
Advances in Experimental Medicine and Biology 1137

Francisco Couto

Data and Text
Processing for
Health and Life
Sciences

Advances in Experimental Medicine
and Biology

Volume 1137

Editorial Board
IRUN R. COHEN, The Weizmann Institute of Science, Rehovot, Israel
ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research,
Orangeburg, NY, USA
JOHN D. LAMBRIS, University of Pennsylvania, Philadelphia, PA, USA
RODOLFO PAOLETTI, University of Milan, Milano, Italy
NIMA REZAEI, Tehran University of Medical Sciences,
Children’s Medical Center Hospital, Tehran, Iran

More information about this series at http://www.springer.com/series/5584

http://www.springer.com/series/5584

Francisco M. Couto

Data and Text
Processing for Health
and Life Sciences

123

Francisco M. Couto
LASIGE, Department of Informatics
Faculdade de Ciências, Universidade de Lisboa
Lisbon, Portugal

ISSN 0065-2598 ISSN 2214-8019 (electronic)
Advances in Experimental Medicine and Biology
ISBN 978-3-030-13844-8 ISBN 978-3-030-13845-5 (eBook)
https://doi.org/10.1007/978-3-030-13845-5

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13845-5
http://creativecommons.org/licenses/by/4.0/

Aos meus pais, Francisco de Oliveira Couto e
Maria Fernanda dos Santos Moreira Couto.

Preface

During the last decades, I witnessed the growing importance of computer
science skills for career advancement in Health and Life Sciences. However,
not everyone has the skill, inclination, or time to learn computer program-
ming. The learning process is usually time-consuming and requires constant
practice, since software frameworks and programming languages change
substantially overtime. This is the main motivation for writing this book about
using shell scripting to address common biomedical data and text processing
tasks. Shell scripting has the advantages of being: (i) nowadays available
in almost all personal computers; (ii) almost immutable for more than four
decades; (iii) relatively easy to learn as a sequence of independent commands;
(iv) an incremental and direct way to solve many of the data problems that
Health and Life professionals face.

During the last decades, I had the pleasure to teach introductory computer
science classes to Life and Health and Life Sciences undergraduates. I used
programming languages, such as Perl and Python, to address data and text
processing tasks, but I always felt to lose a substantial amount of the time
teaching the technicalities of these languages, which will probably change
over time and are uninteresting for the majority of the students who do not
intend to pursue advanced bioinformatics courses. Thus, the purpose of this
book is to motivate and help specialists to automate common data and text
processing tasks after a short learning period. If they become interested (and
I hope some do), the book presents pointers to where they can acquire more
advanced computer science skills.

This book does not intend to be a comprehensive compendium of shell
scripting commands but instead an introductory guide for Health and Life
specialists. This book introduces the commands as they are required to
automate data and text processing tasks. The selected tasks have a strong
focus on text mining and biomedical ontologies given my research experience
and their growing relevance for Health and Life studies. Nevertheless, the
same type of solutions presented in the book are also applicable to many
other research fields and data sources.

Lisboa, Portugal Francisco M. Couto
January 2019

vii

Acknowledgments

I am grateful to all the people who helped and encouraged me along this
journey, especially to Rita Ferreira for all the insightful discussions about
shell scripting.

I am also grateful for all the suggestions and corrections given by my
colleague Prof. José Baptista Coelho and by my college students: Alice
Veiros, Ana Ferreira, Carlota Silva, Catarina Raimundo, Daniela Matias, Inês
Justo, João Andrade, João Leitão, João Pedro Pais, Konil Solanki, Mariana
Custódio, Marta Cunha, Manuel Fialho, Miguel Silva, Rafaela Marques,
Raquel Chora and Sofia Morais.

This work was supported by FCT through funding of DeST: Deep Seman-
tic Tagger project, ref. PTDC/CCI-BIO/28685/2017 (http://dest.rd.ciencias.
ulisboa.pt/), and LASIGE Research Unit, ref. UID/CEC/00408/2019.

ix

http://dest.rd.ciencias.ulisboa.pt/
http://dest.rd.ciencias.ulisboa.pt/

Contents

1 Introduction . 1
Biomedical Data Repositories . 1
Scientific Text . 1
Amount of Text . 2
Ambiguity and Contextualization . 2
Biomedical Ontologies . 2
Programming Skills . 2
Why This Book? . 4

Third-Party Solutions . 5
Simple Pipelines . 5

How This Book Helps Health and Life Specialists? 5
Shell Scripting . 5
Text Files . 6
Relational Databases . 7

What Is in the Book? . 7
Command Line Tools . 7
Pipelines . 8
Regular Expressions . 8
Semantics . 8

2 Resources . 9
Biomedical Text . 9

What? . 9
Where? . 10
How? . 11

Semantics . 11
What? . 12
Where? . 13
How? . 14

Further Reading . 15

3 Data Retrieval . 17
Caffeine Example . 17
Unix Shell . 24

Current Directory . 24
Windows Directories . 25
Change Directory . 26
Useful Key Combinations . 26

xi

xii Contents

Shell Version . 26
Data File . 26
File Contents . 27
Reverse File Contents . 27
My First Script . 27
Line Breaks . 27
Redirection Operator . 27
Installing Tools . 28
Permissions . 28
Debug . 28
Save Output . 29

Web Identifiers . 29
Single and Double Quotes . 30
Comments . 30

Data Retrieval . 30
Standard Error Output . 32

Data Extraction . 32
Single and Multiple Patterns . 33
Data Elements Selection . 34

Task Repetition . 34
Assembly Line . 35
File Header . 36
Variable . 36

XML Processing . 36
Human Proteins . 36
PubMed Identifiers . 37
PubMed Identifiers Extraction . 37
Duplicate Removal . 38
Complex Elements . 39
XPath . 39
Namespace Problems . 39
Only Local Names . 39
Queries . 40
Extracting XPath Results . 41

Text Retrieval . 41
Publication URL . 41
Title and Abstract . 42
Disease Recognition . 43

Further Reading . 43

4 Text Processing . 45
Pattern Matching . 45

Case Insensitive Matching . 45
Number of Matches . 46
Invert Match . 46
File Differences . 46
Evaluation Metrics . 47
Word Matching . 47

Contents xiii

Regular Expressions . 48
Extended Syntax . 48
Alternation . 49
Multiple Characters . 49
Quantifiers . 51

Position . 53
Beginning . 53
Ending . 53
Near the End . 54
Word in Between . 54
Full Line . 54
Match Position . 55

Tokenization . 55
Character Delimiters . 55
Wrong Tokens . 56
String Replacement . 56
Multi-character Delimiters . 56
Keep Delimiters . 56
Sentences File . 57

Entity Recognition . 57
Select the Sentence . 58

Pattern File . 58
Relation Extraction . 59

Multiple Filters . 59
Relation Type . 60
Remove Relation Types . 60

Further Reading . 60

5 Semantic Processing . 61
Classes . 61

OWL Files . 61
Class Label . 62
Class Definition . 62
Related Classes . 65

URIs and Labels . 66
URI of a Label . 66
Label of a URI . 68

Synonyms . 70
URI of Synonyms . 71

Parent Classes . 71
Labels of Parents . 72
Related Classes . 73
Labels of Related Classes . 73

Ancestors . 74
Grandparents . 74
Root Class . 74
Recursion . 74
Iteration . 75

xiv Contents

My Lexicon . 76
Ancestors Labels . 76
Merging Labels . 77
Ancestors Matched . 78

Generic Lexicon . 78
All Labels . 78
Problematic Entries . 79
Special Characters Frequency . 80
Completeness . 80
Removing Special Characters . 80
Removing Extra Terms . 80
Removing Extra Spaces . 80
Disease Recognition . 81

Performance . 82
Inverted Recognition . 82
Case Insensitive . 82
ASCII Encoding . 82
Correct Matches . 83
Incorrect Matches . 83

Entity Linking . 83
Modified Labels . 84
Ambiguity . 84
Surrounding Entities . 84
Semantic Similarity . 85
Measures . 85
DiShIn Installation . 86
Database File . 87
DiShIn Execution . 88

Large Lexicons . 88
MER Installation . 88
Lexicon Files . 89
MER Execution . 90

Further Reading . 91

Bibliography . 93

Index . 97

Acronyms

ChEBI Chemical Entities of Biological Interest
CSV Comma-Separated Values
cURL Client Uniform Resource Locator
DAG Directed Acyclic Graph
DBMS Database Management System
DiShIn Semantic Similarity Measures using Disjunctive Shared

Information
DO Disease Ontology
EBI European Bioinformatics Institute
GO Gene Ontology
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
ICD International Classification of Diseases
MER Minimal Named-Entity Recognizer
MeSH Medical Subject Headings
NCBI National Center for Biotechnology Information
NER Named-Entity Recognition
OBO Open Biological and Biomedical Ontology
OWL Web Ontology Language
PMC PubMed Central
RDFS RDF Schema
SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms
SQL Structured Query Language
TSV Tab-Separated Values
UMLS Unified Medical Language System
UniProt Universal Protein Resource
URI Uniform Resource Identifier
URL Uniform Resource Locator
XLS Microsoft Excel file format
XML Extensible Markup Language

xv

1Introduction

Abstract

Health and Life studies are well known
for the huge amount of data they produce,
such as high-throughput sequencing projects
(Stephens et al., PLoS Biol 13(7):e1002195,
2015; Hey et al., The fourth paradigm:
data-intensive scientific discovery, vol 1.
Microsoft research Redmond, Redmond,
2009). However, the value of the data should
not be measured by its amount, but instead
by the possibility and ability of researchers to
retrieve and process it (Leonelli, Data-centric
biology: a philosophical study. University of
Chicago Press, Chicago, 2016). Transparency,
openness, and reproducibility are key aspects
to boost the discovery of novel insights
into how living systems work (Nosek et al.,
Science 348(6242):1422–1425, 2015).

Keywords

Bioinformatics · Biomedical data
repositories · Text files · EBI: European
Bioinformatics Institute · Bibliographic
databases · Shell scripting · Command line
tools · Spreadsheet applications · CSV:
comma-separated values · TSV: tab-separated
values

Biomedical Data Repositories

Fortunately, a significant portion of the
biomedical data is already being collected,
integrated and distributed through Biomed-
ical Data Repositories, such as European
Bioinformatics Institute (EBI) and National
Center for Biotechnology Information (NCBI)
repositories (Cook et al. 2017; Coordinators
2018). Nonetheless, researchers cannot rely on
available data as mere facts, they may contain
errors, can be outdated, and may require a
context (Ferreira et al. 2017). Most facts are only
valid in a specific biological setting and should
not be directly extrapolated to other cases. In
addition, different research communities have
different needs and requirements, which change
over time (Tomczak et al. 2018).

Scientific Text

Structured data is what most computer applica-
tions require as input, but humans tend to prefer
the flexibility of text to express their hypoth-
esis, ideas, opinions, conclusions (Barros and
Couto 2016). This explains why scientific text
is still the preferential means to publish new

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-13845-5_1

2 1 Introduction

discoveries and to describe the data that support
them (Holzinger et al. 2014; Lu 2011). Another
reason is the long-established scientific reward
system based on the publication of scientific
articles (Rawat and Meena 2014).

Amount of Text

The main problem of analyzing biomedical text
is the huge amount of text being published every
day (Hersh 2008). For example, 813,598 cita-
tions1 were added in 2017 to MEDLINE, a bibli-
ographic database of Health and Life literature2.
If we read 10 articles per day, it will take us takes
more than 222 years to just read those articles.
Figure 1.1 presents the number of citations added
to MEDLINE in the past decades, showing the
increasing large amount of biomedical text that
researchers must deal with.

Moreover, scientific articles are not the only
source of biomedical text, for example clinical
studies and patents also provide a large amount
of text to explore. They are also growing at a fast
pace, as Figs. 1.2 and 1.3 clearly show (Aras et al.
2014; Jensen et al. 2012).

Ambiguity and Contextualization

Given the high flexibility and ambiguity of natu-
ral language, processing and extracting informa-
tion from texts is a painful and hard task, even
to humans. The problem is even more complex
when dealing with scientific text, that requires
specialized expertise to understand it. The major
problem with Health and Life Sciences is the in-
consistency of the nomenclature used for describ-
ing biomedical concepts and entities (Hunter and
Cohen 2006; Rebholz-Schuhmann et al. 2005). In
biomedical text, we can often find different terms
referring to the same biological concept or entity
(synonyms), or the same term meaning different

1https://www.nlm.nih.gov/bsd/index_stats_comp.html
2https://www.nlm.nih.gov/bsd/medline.html

biological concepts or entities (homonyms). For
example, many times authors improve the read-
ability of their publications by using acronyms to
mention entities, that may be clear for experts on
the field but ambiguous in another context.

The second problem is the complexity of the
message. Almost everyone can read and under-
stand a newspaper story, but just a few can really
understand a scientific article. Understanding the
underlying message in such articles normally
requires years of training to create in our brain
a semantic model about the domain and to know
how to interpret the highly specialized terminol-
ogy specific to each domain. Finally, the mul-
tilingual aspect of text is also a problem, since
most clinical data are produced in the native
language (Campos et al. 2017).

Biomedical Ontologies

To address the issue of ambiguity of natural
language and contextualization of the message,
text processing techniques can explore current
biomedical ontologies (Robinson and Bauer
2011). These ontologies can work as vocabularies
to guide us in what to look for (Couto et al.
2006). For example, we can select an ontology
that models a given domain and find out which
official names and synonyms are used to mention
concepts in which we have an interest (Spasic
et al. 2005). Ontologies may also be explored
as semantic models by providing semantic
relationships between concepts (Lamurias et al.
2017).

Programming Skills

The success of biomedical studies relies on over-
coming data and text processing issues to take the
most of all the information available in biomed-
ical data repositories. In most cases, biomedical
data analysis is no longer possible using an in-
house and limited dataset, we must be able to
efficiently process all this data and text. So, a
common question that many Health and Life
specialists face is:

https://www.nlm.nih.gov/bsd/index_stats_comp.html
https://www.nlm.nih.gov/bsd/medline.html

Ambiguity and Contextualization 3

Fig. 1.1 Chronological listing of the total number of citations in MEDLINE (Source: https://www.nlm.nih.gov/bsd/)

Fig. 1.2 Chronological listing of the total number of registered studies (clinical trials) (Source: https://clinicaltrials.
gov)

https://www.nlm.nih.gov/bsd/
https://clinicaltrials.gov
https://clinicaltrials.gov

4 1 Introduction

Fig. 1.3 Chronological listing of the total number of patents in force (Source: WIPO statistics database http://www.
wipo.int/ipstats/en/)

How can I deal with such huge amount of
data and text the necessary expertise, time
and disposition to learn computer program-
ming?

This is the goal of this book, to provide a low-
cost, long-lasting, feasible and painless answer to
this question.

Why This Book?

State-of-the-art data and text processing tools
are nowadays based on complex and sophisti-
cated technologies, and to understand them we
need to have special knowledge on program-
ming, linguistics, machine learning or deep learn-
ing (Holzinger and Jurisica 2014; Ching et al.
2018; Angermueller et al. 2016). Explaining their
technicalities or providing a comprehensive list
of them are not the purpose of this book. The
tools implementing these technologies tend to

be impenetrable to the common Health and Life
specialists and usually become outdated or even
unavailable some time after their publication or
the financial support ends. Instead, this book will
equip the reader with a set of skills to process text
with minimal dependencies to existing tools and
technologies. The idea is not to explain how to
build the most advanced tool, but how to create
a resilient and versatile solution with acceptable
results.

In many cases, advanced tools may not be
most efficient approach to tackle a specific prob-
lem. It all depends on the complexity of problem,
and the results we need to obtain. Like a good
physician knows that the most efficient treatment
for a specific patient is not always the most
advanced one, a good data scientist knows that
the most efficient tool to address a specific infor-
mation need is not always the most advanced one.
Even without focusing on the foundational basis
of programming, linguistics or artificial intelli-
gence, this book provides the basic knowledge
and right references to pursue a more advanced
solution if required.

http://www.wipo.int/ipstats/en/
http://www.wipo.int/ipstats/en/

How This Book Helps Health and Life Specialists? 5

Third-Party Solutions

Many manuscripts already present and discuss
the most recent and efficient text mining
techniques and the available software solutions
based on them that users can use to process data
and text (Cock et al. 2009; Gentleman et al. 2004;
Stajich et al. 2002). These solutions include
stand-alone applications, web applications,
frameworks, packages, pipelines, etc. A common
problem with these solutions is their resiliency
to deal with new user requirements, to changes
on how resources are being distributed, and to
software and hardware updates. Commercial
solutions tend to be more resilient if they have
enough customers to support the adaptation
process. But of course we need the funding
to buy the service. Moreover, we will be still
dependent on a third-party availability to address
our requirements that are continuously changing,
which vary according to the size of the company
and our relevance as client.

Using open-source solutions may seem a great
alternative since we do not need to allocate fund-
ing to use the service and its maintenance is as-
sured by the community. However, many of these
solutions derive from academic projects that most
of the times are highly active during the funding
period and then fade away to minimal updates.
The focus of academic research is on creating
new and more efficient methods and publish
them, the software is normally just a means to
demonstrate their breakthroughs. In many cases
to execute the legacy software is already a non-
trivial task, and even harder is to implement
the required changes. Thus, frequently the most
feasible solution is to start from scratch.

Simple Pipelines

If we are interested in learning sophisticated and
advanced programming skills, this is not the right
book to read. This book aims at helping Health
and Life specialists to process data and text by
describing a simple pipeline that can be executed
with minimal software dependencies. Instead of
using a fancy web front-end, we can still man-

ually manipulate our data using the spreadsheet
application that we already are comfortable with,
and at the same time be able to automatize some
of the repetitive tasks.

In summary, this book is directed mainly
towards Health and Life specialists and
students that need to know how to process
biomedical data and text, without being
dependent on continuous financial support,
third-party applications, or advanced com-
puter skills.

How This Book Helps Health and
Life Specialists?

So, if this book does not focus on learning pro-
gramming skills, and neither on the usage of any
special package or software, how it will help
specialists processing biomedical text and data?

Shell Scripting

The solution proposed in this book has been
available for more than four decades (Ritchie
1971), and it can now be used in almost every
personal computer (Haines 2017). The idea is to
provide an example driven introduction to shell
scripting3 that addresses common challenges in
biomedical text processing using a Unix shell4.
Shells are software programs available in Unix
operating systems since 19715, but nowadays are
available is most of our personal computers using
Linux, macOS or Windows operating systems.

But a shell script is still a computer algo-
rithm, so how is it different from learning
another programming language?

3https://en.wikipedia.org/wiki/Shell_script
4https://en.wikipedia.org/wiki/Unix_shell
5https://www.in-ulm.de/~mascheck/bourne/#origins

https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Unix_shell
https://www.in-ulm.de/~mascheck/bourne/#origins

6 1 Introduction

It is different in the sense that most solutions
are based on the usage of single command line
tools, that sometimes are combined as simple
pipelines. This book does not intend to create
experts in shell scripting, by the contrary, the few
scripts introduced are merely direct combinations
of simple command line tools individually ex-
plained before.

The main idea is to demonstrate the ability of
a few command line tools to automate many of
the text and data processing tasks. The solutions
are presented in a way that comprehending them
is like conducting a new laboratory protocol i.e.
testing and understanding its multiple procedural
steps, variables, and intermediate results.

Text Files

All the data will be stored in text files, which
command line tools are able to efficiently pro-
cess (Baker and Milligan 2014). Text files repre-
sent a simple and universal medium of storing our
data. They do not require any special encoding
and can be opened and interpreted by using
any text editor application. Normally, text files
without any kind of formatting are stored using
a txt extension. However, text files can contain
data using a specific format, such as:

CSV : Comma-Separated Values6;
TSV : Tab-Separated Values7;

XML : eXtensible Markup Language8.

All the above formats can be open (import),
edited and saved (export) by any text editor appli-
cation. and common spreadsheet applications9,
such as LibreOffice Calc or Microsoft Excel10.
For example, we can create a new data file using
LibreOffice Calc, like the one in Fig. 1.4. Then
we select the option to save it as CSV, TSV, XML

6https://en.wikipedia.org/wiki/Comma-separated_values
7https://en.wikipedia.org/wiki/Tab-separated_values
8https://en.wikipedia.org/wiki/XML
9https://en.wikipedia.org/wiki/Spreadsheet
10To save in TSV format using the LibreOffice Calc, we
may have to choose CSV format and then select as field
delimiter the tab character.

Fig. 1.4 Spreadsheet example

(Microsoft 2003), and XLS (Microsoft 2003)
formats. We can try to open all these files in our
favorite text editor.

When opening the CSV file, the application
will show the following contents:

A,C
G,T

Each line represents a row of the spreadsheet, and
column values are separated by commas.

When opening the TSV file, the application
will show the following contents:

A C
G T

The only difference is that instead of a comma
it is now used a tab character to separate column
values.

When opening the XML file, the application
will show the following contents:

...
<Table ss:StyleID="ta1">
<Column ss:Span="1" ss:Width="

64.01"/>
<Row ss:Height="12.81"><Cell><

Data ss:Type="String">A</Data
></Cell><Cell><Data ss:Type="
String">C</Data></Cell></Row>

<Row ss:Height="12.81"><Cell><
Data ss:Type="String">G</Data
></Cell><Cell><Data ss:Type="
String">T</Data></Cell></Row>

</Table>
...

Now the data is more complex to find and under-
stand, but with a little more effort we can check
that we have a table with two rows, each one with
two cells.

When opening the XLS file, we will get a
lot of strange characters and it is humanly im-
possible to understand what data it is storing.

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Spreadsheet

What Is in the Book? 7

This happens because XLS is not a text file is a
proprietary format11, which organizes data using
an exclusive encoding scheme, so its interpreta-
tion and manipulation could only be done using a
specific software application.

Comma-separated values is a data format so
old as shell scripting, in 1972 it was already
supported by an IBM product12. Using CSV or
TSV enables us to manually manipulate the data
using our favorite spreadsheet application, and
at the same time use command line tools to
automate some of the tasks.

Relational Databases

If there is a need to use more advanced data
storage techniques, such as using a relational
database13, we may still be able to use shell
scripting if we can import and export our data
to a text format. For example, we can open
a relational database, execute Structured Query
Language (SQL) commands14, and import and
export the data to CSV using the command line
tool sqlite315.

Besides CSV and shell scripting being al-
most the same as they were four decades ago,
they are still available everywhere and are able
to solve most of our data and text processing
daily problems. So, these tools are expected to
continue to be used for many more decades to
come. As a bonus, we will look like a true
professional typing command line instructions in
a black background window ! �̈

What Is in the Book?

First, the Chap. 2 presents a brief overview of
some of the most prominent resources of biomed-
ical data, text, and semantics. The chapter dis-

11https://en.wikipedia.org/wiki/Proprietary_format
12http://bitsavers.trailingedge.com/pdf/ibm/370/fortran/
GC28-6884-0_IBM_FORTRAN_Program_Products_for_
OS_and_CMS_General_Information_Jul72.pdf
13https://en.wikipedia.org/wiki/Relational_database
14https://en.wikipedia.org/wiki/SQL
15https://www.sqlite.org/cli.html

cusses what type of information they distribute,
where we can find them, and how we will be
able to automatically explore them. Most of the
examples in the book use the resources pro-
vided by the European Bioinformatics Institute
(EBI) and use their services to automatically
retrieve the data and text. Nevertheless, after
understanding the command line tools, it will
not be hard to adapt them to the formats used
by other service provider, such as the National
Center for Biotechnology Information (NCBI).
In terms of semantics, the examples will use
two ontologies, one about human diseases and
the other about chemical entities of biological
interest. Most ontologies share the same structure
and syntax, so adapting the solutions to other
domains are expected to be painless.

As an example, the Chap. 3 will describe the
manual steps that Health and Life specialists may
have to perform to find and retrieve biomedi-
cal text about caffeine using publicly available
resources. Afterwards, these manual steps will
be automatized by using command line tools,
including the automatic download of data. The
idea is to go step-by-step and introduce how each
command line tool can be used to automate each
task.

Command Line Tools

The main command line tools that this book will
introduce are the following:

• curl: a tool to download data and text from
the web;

• grep: a tool to search our data and text;
• gawk: a tool to manipulate our data and text;
• sed: a tool to edit our data and text;
• xargs: a tool to repeat the same step for

multiple data items;
• xmllint: a tool to search in XML data files.

Other command line tools are also presented
to perform minor data and text manipulations,
such as:

• cat: a tool to get the content of file;

https://en.wikipedia.org/wiki/Proprietary_format
http://bitsavers.trailingedge.com/pdf/ibm/370/fortran/
GC28-6884-0_IBM_FORTRAN_Program_Products_for_
OS_and_CMS_General_Information_Jul72.pdf
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/SQL
https://www.sqlite.org/cli.html

8 1 Introduction

• tr: a tool to replace one character by another;
• sort: a tool to sort multiple lines;
• head: a tool to select only the first lines.

Pipelines

A fundamental technique introduced in Chap. 3
is how to redirect the output of a command line
tool as input to another tool, or to a file. This en-
ables the construction of pipelines of sequential
invocations of command line tools. Using a few
commands integrated in a pipeline is really the
maximum shell scripting that this book will use.
Scripts longer than that would cross the line of
not having to learn programming skills.

Chapter 4 is about extracting useful informa-
tion from the text retrieved previously. The ex-
ample consists in finding references to malignant
hyperthermia in these caffeine related texts, so
we may be able to check any valid relation.

Regular Expressions

A powerful pattern matching technique described
in this chapter is the usage of regular expres-
sions16 in the grep command line tool to per-
form Named-Entity Recognition (NER)17. Regu-
lar expressions originated in 1951 (Kleene 1951),
so they are even older than shell scripting, but
still popular and available in multiple software
applications and programming languages (Forta

16https://en.wikipedia.org/wiki/Regular_expression
17https://en.wikipedia.org/wiki/Named-
entity_recognition

2018). A regular expression is a string that in-
clude special operators represented by special
characters. For example, the regular expression
A|C|G|T will identify in a given string any of
the four nucleobases adenine (A), cytosine (C),
guanine (G), or thymine (T).

Another technique introduced is tokenization.
It addresses the challenge of identifying the text
boundaries, such as splitting a text into sentences.
So, we can keep only the sentences that may have
something we want. Chapter 4 also describes how
can we try to find two entities in the same sen-
tence, providing a simple solution to the relation
extraction challenge18.

Semantics

Instead of trying to recognize a limited list of
entities, Chap. 5 explains how can we use ontolo-
gies to construct large lexicons that include all the
entities of a given domain, e.g. humans diseases.
The chapter also explains how the semantics
encoded in an ontology can be used to expand a
search by adding the ancestors and related classes
of a given entity. Finally, a simple solution to
the Entity Linking19 challenge is given, where
each entity recognized is mapped to a class in
an ontology. A simple technique to solve the
ambiguity issue when the same label can be
mapped to more than one class is also briefly
presented.

18https://en.wikipedia.org/wiki/Relationship_extraction
19https://en.wikipedia.org/wiki/Entity_linking

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Entity_linking
http://creativecommons.org/licenses/by/4.0/

2Resources

Abstract

The previous chapter presented the impor-
tance of text and semantic resources for Health
and Life studies. This chapter will describe
what kind of text and semantic resources are
available, where they can be found, and how
they can be accessed and retrieved.

Keywords

Biomedical literature · Programmatic access ·
UniProt citations service · Semantics ·
Controlled vocabularies · Ontologies · OWL:
Web Ontology Language · URI: Uniform
Resource Identifier · DAG: Directed Acyclic
Graphs · OBO: Open Biomedical Ontologies

Biomedical Text

Text is still the preferential means of publishing
novel knowledge in Health and Life Sciences,
and where we can expect to find all the
information about the supporting data. Text
can be found and explored in multiple types
of sources, the main being scientific articles and
patents (Krallinger et al. 2017). However, less
formal texts are also relevant to explore, such as
the ones present nowadays in electronic health
records (Blumenthal and Tavenner 2010).

What?

In the biomedical domain, we can find text in
different forms, such as:

Statement: a short piece of text, normally con-
taining personal remarks or an evidence about
a biomedical phenomenon;

Abstract: a short summary of a larger scientific
document;

Full-text: the entire text present in a scientific
document including scattered text such as fig-
ure labels and footnotes.

Statements contain more syntactic and semantic
errors than abstracts, since they normally are
not peer-reviewed, but they are normally directly
linked to data providing useful details about it.
The main advantage of using statements or ab-
stracts is the brief and succinct form on which
the information is expressed. In the case of ab-
stracts, there was already an intellectual exercise
to present only the main facts and ideas. Never-
theless, a brief description may be insufficient to
draw a solid conclusion, that may require some
important details not possible to summarize in a
short piece of text (Schuemie et al. 2004). These
details are normally presented in the form of a
full-text document, which contains a complete
description of the results obtained. For example,
important details are sometimes only present in
figure labels (Yeh et al. 2003).

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-13845-5_2

10 2 Resources

One major problem of full-text documents is
their availability, since their content may have
restricted access. In addition, the structure of the
full-text and the format on which is available
varies according to the journal in where it was
published. Having more information does not
mean that all of it is beneficial to find what
we need. Some of the information may even
induce us in error. For example, the relevance
of a fact reported in the Results Section may be
different if the fact was reported in the Related
Work Section. Thus, the usage of full-text may
create several problems regarding the quality of
information extracted (Shah et al. 2003).

Where?

Access to biomedical literature is normally done
using the internet through PubMed1, an informa-
tion retrieval system released in 1996 that allows
researchers to search and find biomedical texts of
relevance to their studies (Canese 2006). PubMed
is developed and maintained by the National
Center for Biotechnology Information (NCBI), at
the U.S. National Library of Medicine (NLM),
located at the National Institutes of Health (NIH).
Currently, PubMed provides access to more than
28 million citations from MEDLINE, a biblio-
graphic database with references to a compre-
hensive list of academic journals in Health and
Life Sciences2. The references include multiple
metadata about the documents, such as: title, ab-
stract, authors, journal, publication date. PubMed
does not store the full-text documents, but it
provides links where we may find the full-text.
More recently, biomedical references are also
accessible using the European Bioinformatics
Institute (EBI) services, such as Europe PMC3,
the Universal Protein Resource (UniProt) with its
UniProt citations service4.

Other generic alternative tools have been also
gaining popularity for finding scientific texts,

1https://www.nlm.nih.gov/bsd/pubmed.html
2https://www.nlm.nih.gov/bsd/medline.html
3http://europepmc.org/
4https://www.uniprot.org/citations/

such as Google Scholar5, Google Patents6, Re-
searchGate7 and Mendeley8.

More than just text some tools also integrate
semantic links. One of the first search engines
for biomedical literature to incorporate semantics
was GOPubMed9, that categorized texts accord-
ing to Gene Ontology terms found in them (Doms
and Schroeder 2005). These semantic resources
will be described in a following section. A more
recent tool is PubTator10 that provides the text
annotated with biological entities generated by
state-of-the-art text-mining approaches (Wei
et al. 2013).

There is also a movement in the scientific
community to produce Open Access Publica-
tions, making full-texts freely available with
unrestricted use. One of the main free digital
archives of free biomedical full-texts is PubMed
Central11 (PMC), currently providing access to
more than 5 million documents.

Other relevant source of biomedical texts is
the electronic health records stored in health in-
stitutions, but the texts they contain are normally
directly linked to patients and therefore their
access is restricted due to ethical and privacy is-
sues. As example, the THYME corpus12 includes
more than one thousand de-identified clinical
notes from the Mayo Clinic, but is only available
for text processing research under a data use
agreement (DUA) with Mayo Clinic (Styler IV
et al. 2014).

From generic texts we can also sometimes find
relevant biomedical information. For example,
some recent biomedical studies have been pro-
cessing the texts in social networks to identify
new trends and insights about a disease, such as
processing tweets to predict flu outbreaks (Ara-
maki et al. 2011).

5http://scholar.google.com/
6http://www.google.com/patents
7https://www.researchgate.net/
8https://www.mendeley.com/
9https://gopubmed.org/
10http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/
PubTator/
11https://www.ncbi.nlm.nih.gov/pmc/
12http://thyme.healthnlp.org/

https://www.nlm.nih.gov/bsd/pubmed.html
https://www.nlm.nih.gov/bsd/medline.html
http://europepmc.org/
https://www.uniprot.org/citations/
http://scholar.google.com/
http://www.google.com/patents
https://www.researchgate.net/
https://www.mendeley.com/
https://gopubmed.org/
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
https://www.ncbi.nlm.nih.gov/pmc/
http://thyme.healthnlp.org/

Semantics 11

How?

To automatically process text, we need program-
matic access to it, this means that from the pre-
vious biomedical data repositories we can only
use the ones that allow this kind of access. These
limitations are imposed because many biomed-
ical documents have copyright restrictions hold
by their publishers. And some restrictions may
define that only manual access is granted, and no
programmatic access is allowed. These restric-
tions are normally detailed in the terms of service
of each repository. However, when browsing the
repository if we face a CAPTCHA challenge
to determine whether we are humans or not,
probably means that some access restrictions are
in place.

Fortunately, NCBI13 and EBI14 online ser-
vices, such as PubMed, Europe PMC, or UniProt
Citations, allow programmatic access (Li et al.
2015). Both institutions provide Web APIs15 that
fully document how web services can be pro-
grammatically invoked. Some resources can in-
clusively be accessed using RESTful web ser-
vices16 that are characterized by a simple uniform
interface that make any Uniform Resource Lo-
cator (URL) almost self-explanatory (Richardson
and Ruby 2008). The same URL shown by our
web browser is the only thing we need to know
to retrieve the data using a command line tool.

For example, if we search for caffeine using
the UniProt Citations service17, select the first
two entries, and click on download, the browser
will show information about those two docu-
ments using a tabular format.

PubMed ID Title Authors/Groups
Abstract/Summary

27702941 Genome-wide association
...

22333316 Modeling caffeine
concentrations ...

13https://www.ncbi.nlm.nih.gov/home/develop/api/
14https://www.ebi.ac.uk/seqdb/confluence/display/
JDSAT/
15https://en.wikipedia.org/wiki/Web_API
16https://www.ebi.ac.uk/seqdb/confluence/pages/
viewpage.action?pageId=68165098
17https://www.uniprot.org/citations/

More important is to check the URL that is
now being used:

https://www.uniprot.org/
citations/?sort=score&desc=&
compress=no&query=id
:27702941%20OR%20id:22333316&
format=tab&columns=id

We can check that the URL has three
main components: the scheme (https), the
hostname (www.uniprot.org), the service
(citations) and the data parameters. The
scheme represents the type of web connection to
get the data, and usually is one of these protocols:
Hypertext Transfer Protocol (HTTP) or HTTP
Secure (HTTPS)18. The hostname represents the
physical site where the service is available. The
list of parameters depends on the data available
from the different services. We can change
any value of the parameters (arguments) to get
different results. For example, we can replace
the two PubMed identifiers by the following one
2902929119, and our browser will now display
the information about this new document:

PubMed ID Title Authors/Groups
Abstract/Summary

29029291 Nutrition Influences...

The good news is that we can use this link with
a command line tool and automatize the retrieval
of the data, including extracting the abstract to
process its text.

Semantics

Lack of use of standard nomenclatures across bi-
ological text makes text processing a non-trivial
task. Often, we can find different labels (syn-
onyms, acronyms) for the same biomedical enti-
ties, or, even more problematic, different entities
sharing the same label (homonyms) (Rebholz-
Schuhmann et al. 2005). Sense disambiguation
to select the correct meaning of an expression in

18https://en.wikipedia.org/wiki/
Hypertext_Transfer_Protocol
19https://www.uniprot.org/citations/?sort=score&desc=
&compress=no&query=id:29029291&format=
tab&columns=id

https://en.wikipedia.org/wiki/CAPTCHA
https://www.ncbi.nlm.nih.gov/home/develop/api/
https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/
https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/
https://en.wikipedia.org/wiki/Web_API
https://www.ebi.ac.uk/seqdb/confluence/pages/viewpage.action?pageId=68165098
https://www.ebi.ac.uk/seqdb/confluence/pages/viewpage.action?pageId=68165098
https://www.uniprot.org/citations/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://www.uniprot.org/citations/?sort=score&desc=&compress=no&query=id:29029291&format=tab&columns=id
https://www.uniprot.org/citations/?sort=score&desc=&compress=no&query=id:29029291&format=tab&columns=id
https://www.uniprot.org/citations/?sort=score&desc=&compress=no&query=id:29029291&format=tab&columns=id

12 2 Resources

a given piece of text is therefore a crucial issue.
For example, if we find the disease acronym ATS
in a text, we may have to figure out if it repre-
senting the Andersen-Tawil syndrome20 or the X-
linked Alport syndrome21. Further in the book, we
will address this issue by using ontologies and
semantic similarity between their classes (Couto
and Lamurias 2019).

What?

In 1993, Gruber (1993) proposed a short but
comprehensive definition of ontology as an:

an explicit specification of a conceptualization

In 1997 and 1998, Borst and Borst (1997) and
Studer et al. (1998) refined this definition to:

a formal, explicit specification of a shared concep-
tualization

A conceptualization is an abstract view of
the concepts and the relationships of a given
domain. A shared conceptualization means that a
group of individuals agree on that view, normally
established by a common agreement among the
members of a community. The specification is a
representation of that conceptualization using a
given language. The language needs to be formal
and explicit, so computers can deal with it.

Languages
The Web Ontology Language (OWL)22 is
nowadays becoming one of the most common
languages to specify biomedical ontologies
(McGuinness et al. 2004). Another popular alter-
native is the Open Biomedical Ontology (OBO)23

format developed by the OBO foundry. OBO
established a set of principles to ensure high
quality, formal rigor and interoperability between
other OBO ontologies (Smith et al. 2007). One
important principle is that OBO ontologies need

20http://purl.obolibrary.org/obo/DOID_0050434
21http://purl.obolibrary.org/obo/DOID_0110034
22https://en.wikipedia.org/wiki/
Web_Ontology_Language
23https://en.wikipedia.org/wiki/
Open_Biomedical_Ontologies

to be open and available without any constraint
other than acknowledging their origin.

Concepts are defined as OWL classes that may
include multiple properties. For text processing
important properties include the labels that may
be used to mention that class. The labels may
include the official name, acronyms, exact syn-
onyms, and even related terms. For example, a
class defining the disease malignant hyperther-
mia may include as synonym anesthesia related
hyperthermia. Two distinct classes may share the
same label, such as Andersen-Tawil syndrome
and X-linked Alport syndrome that have ATS as
an exact synonym.

Formality
The representation of classes and the relation-
ships may use different levels of formality, such
as controlled vocabularies, taxonomies and the-
saurus, that even may include logical axioms.

Controlled vocabularies are list of terms with-
out specifying any relation between them. Tax-
onomies are controlled vocabularies that include
subsumption relations, for example specifying
that malignant hyperthermia is a muscle tissue
disease. This is-a or subclass relations are nor-
mally the backbone of ontologies. We should
note that some ontologies may include multi-
ple inheritance, i.e. the same concept may be a
specialization of two different concepts. There-
fore, many ontologies are organized as a directed
acyclic graphs (DAG) and not as hierarchical
trees, as the one represented in Fig. 2.1. A the-
saurus includes other types of relations besides
subsumption, for example specifying that caf-
feine has role mutagen.

Gold Related Documents
The importance of these relations can be easily
understood by considering the domain modeled
by the ontology in Fig. 2.1, and the need to find
texts related to gold. Assume a corpus with one
distinct document mentioning each metal, except
for gold that no document mentions. So, which
documents should we read first?

The document mentioning silver is probably
the most related since it shares with gold two
parents, precious and coinage. However, choos-

http://purl.obolibrary.org/obo/DOID_0050434
http://purl.obolibrary.org/obo/DOID_0110034
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Open_Biomedical_Ontologies
https://en.wikipedia.org/wiki/Open_Biomedical_Ontologies

Semantics 13

Fig. 2.1 A DAG
representing a
classification of metals
with multiple inheritance,
since gold and silver are
considered both precious
and coinage metals (All the
links represent is-a
relations)

platinum palladium gold silver copper

precious coinage

metal

ing between the documents mentioning platinum
or palladium or the document mentioning copper
depends on our information need. This informa-
tion can be obtained by our previous searches
or reads. For example, assuming that our last
searches included the word coinage, then docu-
ment mentioning copper is probably the second-
most related. The importance of these semantic
resources is evidenced by the development of the
knowledge graph24 by Google to enhance their
search engine (Singhal 2012).

Where?

Most of the biomedical ontologies are available
through BioPortal25. In December of 2018, Bio-
Portal provided access to more than 750 ontolo-
gies representing more than 9 million classes.
BioPortal allows us to search for an ontology or
a specific class. For example, if we search for
caffeine, we will be able to see the large list of on-
tologies that define it. Each of these classes rep-
resent conceptualizations of caffeine in different
domains and using alternative perspectives. To
improve interoperability some ontologies include
class properties with a link to similar classes
in other ontologies. One of the main goals of

24https://en.wikipedia.org/wiki/Knowledge_Graph
25http://bioportal.bioontology.org/

the OBO initiative was precisely to tackle this
somehow disorderly spread of definitions for the
same concepts. Each OBO ontology covers a
clearly specified scope that is clearly identified.

OBO Ontologies
A major example of success of OBO ontologies
is the Gene Ontology (GO) that has been widely
and consistently used to describe the molecular
function, biological process and cellular compo-
nent of gene-products, in a uniform way across
different species (Ashburner et al. 2000). Another
OBO ontology is the Disease Ontology (DO)
that provides human disease terms, phenotype
characteristics and related medical vocabulary
disease concepts (Schriml et al. 2018). Another
OBO ontology is the Chemical Entities of Bio-
logical Interest (ChEBI) that provides a classifi-
cation of molecular entities with biological inter-
est with a focus on small chemical compounds
(Degtyarenko et al. 2007).

Popular Controlled Vocabularies
Besides OBO ontologies, other popular con-
trolled vocabularies also exist. One of them is the
International Classification of Diseases (ICD)26,
maintained by the World Health Organization
(WHO). This vocabulary contains a list of

26https://www.who.int/classifications/icd/en/

https://en.wikipedia.org/wiki/Knowledge_Graph
http://bioportal.bioontology.org/
https://www.who.int/classifications/icd/en/

14 2 Resources

generic clinical terms mainly arranged and clas-
sified according to anatomy or etiology. Another
example is the Systematized Nomenclature of
Medicine – Clinical Terms (SNOMED CT)27,
currently maintained and distributed by the
International Health Terminology Standards
Development Organization (IHTSDO). The
SNOMED CT is a highly comprehensive and
detailed set of clinical terms used in many
biomedical systems. The Medical Subject Head-
ings (MeSH)28 is a comprehensive controlled
vocabulary maintained by the National Library
of Medicine (NLM) for classifying biomedical
and health-related information and documents.
Both MeSH and SNOMED CT are included
in the Metathesaurus of the Unified Medical
Language System (UMLS)29, maintained by the
U.S National Library of Medicine. This is a large
resource that integrates most of the available
biomedical vocabularies. The 2015AB release
covered more than three million concepts.

Another alternative to BioPortal is Ontobee30,
a repository of ontologies used by most OBO
ontologies, but it also includes many non-OBO
ontologies. In December 2018, Ontobee provided
access to 187 ontologies (Ong et al. 2016).

Other alternatives outside the biomedical do-
main include the list of vocabularies gathered by
the W3C SWEO Linking Open Data community
project31, and by the W3C Library Linked Data
Incubator Group32.

How?

After finding the ontologies that cover our do-
main of interest in the previous catalogs, a good
idea is to find their home page and download the

27https://digital.nhs.uk/services/terminology-and-
classifications/snomed-ct
28https://www.nlm.nih.gov/mesh/
29https://www.nlm.nih.gov/research/umls/
30http://www.ontobee.org/
31http://www.w3.org/wiki/TaskForces/
CommunityProjects/LinkingOpenData/
CommonVocabularies
32http://www.w3.org/2005/Incubator/lld/XGR-lld-
vocabdataset-20111025

files from there. This way, we will be sure that
we get the most recent release in the original
format and select the subset of the ontology
that really matter for our work. For example,
ChEBI provides three versions: LITE, CORE and
FULL33. Since we are interested in using the
ontology just for text processing, we are probably
not interested in chemical data and structures that
is available in CORE. Thus, LITE is probably
the best solution, and it will be the one we will
use in this book. However, we may be missing
synonyms that are only included in the FULL
version.

OWL
The OWL language is the prevailing language
to represent ontologies, and for that reason will
be the format we will use in this book. OWL
extends RDF Schema (RDFS) with more com-
plex statements using description logic. RDFS is
an extension of RDF with additional statements,
such as class-subclass or property-subproperty
relationships. RDF is a data model that stores in-
formation in statements represented as triples of
the form subject, predicate and object. Originally,
W3C recommended RDF data to be encoded
using Extensible Markup Language (XML) syn-
tax, also named RDF/XML. XML is a self-
descriptive mark-up language composed of data
elements.

For example, the following example repre-
sents an XML file specifying that caffeine is a
drug that may treat the condition of sleepiness,
but without being an official treatment:

<treatment category="non-
official">

<drug>caffeine</drug>
<condition>sleepiness</

condition>
</treatment>

The information is organized in an hierarchi-
cal structure of data elements. treatment is
the parent element of drug and condition.
The character < means that a new data element
is being specified, and the characters </ means

33https://www.ebi.ac.uk/chebi/downloadsForward.do

https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://www.nlm.nih.gov/mesh/
https://www.nlm.nih.gov/research/umls/
http://www.ontobee.org/
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-20111025
http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-20111025
https://www.ebi.ac.uk/chebi/downloadsForward.do

Further Reading 15

that a specification of data element will end.
The treatment element has a property named
category with the value non-official.
The drug and condition elements have as
values caffeine and sleepiness, respec-
tively. This is a very simple XML example,
but large XML files are almost unreadable by
humans.

To address this issue other encoding languages
for RDF are now being used, such as N334 and
Turtle35. Nevertheless, most biomedical ontolo-
gies are available in OWL using XML encoding.

URI
The Uniform Resource Identifier (URI) was de-
fined as the standard global identifier of classes in
an ontology. For example, the class caffeine
in ChEBI is identified by the following URI:

http://purl.obolibrary.org/obo/
CHEBI_27732

If a URI represents a link to a retrievable resource
is considered a Uniform Resource Locator, or
URL. In other words, a URI is a URL if we
open it in a web browser and obtain a resource
describing that class.

34https://en.wikipedia.org/wiki/Notation3
35https://en.wikipedia.org/wiki/Turtle_(syntax)

Sometimes, ontologies are also available as
database dumps. These dumps are normally SQL
files that need to be fed to a DataBase Manage-
ment System (DBMS)36. If for any reason we
must deal with these files, we can use the simple
command line tool named sqlite3. The tool
has the option to execute the SQL commands to
import the data into a database (.read com-
mand), and to export the data into a CSV file
(.mode command) (Allen and Owens 2011).

Further Reading

One important read if we need to know more
about biomedical resources is the Arthur Lesk’s
book about bioinformatics (Lesk 2014). The
book has entire chapters dedicated to where data
and text can be found, providing a comprehensive
overview of the type of biomedical information
available, nowadays.

A more pragmatic approach is to explore the
vast number of manuals, tutorials, seminars and
courses provided by the EBI37 and NCBI38.

36https://en.wikipedia.org/wiki/Database#
Database_management_system
37https://www.ebi.ac.uk/training
38https://www.ncbi.nlm.nih.gov/home/learn/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

https://en.wikipedia.org/wiki/Notation3
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://en.wikipedia.org/wiki/Database#Database_management_system
https://en.wikipedia.org/wiki/Database#Database_management_system
https://www.ebi.ac.uk/training
https://www.ncbi.nlm.nih.gov/home/learn/
http://creativecommons.org/licenses/by/4.0/

3Data Retrieval

Abstract

This chapter starts by introducing an example
of how we can retrieve text, where every step
is done manually. The chapter will describe
step-by-step how we can automatize each step
of the example using shell script commands,
which will be introduced and explained as
long as they are required. The goal is to equip
the reader with a basic set of skills to retrieve
data from any online database and follow the
links to retrieve more information from other
sources, such as literature.

Keywords

Unix shell · Terminal application · Web
retrieval · cURL: Client Uniform Resource
Locator · Data extraction · Data selection ·
Data filtering · Pattern matching · XML:
extensible markup language · XPath: XML
path language

Caffeine Example

As our main example, let us consider that we
need to retrieve more data and literature about
caffeine. If we really do not know anything
about caffeine, we may start by opening our
favorite internet browser and then searching
caffeine in Wikipedia1 to know what it really

1https://en.wikipedia.org/wiki/Caffeine

is (see Fig. 3.1). From all the information that
is available we can check in the infobox that
there are multiple links to external sources. The
infobox is normally a table added to the top
right-hand part of a web page with structured
data about the entity described on that page.

From the list of identifiers (see Fig. 3.2), let
us select the link to one resource hosted by the
European Bioinfomatics Institute (EBI), the link
to CHEBI:277322.

CHEBI represents the acronym of the
resource Chemical Entities of Biological Interest
(ChEBI)3 and 27732 the identifier of the entry in
ChEBI describing caffeine (see Fig. 3.3). ChEBI
is a freely available database of molecular entities
with a focus on “small” chemical compounds.
More than a simple database, ChEBI also
includes an ontology that classifies the entities
according to their structural and biological
properties.

By analyzing the CHEBI:27732 web page we
can check that ChEBI provides a comprehensive
set of information about this chemical compound.
But let us focus on the Automatic Xrefs tab4.
This tab provides a set of external links to other

2https://www.ebi.ac.uk/chebi/searchId.do?chebiId=
CHEBI:27732
3http://www.ebi.ac.uk/chebi/
4http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?
chebiId=CHEBI:27732

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_3&domain=pdf
https://en.wikipedia.org/wiki/Caffeine
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27732
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27732
http://www.ebi.ac.uk/chebi/
http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?chebiId=CHEBI:27732
http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?chebiId=CHEBI:27732
https://doi.org/10.1007/978-3-030-13845-5_3

18 3 Data Retrieval

Fig. 3.1 Wikipedia page about caffeine

Fig. 3.2 Identifiers section of the Wikipedia page about caffeine

resources describing entities somehow related to
caffeine (see Fig. 3.4).

In the Protein Sequences section, we have
77 proteins (in September of 2018) related to
caffeine. If we click on show all we will get

the complete list5 (see Fig. 3.5). These links
are to another resource hosted by the EBI, the

5http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?
dbName=UniProt&chebiId=27732

http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?dbName=UniProt&chebiId=27732
http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?dbName=UniProt&chebiId=27732

Caffeine Example 19

Fig. 3.3 ChEBI entry describing caffeine

Fig. 3.4 External references related to caffeine

UniProt, a database of protein sequences and
annotation data.

The list includes the identifiers of each pro-
tein with a direct link to respective entry in
UniProt, the name of the protein and some topics
about the description of the protein. For example,

DISRUPTION PHENOTYPE means some ef-
fects caused by the disruption of the gene coding
for the protein are known6.

6https://web.expasy.org/docs/userman.html#CC_line

https://web.expasy.org/docs/userman.html#CC_line

20 3 Data Retrieval

Fig. 3.5 Proteins related to caffeine

We should note that at bottom-right of the
page there are Export options that enable us to
download the full list of protein references in a
single file. These options include:

CSV: Comma Separated Values, the open for-
mat file that enable us to store data as a
single table format (columns and rows).

Excel: a proprietary format designed to store
and access the data using the software
Microsoft Excel.

XML: eXtensible Markup Language, the open
format file that enable us to store data
using a hierarchy of markup tags.

We start by downloading the CSV, Excel and
XML files. We can now open the files and check
its contents in a regular text editor software7

installed in our computer, such as notepad (Win-
dows), TextEdit (Mac) or gedit (Linux).

The first lines of the chebi_27732_xrefs_
UniProt.csv file should look like this:

A2AGL3,Ryanodine receptor 3,CC -
MISCELLANEOUS

7https://en.wikipedia.org/wiki/Text_editor

A4GE69,7-methylxanthosine
synthase 1,CC - FUNCTION

...

The first lines of the chebi_27732_xrefs_
UniProt.xls file should look like this:

"Identifiers" "Name"
"Line Types"

"A2AGL3" "Ryanodine
receptor 3" "CC -
MISCELLANEOUS"

"A4GE69" "7-
methylxanthosine synthase 1"
"CC - FUNCTION"

...

As we can see, this is not the proprietary format
XLS but instead a TSV format. Thus, the file can
still be open directly on Microsoft Excel.

The first lines of the chebi_27732_xrefs_
UniProt.xml file should look like this:

<?xml version="1.0"?>
<table>
<row>
<column>A2AGL3</column>
<column>Ryanodine receptor 3</

column>

https://en.wikipedia.org/wiki/Text_editor

Caffeine Example 21

Fig. 3.6 UniProt entry describing the Ryanodine receptor 1

<column>CC - MISCELLANEOUS</
column>

</row>
<row>
<column>A4GE69</column>
<column>7-methylxanthosine

synthase 1</column>
<column>CC - FUNCTION</column>
</row>
...

We should note that all the files contain the
same data they only use a different format.

If for any reason, we are not able to download
the previous files from UniProt, we can get them
from the book file archive8.

In the following sections we will use these
files to automatize this process, but for now let us
continue our manual exercise using the internet
browser. Let us select the Ryanodine receptor 1
with the identifier P21817 and click on the link9

(see Fig. 3.6). We can now see that UniProt is

8http://labs.rd.ciencias.ulisboa.pt/book/
9http://www.uniprot.org/uniprot/P21817

much more than just a sequence database. The se-
quence is just a tiny fraction of all the information
describing the protein. All this information can
also be downloaded as a single file by clicking
on Format and on XML. Then, save the result as
a XML file to our computer.

Again, we can use our text editor to open the
downloaded file named P21817.xml, which first
lines should look like this:

<?xml version='1.0' encoding='
UTF-8'?>

<uniprot xmlns="http://uniprot.
org/uniprot" xmlns:xsi="http:
//www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation=
"http://uniprot.org/uniprot
http://www.uniprot.org/
support/docs/uniprot.xsd">

<entry dataset="Swiss-Prot"
created="1991-05-01" modified
="2018-06-20" version="210">

<accession>P21817</accession>
...

We can check that this entry represents a
Homo sapiens (Human) protein, so if we are
interested only in Human Proteins, we will have

http://labs.rd.ciencias.ulisboa.pt/book/
http://www.uniprot.org/uniprot/P21817

22 3 Data Retrieval

Fig. 3.7 Publications related to Ryanodine receptor 1

to filter them. For example, the entry E9PZQ010

in the ChEBI list also represents a Ryanodine
receptor 1 protein but for the Mus musculus
(Mouse).

Going back to the browser in the top-left side
of the UniProt entry we have a link to publica-
tions11. If we click on it, we will see a list of
publications somehow related to the protein (see
Fig. 3.7).

Let us assume that we are interested in find-
ing phenotypic information, the first title that
may attract our attention is: Polymorphisms and
deduced amino acid substitutions in the coding
sequence of the ryanodine receptor (RYR1) gene
in individuals with malignant hyperthermia. To
know more about the publication, we can use
the UniProt citations service by clicking on the
Abstract link12 (see Fig. 3.8).

To check if the abstract mentions any dis-
ease we can use an online text mining tool, for
example the Minimal Named-Entity Recognizer
(MER)13. We can copy and paste the abstract of

10http://www.uniprot.org/uniprot/E9PZQ0
11https://www.uniprot.org/uniprot/P21817/publications
12https://www.uniprot.org/citations/1354642
13http://labs.rd.ciencias.ulisboa.pt/mer/

the publication into MER and select DO – Hu-
man Disease Ontology as lexicon (see Fig. 3.9).

We will see that MER detects three mentions
of malignant hyperthermia, giving us another
link14 about the disease found (see Fig. 3.10).

Thus, in summary, we started from a generic
definition of caffeine and ended with an abstract
about hyperthermia by following the links in
different databases. Of course, this does not mean
that by taking caffeine we will get hyperthermia,
or that we will treat hyperthermia by taking caf-
feine (maybe as a cold drink �̈15). However, this
relation has a context, a protein and a publication,
that need to be further analyzed before drawing
any conclusions.

We should note that we only analyzed one
protein and one publication, we now need to
repeat all the steps to all the proteins and to
all the publications related to each protein. And
this could even be more complicated if we were
interested in other central nervous system stim-
ulants, for example by looking in the ChEBI

14http://purl.obolibrary.org/obo/DOID_8545
15https://en.wikipedia.org/wiki/Hyperthermia#Treatment

http://www.uniprot.org/uniprot/E9PZQ0
https://www.uniprot.org/uniprot/P21817/publications
https://www.uniprot.org/citations/1354642
http://labs.rd.ciencias.ulisboa.pt/mer/
http://purl.obolibrary.org/obo/DOID_8545
https://en.wikipedia.org/wiki/Hyperthermia#Treatment

Caffeine Example 23

Fig. 3.8 Abstract of the publication entitled Polymorphisms and deduced amino acid substitutions in the coding
sequence of the ryanodine receptor (RYR1) gene in individuals with malignant hyperthermia

Fig. 3.9 Diseases recognized by the online tool MER in an abstract

ontology16. This is of course the motivation to
automatize the process, since it is not humanly

16https://www.ebi.ac.uk/chebi/chebiOntology.do?
chebiId=35337

feasible to deal with such large amount of data,
that keeps evolving every day.

However, if the goal was to find a relation be-
tween caffeine and hyperthermia, we could sim-
ply have searched these two terms in PubMed.

https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=35337
https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=35337

24 3 Data Retrieval

Fig. 3.10 Ontobee entry for the class malignant hyperthermia

We did not do that because some relations are
not explicitly mention in the text, thus we have
to navigate through database links. The second
reason is because we needed an example using
different resources and multiple entries to explain
how we can automate most of these steps using
shell scripting. The automation of the example
will introduce a comprehensive set of techniques
and commands, which with some adaptation Life
and Health specialists can use to address many of
their text and data processing challenges.

Unix Shell

The first step is to open a shell in our personal
computer. A shell is a software program that in-
terprets and executes command lines given by the
user in consecutive lines of text. A shell script is
a list of such command lines. The command line
usually starts by invoking a command line tool.
This manuscript will introduce a few command
line tools, which will allow us to automatize the
previous example. Unix shell was developed to
manage Unix-like operating systems, but due to
their usefulness nowadays they are available is
most personal computers using Linux, macOS
or Windows operating systems. There are many
types of Unix shells with minor differences be-
tween them (e.g. sh, ksh, csh, tcsh and bash), but
the most widely available is the Bourne-Again
shell (bash17). The examples in this manuscript
were tested using bash.

17https://en.wikipedia.org/wiki/Bash_(Unix_shell)

So, the first step is to open a shell in our
personal computer using a terminal application
(see Fig. 3.11). If we are using Linux or macOS
then this is usually not new for us, since most
probably we have a terminal application already
installed, that opens a shell for us. In case we
are using a Microsoft Windows operating system,
then we have several options to consider. If we
are using Windows 10, then we can install a
Windows Subsystem for Linux18 or just install
a third-party application, such as MobaXterm19.
No matter which terminal application we end up
using, the shell will always have a common look:
a text window with a cursor blinking waiting for
our first command line. We should note that most
terminal applications allow the usage of the up
and down cursor keys to select, edit, and execute
previous commands, and the usage of the tab key
to complete the name of a command or a file.

Current Directory

As our first command line, we can type:

$ pwd

After hitting enter, the command will show the
full path of the directory (folder) of our computer
in which the shell is working on. The dollar
sign in the left is only to indicate that this is a
command to be executed directly in the shell.

18https://docs.microsoft.com/en-us/windows/wsl/about
19https://mobaxterm.mobatek.net/

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://docs.microsoft.com/en-us/windows/wsl/about
https://mobaxterm.mobatek.net/

Unix Shell 25

Fig. 3.11 Screenshot of a Terminal application (Source: https://en.wikipedia.org/wiki/Unix)

To understand a command line tool, such as
pwd, we can type man followed by the name of
the tool. For example, we can type man pwd to
learn more about pwd (do not forget to hit enter,
and press q to quit). We can also learn more about
man by typing man man. A shorter alternative
to man, is to add the --help option after any
command tool. For example, we can type pwd
--help to have a more concise description of
pwd.

As our second command line, we can type ls
and hit enter. It will show the list of files in the
current directory. For example, we can type ls
--help to have a concise description of ls.

Since we will work with files, that we need to
open with a text editor or a spreadsheet applica-
tion20, such as LibreOffice Calc or Microsoft Ex-
cel, we should select a current directory that we
can easily open in our file explorer application.
A good idea is to open our favorite file explorer
application, select a directory, and then check its
full path21.

20https://en.wikipedia.org/wiki/Spreadsheet
21https://en.wikipedia.org/wiki/Path_(computing)

Windows Directories

Notice that in Windows the full path to a direc-
tory each name is separated by a backslash (\)
while in a Unix shell is a forward slash (/).
For example, a Windows path to the Documents
folder may look like:

C:\Users\MyUserName\Documents

If we are using the Windows Subsystem for
Linux22, the previous folder must be accessed
using the path:

/mnt/c/Users/MyUserName/
Documents

If we are using MobaXterm23, the following
path should be used instead:

/drives/c/Users/MyUserName/
Documents

22https://www.howtogeek.com/261383/how-to-access-
your-ubuntu-bash-files-in-windows-and-your-windows-
system-drive-in-bash/
23https://mobaxterm.mobatek.net/documentation.html

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Path_(computing)
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://mobaxterm.mobatek.net/documentation.html

26 3 Data Retrieval

Change Directory

To change the directory, we can use another
command line tool, the cd (change directory)
followed by the new path. In a Linux system we
may want to use the Documents directory. If the
Documents directory is inside our current direc-
tory (shown using ls), we only need to type:

$ cd Documents

Now we can type pwd to see what changed.
And if we want to return to the parent direc-

tory, we only need to use the two dots ..:

$ cd ..

And if we want to return to the home directory,
we only need to use the tilde character (∼):

$ cd ∼
Again, we should type pwd to double check if we
are in the directory we really want.

In Windows we may need to use the full path,
for example:

$ cd /mnt/c/Users/MyUserName/
Documents

We should note that we need to enclose the
path within single (or double) quotes in case it
contains spaces:

$ cd '/mnt/c/Users/MyUserName/
Documents'

Later on, we will know more about the difference
between using single or double quotes. For now,
we may assume that they are equivalent. To know
more about cd, we can type cd --help.

Useful Key Combinations

Every time the terminal is blocked by any reason,
we can press both the control and C key at the
same time24. This usually cancels the current tool
being executed. For example, try using the cd
command with only one single quote:

$ cd '

24https://en.wikipedia.org/wiki/Control

This will block the terminal, because it is still
waiting for a second single quote that closes the
argument. Now press control-C, and the com-
mand will be aborted.

Now we can type again the previous com-
mand, but instead of pressing control-C we may
also press control-D25. The combination control-
D indicates the terminal that it is the end of input.
So, in this case, the cd command will not be
canceled, but instead it is executed without the
second single quote and therefore a syntax error
will be shown on our display.

Other useful key combinations are the control-
L that when pressed cleans the terminal display,
and the control-insert and shift-insert that
when pressed copy and paste the selected text,
respectively.

Shell Version

The following examples will probably work in
any Unix shell, but if we want to be certain that
we are using bash we can type the following
command, and check if the output says bash.

$ ps -p $$

ps is a command line tool that shows in-
formation about active processes running in our
computer. The -p option selects a given process,
and in this case $$ represents the process running
in our terminal application. In most terminal
applications bash is the default shell. If this is not
our case, we may need to type bash, hit enter
and now we are using bash.

Now that we know how to use a shell, we can
start writing and running a very simple script that
reverse the order of the lines in a text file.

Data File

We start by creating a file named myfile.txt using
any text editor, and adding the following lines:

line 1
line 2

25https://en.wikipedia.org/wiki/End-of-
Transmission_character

https://en.wikipedia.org/wiki/Control
https://en.wikipedia.org/wiki/End-of-Transmission_character
https://en.wikipedia.org/wiki/End-of-Transmission_character

Unix Shell 27

line 3
line 4

We cannot forget to save it in our working di-
rectory, and check if it has the proper filename
extension.

File Contents

To check if the file is really on our working
directory, we can type:

$ cat myfile.txt

The contents of the file should appear in our
terminal. cat is a simple command line tool
that receives a filename as argument and displays
its contents on the screen. We can type man
cat or cat --help to know more about this
command line tool.

Reverse File Contents

An alternative to cat tool is the tac tool. To try
it, we only need to type:

$ tac myfile.txt

The contents of the file should also appear in
our terminal, but now in the reverse order. We can
type man tac or tac --help to know more
about this command line tool.

My First Script

Now we can create a script file named reverse-
myfile.sh by using the text editor, and add the
following lines:

1 tac $1

We cannot forget to save the file in our working
directory. $1 represents the first argument after
the script filename when invoking it. Each script
file presented in this manuscript will include
the line numbers in the left. This will helps us
not only to identify how many lines the script
contains, but also to distinguish a script file from
the commands to be executed directly in the shell.

Line Breaks

A Unix file represents a single line break by a line
feed character, instead of two characters (carriage
return and line feed) used by Windows26. So, if
we are using a text editor in Windows, we must
be careful to use one that lets us save it as Unix
file, for example the open source Notepad++27.

In case we do not have such text editor, we can
also remove the extra carriage return by using the
command line tool tr, that replaces and deletes
characters:

$ tr -d '\r' < reversemyfile.sh
> reversemyfilenew.sh

The -d option of tr is used to remove a given
character from the input, in this case tr will
delete all carriage returns (\r). Many command
line options can be used in short form using a
single dash (-), or in a long form using two
dashes (--). In this tool, using the --delete
option is equivalent to the -d option. Long forms
are more self-explanatory, but they take longer to
type and occupy more space. We can type man
tr or tr --help to know more about this

command line tool.

Redirection Operator

The > character represents a redirection opera-
tor28 that moves the results being displayed at the
standard output (our terminal) to a given file. The
< character represents a redirection operator that
works on the opposite direction, i.e. opens a given
file and uses it as the standard input.

We should note that cat received the filename
as an input argument, while tr can only receive
the contents of the file through the standard input.
Instead of providing the filename as argument,
the cat command can also receive the contents
of a file through the standard input, and produce
the same output:

26https://en.wikipedia.org/wiki/Newline
27https://notepad-plus-plus.org/
28https://www.gnu.org/software/bash/manual/html_node/
Redirections.html

https://en.wikipedia.org/wiki/Newline
https://notepad-plus-plus.org/
https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.gnu.org/software/bash/manual/html_node/Redirections.html

28 3 Data Retrieval

$ cat < myfile.txt

The previous tr command used a new file for
the standard output, because we cannot use the
same file to read and write at the same time. To
keep the same filename, we have to move the new
file by using the mv command:

$ mv reversemyfilenew.sh
reversemyfile.sh

We can type man mv or mv --help to know
more about this command line tool.

Installing Tools

These two last commands could be replaced by
the dos2unix tool:

$ dos2unix -n reversemyfile.sh

If not available, we have to install the dos2unix
tool. For example, in the Ubuntu Windows Sub-
system we need to execute:

$ apt install dos2unix

The apt (Advanced Package Tool) command
is used to install packages in many Linux sys-
tems29. Another popular alternative is the yum
(Yellowdog Updater, Modified) command30.

To avoid fixing line breaks each time we
update our file when using Windows, a clearly
better solution is to use a Unix friendly text
editor.

When we are not using Windows, or we are
using a Unix friendly text editor, the previous
commands will execute but nothing will happen
to the contents of reversemyfile.sh, since the tr
command will not remove any character. To see
the command working replace '\r' by '$' and
check what happens.

Permissions

A script also needs permission to be executed, so
every time we create a new script file we need to
type:

29https://en.wikipedia.org/wiki/APT_(Debian)
30https://en.wikipedia.org/wiki/Yum_(software)

$ chmod u+x reversemyfile.sh

The command line tool chmod just gave the user
(u) permissions to execute (+x). We can type
man chmod or chmod --help to know more
about this command line tool.

Finally, we can execute the script by providing
the myfile.txt as argument:

$./reversemyfile.sh myfile.txt

The contents of the file should appear in our
terminal in the reverse order:

line 4
line 3
line 2
line 1

Congratulations, we made our first script work
! �̈

If we give more arguments, they will be ig-
nored:

$./reversemyfile.sh myfile.txt
myotherfile.txt 'my other
file.txt'

The output will be exactly the same because our
script does not use $2 and $3, that in this case
will represent myotherfile.txt and my other file.txt,
respectively. We should note that when contain-
ing spaces, the argument must be enclosed by
single quotes.

Debug

If something is not working well, we can debug
the entire script by typing:

$ bash -x reversemyfile.sh
myfile.txt

Our terminal will not only display the result-
ing text, but also the command line tools executed
preceded by the plus character (+):

+ tac myfile.txt
line 4
line 3
line 2
line 1

https://en.wikipedia.org/wiki/APT_(Debian)
https://en.wikipedia.org/wiki/Yum_(software)

Web Identifiers 29

Alternatively, we can add the set -x command
line in our script to start the debugging mode, and
set +x to stop it.

Save Output

We can now save the output into another file
named mynewfile.txt by typing:

$./reversemyfile.sh myfile.txt
> mynewfile.txt

Again, to check if the file was really created,
we can use the cat tool:

$ cat mynewfile.txt

Or, we can reverse it again by typing:

$./reversemyfile.sh mynewfile.
txt

Of course, the result should exactly be the origi-
nal contents of myfile.txt.

Web Identifiers

The input argument(s) of our retrieval task is
the chemical compound(s) of which we want
to retrieve more information. For the sake of
simplicity, we will start by assuming that the user
knows the ChEBI identifier(s), i.e. the script does
not have to search by the name of the compounds.
Nevertheless, to find the identifier of a compound
by its name is also possible, and this manuscript
will describe how to do it later on.

So, the first step, is to automatically retrieve
all proteins associated to the given input chem-
ical compound, that in our example was caf-
feine (CHEBI:27732). In the manual process, we
downloaded the files by manually clicking on the
links shown as Export options, namely the URLs:

https://www.ebi.ac.uk/chebi/
viewDbAutoXrefs.do?d-1169080-
e=1&6578706f7274=1&chebiId
=27732&dbName=UniProt

https://www.ebi.ac.uk/chebi/
viewDbAutoXrefs.do?d-1169080-

e=2&6578706f7274=1&chebiId
=27732&dbName=UniProt

https://www.ebi.ac.uk/chebi/
viewDbAutoXrefs.do?d-1169080-
e=3&6578706f7274=1&chebiId
=27732&dbName=UniProt

for downloading a CSV, Excel, or XML file,
respectively.

We should note that the only difference be-
tween the three URLs is a single numerical digit
(1, 2, and 3) after the first equals character (=),
which means that this digit can be used as an
argument to select the type of file. Another pa-
rameter that is easily observable is the ChEBI
identifier (27732). Try to replace 27732 by 17245
in any of those URLs by using a text editor, for
example:

https://www.ebi.ac.uk/chebi/
viewDbAutoXrefs.do?d-1169080-
e=1&6578706f7274=1&chebiId
=17245&dbName=UniProt

Now we can use this new URL in the inter-
net browser, and check what happens. If we
did it correctly, our browser downloaded a file
with more than seven hundred proteins, since
the 17245 is the ChEBI identifier of a popular
chemical compound in life systems, the carbon
monoxide.

In this case, we are not using a fully RESTful
web service, but the data path is pretty modular
and self-explanatory. The path is clearly com-
posed of:

• the name of the database (chebi);
• the method (viewDbAutoXrefs.do);
• and a list of parameters and their value (argu-

ments) after the question mark character (?).

The order of the parameters in the URL is
normally not relevant. They are separated by the
ampersand character (&) and the equals character
(=) is used to assign a value to each parameter (ar-
gument). This modular structure of these URLs
allows us to use them as data pipelines to fill our
local files with data, like pipelines that transport
oil or gas from one container to another.

30 3 Data Retrieval

Single and Double Quotes

To construct the URL for a given ChEBI identi-
fier, let us first understand the difference between
single quotes and double quotes in a string (se-
quence of characters). We can create a script file
named getproteins.sh by using a text editor to add
the following lines:

1 echo 'The input: $1'
2 echo "The input: $1"

The command line tool echo displays the string
received as argument. Do not forget to save it in
our working directory and add the right permis-
sions with chmod as we did previously with our
first script.

Now to execute the script we will only need to
type:

$./getproteins.sh

The output on the terminal should be:

The input: $1
The input:

This means that when using single quotes, the
string is interpreted literally as it is, whereas the
string within double quotes is analyzed, and if
there is a special character, such as the dollar sign
($), the script translates it to what it represents. In
this case, $1 represents the first input argument.
Since no argument was given, the double quotes
displays nothing.

To execute the script with an argument, we can
type:

$./getproteins.sh 27732

The output on our terminal should be:

The input: $1
The input: 27732

We can check now that when using double quotes
$1 is translated to the string given as argument.

Now we can update our script file named
getproteins.sh to contain only the following line:

1 echo "https://www.ebi.ac.uk/
chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt"

Comments

Instead of removing the previous lines, we can
transform them in comments by adding the hash
character (#) to the beginning of the line:

1 #echo 'The input: $1'
2 #echo "The input: $1"
3 echo "https://www.ebi.ac.uk/

chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt"

Commented lines are ignored by the computer
when executing the script.

Now, we can execute the script giving the
ChEBI identifier as argument:

$./getproteins.sh 27732

The output on our terminal should be the link
that returns the CSV file containing the proteins
associated with caffeine.

Data Retrieval

After having the link, we need a web retrieval tool
that works like our internet browser, i.e. receives
as input a URL for programmatic access and
retrieves its contents from the internet. We will
use Client Uniform Resource Locator (cURL),
which is available as a command line tool, and
allows us to download the result of opening a
URL directly into a file (man curl or curl
--help for more information).

For example, to display in our screen the list
of proteins related to caffeine, we just need to add
the respective URL as input argument:

$ curl 'https://www.ebi.ac.uk/
chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274
=1&chebiId=27732&dbName=
UniProt'

In some systems the curl command needs to
be installed31. Since we are using a secure con-

31apt install curl

Data Retrieval 31

nection https, we may also need to install the ca-
certificates package32.

An alternative to curl is the command
wget, which also receives a URL as argument
but by default wget writes the contents to a
file instead of displaying it on the screen (man
wget or wget --help for more information).
So, the equivalent command, is to add the -O-
option to select where the contents is placed:

$ wget -O- 'https://www.ebi.ac.
uk/chebi/viewDbAutoXrefs.
do?d-1169080-e=1&6578706
f7274=1&chebiId=27732&
dbName=UniProt'

We should note that dash - character after -O
represents the standard output. The equivalent

long form to the -O option is --output-
document=file.

The output on our terminal should be the long
list of proteins:

...
Q15413,Ryanodine receptor 3,CC -

MISCELLANEOUS
Q92375,Thioredoxin reductase,DE
Q92736,Ryanodine receptor 2,CC -

MISCELLANEOUS

Instead of using a fixed URL, we can update
the script named getproteins.sh to contain only
the following line:

1 curl "https://www.ebi.ac.uk/
chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt"

We should note that now we are using double
quotes, since we replaced the caffeine identifier
by $1.

Now to execute the script we only need to
provide a ChEBI identifier as input argument:

$./getproteins.sh 27732

The output on our terminal should be the long list
of proteins:

32apt install ca-certificates

...
Q15413,Ryanodine receptor 3,CC -

MISCELLANEOUS
Q92375,Thioredoxin reductase,DE
Q92736,Ryanodine receptor 2,CC -

MISCELLANEOUS

Or, if we want the proteins related to carbon
monoxide, we only need to replace the argument:

$./getproteins.sh 17245

And the output on our terminal should be an even
longer list of proteins:

...
Q58432,Phosphomethylpyrimidine

synthase,CC - CATALYTIC
ACTIVITY

Q62976,Calcium-activated
potassium channel subunit
alpha-1,CC - ENZYME
REGULATION; CC - DOMAIN

Q63185,Eukaryotic translation
initiation factor 2-alpha
kinase 1,CC - ENZYME
REGULATION

If we want to analyze all the lines we can redi-
rect the output to the command line tool less,
which allows us to navigate through the output by
using the arrow keys. To do that we can add the
bar character (|) between two commands, which
will transfer the output of the first command as
input of the second:

$./getproteins.sh 27732 | less

To exit from less just press q.
However, what we really want is to save the

output as a file, not just printing some characters
on the screen. Thus, what we should do is redirect
the output to a CSV file. This can be done by
adding the redirect operator > and the filename,
as described previously:

$./getproteins.sh 27732 >
chebi_27732_xrefs_UniProt.
csv

We should note that curl still prints some
progress information into the terminal.

32 3 Data Retrieval

Standard Error Output

This happens because it is displaying that infor-
mation into the standard error output, which was
not redirected to the file33. The > character with-
out any preceding number by default redirects the
standard output. The same happens if we precede
it by the number 1. If we do not want to see that
information, we can also redirect the standard
error output (2), but in this case to the null device
(/dev/null):

$./getproteins.sh 27732 >
chebi_27732_xrefs_UniProt.
csv 2>/dev/null

We can also use the -s option of curl in
order to suppress the progress information, by
adding it to our script file named getproteins.sh:

1 curl -s "https://www.ebi.ac.uk
/chebi/viewDbAutoXrefs.do?
d-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt"

The equivalent long form to the -s option is
--silent.

Now when executing the script, no progress
information is shown:

$./getproteins.sh 27732 >
chebi_27732_xrefs_UniProt.
csv

To check if the file was really created and
to analyze its contents, we can use the less
command:

$ less chebi_27732_xrefs_UniProt
.csv

We can also open the file in our spreadsheet ap-
plication, such as LibreOffice Calc or Microsoft
Excel.

33https://www.gnu.org/software/bash/manual/html_node/
Redirections.html

As an exercise execute the script to get the
CSV file with the associated proteins of water34

and gold35.

Data Extraction

Some data in the CSV file may not be relevant
regarding our information need, i.e. we may need
to identify and extract relevant data. In our case,
we will select the relevant proteins (lines) us-
ing the command line tool grep, and secondly,
we will select the column we need using the
command line tool gawk, which is the GNU
implementation of awk36. We should note that
if we are using MobaXterm we may need to
install the gawk package37. We can also replace
gawk by awk in case another implementation is
available38.

Since our information need is about diseases
related to caffeine, we may assume that we are
only interested in proteins that have one of these
topics in the third column:

CC - MISCELLANEOUS
CC - DISRUPTION PHENOTYPE
CC - DISEASE

Extracting lines from a text file is the main
function of grep. The selection is performed by
giving as input a pattern that grep tries to find
in each line, presenting only the ones where it
was able to find a match. The pattern is the same
as the one we normally use when searching for
a word in our text editor. The grep command
also works with more complex patterns such as
regular expressions, that we will describe later
on.

34https://www.ebi.ac.uk/chebi/searchId.do?chebiId=
CHEBI:15377
35https://www.ebi.ac.uk/chebi/searchId.do?chebiId=
CHEBI:30050
36http://www.gnu.org/software/gawk/
37apt install gawk
38https://en.wikipedia.org/wiki/AWK#
Versions_and_implementations

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15377
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15377
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:30050
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:30050
http://www.gnu.org/software/gawk/
https://en.wikipedia.org/wiki/AWK#Versions_and_implementations
https://en.wikipedia.org/wiki/AWK#Versions_and_implementations

Data Retrieval 33

Single and Multiple Patterns

We can execute the following command that
selects the proteins with the topic CC -
MISCELLANEOUS, our pattern, in our CSV
file:

$ grep 'CC - MISCELLANEOUS'
chebi_27732_xrefs_UniProt.
csv

The output will be a shorter list of proteins, all
with CC - MISCELLANEOUS as topic:

A2AGL3,Ryanodine receptor 3,CC -
MISCELLANEOUS

B0LPN4,Ryanodine receptor 2,CC -
MISCELLANEOUS

E9PZQ0,Ryanodine receptor 1,CC -
MISCELLANEOUS

E9Q401,Ryanodine receptor 2,CC -
MISCELLANEOUS

F1LMY4,Ryanodine receptor 1,CC -
MISCELLANEOUS

P11716,Ryanodine receptor 1,CC -
MISCELLANEOUS

P21817,Ryanodine receptor 1,CC -
DISEASE; CC - MISCELLANEOUS

P54867,Protein SLG1,CC -
MISCELLANEOUS

Q9TS33,Ryanodine receptor 3,CC -
MISCELLANEOUS

Q15413,Ryanodine receptor 3,CC -
MISCELLANEOUS

Q92736,Ryanodine receptor 2,CC -
MISCELLANEOUS

To use multiple patterns, we must precede
each pattern with the -e option:

$ grep -e 'CC - MISCELLANEOUS' -
e 'CC - DISRUPTION
PHENOTYPE' -e 'CC -
DISEASE'
chebi_27732_xrefs_UniProt.
csv

The equivalent long form to the -e option is --
regexp=PATTERN.

The output on our terminal should be a longer
list of proteins:

...
Q9VSH2,Gustatory receptor for

bitter taste 66a,CC -
FUNCTION; CC - DISRUPTION
PHENOTYPE

Q15413,Ryanodine receptor 3,CC -
MISCELLANEOUS

Q92736,Ryanodine receptor 2,CC -
MISCELLANEOUS

We should note that as previously, we can add
| less to check all of them more carefully.
The less command also gives the opportunity
to find lines based on a pattern. We only need to
type / and then a pattern.

We can now update our script file named
getproteins.sh to contain the following lines:

1 curl -s "https://www.ebi.ac.uk
/chebi/viewDbAutoXrefs.do?
d-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt" | \

2 grep -e 'CC - MISCELLANEOUS' -
e 'CC - DISRUPTION
PHENOTYPE' -e 'CC -
DISEASE'

We should note that we added the -s option to
suppress the progress information of curl, and
the characters | \ to the end of line to redirect
the output of that line as input of the next line,
in this case the grep command. We need to be
careful in ensuring that \ is the last character in
the line, i.e. spaces in the end of the line may
cause problems.

We can now execute the script again:

$./getproteins.sh 27732

The output should be similar of what we got
previously, but the script downloads the data and
filters immediately.

To save the file with the relevant proteins, we
only need to add the redirection operator:

$./getproteins.sh 27732 >
chebi_27732_xrefs_UniProt
_relevant.csv

34 3 Data Retrieval

Data Elements Selection

Now we need to select just the first column,
the one that contains the protein identifiers. Se-
lecting columns from a tabular file is one easy
task for gawk, that besides performing pattern
scanning also provides a complex processing lan-
guage (AWK39). This processing language can
be highly complex40 and it is out of our scope
for this introductory manuscript. The gawk com-
mand can receive as arguments the character that
divides each data element (column) in a line
using the -F option, and an instruction of what
to do with it enclosed by single quotes and curly
brackets. The equivalent long form to the -F
option is --field-separator=fs.

For example, we can get the first column of
our CSV file:

$ gawk -F, '{ print $1 }' <
chebi_27732_xrefs_UniProt_
relevant.csv

We should note that comma (,) is the character
that separates data elements in a CSV file, and
that print is equivalent to echo, and $1 repre-
sents the first data element.

The command will display only the first col-
umn of the file, i.e. the protein identifiers:

...
Q9VSH2
Q15413
Q92736

For example, we can get the first and third
columns separated by a comma:

$ gawk -F, '{ print $1 ", " $3}'
< chebi_27732_xrefs_

UniProt_relevant.csv

Now, the output contains both the first and
third column of the file:

...
Q9VSH2, CC - FUNCTION; CC -

DISRUPTION PHENOTYPE
Q15413, CC - MISCELLANEOUS

39https://en.wikipedia.org/wiki/AWK
40https://www6.software.ibm.com/developerworks/
education/au-gawk/au-gawk-a4.pdf

Q92736, CC - MISCELLANEOUS

We can update our script file named getpro-
teins.sh to contain the following lines:

1 curl -s "https://www.ebi.ac.uk
/chebi/viewDbAutoXrefs.do?
d-1169080-e=1&6578706f7274
=1&chebiId=$1&dbName=
UniProt" | \

2 grep -e 'CC - MISCELLANEOUS' -
e 'CC - DISRUPTION
PHENOTYPE' -e 'CC -
DISEASE' | \

3 gawk -F, '{ print $1 }'

The last line is the only that changes, except the
| \ in the previous line to redirect the output.

To execute the script, we can type again:

$./getproteins.sh 27732

The output should be similar of what we got
previously, but now only the protein identifiers
are displayed.

To save the output as a file with the relevant
proteins’ identifiers, we only need to add the
redirection operator:

$./getproteins.sh 27732 >
chebi_27732_xrefs_UniProt_
relevant_identifiers.csv

Task Repetition

Given a protein identifier we can construct the
URL that will enable us to download its infor-
mation from UniProt. We can use the REST-
ful web services provided by UniProt41, more
specifically the one that allow us to retrieve a
specific entry42. The construction of the URL
is simple, it starts always by https://www
.uniprot.org/uniprot/, followed by the
protein identifier, ending with a dot and the data
format. For example, the link for protein P21817
using the XML format is: http://www.uniprot.
org/uniprot/P21817.xml

41https://www.uniprot.org/help/api
42https://www.uniprot.org/help/api_retrieve_entries

https://en.wikipedia.org/wiki/AWK
https://www6.software.ibm.com/developerworks/education/au-gawk/au-gawk-a4.pdf
https://www6.software.ibm.com/developerworks/education/au-gawk/au-gawk-a4.pdf
http://www.uniprot.org/uniprot/P21817.xml
http://www.uniprot.org/uniprot/P21817.xml
https://www.uniprot.org/help/api
https://www.uniprot.org/help/api_retrieve_entries

Task Repetition 35

Assembly Line

However, we need to construct one URL for each
protein from the list we previously retrieved. The
size of the list can be large (hundreds of proteins),
varies for different compounds and evolves with
time. Thus, we need an assembly line in which
a list of proteins identifiers, independently of
its size, are added as input to commands that
construct one URL for each protein and retrieve
the respective file.

The xargs command line tool works as an
assembly line, it executes a command per each
line given as input. We should note that if we
are using MobaXterm we may need to install the
findutils package43, since the default xargs only
has minimal options44.

We can start by experimenting the xargs
command by giving as input the list of protein
identifiers in file chebi_27732_xrefs_UniProt_
relevant_identifiers.csv, display each identifier
on the screen in the middle of a text message by
providing the echo command as argument:

$ cat chebi_27732_xrefs_UniProt_
relevant_identifiers.csv

| xargs -I {} echo '
Another protein id {} to
retrieve'

The xargs command received as input the con-
tents our CSV file, and for each line displayed
a message including the identifier in that line.
The -I option tells xargs to replace {} in the
command line given as argument by the value
of the line being processed. The equivalent long
form to the -I option is --replace=R.

The output should be something like this:

Another protein id A2AGL3 to
retrieve

Another protein id B0LPN4 to
retrieve

43apt install findutils
44In some versions the scripts may have to use xargs
.exe to invoke the new version. Or rename the xargs
shortcut in the bin folder to other name, that way the right
version will always be invoked.

Another protein id E9PZQ0 to
retrieve

...

Instead of creating inconsequential text mes-
sages, we can use xargs to create the URLs:

$ cat chebi_27732_xrefs_UniProt
_relevant_identifiers.csv
| xargs -I {} echo 'https
://www.uniprot.org/uniprot
/{}.xml'

The output should be something like this:

https://www.uniprot.org/uniprot/
A2AGL3.xml

https://www.uniprot.org/uniprot/
B0LPN4.xml

https://www.uniprot.org/uniprot/
E9PZQ0.xml

...

We can try to use these links in our internet
browser to check if those displayed URLs are
working correctly.

Now that we have the URLs, we can au-
tomatically download the files using the curl
command instead of echo:

$ cat chebi_27732_xrefs_UniProt
_relevant_identifiers.csv
| xargs -I {} curl 'https
://www.uniprot.org/uniprot
/{}.xml' -o 'chebi_27732_
{}.xml'

We should note that we now use the -o option to
save the output to a given file, named after each
protein identifier. The equivalent long form to the
-o option is --output <file>.

To check if everything worked as expected we
can use the ls command to view which files were
created:

$ ls chebi_27732_*.xml

The asterisk character (*) character is here used
to represent any file whose name starts with
chebi_27732_ and ends with .xml.

To check the contents of any of them, we can
use the less command:

$ less chebi_27732_P21817.xml

36 3 Data Retrieval

File Header

We should note that the content of every file
has to start with <?xml otherwise there was a
download error, and we have to run curl again
for those entries. To check the header of each file,
we can use the head command together with
less.

$ head -n 1 chebi_27732_*.xml |
less

The -n option specifies how many lines to print,
in the previous command just one.

If for any reason, we are not able to download
the files from UniProt, we can get them from the
book file archive45.

Variable

We can now update our script file named getpro-
teins.sh to contain the following lines:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

2 rm -f chebi_$ID_*.xml #
Removes any previous files

3 curl -s "https://www.ebi.ac.uk
/chebi/viewDbAutoXrefs.do?
d-1169080-e=1&6578706f7274
=1&chebiId=$ID&dbName=
UniProt" | \

4 grep -e 'CC - MISCELLANEOUS' -
e 'CC - DISRUPTION
PHENOTYPE' -e 'CC -
DISEASE' | \

5 gawk -F, '{ print $1 }' |
xargs -I {} curl 'https://
www.uniprot.org/uniprot
/{}.xml' -o chebi_$ID_
{}.xml

We should note that the last line now includes
the xargs and curl commands, and the $ID
variable. This new variable is created in the first
line to contain the first value given as argument

45http://labs.rd.ciencias.ulisboa.pt/book/

($1). So, every time we mention $ID in the
script we are mentioning the first value given as
argument. This avoids ambiguity in cases where
$1 is used for other purposes, like in the gawk
command. Since the preceding character of $ID
is an underscore (_), we have to add a backslash
(\) before it. The second line uses the rm com-
mand to remove any files that were downloaded
in a previous execution. We also now added two
comments after the hash character, so we humans
do not forget why these commands are needed
for.

To execute the script once more:

$./getproteins.sh 27732

And again, to check the results:

$ head -n 1 chebi_27732_*.xml |
less

XML Processing

Assuming that our information need only con-
cerns human diseases, we have to process the
XML file of each protein to check if it represents
a Homo sapiens (Human) protein.

Human Proteins

For performing this filter, we can again use the
grep command, to select only the lines of any
XML file that specify the organism as Homo
sapiens:

$ grep '<name type="scientific">
Homo sapiens</name>'
chebi_27732_*.xml

We should get in our display the filenames that
represent a human protein, i.e. something like
this:

chebi_27732_P21817.xml:<name
type="scientific">Homo
sapiens</name>

chebi_27732_Q15413.xml:<name
type="scientific">Homo
sapiens</name>

http://labs.rd.ciencias.ulisboa.pt/book/

XML Processing 37

chebi_27732_Q8N490.xml:<name
type="scientific">Homo
sapiens</name>

chebi_27732_Q92736.xml:<name
type="scientific">Homo
sapiens</name>

We should note that since the asterisk character
(*) provides multiple files as argument to
grep, the ones whose name starts with
chebi_27732_ and ends with .xml, the
output now includes the filename (followed by a
colon) where each line was matched.

We can use the gawk command to extract
only the filename, but grep has the -l option
to just print the filename:

$ grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_27732_*.xml

The equivalent long form to the -l option is --
files-with-matches.

The output will now show only the filenames:

chebi_27732_P21817.xml
chebi_27732_Q15413.xml
chebi_27732_Q8N490.xml
chebi_27732_Q92736.xml

These four files represent the four Human pro-
teins related to caffeine.

PubMed Identifiers

Now we need to extract the PubMed identifiers
from these files to retrieve the related publica-
tions. For example, if we execute the following
command:

$ grep '<dbReference type="
PubMed"'
chebi_27732_P21817.xml

The output is a long list of publications related
to protein P21817:

<dbReference type="PubMed" id="
2298749"/>

<dbReference type="PubMed" id="
1354642"/>

<dbReference type="PubMed" id="
8220422"/>

<dbReference type="PubMed" id="
8661021"/>

<dbReference type="PubMed" id="
15057824"/>

...

To extract just the identifier, we can again use
the gawk command:

$ grep '<dbReference type="
PubMed"'
chebi_27732_P21817.xml |
gawk -F\" '{ print $4 }'

We should note that " is used as the separa-
tion character and, since the PubMed identifier
appears after the third ", the $4 represents the
identifier.

Now the output should be something like this:

2298749
1354642
8220422
8661021
15057824
...

PubMed Identifiers Extraction

Now to apply to every protein we may again use
the xargs command:

$ grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_27732_*.xml |
xargs -I {} grep '<

dbReference type="PubMed"'
{} | gawk -F\" '{ print

$4 }'

This may provide a long list of PubMed identi-
fiers, including repetitions since the same publi-
cation can be cited in different entries.

38 3 Data Retrieval

Duplicate Removal

To help us identify the repetitions, we can add
the sort command (man sort or sort --
help for more information), which will display
the repeated identifiers in consecutive lines (due
by sorting all identifiers):

$ grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_27732_*.xml |
xargs -I {} grep '<

dbReference type="PubMed"'
{} | gawk -F\" '{ print

$4 }' | sort | less

For example some repeated PubMed identi-
fiers that we should easily be able to see:

10051009
10051009
10097181
10097181
10484775
10484775
...

Fortunately, we also have the -u option that
removes all these duplicates:

$ grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_27732_*.xml |
xargs -I {} grep '<

dbReference type="PubMed"'
{} | gawk -F\" '{ print

$4 }' | sort -u

To easily check how many duplicates were re-
moved, we can use the word count wc command
with and without the usage of the -u option:

$ grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_27732_*.xml |
xargs -I {} grep '<

dbReference type="PubMed"'
{} | gawk -F\" '{ print

$4 }' | sort | wc
$ grep -l '<name type="

scientific">Homo sapiens</
name>' chebi_27732_*.xml |

xargs -I {} grep '<
dbReference type="PubMed"'
{} | gawk -F\" '{ print

$4 }' | sort -u | wc

In case we have in our folder any auxiliary
file, such as chebi_27732_P21817_entry
.xml, we should add the option --exclude

*entry.xml to the first grep command.
The output should be something like:

255 255 2243
129 129 1136

wc prints the numbers of lines, words, and
bytes, thus in our case we are interested in first
number (man wc or wc --help for more in-
formation). We can see that we have removed
255 − 129 = 126 duplicates.

Just for curiosity, we can also use the shell to
perform simple mathematical calculations using
the expr command:

$ expr 255 - 129

Now let us create a script file named get-
publications.sh by using a text editor to add the
following lines:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

2 grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_$ID_*.xml |
\

3 xargs -I {} grep '<dbReference
type="PubMed"' {} | \

4 gawk -F\" '{ print $4 }' |
sort -u

Again, do not forget to save it in our working
directory, and add the right permissions with
chmod as we did previously with the other
scripts.

To execute the script again:

$./getpublications.sh 27732

We can verify how many unique publications
were obtained by using the -l option of wc, that
provides only the number of lines:

XML Processing 39

$./getpublications.sh 27732 |
wc -l

The output will be 129 as expected.

Complex Elements

Not always the XML elements are in the same
line, as fortunately was the case of the PubMed
identifiers. In those cases, we may have to use
the xmllint command, a parser that is able to
extract data through the specification of a XPath
query, instead of using a single line pattern as in
grep.

XPath

XPath (XML Path Language) is a powerful tool
to extract information from XML and HTML
documents by following their hierarchical struc-
ture. Check W3C for more about XPath syntax46.
We should note that xmllint may not be in-
stalled by default depending on our operating
system, but it should be very easy to do it47 If
we are using MobaXterm, then we need to install
the xmllint plugin48.

Namespace Problems

In the case of our protein XML files, we can see
that their second line defines a specific names-
pace using the xmlns attribute49:

<uniprot xmlns="http://uniprot.
org/uniprot" xmlns:xsi="http:
//www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation=
"http://uniprot.org/uniprot
http://www.uniprot.org/
support/docs/uniprot.xsd">

46https://www.w3schools.com/xml/xpath_syntax.asp
47apt install libxml2-utils
48https://mobaxterm.mobatek.net/plugins.html
49https://www.w3schools.com/xml/xml_namespaces.asp

This complicates our XPath queries, since we
need to explicitly specify that we are using the
local name for every element in a XPath query.
For example, to get the data in each reference
element:

$ xmllint --xpath "//*[local-
name()='reference']"
chebi_27732_P21817.xml

We should note that // means any path in the
XML file until reaching a reference element.
The square brackets in XPath queries normally
represent conditions that need to be verified.

Only Local Names

If we are only interested in using local names
there is a way to avoid the usage of local
-name() for every element in a XPath
query. We can identify the top-level element,
in our case entry, and extract all the data
that it encloses using a XPath query. For
example, we can create the auxiliary file
chebi_27732_P21817_entry.xml by
adding the redirection operator:

$ xmllint --xpath "//*[local-
name()='entry']"
chebi_27732_P21817.xml >
chebi_27732_P21817_entry.
xml

The new XML file now starts and ends with
the entry element without any namespace defi-
nition:

<entry dataset="Swiss-Prot"
created="1991-05-01" modified
="2018-09-12" version="211">

<accession>P21817</accession>
...
</sequence>
</entry>

Now we can apply any XPath query, for exam-
ple //reference, on the auxiliary file without
the need to explicitly say that it represents a local
name:

https://www.w3schools.com/xml/xpath_syntax.asp
https://mobaxterm.mobatek.net/plugins.html
https://www.w3schools.com/xml/xml_namespaces.asp

40 3 Data Retrieval

$ xmllint --xpath '//reference
'
chebi_27732_P21817_entry.
xml

The output should contain only the data inside
of each reference element:

<reference key="1">
<citation type="journal article"

date="1990" name="J. Biol.
Chem." volume="265" first="
2244" last="2256">

<title>Molecular cloning of cDNA
encoding human and rabbit

forms of the Ca2+ release
channel (ryanodine receptor)
of skeletal muscle
sarcoplasmic reticulum.</
title>

...
<dbReference type="DOI" id="

10.1111/cge.12810"/>
</citation>
<scope>VARIANTS CCD PRO-2963 AND

ASP-4806</scope>
</reference>

Queries

The XPath syntax allow us to create many useful
queries, such as:

• //dbReference – elements of type
dbReference that are descendants of
something; Result:

<dbReference type="NCBI
Taxonomy" id="9606"/>

...
<dbReference type="PubMed" id=

"27586648"/>

• /entry//dbReference – equivalent to
the previous query but specifying that the
dbReference elements are descendants of
the entry element;

• /entry/reference/citation/dbRe
ference– equivalent to the previous query
but specifying the full path in the XML file;

• //dbReference/* – any child elements of
a dbReference element; Result:

<property type="protein
sequence ID" value="
AAA60294.1"/> ... <property
type="match status" value=
"5"/>

• //dbReference/property[1] – first
property element of each dbReference
element; Result:

<property type="protein
sequence ID" value="
AAA60294.1"/> ... <property
type="entry name" value="
MIR"/>

• //dbReference/property[2] – sec-
ond property element of each dbReference
element; Result:

<property type="molecule type"
value="mRNA"/> ...
<property type="match
status" value="5"/>

• //dbReference/property[3] – third
property element of each dbReference
element; Result:

<property type="molecule type"
value="Genomic_DNA"/> ...
<property type="project"
value="UniProtKB"/>

• //dbReference/property/@type –
all type attributes of the property elements;
Result:

type="protein sequence ID"
type="molecule type" type="
protein sequence ID" ...
type="entry name" type="
match status"

• //dbReference/property[@type="
protein sequence ID"] – the previous
property elements that have an attribute
type equal to protein sequence ID; Result:

Text Retrieval 41

<property type="protein
sequence ID" value="
AAA60294.1"/> ... <property
type="protein sequence ID"
value="ENSP00000352608"/>

• //dbReference/property[@type="
protein sequence ID"]/@value –
the string assigned to each attribute value of
the previous property elements; Result:

value="AAA60294.1" value="
AAC51191.1" ... value="
ENSP00000352608"

• //sequence/text() – the contents in-
side the sequence elements; Result:

MGDAEGEDEVQFLRTDDEVVLQCSATVLKEQLKLC
LAAEGFGNRLCFLEPTSNAQNVPPD
...
LEEHNLANYMFFLMYLINKDETEHTGQESYVWKMY
QERCWDFFPAGDCFRKQYEDQLS

We should note that to try the previous queries
we only need to replace the string after the --
xpath option of the previous xmllint com-
mand, such as:

$ xmllint --xpath '//dbReference
' chebi_27732_P21817_entry
.xml

Thus, an alternative way to extract the
PubMed identifiers using xmllint instead of
grep, would be something like this:

$ xmllint --xpath '//dbReference
[@type="PubMed"]/@id'

$ chebi_27732_P21817_entry.xml

However, the output contains all identifiers in
the same line and with the id label:

id="2298749" id="1354642" id="
8220422" ...

Extracting XPath Results

To extract the identifiers, we need to apply the tr
command to split the output in multiple lines (one
line per identifier), and then the gawk command:

$ xmllint --xpath '//dbReference
[@type="PubMed"]/@id'
chebi_27732_P21817_entry.
xml | tr ' ' '\n' | gawk -
F\" '{ NF >0 ; print $2 }'

The tr command replaces each space by a new-
line character, and the gawk command extracts
the value inside the double quotes. We should
note that NF >0 is used to only select lines with
at least a separation character ", i.e. in our case it
ignores empty lines.

Text Retrieval

Now that we have all the PubMed identifiers, we
need to download the text included in the titles
and abstracts of each publication.

Publication URL

To retrieve from the UniProt citations service the
publication entry of a given identifier, we can
again use the curl command and a link to the
publication entry. For example, if we click on
the Format button of the UniProt citations service
entry50, we can get the link to the RDF/XML ver-
sion. RDF51 is a standard data model that can be
serialized in a XML format. Thus, in our case, we
can deal with this format like we did with XML.

We can retrieve the publication entry by exe-
cuting the following command:

$ curl https://www.uniprot.org/
citations/1354642.rdf

Thus, we can now update the script getpubli-
cations.sh to have the following commands:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

2 rm -f chebi_$ID_*.rdf #
Removes any previous files

50https://www.uniprot.org/citations/1354642
51https://www.w3.org/RDF/

https://www.uniprot.org/citations/1354642
https://www.w3.org/RDF/

42 3 Data Retrieval

3 grep -l '<name type="
scientific">Homo sapiens</
name>' chebi_$ID_*.xml |
\

4 xargs -I {} grep '<dbReference
type="PubMed"' {} | \

5 gawk -F\" '{ print $4 }' |
sort -u | \

6 xargs -I {} curl 'https://www.
7 uniprot.org/citations/{}.

rdf'
8 -o chebi_$ID_{}.rdf

We should note that only the second and last lines
were updated to remove and retrieve the files,
respectively.

Now let us execute the script:

$./getpublications.sh 27732

It may take a while to download all the entries,
but probably no more than one minute with a
standard internet connection.

To check if everything worked as expected we
can use the ls command to view which files were
created:

$ ls chebi_27732_*.rdf

If for any reason, we are not able to download
the abstracts from UniProt, we can get them from
the book file archive52.

Title and Abstract

Each file has the title and abstract of the
publication as values of the title and
rdfs:comment elements, respectively. To
extract them we can again use the grep
command:

$ grep -e '<title>' -e '<rdfs:
comment>'
chebi_27732_1354642.rdf

The output should be something like these two
lines:

<title>Polymorphisms ...
hyperthermia.</title>

52http://labs.rd.ciencias.ulisboa.pt/book/

<rdfs:comment>Twenty-one ...
gene.</rdfs:comment>

To remove the XML elements, we can again
use gawk:

$ grep -e '<title>' -e '<rdfs:
comment>'
chebi_27732_1354642.rdf |
gawk -F'[<>]' '{ print $3
}'

We should note that we now use two characters
as field separators < and > to get the text between
the first > and the second <. The first field
separator is < so $2 contains the string title or
rdfs:commentwhile $1 is empty. The second
field separator is > so $3 contains the string we
want to keep.

The output should now be free of XML ele-
ments:

Polymorphisms ... hyperthermia.
Twenty-one ... gene.

Thus, let us create the script gettext.sh to have
the following commands:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

1 grep -e '<title>' -e '<rdfs:
comment>' chebi_$ID_*.
rdf | \

2 gawk -F'[<>]' '{ print $3 }'

Again do not forget to save it in our working
directory, and add the right permissions.

Now to execute the script and see the retrieved
text:

$./gettext.sh 27732 | less

We can save the resulting text in a file named
chebi_27732.txt that we may share or read using
our favorite text editor, by adding the redirection
operator:

$./gettext.sh 27732 >
chebi_27732.txt

http://labs.rd.ciencias.ulisboa.pt/book/

Further Reading 43

Disease Recognition

Instead of reading all that text to find any disease
related with caffeine, we can try to find sentences
about a given disease by using grep:

$ grep 'malignant hyperthermia'
chebi_27732.txt

To save the filtered text in a file named
chebi_27732_hyperthermia.txt, we only need
to add the redirection operator:

$ grep 'malignant hyperthermia'
chebi_27732.txt >
chebi_27732_hyperthermia.
txt

This is a very simple way of recognizing a
disease in text. The next chapters will describe
how to perform more complex text processing
tasks.

Further Reading

If we really want to become an expert in shell
scripting we may be interested in reading a book
specialized in the subject, such as the book enti-
tled The Linux command line: a complete intro-
duction (Shotts Jr 2012).

A more pragmatic approach is to explore the
vast number of online tutorials about shell script-
ing and web technologies, such as the ones pro-
vided by W3Schools53.

53https://www.w3schools.com/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

https://www.w3schools.com/
http://creativecommons.org/licenses/by/4.0/

4Text Processing

Abstract

In the previous chapter we were able to
automatically process structured data to
retrieve biomedical text about any chemical
compound, such as caffeine. This chapter will
provide a step-by-step introduction to how
we can process that text using shell script
commands, specifically extract information
about diseases related to caffeine. The goal
is to equip the reader with an essential set of
skills to extract meaningful information from
any text.

Keywords

NLP: Natural Language Processing · Text
mining · Pattern matching · String matching ·
Word matching · Evaluation metrics ·
Regular expressions · Tokenization · NER:
Named-Entity Recognition · Relation
extraction

In the previous chapter we were able to automat-
ically process structured data to retrieve biomed-
ical text about any chemical compound, such
as caffeine. This chapter will provide a step-by-
step introduction to how we can process that text
using shell script commands, specifically extract
information about diseases related to caffeine.
The goal is to equip the reader with an essential
set of skills to extract meaningful information
from any text.

Pattern Matching

We used the grep command in the last chapter
to find a disease in the text, since grep receives
as argument a pattern to find an exact match in
the text, like any search functionality provided
by conventional text editors. However, we may
need to search for multiple patterns even when
interested in a single disease. For example, when
searching for mentions of malignant hyperther-
mia, we may also be interested in finding men-
tions using related expressions, such as:

MH – acronym
MHS – acronym for malignant hyperthermia

susceptible

Since we already know how to deal with
multiple patterns by using the -e option, we may
easily solve this problem by executing:

$ grep -e 'malignant
hyperthermia' -e 'MH' -e '
MHS' chebi_27732.txt

Case Insensitive Matching

When dealing with text, using a case sensitive
search is usually a good approach to avoid wrong
matches. For example, acronyms are normally
in upper case, while the full name is usually in
lowercase having sometimes the first letter of

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-13845-5_4

46 4 Text Processing

each word (or only the first word) in uppercase.
So, instead of using a full case sensitive grep,
we might think on performing a case sensitive
grep for the acronyms and a case insensitive
grep for the disease words using the -i option:

$ grep -e 'MH' -e 'MHS'
chebi_27732.txt

$ grep -i -e 'malignant
hyperthermia' chebi_27732.
txt

The equivalent long form to the -i option
is --ignore-case. We should note that
each execution of grep will produce two
separate lists of matching lines that might be
overlapped.

Alternatively, we can also convert it to just
one case sensitive grep, if we are sure that
Malignant hyperthermia is the only alternative
case to malignant hyperthermia present in the
text. So, we can add it as another pattern:

$ grep -e 'Malignant
hyperthermia' -e '
malignant hyperthermia'

-e 'MH' -e 'MHS' chebi_27732.
txt

Number of Matches

To be sure that we are not losing any match, we
can count the number of matching lines for both
cases. First we execute a case insensitive grep
and then we execute a case sensitive grep, both
using the -c option:

$ grep -c -i 'malignant
hyperthermia' chebi_27732.
txt

$ grep -c -e 'malignant
hyperthermia' -e '
Malignant hyperthermia'
chebi_27732.txt

The equivalent long form to the -c option is --
count.

In our case, the output should show 96 and 95
matching lines for the insensitive and sensitive
patterns, respectively.

This means that there is a line that is not
caught by the case sensitive pattern. To identify
which one is, we can manually analyze each of
the 96 matching lines one by one. But the goal of
this book is exactly avoiding these type of tedious
tasks. One thing we can do to solve this issue is
to find from the case insensitive matches the one
that do not match the case sensitive patterns.

Invert Match

Fortunately, the grep command has the -v op-
tion that inverts the matching and returns the
lines of text that do not contain any matching.
The equivalent long form to the -v option is --
invert-match.

Thus, if we apply the inverted match with the
case sensitive patterns to the output given by the
case insensitive matching, we will get our outlier
mention:

$ grep -i 'malignant
hyperthermia' chebi_27732.
txt | grep -v -e '
Malignant hyperthermia' -e
'malignant hyperthermia'

From the output, we can easily identify the
missing matching line:

...gene are associated with
Malignant Hyperthermia (MH)
and...

We were missing the case where both words have
the first letter in uppercase.

Thus, to obtain all the matching lines in a
case sensitive match we just have to include the
missing match as another pattern:

$ grep -c -e 'malignant
hyperthermia' -e '
Malignant hyperthermia' -e
'Malignant Hyperthermia'

chebi_27732.txt

File Differences

Another alternative to compare different
matches, is to use the diff command that

Pattern Matching 47

receives as input two files and identifies their
differences. So, we can create two auxiliary files
and then apply the diff to them:

$ grep -i 'malignant
hyperthermia'
chebi_27732.txt >
insensitive.txt

$ grep -e 'Malignant
hyperthermia'
-e 'malignant hyperthermia'
chebi_27732.txt > sensitive

.txt
$ diff sensitive.txt insensitive

.txt

The output should be the same text.
A problem that may occur with case sensitive

matching is that some acronyms are defined with
lowercase letters in the middle, such as ChEBI,
and humans are not consistent with the way
they mention them. The same acronym may be
mentioned in their original form or with all letters
in uppercase, or just some of them. Moreover,
these inconsistent mentions sometimes may even
be found in the same publication. We hope not in
this book ! �̈

Evaluation Metrics

These inconsistencies made by humans when
mentioning case sensitive expressions, is one of
the reasons that most online search engines use
case insensitive searches as default. This type
of approach favors recall, while case sensitive
search favor precision1.

Recall is the proportion of the number of
correct matches found by our tool over the total
number of correct mentions in the texts (found
or not found). Case insensitive searches avoid
missing mentions, so they favor recall.

Precision is the proportion of the number of
correct matches found by our tool over the total
number of matches found (correct or incorrect).
Case sensitive searches avoid incorrect matches,
so they favor precision.

1https://en.wikipedia.org/wiki/Precision_and_recall

Normally, there is a trade-off between pre-
cision and recall. Using a technique that im-
proves precision, most of the times, will decrease
recall, and vice-versa. To know how good the
trade-off is, we can use the F-measure, which
is the harmonic average of the precision and
recall2.

Word Matching

Acronyms (or terms) may also appear inside
common words or longer acronyms. For
example, when searching for MH, the word
victimhood will produce a match:

$ echo "victimhood" | grep -i '
MH'

The problem with victimhood could be easily
solved by using case sensitive matching, but not
for a longer acronym. For example, the acronym
NEDMHM for neurodevelopmental disorder
with midbrain and hindbrain malformations will
produce a case sensitive match:

$ echo "NEDMHM" | grep 'MH'

One way to address this problem is to use the
-w option of grep to only match entire words,
i.e. the match must be preceded and followed
by characters that are not letters, digits, or an
underscore (or be at the beginning or end of the
line). The equivalent long form to the -w option
is --word-regexp.

Using this option, neither victimhood or
NEDMHM will produce a match:

$ echo "victimhood" | grep -w -i
'MH'

$ echo "NEDMHM" | grep -w -i 'MH'

Word matching improves precision but de-
creases recall, since we may miss some less
common acronyms that we are not aware of,
but are still relevant for our study. For example,
consider that we may also be interested in the
following acronyms:

2https://en.wikipedia.org/wiki/F1_score

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

48 4 Text Processing

MHE – acronym for malignant hyperthermia
equivocal

MHN – acronym for malignant hyperthermia
normal

If we apply word matching, we will not get a
match, since both exact matches are followed by
a letter:

$ echo "MHE and MHN" | grep -w -
i 'MH'

These are not trivial problems to solve by exact
pattern matching, we may need regular expres-
sions to address some of these issues more effi-
ciently.

Regular Expressions

When dealing with natural language text we may
need more flexibility than the one provided by
exact matching. Regular expressions are an effi-
cient tool to extend exact matching with flexible
patterns, that may find different matches. As an
example, we may be interested in finding all the
mentions of the acronym MHS or MHN in a text.
For doing that, regular expressions provide the
alternation operator that helps us to solve this
issue easily by specifying multiple alternatives to
match in a specific part of the pattern, in this case
an S or an N as the last character.

Regular expressions can be better understood
by clearly separating three distinct components:

input – any string where we want to find
something

pattern – a string that specifies what we are
looking for

match – a fragment of the input (a substring)
where the pattern can be found

In our examples, the input is the text file
chebi_27732.txt, but it can be the amino acid
sequences that we previously extracted from the
UniProt file entries. Until now the pattern has
represented an exact string to look for, where
each match is an exact replica of the pattern
occurring at a given position of the input string.
When using regular expressions, the pattern

contains special characters, whose purpose are
not to directly match with the input but instead
have a special meaning. These special characters
represent operators that specify which different
types of strings we want to find in the input.
For example, strings that start with MH and end
with S or an N. By using regular expressions,
the matches are not replicas of the pattern, they
can be different strings as long as they satisfy the
specified pattern.

Extended Syntax

The grep command allows us the possibility
to include regular expression operators in the
input pattern. grep understands two different
versions of regular expression syntax: basic and
extended3. We will use the extended syntax
for two reasons: (i) the basic does not support
relevant operators, such as alternation; (ii) and to
clearly differentiate exact matching from regular
expression matching. Thus, instead of the -e
option previously used in the grep command,
we will start to use the -E option, which makes
the command interpret the pattern as an extended
regular expression. The equivalent long form to
the -E option is --extended-regexp. We
should note that this option does not affects the
matching when using a pattern without any regu-
lar expression operator, such as MH. For example,
the following commands will produce the same
results:

$ echo -e 'MHS\nMHN' | grep -e
'MH'

$ echo -e 'MHS\nMHN' | grep -E
'MH'

Note, that we use the -e option so the echo
command interpret the \n characters as a new-
line. Thus, the echo command outputs two lines,
that are given as input to the grep command.
We should note that the grep command filters
lines.

3https://www.regular-expressions.info/posix.html

https://www.regular-expressions.info/posix.html

Regular Expressions 49

Alternation

The first regular expression operator we will test
is the alternation, which we introduced above.
An alternation is represented by the bar character
(|) that specifies a pattern where any match
must include either the preceding or following
characters. The preceding and following charac-
ters can be enclosed within parentheses to better
specify the scope of the alternation operator. For
example, the pattern for finding strings that start
with MH and end with S or an N can be written
as:

$ echo -e 'MHS\nMHN' | grep -E
'MH(S|N)'

Basic Syntax
If we use the basic regular expression syntax
no match will be found, since the alternation
operator is not supported:

$ echo -e 'MHS\nMHN' | grep -e
'MH(S|N)'

We will have a match only if the | and the
parentheses are in the input string, since it is not
interpreted as an operator:

$ echo -e 'MH(S|N)' | grep -e
'MH(S|N)'

Scope
To better understand the scope of an alternation,
we can remove the parentheses from the pattern
and add the -w option:

$ echo -e 'MHS\nMHN' | grep -w
-E 'MHS|N'

We only get the first line. This is explained be-
cause the alternation operator is applied to all the
preceding characters, i.e. the grep will search
for the MHS word or the N word. If we add a
single N to the input string we already get another
match:

$ echo -e 'MHS\nN' | grep -w -E
'MHS|N'

We can also move the opening parenthesis one
character to the left:

$ echo -e 'MHS\nMHN' | grep -E
'M(HS|N)'

Only MHS is now displayed, since the alternative
now represents MN without the H.

Multiple Alternatives
We are not limited to two alternatives, we can
have multiple | operators in a pattern. For exam-
ple, the following command will find any of the
three acronyms MHS, MHE or MHN:

$ echo -e 'MHS\nMHN\nMHE' | grep
-E 'MH(S|N|E)'

We can now transform our previous grep
command with multiple case sensitive patterns:

$ grep -c -e 'Malignant
hyperthermia' -e '
Malignant Hyperthermia' -e
'malignant hyperthermia'

chebi_27732.txt

in a grep command with a single pattern using
alternation:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

And we will obtain the same 96 matches.

Multiple Characters

A useful regular expression feature is that we
can use the dot character (.) to represent any
character, so if we want to find all the acronyms
that start with MH we can execute the following
command:

$ grep -o -w -E 'MH.'
chebi_27732.txt | sort -u

We should note that we use the -o option of the
command grep so it just displays the matches
and not all the line that includes the match. The
equivalent long form to the -o option is --only
-matching.

The output will be the following three-
character lines:

50 4 Text Processing

MH
MH)
MH,
MH.
MH1
MH2
MHE
MHN
MHS

If we really want to match only the dot char-
acter, we have to precede it with a backslash
character (\):

$ grep -o -w -E 'MH\.'
chebi_27732.txt | sort -u

Now only the MH. will be displayed.
We can check that there are some matches that

are not really acronyms, such as MH) and MH,.

Spaces
We should note that MH appears because the
space character can also be matched. For exam-
ple, the following text includes a word match
with MH since the parenthesis is considered a
word delimiter character (not a letter, digit or
underscore):

... susceptible to MH (MHS) ...

On the other hand, the following text does not
include a word match with MH :

... markers and MH
susceptibility ...

Thus, what we really want is matches where the
third character is a letter or a numerical digit.

Sometimes, the text includes other characters
that also represent horizontal or vertical space in
typography, such as the tab character. All these
characters are known as whitespaces and can be
represented by the expression \s in a pattern4.
The following command demonstrates that both
the space and the tab characters are matched by
\s:

echo -e 'space: :\ntab:\t:' |
grep -E '\s'

4https://en.wikipedia.org/wiki/Whitespace_character

Groups
Fortunately, the regular expressions include the
group operator that let us easily specify a set of
characters. A group operator is represented by a
set of characters enclosed within square brackets.
Any of the enclosed characters can be matched.

For example, the previous command to find
any of the three acronyms can be replaced by:

$ echo -e 'MHS\nMHN\nMHE' | grep
-E 'MH[SNE]'

We should note that only one of the three letters,
S, N or E will be matched in the input string.

Ranges
Still, this is not solving our need to only match
letters or digit. However, we can also specify
characters ranges with the dash character (-). For
example, to find all the acronyms that start with
MH followed by any alphabet letter:

$ grep -o -w -E 'MH[A-Z]'
chebi_27732.txt | sort -u

This will result in only three acronyms:

MHE
MHN
MHS

We should note that A-Z represents any alpha-
bet letter in uppercase, a lowercase letter will not
be matched:

$ echo -e 'MHS\nMHs' | grep -E '
MH[A-Z]'

If we intend to keep the usage of a case sen-
sitive grep and at the same time find lowercase
matches, then we need to add the a-z range:

$ echo -e 'MHS\nMHs' | grep -E '
MH[A-Za-z]'

We should note that the dot character inside a
range represents itself and not any character:

$ echo -e 'MHS\nMH.' | grep -E '
MH[.]'

Additionally, to include the acronyms that end
with a numerical digit we need to add the 0-9
range:

https://en.wikipedia.org/wiki/Whitespace_character

Regular Expressions 51

$ grep -o -w -E 'MH[A-Z0-9]'
chebi_27732.txt | sort -u

Finally, we have the correct list of all three
character acronyms starting with MH:

MH1
MH2
MHE
MHN
MHS

Negation
Another frequent case is the need to match any
character with a few exceptions. For example, if
we need to find all the matches that start with MH
followed by any character except an alphabet let-
ter. Fortunately, we can use the negation feature
within a group operator. The negation feature is
represented by the circumflex character (^) right
next to the left bracket. The negation means that
all the characters and ranges enclosed within the
brackets are the ones that cannot be matched.
Thus, a solution to the above example is to add
the A-Z range after the circumflex:

$ grep -o -w -E 'MH[^A-Z]'
chebi_27732.txt | sort -u

We can see that all of the three acronyms
MHS, MHE or MHN will be missing from the
output:

MH
MH,
MH.
MH)
MH1
MH2

If we do not want the MH acronym, we can
add the space character to the negative group:

$ grep -o -w -E 'MH[^A-Z]'
chebi_27732.txt | sort -u

The output should now contain one less
acronym:

MH,
MH.
MH)
MH1
MH2

Quantifiers

Above we were interested in finding acronyms
composed of exactly three characters. However,
we may need to find all acronyms that start with
MH independently of their length. This function-
ality is also available in regular expressions using
the quantifiers operators.

Optional
The simplest quantifier is the optional operator
that is specified by an item followed by the
question mark character (?). The item can be a
character, an operator or a sub-pattern enclosed
by parentheses. That item becomes optional for
matching, i.e. a match can either contain that
item or not.

For example, to find all the acronyms starting
with MH and followed by one alphabetic letter or
none:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

Given that the third character is optional the
output will include the two-character acronym
MH, but not the MH match:

MH
MH1
MH2
MHE
MHN
MHS

We can add the space character to the
group:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

Now the output includes the two-character
acronym MH and the MH match:

MH
MH
MH1
MH2
MHE
MHN
MHS

52 4 Text Processing

Multiple and Optional
To find all the acronyms independently of their
length, we can use the asterisk character (*).
The preceding item becomes optional and can be
repeated multiple times. For example, to find all
the acronyms starting with MH and which may
be followed any number of alphabetic letters or
numeric digits:

$ grep -o -w -E 'MH[A-Z0-9]*'
chebi_27732.txt | sort -u

The output now includes the four-character
acronym MHS1:

MH
MH1
MH2
MHE
MHN
MHS
MHS1

We should note that the grep command
uses a greedy approach, i.e. it will try to match
as many characters as possible. For example,
the following command will match MH1 and
not MH:

$ echo 'MH1' | grep -o -E 'MH
[0-9]*'

Multiple and Compulsory
To make the preceding item compulsory and able
to repeat it multiple times, we may replace the
asterisk by the plus character (+). For example,
the following pattern will find all the acronyms
starting with MH followed by at least one alpha-
betic letter or numeric digit:

$ grep -o -w -E 'MH[A-Z0-9]+'
chebi_27732.txt | sort -u

We should note that the output does not con-
tain the two character acronym MH:

MH1
MH2
MHE
MHN
MHS
MHS1

All Options
The above quantifiers are the most popular, but
the functionality of all of them can be reproduced
by using curly braces to specify the minimal and
maximum number of occurrences. The item is
followed by an expression of the type {n,m}
where n and m are to be replaced by a number
specifying the minimum and maximum number
of occurrences, respectively. n and m may also
be omitted, which means that no minimum or
maximum limit is to be imposed.

Using curly brackets, the question mark char-
acter (?) can be replaced by {0,1}. Thus, the
following two patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]?'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0
-9]{0,1}' chebi_27732.txt
| sort -u

The asterisk character (*) can be replaced
by {0,}. Thus, the following two patterns are
equivalent:

$ grep -o -w -E 'MH[A-Z0-9]*'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0-9]{0,}'
chebi_27732.txt | sort -u

The plus character (+) can be replaced by
{1,}. Thus, the following two patterns are
equivalent:

$ grep -o -w -E 'MH[A-Z0-9]+'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0-9]{1,}'
chebi_27732.txt | sort -u

On the other hand using {1,1} is the same as
not having any operator. Thus, the following two
patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]'
chebi_27732.txt | sort -u

$ grep -o -w -E 'MH[A-Z0
-9]{1,1}' chebi_27732.txt
| sort -u

The previous commands display the all the
three-character acronyms:

Position 53

MH1
MH2
MHE
MHN
MHS

For example, if we are looking for acronyms
with exactly 4 characters then we can apply the
following pattern:

$ grep -o -w -E 'MH[A-Z0
-9]{2,2}' chebi_27732.txt
| sort -u

We should note that we use 2 as both the mini-
mum and maximum since MH already count as 2
characters.

The output of the previous command is now
the four-character acronym:

MHS1

Position

Sometimes besides the match, we are also inter-
ested in limiting the matches to specific parts of
the input string. For example, to identify start
and stop codons in a protein sequence, we need
to limit the matches to the beginning or the end
of the sequence. In text, we may for example
be interested in lines starting with a name of
a disease. To take in account the position of a
match regular expressions patterns can start with
the circumflex character (^) and/or end with the
dollar sign character ($).

If the pattern starts with a circumflex then
only matches at the beginning of the line will be
considered. On the other hand, if the pattern ends
with a dollar then only matches at the end of the
line will be considered.

Beginning

For example, if we are looking for lines starting
with Malignant Hyperthermia we can use the
following pattern:

$ grep -E '^(M|m)alignant (H|h)
yperthermia' chebi_27732.
txt

The output will include the list of lines begin-
ning with a mention to Malignant Hyperthermia:

...
Malignant hyperthermia (MH) is a

potentially fatal autosomal
...

Malignant hyperthermia (MH) is a
pharmacogenetic disorder ...

To check how many of the matching lines
were filtered, we can count the number of oc-
currences when using the circumflex and when
not:

$ grep -c -E'^(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

$ grep -c -E'(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

The output will show that only 23 of the 96
matches were considered.

Ending

If we are looking for lines ending with a mention
to Malignant Hyperthermia, then we can add the
dollar character to the end of the pattern:

$ grep -E '(M|m)alignant (H|h)
yperthermia.$' chebi_27732
.txt

To allow a punctuation character before the end
of the line, we added the dot character before the
dollar character in the pattern. The dot character
matches any character, including the dot itself.

The output will be the list of lines ending with
a mention to Malignant Hyperthermia:

Novel mutation in the RYR1 gene
(R2454C) in a patient with
malignant hyperthermia.

54 4 Text Processing

Identification of a novel
mutation in the ryanodine
receptor gene (RYR1) in
patients with malignant
hyperthermia.

Novel skeletal muscle ryanodine
receptor mutation in a large
Brazilian family with
malignant hyperthermia.

...

We can check how many lines were filtered by
using again the -c option:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia.$' chebi_27732
.txt

$ grep -c -E '(M|m)alignant(H|h)
yperthermia' chebi_27732.
txt

The output will show that only 15 of the 96
matches were at the end of the line.

Near the End

Sometimes we do not want the mention ending
exactly at the last character. We may be more
flexible and allow a following expression, or
a given number of characters. For example, to
allow 10 other characters between the end of the
line and the mention of Malignant Hyperthermia,
we can add a quantifier to the dot operator:

$ grep -c -E '(M|m)alignant (H|h
)yperthermia.{0,10}$'
chebi_27732.txt

The output will show that we have 20 matches.
If we remove the -c option, we will be able to

check that words, such as families and patients,
are now allowed to appear between the mention
of Malignant Hyperthermia and the end of the
line:

...
Novel mutations in C-terminal

channel region of the
ryanodine receptor in
malignant hyperthermia
patients.

...
Novel missense mutations and

unexpected multiple changes
of RYR1 gene in 75 malignant
hyperthermia families.

...

Word in Between

To allow a word in between, independently of
its length, we can add to the pattern an optional
sequence of non-space characters (the word) pre-
ceded by a space:

$ grep -c -E '(M|m)alignant(H|h)
yperthermia([^]*)?.$'
chebi_27732.txt

The output will show that we have 24 matches.
We should note that the [^] operator avoids
having two words.

If we remove the -c option, we will be able
to check that lengthy words (with more than
10 characters), such as susceptibility, are now
allowed to appear between the mention of Ma-
lignant Hyperthermia and the end of the line:

...
Ryanodine receptor gene point

mutation and malignant
hyperthermia susceptibility.

...

Full Line

If we want lines that start with a mention to Ma-
lignant Hyperthermia and end with an acronym,
MH or MHS, then we can execute two grep
commands. The first gets the lines starting with
Malignant Hyperthermia and the next filters the
output of the latter with lines ending with an
acronym:

$ grep -E '^(M|m)alignant (H|h)
yperthermia' chebi_27732.
txt | grep -w -E 'MHS?.$'

Alternatively, we can add both the circum-
flex and dollar operators to the same pattern.
However, we cannot forget to add .* to match

Tokenization 55

anything in between them, since we are asking
full line matches:

$ grep -w -E'^(M|m)alignant(H|h)
yperthermia.*MHS?.$'
chebi_27732.txt

We can see that both commands match all the
text of the abstract since each abstract is stored in
a single line of the file:

Malignant hyperthermia (MH) is a
pharmacogenetical
complication ... as for

genetic diagnosis of MH.
Malignant hyperthermia

susceptibility (MHS) is a
subclinical pharmacogenetic
disorder ... been tested
positive for MHS.

This demonstrates the problem of tokenization,
since usually what we really need is to match a
full sentence or a phrase. And in that case each
line should represent a sentence or phrase from
the abstract.

Match Position

For more advanced processing, we may be in-
terested in knowing the exact position of the
matches in a given line. This can be done by
using the -b option of grep, which provides the
number of bytes in the line before the start of the
match:

$ echo 'MHS MHN MHE' | grep -b -
o -w -E 'MH[SNE]'

The equivalent long form to the -b option is --
byte-offset.

The output shows the list of matches preceded
by their position in the given line:

0:MHS
4:MHN
8:MHE

Tokenization

As we have shown in the previous section, some-
times we need to work at the level of a sentence
and not use a full document as the input string.
Tokenization is a Natural Language Processing
(NLP) task that aims at identifying boundaries
in the text to fragment it into basic units called
tokens. These tokens can be sentences, phrases,
multi-word expressions, or words.

Character Delimiters

In most languages, some specific characters can
be considered as accurate boundaries to fragment
text into tokens. For example, the space character
to identify words; the period (.), the question
mark (?) and the exclamation mark (!) to identify
the ending of a sentence; and the comma (,),
the semicolon (;), the colon (:) or any kind of
parenthesis to identify a phrase within a sentence.
However, this problem may be more complex in
languages without explicitly delimiters, such as
Chinese (Wu and Fung 1994).

A common approach to tokenization is to use
regular expressions to replace these delimiters by
newline characters. This will result in a token per
line. For example, we can replace the characters
specifying the end of a sentence with a newline
by using the tr command and then count the
number of lines:

$ tr '[.!?]' '\n' < chebi_27732.
txt | wc -l

We get 1493 lines from the original 248
lines:

$ wc -l chebi_27732.txt

Unfortunately, this is not just so simple. We
need to analyze the output:

$ tr '[.!?]' '\n' < chebi_27732.
txt | less

56 4 Text Processing

Wrong Tokens

We can check that: (i) many lines are empty
because an extra newline character will be added
to the last sentence, and (ii) the dot character is
also used as a decimal mark in a number, then
some sentences are split in multiple lines because
they have decimal number in them. For example,
the original sentence:

These 10 mutations account for
21.9% of the North American
MH-susceptible population

is split in two lines:

These 10 mutations account for
21

9% of the North American MH-
susceptible population

String Replacement

This means that looking at just one character is
not enough, we need some context. For perform-
ing this, we will use the sed command that we
may consider as a more powerful version of the
tr command. The sed command is a stream ed-
itor that can receive as input a string and perform
basic text transformations, such as replace one
expression by another, that are available in almost
all text editors. For example, we can use a simple
sed to convert every mention of caffeine by its
ChEBI identifier:

$ sed -E 's/caffeine/CHEBI
:27732/gi' chebi_27732.txt

The -E option allow us to use extended regular
expressions, like we used before in grep. The
s option has the following syntax 's/FIND/
REPLACE/FLAGS', where: FIND is the pattern
to find in the input string; REPLACE the expres-
sion to replace the matches; FLAGS are multiple
options, such as g to replace all matches in each
line and not just the first one, and i to be case
insensitive.

For example, the original fragment of text:

... link between the caffeine
threshold and tension ...

will be converted to:

... link between the CHEBI:27732
threshold and tension ...

Multi-character Delimiters

To replace the delimiter characters by a newline
when followed by at least one space character, we
can use the following command:

$ sed -E 's/[.!?] +/\n/g'
chebi_27732.txt

We should note that by making compulsory a
space character, we avoid: (i) empty lines by
splitting a sentence that is already at the end of
the line (assuming there are no ghost space char-
acters at the end of each line), and (ii) decimal
markers because they are followed by numerical
digits and not spaces.

We now get 1067 lines from the original 248
lines:

$ sed -E 's/[.!?] +/\n/g'
chebi_27732.txt | wc -l

Keep Delimiters

The previous sed command is removing the
delimiter characters from the text, and this
may cause other problems. The best solution
is to keep the delimiter characters and just
add the newline. The sed command allows
us to keep each match for a specific part of
the pattern (sub-pattern) by enclosing it within
parentheses. To include the match of a sub-
pattern in the replace expression, we can use
the backslash and its numerical order. Thus, we
can improve our sed command by using this
technique so we do not remove any delimiter
character:

$ sed -E 's/([.!?])(+)/\1\n\2/g
' chebi_27732.txt

Entity Recognition 57

However, other common issues may still per-
sist. For instance, there are some sentences start-
ing right after the delimiter characters without
any space in between:

... bulk.Fetal ...

... sequencing.Whole ...

These sentences include a delimiter character
directly followed by an alphabetic letter:

$ sed -E 's/([.!?])(+)/\1\n\2/g
' chebi_27732.txt | grep -
i '[.!?][a-z]'

To minimize this issue, we can change the pat-
tern so the compulsory space character become
optional, but requiring a following uppercase
alphabetic letter:

$ sed -E 's/([.!?])(*[A-Z])/\1\
n\2/g' chebi_27732.txt |
wc -l

We now get 1127 lines, i.e. this pattern is
more flexible and was able to split more 60
sentences. This does not mean that is free of
errors. It is almost impossible to derive a rule
that covers all the possible typos humans can
produce.

As an example, Fig. 4.1 show a complex
pattern adapted from Wikipedia. The pattern
is equivalent to \. {2,}[A-Z], and identifies
multiples spaces at the beginning of a sentence.
The pattern requires at least two spaces to be
matched, but only after a period and before an
uppercase letter.

Sentences File

Using our previous pattern, we can update
our script named gettext.sh to provide the text
already split in sentences by adding the sed
command:

1 ID=$1 # The CHEBI identifier
given as input is renamed
to ID

2 grep -e '<title>' -e '<rdfs:
comment>' chebi_$ID_*.
rdf | \

Fig. 4.1 Identifying multiple spaces at the beginning of a
sentence using regular expressions (Adapted from: https://
en.wikipedia.org/wiki/Regular_expression)

3 gawk -F'[<>]' '{ print $3 }' |
\

4 sed -E 's/([.!?])(*[A-Z])/\1\
n\2/g'

To save the output as a file named chebi_27732_
sentences.txt, we only need to add the redirection
operator:

$./gettext.sh 27732 >
chebi_27732_sentences.txt

Each line of the file chebi_27732_sentences.txt
represents a sentence.

Entity Recognition

To select the sentences with one of our acronyms,
we can use the grep command and our sen-
tences file:

$ grep -w -E 'MH[SNE]?'
chebi_27732_sentences.txt

The output will only include matching sen-
tences:

...
Interestingly, the data suggest

a link between the caffeine
threshold and tension values
and the MH/CCD phenotype.

Alternatively, we can use the -n option to get
the number of the line and the -o option to get
the acronym matched:

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

58 4 Text Processing

$ grep -n -o -w -E 'MH[SNE]?'
chebi_27732_sentences.txt

The equivalent long form to the -n option is
--line-number. The output should be some-
thing like this:

...
1106:MH
1106:MH
1108:MH
1110:MH
1111:MH

We can now make a script that receives a
pattern as argument and the input text as the
standard input, to display the line numbers and
the matches in a TSV format. Thus, let us create a
script file named getentities.sh with the following
lines:

1 PATTERN=$1
2 grep -n -o -w -E $PATTERN | \
3 tr ':' '\t'

Again we should not forget to save the file in our
working directory, and add the right permissions
with chmod, as we did with our scripts in the
previous chapter.

The first line stores the pattern given as ar-
gument in the variable PATTERN. The grep
command finds the matches and the tr command
replaces each colon by a tab character to produce
TSV content.

We can now execute the script giving the
pattern as argument and the sentences file as
standard input:

$./getentities.sh 'MH[SNE]?' <
chebi_27732_sentences.txt

The output should be something like this:

...
1106 MH
1106 MH
1108 MH
1110 MH
1111 MH

We should note that now we have the values
separated by a tab character, i.e. the output is in
TSV format.

The output can also be saved as a TSV file
that we can open directly in our preferred spread-
sheet application. For example, to save it as
chebi_27732.tsv, we only need to add the redi-
rection operator:

$./getentities.sh 'MH[SNE]?' <
chebi_27732_sentences.txt
> chebi_27732.tsv

Select the Sentence

If we want to analyze a specific matched sen-
tence, we can use a text editor and go to that
line number. A more efficient alternative is to use
the print p option of sed to output a given line
number. For example, to check the MHS match at
line 2:

$ sed -n '2p'
chebi_27732_sentences.txt

Now we can easily check the context of the
match:

... in susceptible people (MHS)
by volatile ...

Pattern File

The script created in the previous section only
accepts one pattern, however we may need to
recognize different entities, or different mentions
of the same entity, such as the official name, pos-
sible synonyms, and the acronyms. Fortunately,
grep allows us to include a list of patterns
directly from a file using the -f option. The
equivalent long form to the -f option is --
file=FILE. For example, we can create a text
file named patterns.txt with the following three
patterns:

(M|m)alignant (H|h)yperthermia
MH[SNE]?
(C|c)affeine

Then we can execute the previous grep but
using multiple patterns specified in the pattern
file:

Relation Extraction 59

$ grep -n -o -w -E -f patterns.
txt chebi_27732_sentences.
txt

Analyzing the output, we can check that the
same sentences may include different entities:

...
1110:MH
1110:caffeine
1111:caffeine
1111:MH

We can now update our script named geten-
tities.sh to receive as input not a single pattern
but the filename where multiple patterns can be
found.

1 PATTERNS=$1
2 grep -n -o -w -E -f $PATTERNS

| \
3 tr ':' '\t'

We can execute the script giving as argument
the file containing the patterns:

$./getentities.sh patterns.txt
< chebi_27732_sentences.
txt

To save the output as a file named chebi_27732.tsv,
we only need to add the redirection operator:

$./getentities.sh patterns.txt
< chebi_27732_sentences.
txt > chebi_27732.tsv

Using the patterns.txt file is very useful if for
example we are not focused in a single disease,
and we want to find any disease mentioned in
the text. In these cases, we have to create a file
with the full lexicon of diseases. This topic will
be addressed in the following chapter.

Relation Extraction

Finding the relevant entities in text is some-
times not enough. We need to know which sen-
tences may describe possible relationships be-
tween those entities, such as a relation between
a disease and a compound.

This is a complex text mining challenge, but a
simple approach is to construct a pattern that al-
low any kind of characters between two entities:

$ grep -n -w -E 'MH[SNE]?.*(C|c)
affeine'
chebi_27732_sentences.txt

The following sentence is one of the seven
displayed sentences mentioning a possible
relation:

239: ... MHS families were
investigated with a caffeine
...

However, we are missing all the sentences that
have caffeine first:

$ grep -n -w -E '(C|c)affeine.*
MH[SNE]?'
chebi_27732_sentences.txt

We will be able to see that sometimes caffeine
comes first:

801: ... caffeine-halothane
contracture test were greater
in those who had a known MH

...
1111: ... caffeine threshold and

tension values and the MH
...

Multiple Filters

The most flexible approach is use two grep
commands. The first selects the sentences men-
tioning one of the entities, and the other selects
from the previously selected sentences the ones
mentioning the other entity. For example, we
can first search for the acronyms and then for
caffeine:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
'

This will show all the nine sentences mentioning
caffeine and an acronym.

60 4 Text Processing

Relation Type

If we are interested in a specific type of rela-
tionship, we may have an additional filter for a
specific verb. For example, we can add a filter for
sentences with the verb response or diagnosed:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
' | grep -w -E 'response|
diagnosed'

We should note that this does not take in account
where the verb appears in the sentence. For exam-
ple, in the following sentence the verb response
appears first than any of the two entities:

50: The relationship between the
IVCT response and genotype

was ... the number of MHS
discordants ... at 2.0\,mM
caffeine ...

If the verb needs to appear between the two
entities, we have to construct a pattern that have
these words in the middle of them:

$ grep -n -w -E 'MH[SNE]?.*(
response|diagnosed).*(C|c)
affeine'
chebi_27732_sentences.txt

We can see now that the previous sentence (line
50) is not presented as a match.

Remove Relation Types

We may also be interested in ignoring specific
type of relations. To do that, we only need to
use the -v (or --invert-match) option. For
example, to ignore sentences with the word re-
sponse or diagnosed:

$ grep -n -w -E 'MH[SNE]?'
chebi_27732_sentences.txt
| grep -w -E '(C|c)affeine
' | grep -v -w -E '
response|diagnosed'

All the resulting sentences do not mention
response or diagnosed.

Further Reading

If we want to have a deeper knowledge about
text processing tasks and challenges, we
may be interested in reading some chapters
of the book entitled Speech and language
processing (Jurafsky and Martin 2014).
The book is a highly specialized document
explaining in full detail the topics here briefly
described.

To have an overview about the state-of-art in
text processing tools using biomedical literature,
we should consider reading a recent and compre-
hensive survey (Lamurias and Couto 2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

5Semantic Processing

Abstract

In the previous chapter we were able to auto-
matically process text by recognizing a limited
set of entities. This chapter will introduce the
world of semantics, and present step-by-step
examples to retrieve and enhance text and data
processing by using semantics. The goal is to
equip the reader with the basic set of skills to
explore semantic resources that are nowadays
available using simple shell script commands.

Keywords

Ontologies · OWL: Web Ontology
Language · Semantic resources · DO: disease
ontology · ChEBI: chemical entities of
biological interest · Ancestors · Recursion ·
Lexicons · Entity linking · Semantic
similarity

Classes

In the previous chapters we searched for men-
tions of caffeine and malignant hyperthermia in
text. However, we may miss related entities that
may also be of our interest. These related entities
can be found in semantic resources, such as on-
tologies. The semantics of caffeine and malignant
hyperthermia are represented in ChEBI and DO
ontologies, respectively.

OWL Files

Thus, we can start by retrieving both ontologies,
i.e. their OWL files.

$ curl -O 'https://raw.
githubusercontent.com/
DiseaseOntology/
HumanDiseaseOntology/
master/src/ontology/
releases/2018-11-02/doid.
owl'

$ curl -O 'ftp://ftp.ebi.ac.uk/
pub/databases/chebi/
archive/rel169/ontology/
chebi_lite.owl'

The -O option saves the content to a local file
named according to the name of the remote file,
usually the last part of the URL. The equivalent
long form to the -O option is --remote-name.

The previous commands will create the files
chebi_lite.owl and doid.owl, respectively. We
should note that these links are for the specific
releases used in this book. Using another release
may change the output of the examples presented
in this chapter.

The links may also change in the future, so
we may need to check them on the BioPortal1 or

1http://bioportal.bioontology.org/

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13845-5_5&domain=pdf
http://bioportal.bioontology.org/
https://doi.org/10.1007/978-3-030-13845-5_5

62 5 Semantic Processing

on the OBO Foundry2 webpages. Alternatively,
we can also get the OWL files from the book file
archive3.

Class Label

Both OWL files use the XML format syntax.
Thus, to check if our entities are represented in
the ontology, we can search for ontology ele-
ments that contain them using a simple grep
command:

$ grep '>malignant hyperthermia
<' doid.owl

$ grep '>caffeine<' chebi_lite.
owl

For each grep the output will be the line that
describes the property label (rdfs:label), which is
inside the definition of the class that represents
the entity:

<rdfs:label rdf:datatype="http:
//www.w3.org/2001/XMLSchema#
string">malignant
hyperthermia</rdfs:label>

<rdfs:label rdf:datatype="http:
//www.w3.org/2001/XMLSchema#
string">caffeine</rdfs:label>

Class Definition

To retrieve the full class definition, a more effi-
cient approach is to use the xmllint command,
which we already used in previous chapters:

$ xmllint --xpath "//*[local-
name()='label' and text()
='malignant hyperthermia
']/.." doid.owl

The XPath query starts by finding the label that
contains malignant hyperthermia and then ..
gives the parent element, in this case the Class
element.

2http://www.obofoundry.org/
3http://labs.rd.ciencias.ulisboa.pt/book/

From the output we can see that the semantics
of malignant hyperthermia is much more than its
label:

<owl:Class rdf:about="http://
purl.obolibrary.org/obo/
DOID_8545">

<rdfs:subClassOf
rdf:resource="http://
purl.obolibrary.org/obo
/DOID_0050736"/>

<rdfs:subClassOf
rdf:resource="http://
purl.obolibrary.org/obo
/DOID_66"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="
http://purl.
obolibrary.org/
obo/IDO_0000664"/
>

<owl:someValuesFrom
rdf:resource="
http://purl.
obolibrary.org/
obo/GENO_0000147"
/>

</owl:Restriction>
</rdfs:subClassOf>
<obo:IAO_0000115
...
<oboInOwl:hasDbXref

rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
UMLS_CUI:C0024591</
oboInOwl:hasDbXref>

<oboInOwl:hasExactSynonym
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
anesthesia related
hyperthermia</
oboInOwl:hasExactSynonym
>

<oboInOwl:hasExactSynonym
rdf:datatype="http://

http://www.obofoundry.org/
http://labs.rd.ciencias.ulisboa.pt/book/

Classes 63

www.w3.org/2001/
XMLSchema#string">
malignant hyperpyrexia
due to anesthesia</
oboInOwl:hasExactSynonym
>

<oboInOwl:hasOBONamespace
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
disease_ontology</
oboInOwl:hasOBONamespace
>

<oboInOwl:id rdf:datatype=
"http://www.w3.org
/2001/XMLSchema#string"
>DOID:8545</oboInOwl:id
>

<oboInOwl:inSubset
rdf:resource="http://
purl.obolibrary.org/obo
/doid#DO_MGI_slim"/>

<oboInOwl:inSubset
rdf:resource="http://

purl.obolibrary.org/obo
/doid#DO_rare_slim"/>

<oboInOwl:inSubset
rdf:resource="http://
purl.obolibrary.org/obo
/doid#NCIthesaurus"/>

<rdfs:comment rdf:datatype
="http://www.w3.org
/2001/XMLSchema#string"
>Xref MGI.

OMIM mapping confirmed by DO. [
SN].</rdfs:comment>

<rdfs:label rdf:datatype="
http://www.w3.org/2001/
XMLSchema#string">
malignant hyperthermia<
/rdfs:label>

</owl:Class>

A graphical visualization of this class is de-
picted in Fig. 5.1.

For example, we can check that malignant
hyperthermia is a subclass of (specialization) the
entries 0050736 and 66. We can directly use the

Fig. 5.1 Class description of malignant hyperthermia in the Human Disease Ontology (Source: http://www.ontobee.
org/)

http://www.ontobee.org/
http://www.ontobee.org/

64 5 Semantic Processing

link4 in our browser to know more about this
parent disease. We will see that it represents a
muscle tissue disease. This means that malignant
hyperthermia is a special case of a muscle tissue
disease.

We can do the same to retrieve the full class
definition of caffeine:

$ xmllint --xpath "//*[local-
name()='label' and text()
='caffeine']/.."
chebi_lite.owl

From the output we can see that the types of
semantics available for caffeine differs from the
semantics of malignant hyperthermia, but they
still share many important properties, such as the
definition of subClassOf:

<owl:Class rdf:about="http://
purl.obolibrary.org/obo/
CHEBI_27732">

<rdfs:subClassOf
rdf:resource="http://
purl.obolibrary.org/obo
/CHEBI_26385"/>

<rdfs:subClassOf
rdf:resource="http://
purl.obolibrary.org/obo
/CHEBI_27134"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty
rdf:resource="
http://purl.
obolibrary.org/
obo/RO_0000087"/>

<owl:someValuesFrom
rdf:resource="
http://purl.
obolibrary.org/
obo/CHEBI_25435"/
>

</owl:Restriction>
</rdfs:subClassOf>
...
<rdfs:subClassOf>

<owl:Restriction>

4http://purl.obolibrary.org/obo/DOID_66

<owl:onProperty
rdf:resource="http:
//purl.obolibrary.
org/obo/RO_0000087"/
>
<owl:someValuesFrom

rdf:resource="
http://purl.
obolibrary.org/
obo/CHEBI_85234"/
>

</owl:Restriction>
</rdfs:subClassOf>
<obo:IAO_0000115

rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">A
trimethylxanthine in
which the three methyl
groups are located at
positions 1, 3, and 7.
A purine alkaloid that
occurs naturally in tea
and coffee.</
obo:IAO_0000115>

<oboInOwl:hasAlternativeId
rdf:datatype="http://
www.w3.org/2001/XML
Schema#string">CHEBI:
22982</oboInOwl:has
AlternativeId>

<oboInOwl:hasAlternativeId
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
CHEBI:3295</oboInOwl:
hasAlternativeId>

<oboInOwl:hasAlternativeId
rdf:datatype="http://
www.w3.org/2001/XML
Schema#string">CHEBI:
41472</oboInOwl:
hasAlternativeId>

<oboInOwl:hasOBONamespace
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">

http://purl.obolibrary.org/obo/DOID_66

Classes 65

chebi_ontology</
oboInOwl:hasOBONamespace
>

<oboInOwl:id rdf:datatype=
"http://www.w3.org
/2001/XMLSchema#string"
>CHEBI:27732</
oboInOwl:id>

<oboInOwl:inSubset
rdf:resource="http://
purl.obolibrary.org/obo
/chebi#3_STAR"/>

<rdfs:label rdf:datatype="
http://www.w3.org/2001/
XMLSchema#string">
caffeine</rdfs:label>

</owl:Class>

A graphical visualization of this class is de-
picted in Fig. 5.2.

The class caffeine is a specialization of two
other entries: 26385 (purine alkaloid5), and
27134 (trimethylxanthine6). However, it contains
additional subclass relationships that do not
represent subsumption (is-a).

Related Classes

Figures 5.3 and 5.4 show other related classes
of malignant hyperthermia and caffeine, respec-
tively.

For example, the relationship between caf-
feine and the entry 25435 (mutagen7) is defined
by the entry 0000087 (has role8) of the Relations
Ontology. This means that the relationship de-
fines that caffeine has role mutagen.

We can also search in the OWL file for the
definition of the type of relation has role:

$ xmllint --xpath "//*[local-
name()='ObjectProperty'][@

*[local-name()='about']='
http://purl.obolibrary.org
/obo/RO_0000087']"
chebi_lite.owl

5http://purl.obolibrary.org/obo/CHEBI_26385
6http://purl.obolibrary.org/obo/CHEBI_27134
7http://purl.obolibrary.org/obo/CHEBI_25435
8http://purl.obolibrary.org/obo/RO_0000087

The XPath query starts by finding the elements
ObjectProperty and then selects the ones
containing the about attribute with the relation
URI as value.

We can check that the relation is neither tran-
sitive or cyclic:

<owl:ObjectProperty rdf:about="
http://purl.obolibrary.org/
obo/RO_0000087">

<oboInOwl:hasDbXref
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
RO:0000087</
oboInOwl:hasDbXref>

<oboInOwl:hasOBONamespace
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#string">
chebi_ontology</
oboInOwl:hasOBONamespace
>

<oboInOwl:id rdf:datatype=
"http://www.w3.org
/2001/XMLSchema#string"
>has_role</oboInOwl:id>

<oboInOwl:is_cyclic rdf:
datatype="http://www.w3
.org/2001/XMLSchema#
boolean">false</
oboInOwl:is_cyclic>

<oboInOwl:is_transitive
rdf:datatype="http://
www.w3.org/2001/
XMLSchema#boolean">
false</oboInOwl:
is_transitive>

<oboInOwl:shorthand rdf:
datatype="http://www.w3
.org/2001/XMLSchema#
string">has_role</
oboInOwl:shorthand>

<rdfs:label rdf:datatype="
http://www.w3.org/2001/
XMLSchema#string">has
role</rdfs:label>

</owl:ObjectProperty>

http://purl.obolibrary.org/obo/CHEBI_26385
http://purl.obolibrary.org/obo/CHEBI_27134
http://purl.obolibrary.org/obo/CHEBI_25435
http://purl.obolibrary.org/obo/RO_0000087

66 5 Semantic Processing

Fig. 5.2 Class description of caffeine in ChEBI (Source: http://www.ontobee.org/)

Fig. 5.3 Related classes of malignant hyperthermia in the Human Disease Ontology (Source: http://www.ontobee.
org/)

A graphical visualization of this property is
depicted in Fig. 5.5.

URIs and Labels

In the previous examples, we searched the OWL
file using labels and URIs. To standardize the
process, we will create two scripts that will con-
vert a label into a URI and vice-versa. The idea
is to perform all the internal ontology processing
using the URIs and in the end convert them to
labels, so we can use them in text processing.

URI of a Label

To get the URI of malignant hyperthermia, we
can use the following query:

$ xmllint --xpath "//*[local-
name()='label' and text()
='malignant hyperthermia
']/../@*[local-name()='
about']" doid.owl

We added the @*[local-name()='about
'] to extract the URI specified as an attribute of
that class.

The output will be the name of the attribute
and its value:

http://www.ontobee.org/
http://www.ontobee.org/
http://www.ontobee.org/

Synonyms 67

Fig. 5.4 Related classes of caffeine in ChEBI (Source: http://www.ontobee.org/)

Fig. 5.5 Description of has role property (Source: http://www.ontobee.org/)

rdf:about="http://purl.
obolibrary.org/obo/DOID_8545"

To extract only the value, we can add the
string function to the XPath query:

$ xmllint --xpath "string(//*[
local-name()='label' and
text()='malignant
hyperthermia']/../@*[local
-name()='about'])" doid.
owl

Unfortunately, the string function returns only
one attribute value, even if many are matched.
Nonetheless, we use the string function be-
cause we assume that malignant hyperthermia is
an unambiguous label, i.e. only one class will
match.

The output will now be only the attribute
value:

http://purl.obolibrary.org/obo/
DOID_8545

To get the URI of caffeine is just about the
same command:

$ xmllint --xpath "string(//*[
local-name()='label' and
text()='caffeine']/../@*[
local-name()='about'])"
chebi_lite.owl

We can now write a script that receives mul-
tiple labels given as standard input and the OWL
file where to find the URIs as argument. Thus,
we can create the script named geturi.sh with the
following lines:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath

"//*[local-name()='label'
and

3 text()='{}']/../@*[local-
name

4 ()='about']" $OWLFILE | \
5 tr '"' '\n' | grep 'http'

Again we cannot forget to save the file in our
working directory, and add the right permissions
using chmod as we did with our scripts in the
previous chapters. The xargs command is used
to process each line of the standard input. The tr

http://www.ontobee.org/
http://www.ontobee.org/

68 5 Semantic Processing

command was added because xmllint displays
all the matches in the same line, so we split the
output using the character delimiting the URI, i.e.
". Then we use the grep command to keep only
the lines with a URI, i.e. the ones that contain the
term http.

Now to execute the script we only need to
provide the labels as standard input:

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl

$ echo 'caffeine' | ./geturi.sh
chebi_lite.owl

The output should be the URIs of those
classes:

http://purl.obolibrary.org/obo/
DOID_8545

http://purl.obolibrary.org/obo/
CHEBI_27732

We can also execute the script using multiple
labels, one per line:

$ echo -e 'malignant
hyperthermia\nmuscle
tissue disease' | ./geturi
.sh doid.owl

$ echo -e 'caffeine\npurine
alkaloid\
ntrimethylxanthine' | ./
geturi.sh chebi_lite.owl

The output will be a URI for each label:

http://purl.obolibrary.org/obo/
DOID_8545

http://purl.obolibrary.org/obo/
DOID_66

http://purl.obolibrary.org/obo/
CHEBI_27732

http://purl.obolibrary.org/obo/
CHEBI_26385

http://purl.obolibrary.org/obo/
CHEBI_27134

Label of a URI

To get the label of the disease entry with the
identifier 8545, we can also use the xmllint
command:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
DOID_8545']/*[local-name()
='label']/text()" doid.owl

We added the @*[local-name()='label
'] to select the element within the class that
describes the label.

The output should be the label we were ex-
pecting:

malignant hyperthermia

We can do the same to get the label of the
compound entry with the identifier 27732:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
CHEBI_27732']/*[local-name
()='label']/text()"
chebi_lite.owl

Again, the output should be the label we were
expecting:

caffeine

We can now write a script that receives mul-
tiple URIs given as standard input and the OWL
file where to find the labels. We can create a script
named getlabels.sh with the following lines:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath

"//*[local-name()='Class
'][@*[local-name()='about
']='{}']/*[local-name()='
label']" $OWLFILE | \

3 tr '<>' '\n' | \
4 grep -v -e ':label' -e '^$'

The xargs command is used to process each
line of the standard input. The text function
does not add a newline character after each
match, so if we have multiple matches is almost
impossible to separate them. This explains why
we removed the text function from the XPath.
Then we have to split the result in multiple lines
using the tr command and filtering the lines that
contain the :label keyword or are empty.

Synonyms 69

Now to execute the script we only need to
provide the URIs as standard input:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getlabels.sh doid.owl

$ echo 'http://purl.obolibrary.
org/obo/CHEBI_27732' | ./
getlabels.sh chebi_lite.
owl

The output should be the labels of those
classes:

malignant hyperthermia
caffeine

We can also execute the script with multiple
URIs:

$ echo -e 'http://purl.
obolibrary.org/obo/
DOID_8545\nhttp://purl.
obolibrary.org/obo/DOID_66
' | ./getlabels.sh doid.
owl

$ echo -e 'http://purl.
obolibrary.org/obo/
CHEBI_27732\nhttp://purl.
obolibrary.org/obo/
CHEBI_26385\nhttp://purl.
obolibrary.org/obo/

$ CHEBI_27134' | ./getlabels.
sh

$ chebi_lite.owl

The output will be a label for each URI:

malignant hyperthermia
muscle tissue disease

caffeine
purine alkaloid
trimethylxanthine

To test both scripts, we can feed the output of
one as the input of the other, for example:

$ echo -e 'malignant
hyperthermia\nmuscle
tissue disease' | ./geturi
.sh doid.owl | ./getlabels
.sh doid.owl

$ echo -e 'caffeine\npurine
alkaloid\
ntrimethylxanthine' | ./
geturi.sh chebi_lite.owl

| ./getlabels.sh chebi_lite.owl

The output will be the original input, i.e. the
labels given as arguments to the echo command:

malignant hyperthermia
muscle tissue disease

caffeine
purine alkaloid
trimethylxanthine

Now we can use the URIs as input:

$ echo -e 'http://purl.
obolibrary.org/obo/
DOID_8545\nhttp://purl.
obolibrary.org/obo/DOID_66
' | ./getlabels.sh doid.
owl | ./geturi.sh doid.owl

$ echo -e 'http://purl.
obolibrary.org/obo/
CHEBI_27732\nhttp://purl.
obolibrary.org/obo/
CHEBI_26385\nhttp://purl.
obolibrary.org/obo/
CHEBI_27134' | ./getlabels
.sh

chebi_lite.owl | ./geturi.
sh

chebi_lite.owl

Again the output will be the original input,
i.e. the URIs given as arguments to the echo
command:

http://purl.obolibrary.org/obo/
DOID_8545

http://purl.obolibrary.org/obo/
DOID_66

http://purl.obolibrary.org/obo/
CHEBI_27732

http://purl.obolibrary.org/obo/
CHEBI_26385

http://purl.obolibrary.org/obo/
CHEBI_27134

70 5 Semantic Processing

Synonyms

Concepts are not always mentioned using the
same official label. Frequently, we can find
in text alternative labels. This is why some
of the classes also specify alternative labels,
such as the ones represented by the element
hasExactSynonym.

For example, to find all the synonyms of a
disease, we can use the same XPath as used
before but replacing the keyword label by
hasExactSynonym:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
DOID_8545']/*[local-name()
='hasExactSynonym']" doid.
owl

The output will be the two synonyms of ma-
lignant hyperthermia:

<oboInOwl:hasExactSynonym
rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
anesthesia related
hyperthermia</
oboInOwl:hasExactSynonym>

<oboInOwl:hasExactSynonym
rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
malignant hyperpyrexia due to
anesthesia</oboInOwl:
hasExactSynonym>

We can also get both the primary label and
the synonyms. We only need to add an alternative
match to the keyword label:

1 xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
DOID_8545']/*[local-name()
='hasExactSynonym' or
local-name()='label']"
doid.owl

The output will include now the two syn-
onyms plus the official label:

<oboInOwl:hasExactSynonym
rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
anesthesia related
hyperthermia</
oboInOwl:hasExactSynonym>

<oboInOwl:hasExactSynonym
rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
malignant hyperpyrexia due to
anesthesia</

oboInOwl:hasExactSynonym>
<rdfs:label rdf:datatype="http:

//www.w3.org/2001/XMLSchema#
string">malignant
hyperthermia</rdfs:label>

Thus, we can now update the script getla-
bels.sh to include synonyms:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath

"//*[local-name()='Class
'][@*[local-name()='about
']='{}']/*[local-name()='
hasExactSynonym' or local-
name()='hasRelatedSynonym'
or local-name()='label']"
$OWLFILE | \

3 tr '<>' '\n' | \
4 grep -v -e ':label' -e ':

hasExactSynonym' -e '
hasRelatedSynonym' -e '^$'

We should note that the XPath query and the
grep command were modified by adding the
hasExactSynonym keyword. We also added
the hasRelatedSynonym which is available
for some classes.

We can test the script exactly in the same way
as before:

$ echo -e 'http://purl.
obolibrary.org/obo/
DOID_8545' | ./getlabels.
sh doid.owl

But now the output will display multiple labels
for this class:

anesthesia related hyperthermia

Parent Classes 71

malignant hyperpyrexia due to
anesthesia

malignant hyperthermia

URI of Synonyms

Since the script now returns alternative labels,
we may encounter some problems if we send the
output to the geturi.sh script:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getlabels.sh doid.owl | ./
geturi.sh doid.owl

The previous command will display XPath
warnings for the two synonyms:

XPath set is empty
XPath set is empty
http://purl.obolibrary.org/obo/

DOID_8545

If we do not want to know about these mis-
matches, we can always redirect them to the null
device:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getlabels.sh doid.owl | ./
geturi.sh doid.owl 2>/dev/
null

However, we can update the script geturi.sh to
also include synonyms:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath

"//*[(local-name()='
hasExactSynonym' or local-
name()='hasRelatedSynonym'
or local-name()='label')

and text()='{}']/../@*[
local-name()='about']"
$OWLFILE | \

3 tr '"' '\n' | grep 'http'

Now we can execute the same command:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getlabels.sh doid.owl | ./
geturi.sh doid.owl

Every label should now be matched exactly
with the same class:

http://purl.obolibrary.org/obo/
DOID_8545

http://purl.obolibrary.org/obo/
DOID_8545

http://purl.obolibrary.org/obo/
DOID_8545

If we want to avoid repetitions, we can add the
sort command with the -u option to the end of
each command, as we did in previous chapters:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getlabels.sh doid.owl | ./
geturi.sh doid.owl | sort
-u

The output should now be only one URI:

http://purl.obolibrary.org/obo/
DOID_8545

Parent Classes

Parent classes represent generalizations that may
also be relevant to recognize in text. To extract all
the parent classes of malignant hyperthermia, we
can use the following XPath query:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
DOID_8545']/*[local-name()
='subClassOf']/@*[local-
name()='resource']" doid.
owl

The first part of the XPath is the same as the
above to get the class element, then [local-
name()='subClassOf'] is used to get the
subclass element, and finally @*[local-name
()='resource'] is used to get the attribute
containing its URI.

The output should be the URIs representing
the parents of class 8545:

rdf:resource="http://purl.
obolibrary.org/obo/
DOID_0050736"

72 5 Semantic Processing

rdf:resource="http://purl.
obolibrary.org/obo/DOID_66"

We can also execute the same command for
caffeine:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
CHEBI_27732']/*[local-name
()='subClassOf']/@*[local-
name()='resource']"
chebi_lite.owl

The output will now include two parents:

rdf:resource="http://purl.
obolibrary.org/obo/
CHEBI_26385"

rdf:resource="http://purl.
obolibrary.org/obo/
CHEBI_27134"

We should note that we no longer can use
the string function, because ontologies are
organized as DAGs using multiple inheritance,
i.e. each class can have multiple parents, and the
string function only returns the first match.
To get only the URIs, we can apply the previous
technique of using the tr and grep commands:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
CHEBI_27732']/*[local-name
()='subClassOf']/@*[local-
name()='resource']"
chebi_lite.owl | tr '"' '\
n' | grep 'http'

Now the output only contains the URIs:

http://purl.obolibrary.org/obo/
CHEBI_26385

http://purl.obolibrary.org/obo/
CHEBI_27134

We can now create a script that receives mul-
tiple URIs given as standard input and the OWL
file where to find all the parents as argument.

The script named getparents.sh should contain
the following lines:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath

"//*[local-name()='Class
'][@*[local-name()='about
']='{}']/*[local-name()='
subClassOf']/@*[local-name
()='resource']" $OWLFILE |
\

3 tr '"' '\n' | grep 'http'

To get the parents of malignant hyperthermia, we
will only need to give the URI as input and the
OWL file as argument:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getparents.sh doid.owl

The output will include the URIs of the two
parents:

http://purl.obolibrary.org/obo/
DOID_0050736

http://purl.obolibrary.org/obo/
DOID_66

Labels of Parents

But if we need the labels we can redirect the
output to the getlabels.sh script:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getparents.sh doid.owl |
./getlabels.sh doid.owl

The output will now be the label of the parents
of malignant hyperthermia:

autosomal dominant disease
muscle tissue disease

Again, the same can be done with caffeine:

$ echo 'http://purl.obolibrary.
org/obo/CHEBI_27732' | ./
getparents.sh chebi_lite.
owl | ./getlabels.sh
chebi_lite.owl

Parent Classes 73

And now the output contains the labels of the
parents of caffeine:

purine alkaloid
trimethylxanthine

Related Classes

If we are interested in using all the related classes
besides the ones that represent a generalization
(subClassOf), we have to change our XPath to:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
CHEBI_27732']/*[local-name
()='subClassOf']//*[local-
name()='someValuesFrom']/@

*[local-name()='resource
']" chebi_lite.owl | tr
'"' '\n'| grep 'http'

We should note that these related classes are in
the attribute resource of someValuesFrom ele-
ment inside a subClassOf element.

The URIs of the 18 related classes of caffeine
are now displayed:

http://purl.obolibrary.org/obo/
CHEBI_25435

http://purl.obolibrary.org/obo/
CHEBI_35337

http://purl.obolibrary.org/obo/
CHEBI_35471

http://purl.obolibrary.org/obo/
CHEBI_35498

http://purl.obolibrary.org/obo/
CHEBI_35703

http://purl.obolibrary.org/obo/
CHEBI_38809

http://purl.obolibrary.org/obo/
CHEBI_50218

http://purl.obolibrary.org/obo/
CHEBI_50925

http://purl.obolibrary.org/obo/
CHEBI_53121

http://purl.obolibrary.org/obo/
CHEBI_60809

http://purl.obolibrary.org/obo/
CHEBI_64047

http://purl.obolibrary.org/obo/
CHEBI_67114

http://purl.obolibrary.org/obo/
CHEBI_71232

http://purl.obolibrary.org/obo/
CHEBI_75771

http://purl.obolibrary.org/obo/
CHEBI_76924

http://purl.obolibrary.org/obo/
CHEBI_76946

http://purl.obolibrary.org/obo/
CHEBI_78298

http://purl.obolibrary.org/obo/
CHEBI_85234

Labels of Related Classes

To get the labels of these related classes, we only
need to add the getlabels.sh script:

$ xmllint --xpath "//*[local-
name()='Class'][@*[local-
name()='about']='http://
purl.obolibrary.org/obo/
CHEBI_27732']/*[local-name
()='subClassOf']//*[local-
name()='someValuesFrom']/@

*[local-name()='resource
']" chebi_lite.owl | tr
'"' '\n'| grep 'http' | ./
getlabels.sh chebi_lite.
owl

The output is now 18 terms that we could use
to expand our text processing:

mutagen
central nervous system stimulant
psychotropic drug
diuretic
xenobiotic
ryanodine receptor modulator
EC 3.1.4.* (phosphoric diester

hydrolase) inhibitor
EC 2.7.11.1 (non-specific serine

/threonine protein kinase)
inhibitor

74 5 Semantic Processing

adenosine A2A receptor
antagonist

adjuvant
food additive
ryanodine receptor agonist
adenosine receptor antagonist
mouse metabolite
plant metabolite
fungal metabolite
environmental contaminant
human blood serum metabolite

Ancestors

Finding all the ancestors of a class includes many
chain invocations of the getparents.sh until we
get no matches. We also should avoid relations
that are cyclic, otherwise we will enter in a
infinite loop. Thus, for identifying the ancestors
of a class, we will only consider parent relations,
i.e. subsumption relations.

Grandparents

In the previous section we were able to extract
the direct parents of a class, but the parents of
these parents also represent generalizations of the
original class. For example, to get the parents of
the parents (grandparents) of malignant hyper-
thermia we need to invoke getparents.sh twice:

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl |
./getparents.sh doid.owl |
./getparents.sh doid.owl

And we will find the URIs of the grandparents
of malignant hyperthermia:

http://purl.obolibrary.org/obo/
DOID_0050739

http://purl.obolibrary.org/obo/
DOID_0080000

Or to get their labels we can add the getla-
bels.sh script:

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl |
./getparents.sh doid.owl |
./getparents.sh doid.owl

| ./getlabels.sh doid.owl

And we find the labels of the grandparents of
malignant hyperthermia:

autosomal genetic disease
muscular disease

Root Class

However, there are classes that do not have any
parent, which are called root classes. In Figs. 5.1
and 5.2, we can see that disease and chemical
entity are root classes of DO and ChEBI ontolo-
gies, respectively. As we can see these are highly
generic terms.

To check if it is the root class, we can ask for
their parents:

$ echo 'disease' | ./geturi.sh
doid.owl | ./getparents.sh
doid.owl

$ echo 'chemical entity' | ./
geturi.sh chebi_lite.owl |
./getparents.sh

chebi_lite.owl

In both cases, we will get the warning that no
matches were found, confirming that they are the
root class.

XPath set is empty

Recursion

We can now build a script that receives a list
of URIs as standard input, and invokes getpar-
ents.sh recursively until it reaches the root class.

The script named getancestors.sh should con-
tain the following lines:

1 OWLFILE=$1
2 CLASSES=$(cat -)
3 [[-z "$CLASSES"]] && exit
4 PARENTS=$(echo "$CLASSES" | ./

getparents.sh $OWLFILE |
sort -u)

Ancestors 75

5 echo "$PARENTS"
6 echo "$PARENTS" | ./

getancestors.sh $OWLFILE

The second line of the script saves the stan-
dard input in a variable named CLASSES, be-
cause we need to use it twice: (i) to check if the
input as any classes or is empty (third line) and
(ii) to get the parents of the classes given as input
(fourth line). If the input is empty then the script
ends, this is the base case of the recursion9. This
is required so the recursion stops at a given point.
Otherwise, the script would run indefinitely until
the user stops it manually.

The fourth line of the script stores the output
in a variable named PARENTS, because we need
also to use it twice: (i) to output these direct
parents (fifth line), and (ii) to get the ancestors
of this parents (sixth line). We should note that
we are invoking the getancestors.sh script inside
the getancestors.sh, which defines the recursion
step. Since the subsumption relation is acyclic,
we expect that at some time we will reach classes
without parents (root classes) and then the script
will end.

We should note that the echo of the variables
CLASSES and PARENTS need to be inside com-
mas, so the newline characters are preserved.

Iteration

Recursion is most of the times computational
expensive, but usually it is possible to replace
recursion with iteration to develop a more effi-
cient algorithm. Explaining iteration and how to
refactor a recursive script is out of scope of this
book, nevertheless the following script represents
an equivalent way to get all the ancestors without
using recursion:

1 # iteration
2 OWLFILE=$1
3 CLASSES=$(cat -)
4 ANCESTORS=""
5 while [[! -z "$CLASSES"]]
6 do

9https://en.wikipedia.org/wiki/Recursion

7 PARENTS=$(echo "$CLASSES" |
./getparents.sh $OWLFILE
| sort -u)

8 ANCESTORS="$ANCESTORS\
n$PARENTS"

9 CLASSES=$PARENTS
10 done
11 echo -e "$ANCESTORS"

The script uses the while command that basi-
cally implements iteration by repeating a set of
commands (lines 6–8) while a given condition is
satisfied (line 4).

To test the recursive script, we can provide as
standard input the label malignant hyperthermia:

$ echo 'http://purl.obolibrary.
org/obo/DOID_8545' | ./
getancestors.sh doid.owl

The output will be the URIs of all its ances-
tors:

http://purl.obolibrary.org/obo/
DOID_0050736

http://purl.obolibrary.org/obo/
DOID_66

http://purl.obolibrary.org/obo/
DOID_0050739

http://purl.obolibrary.org/obo/
DOID_0080000

http://purl.obolibrary.org/obo/
DOID_0050177

http://purl.obolibrary.org/obo/
DOID_17

http://purl.obolibrary.org/obo/
DOID_630

http://purl.obolibrary.org/obo/
DOID_7

http://purl.obolibrary.org/obo/
DOID_4

We should note that we will still receive the
XPath warning when the script reaches the root
class and no parents are found:

XPath set is empty

To remove this warning and just get the labels
of the ancestors of malignant hyperthermia, we
can redirect the warnings to the null device:

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl |

https://en.wikipedia.org/wiki/Recursion

76 5 Semantic Processing

./getancestors.sh doid.owl
2>/dev/null | ./getlabels

.sh doid.owl

The output will now include the name of all
ancestors of malignant hyperthermia:

autosomal dominant disease
muscle tissue disease
autosomal genetic disease
muscular disease
monogenic disease
musculoskeletal system disease
genetic disease
disease of anatomical entity
disease

We should note that the first two ancestors are
the direct parents of malignant hyperthermia, and
the last one is the root class. This happens be-
cause the recursive script print the parents before
invoking itself to find the ancestors of the direct
parents.

We can do the same with caffeine, but be
advised that given the higher number of ancestors
in ChEBI we may now have to wait a little longer
for the script to end.

$ echo 'caffeine' | ./geturi.sh
chebi_lite.owl | ./
getancestors.sh chebi_lite
.owl | ./getlabels.sh
chebi_lite.owl | sort -u

The results include repeated classes that were
found by using different branches, so that is why
we need to add the sort command with the -u
option to eliminate the duplicates.

The script will print the ancestors being found
by the script:

alkaloid
aromatic compound
bicyclic compound
carbon group molecular entity
chemical entity
cyclic compound
heteroarene
heterobicyclic compound
heterocyclic compound
heteroorganic entity

heteropolycyclic compound
imidazopyrimidine
main group molecular entity
methylxanthine
molecular entity
molecule
nitrogen molecular entity
organic aromatic compound
organic cyclic compound
organic heterobicyclic compound
organic heterocyclic compound
organic heteropolycyclic

compound
organic molecular entity
organic molecule
organonitrogen compound
organonitrogen heterocyclic

compound
p-block molecular entity
pnictogen molecular entity
polyatomic entity
polycyclic compound
purine alkaloid
purines
trimethylxanthine

My Lexicon

Now that we know how to extract all the labels
and related classes from an ontology, we can
construct our own lexicon with the list of terms
that we want to recognize in text.

Let us start by creating the file do_8545_
lexicon.txt representing our lexicon for malignant
hyperthermia with all its labels:

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl |
./getlabels.sh doid.owl >
do_8545_lexicon.txt

Ancestors Labels

Now we can add to the lexicon all the labels of the
ancestors of malignant hyperthermia by adding
the redirection operator:

My Lexicon 77

$ echo 'malignant hyperthermia'
| ./geturi.sh doid.owl |
./getancestors.sh doid.owl
| ./getlabels.sh doid.owl
>> do_8545_lexicon.txt

We should note that now we use >> and not >,
this will append more lines to the file instead of
creating a new file from scratch.

Now we can check the contents of the file
do_8545_lexicon.txt to see the terms we got:

$ cat do_8545_lexicon.txt | sort
-u

We should note that we use the sort command
with the -u option to eliminate any duplicates
that may exist.

We should be able to see the following labels:

anesthesia related hyperthermia
autosomal dominant disease
autosomal genetic disease
disease
disease of anatomical entity
genetic disease
malignant hyperpyrexia due to

anesthesia
malignant hyperthermia
monogenic disease
muscle tissue disease
muscular disease
musculoskeletal system disease

We can also apply the same commands
for caffeine to produce its lexicon in the
file chebi_27732_lexicon.txt by adding the
redirection operator:

$ echo 'caffeine' | ./geturi.sh
chebi_lite.owl | ./
getlabels.sh chebi_lite.
owl > chebi_27732_lexicon.
txt

$ echo 'caffeine' | ./geturi.sh
chebi_lite.owl | ./
getancestors.sh chebi_lite
.owl | ./getlabels.sh
chebi_lite.owl >>
chebi_27732_lexicon.txt

We should note that it may take a while until
it gets all labels.

Now let us check the contents of this new
lexicon:

$ cat chebi_27732_lexicon.txt |
sort -u

Now we should be able to see that this lexicon
is much larger:

alkaloid
aromatic compound
bicyclic compound
caffeine
...

Merging Labels

If we are interested in finding everything related
to caffeine or malignant hyperthermia, we may
be interested in merging the two lexicons in a file
named lexicon.txt:

$ cat do_8545_lexicon.txt
chebi_27732_lexicon.txt |
sort -u > lexicon.txt

Using this new lexicon, we can recognize
any mention in our previous file named
chebi_27732_sentences.txt:

$ grep -w -i -F -f lexicon.txt
chebi_27732_sentences.txt

We added the -F option because our lexicon is a
list of fixed strings, i.e. does not include regular
expressions. The equivalent long form to the -F
option is --fixed-strings.

We now get more sentences, including some
that do not include a direct mention to caffeine
or malignant hyperthermia. For example, the
following sentence was selected because it
mentions molecule, which is an ancestor of
caffeine:

The remainder of the molecule is
hydrophilic and presumably
constitutes the cytoplasmic
domain of the protein.

Another example is the following sentence,
which was selected because it mentions disease,
which is an ancestor of malignant hyperthermia:

78 5 Semantic Processing

Our data suggest that divergent
activity profiles may cause
varied disease phenotypes by
specific mutations.

We can also use our script getentities.sh giving
this lexicon as argument. However, since we are
not using any regular expressions it would be
better to add the -F option to the grep command
in the script, so the lexicon is interpreted as list
of fixed strings to be matched. Only then we can
execute the script safely:

$./getentities.sh lexicon.txt <
chebi_27732_sentences.txt

Ancestors Matched

Besides these two previous examples, we can
check if there other ancestors being matched by
using the grep command with the -o option:

$ grep -o -w -F -f lexicon.txt
chebi_27732_sentences.txt
| sort -u

We can see that besides the terms caffeine
and malignant hyperthermia, only one ancestor
of each one of them was matched, molecule and
disease, respectively:

caffeine
disease
malignant hyperthermia
molecule

This can be explained because our text is
somehow limited and because we are using the
official labels and we may be missing acronyms,
and simple variations such as the plural of a term.
To cope with this issue, we may use a stemmer10,
or use all the ancestors besides subsumption.
However, if our lexicon is small is better to do
it manually and maybe add some regular expres-
sions to deal with some of the variations.

10https://en.wikipedia.org/wiki/Stemming

Generic Lexicon

Instead of using a customized and limited lex-
icon, we may be interested in recognizing any
of the diseases represented in the ontology. By
recognizing all the diseases in our caffeine related
text, we will be able to find all the diseases that
may be related to caffeine

All Labels

To extract all the labels from the disease ontology
we can use the same XPath query used before, but
now without restricting it to any URI:

$ xmllint --xpath "//*[local-
name()='Class']/*[local-
name()='hasExactSynonym'
or local-name()='
hasRelatedSynonym' or
local-name()='label']"
doid.owl

We can create a script named getalllabels.sh,
that receives as argument the OWL file where to
find all labels containing the following lines:

1 OWLFILE=$1
2 xmllint --xpath "//*[local-

name()='Class']/*[local-
name()='hasExactSynonym'
or local-name()='
hasRelatedSynonym' or
local-name()='label']"
$OWLFILE | \

3 tr '<>' '\n' | \
4 grep -v -e ':label' -e ':

hasExactSynonym' -e '
hasRelatedSynonym' -e '^$'
| \

5 sort -u

We should note that this script is similar to the
getlabels.sh script without the xargs, since it
does not receive a list of URIs as standard input.

Now we can execute the script to extract all
labels from the OWL file:

$./getalllabels.sh doid.owl

The output will contain the full list of diseases:

https://en.wikipedia.org/wiki/Stemming

Generic Lexicon 79

11-beta-hydroxysteroid
dehydrogenase deficiency type
2

11p partial monosomy syndrome
1,4-phenylenediamine allergic

contact dermatitis
...
Zoophilia
Zoophobia
zygomycosis

To create the generic lexicon, we can redirect
the output to the file diseases.txt:

$./getalllabels.sh doid.owl >
diseases.txt

We can check how many labels we got by
using the wc command:

$ wc -l diseases.txt

The lexicon contains more than 29 thousand
labels.

We can now recognize the lexicon entries
in the sentences of the file chebi_27732_ sen-
tences.txt by using the grep command:

$ grep -n -w -E -f diseases.txt
chebi_27732_sentences.txt

However, we will get the following error:

grep: Unmatched) or \)

This error happens because our lexicon contains
some special characters also used by regular
expressions, such as the parentheses.

One way to address this issue is to replace
the -E option by the -F option, that treats each
lexicon entry as a fixed string to be recognized:

$ grep -n -o -w -F -f diseases.
txt chebi_27732_sentences.
txt

The output will show the large list of sentences
mentioning diseases:

1:malignant hyperthermia
2:malignant hyperthermia
9:central core disease
10:disease
10:myopathy
...

1092:malignant hyperthermia
1092:central core disease
1103:malignant hyperthermia
1104:malignant hyperthermia
1106:central core disease
1106:myopathy

Problematic Entries

Despite using the -F option, the lexicon contains
some problematic entries. Some entries have ex-
pressions enclosed by parentheses or brackets,
that represent alternatives or a category:

Post measles encephalitis (
disorder)

Glaucomatous atrophy [cupping]
of optic disc

Other entries have separation characters, such
as commas or colons, to represent a specializa-
tion. For example:

Tapeworm infection: intestinal
taenia solum

Tapeworm infection: pork
Pemphigus, Benign Familial
ATR, nondeletion type

A problem is that not all have the same mean-
ing. A comma may also be part of the term. For
example:

46,XY DSD due to LHB deficiency

Other case includes using & to represent
an ampersand. For example:

Gonococcal synovitis &/or
tenosynovitis

However, most of the times the alternatives are
already included in the lexicon in different lines.
For example:

Gonococcal synovitis and
tenosynovitis

Gonococcal synovitis or
tenosynovitis

As we can see by these examples, it is not
trivial to devise rules that fully solve these issues.
Very likely there will be exceptions to any rule
we devise and that we are not aware of.

80 5 Semantic Processing

Special Characters Frequency

To check the impact of each of these issues, we
can count the number of times they appear in the
lexicon:

$ grep -c -F '(' diseases.txt
$ grep -c -F ',' diseases.txt
$ grep -c -F '[' diseases.txt
$ grep -c -F ':' diseases.txt
$ grep -c -F '&' diseases.

txt

We will be able to see that parentheses and
commas are the most frequent, with more than
one thousand entries.

Completeness

Now let us check if the ATR acronym represent-
ing the alpha thalassemia-X-linked intellectual
disability syndrome is in the lexicon:

$ grep -E '^ATR' diseases.txt

All the entries include more terms than only
the acronym:

ATR-16 syndrome
ATR, nondeletion type
ATR syndrome, deletion type
ATR syndrome linked to

chromosome 16
ATR-X syndrome

Thus, a single ATR mention will not be recog-
nized.

This is problematic if we need to match sen-
tences mentioning that acronym, such as:

$ echo 'The ATR syndrome is an
alpha thalassemia that has
material basis in

mutation in the ATRX gene
on Xq21' | grep -w 'ATR'

We will now try to mitigate these issues as
simply as we can. We will not try to solve them
completely, but at least address the most obvious
cases.

Removing Special Characters

The first fix we will do, is to remove all the paren-
theses and brackets by using the tr command,
since they will not be found in the text:

$ tr -d '[](){}' < diseases.txt

Of course, we may lose the shorter labels, such
as Post measles encephalitis, but at least now, the
disease Post measles encephalitis disorder will
be recognized:

$ tr -d '[](){}' < diseases.txt
| grep 'Post measles
encephalitis disorder'

If we really need these alternatives, we would
have to create multiple entries in the lexicon or
transform the labels in regular expressions.

Removing Extra Terms

The second fix is to remove all the text after a
separation character, by using the sed command:

$ tr -d '[](){}' < diseases.txt
| sed -E 's/[,:;] .*$//'

We should note that the regular expression en-
forces a space after the separation character to
avoid separation characters that are not really
separating two expressions, such as: 46,XY DSD
due to LHB deficiency

We can see that now we are able to recognize
both ATR and ATR syndrome:

$ tr -d '[](){}' < diseases.txt
| sed -E 's/[,:;] .*$//' |
grep -E '^ATR'

Removing Extra Spaces

The third fix is to remove any leading or trailing
spaces of a label:

$ tr -d '[](){}' < diseases.txt
| sed -E 's/[,:;] .*$//; s
/^ *//; s/ *$//'

We should note that we added two more re-
placement expressions to the sed command by
separating them with a semicolon.

Generic Lexicon 81

We can now update the script getalllabels.sh
to include the previous tr and sed commands:

1 OWLFILE=$1
2 xmllint --xpath "//*[local-

name()='Class']/*[local-
name()=

3 'hasExactSynonym' or local-
4 name()='hasRelatedSynonym'

or
5 local-name()='label']"
6 $OWLFILE | \
7 tr '<>' '\n' | \
8 grep -v -e ':label' -e ':

hasExactSynonym' -e '
hasRelatedSynonym' -e '^$'
| \

9 tr -d '[](){}' | \
10 sed -E 's/[,:;] .*$//; s/^

*//; s/ *$//' | sort -u

And we can now generate a fixed lexicon:

$./getalllabels.sh doid.owl >
diseases.txt

We can check again the number of entries:

$ wc -l diseases.txt

We now have a lexicon with about 28 thousand
labels. We have less entries because our fixes
made some entries equal to others already in the
lexicon, and thus the -u option filtered them.

Disease Recognition

We can now try to recognize lexicon en-
tries in the sentences of file chebi_27732_
sentences.txt:

$ grep -n -o -w -F -f diseases.
txt chebi_27732_sentences.
txt

To obtain the list of labels that were recog-
nized, we can use the grep command:

$ grep -o -w -F -f diseases.txt
chebi_27732_sentences.txt
| sort -u

We will get a list of 43 unique labels repre-
senting diseases that may be related to caffein:

Andersen-Tawil syndrome
arrhythmogenic right ventricular

cardiomyopathy
ARVD2
ataxia telangiectasia
ATR
atrial fibrillation
benign congenital myopathy
cancer
cardiac arrest
cardiomyopathy
catecholaminergic polymorphic

ventricular tachycardia
central core disease
chorea
congenital hip dislocation
congenital myopathy
deficiency
disease
dystonia
epilepsy
FHL1
hand
hepatitis C
HL
hypercholesterolaemia
hypokalemic periodic paralysis
Hypokalemic periodic paralysis
intellectual disability
long QT syndrome
LQT1
LQT2
LQT3
LQT5
LQT6
malignant hyperthermia
migraine
myopathy
myotonic dystrophy type 1
nemaline myopathy
nemaline rod myopathy
ophthalmoplegia
rod myopathy
scoliosis
syndrome

82 5 Semantic Processing

Performance

The grep is quite efficient but of course when
using large lexicons and texts we may start to
feel some performing issues. Its execution time
is proportional to the size of the lexicon, since
each term of the lexicon will correspond to an
independent pattern to match. This means that for
large lexicons we may face serious performance
issues.

Inverted Recognition

A solution for dealing with large lexicons is to
use the inverted recognition technique (Couto
et al. 2017; Couto and Lamurias 2018). The
inverted recognition uses the words of the input
text as patterns to be matched against the lexicon
file. When the number of words in the input text
is much smaller than the number of terms in the
lexicon, grep has much fewer patterns to match.
For example, the inverted recognition technique
applied to ChEBI has shown to be more than 100
times faster than using the standard technique.

Case Insensitive

Another performance issue arises when we use
the -i option to perform a case insensitive
matching. For instance, in most computers if we
execute the following command, we will have to
wait much longer than not using the -i option:

$ grep -n -o -w -F -i -f
diseases.txt
chebi_27732_sentences.txt

One solution is to convert both the lexicon
and text to lowercase (or uppercase), but this
may result in more incorrect matches, such as
incorrectly matching acronyms in lowercase.

ASCII Encoding

The low performance issue of case insensitive
matching is normally due to the usage of UTF-8
character encoding11, instead of ASCII character

11https://en.wikipedia.org/wiki/UTF-8

encoding12. UTF-8 allow us to use special char-
acters, such as the euro symbol, in a standard way
so it is interpreted by every computer around the
world in the same way. However, for normal text
without special characters ASCII works fine and
more efficiently. In Unix shells we can normally
specify the usage of ASCII encoding by adding
the expression LC_ALL=C before the command
(man locale for more information).

So, another solution is to execute the follow-
ing command:

$ LC_ALL=C grep -n -o -w -F -i -
f diseases.txt
chebi_27732_sentences.txt

We will be able to watch the significant increase
in performance.

To check how many labels are now being
recognized we can execute:

$ LC_ALL=C grep -o -w -F -i -f
diseases.txt
chebi_27732_sentences.txt
| sort -u | wc -l

We have now 60 labels being recognized.
To check which new labels were recognized,

we can compare the results with and without the
-i option:

$ LC_ALL=C grep -o -w -F -i -f
diseases.txt
chebi_27732_sentences.txt
| sort -u >
diseases_recognized_ignorecase
.txt

$ grep -o -w -F -f diseases.txt
chebi_27732_sentences.txt
| sort -u >
diseases_recognized.txt

$ grep -v -F -f
diseases_recognized.txt
diseases_recognized_
ignorecase.txt

We are now able to see that the new labels are:

12https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/ASCII

Entity Linking 83

Arrhythmogenic right ventricular
dysplasia

arthrogryposis
can
Catecholaminergic polymorphic

ventricular tachycardia
Central Core Disease
defect
Disease
dyskinesia
face
fever
Malignant hyperthermia
Malignant Hyperthermia
March
ORF
total

Correct Matches

Some important diseases could only be recog-
nized by performing a case insensitive match,
such as arthrogryposis. This disease was missing
because in the lexicon we had the uppercase
case version of the labels, but not the lowercase
version. We can check it by using the grep
command:

$ grep -i '^arthrogryposis$'
diseases.txt

The output does not include the lowercase
case version:

Arthrogryposis
ARTHROGRYPOSIS

We can also check in the text which versions
are used:

$ grep -w -i 'arthrogryposis'
chebi_27732_sentences.txt

We can see that only the lowercase version is
used:

... (multiple arthrogryposis,
congenital dislocation of the
hips ...

... fetal akinesia,
arthrogryposis multiplex ...

Another example is dyskinesia:

$ grep -i '^dyskinesia$'
diseases.txt

The lexicon has only the disease name with
the first character in uppercase:

Dyskinesia

Incorrect Matches

However, using a case insensitive match may also
create other problems, such as the acronym CAN
for the disease Crouzon syndrome-acanthosis ni-
gricans syndrome:

$ grep -i '^CAN$' diseases.txt

By using a case insensitive grep we will
recognize the common word CAN as a disease.
For example, we can check how many times CAN
is recognized:

$ LC_ALL=C grep -n -o -w -i -F -
f diseases.txt
chebi_27732_sentences.txt
| grep -i ':CAN' | wc -l

It is recognized 18 times.
And to see which type of matches they are, we

can execute the following command:

$ LC_ALL=C grep -o -w -i -F -f
diseases.txt
chebi_27732_sentences.txt
| grep -i -E '^CAN$' |
sort -u

We can verify that the matches are incorrect
mentions of the disease acronym:

can

This means we created at least 18 mismatches by
performing a case insensitive match.

Entity Linking

When we are using a generic lexicon, we may
be interested in identifying what the recognized
labels represent. For example, we may not be
aware of what the matched label AD2 represents.

84 5 Semantic Processing

To solve this issue, we can use our script
geturi.sh to perform linking (aka entity disam-
biguation, entity mapping, normalization), i.e.
find the classes in the disease ontology that may
be represented by the recognized label. For exam-
ple, to find what AD2 represents, we can execute
the following command:

$ echo "AD2" | ./geturi.sh doid.
owl | ./getlabels.sh doid.
owl

In this case, the result clearly shows that AD2
represents the Alzheimer disease:

AD2
Alzheimer disease 2, late onset
Alzheimer disease associated

with APOE4
Alzheimer disease-2
Alzheimer's disease 2

Modified Labels

However, we may not be so lucky with the labels
that were modified by our previous fixes in the
lexicon. For example, we can test the case of
ATR:

$ echo "ATR" | ./geturi.sh doid.
owl

As expected, we received the warning that no
URI was found:

XPath set is empty

An approach to address this issue may involve
keeping a track of the original label in a lexicon
using another file.

Ambiguity

We may also have to deal with ambiguity prob-
lems where a label may represent multiple terms.
For example, if we check how many classes the
acronym ATS may represent:

$ echo "ATS" | ./geturi.sh doid.
owl

We can see that it may represent two classes:

http://purl.obolibrary.org/obo/
DOID_0050434

http://purl.obolibrary.org/obo/
DOID_0110034

These two classes represent two distinct diseases,
namely Andersen-Tawil syndrome and X-linked
Alport syndrome, respectively.

We can also obtain their alternative labels by
providing the two URI as standard input to the
getlabels.sh script:

$ echo "http://purl.obolibrary.
org/obo/DOID_0050434" | ./
getlabels.sh doid.owl

$ echo "http://purl.obolibrary.
org/obo/DOID_0110034" | ./
getlabels.sh doid.owl

We will get the following two lists, both con-
taining ATS as expected:

ANDERSEN CARDIODYSRHYTHMIC
PERIODIC PARALYSIS

ATS
Andersen syndrome
LQT7
Long QT syndrome 7
Potassium-Sensitive

Cardiodysrhythmic Type
Andersen-Tawil syndrome

ATS
nephropathy and deafness, X-

linked
X-linked Alport syndrome

If we find a ATS mention in the text, the
challenge is to identify which of the syndromes
the mention refers to. For addressing this chal-
lenge, we may have to use advanced entity link-
ing techniques that analyze the context of the
text.

Surrounding Entities

An intuitive solution is to select the class closer in
terms of meaning to the others classes mentioned
in the surrounding text. This assumes that entities
present in a piece of text are somehow seman-
tically related to each other, which is normally

Entity Linking 85

the case. At least the author assumed some type
of relation between them, otherwise the entities
would not be in the same sentence.

Let us consider the following sentence about
genes and related syndromes from our text file
chebi_27732_sentences.txt (on line 436):

... channel genes, KCNQ1 (LQT1),
KCNH2 (LQT2), SCN5A (LQT3),

KCNE1 (LQT5), and KCNE2 (LQT6
), along with KCNJ2 (Andersen
-Tawil syndrome) and ...

Now assume that the label Andersen-Tawil syn-
drome been replaced by the acronym ATS:

... channel genes, KCNQ1 (LQT1),
KCNH2 (LQT2), SCN5A (LQT3),

KCNE1 (LQT5), and KCNE2 (LQT6
), along with KCNJ2 (ATS) and
...

Then, to identify the diseases in the previous
sentence, we can execute the following com-
mand:

$ echo 'channel genes, KCNQ1 (
LQT1), KCNH2 (LQT2), SCN5A
(LQT3), KCNE1 (LQT5), and
KCNE2 (LQT6), along with

KCNJ2 (ATS) and' | grep -o
-w -F -f diseases.txt

We have a list of labels that can help us decide
which is the right class representing ATS:

LQT1
LQT2
LQT3
LQT5
LQT6
ATS

To find their URIs we can use the geturi.sh
script:

$ echo 'channel genes, KCNQ1 (
LQT1), KCNH2 (LQT2), SCN5A
(LQT3), KCNE1 (LQT5), and
KCNE2 (LQT6), along with

KCNJ2 (ATS)

and' | grep -o -w -F -f
diseases.txt | ./geturi.sh
doid.owl

The only ambiguity is for ATS that returns
two URIs, one representing the Andersen-
Tawil syndrome (DOID:0050434) and the other
representing the X-linked Alport syndrome
(DOID:0110034):

http://purl.obolibrary.org/obo/
DOID_0110644

http://purl.obolibrary.org/obo/
DOID_0110645

http://purl.obolibrary.org/obo/
DOID_0110646

http://purl.obolibrary.org/obo/
DOID_0110647

http://purl.obolibrary.org/obo/
DOID_0110648

http://purl.obolibrary.org/obo/
DOID_0050434

http://purl.obolibrary.org/obo/
DOID_0110034

To decide which of the two URIs we should
select, we can measure how close in meaning
they are to the other diseases also found in the
text.

Semantic Similarity

Semantic similarity measures have been
successfully applied to solve these ambiguity
problems (Grego and Couto 2013). Semantic
similarity quantifies how close two classes
are in terms of semantics encoded in a given
ontology (Couto and Lamurias 2019). Using the
web tool Semantic Similarity Measures using
Disjunctive Shared Information (DiShIn)13,
we can calculate the semantic similarity
between our recognized classes. For example,
we can calculate the similarity between
LQT1 (DOID:0110644) and Andersen-Tawil
syndrome (DOID:0050434) (see Fig. 5.6), and
the similarity between LQT1 and X-linked Alport
syndrome (DOID:0110034) (see Fig. 5.7).

Measures

DiShIn provides the similarity values for three
measures, namely Resnik, Lin and Jiang-Conrath

13http://labs.rd.ciencias.ulisboa.pt/dishin/

http://labs.rd.ciencias.ulisboa.pt/dishin/

86 5 Semantic Processing

Fig. 5.6 Semantic similarity between LQT1 (DOID:0110644) and Andersen-Tawil syndrome (DOID:0050434) using
the online tool DiShIn

(Resnik 1995; Lin et al. 1998; Jiang and Conrath
1997). The last two measures provide values
between 0 and 1, and Jiang-Conrath is a distance
measure that is converted to similarity.

We can see that for all measures LQT1 is much
more similar to Andersen-Tawil syndrome than
to X-linked Alport syndrome. Moreover, Jiang-
Conrath’s measure gives the only similarity value
larger than zero for X-linked Alport syndrome,
since it is a converted distance measure. We ob-
tain similar results if we replace LQT1 by LQT2,
LQT3, LQT5, or LQT6. This means that by using
semantic similarity we can identify Andersen-
Tawil syndrome as the correct linked entity for
the mention ATS in this text.

DiShIn Installation

To automatize this process we can also execute
DiShIn as a command line14, however we may
need to install python (or python3) and SQLite15.

First, we need to install it locally using the
git command line:

$ git clone git://github.com/
lasigeBioTM/DiShIn.git

The git command automatically retrieves a tool
from the GitHub16 software repository.

14https://github.com/lasigeBioTM/DiShIn
15apt install python sqlite3 or apt
install python3 sqlite3
16https://en.wikipedia.org/wiki/GitHub

https://github.com/lasigeBioTM/DiShIn
https://en.wikipedia.org/wiki/GitHub

Entity Linking 87

Fig. 5.7 Semantic similarity between LQT1 (DOID:0110644) and X-linked Alport syndrome (DOID:0110034) using
the online tool DiShIn

If everything works fine, we should be able to
see something like this in our display:

Cloning into 'DiShIn'...
...
Resolving deltas: 100% (255/255)

, done.

If the git command is not available, we can
alternatively download the compressed file (zip),
extract its contents and then move to the DiShIn
folder:

$ curl -O -L https://github.com/
lasigeBioTM/DiShIn/archive
/master.zip

$ unzip master.zip
$ mv DiShIn-master DiShIn

The option -L enables the curl command to
follow a URL redirection17. The equivalent long
form to the -L option is --location.

We now have to copy the Human Disease
Ontology in to the folder using the cp command,
and then enter into the DiShIn folder:

$ cp doid.owl DiShIn/
$ cd DiShIn

Database File

To execute DiShIn, we need first to convert the
ontology file named doid.owl into a database
(SQLite) file named doid.db:

17https://en.wikipedia.org/wiki/URL_redirection

https://en.wikipedia.org/wiki/URL_redirection

88 5 Semantic Processing

$ python dishin.py doid.owl doid
.db http://purl.obolibrary
.org/obo/ http://www.w3.
org/2000/01/rdf-schema#
subClassOf ''

If the module rdflib is not installed, the following
error will be displayed:

ImportError: No module named
rdflib

We can try to install it18, but this will still take a
few minutes to run.

Alternatively, we can download the latest
database version:

$ curl -O http://labs.rd.
ciencias.ulisboa.pt/book/
doid.db

DiShIn Execution

After being installed, we can execute DiShIn by
providing the database and two classes identi-
fiers:

$ python dishin.py doid.db
DOID_0110644 DOID_0050434

$ python dishin.py doid.db
DOID_0110644 DOID_0110034

The output of the first command will be
the semantic similarity values between LQT1
(DOID:0110644) and Andersen-Tawil syndrome
(DOID:0050434):

Resnik DiShIn intrinsic
3.1715006566

Resnik MICA intrinsic
6.34300131319

Lin DiShIn intrinsic
0.376553538118

Lin MICA intrinsic
0.753107076235

JC DiShIn intrinsic
0.0952210062728

JC MICA intrinsic 0.240449173481

18https://github.com/RDFLib/rdflib

The output of the second command will be
the semantic similarity values between LQT1
(DOID:0110644) and X-linked Alport syndrome
(DOID:0110034):

Resnik DiShIn intrinsic 0.0
Resnik MICA intrinsic 0.0
Lin DiShIn intrinsic 0.0
Lin MICA intrinsic -0.0
JC DiShIn intrinsic

0.0593651994576
JC MICA intrinsic

0.0593651994576

In the end, we should not forget to return to
our parent folder:

$ cd ..

Learning python19 and SQL20 is out of scope
of this book, but if we do not intend to make
any modifications the above steps should be quite
simple to execute.

Large Lexicons

The online tool MER is based on a shell script21,
so it can be easily executed as a command line to
efficiently recognize and link entities using large
lexicons.

MER Installation

First, we need to install it locally using the git
command line:

$ git clone git://github.com/
lasigeBioTM/MER.git

If everything works fine, we should be able to see
something like this in our display:

Cloning into 'MER'...
...
Resolving deltas: 100%

(604/604), done.

19https://www.w3schools.com/python/
20https://www.w3schools.com/sql/
21https://github.com/lasigeBioTM/MER

https://github.com/RDFLib/rdflib
https://www.w3schools.com/python/
https://www.w3schools.com/sql/
https://github.com/lasigeBioTM/MER

Large Lexicons 89

If the git command is not available, we can
alternatively download the compressed file (zip),
and extract its contents:

$ curl -O -L https://github.com/
lasigeBioTM/MER/archive/
master.zip

$ unzip master.zip
$ mv MER-master MER

We now have to copy the Human Disease
Ontology in to the data folder of MER, and then
enter into the MER folder:

$ cp doid.owl MER/data/
$ cd MER

Lexicon Files

To execute MER, we need first to create the
lexicon files:

$ (cd data; ../
produce_data_files.sh doid
.owl)

This may take a few minutes to run. However, we
only need to execute it once, each time we want
to use a new version of the ontology. If we wait,
the output will include the last patterns of each of
the lexicon files.

Alternatively, we can download the lexicon
files, and extract them into the data folder:

$ curl -O http://labs.rd.
ciencias.ulisboa.pt/book/
doid_lexicons.zip

$ unzip doid_lexicons.zip -d
data/

We can check the contents of the created
lexicons by using the tail command:

$ tail data/doid*

These patterns are created according to the num-
ber of words of each term.

The output should be something like
this:

==> data/doid_links.tsv <==
zika virus disease http://purl.

obolibrary.org/obo/
DOID_0060478

zikv congenital infection http
://purl.obolibrary.org/obo/
DOID_0080180

zinacef allergy http://purl.
obolibrary.org/obo/
DOID_0040025

zinsser-cole-engman syndrome
http://purl.obolibrary.org/
obo/DOID_0070025

ziziphus mauritiana fruit
allergy http://purl.
obolibrary.org/obo/
DOID_0060507

zlotogora-zilberman-tenenbaum
syndrome http://purl.
obolibrary.org/obo/
DOID_0060773

zollinger-ellison syndrome http
://purl.obolibrary.org/obo/
DOID_0050782

zoophilia http://purl.obolibrary
.org/obo/DOID_9336

zoophobia http://purl.obolibrary
.org/obo/DOID_600

zygomycosis http://purl.
obolibrary.org/obo/DOID_8485

==> data/doid.txt <==
zika virus disease
zikv congenital infection
zinacef allergy
zinsser-cole-engman syndrome
ziziphus mauritiana fruit

allergy
zlotogora-zilberman-tenenbaum

syndrome

zollinger-ellison syndrome
zoophilia
zoophobia
zygomycosis

==> data/doid_word1.txt <==
xph
xpid
xpv
xscid
yaba

90 5 Semantic Processing

yaws
zaspopathy
zoophilia
zoophobia
zygomycosis

==> data/doid_word2.txt <==
yunis.varon syndrome
zantac allergy
zebrafish allergy
zellweger syndrome
zemuron allergy
zika fever
zinacef allergy
zinsser.cole.engman syndrome
zlotogora.zilberman.tenenbaum

syndrome
zollinger.ellison syndrome

==> data/doid_words2.txt <==
yersinia infectious
yersinia pestis
yersinia pseudotuberculosis
y.linked monogenic
y.linked sertoli
y.linked spermatogenic
yolk sac
zika virus
zikv congenital
ziziphus mauritiana

==> data/doid_words.txt <==
y.linked spermatogenic failure 1
y.linked spermatogenic failure 2

yolk sac neoplasm
yolk sac tumor
yolk sac tumor of mediastinum
yolk sac tumor of the cns
zika virus congenital syndrome
zika virus disease
zikv congenital infection
ziziphus mauritiana fruit

allergy

MER Execution

Now we are ready to execute MER, by providing
each sentence from the file chebi_27732_senten-
ces.txt as argument to its get_entities.sh script.

$ cat ../chebi_27732_sentences.
txt | tr -d "'" | xargs -I
{} ./get_entities.sh '{}'
doid

We removed single quotes from the text, since
they are special characters to the command
line xargs. We should note that this is the
get_entities.sh script inside the MER folder, not
the one we created before.

Now we will be able to obtain a large number
of matches:

89 111 malignant hyperthermia
http://purl.obolibrary.org/
obo/DOID_8545

74 96 malignant hyperthermia
http://purl.obolibrary.org/
obo/DOID_8545

157 164 disease http://purl.
obolibrary.org/obo/DOID_4

144 164 central core disease
http://purl.obolibrary.org/
obo/DOID_3529

13 20 disease http://purl.
obolibrary.org/obo/DOID_4

47 55 myopathy http://purl.
obolibrary.org/obo/DOID_423

...

The first two numbers represent the start and end
position of the match in the sentence. They are
followed by the name of the disease and its URI
in the ontology.

We can also redirect the output to a TSV file
named diseases_recognized.tsv:

$ cat ../chebi_27732_sentences.
txt | tr -d "'" | xargs -I
{} ./get_entities.sh '{}'
doid > ../

diseases_recognized.tsv

Further Reading 91

Fig. 5.8 The diseases_recognized.tsv file opened in a spreadsheet application

We can now open the file in our spreadsheet
application, such as LibreOffice Calc or Mi-
crosoft Excel (see Fig. 5.8).

Again, we should not forget to return to our
parent folder in the end:

$ cd ..

Further Reading

To know more about biomedical ontologies,
the book entitled Introduction to bio-ontologies
is an excellent option, covering most of
the ontologies and computational techniques
exploring them (Robinson and Bauer 2011).

Another approach is to read and watch the
materials of the training course given by Barry
Smith22.

22http://ontology.buffalo.edu/smith/
IntroOntology_Course.html

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://ontology.buffalo.edu/smith/IntroOntology_Course.html
http://ontology.buffalo.edu/smith/IntroOntology_Course.html
http://creativecommons.org/licenses/by/4.0/

Bibliography

Allen G, Owens M (2011) The definitive guide to SQLite.
Books for professionals by professionals. Apress,
Berkeley

Angermueller C, Pärnamaa T, Parts L, Stegle O (2016)
Deep learning for computational biology. Mol Syst
Biol 12(7):878

Aramaki E, Maskawa S, Morita M (2011) Twitter catches
the flu: detecting influenza epidemics using twitter. In:
Proceedings of the conference on empirical methods in
natural language processing. Association for Computa-
tional Linguistics, pp 1568–1576

Aras H, Hackl-Sommer R, Schwantner M, Sofean M
(2014) Applications and challenges of text mining with
patents. In: IPaMin@ KONVENS

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H,
Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig
JT et al (2000) Gene ontology: tool for the unification
of biology. Nat Genet 25(1):25

Baker J, Milligan I (2014) Counting and mining research
data with unix. Technical report, The Editorial Board
of the Programming Historian

Barros M, Couto FM (2016) Knowledge representation
and management: a linked data perspective. Yearb Med
Inform 25(1):178–183

Blumenthal D, Tavenner M (2010) The meaningful
useİregulation for electronic health records. N Engl J
Med 363(6):501–504

Borst W, Borst W (1997) Construction of engineering
ontologies for knowledge sharing and reuse. Ph.D.
thesis, University of Twente

Campos L, Pedro V, Couto F (2017) Impact of transla-
tion on named-entity recognition in radiology texts.
Database 2017:bax064

Canese K (2006) Pubmed celebrates its 10th anniversary.
NLM Tech Bull 352:e5

Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin
AA, Do BT, Way GP, Ferrero E, Agapow P-M, Zietz M,
Hoffman MM et al (2018) Opportunities and obstacles
for deep learning in biology and medicine. J R Soc
Interface 15(141):20170387

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke
A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B

et al (2009) Biopython: freely available python tools for
computational molecular biology and bioinformatics.
Bioinformatics 25(11):1422–1423

Cook CE, Bergman MT, Cochrane G, Apweiler R, Bir-
ney E (2017) The european bioinformatics institute in
2017: data coordination and integration. Nucleic Acids
Res 46(D1):D21–D29

Coordinators NR (2018) Database resources of the na-
tional center for biotechnology information. Nucleic
Acids Res 46(Database issue):D8

Couto F, Lamurias A (2018) MER: a shell script and
annotation server for minimal named entity recognition
and linking. J Cheminfo 10(1):58

Couto F, Lamurias A (2019) Semantic similarity defi-
nition. In: Ranganathan S, Nakai K, Schönbach C,
Gribskov M (eds) Encyclopedia of bioinformatics and
computational biology, vol 1. Oxford: Elsevier

Couto FM, Campos LF, Lamurias A (2017) Mer: a min-
imal named-entity recognition tagger and annotation
server. Proc BioCreative 5:130–7

Couto FM, Silva MJ, Lee V, Dimmer E, Camon E,
Apweiler R, Kirsch H, Rebholz-Schuhmann D (2006)
GOAnnotator: linking protein go annotations to evi-
dence text. J Biomed Discov Collab 1(1):19

Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden
M, McNaught A, Alcántara R, Darsow M, Guedj M,
Ashburner M (2007) ChEBI: a database and ontology
for chemical entities of biological interest. Nucleic
Acids Res 36(suppl_1):D344–D350

Doms A, Schroeder M (2005) GoPubMed: exploring
pubmed with the gene ontology. Nucleic Acids Res
33(suppl_2):W783–W786

Ferreira JD, Inácio B, Salek RM, Couto FM (2017)
Assessing public metabolomics metadata, towards im-
proving quality. J Integr Bioinform 14(4):67–72

Forta B (2018) Learning regular expressions. Addison-
Wesley Professional, Boston

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling
M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J
et al (2004) Bioconductor: open software development
for computational biology and bioinformatics. Genome
Biol 5(10):R80

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5

93

https://doi.org/10.1007/978-3-030-13845-5

94 Bibliography

Grego T, Couto FM (2013) Enhancement of chemical
entity identification in text using semantic similarity
validation. PloS one 8(5):e62984

Gruber TR (1993) A translation approach to portable
ontology specifications. Knowl Acquis 5(2):199–220

Haines N (2017) Beginning Ubuntu for Windows and Mac
users: start your journey into free and open source
software. Apress, Berkeley

Hersh W (2008) Information retrieval: a health and
biomedical perspective. Springer Science & Business
Media, New York

Hey T, Tansley S, Tolle KM et al (2009) The fourth
paradigm: data-intensive scientific discovery, vol 1.
Microsoft research Redmond, Redmond

Holzinger A, Jurisica I (2014) Knowledge discovery and
data mining in biomedical informatics: the future is
in integrative, interactive machine learning solutions.
In: Interactive knowledge discovery and data mining in
biomedical informatics. Springer, Heidelberg, pp 1–18

Holzinger A, Schantl J, Schroettner M, Seifert C, Ver-
spoor K (2014) Biomedical text mining: state-of-the-
art, open problems and future challenges. In: Holzinger
A, Jurisica I (eds) Interactive knowledge discovery
and data mining in biomedical informatics. Springer,
Heidelberg, pp 271–300

Hunter L, Cohen KB (2006) Biomedical language pro-
cessing: what’s beyond pubmed? Mol Cell 21(5):589–
594

Jensen PB, Jensen LJ, Brunak S (2012) Mining electronic
health records: towards better research applications and
clinical care. Nat Rev Genet 13(6):395

Jiang JJ, Conrath DW (1997) Semantic similarity based
on corpus statistics and lexical taxonomy. In: Proceed-
ings of the 10th research on computational linguistics
international conference, pp 19–33

Jurafsky D, Martin JH (2014) Speech and language pro-
cessing, vol 3. Pearson, London

Kleene SC (1951) Representation of events in nerve nets
and finite automata. Technical report, Rand Project Air
Force, Santa Monica

Krallinger M, Rabal O, Lourenço A, Oyarzabal J, Valencia
A (2017) Information retrieval and text mining tech-
nologies for chemistry. Chem Rev 117(12):7673–7761

Lamurias A, Couto F (2019) Text mining for bioinfor-
matics using biomedical literature. In: Ranganathan S,
Nakai K, Schönbach C, Gribskov M (eds) Encyclope-
dia of bioinformatics and computational biology, vol 1.
Elsevier, Oxford

Lamurias A, Ferreira JD, Clarke LA, Couto FM (2017)
Generating a tolerogenic cell therapy knowledge graph
from literature. Front Immunol 8:1656

Leonelli S (2016) Data-centric biology: a philosophical
study. University of Chicago Press, Chicago

Lesk A (2014) Introduction to bioinformatics. Oxford
University Press, Oxford

Li W, Cowley A, Uludag M, Gur T, McWilliam H,
Squizzato S, Park YM, Buso N, Lopez R (2015) The
embl-ebi bioinformatics web and programmatic tools
framework. Nucleic Acids Res 43(W1):W580–W584

Lin D et al (1998) An information-theoretic definition of
similarity. In: Icml, vol 98, pp 296–304. Citeseer

Lu Z (2011) PubMed and beyond: a survey of web
tools for searching biomedical literature. Database
2011:baq036

McGuinness DL, Van Harmelen F et al (2004) OWL web
ontology language overview. W3C Recommendation
10(10):2004

Nosek BA, Alter G, Banks GC, Borsboom D, Bowman
SD, Breckler SJ, Buck S, Chambers CD, Chin G,
Christensen G et al (2015) Promoting an open research
culture. Science 348(6242):1422–1425

Ong E, Xiang Z, Zhao B, Liu Y, Lin Y, Zheng J, Mungall
C, Courtot M, Ruttenberg A, He Y (2016) Ontobee: a
linked ontology data server to support ontology term
dereferencing, linkage, query and integration. Nucleic
Acids Res 45(D1):D347–D352

Rawat S, Meena S (2014) Publish or perish: where are we
heading? J Res Med Sci 19(2):87

Rebholz-Schuhmann D, Kirsch H, Couto F (2005) Facts
from text—is text mining ready to deliver? PLoS Biol
3(2):e65

Resnik P (1995) Using information content to evaluate
semantic similarity in a taxonomy. In: Proceedings
of the 14th international joint conference on artificial
intelligence, vol 1, pp 448–453. Morgan Kaufmann
Publishers Inc.

Richardson L, Ruby S (2008) RESTful web services.
O’Reilly Media, Inc., Sebastopol

Ritchie DM (1971) Unix programmer’s manual. Technical
report, Technical report Bell

Robinson PN, Bauer S (2011) Introduction to bio-
ontologies. Chapman and Hall/CRC, Boca Raton

Schriml LM, Mitraka E, Munro J, Tauber B, Schor M,
Nickle L, Felix V, Jeng L, Bearer C, Lichenstein R et al
(2018) Human disease ontology 2018 update: classifi-
cation, content and workflow expansion. Nucleic Acids
Res 47:D955–D962

Schuemie MJ, Weeber M, Schijvenaars BJ, van Mulli-
gen EM, van der Eijk CC, Jelier R, Mons B, Kors
JA (2004) Distribution of information in biomedi-
cal abstracts and full-text publications. Bioinformatics
20(16):2597–2604

Shah, P. K., Perez-Iratxeta, C., Bork, P., & Andrade, M. A.
(2003). Information extraction from full text scientific
articles: where are the keywords? BMC Bioinformatics
4(1):20

Shotts WE Jr (2012) The Linux command line: a complete
introduction. No Starch Press, San Francisco

Singhal A (2012) Introducing the knowledge graph:
things, not strings. Official Google Blog 5. https://
googleblog.blogspot.com/2012/05/introducing-
knowledge-graph-things-not.html

Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters
W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ
et al (2007) The obo foundry: coordinated evolution of
ontologies to support biomedical data integration. Nat
Biotechnol 25(11):1251

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

Bibliography 95

Spasic I, Ananiadou S, McNaught J, Kumar A (2005) Text
mining and ontologies in biomedicine: making sense of
raw text. Brief Bioinform 6(3):239–251

Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA,
Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H
et al (2002) The bioperl toolkit: Perl modules for the
life sciences. Genome Res 12(10):1611–1618

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C,
Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE
(2015) Big data: astronomical or genomical? PLoS
Biol 13(7):e1002195

Studer R, Benjamins VR, Fensel D et al (1998) Knowl-
edge engineering: principles and methods. Data Knowl
Eng 25(1):161–198

Styler IV WF, Bethard S, Finan S, Palmer M, Pradhan S,
de Groen PC, Erickson B, Miller T, Lin C, Savova G

et al (2014) Temporal annotation in the clinical domain.
Trans Assoc Comput Ling 2:143

Tomczak A, Mortensen JM, Winnenburg R, Liu C, Alessi
DT, Swamy V, Vallania F, Lofgren S, Haynes W, Shah
NH et al (2018) Interpretation of biological experi-
ments changes with evolution of the gene ontology and
its annotations. Sci Rep 8(1):5115

Wei C-H, Kao H-Y, Lu Z (2013) PubTator: a web-based
text mining tool for assisting biocuration. Nucleic
Acids Res 41(W1):W518–W522

Wu D, Fung P (1994) Improving chinese tokenization with
linguistic filters on statistical lexical acquisition. In:
Proceedings of the 4th conference on applied natural
language processing

Yeh A, Hirschman L, Morgan A (2003) Evaluation of text
data mining for database curation: lessons learned from
the KDD challenge cup. Bioinformatics 19(1):i331–
i339

Index

A
Ancestors, 8, 74–78

B
Bibliographic databases, 2, 10
Bioinformatics, 1, 7, 10, 15
Biomedical data repositories, 1, 10
Biomedical literature, 10, 60

C
Chemical entities of biological interest (ChEBI), 13–15,

17, 19, 20, 22, 29–32, 37, 38, 41, 42, 47, 57, 61,
66, 67, 74, 76, 82

Client uniform resource locator (cURL), 7, 30–36, 41,
42, 61, 87–89

Command line tools, 6–8, 11, 15, 24–28, 30–32, 35
Comma-separated values (CSV), 6, 7, 15, 20, 29–35
Controlled vocabularies, 12–14

D
Data

extraction, 32
filtering, 33
selection, 32, 34

Directed acyclic graphs (DAG), 12, 13, 72
Disease Ontology (DO), 13, 22, 61, 63, 66, 74, 78, 84,

87, 89

E
Entity, 2, 8, 17, 57–59, 62, 74, 76, 83–87

linking, 8, 83–84
European bioinformatics institute (EBI), 1, 7, 10, 17
Evaluation metrics, 47
Extensible markup language (XML), 6, 7, 14, 15, 20, 21,

29, 34, 36, 37, 39–42, 62

L
Lexicons, 8, 22, 59, 76–84, 88, 89

N
Named-entity recognition (NER), 8
Natural language processing (NLP), 55

O
Ontologies, 2, 7, 8, 10, 12–15, 17, 22, 23, 61–63, 65, 66,

72, 76, 78, 84, 85, 87, 89, 90
Open biomedical ontologies (OBO), 12–14
OWL, see Web ontology language (OWL)

P
Pattern matching, 8, 34, 45, 48, 49, 56, 82
Programmatic access, 11, 30

R
Recursion, 74–75
Regular expressions, 8, 32, 48–51, 53, 55, 57, 78, 80
Relation extraction, 8, 59

S
Semantics, 2, 4, 7–13, 61–91
Semantic resources, 10, 61
Semantic similarity, 12, 85–88
Shell scripting, 5–8, 17, 24, 43, 45,88
Spreadsheet applications, 6, 7, 25, 32, 91
String matching, 50, 53, 67, 78

T
Tab-separated values (TSV), 6, 7, 20, 58, 90
Terminal application, 24–26

© The Author(s) 2019
F. M. Couto, Data and Text Processing for Health and Life Sciences,
Advances in Experimental Medicine and Biology 1137,
https://doi.org/10.1007/978-3-030-13845-5

97

https://doi.org/10.1007/978-3-030-13845-5

98 Index

Text files, 6, 7, 26, 32, 48, 85
Text mining, 4, 10, 22, 59
Tokenization, 8, 55

U
Uniform resource identifier (URI), 15, 65–69, 71–75, 78,

84, 85, 90
UniProt citations service, 10, 11, 22, 41
Unix shell, 5, 24–26, 82

W
Web ontology language (OWL), 12, 14–15, 61–62,

65–68, 72, 78
Web retrieval, 30
Word matching, 47, 48, 50

X
XML, see Extensible markup language (XML)
XML path language (XPath), 39–41, 62, 64–68, 70–75,

78, 81, 84

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	Biomedical Data Repositories
	Scientific Text
	Amount of Text
	Ambiguity and Contextualization
	Biomedical Ontologies
	Programming Skills
	Why This Book?
	Third-Party Solutions
	Simple Pipelines

	How This Book Helps Health and Life Specialists?
	Shell Scripting
	Text Files
	Relational Databases

	What Is in the Book?
	Command Line Tools
	Pipelines
	Regular Expressions
	Semantics

	2 Resources
	Biomedical Text
	What?
	Where?
	How?

	Semantics
	What?
	Languages
	Formality
	Gold Related Documents

	Where?
	OBO Ontologies
	Popular Controlled Vocabularies

	How?
	OWL
	URI

	Further Reading

	3 Data Retrieval
	Caffeine Example
	Unix Shell
	Current Directory
	Windows Directories
	Change Directory
	Useful Key Combinations
	Shell Version
	Data File
	File Contents
	Reverse File Contents
	My First Script
	Line Breaks
	Redirection Operator
	Installing Tools
	Permissions
	Debug
	Save Output

	Web Identifiers
	Single and Double Quotes
	Comments

	Data Retrieval
	Standard Error Output

	Data Extraction
	Single and Multiple Patterns
	Data Elements Selection

	Task Repetition
	Assembly Line
	File Header
	Variable

	XML Processing
	Human Proteins
	PubMed Identifiers
	PubMed Identifiers Extraction
	Duplicate Removal
	Complex Elements
	XPath
	Namespace Problems
	Only Local Names
	Queries
	Extracting XPath Results

	Text Retrieval
	Publication URL
	Title and Abstract
	Disease Recognition

	Further Reading

	4 Text Processing
	Pattern Matching
	Case Insensitive Matching
	Number of Matches
	Invert Match
	File Differences
	Evaluation Metrics
	Word Matching

	Regular Expressions
	Extended Syntax
	Alternation
	Basic Syntax
	Scope
	Multiple Alternatives

	Multiple Characters
	Spaces
	Groups
	Ranges
	Negation

	Quantifiers
	Optional
	Multiple and Optional
	Multiple and Compulsory
	All Options

	Position
	Beginning
	Ending
	Near the End
	Word in Between
	Full Line
	Match Position

	Tokenization
	Character Delimiters
	Wrong Tokens
	String Replacement
	Multi-character Delimiters
	Keep Delimiters
	Sentences File

	Entity Recognition
	Select the Sentence

	Pattern File
	Relation Extraction
	Multiple Filters
	Relation Type
	Remove Relation Types

	Further Reading

	5 Semantic Processing
	Classes
	OWL Files
	Class Label
	Class Definition
	Related Classes

	URIs and Labels
	URI of a Label
	Label of a URI

	Synonyms
	URI of Synonyms

	Parent Classes
	Labels of Parents
	Related Classes
	Labels of Related Classes

	Ancestors
	Grandparents
	Root Class
	Recursion
	Iteration

	My Lexicon
	Ancestors Labels
	Merging Labels
	Ancestors Matched

	Generic Lexicon
	All Labels
	Problematic Entries
	Special Characters Frequency
	Completeness
	Removing Special Characters
	Removing Extra Terms
	Removing Extra Spaces
	Disease Recognition

	Performance
	Inverted Recognition
	Case Insensitive
	ASCII Encoding
	Correct Matches
	Incorrect Matches

	Entity Linking
	Modified Labels
	Ambiguity
	Surrounding Entities
	Semantic Similarity
	Measures
	DiShIn Installation
	Database File
	DiShIn Execution

	Large Lexicons
	MER Installation
	Lexicon Files
	MER Execution

	Further Reading

	Bibliography
	Index

