the range
{0, 1, . . . , N − 1} (e.g., N = 11), then the DFT will be given by

|Y [k]| =

∣∣∣∣∣ sin(π(k − N f̃1))

sin(π(k − N f̃1)/N )

∣∣∣∣∣ for all k (17.130)

and it will be non-zero for most values of k. This is shown in Figure 17.12 using
the blue ‘�’ for the corresponding frequencies k/N , k = 0, 1, . . . , N − 1.

Based on this, we have the following remarks.

• The choice of N determines the frequencies at which DTFT is evaluated and
hence the shape of the resulting DFT spectrum.
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Figure 17.13. Illustration of the effect of periodicity and choice of N in the time-domain

signal for a complex sinusoid at normalized frequency 0.4. (a) y1[n] is the periodic exten-

sion of y[n] for N = 10, (b) y2[n] is the periodic extension of y[n] for N = 11.

• When N is chosen such that the periodicity assumption is satisfied, the DFT spec-
trum will correspond to the actual spectrum (see Eq. (17.129)).

• When N is chosen such that the periodicity assumption is not satisfied, the DFT
spectrum will behave according to the sampled spectrum of the window given by
Eq. (17.130).

Figure 17.13 shows the periodic signals generated using the finite-date
records of y[n]. The signal y1[n] is obtained by periodically extending
{y[0], y[1], · · · , y[9]}, i.e., with N = 10. The signal y2[n] is obtained by periodi-
cally extending {y[0], y[1], · · · , y[10]}, i.e., with N = 11. Observe that y1[n] fol-
lows the original sinusoid while y2[n] does not resemble a sinusoid. Consequently,
the DFT spectrum resulting from N = 11 will not resemble that of a sinusoid.
Thus, we can see the agreement between Figs.17.12 and 17.13.

17.7.2 Spectral Leakage

Observe from Eq. (17.126b), i.e. Y ( f̃ ) = W ( f̃ − f̃1), and Figure 17.11 that the
computed spectrum, Y ( f̃ ), of the sinusoid based on N samples has the shape of
the window spectrum. That is, the finite data effect causes the impulse spectrum of the
sinusoid to spread to all the frequencies. This effect is known as spectral leakage. The
amount by which the impulse at f̃ = f̃1 leaks to the other frequencies depend
upon the shape of the window spectrum W ( f̃ ). For example, the leaked spectrum
at frequency f̃ = 0.46 is given by W (0.46− f̃1).

Clearly, we would prefer to minimize the leakage. This can be achieved by choos-
ing the window function such that its side-lobe levels are low. Figure 17.14 shows
the spectra for typical window functions with N = 10. We can observe the follow-
ing from Fig. 17.14.
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Figure 17.14. Time domain and frequency domain characteristics of different window

functions: (a) Rectangular, (b) Hamming, (c) Hanning, and (d) Blackman.

• The rectangular window has the minimum main-lobe width. But it also has
the highest side-lobe height.

• The Blackman window has the lowest side-lobe height. But it also has the
widest main-lobe.

• The main-lobe width and side-lobe height of Hamming and Hanning win-
dows lie intermediate to that of rectangular and Blackman windows.

Figure 17.14(a) shows the time-domain plots of these window functions.
Observe that while rectangular window causes the sharpest truncation at the bound-
aries, the Blackman window results in the smoothest truncation at the boundaries. This
is why, the spectra of these two windows have the opposite characteristics as high-
lighted above.

§ Based on the side-lobe levels of the different windows shown in Fig. 17.14, we see that
the rectangular window results in maximum spectral leakage, while the Blackman window
results in minimum spectral leakage.

17.7.3 Spectral Resolution

Spectral resolution refers to the ability of the spectral estimator to resolve closely
spaced spectral lines (frequencies). For example, consider the following signal
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Figure 17.15. Spectra of the sum of two complex sinusoids (equal powers) using rectan-

gular and Blackman windows with N = 50, A1 = 1 and A2 = 0.1. (a) ( f̃1, f̃2) = (0.3, 0.42),
(b) ( f̃1, f̃2) = (0.3, 0.35).

obtained by summing two complex sinusoids of amplitudes A1 and A2 and fre-
quencies f̃1 and f̃2:

x[n] = A1e j2π f̃1n
+ A2e j2π f̃2n. (17.131)

When we use a spectral estimator to compute the spectrum of x[n], we expect
to see two spectral lines corresponding to the two sinusoids. But will the spectral
estimator be able to show these two spectral lines even if the frequencies f̃1 and
f̃2 are very close? To answer this, we need to study the resolution capability of the
underlying spectral estimator.

Figure 17.15 shows the spectra of x[n] for two sets of values of the frequencies.
Figure 17.15(a) corresponds to f̃1 = 0.3 and f̃2 = 0.42, and Figure 17.15(b)
corresponds to f̃1 = 0.3 and f̃2 = 0.35. The amplitudes of the sinusoids are
set to be equal: A1 = 1 = A2. The selection of frequencies correspond to wide
separation of spectral lines in Case (a) and closely spaced spectral lines in Case
(b). We use rectangular and Blackman windows (with N = 50) to illustrate the
difference in the resolution capability for different windows.

Observe that while the rectangular and Blackman windows are able to resolve
the two spectral lines clearly in Case (a), the Blackman window fails to resolve the
spectral lines in Case (b). This is because the main-lobe of Blackman window is
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Figure 17.16. Spectra of the sum of two complex sinusoids (unequal powers) using rect-

angular and Blackman windows with N = 50, A1 = 1 and A2 = 0.1. (a) ( f̃1, f̃2) = (0.3, 0.42),
(b) ( f̃1, f̃2) = (0.3, 0.35).

too wide to be able to resolve the closely spaced sinusoids in Case (b). Because
rectangular window has narrow main-lobe, it is able to resolve the lines in Case (b).

Figure 17.16 shows the spectra of x[n] when the amplitudes are chosen as
A1 = 1 and A2 = 0.1. The frequencies and N are the same as that in Fig. 17.15.
Observe that, compared to Fig. 17.15, the resolution provided by rectangular win-
dow in Fig. 17.16 is poor compared to that of Blackman window. This can be very
clearly seen for Case (a). This arises because of the high spectral leakage caused by
rectangular window compared to the Blackman window. Thus, when we have sig-
nals that consist of a mixture of strong and weak spectral components, we should
give importance to minimizing spectral leakage. Otherwise, the weak component
may get suppressed by the leakage arising from the strong component. Conse-
quently, we prefer to use Blackman or Hamming type windows in such situations,
compared to the rectangular window.

The phenomenon of spectral leakage and its effect on spectral resolution, as
manifested in Figs.17.15 and 17.16, can be seen clearly from the following. Using
Eq. (17.126b), we can write the DTFT of x[n] (given in Eq. (17.131)) as

X ( f̃ ) =
[

A1δ( f̃ − f̃1)+ A2δ( f̃ − f̃2)
]
�W ( f̃ )

= A1W ( f̃ − f̃1)+ A2W ( f̃ − f̃2). (17.132)
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Therefore, we get

X ( f̃1) = A1W (0)+ A2W ( f̃1 − f̃2) (17.133)

X ( f̃2) = A1W ( f̃2 − f̃1)+ A2W (0). (17.134)

Thus, we see that the spectrum at f̃ = f̃1 is influenced not only by the main-
lobe associated with the sinusoid with frequency f̃1 (i.e., A1W [0]), but also by
the side-lobe associated with the sinusoid of frequency f̃2 (i.e., A2W ( f̃1 − f̃2)).
A similar phenomenon happens for the spectrum evaluated at frequency f̃2 (see
Eq. (17.134)), and for all the frequencies. This is illustrated in Fig. 17.17 which
shows the spectra W ( f̃ − f̃1) and W ( f̃ − f̃2), with ( f̃1, f̃2) = (0.30, 0.42) and
A1 = A2 = 1.

If the side-lobe level of a window is very low (see Fig. 17.17(b)), then the spec-
trum estimated at each frequency will be dominated by the contribution from the
main-lobe, leading to a better spectrum estimate. On the other hand, if the side-
lobe level is high (see Fig. 17.17(a)), then the spectrum estimated at each frequency
will be significantly influenced by the contribution from the side-lobe, leading to a
poor spectrum estimate.

If the main-lobe is very wide (see Fig. 17.17(b)), then a similar effect as in
Eq. (17.132) takes place, resulting in the failure to resolve closely spaced spec-
tral lines. Further understanding of leakage and resolution can be gained from
Fig. 17.17 if we hold the frequency of the first sinusoid fixed at f̃1 = 0.3 and
vary the frequency ( f̃2) of the second sinusoid. For each value of f̃2, examine how
the spectra W ( f̃ − 0.3) and W ( f̃ − f̃2) are adding together to result in the final
spectrum X ( f̃ ).

17.7.4 Windowing for Steady Spectrum

Observe from Fig. 17.14(a) that the non-rectangular windows weigh down the sig-
nal samples which are near the edges of the window. Therefore, the shape of the
resulting periodic repetition of the signal will be less sensitive to small variations
in the value of N , compared to that in the case of rectangular window. We illus-
trate this in Fig. 17.18 by showing the periodic repetitions of the windowed signal
(real sinusoid) for N = 11 and N = 13. Observe that the signal in the case of
Blackman window is very similar for the two values of N , whereas the signals look
very different in the case of rectangular window. This will affect the shape of the
spectra resulting from these two windows, as illustrated in Fig. 17.19.

The choice of the window affects the variations in the shape of the spectrum
(e.g., height of the peak) with small changes in the signal frequencies. For example,
if we only change the frequency of one of the sinusoids in a signal consisting of the
sum of two sinusoids, we expect the spectral shape to remain more or less steady,
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Figure 17.17. Spectra (N = 50) of two complex sinusoids (equal powers) at frequencies

0.3 and 0.42 (i.e., W ( f̃ −0.3) and W ( f̃ −0.42) given in Eq. (17.132)). (a) Rectangular window

and (b) Blackman window.

except for changes in the positions of the spectral peaks. But, as the figures show,
the spectral peaks vary significantly in the case of rectangular window, even with
small changes in one of the frequencies. On the other hand, the spectra resulting
from the Blackman window remain quite steady.

The jittery nature of the spectrum in the case of rectangular window is a result of
the high spectral leakage resulting from its high side-lobe levels. Through the high
side-lobes, any small change in the signal in one frequency gets reflected strongly
throughout the frequency range.

17.8 Time and Frequency Resolutions

We saw in Section 17.7 that the frequency resolution of the DFT spectrum (with
rectangular window) is 1

N . That is, DFT will not be able to resolve two sinusoids
if their frequencies are spaced at less than 1

N . Hence, the larger the value of N , the
better will be the frequency resolution, and vice versa.
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Figure 17.18. Periodic repetitions of the windowed real sinusoid with rectangular and

Blackman windows. (a) N = 11, (b) N = 13.

Figure 17.19. Spectra of the windowed real sinusoid with rectangular and Blackman win-

dows. (a) N = 11, (b) N = 13.
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On the other hand, large values of N will result in reducing the time resolution
of the DFT. That is, choosing N to be large will make it difficult for the DFT to
reflect the changes in the time domain.

Suppose that the signal we want to study has frequency components which are
slowly varying with time. We may use DFT to study how the frequencies are chang-
ing with time. So, we divide the complete signal record into several short records
of length N each, and compute the DFT spectrum for each short record. Clearly,
to track the changes well, we should choose small values for N . Otherwise, with a large
N , the net changes in frequencies over a duration of N samples may be significant
and the successive DFT spectra will not be able to show clearly how the frequencies are
changing. In other words, the time resolution of the DFT is limited to N . Thus, while
large N is preferred for good frequency resolution, small N is preferred for good time
resolution. In practice, depending on the scenario under consideration, we should
strike a compromise between time and frequency resolutions while choosing the
value of N .

17.9 Spectral Smoothing

When we compute the spectrum of a noisy signal using DFT, the estimated spec-
trum tends to exhibit fluctuations due to the noise effect. In practice, we prefer to
get a spectrum that is smoothed to remove the fluctuations due to noise (and any
other random phenomena). This can be done by the technique of spectral smooth-
ing as described below.

• Divide the available data record (say, L samples) into shorter records of length
N each. Let L = M N , i.e., there are M segments of N samples each.

• Compute the N -point DFT of all the M records. Let Xm,k be the DFT of
the mth record, with k = 0, 1, . . . , N − 1, and m = 1, 2, . . . ,M .

• Average the DFT spectra of the M records to obtain the smoothed DFT
spectrum. That is,

|Xk |
2
=

1
M

M∑
m=1

∣∣Xm,k
∣∣2 , k = 0, 1, . . . , N − 1. (17.135)

Clearly, to get better smoothing effect, we should have large number of records
(i.e., large M) to average the spectrum. But, if the total number of samples is limited,
choosing a large M will make the length of each data record (i.e., N ) quite small, thus
leading to poor frequency resolution.
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17.10 Concluding Remarks

This chapter is concluded with the following remarks:

• Various techniques for estimation of the power spectrum has been discussed.
They include the classical (non-parametric) as well as parametric methods.

• DFT uses the rectangular window implicitly while computing the spectrum.
• Non-trivial windows such as Hamming and Blackman help to reduce spectral

leakage (and minimizes fluctuations in the spectrum) due to their low side-
lobes. On the other hand, these windows have very wide main-lobes.

• Narrow main-lobe is required for good frequency resolution. The rectangular
window has the narrowest main-lobe among the various windows.

• Choice of the DFT size, N , determines the trade-off between frequency and
time resolutions in DFT spectrum. With increase in N , frequency resolution
improves and time resolution suffers, and vice versa.

• The technique of spectral smoothing can be reduced to minimize fluctuations
due to noise in spectra, at the expense of frequency resolution.

Exercises

17.1. Suppose we have N = 1000 samples from a sample sequence of random
process.

(a) Determine the frequency resolution of the Bartlett, Welch (50%
overlap), and Blackman-Tukey methods for a quality factor Q = 10.

(b) Determine the record lengths (M) for the Bartlett, Welch (50% over-
lap), and Blackman-Tukey methods.

17.2. Determine the mean and the autocorrelation of the sequence x[n], which
is the output from an ARMA(1,1) process described by the following dif-
ference equation

x[n] = 0.5x[n − 1]+ w[n]− w[n − 1],

where w[n] is a white noise process with variance σ 2
w.

17.3. Determine the mean and the autocorrelation of the sequence x[n], gener-
ated by the MA(2) process described by the following difference equation

x[n] = w[n]− 2w[n − 1]+ w[n − 2],

where w[n] is a white noise process with variance σ 2
w.
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17.4. An AR(2) process is described by the difference equation

x[n] = 0.81x[n − 2]+ w[n],

where w[n] is a white noise process with variance σ 2
w.

Suppose that x[n] is corrupted by an additive white noise process v[n]
with variance σ 2

v . Thus we have,

y[n] = x[n]+ v[n].

(a) Determine the difference equation for y[n] and thus demonstrate
that y[n] is an ARMA(2,2) process. Determine the coefficients of
the ARMA(2,2) process.

(b) Generalize the result in part (a) to an AR(p) process.

x[n] = −
p∑

k=1

ak x[n − k]+ w[n],

and

y[n] = x[n]+ v[n].

17.5. (a) A student is using an educational software to help understand the
relationship between signals and spectra. The software is used to gen-
erate a real signal consisting of two sinusoids. The programme then
calculates and displays the spectrum of the signal generated as shown
in Fig. P17.6. Explain why the spectrum is plotted over the positive
frequencies only. Why is the spectrum not consisting of purely two
impulses corresponding to the frequencies of the two sinusoids that
were generated? There seems to be some kind of “noise” next to the
two spectral lines corresponding to the sinusoids. Is this due to the
noise of the computer? Is it possible to get rid of this noise and how?

Figure P17.6.
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(b) What is the most likely reason that the spectrum of Fig. P17.6 is
plotted up to 40 Hz? Will the displayed spectrum change if different
windowing functions are used? How? If the developer of the software
would like the calculated spectrum to be as close as possible to the
theoretical impulses, suggest an appropriate windowing function to
use and state the restrictions on the sinusoids’ frequencies that the
student can choose.

17.6. (a) In a biomedical experiment, a signal xa(t) with spectrum as shown
in Fig. P17.7 is being monitored. Typically, the spectrum consists
of a background noise component, a fixed large component due to
a known biological function, and more importantly, a slowly time-
varying narrow-band component (at frequency fc) due to another
biological phenomenon under investigation. To detect and track fc,
the signal is sampled at 1 kHz, divided into non-overlapping blocks,
appropriately windowed and then passed into a FFT processor. What
should the block size be if fc is to be tracked at the rate of 20
times/second? Describe the best scenario such that fc can be esti-
mated most accurately. What is the resolution for fc under this sce-
nario?

Figure P17.7.

(b) Discuss how the resolution and the stability of the detection of fc in
Question 17.6(a) will change as different windowing functions are
used for the two situations when fc is far away and close to the fixed
high power spectral component. Which windowing function would
you recommend and why?

17.7. An autoregressive process of order 2 (AR(2)) is described by the difference
equation

x[n] =
1
2

x[n − 1]+
1
4

x[n − 2]+ w[n],

where w[n] is a white noise process with variance σ 2
w.
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(a) Determine the mean and autocorrelation of the sequence x[n].
Suppose that x[n] is corrupted by an additive white noise process
v[n] with variance σ 2

v . Thus we have,

y[n] = x[n]+ v[n].

(b) Show that y[n] is an ARMA(2,2) process and determine the coeffi-
cients of the ARMA(2,2) process (ARMA here refers to autoregressive
and moving average).

(c) Generalize the result in Question (b) to an AR(p) process (x[n]) and
derive an expression for the z-transform of the autocorrelation of the
process y[n].

x[n] = −
p∑

k=1

ak x[n − k]+ w[n],

and

y[n] = x[n]+ v[n].





Appendix A: Appendix

A.1 Hilbert Transform Demo

1 Ts = 0 . 0 5 ; % Sample s p a c i n g
2 Fs = 1 / Ts ; % S a m p l i n g f r e q u e n c y
3 t = −5 : Ts : 5 ; % Sample t i m e s
4

5 g = s i n c ( t ) ; % Time s i g n a l
6

7 N = 2 ^ 13 ; % Number o f s a m p l e s i n FFT
8 G = f f t s h i f t ( f f t ( g , N) ) ;
9 f = ( − (N/ 2 ) : (N/2 −1 ) ) /N∗Fs ; % F r e q u e n c y a x i s

10

11 f i g u r e ( 1 ) ; s u b p l o t ( 2 1 1 ) ;
12 p l o t ( t , g ) ; t i t l e ( ’ g ( t ) = s i n c ( t ) ’ ) ;
13 s u b p l o t ( 2 1 2 ) ; p l o t ( f , a b s (G) ) ; t i t l e ( ’ A m p l i t u de o f FFT o f g ( t ) ’ ) ;
14

15 g p l u s = h i l b e r t ( g ) ; % H i l b e r t t r a n s f o r m i s i n i m a g i n a r y p a r t o f g p l u s
16 g h a t = imag ( g p l u s ) ;
17

18 Gplus = f f t s h i f t ( f f t ( g p l u s , N) ) ;
19 Ghat = f f t s h i f t ( f f t ( gha t , N) ) ;
20

21 %%
22

23 f i g u r e ( 2 ) ; s u b p l o t ( 2 1 1 ) ;
24 p l o t ( t , g h a t ) ; t i t l e ( ’ H i l b e r t t r a n s f o r m o f g ( t ) = s i n c ( t ) ’ ) ;
25 s u b p l o t ( 2 1 2 ) ; p l o t ( f , a b s ( Ghat ) ) ; t i t l e ( ’ A m p l i t u de o f FFT ’ ) ;
26

27 %%
28 % P l o t t h e pre − e n v e l o p e
29 f i g u r e ( 3 ) ; p l o t ( f , a b s ( Gplus ) ) ;
30 t i t l e ( ’ Am p l i t ud e o f FFT o f g p l u s ( t ) ’ ) ;
31

32 %%
33 % Modula t e by c o s i n e f u n c t i o n w i t h f r e q u e n c y 5 Hz
34

35 x d s b = g .∗ c o s (2∗ p i ∗5∗ t ) ;
36 Xdsb = f f t s h i f t ( f f t ( xdsb ,N) ) ;
37 x s s b = g .∗ c o s (2∗ p i ∗5∗ t ) − g h a t .∗ s i n (2∗ p i ∗5∗ t ) ;
38 Xs sb = f f t s h i f t ( f f t ( x s s b ,N) ) ;
39
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40 f i g u r e ( 4 ) ; s u b p l o t ( 2 1 1 ) ;
41 p l o t ( t , x d s b ) ; t i t l e ( ’ Double s i d e b a n d (DSB) t i m e s i g n a l ’ ) ;
42 s u b p l o t ( 2 1 2 ) ; p l o t ( f , a b s ( Xdsb ) ) ;
43 t i t l e ( ’ Am p l i t ud e o f FFT o f DSB s i g n a l ’ ) ;
44

45 %%
46

47 f i g u r e ( 5 ) ; s u b p l o t ( 2 1 1 ) ;
48 p l o t ( t , x s s b ) ; t i t l e ( ’ S i n g l e s i d e b a n d ( SSB ) t i m e s i g n a l ’ ) ;
49 s u b p l o t ( 2 1 2 ) ; p l o t ( f , a b s ( Xs sb ) ) ;
50 t i t l e ( ’ Am p l i t ud e o f FFT o f SSB s i g n a l ’ ) ;
51

52 % END
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B.1 Trigonometric Formulas

B.1.1 Right-angle Triangle Definition

Assume that: 0 < θ < π
2 or 0◦ < θ < 90◦

sin(θ) = opp
hyp csc(θ) = hyp

opp

cos(θ) = ad j
hyp sec(θ) = hyp

ad j

tan(θ) = opp
ad j cot(θ) = ad j

opp

B.1.2 Unit Circle Definition

Assume θ can be any angle,

459
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sin(θ) = y
1 csc(θ) = 1

y

cos(θ) = x
1 sec(θ) = 1

x

tan(θ) = y
x cot(θ) = x

1

B.1.3 Domains of the Trigonometric Functions

sin(θ), ∀ θ ∈ (−∞,∞) csc(θ), ∀ θ 6= nπ , n ∈ Z

cos(θ), ∀ θ ∈ (−∞,∞) sec(θ), ∀ θ 6=
(
n + 1

2

)
π , n ∈ Z

tan(θ), ∀ θ 6=
(
n + 1

2

)
π , n ∈ Z cot(θ), ∀ θ 6= nπ , n ∈ Z

B.1.4 Ranges of the Trigonometric Functions

−1 ≤ sin(θ) ≤ 1 csc(θ) ≥ 1 and csc(θ) ≤ −1

−1 ≤ cos(θ) ≤ 1 sec(θ) ≥ 1 and sec(θ) ≤ −1

−∞ ≤ tan(θ) ≤ ∞ −∞ ≤ cot(θ) ≤ ∞

B.2 Identities and Formulas

B.2.1 Tangent and Cotangent Identities

tan(θ) = sin(θ)
cos(θ) cot(θ) = cos(θ)

sin(θ)
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B.2.2 Reciprocal Identities

sin(θ) = 1
csc(θ) csc(θ) = 1

sin(θ)

cos(θ) = 1
sec(θ) sec(θ) = 1

cos(θ)

tan(θ) = 1
cot(θ) cot(θ) = 1

tan(θ)

B.2.3 Pythagorean Identities

sin2(θ)+ cos2(θ) = 1

tan2(θ)+ 1 = sec2(θ)

1+ cot2(θ) = csc2(θ)

B.2.4 Even and Odd Formulas

sin(−θ) = − sin(θ) csc(−θ) = − csc(θ)

cos(−θ) = cos(θ) sec(−θ) = sec(θ)

tan(−θ) = − tan(θ) cot(−θ) = − cot(θ)

B.2.5 Periodic Formulas

If n is an integer,

sin(θ + 2πn) = sin(θ) csc(θ + 2πn) = csc(θ)

cos(θ + 2πn) = cos(θ) sec(θ + 2πn) = sec(θ)

tan(θ + πn) = tan(θ) cot(θ + πn) = cot(θ)

B.2.6 Double Angle Formulas

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ)

= 2 cos2(θ)− 1

= 1− 2 sin2(θ)

tan(2θ) =
2 tan(θ)

1− tan2(θ)
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B.2.7 Degrees to Radians Formulas

If a is an angle in degrees and r is an angle in radians, then

π

180◦
=

r
a
⇒ r =

πa
180◦

and a =
180◦r
π

B.2.8 Half-Angle Formulas

sin(θ) = ±

√
1− cos(2θ)

2

cos(θ) = ±

√
1+ cos(2θ)

2

tan(θ) = ±

√
1− cos(2θ)
1+ cos(2θ)

B.2.9 Sum and Difference Formulas

sin(α ± β) = sin(α) cos(β)± cos(α) sin(β)

cos(α ± β) = cos(α) cos(β)∓ sin(α) sin(β)

tan(α ± β) =
tan(α)± tan(β)

1∓ tan(α) tan(β)

B.2.10 Product to Sum Formulas

sin(α) sin(β) =
1
2

[cos(α − β)− cos(α + β)]

cos(α) cos(β) =
1
2

[cos(α − β)+ cos(α + β)]

sin(α) cos(β) =
1
2

[sin(α + β)+ sin(α − β)]

cos(α) sin(β) =
1
2

[sin(α + β)− sin(α − β)]
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B.2.11 Sum to Product Formulas

sin(α)+ sin(β) = 2 sin

(
α + β

2

)
cos

(
α − β

2

)
sin(α)− sin(β) = 2 cos

(
α + β

2

)
sin

(
α − β

2

)
cos(α)+ cos(β) = 2 cos

(
α + β

2

)
cos

(
α − β

2

)
cos(α)− cos(β) = −2 sin

(
α + β

2

)
sin

(
α − β

2

)
B.2.12 Co-function Formulas

sin
(
π
2 − θ

)
= cos(θ) cos

(
π
2 − θ

)
= sin(θ)

csc
(
π
2 − θ

)
= sec(θ) sec

(
π
2 − θ

)
= csc(θ)

tan
(
π
2 − θ

)
= cot(θ) cot

(
π
2 − θ

)
= tan(θ)

B.3 Unit Circle

For any ordered pair (x, y) on the unit circle, cos(θ) = x and sin(θ) = y.
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Example:

cos

(
4π
3

)
= −

1
2

and sin

(
4π
3

)
= −

√
3

2

B.4 Inverse Trigonometric Functions

B.4.1 Definition

θ = sin−1(x) is equivalent to x = sin(θ)

θ = cos−1(x) is equivalent to x = cos(θ)

θ = tan−1(x) is equivalent to x = tan(θ)

B.4.2 Domain and Range

Function Domain Range
θ = sin−1(x) −1 ≤ x ≤ 1 −

π
2 ≤ θ ≤

π
2

θ = cos−1(x) −1 ≤ x ≤ 1 0 ≤ θ ≤ π
θ = tan−1(x) −∞ ≤ x ≤ ∞ −

π
2 ≤ θ ≤

π
2

B.4.3 Inverse Properties

The properties hold for x in the domain and θ in the range.

sin(sin−1(x)) = x sin−1(sin(θ)) = θ
cos(cos−1(x)) = x cos−1(cos(θ)) = θ
tan(tan−1(x)) = x tan−1(tan(θ)) = θ

B.4.4 Other Notations

sin−1(x) = arcsin(x)

cos−1(x) = arccos(x)

tan−1(x) = arctan(x)
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B.5 Laws of Sines, Cosines, and Tangents

Law of Sines Law of Cosines Law of Tangents

sin(α)
a =

sin(β)
b =

sin(θ)
c a2

= b2
+ c2
− 2bc cos(α) a−b

a+b =
tan 1

2 (α−β)

tan 1
2 (α+β)

b2
= a2

+ c2
− 2ac cos(β) b−c

b+c =
tan 1

2 (β−θ)

tan 1
2 (β+θ)

c2
= a2

+ b2
− 2ab cos(θ) a−c

a+c =
tan 1

2 (α−θ)

tan 1
2 (α+θ)

B.6 Complex Numbers

i =
√
−1 i2

= −1 i3
= −i i4

= 1

√
−a = i

√
a, a ≥ 0. (a + ib)(a − ib) = a2

+ b2

(a + ib)+ (c + id) = (a + c)+ i(b + d) |a + ib| =
√

a2 + b2

Complex Modulus

(a + ib)− (c + id) = (a − c)+ i(b − d) (a + ib)∗ = a − ib
Complex Conjugate

(a + ib)(c + id) = (ac − bd)+ i(ad + bc) (a + ib)∗(a + ib)
= |a + ib|2 = a2

+ b2

B.7 Sin, Cosine, and Tangent Functions

Figure below shows the functional relationship between sin function and the unit
circle.
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The following figures illustrates the sin, cos, and tan functions and the table
shows the values of these functions at specific angle values.

θ 0, 2π π
6

π
3

π
2

2π
3

5π
6 π 7π

6
8π
6

3π
2

10π
6

11π
6

sin(θ) 0.0 1
2

√
3

2 1.0
√

3
2

1
2 0.0 −

1
2 −

√
3

2 −1.0 −

√
3

2 −
1
2

cos(θ) 1.0
√

3
2

1
2 0.0 −

1
2 −

√
3

2 −1.0 −

√
3

2 −
1
2 0.0 1

2

√
3

2

tan(θ) 0.0 1
√

3

√
3 ∞ −

√
3 −

1
√

3
0.0 1

√
3

√
3 −∞ −

√
3 −

1
√

3
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B.8 Signal-to-noise Ratio

The relative amount of signal and noise present in a waveform is usually quantified
by the signal-to-noise ratio (SNR). As the name implies, it is simply the ratio of
signal to noise, both measured in root-mean-squared (RMS) amplitude and is often
expressed in decibel (dB). SNR in dB is defined as,

SNRd B = 20 log10

(
Signal amplitude (RMS)

Noise amplitude (RMS)

)
, (B.1)

= 10 log10

(
Signal power

Noise power

)
. (B.2)

To convert from dB scale to linear scale,

SNRlinear = 10
dB
20 . (B.3)

For example, a SNR of 20dB implies that the RMS value of signal is 10 times

the RMS value of noise (i.e., 10
20
20 = 10). A SNR of +3dB indicates a ratio of

√
2 = 1.414 (i.e.,10

3
20 = 1.414). Similarly, a SNR of 0dB implies that the RMS

values of the signal and noise are the same (i.e., 10
0

20 = 1).

Figure B.1.

Figure B.1 shows a 5 Hz sinusoidal signal with various amounts of white noise
added to it. Figure B.1(a) is the 5Hz sinusoid alone (or the SNR is∞). The sinusoid
with 10dB SNR is shown in Fig. B.1(b). Fig. B.1(c) illustrates the case with 0dB
SNR and the last figure (Fig. B.1(d)) shows the signal at −10dB SNR.
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B.9 z-Transform Properties

Let x[n], xn[n], and x2[n] be three discrete-time signals with corresponding
z-transforms, defined as,

X (z) =
∞∑

n=−∞

x[n]z−n

X1(z) =
∞∑

n=−∞

x1[n]z−n

X2(z) =
∞∑

n=−∞

x2[n]z−n

For scalar constants a1 and a2, the following z-transform properties hold.

Property Time Domain z-Domain

Notation
x[n] X (z)
x1[n] X1(z)
x2[n] X2(z)

Linearity a1x1[n]+ a2x2[n] a1 X1(z)+ a2 X2(z)

Time shifting x[n − k] z−k X (z)

z-Scaling an
1 x[n] X (a−1

1 z)

Time reversal x[−n] X (z−1)

Conjugation x∗[n] X∗(z∗)

z-Differentiation nx[n] −z d X (z)
dz

z-Differentiation nk x[n] (−1)kzk dk X (z)
dzk

Convolution x1[n]⊗ x2[n] X1(z)X2(z)

B.10 Common z-Transform Pairs

The table below provides the z-transforms of some of the commonly used discrete-
time functions. Here, ω0 = 2π f0 is an arbitrary angular frequency.
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Signal z-Transform ROC

δ[n] 1 All z-domain

u[n] 1
1−z−1 |z| > 1

anu[n] 1
1−az−1 |z| > |a|

nanu[n] az−1

(1−az−1)2
|z| > |a|

−anu[−n − 1] 1
1−az−1 |z| < |a|

−nanu[−n − 1] az−1

(1−az−1)2
|z| < |a|

cos(ω0n)u[n] 1−z−1 cos(ω0)
1−2z−1 cos(ω0)+z−2 |z| > 1

sin(ω0n)u[n] z−1 sin(ω0)
1−2z−1 cos(ω0)+z−2 |z| > 1

an cos(ω0n)u[n] 1−az−1 cos(ω0)
1−2az−1 cos(ω0)+a2z−2 |z| > |a|

an sin(ω0n)u[n] az−1 sin(ω0)
1−2az−1 cos(ω0)+a2z−2 |z| > |a|

B.11 Fourier Transform Theorems and Properties

Let x(t) and y(t) be two non-periodic signals with FTs X ( f ) and Y ( f ), respec-
tively. That is,

x(t) =
∫
∞

−∞

X ( f )e j2π f t d f, y(t) =
∫
∞

−∞

Y ( f )e j2π f t d f

X ( f ) =
∫
∞

−∞

x(t)e− j2π f t dt, Y ( f ) =
∫
∞

−∞

y(t)e− j2π f t dt.

For real constants a, a1, a2, f0, and t0, the following properties are derived.

Property/Theorem Time Domain Frequency Domain

Notation
x(t) X ( f )
y(t) Y ( f )

Linearity a1x(t)+ a2 y(t) a1 X ( f )+ a2Y ( f )

Dilation x(at) 1
|a| X

(
f
a

)
Conjugation x∗(t) X∗(− f )
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Property/Theorem Time Domain Frequency Domain

Duality X (t) g(− f )

Time shifting x(t − t0) e− j2π f t0 X ( f )

Frequency shifting e j2π f0t x(t) X ( f − f0)

Area under X ( f ) x(0)
∫
∞

−∞
X ( f )d f

Area under x(t)
∫
∞

−∞
x(t)dt X (0)

Time Differentiation dx(t)
dt j2π f X ( f )

Time Integration
∫ t
−∞

x(τ )dτ 1
j2π f X ( f )

Modulation Theorem x(t)y(t) X ( f )⊗ Y ( f )

Convolution Theorem x(t)⊗ y(t) X ( f )Y ( f )

Correlation Theorem x(t)⊗ y∗(−t) X ( f )Y ∗( f )

Energy Theorem
∫
∞

−∞
x2(t)dt

∫
∞

−∞
|X ( f )|2d f

B.12 Continuous Time Fourier Series: Properties

Let x(t) and y(t) be two periodic signals with period, Tp =
1
f p

, where f p is
the fundamental (cyclic) frequency of the signals with the corresponding angular
frequency, �p = 2π f p. The Fourier series relationships for both the signals can
now be written as:

x(t) =
+∞∑

k=−∞

Xke jk�p t
; where, Xk =

1
Tp

∫ Tp
2

−
Tp
2

x(t)e− jk�p t dt

y(t) =
+∞∑

k=−∞

Yke jk�p t
; where, Yk =

1
Tp

∫ Tp
2

−
Tp
2

y(t)e− jk�0t dt

Here, Xk and Yk are the Fourier coefficients of x(t) and y(t), respectively. Now,
for scalar quantities, α, β, and t0, the following properties are hold.
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Property Periodic Signal Fourier Coefficients

Notation
x(t) Xk
y(t) Yk

Linearity αx(t)+ βy(t) αXk + βYk

Time shifting x(t − t0) Xke− jk�p t0

Frequency shifting e j M�p t x(t) Xk−M

Conjugation x∗(t) X∗
−k

Time reversal x(−t) X−k

Periodic convolution
∫

Tp
x(τ )y(t − τ)dτ Tp XkYk

Multiplication x(t)y(t)
∑
∞

l=−∞ XlYk−l

Time Differentiation dx(t)
dt jk�p Xk

Time Integration
∫ t
−∞

x(t)dt
(

1
jk�p

)
Xk

Conjugate Symmetry for
Real Signals

Xk = X∗
−k

<e{Xk} = <e{X−k}

x(t) real =m{Xk} = −=m{X−k}

|Xk | = |X−k |
6 Xk = −6 X−k

Real and Even Signals x(t) real and even Xk real and even
Real and Odd Signals x(t) real and odd Xk purely imaginary and odd
Parseval’s theorem 1

Tp

∫
Tp
|x(t)|2dt

∑
∞

k=−∞ |Xk |
2

B.13 Discrete Time Fourier Series: Properties

Let x[n] and y[n] be two periodic discrete-time signals with period, N , and fun-
damental frequency, ωp = 2π f p, where f p =

1
N is the fundamental (cyclic)

frequency of the signals. Fourier series relationships for x[n] and y[n] can be writ-
ten as:

x[n] =
N−1∑
k=0

Xke jkωpn
; where, Xk =

1
N

N−1∑
n=0

x[n]e− jkωpn

y[n] =
N−1∑
k=0

Yke jkωpn
; where, Yk =

1
N

N−1∑
n=0

y[n]e− jkωpn

Here, Xk and Yk are the Fourier coefficients of x[n] and y[n], respectively.
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Property Periodic Signal Fourier Coefficients

Notation
x[n] Xk
y[n] Yk

Linearity αx[n]+ βy[n] αXk + βYk

Time shifting x[n − n0] Xke− jkωpn0

Frequency shifting e j Mωpnx[n] Xk−M

Conjugation x∗[n] X∗
−k

Time reversal x[−n] X−k

Periodic convolution
∑N−1

m=0 x[m]y[n − m] N XkYk

Multiplication x[n]y[n]
∑N−1

l=0 XlYk−l

First Difference x[n]− x[n − 1]
(
1− e jkωp

)
Xk

Running Sum
∑n

k=−∞ x[k]

(
1(

1−e jkωp
)
)

Xk

Conjugate Symmetry for
Real Signals

Xk = X∗
−k

<e{Xk} = <e{X−k}

x[n] real =m{Xk} = −=m{X−k}

|Xk | = |X−k |
6 Xk = −6 X−k

Real and Even Signals x[n] real and even Xk real and even
Real and Odd Signals x[n] real and odd Xk purely imaginary and odd
Parseval’s theorem

∑N−1
n=0 |x[n]|2 1

N
∑N−1

k=0 |Xk |
2

B.14 Uniform Random Variables

Figure B.2.
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A random variable x is uniformly distributed in the interval [α, β] if its PDF
is defined as

fx (x) =

{
1

β−α if α ≤ x ≤ β
0 otherwise

(B.4)

Here, we have

•

1
β − α

∫ β

α
dx = 1 (B.5)

•

mx = E[x] =
∫ β

α
x fx (x)dx =

1
β − α

∫ β

α
xdx =

α + β

2
(B.6)

•

px = E[x2] =
∫ β

α
x2 fx (x)dx =

1
β − α

∫ β

α
x2dx =

α2
+ β2

+ αβ

3
(B.7)

•

σ 2
x = var[x] = E[x2]− {E[x]}2 =

(β − α)2

12
(B.8)

B.15 Normal (Gaussian) Random Variables

The PDF is given by,

fx (x) =
1

σx
√

2π
exp

(
−

1
2

(
x − mx

σx

)2
)

(B.9)

where

• mx is the mean and σx is the standard deviation.
• The factor 1

σx
√

2π
is a constant to make the area under the pdf to be unity.

• fx (x) is symmetric with respect to x = mx because the exponent is
quadratic. This implies that when mx = 0, the distribution is symmetric
with respect to the y-axis (i.e., x = 0).

• The exponent term tends to zero faster as σx decreases.
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Figure B.3.

B.16 Central Limit Theorem (CLT)

If x1, x2, . . . , xK be a sequence of independent and identically distributed (i.i.d)
random variables each having mean mx and variance σ 2

x . Then for K large, the
distribution of x1+ x2+ . . .+ xK is approximately normal with mean K mx and
variance Kσ 2

x .

It follows from the CLT that x1+x2+...+xK−K mx
σx
√

K
is approximately a standard

normal random variable. Thus for K large,

P
{

x1 + x2 + . . .+ xK − K mx

σx
√

K
< x

}
≈ P {z < x} (B.10)

This means that the distribution of an average tends to be Normal (Gaussian), even
when the distribution from which the average is computed is decidedly non-normal.
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Index

Accumulator, 176
Acoustic, 174
Akaike’s final prediction error, 435
Akaike’s Information Criteria, 435
Aliasing, 124, 128–130, 135, 138, 140
Alternation theorem, 305, 306
Alternative structures, 212
Amplify, 174
Amplitude, 1, 2, 4, 6, 9–13, 15
Amplitude modulation, 374, 376, 402,

404
Amplitude shift keying, 393, 394, 404
Analog signal, 1, 6, 9
Analog to digital converter, 138
Analysis equation, 33
Analytic signals, 83, 94, 96, 100
Angular frequency, 162
Angular region, 142
Anti-aliasing, 129, 135, 138, 140
Anti-symmetric, 41, 44
Aperiodic, 155, 159, 160
Aperiodic signals, 9
Approximation, 283, 299, 300, 304–306,

309, 311–313, 319, 324
Arrhythmia, 14
Associative law, 186

Asymptotically, 416, 418, 429
Attenuate, 64
Attenuation, 110
Autocorrelation, 3
Autocorrelation function, 339–341, 344,

347, 355, 362, 363, 366, 367, 370,
372

Autoregressive, 407, 436, 454, 455
Autoregressive and moving average, 407
Backward prediction, 223
Band pass filter, 3
Band stop filter, 3
Band-limited, 97, 158, 171
Band-limiting filter, 124, 129, 136
Bandwidth, 46
Bartlett, 292, 294
Bartlett method, 407, 421–423
Base-band, 374, 381
Bilinear transformation, 309, 319–321,

323–325
Binary data, 7, 8
Biomechanics, 15
Biomedical, 1, 2, 11, 16
Blackman, 291, 292, 294–296
Blackman and Tukey method, 426–428
Block diagram, 131, 138
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Blood flow, 75
Blood velocity, 83
Bohman, 292
Bounded input, 180, 183
Bounded output, 180, 183
Brain, 2, 11, 13
Brain cells, 328
Branches, 235
Broadening, 411, 412
Burg method, 433
Butterfly structure, 278
Canonical structure, 228, 239
Carrier signal, 374
Cascade structures, 211, 230, 231, 248
Cauchy’s integral theorem, 148
Cauchy’s residue theorem, 149
Causal, 96, 175, 180, 182, 183, 188, 190,

191, 193, 196, 199, 206, 208, 209
Channel bandwidth, 376, 386, 403
Chebyshev, 292, 300, 305
Chebyshev approximation, 300, 305
Circular convolution, 195
Circularly shifting, 258
Clipping, 134
Coherent demodulation, 373, 381–385,

403, 404
Commutative law, 185
Complex conjugate, 214, 230
Complex exponentials, 83
Complex frequency, 141
Complex plane, 141, 142, 147
Complex signals, 10
Complexity, 175, 188
Conditioner, 174
Conformal mapping, 319, 321
Conservation of energy, 94
Consistent estimate, 416, 418
Continuous stochastic process, 330
Continuous time systems, 114
Contour, 141, 147–149

Convergence, 164
Convolution, 88, 89, 91–94, 103, 106,

107, 113–116, 118
Cornea, 15
Correlator, 343
Covariance, 345
Criterion Autoregressive Transfer, 436
Cross-correlation, 3
Cross-correlation function, 338, 342–344,

348, 350, 353, 355, 363, 367
Cumulative distribution function, 335
Current, 17
Data rate, 7
Decimation, 276–279
Decimation in frequency, 279
Decimation in time, 276, 277, 279
Demodulation, 373, 374, 377, 379,

381–388, 403, 404
Deterministic signals, 10, 327
Diagnosis, 173
Difference equation, 142
Digital health, 1
Digital signals, 1, 2, 6, 9, 123
Digitization, 130
Dirac delta function, 160
Direct form I structure, 228, 247
Direct form II structure, 230, 232,

235–237, 239, 240, 248
Direct form realization, 233, 234
Dirichlet condition, 33, 45
Discontinuities, 45
Discontinuity, 92, 98, 99
Discrete Fourier series, 256
Discrete Fourier transform, 251, 267
Discrete time process, 330–332, 359
Discrete time systems, 104
Discrete-time Fourier transform, 156
Discrete-time instants, 7
Discretizing, 255
Distributive law, 186
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Divide and conquer approach, 271, 276,
279

Duality, 64, 65
Dynamic, 173, 174, 179
Dynamic range, 130, 133, 174
Edge frequency, 285, 300, 301
Electrocardiogram, 2, 14
Electrocorticogram, 2
Electroencephalogram, 2, 11
Electrogastrogram, 2
Electromyogram, 2, 15
Electrooculogram, 2, 14
Electroretinogram, 2, 15
Elementary events, 335
Encephalopathy, 12, 13
Energy density spectrum, 56
Energy of signals, 17
Ensemble mean, 330
Envelope demodulation, 373
Envelope of signals, 97
Ergodic process, 348, 349
Euler’s identity, 10
Even symmetric, 36–39, 41–43, 46
Expectation, 330, 337, 340–343, 347,

348, 366
Extrema, 306
False negative, 391
False positive, 391
Fast Fourier transform, 269, 270, 281
Finite difference, 312
Finite duration, 193
Finite impulse response, 211–216, 218,

220–225, 227, 229, 233–235, 237,
239

Flow-graph, 278
Flow-graph reversal theorem, 235
Forward Fourier transform, 55
Forward prediction, 223
Fourier analysis, 27
Fourier coefficients, 31, 46–48

Fourier series, 27, 29–34, 36, 38, 40,
45–49

Fourier transform, 27
Frequency, 2–4, 10–13, 16
Frequency domain, 28
Frequency modulation, 374, 385
Frequency range, 28, 36
Frequency resolution, 408, 419, 421, 423,

429, 430, 433, 449, 451, 452
Frequency response, 103, 105–107, 110,

113, 118
Frequency sampling, 216, 217, 239
Frequency sensitivity, 386, 387
Frequency shift keying, 393, 397
Frequency shifting, 36
Frequency warping, 321–323
Fundamental frequency, 31
Ganglion cells, 15
Gaussian, 27, 28, 292
Gaussian random processes, 346, 347
Gibb’s phenomenon, 45
Granular noise, 134
Hamming, 291, 292, 294–296
Hamming window, 75
Hanning, 291–294
Harmonics, 31
Heaviside function, 171
Hermitian, 87
High pass filter, 3
Hilbert transform, 83, 90–93, 96–101
Hydrocephalus, 12, 13
Hypertrophy, 14
Imaginary, 11
Implementation, 184, 188, 208, 209,

212–214, 216, 218, 230, 239,
245–249

Impulse function, 51, 68, 69, 71
Impulse invariant, 318, 319
Impulse response, 89, 90, 92, 95, 100, 103,

105–107, 110, 111, 113, 118, 119
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Impulse spectrum, 444
Independent processes, 336, 345
Infinite duration, 193
Infinite impulse response, 211, 212,

226–228, 230–235, 237, 239
Initial condition, 177
Input estimation, 107
Input statistics, 358, 362
Instantaneous, 11
Instantaneous amplitude, 97–100
Instantaneous frequency, 99
Interconnection, 183–187
Interference, 108, 109
Interpolation, 171
Invariant, 291, 318, 319
Inverse Fourier transform, 55, 65
Iterative process, 226
Kaiser, 292, 295, 296
Kronecker delta function, 160
Laplace transform, 141
Lattice coefficients, 225, 226
Lattice structures, 211, 218, 221, 224,

226, 233–235, 239
Levinson-Durbin algorithm, 433, 435
Line spectra, 71, 74
Linear filtering, 327, 356, 367, 370
Linear prediction, 220, 223
Linear programming, 296
Loud speaker, 175
Low pass filter, 3
Lower side band, 382, 383, 403
Magnitude, 32, 33, 35, 37, 38, 40–44
Magnitude spectrum, 33, 35, 37, 38,

40–44
Main lobe, 290, 291, 294, 295
Mapping, 271, 272
Matched filtering, 373, 391, 394
Mean, 327, 330, 337–339, 343, 345–349,

353, 356, 358, 359, 362–364,
366–368, 370–372

Mean square value, 346, 351, 353
Measurements, 14
Memoryless, 177–179
Message signal, 374–377, 379–387, 403,

404
Microphone, 174
Minimum Description Length, 435
Model based, 430
Modem, 393
Modified periodogram, 423, 425
Modular structure, 218
Modulation, 36, 373–379, 381, 384–387,

393, 394, 399, 402–405
Modulation index, 378, 379, 386, 387,

404
Moving average, 407, 455
Myocardial infraction, 14
Narrow band, 387
Nodes, 235
Noise, 107–109
Noise immunity, 375, 379, 387, 403
Non-causal, 96, 175, 180, 199
Non-invasive, 14
Non-parametric, 407, 421, 428, 429, 452
Non-parametric spectral estimation, 3
Non-recursive systems, 188
Normalization factor, 415, 424, 425, 434
Normalized frequency, 157, 158, 161, 163,

167
Normalized sampling period, 157
Notch filter, 3
Nyquist frequency, 128
Nyquist sampling theorem, 124, 128
Odd symmetric, 37, 38, 40, 42, 44, 46
One sided spectrum, 91
Ophthalmology, 14
Optimization, 286, 300, 305, 306, 308,

324
Orthogonal processes, 344, 345
Orthogonality, 91, 94
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Oscillations, 295
Output evaluation, 107
Output statistics, 358
Overshoots, 45
Parallel structures, 211
Parameters, 175, 187, 208
Parametric, 407, 429, 430, 452
Parametric spectral estimation, 3
Parks-McClellan algorithm, 300
Parseval’s theorem, 34
Partial fraction, 111, 112, 118
Parzen, 292
Periodic convolution, 253
Periodic signals, 9
Periodogram, 407, 413, 416–419,

421–423, 425, 426, 428, 429
Phase, 2, 4, 10, 11, 16
Phase factor, 270, 274, 275
Phase modulation, 374, 386
Phase shift keying, 393, 400
Phase spectrum, 33, 38, 41, 42, 44
Phasor, 11, 12
Photoreceptors, 15
Physical process, 173
Poisson process, 331
Pole-zero diagram, 190, 191, 197,

205–207
Poles, 190, 191, 194, 196, 206
Polynomial, 112
Power, 327, 340, 345, 346, 349–367,

370–372
Power of signals, 17–19, 22, 23
Power series expansion, 148, 151, 152
Power spectral density, 354, 355, 362, 366,

367, 370, 372
Power spectrum, 33
Power-line interference, 108
Precision arithmetic, 283
Prediction error, 434, 435
Prediction error filter, 220

Prime number, 271, 274, 276
Principle of superposition, 104, 114
Probability density function, 334–336,

363–365
Quadratic factor, 229, 230
Quantization, 3, 9, 123, 130–135
Quantization error, 131–134
Quantization noise, 131, 134, 135
Radix, 269, 276, 279
Random signals, 10, 327, 328, 336, 337,

341, 345, 349, 355, 356, 359–362,
367, 370

Random variables, 328, 335, 336, 338,
339, 341, 344, 346, 347

Randomness, 327–329, 336, 337
Real signals, 10, 11
Realization, 211–216, 218–220, 222,

225–237, 247, 249, 250, 283
Receiver, 107
Receiver complexity, 381, 382
Reciprocal, 224
Reconstruction, 124, 127–129, 135, 138,

175
Rectangular function, 63
Recursive, 224–226, 228, 234, 241, 248
Recursive systems, 188, 208
Redundancy, 351
Reflection coefficient, 220, 222, 226
Region of convergence, 142
Remez exchange algorithm, 307
Representation, 27–32, 34, 46, 47
Residual error, 435
Resistance, 17
Resolution, 130, 132
Resonant frequencies, 312
Retina, 2, 14, 15
Ringing effects, 291
Ripple, 285, 295, 299, 301, 308
Roots, 286, 287
Rounding, 132, 133
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Sample delay, 165
Sample function, 329–331, 333
Sample point, 335
Sample rate, 7
Sample space, 329, 335
Sampling, 3, 6, 116, 117, 123, 124,

126–131, 135–139
Sampling interval, 124, 139
Schwartz’s inequality, 389
Self-similarity, 351
Shift invariant, 180
Shifted spectrum, 442
Shifting property, 116
Shuffling, 278, 280
Signal bandwidth, 124
Signal flow-graphs, 234–237
Signal reconstruction, 127
Signal to noise ratio, 170
Signal to quantization noise power, 134
Signum function, 5
Sinusoidal signals, 4, 6, 7, 9, 10
Skeletal muscles, 15
Smearing, 411
Smoothing, 291
Sparse sampling, 419
Specification, 283, 285, 289, 296, 297,

299–301, 318, 323
Spectral aliasing, 128, 129
Spectral leakage, 411, 412, 418, 429, 430,

441, 444, 445, 447, 449, 452
Spectral resolution, 441, 445, 447
Spectral smoothing, 408, 441, 451, 452
Spectrum, 155–159, 165, 168–172
Spectrum estimation, 23
Stability, 141
Static, 179
Stationary process, 338–340, 345
Statistical independence, 336
Stochastic process, 329–335, 337–339,

343, 345–347, 353

Stochastic signals, 1
Strict sense stationarity, 338, 339, 347
Subcortical, 12, 13
Superposition, 104, 114
Suppressed carrier, 376, 380
Swapping, 228
Synchronous, 381, 382
Synthesis, 33
System function, 184, 205–207, 209
System identification, 106
Tapped delay line, 213
Telecommunication, 1
Thermal noise, 328, 330, 358
Time average, 348, 349, 354
Time differentiation, 64
Time domain, 28
Time expansion, 61
Time invariant, 184
Time invariant systems, 113
Time shifting, 35
Toeplitz matrix, 432
Train of impulses, 124
Transducer, 174, 175
Transfer function, 89, 90, 188–194, 196,

197, 199, 201, 203, 206, 208–210
Transition band, 285, 295, 296
Transmission, 59, 76
Transmission power, 376, 379, 381
Transmittance, 235
Transmitter, 106, 107
Transposed structures, 234, 239
Transposition, 235
Transversal, 213
Trapezoidal formula, 319
Triangular, 292
Triangular function, 24
Triangular pulse, 5, 6
Trigonometry, 83, 85
Truncation, 91, 132, 133, 445
Tukey, 292
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Twiddle factor, 270
Ultrasound, 75, 77
Un-correlation, 134
Unbiased estimate, 414, 415, 418
Unbounded, 134
Uncertainty, 327
Uncorrelated processes, 345
Uniform distribution, 134
Uniform probability, 331
Uniform quantizer, 130
Unit circle, 162, 164, 167
Unit step function, 25
Unit vectors, 29
Unpredictable, 329, 336
Upper side band, 382, 383, 403

Variance, 327, 340, 345, 346, 351–354,
356, 366, 367, 370–372

Vocal tract, 328
Wavelength, 375
Welch method, 407, 423
White noise, 327, 358, 359, 362, 364,

370–372
Wide band, 387
Wide sense stationarity, 338–340, 347,

366, 367
Wiener-Khinchin theorem, 355, 367, 370
Windowed autocorrelation, 417
Windowing, 286, 289, 324
Yule-Walker method, 433, 438
Zeros, 190, 191, 206




