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Preface

There has been a time gap in what I have published in monograph form,
during which some very important and profound shifts have developed in
the way we can represent and analyse the sorts of data that human organ-
isms generate as they progress through their lives. In that gap I have been
fortunate enough to make contact with and exchange ideas with some peo-
ple who have chosen to explore nonlinear dynamics, and to see if the ideas
that are either pure mathematics or applications in various disciplines
other than psychology can be usefully explored as filters of behavioural
time series.

Three strands in my previous published work have come together
here; they are time series, psychophysics, and nonlinear nearly chaotic dy-
namics. Also, the width in scale of the data examples examined has broad-
ened to include some psychophysiological and social processes. There has
evolved a proliferation of indices, hopefully to identify what is happening
in behavioural data, that can be regarded as partial filters of information
with very varying efficiency.

The title of this effort was selected to emphasise that what is measured
is often information or entropy, and that the focus is on problems and data
that are ill-behaved as compared with what might be found in, say, physics
or engineering or neurophysiology. The object is to model in a selective
way, to bring out some features of an underlying process that make some
sense, and to avoid misidentifying signal as noise or noise as signal.

Recent developments in psychophysiology (Friston, 2005) have em-
ployed networks of mixed forward, reverse and lateral processes, some
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of which are linear and some nonlinear. That form of construction brings
us closer to neurophysiological cortical structures, and takes theory fur-
ther than is pursued here, though there is in both approaches an explicit
assumption of nonlinear mappings playing a central role in what is now
called the inverse problem; that is to say, working back from input-output
data to the identification of a most-probable generating process.

There is no general and necessary relationship between identifiabilty,
predictability and controllability in processes that we seek to understand
as they evolve through time. In the physical sciences sometimes the three
are sufficiently linked that we can model, and from a good fitting model
we can predict and control. But in many areas we may be able to control
without more than very local prediction, or predict without controlling,
because the process under study is simple and linear, and autonomous
from environmental perturbations. That does not hold in the life sciences,
particularly in psychology outside the psychophysical laboratory.

The unidentifiabilty or undecidabilty in identification, prediction and
control can be expressed in information measures, and in turn, using sym-
bolic dynamics, can be expressed theoretically in terms of trajectories of
attractors on manifolds. It is the extension of our ideas from linear autocor-
relation and regression models to nonlinear dynamics that has belatedly
impacted on some areas of psychology explored here.

A related problem that is unresolved in the current literature, for exam-
ple in various insighful studies in the journal Neural Computation, is that
of defining complexity. The precise and identifiable differences between
complexity and randomness have been a stumbling block for those who
want to advance very general metrics for differentiating the entropy prop-
erties of some real data in time-series form. I have not added to that dis-
pute here, but sought simply to illustrate what sorts of complicated, non-
stationary and locally unpredictable behaviour are ubiquitous in some ar-
eas of psychology. The approach is more akin to exploratory data analysis
than to an algebraic formalism, without wishing to disparage either.

The problems of distinguishing between the trajectories of determinis-
tic processes and the sequential outputs of stochastic processes, and con-
sequently the related problem of identifying the component dynamics of
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mixtures of the two types of evolution, has produced a very extensive lit-
erature of theory and methods. One method that frequently features is so-
called box-counting or cell-mapping, where a closed trajectory is trapped
in a series of small contiguous regions as a precursor to computing mea-
sures of the dynamics, particularly the fractal dimensionality (for an ex-
ample, which has parallels in the analysis of cubic maps in nonlinear psy-
chophysics, see Udwadia and Guttalu, 1989).

Serious difficulties are met in identifying underlying dynamical pro-
cesses when real data series are relatively short and the stochastic part is
treated as noise (Aguirre & Billings, 1995), it is not necessarily the case
that treating noise as additive and linearly superimposed is generically
valid (Bethet, Petrossian, Residori, Roman & Fauve, 2003). Though diverse
methods are successfully in use in analysing the typical data of some dis-
cipines, as in engineering, there are still apparently irresolvable intractabil-
ities in exploring the biological sciences (particularly including psychol-
ogy), and a proliferation of tentative modifications and computational de-
vices have thus been proposed in the current literature.

The theoretical literature is dominated by examples from physics, such
as considerations of quantum chaos, which are not demonstrably relevant
for our purposes here. Special models are also created in economics, but
macroeconomics is theoretically far removed from most viable models in
psychophysiology. Models of individual choice, and the microeconmics
of investor decisions, may have some interest for cognitive science, but
the latter appears to be more fashionably grounded, at present, in neural
networks, though again the problem of simultaneous small sample sizes,
nonlinearity, non-stationarity, and high noise have been recognised and
addressed (Lawrence, Tsoi & Giles, 1996).

One other important social change in the way sciences exchange in-
formation has in the last decade almost overtaken the printed word. For
any one reference that can be cited in hard copy, a score or more are im-
mediately identifiable in internet sources such as Google, and the changes
and extensions of ideas, and perhaps also their refutation, happens at a
rate that bypasses the printed text even under revisions and new editions.
For this reason, there are some important topics that are not covered here,
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tools such as Jensen-Shannon divergence are related to entropy and to
metric information and could well be used to augment the treatment of
nonlinear and non-stationary psychological data but so far have not been
considered. We urge the reader to augment and criticise the present text
by checking developments in the electronic sources, particulary focussing
on work such as that by Fuglede and Topsøe (www.math.ku.dk/topsoe/)
on Jensen-Shannon divergence, or Nicolis and coworkers (2005) on dy-
namical aspects of interaction networks, that have relevance and promise.
Jumps between modes of dynamical evolution even within one time se-
ries essentially characterise psychological processes, and transient states
such as chimera (Abrams and Strogatz, 2006) may yet be identified in psy-
chophysiology.

I want to thank various people who have encouraged or provoked me
to try this filtering approach, and to bring together my more recent work
that is scattered over published and unpublished papers, conference pre-
sentations, invited book chapters, and even in book reviews. One very con-
genial aspect of the modern developments in applied nonlinear dynam-
ics is the conspicuously international character of the activity. Professors
Stephen Guastello and Fred Abraham in the USA, Hannes Eisler in Swe-
den, John Geake in England, Ana Garriga-Trillo in Spain, and Don Byrne
and Rachel Heath in Australia, have all offered me constructive help or
encouragement over the last decade.

School of Psychology
The Australian National University



Contents

1 	 Introduction 	 1
	 Filters and Filtering. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
	 Event Series. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
	 Markov and Hidden Markov models. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
	 Stimulus-response sequences. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
	 Limits on Identifiability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
	 Some peculiarities of psychophysical time series. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
	 Measure Chains . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
	 Other Special Cases of Transition Matrices . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

2 	 Information, Entropy and Transmission	 33
	 Shadowing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
	 Fitting a Model plus Filter . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
	 Preliminary Data Examination. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
	 Relaxation of Metric Assumptions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   41
	 Fast/Slow Dynamics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
	 Filtering Sequential Dynamics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

3 	 Transients onto Attractors	 53
	 Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
	 Identification of local manifold regions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
	 Treating as Time Series . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
	 Tremor Series . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62	
	 Higher-order Dynamics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68



Informative Psychometric Filtersvi

4 	 Inter- and Intra-level Dynamics of Models 	 71
	 Intermittencies . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
	 Synchrony and Binding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
	 Bounded Cascades in 6-d partitioned NPD. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
	 Comparison Control Conditions for the Dynamics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
	 Serial Hypercycling. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94
	 The extension to 2D and 3D Lattices. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
	 Conclusions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
	 Appendix 1. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
	 Appendix 2. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

5 	 A Bivariate Entropic Analogue of the Schwarzian Derivative 	 105
	 The Schwarzian derivative. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
	 Coarse Entropy Filtering. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
	 A Schwarzian derivative analogue . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  111
	 Extending to the bivariate case . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  114
	 The manifold of the lagged BESf. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
	 Appendix: Bernstein economic data and Physionet data . .  .  .  .  .  .  .  .  .  .  .  .  .  . 125

6 	 Tribonacci and Long Memory 	 129
	 The Tribonacci Series. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
	 Higher-Order Derived Series. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
	 Classical ARMA analyses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 144
	 ApEn modelling. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
	 ESf Analyses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
	 Classical ARMA analyses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
	 Human Predictive Capacities. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
	 Conclusions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
	 Note . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
	 Postscript on the Figures. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173



vii

7 	 Rescorla’s Theory of Conditioning 	 175
	 Extension to Discrimination Learning . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177
	 Structural Analogies . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178
	 Simulation in 2D NPD. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182
	 Higher and Indeterminate Dimensionality . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

8 	 Nonlinearity, Nonstationarity and Concatenation 	 189
	 Statistical Methods. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
	 The Time Series Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
	 Comparison of Higher-order Analyses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   205
	 Notes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207

9 	 Time Series of Disasters 	 215
	 Limits on Identifiability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
	 The Deaths Series, x. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220
	 The Time Intervals Series, y . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
	 The Local Death Rates Series, z. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227
	 Series of Irrational Beliefs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230

10 	 Perron-Frobenius at the Edge of Chaos 	 237
	 A Leaky Bistable Matrix . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239
	 Probability partitioning. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239
	 A Tremor Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240
	 Information measures as non-stationarity indices . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
	 Discussion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   249
	 Dynamics of Cardiac Psychophysiology . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   250
	 Higher Order Statistics, bESf . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
	 Subdividing the Third Epoch. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
	 Self-Similarity at Different Scales. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
	 Multiple analyses on sample series. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
	 Panic Pre-dynamics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263



Informative Psychometric Filtersviii

	 Notes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 266
	 Appendix. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267

11 	 Appendix: Nonlinear Psychophysical Dynamics 	 269

References and Bibliography 	 279

Subject Index	 307



Chapter 1

Introduction

The reader should be warned against being seduced into think-
ing that linearization tells the whole story.

(Infeld and Rowlands, 2000, p. 296)

This monograph is about building models of psychological or psy-
chophysiological data that extend through time, are inherently unstable
and, even from the perspective of the applied mathematician, are often in-
tractable. Such instabilities have not gone unnoticed by statisticians and
even such patterns as good and bad patches in the performance of sports
teams, which are inexplicable to some of their followers, have been mod-
elled. Attempts to address this problem in a diversity of disciplines are le-
gion and it is only data of interest to the psychologist and the constructor
of psychological measurements that are our focus. This does not mean that
new methods will not emerge, even while this monograph is being writ-
ten. Strange attractors and soliton metamorphoses have been added to the
range of theoretical constructs available to the physicist and the sorts of
data that we may meet in psychometrics are often appropriately treated as
evidence of non-coherence, though that term is, as yet, rarely used outside
physics (Infeld and Rowlands, 2000). In one sense, psychological data can
be even worse because they jump about in their dynamics or are induced
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to do so by the action of the environment providing stimuli. One might
think of any attempt at modelling a real life process extending through
time as a compromise between plausibility of a representation of substan-
tive data and mathematical tractability. If that were so, it could be a zero
sum game in which one is achieved at the expense of the other. But it is
not. There can be and frequently is loss on both sides of the compromise.

Historically, we could go back to 1812, when one of the first serious
mathematical models of sensory or cognitive processes was created by
Herbart (translated by Gregson, 1998). He had the profound insight that

The calculation of the rises and falls of imagery in conscious-
ness this most general of all psychological phenomena, of
which all others are all only modifications would only require
a quite simple algebraic representation, if the imagery could
be said to be directly proportional in all its strength, if not it
has its origins in the perception of time itself, and would show
against already existing contrasts.

But that does little more than remind us that the subsequent evolution of
the discipline was a history of false starts and neglected solutions. There
are two sorts of mathematical borrowing that are found in the history of
quantitative psychology: borrowing of a wide area of mathematically ex-
pressed theory already in use in physics, biology or engineering, such as
stochastic differential equations, or catastrophe theory; and borrowing of
specific equations that were originally advanced as models in some sub-
stantive area that has no immediate intuitive parallels with psychology.
The first sort of borrowing, if it can be called borrowing, is involved here
and has been one of increasing interest recently as symbolic dynamics
(Jiménez-Montaño, Feistel and Diez-Martinez, 2004). The second sort goes
back a long way; for example, it seems not to be generally known that the
use of a linear model with an added Gaussian random residual compo-
nent, introduced by Fechner in the 1850s, goes back, via Weber, to Gauss
and the resurveying of the streets of Hannover after the Napoleonic wars
and to Gauss’s monograph on least squares of 1809 (Bühler, 1986).
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It seems to be relatively rare for mathematical psychology to produce
its own equations that are not copies of something in physics or biology,
such as borrowing the logistic equation created for population dynamics,
but that may be an unfair criticism. If hard work has already been done,
one can build on it. The complex cubic Gamma recursion of nonlinear psy-
chophysics (Gregson, 1988, 1992), will be quoted later. It resembles some
other mathematical models but is a bit different; a model can be one of a
family and, at the same, uniquely applicable to some substantive area of
science.

The title of this monograph was chosen to include the word infor-
mative, which has a special meaning that will characterise the approach
taken: informative implies information, and information implies informa-
tion theory and its extensions, associated with the names Kullback, Leibler
and Akaike (de Leeuw, 1992). The use of information theory in psychol-
ogy had a brief popularity, due in part to the efforts of Attneave (1959),
preceding methods, in the later 20th century, that have had some partial
impact on psychometrics but rather more on engineering. Recently, in-
formation measures as a basis of choice between alternative models has
been strongly advocated in biology (Burnham and Anderson, 2002). This
is an approach with which we have strong sympathy, but one that sets us
at odds with some preferred traditions in psychophysics and in applied
statistics. Much of both classical and modern psychophysics is written out-
side time. It is not an area of dynamics, let alone nonlinear dynamics, but
one of steady-state stimulus-response mapping (Falmagne, 2002). There
have been important attempts to extend this dynamically: Helson’s (1964)
work on adaptation level theory was one, and Vickers (1979) on accumu-
lator theory was another. Trying to build time series analysis into the to-
tal picture that was mostly linear theory created this author’s 1983 work
Time Series in Psychology. But what has happened since creates a need for
a fundamental rethink if nonlinear systems are to play a important role.

Ignoring sequential effects in stimulus-response mappings by only ex-
amining behaviour under asymptotic steady-state conditions is useful if
some sorts of individual differences in responses to the environment are
important; the logic of a simple intelligence or memory test does not ask
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how a respondent got, over some years, to be what he or she now is,
but what he or she can now do when faced with tasks of various diffi-
culties. One cannot investigate absolutely everything at once and delib-
erately choosing not to ask some questions is, perhaps paradoxically, one
of the bases of scientific method. But asking too many questions at once,
that is, collecting a host of data on all potentially relevant variables, can
create studies in which nothing is identifiable or decidable. In statistics,
this is called the problem of overdetermination or lack of degrees of free-
dom. The counter argument, particularly in nonlinear systems, is that, if
variables are taken one by one and not in clusters as they occur in the
real world, then the nature of their interaction is obscured and causality is
obliterated.

————————————————-
Figure 1.1

EVENT E
f(E)−→ Receptors R

f(E,R)−→ NEURALyφ ACTIVITY Ny y
Sampling g(E) −→ Sensory S1yφ ψφO

↗
yψφ(N,S1)

INSTRUMENT
F (g(E))−→ Sensory S2

φψ(g(E))−→ OBSERVER

−ATION

————————————————-

There are a number of locations in Figure 1.1 where a psychophysi-
cal mapping may be created. Indeed, in the 1860s, Fechner distinguised
what he called psychophysics from below and psychophysics from above.
In the 1890s, Wundt wrote as though he was predominantly seeing him-
self as doing physiology. It is explicit in Fechner (1860), that he wished
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to bring together evidence in one framework from all of physics, phys-
iology and everyday life. There are two pathways in Figure 1.1 that are
of interest: from the Event, through S1, to the Observer; and through the
Intrumentation of the Event and S2 to the Observer. The path through S2
is, as drawn, a bit of a cheat, as it should really go from Instrumentation
back to Receptors R and then via S1. The path via S2 is drawn to empha-
sise that some Events are never directly available to our senses, such as
voltages or radio waves (except in some pathologies, apparently), but we
can and do read pointer readings and may consider the psychophysical
relations between pointer readings and our awareness of events in ways
that were never available in the mid-19th century. Yesterday, as I am writ-
ing this, it was hot and muggy, so I consulted the barometer hanging in
the hallway of my home, and read humidity and temperature dials. Yes,
I was right. It was information consistent with feeling hot and stuffy; it
wasn’t an illusion due to me having a bad cold. But I did not have a sound
meter handy to check the loudness of my hi-fi system. That just sounded
agreeable, though the nearby thunderstorm sounded threatening.

But there is an immediate complication: a step labelled ’sampling’ in-
dicates that only parts of the Event get represented in the Instrumentation
and some of the properties encoded may never correspond to our sen-
sory experiences. This is particularly true for detailed chemical analyses,
as compared with odours and tastes. Unprocessed signals can come as far
as S1 and/or S2, but get no further.

The psychophysical mappings, symbolised in Figure 1.1 as ψφ terms,
and expressed in equations; traditionally they are usually called laws,
named after Weber, Fechner, or Plateau (but his was later reinstated by
Stevens). These equations are peculiar, for two reasons: they are usually in-
completely expressed, as they have no stipulated boundary conditions but
are intended only to hold within a limited Event amplitude range, called
lower and upper thresholds; and they treat the Event as fixed in time, suf-
ficiently encoded as a scalar variable. There is no provision for dynamics
in the environment, but some for delays in the sensory pathways. Fechner
regarded the method of average response to a fixed stimulus as one for get-
ting a best estimate from repeated presentations of a fixed environmental
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stimulus that created local second-order variability in the sensory system,
though the dynamics of neither were then of interest, only the first and
second moments. Much of contemporary psychophysics does just that.

If one wanted to rewrite Fechner’s version of Weber’s law with bound-
aries, then for Response = ψ, Stimulus = φ,

f(∆1φ|p = .5) = a · log(φ), φmin < φ < φmax [1.1]

might be acceptable. Note that the equation is strictly not psychophysical,
in that psychological units of magnitude are replaced by a j.n.d. operation
expressed in physical units. There are serious problems with the rigorous
interpretation of [1.1] as a scale of measurement, that are discussed by
Luce and Galanter (1951).

The alternative popularised by Stevens (1951) is

ψ = a · φb, φmin < φ < φmax [1.2]

and this form does map from physical to psychological measures, but the
choice of what actually to use as ψ is very arbitrary.

As both [1.1] and [1.2] are monotonic and, as written, have no addi-
tive constants, one can be transformed to the other. There are objections to
[1.2] concerning what happens in the region near φmin. Those objections
go back to Wundt. In order for an observer to perform the tasks necessary
to create data for either equation, some sort of comparison of successive
events is needed, but the events are taken as being independent realisa-
tions of the same stationary process. To put it another way, they are both
models of relative judgement or, as Luce and Galanter subsumed it, in the
general category of discrimination tasks. What is also interesting here is
that neither equation describes a process that is self-terminating in time,
whereas in nonlinear dynamics that can be done without adding indepen-
dent boundary conditions. What are treated as events are not themselves
instantaneous, but the temporal extension of the events may not feature
in [1.1] or [1.2], unless the event is itself a time interval whose duration
is to be judged. The time to process in S1 or S2 may be much longer than
the temporal duration of the event, as is involved in short-term memory,
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or the delays in the instrumentation and it is this difference in processing
duration that commonly characterises the whole system. A consequence
is that separate equations for response latencies, or reaction times as they
were sometimes called, have to be added to the system. A special case that
arises in audition is the perception of pitch; the signal is fluctuating in time
and the eventual response is a single unfluctuating level, the Neural Net-
work in the ear integrates the fluctuations in a time sample, so the event
must have duration. We will explore these filters in later chapters.

The pathways in Figure 1.1 can be thought of as imperfect informa-
tion transmitters in various senses: the instrumentation only detects some
Event properties, both intentionally and unintentionally; the neural net-
works that include sensory channels to the brain have limitations in activ-
ity level capacities and rates of transmission; and the eventual conscious
observer has fluctuations in attention and memory, both short and long
term.

Filters and Filtering

There is a story, probably not apocryphal, that the great British chemist
Joseph Priestley (1733-1804) cut a hole in the base of his door so that his
cat could come and go through it1. This in itself is not exceptional, today
people do it with a little hinged panel on the hole and it is called a cat-flap.
But Priestley also cut, alongside the larger hole that was big enough for an
adult cat but too small for a dog, a much smaller hole for a kitten. This is
seen as eccentricity, but can also be the result of shrewd observation of cat
behaviour: a mother cat will carry a very small kitten by holding the back
of the kitten’s neck in her jaws, older kittens who can see and run will run
alongside their mother where she can keep an eye on them, not necessarily
follow her from behind, out of her sight. Priestley was a careful observer

1 This story is also attributed to Sir Isaac Newton, who is said to have cut not one hole
for one kitten but four holes alongside each other, for the whole litter. The principle of
the story is unaltered but, as recent scholarship portrays Priestley as a nicer person than
Newton, let us give him some credit.
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and a prolific theorist and could have argued that a cat with a kitten fleeing
a predator would have the best chance of survival if they could run in
parallel. The oddity to some is that the kitten would grow too big for the
small hole and change its behaviour, if it were still around, so that it could
follow or lead another cat through one large hole. What we are going to
call a filter is exemplified by Priestley’s cat hole. Its purpose is to let one
thing through but not another, and has to be modified as circumstances
change. Those changes may or may not be predictable and, if they are not,
the filter may become ineffective.

This monograph is about time series in psychology, which means it is
about records of sequences of events in life histories. At any arbitrary point
at which an external observer stands, the information about what is hap-
pening in the time series can change or can remain the same. If the changes
are partial, some features persist and others are lost, then, by definition, in
the sense that we are going to use the word filter here, a filter is operating.
Any filter is an operation that lies between two uninformative extremes:
the equifinality of death on the one hand, and perfect transparency on the
other. One extreme ensures that no information survives the moment of
observation, the other tells us absolutely nothing new. But both extremes
are perfect bases for a type of simple prediction; that makes the point that
predictability is not the same thing as being able to be filtered, but filtering
is a form of partial prediction.

A filter can preserve information, it can destroy information, it can cre-
ate false information, if the action of the filter is encoded in some way in
information measures. If a metric can be imposed on information in a pro-
cess, then the relative contributions of preservation, destruction and cre-
ation may be quantified, and then risk assessment attendant on informa-
tion loss or misrepresentation can be determined within limits. Priestley’s
cat hole did not function quite the same way as the filters considered here,
but it shares some features in the decisions it imposed on and provided for
the cat and her kitten.

There is an important distinction that can be made between a filter
and a sieve. At the same time, a sieve is a particular form of filter. If there
exists a basis for ordering component objects or signals in magnitude, usu-
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ally but not necessarily on a single continuum, then those magnitudes are
the basis on which a sieve separates the set of objects into two or more
subsets and allows one to pass through in time. The idea of a sieve in a
physical sense is thousands of years old, wheat is separated from chaff,
gold is panned by swirling out less dense particles from sand or gravel.
But when information in time series is being transmitted, it is usual to
write of band pass filtering, a term that covers a diversity of possibilities.
Then, events that lie in a narrow magnitude band are given a special sta-
tus, either for acceptance or rejection. The bands are often defined in terms
of frequency components, as is common practice in electroencephalogram
analyses. What is not passed on may be defined as noise. If very slowly or
very quickly fluctuating components in a mixture of components of a time
series are given a priori some special meaning, then they are filtered in or
out by using, respectively, high- or low-pass filters. The following diagram
(Figure 1.2) is a simple heuristic to relate some parts of filtering.

There is another sense in which information is filtered: censoring. The
name obviously derives from its older usage in distasteful politics or gov-
ernment, but has been borrowed by statisticians to indicate when a fre-
quency distribution of data has been in some way truncated or trimmed,
usually to exclude a long tail or outliers. This obviously implies that there
is some prior notion of what the full frequency distribution would be
like and, as a consequence of censorship, estimates of parameters are sus-
pected or known to be biased.

The flow diagram in Figure 1.2 is skeletal, it includes most of the in-
formation flows that will concern us and where they are but, as it stands,
would be useless in exploring any real situation, because it has no equa-
tions, variables, parameters, or gains at any point and no specified delays
in the pathways. All these are necessary in order to create a simulation and
compare that simulation against real world events.

The words IN and OUT indicate places where the system would be
externally observable. Externally refers to any instrumentation, either be-
havioural or psychophysiological, that is accessible independently of the
assumptions in the system representation. A symbol δ indicates variable
delay in feedback (fb) that is controlled independently of the intrinsic de-
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————————————————-
Figure 1.2

Model

F irst

IN V ersion Noise−→ OUTy y ↗

Time Series Data −→ FILTER −→ Information← fby x y xyOUT New Filter ↙ Prediction
x

Stationary
x yOUT

x
Subset −→ Tests ←− Disparities

xδxIN ↙
yOUT

x
Iterated

y x
Model −→ Control−→ fb

InRealT ime

————————————————-

lays of the filtering operations themselves.
Many of the steps in the flow diagram are, to some extent, discretionary

and involve decisions about when to stop an iterative revision of mod-
elling and prediction. Such iterative processes that should converge, if the
analysis is stable, but might not converge on a useful solution (hence the
word ”applicable” is implicit in the title of this monograph), are them-
selves the subject of computational filtering when they become written as



INTRODUCTION 11

computer programs. One discretionary step is the abstraction of a subset
of data that, on inspection, appears to be stationary with respect to the
lower-order variables of the model being used as the central filter. Lower-
order here means the parts of a model that are treated as constant locally in
time, so in turn implies taking short subsamples. As always, the problem
of non-stationarity is ubiquitous in psychological data.

It is assumed in the flow diagram that the input data that is externally
observable is complete in terms of the inbuilt assumptions of the initial
model. However, many data sets are censored, and particularly may be
aliased. This term refers to yet another sort of filtering and is most often
used to denote a situation where high frequency components of a series
encoded in the frequency domain are lost because the frequency of dis-
crete encoding is less than twice the maximum frequency of the signal’s
components. But aliasing can also arise in a different way; for example, the
statistics of the long series of major accidents resulting in deaths in English
coal mines over the century beginning around 1850 does not include acci-
dents where there were fewer than 10 men killed at once. Aliasing small
accidents seriously biases both the distributions of accident magnitudes
and the inter-accident intervals in time. This confounds our understand-
ing of the relevant causalities. There is no difficulty in imagining similar
problems in self-report records or recall by human subjects who keep di-
aries of their misfortunes, moods, or illnesses.

The filtering that yields both information and noise is, in experimen-
tal psychology, most commonly that created by the General Linear Model
(GLM), of which ANOVA is a special case. The part that is filtered out
as noise is assumed to be Gaussian, to have independent identically dis-
tributed (i.i.d.) realisations and be independent of the linear model compo-
nents. In general, these are empirically false but mathematically tractable
assumptions. The GLM is not usually applied iteratively in experimental
psychology. The assumptions made in the GLM will not be used here, with
a few exceptions.

A partitioning between signal and noise is traditional in linear models
under stationarity, but it does not follow that analyses in the frequency do-
main, when cyclic patterns are observed or suspected, are necessarily most
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advantageous. An interesting example of using eigenvector decomposi-
tions of autocovariance matrices was described by Basilevsky and Hum
(1977); it has various advantages if the time series variables have some
metric properties and can be used for weak stationary short series. It also
has the advantage that series need not be detrended prior to analysis and
the partitioning of causal components can be easier to interpret. For these
reasons, we will return to eigenvalue methods in some cases in later chap-
ters, even though we will need to relax assumptions about metric variables
and stationarity.

The input time series may be multivariate and the measures that com-
prise it may be real or complex if they are apparently numerical but, more
generally, are symbols, encoding different types of behaviour such as are
used by ethologists in studying animal behaviour patterns and sequences.
Priestley’s cat and her kittens need representation in a series of behaviour
sequences, parallel in time and space, and assumptions of interdepen-
dence of component series can be erroneously filtered out. Non-numerical
symbols are still information and can still be filtered, though the filtering
may then not be possible in the frequency domain. If the initial model
makes wrong assumptions about the properties of the input series, then
the filter will not be optimal, as the filter is an extension of the model, built
on the same assumptions about the nature of the input. A multicompo-
nent time series may be misidentified and wrongly filtered if assumptions
about the mutual independence of parallel input component channels are
wrong.

Special cases, that arise in nonlinear dynamics, where the input series
is treated as a trajectory in a dynamical system, may also be modelled as
recursive steps within a neural network. In such cases, the variables can
be complex (Hirose, 2003).

Given the suspected existence of a dynamic system in the real world,
it is possible to proceed through a series of ordered stages, with success
or failure at any stage. Any step may be partially implemented, and the
degree of partial implementation can be sufficient to progress to the next
stage, with a consequent increasing risk of failure.

It is also possible to achieve some later stage, such as Control, without,
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in fact, having any predictive capacity beyond the short-term.

[1] Observation
This refers to ordinary language observations of events and properties

of events with minimal theoretical presuppositions. Let us call these the
set Ω. One might call this stage extreme atheoretical empiricism.

[2] Description
It is assumed that some framework or vocabulary for grouping and

ordering events is employed, which takes some account, not necessar-
ily valid, of the relative substantive a priori significance (not necessarily
statistical significance) and reliability of different data components, when
they are potentially to be incorporated in a total description of the situation
under examination. The descriptive attributes imposed by the observer are
the set a, b, c, d, ... and so Ω becomes Ωabcd....

[3] Measurement
This is defined as the first stage in which observations are replaced by

numerical or symbolic encodings, as those numbers x, y, .., with assumed
metric properties of some type µ(x, y, ..), are then the working basis of the
next stages. This is the step at which ordinary language meanings cease to
feature if the encoding is consistent and unambiguous. This consistency
refers to the mappings Ωabcd... 7→ µ(xy..). In general the mapping will be
many-to-one, multiple instances of events classified as identical in terms of
their attributes will map into one set of numerical variables. This implies
a condensation of structure prior to formal modelling.

[4] Modelling
This is defined as the formal construction of mathematical or symbolic

programming structures, which are comprised of parameters and vari-
ables and the relations between them. This definition is deliberately vague,
as it covers any model that can be written as code, in digital or analogue
mode, and would thus include any differential-difference equations and
recursive maps. The purpose here is to focus on models that are intended
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to reflect the putative properties of system dynamics. If the set of relational
operators in a model M is {ρM}, then

M ≡def ρM ,Ωabcd..

[5] Identification
When, by some incomplete process of matching a subsetQ of the prop-

erties of M is matched down to a residual error limit ε with a real data set
not used in [4], the process is said to be Q, ε-identified. This idea parallels
the statistician’s notions of goodness-of-fit and the costs of misidentifica-
tion.

[6] Prediction
A prediction is a statement at Q, ε level about a set of events [1] or [2]

that have not been employed in the construction ofM . They may be future
events, or ones that are already on file but not employed in [4,5].

[7] Control
In order to write about control it is necessary to define first the notion

of acceptable limits of variation within a Q, ε system. We assume that a
representation M̂ exists and that it can, over time, drift out of satisfying
Q, ε conditions for M . To control effectively is to add a set of rules for the
transient implementation of a feedback loop that was not originally part
of M ; either current variable values are changed by being overwritten, or
parameters are reset. If the control is recursive, then the need for prediction
is minimal. Otherwise, local predictability is required. Control involves
the use of energy and thus may reduce the efficiency of a system which
embodies M .

[8] Response
All of [1] through [4] may be incomplete and lead to pseudo-

identification in [5]. Importantly, in [1], if we are to consider dynamics,
then already observations are tagged as occurring in time and in temporal
separation, coincident or sequential. By Response [8] is meant the capacity
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of the observer to take protective or corrective action to change the out-
comes of the action of a system that cannot be controlled. For example, the
weather can be predicted in the very short term, not be well predicted in
medium term, and be well predicted on average with seasonal correction
in the long term. The response is sometimes to carry an umbrella or to use
a sun-screen cream.

The change from [1] to [2] involves the use of some categorisation of
raw data, so a priori notions of similarity and difference and clustering be-
come involved. When the partially described data are quantified, either by
direct measurement of properties in extension, or by probabilities of class
membership, then we move to [3]. Modelling [4] uses [3] and operations of
identity and relations. The errors arise at this stage either because of wrong
variables being included at [2,3] or wrong relationships being postulated
in [4]. Dynamic models involve relationships that evolve in time.

All psychological data are samples from the evolving life histories of
the observed individuals who are the subjects of observation and theoris-
ing. From the perspectives of time series analysis they generate data whose
numerical properties are ill-behaved or even ill-defined, and in terms of
linear models they are non-stationary unless some ruthless data smooth-
ing or filtering is applied locally. The wider the windows in time through
which we observe the behaviour, the more insight we potentially obtain,
but the less tractable the data become. Predictability means extrapolation
into future time of dynamic sequences whose structures are incompletely
observed, and whose instabilities can be shown to be only second-order.

Time series fall into different types: event series, time-interval series,
and events-in-time series. Further subdivision of these types is possible,
according to whether or not the variables are continuous or categorical,
and whether the observed events are treated as seen through narrow win-
dows opened upon an underlying continuous process (Krut’ko, 1969) or
are assumed to be discrete events exhaustively recorded. The statistical
methods used to identify sequential dependencies in the dynamics can be
quite different for the various types.

Any series which is representable in the time domain can also have an
equivalent representation in the frequency domain using Fourier analysis
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and, computationally, the Fast Fourier Transform. That approach yields a
representation of the relative energy in any frequency component of the
process and is used widely in EEG analyses, which are typically event
series of potential levels recorded at 3 msec intervals, when a physiological
significance is given to energy in the 10-12 Hz spectral band.

Event Series

An event series is here defined as a series of events equally spaced in time.
Event xj arrives at time τj , but the temporal units in which τ is recorded
play no part in the data analysis, though they play a part in the subsequent
interpretation of the process. The first differences of the time process ∆1τj
are zero or taken as constant, or are assumed to be sufficiently near con-
stant not to be important in their variation. For example, observations are
made once a month on total suicides in a community, or once every ten sec-
onds on attention shifts to a television program, or once every ten msecs
to an EEG measure. The time series analysis is applied to the sequence,

x1, ..., xj , ...., xn

which is taken to be unbroken, though missing values which are randomly
distributed and do not exceed more than about 5% of n can be filled by lo-
cal linear interpolation, matching iteratively the first two moments of the
distribution of x. The widespread use of ARIMA modelling introduced by
Box and Jenkins (1970) is almost always concerned with event series as
defined here, but modifications to handle local discontinuities and inter-
polated episodes are useful in psychological applications (Gregson, 1983).

The results of analysis are expressed in autocorrelation spectra and
then models of minimum order are fitted, within the general framework
of (p, d, q) where p is the order of the autoregressive parts of the model, d is
the order of differencing (∆d(x)), and q is the order of the moving average
parts of the model. We shall not be using much of that theory in this work
because the time series encountered in psychology are often too short or
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too nonstationary in ARIMA terms to legitimise the methods beyond ex-
ploratory data analyses, so the reader is referred to standard sources such
as Hannan (1967) or Kendall (1973).

Time-interval Series

When the occurrence of an event, but not its magnitude, is considered to be
the meaningful basis of data, and the events do not arrive equally spaced
in time but with inter-event-intervals (iei) dτj , the frequency distribution
of dτ is the focus of statistical analysis. The iei series is itself a time series
and may be explored using all the methods available for an event series,
the interpretation of results is, however, quite a different matter.

Events-in-Time Series

It should be immediately obvious that series in which both the intervals
between events have a distribution in real time and the events them-
selves vary in magnitude occur in the real world. In fact, one would think
that psychological data are preferably recorded and encoded in this form,
though examples are, in fact, sparse. A series of judgements of sensory
intensity may be made, each with a response delay (or reaction time) af-
ter stimulus presentation and the arrival of the stimuli may be random or
locally unpredictable. For example, in a vigilance task, looking at a radar
screen for the movement of objects in airspace, some signals may be seen
quickly, some after a delay, and some missed completely. The objects gen-
erating the signals and the signals themselves can vary in size, proximity
to the observer, and rate of movement.

In the notation just introduced for the two previous cases, each event
is a pair xj , dτj and this series may be represented in complex variables,

xj , idτj

The advantage of using complex variable models for the generation of this
process is that the imaginary part may exhibit fast dynamics at the same
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time that the real part changes relatively slowly. Fast/slow dynamics ap-
pear to be widespread in psychophysiological contexts (Gregson, 2000), so
the possibility of treating event-in-time series as complex and not as two
simultaneous reals needs a priori consideration.

Markov and Hidden Markov models

If data are only encoded in an exhaustive mutually exclusive set of cate-
gories, which need not be ordered, then the event series and events-in-time
series can be represented in another fashion. The variable xj may be a la-
bel of a set of k ordered states, or it may be the result of a coarse scaling in
which x is partitioned into k ordered categories which span the total range
of x. The latter approach is particularly useful where the response data in
a psychological experiment are not more than steps on a Likert scale.

The core of any k-state Markovian model is the transition probability
matrix Tk×k, which is taken as having fixed elements in a stationary real-
isation. It thus follows that variation in estimated transition matrices over
successive subseries are an empirical test of non-stationarity.

Tk×k =


p11 p12 p13 . . . p1k

p21 p22 p23 . . . p2k
...

...
...

. . .
...

pk1 pk2 pk3 . . . pkk


The convention of interpretation is that the rows are the jth trial states
1, ..., k and the columns are the (j + 1)th states so that the transition prob-
abilities are the system’s one-lag stochastic dependencies. If it is possible
for transition to happen from any one state to any other over a finite se-
ries of trials, the process is ergodic, and the stationary k-state vector V∞ is
computable. That is,

∃V∞ such that V
′
∞ = V∞T
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The extension of this model to what is called a hidden Markov process
arises when the dwell time in any state is not one lag with an exit proba-
bility vector given by the kth row of T, but is an exponential decay func-
tion, where the probability of staying in the state over more than one time
unit decreases with a decay parameter specific to that state. That is, k more
parameters are added to the model. This case has so far had negligible use
in psychometrics, but can be usefully regarded as an example of fast/slow
dynamics, where the fast dynamics are within a state and the slow dynam-
ics are controlling the inter-state transitions. It becomes intractable as an
estimation problem for short series with a large number of states or long
series with a low number of states (Visser et al, 2000). As the focus of this
study is on short series with a priori an unknown number of states, it is
set aside. It is the failures of the simplest Markov model, where the prob-
ability distributions of lengths of runs in a state are not the power series
psjj , j = 1, ..., k, s = 1, ..,∞, p < 1 but are more persistent in some states,
that are of particular interest in psychology.

Stimulus-response sequences

A special case, which involves multivariate time series and particular in-
terpretations of the components of the vector x ∈ X at any stage j, arises
in psychological models and is an extension of the previous cases. Its pic-
ture has been called an influence-lines diagram (Gregson, 1983), which is
useful for revealing the hidden ambiguity in many experiments between
stimulus-dependent and response-dependent sequential processes. The
diagram is a window of fixed length on the process, which may extend
to an indeterminate degree outside the window both in the past and in
the future. In the statistical sense, it is sometimes called a moving-boxcar
window, and the process is stationary if the implicit scalar weights on all
the influence lines within the window remain the same; that is to say, they
are independent of the time counter j. We use U to mean an uncontingent
process and C a contingent process. Here, j is the time sequence counter,
which in an experiment is a trial number, s is a stimulus magnitude, r
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a response magnitude, and er is an expected response. In fact, er can be
any ancillary psychological variable, such as subjective confidence ratings
or response latencies, or even a measure of surprise. This latter ancillary
variable can run into future time, whereas, except in the dubious context
of parapsychology, s and r do not. The vector Xj = (sj , rj , erj).

In U the stimulus series is externally defined, and may be generated by
a function sj+1 = f(sj), where f may be deterministic or stochastic; in the
latter case we may write sj = f(sj−1, sj−2, ..., sj−m, εj), ε ∼ N(0, σ). The
lag parametermmay be unknown or may be defined by the experimenter.

U :=



past past now future future
sj−2 → sj−1 → sj → sj+1 → sj+2 →
↓ ↘ ↓ ↘ ↓ ↘

rj−2 → rj−1 → rj → . . . . . . . . . . . .
↓ ↗ ↓ ↗ ↓ ↗ . . . ↗ . . . . . .

erj−2 → erj−1 → erj → erj+1 → erj+2 →


U may be regarded as the normal paradigm for a psychophysical experi-
ment, though most usually only the set of vectors {sj , rj} is recorded, and
the mapping r = Φ(s) is of interest, outside of time. The terms er many
be replaced or augmented by subjective confidence ratings, particularly if
the task defining s→ r is identification and not estimation.

There is another interpretation, if the task is to learn some associa-
tions between s and some outcomes e∗r which are provided by the ex-
perimenter (and not by the subject) after r, in some cases generating sur-
prise (Dickinson, 2001). In this case the e∗r have the role of condition-
ing stimuli in classical conditioning. Rescorla and Durlach (1981) distin-
guished between within-event and between-event learning: the former
needs only sj , rj pairings, whereas the latter requires the sequential link-
ages j − k, ...j − 1, 7→ j in the diagram.

An extended psychophysical function may be defined, where m and n
are unknowns, as

rj = Φ∗({s}, {r}) = f(sj , sj−1, ..., sj−m, rj−1, rj−1, ..., rj−n, εj)
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and we note that statistically, if it is linear, Φ∗ is an ARMA process.
The contingent process C is one in which the stimulus series is inde-

pendent of the environment and is internally-generated contingent on the
previous response series.

C :=



past past now future future
sj−2 sj−1 sj sj+1 . . . . . .
↓ ↗ ↓ ↗ ↓ ↗ . . . ↗ . . .

rj−2 → rj−1 → rj → rj+1 → . . .
↓ ↗ ↓ ↗ ↓ ↗ . . . ↗ . . .

erj−2 → erj−1 → erj → erj+1 → erj+2 →


The contingent process is, for example, one which is postulated to arise
when in a vigilance task attention transiently fails, so that sj = null, but
responding continues. An example of such an experiment has been anal-
ysed by Gregson (2001).

Transitions between the two processes can arise at any j and each pro-
cess can be regarded as a state of the system. Then, from the perspective of
either U or C, the system as a whole is nonlinear and nonstationary, but
it can be written as a 2-state Markov and, at that level of analysis, can be
stationary and stochastic, that is:

T2×2 :=
(

U⇒ U U⇒ C
C⇒ U C⇒ C

)
For example, a series might exist, a part of which is observed, such as

→ ...,U,U,U,U,C,C,U,U,U,C,U,U,U, ......→

and if the C epochs are taken as evidence of intermittent malfunction,
either cognitive or clinical, then the lengths of runs of C are of interest.

In terms of fast/slow dynamics, the processes which generate re-
sponses r, er within a trial are fast and unobserved, and the transitions
from trial to trial j → (j + 1) are slow and externally observable.
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Another extension of the U is made by some theorists, where the distal
and proximal stimuli are distinguished. This case arises in the study of the
perceptual constancies, such as for size-distance object constancy. Let us,
in that case, use D and P as labels to distinguish the two sorts of stimu-
lus, and the mapping from D to P is then physiological when D refers to
the physical object’s dimensions (some distance away) and P refers to the
retinal image of the object as viewed by the observer. The second mapping
from Psj to rj is then taken to be psychological, the correction that makes
the correlation of r,Ds greater than for r, Ps is assumed to take place at
this stage. Rewriting the influence diagram U as uncontingent but distin-
guishing P and D we now have

U :=



past past now future future
Dsj−2 → Dsj−1 → Dsj → Dsj+1 → Dsj+2

φ ↓ φ↘ φ ↓ φ↘ φ ↓ φ↘ ↓ ↓
Psj−2 φ→ Psj−1 φ→ Psj φ→ . . . . . . . . .
ψ ↓ ψ ↘ ψ ↓ ψ ↘ ψ ↓ ψ ↘ . . . . . . . . .
rj−2 ψ → rj−1 ψ → rj ψ → [rj+1] . . . . . .
ψ ↓ ψ ↗ ψ ↓ ψ ↗ ψ ↓ ψ ↗ . . . . . . . . .
erj−2 ψ → erj−1 ψ → erj ψ → . . . . . . . . .


and the influence lines are labelled to indicate whether the postulated
causal links are predominantly physiological (φ) or psychophysical (ψ).
It is assumed that the Ds series is not generated by any deterministic rule;
the series may be i.i.d. A point to emphasise is that rj+1 may be partly
determined before any Dsj+1 actually occurs. The extensive literature on
contrast and assimilation effects in sequences of judgements, following
Helson (1964), may be viewed as an attempt to identify the dynamics of
situations in U form.

Limits on Identifiability

From only the external record {s, r, er} it is not in general possible unam-
biguously to reconstruct the linkage patterns in either U or C. This is a
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serious problem because the linkage patterns are the simplest model of the
process dynamics that are available.

The linkages sj → rj are not linear mappings, and can be represented
in fast /slow dynamics as sj → Γ(Y, a, e, η) → rj (Gregson, 1995), where
the evolution of the complex Γ trajectories is fast, if the sequential slow
dynamics j → j + 1 are ignored or treated as second-order. But there are
cascades; for example, in C we have

∀j : K := rj−1 → κ→ sj → Γ(Y, a, e, η)→ rj → κ→ sj+1

where κ is affine. Hence the coherence between the two series {s}, {r}
(even given that both are observable) also masks the internal dynamics
of the K-cascades. There are also other cascades possible in parallel.

The most readily generated ambiguities in the dynamics rest on triples
over a subsequence j − 2, j − 1, j. The diagonal (south-east or north-east)
links, if present, mean that influence can run forward for two or more
steps. Giving the system both memory and coupling between levels s, r, er
implies that two or more paths in a triple, such as sj−2 → rj−1 → rj , and
sj−2 → rj−2 → rj−1 → rj exist. If the delay times on these two paths are
different (only because they have a different number of internal links each
with unit delay) then the shortest should dominate if they run in parallel.
A consequence of this is that a path over a quad j − 3, j − 2, j − 1, j could
be shorter than a path over a triple.

Perhaps surprisingly, there are many experiments in which the stim-
ulus series is not really known, all that is recorded is the series {r}. The
stimuli are degenerated into a set of states, so that on any one trial there is
ambiguity within a state, even if the state is identifiable. Defining an exper-
iment as a set of treatment levels mapping onto a potentially continuously-
varying response, as is done in a factorial design, is such as example if
repeated measures are used within cells. But the number of repeated mea-
sures needs to be so great, for system identification, that an ANOVA anal-
ysis becomes dubious pertinent.

Most methods for time series dynamics do demand long series and
this monograph is mostly about series which are short but informative,
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even if they are perhaps not regarded as subsamples which might be con-
catenated after experimental replication to form a longer stationary series.
Long-term correlations cannot be detected if the data are not themselves
long-term (Peng, Hausdorff & Goldberger, 1999).

As they have been written,U andC are examples of Event series. How-
ever, if the presentation of a stimulus is allowed to be contingent upon the
response latency of the subject’s response to the previous stimulus, then
the series become Events-in-time series.

If we are only interested in response shifts, such as attention coming
on (+) or going off (-), then the response is binary (+,-) and the series is
a Time-interval series, the intervals are between crossing points, and the
unit of measurement of the inter-crossing-point-interval durations is the
single inter-event interval. Such series are also known in statistical the-
ory as point processes, the response shifts between on and off states, and
the intervals in time between successive crossing points between the two
states have a distribution in time which may be studied in its own right.

Some peculiarities of psychophysical time series

Time series in psychophysical experiments are, in some respects, quite dif-
ferent from those in areas of application such as physiology or economics.
The spacing in real time of the events is two-dimensional, from stimulus
to stimulus, and may not be constant but a function of events in the R or E
series on previous trials. The spacing in time (the response latencies) from
stimulus to response within a trial is again variable, and is contingent on
previous trials to some degree, but also on the intrinsic psychophysical
mapping S → R.

We have to therefore distinguish two major cases, contingent and non-
contingent. The latter is simpler, so we depict it here as a diagram of in-
fluence lines. Each such line may, in theory, be modelled as a regression,
not necessarily linear, and may or may not be thought of as a stationary
process.



INTRODUCTION 25

It may be helpful to distinguish the contributing parts of the dynam-
ics of the total system as identified, not identified, or unidentifiable. The
human participant in the experiment has a memory and forms concepts,
which are here labelled expectations, E. This is an extra series that does
not have a corresponding part in most models in the physical sciences.
From the viewpoint of an external observer the experimenter the stimuli
are or can be identified if they are, in fact, created by the experimenter,
the responses are identified, the expectations are unidentifiable as they
are private information of the participant in the experiment. They can be
asked for and this then constitutes another experiment with another series
of self-reported expectations, ψE.

Note that the NPD dynamics, running down the page, are orthogonal
to the sequential stimulus dynamics (controlled by Φ) running across the
page. It is thus usual in psychophysical experiments to try and space the
stimuli in real time so that the Γ mapping becomes independent on each
trial, and then averaging over trials under the assumption of stationarity
models the form of Γ, which has been known for about 150 years to be
roughly ogival. An extra variable, e, called here for convenience sensitivity,
modifies the shape of the ogive. This spacing of the S sequence can often
fail and when it succeeds it destroys information about the dynamics of
the total system.

We may remark that all the influence lines are causal, even if not iden-
tified, the whole system is deterministic and there are no random parts,
though residual observational error on S and R may be treated as stochas-
tic. Some of the nonlinearity in NPD can have the appearance of noise if
an attempt is made to model the S 7→ R relations with a linear model.

There are other important distinctions that are intrinsic to psychophys-
iological processes. The Φ sequence is in slow dynamics, the orthog-
onal Γ process is in fast/slow dynamics (as is characteristic of most
physiologically-based sensory processes), and the Ej−1 7→ Rj is indeter-
minate in this respect.
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Figure 1.3

Influence Lines Diagram

The non-contingent case, S is not a function of previous R
S = stimulus, R = response, E = expectation

Φ is the stimulus generating function in time
Γ is the NPD (nonlinear psychophysical dynamics) function

PAST NOW FUTURE
Φ Φ Φ Φ

.....Sj−2 → Sj−1 → Sj → Sj+1 → Sj+2.......

Γ ⇓ ↘ Γ ⇓ ↘ Γ ⇓

.....Rj−2 → Rj−1 → Rj →

⇓ ↗ ⇓ ↗ ⇓ ↗

.....Ej−2 → Ej−1 → Ej →

Γ(a, Y (Re), e) ⇔ ΨΦ(S,R, sensitivity)
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Measure Chains

Time series are modelled usually by assuming they are from a continuous
function, then employing differential equations, or in discrete time, and
then using difference equations. In dynamical parlance, they are functions
on the reals R, or on the integers Z. But, since the work of Hilger (1988), it
has been possible to consider intermediate cases where the time series has
properties that are neither strictly on R nor on Z, but on a time scale T .
A time series built on T is called a measure chain. The extensions of these
ideas to nonlinear functions are reviewed by Bohner and Peterson (2001).

The delta derivative f∆ for a function f defined on T has the properties

i) f∆ = f ′ is the usual derivative if T = R
ii) f∆ = ∆f is the usual forward difference operator if T = Z.

Various examples of nonlinear functions on measure chains are re-
viewed by Kaymakçalan, Lakshmikantham and Sivasundaram (1996).

Our interest in these extensions is partly motivated by knowing that
if some process is represented as continuous then its functions may not
exhibit chaos, but if it is mapped into discrete time then it may have locally
chaotic dynamics. Bohner and Peterson (2001) give examples of biological
processes that have gaps and jumps, so that their time basis is not regular,
yet they still have biological continuity. These are more readily modelled
on T chains than on constant-interval series.

Other Special Cases of Transition Matrices

For attempting a bit more coverage of possibilities but not pretending
to any completeness, we should mention some special sorts of transition
probability matrices that have potential application in real-world psycho-
logical processes. Markovian representation of contaminative dynamics is
one example.

In Table 1.1 the terms with a negative sign mean that the pro-
cess thereat returns to the previous state. This somewhat odd and non-
standard notation is due to Wang and Yang (1992) and it is, in my view,
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preferable to rewrite the matrix QN as in Table 1.2, which leads to imme-
diate computability from raw sample data. We then have:

—————————————————–
Table 1.1: Birth and Death Process of Order (N + 1)

QN =



−b0 b0 0 ...0 0 0
a1 −(a1 + b1) b1 ...0 0 0
... ... ... ... ... ...
0 0 0 ...aN−1 −(aN−1 + bN−1) bN−1

0 0 0 ...0 aN + bN −(aN + bN )


——————————————————

In this process an individual enters at the first state s0 and stays
there over time with probability p(1 − b0); if, however, he/she becomes
infected this then occurs with probability p(b0) and progression subse-
quently is through the states in strict sequence to eventual death. In each
state s ∈ {Q} the process may stagnate. The penultimate state is thus re-
covery without reinfection.

If the whole process is to represent persistent reinfection of a subsam-
ple of the population then additional off-diagonal terms to create a feed-
back path to s1 have to be introduced. Alternatively, a whole matrix for
each cohort of infection is written and the population as a whole treated

——————————————————
Table 1.2: B and D process in probability notation

Qp,N =
p(1− b0) p(b0) ...0 0 0

... ... ... ... ...
0 0 ...p(aN−1) (1− p(aN−1 + bN−1)) p(bN−1)
0 0 ...0 p(aN + bN ) p(1− (aN + bN ))


——————————————————
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as a collection of sub-populations running in parallel but staggered in the
times of their onsets in the first state s0. The assumption is that the sub-
populations are closed and cannot cross-infect. That might be a plausible
way to proceed for a collection of small country towns, separated in terms
of social and commercial movements between pairs of towns, but would
not work in suburbs of a large city.

An alternative model is given by Wang and Yang, which is shown in
Table 1.3, but this does not seem to offer any immediate advantages. The
problem is to derive expressions for the expected duration (and frequency
distribution of expected durations) of an individual in any state s, which is
commonly treated as an exponential distribution with generating param-
eter p(sii), the leading diagonal term in Qp,N .

——————————————————-
Table 1.3: Canonical structure of epidemial dynamics

Q =



−(a0 + b0) b0 0 ... 0 0 0...
a1 −(a1 + b1) b1 ... 0 0 0...
... ... ... ... ... ... ......
0 0 0 ... an −(an + bn) bn
... ... ... ... ... ... ...


where a0 > 0, b0 > 0, ai > 0, bi > 0 (i > 0).

——————————————————-

The next matrix arises from a theory about the sequential genera-
tion of stress, conjectured by Jason Mazanov (personal communication,
2004), which was encoded simply in a linkage flow diagram. This dia-
gram would, unfortunately, confuse two time scales: the short-term scale
is between-states within-time, and the long-term scale is within- and
between-states but between-times. To disentangle this it is necessary to
produce two matrices, and to have long-term as a dummy state for the
short term matrix to exit into the long-term, and to be re-entered from it.
It would, of course, be possible to nest the short-term states within one
larger matrix, as a submatrix on the diagonal, but this is clumsy.
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Table 1.4: Jason’s Theory
The Short-term Matrix; internal to one episode

State Stressor interp1 Stress interp2 SR Long-term
Stressor p11 p12 p13 p14 p15 p16

interp1 p21 p22 p23 p24 p25 p26

Stress p31 p32 p33 p34 p35 p36

interp2 p41 p42 p43 p44 p45 p46

SR p51 p52 p53 p54 p55 p56

Long-term p61 p62 p63 p64 p65 p66

——————————————————-

The corresponding long-term matrix has the same core of five stress
generation states, but with a link back to Short-term substituted for Long-
term as the sixth state. The numerical probabilities are, however, different
and the existence of absorbing states would be expected to arise.

Let us make trial substitutions in the 6 × 6 Short-term matrix, as the
off-diagonal pattern does resemble slightly the pattern in the epidemial
matrices.

——————————————————-
Table 1.5: substitution in Table 1.4

STM =



.10 .80 − − − .10

.08 .08 .64 − − .2

.08 − .14 .48 .10 .2

.08 − .04 .16 .32 .4
p51 − p53 − − .20
p61 − p63 − − .50


——————————————————-

The terms left in pxy form in Table 1.5 are suspected to be the manip-
ulable consequences of the enviroment; in short they could be the exper-
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imental variables. The inequalities p51{> or <}p53 and p61{> or <}p63

have some status in that they conjointly define four alternative theories on
the persistence of stress induction.

The obvious problem with this model is that it has 60 d.f., and for sys-
tem identification at least 1200 d.f. would be needed in the raw data be-
ing modelled. There are precedents in econometrics and in epidemiology
for models of such complexity, but the identification problems as soon (as
feedback loops are nested) become well outside the usual resources of clin-
ical psychology. If the model were to be reduced to being expressed only
in externally observable variables, which are Stressors and SR, then there
are 8 d.f., which is tractable. It might then be possible to test whether the
process is, in fact, reducible to a two-level Markovian dynamic.





Chapter 2

Information, Entropy and
Transmission

Until the present, most of our understanding of biological sys-
tems has been delimited by phenomenological descriptions
guided by statistical results. Linear models with little consid-
eration of underlying specifics have tended to inform such
processes. What is more frustrating has been the failure of
such models to explain transitional, and apparently aperiodic
changes of observed records.

(Zbilut, 2004, p.4)

This monograph is mostly about data that can be characteristically in-
tractable in the face of viable methods that are developed in other disci-
plines. For example, in creating methods to study series of earth tremors
that could be used to predict earthquakes, multiscale analyses are pro-
posed (Zaliapin, Gabrielov & Keils-Borok, 2004). A series is chopped into
short segments, where it is known from extensive data and experience
they will be approximately linear trends, up or down, separated by turn-
ing points. The segments thus created are a mix of slow and fast fluctu-
ations; the slow fluctuations have large amplitude and are the part ap-
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proximated by a linear trend, the fast fluctuations are lower amplitude
and appear to ride on the slow segments. In terms of filtering, each seg-
ment in succession is separately filtered, and a model that involves both
the parameters of each segment and the locations of turning points can be
constructed. The literature in probability theory on identifying and pre-
dicting such processes is now diverse and not restricted to variations of
linear models. The interrelations of symbolic dynamics, Markov chains,
discontinuities or singularities, and random evolutions feature in mod-
ern mathematical treatments (Horbacz, 2004), and will receive some usage
here.

The important contrast with a model in experimental psychology is
that earthquakes are, unfortunately, not controlled, they are observed,
whereas stimulus-response relationships are manipulated, they are ex-
plored in the laboratory where conditions are set up to create some sort
of local stationarity. This often makes it possible to use models like the
so-called Stevens’ Law,

Resp = a+ Stimb + ε

where a and b are scalars, and ε ∼ N(0, σ) is Gaussian noise, the Stimuli
can be scaled in some metric based on physical properties and the Re-
sponse may be arbitrarily scaled or represented as a probability. The prob-
lem is that, unless we replace the constants a, b by functions varying over
time, there is no way the underlying dynamics that are involved when the
system is perturbed and comes back to stability, at some rate, can be cap-
tured in the model. Stationarity is censoring of dynamics. Ideally, what we
seek is a relaxation of metric assumptions and insight into dynamics at the
same time (Gregson, 1988, 1992).

It has been noted that the filter in use is also part of the current model
being tested and, more usually, it is the model that is the focus of attention
and the structure of the filtering, together with the notion of the statistical
nature of the noise, that is taken for granted as a secondary consideration.
An example is the practice of multiple regression, where the data are either
static outside time, or time series. The residual noise after model fitting is
taken as Gaussian i.i.d. and independent of the signal components.
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Here in regression we have a multiplicity of predictor variables and
one dependent variable, so the input to the filter is a set of parallel time
series and the problem is to find the intervariable causality of the system
and filter optimally to exclude noise. This problem is usually treated as
hypothesis testing in psychometric literature, but a strong alternative ap-
proach, which can be grounded in Bayesian inference, has been advanced
by Burnham and Anderson (2002), which uses instead the corrected like-
lihood inference approach built on Akaike’s Information Criterion (AIC)
and its many modifications. There are still difficulties with doing this for
small samples with many alternative models, and it is preferable theoreti-
cally to restrict consideration to nested models. There are other criticisms
of hypothesis testing in the specific context of identifying the dynamics of
causality that have been pointed out by Feng (2003).

A little-known theorem in what is called the search problem, another
name for the inference or inverse problem (which means getting back from
data to an optimal causal model), was derived by Wolfert and Macready
(1997). This states that, as no model is ideal, uncontaminated, pure truth,
all algorithms that address the inverse problem are equally bad, but even
so if the search algorithm is fitted to a particular problem space, it can work
better than most other alternatives that do not use all the prior information
that properly define the inverse problem. It does not follow from this that
all filters are equally bad but, as remarked in the introductory chapter, false
outcome information about causality can be created by inefficient filtering.

Consider a case where there are potentially 5 predictor variables i =
1, ..., 5, so there are 25 − 1 possible models, ignoring the situation where
nothing has any predictive value. The linear models are

y = b1v1 + b2v2 + b3v3 + b4v4 + b5v5 + ε [2.1]

and all subsets of this generic model where some bi are zero. Each opera-
tion of setting one or more bi = 0 is a filter, apart from the filter implicit
in partitioning the residual ε. The models are said to be nested if they are
ordered from [2.1] down to y = b1v1, dropping terms v5, then v4, then v3,
and so on. This is simply making the filter progressively more stringent on
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an implicit ordering of the potential relative importance of the variables to
carry information about y. There are still 5!=120 nested models to consider.
If cross-product terms on the v are included, making the models nonlin-
ear, then the number of possible models explodes and nesting them is,
in reasonable, practical terms, computationally intractable. Any overde-
termined model will fit data in the sense of creating some prediction of
input-output relationships; any overdetermined model is an approxima-
tion to a transparent filter.

Shadowing

The concept of shadowing is fundamental to describing how a filter that
is only approximately a representation of the mathematics that defines the
generation of a time series of data can be modelled, under restricted con-
ditions, using information measures. The explanation rests on three stages
in the argument: what is meant by noise, what is meant by a nearby trajec-
tory, and why moving into symbolic dynamics, with Markov representa-
tions, is a constructive approach to identifying and controlling nonlinear
dynamical trajectories. In short, shadowing is a type of filtering to preserve
stability.

For linear time series, the noise is assumed to be in some frequency
band that separates it from the signal or, if a frequency domain partition
is not possible and Fourier analyses are invalidated, then signals are as-
sumed to be the sharp as opposed to the diffuse components. This, again,
will not work if the signals are not at least in part periodic. It is necessary to
distinguish between two sorts of noise: that intrinsic to nonlinear dynam-
ical evolution, and that due to added error of observation (Grassberger,
Hegger, Kantz, Schaffrath and Schreiber, 1992).

Consider a series of symbols Y1, ..., Yj , ..., YN , that is where
Y ∈ {Ya, Yb, Yc, .., YS} takes at any time one of S exhaustive mutually ex-
clusive states. In the limit if S is large and the states are ordered the sym-
bols Y are replaced by some variable yj . The recursive difference equation
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of the system is then
Yj+1 = f(Yj) [2.2]

and real data will be of the form

yj+1 = f ∗ (yj) + ε [2.3]

where f and f∗ are in some definable sense close, and where ε is exper-
imental observation noise, distributed hopefully over a closed interval.
Such noise can be additive, as written or multiplicative. Noise with infinite
variance is obviously troublesome but exists in some statistical models.
The other sort of noise is added by the dynamics during its evolution and
it is asked if there exists a nearby trajectory that is free from this noise but
also satisfies the exact dynamics. Such a trajectory does not have to exist,
but if it does, it is said to be shadowing the exact dynamics, always within
some small limit close to the desired clean model. Shadowing is thus a sort
of filter, finding it is an art. As there are two sorts of noise, if an attempt
is made to filter out ε, then the other pseudonoise gets partly taken out
with it and distortion of the identification of f(y) results. The question is
whether misidentification of f(Y ) also follows. It seems that, under some
technical conditions, when a representation by Markov chains is possi-
ble (that is, using Y and not y) it is possible to construct shadowing even
when the dynamics involve singularities (Krüger and Troubetskoy, 1992).
The mathematical basis that supports shadowing is the Anosov Closing
Lemma (Katok and Hasselblatt, 1995, section 6.4.15). It is easier to meet
shadowing conditions if the dynamics involve some cycling, which in turn
implies a particular structure in a Markov chain.

Turning the argument around, so that we go from y to Y and not Y to
y, any series y can be converted to a Y series, by rescaling onto the unit
interval, that is

〈max(y),min(y)〉 ⇔ 〈1, 0〉 =def 〈max(Y ),min(Y )〉 [2.4]

and then the Y representation can be partitioned into S subsets. These
subsets are the states of the system in symbolic dynamics terms, but only
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if the probabilities of state occupancy are equal, that is

∀si ∈ S, pi = 1/S

is the partitioning maximum entropy. Otherwise, the widths of the si have
to be adjusted to make the pi approximately equal, so that the filter implicit
in the partitioning transmits the most information.

The interrelations between symbolic dynamics, Markov chains, shad-
owing, and recurrent neural networks have an extensive and expanding
literature (Lawrence, Tsoi and Giles, 1996; Setiono & Liu, 1996; Zak, 2004),
but so far this has had little impact on psychometrics, though some on
neurophysiology.

Fitting a Model plus Filter

The problems with fitting a family of models are various, the most trouble-
some is that of overfitting. In short, any model that is too complicated will
fit data, as a filter it becomes transparent, the flap lets the dog through as
well as the cat. If the process is really nonlinear and not stationary, then try-
ing to capture those dynamics economically by adding the product terms
such as b1,2v1v2, b1,2,3v1v2v3, of which there are at least 5C2 +5 C3 +5 C4,
creates a lot of models where the fit assessed as R2 will be almost equally
high and ”significant” but useless. Burnham and Anderson (2002, chap-
ter 3) give a valuable set of examples of fitting models by AIC to various
data sets; the nearest to our present interests is the example of adding an
insecticide to a tank full of earth in the bottom and plants and little fishes,
to simulate a pond. The example involves dynamics changing over time
and illustrates the point that various analytical methods need to be em-
ployed in parallel and that we have to make maximum use of what is
already known about the problem in terms of its basic science, to select a
closed set of candidate models to achieve parsimony and relevance.

Working in discrete and not continuous time and considering a vari-
able yj , j = 1, .., N that takes only a finite set of n symbols, each symbol
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si, i = 1, .., n in a time series sample has probability pi, then the informa-
tion is

H(x) = −
n∑
1

pilog(pi) [2.5]

The Kullback-Leibler information that compares a model θ, giving corre-
sponding expected probabilities xi|θ with a data sample is then

I(y, x) =
n∑
i=1

pi · log
( pi
xi|θ

)
[2.6]

and that may be thought of as a mismatch distance (not a true metric dis-
tance, because of asymmetry) between theory and data, in our situation θ
becomes a filter and the mismatch is expressed in information loss. Then
if there is a class of related and a priori plausible parsimonious models
θ1, θ2, etc., the models are ordered in terms of their mismatches, and itera-
tive revision to make the filter open, as the model converges on data, is by
revision of θ evaluated by minimising mismatching. The approach using
Kullback-Leibler information has been extended to the situation where we
do not know how the data are generated but can consider three hypothe-
ses at the same time, one of which is some sort of noise (Zheng, Freidlin
and Gastwirth, 2004).

If the models considered are linear and fitted to short stationary time
series, and we are only concerned with one data set n, then AIC can be
used to select a (or a subset) most appropriate candidate model. For a
model θ, with r parameters and residual sum of squares (RSS)

σ̂2 = RSS/(n− (r + 1))

for least squares estimation with log likelihood

log(Λ(θ̂)) = −1
2
nlog(σ̂2)− n

2
log(2π)− n

2
[2.7]

and we can drop the last two terms as they do not affect inference because
they are constants for any competing model in a closed set on one data
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sample. Then for a given data set y

AIC = −2log(Λ(θ̂|y)) + 2K [2.8]

where K is the number of fitting parameters (≥ n). The AIC formula as
just given has limitations and has been modified in various ways for small
samples. A very important recent result (summarised by Burnham and
Anderson, 2002, section 6.4.5) is that a set of weighted AIC values for a
set of models on one data set yields a good approximation to the Bayesian
posterior model probabilities, provided that one is prepared to assume
equal prior model probabilities.

As the flow diagram of filtering in Chapter 1 is drawn, these AIC meth-
ods could be applied where we have linear models to consider on the sta-
tionary subsets used for filter revision, but not globally. As exploration and
tests of non-stationarity are the main focus of some later chapters here, the
AIC results are given for completeness but not for invariant employment.
They are still preferable to hypothesis testing and significance measures in
many situations.

Preliminary Data Examination

Any time series is an ordered set of symbols. Those symbols may each
have numerical properties or they may not. If they are numbers in a metric,
they may be re-encoded as weaker numbers with only ordinal properties,
they may be re-encoded as ordered non-numerical symbols, or they may
simply be labelled as elements of a mutually exclusive exhaustive set of
states. What sort of symbols they are imposes limits on what meaningful
operations may be performed on them. If it is assumed that the numbers
are in a mathematical sense well-behaved, and they are not, then bogus
conclusions could be drawn from operating on them algebraically.

Given a time series, a finite sample from some longer process, there
are a wide range of other series that may be derived from it. If we do not
know the history of the data with which we are presented, then it may be
that what is observed is itself a derived series. Two successive numbers,
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yj , yj+1, observed at times tj , tj+1 respectively, may be replaced in various
ways. The simplest are the difference δjy = yj − yj+1, and the absolute
difference |yj − yj+1|. This operation of differencing may be repeated to
a kth order. If the difference δjt = tj − tj+1 is not constant, then the local
gradient gj = δjy/δjt may be used to create a new series of g values. The
statistical properties of derived series are not in general the same as those
of the core series from which they are derived. Each of the series y, δy, g
may have computable first and second moments of the distribution of val-
ues that their variable takes.

Relaxation of Metric Assumptions

Serious difficulties are met in identifying underlying dynamical processes
when real data series are relatively short and the stochastic part is treated
as noise (Aguirre & Billings, 1995), it is not necessarily the case that treat-
ing noise as additive and linearly superimposed is generically valid (Be-
thet, Petrossian, Residori, Roman & Fauve, 2003). Though diverse methods
are successfully in use in analysing the typical data of some disciplines, as
in engineering, there are still apparently irresolvable intractabilities in ex-
ploring the biological sciences (particularly including psychology), and a
proliferation of tentative modifications and computational devices have
thus been proposed in the current literature.

The theoretical literature is dominated by examples from physics, such
as considerations of quantum chaos, which are not demonstrably relevant
for our purposes here. Special models are also created in economics, but
macroeconomics is theoretically far removed from most viable models in
psychophysiology. Models of individual choice and the microeconomics
of investor decisions may have some interest for cognitive science, but
the latter appears to be more fashionably grounded, at present, in neural
networks, though again the problem of simultaneous small sample sizes,
nonlinearity, non-stationarity and high noise have been recognised and
addressed (Lawrence, Tsoi & Giles, 1996).

Much of the computational literature focusses on fractal dimensional-
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ity, Lyapunov exponents, or entropy (Mayer-Kress, 1986), however, there
are paths between symbolic dynamics and entropy measures, particu-
larly where the location of periodic saddle orbits is involved (Lathrop and
Kostelich, 1989a,b). The use of Lyapunov exponents emphasises that the
predictability and controllability of processes are fundamental concerns,
but even here systems can float between uncertainty and certainty about
their future evolution (Ziehmann, Smith & Kurths, 2000). One exception,
that could circumvent the difficulties in analysing psychological data that
are encoded in numbers that do not satisfy metric axioms, is to use sym-
bolic dynamics. The problem of constructing psychological measures with
axiomatic bases that define some sort of metric was a continuing challenge
in the late-20th century (Krantz, Luce, Suppes & Tversky, 1971) and the in-
validity of assumptions by fiat that had been achieved has been described
by Michell (2002). Possible foundations of psychophysical scaling were
established on a basis of the long-established functional calculus (Aczél,
1966, gives an historical survey) to define what forms of scales can sat-
isfy metric axioms (Luce, Bush & Galanter, 1963). The assumptions therein
imply functional deterministic stability and are not of use for modelling
dynamics processes without augmentation; the modern approach using
MCMC statistics can in some restricted cases be treated as a hybrid of Eu-
ler functionals and Markov chain transitions (Winkler, 2003, p. 314), which
does postulate an evolving mixture of deterministic and stochastic pro-
cesses running through time. The symbolic dynamics explored here are
closely related to some of the assumptions of MCMC practice, but we do
not use the full apparatus of statistical estimation, rather the focus is on the
ubiquitous non-stationarity of psychological time series. In effect, by us-
ing symbolic dynamics, the processes studied are taken to be in the class
of discrete dynamical systems, and tests for stability that are developed
are in that domain (Gumowski & Mira, 1980).

There have apparently been examples from social psychology where
using symbolic dynamics instead of making metric assumptions (with
ANOVA-type statistics) has produced more sensitive insights into the
dynamics (Heath, 2000, p. 311). Guastello, Hyde and Odak (1998) and
Guastello (2000) on information exchanges during creative problem solv-
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ing in a social group, Guastello, Nielson and Ross (2002) in the analysis of
brain activity in MNR pattern sampling, and Pincus (2001) in family in-
teraction dynamics, have also made valuable use of symbolic dynamics,
employing some necessary variations in technical details.

If one wishes to explore nonlinear dynamics directly within the tradi-
tional framework of difference-differential equations then the use of vari-
ables with metric properties, such as can more readily be achieved in psy-
chophysiology than in psychophysics, is mandatory.

The matrices that we create for a representation of psychophysiological
and psychophysical time series are Markovian, and are necessarily square
and non-negative. They may also be sparsely filled and quasi-cyclic. We
know from the fundamental mathematics and from examples constructed
(Mitchener and Nowak, 2004), that if we accept the positivity of the largest
Lyapunov exponents as a sufficient indication of chaos, of one sort, then
the processes being represented in transition probability matrix form may
be chaotic.

One of the powerful consequences of using symbolic dynamics on
maps on the unit interval is that Markov transition probability matrices
may be created, and from those an information theory treatment is sup-
ported, leading back into entropy calculations. The deep mathematical
relations between symbolic dynamics, Markov chains, and entropy mea-
sures have now an extensive literature, which has been surveyed by Blan-
chard, Maas and Noguiera (2000).

This rests on some theorems of Parry (1964, 1966) showing that, if a
series behaves locally like a Markov process, then, from the perspective
of information theory, it is Markov. This approach has been extended by
Buljan & Paar (2002).

Symbolic dynamics have also been linked with nonlinear psy-
chophysics (Geake & Gregson, 1999), for encoding the existence of em-
bedded recurrent episodes within trajectories. They are used in the gener-
ation of the entropic analogue of the Schwarzian derivative, ESf , in scal-
ing quasiperiodic psychological series (Gregson, 2002; Gregson & Leahan,
2003).

The idea of employing Markovian representations of psychological
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processes evolving through time is certainly not an innovation and was
used in a fundamentally different way in learning theory (Bower & Theios,
1964). There, the dependent variable was the probability of making a par-
ticular response (usually a correct one) on a trial in a learning curve that
eventually entered an error-free absorbing state; a major finding was that
three theoretical states in discrete time generated closer fits to observed
data. Mathematical learning theory was not conceptualised as an instance
of nonlinear dynamics, but rather as simpler stochastic processes with as-
sociated statistical tests.

Parry usefully distinguishes between two matrices that play a part on
theory, the State Transition Matrix (s.t.m.) which Parry calls the Structure
Matrix, where each cell is 0, or 1 only if a transition exists, and the Tran-
sition Probability Matrix (t.p.m.) where each cell is a probability. As the
process is Markov, the transition is taken to be t → t + 1, in real time the
increment is t to t+ θ, where θ is the time interval between two successive
observations of the process. In simpler treatments θ is taken as a constant,
but it can be a random variable. Given a set S of states s ∈ {1, .., i, j, .., n}
that is exhaustive, but not necessarily ordered in terms of some measure
µ(s), the elements of t.p.m, t(i, j) are given by

t(i, j) =
{
> 0 if s(i, j) = 1;
= 0 if s(i, j) = 0

[2.9]

The t.p.m matrices are usually taken in terms of succession, so that each
t(i, j) ∈ F is the probability of state j following state i, t → t + 1. This
is appropriate in a dissipative and irreversible process, such as a real psy-
chological time series. But the reverse matrix can be computed, in which
each t(i, j) ∈ R mean the probability that i is preceded by j, t→ t−1. This
usually has different eigenvectors. Possibly the most important extension
of these ideas is to non-homogeneous Markov chains as a structure for
non-stationary psychophysics.

As we will want to examine some real and theoretical Markovian ma-
trices and their associated eigenvalues, it is proper to begin by restating
the Perron-Frobenius theorem (Frobenius, 1912, Seneta, 1973) for primi-
tive matrices:
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Suppose that T is an n × n non-negative primitive matrix. Then there
exists an eigenvalue r such that:

(a) r real, > 0;

(b) with r can be associated strictly positive left and right
eigenvectors;

(c) r > |λ| for any eigenvalue λ 6= r;

(d) the eigenvalues associated with e are unique to constant
multiples;

(e) if 0 ≤ B ≤ T and β is an eigenvalue of B, then |β| ≤ r,
and |β| = r impies B = T .

(f) r r is a root of the characteristic equation of T .

We are also going to need to make reference to the well-known scram-
bling property of Markov matrices, namely
An n× n stochastic matrix p+ {pij} is called a scrambling matrix, if given
any two rows α and β there is at least one column, γ, such that pαγ > 0
and pβγ > 0.

A corollary follows; if Q = {qij} is another stochastic matrix, then for
any Q, QP is scrambling, for fixed scrambling P .

Fast/Slow Dynamics

Interest in processes where there is a functional division between slow
dynamics, that may serve as a carrier, and fast dynamics, that can re-
semble noise or a signal with chaotic characteristics, possibly began in
engineering, but this now recognised as a paradigm for some biological
applications. In fact this area of investigation is intimately linked to the
two-attractor problem just discussed above. Arecchi (1987, p.42) from a
frequency domain approach, observed:
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We have shown that, whenever in nonlinear dynamics more
than one attractor is present, there are two distinct power spec-
tra:

i) a high frequency one, corresponding to the decay of cor-
relations within one attractor;

ii) a low frequency one, corresponding to noise induced
jumps.

The term fast/slow is used to label such processes1; it is not, in fact,
critical whether the fast part is treated as the signal or the slow part; the
important consideration is which of the two parts, if they are separable,
is externally controllable over some finite time interval, at some rate of
intervention.

For a very simple case, we assume that the dynamics are stationary
and first construct the s.t.m. of the slow part, which we label Css. The dou-
ble suffix is r to remind us that the process is assumed to be slow and
stationary.

Css =



0 1 0 0 ... ... 0 0 L
1 0 1 0 ... ... 0 0 0
0 1 0 1 ... ... 0 0 0
0 0 1 0 ... ... 0 0 0
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
0 0 0 0 ... ... 0 1 0
0 0 0 0 ... ... 1 0 1
L 0 0 0 ... ... 0 1 0


.

This matrix is defined over transitions in the real time interval t, t+ θ, and
θ has to be chosen by trial and error if the generator of the slow dynam-
ics (such as a sinusoid) is not known. If θ is too small then some terms

1 Guckenheimer (2003) uses the term slow-fast in a more complicated treatment of the
bifurcations of such systems.
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s(i, i) ' 1, and if θ is too large then other off-diagonal cells are not zero.
Css may then be part of a matrix where the elements of S are strictly or-
dered and the cell t(..) values fall off monotonically as we move away from
the leading diagonal.

Let any one line (with correction for the end lines) of the t.s.m. of
Css contain the terms t(i, i − 1), 0, t(i, i + 1), and the minima over S be
min(t(i, i − 1)),min(t(i, i + 1)). This double off-diagonal matrix with the
minima substituted for all i is Tss.

If the trajectory is on a closed orbit, then the cells s(i, n) and s(n, i),
marked L in the matrix, are also non-zero. The matrix is then a circum-
plex (Shye, 1978). This form corresponds to an attractor on a limit cycle.
Obviously, both with and without the L cells the Css pattern depends on
finding an order of the elements of S that generates the pattern. If the n
states are on a closed orbit, then there are 2n such orderings: one can start
at any state and go in either direction round the orbit.

If the fast component is the trajectory of a chaotic attractor in its basin,
then it eventually visits everywhere, has no absorbing states, and its t.s.m.
is ergodic. Call this matrix Dns. The observed matrix of the process is
Ms+n,s and if the two parts add linearly within any cell then, over some
subsequence in time, that is stationary,

Ms+n,s = Tss +Dns [2.10]

so subtracting cell-by-cell

D̂ns = Ms+n,s − Tss [2.11]

It is D̂ns that we now treat by Parry measure to find the approximate eigen-
values of the fast part of the system.

The matrices Css and F from some depression data (Gregson, 2005) do
have some interesting resemblance to a symbolic dynamics representation
of the Belousov-Zhabotinskii chemical reaction described by Lathrop and
Kostelich (1989b, p. 152). The resemblance does not reduce to saying that
the causality is the same between chemistry and psychophysiology, it says
merely that a problem in identifiability has common structure. This is
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BZ =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 1
1 0 0 0 0 1 0


.

This type of matrix can be evidence of cyclic stable dynamics, on a count-
able space chain; a deeper analysis is given by Meyn and Tweedie (1993,
p. 115). The off-diagonal array and the recurrence at s(1, 7) resemble half
of the symmetry of Css, and thus the weak asymmetry of F . The BZ dy-
namics are associated with closed orbits and an intermittent burst after
which the dynamics return to a periodic orbit. It is possible to employ the
symbolic representation to calculate the topological entropy ht using only
relatively slow orbits and hence of low period, as Lathrop and Kostelich
(1989) also had the maps of the reconstructed attractor and the data series
8400 points long.

If Np is the number of periodic points for the pth iterate of the return
map, then

ht = lim
p→∞

1
p
log2Np [2.12]

but [2.12] does not work for short series. Alternatively from the t(i, j) ma-
trix BZ

Np = trace Mp [2.13]

The trace2 is the sum of the diagonal elements of the t.p.m. matrix, as it is
dominated by the largest eigenvalue λ1 of the matrix for large p,

ht = log2λ1 [2.14]

which resembles the Parry measure derivation. In the example ofBZ, ht =
0.73 bits/orbit.

2 See Horst (1963) for an introduction to trace properties and computation.
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In situations where there are two or more attractors and fast/slow dy-
namics exist, a link emerges between the two attractor situation examined
above and also, apparently, with nonlinear psychophysics (Gregson, 1988).
This is illustrated in an example by Arecchi, Badii and Politi (1984) who
show that, if there are jumps between basins of independent attractors,
the system as a whole exhibits a low-frequency component in its power
spectra. The Lyapunov exponent is then complex, being made up of parts
corresponding to attraction and repulsion. This has some qualitative par-
allel with the Γ function used in nonlinear psychophysics; both Γ and the
example created by Arecchi et al are grounded in a cubic map, without
noise. The dynamics are very complicated and cannot be reduced to a sin-
gle 1/f b, 1

2 < b < 2, power spectrum.

Filtering Sequential Dynamics

The information in a dynamic series involves not just the values taken in
a raw data series yj , but their successive differences, ∆1yj ,∆2yj and so on
until they converge to a very small value or zero.

Entropic Analogue of the Schwarzian Derivative.

This method was introduced by Gregson (2001), it is a parallel of a deriva-
tive introduced by Schwarz (1868), but based on local summations of
coarsely scaled series and not on point derivatives of a continuous func-
tion. The idea of treating a dynamical trajectory from an entropy perspec-
tive is not novel, but is well developed (See Sinai, 2000, Chapter 3) and can
be traced back to statistical mechanics in the 19th century.

A series of a real variable y is partitioned into k exhaustive and mu-
tually exclusive subranges in the values y it takes, k = 10 is initially suf-
ficient. As a condition of the normalisation 0 ≤ y ≤ 1 the end subranges
h = 1, k will initially not be empty. Some or all of the remaining k− 2 sub-
ranges may be empty, when the dynamics are minimally informative. Call
the width of one such subrange δ(0) (of y). δ(0) = .1 for the original y but
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will almost always be less for ∆m(y), the successive mth absolute differ-
ences of the series. This δ is the partitioning constant of the system. Call
the partitioning constant of the range of the mth differences δ(m). In the
examples used here δ(1) is referred to simply as δ in the tables of results,
and all δ(m),m > 0 are set constant = δ(1).

The frequencies of observations lying in one segment δh, h = 1, ..., k is
then nh, and converting to probabilities ph we compute the information in
that subrange. The absolute differences of the rescaled y series are taken
putting

∆1(yj) = |yj − yj−1| [2.15]

and further differencing repeats this operation, so that

∆2(yj) = |∆1(yj)−∆1(yj−1)| [2.16]

This operation can be continued only until all absolute differences are zero.
Going only as far as ∆4 is sufficient. Summing over all subranges gives the
total information in the mth differenced distribution as

I
(m)
{h} = I(m) =

k∑
h=1

phlog2(ph)|m [2.17]

Then, by definition, the entropic analogue of the Schwarzian derivative,
abbreviated to ESf , has the form

ESf :=
I(3)

I(1)
− 3

2

(
I(2)

I(1)

)2

[2.18]

For some strongly chaotic (theoretical variants on Γ) series, ESf is pos-
itive in the examples we have seen and becomes increasingly negative
as processes are more stochastic. It has been applied to series from psy-
chophysics, EEGs, climate and economics. Its main advantage is that is is
computable over much shorter time series than the Lyapunov exponents.

By extension, each of the distributions of ∆kyj can be predicted by a
dynamical model and then compared to data by the Kullback-Leibler for-
mula.
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Bispectral Kernel Analysis

This method is usually employed in the frequency domain, but here a time
domain version is used, together with the surrogate tests.

Bispectral analyses are, in fact, third-order kernels of time series. They
have been extensively used in anaesthesiology in the tracking of the evo-
lution of EEGs during surgery, following Rampil (1998) and Proakis et al
(1992), and are there computed in the frequency domain using FFTs. They
resemble the kernels used in nonlinear analyses described by Marmamelis
and Marmarelis (1978).

If there exists a real discrete zero mean third-order stationary process x,
then its third-order moment matrix is defined over a range of lags 1, ...,m,
1, ..., n by

R(m,n) := E[x(j) · x(j +m) · x(j + n)] [2.19]

This matrix is skew symmetric as m,n can be exchanged in the definition.
The triangular supradiagonal matrix is sufficient for exploratory purposes
and is used in the tables in the form shown; to compute its eigenvalues, it
is reflected into the square form and the leading diagonal cells filled with
the average of the off-diagonal cells as an approximation. Its roots will, in
general, be a mixture of reals and complex conjugates.

b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
b(2,3) b(2,4) b(2,5) b(2,6)
b(3,4) b(3,5) b(3,6)
b(4,5) b(4,6)
b(5,6)

Compare the usual second-order autocorrelation which is defined as

R(m) := E[x(j) · x(j +m)] [2.20]

over a range of lags 1, ...,m.





Chapter 3

Transients onto Attractors

There are various ways of dealing with transient perturbations of what ap-
pears to be an almost regular evolution of dynamics: one can ignore them;
one can delete them and replace then by the moving average of adjacent
observations; one can treat them as outliers, perhaps generated by errors
in measurement; one can treat them as outliers from a non-normal distri-
bution due the the presence of a secondary distribution; or one can treat
them as intrinsic to the dynamics and perhaps predicted by chaos the-
ory. We will examine some alternatives. In psychometrics, it is tempting
to regard them as errors due to the influence of unwanted brief external
stimuli. One can argue (Gregson, 1992) that any psychophysical stimulus-
response series is itself a series of transient perturbations of the stable dy-
namics of a sensory system that exist when no inputs are being received.
A sensory system then filters signals and returns after each to stability, but
may modify its own filter characteristics in so doing. It can show adapta-
tion and desensitisation.

A reanalysis of long-standing assumptions in models of judgements,
as made in multidimensional scaling or similarity theory, has shown that
some metric space and stochastic assumptions are neither necessary nor
universally valid (Miyano, 2001), but, importantly, using a cross-entropy
formulation (resembling a Boltzmann or Kullbach-Leibler measure), it is
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possible to tie together imprecision of judgements and their associated
confidence levels, and to have, within the one model, behaviour rang-
ing from stochastic to deterministic. Such floating appears to be a com-
mon characteristic of psychophysiological processes at various levels from
the neurophysiological to the psychophysical and it is interesting that re-
searchers in various of these areas have resorted to local entropy measures
rather than to the more traditional frequency domain representations.

Let us first look at an approach from nonlinear dynamics. The purely
mathematical analyses of nonlinear dynamics are concerned with the
properties of attractors under stability, within their own basins, or at the
boundaries of their basins. It is in applications to the physical sciences that
questions of stability have mainly been studied as computational prob-
lems (Viana, 2000). The use of nonlinear dynamics in the behavioural sci-
ences is still slight, though advocated in some quarters (Nowak & Val-
lacher, 1998), and the serious question that investigators face is what to
do about the fact that most data are about transients or pathways onto
stability that, at any moment, might be overwritten by the effects of new
destabilizations. In previous work, I have gone so far (Gregson, 1992) as to
equate, conceptually, stimulation to transient destabilization of a continu-
ing underlying process that is itself nonlinear and may be chaotic.

Nonlinear dynamics are analysed as a special class of problems within
time series analysis, if we take a statistician’s approach. Most of the avail-
able methods and the derived indices which characterise the nature of
the nonlinearity and the attractors generating the dynamics are legitimate
only for long stationary series (Kantz & Schreiber, 1997). There are other
problems (Demazure, 2000) in that linearization is not universally applica-
ble, but may be applicable in the neighbourhood of singular points that are
attracting. There are also difficulties in linearization when working with
dimensionalities greater than 2 and we do not usually know much about
the dimensionality of psychological dynamics a priori.

In reopening the questions here, initially a restriction to considering bi-
variate trajectories in the reals will be imposed. One of the system param-
eters may be designated gain, and the other control; that is not strictly nec-
essary, but conceptually it can help. The output variable of the system will
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be single and real, at least initially. This will be relaxed once some simpler
methods have been outlined. A diversity of indices have been proposed
for characterising the dynamics which are supposed to underlie the gen-
eration of any observed trajectory of sufficient length; these have variously
plausible mathematical justifications and, in some cases, may be treated as
statistics and not as strictly deterministic indices, so that confidence inter-
vals on estimates may be derived either analytically or by Monte Carlo
methods.

Various reasons exist for being interested in very short time series
when these are taken to be samples from a dynamical trajectory. We may
suspect that there is evidence of moving onto or off an attractor, or be-
haviour in the neighbourhood of a singularity, or of one of the local recur-
rent patterns within a longer series that jumps between levels of stability.
In the most general sense, we may simply think the process is not station-
ary, but not be sure how or why this happens. In psychological processes
the very nature of the nonstationarity itself can be informative and even
characterise the system.

Setting these constraints, the dynamics of the process can be repre-
sented on the surface of a manifold which has locally (geodesically) at
least two dimensions but is in an embedding space (geometrically) of at
least three dimensions (Gregson, 1998; Roweis & Saul, 2000). The mani-
fold of a nonlinear system is not flat, if it is a surface in two dimensions,
but has curvature in varying degree in at least one direction correspond-
ing to the axes of the embedding space. In psychometric applications, this
manifold may be the response surface of a process which maps from stim-
ulus properties to observable responses. It is thus the extension of the tra-
ditional idea of a psychometric curve, but any one curve is produced by
a section plane through the manifold, and where the section is drawn is a
function of the task constraints imposed in generating a small region of the
manifold. Reverting back to the idea of the influence line diagrams U,C in
the introduction, a response time series is the result of meandering over
the surface of the manifold. The data of an experiment are thus a sparse
mapping of the surface of the manifold in this restricted case where the
manifold is a surface without volume.
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Whether or not the manifold can be plausibly reconstructed from a
data set depends not just on the degree of sparseness but on where the
sparse data lie; if they are tightly clustered, then a local region of the man-
ifold can be recovered, partly because in that local region geodesics on the
surface of the manifold and Euclidean distances in the embedding space
are virtually the same. This local relation enables the data analysis to use
linear approximations, as Roweis and Saul (2000) observe. But is is also the
reason why it is possible to create valid psychophysical functions locally
with traditional methods, but to fail with a global analysis.

Nonlinearities that are sometimes puzzling from the perspective of
Fechnerian psychophysics include cusps, the breakdown at extremes of
Weber’s law, negative masking and simple discontinuities.

Manifolds

An invariant manifold is the name given by mathematicians to a surface
contained in the phase space of a dynamical system which has the prop-
erty that orbits starting on the surface remain on the surface throughout
the course of their dynamical evolution (Wiggins, 1988, p. 26). To visualise
an example, consider a linen handkerchief which, when laid flat on the ta-
ble, is a two-dimensional rectangle. Scrumple it up a bit and put it into a
transparent plastic rectilinear box. To give the coordinates of any point on
the handkerchief within the box needs a vector of three terms: the x, y, z co-
ordinates defined with reference to the sides of the box. But distances run-
ning tightly on the surface of the handkerchief, and not jumping through
the space in which it is contained are still distances in a two-dimensional
topology.

In psychophysics, the nearest analogue to a manifold is a response sur-
face; examples using Γ theory (Gregson, 1988, 1995, 1998) might also be
seen to resemble a slightly scrumpled handkerchief. There are earlier ex-
amples, Osgood’s (1953, p. 532) transfer and retroaction surface in serial
and transfer learning theory is a manifold. But some parallels between
mathematical definitions and the properties of real psychophysical sys-
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tems can, with caution, be pushed a little further if we are prepared to
accept that what happens in sensory and perceptual systems is governed
by some nonlinear dynamical principles. In the psychophysical example,
there is always some noise present, which means that data points that
ought to lie in the response surface will lie near to it, like insects buzzing
around a honey-soaked cloth. If and only if we know the equation that
defines the response surface, then we can partition data into points on the
surface and points clustered around the surface, just as in the simplest al-
most degenerate case of a single psychometric function (or item character-
istic curve) we can linearise the plot and use regression theory to estimate
goodness-of-fit.

The mathematical theory enables us to go further and find that the dy-
namics of points near to an invariant manifold M , which are attracted to
or repelled from the manifold, are themselves in manifolds, called respec-
tively the stable and unstable manifolds of M . Only if one understands
all the dynamics of M and its associated stable and unstable manifolds
can one describe what the system will do as it evolves in time. To parallel
this in behavioural terms, one has to understand the capacity of a system
for self-correction and for its breakdown under overload to understand
it properly. Studying it only under stationarity, which is studying it on
the invariant manifold, is not enough. Our interest in transients, then, is
an interest in the local trajectories that run onto an invariant manifold or
run away from it, but, preferably, onto it, as we are more concerned with
bringing systems under control than watching them self-destruct.

Identification of local manifold regions

There are various ways in which the actual response surface of a system
might be identified in the region in which we have data, when that re-
sponse surface is treated as part of the invariant manifold of a nonlinear
dynamics.

Reconstruction of local trajectories onto the surface, where in a small
region linear mappings are admissible, has been developed by Roweis and
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Saul (2000). Alternately, one may create a model of a global region and
then differentiate the surface to find areas of maximum instability, which
are areas with the maximal information of potential interest for process
control. Let us consider what the failure of Weber’s law tells us, as dynam-
icists. Forget, for the moment, that it is a unidimensional description of
system sensitivity. It tells us that there exists a middle range within which
sensitivity is informative, and end ranges where responses change only
coarsely with stimulus changes. This is a section through a manifold which
has a gradient in one region and is almost flat at the edges. The manifold is
bounded because biological systems do not responsd to zero or to infinity,
they only operate in a narrow window of physical inputs. The manifold
can be locally differentiated; that is, at any point, its surface x can be re-
placed with another surface whose values are the maximum local gradi-
ent δx|x at that point. This analysis is outside time; it is global and about
the end points of all the trajectories that have terminated on the invariant
manifold. If the surface of the manifold is viewed from the viewpoints of
all three of the embedding dimensions then the derivative surface has at
any point x, y, z a vector δx, δy, δz|x,y,z and the steepest gradient is a vec-
torial resultant of these three gradients (Weatherburn, 1927).

A process arrives on the invariant manifold if it is governed by the
stable manifold. The stable manifold is exposed in the time series which
are generated in the attractor basin. If the attractor dynamics are chaotic
then the largest exponent in the vector of Lyapunov exponents is positive,
but as the dynamics do not explode some or all of the remaining exponents
must be negative; the process stretches on one dimension while it shrinks
on another, staying within a bounded space. For this reason, the largest
exponent, if positive, is taken heuristically as sufficient evidence of the
presence of chaotic dynamics in the system. The Lyapunov exponents are
directional, but they are not the same thing as the local gradients on the
invariant manifold; one set is global in time and the other is local in space,
so both are needed for a coherent system description.

What, then, is the link between the time series described in the intro-
duction and the time series of the stable manifold? They are not derived
from quite the same sort of experiment; for example, if both EEGs and
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perceptual responses are collected in the same experiment, the time scale
of the EEG recordings is relatively fast: one data point per 3 msecs in the
gap between successive perceptual responses made slowly at some sec-
onds apart. Preserving the finer distinctions of our terminology, the EEG
series is an event series (it has to be if the FFT approach is to be used to
get an energy spectrum in the frequency domain), whereas if the percep-
tual responses are paced by the subject’s own response latencies and are of
detection (’yes-no’) form, then the response series is a time-interval series.

One sort of model that has been explored in stochastic representations
is an accumulator, where the cumulative fast covert activity ongoing dur-
ing the EEG series reaches a threshold or an absorbing barrier and then
releases the overt slow response (Heath, 1992; Vickers, 1979). It is quite
possible for the dynamics at one level to be linear and to be nonlinear at
the other (Wright & Liley, 1996). If the system is already on the invariant
manifold, then any time series is an orbit on the manifold; it may or may
not be represented by a random walk in a tiny neighbourhood, but cannot
be random over a wider neighbourhood, because of the connectedness of
the manifold. However, the manifold may incorporate catastrophes and so
time series of orbits may have transients through singularities.

The fundamental problem with short records is that they may be gen-
erated in a diversity of ways:

• partly a stable manifold,

• partly later an invariant manifold,
(the probability of beginning a data series on an orbit on the invari-
ant manifold is asymptotic to zero if the process is perturbable and
needs real time to come to stability.)

• or stochastic high-dimensionality perturbation of a linear process.

In any of such processes, there may or may not be stationarity in the
dynamics1. The nonstationarity may be a form of jumping between the

1 In the limit, the process is already on a point attractor, which is a manifold of zero di-
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components already listed, or even jumping from one manifold to another.
If the attractor is multi-lobed, as some of the classical cases in the physical
literature are known to be, so that they jump intermittently from one lobe
to another in the phase space, then even uncertain identification cannot
result until one or more jumps between stable regions has occurred. Jumps
between stable regions on a manifold are assumed to be catastrophes in
various social psychological studies (Guastello, 1995) but jumps between
basins of attraction in a delayed attractor’s dynamics may simply be the
results of jumps in an external forcing function (Gregson, 2001).

The idea that a time series could be generated by a set of states with
conditional jumps between them was explored by Tong in the SETAR (Self-
excitatory autoregressive) models. Another approach is to use stochastic
differential equations, with jumps; under some conditions these converge
to a Markov structure, a semigroup (Horbacz, 2004). In SETAR, any one-
state evolution was modelled by an AR process of low (i.e. finite) order,
but if the states were generators of orbits on a nonlinear manifold this
would be conceptually inadequate. The difficulty is to model the transition
rules between states or between corresponding stable (that is, stationary)
regions, which is why the assumptions of the simpler catastrophes are so
plausible and tractable.

Treating as Time Series

A little recapitulation will not come amiss, using a Markov representation
and symbolic dynamics.

mensionality, and, from the psychologist’s external viewpoint, we have complete response
stereotypy.
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C =



0 1 0 0 ... ... 0 0 0
0 0 1 0 ... ... 0 0 0
0 0 0 1 ... ... 0 0 0
0 0 0 0 ... ... 0 0 0
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
0 0 0 0 ... ... 0 1 0
0 0 0 0 ... ... 0 0 1
1 0 0 0 ... ... 0 0 0


.

C is a Markov transition probability matrix containing one cycle through
the states 1, 2, 3, 4, ..., n, 1, 2, 3, 4, ..., n, 1, ... It is the cycle that orders the
states, not their intrinsic identities. Frobenius (1912) specifically discussed
this form of non-negative square matrix. The process that C represents in
symbolic dynamics is cyclic but not necessarily periodic. In order to decide
if it is strictly periodic, and then compactly representable in the frequency
domain by a Fourier expansion, it is necessary also to know the probabil-
ity distribution of dwell times in each of the cells labelled with a ’1’. If, for
example, all of these distributions are exponential, of the same form, and
decaying with a long tail, then it can be periodic as well as cyclic. Matrix
C is not a probability transition matrix as it stands, but a state occupancy
matrix, the distinction Parry is cited as drawing in Chapter 2. But, in the
limit, it can be interpreted as a completely deterministic probability ma-
trix. It is not then ergodic. Let us relax a little the form of C and see what
happens. Let m be the rank of C. Put q = (1/m) ∗ (1 −m)pi,i) and fill the
matrix m×m with q where we had zeroes. The matrix is then ergodic, and
maximum entropy.
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Cm =



q p1,1 q q ... ... q q q
q q p2,2 q ... ... q q q
q q q p3,3 ... ... q q
q q q q ... ... q q q
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
q q q q ... ... q pm−2,m−2 q
q q q q ... ... q q pm−1,m−1

p1,m q q q ... ... q q q


We can now derive the stationary state vector, when Cm = 7 × 7,

and the eigenvalues, from Cm, which are, for q = (1 − p)/(m − 1) and
if p = .8, q = (1− .2)/6 = .033̇, as it is asymmetrical some eigenvalues are
complex conjugate pairs, that is

E: 1.00, -0.694±0.334i, 0.480± 0.602i, -0.1713 ± 0.750i
The stationary state vector (SSV) is a rectangular distribution. If the cyclic
dynamics are disrupted by a periodic transient, such as is done by putting
the fourth row of Cm as .04, .04, .04, .04, .40, .40, .04, then the SSV is quite
different, and after relatively slow convergence shows a peak for state 4.

Tremor Series

It could be argued that the comparison of different measures of dynam-
ics will vary with stronger erratic characteristics of the time series used,
and so for comparison a series with very different appearance, and irregu-
lar transient extreme deviations, unlike, for example, some normal cardiac
series, is treated analogously to see what happens. We have chosen records
of the motor control fluctuations and hence the failures that characterise
Parkinson’s disease, but without choosing here to model the physiological
dynamics within limbs and brain that are the basis of what is externally
recorded, simply to look at the time series themselves. The example cho-
sen is s14r45of.d from the PhysioNet archives; only the first 4000 steps are
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used, in blocks of 400. The dynamics are on visual inspection nonlinear
and non-stationary. Deviations can be peaks isolated in time, or come in
sustained bursts.

Figures 3.1, 3.2 and 3.3

The raw data of Parkinsonian blocks 2, 4 and 10, illustrating transients.
Vertical scales vary.

These series are wildly fluctuating, and their irregularity is reflected in
most of the computed indices. The distribution of the dependent variable
(as in the vertical axes in the graphs) is nothing like Gaussian, and would
not he readily represented in the frequency domain, as Fourier analyses
cannot handle local aperiodic spikes. Autocorrelations would be similarly
misleading except as long-term averages. It is possible to treat this sort
of series in a Markov chain filtering, as we did in the introductory exam-
ple’s Epochs. It is possible that the leaky bistable matrices introduced by
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Mitchener and Nowak (2004) are a candidate model.

There appear to be two levels of tremors, low amplitude high fre-
quency and intermittent aperiodic high amplitude, which coexist. High-
pass and low-pass filtering could be used to partial these out. Parallels
with the dynamics of sleep-wake cycles involving modelling by two cou-
pled oscillators can lead to similar algebra (Strogatz, 1986).

——————————————
Table 3.1: Descriptive statistics of Parkinsonian Tremor series

Block LLE mean Kurt ESf D2 H ApEn
1-400 +.034 .812 133.41 -.3897 1.835 .1647 1.112

401-800 +.078 .717 19.63 -.5572 1.806 .1928 1.122
801-1200 +.083 .529 6.43 -.5027 1.806 .1937 1.120

1201-1600 +.052 .725 71.66 -.5578 1.780 .2200 1.188
1601-2000 +.009 1.033 156.22 -.5025 1.932 .0684 1.092
2001-2400 +.073 .831 5.93 -.6258 1.788 .2118 1.245
2401-2800 +.096 .640 5.82 -.6642 1.790 .2103 1.250
2801-3200 +.065 .937 23.80 -.6354 1.780 .2201 1.259
3201-3600 +.080 .756 5.17 -.6146 1.836 .1641 1.219
3601-4000 +.023 1.106 122.78 -.4891 1.750 .2498 1.111

– – – – – – – –
cftv .449 .207 1.045 .145 .298 .250 .054
regr 1 -4.94 -1874.52 -1.89 -5.08 0.78 1.44
corr 1 .825 .910 .660 .289 .461 .635

Key: Block: beats in sequence. LLE: largest Lyapunov exponent. mean: av-
erage i.b.i. Kurt: kurtosis. ESf: entropic analogue of Schwarzian derivative.
D2: fractal dimensionality. H: Hurst index. ApEn: approximate entropy
(k = 10, δ = .02). cftv: coefficient of variation (σ/|µ|). regr: slope of regres-
sion of variable on LLE. corr: product-moment correlation of LLE with
variable. For ESf, k = 10, δ = .005

——————————————
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It now appears, from other quite separate data on oscillations in
Parkinsonian tremors from a gyroscope-based recording instrument (Mo-
tus bioengineering), that the local LLE is related in its fluctuations to com-
parable fluctuations in the local ESf and these variations are compatible
with differences in theESf arising between random and edge-of-chaos ac-
tivity. The bispectral approach also identifies local epochs with anomalous
dynamics. Non-stationarity does not create an absolutely critical objection
to using all these methods, rather the non-stationarity is intrinsically inter-
esting in biological processes.

For a brief comparison, exploring some data from the Motus recorder,
(kindly provided by Dr. Felsing) in four blocks of 200 steps each, a single
entropy value from each bESf matrix is derived; the original data series
are left in their raw units, and the b(n,m) values computed. The notation
b(n,m) for B(n,m) is used to emphasise that these are short sample and
not infinite summation estimations. The b(n,m) are then rescaled to (0,1)
over the whole triangular matrix, so that each 0 < b∗(n,m) < 1, and the∑n,m b · log(b) value is used as a single index of the matrix information.
Call this Ent : bESf .

The Motus series are dominated by a sinusoidal carrier signal and are
hence quite stable over successive subsamples.

Markov and Eigenvalue representations

Each subset time series y can be converted to a 5-state symbolic series Y ,
and its associated Markov transition probability matrix then computed.
This conversion to non-metric encoding is the shift from y to Y in Chapter
2. The choice of five states is arbitrary, but sufficient for our exploration of
instabilities in the dynamics. The last column is an estimate of the Station-
ary State Vector for the matrix.

If the data in Block 2 are taken as generated by a basic symbolic process
X unperturbed by transients, then the SSV in that block can be used as
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Table M
Entropy values based on bESf and Esf

of Motus series

Sample Ent:bESf ESf
1 4.1465 -.1637
2 4.8012 -.0541
3 4.8221 -.0431
4 5.4598 -.0251

Matrices of maximum and minimum differences of deviates in the
cells of the four bESf triangular matrices

Maxima (bolface) are written over their corresponding minima.

4.2737 2.4720 .7191 -.0059 -1.5805
3.9950 2.4511 .5646 -.1096 -1.9004
2.5889 .7240 -.1613 -2.0440
2.5460 .5853 -.3210 -2.1011
1.7894 -1.314 -1.8984
1.6936 -1.4740 -1.9878
-.2319 -2.3957
-.3006 -2.4869

-1.9232
-2.1691

——————————————

estimates of pi(X|θ), i = 1, .., 5 in the Kullback-Leibler expression

I(Y,X) =
5∑
i=1

pi(Y ) · log
(pi(Y )
Xi|θ

)
[3.1]

and that may be taken as a relative mismatch distance (not a true metric
distance, because of asymmetry) between theory in Block 2 and data in
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Tables 3.2: Markov matrices for blocks.
The transition probability matrix for Subset 2 in a 5-state encoding.

.205 .436 .256 .103 .000 : .0977

.130 .426 .374 .070 .000 : .2882

.054 .210 .613 .113 .011 : .4662

.105 .158 .316 .421 .000 : .1429

.000 .500 .500 .000 .000 : .0050

Eigenvalues: 1.000, .316± .015i, .021, .012
The transition probability matrix for Subset 3 in a 5-state encoding.

.074 .148 .333 .444 .000 : .0676

.071 .143 .393 .357 .036 : .0675

.106 .041 .463 .382 .008 : .3076

.047 .062 .209 .645 .038 : .5323

.000 .100 .200 .700 .000 : .0251

Eigenvalues: 1.000, .283, -.063, .052± .024i
The transition probability matrix for Subset 8 in a 5-state encoding.

.200 .200 .533 .067 .000 : .0375

.024 .293 .561 .122 .003 : .1028

.034 .086 .776 .100 .003 : .7268

.019 .019 .635 .327 .000 : .1303

.000 .000 1.000 .000 .000 : .0025

Eigenvalues: 1.000, .219± .046i, .165, -.006
The transition probability matrix for Subset 10 in a 5-state encoding.

.000 .714 .286 .000 .000 : .0178

.011 .849 .134 .004 .004 : .7053

.029 .340 .621 .010 .000 : .2694

.000 .500 .500 .000 .000 : .0051
1.000 .000 .000 .000 .000 : .0025

Eigenvalues: 1.000, .496, -.010± .051i, -.006
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the other blocks. For block 3 compared with block 2, I(Y,X) = .7064, for
8 with 2, .2410, and for 10 with 2, .6167. Block 3 has the greatest deviance,
so the lowest relative posterior Bayes probability of being generated from
the dynamics in block 2 (Burnham and Anderson, 1998).

A possible further type of exploratory data analysis on series with sus-
pected non-stationarity arises here and, for interest, is described. The in-
trinsic asymmetry of I(Y,X) means that for a set of m ∈ M subsets or se-
quential non-overlapping data blocks there areM(M−1) comparisons, the
auto-comparisons I(m,m) are all zero by definition. This can be set out in a
asymmetric square matrix, with leading diagonal (trace) of zeroes, whose
eigenvalues will include a dominant term. Using for illustration the four
matrix SSVs in Tables 3.2, we have then from [3.1] the I(Y,X), Y,X,∈ M
matrix

Y→: Bl. 2 Bl. 3 Bl. 8 Bl. 10
X:Bl. 2 0 .7064 .2410 .6276
X:Bl. 3 .6253 0 .6292 2.2592
X:Bl. 8 .2889 .7491 0 1.5309
X:Bl.10 .9284 3.6118 1.4041 0

with eigenvalues E : 3.817,−2.965,−0.635,−0.217.

Higher-order Dynamics

The bESf matrices are computable for each subset and the triangular form
shown in Chapter 2 can be rewritten in square symmetrical form, but the
entries are not necessarily positive (Gregson, 2002). The leading diagonal
cells are taken to be the mean of the off-diagonal cells. This convention has
been checked to show that it does not materially effect the eigenvalues.
The eigenvalues for each of the ten subset matrices are given in Table 3.3.
As the matrices are symmetric by definition none of the eigenvalues are
complex.

There now appears to be a transient perturbation around block 4. Due
to local memory in the system the first-order transient in block 3 leaves
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Table 3.3: Eigenvalues of the ten reflected bESf matrices

Block E1 E2 E3 E4 E5 E6
1 -2.1975 -0.2343 0.2223 0.1822 -0.1509 -0.0064
2 -2.3814 0.2233 -0.2166 0.1412 -0.1041 -0.0287
3 -2.2254 0.2756 -0.2324 0.1694 -0.1307 0.0618
4 -1.9827 -0.3001 0.1713 0.1052 0.0489 -0.0077
5 -2.7091 -0.3209 0.3162 0.1739 -0.1143 -0.0499
6 -2.0382 -0.3044 0.2288 0.0521 0.0426 -0.0279
7 -2.4898 0.2460 -0.1660 -0.0904 0.0660 -0.0468
8 -2.6348 0.2136 -0.1600 -0.0534 0.0323 -0.0273
9 -2.4972 0.3059 0.2358 0.912 -0.8158 -0.0810

10 -2.4093 0.2931 -0.2849 0.1507 -0.1379 -0.0121

————————————————-

traces that show later. Such traces are sometimes called persistence. Yet
another note of caution is in order: if one employs more conventional
stochastic time series analysis on nonstationary data, it is possible to make
identification errors, positive and negative, and only some models are
properly sensitive to the detection of persistence (McCabe, Martin and
Tremayne, 2005). It is only sensible to search for persistence if there exists
some plausible reason to believe that the substrate physiology or mem-
ory processes have the capacity to support such persistence. In this sense,
the psychology provides boundary conditions within which a statistical
model has to be framed. Relevant models of working memory have been
revised by introducing nonlinear dynamical networks in the relevant the-
ory and there are thus open and unsettled questions about how persistence
might be stored (Machens, Romo and Brody, 2005).

This interesting and unstable tremor series is revisited again in Chapter
10 for a further and slightly different analysis, which complements what
is explored here.





Chapter 4

Inter- and Intra-level
Dynamics of Models

In the period since the early 1980s, the amount of research published on
the nonlinear dynamics of systems, including networks, has so expanded
that it is impossible, even if one had the necessary erudition, to compre-
hend and synthesise effectively its implications for the psychologist. Ad-
mittedly, only a tiny fraction of this work is specifically addressed to prob-
lems which plausibly arise in considering brain and behaviour, but, even
then, one has to selectively sift through results to discern what has impli-
cations for data analysis and theory construction.

Historically, one may trace an evolution and a shift in the style of mod-
elling: from the simplest networks with two layers, through multi-layered
nets, to network dynamics with stable and unstable basins of attraction
(Killeen, 1989, Thelen and Smith, 1994), on to systems with two or more
simultaneous time scales, supporting fast and slow oscillations (Cveti-
canin, 1996) and giving more consideration to what is becoming learnt
about mid-brain information transmission, encoding and storage (Jensen
and Lisman, 1996). On the one hand, the increase in the power of computa-
tion to the massively parallel has partly closed the gap between the effec-
tive degrees of freedom of the functioning brain and the simulation of at
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least one or more of its subsystems; sensation, perception, memory, deci-
sion and choice. On the other hand, the availability of newer non-intrusive
brain scan technologies, PET and MRI to augment the limited insights pro-
vided by EEG, has cast irreversible doubts on simplistic mappings of con-
sciousness to neurological activity (Revensuo and Kamppinen, 1994; Hen-
son, 2005).

The processes which we can observe at the behavioural level are the
consequences of mass action in the central nervous system; pathways with
multiple serial and parallel cross-coupled interaction are recursively acti-
vated and can be not only nonlinear in their dynamics but also not station-
ary in the parameters of any model which captures, at least, the robust fea-
tures of their qualitative dynamics. There are at least three distinguishable
ways in which we may constrain the evolution of a trajectory. Modelling
the single neuron is not what we are after. Modelling systems which can
still function in much the same way when a fraction of their connectivity
graph is deleted is of prime importance.

The use of attractor neural networks (ANNs, see Amit, 1989) as psy-
chophysical metaphors, with capacity to classify, remember and learn, has,
unsurprisingly, shown that simple nonlinear couplings over local arrays in
space and in time can generate a diversity of input-output mappings and
can be sufficient substrates of Gestalt phenomena (Gregson, 1995, Ruh-
nau, 1995). Some phenomena created are static, some are transient, some
are locally predictable, and some are irredeemably stochastic. If we choose
to start with the physicist’s spin-glass theory and then progressively relax
some of its structural assumptions, it is possible to approach a metaphor of
some neurobiological mass action. Even that intrinsically over-simplified
ANN exhibits the switching between stability and transitory eruptive phe-
nomena, which can also emerge from a possibly infinite collection of alter-
native models which at their core involve nonlinear recursive mappings
evolving through time; in short, they exemplify an aggregate of trajecto-
ries, not a single trajectory. This aggregate is sometimes autonomous and
sometimes slaved by inputs from the environment. The distinction links
into what has been called contextual guidance in multivariate neural net-
works (Kay and Phillips, 1996).
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Again, we are faced with a multi-level problem, as in the title of this
chapter, but now the upper or dominant level represents constraint by the
organism’s metabolism and not directly by the environment. Of course, in
turn, the environment can modify the metabolism, via nutrition, but the
time scale of that is vastly slower than the processes in milliseconds which
concern us here.

I would like here to explore one aspect of trajectory generation that
I had briefly mentioned earlier (Gregson, 1988) and never subsequently
elaborated for its computational consequences. The basic idea is very sim-
ple, namely that if the dynamics, necessarily dissipative and irreversible,
are the mode of functioning of a real system and not just a mathematical
recreation, then what they represent can only be achieved, in real space
and time, by consuming energy (and producing waste products, but let us
leave that out of the story for now). For example, the brain needs glucose
and the mechanisms of conversion of glucose to energy to keep going. We
know that, in fact, the brain is a dominant user of energy in the economy
of the total body. There are limits on how fast it can function, which have
preoccupied psychophysicists since the mid-19th century, and it can run
out of energy and become dysfunctional, or atrophy in some of its cells.
There is always death on the eventual horizon.

One is therefore tempted to take a very simple starting point, not even
a network in 3D but a single nested recursive channel, and see what hap-
pens to its quasi-stability, periodicities, and even its frequency spectral
representation, if we embody in the model additional constraints on what
are implicitly the changes which need energy to take place. These are the
changes in the levels of the core system variables; these levels should be
expressible as potential energy values. If one were to go initially in this ar-
gument to nΓ cascades then the possibility of hyperchaos could arise and
muddy the waters even more (Thomsen, Mosekilde and Sterman, 1991).
The necessary algebra is derivable from the multichannel and cascade nΓk

precedents but is perhaps untidy.
However, without any of these entropy-bounding considerations we

observe in a nonlinear system the diversity of dynamics which are repre-
sentable by the regions and boundaries of Julia sets and by the homoclinic
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and heteroclinic orbits in phase space diagrams.
If the dynamics are within an environment whose series of inputs

might push the process across a heteroclinic orbit (Wiggins, 1988, p. 182),
then some additional constraints on the dynamics are needed if the organ-
ism is to survive. In mathematical terms, the introduction of these con-
straints on the components of a multiple channel system would open up
the possibilities, already noted by Rössler (1991), of a hierarchy of types of
chaos (Baier and Klein, 1991) some of which are not analytically tractable
even though they can be readily simulated. They are also almost impos-
sible to identify from outside without parametric knowledge of the con-
straints themselves. To keep things simple, we are not going to consider
the possibility of a real biological system sitting permanently in a hetero-
clinic tangle; from an evolutionary perspective, that seems unrealistic.

Putting new bounds on the rate of evolution of trajectories, and hence
protecting a system from running into explosion, at the expense of forcing
its evolution into only some subregions of its natural dynamics, has con-
sequences which can be counter-intuitive. There is no psychophysically
good a priori reason to restrict any model to analytically tractable struc-
tures, because there is no a priori reason to assert that such processes at
present exist in the real organism (what is analytically tractable changes
slowly and extends over time with the emergence of new mathematical
ideas). For a demonstration that some qualitative phenomena can arise in
a bounded nonlinear system, as opposed to showing necessary and suffi-
cient conditions for them to arise, it is unhelpful to move prematurely to
analytic treatments if our intended focus is on generating a diversity of
externally-observable dynamics without recourse to parameter prolifera-
tion in the model core. Instead of pushing up degrees of freedom to cap-
ture more and more transients and complexities, we can do the opposite
and constrain the freedom of the dynamics locally by imposing bounds on
the derivatives in time in such a way as to introduce yet more nonlinear-
ities, even to create singularities in the evolution of trajectories; but what
sort of singularities is not something our intuitions can reliably anticipate.

Given that we have input variables, internal parameters not coupled to
inputs, and the system’s state variables, imposing bounds to stop degener-



INTER- AND INTRA-LEVEL DYNAMICS OF MODELS 75

ation onto either explosion or the equifinality of death means that we must
constrain either limits of variability or rates of change and their higher
derivatives. After some heuristic exploration, an extension of a Gamma
(Γ) cascade (Gregson, 1992,1995) within various bounds has been created
to show what choices face the theoretician. The simplest Gamma trajec-
tory, like many other recursions in a complex function, Y , with the reals
on the bounded interval (0,1), will with small parameter changes exem-
plify point, periodic, quasi-periodic and strange attractors, and have quite
different dynamical evolution in its real and imaginary parts. As I am us-
ing NPD cascades as the working example here, the limits can be put on
a, the real input, on the real and imaginary parts of the system’s variable
Y (Re,Im), and on the cascade re-scaling parameter κ. We may also con-
sider imposing limits on the cumulative local sum of Y , as that is a rough
measure of the rate of energy consumption over a short recent time win-
dow. Psychophysiologists are thoroughly aware of the phenomena of dead
intervals in neural transmission following signal transductions from input
to output; neural systems that need ‘to stop and take a breath’ are ubiqui-
tous.

Using NPD operator notation (Gregson, 1988,1992,1995), for two cas-
caded stages subscripted (1) and (2),

C : U 7→ at(1) 7→ Γa,e;Y 7→ κY(1) 7→ at(2) 7→ Γa,e;Y 7→ Y(2)(Re) 7→ xt........
[4.1]

and this is extended indefinitely to M cascade steps as required. It can
be argued, from considerations of the duration of the temporal present in
consciousness (Ruhnau, 1995), that a cascade is the minimal duration dy-
namic structure that can underlie binding in neuropsychology1 but we do
not need this interesting conjecture for the present exploration. It treats
the evolution of internal representation of an original input as recursively
restabilised nonlinear trajectories, as a cascade of Γ components which

1 There is a possible parallel here between a cascade with boundary conditions imposed
and what Lansner (1986) called a running associative net, which is a succession of active
templates initiated, reconstructed, stabilized and finally terminated, fuzzy and context de-
pendent. The ideas are advanced quite independently, however.
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may each lie in a different region of phase space, alternating with a lin-
ear rescaling to convert back from a Y output to a new a input, whilst
preserving some continuity in the system variable but subject to the new
boundary conditions. In [4.1] κ is a multiplier on Y (Re) outputs from the
preceding cascade to counteract the effects of scale compression; the rea-
sons for this, and its effects, are discussed in Gregson (1995)

There is also a parallel here with what is called a Šil’nikov condition
(Šil’nikov, 1965, Friedrich and Uhl, 1992), which has been reported in EEG
activity; there, an attractor is left and reentered recursively within one
trajectory. However that dynamical model requires three dimensions and
structural assumptions that have not been shown to be necessary or real-
isable in the present context.

So, imposing bounds on rate of change dY/dj (j is a time base but not
in fixed msec units) with recursive linear rescaling and re-entry to the tra-
jectory (which is what I have called a cascade step) is expected to show
itself in the creation of new patterns of transitions between types of phase
space dynamics, but the dynamics themselves will be qualitatively analo-
gous and the path to chaos via period doubling, or odd periodicities, may
persist within the dynamically unbounded segments of the evolution. We
conceptualise the effect of the boundary conditions as intermittent, operat-
ing only when the system tries to cross a heteroclinic orbit into instability,
so that their operation partitions the time series of the trajectory’s evolu-
tion into segments each of which may be dynamically coherent and locally
therefore analytically tractable in the sense of Γ algebra. But the series
as a whole could appear random if filtered through, for example, linear
time series modelling. Also the critical values of the parameters a, e, η in Γ
which are associated with shifts in the dynamics will be confounded with
the effects of setting the bounds from the higher level. Expanding [4.1] to
show where the bounds operate, each Γ step is of the form of a cubic re-
cursion of an internal state complex variable Y , within the time interval of
one trial or one cascade step, in discrete time units j, has been written and
generated as

Γ : Y(j+1) = −a · (Yj − 1)(Yj − ie)(Yj + ie) i =
√
−1 [4.2]
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with the recursion given a starting value Y0 and running j = 1, ..., η. The
stimulus input U maps affinely onto a, and e is an internal parameter. Y is
the state variable in continuous existence before and after the Γ trajectory,
which is itself a transient destabilisation of the system. The terminal real
value Yη(Re) corresponds to an observable response, if the process termi-
nates there. The corresponding imaginary part of the trajectory Y (Im) is
always second-order with respect to the real part. Original initial gain a(1)

is the only direct link with the system’s environment.
The restabilisation step used here, from cascade J to J + 1, is

aJ+1 = Y (Re)J × (5.49− 2.01) + 2.01κ [4.3]

where the numerical values are used to keep the recursion within bounds;
they are arbitrary, within limits.

The structure of [4.1, 4.2, 4.3] creates two levels of recursion, within
η steps of a Γ trajectory and within a cascade step J . That is, Γ is nested
within the cascade recursion. Taking this structure one level deeper, a run
of M (J = 1, ...,M ) cascade steps can be one recursion within a higher-
order loop K which, each time it is entered, reinitialises on a(1) by con-
tacting the stimulus environment U again, but keeps the running values
of Y (Re,Im) from the last M of K. Obviously U can change in time quite
independently of the looped cascades of Γ trajectories.

Using an operator notation, we have to get from a stimulus U to a
response Yobs

Yobs = K(M(C))a|U [4.4]

and this evolves in η×M ×K time units. We now need to look at some of
the time series properties of [4.4] when it is constrained by bounds on its
energy consumption.

Though this sort of model was derived from considerations of exter-
nal psychophysics and to a much lesser extent neurophysiology, it can in
mathematical terms be regarded as a special case of the Cellular Neural
Networks (CNNs), which are strictly applied mathematics and usually
simulated by electronic circuits, even though their analogies with brain
processes are optimistically asserted by their creators. By treating these
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analogies tolerantly, the wide range of mathematical results now avail-
able can be drawn on to provide insights into how the nΓ cascades and
nestings also may furnish a basis for learning, memory, and pattern recog-
nition, discrimination and storage. (Brucoli, Carnimeo and Grassi, 1995,
Thiran, Crounse, Chua and Hasler, 1995).

Intermittencies

It has long been known that EEG time series can exhibit sudden peak fluc-
tuations, whose inter-peak interval frequency distribution may be stochas-
tic; these, for example, occur in the diagnosis of epilepsy. It has also been
noted in nonlinear dynamics that the evolution of attractors expressed as a
time series can shown long runs of stable periodicity with sudden appar-
ently interpolated episodes of aberrant fluctuations. These interpolations
may themselves have a recurrent easily identifiable form which I have
previously called arpeggios ; examples are noted by Gregson and Harvey
(1992). It has also been known for some time that two statistical time series
can run apparently identically for a subseries of trials and then abruptly
diverge; their differences are not identifiable only from finite sample reali-
sations unless and until they exhibit local divergence. This is not necessar-
ily an example of chaotic dynamics; it can occur with linear models.

Intermittent recurrent subsequences arising within relatively stable se-
ries are thus dynamically ambiguous; the standard methods of identifica-
tion, based on ARIMA, FFT, or adaptive filters will either treat the subse-
quences as noise because they are aperiodic in a quasi-periodic environ-
ment, or set up a compound mechanism in which the intermittencies are
generated autonomously from the background series and then summed
with its spectra by, probably, a weighted linear rule. The distinction be-
tween tracking such a series locally with adaptive filtering for its control
and predicting its long term evolution has to be kept in mind. The ap-
proach here is focussed on the generation of series, not on their identifi-
cation when their underlying dynamics are unknown. The object is to see
what qualitative forms emerge as a consequence of the boundary condi-
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tions, which could be misidentified by standard methods of data analysis.
The following examples are all with bounds imposed outside the Γ re-

cursion, by the outer loops and not in the interval j = 1, ..., η. It follows
that the cascades are not fully protected against explosion if the param-
eters a, e, η, Y0 allow instability within the local trajectory of one cascade
step J . Where parameters are not given, they are the same as in the previ-
ous example.

1: Consider [4.1 to 4.4] with the parameters and constraints

e = .25, η = 10,K = 10,M = 10 ∆1Y = 0.7, 10−5

a(1) = 5.051

max
∑
Y (Re) = 6

κ = 1.0

After K = 2,M = 10 it runs for all M = 10 onto an attractor which
is a = 4.55..., Y (Re) = .73... that is nearly stable and very gradually
increasing, Y (Im) within a loop is dynamically constant, and Y (Re)
for M = 1 decreases with K. Within j = 1, .., η, Y (Re) and hence a
are both period 2.

However, we have only to alter η to 9 instead of 10, and because the Γ
dynamic is past its first bifurcation, the attractor at M = 10 becomes
as soon asK = 2 the point a = 4.55427 and Y (Re) = .731113. Instead
the Y (Im) series is now variable and aperiodic within a loop, and for
M = 1 a = 4.98650 and fixed.

2: For comparison,

e = .35, η = 10,K = 10,M = 10

a(1) = 4.2

induces an alternation at M = 10 of a = 4.46, 4.85 and Y (Re) =
0.815, 0.704 so that a periodicity of the recursion in K is observed,
and Y (Im) is aperiodic.
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Now we can remove the outer loop computationally simply by
putting M = 100,K = 1 and we obtain period 2 alternation in J
of a = 4.851, 4.456 and correspondingly in Y (Re).

3: If the Γ parameters are set deliberately at the edge of a stable basin,
almost on a heteroclinic orbit, then we get intermittency with an odd
value coming up at apparently unpredictable intervals. For example,
in

e = .35, η = 10,K = 1,M = 260

a(1) = 5.34035

κ = 0.95

the a series fluctuates irregularly (aperiodically) between about 5.16
and 4.07, with odd values ' 3.92 observed at J = 16, 48, 65, 76,
86, 113, 119, 128, 141, 149, 158, 167, 191, 197, 212, 234, and 258 and
the Y (Re) series has a corresponding low value at each of these
points. This is a typical edge-of-chaos phenomenon; it requires no
extra component in the model but only a careful choice of parameter
values.

4: Moving well away from chaos in the reals, with

e = .25, η = 10,K = 1,M = 260

a(1) = 3.4

κ = 0.95

we observe a strictly periodic intermittent episode, in a steady a
and Y (Re) background. For nearly all values, after initial stabili-
sation, Y (Re) = .71845, but at J = 41, 42, 43, 44 we have Y (Re) =
.56,.64,.70,.72. This little arpeggio episode repeats itself at 40J inter-
vals.

Clearly, a diversity of qualitative dynamics becomes readily possible as
soon as we admit nesting of recursions hierarchically and the core trajec-
tory is nonlinear. The system in its repertoire of time series now includes
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Figure 4.1: a values for looped cascade
η = 10. Recursion steps 0,....,260

not just the steady state, periodic and path-to-chaos trajectories which are
generated by [4.1], but the intermittencies of both predictable and unpre-
dictable occurrence. The system is always deterministic in its generation,
but may appear random in its outputs.

From the Gregson and Harvey (1992) results and other reported find-
ings about nonlinear trajectories, we know that series with aperiodicity
and local arpeggio sequences of identical recurrent form, but stochastic
inter-event intervals can be generated by a number of well-studied attrac-
tors. The additional result here is the new type of series, with the baseline
fixed and the arpeggio at fixed intervals, which are not the cycle times
η,M,K but can be a multiple of them. This sort of series is a potential
base for a biological clock, created without any special dedicated dynam-
ics for such a clock in the system; it arises just because of the parameter
settings in a narrow window. It is left open precisely how these control
parameters can be brought into play and have their values set. Insofar as
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Figure 4.2: a values for looped cascade
η = 10. Recursion steps 0,...,65

it is a problem of modulating shifts into and out of chaos, where chaos is
on the edge of instability, the problem has received attention with a dif-
ferent approach concerned with the connectivity of the network in which
the nestings are embedded (Doyon, Cessac, Quoy and Samuelides, 1993).
Here we are assuming stable and completely connectively in the simu-
lations; the assumption globally is not apparently necessary. An implica-
tion is that any recursive loop in the Γ family can, with constraints locally
imposed, serve as a biological clock for a whole system of connected re-
cursions. There is no need to have a specific locality for the time keeping
process, and it can itself move about in slow time.
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Figure 4.3: a values for looped cascade
η = 10. Recursion steps 0,....,260

Synchrony and Binding

The approach here has been, so far, to start from nonlinear psychophysics
and extend its structures to exemplify new recursive dynamics. The moti-
vation has been partly to see where biological clocks might come from and
partly to compare results in a wider sense with both cognition and with
physiology. The second comparison turns out to be the relatively easier
because of a detailed critical review by Singer (1993) which summarises
the dynamics of neurological brain networks where they exhibit oscilla-
tions and synchronies. (The points raised by Singer are given in Appendix
1.)

If the oscillatory dynamics of two non-contiguous regions come into
synchrony in some frequency range, then they are said to be bound. It is
the so-called binding problem and the suggestion that binding is a nec-
essary and sufficient condition for the emergence of consciousness that
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Figure 4.4: a values for looped cascade
η = 10. Rescaled on a, Recursion steps 0,...,65

makes this property of nonlinear networks important for the psychologist.
The formal mathematics of networks that oscillate exhibit synchrony, can
bind, and may be a putative basis for consciousness were first sketched
out in the 1980s; that work seems to be still unknown to most cognitive
psychologists (Caianiello, 1987,1989, Palm and Aertsen, 1986). The need
to attempt some three-way mutual compatibility between neurophysiol-
ogy, conscious cognition, and mathematical representations of both, has
been remarked on by various writers, but it does no harm to reiterate it
here. The present innovation is to attempt to link a model that starts from
psychophysics (and not from spin-glass nets or related physicalisms) to
conditions for binding, and hence for the emergence of consciousness if
the binding hypothesis holds.

There is, in the neurophysiology, a critical relation between delays in
reciprocally linked groups and the establishment of synchronization. It is
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required to have a rapid succession of short bursts and an upper limit on
the frequency of reverberation. The synchronous discharge creates strong
simultaneous inhibition, and oscillations are a consequence of synchrony.
Synchrony at a millisecond time scale is significant; it requires a tempo-
ral structure that allows the synchronous/asynchronous states distinc-
tion to exist with high temporal resolution and the establishment of syn-
chrony over large distances. Singer (1993, p. 366) observes that both of
these requirements can be met by paced oscillatory discharge patterns in
a bounded frequency range. The properties match the dynamics of what
has been observed in (n × n)Γk cascaded lattices (Gregson, 1995) if they
are also nested in the bounded recursions of [4.1, 4.2, 4.4] set out here. To
explore that situation more deeply we need to create an nΓ extension of
[4.1, 4.2, 4.4].

Bounded Cascades in 6-d partitioned NPD

These notes are not a simulation of a specific experimental configuration,
but an exploration of what can arise in the dynamics of 6Γ Case 2 with
some parameter constraints. It is already known that multiple (one-to-
many) solutions in the input-output mappings can arise, apart from those
due to hysteresis. This example is now put into the nests of bounded re-
cursions; it was previously used in an unpublished model of a problem
in visual perception as a single 6Γ stage with some imbalances. As it is
somewhat intricate in its dynamics it can serve as an introduction to sys-
tems where attractors co-exist. The qualitative features of output near-
equivalences can be shown: In a 6-channel cross-coupled Γ system there
are six gain parameters a1, a2, ...., a6, and potentially six e1, ..., e6 internal
parameters. These latter are reduced by constraints on cross-coupling, to
a1, ..., a6, λ1, .., λ3.

The following table summarises the settings used here; the channels
are in fact treated as being coupled locally in pairs.

This configuration means that channels 1 through 4 are fixed in their in-
put settings, but channels 5 and 6 are variable and could float over a wide
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arbitrary range. For the current demonstration we do not need to invoke
this plasticity; computations with all initial parameters fixed, chosen to be
near to chaotic activity, are sufficient (compare Freeman, 1994). The pur-
pose of this exploration is to look at the effects on outputs {Y1, ..., Y6}(Re)
of the variations in a5. Because of the cross-couplings the values of Y1, Y2

are functions of the total parameter set, and not just of a1, a2, e1, e2.
It can be shown that the behaviour of |Y2 − Y5|(Re) is under some set-

tings of {λ} multimodal. This is sufficient for the present heuristics. See
Appendix 2 for computational details.

Table 4.1: Parameters having degrees of freedom
in the original program modified for this study

Channel a λ a:fix or var
1 a1 λ1 fixed
2 a2 λ1 fixed
3 a3 λ2 fixed
4 a3 + .2 λ2 fixed
5 a5 λ3 variable
6 a5 + .2 λ3 variable

————————————————-

The cross-coupling between the six dimensions is only partial; they are
grouped here into three subsets, by the operation of the λ coefficients as in
[4.5], to define the (complex) e for each Γ as in [4.1].

e1 = (0, λ1/{max(a3, a4, a5, a6)})
e2 = (0, λ1/{max(a3, a4, a5, a6)})
e3 = (0, λ2/{max(a1, a2, a5, a6)})
e4 = (0, λ2/{max(a1, a2, a5, a6)})
e5 = (0, λ3/{max(a1, a2, a3, a4)})
e6 = (0, λ3/{max(a1, a2, a3, a4)}) [4.5]
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A possible consequence of [4.5] is that the system as a whole can run
into what Rössler (1991) has called hyperchaos. For the present purposes,
the interest is that the system can run onto a series of point attractors; that
is, a vector {a} or individual Y can show transient perturbations indepen-
dently of the concurrent dynamics of the other channels. These transients
are like those identified in the example 3 for the simpler case already de-
scribed. The rate at which the system as a whole, expressed in vectors {a}
or {Y (Re)}, goes to stability depends on the values of the loop constants
in [4.4], which are common for the whole set of six dimensions, and on the
e in [4.5] for the individual dimensions. Terminal values of a ( and Y ) can
be unequal when initial values are equal and vice versa.

We must now address the problem of what happens if we use linear
time series analyses methods in an attempt to identify periodicities, via au-
tocorrelation spectra, in the component detailed Y series with η ×M ×K
terms. As might be expected, until the process has run onto an attractor
or a set of attractors it is not stationary and estimations are confounded.
Its hidden generators are very nonlinear, in [4.1] and [4.2], and are not re-
coverable from outputs Y or the restricted series Yη with M × K terms.
The fact that linear time series methods are dangerous in biological anal-
yses is now well documented (Cutler and Kaplan, 1996). Another prob-
lem arises: the autoregressions are completely invalidated if we include
the extreme realizations within the transients when they arise, and com-
putational degeneracies result. An example is shown in Table 4.2, for re-
cursions Nos. 192-202 with η = 10,M = 5,K = 10, κ = 1.46, {a} =
{3.15, 4.70, 4.10, 4, 80, 4, 20, 4.50}, and {λ} = {1.00, 1.25, 1, 29}. There is
nothing necessarily surprising in such phenomena; complicated multi-
channel processes can double back in their dynamics when their bases are
nonlinear (Dawson, Grebogi, Yorke, Kan and Kocak, 1992).

Table 4.3 gives an example where the processes shown no explo-
sive transients, but the six components vary considerably in their quasi-
periodicity. If there were binding, then we would expect two or more
series to be in phase and exhibiting a comparable spectrum of the auto-
correlations. To check this we may set up the (triangular) matrix of cross
correlations of the six vectors of 20 coefficients. It is also necessary, there-
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Table 4.2:
Example of a local instability in one dimension, for Y 6(Re)

192 0.655201 0.654684 0.673780 0.638777 0.518174 0.438628
193 0.822628 0.823239 0.810192 0.829268 0.827969 0.898943
194 0.653720 0.652882 0.665020 0.637210 0.670651 0.556254
195 0.822635 0.823236 0.812151 0.829139 0.878040 1.03977
196 0.653705 0.652890 0.661164 0.637503 0.529913 -0.287737
197 0.822635 0.823236 0.812769 0.829165 0.838031 1.16740
198 0.653705 0.652889 0.659937 0.637444 0.645619 -1.51008
199 0.822635 0.823236 0.812934 0.829160 0.883736 37.2423
200 0.653705 0.652890 0.659608 0.637456 0.511263 -318667.
201 0.513489 0.766225 0.705921 0.830226 0.684813 0.725012
202 0.470594 0.692762 0.686127 0.619342 0.716427 0.739834

————————————————-

fore, to examine the pair-wise cross-correlations of the raw series of 500
realizations. Cross-correlations are known to be informative in connected
neural nets, but there are dangers in inference from externally observable
properties by using what are in effect linear filters; ”In the case of highly
interconnected neural systems, for example when oscillatory behaviour is
present, the response is far from linear. In such cases, therefore, any con-
clusions for the functional connectivity between two neural systems that
are based solely on the presence of correlated activity are questionable.”
(Kalitzin, van Dijk, Spekreijse and van Leeuwen, 1997, pp. 73-74). Again,
Liao and Sethares (1995, p. 14) noted that ”In many applications where
data are generated by a nonlinear mechanism, linear models are unaccept-
able and identification schemes fail This is mostly due to the fact that for
general nonlinear systems there are no universally applicable models.”

In Table 4.4, which is given as examples for the degrees of lag 0 to 4,
(there is a series for each of the lags 1-20 computed), the leading diagonal
cells would be filled with the autocorrelations of the individual MKΓ se-
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ries. To obtain the roots of the total cascaded 6Γ when it is treated as one
undecomposable series externally observed, we create the determinants of
each of the lag matrices as in Table 4.4, with the autocorrelations added in,
and use these determinants as the coefficients of a delay function which
can itself be factorised. The method is given with examples in Gregson
(1983). The factorisation of this process is to be compared with that of one
or more component Γ trajectories.

A second approach is to impose a cut-off on the Y terms and treat those
values above a critical level as the realisations of a point process. The in-
terest is then in the statistics of the frequency distribution of inter-point
intervals or of run lengths between crossing points. These do not neces-
sarily have a periodicity which is a multiple or submultiple of the M,K, η
terms, so that the periodicities of the point process are not a sufficient basis
for system identification; this is relevant when considering EEG analyses
of brain dynamics. We return to this aspect later.

The example deliberately created by the parameter settings for Tables
4.3 and 4.4 is intrinsically unstable and if it were not for the two outer
loops would eventually explode. It is trivially simple to create very stable
examples where the core Γ recursions run quickly in the Y reals onto point
attractors. However, it is necessary to examine the roots of the factorisation
of the polynomial whose coefficients are the sequence of the determinants
of the completed matrices in Table 4.4. In Table 4.5 we give two cases,
simply for illustration: the unstable one just created, and a very stable one
with lower λ and a coefficents2. The roots for the imaginary components
of the Y evolution have been shown as well, to emphasise the point that
the dynamics are not exactly the same for the two parts of the complex
system variable Y and, in general, the imaginary trajectories can be more
turbulent, though second-order in magnitude, and are not postulated to
be externally observable. Possibly, the numerical method has just failed to
find a repeated conjugate root pair for the Y (Im) series in the first example.
It would, however, be a mistake to equate the imaginary component with
stochastic noise.

2 The roots were obtained by using the Mathematica command NSolve.



90 INFORMATIVE PSYCHOMETRIC FILTERS

Table 4.3: Autocorrelations in a externally stable case
η = 10,M = 5,K = 10, κ = 1
{λ} = {1.00, 1.25, 1.29}

initial a settings: {3.5, 4.7, 4.1, 4.8, 4.2, 4.5} Autocorrelations lags 0 to 20;
read across lines, as text, in order

Y (Re) 1:
1.0000 0.5418 0.0840 -0.0095 -0.0122

-0.0168 -0.0142 -0.0201 -0.0129 -0.0196
-0.0074 0.2377 0.4253 0.2946 0.1289
0.0115 -0.0025 0.0041 -0.0026 0.0010

Y (Re) 2:
1.0000 0.5878 0.2806 0.0036 -0.0161

-0.0181 -0.0173 -0.0282 -0.0107 -0.0265
0.0085 0.0219 0.0124 0.0162 -0.0007
0.0108 0.0010 0.0073 0.0008 0.0036

Y (Re) 3:
1.0000 0.0373 0.5449 -0.1061 0.4652

-0.1397 0.3915 -0.1788 0.3218 -0.2277
0.2482 -0.2585 0.1822 -0.2981 0.1738

-0.3108 0.1623 -0.3190 0.1474 -0.3211
Y (Re) 4:

1.0000 -0.5416 0.7286 -0.5579 0.5897
-0.4539 0.4460 -0.3589 0.3263 -0.3085
0.2313 -0.3035 0.2605 -0.3207 0.2808

-0.3470 0.3008 -0.3629 0.3158 -0.3655
Y (Re) 5:

1.0000 -0.4581 0.6768 -0.4958 0.6225
-0.4907 0.5683 -0.4849 0.5155 -0.4796
0.4738 -0.4741 0.4338 -0.4774 0.4307

-0.4753 0.4284 -0.4740 0.4270 -0.4750
Y (Re) 6:

1.0000 -0.6879 0.7100 -0.6867 0.6885
-0.6677 0.6652 -0.6464 0.6410 -0.6223
0.6519 -0.6275 0.6506 -0.6338 0.6549

-0.6400 0.6608 -0.6470 0.6679 -0.6565
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Table 4.4: Cross correlations 6× 6 of lags 0 to 4 from Table 4.3
based on a run of 250 points

above diagonal, n to k, below diagonal reversed k to n

n to 2 n to 3 n to 4 n to 5 n to 6
lag 0

-.— 0.453 0.670 0.313 0.480 0.258
0.453 -.— 0.615 0.545 0.521 0.529
0.670 0.313 -.— 0.539 0.946 0.791
0.480 0.258 0.615 -.— 0.539 0.670
0.545 0.521 0.529 0.539 -.— 0.922
0.946 0.791 0.539 0.670 0.922 -.—
lag 1

-.— 0.353 0.616 0.258 0.431 0.197
0.314 -.— 0.470 0.448 0.387 0.344
0.412 0.234 -.— 0.016 -0.038 -0.173
0.251 0.084 0.159 -.— -0.030 -0.199
0.198 0.089 0.064 0.092 -.— -0.412

-0.102 -0.232 -0.104 -0.219 -0.421 -.—
lag 2

-.— 0.263 0.556 0.174 0.395 0.178
0.188 -.— 0.278 0.162 0.248 0.230
0.323 0.175 -.— 0.106 0.431 0.313
0.204 0.052 -0.070 -.— 0.284 0.391
0.059 -0.066 -0.029 0.231 -.— 0.472
0.431 0.332 0.149 0.264 0.494 -.—
lag 3

-.— 0.158 0.480 0.121 0.329 0.113
0.110 -.— 0.072 0.055 0.044 -0.004
0.257 0.212 -.— -0.232 -0.196 -0.328
0.160 0.068 -0.044 -.— -0.189 -0.377

-0.019 0.001 0.033 -0.053 -.— -0.466
-0.190 -0.258 -0.262 -0.299 -0.433 -.—
lag 4

-.— 0.074 0.404 0.042 0.280 0.089
0.098 -.— 0.046 -0.073 0.034 -0.002
0.241 0.200 -.— 0.139 0.390 0.310
0.148 0.052 -0.053 -.— 0.327 0.402
0.042 -0.058 -0.035 0.262 -.— 0.455
0.386 0.325 0.206 0.304 0.475 -.—
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The numerical values of the coefficients have been rounded off and
should not be given precise meanings; what is important is the pattern of
the roots estimated. In both examples, we have one real and two conju-
gate pairs from the few lags used in Table 4.4. The correlations in Table 4.4
decrease monotonically in many cells having the same location, as we run
down the set of five 6×6 matrices. This implies, if we accept a causal inter-
pretation, that there is weak binding between the channels in their quasi-
periodic dynamical evolution. The drifting apart of trajectories in terms
of their lag correlations might be related to the Lyapunov coefficients of
the process. In both examples, we expect at least one complex conjugate
pair of roots from the original Γ cores (compare [4.1]), and the rescaling of
[4.3,4.4] creates another weak periodicity, of slower frequency determined
by M , which is the periodicity forcing the 6Γ core back into its attractor
basins. The raw time series to generate Table 4.3, for example, is computa-
tionally just a string of numbers with no given information about M,K, η.
In this respect, it is like an ignorant external observer with only an output
record.

We can retrieve the evidence of internal oscillations, but not necessar-
ily an indication of precisely how they are generated. Here we have two
temporally alternating mechanisms: one linear in the reals ([4.3]) and the
other complex nonlinear ([4.2]). The two cases show complex conjugate
pairs in both the stable and unstable half-fields together, a pattern which
is sometimes associated with the presence of chaotic dynamics, although
the example of Tables 4.3 and 4.4 appears basically homogeneous. To ob-
tain a fuller picture of the system as it floats through its parameter space
(there are at least nine parameters which can in principle affect the root
pattern, though it is always the same system in its structure) requires the
exploration of response surfaces and sections through them.

Comparison Control Conditions for the Dynamics

There are two simpler configurations which should be compared with the
deliberately intricate examples summarised in Table 4.5. One is where all
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Table 4.5: Determinants and roots for two cases,
one unstable and the other stable

The unstable case as in Tables 4.3 and 4.4

{λ}: {1.00, 1.25, 1.29}, initial {a}:{3.5, 4.7, 4.1, 4.8, 4.2, 4.5}

Y (Re), lags: 0 1 2 3 4
determinants: -309.7 -3.067 -.00625 .583× 10−5 −.279× 10−5

factored to give:

Y (Re) roots: real: -1.1652 conjugate: −.446± .980i .529± .312i
Y (Im) roots: real: -0.9987 conjugate: −.478± .690i −.477± .692i

A relatively stable case for comparison

{λ}: {0.90, 1.00, 1.10}, initial {a}:{3.2, 4.3, 4.1, 4.0, 3.5, 3.8}

Y (Re), lags: 0 1 2 3 4
determinants: -.00181 -.00317 .0406 .00175 .00228

factored to give:

Y (Re) roots: real: -.0557 conjugate: −.892± .394i .419± .904i
Y (Im) roots: real: -1.0238 conjugate: −.264± .845i .458± .486i

————————————————–

the channels are identical with uniform cross-coupling, and the other is
where there is no cross-coupling, the Case 1 of Gregson (1992,1995), so
that e values are set in [4.1] independently for each channel.

The dynamics associated with the 6Γ Case 1 example are apparently
quite different from those for the corresponding cross-coupled Case 2 ex-
ample, which has otherwise the same parameters. The single conjugate
paired root exists as in [4.2], but the remaining roots are all real and of



94 INFORMATIVE PSYCHOMETRIC FILTERS

mixed sign, indicating mixed stability. The implication is that there are
structural changes in the internal dynamics of an nΓ system which can be
externally identifiable.

This is not the only distinction that emerges readily between the two
structures in nΓ, Case 1 with parallel channels having fixed e, and Case
2 with cross-coupling via the {λ} which in effect alter their operative e
values with collateral inputs.

It is computationally trivial to show that setting arbitrary cut-offs lev-
els on Y (Re) for each channel will create quite different inter-crossing in-
terval frequency distributions for the two Cases and that the point pro-
cess series differ markedly from one channel to another within one case.
Further, distributions that are regular but not multiple of M,K, η can be
observed. Some data from one example are given in Table 4.8:

Serial Hypercycling

So far the cascading had been within each Γ process and the six processes
are in parallel evolution, their trajectories are cross-coupled through [5]
only. An alternative structure is where each trajectory cascades onto an-
other dimension’s Γ and the closed loop at level K is recursively through
an ordered subset of the available dimensions. For example, the cas-
cade beginning in [4.6] is serially and recursively through dimensions
1,2,3,4,5,6,1,2,3,...

C : U 7→ at(1) 7→ Γa1,λ1;Y 7→ κY(1) 7→ at(2) 7→ Γa2,λ2;Y 7→ Y(2)(Re)

7→ .....xt........ [4.6]

and we may call this path a hypercycle. But there are NHC possible such
hypercycles, where

NHC =
6∑

h=1

h!

(
6
h

)
[4.7]

and these are not externally distinguishable, except in their recursive peri-
odicity, which is h(η+ z) in time units if we arbitrarily take the restabilisa-
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tion process in [4.3] to have z j units, when the six component Γ recursions
each run onto a stable attractor.

But if one or more does not, because it has gone into chaotic dynamics,
then the hypercycles of order h are not necessarily commutative. It is only
if they are not commutative and we have full information about starting
values {a} that identification might be possible from the latencies and the
terminal values.

The extension to 2D and 3D Lattices

Obviously psychologists are interested, at the very least, in having ac-
counts of 2D processes in vision and 3D processes in solid brain struc-
tures; the simplest nΓ examples here do not extend without more compli-
cations to the higher dimensionality networks. Previously (Gregson, 1995),
we have explored a lot of properties of the 2D arrays in (n × n)Γ simula-
tions, (but nothing on (n× n× n)Γ).

Qualitative characteristics of the dynamics identified there are often
paralleled in CNN theory and simulations. Many of these have been
demonstrated in recent years in, for example, the journals IEEE Trans-
actions on Circuits and Systems and International Journal of Bifurcation and
Chaos, though it must be reiterated that usually there is no convincing ar-
gument presented that the particular CNNs used are a close analogue of
what is needed to explore psychophysics, perception and cognition. To the
extent that CNNs are, at the metatheoretical level, a family of processes
some generalisations might, however, be useful. It is known that cellu-
lar 2D and 3D networks can exhibit pattern formation because they have
a spatial frequency instability in the neighbourhood of their equilibrium
configuration. Modes of organisation exist in connected sets and, during
evolution, a transient state can appear so that unstable modes expand at
the expense of stable modes in the dynamics. Oddly, the patterns created
in 2D can resemble stripes or spots, checkerboards, or even the surface
of the human cortex, but the transition from one pattern to another may
be abrupt (Thiran, Crounse, Chua and Hasler, 1995, Crounse, Chua, Thi-
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Table 4.6: Cross correlations 6× 6 of lags 0 to 4 for Case 1
to compare with Table 4.4; based on a run of 250 points

No cross-coupling, all e = .25

above diagonal, n to k, below diagonal reversed k to n

n to 2 n to 3 n to 4 n to 5 n to 6
lag 0

-.— 0.156 0.854 0.120 0.794 0.562
0.156 -.— 0.278 0.990 0.302 0.408
0.854 0.120 -.— 0.229 0.994 0.889
0.794 0.562 0.278 -.— 0.253 0.362
0.990 0.302 0.408 0.229 -.— 0.932
0.994 0.889 0.253 0.362 0.932 -.—
lag 1

-.— 0.152 0.645 0.135 0.586 0.379
0.133 -.— 0.197 -0.803 0.195 0.109
0.589 0.126 -.— 0.195 0.548 0.455
0.531 0.344 0.202 -.— 0.190 0.107

-0.802 0.199 0.114 0.191 -.— 0.453
0.540 0.434 0.193 0.112 0.437 -.—
lag 2

-.— 0.021 0.467 -0.008 0.404 0.194
-0.023 -.— -0.044 0.848 -0.038 0.049
0.449 -0.021 -.— -0.043 0.274 0.135
0.392 0.192 -0.011 -.— -0.040 0.045
0.852 -0.009 0.053 -0.046 -.— 0.127
0.280 0.145 -0.040 0.029 0.133 -.—
lag 3

-.— 0.039 0.328 0.028 0.266 0.074
0.065 -.— 0.059 -0.859 0.047 -0.061
0.342 0.067 -.— 0.024 0.121 -0.004
0.294 0.150 0.022 -.— 0.052 -0.051

-0.856 0.013 -0.066 0.063 -.— -0.017
0.133 0.049 0.017 -0.058 0.024 -.—
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Table 4.6 (continued): Cross correlations 6× 6 of lags 0 to 4 for Case 1
to compare with Table 4.4; based on a run of 250 points

No cross-coupling, all e = .25

above diagonal, n to k, below diagonal reversed k to n

n to 2 n to 3 n to 4 n to 5 n to 6
lag 4

-.— -0.030 0.278 -0.058 0.221 0.043
-0.026 -.— -0.047 0.841 -0.041 0.052
0.341 -0.015 -.— -0.068 0.172 0.056
0.304 0.173 -0.035 -.— -0.038 0.048
0.844 -0.028 0.046 -0.043 -.— 0.063
0.193 0.123 -0.060 0.021 0.111 -.—

Table 4.7: Determinants and roots for 6Γ Case 1

The example in Table 4.6; no λ cross-coupling, e = .25

{λ}: {1.00, 1.25, 1.29}, initial {a}:{3.5, 4.7, 4.1, 4.8, 4.2, 4.5}

Y (Re), lags: 0 1 2 3 4
determinants: 4.701 -.0067 2.858 .00258 −1.672

factored to give:

Y (Re) roots: real: 2.2817 .6692 -.2978 conjugate: −.327± .989i



98 INFORMATIVE PSYCHOMETRIC FILTERS

Table 4.8: Periodicities of Point Processes
In both cases the {a} are {3.1, 4.7, 4.1, 4.2, 4.5} , run length = 350.
For 6Γ Case 1 with e = .25,

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

13 8 10 9 12 3
34 90 12 31 31
10 49 28 80
40 41

For 6Γ Case 2 with {λ} as in Table 4.5,

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

2 5 2 9 9 9
18 9 14 10 17 18
19 15 18 20 20
28 20 26 28

————————————————–

ran and Setti, 1996). If the coupled elements in the net are bistable (they
have two attractors, like Γ trajectories in Y (Re,Im)) we may get a sort of
clustering, and a chaotic distribution of oscillation amplitudes exists in the
lattice (Nekorkin, Makarov, Kazantsev and Velarde, 1997). Again, stripes
and spots and checkerboards are possible, and phase-locked clusters ap-
pear. This phase-locking is a sort of binding.

The analogies with brain action have been noted, in that spatio-
temporal structures emerge from cooperation of a large number of appar-
ently disorganised smaller units often themselves operating in a chaotic
mode. Not only do we have the emergence of chaos at one level and sta-
bility at another, but this coexistence is related to the creation of memory.
Ogorzałek, Galias, Da̧browski and Da̧browski (1996, p. 1870) call this spa-
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Figure 4.5: an (n× n) Cascaded Lattice Process
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tial memory effect, and observe that ”Strongly coupled arrays display an
interesting phenomena of maintaining information about the position of
initialization”. Such nets exists in time, not as a frozen representation, and
can maintain standing wave patterns which are a symbolic encoding of
particular inputs.

Conclusions

The situation with six parallel inputs described is one which is completely
deterministic but nonlinear. There are no stochastic components and no
residual Gaussian error distributions. But if the outputs are treated as time
series, particularly if the series built on the determinants of the 6×6 cross-
correlation matrices of lags 0 through 4 is examined, its factoring is only
partially informative and can be seriously misleading; it does not give a
correct picture of the system’s intrinsic dynamics and cannot validly ex-
trapolate in time to predict the future evolution and therefore the stability
of the system.

While this point may seem elementary, given the algebraic construc-
tion of the system, and the necessary loss in information contingent upon
using time series correlational methods, it is reminiscent of attempts to
analyse brain mass action by decomposing the EEG in the time or fre-
quency domains. In the case of the brain potential records, we only have
the outputs and not the process specification expressed in cascaded non-
linear dynamics, even though the evidence from hippocampal studies sug-
gests that it would be helpful to have that as well, as has been known for
some time (Nadel and O’Keefe, 1974, Nadel, 1989).

The mathematics here were developed for modelling psychophysical
channels, and not single neurons; the distinction is important, and yet
there are some parallels in the dynamics. Koch (1997, p. 209) observes that
synapses continually adapt to their inputs in a way that is different from
computers that enforce a separation between memory and computation.
However, the modern view that neurons have plasticity, feedback, nonlin-
earities in transmission, and are critically dependent upon the timing of
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local sequences, is reminiscent of the properties of the cascades reviewed
here. Koch (p. 210) says ”we sorely require theoretical tools that deal with
signal and information processing in cascades of such hybrid analogue-
digital computational elements. (there exist). Loops within loops across
many temporal and spatial scales. And one has the distinct feeling that we
have not yet revealed every layer of the onion.”

It transpires that the nΓ systems we have studied in depth, for their
particular relevance to psychophysics, become a special case of the CNNs
with chaotic and bistable elements when they are extended into higher di-
mensionalities. This inevitably points up the complexities of their poten-
tial dynamics, but also helps by suggesting why they can simulate human
sensory functioning, and how such functioning is inextricably linked to
the higher order functions of memory and cognition.

Appendix 1

Places in Singer’s (1993) review on the neurophysiology of oscillating neu-
ronal nets where there are close parallels between the temporal dynamics
of the model [4.1, 4.2, 4.4] and what is observed in brain activity are sum-
marised here. Page references are to Singer.

A shift in interest to temporal relations in neuronal processes has be-
gun; because neuronal processes are highly dynamic, temporal codes mat-
ter (p. 350).

Oscillatory components in the gamma frequency range (30-60 Hz) are
also contained in field potential responses evoked by sensory stimuli (p.
351) which relate to the P 300 and to activity in the thalamic nuclei. The
amplitude of the high frequency oscillations in usually small. There have
been proposals for a functional significance of the low frequency oscilla-
tions in sleep and memory.

There are two sorts of oscillations, pacemakers and the emergent prop-
erties of networks. The perceptual functions of the neocortex are based on
distributed processes, in parallel and different sites. Because a sensory in-
put, usually visual, elicits a large number of spatially distributed neurons,



102 INFORMATIVE PSYCHOMETRIC FILTERS

the binding problem arises; eventually we get one sensory image. The as-
sembly code is relational; ”the significance of an individual response de-
pends entirely on the context set by the other members of the assembly”
(p. 354). ”Temporal coding offers new solutions to segmentation problems
that have been notoriously difficult to resolve with amplitude and position
codes alone” (p. 355). Cross-correlation studies have actually been based
on the analysis of spontaneous activity, which is appropriate for disclosing
anatomical connectivity but not for stimulus-induced dynamic coupling.

”Episodes with constant frequency last only 100-300 msecs and can re-
cur several times throughout the response to a continuously moving stim-
ulus.” (p. 256). Neither time nor phase are related to stimulus input coor-
dinates (Engel et al, 1991); it is not possible to tell from the responses of
individual groups whether they were activated by one coherent stimulus
of by two different stimuli. The only clue is provided by the evaluation of
synchronicity of the responses of the activated groups. Synchronization by
a common subcortical input will not explain binding because it is insuffi-
ciently flexible and insufficiently stimulus constellation dependent.

There is a counter argument (p. 360), that ”the possibility needs to be
considered that synchrony and oscillations are epiphenomena of a sys-
tem’s properties that have evolved for a completely different purpose”.
Oscillation and synchrony are not necessarily coupled dynamically. Zero-
phase lag synchronization can be achieved despite considerable conduc-
tion delays and variation of conduction times if the synchronizing con-
nections of the coupled cell groups have a tendency to oscillate (p. 361).
The number of assemblies that can coexist in the same cortical region is
increased if the oscillation frequencies are variable. because spurious cor-
relations due to aliasing effects will be rare and only of short duration (p.
362).

If Hebbian synaptic modification rules held unqualified, in the long
run, the gain of most synaptic connections would be increased leading to
unselective and meaningless association of neurons (p. 365). This is the su-
perimposition problem; it can be avoided if the connected neurons have an
oscillatory time structure, which is why the n-methyl-d-aspartate (NMDA)
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mechanisms are of interest 3(Jensen, Idiart and Lisman, 1996)

Appendix 2

The program used with modifications here was originally more compli-
cated, to allow exploration in a wider parameter space. Only one set of a
values has been used at a time in the six channel examples here.

Using Fortran 77 programs d6.f for the single mapping (and dl64.f for
the bounded cascades), the appended output is generated; there are up
to 40 settings of the a5 values in each block for fixed {λ}, the settings 1
through 40 are increments of a5 in arbitrary steps, the line reading “lambda
1 through 3” shows the λ settings for the block following.

On each line there are four numbers such as
”1 2.150 2.700 2.500”,
these are the setting reference number (which is purely a check ref-

erence and has no computational significance) and the values of a1, a2

and a5. Note that throughout this simulation a1, a2 are fixed. The vari-
able a5 implies a6 moves with it (see table above). Using the relation
eh = λ/(max(aj)), j 6= h, h, j = 1, ..., 6 which is defined by Case 2, the
equivalent eh are listed only in the cases where

C = |Y2 − Y5|(Re) < .01

and as 0 ≤ Y (Re) ≤ 1 this is a 1% tolerance bound. The point of listing
e1, ...e6 is to reiterate the pairing of channels 1,2:3,4:5,6; but the indepen-
dence of e from a. The outputs {Y }(Re) are only listed where the constraint
C is met, to save space in this print-out.

The important effect of the λ settings is to alter where the local match-
ing condition C arises. There is one setting for a5 ' 2.65 to 2.70 for a
matching, but with high λ a secondary output (Y ) matching arises with
a2 = 2.7, a5 = 3.55. The precise locality of these solutions to the matching

3 Globus (1995, p. 65) also notes that, for biological realism, the intrinsic modifiability
of the transmission properties of NMDA connections has to be considered, in contrast to
many parallel distributed processing models in artificial intelligence.
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condition will move around as a function of the set of 6Γ parameters. It
may be noted that the inequality |a1 − a2| is not matched across the {λ}
range by the inequality |Y1 − Y2|(Re).



Chapter 5

A Bivariate Entropic Analogue
of the Schwarzian Derivative

An analogue expression for the Schwarzian derivative of a series had been
previously constructed and used to examine the dynamics of a collec-
tion of time series from psychological and psychophysiological data. The
derivatives of a function in the Schwarzian expression are replaced by in-
formation theory expressions based on absolute successive differences of
a time series sample. This work is briefly recapitulated, and then the ex-
ploratory analysis of the numerical properties of the index is extended to
compare the coupling of two time series in parallel, for series that are var-
iously known to be periodic, random, or nearly chaotic. This requires that
instead of using the entropy Im(x) of the mth differences as the building
block of the expression, the transmitted information Tm(xy) is used. The
manifold of the bivariate form is introduced. Examples of both theoretical
and real data from various sources, including psychophysiology, are ex-
amined. The possibility of detecting emergent dynamics associated with
coupling between series is noted with real examples.

In the sorts of data which are encountered in psychophysiology and
psychophysics, there is little room for postulating simple well-behaved
dynamics, mathematical tractability has to take second place to empirical
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plausibility. It is coming to be realised that there are phenomena which
cannot be disentangled from noise by employing the statistical methods
applicable to long and stationary series, such as Lyapunov spectra, fractal
dimensionality, or Volterra filters (Århem, Blomberg & Liljenström, 2000).
There are other problems of bias in estimating dimensionality from finite
samples (Kitoh, et al, 2000), but, in the present context, where comparison
of samples from different but perhaps related experimental conditions is of
prime interest, second-order bias in any one estimate may not be a serious
problem.

In the physical sciences, very long computational series, of the order of
100,000 iterations, may be used to establish with precision the trajectories
of, for example, the Henon attractor, throwing away the records of the first
1,000 iterations. But here the opposite problem is faced, the interest lies in
the very start of trajectories, before any confidence in the simpler stability
of the process may be held.

When interest shifts from single time series to multiple series evolving
in parallel then there are additional subtleties to be faced (Cao, Mees &
Judd, 1998). The problem of looking for dynamic coupling between short
and nonlinear nonstationary series is a popular topic (Schiff et al, 1996;
Tass et al, 1998). There are a number of tests for nonlinearity in time series
of sufficient length, such as Hinich bicovariance, Tsay’s quadratic test, En-
gle’s LM test, which are available on bootstrapped software (Patterson &
Ashley, 2000). There is, however, a paucity of procedures for exploratory
data screening in the sense of Tukey (1977), which might be employed on
very short time series realisations as an augmentation of graphical meth-
ods such as recurrence plots, or time scale stretching and variable trans-
formations. That is one reason for the creation of the approach used here;
another reason is computational simplicity.

Some investigators hasten to postulate random stochastic processes
where they are improbable (Thompson, 1999) and others see only de-
terministic trajectories onto attractors. Others make some sense of com-
plicated brain dynamics by describing systems that dance between local
attractors and random noise at different levels of dynamic organisation
(Freeman, 1999, Tirsch et al, 2000).
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This treatment of the general problem of process identification in time
series data was originally motivated by a need to explore, in an initially
heuristic fashion, samples of trajectories that might be generated by the Γ
dynamics employed in nonlinear psychophysics (NPD), based on maps of
a complex cubic polynomial (Gregson, 1988,1992,1995),

—————————————

Γ : Yj+1 = −a(Yj − 1)(Yj − ie)(Yj + ie), i =
√
−1

where Y is complex, 0 < Y (Re) < 1, and j = 1, ..., η,
—————————————

Γ can also be written in a succinct matrix form, which elegantly shows
that with e > 0 (as is usual in substitutions which model real psychophys-
ical phenomena) the process generates negative feedback (Heath, 2000, p.
100). When e < Y (Im) peculiar dynamics evolve (Gregson, 2001), and as
e→ 0 the linear terms eventually vanish.

The Schwarzian derivative (Schwarz, 1868) was mentioned (Gregson,
1988, p. 27) in the first detailed examination of the Γ dynamics, but its ac-
tual computation for realizations of NPD finite-length sample trajectories
had not then been pursued. The Schwarzian is defined over continuous
functions with derivatives that are stationary in their parameters and may
be said to measure a property of expansiveness in which the dynamics
fill a local region of their phase space. It is wise not to attempt intuitively
to give this idea a common-sense meaning; its importance lies in finding
indices which characterize the sort of dynamics underlying the genera-
tion of the data, interpreted as time series or as trajectories of an attractor.
This problem is fundamental in neurobiology (Arhem, Blomberg & Liljen-
strom, 1999) and in nonlinear psychophysics (Gregson, 1995), but in the
latter case data are almost always at a coarser resolution of measurement
and more intractable.

There is, of course, a diversity of algorithms for identifying the internal
dynamics of nonlinear processes when only trajectory samples are observ-
able, earlier methods were collectively reprinted by Hao Bai-Lin (1984),
and later methods relying on surrogate generation were collected by Ott,
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Sauer and Yorke (1994). If we approach the problems from the perspec-
tive of stochastic dynamics (Honerkamp, 1994), which is not really being
done here, then there is no novelty in considering information measures. It
should be emphasised that the method used here is not in its application
restricted to data series which arise in psychophysics. It is neutral with
respect to subject matter, but can be employed on series where identifica-
tion of strong periodicity is meaningless and, at the same time, local auto-
correlated bursts of activity may arise but the inter-onset intervals of such
bursts may themselves be quasi-random and hence constitute an aperiodic
series in time. Series with such characteristics may arise, for example, in
the symptomatology of schizophrenia (Ambühl, Dünki and Ciompi, 1962).

It is necessary, wherever possible, to avoid arbitrary and strictly unnec-
essary constraints on the length of data sets generated from psycholog-
ical or social processes, because they are usually short, the consequence
of transient destabilisation of a process which is already nonlinear, and
are far removed from the ideal cases found in theoretical physics. The
use of 2n length samples in frequency domain analyses (Warner, 1998)
can have pernicious consequences of process misidentification when non-
metric and/or ubiquitous non-stationarity properties are in fact present.

The Schwarzian derivative

The Schwarzian derivative of a C3 local diffeomorphism is given by

Sf :=
f

′′′

f ′ −
3
2

(
f

′′

f ′

)2

[5.1]

The Schwarzian of Γ is negative, but only under restrictions on the pa-
rameter e (Gregson, 1988, p.28) and the same remains true, by the compo-
sition formula, for any monotone branch of a saturated map induced by
fΓ(Graczyk & Świa̧tek, 1998) The form [5.1] is obviously for a single series
or trajectory and here it is to be extended to consideration of the linkage
between two series evolving in parallel in time, each of which would still
have its own form of [5.1]. Van Strein (1988) shows that the Schwarzian is
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related to cross-ratios and to Moebius transformations, but no such prop-
erties are claimed here for the entropic analogue about to be defined.

Coarse Entropy Filtering

For exploratory data analysis of trajectories that might be chaotic or might
be almost strictly periodic, Gregson (1999,2000) introduced as a screening
procedure the following steps, where the values of the real scalar data y
trajectory are bounded, or have been rescaled, into the interval 0 < y < 1.
This initial normalisation removes information about the actual numeri-
cal range of the values of the time series, whether or not those numbers
strictly satisfy metric properties (as some psychological category scales
may not) and makes all values positive. The basis is therefore set for a
non-parametric approach. It thus removes information about the first and
second moments of the process; that information can be stored separately
if it is considered meaningful1. This is deliberate, and can have the ad-
vantage that series may be compared from various sources when they are
originally expressed in units which reflect their different physical origins
but are not informative about their relative dynamics.

Here the variable y is real and can be constructed from the complex
variable Y in a Γ recursion, as in the example in Table 5.1 used here, by
writing y = polarY (Re, Im). There are, of course, two choices if a single
variable is to be used from the complex evolution: either only take the real
part of Y , or construct the polar modulus r(Y (Re, Im)). In the particular
context of psychophysics, where it is known that the Y (Re) part resembles
most closely the properties of observable response data, this procedure has
some justification on those grounds.

The range of y values is partitioned into k exhaustive and non-
overlapping ranges, for convenience equal in width, and k = 10 is initially
sufficient. As a condition of the normalisation, the end categories (h = 1, k)

1 It is not necessarily the case that the first and second moments of a non-stationary time
series exist; estimates may not converge in the limit (Gregson, 1983).
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will be initially not empty2 Some or all of the remaining k − 2 ranges may
be empty. Call the width of one such segment δ(0) (of y); δ(0) = .1 for y
but will almost always be much less for ∆my, the successive absolute dif-
ferences of the series. This is the partitioning constant of the system. It can
be critical for the bivariate form BESf as will be seen later. Call the parti-
tioning constant of the range of the mth differences δ(m). In the examples
used here, δ(1) is referred to simply as δ in the tables of results, and all δ(m)

are set constant equal to δ. The original partitioning before differencing is
given by

∀ h δ
(0)
h = k−1

if all segments are set equal in width3 The frequency of observations lying
in one segment δh, h = 1, ..., k is then nh. The frequencies are converted
into probabilities of segment occupancy ph, and used to compute the in-
formation Ih in that segment. This is metric entropy in the sense of Katok
and Hasselblatt (1995, chap. 15).

Summing over all segments gives the total information in the spectrum
as

I{h} = −
k∑

h=1

phlog2(ph) [5.2]

Then the absolute differences of the series are taken, putting

∆1(yj) = |yj − yj−1| [3]

which is a discontinuous analogue of differentiation. Further differencing
is repeating the operation as in [5.3], so

∆2(yj) = |∆1(yj)−∆1(yj−1)| [5.4]

2 This treatment opens the door to symbolic dynamics, which leads in turn to complexity
theory (Adami & Cerf, 2000).
3 If the segments are unequal but monotonically ordered, this is equivalent to a monotonic
transformation of the original y values. It is known that such transformations can affect
the autocorrelation of the data series and it is not known a priori for psychological data if
the original y necessarily satisfies metric properties; temperatures and arbitrary economic
indices, for example, do not.
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and this operation can be continued but only until all absolute differences
are zero. Going only as far as ∆4 is sufficient for empirical purposes. For
each distribution over k segments of ∆m values a new frequency distri-
bution nmh is created, with δ(1) set by inspection so that the two end parti-
tions h = 1, k are not initially empty for ∆1 only, and ∀m,h Imh follows. It
would be possible to introduce two refinements here, which might be crit-
ical. These are, to re-estimate a best δ(m) at each successive differencing,
instead of leaving all δ the same after estimating δ(1), and finding by ex-
ploration at each differencing stage the value of δ(m) which maximises Im.
As shown by an example in Gregson (2000, Table 2), the condition that the
two end partitions h = 1, k|m are non-empty does not necessarily follow
after m = 1, when δ(m) is fixed4. If the process has constant absolute first
differences, which is the situation with a random walk with equal incre-
ments, as in the familiar drunkard’s walk, then Ish, s ≥ 1, = 0. But also,
if the process is strictly periodic, again with constant absolute differences
(which can be obtained if the sampling frequency is simply related to the
process frequency) then Imh vanishes form = 2.r Some series which are en-
coded in arbitrary units y may be monotonically transformed to y∗ = f(y)
so that their absolute first differences become constant5.

A Schwarzian derivative analogue

Suppose that we substitute within [5.1] Im values for f , so that for example
I3 corresponds to f

′′′
, employing Im summed over the whole range of k

segments. From an example (Gregson, 1999, 2000) using three series of
length 280, one of them generated by the convolution of two Γ series (each
of which is in a complex variable, Y ) with the output variable expressed
as y = polarY , compared with a strictly periodic series, and a random

4 This, when it happens, is the consequence of ESf not being the analogue of the C3

diffeomorphism condition which defines the Schwarzian.
5 Such transformations to or from this simplest structure can affect the autocorrelation
spectrum and produce or delete apparent evidence of long-term memory in the process
(Heyde, 2000). Mandelbrot (reviewed by Feder, 1988) had shown that long memory pro-
cess can have a fractal structure.
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series, we may construct the required variable. The values of Im are given
in Table 5.1, ignoring the minus sign in [5.2]. This is to create an entropy
analogue of a Schwarzian derivative. To give this a name, call it ESf . It is
expected that ESf will be negative if a type of dynamic stability is present
in the process.

————————————————-
Table 5.1

Values of Im for k = 10 on three series
——————————————————

Type of Series I1 I2 I3 I4

convoluted Γ 2.3604 1.6055 2.1345 1.4164
Periodic 1.000 0.0133 0.0434 0.0434
Random 2.9747 2.499 2.3062 2.1183

————————————————-

Then by definition ESf takes the values

ESf :=
I3

I1
− 3

2

(
I2

I1

)2

[5.5]

Substituting in [5.5] gives:
ESΓ = .1571, ESPeriodic = .0431, ESRandom = −.4254

Table 5.2 shows some results from applying [5.5] to various Real and
Imaginary trajectories of Gamma to investigate the behaviour of the dy-
namics as a function of the parameter product ae in the near-chaos region,
where after about 50 or more iterations the process explodes. Estimates of
the Hurst exponent 0 < H < 1 and the fractal dimensionality 1 < D < 2
have been given, derived from an algorithm used by West et al (2000) on
what they call random fractal time series. By a standard result, H = 2−D
in the 2d plane. For 0 < H < .5 the process is anti-persistent, for H = .5 it
is effectively random, and for .5 < H < 1 it exhibits persistence. The algo-
rithm sometimes fails on short series; the values where given make sense
but are numerically not necessarily accurate, nor very meaningful on short
unstable realisations such as trajectories onto an attractor, as opposed to
being on the attractor.
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——————————————————
Table 5.2: D,H,ESf, and Gamma trajectories

η = 50 in all cases examined

Re/Im a e D H ESf ae period
Re 2.70 .4212 1.7506 .2494 -.2353 1.137 2
Im 2.70 .4212 1.6979 .3021 .3076 4
Re 3.00 .3830 1.3464 .6536 .0637 1.149 2,1;3
Im 3.00 .3830 1.1971 .8083 .1397 3
Re 3.25 .3100 1.4403 .5597 .0637 1.007 6,1;7
Im 3.25 .3100 1.3213 .6787 -.8016 7
Re 3.55 .2840 [< 1]* [> 1]* .0637 1.008 3,3;6
Im 3.55 .2840 1.1391 .8609 .1648 6
Re 3.85 .24177 1.7375 .2625 .2677 .931 3,1,1,1;6
Im 3.85 .24177 1.7325 .2675 -.8016 6
Re 4.00 .2300 1.8908 .1092 .1648 .920 2
Im 4.00 .2300 1.8526 .1474 .1672 2
Re 4.25 .2160 1.9270 .0730 .0637 .918 2,1;3
Im 4.25 .2160 1.9718 .0282 .1397 9
Re 4.45 .1500 1.6982 .3018 .0206 .668 1
Im 4.45 .1500 1.7383 .2617 .0456 4
Re 4.73 .1300 1.9719 .0281 .1648 .615 2
Im 4.73 .1300 1.9704 .0296 .3703 2

——- ——- ——- ——- ——- ——-

* these estimations are erroneous and almost certainly meaningless; the
algorithm has failed with this time series.
The notation for periodicity indicates repetitions of identical numerical
values within a cycle, where they occur. The final number is the period-
icity.

——————————————————
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The ESf values must be understood as each having a confidence in-
terval associated with them, they are not constants. Finding what that con-
fidence interval is might be a suitable problem for MCMC analyses. The
positive value of ESf for convoluted Γ is not necessarily the same as a
negative value for unconvoluted Γ. Thus, convolution can change the sta-
bility indexed by the Schwarzian analogue. In comparing different data
sets, both the between and within-sample variabilities of ESf should be
considered.

Extending to the bivariate case

The formula of [5.5] is now extended to consideration of two series in par-
allel, where one may be the same as or different from the other, and one
may be lagged on the other. Without loss of generality, this also covers the
case where one leads on the other. This problem is fundamental in psy-
chophysiology, where nonlinear coupling between the dynamics of two or
more attractors is found in biological systems (Schiff et al, 1996; Breaks-
pear, 2000).

In information theory, by definition, for two series x : g = 1, .., k and
y : h = 1, .., k, the transmitted information T (xy) involves I(x, y) on the
n× n contingency matrix derived from [5.2] by writing

I(xy) = I{g, h} = −
k∑
g=1

k∑
h=1

pg,hlog2(pg,h) [5.6]

which gives
T (xy) = I(x) + I(y)− I(x, y) [5.7]

so [5.5] becomes

BESf :=
T 3

T 1
− 3

2

(
T 2

T 1

)2

[5.8]

There are two computational steps which must be decided before cal-
culation of ESf and BESf ; the magnitude of δ, the partitioning constant
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has to be set to maximise the I1 for the series with the greatest variability
of first differences, and the choice of lags. The original normalisation has
already operated on I0. In these simple examples, both have been done by
inspection and trial and error. If the series examined are strongly periodic,
as in sinusoidal forms, then the lags may be set to detect the dominant
frequency of the cross-coupled series. The problem of phase synchrony
between neural sites has also previously been attacked by using entropy
measures (Tass et al, 1998).

As any series which is not on a point attractor varies as it is lagged
on time in terms of ESf , lagging one of a pair of series against the other
yields a range of ESf values for one against a fixed ESf for the other,
as is illustrated for two realizations of a random series lagged on itself, of
length 200, in Table 5.3. The series was created using a Fortran 77 program
from the Numerical Recipes library (Press, Flannery, Teukolsky & Vetter-
ling, 1986). It is seen that, for random series,BESf can have very unstable
outlying values, which are associated with high T (xy), and can fluctuate
in its sign, as a function of the partitioning constant δ (of x and y), which is
an arbitrary parameter of the derivative. Tables 5.3 and 5.4 are constructed
to illustrate this point. It is, therefore, suggested that a minimum variance
solution of BESf over a set of lags should be sought. It is seen in Table 5.4
that all the signs of BESf are consistently negative and thus also compat-
ible with the signs of component ESf terms.

The range of values under ESf(1) in Tables 5.3 through 5.8 arise from
taking successive rectangular moving window samples of the process and
may be averaged, if the process is taken as stationary, to get a mean esti-
mate.

The next case, in Tables 5.5 and 5.6, uses some EEG data from a study
by Dr. Kerry Leahan at The Australian National University. These are the
first examples of real data in this chapter. They show signs of near-chaos
and some dominant frequencies. They had been separately analysed using
frequency spectra and by estimating the largest Lyapunov exponent. The
two series are drawn from different sessions and are not, therefore, syn-
chronous or phase-locked. In a situation with a cranial montage of EEG
recordings synchrony would be available. Table 5.6 is the preferred solu-
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Table 5.3
Values of ESf and BESf on a lagged random series

partitioning constant = .04
lag ESf(1) ESf(2) BESf(1,2)
0 -.60339 -.60339 .1371
1 -.61201 -.60339 -.1067
2 -.60982 -.60339 .0021
3 -.61193 -.60339 -.8043
4 -.60849 -.60339 .7013
5 -.61339 -.60339 -.3997
6 -.61565 -.60339 .2106
7 -.62309 -.60339 .0531
8 -.63860 -.60339 -.6176
9 -.63388 -.60339 -.0730
10 -.62859 -.60339 -30.0559

Table 5.4
Values of ESf and BESf on a lagged random series

partitioning constant = .038
lag ESf(1) ESf(2) BESf(1,2)
0 -.63087 -.63087 -1.6144
1 -.63989 -.63087 -1.2194
2 -.63779 -.63087 -.7811
3 -.64043 -.63087 -5.5540
4 -.63441 -.63087 -3.9493
5 -.63874 -.63087 -1.9970
6 -.64264 -.63087 -1.4932
7 -.65229 -.63087 -.4745
8 -.67449 -.63087 -.0096
9 -.67168 -.63087 -.1700
10 -.66082 -.63087 -1.0143
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tion.
Another pair of EEG series is presented in Table 5.12, that has been

drawn from a real library www.physionet.org example, which is a syn-
chronous pair but about which no physiological details concerning loca-
tion and experimental conditions are known. As those details are missing,
it is relegated to the Appendix merely for illustration of the instability that
BESf can have.

The ESf values are of comparable magnitude to those given in Table
5.5, the D and H values were computed as in Table 5.2 for Γ series.

————————————————-
Table 5.5

Values of ESf and BESf on two EEG
series under relaxation conditions

partitioning constant = .07
lag ESf(1) ESf(2) BESf(1,2)
0 -.66070 -.54500 .0388
1 -.65467 -.54500 .0512
2 -.65213 -.54500 -.7596
3 -.64850 -.54500 -.1207
4 -.65046 -.54500 -.7527
5 -.64447 -.54500 .2655
6 -.64480 -.54500 -.0816
7 -.66602 -.54500 -.6390
8 -.68870 -.54500 -1.3849
9 -.70055 -.54500 -.6579
10 -.73027 -.54500 .4720

————————————————-

The third example, in Tables 5.7 and 5.8, is created by using two strictly
periodic series

x1,j = a1 · sin(b1 · j) + a2 · cos(b2 · j) [5.9]

x2,j = a2 · cos(b2 · j) [5.10]
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Table 5.6
Values of ESf and BESf on two EEG

series under relaxation conditions
partitioning constant = .10

lag ESf(1) ESf(2) BESf(1,2)
0 -.73528 -.48770 -.1226
1 -.72137 -.48770 -.3159
2 -.70651 -.48770 -.3454
3 -.70323 -.48770 -.1376
4 -.70651 -.48770 -.4096
5 -.69632 -.48770 -.0565
6 -.69594 -.48770 -.0500
7 -.71949 -.48770 -.0725
8 -.74613 -.48770 -.3844
9 -.76490 -.48770 -.1546
10 -.79342 -.48770 -.4595

where a1 = 1.0, a2 = .5, and b1 = .7855, b2 = .4. The periodicity creates
marked variation in BESf as a function of the lags used. In effect we are
here sampling from a series using a moving rectangular window of fixed
length. It will be noted that some of the ESf values are now positive, as
was derived in a case from Table 5.1. Table 5.7 is the preferred solution,
but this is not the result of an exhaustive search, merely illustrative. It ap-
pears that cross-linkage between sinusoidal series, which are the easiest
form of strictly periodic series to create (unless we consider Walsh func-
tions), generates wild outliers in BESf . With the possible exception of
some experiments in psychoacoustics using sinusoidal forcing functions,
this example is really not very plausible for real data. The distribution of
BESf obtainable by Monte Carlo methods would need lag series many
times longer that the illustrative tables presented here.
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Table 5.7
Values of ESf and BESf on two
sinusoidal series, [5.9] and [5.10]

partitioning constant = .079
lag ESf(1) ESf(2) BESf(1,2)
0 -.39387 .13742 -5.7812
1 -.36826 .13742 -.4466
2 -.34948 .13742 -4.0372
3 -.28921 .13742 -1.1511
4 -.25154 .13742 -1.1320
5 -.17656 .13742 -6.0086
6 -.14426 .13742 -.5530
7 -.06312 .13742 -1.9803
8 -.00925 .13742 -1.5330
9 .04213 .13742 -.3300
10 .08161 .13742 -4.8755

Table 5.8
Values of ESf and BESf on two
sinusoidal series, [5.9] and [5.10]

partitioning constant = .08
lag ESf(1) ESf(2) BESf(1,2)
0 -.28765 .13260 -.9329
1 -.26615 .13260 -303.5240
2 -.24998 .13260 -146.9375
3 -.19211 .13260 -1.0289
4 -.15645 .13260 -.8354
5 -.08514 .13260 -10.5506
6 -.05563 .13260 -7.4854
7 .02019 .13260 -.1838
8 .06890 .13260 -.0000
9 .11239 .13260 -.3086
10 .14464 .13260 -1.1079
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The manifold of the lagged BESf

If there exist two series in temporal synchrony, and each may be lagged
upon itself and upon the other, then four BESf can be computed; this
set we will call the manifold of the BESf up to lag `. It may be seen
that this manifold is a non-parametric form of the set made by computing
the autocorrelation spectra and cross-correlation spectra of two series each
with metric properties.

For illustration, Table 5.9 shown the manifold of the examples in Tables
5.7 and 5.8. One column is therefore repeated from Table 5.7.

————————————————-
Table 5.9

The manifold of BESf for ` = 0, .., 10 on two
sinusoidal series, [5.9] and [5.10]

partitioning constant = .079
lag BESf(1,1) BESf(2,2) BESf(1,2) BESf(2,1)
0 .1374 -1.8582 -5.7812 -.7466
1 -.0240 -3.7648 -.4466 -53.4660
2 -.1504 -.3957 -4.0372 -43.3347
3 -.1952 -2159.8242 -1.1511 -.9275
4 -.1948 -6540.9619 -1.1320 -.8152
5 -.0291 -.3353 -6.0086 -4.0959
6 -.0468 -3.3587 -.5530 -3.8287
7 -.1021 -.6232 -1.9803 -.6990
8 -.0195 -.4921 -1.5330 -.7392
9 -.3657 -1.4399 -.3300 -16.6598
10 -.0637 -.1693 -4.8755 -85.2626

————————————————-

In these tables, the lag zeroBESf values are, in effect,ESf values. It is
seen that the manifold incorporates the effects of both leads and lags, from
BESf(x, y) and BESf(y, x) compared, and that simpler sinusoids can
produce BESf(x, x) which are degenerate. For data exploration it may
be preferable to compute log(BESf) values, it is the sequential pattern
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over `, which is informative.
The next real example is one which produced a surprise; it shows that

this method, though crude, can have some heuristic value, in that it leads
us to ask different questions about how the data are generated.

Recordings of spike trains per second in the visual cortex of an anaes-
thetised cat were recorded by two independent tungsten-in-glass micro-
electrodes with tips about 0.5mm apart. Each stimulus induces a brief time
series in the two neurons being recorded; call each such train an epoch. The
onset times of the two parallel series in an epoch are synchronised; there
are no lag effects shown in Table 5.10. There are other parallel response
series under a control condition which are not examined here.

Table 5.10 gives the values of ESf and BESf for the first 33 epochs.
Though the original data analysis in terms of correlations (not done by me)
suggested that the cells were not coupled, the pattern in Table 5.10 sug-
gests that they are in terms of some weak dynamics. Such weak synchro-
nization during conscious perception has been reported by Srinivasan,
Russell, Edelman and Tonini (1999). This can be checked by using sur-
rogate series methods (Theiler et al, 1992), but there are reported statistical
difficulties with such methods. In dynamical terms, this suggests an hier-
archical nesting of recursive maps. Dynamics in brain activity, arising as
a consequence of stimulation as complicated as this have been reported
by Freeman (1999). He suggests that input from receptors increases the
strength of interactions between neurons, so that a loss of degrees of free-
dom is entailed.

Discussion

There are many ways in which the parallel dynamics of two evolving pro-
cesses can be coupled, even in the simplest cases which presuppose sta-
tionarity both in the component processes themselves and in the cross-
linkage. For example, the resultant series may be a weighted average, a
vector sum, a convolution, or, as here, a transmission of information.
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Table 5.10: Cat visual cortex V1 epochs

Epoch N ESf(1) ESf(2) BESf(1, 2)
1 60 -.4632 -.5421 -1.2157
2 115 -.7450 -.6601 -2.4115
3 60 -.9041 -1.1539 -3.5910
4 60 -.6069 -.8327 -2.0553
5 40 -1.2018 -.9096 -1.4873
6 40 -.2575 -.2011 -.4459
7 40 -.6027 -.5572 -1.8936
8 30 -.6307 -.7876 -1.0410
9 35 -.3268 -.3320 -2.4721

10 35 -.3232 -.3959 -1.5423
11 35 -.4132 -.5221 -4.6697
12 60 -1.4888 -.9453 -1.3293
13 30 -.2093 -.2617 -.8109
14 50 -.9420 -.8911 -.2552
15 40 -.5771 -.6522 -7.0735
16 30 -.5497 -4820 -1.0638
17 45 -.9888 -.8400 -1.4512
18 40 -.2526 -.2060 +.1104
19 40 -.2816 -.3953 -2.6637
20 60 -.4522 -.5129 -.2042
21 60 -1.0393 -.9636 -1.8879
22 40 -.9117 -.6467 -1.5392
23 35 -.5436 -.5366 -1.3955
24 50 -.2620 -.2982 +.0266
25 30 -.4151 -.3652 -.7299
26 30 -.6285 -.6636 -8.9292
27 55 -.7805 -.6349 -.4545
28 50 -.3448 -.3656 -.6507
29 50 -.6630 -.8119 -1.2003
30 40 -.6088 -.6158 -1.1806
31 20 -.4625 -.5934 -2.8674
32 30 -.6346 -.6642 2.1529
33 40 -.2985 -.3468 +.9147

In this table N is the effective time series length within the epoch as anal-
ysed.
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The index BESf is, from our tentative exploration of its properties,
not particularly easy to interpret. It would seem wise always to preserve
the two ESf indices as well, as has been done in the Tables, and to com-
pute the manifold if little is known a priori about the dynamics involved.
If large reference samples are created against which any empirical reali-
sation may be compared, then the type of the dynamics involved can po-
tentially be identified. In this sense, ESf resembles (but is not reducible
to) the Hurst exponent of a time series (Feder, 1988). However, the original
meaning of the Schwarzian as a measure of expansiveness is probably lost,
a better intuitive interpretation is one of information impoverishment in a
restricted sense.

There are two reasons why computation of ESf and BESf may be
useful: to identify the dynamic signature of the process, just as the Lya-
punov exponents are used in chaotic dynamics, or to match against a given
reference sample in order to test for stationarity in the outputs of a process,
even if the underlying dynamics of that process are not fully understood.
It is critically important that the phase lock is known, if two series are syn-
chronous, and that the increment (j in [5.9], [5.10] for example) is the same,
or a known multiple in one series of the other, in real time units for two or
more series compared.

The comments raised here do resemble observations of Tass et al
(1998), in particular, the need to try to circumvent the ”hardly solvable
dilemma ’noise versus chaos’ irrespective of the origin of the observed
signals” (op cit. p.3293). It is now known that phase synchronisation of
chaotic attractors can arise or be induced (Chua, 1999) and a sort of phase
locking may be observed. The amplitudes of synchronised systems can re-
main chaotic and affect the phase dynamics in a way that also arises as a
consequence of the presence of external noise. Local phase slips may be
observed, which means over a long series the question of synchronicity
is irresolvable. Tass et al (1998) make the important point that synchroni-
sation is not the same thing as cross-correlation, so instead of using the
algebra of linear time series statistics, they proposed two measures, one of
which, like ESf and BESf , is based on entropy.

The physiological data we have seen so far and been able to anal-
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yse, from the cat study and now from some data provided by the
www.physionet.org site, whose exact cortical source is not given, both
indicate that BESf might show long periodicities. Those long periodici-
ties seem to emerge uncorrelated with the observed structure of the ESf
sequences. There is some evidence that binding between closely adja-
cent neural locations is mediated by 40Hz activity (Llinas & Ribary, 1993;
Singer & Gray, 1995) in which case, sampling at 300Hz for ESf series would
show 40hz as a slower quasi-periodicity in BESf. This fundamentally im-
portant matter needs more data for its resolution.

One advantage we would claim for our approach here is that relatively
short series can be explored. This is important when the non-stationarity
of psychological data is so often apparent and the need to compare short
epochs associated with specific known or suspected stimulus intervention
arises. Schiff et al (1996) note the necessity of identifying the direction of
causality in bivariate linkages and also confirm that systems with nonlin-
ear cross-correlation will show mutual nonlinear prediction when stan-
dard analyses with linear cross-correlation fail. This matter has also re-
ceived comment from Vinje and Gallant (2000). To revert to the nonlinear
psychophysics which first motivated this study, the series we observe are
interpreted as trajectories and the coupling between them is dissipative.
The theory of such coupling involves what is called ‘stochastic synchroni-
sation’, which is a topological concept assuming a mapping up to a diffeo-
morphism between nonlinear attractors, but its identification so far neces-
sitates using delay coordinates (a standard method in the identification of
chaotic dynamics), which demands longer series than in the examples we
realistically can obtain in psychophysics.

Note

The programs used here for ESf and BESf were written by the au-
thor using Fort77 in a Linux environment. I am indebted to Kerry Lea-
han for the use of some of her EEG data, to Dr Mike Calford for data
from psychobiological research, to the Senior Vice President of the Temple-
ton Group for providing me with an economic time series and to Michael
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Smithson for pointing out the partial resemblance to the Hurst index. This
weak resemblance is illustrated in the example from economic data in the
appended table.

Appendix: Bernstein economic data and Physionet
data

Table 5.11 shows an analysis of a series of monthly values of an economic
index which was devised by a New York investment consultancy, Bern-
stein, in the form of integer values that range from -7 to +10, reflecting
the under- or over-valuation of stock. It was used for illustration by the
Templeton Global Growth Fund in its 1999 annual report, as a histogram
graph.

TheESf , fractal dimensionD, and Hurst indexH for each subseries of
90 days are at the foot of the table, below the autocorrelation spectra. The
autocorrelation coefficients are carried through to 13 lags because the data
are monthly and some annual cycling might be in evidence around lag 12.
It is not, however. These subseries are too short for ideal computation of
the various indices, but the whole series is very non-stationary and non-
linear.

The interest lies in the increasing instability of the dynamics as late
1999 is approached. UsingESf it is seen that the increasing unpredictabil-
ity is continuous from 1970 onwards, whereas usingH the anti-persistence
increases only in the last epoch. Note that the series becomes relatively
unstable in the last column; this is what economists call ’volatility’, which
appears here to be a mix of high variance and antipersistence. In terms
of giving advice to investors, it means that fund managers are, unsurpris-
ingly, less confident in making predictions when volatility is high.

Each of ESf , D and H are filters. Each preserves and destroys infor-
mation in an almost unique way. To get more insight into the evolving
dynamics it can be expedient to use all three, and even more indices. One
index suggests that there might be an abrupt change in the dynamics, a
jump into volatility, another suggests that the rot had insidiously begun
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quite some time previously. As used here, all three filters smudge out the
dynamics within data blocks, so that to search for a hypothetical sharp
locus of a dynamical change at one month other filters would be needed.
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Table 5.11 The Bernstein-Templeton Economic Series
The four successive periods are 90, 90, 90 and 89 months long respectively.

Period; Feb 1970→ Aug 1977→ Feb 1985→ Aug 1992→
——- ——- ——- ——- ——-
mean -.389 -.044 -.633 .000

s.d. 1.590 1.763 1.792 2.152
min -4 -7 -7 -5
max +4 +4 +3 +10

——- ——- ——- ——- ——-
ar1 -.0481 .0057 .0763 .5024
ar2 .0180 -.1262 -.1570 .1481
ar3 -.0223 -.0008 .0596 .0194
ar4 -.1248 -.1293 .0013 .0850
ar5 .0170 .0424 .0584 .1384
ar6 .0627 .0421 .0280 .0388
ar7 -.1342 -.0116 -.0326 -.1238
ar8 .0357 -.2510 -.0015 -.1893
ar9 -.0141 -.1511 -.0800 .0461
ar10 -.0675 -.0745 .0697 .0704
ar11 -.1175 .1140 .2486 .0874
ar12 -.0735 -.0080 .0760 .0558
ar13 -.1401 -.0834 .0063 .0049

——- ——- ——- ——- ——-
I1 2.1474 2.0751 1.7980 2.1197
I2 1.9214 1.9260 1.8279 1.9474
I3 1.9421 1.9840 1.7050 1.3642

——- ——- ——- ——- ——-
ESf -.2965 -.3361 -.6019 -.6225
D 1.3996 1.4354 1.4235 1.1015
H .6004 .5646 .5765 .8985
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Table 5.12: D,ESf,BESf in a Physionet EEG series
3 msecs time intervals, recordings in µvolts

segment D(2) ESf(1) ESf(2) BESf(1,2) BESf(1,2,1)
1-100 1.9121 -.4607 -.4225 -1.3548 +.4376

101-200 1.7592 -.4577 -.3633 -1.1785 -.5894
210-300 1.7469 -.2760 -.3588 -.2902 +.1218
301-400 - -.4715 -.5906 -.4803 -2.2851
401-500 - -.6452 -.5974 -2.9476 -1.5224
501-600 - -.7287 -.5790 -.3100 -.1625
601-700 - -.4462 -.5339 -.4956 -.6827
701-800 - -.4621 -.4997 -2.3512 -.1527
801-900 - -.6054 -.4259 +.9309 -4.1840

901-1000 - -.4133 -.3916 -.0529 -.0490
1001-1100 1.7882 -.3611 -.3402 -2.3839 -.3468
1101-1200 1.8602 -.5401 -.5729 -.4712 -1.9269
1201-1300 1.7737 -.5171 -.4922 -1.2113 -.2312
1301-1400 - -.3791 -.4328 -.1580 -.1962
1401-1500 - -.2443 -.2619 +.0242 -.1154
1501-1600 - -.8589 -.4347 -.5036 -1.7437
1601-1700 - -.4356 -.4266 -.1498 +.0114
1701-1800 - -.3860 -.5122 +.0733 -.5679

——- ——- ——- ——- ——-

D(2) is the estimated fractal dimensionality of the second series. It has only
been computed where it showed possible instability.
BESf(1,2,1) means the cross-Schwarzian with the second series lagged by
one step.



Chapter 6

Tribonacci and Long Memory

There are various ways of constructing systems that jump in their dynam-
ics from one configuration to another. Systems that move from edge-of-
chaos into a sort of saturated stability as their complexity increases are
considered to be a basis for a new sort of thermodynamics where entropy
is not always increasing, but the complexity of both a biological system
and its connected potential environment are increasing together (Kauff-
man, 2000). This chapter uses a completely artificial model whose proper-
ties can at least heuristically provide illustrations of qualitative jumps in
dynamics, some of which are irreversible, unlike transitions through cusp
catastrophes, and identify some of the results of relaxing purely determin-
istic dynamics into partly stochastic constructions. Identifiability is again
a central theme of our explorations. As this is a complicated topic a short
preamble of the chapter follows.

Time series processes which can be derived from the Tribonacci series
by damping its explosive properties are examined. A modification of the
Tribonacci series formed by imposing a modular constraint on its expan-
sion, called Tribmodk, is used to illustrate the effects of small changes in its
parameters on a diversity of statistical properties variously used to char-
acterise a quasi-periodic trajectory, which may be suspected to be chaotic
or at the edge-of-chaos and almost certainly falls into the family of tran-
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sient nonlinear nonstationary series that arise in psychology. The entropic
analogue of the Schwarzian derivative, ESf, is again used, in first-order
and higher-order analyses, and the potential use of the Tribmodk series as
a source of time series in psychophysical serial extrapolation experiments
is noted. These series create conceptual problems in distinguishing in hu-
man sequential performance between identification, estimation and pre-
diction. Comparative analyses, falsely assuming that the process is purely
stochastic and stationary, are tabled to show that the process can be de-
scribed but not functionally mapped by excessively complicated classical
ARMA modelling. Mixing deterministic and stochastic components has
complicated consequences, not necessarily diminishing the stability of the
trajectories.

There are two main ways in which one might want to try and explore
the relation between an observed data string made up of human responses
and the nonlinear process that leads to its observable evolution through
some sequences of filtering: one is to create a process that is known fully
in its algebra to be nonlinear, use it as a stimulus generator, and see what
responses it evokes in sequence over time; the other is to start with prop-
erties of the observable response sequence and conjecture what nonlinear
dynamics might have produced it. The first is found in the few experimen-
tal studies that have used series extrapolation as a dynamic response task,
and the second is to start with simple series, such as point processes, and
use a known nonlinear attractor to produce the inter-stimulus response
interval statistics. Both can be found in the relevant literature; the second
(Han, Kim & Kook, 2002) is mathematically better understood but is psy-
chophysically useless because it relies too readily on the generation of long
series under stationarity.

In psychophysiological data there are various sorts of sequences: re-
sponse that vary in magnitude with the same time intervals between them;
series of time intervals with the same point processes (of unit magnitude)
that are recorded; and series that involve both at the same time variable in-
tervals between events and variable magnitude events. The third sort are,
in principle, the most interesting.

A fundamental difficulty lies in determining what is a close copy or



TRIBONACCI AND LONG MEMORY 131

an extension of the trajectory of a dynamical process. Given some series,
it is not impossible for the human observer, by a sort of dynamical ex-
trapolation, to create a few further terms which match it in the first two
moments; but it is not expected that the full autocorrelation spectra of the
process could be matched for something like an ARMA process. If the gen-
erator of the series is nearly chaotic, then the observable output may have
embedded in it local short epochs that are quite predictable, separated by
epochs that are indistinguishable from random evolution (Geake & Greg-
son, 1999). The random parts are predictable in their first two moments
and effectively stationary therein; the recurrent short arpeggio-like pat-
terns are identical copies of one another but their onsets are not predictable
by simple extrapolation. The use of the Lyapunov spectra to characterise
a chaotic sequence rests on the property that prediction is locally possible
but falls off exponentially with extrapolation into the future. Predictabil-
ity of mixed chaotic and stochastic processes may be viable if the resolu-
tion of prediction of individual terms is only with a predetermined limit
±ε. What is predictable mathematically in a simulation exercise is not the
same as prediction performance by human observers, but the first may be
used as a baseline measure of prediction efficiency.

If it is seriously contended that the process by which a human observer
creates series of responses without feedback is analogous to the tracing
out of an attractor trajectory on the invariant manifold, then the Poincaré
sections (plotted as re-entry maps) of the theory and data strings may be
generated and compared under stationarity. It does not necessarily follow
that the prior creation of a stimulus series can overwrite the internal dy-
namics of response generation once the stimulus series is discontinued.
There may be two different attractors involved.

Psychological models of perception and memory usually make provi-
sion for three boundary conditions, a short-term memory of limited capac-
ity feeding into long-term memory of almost unbounded capacity, and an
upper bound on the range of admissible sensory inputs. There are other
memory systems now experimentally identified (Baddeley & Logie, 1999),
but this distinction between transient working memory and the storage of
retrievable memories of various sorts is generally accepted. For a human
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observer to observe Un−1, Un−2 and Un−3 and then respond with Un re-
quires holding previous terms in memory. Three terms is probably within
the capacity of short-term working memory. Modelling of this may be
done in a diversity of mathematical ways, here one of the simplest forms
of such a process model is used to illustrate how time series with nonlin-
ear properties result from the imposition of the boundary conditions. The
subsequent analysis of the identifiable statistical properties of the series is
explored with a diversity of measures.

The Tribonacci Series

A recurrence relation, which is sometimes called the generator of the Tri-
bonacci series, by a humorous analogy with the much better known Fi-
bonacci series, is

Un = Un−1 + Un−2 + Un−3 [6.1]

where Un usually is taken to have only real positive integer values, and
has as its equation for deriving its roots as

x3 − x2 − x− 1 = 0 [6.2]

Unlike the Fibonacci series [6.2] has only one real root, which is

η = 1.83928675521416...

and is not transcendental.
Cundy (2000) notes that η can be given an explicit value, which is

η =
1
3
[1 + (19 + 3

√
33)1/3 + (19− 3

√
33)1/3] [6.3]

and he lists some curious and useful properties of η, such as

(η − 1)(η2 − 1) = (η + 2)(η − 1)2 = 2 [6.4]

or
η4 + 1 = 2η3, and thus η + 1/η3 = 2 [6.5]
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Here an attempt is made to examine some series derived from [6.1] which
do not explode and hence might be of interest as models of stable time
series with long internal memories but a limited capacity to expend energy
or to store outputs. As Cundy (2000) notes, [6.1] is a truncated case of the
general equation

xn = xn−1 + xn−2 + ....+ x+ 1 = (xn − 1)/(x− 1) [6.6]

which has a solution x = 2 − 1/xn, that obviously approaches 2 steadily
with increasing n. We may also comment that as a process [6] is not sta-
tionary in its order for the first (n− 1) terms.

It is apparent that n in [6.6] is an assumption about the short-term
memory of the system, and is taken to be a constant independent of U .
Let us call this the order of the memory and denote it by m, to leave n
for use as a general suffix. In real experimental memory data, the capacity
of the component memories is not observed to be constant, and m could
therefore be better treated like a variable. This does not affect the analyses
in Tables 6.1 and 6.2.

Let us rewrite [6.1] in two different ways and explore each separately.
First, dampen the cumulative nature of [6.1] by rescaling1 any term Un >
10 by mod10. So, if U1 = U2 = U3 = 1, to start the recurrence, then U4 = 3,
U5 = 5, U6 = 9, U7 = 17.0(mod10) = 1.70, U8 = 15.7(mod10) = 1.57,
U9 = 12.27(mod10) = 1.227, U10 = 4.497 and so on. Rewriting [6.1] we
now have

Un =
{
Un−1 + Un−2 + Un−3 if Un ≤ k
k−1Un if Un > k

[6.7]

where the role of k is to put an upper bound on responses to inputs, so
that the process does not explode. The need for such a bound has been
recognised since Herbart in 1812 (cited by Gregson, 1988).

1 This is not modk in the proper sense, if it were, then, for example, Un = 17(mod10) would
become Un = 7. If that definition of mod is used, then the series takes only integer values
and could be represented as a Markov chain over k states.
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The important point to grasp is that this series is quasi-periodic2. Run-
ning the first 200 iterations to three decimal places suggests that it is ap-
proximately period 19; as 19 is a prime number, this is a curious prop-
erty, not one associated with the more familiar bifurcation series or period
three recurrences in chaotic dynamics. It then raises the question, does it
look like a series at the edge of chaos? In general, the series [6.1] can be
rewritten mod(k), so to give it a name let us call it Tribmodk. The relation
between the modulus and the quasi-periodicity is unknown to me, but the
quasi-periodicity is not observed to be constant over long realisations of
the series. Then, the Tribonacci series is simply a case of m = 3. The rela-
tions [6.2], [6.3], [6.4] will hold for subseries, that is segments between the
operation of mod(k), but not across that operation of [6.7].

The other modification of [6.1] is to write, more simply,

Un = q−1[Un−1 + Un−2 + Un−3], 0 ≤ q ≤ 1 [6.8]

which if q ' 3 becomes an AR(3) series, and if q ≥ 3 it runs onto a point at-
tractor. This one we will call Tribarq. It is less interesting, so it is eschewed
here.

From runs 200 iterations long, with U1 = U2 = U3 = 1.0 it is possible
to estimate some statistical parameters of the Tribmodk process as a func-
tion of the modulus k. The estimates of the fractal dimensionality D and
the Hurst exponent H are from an algorithm of West, Hamilton and West
(2000) and their confidence limits are not known. MaxP is an estimate of
the dominant periodicity from inspection of the autocorrelation spectrum;
this is not necessarily constant over extrapolation. The largest Lyapunov
exponent Λ1 is from SANTIS. The entropic Schwarzian analogueESf is as
previously defined (Gregson, 2000), with partitioning constant .015. Slope
refers to mean∆1U .

The D and H values are not independent parameters, because they are
linked by the relation D+H = 2, and are included for illustration, but the

2 The use of modular algebra in maps with recurrent trajectories is not, of course, new. It
was used in Arnold’s cat map in various forms to induce mapping on a torus (see Schuster,
1984, p. 152 et seq.)
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Table 6.1
Estimates of some statistical properties of Tribmodk

Property mod 7 mod 10 mod 13 mod 19
Mean 2.6061 3.3798 4.3795 6.2192

s.d. 1.9040 2.8795 3.9187 6.0812
slope -.0002 +.0012 +.0037 +.0031
MaxP 40 19 9 41

D 1.8287 1.6925 1.6963 1.6562
H .1713 .3075 .3037 .3438
Λ1 +.1489 +.1305 +.0563 +.0519

ESf -1.9495 -2.4398 -.6758 +.4396
————————————————-

remaining parameters each describe different properties of the series. The
approach advocated here is to compute a diversity of measures to charac-
terise adequately the peculiarities of the dynamics, including any evidence
of nonstationarity. This necessitates the further exploration in Table 6.2.

Some of the estimates of properties in Table 6.1 are reminiscent of
chaotic dynamics, so sensitivity to initial conditions is an aspect of Trib-
modk that is worth examination. Perhaps the simplest way to investigate
the effects of varying initial conditions is to make a second-order change
in one of the original starting values, replacing U1 by 1.01. In Table 6.2,
this modified mod10 series is coded as S1. Alternatively, we may take any
three successive Un values from its evolving trajectory as a new starting
point; as the series is deterministic, this will replicate the gradual changes
in the local quasi-periodicity of the trajectory if these new subseries are
concatenated.

For example, the series S2 is created from the mod 10 column in Table
1 by putting

U1(S2) = U170 = 3.991 [6.9.1]
U2(S2) = U171 = 6.539 [6.9.2]
U3(S2) = U172 = 1.163 [6.9.3]



136 INFORMATIVE PSYCHOMETRIC FILTERS

Figure 6.1: Graphs of four Tribmodk series for contrast
Tribmodk with k= 7, 10, 13 and 19
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The values for S3 and S4 are similarly lagged, U1(S3) = U340, U1(S4) =
U510, each series is 200 iterations long, so that they overlap.

Table 6.2
Variations in properties of Tribmod10 with starting values

Property S1 S2 S3 S4

Mean 3.3874 3.3931 3.3946 3.3435
s.d. 2.8859 2.9068 2.8953 2.8139

slope +.0012 +.0015 -.0005 +.0005
MaxP 19 9 9 19

D 1.6925 1.7012 1.8287 1.6882
H .3075 .2988 .1713 .3118
Λ1 +.1276 +.1120 +.1433 -.0010

ESf -2.4398 -2.4128 -2.4128 -2.4181

Higher-Order Derived Series

Given any series xj , j = 1, ..., n, it is possible to create other series by
internal multiplication across lags. The simplest series is then

Xk := xjx(j−k), j = 1, ..., n, k fixed [6.10]

and the family of Xk with k a variable defines the bases of the autocorre-
lation spectrum of x.

If the multiplication is taken to a higher order, then

X(m,n) := xjx(j−m)x(j−n), ∀m,n m ≤ n [6.11]

andX(m,n) is sometimes, in frequency domain analyses, called a bispectral
series. IfX(m,n) is computed over a set ofm,n values, it gives us a triangu-
lar matrix of series, which, because the process [6.11] is symmetric in m,n,
can be treated as the off-diagonal cells of a square skew symmetric matrix,
M of size n× n.
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Each cell in the X(m,n) matrix may be replaced by a function of the
series. In this context, we may compute the ESf of each of the X(m,n), and
for convenience write

b(m,n) := ESf(X(m,n)) [6.12]

The triangular matrix computed here for each of the Tribmodk series is of
the form

b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
b(2,3) b(2,4) b(2,5) b(2,6)
b(3,4) b(3,5) b(3,6)
b(4,5) b(4,6)
b(5,6)

If this matrix is reflected to give the full square form, then its eigenvalues
are all real (Gregson, 2001), because all the elements b(m,n) are real and
not complex. It should be noted that the values of m,n are minimal and
thus the matrix acts like a high-pass filter. If n were to be set at 2, 7, 10 ,13,
19 respectively, then different values related to slower forced frequencies
would be found.

Table 6.3
Eigenvalues for the Higher-order ESf

Eigenvalue k = 7 k = 10 k = 13 k = 19
(1) -1.7448 -1.9506 -1.4773 -1.6390
(2) -.7661 -.4573 +.4536 +.6265
(3) +.5663 +.4114 -.3589 -.4952
(4) +.3580 +.2667 -.2449 -.1892
(5) -.2283 -.1775 +.2440 +.1627
(6) +.1290 +.0286 +.0016 -.0557

Tables 6.3 and 6.4 were computed using only the first 200 iterations of
Tribmodk. It is seen in Table 6.3 that the second through fifth eigenval-
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ues change sign as k increases. There is a reflection in the pattern of signs
between k = 10 and k = 13.

Table 6.4
Higher-order ESf matrices for the Tribmodk series

Values in italics lie within the 95% confidence intervals for random surro-
gates

For k = 7
-.2534 -.2598 -.2823 -.0627 -.0244
-.3170 -.6473 -.4080 +.3047
-.4117 -.4135 -.5552
-.2605 -.0313
-.2428 n: 4

For k = 10
+.0281 -.3663 -.3118 -.1989 -.2875
-.4510 -.5262 -.5393 -.1329
-.3087 -.4255 -.1308
-.5067 -.1954
-.3430 n: 4

For k = 13
-.3703 -.1928 -.3817 -.1260 -.0824
-.1799 -.3469 -.3520 -.0276

+.0662 -.1696 -.1210
-.5422 -.3138
-.3143 n: 4

For k = 19
-.3645 -.1545 +.0107 -.2939 -.4697
-.3226 -.3355 -.0869 -.3339
-.0167 -.1036 -.5846
-.4247 -.3677
-.1273 n: 2
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To show the pattern of the higher-order ESf values that generate the
eigenvalues for the system, the triangular b(m,n) matrices are set out in
Table 6.4. The n: values in Table 6.4 are the number of italicised values
out of 15 in that triangular matrix. There is some agreement between the
ESf values in Table 6.1 and these n: values in that the k = 19 data are
more different from the other three series; as k increases resemblance to a
simple strictly periodic or random series diminishes. The emergence of a
more complex wave form is also shown in the graphs.

Discussion

If a series is generated by a nonlinear process, then the set of statistics to
characterize it adequately has to be more than the sufficient statistics of a
linear process with Gaussian residuals. This is so even under stationarity
of the parameters generating the observed realization of the trajectory. The
simplest statistics, then, can only serve as an exploratory way of finding
signs of suspected non-stationarity by examining successive sub-series. If
there is no reason to expect a simple analytic representation of the under-
lying processes generating the trajectories then confidence limits on any of
the statistical indices, such as used here, can only be estimated by Monte
Carlo methods.

If series are short, as is deliberately the case here, and have many singu-
larities, then attempting a representation through Fourier analysis is very
cumbersome and, even with wavelets, would be potentially misleading3

Wavelets can handle Dirac δ functions when they arise within a reasonably
long process, but the singularities induced here with the mod jumps are of
a different form.

In Tables 6.1 and 6.2, the information provided by the slope merely
indicates that the process has no detectable shift in its mean over the
sampled series length. In that limited sense, it is stationary and might be
within the trajectory of a closed attractor. The ESf uses none of the in-

3 Kaiser writes, p. 61, of ”the tremendous inefficiency of ordinary Fourier analysis in deal-
ing with local behaviour” (Kaiser, 1994).
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formation in the mean and s.d. and is sensitive to differences which are
not sufficiently captured in the s.d. H has low values, which is usually
interpreted to mean that the process is antipersistent (Feder, 1988).

The difference in terminal values for S1 in Table 6.2 andmod10 in Table
6.1 is simply due to setting U1 = 1.01 as against U1 = 1.0. These values are
respectively

U198(S1) = 9.915, c.f. 9.893 [6.10.1]
U199(S1) = 1.879, c.f. 1.875 [6.10.2]
U200(S1) = 1.964, c.f. 1.960 [6.10.3]

which indicates that trajectories initially separated do not converge onto
the same values over the range explored. Nor, however, do they widely
diverge, which is compatible with the small positive Λ1 values.

The variations in Λ1 and in ESf over successive epochs are small
and may be due to computational approximations in the relevant algo-
rithms, but there is evidence from recurrence plots that some period of
non-stationarity does emerge within the longer series U1, ..., U510, and
the pattern of peaks in the autocorrelation spectra changes and becomes
more complicated with evolution. For the mod19 series, the autocorrela-
tion spectra and the recurrence plot become even more complicated and
qualitatively different from the lower modk series. This is reflected more
obviously in the ESf value, which becomes positive (this shift in sign has
been found previously in varying parameters in edge-of-chaos series), as
compared with the changes in the other statistics.

It is obvious from Table 6.1 thatESf is very sensitive to the choice of k,
but equally within one k value it may be insensitive to local second-order
changes in the evolution of the same trajectory, as seen from the twin val-
ues of−2.4128 in Table 6.2. This insensitivity can arise as a consequence of
the choice of the partitioning constant δ (See Appendix). The higher-order
ESf matrices can be used to compare the dynamics in successive short
concatenated subseries, particularly to explore for evidence of nonstation-
arity, as they can reveal subtle changes that are missed by the lower-order
parameters; this has been done for some EEG series (Gregson, 2001).
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The conventional way of comparing the series, as they are obviously
quasi-periodic, is to compute their Fourier Power Spectra, provided that
we bear in mind the warnings just given. For illustration, spectra for Trib-
modk k = 7 and 19, iterations 1-200, are shown; the extra secondary peaks
that emerge as k increases are apparent, as is a shift in the location and
power of a major peak in the middle range.

Figure 6.2: Graphs of Fourier Power Spectra
for Tribmodk k = 7 and 19

The computation of D,H and Λ1 over very short series is associated
with difficulties, even if only relative values are sought. There is, however,
some evidence that in such circumstances, with series appreciably shorter
than the 200 used here for illustration, that ESf can still be informative,
and can differentiate between stochastic and some nonlinear deterministic
trajectories (Gregson, 2000b). It is trivially simple, using ESf , to differen-
tiate between strictly periodic series and quasi-periodic ones, because for
strictly periodic series the successive differences eventually vanish. They
do not vanish for Tribmodk, which can have a somewhat curious distri-
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bution of ∆4(Un). Tribmodk is an example of a process which is strictly
stationary in its parameters but, if examined by calculating the range of
descriptive statistics now available for characterising non-linear dynam-
ics, will appear in the light of some to be non-stationary in its outcomes.
Such processes are not novel, the SETAR series created by Tong (1983) are
cases in point.

The reader might appreciate some hint as to how one might use the
Tribmodk family and its associated statisticsm, k in experimental psychol-
ogy. Perhaps the simplest way is to use a series extrapolation task, where
the theory is used to generate a stimulus display over time and then the
subject is asked to continue the series for another large number of trials4.
This has been done by various authors with the logistic or Hénon func-
tions (Neuringer & Voss, 1993; Smithson, 1997; Ward & West, 1998; Heath,
2002), and comparisons made between the recurrence plots of theoretical
and response time series. Recurrence plots are not helpful for short series,
because of their sparsity, but other statistics such as ESf can be used for
comparisons of theoretical and response series, even when the series are
replete with singularities.

There are deep relations between the chaotic dynamics of complex cu-
bic maps on the unit interval, their attractors and the Fibonacci series, and
the Schwarzian derivative, that have been explored by Milnor and his co-
workers (Lyubich, 1993). This suggests that, in terms of topology, there
are a number of unanswered questions about the series used here. It is
an open question whether Tribmodk should be called chaotic, in the strict
sense used to describe a strange attractor, despite the positive value of its
estimated largest Lyapunov exponent. It is a closed trajectory on an in-
variant manifold and, with increases in the one parameter k, it becomes
more complicated, but not in the period-doubling sequence of, say, the
Ruelle-Takens series. It is, perhaps, preferable to call it simply nonlinear
deterministic and stable. Other such series with local memory have been
also described (Morariu, Coza, Chis, Isvoran & Morariu, 2001) in com-

4 This type of experiment has also found use in clinical diagnosis (Helmuth, Mayr & Daum,
2000) with some simplification.
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paring and contrasting human with theoretical memory processes. There
are yet other ways of creating chaotic sequences by considering quadratic
maps with no real zeroes. The main result is that rational initial conditions
produce finite or infinite periodic sequences, whereas irrational ones yield
infinite but not periodic sequences (Carvalho, 2002, p. 31).

Classical ARMA analyses

It can be informative to see what linear ARMA(p.q) representations of the
Tribonacci series look like. The solutions are limited to models with p 6>
5, q 6> 5. We note that the order of fitted q increases with k, but the values
of the p terms change irregularly.

————————————————-
Table 6.5: ARMA parameters for the four Tribonacci series

parameter Trib07 Trib10 Trib13 Trib19
AR1 -.2203 .3214 .1125 .1049
AR2 .2169 -.3448 -.2658 .0674
AR3 .1025 .6165 .1415 -.1006
AR4 .2961 -.1432 .4127 .0387
AR5 .6046 .5498 .5986 .8857

MA1 -.0067 -.5429 .2484 -.1373
MA2 -.6222 -.1241 .0752 -.1031
MA3 -.2929 -.5964 -.1545 .1808
MA4 .3003 -.2238 .2368
MA5 -.8825 -.9437

-2logΛ .7181 .9168 .9675 1.1976

All the -2logΛ terms in both Tables 6.5 and 6.6 are to be read as × E+03.
————————————————-

The point of this analysis is to show that, if we have a purely deter-
ministic process, which is, if we know its generating function, perfectly
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predictable, and we instead assume falsely that it is purely stochastic and
stationary, then an ARMA model is computationally derivable. But this
model tells us nothing about exactly how the process evolves; it is descrip-
tive and not functional. It discriminates between the forms of Tribmodk if
k is increased, but does so in a way that is much too complicated compared
with the generating function. It thus violates Occam’s Razor.

Paradoxically, this ARMA analysis could have some use, though it
furnishes no real insights. If Tribmodk is used as the seed process in a
serial extrapolation experiment and the subject is in fact capable of ex-
trapolating within some tolerance bound, ε, then the ARMA model of
the subject’s extrapolation should resemble an appropriate minimum or-
der ARMA(p,d,q), and that should also be a good fit to the ARMA(p,k,q)
model of the generating seed series. We note that it is highly implausible
that the strategy used by a human observer would be isomorphic with an
ARMA model with 8 to 10 terms in a linear expression, as shown in Table
5. The brain does not store information that way.

Differencing at lag k, as shown in Table 6.6, does not make much
change to the overall goodness of fit index -2logΛ, but the structure of the
ARMA models does change, and the differences between Tribmod13 and
Tribmod19 are apparent, particularly the collapse of the order of the MA
terms. It is worth re-emphasising that these induced complicated patterns
are all the consequence of changing just one real positive scalar parameter
in Tribmodk.

ApEn modelling

Pincus, in a series of analyses (see, for example, Pincus, 1991, Pincus and
Singer, 1998), has shown that a measure of approximate entropy (ApEn),
which can be applied to relatively shorter time series, will qualitatively
distinguish between some stationary processes, where other measures
such as LLE or D2 are not reliably computable. It can be shown from a
variety of cases that ApEn is not monotonic on ESf, and that ESf can dis-
tinguish between some pairs of series, including the Tribmodk series used
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Table 6.6: ARMA parameters with differencing at level k

Parameter Trib07 Trib10 Trib13 Trib19
AR1 .1283 .4038 .5632 -.5944
AR2 -.0799 -.2599 -.4054 -1.4286
AR3 -.6251 -.0374 .3901 -.9088
AR4 .5806 -.7429 -.8611 -.7501
AR5 .6015 -.6007

MA1 -.2608 -.6675 -1.0313 .3037
MA2 -.7149 -.1765 -.2128 .9979
MA3 .6554 .0764 -.0215
MA4 -.2574 .6673 1.2268
MA5 -.4073 -.8079 -.7046

-2logΛ .7395 .9384 .8470 1.1267

————————————————-

here, rather better than ApEn. The two measures do not use the same data
properties.

The estimated ApEn values, using m = 2, r = .20 (the parameters of
choice in ApEn), for the Tribmodk series are, in order of increasing k,

.5133, .5625, .5143, .5117

These values should be compared with the ESf values in the last row of
Table 6.1.

Modified Tribonacci series with one control parameter k are strictly
deterministic. If k is replaced only when it serves as a divisor by a random
variable θ, where 1 ≤ θ ≤ k, then the process becomes different in its
evolution, but is still bounded and edge-of-chaos. Numerical comparisons
of solutions to the ESf and ARMA modelling of the series are provided;
the effects of introducing stochastic noise appear to be irregular and to be
diminished as k is increased.
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There have been a number of studies concerned with the identification
and analysis of processes that are reasonably believed to be a mixture of
nonlinear dynamics and random noise. Such processes may be treated as
a mix of low dimensionality dynamics and high dimensionality stochastic
background, or as nonlinear dynamics masked by stochastic noise of in-
determinate structure. The degree of masking is critical for identification
of the deterministic components. In short data samples, it may be impos-
sible to disentangle signal from noise if we regard the nonlinear dynamics
as generating the true signal. Misidentification of dynamics thus arises if
one uses methods that presuppose the presence of, and only of, stochastic
dynamics. At the same time, biological processes are considered to be con-
taminated ubiquitously with noise, or even require for their viable plastic-
ity the presence of random components (Schaffer, Ellner & Kot, 1986).

The Tribmodk series could be interpreted as a model of some cognitive
process. In fact, if it is used as a stimulus generator for serial extrapolation
tasks, then, if the subject does extrapolate most of the properties of the
series whose local evolution has been presented, it can be thought of as
evidence that the brain can perform the operations intrinsic to Tribmodk.

Tribmodk is built on three deterministic operations: (i) storage of a few
numerical values in short-term memory, (ii) addition, and (iii) rescaling by
something like shifting a decimal point or division by an integer. These are
all simple operations that are used in AI neural networks and thought to
be performed in real neurophysiological connected structures (Oprisan &
Canavier, 2001). It is important to note, from inspection of the graphs in
the previous study, that Tribmodk depends on its starting values for a few
terms and then runs onto an attractor.

The parameter k in fact performs two distinct roles: a time marker,
which has been called a modulus but which triggers the action of the divi-
sor, and the divisor itself. Let us relabel these kt and kd respectively, in ef-
fect increasing the number of free parameters in the model by one. Now let
us replace kd by θd, where 1 ≤ θd ≤ k and θd ∼ rect((k+1)/2, .289(k− 1)),
where rect is a random i.i.d. distribution on the interval. In doing this, a
mixed deterministic-stochastic process has been created. As each of kt and
kd could be replaced by a bounded random variable, there are four possi-



148 INFORMATIVE PSYCHOMETRIC FILTERS

ble Tribmod models; deterministic ktkd, mixed ktθd, θtkd, and stochastic
θtθd. The purpose of this part is to compare the properties of Tribmodk
and Trbmodktθd.

A secondary modification is to admit the range of θ not over 1 ≤ θ ≤ k
but only over k ± 1, which is illustrated in some of the figures. Obviously,
this is less disruptive of the dynamics.

ESf Analyses

The ESf analyses are computed in the same was as for the deterministic
series; there is a complication in that any realization of the series now is
not an exact replication of any other with the same seeds x1, x2, x3 and k,
so there is variance in the evolution of the source trajectory as well as in
the surrogate randomizations.

In Table 6.7 it appears that, for k = 13, the process is more consistent
with being random. In all the other three series it is nearer to chaotic than
random, (as ESf is more positive, as shown in Gregson 2002) but the dif-
ference (-.539 versus -.549) for k = 19 is very slight.

————————————————-
Table 6.7: ESf and surrogate c.i. for the four Tribmodkθ series

surrogate: 95% c.i. 95% c.i.
bounds: lower upper

k ESf
7 -.2832 -.450 -.418

10 -.4801 -.616 -.588
13 -.6736 -.675 -.619
19 -.5390 –.583 -.549

δ = .03 in all cases.
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The interplay of k and θ on the emergent dynamics is obviously not
simple.

The higher-order ESf analyses may also be compared with the previous
results and are tabulated in the same fashion.

The magnitudes and signs of the Eigenvalues are changed and rela-
tively diminished. There is a suggestion that the patterns converge as k
increases and the effect of the presence of a random component is less-
ened.

————————————————-
Table 6.8: Eigenvalues for ESf[b(m,n)]

Eigenvalue k=7 k=10 k=13 k=19
(1) -.6165 -1.4637 -1.1527 -1.1440
(2) -.4709 +.2256 +.4969 +.3358
(3) +.2772 -.2219 -.3054 -.2443
(4) +.1827 +.1590 -.2035 +.1009
(5) +.0952 -.1124 +.0706 -.0954
(6) +.0078 -.0368 -.0243 -.0420

————————————————-

It can be seen by comparing n: values in Table 6.4 of the Tribmodk
analysis with Table 6.9 that the effect of introducing stochastic variation θd
is not to increase the higher-order random structure but, as kt increases,
slightly to diminish its randomness.

Classical ARMA analyses

The tables in this part of the note should be compared with the corre-
sponding tables 6.5 and 6.6 previously considered for long memory only,
for the four k values and for undifferenced and differenced ARMA mod-
els. The same constraint is used, that only models of ARMA(p,q) with
p 6> 5, q 6> 5 are computed to find a best fit within those limits.



150 INFORMATIVE PSYCHOMETRIC FILTERS

Table 6.9: Triangular ESf[b(m,n)] matrices for Trinmodkθ
Italicised values lie within the random surrogate 95% c.i. bounds

For k=7
-.1310 -.1994 -.1358 .0445 -.1109
.0367 -.1878 -.2196 -.0910

-.1527 .2472 -.1457
.0405 n: 4

For k=10
-.3367 -.1850 -.3339 -.1348 -.2787
-.2045 -.2485 -.2570 -.1996
-.4252 -.2512 -.1097
-.2282 -.2186
-.2134 n: 5

For k=13
.0031 -.2150 -1953 -.3185 -.3603

-.3413 -.2327 -.2872 -.2872 -.3015
.0804 -.1082 -.0822

-.1800 -.0863
-.1711 n: 2

For k=19
-.2785 -.2097 -.2237 -.1317 -.1390
-.1622 -.2608 -.1640 .0199
-.5257 -.1423 -.0928
-.1280 -.2975
-.0866 n: 2
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Table 6.10: ARMA parameters for the four Tribonacci series

parameter Trbrn07 Trbrn10 Trbrn13 Trbrn19
AR1 .6992 .4719 .4359 -.2965
AR2 -.9970 -.5315 -.4208
AR3 .5307 -.4535
AR4 -.6697 -.3889
AR5 .2052 .4549

MA1 -.5126 -.8233 -.5541 .0375
MA2 .1195 .7459 -.3750 .0039
MA3 .3158 -.2045 -.6385 .0574
MA4 -.1849 -.4181 .9332 .1645
MA5 .2753 -.8433

-2logΛ 1.0339 .8869 .9042 1.1638
LLE +.0915 +.1703 +.1660 +.0980

All the -2logΛ terms in both Tables 6.10 and 6.11 are to be read as × E+03.

When the differenced series are compared, kd fixed versus ktθd, it is
found that, as k increases to 19, the differences in the ARMA estimated
structure become relatively quite small. It appears that the deterministic
part of the process begins to dominate the effects of randomization of the
divisor θ. The differenced series are curious in their form and can be more
irregular and less apparently periodic than the undifferenced series.

The remainder of these Tribmodk and Tribmodkθ comparison Figures
6.11 through 6.25, concerned with recurrence plots, and with some delay
plots are given at the end of the chapter. Note that in Figures 6.24 and
6.25 another form of Tribmodkθ has been added in which the noise in the
divisor θ is kept in the narrow range k ± 1. The variance of the noise dis-
tribution is a critical parameter in determining if the nonlinear dynamics
are preserved or masked. Obviously a range of cases between this narrow
rectangular p.d.f. and the wide one (1, ..., k) can be created and explored.
If the task is to discriminate between series, each already known to be of
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Table 6.11: ARMA parameters with differencing at level k

parameter Trbrn07 Trbrn10 Trbrn13 Trbrn19
AR1 .1738 1.7685 -.2762 -.5641
AR2 -.0688 -.9417 -.0947 -1.3903
AR3 -.5756 .1333 -.8412
AR4 .5559 -.5687 -.7107
AR5 -.6851 -.5675

MA1 -.3206 -2.0710 .0448 .2976
MA2 -.7266 1.5726 -.6052 .9995
MA3 .6417 -.3288 -.6367
MA4 -.0946 .7369
MA5 -.4999 .5236

-2logΛ .7399 1.0603 .8688 1.1270

The following series of graphs summarise pictorially the qualita-
tive features which vary with the choice of the parameter k. In
these cases, k is a selective filter and, to match real data prop-
erties and exploration over the whole field of k and θ, solu-
tions would be needed. The same selected values of k have been
used, prime numbers were chosen to block factorization effects.

————————————————-

the Tribmodk family, with k as the variable, it may be regarded as as esti-
mation problem and not an identification problem.

Discussion

As remarked, this part of the study arose out of reconsideration of experi-
ments in which it was asked if subjects could serially extrapolate a chaotic
trajectory. The answer appears to be that they could not strictly do that, but
that they could do something which preserved some qualitative features,
such as quasi-periodicity or anti-persistence, as quantified by the Hurst in-
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Figure 6.3: Tribmodkθ 07 series, 1,200

Figure 6.4: Tribmodkθ 07 differenced at 07 series
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Figure 6.5: Tribmodkθ k=10 series, 1,200

Figure 6.6: Tribmodkθ k=10 series, differenced at 10
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Figure 6.7: Tribmodkθ k=13 series, 1,200

Figure 6.8: Tribmodkθ k=13 series, differenced at 13
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Figure 6.9: Tribmodkθ k=19 series, 1,200

Figure 6.10: Tribmodkθ k=19 series, differenced at 19
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dex. It is easier to extrapolate locally from a chaotic series generated from
the logistic map than from a random series.

The Tribmodkθ series created here might be thought of as a nonlineary
dynamic repeatedly disrupted by transients; in this sense it has some eco-
logical validity. That argument has been appealed to by Gregson (1995)
in the context of nonlinear psychophysics but using the Γ recursion. The
point being made here is that using the logistic attractor after reaching sta-
bility on the invariant manifold is an extreme form of stability. Even so,
trajectories from stationary nonlinear dynamics can have subseries which
are qualitatively identifiably different from the rest of the series (Warren,
Bashford, Colley & Brubaker, 2001); if these are what are presented as the
stimulus series the results could hardly be the same as from some other
subseries from the same trajectory, though the subseries themselves may
be identifiable by the observer.

Four studies that have focussed on the serial extrapolation problem
are by Neuringer and Voss (1993), Metzger (1994), Smithson (1997) and
Ward and West (1998). These all used the logistic function with the gain
constant set near 4 to produce a trajectory that was stable. Heath (2002),
however, used a Hénon attractor to generate a discretized trajectory. The
details about what subjects were asked to do, in terms of length of stim-
ulus series, length of extrapolation, comparison with random series, and
feedback provided or withheld, differ between studies. Heath importantly
showed that some subjects could discriminate (in terms of very local serial
extrapolation) a chaotic series from one with the same spectral density that
was not chaotic. The mode of response and the precision of responses re-
quired also varied. The analysis of results was in some cases presented as
the lag-one plot xi 7→ x(i+1), which takes a very simple form for the logis-
tic function. Metzger showed that if precision of response is relaxed then a
simple rule, that can be learnt from inspection of the stimulus series, will
approximate the lag-one delay plot. No such simple rule does generally
exist, and in some of the Tribmodk and Tribmodkθ examples used here it
is not in such a tidy form. In short, the logistic function is not a valid basis
for making assertions about chaotic trajectories in general.

But Metzger’s demonstration raises another important point; she
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showed that the delay plot is roughly approximated if the observer uses
a small, and thus finite, set of rules of the form ”if j occurs then follow it
by k”. This gives a series of lumps which lie roughly on the continuous
curve of the logistic delay plot, a parabola for the gain parameter value
selected. But such a set of rules are the cells of a transition probability ma-
trix; if that matrix is ergodic and complete, and the mapping is from t to
t+ 1, so no diagonal cells are absorbing states, then it may generate quasi-
periodic cycles. In short, it resembles a Markov process and it may be anti-
persistent. It is thus not incompatible with Smithson’s later analysis. The
question is, as originally put in these series extrapolation tasks, can the ex-
trapolation from a chaotic trajectory be itself chaotic? The answer, if sub-
jects are doing what Metzger identified, is no, because (Martelli, 1992, p.
206) ”the conditions which qualify a system as chaotic require the presence
of aperiodic orbits, but are not met by any dynamical system governed by
a q × q matrix M .” To explore this point further here we need Markovian
approximations to the Tribmodkθ series, for an arbitrary number of states
q. These and the terminal state vectors at ∞ are shown in the table, all
assuming an equiprobable starting (rectangular) vector. The assumption
is that five states are sufficient to represent the upper limit on memory
storage that a subject would use to construct rough transition rules. The
patterns suggest that Tribmod19θ would defeat a subject attempting ex-
trapolation on that basis.

Human Predictive Capacities

As noted, a number of studies have addressed the question as to whether
the human subject can serially extrapolate a series that is either random
or chaotic and not, therefore, strictly periodic or stationary. We know that
observers have difficulty in recognizing what is a random sequence and
attribute to local features evidence of non-randomness that is not statisti-
cally valid. But recognition and production of series require different abil-
ities that are not tightly coupled: I can tell often that music is by Mozart
and not by Brahms, but I can play neither.
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Table 6.12: Markovian representation with 5 states
Transition probability matrices for Tribmodkθ series

d1 d2 d3 d4 d5 ∞
Tribmod07θ

.82 .15 .02 .01 .00 .736

.59 .28 .10 .00 .03 .190

.33 .25 .33 .00 .08 .059

.00 1.00 .00 .00 .00 .005

.00 .50 .50 .00 .00 .010
Tribmod10θ

.55 .24 .21 .01 .00 .558

.54 .24 .14 .04 .04 .246

.62 .29 .09 .00 .00 .171

.67 .33 .00 .00 .00 .015

.50 .00 .50 .00 .00 .010
Tribmod13θ

.47 .15 .20 .15 .04 .488

.46 .22 .12 .17 .02 .201

.58 .29 .06 .06 .00 .156

.46 .31 .15 .08 .00 .131

.60 .00 .20 .20 .00 .024
Tribmod19θ

.65 .00 .00 .15 .20 .563

.76 .24 .00 .00 .00 .143

.00 1.00 .00 .00 .00 .035

.32 .60 .08 .00 .00 .122

.37 .00 .19 .26 .19 .137
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There is a little-known historical precursor to such experiments, in
which Whitfield (1950)5 asked subjects to respond to an imaginary ques-
tionnaire, to which only their responses were recorded; the questions were
private inventions of the subject and not revealed. He found that the statis-
tical structure of their response sequences, made in yes-no or rating scale
fashion, changed with the length of the questionnaire. In modern parlance,
they moved onto an attractor over time. The important thing about this ne-
glected study is that there was nowhere any mention of randomness, but
the subjects were free to run onto an attractor of their own devising and
did so. The results showed that the series were autocorrelated, to some
degree, and unbalanced in terms of the proportion of ’yes’ and ’no’ re-
sponses to an imaginary questionnaire which only allowed for binary re-
sponses. There were also warm-up effects. These features match what is
reported in random series production experiments; it suggests that calling
a series random may be irrelevant, but that the human respondent does
involuntarily converge onto a noisy attractor. Call that attractor Q, and its
trajectories on its manifold the set {t(Q)}.

Serial extrapolation without feedback has some common features with
the imaginary questionnaire, what subjects do after they have only their
memory to rely on for extrapolating a quasi-periodic series, (largest Lya-
punov exponent positive and exponentially decaying local predictability)
is to move to an attractor with intrinsic instability. Even for extrapolating
the simplest sinusoid, as in motor skills, there will be second-order de-
partures from a limit cycle and response sequences that locally return to
the deterministic trajectory, such as overshooting or delays. Such patterns
have been studied from the standpoint of ODEs of oscillations (Hale, 1963;
Hoppensteadt, 1979).

If the stimulus series is presented continuously in parallel with the re-
sponse series, then it may take on the role of a forcing function, not nec-
essarily at a conscious level. This requires a different method of analysis
(Gregson and& Leahan, 2003).

Suppose that the original stimulus series is generated by a determinis-

5 This work was done at University College, London, at the time I was a student.
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tic attractor A and that the subject has in her own response repertoire A∗
where A∗ has two properties, it is contaminated with stochastic noise and
it is in some sense near to A. In fact, what we can only observe as subject,
but not as experimenter, are trajectory samples, τ(A) and τ(A∗).

Various questions then arise: if, instead of A, we present A∗, does this
make the serial extrapolation task easier or harder? To put it another way,
if the subject already has both B∗ and A∗, does the presence of A∗ make it
easier to avoid using a mismatch B∗? What constitutes a match or mis-
match for the task is in terms of trajectories τ(A) ' τ(B∗), not direct
matching, though some attempts have been made subsequently to match
by Poincaré diagrams. It is assumed that a subject can not produce a purely
deterministic nonlinear trajectory by making motor or verbal responses
and it is doubtful if a linear process can be produced without some error
tolerance.

The family Tribmodk with variable k produces trajectories that do not
simply resemble one another; from comparing some samples the subject
cannot readily see that only one parameter is involved in generating the
diversity of patterns, re-exploration of a family of perceptually similar pat-
terns is not necessarily an optimum search strategy to find a valid serial
extrapolation sequence. If only a family {B∗} exists, then the subject seeks
within that family to find a close match to the presented A∗ by varying
some parameters in a subset of {B∗}. As soon as noise is admitted, the
distinction is between ∃A ∩ B which may not be a condition that could be
satisfied, and ∃A∗∩B∗ butA∩B = ∅which can be satisfied rather trivially
if there is no upper bound on the noise variance.

There is yet another way of conceptualising the conflict between two
trajectories: as an invasion by the stimulus attractor of the attractors al-
ready dynamically resident within the observer. By an analogy with eco-
logical models (Geritz, Gyllenberg, Jacobs & Parvinen, 2002), the stimulus
series is a mutant invasion, which may be absorbed, continue in parallel,
or overtake the system. Such replacement of the initial dynamics is im-
plausible in the context of the serial extrapolation experiments, they are
not like learning to play a Beethoven sonata that is long, complicated and
remembered.
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What subjects can actually do with simpler oscillating series as a track-
ing rather than an extrapolation task has been surveyed by Large and
Jones (1999). If the subject has alternative choices of series to employ, then
it becomes a sort of discrimination task for quasi-periodic series; Mein-
hardt (2002, p. 143) observes in an analogous context that ”discrimination
learning can be understood as a higher level process of gradual refinement
of code selection out of a rich code base provided by lower level stages”.
The problem is that no lower level stage may lead by revision to an attrac-
tor that is synonymous in some sense with a chaotic trajectory.

There have been numerous attempts in statistical and physical the-
ory to identify the dynamics of nonstationary time series for example,
by Machens (2002) in physics and Fuentes (2002) in spatial processes but
these are useless for the short series of psychological data, though sugges-
tively they may employ information measures, or interesting convolutions
of stationary processes that become nonstationary in the long run.

In formal terms, the problem and some of the observable results for
Tribmodkθ, θ ∼ rect[k ± 1] here are related to the theory of stability under
periodic disturbances (Hoppensteadt, 2000, p.106); under some conditions
the trajectories of the perturbed system lie sufficiently close to those of the
unperturbed system. The examination of the recurrence and delay plots
gives some qualitative idea of what noisy disturbances are tolerable in the
stimulus series.

It is known, from analyses of the more standard nonlinear attractor dy-
namics (Logistic, Henon, etc) that a small introduction of stochastic noise
does not perturb the closure of limit cycles, but a larger noise level will
eventually destroy the attractor structure (Kapitaniak, 1990). A determin-
istic trajectory is replaced by a noisy orbit, which is what we have done
here with Tribmodk. But if the noise is slight, the largest Lyapunov expo-
nent remains positive and its fluctuations are smoothed out. The separa-
tion of trajectories in chaotic dynamics (associated with the positive LLE)
is accompanied by noise which is well-known in diffusive processes. In
this context, compare the 2D delay plots from Tribmodk and Tribmodkθ
with θ ∼ rect[k ± 1], and with Tribmodkθ 1 ≤ θ ≤ k. The narrow band
noise appears to clarify the delay plot structure, the wide band noise de-
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stroys it.
There are yet more difficulties, in that if we did have a long enough

response series to evaluate its properties it could not with certainty be
concluded that it was chaotic, even if the original stimulus series was it-
self chaotic and the two appeared to match. Hoppensteadt (op cit., p. 200)
notes that some functions of a slow almost periodic form can be indis-
tinguishable from chaotic series in practice, say chaotic series that have a
power spectrum supported by an interval of frequencies. So comparing
the stimulus series and the extrapolating response series by comparison
of Fourier spectra may be an inappropriate test.

The psychological question that remains is what, if anything, in human
performance resembles the mixed deterministic-stochastic evolutions syn-
thetically generated here when cognitive tasks are repetitively performed?
If serial extrapolation is induced from a mixed system and mixed systems
are characteristic of human performance, then the problem is to measure
the disparity (or match) in the dynamic structure of two mixed systems
and to find measures of nearness of the two systems from relatively short
time series. The approach illustrated here creates reference patterns from
Tribmodk and Tribmodktθd and would then require that data from real
human extrapolative behaviour was analysed in exactly the same way.
There is no known single sufficient statistic to characterise the evolution of
mixed nonstationary processes and no reason to think that one would ex-
ist, though attempts have been made to devise such a measure on a struc-
tural equation which has mixed dynamics (Kauffman & Sabelli, 1998).

Conclusions

In the serial extrapolation task there are a number of different mechanisms
involved:

(1) The local trajectory from a known but — to the subject — unspecified
attractor A,
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(2) Some attractor B∗ (or one of a set of such attractors between which
switching might spontaneously occur) in the subject that is per-
turbed from its manifold by transients from other attractors,

(3) The storage of A as A∗ in short-term memory,

(4) a modification or replacement of B∗ by A∗ where these two share lo-
cally some coarse trajectory properties, as a sort of learning. It is this
stage where something like a Markovian process may be substituted

(5) a drift back to the reinstatement of B∗ as the resting state of the ob-
server’s system dynamics.

It is (4) that presents problems, for various empirical and mathematical
reasons (Buescu, 1997; Wiggins, 1992; Hoppensteadt, 2000). The operation
of one attractor on another can be induced by a forcing function, by a tran-
sition over a heteroclinic orbit, or by more exotic processes that are not
demonstrable except in simulations with very long running times6. There
is no way with short data series that resolution of these ambiguities can be
solved. The few properties of the observed time series that have been used
to match the stimulus and extrapolation response series are not specifi-
cally characteristic of nonlinear dynamics, and indices that might be of
use, such as LLLE, are not computable on short series, indices such as ESf
that are computable are not fixed scalars for most nonlinear evolutions,
even under stationarity in the sense of being on an invariant manifold.

Note

The employment and meaning of the Schwarzian derivative (Schwarz,
1868) in nonlinear psychophysics was noted previously (Gregson, 1988,
p. 27). It measures a property sometimes called ”expansiveness”. In one

6 Concepts such as riddled basins or distinctions between different forms of attractor have
found no use in attempts so far to apply chaos theory to psychological processes, as distinct
from physiological or ecological modelling.
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dimension, it is a natural measure of non-projectivity of a transformation
f (Sullivan, 1983, p. 727).

There are fundamental differences between the information in a fre-
quency analysis and that in the ESf representation7. The frequency do-
main representation, by Fourier’s theorem, linearly partitions the series
into parts of an infinite sum

f(x) :=
∞∑
i=1

F (αi, πi, θi) [6.11]

where α is amplitude, π is periodicity of a sinusoidal component F , and
θ is phase. The series is truncated to sufficient terms to give an approx-
imation when the data series is of finite length. The α information is re-
moved by [6.1], the phase θ is not considered at all and the periodicity π
is effectively partitioned into slow and fast components so that the infor-
mation in the fast components dominates the construction of Tribmodk.
The slow dynamics function as a carrier and, if they are sinusoidal, then
their second and later absolute differences vanish and for the slow parts
ESf → 0. The representation of nonlinear trajectories as being a conse-
quence of slow/fast psychological dynamics has been found informative.
It is also noteworthy that approximate entropy measures, such as ESf ,
have found significant diagnostic use for dealing with local transients
in EEG records in anaesthesiology (Bruhn, Ropcke, Rehberg, Bouillion &
Hoeft, 2000).

7 The shift from derivatives of a continuous function to discontinuous sequences is not
innovative; see Chalice (2001) on the analogues of differentiation in discrete sequences
and Sandefur (1990) for applications in dynamics
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Figures 6.11 and 6.12: Recurrence plots for Tribmod 07 and Tribmod 07θ

The effect of θ randomization is to destroy the broken 7 periodicity. Note
the initial unstable period before the process runs onto an attractor on the
invariant manifold.
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Figures 6.13 and 6.14: Recurrence plots for Tribmod 10 and Tribmod 10θ

There is a suggestion of non-stationarity here, but otherwise it is not inter-
esting. Perhaps this is because here k is not a prime number.
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Figures 6.15 and 6.16: Recurrence plots for Tribmodk 13 and Tribmod 13θ

This is perhaps the most curious pattern emerging in the dynamics. The
process jumps between three phases, two of which are strongly periodic,
suggesting two or more attractors.
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Figures 6.17 and 6.18: Recurrence plots for Tribmod 19 and Tribmod 19θ

The effect of θ randomization is to destroy both the broken and the contin-
uous 19 periodicity. The initial period of instability is much shorter here.
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Figure 6.19: Recurrence plot with narrow noise on k, k = 7 and 10

Figure 6.20: Recurrence plot with narrow noise on k, k = 7 and 10
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Figure 6.21: Recurrence plot with narrow noise on k, k = 13 and 19

Figure 6.22: Recurrence plot with narrow noise on k, k = 13 and 19
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Figure 6.23: 2-d Delay plot for Tribmodk

Figure 6.24: 2-d Delay plot for Tribmodkθ, k=13
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Figure 6.25: 2-d Delay plot for Tribmodkθ, θ ∼ rect[k ± 1]

Postscript on the Figures

The marked diversity of the recurrence and delay plots induced by small
changes in the parameters is not unique to the Tribonacci series and can be
illuminated by recent discussions of the problem of defining exactly what
chaotic means. The most-frequently quoted definitions or empirical tests
for the presence of chaos include sensitivity to initial conditions and pos-
itivity of the largest Lyapunov exponent, though neither are strictly nec-
essary. Sobottka and de Oliveira (2006) draw a distinction between peri-
odicity and eventual periodicity, trajectories that begin aperiodicially and
only after evolution become observably periodic are a property of chaotic
dynamics, so recurrence plots that appear random in early iterations and
then periodic are to be expected.
Another feature that Yao, Yu, Essex and Davison (2006) consider funda-
mental and a definitional property is mode competition, chaotic attractors
create at least two internal and competing modes. These may be revealed
in a frequency analysis, and in unusual patterns in delay plots.





Chapter 7

Rescorla’s Theory of
Conditioning

Rescorla and Wagner (1972) published an influential model of classical
conditioning, which has been further refined by Rescorla (2001), introduc-
ing as necessary an ogival or cubic function which departs from its original
linearity. The question of interest is whether this revised model could be
subsumed as a special case of nonlinear psychophysical dynamics. The
original model, being linear and deterministic, was widely studied and
modified in various ways to try and incorporate stochastic ideas and thus
cope with the probabilistic nature of competing response behaviour and
response measures (Frey & Sears, 1978; Hanson & Timberlake, 1983).

Alternative models for interaction effects between different cues in
making causal judgements have evolved that vary both in their structure
and the number of their free parameters, as well as in prior assumptions
about what entities may be present in a decision situation. White (2005)
gives a review and it is known that effects can be predicted by models
better for this purpose than Rescorla’s. White’s algebra is basically built
from linear weighted sums of dimensional components and is extended to
cover 24 different conditions for combining evidence. He contrasts it with
some Bayesian nets used to model decisions made by children (Gopnik,
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Sobel, Schulz, and Glymour, 2001). We will not here go beyond consider-
ing the Rescorla algebra. Its use in causal learning is reviewed briefly at
the end of this chapter.

We will keep Rescorla’s notation for his model throughout:
For a single stimulus

∆pn = β(λ− pn) [7.1]

where β is the learning rate parameter, pn is the probability of a response
on trial n, and λ is the asymptote of learning. The complications begin
when compound stimuli, made up of two or more components, are used.

The model is now expressed in terms of Vi, which is the strength of
association to stimulus i. V may be positive or negative and is thus not a
probability. The compound stimulus is called AX , and VAX is the strength
of association of the compound stimulus. The linear assumption is, then,
that

VAX = VA + VX [7.2]

which appears from more recent data to be false. When a stimulus com-
pound was followed by a US, the changes in the strength of each of the
components A and X were taken to be a function of VAX . This was noted
to be an important departure from linearity (Rescorla & Wagner, 1972, p.
76), but different from that in [7.2].

When a compound AX is followed by US1 then

∆VA = αAβ1(λ1 − VAX) [7.3]

and
∆VX = αXβ1(λ1 − VAX). [7.4]

where 0 ≤ α, β ≤ 1. The α are scalar weights. If a different US2 is em-
ployed, then the suffices 1 are replaced by 2 in all cases in [7.3] and [7.4].
It is assumed that λ is a function of the magnitude of the US. There are
some vaguenesses or, to be more charitable, a lack of formal specification
in the model concerning the boundedness of λ and the V s. A monotonic
mapping of V onto response probabilities was assumed.
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It follows that, when both VA and VX begin conditioning at zero, that
after any large number of conditioning trials with AX reinforced

VX =
αX

αA + αX
VAX [7.5]

which resembles Luce’s version of Individual Choice Behaviour (1959),
now known to be in general false.

Extension to Discrimination Learning

Suppose that in a series of trials where AX and BX are mixed randomly,
AX is always followed by reinforcement and BX is always followed by
nonreinforcement, to induce a discrimination between A and B. Here X
can be thought of as a background or as contextual cues.

∆VA = αAβ1(λ1 − VAX), [7.6]
∆VX = αXβ1(λ1 − VAX) [7.7]

where AX is reinforced, and

∆VB = αBβ2(λ2 − VBX), [7.8]
∆VX = αXβ2(λ2 − VBX) [7.9]

where BX is nonreinforced. Together, [7.6, 7.9] is a nine-parameter model;
simplifying assumptions by setting all αs = 1.0 and βs = 0.5, and V s zero
prior to the first learning trial were made. The main point of interest is that
AX increases monotonically to an upper asymptote, butBX can variously
rise and then fall, or fall from the onset of learning. Heath (1979) found
the linear model inadequate and augmented it using stochastic decision
processes.

Various probabilistic schedules of reinforcement are used in condition-
ing, and predictions incorporating π, the reinforcement probability on a
trial, are derived. Consequentially, π is also the proportion of reinforced
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trials in a closed sequence. The asymptotic value of partially reinforced
(i.e. π ' 0.5 for each compound stimulus) VAX , VBX is

Vasympt =
πβ1λ1 − (π − 1)β2λ2

πβ1 − (π − 1)β2
[7.10]

anf if λ1 = 1.0, λ2 = 0 and π = 0.5 then

Vasympt =
β1

β1 + β2
[7.11]

Rescorla and Wagner derived a diversity of expressions for asymptotic
behaviours under assumptions about parameter values and using the lin-
earity assumptions VAX = VA + VX and VBX = VB + VX . An attempt to
circumvent criticisms of the linearity assumption was suggested by treat-
ing the stimuli involved as sets VAX , VBX , VABX because VA∩VB 6= 0. Then
VABX → λ1 and VAX → λ2 and so for VBX , so that VX → (2λ2 − λ1), with
VA, VB → (λ1 − λ2).

Those details constitute a sufficiency for considering if a parallel with
Γ models in NPD is viable.

Structural Analogies

The conditioning theory is essentially about short trajectories leading to
asymptotic values where the asymptotes are relative response probabili-
ties. In a sense, it is about the orbits of the attractor manifold of the dy-
namics, but the model’s only dynamical equations are [7.1, 7.3, 7.4]. The
data and theory in the source papers do not usually show confidence lim-
its on predictions or data, although these could be presumably be derived
with ancillary assumptions about binomial distributions on the pn.

The entry points for comparison are the equations for two-component
mixtures in each theory, in conditioning [7.3, 7.4], and in NPD (Gregson,
1992, p. 24, eqns [2.19, 2.20]) for two continua h, i, (where i =

√
−1 when

it is a multiplier and not a suffix)
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Yh(j+1) = −ah · (Y ∗
hj − 1)(Y ∗

hj − iλh · (ai)−1)(Y ∗
hj + iλh · (ai)−1) [7.12]

Yi(j+1) = −ai · (Y ∗
ij − 1)(Y ∗

ij − iλi · (ah)−1)(Y ∗
ij + iλi · (ah)−1) [7.13]

Both models are written in difference equation form and both can induce
local transient nonmonotonic trajectories in their dependent variables, the
comparisons would have to be with V s in [7.1, 7.3, 7.4] and Y (Re,Im) in
[7.12, 7.13]. What is expressed as two stimuli, A,B, and a background, X ,
in pseudodiscrimination experiments is expressed as two complex vari-
ables, Y (Re,Im), with shared Y (Im) in 2D NPD Case 2 theory. The fun-
damental difference in the objectives of the two theories is that one was
written for learning and the other for sensation. The possible comparison
arises when responses to mixtures are mediated by nonlinear interactions
between continua.

Parameter Comparisons
Conditioning Psychophysics Meaning

pn [Y (Re)] response probability
β [a] learning rate
α [e] weight on β
π [Y (Im)] reinforcement probability

λ1, λ2 asymptotes on V
VA [Y (Re)] associative strength of A

VAX [Y (Re,Im)] strength of A with noise X
VAB strength of mixed output AB

[β1, β2] a1, a2 gains on each dimension
[a] e sensitivity

[VA] 0 < Y (Re)< 1 observable output (response)
[π] Y (Im) internal activity

[VABX ] λ cross-coupling
η delay time
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Note in the table that λmeans an asymptote in conditioning theory, but
means a cross-coupling in NPD. The two meanings are quite different, but
the symbolism has been retained, so that reference to the original sources
can be made simpler. We are going to drop the asymptote idea later in
revising NPD to incorporate some sort of conditioning process.

To compare the two models, the parameters have to be matched, if they
functionally correspond. Such correspondence does not necessarily have
to exist for all parameters; that is, their role within the model may be given
the same meaning, but obviously their numerical values do not match. As
NPD is written as a difference equation, [7.1] may be revised to facilitate
the explication and comparison of model differences as

Vn+1 = (1− β∗)λ+ β∗Vn [7.14]

where β∗ = 1−β. Equation [7.14] shows that the model is a linear weighted
compromise of a postulated asymptote and the present value of V . There
is no need to put an asymptote into Γ [7.12,7.13] because that recursion is
self-limiting in Y (Re) within its attractor basin of stability. In the table of
Parameter Comparisons near-functional equivalences have been indicated
in [..]; such equivalences are not necessarily symmetrical.

The Γ recursions are the basis of the observable map MΓ := a 7→ Y (Re)
and the conditioning of the map Mcond := π 7→ V , as a and π are under
experimenter control and functions of Y (Re) and V are treated as response
scale values. As MΓ is the result of a complex cubic polynomial function,
it is ogival. Rescorla (2001) has now revised Mcond to be ogival because
a linear map does not fit data. One may say that end effects at zero or
near asymptote exhibit nonlinearities; this is a weak convergence of the
two models. The question we now explore is: can the conditioning model
be rewritten as a special case of NPD? It could be argued, on the basis
of a sort of biological economy, that the same brain has to support the
sequential dynamics of the domains of activity, sensation and learning.
Any model which is linear in its details can be treated as a local subregion
of the dynamics of a more general nonlinear model on the principle of
piecewise linearization.



RESCORLA’S THEORY OF CONDITIONING 181

The entry point of the argument is to note that ∆Y = f(e, Y (Im)) and
∆V = g(α, β) are bivariate operator equations f, g respectively in the two
models that control rates of change of their dependent variables. But in
conditioning there is an extra variable π, a variable reinforcement param-
eter, that has no counterpart in sensation. This is equivalent dynamically
to having a nonstationary feedback loop added to the recursion. To recall
the distinctions of the introduction, we move from U to C time series.

A simple heuristic way to parallel the reinforcement parameter in an
augmented Γ is to make e in one-dimensional NPD a function of an exter-
nal schedule Sj .Then

Γ := Yj+1 = −a · (Yj − 1)(Yj − i · f(Sj))(Y + i · f(Sj)), i =
√
−1 [7.15]

The time series generated by [7.15] is

Yj+1 = f(a, Sj) [7.16]

and [7.14] with π incorporated as in [10] is

Vn+1 = (1− β′)λ+ β′Vn [7.17]

where now β′ = (1− πβ).

The suggested necessary modification of [7.2] which Rescorla (2001, p.
64) considers for compound stimuli is

VAAB = f(VA) + f(VB) [7.18]

and now this f is sigmoidal, so it would resemble MΓ
1.

1 The theory variant called ΓV 1 in Gregson (1988) uses ej = f(∆1aj), which means that
response sensitivity is a function of a local rate of change of stimulation. This is a sort of
feedback, whereas π in [7.10] is not contingent on ∆V . To modify [7.15] to accommodate
schedules of reinforcement Sj is therefore not the same as using ΓV 1.
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Simulation in 2D NPD

The problem now is to see if variations in the parameter values of 2Γ Case
2 equations can produce some of the same time series for reinforced and
unreinforced components of a stimulus mixture. This will be attempted
in two stages: first, a purely deterministic treatment of S = f(j) in [7.16],
and then a stochastic revision in which the shifts in parameters from trial
to trial are probabilistic and not a monotone function of time.

Deterministic model

The qualitative pattern it is desired to reproduce, without any structural
changes in the 2Γ model, is that in which the reinforced component slowly
rises in output strength with successive reinforcement, but the unrein-
forced component first rises a little and then falls off to a low asymptote.
This rise and then fall in a component which is to be extinguished is sup-
posedly paradoxical for some linear models. It is necessary first to show
that a configuration of 2Γ parameter settings which are not implausible,
given the extensive results (Gregson, 1992, 2001) in other sensory (but not
learning) situations can yield the apparent paradox.

The parameters in a 2Γ Case 2 model are set initially as
Y0(Re, Im)1, Y0(Re, Im)2, a1, a2, λ1, λ2, η. Putting Y0 = (0.5, η) for both di-
mensions sets the process as initially stable. η = 10 has been fixed through-
out, as response delay is not a variable system parameter being modelled.
a1 = 2.4, a2 = 3.6 assumes that when the response to dimension 1 is ini-
tially unconditioned then the noise strength a2 is greater. Both the a values
are left unchanged, as the actual stimuli do not change, only the relative
responses to them. The only parameters available to represent an altered
sensitivity to stimuli and interaction between stimuli are λ1 and λ2. Con-
tinuing reinforcement over a long series J = 1, ..., N of trials thus implies
here that SJ = f(λ1, λ2, J).

After some exploratory analyses, it is found that setting initial values
λ0,1 = 0.2, and λ0,2 = 1.15, and incrementing on each trial

∆1λ1 = +.04, ∆1λ2 = −.04 [7.19, 7.20]
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yields Figures 1 and 2. Bounds on e1, e2 of e1 < .45, e2 > .01 were set2,
though these are not hit for e2 in the series until J = 30.

Figure 7.1: Time course over trials J of Y(Re)1; reinforced

Figure 7.2: Time course over trials J of Y(Re)2; extinguished

Figure 1 is an analogy of VA time series and Figure 2 is an analogy of
VX . If an analogy of [7.2] is required then the two curves are summed at
any point J . This would here yield an almost flat curve for the mixture un-
til a1 dominated, which is implausible unless weighted summation were
to be used.

2 In Case 2 the cross-coupling is effected by making e1 = λ1/a2, and e2 = λ2/a1. It is
known from previous psychophysical results that plausible values of e lie in the range
.01 < e < .45.
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Stochastic models

Now the increments [7.16, 7.17] in λ1, or 2 are made with associated proba-
bilities, which adds another two parameters π1, or 2 to the model, compare
[7.10]. There are obviously various ways in which this can be done; one,
which creates slight second-order changes to the Figures 7.1 and 7.2, is to
write the random variable κ ∼ RECT (0, 1), and then

for reinforcement: λJ = λJ−1 + κ · .2− .05 [7.19]

for extinction: λJ = λJ−1 − κ · .2 + .05 [7.20]

which produces Figures 7.3 (corresponding to 7.1) and 7.4 (corresponding
to 7.2). The shifts to conditioning or extinction now arise sooner and more
abruptly and the reinforcement curve runs to an asymptote.

Figure 7.3: Time course of reinforcement with stochastic perturbation

Figure 7.4: Time course of extinction with stochastic pertubation

Note that the initial rise in the extinction curve still exists. This rise
exists if there is an appropriate choice of a combination of all of the pa-
rameters a1, a2, λ1 and λ2.
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Another much more erratic substitution of a stochastic component on
the λ values is shown, without any commitment to its plausibility. When
conditioning experiments are run, there is no certain smooth improvement
in performance, and local failures or relapses can arise, but unless these are
reported in detail without averaging over replications (which is not usual)
it it not possible to know if they are faithfully modelled in any simulation.
However, the next two figures 7.5 and 7.6 depict what can happen. The
equations corresponding to but replacing [7.19,7.20] are (J = 1, ..., 30)

for reinforcement: λJ = λJ−1 + .04 · J(2.0 · κ− 1.0) [7.21]

for extinction: λJ = λJ−1 − .04 · J(2.0 · κ− 1.0) [7.22]

Figure 7.5: Reinforcement with erratic stochastic effects

Figure 7.6: Extinction with erratic stochastic effects



186 INFORMATIVE PSYCHOMETRIC FILTERS

Higher and Indeterminate Dimensionality

The Rescorla-Wagner model has been used in other contexts than the orig-
inal conditioning paradigms for which it was created. One area of interest
is the learning and use of causal inference in humans as a topic in develop-
mental psychology (Gopnik, Glymour, Sobel, Schulz, Kushnir and Danks,
2004). It transpires that the Rescorla-Wagner model can not capture some
processes of causal inference, but another approach, based on directed
acyclic graph theory, can do better. Such graphs are called Bayes nets when
combined with a recursive strategy to choose between various links be-
tween nodes. With the subsequent use of Bayes theorem to compute var-
ious posterior probabilities associated with different links and subsets of
nodes in the graph. Bayes nets were developed in artificial intelligence as
one way of solving what has come to be called the inverse problem (Pearl,
1988). This finding about the inadequacy of the Rescorla-Wagner model is
pertinent here because, to the extent that the Rescorla-Wagner equations
can be treated as analogous to NPD equations, then those also would fail
if used without modification as suitable for representing inference judge-
ments.

There are, however, some complications: in equations [7.1-7.22] we
have restricted comparisons to what are two-dimensional processes and
causality situations generally involve more terms, so that directed paths
like X → Y may be wrong as failing to reveal that the true situation is
X ⊥ Y, Z → Y, Z → Y where ⊥ means causally independent. This is
like the situation in statistics where partial correlations and not first-order
correlations should be used to reveal psychophysical influences like those
mapped in Chapter 1, in Figure 1.3.

Gopnik et al, (2004,p.6) observe pertinently that

Causation is not just correlation, or contiguity in space, or pri-
ority in time or all three. Causal structures rarely just involve
one event causing another. Instead, events involve many differ-
ent causes interacting in complex ways. A system for recover-
ing causal structure has to untangle the relations among those
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causes and discount some possible causes in favour of others.

Even if the underlying causal relationship is deterministic, the
occurrence of other causal factors, which may not be observed,
will typically make the evidence for the relationship proba-
bilistic.

All this is true; the a priori indeterminacy of the number of variables,
and hence the dimensionality of the system, is critical and almost always
greater than two, but it is still not sufficient. The Bayes net approach is
acyclic, so there are no feedback loops in it, and the assumptions are that
deterministic and stochastic linkages are all that may prevail; there is no
provision for some of the characteristic features of nonlinear dynamics,
including mixes of fast and slow dynamics, which arise naturally in NPD
but not in R-W. White (2005, p. 131) suggests that the RW model can be
supplemented by ”an account of within-event associations”, which would
involve more parameters and something like adding fast dynamics. At
the same time, it is clear that causal learning involves more than bare psy-
chophysical mappings, that are necessary but not sufficient.

Both Rescorla-Wagner equations and NPD create trajectories of associ-
ation or estimates of causal strength; they involve changes over time and
run asymptotically to equilibria, whereas the Bayes nets need augmenta-
tion to do that. Gopnik et al (2004, p.19) show experimentally that there are
problems children can solve, involving what is called ”backward block-
ing”, that are outside the scope of causal Rescorla-Wagner models but can
be handled by some Bayes nets. Backward blocking is the situation where
learners decide if some event is a cause of an effect by using information
where the event never appears in conjunction with other trials where it
does appear. The RW model can be modified by adding axioms that de-
crease the association of a cue with an outcome when the outcome occurs
in the absence of the cue. Also, the RW model requires a prior specification
of the direction of putative causal links, whereas Bayes nets (and humans)
can, in some circumstances, decide between X → Y and Y → X . It may
be important that in using nΓ equations we have always that

Cause→ a, Y → Effect,
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that is, causal direction is expressed in model structure in a different way
from that in RW. If the extension to n×nΓ is used (Gregson, 1995), then the
structure of an n × n matrix of λ coefficients in [7.12, 7.13] is also needed
to be solved for. That corresponds to restricting the (0,1) links in a directed
Bayes net.

At the present state of knowledge, it can be safely asserted that none
of the competing models have universal validity for explaining how and
what causality inferences are actually made by human subjects. Condi-
tioning theory, of which RW is a particular case, does not effectively deal
with human contingency judgements (Shanks, 1985), nor with the role of
associated implicit stimuli (Miller, Barnet and Grahame, 1995).



Chapter 8

Nonlinearity, Nonstationarity
and Concatenation

A comparison of six time series two from pseudo random generation, two
from convoluted theoretical psychophysics, and two from EEG records
are compared using a set of four statistics. It is seen that local largest
Lyapunov exponents, the entropic analogue of the Schwarzian derivative,
higher-order kernel matrices, surrogate random tests for confidence limits
on parameters and eigenvalues of the dynamics all yield different infor-
mation about the local instabilities of the processes. All the time series are,
in some way, different from one other.

Only something that appears to be both orderly and disor-
derly, regular and irregular, variant and invariant, constant and
changing, stable and unstable, deserves to be called complex.

(Edelman & Tononi (2001, p. 135).

The investigation of unstable quasi-periodic orbits where there is noise
present and surrogates may be employed has become of increasing inter-
est in the study of biological data. Such data include psychophysiological
time series such as scalp EEGs (Ding, Ditto, Pecora & Spano, 2001). There
has also emerged a diversity of methods for looking at nonlinear nonsta-
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tionary dynamics in time series, which, however, are only tractable for
very long series. For example, Casdagli (1997) reviews the use of recur-
rence plots on series between 5,000 and 60,000 iterations long. The ESf
methods used here were deliberately created to look at very short series
from psychophysical and psychophysiological data sets, where 100 iter-
ations under stability is often a practical limit. The general problems of
employing statistical analyses to discriminate between randomness and
chaotic dynamics in time series, particularly in higher dimensionalities,
something that is not always possible, are reviewed by Berliner (1992) and
commentators and the valuable role of symbolic dynamics was then al-
ready known.

In psychophysiology, the identification of transient nonstationary pat-
terns of activity has been explored theoretically as a basis for perceptual
and memory processes (Gregson, 1993, 1995; van Leeuwen & Raffone,
2001). The idea being pursued is that the dynamics of neural activity have
to be very labile for the brain to be able to learn and to revise rapidly and
continually its processing of perceptual inputs. In time series terms, this la-
bility implies possible nonstationarities and singularities. So, except over
very brief realisations, statistics such as frequency domain spectra or auto-
correlations will mask and not reveal singularities as they involve only a
small part of the energy distribution of the process and become masked in
any averaging over time. In the particular case of the Fourier transforms,
by FFT analyses, if one were to capture the singularities or abrupt jumps,
spikes or bursts, as they are variously called in EEGs, then in the limit one
would need an infinite series of frequency terms in the Fourier expansion.
The alternative of treating spikes or bursts a priori as outliers is not accept-
able in nonlinear dynamics, though outliers can exist as a consequence of
identifiable exogenous perturbation.

Thom (1975) noted that, in biological data, there may be many local
small catastrophes in the evolution of a process but, because they are many
and small, their existence would be smoothed out in modelling. However,
if one can take short enough series and explore the dynamics within such
epochs, as compared with their smoother neighbouring epochs of similar
length, then the nature of the nonstationarities in the dynamics may be
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clarified. The questions of how and why local anomalous dynamics arise
are tied to the identification of fast/slow dynamics. Van Leeuwen and Raf-
fone (2001) come to this problem through considering the activity of the
hippocampus as mediated by nonlinear coupled maps. Coupling of fast
and slow dynamics can be modelled in various ways: the NPD approach
(Gregson, 1998, 1992, 1995) does it with complex variables, and it can also
be done with real signals riding on slow carrier waves. In psychophysiol-
ogy, it is noted that the time scale of sensory processing is much faster that
that of memory consolidation, though both may run in parallel and may
involve neural circuitry via the hippocampus.

Shafer (1994, p.60), discussing the logic of statistical inference writes

We deliberately construct the stochastic story that serves as our
standard for comparison. We often construct several.....we may
(or may not) find a stochastic story in which the performance
of the spectator roughly matches the performance of our fore-
caster At no point are we required to think of the forecaster
herself or of the phenomenon being forecasted as part of a
stochastic story.

The fundamental difference here is that trajectories which are not
stochastic, or are mixed deterministic and second-order stochastic, may
be used instead of stochastic stories; the matching idea is still the same.

For illustration, two EEG samples are compared with four processes,
two of a complicated nonlinear form, and two which are Gaussian i.i.d.
series. Thus there are six series, two from real data and four from theoret-
ical computations. For each series of 960 steps, there are eight subseries of
120 steps. There are four statistical methods used on each subseries, so the
total study is 6 × 8 × 4 in its full crossed design. This does not imply that
it is amenable meaningfully to Anova.

Statistical Methods

This section recapitulates some previously described uses of methods, to
make the immediate contrast of the methods and their derived indices
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more compact, without back reference to the previous chapters.

Lyapunov Exponents

Under some conditions where the diffusion rate of the dynamics of the
time series is nearly zero, the probability distribution of the local largest
Lyapunov exponent is approximately log-normal (Fujisaka, 1983) and, un-
der stricter conditions, the difference between the entropy and the largest
Lyapunov exponent is approximately constant (Kohmoto, 1988, p. 1349,
eqn. 5.9). It is not yet known how well real psychometrical data might
satisfy these analytical conditions. See Appendix 1 to this chapter for a
definition in terms of Jacobians.

Random Surrogate series

The method of random surrogates to compare a data series with a number
of randomised permutations of the series was introduced by Theiler et
al (1992). It is used here in a slightly different manner, though the logic is
comparable. The objective is to match a series in its first two moments, but
to remove any sequential dependencies in the surrogates.

Entropic Analogue of the Schwarzian Derivative

This method was introduced by Gregson (2001) and is a parallel of a
derivative introduced by Schwarz (1868), but is based on local summa-
tions of coarsely scaled series and not on point derivatives of a continuous
function. The idea of treating a dynamical trajectory from an entropy per-
spective is not novel but is well developed (See Sinai, 2000, Chapter 3) and
can be traced back to statistical mechanics in the 19th century.

A series of a real variable y is partitioned into k exhaustive and mu-
tually exclusive subranges in the values y it takes, k = 10 is initially suf-
ficient. As a condition of the normalisation 0 ≤ y ≤ 1 the end subranges
h = 1, k will initially not be empty. Some or all of the remaining k− 2 sub-
ranges may be empty when the dynamics are minimally informative. Call
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the width of one such subrange δ(0) (of y). δ(0) = .1 for the original y but
will almost always be less for ∆m(y), the successive mth absolute differ-
ences of the series. This δ is the partitioning constant of the system. Call
the partitioning constant of the range of the mth differences δ(m). In the
examples used here, δ(1) is referred to simply as δ in the tables of results,
and all δ(m),m > 0 are set constant = δ(1).

The frequencies of observations lying in one segment δh, h = 1, ..., k is
then nh, and converting to probabilities ph we compute the information in
that subrange. The absolute differences of the rescaled y series are taken
putting

∆1(yj) = |yj − yj−1| [8.1]

and further differencing repeats this operation, so that

∆2(yj) = |∆1(yj)−∆1(yj−1)| [8.2]

. This operation can be continued only until all absolute differences are
zero. Going only as far as ∆4 is sufficient. Summing over all subranges
gives the total information in the mth differenced distribution as

I
(m)
{h} = I(m) =

k∑
h=1

phlog2(ph)|m [8.3]

Then by definition the entropic analogue of the Schwarzian derivative,
abbreviated to ESf , has the form

ESf :=
I(3)

I(1)
− 3

2

(
I(2)

I(1)

)2

[8.4]

For some strongly chaotic (theoretical variants on Γ) series, ESf is pos-
itive in the examples we have seen and becomes increasingly negative
as processes are more stochastic. It has been applied to series from psy-
chophysics, EEGs, climate and economics. Its main advantage is that is is
computable over much shorter time series than the Lyapunov exponents.
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Bispectral Kernel Analysis

This method is usually employed in the frequency domain but here a time
domain version is used together with the surrogate tests.

Bispectral analyses are, in fact, third-order kernels of time series. They
have been extensively used in anaesthesiology, in the tracking of the evo-
lution of EEGs during surgery, following Rampil (1998) and Proakis et al
(1992), and are there computed in the frequency domain using FFTs. They
resemble the kernels used in nonlinear analyses described by Marmamelis
and Marmarelis (1978).

If there exists a real discrete zero mean third-order stationary process x,
then its third-order moment matrix is defined over a range of lags 1, ...,m,
1, ..., n by

R(m,n) := E[x(j) · x(j +m) · x(j + n)] [8.5]

This matrix is skew symmetric, as m,n can be exchanged in the definition.
The triangular supradiagonal matrix is sufficient for exploratory purposes
and is used in the tables in the form shown. To compute its eigenvalues, it
is reflected into the square form and the leading diagonal cells filled with
the average of the off-diagonal cells as an approximation. Its roots will, in
general, be a mixture of reals and complex conjugates.

b(1, 2) b(1, 3) b(1, 4) b(1, 5) b(1, 6)
b(2, 3) b(2, 4) b(2, 5) b(2, 6)
b(3, 4) b(3, 5) b(3, 6)
b(4, 5) b(4, 6)
b(5, 6)

Compare the usual second-order autocorrelation which is defined as

R(m) := E[x(j) · x(j +m)] [8.6]

over a range of lags 1, ...,m.
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The Time Series Used

(1) A Quasi-Random Gaussian almost-i.i.d. Series

This series was generated, using an algorithm RAN2, by Press et al (1986),
with only one linear congruential generator. It is relatively coarse in reso-
lution of the numerical values of normal deviates created by subsequent
use of a function GASDEV to transform to Gaussian deviates on the recti-
linear deviates RECT(0,1) first generated by RAN2.

Figure 8.1: (1) Gaussian pseudo-random series

(2) A Second Quasi-random almost-i.i.d. Series

This series was also generated from an algorithm by Press et al (1986), this
was RAN1 employing three linear congruential generators. It is supposed
to have finer resolution of the values generated and to show no sensible se-
quential correlations. It is assumed that the correlations in question would
be first-order of varying lag, as used to create the autocorrelation spectrum
of the series. Its periodicity is far beyond the series length used here. The
function GASDEV was again used to create a series of random Gaussian
deviates.

(3) Convoluted Gamma Concatenated

Convoluted Gamma trajectories have been previously used for illustration
(Gregson, 2000). As they are not phase-locked their short realisations may
be concatenated.
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Figure 8.2: A second Gaussian pseudo-random i.i.d. series

Table 8.1: Statistics of the two Gaussian pseudo-random series
Distribution, trend and autocorrelation parameters

Statistic series (1) series (2)
mean -.035 .030

min -2.771 -2.390
max 4.379 3.168

variance .986 .932
skewness .194 .116

kurtosis .260 -.117
regr: slope 8.4×10−5 -9.0×10−5

AR(1) -.0048 +.0191
AR(2) -.0121 +.0098
AR(3) -.0231 -.0175
AR(4) .0168 -.0256
AR(5) -.0214 -.0604
AR(6) -.0317 -.0062
AR(7) +.0148 -.0018
AR(8) +.0125 -.0171
AR(9) +.0109 -.0165

AR(10) +.0250 -.0186
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Figure 8.3: The Raw ConvΓConc series

The first stage is to convolute, by having the parameter a in ΓV 7 a
variable, with a random bounded rectangular distribution. That is, for a
complex variable Y (Re, Im)

Γ := YJ,j+1 = −aJ(Yj − 1)(Yj − ie)(Yj + ie), i =
√
−1, j = 1, ..., η

[8.7]
where J (= 1, ..., N) is one cycle in the convolution, and

aJ ∼ α ·RECT (0, 1) + β, aj ∼ i.i.d. [8.8]

where α and β are real scalars. They have to be small and bounded to
avoid the process exploding. An additional complication introduced in
this example is that e = c · ∆1(aJ); again, c is bounded. The trajectory
returned for examination is the polar modulus r value, where

Y (Re, Im) 7→ Y (r, θ) [8.9]

of YJ,η over the range 1, ..., N . Here N = 120 and then eight such series
have been concatenated. That is to provide a comparison of the patterns
found in some EEG samples (Gregson and Leahan, 2001). This ConvΓConc
series with η = 10 has a curious shape with local erratic high spikes and
very high frequency basal activity. Unless it is known a priori that the se-
ries is a convolution of two processes, each of [8.7] and [8.8] is in itself
stationary in its parameters, then externally observed it is sample of a non-
linear nonstationary process trajectory. Its largest Lyapunov Exponent L is
positive: LLE = +.0682

The trajectories created from this convolution may be treated as being
on the invariant manifold.
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Figure 8.4: The Trimmed Cascaded Γ Concatenated Series

(4) Cascaded, Concatenated and Trimmed Series

Another way of creating a nonlinear and nonstationary series from a Γ
seed is to use the linkage

aJ+1 = f(YJ,η) [8.10]

and to introduce a second-order random perturbation to each aKJ . Here
J = 1, ..., 150, K = 1, ..., 8. This sort of series is wildly oscillatory at the
start of each KJ cycle, and runs into low amplitude period 2d oscillations,
and eventually onto a point attractor for some parameter settings. It is thus
a trajectory on the attractor manifold, not the invariant manifold. Its ap-
pearance is extremely irregular, but if it is trimmed to dampen the wildest
oscillations can be graphed as shown in Figure 8.4. It is questionable if it
has any real biological analogues, though conjecturally it might be used as
a model of local acute drug action.

The trimming is made by three boundary conditions applied in se-
quence,

if Y < 0, then Y = −Y [8.11]
if Y < cl Y = cl + logY [8.12]
if Y > cu Y = cu + logY [8.13]

It is only the shape of this series which is of interest, so the raw series
may be rescaled linearly and the constants cl, cu adjusted afterwards. The
constants cl, cu are set to bracket closely the very small oscillations after
the process converges towards its limit cycle. It has overall LLE = +.0648,
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but the local LLE is not readily computable unless a high-pass filter is used
as well, after which LLE = +.0675

This trajectory lies on the attractor manifold that is deduced from the
process running onto a limit cycle in the intervals between random per-
turbations. Jumping around like that is not necessarily on the attractor
manifold, as the Shil’nikov process also has jumps out of and back into a
spiral trajectory in the phase space, but lies on the invariant manifold.

(5) EEG under a Control Condition

These data were provided by Kerry Leahan at ANU, drawn from a long
series of recordings of EEGs under a diversity of stimulation conditions.
This series was taken from a fifth session, after stabilisation, and there was
no extraneous stimulation used.

(6) EEG under a Relaxation Condition

The series (1) and (2), and (3) and (4), all being theoretical, may be thought
of as null hypotheses for the two real EEG series (5) and (6). The Gaussian
series are what Shafer called a stochastic story. Alternatively, the Gaus-
sian series (1) and (2) may be ignored and the contrast between (3) and
(4) which are nonlinear comparison stories in the same manner and (5)
and (6) explored to see if the Γ series are in any sense models of the EEG
processes, though it is not at all probable that they are.

These EEG relax (6) data were recorded from the same study as the
previous series (5), but here there was music played as a relaxing back-
ground. In the sense of this study we have aperiodic stimulation of a wide
spectral form as a weak forcing function, which is not expected to synchro-
nise readily with any of the dominant frequencies in the resting EEG. In
fact, it is seen to be nearest to a coarser resolution random Gaussian series,
with high dimensionality.
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Figure 8.5: EEG under a control condition, and its recurrence plot
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Figure 8.6: EEG under a relax condition, and its recurrence plot

Comparison of Higher-order Analyses

Comparative analyses are given for the six series as a whole and for ESf as
partitioned into subseries, at the end of the chapter in Appendix 2.

The tabulations of the ESf and triangular matrices of the kernal ESf
values for the two concatenated Gamma examples (3) and (4) reveal con-
sistent differences, even though both are interpreted as chaotic if the LLE
positivity is taken as a sufficient statistic.
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Table 8.2: Summary of LLE and ESf for whole series

series LLE min ESf mean ESf max ESf
(1)Gaussian i.i.d +.1386 -.8435 -.6261 -.3680
(2)Second Gaussian i.i.d. +.1382 -.6608 -.5809 -.4892
(3) CΓC +.0682 -.2822 -.1607 -.0187
(4)CCΓT +.0675 +.3987 +.4330 +.4534
(5) EEG control +.1268 -.5877 -.4983 -.3501
(6) EEG relax +.1086 -.8353 -.6316 -.4543

Even though the LLE values are both positive and not very different nu-
merically, the ESf values for both the series and the higher-order kernel
terms are very different. For the first case, ConvΓConc (3), the ESf values
are small and negative for each of the subseries and in subseries 3 and 6 lie
within the surrogate 95% confidence intervals. These are the two subseries
which have n: 6 and have turning points in the local LLE plots. The actual
numerical values in the triangular matrices are mostly positive and show
some correlation between corresponding cells in the various subseries ma-
trices, which suggests that the process is indeed nearer to chaotic than to
random, but shows the nonstationarity which has been observed in the
EEG data samples (Gregson and Leahan, 2003). The kernels are, however,
very different from those of the EEG series.

The second case, of the trimmed series (4), has a reverse pattern, in that
now theESf values for the subseries are positive and much larger and the
two ranges of values do not overlap. None of these ESf values are within
their random surrogate confidence intervals. The kernel values are mostly
negative, but the n: values are consistently lower. The total series is thus a
set of trajectories in the attractor manifold, varying only slightly from one
subseries to the next. That is, there is a periodic but not sinusoidal forcing
function.

So, here are two cases of nonlinear nonstationary series, but their inter-
nal dynamics are very different.
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Another summary description is provided by the relative frequency of
A, W, and B codings for the ESf values for raw subseries in the six tables
8.6 to 8.11 in Appendix 2:

Table 8.3: Summary of A,W,B codings for the ESf values

series A W B
(1) Gaussian 4 0 4
(2) Second Gaussian 5 2 1
(3) CΓC 5 2 1
(4) CCΓT 8 0 0
(5) EEG control 7 1 0
(6) EEG relax 1 4 3

Table 8.4 Eigenvalues for submatrices #1 through #4
in the EEG Control condition (5)

Eigen Submat # 1 Submat # 2 Submat # 3 Submat # 4
[1] -3.5813 -2.7014 -3.9175 -3.7362
[2] +.4180 +.2462 -.5021 +.4131
[3] -.3201 -.1562 +.4633 -.4002
[4] -.1103 -.1120 +.3387 +.2502
[5] +.0781 +.0855 -.2041 -.2299
[6] -.0421 -.0524 -.0681 -.0164
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Table 8.5 Eigenvalues for submatrices #5 through #8
in the EEG Control Condition (5)

Eigen Submat # 5 Submat # 6 Submat # 7 Submat # 8
[1] -3.6163 -4.0878 -2.5363 -3.7416
[2] +.3699 +.3576 +.2645 -.3302
[3] -.2793 -.2719 -.2528 +.2811
[4] +.2077 -.1576 -.1751 -.2409
[5] -.1487 +.1305 +.1194 +.2068
[6] -.1243 -.0424 +.0519 +.0995

———————————————————–

In Tables 8.4 and 8.5, the root locus coordinates of the polynomials of
the symmetric 6×6 b(m,n)ESf submatrices of the EEG Control data are
shown. By the usual mapping, roots in the left-hand half-plane are stable
and in the right-hand half-plane are unstable. Complex conjugate pairs, if
they exist, denote oscillating components. When both stable and unstable
roots are simultaneously present, this is sometimes taken as a necessary
but not sufficient sign that chaotic dynamics may be involved.

The dynamics of these matrices differ, particularly in the size of the
largest root and the sign of the second largest root. The signs of the fourth
and fifth eigenvalues suggest reversals around # 3 and # 6, which could
imply local instability in the region of the turning point in the local LLE.
Gregson (1984, p.108) gives graphical examples.

It can be seen that the irregularities in the local LLE, the surrogate de-
viations within the triangular matrices and the root locus patterns are all
related ways of identifying transient nonstationarities in the evolution of
the dynamics. These local phenomena would be completely masked if an
FFT analysis of the whole series were to be used.
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Discussion

A distinction should be drawn between nonstationarity and stability. Sta-
bility is an assumption in mathematical modelling in various disciplines
(Thom, 1975) and involves both the process being modelled and the model
itself. It is thus an issue as much in philosophy of sciences as in applied
mathematics. Stationarity is a local problem of determining how complex
a model necessarily needs to be to represent the evolution of a dynamics
process. Thus, a process which is nonstationarity in terms of one model
may be stationary in terms of another and then treated as stable over sit-
uations to which it may legitimately be generalised. Whether dissipative
biological processes which eventually must die can be regarded as stable
over more than short epochs is an open question, though Thom took the
stance that stability applied to both physical and biological models.

If we compare the various measures, particularly focussing on the
short epochs where the n: values are higher, there is some weak mutually
compatible relationship between the local LLE, the n: and the patterns
within the recurrence plots for the two EEG series. The actual location in
a long series of such epochs may be apparently randomly distributed, but
the nonlinear dynamics within these short epochs are compatible with a
jump in the phase space of the dynamics.

The results of this and the previous associated study (Gregson & Lea-
han, 2003) enable us to reiterate some cautions:

(i) The use of single indices such as the LLE is not diagnostically suf-
ficient to identify dynamics which are either not stationary or not
stable

(ii) There is a conflict between the need for long time series to fix param-
eter estimates, which require the calculation of delay coefficients, and
the need to describe transient dynamics in local epochs, which nat-
urally emerge within many trajectories, both deterministic and con-
taminated with second-order stochastic perturbation.
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(iii) If a local epoch is in the limit associated with one or more singular-
ities, then the use of spectral analysis, in the frequency domain by
methods such as FFT or in the time domain by autoregression, is in-
validated in that region and hence globally if the epoch is embedded
in an unidentified trajectory.

(iv) Biologically-based processes will exhibit irregular dynamics even
without the action of exogenous stimulation and no series on its own,
without controls to separate out known exogenous sources, will be
fully interpretable.

(v) If the basic iteration frequency of a process in discrete time is not
known, it is not possible safely to avoid aliasing over some epochs.

(vi) Higher-order statistics can generate apparently paradoxical results if
used with surrogate methods but with no other first-order statistics.
They are still valuable for investigating local departures from stabil-
ity, in either the frequency or time domains.
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Notes

I am again indebted to Kerry Leahan for use of some of her EEG data, and
to Michael Smithson for the use of his Mathematica Eigenvalue functions.
The remaining computations were done either with SANTIS software or
with Fort77 Linux programs written by me.

Appendix 1: Lyapunov Exponents

We quote from Argoul and Arneodo (1986): ”To define the Lyapunov num-
bers, let

Jn = [J(xn)J(xn−1), ..., J(x1)] [8.A1]

where J(x) is the Jacobian matrix of the map, J(x) = ∂F/∂x, and let

j1(n) ≥ j2(n) ≥ .... ≥ jd(n) [8.A2]

be the magnitude of th eigenvalues of Jn. The Lyapunov numbers are de-
fined as:

λi =
lim

n→∞
[ji(n)]1/n, i = 1, ..., d [8.A3]

The Lyapunov exponents are simply the logarithms of the Lyapunov num-
bers: `i = log(λi). We have the convention:

`i ≥ `2 ≥ ... ≥ `d [8.A4]

when the system exhibits ’sensitive dependence on initial conditions’ at
least L = `1 is positive.”

Appendix 2: Higher-order Subseries

The six tables BESf tables following, 8.6 to 8.11, are each made up of indices
from eight subseries of 120 steps long. For the first 7 subseries in each, to
save space, we show the following:

Little arrows on the left to show the direction of movement of the local
LLE, from graphs in the SANTIS package.
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A letter, A, W or B, showing if the ESf for that subseries is above,
within, or below the range of its random surrogate confidence interval.

The ESf for that subseries, with its 95% confidence intervals, based on
50 random surrogates.

The triangular matrix of the bispectral coefficients, with any that are
within their respective confidence intervals shown as italicised. None of
those individual c.i. are shown.

The number of cells which are italicised, shown as n:

Table 8.6: (1) Gaussian N(0,1) non-i.i.d. series

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1 δ = .030 -.6026 -.5128 -.3631 -.4502 -.4772

-.8435 -.679 -.629 -.6349 -.5887 -.5535 -.5560
A -.3475 -.5696 -.6482

↘ -.5697 -.5027
-.5115 n: 2

2 -.5130 -.5919 -.4521 -.5258 -.4522
-.7450 -.656 -.608 -.6062 -.5009 -.5561 -.5649

A -.4528 -.4906 -.6254
↘ -..5554 -.5570

-.6577 n: 4
3 -.6121 -.5287 -.6392 -.9262 -.7458

-.5604 -.719 -.663 -.6347 -.6113 -.4014 -.6080
B -.6276 -.9652 -.5009

↗ -.4018 -.8290
-.6273 n: 4

4 -.3578 -.3573 -.4139 -.3681 -.2889
-.5435 -.657 -.611 -.4338 -.6418 -.3920 -.4608

B -.3578 -.4591 -.5408
↗ -.5302 -.7140

-.6977 n: 5
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Table 8.6 continued: (1) Gaussian N(0,1) non-i.i.d. series

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
5 -.4925 -.5693 -.4133 -.4649 -.3254

-.7625 -.746 -.676 -.6309 -.6619 -.6425 -.4575
A -.6094 -.5704 -.6559

↘ -.5932 -.5924
-.6332 n: 2

6 -.6405 -.7108 -.5276 -.3011 -.4424
-.3680 -.495 -.464 -.4802 -.5430 -.5934 -.4473

B -.6469 -.4605 -.5055
↘ -.5276 -.4172

-.4471 n: 4
7 -.5230 -.5316 -.4002 -.5051 -.4927

-.5320 -.638 -.592 -.5143 -.5465 -.3943 -.6504
B -.4880 -.7660 -.4685

↗ -.7025 -.6369
-.6658 n: 2

Table 8.7: (2) 2nd Gaussian N(0,1) non-i.i.d. series

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5 b(1,6)
1 δ = .030 -.5484 -.5818 -.8449 -.3375 -.4769

-.6608 -.630 -.590 -.3206 -.5050 -.3655 -.6764
B -.6793 -.5234 -.6761

↗ -.8438 -.8147
-.5573 n: 1

2 -.7419 -.5380 -.5342 -1.1846 -.8552
-.5159 -.648 -.597 -.7613 -.5022 -.4328 -.5408

A -.6612 -.8101 -.4101
↗ -.8674 n: 2
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Table 8.7 (continued): (2) 2nd Gaussian N(0,1) non-i.i.d. series

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5 b(1,6)
3 -.7005 -.5655 -.4672 -.6301 -.6285

-.5484 -.715 -.660 -.5083 -.2516 -.5792 -.5372
A -.6211 -.5697 -.8095

↗ -.5250 -.6171
-.8182 n: 4

4 -.4925 -.5908 -.5354 -.4622 -.4953
-.5436 -.698 -.638 -.4600 -.5634 -.5827 -.5483

A -.5271 -.4430 -.5159
↗ -.5595 -.5280

-.4441 n: 2
5 -.7185 -.4952 -.6317 -.5259 -.6388

-.4892 -.619 -.517 -.5274 -.4150 -.4004 -.4181
A -.6037 -.6573 -.4966

↘ -.5641 n: 2
6 -.5065 -.5261 -.4333 -.4769 -.6535

-.6065 -.637 -.595 -.3438 -.5685 -.5576 -. 5728
W -.4877 -.4501 -.9503

↘↗ -.4851 n: 5
7 -.6038 -.5678 -.6016 -.6186 -.5296

-.6363 -.749 -.683 -.4347 -.4752 -.7061 -.4910
A -.5375 -.6446 -.4018

↗ -.6544 -.5205
-.7269 n: 3



NONLINEARITY, NONSTATIONARITY AND CONCATENATION 211

Table 8.8: (3) Convoluted Gamma Concatenated

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1 δ = .030 .1146 .0798 .1469 .3044 .4208

-.1750 -.290 -.197 .1290 .1290 .1629 .3343
A -.3647 .1090 .2219

↘ .1488 .3944
.2345 n: 4

2 .2347 -.0032 -.2641 -.2284 -.0012
-.0833 -.258 -.519 .3343 .1887 .1469 -.2608

A .2815 .1428 .0280
↘ -.1965 .0827

-.2272 n: 2
3 .2286 .4022 .1494 -.2551 .3059

-.1798 -.223 -.153 .2946 .1877 .2345 -.1958
W .2219 .2345 -.9050

↗ .1934 .1859
.2020 n: 6

4 .1699 .0848 -.6466 .0710 .2656
-.2313 -.323 -.258 .0725 .1348 .1629 .2345

A .0890 .1743 .2424
↗ .1179 .1887

-.0561 n: 4
5 .1886 -.3163 -.2255 .2567 .2407

-.2822 -.249 -.186 .4008 .1038 .0589 .0897
B .2946 -.1927 .0725

↗ -.1510 .0219
.2236 n: 4

6 .1877 .1877 .1939 2145 .4202
-.2213 -.244 -.147 .2126 .2086 .2610 .0758

W .1484 .1502 -.1737
→ .2610 .1887

.1857 n: 6
7 -.0632 .1313 .2946 -.6338 .4008

-.0187 -.211 -.130 .1551 .0950 .1352 .1799
A -.0457 .4008 .2610

↘ -.1634 .2946
.2946 n: 7
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Table 8.9: (4) Cascaded Gamma Concatenated and Trimmed

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4 b(1,5) b(1,6)
1 δ = .030 -.4027 -.3761 -.3938 -.3044 -.8265

.3987 -.640 -.559 -.2261 -1.4135 -.1437 -.6006
A -.4572 -.3684 -.1970

-.5902 -.9939
-.1221 n: 3

2 -.5812 -.1090 -.5671 -.3170 -.2965
.4534 -.585 -.508 -.2546 -1.8040 -.4000 -.5308

A -.4509 -.2298 -.2517
-.3825 -.6831
.1450 n: 3

3 -.6211 -.1273 -.5438 -.2149 -.3579
.4480 -.588 -.510 -.0637 -1.9672 -.3138 -.5803

A -.3579 -.2198 -.2416
-.3446 -.5918
.1396 n: 0

4 -.6202 -.1391 -.5657 -.3336 -.2965
.4501 -.583 -.504 -.2907 -1.7512 -.3747 -.5277

A -.4256 -.2349 -.2517
-.3210 -.6937
.1633 n: 3

5 -.5255 -.4786 -.8767 -.5047 -.6265
.4498 -.652 -.565 -.2024 -.8833 -.1720 -.5232

A -.2573 -.3323 -.3086
-.4566 -.5438
-.2477 n: 4

6 -.2758 -.5734 -.7267 -.3603 -.1862
.4104 -.565 -.476 .1578 -.4721 -.8300 -.0337

A -.3232 -.4955 -.0627
-.1545 -.5212
-.3582 n: 2

7 -.4193 -.3874 -.1980 -.0614 -.2643
.4376 -.522 -.455 -.5529 -.4723 -.3920 -.3513

A -.5434 -.1959 -.4299
-.3185 -.5752
-.8179 n: 3
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Table 8.10: (5) EEG control condition

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1 δ = .030 -.4809 -.5130 -.5031 -.4853 -.7026

-.4659 -.697 -.643 -.5510 -.8330 -.6315 -.4919
A -.4650 -.4649 -.6892

↘ -.6193 -.7701
-.7097 n: 4

2 -.5165 -.5564 -.4032 -.3904 -.3257
-.5206 -.754 -.689 -.3961 -.5104 -.5172 -.4319

A -.5520 -.4702 -.4337
↘ -.5084 -.3999

-.3137 n:3
3 -.5707 -.6562 -.6981 -.5213 -.9822

-.5778 -.764 -.698 -.4779 -1.0653 -.5449 -.5177
A -.6899 -.5441 -.5724

↘ -.7427 -.6582
-.4835 n:3

4 -.5835 -.6462 -.4875 -.6077 -.8413
-.3501 -.702 -.644 -.6571 -.8966 -.7204 -.6307

A -.4560 -.5690 -.6307
↘ -.3311 -.6935

-.5230 n:4
5 -.5943 -.5220 -.5648 -.8248 -.4566

-.5877 -.793 -.702 -.4643 -.4269 -.6950 -.6740
A -.4019 -.7060 -.5778

↘ -.5699 -.7359
-.7585 n: 1

6 -.6417 -.6922 -.6352 -.7396 -.6122
-.4183 -.818 -.708 -.7996 -.6518 -.7162 -.6837

A -.4546 -.7579 -.5415
↗↘ -.7587 -.5623

-.9324 n: 6
7 -.4430 -.3537 -.4849 -.3311 -.4242

-.4946 -.495 -.462 -.2403 -.4382 -.4840 -.4505
W -.4491 -.4124 -.6066

↘↗ -.3012 -.4970
-.4048 n: 3
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Table 8.11: (6) EEG relax condition

LLE ESf -c.i. +c.i. b(1,2) b(1,3) b(1,4) b(1,5) (1,6)
1 δ = .030 -.8179 -.7041 -.6143 -.5440 -.5498

-.6806 -.844 -.607 -.5612 -.8827 -.5493 -.7232
W -.5275 -.6470 -.7076

↘ -.4901 -.6115
-.7683 n: 2

2 -.3435 -.3428 -.4339 -.5086 -.4778
-.4543 -1.537 -.330 -.3727 -.5198 -.5154 -.4037

W -.4401 -.3836 -.3835
↘ 4163 -.5784

-.3688 n: 7
3 -.5784 -.6952 -.5581 -.5609 -.4763

-.6561 -.589 -.326 -.7246 -.5549 -.7149 -.8600
B -.5709 -.6755 -.6035

↗ -.7626 -.6545
-.6025 n: 4

4 -.4592 -.6102 -.4473 -.4629 -.5429
-.7055 -.473 -.198 -.5734 -.5066 -.6442 -.6557

B -.5957 -.4114 -.4587
↗ -.7779 -.6349

-.6855 n: 2
5 -.5009 -.5867 -.5140 -.5715 -.4637

-.5820 -2.829 -1.240 -.5875 -.5798 -.3824 -.4935
A -.5887 -.7528 -.5498

↗ -.5025 -.6087
-.4585 n: 2

6 -.8670 -.6597 -.7274 -1.1921 -.9999
-.6152 -.824 -.261 -.7080 -.7187 -.6743 -.6710

W -.6651 -.5874 -.6209
↘ -.6289 -.7136

-.7115 n: 5
7 -.2904 -.5526 -.4101 -.6620 -.4050

-.8353 -.667 -.205 -.3986 -.6061 -.5194 -.4119
B -.3448 -.3510 -.5992

↗ -.4721 -.7479
-.5389 n: 1



Chapter 9

Time Series of Disasters

Disasters in British coal mines between 1851 and 1962 provide a well stud-
ied data base, mainly analysed for the shape of the distribution of times
between successive disasters. Here the series is treated as one of variations
in the local rate of fatalities. Another series, also showing erratic fluctua-
tions, sometimes due to unidentified exogenous factors, is that of the re-
ported monthly sightings of UFOs in the USA over an 18-year period. Both
these series raise interesting questions for social psychologists, yet can re-
quire quite different methods of analysis to explore their dynamics. There
are big differences in temporal scale, and in the number of uncontrolled
and, indeed, unidentified and uncontrollable variables, from the specifi-
able psychophysics of Chapter 1, but some of the considerations about
identifying chaotic dynamics still surface in analogous ways.

Many real situations can generate series which are a mixture of chaotic,
periodic and stochastic noise components. The actual time scale, in mil-
liseconds, days, months, or years, is immaterial unless one also has more
data for interpolation. If the series are long (over 2,000 points) then it
may be possible to sample by coarsening the resolution and look for self-
similarity and fractal properties, but this is not generally true. Nonstation-
arity of the nonlinear dynamics, overwritten by second-order stochastic
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noise, is to be expected in some psychophysical and psychophysiologi-
cal data. It is necessary to break a long series into successive subseries to
examine for nonstationarity, and this in itself invalidates the use of algo-
rithms that depend strongly on delay coordinates in order to estimate the
correlation dimension. It is to be expected that, even in stationary pro-
cesses, the local largest Lyapunov exponent will fluctuate, approximately
as a log normal distribution, and what is observed under nonstationarity
is fluctuation from both sampling and dynamical causes. As Schaffer et
al (1988) remarked, ”current methods for estimating the largest Lyapunov
exponent choke on nonuniformity”, so that even if a series is long it is not
necessarily a stable basis for estimation.

The method explored here uses the fluctuations of the local largest Lya-
punov exponent, the entropic analogue of the Schwarzian derivative (ESf),
the confidence intervals of the ESf derived from surrogates, higher order
convolutions in the time domain, and the eigenvalues of the matrix of the
ESf’s of those convolutions. It has been found that this approach can be ap-
plied to series as short as 120 points; the present study now reduces that
to 72 points (each set of 72 one-month points corresponding to a six-year
period in the source data) to see what emerges as compared with previous
analyses in the relevant literature.

If a process is nonstationary in its parameters for all but the most
complicated hierarchical models, then its identification in the presence
of stochastic noise is impeded, particularly if it is simple in its stationary
epochs. However, if it is complex or chaotic, it can be more robust to the
effects of perturbing noise (Schaffer, Ellner & Kot, 1986).

The Sugihara and May (1990) approach is essentially black box, its fo-
cus is on seeing if predictability is a sufficient way of distinguishing ran-
dom from chaotic trajectories, under some assumptions about stationar-
ity. This is still necessary, as the usual statistics, D2 and Lyapunov, are
not helpful and, indeed, dimensionality itself is not the most informative
property to compute for real but short biological series. As soon as a se-
ries shows dead or interpolated epochs then it is not stationary, but can be
put into a finite-state Markov Chain if the dead or null epochs are them-
selves defined as occupying one state of the system. The problem then be-
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comes identifying the stationarity of the state transition probability matrix
in the Markov chain. Any such model needs tuning parameters (Robert &
Casella, 1999); the role of the partitioning constant δ in ESf is just one such
parameter.

Limits on Identifiability

The New York measles series was used by Sugihara and May (1990) as one
test set to develop methods for discriminating between stochastic random
processes and chaotic processes. It is well known that such discrimination
cannot always be achieved. In fact, the confusability has a practical appli-
cation. Robert and Casella (1999, Chapter 2) review a number of uniform
pseudo-random number generators which reproduce the behaviour of an
i.i.d. sample of uniform random variables when compared through a usual
set of tests. Some of these generators are mathematically chaotic attractors,
which have such a long periodicity that recurrence of identical subseries
is not encountered in practical applications; that is, there are chaotic series
that for a specific sample of tests will pass as random. Proceeding in the
opposite direction, there may be series which are essentially random by
some stochastic definition but will mimic a chaotic trajectory.

The properties of chaotic series which may be tested for as almost def-
initional include sensitivity to initial conditions, local fractal dimensional-
ity, positivity of the largest Lyapunov exponent, local predictability, and
entropic functions. If some function of the system’s control parameters
is experimentally accessible, then it may be possible to push the dynam-
ics through a sequence of bifurcations, revealing Feigenbaum dynamics,
which could not be done in a stochastic process. The presence of noise
and of nonstationarity or singularities will weaken the effectiveness of
such tests; for example, the embedding dimension of an attractor may be a
fixed integer, but its non-integer dimensionality on the invariant manifold
could fluctuate. The orbits of the Lorenz equation (Davies, 1999, p.9) are
a well known and frequently depicted case: ”the generating point makes
one or two circuits around one of the wings before switching to the other.”
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Each wing could be locally contained in two dimensions, but the wings
are not coplanar and it needs more dimensions to hold the whole orbits.
The Shilnikov attractor is a more extreme example; it runs to the centre of
a spiral in a flat plane and then jumps out orthogonally and re-enters the
spiral at its outer limit to begin the inward path again.

The frequency spectrum, and hence the autocorrelation spectrum, of a
chaotic process is wide with some local peaks. But a mixture of white or
coloured noise with some limited periodicity superimposed can create the
same picture. Such mixtures may have a small positive largest Lyapunov
exponent. Fourier analyses may be misleading; Davies (1999, p. 56) shows
the Fourier amplitudes of the logistic map, where there is a strong period
4 component, but the orbit is not periodic.

Time series which have discontinuities in them or are suspected of hav-
ing some sort of instability in their generation have been the subject of a
diversity of statistical methods to explore where the discontinuities are
located, whether or not they are abrupt, and what are the best representa-
tions of the discrete segments in the series lying between the discontinu-
ities (Spall, 1988). In real data, there may be critical events, such as a heart
attack, or a civil war, which trigger a shift in dynamics. The series may re-
cover from interruptions or may be permanently changed or terminated.
If the series is not isolated but has collateral variables running in their own
series then the interaction between two or more parallel series may furnish
valuable clues about where and what disruptions have occurred.

An elegant treatment of the various commoner sorts of discontinuities
in univariate time series was created by Gordon and Smith (in Spall, 1988,
chapter 14) using state space equations. It was restricted to change point
identification and modelling in processes in which the evolution was lin-
ear between change points and the series was one of equal interval ob-
servations, but is still valuable because it models, within the same equa-
tions, steady-state, changes in level, change in slope, and transient outliers.
However, it says nothing about higher-order dynamics, and could not be
used to predict the location of the next irregularity. The series to be con-
sidered here could be partly modelled by state-space equations if we were
only interested in identifying some discontinuities as departures from a
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hypothetical steady state. What exactly sufficiently defines a steady state
is somewhat opaque as soon as consideration of higher-order dynamics
comes into the picture.

There were many fatal accidents in the British coal mining industry
between 1851 and 1963. The table used here from Andrews and Herzberg
(1985) has a lower bound on the number of fatalities in one accident set
at 10, and labels the series as one of 191 disasters. The earlier analyses by
Maguire, Pearson and Wynn (1952,1953) are based on an incomplete se-
ries, and treat accidents as a point process, ignoring the actual number of
deaths involved. The focus was on comparing methods to test the non-
randomness of the distribution of intervals between accidents, which if
random may approximate to a Poisson distribution, or to a Laplace trans-
form. One might think that such an approach is unfeeling and irrespon-
sible but, in fairness to those authors, they remark (p. 179): ”A thorough
study of time intervals between explosions in mines would take into con-
sideration the number of men killed and the number at risk.” They also
commented that, ”The problems of accidents are more human and more
complicated than those of quality control. It is usually more important
to extract the maximum amount of information from industrial accident
data.” Jarrett (1979) augmented the series and some internal nonunifor-
mity in the rate of the process has been noted; it appears to change after
125 disasters (Cox & Lewis,1966).

The series is thus long enough to be partitioned into 64, 64, and 63 suc-
cessive events, to apply the same methodology as in other series. If the se-
ries does, in fact, show a change in its generation process after 125 events,
then the last subseries should be different from the first two. There were
technological and social changes during this long period, but there also
seem to have been periods of stagnation, as analysed by economists, dur-
ing the late-19th century. It may be of interest that the series starts in 1851,
but in 1852 the engineering employers locked out their men when they re-
fused to accept systematic overtime (May, 1987, p. 236). Labour relations
were bad and labour laws were significantly loaded against workers for
much of the 19th century; legal recognition of trade unions did not occur
until 1871. Mechanical extraction of coal from seams did not come into use



220 INFORMATIVE PSYCHOMETRIC FILTERS

in British mines until after 1900, at which date only 2 per cent of coal was
mechanically extracted.

The Deaths Series, x

The great disaster of October 1913, with over 400 deaths, stands out. Its
location is even more marked graphically if the series variable is squared.
As the series does not use accidents in which fewer than 10 persons were
killed, and we might reasonably expect that accidents involving one or
two workers were much commoner than ones with over 10 deaths, the
series has been, in effect, low-pass filtered, so estimates of the frequency
distribution of both this series (xj) and of the time intervals series (yj)
would need to be reanalysed with various cut-offs of higher values than
10 if independence of successive disasters is to be examined. The total
labour force in mining, mostly coal, increased from about 200,000 in 1841
to 216,000 in 1851, 496,000 in 1881, 807,000 in 1901 and to 1,128,000 in 1913
(Crouzet, 1982, pp. 68, 268). After a peak of 1.2 million in 1920, the total
labour force fell steadily to 702,000 in 1938 (May, 1987, p.329). The size of
the population at risk is therefore not constant, nor are the working condi-
tions in terms of size of mine or accessibility of the coal-faces.

For this series LLE(x) = .0366

Figure 9.1: The series of 191 accidents from 1851 to 1963, x
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Figure 9.2: The same series, squared, x2

The Time Intervals Series, y

It is this series which has been the greatest focus of statistical theorising.
Tests for its randomness have taken various forms. The graphical effect of
squaring the variable is even more marked here, emphasising the contrast
in the last subseries. This is matched in the table of descriptive statistics,
in the first two moments. It is not matched in the first-order ESf values,
precisely because those do not use the absolute values (and hence the first
two moments) of the variables. Each time interval is the elapsed time in
days since the previous disaster before the current one. There is, therefore,
the other time series, in which the time interval is that immediately follow-
ing a disaster before the next one occurs. One leads and the other lags on
time when truncated cross-correlations between the two series xj , yj and
xj , y(j+1) are considered. LLE(y) = .0683

Figure 9.3: The time intervals series of 191 disasters, y
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Figure 9.4: The same series, squared, y2

The Local Death Rates Series, z

Two series of local death rates are created by dividing the deaths xj at dis-
aster j by the time since the previous disaster yj to give gzj = xj/yj ; that
is, deaths lag on time, or, for deaths leading time dzj = xj/y(j+1), provided
that if two disasters arise on the same day (this happened once in the long
record) we set yj = 1. These two zj series may be explored by precisely
the same methods as the first two series, but their interpretation demands
great care. Why this is so may be seen by looking at some collateral statis-
tics from other sources. LLE(gz) = .0366, LLE(dz) = .0745. It should be noted
that these z series are the simplest sort of lagged cross-correlation spectra
that we can compute.

Redmayne (1945, pp. 41-42) lists some data on accident rates in coal
mines, with warnings that the data are not simply interpretable: ”Mining
is the most dangerous of all occupations, ” and ”the highest rate of acci-
dent mortality in mines is that in respect of the conveyors of material to the
shaft”. Obviously a large disaster will kill more than just this subgroup of
the labour within one mine. Redmayne was aware that a single large dis-
aster could bias the data for a time period, and hence calculated accident
rates only over decennia, and also considered the number of shifts per
worker employed, as this is variable and determines an exposure rate to
risk.
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Figure 9.5: The gzj series;
time intervals lead the number of deaths in a disaster.

Figure 9.6: The dzj series
time intervals lag the number of deaths in a disaster.

Table 9.1
Death Rate from Accidents, per 1000 employed

From Redmayne (1945), for 1873 to 1943
Decade From to Rate

1 1873 1882 2.24
2 1883 1892 1.81
3 1893 1902 1.39
4 1903 1912 1.15
5 1913 1922 1.15
6 1923 1932 1.05
7 1933 1942 1.14
- 1943 only 1.00
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Table 9.2
Death rates per 100,000 man-shifts worked,

surface and underground, from 1938
1938 0.41
1939 0.37
1940 0.43
1941 0.46
1942 0.43
1943 0.36

————————————————-

It is perhaps better that we do not dwell on Redmayne’s theories (1945,
p. 43) about the psychology of the miner, ”the Character and Ideocracy
[sic] of the British Coal Miner”, and what he calls racial differences be-
tween Celts and Danes. In interpreting the figures for 1913 to 1922, he
eventually notes that the industry was under complete government con-
trol during 1917 to 1921, and ”there were then strikes and unrest greater
that at almost any other period” (no figures given). It would have been
helpful if the relations between strike rates and death rates were tabled; it
is a bit harder to get killed if one is out on strike. The whole text reads like a
sustained apologia for private capitalism, it was written and published at
a time when nationalisation of the coal industry was under active consid-
eration. Of course, that came to pass. The relevance of Redmayne’s tables
for our current purpose is to display the changes in the generation of data
during the total period under consideration.

When interpreting the number of deaths on one disaster, which means
from one mine, one needs to know how big the mine was. Crouzet (1982, p.
270) notes that, ”in 1913 there were 3289 collieries worked by 1589 separate
firms. The average colliery had a workforce of 340 ... more than one third
of the collieries were worked by fewer than 50 miners. The great majority
employed from 50 to 2,500 without their size having any influence on their
efficiency.” If 35 miners were killed in one disaster, it means something
quite different if the mine employed 50 men, rather than employing 500 or
5,000.
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Having got the four series x, y,g z,d z their descriptive statistics for each
subrange may be tabulated.

————————————————-
Table 9.3

Descriptive Statistics including ESf on the four series
Statistic x1 x2 x3 y1 y2 y3

mean 41.42 53.85 58.13 113.14 133.12 395.92
s.d. 55.23 55.38 83.87 137.76 115.98 464.57

variance 3050.21 3067.27 7035.17 1.8× 105 1.3× 105 2× 106

Skewness 3.6026 1.9181 2.7049 2.8234 .8487 2.0776
Kurtosis 15.9097 3.2257 7.5542 10.3115 -.4055 4.6043

Slope 0.1620 0.3448 -1.1566 -0.4831 1.6635 1.5907
ESf -.3769 -.2322 -.1872 -.4747 -.4739 -.4301

- gz1 gz2 gz3 dz1 dz2 dz3
mean 2.86 2.71 0.46 4.79 5.34 5.16

s.d. 11.53 9.44 0.75 10.38 15.98 12.63
variance 132.87 89.13 0.55 107.64 255.47 159.62

Skewness 7.0063 6.1845 2.5981 3.6121 5.0138 3.7720
Kurtosis 50.4346 41.7792 6.8722 14.2947 27.1255 14.9990

Slope .0407 -.0698 -.0019 -.0589 -.0993 .0979
ESf -.2158 -.6152 -1.0773 -.8236 -.2161 -.2509

————————————————-

The series gzj is one in which it is assumed that an accumulator pro-
cess builds up the probability of an accident over time until it is eventually
triggered, its severity being proportional to the time for risks to accumu-
late, whereas the dzj series assumes that an accident exhausts the potential
for another accident as a function of its own severity, so that the delay to
the next accident is a proportional function of what has just occurred. It
is quite possible for the process as a whole to shift from gz to dz (or the
reverse) during its evolution; this is a form of dynamical nonstationarity.

The higher-order ESf matrices can also be computed on these sub-
series.
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Table 9.4
Higher-order ESf matrices for the subseries of deaths; x

Italicised values are within the 95% c.i. for random surrogates

Block ESf b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1(of 64) -.3769 .1633 .0643 -.2771 .1338 -.0820

.4008 .1329 .2307 -.1311

.2008 .2601 .2327

.2096 -.1919
-.6567 n: 5

2(of 64) -.2322 .0901 -.2261 -.2299 .3409 .1961
-.0581 -.1435 -.1124 .2398
-.2906 -.3552 -.0167
-.1376 -.1484
.2420 n: 3

3(of 63) -.1872 .3653 .2219 .2623 .2442 .1436
.2610 0955 .1412 .1504
.2219 .2569 .0494

-.2392 .2113
.2219 n: 6

Again, the interest is in evidence of heterogeneity between the three sub-
series. The ESf values for the first-order series are reduplicated for cross-
checking with the previous table of descriptive statistics. From previous
analyses of time series in this fashion, it can be read that these series are
a mix of random and non-random higher-order relations within the se-
quential dynamics, the deaths series is not one which is locally predictable
with any confidence. The deviant subseries inESf terms appears to be the
middle one, not the last one, as suggested by the earlier analyses of time
intervals by Maguire, Pearson and Wynn (1952). The middle period is the
least random in terms of higher-order dynamics, for both the deaths and
the intervals subseries. A few very disastrous accidents within a series of
much smaller ones can induce odd sequential dynamics.
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Discussion

A classical problem in data analysis is that of inferring causality from a
correlation; the inference is usually invalid if unsupported by contextual
knowledge. In time series, there are additional possibilities for inferring
the causal direction of links between variables. The additional information
in time series data is that which gives some insight into the temporal direc-
tion of effects (as, for example, in path analysis); if the cross-correlations
in one direction at one or more lags are very different from those in the
opposite direction, then some sorts of causality are supported and others
ruled out. The extension from more familiar ideas here involves both the
gz and dz series constructed from the two x and y data series, and the
ESf at first-order and higher-order values; for example, the ratios of the
first-order ESf for gz and dz are 0.262, 2.847, and 4.294 for respectively
subseries 1,2,3, whereas for the ratios x/y they are 0.794, 0.490 and 0.435.

It is usual to compute the cross-correlations between two parallel se-
ries and see if one lags or leads upon the other. This interaction between
two series may itself be nonstationary and what lags at one place may
lead at another. If such changes are happening, then reduction of a total
unbroken multivariate time series to one based on the Jacobians of the
cross-correlations at each lag can be seriously misleading (Gregson, 1983,
Chapter 6).

The four tables of higher-order ESf matrices differ from one another.
Changes in one do not match changes in another but, considering the com-
plicated causality of the collection of coal mines spread over regions with
different geology, sizes, technology, ownership, and apparently labour-
management relations, there is an underlying causal heterogeneity that is
not present to anything like the same degree in the measles series. Hence
any deductions are generalisations which at best will show differences be-
tween different time periods.

The y series of time intervals between accidents is, indeed, nearest to a
Poisson distribution if one allows the ratio of mean/s.d. to be the indicator
and the large change does then show in the last subseries where accidents
become rarer in time. There is not much difference in the average number
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of deaths (the x) series per accident over the the three subseries, but obvi-
ously if one computes deaths per time (in months, and perhaps corrected
for the size of the labour force as it increased up to 1913) then conditions
improved in one respect.

Table 9.5
Higher-order ESF matrices for the subseries of intervals; y

Italicised values are within the 95% c.i. for random surrogates

Block ESf b(1,2) b(1,3) b(1,4) b(1,5 b(1,6)
1(of 64) -.4747 -.0192 -.2556 -.1251 -.0468 -.2371

.0144 -.1089 -.2369 .2223
-.0206 -.4565 -.0659
-.0284 -.3653
-.2859 n: 6

2(of 64) -.4739 -.0248 -.4247 -.4662 -.3412 .1588
.1409 -.0989 -.2655 .0126

-.3062 -.1773 -.1182
-.1015 -.3507
.1272 n: 2

3(of 63) -.4301 .2412 .0117 -.0784 -.1403 .4620
-.1386 -.0261 .0804 -.2372
.2940 -.0690 -.0859

-.2283 .0285
.0405 n: 3

The four higher-order ESf tables suggest that the x series is noisy
throughout. The y series becomes much less noisy as it evolves, mainly
due to the fact that relatively little happens after about 1920, as technology
and prevailing economics change. This is also is reflected in the gzj series,
but not in the dzj series, which is less noisy. There is thus stronger evidence
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for an accumulator process in which the time intervals are longer after se-
rious accidents. Accidents are not so much waiting to happen as many
secondary factors accumulate (as in a Poisson process) but rather that an
accident induces, for a while, more caution in all pits as knowledge of the
last disaster is diffused or knocks out, for a while, from the pool of pits at
risk those with larger current accident potential. This distinction is com-
pletely lost if only the y series is analysed, as the earlier work of Maguire,
Pearson and Wynn (1953) employed.

————————————————-

Table 9.6
Higher-order ESf matrices for the death rates series; z

This is gzj where deaths lag on time intervals
Italicised values are within the 95% c.i. for random surrogates

Block ESf b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1(of 64) -.2158 -.1136 .0601 .1507 .1735 -.1760

-.2762 .0145 .0756 .1518
.2824 .2088 .2007

-.1976 .0429
.1705 n: 5

2(of 64) -.6152 -.7049 .2126 .2610 -.1863 .2610
.4008 -.0978 .1134 .1102
.4008 .0078 .2816

-.0434 .1344
.1879 n: 5

3(of 63) -1.0773 .1610 .4008 .0247 .0651 .4008
.2137 .0382 .2610 .2108
.0532 .2990 .1800

-.0182 .0054
.3044 n: 3
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Table 9.7
Higher-order ESf matrices for the death rates series; z

This is dzj where deaths lead on time intervals
Italicised values are within the 95% c.i. for random surrogates

Block ESf b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
1(of 64) -.8236 -.3556 .3613 -.4269 .3773 .2498

.1789 .1714 .2946 .2813

.2345 -.1805 .2240

.1565 .3130

.1134 n: 3
2(of 64) -.2161 .1639 .3337 .4163 .1728 .4281

.2345 .0875 .2126 -.4886

.2656 .2219 .4581
-.2253 -.0156
-.1453 n: 4

3(of 63) -.2509 .0874 -.4146 .1602 -.2999 .0386
-.1616 .2705 .5082 .3927
-.1589 .3374 .1295
-.0426 .2946
.1820 n: 3

Series of Irrational Beliefs

The series of coal mine disasters has some real identifiable bases in physi-
cal causality, as well as in the bitter social confrontations between miners
and mine owners. We can, in part, identify some factors as changes in the
technology of mining and even in the medical ways in which the injured
are saved from death after being rescued; such factors changed over the
19th and 20th centuries. But there are series of events in which scientific or
technological explanations are lacking or perhaps at least contentious. One
example is the series of UFO (or, popularly, ”flying saucers”) sightings in
the USA, recorded as monthly totals (Condon, 1969, Section V, Table 1).
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The series is not random and shows local outbursts. In this respect, it
superficially resembles series of volcanic eruptions, epidemics such as the
Black Death in Europe, or fanatic attacks on witches in the 17th and 18th
centuries. For volcanoes, we now know much of the geophysics, though
we cannot predict precisely well in advance a particular eruption. Epi-
demics such as measles have periodicities, but some psychological series
are aperiodic and based on irrational beliefs that seem to disperse some-
thing like biological epidemics. It is tempting to see if irrational series are
chaotic. There is little point in testing them against random surrogate se-
ries because we know enough about their social causality to know they
are not random. It is not informative simply to be told again that they
have some underlying partially determinate causality.

Figure 9.7: The raw data of UFO sighting frequenciess
Eighteen years from 1950, as reported month by month

The full data are given in Table 9.9. It is not clear if multiple sightings
by one individual are included, or if simultaneous sightings by a group of
observers counts as one and, obviously, the return rate of observations is
unspecified; that is, the data are properly sightings reported to the study
and the rate of reporting is itself a hidden variable. The relation between
sightings and reporting sightings can be a variable that is a function of
other external variables, such as media feature programs and fictional re-
ports of aliens invading the USA. The aspect of interest are, however, the
non-stationarity, the local peaks and the autocorrelation spectra. The auto-
correlations vary markedly with the transformations of the raw frequen-
cies, and are maximised under a reciprocal transformation. There is no
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suggestion of an annual periodicity. Showing where and how the non-
stationarity arises demands that the series is explored under other trans-
formations and using filters in the sense of Chapter 1; a low pass filter
merely repeats the pattern of Figure 9.7 with smoothing the peaks, a high-
pass filter is now much more informative. This is shown in Figures 9.8
and 9.9. Calculating indices of chaoticity on filtered series is not commonly
done, but we note that Abarbanel (1996, page 93) anticipates this when he
writes, ”we are seeing data with small scale motions suppressed yet with
very interesting dynamics How the Lyapunov exponents of a system vary
with spatial averaging is the issue.”

If we wish to use symbolic dynamics (Gregson, 2005), then the UFO
sightings series has to be coarse scaled by partitioning into a closed set
of segments and labelling the segments each with a dummy variable. We
will use 5 segments and then put the data into a 5-state Markov transition
probability matrix. The simplest partitioning is into equal width ranges, a
maximum a priori entropy assumption. This is in fact false, the low values
as much commoner, so three solutions are presented.

Figure 9.8: Reciprocals of monthly UFO sighting frequencies
derived From Figure 9.7

Table 9.12 ( see also Figure 9.7) is based on using the reciprocals of the
raw frequencies, which thus expresses the process in terms of local rates
of sightings. This also gives us a long term prediction of the frequency
and rate distributions, coarse scaled, of UFO sightings after 1968, under
assumptions of stationarity dynamics.

The series is long enough to get some estimates of the largest Lya-
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Figure 9.9: Highpass filtering of UFO sighting frequencies
derived From Figure 9.7

punov exponent (LLE). In all cases it is positive but very small, suggesting
edge-of-chaos; For raw frequency data, LLE = +.0394, for a log10 trans-
form, +.0862, for reciprocals, +.0335, for high pass filtering, +.0478, and for
low pass filtering +.0643.

ESf are computable, for the full series ESf =-.5745 with δ = .005, for the
first 9 years,-.5009, and for the last 9 years -.4810. This is compatible with
the appearance of non-stationarity.

————————————————-
Table 9.8 Autocorrelation Spectra under Transformations

The raw frequencies, their logs and their reciprocals are tabled in parallel.

lag autocorrel log10 trans reciprocal
1 .5938 .7418 .7611
2 .2640 .5392 .5357
3 .1481 .4220 .4119
4 .0672 .3177 .3501
5 .0222 .2305 .3156
6 .0197 .1915 .3103
7 .0585 .1751 .2922
8 .0436 .1922 .2768
9 .0014 .1718 .2543

10 -.0139 .1737 .2662
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So the partitioning points are 0,.2,.4,.6,.8,1.0 for Table 9.8, and (quite
arbitrarily and heuristically) 0,.1,.2,.6,.9,1.0 for Table 9.9. The reciprocals
have a skewed distribution so 0,.02,.04,.08,.2,1.0 have been used.

The stationary state vectors in Tables 9.10, 9.11, and 9.12 are based on
observed convergence after 20 iterations. The most interesting and poten-
tially informative are those from the reciprocals of the frequencies in Table
9.12.

Table 9.9: Monthly Returns on UFO sightings

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1950 15 13 41 17 8 9 21 21 19 17 14 15
1951 25 18 13 6 5 6 10 18 16 24 16 12
1952 15 17 23 82 79 148 536 326 124 61 50 42
1953 67 91 70 24 25 32 41 35 22 37 35 29
1954 36 20 34 34 34 51 60 43 48 51 46 30
1955 30 34 41 33 54 48 63 68 57 55 32 25
1956 43 46 44 39 46 43 72 123 71 53 56 34
1957 27 29 39 39 39 35 70 70 59 103 361 136
1958 61 41 47 57 40 36 63 84 65 53 33 37
1959 34 33 34 26 29 34 40 37 40 47 26 10
1960 23 23 25 39 40 44 59 60 106 54 33 51
1961 47 61 49 31 60 45 71 63 62 41 40 21
1962 26 24 21 48 44 36 65 52 57 44 34 23
1963 17 17 30 26 23 64 43 52 43 39 22 22
1964 19 26 20 43 83 42 110 85 41 26 51 15
1965 45 35 43 36 41 33 135 262 104 70 55 28
1966 38 18 158 143 99 92 93 104 67 126 82 40
1967 81 115 165 112 63 77 75 44 69 58 54 24

Mitchener and Nowak (2004) found a transition matrix for a pro-
cess which they considered resembling a Shilnikov attractor trajectory; in
this 5-state representation, the upper left 3 × 3 submatrix is one part of
the system, which is fully connected, the lower right 2 × 2 high ampli-
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tude part represents a subregion into which the trajectory can transiently
jump. These dynamics are chaotic but, in a short realisation, appear non-
stationary. We return to this topic in the next chapter. Another way of vi-
sualising the system is to think of the 3 × 3 submatrix as partitioning the
system’s dynamics and the transient jumps to constitute themselves a slow
series with aperiodic intervals between the jumps.

Table 9.10: 5-state transition matrix with equal partitioning
The last columns are the respective stationary state vectors

.967 .029 .005 .000 .000 .9330

.545 .273 .000 .182 .000 .0491

.000 1.000 .000 .000 .00 .0045

.500 .000 .000 .000 .500 .0089

.000 1.000 .000 .000 .000 .0045

Table 9.11: 5-state transition matrix with skewed partitioning

.884 .116 .000 .000 .000 .7319

.378 .467 .156 .000 .000 .2010

.167 .333 .333 .167 .000 .0537

.000 .500 .000 .000 .500 .0090

.000 .000 1.000 .000 .000 .0045

Table 9.12: 5-state transition matrix for reciprocal values

.671 .278 .051 .000 .000 .3491

.247 .613 .140 .000 .000 .4080

.070 .256 .558 .116 .000 .2009

.000 .250 .375 .250 .125 .0374

.000 .000 .000 1.000 .000 .0047
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In Table 9.12, the meaning of fast and slow submatrices is reversed: the up-
per 3× 3 submatrix is now associated with slow dynamics, and the lower
right 2 × 2 submatrix with faster changes. Because of the social changes
in UFO beliefs it is very doubtful if the stationary state vectors have any
long-term validity; possibly they could be replaced by beliefs in terrorism,
as another form of social near-panic. Even more transitory were the mil-
lennial vigils around the year 2000 (Gregson and Gregson,1999).

An argument might be advanced for treating series such as the UFO
sightings as convolutions of a least two other processes: a social inertia or
contaminative effects within a social group, and perturbations from critical
incidents in the cultural environment. That would lead us back into par-
allels with the spread of infectious diseases about which many stochastic
models have been developed; some examples were noted in the last part
of Chapter 1.

Note

The coal mine disasters series are taken from Andrews and Herzberg
(1985).

The UFO sighting frequencies are taken from a US Air Force commis-
sioned report by Condon (1969).



Chapter 10

Perron-Frobenius at the Edge
of Chaos

From the approach of symbolic dynamics, any psychophysiological time
series may be given a square non-negative matrix representation that is
then treated as the generator of a Markov chain. This has eigenvalues that,
if the matrix is scrambled, that is effectively not degenerate, give a picture
of the complexity of the dynamics. That picture is computed for two time
series: one theoretical and homogeneous, resembling a Shilnikov attractor,
and the other from real physiological data that are very unstable with tran-
sient outliers. A comparison is made with indices of entropy and chaos for
each of 10 data sub-blocks. No index in itself provides a satisfactory repre-
sentation of the total dynamics, but the differences between the indices are
intrinsically informative. Assumptions of linearity are universally invali-
dated. The use of the entropic analogue of the Schwarzian derivative (ESf)
leads naturally into the calculation of Kullback-Leibler information mea-
sures as asymmetric proximity indices between subseries of the data. The
full matrix of these indices has eigenvalues that are informative concern-
ing the non-stationarity of the process. The matrices that we create for a
representation of psychophysiological and psychophysical time series are
Markovian, and are necessarily square and non-negative. They may also
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be sparsely filled, and quasi-cyclic. We know both from the fundamen-
tal mathematics, and from examples constructed (Mitchener and Nowak,
2004) that, if we accept the positivity of the largest Lyapunov exponents as
a sufficient indication of chaos, of one sort, then the processes being repre-
sented in transition probability matrix form may be chaotic. Possibly the
most important extension of these ideas is to non-homogeneous Markov
chains as a structure for non-stationary psychophysics.

As I will want to examine some real and theoretical Markovian ma-
trices and their associated eigenvalues, it is proper to begin by restating
the Perron-Frobenius theorem (Frobenius, 1912, Seneta, 1973) for primi-
tive matrices: Suppose that T is an n × n non-negative primitive matrix.
Then there exists an eigenvalue r such that:

(a) r real, > 0;

(b) with r can be associated strictly positive left and right
eigenvectors;

(c) r > |λ| for any eigenvalue λ 6= r;

(d) the eigenvalues associated with e are unique to constant
multiples;

(e) if 0 ≤ B ≤ T and β is an eigenvalue of B, then |β| ≤ r,
and |β| = r impies B = T .

(f) r r is a root of the characteristic equation of T .

There are other statements that hold from this theorem (Ding and Fay,
2005) which find application in the estimation of geometrical limits in n-
space.

I am also going to need to make reference to the well-known scram-
bling property of Markov matrices, namely
An n× n stochastic matrix p+ {pij} is called a scrambling matrix, if given
any two rows α and β there is at least one column, γ, such that pαγ > 0
and pβγ > 0.

A corollary follows: if Q = {qij} is another stochastic matrix, then for
any Q, QP is scrambling, for fixed scrambling P .
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A Leaky Bistable Matrix

In a study of language shifts and chaotic dynamics, Mitchener and Nowak
(2004) created a scrambled matrix. The matrix, call it LS, has one free pa-
rameter 0 < µ < 1, and is

LS =


0.75 0.2 0.01 0.04 0
0.01 0.75 0.2 0.04 0
0.2 0.01 0.75 0.04 0
0 0 0 µ 1− µ

1− µ 0 0 0 µ


The authors investigated the results of varying µ over the closed range
(.725, .760), in terms of the properties of trajectories generated by the re-
cursive application of LS. They claimed that the dynamics can resemble a
Shilnikov attractor (1966), and are critical around µ = .735. The eigenval-
ues for LS with µ = .725 are

.978, .716± .069i, .645± .165i
and .978 is the spectral radius.

This resemblance is qualitative in terms of the shape of trajectories
but is not strictly established in terms of a mathematical identity. Let us
call this matrix bistable, as it involves two connected submatrices, within
each the process can meander for a while in a cyclic fashion, and leaky be-
cause there exists a non-zero probability of jumping between one subma-
trix and the other in both directions. If it were not leaky, then the structure
would break into two separate autonomous cycles. We examine some of its
generic properties; the questions raised here can also be treated as special
problems in symbolic dynamics, but to do that requires a more advanced
mathematical treatment (Blanchard, Maas and Noguiera, 2000).

Probability partitioning

The probability of making a transition between states j → k is indepen-
dent of the random input pt and strictly proportional to the elements pjk.
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The row sums of pjk in LS are all unity, by definition. So take the unit
interval (> 0, 1) within which the random variable pt lies, and partition it
in line segments s1, s3, s3 proportionately to the defined values of pjk in
S1, S2, S3, and similarly for µ, 1 − µ in S4, S5. Then if and only if pt lies in
segment sjk, given Sj , the resulting transition is j → k. This convention
preserves the Markov structure of LS.

An estimate of the stationary state vector from a generated sample se-
ries is

.078, .402, .273, .134, .111

Table 10.1: Descriptive statistics of a sample LS series
Block LLE mean Kurt ESf D2 H ApEn
1-180 +.051 2.79 -0.353 -1.2541 1.716 .2837 0.535

Key: Block: iterations. LLE: largest Lyapunov exponent. mean: average
coded state. Kurt: kurtosis. ESf: entropic analogue of Schwarzian deriva-
tive (Gregson, 2002). D2: fractal dimensionality. H: Hurst index. ApEn: ap-
proximate entropy (k = 10, δ = .005).

A Tremor Series

A series with a very unstable appearance and irregular transient extreme
deviations is s14r45of.d from the PhysioNet archives. Only the first 4000
steps are used, in 10 blocks of 400. The dynamics are, on visual inspection,
nonlinear and non-stationary. Deviations can be isolated in time or come in
bursts. Every estimate of the largest Lyapunov exponent has been positive
but, in some cases, marginal.

These series are wildly fluctuating and their irregularity is reflected in
most of the computed indices. It is recognised that complexity changes
in time series as detected by information (entropy) measures (Tores and
Gamereo, 2000). The distribution of the dependent variable (as in the ver-
tical axes in the graphs) is nothing like Gaussian, and would not he read-
ily represented in the frequency domain, as Fourier analyses cannot han-
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Figures 10.1, 10.2, 10.3: Blocks of the Tremor Series

dle local aperiodic spikes. Autocorrelations would be similarly misleading
except as long-term averages. It is possible to treat this sort of series in a
Markov chain filtering. It is possible that the leaky bistable matrices in-
troduced by Mitchener and Nowak (2004) are a candidate model. There
appear to be two levels of tremors, low amplitude high frequency and in-
termittent aperiodic high amplitude, which co-exist. High-pass and low-
pass filtering could be used to partial these out.
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Table 10.2: Descriptive statistics of Parkinsonian Tremor series

Block LLE mean Kurt ESf D2 H ApEn
1-400 +.034 .812 133.41 -.3897 1.835 .1647 1.112

401-800 +.078 .717 19.63 -.5572 1.806 .1928 1.122
801-1200 +.083 .529 6.43 -.5027 1.806 .1937 1.120

1201-1600 +.052 .725 71.66 -.5578 1.780 .2200 1.188
1601-2000 +.009 1.033 156.22 -.5025 1.932 .0684 1.092
2001-2400 +.073 .831 5.93 -.6258 1.788 .2118 1.245
2401-2800 +.096 .640 5.82 -.6642 1.790 .2103 1.250
2801-3200 +.065 .937 23.80 -.6354 1.780 .2201 1.259
3201-3600 +.080 .756 5.17 -.6146 1.836 .1641 1.219
3601-4000 +.023 1.106 122.78 -.4891 1.750 .2498 1.111

– – – – – – – –
cftv .449 .207 1.045 .145 .298 .250 .054
regr 1 -4.94 -1874.52 -1.89 -5.08 0.78 1.44
corr 1 .825 .910 .660 .289 .461 .635

Key: Block: beats in sequence. LLE: largest Lyapunov exponent. mean:
average i.b.i. Kurt: kurtosis. ESf: entropic analogue of Schwarzian
derivative (Gregson, 2002). D2: fractal dimensionality. H: Hurst in-
dex. ApEn: approximate entropy (k = 10, δ = .005). cftv: co-
efficient of variation (σ/|µ|). regr: slope of regression of variable
on LLE. corr: product-moment correlation of LLE with variable.

————————————————-
The ESf and LLE measures can have associated confidence limits or fil-
tered estimates computed as well, giving more insight into the variability
between successive blocks of data. Comparing Tables 10.2 and 10.3 we see
immediately that all the ESf values are outside their random surrogate 95%
c.i. range; none of the blocks are random i.i.d. series.

The reason for computing the LLE values after low or high pass filter-
ing is to explore the possibility that the chaotic component is either in a
slow carrier wave or a fast low-amplitude part; this will only work if the
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fast and slow parts are widely separated in their dynamics. In this series,
both the slow and the fast components are associated with the transient
aperiodic outlier spikes, suggesting that there are three dynamical sub-
systems involved. There are still computational difficulties, as LLE values
from short time series are liable to be biased (Rosenstein, Collins and De
Luca, 1993), the blocks here are much shorter than what physicists like to
call short.

————————————————-
Table 10.3: Further c.i. statistics of Table 10.2

Block LpLLE HpLLE -rsESf rsESf +rsESf
1-400 +.069 +.055 -.167 -.146 -.125

401-800 +.077 +.103 -.280 -.269 -.258
801-1200 +.114 +.113 -.363 -.349 -.336

1201-1600 +.093 +.029 -.242 -.223 -.204
1601-2000 +.036 +.034 -.224 -.208 -.192
2001-2400 +.090 +.101 -.338 -.327 -.315
2401-2800 +.127 +.125 -.397 -.389 -.381
2801-3200 +.069 +.086 -.314 -.302 -.290
3201-3600 +.118 +.093 -.375 -.363 -.351
3601-4000 +.059 +.031 -.161 -.143 -.125

Key: LpLLE: LLE after low pass filter. HpLLE: LLE after high pass filter. -
rsESf: lower 95% c.i. bound for random surrogate ESf. rsESf: mean random
surrogate ESf. +rsESf: upper 95% c.i. bound for random surrogate ESf.

————————————————-

In Table 10.4 the spherical radius is the same as the largest eigenvalue,
Egv 1. Note that the number of complex conjugate pairs in the roots is
not necessarily the same as for the LS matrix, which has quite different
and homogeneous dynamics. These real data are not stationary and hence
are treated in short blocks to expose the breakdown of homogeneity. Note
that the dynamics drift over the total series of 4,000 data points; in some
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epochs the outlying tremors seem to be predominantly in one direction,
in others in the opposite one. In blocks 5 and 6 the effective rank of the
matrix reduces to 4.

Table 10.4: Eigenvalues of Markov matrices of the Tremor Series

Block Egv 1 Egv 2 Egv 3 Egv 4 Egv 5
1 1.000 .291 -.2 .041 + .066i .041 - .066i
2 1.001 .316+.015i .316-.015i .021 .012
3 1.000 .283 -.063 .052+.024i .052-.024i
4 .999 .381 .236 .103 -.005
5 .999 .259 -.056 -.002 < .001
6 1.044 .237 -.048 .028 < .001
7 .999 .314 .118 -.064 -.002
8 .999 .219+.046i .219-.046i .165 -.006
9 .999 .351 .234 .115 .068

10 1.004 .496 -.010 + .051i -.010 - .051i -.006

The values of Egv 1> 1 are computational errors, the largest eigenvalue of
a row stochastic matrix is less than or equal to unity (Karpelevich, 1951).
The stationary state vectors are the solution of the matrix equation

T∞ = M∞T0

The state S5 refers to the largest positive transient tremors, expressed as
deviations from a resting position. The solutions in Tables 10.4 and 10.5
have to be obtained by shifting, in some blocks, the partitions that create
the state occupancies from the raw data sequences, as the tremors are very
irregular in direction and amplitude as well as their inter-tremor intervals.
In all cases, I have moved partitions, where necessary, to span the rescaled
values and to ensure that all states are occupied. The transition probability
matrices are then in all cases scrambled.



PERRON-FROBENIUS AT THE EDGE OF CHAOS 245

Information measures as non-stationarity indices

The Schwarzian derivative has a long history but its importance in nonlin-
ear dynamics only emerged relatively recently (Gregson, 1988). Combin-
ing this derivative of C3 diffeomorphisms with an entropy measure over
local short time-series is an exploratory innovation which has some useful
properties. We repeat some of the definitions here as a precursor to using
the measure in Kullback-Leibler form.

————————————————-
Table 10.5: Stationary state vectors for Table 10.4.

Block p(S1) p(S2) p(S3) p(S4) p(S5)
1 .0485 .0485 .3495 .5340 .0194
2 .0977 .2882 .4662 .1429 .0050
3 .0676 .0675 .3076 .5323 .0251
4 .0201 .1378 .7569 .0827 .0025
5 .0301 .8346 .1228 .0100 .0025
6 .0102 .0050 .0077 .0402 .9369
7 .0226 .0125 .0276 .3985 .5388
8 .0376 .1028 .7268 .1303 .0025
9 .0526 .0852 .1679 .6792 .0150

10 .0178 .7053 .2694 .0051 .0025

————————————————-

Schwarz (1868) defined the derivative

Sf :=
f

′′′

f ′ −
3
2

(
f

′′

f ′

)2

[10.1]

which is of interest in dynamics because its value indicates the extent
to which a process expands to fill a local region of the phase space.

Using successive differencing of a time-series, the total information I
in the distribution of the mth differences over k exhaustive mutually ex-
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clusive partitions is

I(m) := −
K∑
h=1

phlogs(ph)|m [10.2]

Using [10.2], suppose that we substitute within [10,1] I(m) values for fm,
so that, for example, I(3) corresponds to f

′′′
, employing I(m) summed over

the whole range of k subranges in each case. This is to create an entropic
analog of the Schwarzian derivative. Then, by definition, ESf (Gregson,
2002) has the form

ESf :=
I(3)

I(1)
− 3

2

(
I(2)

I(1)

)2

[10.3]

Note that [10.3] is defined at least over triplets within a series; the way in
which the I(m) is computed drops the actual real measurement units of the
data and deliberately loses the first and second moments of the series.

If the data in one subseries are taken as generated by a basic symbolic
process X unperturbed by transients, then the probability distribution of
the absolute differences of orders one, two, three in that block that are com-
puted for ESf estimation can be used as estimates of pi(X|θ), i = 1, .., 10
in the Kullback-Leibler expression

I(Y,X) =
5∑
i=1

pi(Y ) · log
(pi(Y )
Xi|θ

)
[10.4]

and that may be taken as a relative mismatch distance, not a true metric
distance, because of asymmetry, but a dissimilarity.

Every one of the 10 blocks can in turn be used as the predictor X for
the set of 10 Y . The dissimilarity of a set with itself is zero, and the full
matrix of the differences are set out in Tables 10.6,10.7, and 10.8. Each row
is for a fixed predictorX against which all the 10 Y are compared, running
down from X1 to X10.

These matrices indicate where the variability in information content of
the blocks differs without having to commit to a single generating model
as theory. Using each block in turn as predictor under some assumptions
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about error-minimal distributions is an approach reminiscent of Empirical
Bayesian statistics. The eigenvalues of these K-L matrices can, in turn, be
computed, giving some insight into the role of successive differences in
the system’s dynamics. If the matrices for differences of different orders
1,2,3 show similar patterns of values, this suggests that the underlying
time series are self-similar, which is a property of fractal dynamics.

To compare these three matrices in Tables 10.6, 10.7, 10.8, we may pro-
ceed in two ways: just compute the cell-by-cell correlations to see if the
matrices treated as 100-term vectors are similar, or find the eigenvectors of
each matrix.

————————————————-
Table 10.6: Based on absolute first differences, k = 10.

A Kullback-Leibler matrix of asymmetrical dissimilarities

1 2 3 4 5 6 7 8 9 10
.000 3.242 5.093 .209 .134 5.093 6.567 4.838 6.499 .113
.725 .000 5.217 .557 .650 5.228 4.039 7.774 3.995 .876

1.183 2.631 .000 .915 1.300 .004 5.227 3.215 5.377 1.714
.184 3.719 5.292 .000 .052 5.296 7.024 4.931 7.003 .333
.172 3.603 6.757 .079 .000 6.757 7.421 6.182 7.342 .202

1.185 2.676 .004 .925 1.299 .000 5.395 3.341 5.541 1.728
1.658 .648 4.055 1.309 1.687 4.078 .000 4.188 .055 1.809
1.244 6.632 3.605 .819 1.122 3.617 6.220 .000 6.350 1.506
1.562 .586 5.754 1.280 1.528 5.772 .058 5.861 .000 1.533
.124 2.891 6.308 .365 .180 6.309 5.436 5.852 5.289 .000

The eigenvalues of the first differences matrix Table 10.6 are

26.0407, -12.0417, -6.5640 + .3251i, -6.5640 - .3251i -.5446
-.2028, -.1004, -.0136, -.0083, -.0012

in descending order and the last four may be neglected. Note the complex
conjugate pair that arises when the matrix is not skew symmetrical about
the leading diagonal of zeroes.
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Table 10.7: Based on absolute second differences, k = 10.
A Kullback-Leibler matrix of asymmetrical dissimilarities

1 2 3 4 5 6 7 8 9 10
.000 2.999 5.111 .442 .241 5.015 6.212 4.548 6.028 .141
.962 .000 5.288 .549 .730 5.321 4.619 8.164 4.594 1.038

1.565 2.809 .000 1.052 1.282 .032 5.580 3.429 5.717 2.000
.345 3.602 5.942 .000 .059 5.911 7.251 5.465 7.209 .421
.205 4.074 5.862 .058 .000 5.790 7.839 5.436 7.754 .251

1.433 3.349 .032 .999 1.150 .000 6.660 3.858 6.751 1.942
1.992 .720 4.871 1.394 1.758 5.029 .000 5.117 .056 1.913
1.287 7.523 4.372 .883 1.061 4.389 7.208 .000 7.281 1.668
1.775 .688 6.293 1.315 1.578 6.399 .056 6.464 .000 1.549
.146 2.612 6.382 .388 .221 6.300 5.720 6.193 5.513 .000

The eigenvalues of the second differences matrix Table 10.7 are

28.6073, -13.5271, -6.9312 + .3821i, -6.9312 -.3821i, -.6854
-.4377, -.0405 + .0094i, -.0405 - .0094i, -.0418, -.0018

and now there are two conjugate pairs, but the major terms are almost the
same.

The eigenvalues of the third differences matrix Table 10.8 are

28.1470, -13.9872, -6.8754, -3.2629 ± 2.1149i,
-.6139, -.0434 ± .0002i, -.0370, -.0024

and now the two conjugate pairs are less important, but the total pattern
is only slightly changed.

The linear product-moment correlations between Tables 10.6, 10.7 and
10.8 are uninformative, they are r(6, 7) = .9886, r(7, 8) = .9851, and
r(6, 8) = .9695. All they can suggest is that the process is self-similar (but
not exactly so) at three degrees of differencing, taking Table 10.6 as repre-
senting the fastest dynamics. The information in the higher-order differ-
ence distributions is generally a little less than that in the first order, the
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Table 10.8: Based on absolute third differences, k = 10.
A Kullback-Leibler matrix of asymmetrical dissimilarities

1 2 3 4 5 6 7 8 9 10
.000 2.844 4.562 .295 .359 4.365 5.596 4.178 5.215 .078
.951 .000 5.732 .551 .611 5.823 5.514 8.297 5.506 .963

1.527 3.067 .000 1.155 1.371 .088 6.123 3.650 6.196 1.868
.245 3.250 5.891 .000 .042 5.826 7.011 5.557 6.894 .305
.293 3.078 6.879 .043 .000 6.809 8.046 6.578 7.941 .337

1.318 3.941 .082 1.065 1.254 .000 7.861 4.384 7.819 1.722
1.885 .872 5.629 1.443 1.654 5.923 .000 5.815 .079 1.854
1.244 7.616 4.052 .963 1.165 4.104 7.352 .000 7.350 1.593
1.475 .860 6.169 1.241 1.441 6.328 .087 6.269 .000 1.405
.068 2.290 5.464 .313 .364 5.286 5.361 5.199 4.980 .000

————————————————-

distributions are more skewed towards the lower end. As noted above, the
scalar values of the differences, that is their first and second moments, are
removed in this analysis, the entropies are scale-independent.

Discussion

As the tremor series can be partitioned approximately into fast and slow
dynamics, it is proper to ask where the non-stationarity arises? Taking the
evidence of all the relevant tables together, it is seen that the faster dynam-
ics are relatively stable in their evolution, but the slower dynamics fluctu-
ate from block to block. If one thinks of the slower dynamics as a carrier
wave, a stable base for supporting faster dynamics sensitive to exogenous
effects or to internal nonlinearities, that is in this case wrong.

The analysis in Tables 10.6, 10.7 and 10.8 pools over all the 10 blocks, so
it is orthogonal to the previous analyses in Tables 10.2, 10.3, 10.4 and 10.5
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done block by block. Only the ESf estimates in these four blockwise tables
is a hidden bridge between the two orthogonal analyses.

Dynamics of Cardiac Psychophysiology

Some patients undergoing bio-feedback therapy for respiratory disorders
do have panic episodes, as they themselves relate. Others do not. The
causality and even the detailed dynamics of panic episodes are the sub-
ject of considerable controversy (Baker, 1992) and these wider questions
are not being entered into here. Rather, our starting point is the fact that
palpitations and a local rapid raise in heart rate are the most frequently
observed characteristic properties of a panic attack, irrespective of the en-
vironmental or intrasubjective situations that appear to trigger the onset.
The measures of heart rate activity cited in the relevant literature are usu-
ally the rate, in beats/minute, and nothing else. More complex analyses of
the sequential dynamics of the heart activity are not usual, partly because
the resources available to researchers, both in terms of recording apparatus
and mathematical software for subsequent analysis, are relatively recent in
their development. The idea that we should investigate the nonlinear dy-
namics of the heart under conditions when there is no panic, as a possible
predictor of panic susceptibility, is virtually untested. At the same time, it
is known that cardiac dynamics are intrinsically difficult to model, partly
due to their lability and complexity, and contradictory explanations have
been advanced for rhythm generation (Dunin-Barkowski, Escobar, Lover-
ing & Orem, 2003).

Gorman and Sloan (2000) review a number of studies in which it is
shown that, under non-panic conditions, patients with panic disorders ap-
pear to have diminished heart rate variability. In turn, diminished vari-
ability is a precursor of myocardial infarction, in short, a good predictor
of death, and self-report of panic attacks and higher anxiety can be associ-
ated both with lower levels of heart rate variability and increased risk of
fatal coronary heart disease (Kawachi, Sparrow & Vokonas, 1994).

This investigation is in two parts: an examination of data from one



PERRON-FROBENIUS AT THE EDGE OF CHAOS 251

subject to establish the viability of some of the methodology, and a part
in which comparison of some heart beat time series of clinical interest are
made using the methods established in the first part.

The first part consists of three epochs, in sequence, each about 5 min-
utes long. All the three epochs were truncated at 386 interbeat intervals,
which time evolution spans approximately five minutes of continuous
recording. As the third epoch was deliberately made to be non-stationary,
with a brief burst of shallow rapid breathing, the treatment of that se-
ries as internally homogeneous is strictly wrong, but is first presented
that way, as in the same way as the first two epochs, as an example of
the type of error that ignoring nonstationarity or nonlinearity can create
(Bunde, Kropp & Schellnhuber, 2002). It is now expected that nonstation-
arity, better described as the consequences of chaotic itinerancy (Kaneko
& Tsuda, 2003), is characteristic of heart activity, where normal dynamic
regulation involves return to some attractor basin or basins after transient
destabilization (Gorman & Sloan,2000). As has been known for some time,
analyses that use linear statistical modelling, either static or with time se-
ries assumptions, can obscure the very properties of the dynamics that are
both clinically interesting and indeed necessary for the individual’s long-
term survival (Barndorff-Nielsen, Jensen and Kendall, 1993; Medvinsky,
Rusakov, Moskalenko, Fedorov, & Panfilov, 2003).

We note that many of the methods for examining nonlinear time series
and their associated dynamics were anticipated in mathematical psychol-
ogy as long ago as 1960, by Licklider. The main additions now to what
was available then centre on chaotic dynamics, the underlying entropy
and time series concepts have their origins in the late 19th century. The
conventional distributional statistics are as follows, intercept and slope re-
fer to a linear regression over time, the variable in most cases is pulse rate
in beats/min. The time series are made up of about 900 interbeat intervals,
and normally each of these is about 700-800 millisecs; each starts with the
depolarisation peak of the cycle. The nonlinear statistics in Table 10.9 are
again LLE, ESf, and ApEn. Low pass and high pass refer to the series after
filtering:
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————————————————-
Table 10.9: descriptive statistics

measures Epoch001 Epoch002 Epoch003
min 687 640 300
max 843 847 1011

mean 761.13 770.55 758.60
s.d. 33.69 33.82 117.92

Skewness .003 -.983 -2.143
Kurtosis -.643 1.632 5.151
intercept 772 751 708

slope -.057 +.101 +.221
LLE .091 .103 .090

Low pass LLE .147 .130 .089
High pass LLE .092 .124 .048

ESf -.7714 -.6722 -.3172
ApEn 1.1035 .9232 .4689

————————————————-
As visual inspection and consideration of what is happening psychophysi-
ologically indicate strong serial autocorrelation of the series (except where
perturbed), the autocorrelation spectra for each epoch are given in Table
10.10, truncated to 10 lags. It is important here to note that ACF analysis
can misidentify a nonlinear process as being i.i.d. (white noise) when in
fact it has serial dependencies and may also be nonstationary (Granger,
Maasoumi and Racine, 2004).

The serial relations are so simple that a linear lag one model could be
fitted if Gaussian residuals were assumed. It is this simplicity that leads to
the next suggestion, that a 5-state Markov with weak off-diagonal transi-
tion probabilities is predicted (compare Hoppensteadt, 2003). This is ex-
plored in Tables 10.11, 10.12, 10.13. The states are each one-fifth of the
range of the i.b.i.s, so in, for example, Table 10.13, (843 − 687)/5 = 31.2,
and the ranges vary for each epoch.
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Table 10.10: Serial autocorrelation coefficients
Note: All the coefficients are positive.

lag r Epoch001 Epoch002 Epoch003
[1] .9337 .9654 .6692
[2] .8264 .9152 .5925
[3] .6858 .8462 .4377
[4] .5259 .7759 .4627
[5] .3743 .7087 .3626
[6] .2383 .6466 .2861
[7] .1306 .5893 .1915
[8] .0542 .5362 .2005
[9] .0113 .4843 .1461

[10] .0030 .4378 .1543

Table 10.11: Epoch001 Transition Probability Matrix
Note: The last column contains the stationary state vector.

EM1 =


.808 .192 .000 .000 .000 .123
.091 .727 .182 .000 .000 .260
.000 .135 .714 .151 .000 .331
.000 .011 .191 .708 .090 .234
.000 .000 .053 .368 .579 .050



Table 10.12: Epoch002 Transition Probability Matrix
Note: The last column contains the stationary state vector.

EM2 =


.840 .160 .000 .000 .000 .077
.053 .787 .160 .000 .000 .217
.000 .099 .763 .137 .000 .338
.000 .000 .145 .794 .061 .313
.000 .000 .000 .348 .652 .055





254 INFORMATIVE PSYCHOMETRIC FILTERS

Table 10.13: Epoch003 Transition Probability Matrix
Note: The last column contains the stationary state vector.

EM3 =


.550 .200 .050 .150 .050 .053
.500 .000 .200 .300 .000 .053
.018 .036 .727 .182 .036 .144
.004 .007 .036 .931 .022 .713
.080 .080 .080 .120 .640 .065


Note, importantly, that there are no absorbing states in the Markovian rep-
resentation, though some states could be weak attractors, which enables
the system to return to some dynamic stability after perturbation, as in
Epoch003.

Goldberger (1990, p. 407) remarks that, ”A common misconception
among dynamicists and clinicians is that the normal heart beats with
clockwise regularity. When beat-to-beat heart rate is carefully measured,
it is apparent that the healthy heartbeat is quite erratic, even under rest-
ing conditions. This variability, however, is subjectively imperceptible and
is difficult to assess by routine clinical examination.” Goldberger contin-
ues, ”we have proposed that normal heart-rate variability is regulated by
a nonlinear feedback network that generates fluctuations across multiple
orders of temporal magnitude, ranging from hours or longer to seconds
or less. Furthermore these fluctuations are self-similar. That is, the chaotic-
appearing variations apparent on longer time scales are similar to the fluc-
tuations on shorter time scales, although the amplitude of the higher fre-
quencies is lower Preliminary data from our laboratory indicate that age-
ing is associated with a reduction in fractal dimensionality.”

Here we have two sorts of evidence that are compatible with what
Goldberger has remarked: the LLE values in Table 10.9 are all positive,
indicating that edge-of-chaos activity is very probably present in the dy-
namics, and the absence of any absorbing states in the Markov matrices.
The ESf and ApEn values do covary, this is perhaps the first empirical
evidence of this arising as the series are long enough to support the com-
putation of both indices.
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Higher Order Statistics, bESf

The series are long enough to permit some exploratory analyses using the
higher-order bispectral bESf matrices, that were introduced by Gregson
and Leahan (2003). To emphasise, the bold-face entries are within the ran-
dom surrogate 95% c.i. ranges. Each triangular matrix of the b(m,n) series
of triples, m < n, is written as

b(1,2) b(1,3) b(1,4) b(1,5) b(1,6)
b(2,3) b(2,4) b(2,5) b(2,6)
b(3,4) b(3,5) b(3,6)
b(4,5) b(4,6)
b(5,6)

Table 10.14: bESf values for Epoch001

EPb1 =


-.4017 −.5075 −.3283 −.5455 −.4801
−.5263 −.4999 −.4311 -.4192
−.3482 −.3372 −.4440
−.5771 −.3287
−.4520


There is little sign of random variations here, in what is essentially a
higher-order high-pass filtering, on the higher-frequency fluctuations of
the inter-beat-interval. It is expected that Epoch002 will be much the same,
but Epoch003 disturbed. Computing in the same fashion:

Table 10.15: bESf values for Epoch002

EPb2 =


−.3010 −.4986 -.4277 −.5426 -.4179
−.3064 −.3381 −.4643 −.3507
−.5201 −.4423 -.4297
−.4456 -.4056
-.4205


This EPb2 series has more noise than EPb1 in it.
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Table 10.16: bESf values for Epoch003

EPb3 =


−.3042 −.4512 −.4088 −.3165 −.5310
−.4105 −.3483 −.4247 -.3785
-.4338 −.2446 −.4811
-.4056 −.3587
−.3967


The noise has now moved from its location in the previous two matrices.
As remarked in our previous work on series of this nature (Gregson, 2003),
the bESf matrices are the off-diagonal parts of square skew-symmetric ma-
trices, so their eigenvalues are computable and all real. They provide an-
other way of examining shifts in the dynamics with stimulus disruption;
here, dominant stimuli to the cardiac system are breathing rhythms.

Table 10.17: Eigenvalues for bESf for all three Epochs

Eigenvalue Epoch001 Epoch002 Epoch003
[1] -2.6538 -2.5340 -2.3636
[2] -0.2590 -0.1971 -0.2269
[3] 0.2442 0.1735 0.2032
[4] 0.1481 0.1059 0.1366
[5] -0.1450 -0.0431 -0.0621
[6] -0.0147 -0.0264 -0.0451

It is clear that the dynamics of all three epochs are not identical and the
small differences between the first and third epochs, on the one hand, and
the second, are expressed in the lesser [2,3,4] eigenvalues in Table 10.17.

Subdividing the Third Epoch.

Before computing, it is illuminating to examine the graphs of each of the
three series, but after they have been high-pass filtered. Figures 10.1, 10.2,
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Figures 10.4, 10.5, 10.6: The three cardiac i.b.i. series
Raw data after high-pass filtering

10.3 show the results, the vertical axis scales of the graphs differ to accom-
modate the different ranges of variability.

We now break the third epoch into the first 160 inter-beat-intervals,
then the next 120, then the remaining 106, and compute for each sepa-
rately; that is, three subseries in sequence. The anomalous subseries, from
the high-pass filtered graphs, is the middle one (Epoch032), and the first
and third can be considered as controls and should resemble Epochs 001
and 002.

Computationally we may run into difficulties with the shorter series,
that may be insufficient to produce stable estimates of LLE or ApEn. For
the ESf estimates in Table 10 δy = .01. These should all be compared with
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Epoch003 in Table 10.9.

Table 10.18: descriptive statistics of Epoch003 partitioned

measures Epoch031 Epoch032 Epoch033
min 300 304 718
max 910 1011 917

mean 738.56 715.63 810.31
s.d. 99.48 161.23 39.88

Skewness -2.904 1.118 0.162
Kurtosis 8.931 0.587 0.182
intercept 771 576 846

slope -.417 2.334 -0.698
LLE .095 .066 .116

Low pass LLE .039 .038 .118
High pass LLE .061 .011 .031

ESf -.4567 -.2566 -.3114
ApEn .4765 .4064 .4689

The variations in ESf are greater than in ApEn, so it is in this context a more
sensitive measure of the destabilization induced in the middle subseries
Epoch032 by a temporary burst of a shallow fast breathing rhythm.

Self-Similarity at Different Scales

If the time series have fractal properties, and it is suggested by various
authors that they would have, then, if we create a coarser series from the
given data by halving the frequency of data points, we should get sub-
stantially the same statistical parameters from the analyses in the previous
tables. That method is, in fact, called multiscale entropy analysis (Costa,
Goldberger and Peng, 2002). As Epoch001 seems to be the most stable, it is
this series only that we should employ to check this aspect of the dynam-
ics.
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Defining

∀m; xm(j) = (x(i) + x(i− 1))/2, j = mod2(i)

so that the half frequency series length n/2 is 193 double i.b.i.s long
the quarter frequency series is 96 long, and the eighth frequency series
is 48 long, then ESf(1/2) = -.3111, ESf(1/4) = -.3194, and ESf(1/8) = -.1621.

Multiple analyses on sample series

Comparing the behaviour of different indices computed on successive
subsamples of time series is comparing the actions of different filters. A
filter may or may not preserve metric information, linear statistics such
as autocorrelations or moments do, and the various entropy-based indices
do not, but are based in information theory. A filter may reject some in-
formation and may also transform it or create spurious information if its
inbuilt assumptions are not compatible with the data structure. If the basic
processes being studied are not stationary, then a filter that only represents
some of the information present may vary in what it captures.

As an illustration of the variability that can be found under conditions
that might reasonably be thought to be stable and even tranquil, Table
10.19 shows one series collected under meditation conditions. The values
are here expressed as interbeat intervals (i.b.i) in 100ths of a second. This
series could be taken as one sort of base rate situation. The various mea-
sures are not usually all computed on the same data set and show some
mutual disagreements. All entropy-based measures I have seen have in-
built tuning parameters to be set in their computation and their settings
can critically affect the performance of the measures, that is filters, as pro-
cess identifiers (Richman and Moorman, 2000).

The relative utility of the various measures is not simply decided, as
they reflect different properties of the nonlinear dynamics. We can say,
using the LLE as the basic criterion, that all the series are chaotic, to a small
degree, and that the largest Lyapunov does vary a bit over time in what
may be psychophysiologically interpreted as a stable process, as has been
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reported in our previous work (Gregson and Leahan, 2003). ESf does have
a stronger relation to LLE than ApEn, which is not surprising because ESf
uses more series information to construct its values.

Figures 10.7, 10.8, 10.9: The raw data of Meditation blocks 1, 4 and 10
Showing non-stationarity. Vertical scales vary.

Each of the ESf values has been checked against the 95% confidence
interval found from a set of 50 random surrogate series, and shown to be



PERRON-FROBENIUS AT THE EDGE OF CHAOS 261

outside and above the associated random interval.

The higher-order bESf matrices for two selected blocks are shown in
Tables 10.20 and 10.21. As previously, the bold-face entries are within the
random surrogate 95% c.i. The mixture of chaotic and random components
of the higher-order dynamics again appears. There is a possible resem-
blance between Tables 10.8 and 10.13, interestingly as one is drawn from
Australia and the other from the USA, they are independent analyses.

Table 10.19: Descriptive statistics of Meditation series
This series of ECG data is taken from the PhysioNet archives.

Block LLE mean Kurt ESf D2 H ApEn
1-400 +.1123 68.88 -0.572 -.4341 1.813 .1866 1.020

401-800 +.1062 71.53 -0.999 -.4678 1.853 .1472 0.950
801-1200 +.1198 73.51 -1.287 -.4594 1.819 .1805 0.829

1201-1600 +.0986 73.48 -1.135 -.4529 1.801 .1987 0.953
1601-2000 +.1285 73.70 -0.973 -.4837 1.767 .2333 0.949
2001-2400 +.1513 74.63 -1.092 -.4935 1.832 .1684 1.029
2401-2800 +.1224 74.12 -1.047 -.4238 1.807 .1931 0.954
2801-3200 +.1496 75.02 -1.188 -.4359 1.810 .1934 0.872
3201-3600 +.1284 73.38 -0.622 -.4857 1.859 .1411 1.053
3601-4000 +.1254 75.85 -0.403 -.4185 1.769 .2314 1.111

– – – – – – – –
cftv .129 .025 .300 .056 .016 .155 .082
regr 1 63.53 -2.02 -0.34 -0.02 0.06 0.15
corr 1 .544 -.116 -.214 -.010 .034 .030

Key: Block: beats in sequence. LLE: largest Lyapunov exponent. mean: av-
erage i.b.i. Kurt: kurtosis. ESf: entropic analogue of Schwarzian derivative.
D2: fractal dimensionality. H: Hurst index. ApEn: approximate entropy
(k = 10, δ = .02). cftv: coefficient of variation (σ/|µ|). regr: slope of regres-
sion of variable on LLE. corr: product-moment correlation of LLE with
variable.
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Whereas the series of i.b.i. durations under meditation was a time in-
terval series, or a point process, the next example is a fixed time interval
variable value series, of mv of cardiac activity at 100 Hz under conditions
of apnea. The intervals between peak values in the graphs, which are not
exactly constant, are the same in meaning as the variable i.b.i.s in the med-
itation example. That is, the scale here is enhanced and Table 10.19 is based
on slow dynamics while Table 10.22 reflects the higher frequency compo-
nents within each beat cycle, at 100 times the previous scale. It does not
follow that, because the i.b.i. series in Table 10.19 shows signs of chaotic
dynamics, the same would necessarily be expected of the mv series in
Table 10.22. The analysis follows exactly the same steps. It is seen that,
though the LLE values are still all positive, they are much lower than in
Table 10.19 and, given the relatively short series, may be treated as virtu-
ally zero. In apnea, the heart action is compromised, which is a dampening
of the dynamics. It is not possible directly to compare ESf or ApEn values
in Tables 10.19 and 10.22, because the two time series are quite different
in their meaning, but one may note the variability of ESF within each se-
ries. In Table 10.22 the coefficient of variation increases from .056 to .124,
whereas for ApEn it decreases from .082 to .056.

Table 10.20: bESf values for Block 4: with LLE lowest

EPbMd4 =


-.4373 -.4315 −.2604 −.3918 −.3996
−.6105 −.5100 −.2872 -.3420
−.2901 −.4853 −.1745
-.3526 −.2726
−.2026


Table 10.21: bESf values for Block 6: with LLE highest

EPbMd6 =


−.7213 −.4520 −.5510 −.3137 -.4894
−.3603 −.6031 −.4299 −.2864
-.4881 −.4290 −.5306
-.4580 −.4484
−.4372


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The original data did not specify if medication was being used when
these records were obtained, so it is not possible to partial out any causal-
ity, digitalis is often used to control arrhythmias, and these series are quite
regular and have a recurrent defined periodic spectrum, with no evidence
of tachycardia.

Here, the ApEn values are very stable, but the ESf shows fluctuations,
it uses higher-order derivatives and these appear to play a role that is not
detected by ApEn. The difference in the LLE values between Tables 10.19
and 10.22, suggesting that the slow i.b.i. series are chaotic, but the high
frequency mv series within the i.b.i.s are not chaotic, is not novel, but has
been considered for brain dynamics at different levels (Wright and Liley,
1996; Gregson, 1997).

Tables 10.23 and 10.24, unlike Tables 10.20 and 10.21, are generated by
the high frequency dynamics that produce the p,q,r,s fluctuations in mv in
each cycle near the peak. The values within the triangular bESf matrices
are lower for this (fast) series, than for the (slow) meditation i.b.i.s. There is
little evidence of any random components here, so the process is nonlinear
but not chaotic at a lower (slow) level, taking all the evidence in Table 10.24
together.

Panic Pre-dynamics

The findings of Gorman & Sloan (2000) on the importance of heart rate
variability have already been mentioned and it is important to note that
such variability itself is complex and has sources that are usually con-
founded without appropriate statistical analyses (Chon, Zhong, Wang, Ju
and Jan, 2006.

But the question remains, what measures of variability in time series
are most relevant? Tucker, Adamson & Mirander (1997) use power spec-
tral analysis. That presumes linearity and dynamic stationarity, and thus
filters out aspects of the dynamics that are known to be present in normal
cardiac activity, that is, in fact, edge-of-chaos (Winfree, 1987). So far as can
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Figures 10.10, 10.11, 10.12: The raw data of Apnea mv blocks 1, 5 and 7
Illustrating cyclic variation. Vertical scales vary
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Table 10.22: Descriptive statistics of Apnea mv series
This series of ECG data is taken from the PhysioNet archives.

Block LLE mean Kurt ESf D2 H ApEn
1-400 +.0246 .0009 13.81 -.4771 1.863 .1373 .383

401-800 +.0328 .0043 18.90 -.3427 1.741 .2594 .326
801-1200 +.0481 -.0021 19.25 -.4562 1.854 .1458 .344

1201-1600 +.0163 .0013 19.02 -.3357 1.900 .1003 .323
1601-2000 +.0625 -.0043 13.45 -.4150 1.860 .1404 .363
2001-2400 +.0516 .0032 17.69 -.4270 1.841 .1594 .371
2401-2800 +.0645 .0002 13.49 -.4413 1.876 .1244 .370
2801-3200 +.0387 -.0047 14.85 -.3303 1.863 .1370 .359
3201-3600 +.0439 .0041 15.24 -.4348 1.824 .1762 .379
3601-4000 +.0262 -.0077 16.19 -.4430 1.835 .1648 .370

– – – – – – – –
cftv .375 8.070 .138 .124 .022 .262 .056
regr 1 -.006 -58.355 -1.021 .135 -.131 .436
corr 1 .0245 .4001 -.3071 .0513 .0498 .3349

Key: As Table 19. For ESf k = 10, δ = .0025

Table 10.23 bESf values for Block (3) with ESf high

EPbApn3 =


−.3243 −.3653 −.1395 −.2625 −.1647
-.3043 −.3076 −.2130 −.4101
−.4350 −.2807 −.3520
−.1827 −.3461
−.1582


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Table 10.24: bESf values for Block (8): with ESf lowest

EPbApn8 =


−.3027 −.4218 −.2350 −.5100 −.3702
−.3523 −.2472 −.5195 −.3288
−.4834 -.4099 −.4909
−.2613 −.5160
−.1878



be deduced from literature reviews, variability is in most studies simply
equated with Gaussian variance about a mean heart rate.

Though the focus of this intended study is on heart rate variability dur-
ing periods when patients are not having panic, there are still other con-
ceptual difficulties to be noted. Margraf and Ehlers (1992, p. 154) remark
that it is inadequate to ”dichotomize the subjects’ complex responses sim-
ply into panic or not panic”. They note that it is not the case that during a
panic attack a subject’s heart rate always increases. ”In addition to being
prone to biases, relying on the artificial dichotomous variable ’panic/not
panic’ entails a considerable loss of information compared to the measure-
ment of continuous variables.” The same argument can be applied to the
time series analysis of cardiac activity, if the latter is only encoded as ”ele-
vated/normal” in the local mean rate.

Margraf and Ehlers conclude (1992, p. 224) that, ”a pure medical ill-
ness approach to panic has been shown insufficient, possible biological
vulnerabilities have been revealed only for subgroups, and the necessity of
a psychophysiological perspective has been underlined the integration of
different levels of analysis is a basic problem of all modern neuroscience.
Rather than biological or cognitive reductionism a true psychobiological
perspective is needed.”

Notes

The statistical calculations were made partly by using SANTIS software
from the Physiology Department of the University of Aachen and by the
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author’s own programs in Linux Fort77, and in Mathematica. Dr Pincus
kindly provided code of his Approximate Entropy program which was
rewritten into Linux. The time series in the second part were drawn from
the PhysioNet Archives.

Appendix

For µ = .735 the eigenvalues of LS are, in complex form:

1.0, .715 + .1009i, .715− .1009i, .645 + .1645i, .645− .1645i

The dimensionality of the embedding space of the Shilnikov attractor
is three. A perspective picture of its trajectory is given by Mitchener
& Nowak (2004, p. 704). The formal mathematics of the Shilnikov phe-
nomenon are given by Wiggins (1990, pp. 573, 602). It arises in the dy-
namics near an orbit homoclinic to a fixed point of saddle-focus type in a
third-order ordinary differential equation. The equation can be of the form

ẋ = ρx− ωy + P (x, y, z),
ẏ = ωx+ ρy +Q(x, y, z),
ż = λz +R(x, y, z).

where P,Q,R are complex. The eigenvalues are given by ρ± iω.
A deeper mathematical treatment is given by Wiggins (1988, p. 227

et seq), wherein it is noted that the attractor possesses a 2-dimensional
stable manifold and a 1-dimensional unstable manifold. The time of flight
between the two attractors is a function of λ.

The dynamics in the local regions of saddle-nodes, of which this can
be an example, are treated qualitatively by Shilnikov, Shilnikov, Turaev
& Chua (1998). A further treatment of the role of eigenvalues in the sub-
system identification of metastable Markov systems has recently been re-
viewed by Huisinga, Meyn and Schütte (2004).





Chapter 11

Appendix: Nonlinear
Psychophysical Dynamics

This appendix summarises some algebraic properties used in nonlinear
psychophysics with reference to their contextual literature in pure math-
ematics. It enlarges on some material presented graphically in Chapter 1,
and drawn on particularly in Chapters 3, 7, 8 and 10.

Alternative representations of the dynamics in real time:

(1) Julia sets of the dynamics, with coordinates the starting
points Y (Re, Im)0 of the recursive iterations which yield
the trajectories; attractor basins and self-similarities dis-
played with magnification.

(2) Dynamic partitions of the system’s parameter space; local
regions associated with attractor characteristics. Coordi-
nates are the equation’s fixed parameters, not the internal
variable.

(3) Mappings indicating homoclinic and heteroclinic orbits,
distinguishing real and complex spaces, and Poincaré
space sections.
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(4) Trajectories as parallel time series of Real and Imaginary
parts of the system variable Y , recurrence maps, and al-
ternative series based on transformations into polar coor-
dinates.

(5) Symbolic dynamic encodings of the time series created
by discrete partitioning into Markovian state variables.
These are the basis used here to identify arpeggio-like
subsequences.

(6) Response surfaces of terminal values of the trajectories
over the parameter space. These come in pairs and one
in the Reals corresponds most closely to psychophysical
data from the perspective of an external observer. Surfaces
may be differentiated and the derivatives used to estimate
response latency frequency distributions via Jacobians.

(7) Cross-entropy maps from input parameter values to Real
parts of the output at a fixed number of iterations. Used
to assess information loss in stimulus-response pairings.

(8) Time series of convoluted trajectories, with variable gain
parameters, matching in meaning < 4, 5, 6, 7 >.

A general mathematical results which Milnor (1992) draws on is that any
cubic polynomial map from the complex numbers C to C is conjugate,
under a complex affine change of variable, to a map of the form

z 7→ f(z) = z3 − 3a2z + b [11.1]

and we note that Γ in nonlinear psychophysical dynamics (NPD)(Gregson,
1988, 1992, 1995) which is defined as

Γ : Yj+1 = −a(Yj − 1)(Yj − ie)(Yj + ie), i =
√
−1, j = 1, ..., η

[11.2]
falls into this family.

A more general form which exemplifies the structural questions in-
volved is to rewrite Γ as its generic family

Γ : Yj+1 = f(π, ..., πζ , Yj−k(Re, Im), Yj(Re, Im))
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in which π is any parameter, and the presence of an indeterminate num-
ber of complex eigenvalues has to be allowed a priori. The dynamics vary
critically with the eigenvalue structure (Ilyashenko & Li, 1999). In [11.2]
we have simply ζ = 2 and one complex eigenvalue, in other words, a
complex conjugate pair. The subscript k allows for delay, and in [11.2] is
zero, but has been 1 in some cases considered (Gregson, 1995, 1998). The
terminating parameter η in [11.2] is not a necessary part of the definition;
it is merely an arbitrary limit to the trajectory.

The parameters {π} are usually taken to be scalar constants, but in
Γc convolutions become variables under some definable conditions. The
shape of the plot of Y (Re)/a is similar to a cumulative normal ogive, and
also to

v(x) =


0, x ≤ 0,
sin2 π

2x, 0 ≤ x ≤ 1,
1, x ≥ 1.

(Daubechies, 1992, p.74).

If, instead, the situation were to be modelled in stochastic dynamics,
then the nearest statistical model would be the random walk plus noise hier-
archical form (Atkinson, 1998)

yt = αt + εt εt ∼ N(0, σ2
ε ) [11.3]

εt+1 = αt + ηt ηt ∼ N(0, σ2
η) [11.4]

where y replaces Y (Re) in the NPD structure, and α replaces a in Γ. Both
the nonlinear dynamical convoluted system and the stochastic random
walk system use a single time counting unit, as usually presented, both
for the driving and the response parts, which is t in [11.3,11.4] above and
j in [11.2].

Consider a single channel psychophysical process mediated by a lo-
cally destabilised Γ trajectory (Gregson, 1988). There are three successive
time segments called epochs,

t = 1, ..., n1, n1 + 1, ..., n2, n2 + 1, ..., N
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The stimulus is only made to be present in the middle time segment, of
duration n2 − n1. The gain settings are ag in the first and third epochs,
and af in the middle epoch. To reflect familiar psychological terms, g is for
ground and f is for figure. For the ground condition in epochs 1,3 Γg is
[11.2] with a = ag, and for the stimulus epoch Γf is [11.2] with a = af .

Converting to polar coordinates, with starting values Y0(Re,Im), set

x = Y (Re), w = (Y0(Im).10c)−1, y = w(Y (Im).102c) [11.5]

then
r = (x2 + y2)1/2, tanθ = y/x [11.6]

are the renormed polar coordinates required.
For example, in studying the dynamics of rhythmic motion, Treffner

and Turvey (1996) use

dφ/dt = ∆ω − a sin(φ)− 2b sin(2φ) +
√
Qζt [11.7]

to predict equilibria and fluctuations in symmetry breaking during hand
coordination tasks.

In general, the family of maps

x 7→ x+ µ+ ε cos2πx = f(x, µ, ε), x ∈ R1, ε ≥ 0 [11.8]

where points in R1 that differ by an integer so that [11.8] can be regarded
as a map defined on the circle S1 = R1/Z is a generator of Arnol’d tongues
due to the presence of terms in O(ε3). So far, there exists no formal proof
that [11.2] with periodicity in a resembles a case of [11.8], but see Chavoya-
Aceves et al (1985)1

Milnor (1992, p.11) illustrates this point by comparing what he calls
”pointed-swallow” configurations in Arnol’d tongues with arch configu-
rations in cubic maps.

1 Arnol’d tongues can be generated also by the sine-map of the circle, which is

Yn+1 = Yn + a + b sin2πYn(mod1),

effectively the same form as [11.8].
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Let a = f(α| sin(κπt)|), 2.5 < a < 5.0, t ≡ j within the stimulus epoch.
Here κ determines the periodicity and α determines the amplitude, which
has to be constrained to keep the dynamics within the attractor basin of Γ.

——————————————————-
Table 11.1: Local behaviour of output after a sinusoidal peak input

rt for various e after 50 interations of Γ
e→ .2 .25 .3 .35
a ↓

4.3920 2.5663 0.9946 0.7954 4.9295
4.6789 3.9077 2.5827 1.4365 6.5242
4.8790 1.6367 2.4472 5.6596 13.9506
4.9842 0.7577 4.2730 9.4996 23.4724
4.9904 0.9428 4.8962 18.8983 55.2053
4.8973 1.9336 8.3213 23.8296 66.6827
4.7086 2.2313 2.0982 52.4784 203.6165
4.4319 3.4945 0.9261 10.1625 54.1295

——————————————————-
Some of the results here have been foreshadowed by Ott, Grebogi and

Yorke (1990). They write: ”The behaviour of the response system depends
on the behaviour of the drive system, but the drive system is not influ-
enced by the response system. We have split the drive system into two
parts. The first part represents the variables that are not involved in driv-
ing the response system, and the second part represents the variables that
are actually involved in driving the response system.” In cascaded Γ nota-
tion this is exactly the same thing as putting ak+1 = f(Yη|k(Re)) (Gregson,
1995, gives detailed examples).

Guided by psychophysical considerations, the situation chosen for ex-
ploration involves setting up a convolution of one Γ trajectory onto a cas-
cade of a second series of Γ trajectories, where the first Γ1 is quasiperiodic
or chaotic in the reals, and using

a2 = α+ βY1 (Re) [11.9]

where α and β are real positive scalars to make the range of Y2(Re) lie
within stable limits,, as a2 is input to Γ2 with its η2 not less than 4. This
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convolution, ΓC = Γ2(Γ1) in operator notation, with settings of e chosen
to give autonomous dynamics beyond the first bifurcation for each Γ, is
of potential interest and psychophysically possible. Such convoluted and
cascaded series are also compatible in principle with what is known about
pathways between the hippocampus and the frontal cortex (Halgren &
Chauvel, 1996).

For illustration consider two examples, for complex and for polar tra-
jectories. Suppose that a1 = 4.1251, e = .447226, α = 2.13 and β = 2.55,
then Y1(Re) runs into quasiperiod 8 with roughly to the first decimal place
the sequence .9•, .3•, .8•, .5•, .9•, .2•, ..., (the symbol • in each step indi-
cates omitted digits in the recursion of Γ). The a2 series then starts with
4.30•, 3.25•, 3.78•, 3.49•, 3.73•, 3.68•, .. and the generated Y2(Re) series
with η2 = 5 runs onto quasiperiod 8 with .9•, .7•, .8•, .6•, .9•, .7•, .9•, .6• ...
But in the first phase of the convolution the largest Lyapunov exponent is
negative, for the Y1(Re) series, it moves from positive to negative for the
polar r1 series, it is positive and slowly stabilises for Y2(Re) and is positive
and unstable for polar r2.

A second case where the dynamics are very near to explosion and
have become aperiodic can be created by setting a1 = 4.132503, e =
.447226, η1 = 360, then α = 2.13, β = 2.55, and η2 = 4, which creates
an interesting series in Y2(Re). The Y1(Re) series is quasiperiodic 8, with
.9•, .3•, .8•, .5•, .9•, .2•, .8•, .6•, .. and to characterise the Y2(Re) or r2 series
a variant of symbolic dynamics is useful (Kantz and Schreiber, 1997).

From examination of the generated Y2(Re) series for t = 1, ..., 359 a
convenient partitioning of Y to create an X variable is made (the set of
values {X} become the states of a Markov process, as are used in the box-
counting methods for mapping attractors; see Kreuzer, 1987).

and a series is then of the formX1m1X2m2X3m3....Xkmk..wheremk =
0, ...,∞ is the number of successive Ø values of X in the inter X interval
XkXk+1,X ∈ {A,B,C,D,E, F}. For example a continuous segment of the
series is found to read as

.......E3C3F1 C1C3E1A1C3F1D1C3D1B1C3F1 C1C3E1A1C3F1→
C1C3E2C3F1 C1C3E1A1C3F1D1C3... [11.10]
The → indicates unbroken continuity. The subsequence set in boldface
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——————————————————-
Table 11.2: Partitioning of input to create a symbolic variable

if 0 < Y < .61 X ≡Ø
if .61 < Y < .62 X ≡ A
if .62 < Y < .63 X ≡ B
if .63 < Y < .64 X ≡ C
if .64 < Y < .65 X ≡ D
if .65 < Y < .66 X ≡ E

and if Y > .66 X ≡ F
——————————————————-

may be regarded as an arpeggio-like event Φ. There are two time series
here which may provide evidence of near-chaos or chaotic dynamics; the
inter-Φ-interval frequency distribution and its series, its first two terms be-
ing 16 and 14 Xm steps, and the series of m values, at a finer resolution in
time, which is running as

.....3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,3,2,3,1,1,3,1,1,3,1,1.. [11.11]
which is almost period 3.

The symbolic dynamics just constructed rest on only the Y2(Re) series;
if instead the associated polar modulus r2 series is used, not quite the
same patterns merge. The comparison analysis is performed on the same
segment of the trajectory of Γ2. Comparing with [11.10], but for polar r2,
reading the iterations from the same time point onwards,

...EC2C2FF1C1A2E1A1C3FFFFC2FFF1FC2FEF1FC2F→
F1C1CC2E1AFCD2F1C1C2.. [11.12] from which it is not possible to
identify any recurrent Φ within the same time window. The new sequence
of m values, corresponding to [11],is now

....2,2,0,1,1,0,2,1,1,3,0,0,0,0,2,0,0,0,1,0,2,0,0,1,0,2,0,1,1,1,0,2,0,0,0,2,..
[11.13]
Making a change in e from 0.447226 to 0.47227 is a sufficient example, still
just within stability retaining a2 unchanged.

For Y (Re) over the same range of iterations as before we now have
(compare [11.10]):

...E3C3E1A1C3F1C1C3E3C3 F1B1C3E1A1C3→
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F1B1C3FB1C3 F1B1C.. [11.14]
and again there is the emergence of an arpeggio Φ but not the same one as
in [11.10]. The m series corresponding to [11.11] is like

...3,3,1,1,3,1,1,3,3,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,... [11.15]
which is apparently quasiperiodic 3, rather like [11.10]. Repeating the exer-
cise for the corresponding symbolic dynamics of polar modulus r2 yields
(compare [11.12])

......EE1FC3E1A1CF1FF1CFCE2E2FCC1 FF1B1C2FEFA1→
C2 FF1B1C3F1BFCF1 FF1BFCF1.. [11.16]
and the weak emergence of a Φ is seen. The correspondingm series is now

....0,1,0,3,1,1,0,1,0,0,0,0,2,2,0,0,1,0,1,1,2,0,0,0,1,2,0,1,1,0,1,0,0,0,1,0,1...
[11.17]
which appears to be locally aperiodic.

It is immediately obvious that the autocorrelation structure of the re-
sponse Y2(Re) series can be different for the two cases, and the autocor-
relation structure will be related to the largest Lyapunov exponent. For
illustration, recomputing the last example given, in [11.14-11.17], with
a = 4.132503, e = .447227, which is period 8 approximately during the
driving stage, gives (for comparison with [11.14]) for Y2(Re),

......EFC1 CF2DF2A1 CF2EFC1 CF2DFA CF2EFB1 CF2DFA→
CF2EFB1 CF2DFB CF2EFB1CF... [11.18]
and in this string we can identify two Φ which may later coalesce. The
corresponding m series (compare [11.17]) is thus

0,0,1,0,2,0,2,0,2,0,0,1,0,2,0,0,1,0,1,0,0,1,0,2,0,0,1,0,2,0,0,1,0,2,0,0,1,0,2,.
[11.19]
which is period 5 after it stabilizes. The new polar r2 series is quasiperiodic
8 and quite uninteresting.

The definition of mutual information I(X,Y ) takes a general form,
with ∀i xi ∈ X, ∀j yj ∈ Y , and bivariate summation implicit

I(X,Y ) =
T∑
i=1

T∑
j=1

pXY (xiyj)log2
(

pXY (xiyj)
pX(xi)pY (yj)

)
[11.20]

The form of [11.20] extends to cover the case where one series is lagged
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onto itself, or delayed onto another realization of the same series, by writ-
ing (Abarbanel, 1996, p.28), where the lagged delay is θ recursive steps of
the map,

I(θ) =
T∑
n=1

(p(yn, yn+θ)log2
(

p(yn)
p(yn)p(yn+θ)

)
[11.21]

and we may then proceed to find the θ which maximises I(θ) for a
given realization of the process. For example, if [11.14] is repartitioned
at values Y (Re) = .54,.57,.62,.63,.64,.66 to give seven states over the con-
tinuum 0,1 then it is seen, as the system is stationary in its parame-
ters, that it is near equilibrium with a stationary state probability vector
.362,.139,.140,.008,.137,.002,.108. It is this vector which is stochastically ex-
ternally observable behaviour; the actual values depend on where the ar-
bitrary partitions on Y are set and how many are chosen. The basic infor-
mation definition H = −

∑7
i=1 pilog2(pi) can be computed for the vector.

A slightly different exploration of the Y2(Re) series, for various η2, is
used in Table 11.3. It is suspected that the information of the Y2(Re) fre-
quency distribution is a function of η2, from some precedents. For Table

—————————————————
Table 11.3: Information capacity of the Y2,η(Re) distributions

For various iterations, of the original and the first and second differenced series.
η2 H[Y (Re)] H∆1[Y (Re)] H∆2[Y (Re)]
2 2.502 1.419 1.376
4 2.505 1.470 1.418
5 2.508 1.423 1.422
6 2.500 1.367 1.307
7 2.529 1.447 1.457
8 2.500 1.369 1.307

10 2.500 1.351 1.309
11 2.501 1.351 1.309
15 2.501 1.326 1.312
—————————————————
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11.3 the Y2(Re) range has been partitioned into 10 equal steps of 0.1; if the
distribution were rectangular then H would be 3.322 (= log210). Actually,
it is not ever that, and for Y1(Re) H = 2.500, so, except for an apparent
irregularity at η2 = 7, the information is not much altered by the con-
volution, though the actual distribution of Y values is altered. The first
Lyapunov exponent can also reverse sign, and is not the same for the first
and second differences (∆1, ∆2) of the Y2 series.

A relevant comment of Boon and Prigogine (1998, p.4) who write:

Le phénomène musical possède une certaine cohérence, in-
termédiare entre l’aléatoire et le périodique: il y a des
corrélations, mais pas de structure strictement déterministe La
musique possède une symétrie brisée: elle se déroule selon un
ordre temporel

Notes

(1) The standard notation C, R, Z refers respectively to Complex, Real
and Integer domains. The notation of NPD algebra is made to be fully
consistent with the previous text references given.

(2) The idea of arpeggios Φ in the symbolic dynamics used here appar-
ently parallels what are also called isolating segments in chaotic phase
sequences (Wójcik, 1998).
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Hennion, H. and Hervé, L. (2001) Limit Theorems for Markov Chains and

Stochastic Properties of Dynamical Systems by Quasi-Compactness. [Lecture
Noteds in Mathematics, 1766]. Berlin: Springer-Verlag.

Henson, R. (2005) What can functional neuroimaging tell the experimental
psychologist? Quarterly Journal of Experimental Psychology, 58A, 193-
234.

Heyde, C. (2000) Empirical realities for a minimal description risky assets
model: the need for fractal features. Paper at the National Mathematics
Symposium on Non-linear Time Series. Canberra: The Australian National
University.

Hilger, S. (1988) Ein Maßkettenkalkül mit Anwendung auf
Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg.



REFERENCES AND BIBLIOGRAPHY 291

Hirose, A. (Ed.) (2003) Complex-Valued Neural Networks. Singapore: World
Scientific.

Honerkamp, J. (1994) Stochastic Dynamical Systems. Weinheim: VCH Ver-
lagsgesellschaft mbH.

Hoppensteadt, F. C. (Ed.) (1979) Nonlinear Oscillations in Biology. (Lectures
in Applied Mathematics, vol.17) Providence, RI: American Mathematical
Society.

Hoppensteadt, F. C. (2000) Analysis and Simulation of Chaotic Systems, 2nd
Edn. (Applied Mathematical Sciences, vol. 94.) New York: Springer-Verlag.

Hoppensteadt, F. C. (2003). Random Perturbations of Volterra Dynamical
Systems in Neuroscience. Scientiae Mathematicae Japonicae, 58, 353-358.

Hoppensteadt, F. C. and Izhikevich, E. M. (1997) Weakly Connected Neural
Networks. (Applied Mathematical Sciences, vol. 126.) New York: Springer-
Verlag.

Horbacz, K. (2004) Random dynamical systems with jumps. Journal of Ap-
plied Probability, 41, 890-910.

Horst, P. (1963) Matrix Algebra for Social Scientists. New York: Holt, Rine-
hart and Winston.
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