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Abstract

Masonry is a construction material commonly adopted to build residential structures
worldwide. It is characterized by several advantages such as high thermal insulation, fire
resistance and cost-effectiveness. However, past seismic events like the earthquakes in
Kashmir (Pakistan, 2005), Chile (2010), L’Aquila (Italy, 2009), Amatrice (Italy, 2016)
have shown that existing masonry buildings can suffer extensive damage under seismic
actions until collapse. This poor structural response is generally caused by several factors,
such as lack of good connections between the structural elements (e.g. walls, floors) and
low masonry tensile, shear strength. Therefore, the seismic strengthening of existing
structures is fundamental to sustain the potential ground motion due to the earthquake.

In this regard, composite materials are widely used for repairing and reinforcing masonry
buildings. A common technique consists in the application of high-performance textile
strips or fabrics to the masonry substrate with organic matrices (fibre-reinforced poly-
mers (FRP)) or open textile meshes applied with inorganic matrices (fabric-reinforced
cementitious matrix (FRCM) or textile-reinforced mortar (TRM)). The most adopted
continuous fibres to create the composite materials are alkali-resistant (AR) glass, carbon,
aramid, basalt, or polyparaphenylene benzobisoxazole (PBO).

It is important to stress that the FRPs have limitations, like heat sensitivity and problem-
atic application on wet substrates. They also need surface preparation, and the impermea-
bility of the polymeric matrix may induce bond problems with the masonry substrate.
Finally, polymers are considered hazardous materials that require special handling
processes before, during, and after their use. Therefore, cement- or lime mortar-based
composites have been developed. The organic matrix of the FRP has been replaced with
an inorganic one to overcome the mentioned application limits. In this regard, the
FRCM/TRM have many advantages compared to the FRPs, e.g. physical/chemical
compatibility with the masonry substrate, vapour permeability, high resistance to elevated
temperatures and ultraviolet radiation, possible application on irregular or wet substrates
with minimal or no surface preparation.

The FRCM/TRM textile component usually is an open mesh of continuous fibre yarns
arranged in two or more directions. They can be dry, coated, or preimpregnated. The
textile grids are completely embedded in the matrix, protecting the fibre yarns and ensur-
ing the stress transfer between masonry substrate and textile component. The matrices are
generally made of fine-grained mortar with Portland cement and dry organic polymers.
The latter are usually added to improve the setting time, workability, and bond behaviour,
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but they reduce the fire resistance and vapour permeability at the same time. Therefore,
their quantity is generally lower than 5% by weight.

The reinforcing system presented in this work is named EQ-GRID. It has been developed
at the Karlsruhe Institute of Technology in Germany to strengthen and retrofit masonry
structures. The textile component is a multi-axial hybrid grid made of alkali-resistant
glass and polypropylene fibres. The matrix is a natural hydraulic lime mortar (NHL)
explicitly developed for this system. It can penetrate the mesh openings and encapsulate
the yarns very well. This property is crucial for the bond at the textile-matrix and matrix-
support interface.

Since the EQ-GRID system aims to improve masonry structures’ strength and inelastic
deformation capacity, a broad experimental campaign has been performed at the Karls-
ruhe Institute of Technology in Germany. The results are presented and discussed in this
work. The test program included tensile tests on bare textile samples and composite
specimens for each main direction of the grid (vertical, horizontal and diagonal) and
compression and bending tests on matrix specimens. In this way, the mechanical proper-
ties of the EQ-GRID system have been determined. Furthermore, double- and single-lap
shear-bond tests have been performed to investigate the bonding behaviour of the system
applied to standard masonry support. The results have shown no premature debonding
from the substrate, although the system was applied without any mechanical anchorage.
Finally, cyclic lateral shear tests have been performed on masonry panels in original
conditions and strengthened with EQ-GRID to compare the performance of the rein-
forced structural element with the original one. The results have been depicted in terms of
shear-drift curves, from which equivalent multilinear curves have been determined.

Moreover, the in-plane shear strength and failure domains of all the tested masonry
panels has been analytically determined. The increase of in-plane load-bearing capacity
due to the EQ-GRID system is considered through the proposed modification of the
masonry initial shear strength and brick tensile strength as well as after the Italian tech-
nical standard CNR-DT 215/2018 “Guide for the Design and Construction of Externally
Bonded Fibre Reinforced Inorganic Matrix Systems for Strengthening Existing Struc-
tures”.

Furthermore, the cyclic lateral shear tests have been modelled through the Equivalent
frame method implemented in the TREMURI program. This modelling technique con-
sists of idealizing the walls in a frame. Each load-bearing masonry wall is subdivided into
a set of deformable masonry panels where the nonlinear behaviour and deformation are
concentrated. Then, the structural elements are connected by rigid nodes that are parts of
the wall not usually subjected to damage.
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All the tested masonry panels have been modelled through the nonlinear beam element
with lumped inelasticity and piecewise behaviour implemented in the program. During
the modelling, the strength increase due to the system has been calculated after CNR-DT
215/2018. The formulations proposed by this standard are implemented in the program
and are compatible with the adopted nonlinear beam element.

Finally, two shaking table tests performed on a masonry building model at the Institute of
Earthquake Engineering and Engineering Seismology (1ZI1S) in Skopje have also been
modelled with the Equivalent frame method. The aim was to reproduce the observed
behaviour of the masonry building in its original condition and after the seismic retrofit-
ting with EQ-GRID. Therefore, modal analyses, nonlinear monotonic, cyclic static and
time-history analyses have been performed. The numerical results have been compared to
the experimental ones in terms of structural behaviour, achieved damage level, measured
displacements and accelerations. The results have confirmed the Equivalent frame meth-
od as a modelling technique suitable for unreinforced masonry buildings and textile
reinforced masonry structures.






Kurzfassung

Mauerwerk wird hdufig als Material fur den Bau von Wohngebduden auf der ganzen
Welt verwendet. Es zeichnet sich durch mehrere Vorteile wie hohe Wéarmeddmmung,
Feuerbesténdigkeit und Kosteneffizienz aus. Allerdings haben vergangene seismische
Ereignisse wie die Erdbeben in Kaschmir (Pakistan, 2005), Chile (2010), L’Aquila
(Italien, 2009), Amatrice (Italien, 2016) gezeigt, dass bestehende Gebdude aus Mauer-
werk unter seismischen Einwirkungen erhebliche Schdden bis hin zum Einsturz erleiden
kénnen. Dieses schlechte strukturelle Verhalten wird im Allgemeinen durch mehrere
Faktoren verursacht, wie z. B. das Fehlen guter Verbindungen zwischen den tragenden
Bauteilen (z. B. Wénde, Decken) und eine geringe Zug- sowie Scherfestigkeit des Mau-
erwerks. Daher ist die seismische Verstarkung bestehender Tragwerke von grundlegender
Bedeutung, um den potenziellen Bodenbewegungen infolge eines Erdbebens standzuhal-
ten.

In dieser Hinsicht werden Verbundwerkstoffe hdufig fur die statische Sanierung und
Verstarkung von Mauerwerksbauten verwendet. Eine géngige Technik besteht in der
Aufbringung von hochleistungsfahigen Textilstreifen oder Geweben auf das Mauer-
werkssubstrat mit organischen Matrizen (faserverstarkte Polymere (FRP)) oder offenen
Textilgeweben, die mit anorganischen Matrizen (gewebeverstarkte zementére Matrix
(FRCM) oder textilverstarkter Mortel (TRM)) aufgebracht werden. Die am héufigsten
verwendeten Fasermaterialien zur Herstellung der Verbundwerkstoffe sind alkalibestan-
diges (AR) Glas, Kohlenstoff, Aramid, Basalt oder Polyparaphenylenbenzobisoxazol
(PBO).

Allerdings haben die FRPs einige Einschrankungen, wie z.B. Hitzeempfindlichkeit,
problematische Anwendung auf nassen Substraten. AuBerdem bendtigen sie eine Ober-
flachenvorbereitung und die Undurchléssigkeit der Polymermatrix kann zu Haftungs-
problemen mit dem Mauersubstrat fiihren. SchlieBlich gelten Polymere als Gefahrstoffe,
die vor, wahrend und nach ihrer Verwendung besondere Handhabungsprozesse erfordern.
Daher wurden Verbundwerkstoffe auf Zement- oder Kalkmortelbasis entwickelt. Um die
genannten Anwendungsgrenzen zu tberwinden, wurde die organische Matrix des FRP
durch eine anorganische ersetzt. In dieser Hinsicht haben die FRCM/TRM viele Vorteile
gegenliber den FRPs, z. B. physikalische/chemische Kompatibilitdt mit dem Mauer-
werkssubstrat, Dampfdurchlassigkeit, hohe Besténdigkeit gegeniiber erhdhten Tempera-
turen und Ultraviolettstrahlung, mdgliche Anwendung auf unregelmé&Rigen oder nassen
Substraten mit minimaler oder keiner Oberflachenvorbereitung.
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Die FRCM/TRM-Textilkomponente ist in der Regel ein offenes Gewebe aus Fasergar-
nen, die in zwei oder mehr Richtungen angeordnet sind. Sie kdnnen trocken, beschichtet
oder vorimpragniert sein. Die Textilgitter werden vollsténdig in die Matrix eingebettet,
wodurch die Fasergarne geschiitzt werden kénnen und die Spannungsibertragung zwi-
schen Substrat und Textilkomponente gewéhrleistet ist. Die Matrizen bestehen in der
Regel aus feinkdrnigem Mortel mit Portlandzement und trockenen organischen Polyme-
ren. Letztere werden in der Regel zugesetzt, um die Abbindezeit, die Verarbeitbarkeit
und das Verbundverhalten zu verbessern, aber sie reduzieren gleichzeitig den Feuerwi-
derstand und die Dampfdurchléssigkeit. Daher ist im Allgemeinen ihre Menge geringer
als 5% im Gewicht.

Das in dieser Arbeit vorgestellte Verstarkungssystem heit EQ-GRID. Es wurde am
Karlsruher Institut fir Technologie in Deutschland zur seismischen Verstarkung und
Retrofitting von Mauerwerksbauten entwickelt. Die Textilkomponente ist ein multiaxia-
les Hybridgitter aus alkalibestdndigen Glas- und Polypropylenfasern. Die Matrix ist ein
speziell flr dieses System entwickelter natlirlicher hydraulischer Kalkmdértel (NHL). Sie
kann die Maschendffnungen des Gitters durchdringen und die Garne sehr gut einkapseln.
Diese Eigenschaft ist entscheidend fiir den Verbund an der Schnittstelle Textil-Matrix
und Matrix-Substrat.

Da das EQ-GRID-System darauf abzielt, die Festigkeit und das unelastische Verfor-
mungsvermdgen von Mauerwerkskonstruktionen zu verbessern, wurde am Karlsruher
Institut fur Technologie in Deutschland eine umfangreiche Versuchskampagne durchge-
fiihrt. Die Ergebnisse werden in dieser Arbeit vorgestellt und diskutiert. Das Versuchs-
programm umfasste Zugversuche an Textilproben und Verbundwerkstoffproben flr jede
Hauptrichtung des Gitters (vertikal, horizontal und diagonal) sowie Druck- und Biegever-
suche an Matrixproben. Daher wurden die mechanischen Eigenschaften des EQ-GRID
Systems bestimmt. Dariiber hinaus wurden doppel- und einlagige Scherverbundversuche
durchgefihrt, um das Verbundverhalten des Systems auf Standardmauerwerksziegel zu
untersuchen. Die Ergebnisse haben keine vorzeitige Ablésung vom Untergrund gezeigt,
obwohl das System ohne mechanische Verankerung aufgebracht wurde. Schlieflich
wurden zyklische Schubversuche an Mauerwerkswande im Originalzustand und mit EQ-
GRID verstérkt durchgefiihrt, um die Leistungsfahigkeit des verstarkten Bauteils mit dem
Original zu vergleichen. Die Ergebnisse wurden in Form von Schub-Drift-Kurven darge-
stellt, aus denen &quivalente multilineare Kurven ermittelt wurden.

AuBerdem wurden der Schubwiderstand und die Tragféhigkeitsdiagramme aller geteste-
ten Mauerwerkswénde analytisch bestimmt. Die durch das EQ-GRID System Erhdhung
der Tragféhigkeit wird durch die vorgeschlagene Modifikation der Anfangsscherfestig-
keit des Mauerwerks und der Steinzugfestigkeit sowie nach der italienischen technischen
Norm CNR-DT 215/2018 “Guide for the Design and Construction of Externally Bonded

Vi
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Fibre Reinforced Inorganic Matrix Systems for Strengthening Existing Structures”
berechnet.

Dariiber hinaus wurden die zyklischen Schubversuche durch die im Programm TREMU-
RI implementierte “Equivalent Frame” Methode modelliert. Diese Modellierungstechnik
besteht darin, die Wande in einem Rahmen zu idealisieren. Jede tragende Mauerwerks-
wand wird in verformbaren Mauerwerkselementen unterteilt, in denen das nichtlineare
Verhalten und die Verformung konzentriert sind. Dann werden die Mauerwerkselemente
durch starre Knoten verbunden, die Teile der Wand sind, die normalerweise nicht be-
schadigt werden.

Alle untersuchten Mauerwerkswande wurden durch das im Programm implementierte
nichtlineare Balkenelement mit konzentrierter Unelastizitdt und multilinearem Verhalten
modelliert. Die durch das System erhorte Tragféhigkeit wurde nach CNR-DT 215/2018
berechnet. Die von dieser Norm vorgeschlagenen Formeln sind im Programm implemen-
tiert und sind mit dem angewendeten nichtlinearen Balkenelement kompatibel.

SchlieBlich wurden zwei Ritteltischversuche, die an einem Geb&udemodell aus Mauer-
werk am Institut fir Erdbebeningenieurwesen und Ingenieurseismologie (I1ZIIS) in
Skopje durchgefiihrt wurden, ebenfalls mit der “Equivalent Frame” Methode modelliert.
Ziel war es, das beobachtete Verhalten des Gebadudemodells im Originalzustand und nach
der seismischen Ertiichtigung mit EQ-GRID numerisch zu reproduzieren. Dazu wurden
Modalanalysen, nichtlineare monotone, zyklische statische und dynamische Analysen
durchgeflhrt. Die numerischen Ergebnisse wurden mit den Experimentellen hinsichtlich
des Strukturverhaltens, des erreichten Schadensniveaus und der gemessenen Verschie-
bungen und Beschleunigungen verglichen. Die Ergebnisse konnten bestétigen, dass die
“Equivalent Frame” Methode eine geeignete Modellierungstechnik fir unbewehrte sowie
textilbewehrte Mauerwerksbauten ist.

vii
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Notation and list of abbreviations

Capital Latin letters

A
AAR
Aenv3

AenvA

AenvAS

Aeq
Ay

Afloor,l

Afloor,z

Amult.3
Amult.4

Amult.S
App
At

[Bi]

[Bi]

cross-sectional area of the masonry panel
equivalent cross-sectional area of the EQ-GRID AR glass yarns

area below the experimental in-plane shear force-horizontal displacement
curve until DL3

area below the experimental in-plane shear force-horizontal displacement
curve between DL3 and DL4

area below the experimental in-plane shear force-horizontal displacement
curve between DL4 and DL5

equivalent cross-sectional area of EQ-GRID homogenized to the glass fibre
equivalent cross-sectional area of the FRCM mesh reinforcement

area of the 1% floor of the masonry building model tested on the shaking
table in Skopje

area of the 2" floor of the masonry building model tested on the shaking
table in Skopje

area below the equivalent multilinear curve until DL3

area below the equivalent multilinear curve between DL3 and DL4
area below the equivalent multilinear curve between DL4 and DL5
equivalent cross-sectional area of the EQ-GRID polypropylene yarns

area of the three-nodes orthotropic membrane element implemented in
TREMURI

shape matrix defined in node i of the three-nodes orthotropic membrane
element implemented in TREMURI

shape matrix defined in node j of the three-nodes orthotropic membrane
element implemented in TREMURI

deformability matrix of the three-nodes orthotropic membrane element
implemented in TREMURI

Xiii



Notation and list of abbreviations

(O]

[De]

E

EAR

Ecraked
Es
Efd

Etn

Exs

Em
Epp

Esec

Euncracked

Ewzi

E1

E>

=

Xiv

deformability matrix of the three-nodes orthotropic membrane element in
the rotated configuration to take into account the actual orientation of the
diaphragm

rigid end matrix of the masonry element implemented in TREMURI

Young’s modulus perpendicular to the bed joints of the masonry element
implemented in TREMURI

elastic tensile modulus of AR glass fibre yarns of the EQ-GRID mesh
(avg.)
tensile modulus of elasticity of the cracked FRCM (avg.)

tensile elastic modulus of the FRCM mesh (avg.)

secant tensile elastic modulus of the EQ-GRID mesh in the diagonal
direction (avg.)

secant tensile elastic modulus of the EQ-GRID mesh in the horizontal
direction (avg.)

secant tensile elastic modulus of the EQ-GRID mesh in the vertical direc-
tion (avg.)

Young’s modulus perpendicular to the bed joints of the tested calcium-
silicate brick masonry panels (avg.)

compressive elastic modulus of the EQ-GRID mortar matrix (avg.)

elastic tensile modulus of polypropylene fibre yarns of the EQ-GRID mesh
(avg.)
secant Young’s modulus of the tested masory panels

tensile modulus of elasticity of uncracked FRCM (avg.)

Young’s modulus perpendicular to the bed joints of the tested hollow clay
brick masonry panels (avg.)

Young’s modulus of the horizontal diaphragms in the floor spanning
orientation in TREMURI

Young’s modulus of the horizontal diaphragms perpendicular to the floor
spanning orientation in TREMURI

Young’s modulus parallel to the bed joints of the masonry element imple-
mented in TREMURI

axial tensile force



Notation and list of abbreviations

Far
Fcr,m
=

Foh

Fm

Fm*

Fm,u,O...4

Fep
Ft

Ft

Ft,u,O...4

Fu
=

F2,

Fx

F

axial tensile force in the AR glass fibre yarns of EQ-GRID
first cracking tensile load of the EQ-GRID composite specimens (avg.)

reactive force in the x-direction acting on the 2D fictitious node of the wall
1in TREMURI

reactive force in the x-direction acting on the 2D fictitious node of the wall
2 in TREMURI

resultant compressive load during the in-plane bending failure of an FRCM
strengthened panel

resultant compressive load when both masonry and FRCM attain their
ultimate tensile strain during the in-plane bending failure of an FRCM
strengthened panel

resultant compressive load at the in-plane bending failure modes 0, 1, 2, 3,
4 of a masonry panel strengthened with EQ-GRID

axial tensile force in the polypropylene fibre yarns of EQ-GRID

resultant tensile load during the in-plane bending failure of an FRCM
strengthened panel

resultant tensile load when both masonry and FRCM attain their ultimate
tensile strain during the in-plane bending failure of an FRCM strengthened
panel

resultant tensile load at the in-plane bending failure modes 0, 1, 2, 3, 4 of a
masonry panel strengthened with EQ-GRID

ultimate axial tensile force

reactive force in the z-direction acting on the 2D fictitious node of the wall
1in TREMURI

reactive force in the z-direction acting on the 2D fictitious node of the wall
2 in TREMURI

reactive force in the global X-direction transmitted by the masonry element
to the 2D fictitious node in TREMURI

reactive force in the global Y-direction transmitted by the masonry element
to the 2D fictitious node in TREMURI

reactive force in the global Z-direction transmitted by the masonry element
to the 2D fictitious node in TREMURI

elastic shear modulus
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Notation and list of abbreviations

Gks

GWZI
Gw

G2
H
Hp

[Ke]
[K]

[Ki’]

M

M

XVi

elastic shear modulus of the tested calcium-silicate brick masonry panels
(avg.)
elastic shear modulus of the tested hollow clay brick masonry panels (avg.)

masonry panel’s self-weight

elastic shear modulus of the horizontal diaphragms in TREMURI
limit dimension of the design length I (CNR-DT 215/2018)

minimum between the tensile resistance of the stretched interposed element
inside the spandrel and 0.4- f_  -h-t

elastic stiffness matrix of the masonry element implemented in TREMURI

elastic stiffness matrix of the three-nodes orthotropic membrane element
implemented in TREMURI

component ij of the elastic stiffness matrix [K¢]
moment of inertia of the masonry panel

length of the masonry wall

in-plane bending moment

contribution of the FRCM system to nominal flexural strength of the panel
according to ACI 459.4R-13

bending moment acting in node i of the masonry element implemented in
TREMURI

mass component in the global X-direction of the 3D rigid node | of the
Equivalent frame in TREMURI

mass component in the global Y-direction of the 3D rigid node | of the
Equivalent frame in TREMURI

bending moment acting in node j of the masonry element implemented in
TREMURI

nominal flexural strength of the FRCM reinforced masonry panel accord-
ing to ACI 459.4R-13

reactive moment about the global X-direction transmitted by the masonry
element to the 2D fictitious node in TREMURI

reactive moment about the global Y-direction transmitted by the masonry
element to the 2D fictitious node in TREMURI
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Mggd
MRd,s

MRd;s0...4

Ml
MZ

Ni

NRd,s

NRd,s,OUA

Ny

Nvl

T

Ta

ultimate in-plane bending moment of a URM panel

ultimate in-plane bending moment of a masonry panel strengthened with
FRCM according to CNR DT-215/2018

ultimate in-plane bending moment of a masonry panel strengthened with
EQ-GRID at the flexural failure modes 0, 1, 2, 3, 4

reactive moment acting on the 2D fictitious node of wall 1 in TREMURI
reactive moment acting on the 2D fictitious node of wall 2 in TREMURI
normal force

normal force acting in node i of the masonry element implemented in
TREMURI

normal force acting in node j of the masonry element implemented in
TREMURI

ultimate normal force of a masonry panel strengthened with FRCM under
flexural failure

ultimate normal force of a masonry panel strengthened with EQ-GRID at
the flexural failure modes 0, 1, 2, 3, 4

normal force applied by the vertical actuator during the cyclic lateral shear
tests

vertical force developed in one threaded bar positioned on the left of the
specimen during the cyclic lateral shear tests

vertical force developed in one threaded bars positioned on the rigth of the
specimen during the cyclic lateral shear tests

rotation matrix
period
Tex, yarn count expressed in [g/km]

first period of the masonry building model tested on the shaking table in
Skopje measured before testing

first period of the masonry building model tested on the shaking table in
Skopje measured after testing

fourth period of the masonry building model tested on the shaking table in
Skopje
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VBase

Vbis

VDL4

Vbis

VEd

Vi

Vi

Vmax

Vi

Vj,max

Vi
VF,

Vi

Vig

V4 lim

Vt,lim,mod

Xviii

in-plane shear force
shear force at the base of the masonry building model in TREMURI

experimental residual lateral strength of the tested masonry panels at the
achievement of DL3

experimental residual lateral strength of the tested masonry panels at the
achievement of DL4

experimental residual lateral strength of the tested masonry panels at the
achievement of DL5

experimental values of the in-plane shear force recorded during the cyclic
lateral shear tests

contribution of FRCM to nominal shear strength according to ACI 459.4R-
13

contribution of the unreinforced masonry to the nominal shear strength
according to ACI 459.4R-13

experimental maximum in-plane shear force achieved by the tested “WZI”
and “KS” masonry panels

in-plane shear force acting in node i of the masonry element implemented
in TREMURI

in-plane shear force acting in node j of the masonry element implemented
in TREMURI

maximum value of the in-plane shear force acting in node j of the masonry
element implemented in TREMURI

nominal shear strength after ACI 459.4R-13

in-plane ultimate shear force of an FRCM strengthened panel under bend-
ing failure (ACI 459.4R-13)

in-plane shear strength of the unreinforced masonry panel (diagonal crack-
ing)

increase of the in-plane shear strength of a masonry panel due to the FRCM
after CNR-DT 215/2018

upper limit of the in-plane shear strength of the unreinforced masonry
panel (diagonal cracking)

modified upper limit of the in-plane shear strength of a masonry panel
strengthened with EQ-GRID (diagonal cracking)
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Vt,mod

Vrd
VFra

VRd,mod

VRd,s

VFRd,s

Vres,i

Vres,3

Vres,4

Vic

Vurm

Vwalls,x

Vwalls,y

Vi

modified in-plane shear strength of a masonry panel strengthened with EQ-
GRID (diagonal cracking)

in-plane ultimate shear strength of a URM panel
in-plane ultimate shear force of a URM panel under bending failure

modified in-plane ultimate shear strength of a masory panel strengthened
with EQ-GRID

in-plane ultimate shear strength of the FRCM reinforced masonry panel
according to CNR-DT 215/2018

in-plane ultimate shear force of an FRCM strengthened panel under bend-
ing failure (CNR-DT 215/2018)

residual lateral strength in the multilinear constitutive law of the ML-
BEAM element at the achievement of the i"" DL

residual lateral strength in the multilinear constitutive law of the ML-
BEAM element at the achievement of DL3

residual lateral strength in the multilinear constitutive law of the ML-
BEAM element at the achievement of DL4

in-plane masonry crushing capacity of a textile-reinforced panel after
CNR-DT 215/2018

in-plane ultimate shear force of the equivalent bilinear curve

in-plane ultimate shear force of the equivalent multilinear curve (DL2-
DL3)

in-plane ultimate shear force of the equivalent multilinear curve (DL3-
DL4)

in-plane ultimate shear force of the equivalent multilinear curve (DL4-
DL5)

in-plane ultimate shear strength of a URM masonry panel under diagonal
cracking (CNR-DT 215/2018)

volume of the masonry walls positioned in the x-direction of the building
model tested on the shaking table in Skopje

volume of the masonry walls positioned in the y-direction of the building
model tested on the shaking table in Skopje

in-plane shear force equal to 0.7Vmax

XiX
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Lower-case Latin letters

a

ainput

a1

a

bt

C1

C2

C3

Ca

d

di

d>

daF

ds

XX

distance between the threaded bars and the centre of the masonry panels in
the cyclic lateral shear tests

maximum absolute value of the earthquake acceleration applied at the base
of the masonry building model tested on the shaking table in Skopje

first factor that defines the admissible range in the V — N domain of a
masonry panel, in which the hybrid failure mode is possible

second factor that defines the admissible range in the V — N domain of a
masonry panel, in which the hybrid failure mode is possible

shear stress distribution factor at the centre of a masonry panel
width of the textile grid
mortar joints’ cohesion

coefficient that aims to degrade the stiffness ky* of the the ML-BEAM
element with respect to the secant one Ksec

coefficient that can further degrade the stiffness ky* through the progres-
sive strength decay Se,i reached by the ML-BEAM element

coefficient that fixes the point B* of the horizontal branch in the unloading
curve of the ML-BEAM element

coefficient that defines the extension of point B* - C* branch in the unload-
ing curve of the ML-BEAM element

drift value

distance between the compressed edge of the masonry panel and the fibre
of the reinforcement that attains the highest tensile strain

drift value of a masonry panel at the attainment of the i™" DL
drift value of the tested masonry panels at the achievement of the DL2

drift value of the masonry elements in TREMURI at the achievement of
DL2 (shear failure)

drift value of the masonry elements in TREMURI at the achievement of
DL2 (flexural failure)

drift value of the tested masonry panels at the achievement of the DL3

drift value of the masonry elements in TREMURI at the achievement of
DL3 (shear failure)
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e

Ehottom

{e¥'

f

f

fo ks

fbond,dou ble,max

fbond,single,m

fo.wzi
ot

fbt,cal
fhrks

fbt,KS,sl

fbt,KS,sZ

drift value of the masonry elements in TREMURI at the achievement of
DL3 (flexural failure)

drift value of the tested masonry panels at the achievement of the DL4

drift value of the masonry elements in TREMURI at the achievement of
DL4 (shear failure)

drift value of the masonry elements in TREMURI at the achievement of
DL4 (flexural failure)

drift value of the tested masonry panels at the achievement of the DL5

drift value of the masonry elements in TREMURI at the achievement of
DL5 (shear failure)

drift value of the masonry elements in TREMURI at the achievement of
DL5 (flexural failure)

load eccentricity
eccentricity of the normal force acting at the bottom toe of a masonry pier

transpose of the strain vector of the three-nodes orthotropic membrane
element implemented in TREMURI

frequency

brick compressive strength (avg.)

calcium-silicate brick compressive strength

maximum shear-bond stress obtained from each double-lap shear-bond test
maximum shear-bond stress obtained from the single-lap shear-bond test
(avg.)

hollow clay brick compressive strength

brick tensile strength (avg.)

brick tensile strength according to DIN EN 1996-1-1/NA (char.)
calcium-silicate brick tensile strength

calcium-silicate brick tensile strength modified through the EQ-GRID
system’s tensile strength in the case of one side application (avg.)

calcium-silicate brick tensile strength modified through the EQ-GRID
system’s tensile strength in the case of two sides application (avg.)

XXi
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fbt,s

fbt,WZI

fbt,WZI 51

Toywazis2

1:clamping,cr

fclamping,u

fclevis,cr

fclevis,u

fc,M

fCI’

fcr,M
fa
fe

ffv

fu
fwt

fmh,u

fm,k,KS

fm K WZI

XXii

brick tensile strength modified through the EQ-GRID system’s tensile
strength (avg.)

hollow clay brick tensile strength

hollow clay brick tensile strength modified through the EQ-GRID system’s
tensile strength in the case of one side application (avg.)

hollow clay brick tensile strength modified through the EQ-GRID system’s
tensile strength in the case of two sides application (avg.)

first cracking tensile stress of the EQ-GRID composite specimens tested
with clamping grips (avg.)

ultimate tensile strength of the EQ-GRID composite specimens tested with
clamping grips (avg.)

first cracking tensile stress of the EQ-GRID composite specimens tested
with clevis-type grips (avg.)

ultimate tensile strength of the EQ-GRID composite specimens tested with
clevis-type grips (avg.)
EQ-GRID matrix compressive strength after 28 days (avg.)

cracking tensile stress in the equivalent bilinear diagram of an FRCM
system after ACI 459.4R-13

first cracking tensile stress of the EQ-GRID matrix (avg.)
design tensile strength of the FRCM

design tensile strength of the FRCM reinforcement after ACI 459.4R-13
(flexural failure)

design tensile strength of the FRCM reinforcement after ACI 459.4R-13
(shear failure)

mortar compressive strength (avg.)

mortar flexural tensile strength (avg.)

masonry ultimate compressive strength in the direction parallel to the bed
joints

ultimate compressive strength in the direction normal to the bed joints of

the tested calcium-silicate brick masonry panels (char.)

ultimate compressive strength in the direction normal to the bed joints of
the tested hollow clay brick masonry panels (char.)
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fnt
fmt,u

fmt,ul

fmt,uZ

fmu

fm,u,KS

fm,u,WZI

fi

fim

fu

fy
va
va,red

fvltl

vatZ

fvlt
fva

fva,KS

masonry referential (diagonal) tensile strength
ultimate equivalent tensile strength of a URM spandrel

equivalent tensile strength of a URM spandrel associated with the block’s
tensile strength

equivalent tensile strength of a URM spandrel associated with the mortar
joints’ failure

masonry ultimate compressive strength in the direction normal to the bed
joints

ultimate compressive strength in the direction normal to the bed joints of
the tested calcium-silicate brick masonry panels (avg.)

ultimate compressive strength in the direction normal to the bed joints of
the tested hollow clay brick masonry panels (avg.)

EQ-GRID matrix pull-off strength

conventional tensile strength of the EQ-GRID system in the case of flexur-
al failure of a masonry pier

EQ-GRID matrix tensile bending strength stress after 28 days (avg.)

conventional tensile strength limit of the EQ-GRID system in the case of
flexural failure of a masonry pier

ultimate tensile strength of an FRCM obtained from the direct tensile tests
with clevis-type grips (ACI 459.4R-13)

masonry shear strength
masonry initial shear strength
reduced masonry initial shear strength

masonry shear strength (mortar joints’ failure) according to DIN EN 1996-
1-1/NA (char.)

masonry shear strength (brick’s tensile failure) according to DIN EN 1996-
1-1/NA (char.)

ultimate masonry shear strength according to DIN EN 1996-1-1/NA (char.)
masonry initial shear strength (avg.)

initial shear strength of the calcium-silicate brick masonry (avg.)
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fumo, ks s1

fva,KS,sZ

fva,red,KS
fva,red,WZI

fva,s
fva,WZI

fva,WZI,sl

fva,WZI ,52

hfloor,l

hfloor,z

hs
h

h,

kel

XXV

initial shear strength of the calcium silicate brick masonry modified
through the tensile strength of the EQ-GRID system in the case of one side
application (avg.)

initial shear strength of the calcium silicate brick masonry modified
through the tensile strength of the EQ-GRID system in the case of two
sides application (avg.)

reduced initial shear strength of the calcium-silicate brick masonry (avg.)
reduced initial shear strength of the hollow clay brick masonry (avg.)

masonry initial shear strength modified through the tensile strength of the
EQ-GRID system (avg.)

initial shear strength of the hollow clay brick masonry (avg.)

initial shear strength of the hollow clay brick masonry modified through
the tensile strength of the EQ-GRID system in the case of one side applica-
tion (avg.)

initial shear strength of the hollow clay brick masonry modified through
the tensile strength of the EQ-GRID system in the case of two sides appli-
cation (avg.)

mortar joint thickness
height of the masonry panel

shear length defined as the distance between the masonry panel’s end
section and that with zero moment

thickness of the 1% floor of the masonry building model tested on the
shaking table in Skopje

thickness of the 2" floor of the masonry building model tested on the
shaking table in Skopje

total thickness of the EQ-GRID composite specimens

heigth of the 1% floor of the masonry building model tested on the shaking
table in Skopje

height of the 2™ floor of the masonry building model tested on the shaking
table in Skopje

coefficient that accounts for the boundary condition of a masonry panel

elastic stiffness of the ML-BEAM element implemented in TREMURI
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kL

Kn

ksec

ku*

m

Mioor,1

Mioor,2

Mtot

Mwalls,x

Mwalls,y

Mx

stiffness of the ML-BEAM element between the unloading and loading
phases (from C*to A")

factor recommended by Annex D of Eurocode 0 to calculate the character-
istic values of mechanical properties

elastic secant stiffness

ML-BEAM element’s stiffness in the unloading phase (positive quadrant
from A* to C")

ML-BEAM element’s stiffness in the unloading phase (negative quadrant
from A to C)

ratio between the shear force at the end of the initial elastic phase and the
shear strength Vrg (Vrgs) of the ML-BEAM element implemented in
TREMURI

node of the masonry element implemented in TREMURI
node of the masonry element implemented in TREMURI
length of the masonry panel

uncracked section length of the masonry panel

design length of the applied FRCM effective in shear after CNR-DT
215/2018

distance between the 2D node with mass m and the 3D node | of the Equiv-
alent frame in TREMURI

mass of the 2D node belonging to the Equivalent frame in TREMURI

mass of the 1% floor of the masonry building model tested on the shaking
table in Skopje

mass of the 2" floor of the masonry building model tested on the shaking
table in Skopje

total mass of the masonry building model tested on the shaking table in
Skopje

mass of the masonry walls positioned in the x-direction of the building
model tested on the shaking table in Skopje

mass of the masonry walls positioned in the y-direction of the building
model tested on the shaking table in Skopje

modal mass in the x-direction

XXV
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my

Mo

ma

M12

Ng

Nt

Nh

Nspecimen

Ny

Ny

{a}

{s}'

teq,h

teq,v

XXVi

modal mass in the y-direction

seismic mass at the base of the masonry building model tested on the
shaking table in Skopje

seismic mass at the 1% floor of the masonry building model tested on the
shaking table in Skopje

seismic mass at the 2" floor of the masonry building model tested on the
shaking table in Skopje

ratio between E; and E;

homogenization coefficient defined as the ratio between the elastic modu-
lus of the polypropylene Epp and that of the AR glass Ear

homogenization coefficient for the diagonal direction of the EQ-GRID
system

number of layers of mesh reinforcement

homogenization coefficient for the horizontal direction of the EQ-GRID
system

number of tested specimens

homogenization coefficient for the vertical direction of the EQ-GRID
system

number of yarns per unit width expressed in [n°/cm]
vector of the nodal actions

equivalent thickness assumed for the three-nodes orthotropic membrane
element implemented in TREMURI

transpose of the stress vector of the three-nodes orthotropic membrane
element implemented in TREMURI

thickness of a masonry panel

equivalent thickness of EQ-GRID homogenized to the glass fibre

equivalent thickness in the diagonal direction of EQ-GRID homogenized to
the glass fibre

equivalent thickness in the horizontal direction of EQ-GRID homogenized
to the glass fibre

equivalent thickness in the vertical direction of EQ-GRID homogenized to
the glass fibre
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te

tip

tf,s

tm

Vmax

Uel,1

Uel 2

Ui

UjeF

Ujes

Uy

Ux

u;

Vi1

uz

equivalent thickness of the FRCM mesh reinforcement

equivalent thickness of one textile layer with fibres arranged parallel to
panel’s axis, which is effective during the in-plane bending failure

equivalent thickness of one textile layer with fibres arranged parallel to the
shear force (CNR-DT 215/2018

thickness of the vertical and horizontal mortar joints

maximum vertical displacement recorded during the double-lap shear-bond
tests

horizontal displacement of the fictitious 2D node belonging to the generic
wall in the Equivalent frame method implemented in TREMURI

experimental horizontal displacement at Vi, measured at the top of the
tested masonry panels

elastic limit of the horizontal displacement in the equivalent bilinear or
multilinear curve

horizontal displacement of node i of the masonry element implemented in
TREMURI

horizontal displacement of node j of the masonry element implemented in
TREMURI

elastic horizontal displacement of node j of the masonry element imple-
mented in TREMURI

elastic horizontal displacement of node j of the masonry element imple-
mented in TREMURI considering the flexural stiffness

elastic horizontal displacement of node j of the masonry element imple-
mented in TREMURI considering the shear stiffhess

ultimate horizontal displacement in the equivalent bilinear curve
displacement in the x-direction
displacement in the y-direction
displacement in the z-direction

horizontal displacement of the barycenter of the rigid node 1 in the equiva-
lent frame schematization in TREMURI

horizontal displacement of the barycenter of the rigid node 2 in the equiva-
lent frame schematization in TREMURI

XXVii
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us

Usg

Us

Wi

Yi
Yk
Yn
Yn

yn,l)...4

horizontal displacement at the achievement of DL3 in the equivalent
multilinear curve

horizontal displacement at the achievement of DL4 in the equivalent
multilinear curve

horizontal displacement at the achievement of DL5 in the equivalent
multilinear curve

vertical displacement of the fictitious 2D node belonging to the generic
wall in the Equivalent frame method implemented in TREMURI

vertical displacement of node i of the masonry element implemented in
TREMURI

vertical displacement of node j of the masonry element implemented in
TREMURI

width of the EQ-GRID composite samples

vertical displacement of the barycenter of the rigid node 1 in the equivalent
frame schematization in TREMURI

vertical displacement of the barycenter of the rigid node 2 in the equivalent
frame schematization in TREMURI

x coordinate of node j
x coordinate of node k
y coordinate of node j
y coordinate of node k
neutral axis

neutral axis when both masonry and FRCM attain their ultimate tensile
strain during the in-plane bending failure of an FRCM strengthened panel

neutral axis of a masonry pier’s cross-section strengthened with EQ-GRID
at the flexural failure modes 0, 1, 2, 3, 4

Capital Greek letters

Ao
Ay

XXViii

additional vertical stress normal to the bed joint

width of the masonry block
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Ayi

ks
Pm
v
Pwzi

eccentricity in the x-direction of the masonry element’s extremity i from
the barycenter of the rigid node in the equivalent frame schematization in
TREMURI

eccentricity in the x-direction of the masonry element’s extremity j from
the barycenter of the rigid node in the equivalent frame schematization in
TREMURI

height of the masonry block

eccentricity in the y-direction of the masonry element’s extremity i from
the barycenter of the rigid node in the equivalent frame schematization in
TREMURI

eccentricity in the y-direction of the masonry element’s extremity j from
the barycenter of the rigid node in the equivalent frame schematization in
TREMURI

interlocking parameter

interlocking parameter of the tested calcium-silicate brick masonry panels
strength reduction factor for flexure according to ACI 459.4R-13

strength reduction factor for shear according to ACI 459.4R-13

interlocking parameter of the tested hollow clay brick masonry panels

1.2EI°

Gh?

coefficient equal to

Lower-case Greek letters

at

a1

coefficient for the masonry compressive stress-block formulation

angle formed by the barycentric axis of the masonry elements with the
horizontal direction in the Equivalent frame schematization in TREMURI

angle formed by the main load-bearing direction of the floor with the
global X-axis in the Equivalent frame modelling with TREMURI

coefficient that considers the reduced tensile strength of the fibres under
shear actions (CNR-DT 215/2018)

Rayleigh coefficient

coefficient for the masonry compressive stress-block formulation

XXiX



Notation and list of abbreviations

PEi

P

Ve

’m
Ymasonry
VRd

Y12

EAR

Eclamping,cr

Eclamping,u

Eclevis,cr

Eclevis,u

Eer

Ee

Eel,c
el t

&fd

&ty

Elim,conv

€lim,conv,h

XXX

residual shear strength of a panel with respect to Vrq for the URM one or
Vra;s for the FRCM strengthened one

Rayleigh coefficient

material density of the reinforced concrete
partial safety factor

material density of the masonry

model safety factor (CNR-DT 215/2018)

shear strain of the three-nodes orthotropic membrane element implemented
in TREMURI

tensile strain of the EQ-GRID AR glass fibre yarns

first cracking tensile strain of the EQ-GRID composite specimens tested
with clamping grips (avg.)

ultimate tensile strain of the EQ-GRID composite specimens tested with
clamping grips (avg.)

first cracking tensile strain of the EQ-GRID composite specimens tested
with clevis-type grips (avg.)

ultimate tensile strain of the EQ-GRID composite specimens tested with
clevis-type grips (avg.)

cracking tensile strain in the equivalent bilinear diagram of an FRCM
system after ACI 459.4R-13

design tensile strain of the FRCM reinforcement after ACI 459.4R-13
(flexural failure)

elastic compressive strain of a URM spandrel
elastic equivalent tensile strain of a URM spandrel

design strain of the yarns arranged parallel to the shear force after CNR-DT
215/2018

design tensile strain of the FRCM reinforcement after ACI 459.4R-13
(shear failure)

limit conventional tensile strain of the FRCM according to CNR-DT
215/2018

limit conventional tensile strain in the horizontal direction of the EQ-GRID
system
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Elim,conv,v

€mo
Emu
Epp

&u

Euk
&um
Eut
&v

€1

&2

€1

&2

€l

el

E@0.6fu

E@0.9fu

limit conventional tensile strain in the vertical direction of the EQ-GRID
system

masonry compressive strain

elastic limit of the masonry compressive strain

masonry ultimate compressive strain

tensile strain of the EQ-GRID polypropylene fibre yarns

ultimate tensile strain of an FRCM obtained from the direct tensile tests
with clevis-type grips (ACI 459.4R-13)

ultimate compressive strain of a URM spandrel

characteristic failure tensile strength of the EQ-GRID’s textile component
average failure tensile strain of the EQ-GRID’s textile component
ultimate equivalent tensile strain of a URM spandrel

tensile strain in the vertical direction an FRCM system

strain in the floor spanning orientation of the three-nodes orthotropic
membrane element implemented in TREMURI (in 1.5.3)

strain perpendicular to the floor spanning orientation of the three-nodes
orthotropic membrane element implemented in TREMURI (in 1.5.3)

maximum tensile strain in the strain distribution diagram of a masonry
panel’s cross-section strengthened with EQ-GRID (in 4.2.3)

maximum compressive strain in the strain distribution diagram of a mason-
ry panel’s cross-section strengthened with EQ-GRID (in 4.2.3)

first limit value of the strain range assumed for the calculation of the tensile
elastic modulus of the EQ-GRID’s textile component

second limit value of the strain range assumed for the calculation of the
tensile elastic modulus of the EQ-GRID’s textile component

tensile strain at 0.6f, in the stress-strain diagram of an FRCM after ACI
459.4R-13

tensile strain at 0.9f, in the stress-strain diagram of an FRCM after ACI
459.4R-13

ratio between fyand fony

XXXI
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Hclamping

Hclevis

61
6>

[
A

A2

u
MUe
HpL3
HpL4
UpLs
JIS
Mred

HUred KS

Hred,WzI

XXXii

exploitation ratio of the average tensile strength of the EQ-GRID textile
component (direct tensile tests on composite specimens performed with
clamping grips)

exploitation ratio of the average tensile strength of the EQ-GRID textile
component (direct tensile tests on composite specimens performed with

clevis-type grips)

angle of the generic wall formed with the global X-axis in TREMURI
angle of the wall 1 formed with the global X-axis in TREMURI

angle of the wall 2 formed with the global X-axis in TREMURI
masonry panel’s slenderness

vector of the load multipliers Z; in the nonlinear static analysis

load multiplier applied at the first floor of the masonry building model in
the nonlinear static analysis

load multiplier applied at the second floor of the masonry building model
in the nonlinear static analysis

mortar joints’ friction coefficient

ductility in compression of a URM spandrel

ductility reached by the tested masonry panels at the achievement of DL3
ductility reached by the tested masonry panels at the achievement of DL4
ductility reached by the tested masonry panels at the achievement of DL5
mortar joints’ friction coefficient of the calcium-silicate brick masonry
reduced mortar joints’ friction coefficient

reduced mortar joints’ friction coefficient of the calcium-silicate brick
masonry

reduced mortar joints’ friction coefficient of the calcium-silicate brick
masonry

ductility in tension of a URM spandrel

mortar joints’ friction coefficient of the calcium-silicate brick masonry
ductility reached by the ML-BEAM element in the positive quadrant
ductility reached by the ML-BEAM element in the negative quadrant
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Prib

OAR
Ob

Olim,conv

On

opp

Oy

0o

o1

02

0l
ol
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Poisson ratio

elastic damping ratio

lower elastic damping ratio in consideration of an expected displacement
ductility u

fibre density [g/cm?]

tensile stress

tensile stress of the EQ-GRID AR glass fibre yarns

reduced vertical compressive stress in one half of the masonry block

limit conventional tensile strength of the FRCM according to CNR-DT
215/2018

horizontal compressive stress acting in a masonry spandrel

tensile stress of the EQ-GRID polypropylene fibre yarns

failure tensile strength of the EQ-GRID’s textile component
characteristic failure tensile strength of the EQ-GRID’s textile component
average failure tensile strength of the EQ-GRID’s textile component
vertical compressive stress

stress parallel to the bed joint

stress normal to the bed joint

the greater compressive stress between the horizontal and vertical one
acting in a masonry spandrel

stress in the floor spanning orientation of the three-nodes orthotropic
membrane element implemented in TREMURI

stress perpendicular to the floor spanning orientation of the three-nodes
orthotropic membrane element implemented in TREMURI

tensile stress at ¢
tensile stress at g

principal compressive stress acting in the horizontal middle section of a
masonry panel due to vertical and shear actions (Mohr’s circle)

principal tensile stress acting in the horizontal middle section of a masonry
panel due to vertical and shear actions (Mohr’s circle)
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T mean shear stress acting in the horizontal middle section of a masonry
panel due to shear actions

Tmax maximum shear stress acting in the horizontal middle section of a masonry
panel due to shear actions

12 shear stress of the three-nodes orthotropic membrane element implemented
in TREMURI

® rotation of the fictitious 2D node belonging to the generic wall in the
Equivalent frame method implemented in TREMURI

@i rotation about the z-axis of node i of the masonry element implemented in
TREMURI

?j rotation about the z-axis of node j of the masonry element implemented in
TREMURI

Oy shear strength reduction after ACI 459.4R-13

Ox rotation about the x-axis

@y rotation about the y-axis

o1 rotation about the z-axis of the barycenter of the rigid node 1 in the equiva-
lent frame schematization in TREMURI

@2 rotation about the z-axis of the barycenter of the rigid node 2 in the equiva-
lent frame schematization in TREMURI

X shear coefficient for rectangular cross-sections

i frequency of the i mode

j frequency of the j" mode

w1 first frequency of the masonry building model measured before testing

w4 fourth frequency of the masonry building model

1" first frequency of the masonry building model measured after testing

Abbreviations
AR alkali-resistant

BM unreinforced masonry building model tested on the shaking table in Skopje
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BM-SR

Co.V.
CF

DL

d.o.f.

EF

FRCM
FRP

H

KS
ML-BEAM

PTFE
R.c.
TRC
TRM
SSWP
STD
URM
V
WSSP
WZI

masonry building model retrofitted with EQ-GRID and tested on the

shaking table in Skopje

coefficient of variation

confidence factor

diagonal

damage level

degree of freedom

equivalent frame

fabric-reinforced cementitious matrix
fibre-reinforced polymer

horizontal

calcium-silicate masonry brick

nonlinear beam element with lumped inelasticity idealization and multilin-

ear constitutive law implemented in TREMURI

polytetrafluoroethylene
reinforced concrete
textile-reinforced concrete
textile-reinforced mortar
strong spandrels-weak piers
standard deviation
unreinforced masonry
vertical

weak spandrels-strong piers

hollow clay masonry brick
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Chapter 1

Structural behaviour and modelling of
unreinforced masonry buildings under
seismic actions

1.1 Behaviour of masonry structures under
seismic actions

A significant portion of the residential structures in Europe and large areas of Asia and
South America consists of masonry buildings. Today, it is common to construct residen-
tial buildings composed of load-bearing masonry brick walls. However, many masonry
structures are built in the past and often in high seismic hazard areas. Despite the differ-
ent technological aspects, such as materials and geometric proportions, which depend on
the construction place, historical period, and intended original use, defining a common
structural behaviour is possible. Therefore, the fundamental step to perform the model-
ling of a masonry structure as close as possible to reality and effective for seismic verifi-
cation is to identify the main characteristics of the masonry buildings’ seismic response.
From observing the damage, it is possible to understand how the behaviour under seismic
actions strongly depends on different typological-constructive aspects.

The damage mechanisms observed in buildings can be essentially divided into two
categories depending on the response of the walls (Figure 1.1):

e Mode I;
e Mode Il [1].

Mode | concerns all the failure kinematics connected to a masonry wall’s behaviour
perpendicular to its plane (flexural and overturning behaviour). On the contrary, Mode 11
regards the wall’s response in its plane with damage typically due to shear and bending
(rocking) failure.

The activation of these collapse modes strongly depends on the building’s global behav-
iour, which is a function of its typological and technological characteristics.
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Mode 11

Figure 1.1: Damage modes of masonry walls [2]

Therefore, identifying the main structural elements resistant to seismic actions is im-
portant to investigate their influence on global behaviour. Several load-bearing structural
elements are common in masonry construction: walls, floors, vaults and roofs. It is
important to stress that almost all the existing masonry buildings are designed to resist in
an optimal way to the vertical actions. However, a seismic event generates horizontal
forces that cause bending stresses in the walls, arches and vaults, which work mainly in
compression. If no suitable elements are present to withstand these actions, serious
damages may occur in the whole building or only in a part of it (local collapses).

Moreover, the global seismic behaviour of a building is strongly influenced by each
structural elements’ mechanical properties and the degree of connection between them.
An earthquake generates complex dynamic actions due to the ground’s motion and the
structure’s response during the seismic event. Under the same acceleration measured at
the basis, very different stress levels can occur in the structural elements based on the
building’s characteristics (stiffness, damping, strength). It is important to specify that
these properties can also change during the seismic event due to the cracking and partiali-
zation phenomena of the resistant sections.

Moreover, low values of the fundamental period and damping generally lead to a strong
amplification of the ground’s accelerations. Since the masonry buildings are usually squat
and have high translational stiffness, they can show very low values of the fundamental
period, causing an amplification of the input accelerations and the inertia forces that
stress the structure. However, the building inevitably cracks during a seismic event,
increasing its deformability. In this case, the period shifts towards higher values attenuat-
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ing the initial amplification. Moreover, the development of the crack pattern generally
contributes to raising the damping levels. Despite the masonry elements’ limited ductili-
ty, the structure can progressively adapt to the stresses induced from the seismic input
accompanying the ground’s motion and limiting its catastrophic effects. Therefore, if the
masonry building’s design is carried out by considering this adaptability, the structure’s
reliability in resisting seismic actions can be improved.

Furthermore, the concept of box-like behaviour is the basis of a correct structural design
of masonry buildings. The vertical resistant elements, i.e. the walls, must be effectively
connected by the horizontal components, i.e. the floors, to guarantee a box-like behav-
iour. The good performance shown by the masonry buildings properly constructed
confirms that this design concept allows reaching an excellent global resistance. The
structure can resist the actions coming from any direction.

Moreover, observing the damage suffered by masonry constructions during seismic
events, it is possible to conclude that an earthquake does not randomly damage a build-
ing. It rather selects the weakest structural elements, causing their cracking or collapse.
For example, a bad connection between the parts that constitute the whole structure can
cause a low global stiffness that prevents withstanding the seismic actions correctly.
Furthermore, flexible floors not properly connected to the walls and inadequate connec-
tions between the vertical walls make it impossible or insufficient to distribute the forces
acting on the building. Thus, local actions are generated on the walls, making those
arranged orthogonally to the earthquake’s direction more vulnerable and, if they are not
properly connected to the adjacent ones, they can risk overturning. In this regard, Figure
1.2 shows the variation of the structural behaviour induced by different degrees of con-
nection between the structural parts and floors’ stiffness.

Figure 1.2:  Influence of the constraint degree between the walls on the seismic response: (a) unconstrained;
(b) constrained with flexible horizontal diaphragm; (c) constrained with stiff horizontal diaphragm

[31
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It is important to highlight that the whole structure, the elements’ size and shape can be
decisive in activating the global and local failure mechanisms. The presence of altimetric
and planimetric irregularities is an aspect that must be taken into account.

Moreover, the occurrence of the out-of-plane overturning mechanism is strongly reduced
in case of good constraint conditions, and it can be further reduced in case of a good
connection with the floors. For example, Figure 1.3 and Figure 1.4 show how it is
possible to limit the occurrence of mode I mechanisms even with local interventions,
such as the placement of steel tie-rods. In this case, the vulnerability is reduced by trans-
ferring the facade’s out-of-plane response to the spine walls’ in-plane response.

Figure 1.3: Facade’s out-of-plane overturning mechanisms: (1) without any connection with the spine wall,
(2) connection with the spine wall, (3) presence of a steel tie-rod [1]

Figure 1.4:  Changing of the failure mechanism without and with steel tie-rods (from Mode | to Mode 11), [1]
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The box-like behaviour allows defining a building’s global vulnerability, depending on
the entire structural seismic response. The latter is governed by the walls’ in-plane
response, connection degree, and floors’ stiffness. Therefore, it is important to analyze
the walls’ in-plane response, examine the possible failure mechanisms, and use adequate
calculation tools to investigate the building’s three-dimensional behaviour.

Concerning the horizontal actions, it is possible to consider the masonry wall as an
assembly of panels. Observing the damage induced by real earthquakes and analysing
experimental data have shown that the damage is typically concentrated in well-defined
portions of a wall: the vertical panels (masonry piers) and the coupling masonry beams
(spandrels). On the other hand, the connection areas between the piers and spandrels are
generally not cracked (Figure 1.5).
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Figure 1.5:  Examples of in-plane failure mechanisms of masonry walls [3]
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These observations allow introducing the so-called equivalent frame modelling for
masonry buildings, discussed in detail in § 1.5. Finally, any possible local failure related
to the Mode | mechanism should be considered even in the case of box-like behaviour, as
some local failures can occur in unconstrained portions of walls or if the in-plane local
ductility demands exceed those available [4].

1.2 Modelling strategies of masonry structures

Several modelling strategies for the masonry structures are available in the literature
depending on the model’s scale. In this context, a distinction can be made between the
finite element method (f.e.m.) and the macro-modelling. In the first category, the mason-
ry behaviour is reproduced by adopting appropriate nonlinear constitutive material laws,
and two different finite element modelling approaches are possible: discrete and continu-
ous (Figure 1.6).
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The discrete approach consists of the micro-modelling of masonry. The mortar joints and
blocks are considered distinct units, in which their interface can be modelled through
discontinuous elements or condensed into a single interface element. However, this type
of modelling requires a broad knowledge of the individual components’ mechanical
properties, and a considerable computational effort is necessary. Therefore, the micro-
modelling is suitable only for small structures subjected to heterogeneous stress and
deformation states.

Mort Mortar
ortar . .
Block Joint  Block Continuum
\ o l \ !
Interface - -
Discrete approach Discrete approach Continuous approach

Figure 1.6:  Different modelling approaches of masonry structures

On the contrary, the continuous approach considers masonry a continuous material whose
mechanical behaviour is defined through phenomenological observations or homogenisa-
tion procedures. The continuum’s behaviour is modelled by adopting macroscopic
quantities obtained from its components’ mechanical and geometrical properties. Com-
pared to the micro-modelling, this approach reduces the computational effort and aims to
analyze even large complex structures where the local stress states can be considered
almost homogeneous.

It is worth noting that, due to the high degree of accuracy, both modelling techniques are
commonly adopted in the research. However, the particularly high computational burden
limits its application in the three-dimensional analysis of entire buildings. Moreover, the
results’ processing according to the most common design formulations is also rather
onerous and, in many cases, problematic (e.g. the definition of collapse conditions).

Therefore, the macro-modelling technique is particularly interesting, as it allows repro-
ducing the behaviour of simple macro-elements (panels) and the global response of
complex structures with sufficient accuracy at the same time.

The first macro-modelling approaches were based on the principles of the limit analysis.
It was assumed that the masonry had an infinite compressive strength, and its tensile
strength was neglected. Thanks to this hypothesis, reducing the masonry wall to a kine-
matic chain of rigid bodies is possible (Figure 1.7). The configuration of the system is a
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function only of the displacement of a point. The static horizontal collapse load multiplier
is calculated according to the assumed kinematic motion [5], [6].
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Figure 1.7:  In-plane failure kinematic mechanisms of masonry piers [7]

This method leads to a good assessment of the structural vulnerability in the case of
failure mode | [1], particularly after some structural improvement works, such as the
placement of steel tie-rods or FRP (fibre reinforced polymer) strips. On the contrary, it is
excessively cautious in the case of mode Il [5], [6], as it allows calculating only the lower
limit of residual resistance of the wall associated with the overturning mechanism.

An alternative to this calculation method is the approach that considers the masonry’s
elastic deformations eventually followed by inelastic deformations. Within this range of
models, two main groups can be identified. The first one provides for the use of one-
dimensional elements, commonly based on a strut idealization. In [8], [9], it is proposed
to model the reacting portion of a masonry panel through a compressed strut, whose
inclination and stiffness reproduce the panel’s behaviour (Figure 1.8).

Figure 1.8: Modelling of masonry walls through equivalent struts: identification of the compressed strut [8],

[9]
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When the partialization increases, the equivalent strut’s geometric properties, i.e. inclina-
tion, and dimensions of the section, change consequently. Therefore, this approach may
also be classified as a “method with variable geometry”. Each panel’s failure occurs by
reaching an equilibrium limit configuration or the diagonal strut’s compressive failure.

The second group of models schematizes the structure as an assembly of deformable
shear beams. In this regard, different one-dimensional elements have been proposed in
the literature. The first ones are characterized by a variable stiffness based on the partial-
ized section calculation [10]. The second ones are elements characterized by an elastic
phase with constant stiffness and a plastic phase. The nonlinear behaviour is activated by
achieving a limit strength condition [11]-[13]. It is worth specifying that most of the
methods based on the “weak floor mechanism” (including the so-called POR method)
adopt this type of element. An important distinction between these latter approaches
consists of the number of possible mechanisms during the inelastic phase, particularly the
failure mechanisms of the panel and the complete wall.

It is important to stress that the POR method [11] was largely adopted in Italy after the
1980 Irpinia earthquake [14]. It considered the masonry piers the only site of defor-
mations and failures, without evaluating whether other elements, such as the spandrels,
could participate. This assumption corresponds to the idealization of a “strong spandrels-
weak piers” (SSWP) model (Figure 1.9), in which the piers crack first and prevent, in this
way, the spandrels’ failure. Therefore, the latter may be assumed as infinitely stiff por-
tions that ensure a perfect coupling between the piers. After this assumption, the pier
extremities cannot rotate, and only a “storey mechanism” can be activated.

Furthermore, in the first version of the method, the only possible collapse mechanism of a
masonry wall was the piers’ diagonal cracking. Other failures modes, e.g. rocking or
shear-sliding, were neglected.

~ T
[

Figure 1.9: Modelling of a masonry wall through the POR method: identification of the piers and rigid
portions

|| Piers || Rigid portions
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Therefore, additional strength criteria were introduced [12], [13], improving the method
and taking into account other possible failure modes for piers. However, it has been
impossible to overcome the intrinsic limit of the method, i.e. considering only the in-
plane collapse. The model was based on this hypothesis and consisted of performing a
nonlinear shear-displacement analysis separately for each interstorey (Figure 1.10). This
approach greatly simplified the calculations, but it could not consider the determination
of the internal forces and moments of the spandrels. Moreover, the interstorey shear-
displacement analysis requires assumptions on the degree of constraint at each end of the
piers, which depends on the stiffness and resistance of the horizontal coupling elements
(i.e. masonry spandrels).
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Figure 1.10: Capacity curve of a masonry building obtained with the POR method as the sum of that of each
wall [15]

Moreover, the spandrels can be increasingly stressed if the horizontal seismic forces
increase, and they could crack or even break. Therefore, the only possibility of accurately
considering these phenomena is the global analysis of the multistorey wall or building.
The latter is also the only way to calculate the local and global equilibriums correctly. In
this regard, the interstorey analysis cannot account for the variations of normal force
acting in masonry walls when the seismic forces increase, affecting their stiffness and
resistance [4].
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Another simplified modelling approach is the so-called “weak spandrels-strong piers”
(WSSP in Figure 1.11), in which the piers are assumed uncoupled (cantilever idealiza-
tion), and the spandrels have both null strength and null stiffness. However, it is im-
portant to stress that, in most cases, it is correct to consider the horizontal displacement of
the vertical structural elements, at least coupled at the floor levels by the horizontal
diaphragms. Thus, the definition of the piers’ effective height and boundary conditions is
fundamental to assess the overall capacity of the wall since only pier elements are mod-
elled. Furthermore, preliminary evaluations of spandrels’ effectiveness are necessary to
orientate the choice between these two extreme schematizations correctly. FEMA guide-
lines expressly suggest both SSWP and WSSP models. On the contrary, the SSWP
hypothesis (POR method) is no more allowed in the Italian Building Code [16] to assess
multistorey masonry buildings.

WSSP

morno
T -

D Piers

Figure 1.11: Modelling of a masonry wall through WSSP (weak spandrels-strong piers) simplification

It is important to specify these simplified models are inappropriate for the walls that may
show both types of response in different regions or another behaviour during the nonline-
ar response. Moreover, the structural damages observed after past earthquakes have
demonstrated that the masonry buildings’ global seismic behaviour first depends on some
constructional details that can prevent local failure mechanisms, e.g. good connections
between walls, bond-beams, etc. In this case, the seismic structural behaviour can mainly
depend on the in-plane strength of the load-bearing walls positioned in the same direction
of the horizontal action.

Since the in-plane seismic damage of a wall is generally concentrated in masonry por-
tions between the openings, the following types of macroelements may be defined:

10
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e Piers: main vertical structural elements that can carry both vertical and horizontal
loads;

e Spandrels: secondary horizontal elements with the principal function to transfer
the loads from the floor slabs to the piers;

¢ Nodes: masonry portions assumed rigid since the damage induced from an earth-
quake is generally localized in the piers and spandrels. They mainly have the
function to connect these latter.

According to this type of discretization, each load-bearing wall can be considered an
idealized frame, in which the structural elements, i.e. piers and spandrels, have only one
node at each end (Figure 1.12).

U4
T

| | Piers || Rigid portions W Spandrels

Figure 1.12: Modelling of a masonry wall through the Equivalent frame method

This modelling strategy is also called the “Equivalent frame method”. It allows creating
numerical models with much lower d.o.f than those obtained with finite element model-
ling. Therefore, a lower computational burden is provided, and the seismic response of
masonry buildings can be predicted in a very realistic way at the same time. Moreover, it
is also possible to model other structural elements with the masonry ones, such as rein-
forced concrete beams or columns, which are quite common in existing buildings. For
this reason, technical standards, such as Eurocode 8 [17], Italian Building Code NTC
2018 [16], refer to macroelement-based models.

In this work, the equivalent frame model implemented in the TREMURI computer
program has been adopted. A detailed description of the method is given in § 1.5.

11
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1.3 In-plane strength of masonry piers

The damage observed on complex masonry walls after an earthquake and the experi-
mental results of several laboratory tests [18] have shown that masonry piers subjected to
in-plane loading may present a shear, flexural or mixed behaviour.

The first one is associated with the sliding shear and diagonal cracking failure. If the
mortar joints’ quality is poor and the vertical compressive stresses are low, the seismic
forces may cause the sliding of a part of the panel along one of the bed joints (Figure
1.13a). This type of failure usually occurs in the upper storeys of a masonry building
below a stiff roof structure, where the compressive stresses are low and the seismic
accelerations are high.

On the contrary, this phenomenon rarely happens in the buildings’ bottom storeys. The
piers usually develop diagonally oriented cracks, which may follow the bed- and head-
joints, pass through the units or partially follow the joints and partially pass through the
bricks (Figure 1.13b). This type of failure is also called diagonal tension shear failure
because of the cracks’ orientation.

a) b)

Figure 1.13: Scheme of shear failure mechanisms in masonry piers: a) sliding on a bed joint, b) diagonal
cracking

Examples of diagonal shear cracking in load-bearing walls after an earthquake are depict-
ed in Figure 1.14.

It is important to stress that masonry heterogeneity plays a dominant role in diagonal
cracking. The failure generally results from some interacting factors, such as the quality
of mortar and bricks. In this respect, two main types of simplified approaches are often
used to predict the shear strength associated with diagonal cracking.

12
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AR
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Figure 1.14: Diagonal shear cracking in brick masonry piers of a three-storey building (on the left), in stone-
masonry piers of a historic building (on the right) after an earthquake [19]

The first one has been developed based on experimental tests performed on URM piers
with doubly fixed boundary conditions in Ljubljana (Slovenia). It assumes that the
masonry panel’s behaviour is ideal elastic, homogeneous and isotropic up to the failure.
The diagonal cracking starts at the centre of the pier and propagates afterwards to the
corners. It occurs when the principal stress at the panel’s centre o; reaches the masonry
reference tensile strength fn: (Figure 1.15). The equation for calculating the shear re-
sistance V: is derived based on the elasticity theory [20].

—JTXy =T
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Figure 1.15: Diagonal shear cracking of a masonry pier: Mohr’s circle and principal stresses

Thus, if the panel is sufficiently slender, it is possible to apply the Jourawski shear
theory. In the generic cross-section, the shear stress varies with a parabolic law that
assumes zero value at the edges and maximum value at the centre of gravity. On the
contrary, if the panel is squat, the shear stress distribution is almost constant with a value
equal to the average. Therefore, the maximum shear stress tmax Can be expressed as
follows:

13
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—br=b. 1.2)

Where b is a factor that considers the shear stress distribution at the centre of the pier, zis
the mean shear stress acting in the horizontal middle section due to the shear force V, |
and t are the length and thickness of the pier. The b factor depends on the panel’s dimen-
sions, and the values proposed in [21] are commonly adopted (Eg. (1.2)):

h

L5 if +>15
b= ? if 1g|hs1.5 (1.2)
1.0 if Iﬂ<1.o

Therefore, the principal compressive and tensile stresses that develop in the middle
section of the pier due to the vertical and shear load are equal to:

m

2
O, O, 2
o .=x—+ == | +(b-7 (1.3)
2% 2] )
Where oy is the average compressive stress in the horizontal cross-section at the centre of

the panel A due to constant vertical load N (oy = N/A).

The diagonal cracks occur when the principal tensile stress o: attains the masonry refer-
ential tensile strength

o, =f, =—21 (%) +(b-7)’ (1.4)

Thus, the shear resistance Vi can be obtained by rearranging Eq. (1.4),:

VLY

—- f
" b

e [t f . (15)

m,t

It is worth noting that this formulation is implemented in the explanatory Circular of the
Italian Building Code NTC 2018 [22] to assess existing masonry panels with irregular
patterns and in the seismic standards of other countries, such as the former Yugoslavia
[19].

14



1.3 In-plane strength of masonry piers

The second shear strength criterion is formulated according to the Mohr-Coulomb theory,
which may be physically associated with the diagonal cracking through the mortar bed
and head joints. Therefore, it is suitable to predict the shear strength of masonry panels
with a regular pattern, and it is usually so formulated:

T=C+u-O, (1.6)

Where 7 is the failure shear stress, ¢ and u are the mortar joints’ cohesion and friction
coefficient, oy is the average vertical stress acting on the bed joints.

By adopting Eq. (1.6), different ways are possible to evaluate the ultimate shear force V;
of a URM panel depending on the verification section’s position.

The first approach is to consider the horizontal section at the top or bottom of the wall,
taking into account also the flexural cracking. In this case, the average failure shear stress
7 is referred to the uncracked section length Ie.

N

V=7l .-t=(c+pu-o,) I ~t=[c+,u~|C ~t)|° -t .7
It is worth noting that Eq. (1.7) seems more suitable for describing the shear sliding
rather than the diagonal cracking since it provides for the failure in the more partialized
sections. Moreover, the quantities ¢ and u are assumed uniform along with the com-
pressed length Ic. Thus, they should be considered “local” parameters that characterize the
joint.
The effective uncracked section’s length is generally calculated assuming a simplified
distribution of compression stresses (constant or linear) and neglecting the masonry’s
tensile strength. If a linear distribution is adopted and the eccentricity e of the axial load
N exceeds 1/6 of the panel’s length, I. can be calculated as:

I, :3-['5—ej (1.8)

It is worth pointing out that Eurocode 8 adopts this approach to assess and retrofit mason-
ry buildings. The expressions suggested by Annex C of DIN-EN-1998-3 [17] are the
following:

f

Veo = CE Y}/m 1ot (1.9)

f, = fvm0+0.4-|N

v

<0.065f
n (1.10)

[
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Where fumo and fn, are the average values of the masonry initial shear strength and
compressive strength, CF and yn are the confidence and partial safety factors, respective-
ly. Moreover, the upper limit of the shear strength in Eq. (1.10) considers the diagonal
cracking failure with cracks passing through the bricks in a simplified way. Therefore,
since the vertical and seismic loads should be known to calculate the compressed part of
the wall’s length, this approach is only useful in traditional safety verifications, where
each structural element’s resistance capacity is compared with the design action. Con-
cerning the nonlinear pushover analyses, iterations would be required due to the changes
in lateral load distribution in the nonlinear range [19].

Furthermore, the second possible approach to calculate the shear resistance of a URM
panel is to consider the horizontal section at the centre of the pier, in which the average
vertical stress oy is uniform:

Vt:‘r~|~t:(c+,u-0'v)~|-t:(c+y-%]-l-t (1.11)

In this case, the strength parameters ¢ and u are intended as global material properties.
They cannot be related to the bed joints’ local cohesion and friction coefficient since the
real normal stress distribution is non-uniform. Compared to Eq. (1.7), this approach can
better interpret the failure mechanism that involves the mortar joints but with diagonal
cracks. The results of various experimental campaigns and the seismic damage observed
on the structures have shown the prevalence of diagonal cracking in most cases. On the
contrary, the sliding along the horizontal base joint is confined to a limited number of
cases. It can generally occur in rather squat panels subjected to low values of the normal
compression.

Thus, the second approach should be more representative of a “stepped-stairs” failure,
where the 7 provided by Eq. (1.11) is assumed as the average shear stress of the panel’s
cross-section. Therefore, the resistance Vi must be obtained by multiplying this value by
the entire cross-section.

Moreover, it is important to highlight that the masonry pattern plays a fundamental role
in defining the inclined sliding plane of the diagonal cracking failure. In this respect, the
approach proposed by Mann and Mauller [23], which is aimed to determine the failure
shear stress z, is illustrated below, and it is based on the following hypotheses:

o The units are much stiffer than the mortar joints,

o The mechanical properties of head joints are negligible.
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1.3 In-plane strength of masonry piers

The second assumption is reasonable since several factors cannot guarantee the transmis-
sion of shear stresses, such as the bricks’ smooth header faces and the usually poor
mortar’s quality of the head joints.
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Figure 1.16: a) URM pier under in-plane shear masonry wall, b) single block

Therefore, considering a single masonry block (Figure 1.16 (b)), the shear stresses
acting in the upper and lower mortar joint generate a torsional moment. The latter can
only be equilibrated by an opposing and equally large torsional moment due to the
normal stresses. As shown in Figure 1.16 (b), the caused additional stress A¢ is added or
subtracted to the ones generated from the dead and accidental loads, oy, increasing, in this
way, the vertical stresses in one half of the block and reducing these in the other half.
Therefore, an approximately stepped normal distribution is created, and the single brick’s
equilibrium is only guaranteed if the vertical loads are present. Otherwise, the shear
stresses must consequently be transferred through the head joints, as no tensile stresses
can be carried by to the bed joints.

The rotational equilibrium of the single block illustrated in Figure 1.16 (b) leads to Eq.
(1.12):

Ay Ay

=7-AX-—=>Ac=2r-— (1.12)
2 AX

2 4

Since the Mohr-Coulomb criterion well interprets the shear failure along mortar joints,
the shear stress z can be calculated in the less compressed mortar joint part as follows:
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Thus, the reduced initial shear strength fuoreq and friction coefficient ureq can be defined
based on Eq. (1.13):

f f

va,red: 2 = 2
(1+u.2.ij (L+4-9) (1.14)
AX
U = H _ H
red — -
(12 ) @ried) (1.15)

The product 2-4y/Ax corresponds to the interlocking parameter ¢ of a regular masonry
pattern with blocks’ overlap length of two successive courses equal to Ax/2 and repre-
sents the tangent of the average inclination angle of the diagonal “stepped-stair” cracks.
For example, common values of the ratio Ay/Ax and friction coefficient x for regular
brick masonry are 0.5 and 0.577. In this case, the reduction factor 1/(1+u-2-Ay/Ax) is
equal to 0.634. Thus, thanks to the reduced cohesion and friction coefficient, the masonry
shear strength can be calculated assuming a uniform distribution of normal stresses oy
without considering any reduction or increase.

However, under high values of vertical loads, the mortar joint’s frictional resistance can
become so great that it is not reached, and the block cracks by attaining the main tensile
stress. In this case, the masonry panel can be considered a homogeneous shell loaded
with shear and normal stresses.

As shown in Figure 1.17, the masonry unit must absorb the shear stresses of two courses
since the head joints’ load-bearing capacity is neglected. For simplicity, only the normal
stress acting in the vertical direction oy is taken into account (ox = 0). In this case, the
stepped normal stress distribution causes an increased moment and shear load in the
single block so that the shear stress in the brick is about 2.3 times higher [24]. Therefore,
the principal tensile stress o can be written as follows:

18



1.3 In-plane strength of masonry piers

o, =y [%J +(230) (1.16)

Figure 1.17: Tensile shear failure of masonry units

The masonry unit cracks when its tensile strength fy: is attained. Thus, assuming o: equal
to fir, the failure shear stress z can be obtained by rearranging Eq. (1.16):

oy o,
=2 1+—+
T 2,3/ 3 (1.17)

The Italian Building Code’s explanatory circular [22] and the technical standard CNR-
DT 212/2013 “Guide for the Probabilistic Assessment of the Seismic Safety of Existing
Buildings” [25] adopt this approach to assess the in-plane load-bearing capacity of
existing masonry panels with regular patterns. The following formulations are suggested,
where Vi and Vi,im are the ultimate shear resistance of a URM panel with diagonal cracks
passing through the mortar joints or masonry units:
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_It fva H 3
ViTh (1+,u-¢+l+,u'¢ GVJSV"""‘ (1.18)
-t f, o,
m = It 11
um = 23S, (1.19)

It is worth noting that Eqgs. (1.18) and (1.19) are obtained by multiplying the failure shear
stress 7 in Egs. (1.13) and (1.17) with the entire panel’s cross-section (I-t). Then, the b
factor is introduced to consider the parabolic shear stress distribution related to the
panel’s slenderness. In this way, the maximum value of shear stress max can be correlated
to the average one 7. The b factor assumes values from 1.0 to 1.5 (Eq.(1.2)), and several
authors proposed the use of this coefficient [26], [27]. Furthermore, numerical analyses
confirmed that the diagonal cracking failure occurs starting from the centre of the panel
[15].

The German National Annex of Eurocode 6 [28] also adopt the approach proposed by
Mann and Mdiller [23], but the effective uncracked section’s length I is considered (Eg.
(1.20)). Therefore, the characteristic values of initial shear strength fuo and friction
coefficient (assumed 0.4) are not reduced through the interlocking parameter.

I, -t

N

fvltl = kaO +0'40v = kaO +O4(_j (120)
c

The brick’s tensile failure is taken into account through Eq. (1.21), which is similar to Eq.

(1.17):

o, N
— =0.45- fbt,cal A (1.21)

bt,cal bt,cal * Ic -t

f, =045 f 1+

vit2 bt,cal *

Where fut cal is the characteristic value of the brick’s tensile strength.

Thus, the German National Annex of Eurocode 6 [28] proposes to calculate the ultimate
shear stress fy; as follows:

fo = min( fvlt,l; fvn,z) (1.22)

Furthermore, other possible in-plane failure modes of a URM pier are flexural rocking
and crushing. In the first case, the panel behaves as a nearly rigid body and rotates about
the toe (Figure 1.18). In the second one, it crushes with sub-vertical cracks oriented
towards the compressed corners. The rocking phenomenon can occur in slender piers
with low vertical stresses. In contrast, the crushing generally occurs under very high
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1.3 In-plane strength of masonry piers

normal stress values when the masonry attains its compressive strength. Regarding the
rocking behaviour, it is possible to calculate the ultimate bending moment Mgy of a URM
pier by neglecting the masonry tensile strength and assuming an appropriate nonlinear
distribution of the compressive stresses at one end section.

= (?“

Figure 1.18: In-plane flexural failure (rocking) of a URM pier
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Figure 1.19: Stress distribution at the compressed toe of a URM pier under in-plane flexural failure
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Therefore, considering the boundary conditions of Figure 1.19, in which the eccentricity
of the normal force at the base section of the pier epoom IS higher or equal to ey, the
ultimate bending moment is defined by the crushing failure at the compressed toe of the
panel (the self-weight of the pier is neglected).

Adopting the stress-block formulation, in which the coefficients « and £ may be assumed
equal to 0.80 and 0.85, the translational and rotational equilibrium equations can be
written as follows:

N
N=gf -ay -t - N
B .-ay, 1=y, 0857, 08t (1.23)
1
MRd:N'ebottom:N'E(l_ayn):
. 2 1.24
N Mfioa N N1 N 24
2 0.85f,,-08:t) 2 2.085f -t

Defining oy as the average vertical compressive stress referred to the total area of the
section, oy = N/l t, Eq. (1.25) can be obtained:

12 o,

-t
Moo= g% '
v GV[ 0.85-fmvu] (29

Where | and t are the length and thickness of the pier, fn, is the masonry ultimate com-
pressive strength perpendicular to the bed joints.

Therefore, the shear force under bending failure can be calculated through the introduc-
tion of the shear length h’, which is the distance between the end section and that with
zero moment (Figure 1.19):

M
Rd (1.26)

Vi =
Rd hl

The shear length h’ depends on the boundary conditions at the bottom and the top of the
pier. It is usually assumed a-h, where o is equal to 1.0 in the case of a cantilever and 0.5
in a fixed-ended panel.

Finally, it is worth noting that several technical standards, such as Eurocode 8 [17],
Italian Building Code NTC 2018 [16] and CNR-DT 212/2013 [25], adopt this calculation
approach.
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1.4 In-plane strength of masonry spandrels

1.4 In-plane strength of masonry spandrels

The past strong earthquakes have shown that URM buildings can suffer severe damage to
spandrels, especially if local out-of-plane mechanisms do not occur and the walls are
mainly subjected to in-plane seismic forces [29]. Furthermore, they are often the first
elements to crack or fail. For example, Figure 1.20 shows a URM building in L’Aquila
(Italy) after the earthquake on 6 April 2009 (My = 6.3).

Figure 1.20: Shear failure of spandrels supported by shallow masonry arches in an old URM building after the
earthquake on 6 April 2009 in L’Aquila (Italy): (a) Entire building, (b) detail of a spandrel [30]

All the spandrels between the window openings have failed with diagonal shear cracks.
They were restrained by relatively wide piers and horizontal steel tie bars positioned
along the facade and embedded in the masonry [30].

Figure 1.21: Flexural failure of spandrels in an old URM building after the earthquake on 6 April 2009 in
L’Aquila (Italy): (a) Entire structure, (b) detail of a spandrel [30]
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Furthermore, Figure 1.21 also shows a URM building located in L’Aquila (Italy). In this
case, the steel tie bars were not present, and the piers were very slender. Therefore, they
could provide a minor restraint to the axial elongation of the spandrels, which failed with
wide flexural vertical cracks at both ends. As illustrated in Figure 1.21 (b), one spandrel
completely collapsed because of the out-of-plane accelerations. This building was pulled
down shortly after the earthquake. [30]

Therefore, both observations of the seismic damage to complex masonry walls and
experimental laboratory tests have shown that the main failure modes of spandrels are the
flexural and diagonal cracking ones [29]-[31]. In this regard, Benedetti et al. carried out a
broad research program in which 24 half-scale building models were tested on the shak-
ing table [32]. Some models were made of brick masonry with spandrels supported by
wooden lintels, while other models were made of stone masonry with regular arches
above openings. The experimental results showed that the energy dissipation of URM
buildings can be maximized if the damage develops within spandrels rather than piers.
Furthermore, Bothara et al. carried out a shaking table test on a half-scale URM building
model with wooden lintels and flat masonry arches [33]. The test confirmed that span-
drels can fail, not only showing diagonal shear cracking but also vertical flexural cracks
that develop at the end sections of the element.

Moreover, since the spandrels are generally characterized by low axial load values, the
crushing failure, represented by widespread sub-vertical cracks, is a very rare instance.
The sliding shear can also not occur because of the interlocking phenomena that can
develop at the interface between the element’s end sections and the contiguous masonry
[34].

Different types of spandrels can be identified in existing URM buildings. The lintel above
the opening and the presence or absence of tensile resistant elements, such as steel tie bar
or concrete beam, define the spandrel type. In ancient URM buildings, the spandrels are
not designed for earthquake actions and have generally stone, masonry, wooden, or steel
lintels above the openings. These elements only allow transferring the gravity loads to the
adjacent piers. Furthermore, the steel lintels were usually realized with two I-beams
transversely connected by steel ties (Figure 1.22) to avoid potential torsional-flexural
buckling. The lateral external space along the beams was filled with mortar to provide
flat surfaces [29]. The spandrels of historical URM buildings are generally supported by
regular or flat arches (Figure 1.22).

On the contrary, the modern existing URM buildings, typical in Germany and Switzer-
land, are usually characterized by reinforced concrete lintels and flat slabs. In other
countries, such as Italy, the r.c. ring beams are quite common.
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Figure 1.22: Typical masonry spandrels in existing old URM building [29]

Therefore, three different types of modern spandrels may be distinguished. As shown in
Figure 1.23, the first one is supported by an r.c. lintel (a). This type belongs to older
buildings, while the most recent constructions usually have large window openings. In
the latter case, no lintel (Figure 1.23 (b)) or even no masonry spandrel above the slab
(Figure 1.23 (c)) can be provided. The opening reaches over the entire storey height, and
the coupling of the masonry piers results only from the r.c. slab.

Figure 1.23: Typical masonry walls of modern URM buildings [35]

As widely illustrated in the literature, e.g. [15], [36], [37], the role of the spandrels cannot
be neglected since they can act as coupling elements between the masonry piers. They
can considerably influence the distribution of internal forces, moments to the piers and
the failure mechanisms that may be activated.

In this respect, Figure 1.24 illustrates the behaviour of a multistorey masonry wall sub-
jected to horizontal seismic forces. Cases a) and c) represent the extreme cases in which
the spandrel elements are idealized as infinitely flexible or stiff. The depicted diagrams of
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Chapter 1: Structural behaviour and modelling of unreinforced masonry buildings under seismic actions

internal shear forces and moments in the piers refer to the static scheme of a cantilever
(case a)) or a shear-type frame (case c)). It is worth noting that the most realistic situation
is represented by the intermediate configuration b). Regarding the failure modes, case a)
is the worst, as the slenderness of the completely decoupled masonry piers accentuates
the formation of an in-plane overturning mechanism.

Deformation and cracking pattern
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Figure 1.24: Examples of deformation, internal forces and moments in masonry piers with different degrees of
coupling provided by the spandrel elements [15]

The coupling effect provided by the spandrels is a function of their stiffness and degree
of compression in the horizontal direction. In this context, the presence of tensile resistant
elements such as steel tie-rods or reinforced concrete beams induces the activation of a
strut mechanism that opposes the global deformation of the wall in the horizontal direc-
tion (Figure 1.25). In this case, the spandrel can contribute to the wall’s global response
by providing flexural resistance against the overturning mechanism (Figure 1.25 (b)).

Reinforced concrete slabs and ring beams can also act as horizontal coupling elements
between the masonry piers, increasing the buildings’ load-bearing capacity by transform-
ing a cantilever wall system into a frame system. As shown in Figure 1.23, the openings
of very modern masonry buildings may span the entire story height (typical in Germany
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1.4 In-plane strength of masonry spandrels

or Switzerland). In this case, the slab may be treated as a coupling beam with an effective
width [38].

(a) (b)

Figure 1.25: Behaviour of masonry spandrels under seismic actions without any tensile resistant element (a)
and coupled with steel tie-rods [37]

Concerning the strength verification of the spandrel, a common practice is to adapt the
formulations proposed for the piers to these elements. For example, suppose the axial
force N acting in the spandrel (i.e. in the direction parallel to the bed joints) is known
from the analysis. In that case, the element’s behaviour is assumed as a pier rotated to
90°. Moreover, if the masonry is characterized by a regular pattern, the diagonal crack-
ing may be “stepped” through the mortar joints or masonry units. Therefore, the criterion
proposed by Mann and Muller [23] can be adopted as follows:

bt f o
Vi = b (l+,u-¢+1+,u-¢ O-OJSVI,Iim (1.27)
h-t f, o,
L = +—
t,lim b 23 fm (128)

Where h and t are the spandrel’s height and thickness, oo is the normal stress. If the axial
force N is reliably known from the analysis, oo can be assumed as the greater between the
horizontal and vertical stress. The latter can be eventually evaluated from the loads
transmitted by the floors and from the vertical stresses in the adjacent piers.

It is worth noting that the shear strength is mainly a function of the compression normal
to the bed joints and, in a lesser degree, of the compression in the direction parallel to the
bed joints. Since the first one is essentially negligible between the openings, the shear
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strength may be very low. Therefore, neglecting the normal stress ao, only the contribu-
tions of the mortar joint’s cohesion and the brick tensile strength are considered:

h-t f
VvV =—. vo <V .
t b (1+,Ll¢j< t,lim (129)
h-t f
V., = bt 1.30
t,lim b 23 ( )

On the other hand, if the masonry is irregular and not well organised, the mechanical
behaviour is almost isotropic. In this case, it is reasonable to adopt the model of Turnsek
and Cacovi¢ (Eq. (1.31)), which assumes masonry as an equivalent isotropic material and
considers the cracking development along the principal stress direction.

1.5¢ o, f o,
V,=ht== 1+ =ht 2 1+ 1.31
t b 15 b T, (13D

The average compressive stress ao in Eq. (1.31) can eventually be neglected for the same
reasons mentioned above.

Concerning the spandrels’ flexural failure, the most common practice is to adopt the same
model developed for piers if the acting axial load N is known from the analysis. In this
case, the spandrel is assumed as a pier rotated to 90°, and the rocking failure occurs when
the masonry attains its compression strength at the compressed toe. The ultimate bending
moment Mgy is usually calculated after the beam theory, neglecting the tensile strength of
the masonry and assuming an appropriate normal stress distribution at the compressed
corner (Eq. (1.32)).

h? -t o
M_, = o |1-—0" 1.32
TR G”( O.85-fmqu (1.32)

Where oy is the horizontal stress acting in the spandrel and fny is the masonry ultimate
compressive strength perpendicular to the bed joints.

It is worth noting that Eq. (1.32) leads to very precautionary predictions of the flexural
resistance since moderate values of the axial load generally characterize the spandrels. As
a result, the rocking failure tends to prevail over the diagonal cracking much more fre-
quently than observed in experimental campaigns or existing buildings after an earth-
quake.

Moreover, it is important to specify that the flexure due to seismic actions causes tensile
stresses normal to the horizontal mortar joints in the piers and tensile stresses normal to
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1.4 In-plane strength of masonry spandrels

the vertical mortar joints in the spandrels. Since masonry is an anisotropic material, the
response of these structural elements is not the same. Moreover, the spandrels may be
moderately confined by the floors and the deformation of the contiguous masonry regions
(rigid nodes in the “equivalent frame” idealisation).

Therefore, the authors Cattari and Lagomarsino [34] propose a formulation based on the
assumption that the spandrel’s response may occur as an “equivalent strut” because of the
interlocking phenomena that develop at the interface between the spandrel’s end sections
and the contiguous masonry. Thus, an “equivalent” tensile strength fy, which properly
characterizes the element and not the masonry material, can be defined.

The formulation proposed by Cattari and Lagomarsino [34] is based on the following
hypotheses:

o Uniform distribution of the tensile stresses perpendicular to vertical mortar joints;
o Uniform shear stresses along the horizontal mortar joint;
o Negligible mechanical properties of the vertical joints.

The hypothesis of neglecting the vertical joints is reasonable since their cohesive contri-
bution is modest compared to the other factors. Moreover, it may also not exist because
of the cracking phenomena.
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Figure 1.26: Masonry spandrel and Reference volume [34]
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Therefore, a reference volume is considered at the end sections of a spandrel (Figure

1.26). It is identified by the height 2(4,+g) and width (4x+g), where 4y, 4y are the height
and width of the block, g is the mortar joint thickness.

Two main failure mechanisms are possible:
1. Tensile failure of the block;
2. Shear failure of the horizontal mortar joints.

In the case of tensile failure of the block, the masonry unit’s tensile strength fy is attained.
As shown in Figure 1.27, the horizontal equilibrium leads to:
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Figure 1.27: Reference volume and scheme of the tensile failure of the block [15]

o,-(2a,+2g)=A, - 1, (1.33)
¢ (1.34)
mt,ul 2

In which the mortar joint thickness g is neglected since it is sufficiently smaller than the
block dimensions.

Then, in the case of shear failure, the equilibrium is only guaranteed by the shear stresses

that can develop on the horizontal mortar joints, as no stresses can be transferred through
the vertical ones.
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Figure 1.28: Reference volume and scheme of the shear failure of the horizontal mortar joints [15]

If the Mohr-Coulomb type criterion is adopted and the cohesive contribution of the
vertical mortar joints is neglected, the shear stresses z only depend on the stress oy normal
to the bed joint (Figure 1.28). Therefore the equivalent tensile strength fmg2 associated
with this failure mechanism may be expressed as follows:

ax-(ZAy):rZ(Azxj (1.35)

X

mu2 — ZTAy:uO—y (136)
Where u is the friction coefficient, and the ratio 424y corresponds to the interlocking
parameter ¢.

Therefore, the spandrel equivalent tensile strength fneu is equal to the minimum value
obtained between fniu1 and fmeuz. It is worth noting that the block’s tensile failure is
brittle, and it usually occurs in masonry characterized by very weak bricks. On the
contrary, the shear failure may be classified as ductile. In this case, the entity of the
compressive stress ay, acting at the spandrel’s end sections, assumes a decisive role. For
this reason, a masonry spandrel located at mid-storeys and characterized by a regular
pattern can show a more significant strength from this failure mechanism [34].

Moreover, the determination of the compressive stress oy in the modelling with the
equivalent frame approach needs some specifications. Approximate criteria based on the
vertical load acting in the adjacent piers may be adopted to consider the stress distribution
that develops at the end sections interface. In this regard, it is worth noting that the
normal stress due to the seismic actions is variable in the piers. Therefore, Cattari and
Lagomarsino [34] performed several non-linear analyses with the finite element method
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and the non-linear constitutive model proposed by Calderini and Lagomarsino [39]. It
was based on the micromechanical analysis of the composite continuum with both fric-
tion and cohesive resistant masonry mechanisms. The presence of a wood lintel was also
modelled. The non-linear analyses were performed considering different spandrel slen-
derness (A = 1.35 - 2), interlocking degrees of the masonry pattern (Aw/Ay = 2 - 4) and
axial load values applied to the spandrel (0 + 100 kN) and the adjacent piers (37.5 + 225
kN), [34].

The analysis of the gy stress component at the spandrel’s interface end-sections showed
that it is approximately equal to 65% of the mean compressive stresses acting on the piers
in the first response phase (the elastic one). Therefore, this factor was assumed in Eq.
(1.36) for computing futu2, and the inelastic response was analyzed. The results showed
only an increase of the oy stress component at the tensioned toe of the spandrel’s section
until the attainment of the peak shear force. It is important to specify that the maximum
value of ox was only 15-20% greater than the analytical one deduced from Eq. (1.35).
Thus, the authors could conclude that, even if the oy stress distribution varies, a precau-
tionary evaluation of fy can be obtained based on the axial load acting on piers in static
conditions [34].

Moreover, assuming the behaviour of the masonry spandrel elastic-perfectly plastic with
limited ductility in tension g and compression u. (Figure 1.29 (a)), the spandrel’s failure
domain can be determined (Figure 1.30).
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Figure 1.29: Masonry spandrel constitutive law (a) and strain fields (b) [15]
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Thus, the ultimate bending moment Mgy = f(N, funu, fmtw e ) * can be obtained by
idealizing the masonry as a homogenous continuum, assuming that the section remains
plane, and solving a system of translation and rotation equilibrium equations [15].
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Figure 1.30: Masonry spandrel flexural strength domain and strain fields [15]

To this aim, six strain fields can be identified. They start from the uniform compression
of the spandrel’s cross-section (field (0)) and finish with the constant tension (field (5)).
Figure 1.29 (b) shows the strain fields from (1) to (4), in which the cross-section is
partialized.

Furthermore, Figure 1.31 illustrates the strength domain for different ratios between fuiu
and fun,u (indicated as #). Cattari and Lagomarsino [34] have observed that for rather low
values of assigned ductility in tension u, the resulting domain differs not significantly
from the case of infinite ductility. Since the shear failure along the horizontal mortar
joints is a ductile mechanism, the latter assumption is also considered reasonable. Moreo-
ver, compared to the flexural resistance obtained with Eq. (1.32), where the spandrel is
treated like a pier rotated of 90°, the bending capacity obtained with this approach can be
truly increased, in particular for low values of N, which usually characterize these ele-
ments. As shown in Figure 1.31, this effect is beneficial even for very moderate values of
n (for example, 0.01).

L fany is the masonry compressive strength in the horizontal direction.
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Figure 1.31: Failure domain of a masonry spandrel for different values of # (uc = 1.25, & = at infinite), from
[34]

Finally, if the spandrel is coupled to a tensile resistant element, such as steel tie-rods,
concrete slabs, ring beams, and the axial force is unknown from the analysis, formula-
tions based on the equivalent strut model can also be adopted. In this regard, Figure 1.32
illustrates a masonry portion between two openings supported by a concrete slab. In this
case, the spandrel can act as a compression strut.

-

Masonry spandrel

B et e &

_______ — I ——

Compression strut

Figure 1.32: Masonry spandrel supported by a concrete slab [38]

A bending moment close to zero results at the bottom right side of the element, while a
maximum bending moment results at the left side. The moment can be approximately
calculated as the tensile force developed in the tensioned element multiplied by the lever
arm, equal to the depth of the spandrel minus one half of the compression depth. The so
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calculated bending moment is limited by the masonry compressive strength in the hori-
zontal direction, which can be significantly lower than the vertical one, and by the maxi-
mum tensile strength that can develop in the slab.

In this context, the Italian Building Code NTC 2018 [16] proposes this approach to
evaluate the ultimate bending moment of a spandrel with a tensile resistant element if the
normal force N is unknown (which is the case of floors assumed as infinitely stiff). Thus,
Eq. (1.37) is suggested, which is consistent with the compression strut model shown in
Figure 1.32:

My oH MM (1.37)
P2 (085 f,,-ht) '

Hp, is the minimum between the tensile resistance of the stretched interposed element
inside the spandrel and 0.4- f_, , -h-t, where fmny is the masonry compressive strength

in the horizontal direction, h and t are the height and thickness of the spandrel.

1.5 Equivalent frame method

The analysis of the modelling strategies available for masonry structures presented in §
1.2 has shown that only a few fundamental aspects of the seismic response can be repro-
duced through simplified approaches. On the contrary, the equivalent frame modelling
can reproduce the three-dimensional behaviour of masonry buildings, taking into account
the interaction of the various parts and their non-linearities. In this work, the method
implemented in the TREMURI computer program has been adopted. The software was
originally developed in 2001, gradually improved at the University of Genoa (ltaly), and
also implemented in the commercial version 3Muri [14].

The equivalent frame modelling is based on the assumption that the masonry wall can be
considered a set of vertical piers and horizontal spandrels. This simplification is justified
by observing that the seismic damage is usually concentrated only in these parts while the
connection areas remain undamaged. In this regard, it is reasonable to suppose that the
deformation state of the connection areas always remains within the elastic limits. There-
fore, it can be neglected in evaluating the wall’s behaviour, as the latter is limited by the
non-linear strains of its structural elements.

The masonry piers and spandrels can be represented by a single finite element identified
by a limited number of degrees of freedom. On this basis, the entire wall can be modelled
by assembling non-linear elements mutually connected by rigid parts. In this way, the
models have a limited number of degrees of freedom. The response of a wall subject to
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static (monotonous or cyclic) and dynamic actions can be represented with a modest
computational burden. It is important to stress that the reliability of this modelling ap-
proach is linked to the ability to describe the damage phenomena that occur in the mason-
ry. Therefore, the single nonlinear finite element must correctly reproduce the main in-
plane failure modes of the masonry, i.e. shear and bending (rocking) failure, and must
also capture the strength degradation in the nonlinear phase.

Furthermore, the possibility of nonlinear modelling of other structural elements, such as
reinforced concrete (r.c.), steel or wooden beams, is very useful for analysing new and
existing buildings. It is worth noting that many mixed masonry r.c. structures have been
built from the beginning of the twentieth century because of the spreading of r.c. technol-
ogy (e.g. buildings with internal r.c. frames and outer masonry walls).

Moreover, structural interventions carried out on existing masonry structures have caused
the birth of mixed buildings (e.g. additional r.c. storeys, replacement of internal masonry
walls by r.c. frames or r.c. walls inserted to support lifts and staircases). Since these
structural modifications may increase the existing structure’s seismic vulnerability, it is
important to consider them in the modelling.

Therefore, the strategies to idealize the masonry wall in an equivalent frame, the nonline-
ar beam element with lumped inelasticity and piecewise behaviour implemented in the
TREMURI program are illustrated in § 1.5.1 and § 1.5.2. Finally, the assembling method
of three-dimensional models is presented in § 1.5.3.

1.5.1 Modelling of the wall: definition of piers and
spandrels

The masonry wall’s modelling as an equivalent frame requires identifying its main
structural components: piers and spandrels. Conventional criteria based on the damage
observed after earthquakes and experimental campaigns are often assumed in the litera-
ture since rigorous formulations are not defined. Moreover, a systematic parametrical
analysis, either numerical or experimental, has never been performed [14].

The height of the masonry piers is usually defined as a function of adjacent openings’
height. A common criterion is to assume a maximum inclination of the cracks starting
from the opening corners equal to 30°. This assumption is the same initial hypothesis
proposed in [40] to define the masonry panels’ equivalent height. It was based on the
storey mechanism and provided an increased height for the external piers. In [41], it is
defined as the height over which a compression strut is likely to develop at the steepest
possible angle. Under this assumption, the cracks can develop either horizontally or at
45°.
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1.5 Equivalent frame method

In this context, Figure 1.33 shows an example of the frame idealization procedure im-
plemented in the TREMURI software in the case of a regularly perforated masonry wall.
The spandrel elements are identified based on the vertical alignment and overlap of
openings. In the case of full alignment, the spandrel’s length and height are assumed
equal to the distance and width of the adjacent openings.

Step 1- Identification of spandrels Step 2- Identification of piers

e L L L L L LT LT

= T T T TTT)
i e i e e TR e T T
e

LT

Step 3- Identification of nodes Equivalent frame

— F—- -
| i
1

— 777 777 777

Figure 1.33: Example of equivalent frame idealization in TREMURI for a perforated wall with regularly
distributed openings [14]

Then, the pier elements are defined starting from the height of adjacent openings. The
height of the internal piers is assumed equal to that of openings when these latter are
perfectly aligned. Concerning the external piers’ height, the possible development of
inclined cracks from the opening corners and/or from the lintel edges must be considered.
An approximate way is to define the pier’s height as the average of the adjacent open-
ing’s and interstorey height. Finally, the rigid nodes are directly obtained from the previ-
ously defined elements connected to them.

This calculation is done separately for each storey and wall to obtain the complete frame
idealization. It is important to stress that if the cone diffusion angle is not limited, the
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effective in-plane aspect ratio of the external piers may be significantly overestimated if
adjacent openings with a limited height and close to the wall edge are present.

Although the masonry piers and spandrels’ identification may result rather easily in walls
with regularly distributed openings, it can become more difficult when they are irregular-
ly arranged. In this case, a possible solution is to assume the spandrel” height convention-
ally as a mean value based on the overlapping part between the openings at the two levels
(Figure 1.34). If no overlap is present or the opening lacks, it seems more appropriate to
assume the masonry portion as a rigid part [14].

Equivalent Frame Idealisation

7/ / T
= Non-linear beam / macro-element

Barycentric Axis of element
Pier
Spandrel

- Rigid node

Figure 1.34: Equivalent frame idealization of a masonry wall with irregularly distributed openings in TREM-

URI [14]
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o ) -

Figure 1.35: Idealisation of the masonry wall as an equivalent frame in TREMURI [15]
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Furthermore, as shown in Figure 1.35, the barycentric axes of the deformable elements
may not coincide with the model’s nodes. Thus, an eccentricity is caused, which may be
considered by applying a rigid end matrix to the stiffness matrix of the element itself. In
this regard, Figure 1.36 illustrates the masonry element with two nodes, i and j, one for
each extremity. The degrees of freedom at each node, (ui, wi, i) and (uj, w;, ¢;), are the
displacements in x-, y-direction and the rotation about the z-axis, positive if anticlock-
wise. Therefore, considering that the barycenters of the rigid nodes 1 and 2 have eccentri-
cities with respect to the nodes i and j (Figure 1.36), the following kinematic relations can
be written under the hypothesis of small displacements:

(MZ’ w2’ qp_j) 2 y

Y
(1, W, @) i~ g

-Ay;

74/ ﬁLl (u,’; “’)]; Q?[)

Ax;

Figure 1.36: Rigid ends of the masonry element with an example of their possible eccentricity

u, =u; —Ay,o,
W, =W, +AX; ¢,
D=,

U, =U; —AY;9;
W, =W, +AX;0,

P, = @;

(1.38)

Thus, the rigid end matrix [De] can be written as follows:
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10 -A, 00 O
01 A 00 0

[D]=°° 1 00 O 139)

“7loo 0 10 -ay '
00 0 01 Ax
00 0 00 1 |

In this way, the elastic stiffness matrix of the element [Ke] and the vector of nodal actions
{q} are modified through the rigid end matrix [15].

Furthermore, the modelling of the spandrels requires the rotation of the element, which is
performed through the rotation matrix [R]:

[ cosa' sina' 0 0 0 o0
—sina' cosa' O 0 0 0
[R]= t 0 .0 0 (1.40)
0 0 0 cosa' sina' O
0 0 0 -sina' cosa' O
| O 0 0 0 0 1]

It is worth noting that two conditions are sufficient for the piers and spandrels, i.e. verti-
cal (o> = 90°) and horizontal (o’ = 0°). However, it is often necessary to model also
beams or tie-rods, which can have a generic orientation. They are identified in the wall’s
plane by the position of the two end nodes.

Finally, once the system and the degrees of freedom have been univocally numbered, the
stiffness matrixes of the structural elements (masonry piers/spandrel, beams, tie-rods,
etc.) are assembled into a global matrix that describes the entire wall’s stiffness [4].

1.5.2 Modelling of the masonry structural elements

After the frame idealization of a masonry wall, it is important to interpret its structural
elements’ seismic response correctly. Only in this way, a reliable prediction of the wall’s
overall behaviour can be obtained. Several formulations are proposed in the literature to
calculate the in-plane lateral strength of masonry panels (8§ 1.3 and § 1.4). They may be
used for the EF modelling adopting a nonlinear beam element with lumped inelasticity as
finite element.

The mechanical behaviour may be described in terms of global stiffness, strength, and
ultimate displacement capacity by assuming a proper force-displacement piecewise-linear
relationship and defining appropriate drift limits. This type of 2D element is implemented
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1.5 Equivalent frame method

in the TREMURI program [42], and it is indicated in the following as ML-BEAM. It
allows describing the nonlinear response of a masonry panel until very severe damage
levels (from DL1 from DL5) by assigning progressive strength degradations at defined
values of drift. The kinematic variables and generalized forces aimed to describe the
element are indicated in Figure 1.37. It is worth pointing out that loads are applied only
on nodes and not along with the element.

Two sets of parameters can be identified to describe the backbone and the ML-BEAM
element’s hysteretic response. The first one includes parameters necessary to define the
initial stiffness ke and its progressive degradation, the maximum strength Vgg, and the
nonlinear response of the panel for increasing damage levels (di, drift value at the attain-
ment of the i" DL, B, residual shear strength with respect to Vrq).

Idealization of the single panel

Nj Vj
. (v, Wi, @)
i
M [T+ !
]
Kinematic variables,
generalized forces and 5
geometrical properties
Mi —1

: o)

TJ_G) (U, Wi, @)
N; !
Figure 1.37: ldealization of the single panel in TREMURI [14]

Figure 1.41 shows the shear-drift relationship of the element. According to the beam
theory, the elastic phase can be defined by assigning the Young’s and shear moduli, E
and G. Thus, the stiffness matrix is computed on the base of the mechanical and geomet-
rical characteristics of the panel, as follows:
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Where:

1.2E1°

e y is a coefficient equal to ol

o E and G are the Young’s and shear moduli;
o Aand I are respectively the cross-section and the moment of inertia of the panel;
¢ | and h are the length and height of the panel.

Moreover, it is possible to consider the progressive stiffness degradation in the elastic
phase by assigning two proper ratios. The first one is between the initial secant stiffness,
ke and ksec. The second one is between the shear at the end of the initial elastic phase and
the shear strength Vrg (Ko in Figure 1.41). Furthermore, rigid end offsets are adopted to
transfer static and kinematic variables between element ends and nodes.

The maximum strength of a masonry pier or spandrel, Vrq, is computed according to the
criteria illustrated in 8 1.3 and 8§ 1.4, consistent with the most common formulations
proposed in the literature and building codes. The formulation proposed by Cattari and
Lagomarsino [34] is also implemented for the spandrels’ flexural failure mode. This
criterion provides more realistic results than the assumption of a strength model analo-
gous to that of piers, in particular for the existing and historical buildings where spandrels
are often “weak” and are not coupled to other tensile resistant elements [14]. As dis-
cussed in [43], the comparison with experimental results have also confirmed that the
adoption of this strength criterion can provide more reliable results.

The hysteretic response is formulated through a phenomenological approach, which is
able to reproduce the different behaviours of piers and spandrels and the various possible
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failure modes (flexural, shear or even mixed type). The maximum strength of the panel,
Vra, IS equal to the minimum obtained from the failure criteria defined for the element
and considering the current axial force acting at each step. Then, a procedure of nonlinear
correction of the elastic strength prediction is carried out based on the comparison with
the calculated limit resistance of the element. The redistribution of the internal forces is
performed to ensure the element’s equilibrium.

Different values of d; and fei may be defined to describe the panel’s flexural and shear
response. In this respect, qualitative force-displacement curves of masonry piers under
cyclic lateral shear load are illustrated in Figure 1.38.

Qualitative force-

Cyclic shear load A
displacement curve

F
A

Av

-

b)

\\\\\\\\\

» Av

Figure 1.38: Qualitative force-displacement curves of masonry piers under cyclic shear load, from [44]

Case a shows the diagonal cracking developing by sliding along the mortar joints. In this
case, the energy is dissipated by friction, and the hysteresis curves are full. The post-peak
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behaviour can be described as ductile and corresponds approximately to an elastoplastic
material behaviour. On the contrary, the block tensile failure is brittle (case b). It is
evident from the less full hysteresis loops together with the stiffness and load-bearing
capacity decrease in each cycle after the peak.

Furthermore, flexural failure (case c in Figure 1.38) is more prevalent in slender masonry
panels. The cyclic loads lead to a rocking movement that induces tensile and compressive
stresses in the corner areas alternately. The deformations are large compared to the load
that can be absorbed. The hysteresis curves are characterized by S-shaped loops with low
dissipation of energy, where the slope of the curves decreases only very slightly. It is
worth noting that the S-shaped loops do not mainly result from the material degradation
but the reduction of the cross-section’s compressed part with increasing deformation.

Concerning the masonry spandrel’s cyclic behaviour, recent experimental campaigns, i.e.
[29], [35], [45], have shown that there are some significant differences between piers and
spandrels. In masonry piers, the cyclic response mainly depends on their mechanical
properties, geometry and boundary conditions. On the contrary, the force-displacement
response of the spandrels is influenced by the following aspects:

e type of lintels, if present (masonry arches or lintels in stone, timber, steel or rein-
forced concrete);

e interlocking phenomenon of the bricks at end-sections of the spandrel with the
contiguous masonry portions;

e axial restraint provided by other structural elements such as reinforced concrete
beams, steel tie-rods or adjacent piers [43].

In this regard, Figure 1.39 shows some experimental results of two full-scale spandrel
elements with different configurations. The first is a solid clay brick masonry spandrel
supported by a masonry arch, typical in older buildings. The second is a hollow clay
brick masonry spandrel supported by reinforced concrete, typical in newer masonry
buildings with r.c. slabs or r.c. ring beams. Both samples were tested under cyclic loading
at the Institute of Structural Engineering of the Swiss Federal Institute of Technology in
Zurich [35]. As depicted in Figure 1.39, the specimens failed by diagonal cracking but
with different experimental force-displacement curves. In the first sample, after the linear
elastic phase, the attainment of the maximum shear force is followed by a significant
strength drop. On the contrary, the second specimen has shown only a minimum decrease
in strength in the post-peak phase. Therefore, it is important to consider the different
types of piers’ and spandrels’ behaviour in the EF modelling and the various in-plane
response of the masonry spandrels based on their configuration. To this aim, different
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values of di and fe; to describe the panel’s flexural and shear response can be assigned.
They can be differentiated in the case of spandrel and pier elements as well.

Solid clay brick masonry spandrel supported by an arch
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Figure 1.39: Experimental results of two full-scale masonry spandrels with different configurations [35]

Moreover, it happens frequently that the failure of a masonry panel is a combination of
the shear and flexural one. In this case, the mixed failure mode is considered by the
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program calculating average values of d; and fe,, starting from those assigned for the
shear and flexural behaviour.

‘? A ——— Flexural strength domain
ffffff Shear strength domain

Admissible range for the mixed failure mode
defined through a, and a,

v

€« <> N

Figure 1.40: Criteria assumed to define the occurrence of a mixed failure in TREMURI [42]

Furthermore, the hybrid failure can occur by defining in the input an admissible range in
the panel’s V — N domain close to the points in which the flexural and shear domains
intersect. Figure 1.40 illustrates the criterion for the occurrence of a mixed failure mode.

The complete hysteretic response of the ML-BEAM element is shown in Figure 1.41.
The slope of the unloading branch in the positive quadrant is defined by the stiffness k;

(from A* to C*). It is calculated through the reached ductility x4+ and strength decay Se.,
as follows:

kG =Ko '(/u+ )_Cl ":1_02 '(1_ﬂE,i ):| (1.42)

where:

o u* is the value of ductility attained from the backbone curve in the positive quad-
rant;

e C3 aims to degrade the stiffness k; with respect to the secant one ksec. It may as-
sume values from O (elastoplastic law) to 1 (secant stiffness);
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e C; is a parameter that can further degrade the value of k; through the progressive
strength decay fe,i reached on the backbone. It may assume values from O to 1.
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Figure 1.41: Multilinear constitutive law and hysteretic response of the ML-BEAM element implemented in

TREMURI [46]
(1.43)

In the same way, the expression of k; for the negative quadrant is defined:

kt; = ksec .(#7)_01 'I:l_cz .(1_ﬂE,i )]
As shown in Figure 1.41, the unloading curve may also present a horizontal branch,

which is typical of bending failure. In that case:
o the coefficient c; fixes the point B*. It can vary from 0 (A* - B* branch until the

abscissa axis) to 1 (non-linear elastic condition);
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o the coefficient c4 defines the extension of the B* - C* branch. The suggested range
of values is 0 -1 [42].

Then, the loading branch from C* to A is ruled by the stiffness k. It is computed consid-
ering the stiffness k; and the ductility value reached in both positive and negative

quadrants (u*, ).

Finally, numerical validations of the EF modelling with the described ML-BEAM ele-
ment are shown in various scientific works, e.g. [43], [47], [48], and in the Italian tech-
nical standard CNR-DT 212/2013 “Guide for the Probabilistic Assessment of the Seismic
Safety of Existing Buildings” [25]. The validation has been performed through experi-
mental results obtained from shaking tables, cyclic lateral shear tests on single spandrels
or with the actual response of URM buildings damaged by seismic events.

1.5.3 The three-dimensional model

The three-dimensional equivalent frame modelling of whole URM buildings is based on
the following hypotheses:

¢ The load-bearing structure, referred to the vertical and horizontal actions, is identi-
fied with walls and horizontal diaphragms (i.e. roofs, floors or vaults);

e The walls are bearing elements, and the diaphragms have the function to share the
horizontal actions among the walls;

e The diaphragms’ flexural behaviour and the wall out-of-plane response are ne-
glected, as their in-plane behaviour mainly governs the global structural re-
sponse.

It is worth noting that the global seismic behaviour is possible only if vertical and hori-
zontal elements are properly connected. If necessary, “local” out-of-plane mechanisms
may be verified separately through suitable analytical methods [14].

Therefore, the first step to assemble the 3D model is to define a global Cartesian coordi-
nate system (X, Y, Z). Then, the coordinates of one point and the angle 6 formed with the
global X-axis identify the vertical wall planes (Figure 1.42). Thus, each wall can be
modelled as a plane frame in the local coordinate system. The internal nodes are two-
dimensional nodes with three degrees of freedom (d.o.f.). The nodes at corners and
intersections of two or more walls are three-dimensional nodes characterized by five
d.o.f. in the global coordinate system (ux, Uy, Uz ¢ @y). It is worth noting that the rota-
tional d.o.f. around the vertical Z-axis can be neglected, as the membrane behaviour is
adopted for walls and floors.
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Figure 1.42: Three-dimensional assembling of masonry walls in TREMURI: classification of 3D and 2D rigid
nodes and mass sharing [14]

Y X

Figure 1.43: D.o.f. of the three-dimensional node [15]

Furthermore, the three-dimensional nodes can be obtained by assembling 2D virtual rigid
nodes acting in each wall plane and projecting the local d.o.f. along global axes (Figure

49



Chapter 1: Structural behaviour and modelling of unreinforced masonry buildings under seismic actions

1.43). Therefore, assuming the full coupling among the connected walls, the assemblage
is performed by condensing the d.o.f. of two 2-dimensional nodes.

This procedure allows to reduce the total number of d.o.f. and perform nonlinear analyses
with a reasonable computational effort in large and complex building models [14]. The
relationships between the five displacement components of the 3D node and the three of
the fictitious 2D node belonging to the single wall are given by Eq. (1.44):

u=u,cosd+u, sing
w=u, (1.44)
p=@,sind—p, cosd

Where u, w and ¢ are the three displacement components according to the d.o.f. of the
fictitious node belonging to the generic wall, whose plane is identified by the angle 6
formed with the global X-axis (Figure 1.43).

Consequently, the reactive forces transmitted by the masonry elements belonging to the
single walls to the two-dimensional fictitious nodes can be referred to the global coordi-
nate system:

F =F'cosé, +F’cos6,

F, =Fysing, +F’sing,

F,=F!'+F? (1.45)
M, =M?'sing, + M?sin g,

M, =-M"*cos6, —M?cos 6,

Figure 1.44: Forces acting on the node with five d.o.f. and on the corresponding virtual nodes with three d.o.f.
[18]
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As shown in Figure 1.44, the terms with superscripts 1 and 2 correspond to the forces and
moments acting on the virtual nodes in walls 1 and 2, to which the three-dimensional
node belongs.

In this way, the wall’s in-plane modelling can be performed, and the nodes belonging to a
single wall remain two-dimensional with only three d.o.f. instead of five.

Moreover, the vertical loads’ contribution is computed as nodal mass added to all nodes
based on the areas of influence of each node and considering the floor’s spanning direc-
tion. In this regard, the 2D nodes have no d.o.f. in the direction perpendicular to the wall
plane. Therefore, the nodal mass component related to the out-of-plane d.o.f is shared to
the corresponding d.o.f. of the two nearest 3D nodes of the same wall and storey after the
following relations [14]:
X . LI
M =M +m(1-|cosg])—*

L (1.46)

oLl
M) =M/ +m(1—|sm9|)T'

Figure 1.42 shows the terms of Eq. (1.46).

Furthermore, it is important to highlight that a proper assumption on the diaphragm
stiffness may significantly influence the global response. If the floors are modelled as
“infinitely” flexible, they cannot transfer the seismic action from heavily damaged walls
to the still efficient ones. On the contrary, if the diaphragms are considered “infinitely”
stiff, their contribution could be overestimated. Despite this, the floor behaviour in the 3D
modelling is frequently assumed completely rigid. It is worth noting that this considera-
tion may also be unrealistic in historic masonry buildings, where ancient constructive
technologies, such as timber floors/roofs, structural brick or stone vaults, were commonly
adopted.

Therefore, specific floor elements are used in the TREMURI also to simulate the pres-
ence of flexible diaphragms. They are characterized by the Young’s modulus E; in the
principal direction (i.e. the floor spanning orientation), the Young’s modulus E; along the
perpendicular direction, the Poisson ratio v and the shear modulus Gi. It is worth noting
that both moduli of elasticity, E; and E,, provide for the connection’s degree between
walls and horizontal diaphragm. They allow the formation of a link between the in-plane
horizontal displacements of the nodes belonging to the same wall-to-floor intersection,
influencing in this way the axial force computed in the spandrels. Furthermore, the shear
modulus G affects the diaphragm’s tangential stiffness and the horizontal force transfer
among the walls in the linear and nonlinear phases [14]. The reference finite element is a
three-node orthotropic membrane element (plane stress) with two d.o.f. at each node (uy,
uy) in the global coordinate system (Figure 1.45).
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Figure 1.45: The three-node element [4]

Therefore, in the case of orthotropy and plane stress state, the relation between stresses
and deformations is given from Eq. (1.47):

E m,vE,
1-m,v? 1-m,v?
A m,0E E 1.47
{D:l'{e}T :{S}T = 1_lr2n Vlz 1_ml 2 0 |{a & 1) =101 0, 7y} (L.47)
12 12
0 0 G,

0

Where v is the Poisson ratio, and my2 is equal to the ratio E»/E;.
Assuming o* as the angle formed by the main load-bearing direction of the floor with the

global X-axis, it is possible to rewrite the matrix [ D ] in the rotated configuration to take
into account the actual orientation of the diaphragm:

[D]-[RT | B[R] 148)

Where [R] is the rotation matrix defined as follows:
cosa” sina” 0
[R]=|-sina” cosa” 0 (1.49)
0 0 1

Then, the matrix [Bi] can be defined for each node i of the three-node element adopting
linear shape functions:
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yj — Yk 0
Xy 7yj (150)
X —Yi Yy~ Y

1

[Bi]:ﬁ

Where x;, y; and X, Yk are the coordinates of the nodes j and k, while A; is the triangle area.

Therefore, starting from the definition of the matrices [Bi] and [D], the stiffness matrix of
the 3-nodes membrane element [K¢] can be assembled:

(6] [6] []
[k ]={[x] [ki] k5] (151)
[ki] [ki] [xi]
with
[k; ]=[BT -[D][B,]-A-s (152)
Where s is the equivalent thickness assumed for the membrane element.

Finally, in the case of 4-nodes elements (Figure 1.46), the average contribution of the two
possible meshes of 3-node elements is computed to obtain the stiffness matrix. In this
way, an irregular quadrilateral floor area can be modelled with a single element.

A

y

) k . [ k
" +.A
i . i . I‘ 3
j j j

X

-

Figure 1.46: The four-node element [4]
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Chapter 2

Strengthening of masonry structures
with externally bonded textile
reinforced mortar

Externally bonded textile reinforced mortar is a recently emerged technology for repair-
ing and strengthening masonry structures (Figure 2.1). It consists mainly of two compo-
nents, i.e. matrix and grid. The former has the function to cover and protect the fibre
reinforcement that is embedded inside, ensuring, at the same time, the stress transfer
between the masonry substrate and the textile component. It is generally made of fine-
grained mortar with Portland cement (cement-based) or natural hydraulic lime (lime-
based). Furthermore, dry organic polymers may also be added to improve the workabil-
ity, setting time and bond, but less than 5% by weight since they decrease the matrix’s
vapour permeability and fire resistance.

b)

Figure 2.1:  Strengthening of a masonry chimney with externally bonded textile reinforced mortar: a) original
surface, b) application of the reinforcing system [49]

The textile component usually consists of an open mesh of yarns in alkali-resistant (AR)
glass, carbon, aramid, basalt, or polyparaphenylene benzobisoxazole (PBO) continuous
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fibres. They can be either dry, coated, or preimpregnated and are generally arranged in
two or more directions. Examples of textiles’ types are shown in Figure 2.2.

Different terminologies are diffused for this new class of composites, such as textile-
reinforced mortar (TRM) or fabric-reinforced cementitious matrix (FRCM). For the sake
of simplicity, they are named only FRCM in this work.

It is worth noting that the composite system’s mechanical effectiveness strongly depends
on the matrix’s ability to saturate the fibre threads. The spacing of the yarns should allow
the inorganic matrix to penetrate the mesh openings. For this reason, it shouldn’t be a
generic mortar. It should be specifically formulated to be coupled with the textile compo-
nent and the masonry substrate.

a) b) ¢) d)

Figure 2.2:  Four examples of textile grids: a) AR-glass; b) basalt; ¢) carbon; d) multi-axial hybrid AR-glass
and polypropylene (courtesy of Dr Giinther Kast GmbH & Co.)

Furthermore, these systems offer important advantages in thickness, weight, tensile
strength, and no concrete cover against corrosion is required. They can improve the
structural members’ ultimate capacity with negligible mass increase thanks to their high
strength-to-weight ratio. It is important to stress that this aspect is very important since
the seismic actions are proportional to the mass.

Moreover, they are usually applied to the outer surface of structural members. Thus, the
application can fit the contour of the strengthened element, making, in this way, the
installation process fast and versatile. In this respect, the intervention’s reversibility is
generally possible for the lime-based mortars, making the FRCM also suitable for repair-
ing historic architectural heritage. Therefore, compared to conventional techniques, e.g.
section enlargement, steel tie rods, reinforced concrete overlays, the FRCM is a competi-
tive technology for repair, seismic retrofit, and rehabilitation of existing masonry struc-
tures.
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2.1 Historical background

The first structural cement-based textile composite was the ferrocement patented in 1855
by Lambot in France [50]. It consisted of a steel reinforcement grid embedded in a
cementitious matrix of about 50 mm in thickness. It is worth remembering that ferroce-
ment technology was almost absent in the construction industry until the 1960s. In those
years, this technique was mainly used to build slender shell structures such as water tanks
or roofs and, only in the 1990s it was also adopted as a repair solution. In this context,
ferrocement laminates were used to repair damaged reinforced concrete elements. Alt-
hough various research studies confirmed the increase in the ultimate capacity of
strengthened reinforced concrete beams and columns, this technique was mainly used in
new construction. Therefore, the application of the ferrocement as a repair technology
remained limited [50].

Then, the composite materials based on the polymeric matrix were developed in the
1960s and 1970s. They consisted of one or more layers of high-strength fibre sheets made
of carbon, glass, basalt, or aramid embedded in a polymer-based matrix. Widely known
as fibre-reinforced polymers (FRP), this technology’s application was initially limited to
the aerospace and defence industries. Only in the early 1990s it was also available for the
construction industry, as FRP manufacturing cost was reduced. The main application
fields of the FRPs in the construction sector were repairing or strengthening concrete and
masonry structures. Furthermore, various studies confirmed the effectiveness of external-
ly bonded FRP systems in improving the axial, shear, and flexural resistance of structural
elements [50]. However, despite these advantages, the FRP composites are characterized
by some limitations, such as:

¢ Heat sensitivity of the organic matrix;

Problematic application on wet surfaces;

Impermeability of the polymeric matrix: it can trap moisture within the masonry,
leading to the loss of bond with the substrate;

Surface preparation necessary for the application of FRP laminates on uneven or
jagged surfaces;

Hazardous materials: the polymers need special handling processes before, during,
and after their use.

Therefore, mortar-based composites have been developed to overcome all these prob-
lems. The organic matrix of the FRP has been replaced with an inorganic one generally
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based on cement or lime mortar. Thus, compared to the FRPs, the FRCM systems have
the following advantages:

¢ Resistance of the inorganic matrix to elevated temperatures and ultraviolet radia-
tion;

e Application on irregular or wet substrates with minimal or no surface preparation;

e Vapour permeability, physical/chemical compatibility of the lime-based mortars
with masonry substrates: this aspect is fundamental for applications to historic
structures.

Finally, it is worth noting that the FRCM composites also present many analogies with
the textile-reinforced concrete (TRC). The latter is a thin precast structural element made
of alkali-resistant glass or carbon fabrics embedded in high performance finely grained
cement concrete [51], which is commonly adopted as a stand-alone load-bearing element
for new constructions. On the contrary, the FRCM is specifically designed for the exter-
nal strengthening of existing structures.

2.2 Characterization methods of the textile
reinforced mortar systems (FRCM)

Two different test methods have been recently proposed in the scientific literature about
the mechanical characterization of the FRCM composites. The first one combines the
results of direct tensile tests on bare textile specimens with those obtained from single-lap
shear bond tests. This procedure has been developed within the RILEM Technical Com-
mittee (TC) 250-CSM, “Composites for the Sustainable Strengthening of Masonry”. It is
also adopted by the Italian technical standard CNR-DT 215/2018 “Guide for the Design
and Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for
Strengthening Existing Structures” [52].

The second characterization method is based on performing direct tensile tests on compo-
site specimens. In this case, the samples are clamped between the wedges of a universal
testing machine without applying any lateral pressure through clevis-type grips. This test
procedure is defined in the acceptance criteria AC434 of the International Code Council-
Evaluation Service in the US [53]. It is adopted by the American technical standard ACI
549.4R-13 “Guide to Design and Construction of Externally Bonded Fabric-Reinforced
Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and
Masonry Structures” [54]. Finally, the test method parameters have also been validated
by Arboleda, who conducted an extensive study on testing FRCM composites with clevis

grips [55].
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2.2.1 Characterization method of FRCM composite tested
with clamping grips

The characterization method presented in this paragraph combines the results of tensile
tests performed with clamping grips on bare textile samples and single-lap shear bond
tests. The latter is commonly carried out to investigate the load transfer capacity between
the externally bonded strengthening system and the structural member, i.e. the substrate.
It is important to stress that in many structural applications, such as strengthening mason-
ry walls, arches or vaults, the performance of the FRCM usually depends on the bond
behaviour. Therefore, it needs to be experimentally investigated for the design and
assessment of the reinforced structural element. Furthermore, recent experimental studies,
e.g. [56]-[59], have demonstrated that the shear bond failure may occur not only within
the substrate but also within the thickness of the system (differently from FRPS). In this
regard, the grid-to-matrix adhesion or interlocking, the fibre-to-fibre and matrix to
substrate bond are factors that may influence the load transfer mechanism. In more detail,
the following aspects generally affect the load transfer capacity between substrate and
system:

e textile architecture;

e coating or pre-impregnation of the fibre;

thickness of the matrix,

e characteristics and mechanical properties of the substrate (roughness, moisture
content, strength and Young’s modulus)

quality of the application and curing conditions.

It is worth noting that no norm exists on the single-lap shear-bond tests. Only a recom-
mendation of the RILEM Technical Committee (TC) 250-CSM [60] has been recently
published. Figure 2.3 illustrates the test setup proposed in [60], where the specimen
consists of an FRCM strip applied onto a substrate prism. The unbonded textile end of the
sample is clamped in the wedges of the testing machine, and it is subjected to a tensile
load parallel to the composite-to-substrate interface. In this way, the load transfer capaci-
ty between the externally bonded strengthening system and the structural member (i.e. the
substrate) can be evaluated, and the following possible failure modes can occur:

o Mode A: complete debonding of the system from the masonry support (cohesive
failure);

o Mode B: debonding of the system at the matrix-to-substrate interface (adhesive
failure);
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Mode C: debonding of the system at the matrix-to-textile interface;

Mode D: slippage of the textile within the matrix;

Mode E: tensile break of the textile fibres in the unbonded part;

Mode F: tensile rupture of the textile fibres within the mortar matrix [61].
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Figure 2.3:  Test setup for the single-lap shear bond tests proposed in [60]
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Figure 2.4:  Possible shear bond failure modes of the FRCM systems when applied to the masonry substrate
[61]
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The experimental results are usually expressed in terms of axial stress-slip relationship.
The stresses o are conventionally referred to the equivalent cross-sectional area of the dry
textile Ay, as follows:

o= (2.1)

Where F is the axial force recorded during the tests, and As [mm?] is calculated with Eq.
(2.2):
A = T.-n, b
" pg 1000 (2.2)
Tx is the yarn count expressed in Tex [g/km], ny is the number of yarns per unit width
expressed in [n°/cm], prs is the fibre density [g/cm?], by is the width of the textile [mm].

In this way, any possible variation of mortar thickness cannot influence the equivalent
cross-sectional area of the FRCM. Furthermore, the equivalent fibre thickness [mm] of
the dry textile can be defined from Ar as follows:

ty=— (2.3)

It is important to stress that if the textile mesh consists of the same type and number of
yarns in its main directions, the equivalent cross-sectional area and thickness is the same.
Otherwise, they depend on the considered direction, i.e. vertical, horizontal and eventual-
ly diagonal, if present.

Furthermore, the typical force-slip curves that may result from single-lap shear-bond tests
are depicted in Figure 2.5. The failure modes A, B, and C are quite brittle. The curve
generally shows a nearly flat branch until the debonding of the system occurs. On the
contrary, mode D displays a diagram with a soft load decrease after the peak due to the
progressive slippage of the textile mesh within the mortar. Moreover, the response curve
of the failure mode E is characterized by a sudden strength reduction due to the tensile
breaking of the fibre threads. In this case, the curve’s flat branch is commonly not
reached. Finally, mode F shows a strength drop at the telescopic failure of the fibre wires
embedded in the matrix. Then, a further load decrease usually occurs since the first
portion of the textile out of the mortar can slip [61].

Furthermore, the boundary conditions, the stress state and the cracking pattern of the
applied FRCM system may differ from those reproduced through the tensile tests on
FRCM coupons with clamping grips. Finally, some doubts about the repeatability of the
tests and the method’s robustness have been raised, especially for the FRCM systems,
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whose conventional stress falls in the uncracked or crack development phases of the
tensile response.

Failure modes A, B, Failure mode D
F C F
s s
Failure mode E Failure mode F
F F
s s

Figure 2.5:  Typical axial force-slip curves obtained from the single-lap shear bond tests [61]

Therefore, the acceptance criteria proposed by Ascione in [61] may be particularly
sensitive to these aspects. The acceptance strain and tensile modulus of elasticity can be
derived from direct tensile tests on bare textile samples and not on FRCM specimens.
The latter are performed by clamping grid strips in the testing machine’s wedges with
sufficient lateral pressure. Only in this way can the slippage of the textile strip in the load
introduction areas be avoided, and the tensile break of the fibres can be achieved.

This choice was also taken from the Italian standardization board set within the National
Research Council (CNR) to develop qualification guidelines for FRCM composites [50].
In this regard, the Italian technical standard CNR-DT 215/2018 defines the limit conven-
tional FRCM tensile strength aiimconv fOr design and assessment purposes. As shown in
Figure 2.6, it is equal to the characteristic value of the maximum axial force obtained
from the single-lap shear-bond tests divided by the equivalent cross-sectional area As.
Then, the corresponding modulus of elasticity Er and ultimate strain gjim conv are derived
from the clamping-grip tensile tests on bare textile specimens. It is worth noting that if
the grid doesn’t consist of the same type and number of yarns in its main directions, the
tensile properties of the FRCM system depend on the considered direction. Otherwise,
they are the same. Finally, the single-lap shear-bond test results should be valid only for
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the tested FRCM system and substrate. They cannot be directly extended or extrapolated
to different composites or substrate materials [60].
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Figure 2.6:  Determination of ajim,conv @Nd &lim.conv [52]

2.2.2 Characterization method of FRCM composites tested
with clevis-type grips

The second characterization method of an FRCM system is based on direct tensile tests
on composite coupons (Figure 2.7). Adopting the test method suggested by the AC434
guidelines, the axial load is transferred from the frame of a universal testing machine to
the composite specimen through clevis-type grips. Two metal tabs, preferably aluminium,
are glued at each end of the sample. In this way, the composite coupon is connected to
the gripping mechanism.

This test setup allows reproducing the application case where the composite is not me-
chanically anchored. Thus, the system’s tensile response depends mainly on the grid-
matrix interface bond. The break of the textile fibres or the grid’s slippage within the
matrix are possible failures. It is worth specifying that the other shear bond failure modes
illustrated in Figure 2.4 are not considered from this test setup. The reason for this differ-
ent acceptance method is to be found in the main foreseen applications. In particular, the
American approach has been developed considering the application of FRCM systems on
concrete structures or masonry with concrete units. On the contrary, the method devel-
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oped within RILEM and adopted by CNR DT-215/2018 is mainly based on their applica-
tion on clay brick or stone masonry [50]. Figure 2.8 shows the typical stress-strain dia-
gram of an FRCM system obtained from uniaxial tensile tests with clevis-type grips.

Figure 2.7:  Uniaxial tensile tests with clevis-type grips on FRCM composite specimens [54]
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Figure 2.8:  Example of uniaxial tensile stress-strain diagram of FRCM composite specimens obtained from
direct tensile tests with clevis-type grips
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Three consecutive branches can be usually identified:
e Stage A: uncracked phase
e Stage B: crack development
e Stage C: fully cracked phase.

It is worth noting that the width of these stages generally depends on several factors, such
as mechanical properties and nature of the matrix (cementitious or hydraulic lime),
layers’ thickness and interlocking between grid and mortar.

G @0, 6fu @09 &,

Figure 2.9:  Equivalent bilinear curve of uniaxial tensile stress-strain diagrams of FRCM composite specimens

For design purposes, the ACI 549.4R proposes the determination of an equivalent bilinear
curve (Figure 2.9) characterized by the following parameters:

¢ ultimate tensile strength f,;

e tensile modulus of elasticity of the cracked specimen Ecracked, Calculated with Eq.
(2.4):

0.3f

u

Ecracked = (24)
(‘c"@o.gfu ~Eqost, )

Where g@o.oru and egostu are the strains at 0.9f, and 0.6fy;
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e ultimate tensile strain ¢, calculated with Eq. (2.5):

0.4f,

&, = Eqost,

(2.5)

cracked
e stress and strain of the transition point between the uncracked and cracked phases;

e tensile elastic modulus of the uncracked specimen. It is defined on the initial linear
segment of the response bilinear. Two points that connect the results in a line
close to the trend and slope of the response curve identify the initial line.

Also in this case, the stresses are conventionally referred to the equivalent cross-sectional
area of the dry textile As (Egs. (2.1) and (2.2)) to avoid the influence of any possible
variation of mortar thickness.

Then, the FRCM characteristic ultimate strength and strain are calculated as the average
experimental ones minus one standard deviation. The tensile elastic modulus is equal to
the mean value of the test results.

Finally, the initial uncracked phase is usually neglected for design purposes. After ACI
549.4R-2013, the FRCM system behaves linear elastic up to failure. The design tensile
strength is determined through the mean tensile elastic modulus of the cracked FRCM
and the design value of &,, on which further limitations are set based on the type of
application (shear or flexural).

2.3 In-plane strength of textile reinforced
masonry panels

Several experimental studies performed in the last years have confirmed the effectiveness
of FRCM composites in strengthening masonry structures. Tests conducted on textile-
reinforced masonry panels have shown that the FRCM systems can effectively improve
their in-plane shear resistance and ductility, making them suitable for seismic retrofitting
and post-earthquake repair, e.g. [63]-[70].

A common approach to calculate the in-plane shear strength of a textile-reinforced panel
is to add the increase of resistance due to the FRCM system to the shear strength of the
URM panel. In this context, both technical standards CNR-DT 215/2018 and ACI
549.4R-13 propose design formulations.

Therefore, starting from the calculation method of CNR-DT 215/2018, the in-plane shear
resistance of a strengthened masonry panel, Vrgs, can be determined as follows:
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VRd,s =Virm +Vt,f (2-6)

Vurm IS the shear resistance of the URM panel under diagonal cracking, and Vis is the
increase of strength due to the reinforcing system calculated through Eq. (2.7).

s liraeq By 2.7)

Where:

® yrq IS @ model safety factor equal to 2, according to current knowledge on the
FRCM systems;

nt is the total number of applied textile layers;

trs is the equivalent thickness of one textile layer with fibres arranged parallel to
the shear force;

Is is the design length of the applied reinforcement. It is measured orthogonally to
the shear force, and in any case, it cannot be assumed to be greater than the di-
mension H of the panel (Figure 2.10). The limitation If < H is introduced, since
the product n; - tis - /s represents the equivalent cross-section area of reinforce-
ment effective in shear, which intersects a diagonal crack inclined at 45°;

ot is a coefficient that considers the reduced tensile strength of the fibres under
shear actions. It may be assumed equal to 0.8 in the case of no experimental test-

ing.

&rg 1S the design strain of the yarns arranged parallel to the shear force. It is derived
from the conventional strain limit &iimconv USiNg the partial safety factors indicat-
ed for design situations;

e E;is the average Young’s modulus of the bare textile.

Moreover, CNR-DT 215/2018 limits the in-plane shear strength of the textile-reinforced
panel by the masonry crushing capacity, Vic. In this case, the shear force Veq must not
exceed the diagonal crushing resistance defined by Eqg. (2.8):

V.. =025-f , -t-d; (2.8)
Where:
e fnu is the ultimate masonry compressive strength;

e tis the thickness of the panel;
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e s is the distance between the compressed edge of the panel and the fibre of the re-
inforcement that attains the highest tensile strain (Figure 2.10).

Concerning the American design approach, it is important to stress that the limit-state
design principles adopted by ACI are different from the European ones. For this reason,
the design formulations proposed by ACI 549.4R-13 vary from those suggested by CNR-
DT 215/2018, although both standards have a similar calculation method.

Therefore, the shear strength of a masonry panel reinforced with FRCM can be deter-
mined after ACI 549.4R-13 as follows:

¢’vvn = ¢v (Vm +Vf ) (29)

Where ¢y is the shear strength reduction factor equal to 0.75, and V, is the nominal shear
strength. Vi, and Vs are the masonry and FRCM strength contribution, respectively. Vi is
calculated according to the Building Code Requirements and Specification for Masonry
Structures [71], while V; is defined in Eq. (2.10):

V, =2n, -A, -l f,, (2.10)

Where n: is the number of applied reinforcement layers; As is the equivalent cross-
sectional area of the grid by unit width effective in shear; | is the wall’s length in the
direction parallel to the shear force. It is worth noting that ACI 549.4R-13 doesn’t explain
the reason for factor 2 in Eq. (2.10). It only suggests applying the composite system
preferably on both sides of the wall for symmetry and effectiveness. Furthermore, no
indications are given for the one side application. Factor 2 is probably introduced to
consider only the double-sided FRCM application. Thus, n: should indicate the number of
reinforcement plies per side and not the total number of applied layers.

Regarding the design tensile strength of the FRCM reinforcement, fq, it is calculated
through Eq. (2.11):

ffv = Ecracked 'gfv (211)

In which Ecracked is the tensile modulus of elasticity of the cracked FRCM and & is the
tensile design strain in the FRCM shear reinforcement, defined as follows:

&, =min(&,;0.004) (2.12)

68



2.3 In-plane strength of textile reinforced masonry panels

Masonry
pier
a
® /;t\ (<H
H
TTTT | |
-— HHH [ N
Design
HHHHH T T length
— HHHT 1=
\L \_FRCM
dr
_ ] It
bt
Masonry
pier
{zH
H
- i Tl
i ¥
| ¢ L., Design
‘ \ length
! o
— U | 1Y

¢ FRCM

Figure 2.10: In-plane FRCM reinforcement of a masonry pier: definitions after CNR-DT 215/2018 [52]
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Furthermore, limitations on the total force per unit width transferred to the masonry are
given in the ACI 549.4R-13. The increment in shear strength provided by the FRCM
system, Vi, should not exceed 50 per cent of the load-bearing capacity of the unstrength-
ened structural element, Vin. Moreover, the summation of the URM and FRCM shear
contributions (without the strength reduction factor, ¢,) should be checked against the toe
crushing capacity according to the provisions of ASCE 41, since the masonry panel
attains its maximum lateral strength with this type of failure. Finally, the application of
the strengthening system is limited to a maximum wall thickness of 305 mm.

Furthermore, if the FRCM system has fibre yarns applied along the direction of the axis
of the structural element, the in-plane flexural capacity of the textile-reinforced panel can
be increased. In this context, both CNR-DT 215/2018 and ACI 549.4R-13 consider the
FRCM contribution to carry the tensile stresses due to the bending-rocking behaviour of
the element. The tensile strength of the masonry is commonly neglected because it is
generally very low compared to the compressive strength.

Therefore, the following hypotheses are adopted for the calculation of the design bending
moment:

e Plane sections remain plane;
e Perfect bonding between FRCM and masonry support.

The uniaxial masonry constitutive law can be assumed linear elastic up to the design
strength fn, and then perfectly plastic up to the ultimate strain emy. As an alternative, the
equivalent stress-block diagram can be adopted (Figure 2.11). In this case, the masonry
compressive stress diagram is assumed to be rectangular with a uniform compressive
strength afmy distributed over an equivalent compressive length Sy, where y, is the
distance between the outermost fibre in compression and the neutral axis. Common
values of the coefficients « and g are 0.85 and 0.8, respectively. If experimental data are
unavailable, the masonry ultimate design strain can be assumed equal to 3.5%o, as sug-
gested by CNR DT 215/2018. The strengthening constitutive law of the FRCM is linear
elastic up to the design limit strain (Figure 2.11). In this regard, CNR-DT 215/2018
defines the conventional strain limit, eimconv, based on the tensile strength obtained from
single-lap shear bond tests:

O-Iim,conv = Ef 'glim,conv (213)

Where E; is the tensile elastic modulus of the bare textile.

70



2.3 In-plane strength of textile reinforced masonry panels

Masonry constitutive laws
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Figure 2.11: Uniaxial constitutive laws for masonry and FRCM system

On the contrary, ACI 549.4R-13 assumes that the effective tensile failure strain of the
FRCM composite material, e, is limited by the ultimate tensile strain of the FRCM
system &, < 1.2%. Then, the effective tensile stress level in the FRCM reinforcement
attained at failure, f., is calculated through Eq. (2.14):

f. = Ecraged - € With &, =min(g,;1.2%) (2.14)
Where Ecracked 1S the tensile modulus of elasticity of the cracked FRCM composite mate-
rial.

It is worth noting that if the neutral axis y, intersects the reinforcing system, the com-
pressed part of the FRCM is considered non-reactive. Only the masonry can carry com-
pressive stresses since both standards assume that the FRCM system does not exhibit any
stiffness or compressive strength. In this context, Figure 2.12 shows the flexural failure of
a masonry pier strengthened with an FRCM applied on the entire surface of the element
(di = 1) and both sides. It is important to stress that, in this case, only the direction of the
system parallel to the panel’s axis can contribute to the in-plane flexural resistance, as
shown by the induced strain and stress distributions in the cross-section.
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Therefore, the following failure modes are possible:
e Masonry crushing;

e Tensile Failure of the FRCM system.

Masonry panel Cross-section
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Figure 2.12: In-plane flexural failure of an FRCM strengthened masonry pier and strain-stress distributions

The dominant failure mode can be identified by assuming that both the masonry and
FRCM attain their ultimate strain (em = emu and &y = €iim.conv OF €¢). In this case, the neutral
axis depth y," and the resultant compressive and tensile loads, Fn" and F(", can be calcu-
lated through Egs. (2.15) - (2.18):

R
Yo = m (2.15)
Fo=af,, t-By, (2.16)
F =05-n, .(| _ Y:)‘tf,b “Ef “Gimeony  (CNR-DT 215/2018) (2.17)
F =050 -(I=y;)ty Eppges & (ACI 549.4R-13) (2.18)

Where tsy, is the equivalent fibre thickness of one textile layer in the direction parallel to
the panel’s axis, which is effective during the in-plane bending failure.
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2.3 In-plane strength of textile reinforced masonry panels

Thus, comparing the acting normal force N with the difference (Fn™ - F"), the actual
failure mode can be identified. In more detail, if N > (Fn" - F{"), masonry crushes by
achieving the ultimate compressive strain eny While the effective tensile strain in the
FRCM is &y = emu-(l - Yn)/yn.

On the contrary, if N < (Fn" - F("), the FRCM attains the ultimate tensile strain and en <
emu. IN this case, it is worth noting that the masonry could be in the elastic range, and the
hypothesis of a stress block distribution could be violated. However, this assumption
appears reasonable since it only modifies the neutral axis depth y,. The difference in the
design flexural strength is negligible.

Therefore, once the failure mode is identified, y» can be calculated by solving Eqg. (2.19):
Fn—F =N (2.19)

Then, the flexural capacity of the strengthened panel can be evaluated according to CNR-
DT 215/2018 and ACI 549.4R-13 as follows:

M :Fm-(

(CNR-DT 215/2018) (2.20)

Rd,s

1=5Y.) , . (1+2y,)
2 ‘ 6

.M, =¢m(Fm~(lfy”)+Ft.(|+:yn)j (ACI 549.4R-13) (2.21)

Where ¢, is the strength reduction factor for flexure equal to 0.6.

Moreover, the design lateral strength associated with the flexure-controlled failure mode
can be determined through Egs. (2.22) and (2.23):

F M Rd,s
Vazs = (CNR-DT 215/2018) (2.22)
VF = "’ln(*_'\"h (ACI 549.4R-13) (2.23)

Where k is a coefficient that accounts for the boundary condition of the panel, equal to
0.5 for a fixed-fixed wall and 1 for a fixed-free wall, h is the height of the panel.

Finally, only CNR DT 215/2018 gives indications to verify the strength of the masonry
spandrels reinforced with FRCM. As shown in Figure 2.13, the element’s behaviour is
assumed as a pier rotated to 90°, and the axial force N in the direction parallel to the bed
joints is neglected.
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Figure 2.13: FRCM in-plane strengthening of a masonry spandrel: definitions after CNR-DT 215/2018 [52]
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2.4 Modelling of textile reinforced masonry structures with the Equivalent frame method

Therefore, the shear strength Vrgs can be still calculated through Egs. (2.6), (2.7) and
(2.8), but the contribution of the normal force in the in-plane resistance of the URM panel
under diagonal cracking should be not considered. Then, the cross-sectional analysis
necessary to determine the improved flexural capacity should also be performed neglect-
ing N.

2.4 Modelling of textile reinforced masonry
structures with the Equivalent frame method

The Equivalent frame method described in 8 1.5 is a modelling technique originally
developed for URM buildings, which is also suitable for modelling textile-reinforced
masonry structures. It assumes that a masonry wall can be schematized as a set of vertical
piers and horizontal spandrels. Since the seismic damage is usually concentrated only in
these parts, the connection areas generally remain undamaged.

Recent shaking table tests performed on masonry buildings retrofitted with FRCM, e.g.
[72], [73], have shown that this phenomenon also occurs in the case of textile reinforced
masonry structures. Thus, it can be assumed that the deformation state of connection
areas always remains within the elastic limits. It is worth remembering that this assump-
tion allows neglecting these parts in the evaluation of the wall behaviour. The latter is
usually limited by the non-linear strains of its structural elements.

Therefore, the textile-reinforced masonry piers and spandrels can be still modelled
through a single finite element with a limited number of degrees of freedom. The entire
wall is obtained by assembling non-linear elements mutually connected by rigid parts.
The numerical models are characterized by a limited number of degrees of freedom.
Thus, the response of a wall subject to static (monotonous or cyclic) and dynamic actions
can be represented with a modest computational burden.

Furthermore, recent experimental studies, e.g. [69], [74]-[76], have confirmed that the
FRCM systems can increase the in-plane lateral strength and displacement capacity of
masonry panels. Therefore, the ML-BEAM element implemented in the TREMURI
software, described in 8 1.5.2, can be suitable to reproduce the in-plane response of a
textile strengthened masonry panel until very severe damage levels.

Moreover, as shown in § 2.2.2, the in-plane shear resistance of a textile reinforced ma-
sonry panel can be calculated as the sum of the shear strength of the URM panel and the
increase of resistance due to the reinforcing system. It is worth remembering that the
strength of the unreinforced ML-BEAM element implemented in TREMURI is computed
according to the criteria illustrated in § 1.3 and § 1.4, consistent with the most common
formulations proposed in the literature and building codes.

75



Chapter 2: Strengthening of masonry structures with externally bonded textile reinforced mortar

Therefore, the increase of in-plane load-bearing capacity can be obtained using the
formulations described in § 2.2.2. In this way, no additional nodes or degrees of freedom
are required to model the FRCM system, and a lower computational burden is still
provided.

The kinematic variables and generalized forces of the strengthened ML-BEAM element
are shown in Figure 2.14, which also depicts its monotonic behaviour. It is worth point-
ing out that if the strengthening system improves the panel’s stiffness, the reinforced
element’s elastic properties can be defined in the input phase by assigning improved
elastic and shear moduli (E and G in Eq. (1.41)). Moreover, the progressive stiffness
degradation in the elastic phase can also be modelled by assigning two proper ratios, as
described in § 1.5.2.

Idealization of the strengthened panel
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Figure 2.14: Idealization of the single panel and monotonic multilinear constitutive law of the ML-BEAM
element strengthened with FRCM implemented in TREMURI
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Then, the maximum strength of the panel, Vrgs, iS computed as the minimum shear
resistance obtained from the defined shear and flexural failure criteria, considering the
current axial force acting at each analysis step. The TREMURI program calculates the
increase of resistance due to the reinforcing system through the formulations proposed by
the Italian technical standard CNR-DT 215/2018. A nonlinear correction of the elastic
strength prediction is performed, comparing the latter with the element’s limit resistance.
Thus, the redistribution of the internal forces is carried out to ensure the element’s equi-
librium.
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Figure 2.15: Multilinear constitutive law and hysteretic response of the ML-BEAM element strengthened with
FRCM implemented in TREMURI

The modelling of the hysteretic behaviour is still based on a phenomenological approach,
as for the unstrengthened element. It allows reproducing the possible failure modes of
piers and spandrels reinforced with FRCM (flexural, shear and mixed type). As shown in
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Chapter 2: Strengthening of masonry structures with externally bonded textile reinforced mortar

Figure 2.15, the nonlinear response of the strengthened panel can be modelled until very
severe damage levels by assigning progressive strength degradations fe; at defined drift
values d;. Different values of fe;i and di can be set to describe the panel’s flexural and
shear behaviour. They can also be differentiated for spandrels, piers and unstrengthened
structural elements if they are present.

Furthermore, the hybrid failure is possible in a range of the panel’s VV — N domain close
to the points in which the flexural and shear domains intersect by assigning in the input
phase two factors, a; and a, (Figure 1.40). In this case, the program calculates average
values of d; and e, from those assigned for the shear and flexural behaviour.

Therefore, the complete hysteretic response of the FRCM reinforced ML-BEAM element
is shown in Figure 2.15. As described in § 1.5.2, the slope of the unloading branch in the
positive and negative quadrants is defined by the stiffness k; from A" to C* (Eq. (1.41)),

k, (Eq. (1.42)), and k. from C* to A". The latter is computed by considering k; and the
ductility value reached in both positive and negative quadrants (u*, u).

Finally, concerning the strategies to idealize the masonry wall in an equivalent frame and
the assembling procedure of three-dimensional models illustrated in § 1.5.1 and § 1.5.3,
they are still applicable to the masonry structures strengthened with FRCM. Therefore,
they are not further discussed.

2.5 The EQ-GRID strengthening system

EQ-GRID is an FRCM system developed at the Karlsruhe Institute of Technology in
Germany for seismic retrofitting and strengthening masonry structures. The textile
component is a multi-axial hybrid grid composed of alkali-resistant glass and polypropyl-
ene fibres (Figure 2.16). The matrix is a natural hydraulic lime mortar (NHL) explicitly
developed for this system. It can penetrate the mesh openings and encapsulate the fibre
yarns very well. This property is fundamental since the bond at the textile-matrix and
matrix-support interface strongly influences the system’s performance.

Furthermore, EQ-GRID can be applied on one or both sides of masonry walls. It is
suitable for indoor and outdoor applications. The mortar is non-shrinkable, workable and
quite viscous to be applied on vertical surfaces. It is very compatible with the masonry
support since it is characterized by porosity and vapour permeability. Thus, the moisture
cannot remain trapped within the wall. The humidity can migrate through the thickness,
and no thermo-hygrometric barrier can occur.

Moreover, the grid’s density is about 330 g/m?, and the dry bulk density of the mortar is
equal to about 1.42 kg/m?. Since the total thickness of the applied system is only 8 mm,
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2.5 The EQ-GRID strengthening system

the mass addition to the original structure is negligible. Therefore, no increase in seismic
action can be caused.
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Figure 2.16: The EQ-GRID strengthening system (courtesy of Dr Giinther Kast GmbH & Co.)

Furthermore, a broad experimental campaign was performed at the Karlsruhe Institute of
Technology in Germany to identify the mechanical properties of the system and investi-
gate the in-plane behaviour of masonry panels strengthened with EQ-GRID. The test
results are presented and discussed in Chapter 3.

The experimental campaign has shown that the system can increase the in-plane re-
sistance of masonry panels, especially for relatively poor masonry quality. The structural
element reinforced with EQ-GRID is characterized by an improved performance in terms
of strength and deformation thanks to the system’s capacity to bear the tensile stresses
induced by horizontal shear actions. This aspect is very important in the case of earth-
quake excitation and makes EQ-GRID suitable for repair, seismic retrofit, and rehabilita-
tion of existing masonry structures.
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Chapter 3

Experimental characterization of the
EQ-GRID strengthening system

The test results presented in this chapter are obtained from a wide experimental campaign
performed at the Karlsruhe Institute of Technology in Germany for the European research
project “MULTITEXCO - High Performance Smart Multifunctional Technical Textiles
for the Construction Sector”. The main goal of the experimental testing was to character-
ize the EQ-GRID system by determining its mechanical properties and investigating the
in-plane performance of strengthened masonry panels.

Therefore, several tensile tests were performed on bare grid samples and composite
specimens for each main direction of the textile (vertical, horizontal and diagonal).
Moreover, compression and bending tests were carried out to define the mechanical
properties of the matrix. Then, the bonding behaviour of the system applied to standard
support was investigated through double- and single-lap shear-bond tests. Finally, cyclic
lateral shear tests were performed on masonry panels reinforced with EQ-GRID to
evaluate the effectiveness of the strengthening system. The test results are depicted in
terms of shear-drift curves, in which the increase of strength and displacement capacity is
shown.

3.1 Tensile properties of the textile component of
the EQ-GRID system

The EQ-GRID system’s textile component is a hybrid multi-axial grid composed of AR
glass and polypropylene wires. Since these two materials have very different mechanical
properties, several tensile tests were carried out on textile strips and single yarns for each
system’s principal direction (vertical, horizontal, and diagonal). Thus, twenty-five grid
specimens, eighteen AR glass yarns and ten polypropylene wires were tested after DIN
EN 13473-2, which refers to the DIN EN SO 527-4 about determining the tensile prop-
erties.
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

The dimensions of the textile strips were 50x440 mm for the vertical and horizontal
direction and 85x440 mm for the diagonal one. In the adopted test setup, the specimens
were clamped between wedge grips of the testing machine (Figure 3.1). Therefore,
aluminium-sanded tabs were glued at each end with epoxy resin, and the samples were
left at ambient laboratory conditions for the necessary curing time (two days). The
distance between the tabs, i.e., the free length of the textile, was 200 mm.

Moreover, aluminium was used instead of steel because of the significantly lower
Young’s modulus. In this way, the overstress near the gripping area was reduced, and
local failures could be avoided. The samples were tested under displacement control with
a constant rate of 5 mm/min through an MTS electro-hydraulic universal testing machine
equipped with a 100 kN load cell. The tensile load and the vertical displacement were
recorded. The results are expressed in terms of stress-strain diagrams.

Figure 3.1:  Direct tensile tests with clamping grips on bare EQ-GRID textile specimens

It is worth noting that, since the grid is hybrid and the textile strips were tested under
displacement control, the AR glass and polypropylene wires were subjected to the same
strain during the test, but not to the same stress because of the different elastic moduli
that these materials have. Furthermore, the AR glass fibre has a linear elastic behaviour
until failure. On the contrary, the polypropylene fibre exhibits a nonlinear behaviour
before reaching the maximum tensile stress and can attain a very high ultimate strain (>
20%). However, its response can be assumed linear elastic in the strain range equal to
that achieved by the glass fibre wires (Figure 3.2).
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Figure 3.2:  o-e diagram of one AR glass and one polypropylene wire

Under these assumptions, the homogenization coefficient n can be defined as the ratio
between the elastic modulus of the polypropylene Epp and the one of the AR glass Eag:

_ O _ Opp _Em _
‘9AR—EPP:>E__E_:>GPP_E_'GAR_n'O-AR (3.1)
AR PP AR

Where ear, oar and epp, opp are respectively the strain and stress in the AR glass and
polypropylene fibres.

Therefore, the measured tensile force F is equal to the sum of the forces occurring in the
AR glass and polypropylene wires, Far and Fpp:

F=Fg+tFp =0 Ar+0m A (3.2)

Aar and App are the equivalent cross-sectional areas of the AR glass and polypropylene
wires, respectively.

Then, since oep is equal to n - oar, the stress in the AR glass wires can be obtained from
the total force F:

F=0m - Ar+N-ou A :(AAR +n'App)'O'AR =
-__F (3.3)
(AAR"'n'APP)

O-AR

Therefore, the total stress o is equal to:
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O =0, +0p =(1+N)- 04 :(1+n)'ﬁ:
P F (3.4)
(A +n-A) A,
(1+n)

Where A is the equivalent cross-sectional area of the dry textile [mm?2] homogenized to
the glass fibre:

_ (AAR +n- APP)
A= n) (35)
Thus, the homogenized equivalent thickness teq [mm] can be defined as follows:
A
t, = b_,q (3.6)

Where by is the width of the grid [mm].

It is worth specifying that the coefficient n is defined for each direction of the system.
Therefore, Table 1 shows three homogenization coefficients, ny, nn, ng, determined
through the elastic moduli of the tested AR glass and polypropylene wires.

Table 1:  Homogenization coefficients ny, n, and nq of the EQ-GRID equivalent cross-section

Vertical Horizontal Diagonal
nv Nh Nd
0.047 0.053 0.051

Furthermore, the average Young’s modulus E: of the grid can be calculated between two
assigned strain values, ¢ and e:

E, =220 (37)

En — &
Where oy and oy are the corresponding stress values.
According to DIN EN 1SO 527-4, the following strain range should be adopted:

&, =0.05%
&, =0.25% (3.8)
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3.1 Tensile properties of the textile component of the EQ-GRID system

In this case, the linear approximation of the tensile response leads to an overestimation of
the failure tensile strength oy in the vertical direction and an underestimation in the other
two (Figure 3.3).

Therefore, the strain range suggested by CNR-DT 215/2018 for the characterization of
the FRCM systems is also considered:

g, at 0.1o,
54 2050, (39)

As shown in Figure 3.3, the failure strength is overestimated in all three directions by
adopting Eq. (3.9) values. For this reason, another strain range needs to be chosen. In this
context, a better linear approximation is obtained with the average secant elastic modulus
calculated between zero and the maximum tensile stress. Figure 3.3 also shows the linear
tensile response determined with the secant stiffhess.
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Figure 3.3:  o-¢ diagrams obtained from the tensile tests on EQ-GRID textile strips and linear approximation
of the tensile response

Thus, the mechanical properties of the multi-axial grid are summarized in Table 2. The
strength oy is calculated as the ratio between the average maximum tensile force and the
equivalent cross-section A¢q of the dry textile homogenized to the glass fibre. The charac-
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teristic strength and strain values, oux and &,x, are obtained as the average ones minus kn
times the standard deviation STD, as recommended by Annex D of Eurocode 0. The
factor ky is assumed 2.0 since the number of the tested specimens is eight or even nine.
Furthermore, the mean secant Young’s modulus Es is also indicated in Table 2.

It is worth noting that the coefficient of variation (Co.V.) assumes higher values for the
specimens in the horizontal direction since the production process influences the tensile
response of the horizontal AR glass wires. Therefore, both ultimate strength and strain
values are lower than those obtained for the vertical direction, although the samples had a
very similar threads’ arrangement. Finally, the diagonal tensile strength is higher than the
others. In this regard, it is important to remember that the stresses are referred to the
homogenized grid’s cross-section, and the specimens have a low glass fibre content in
this direction.

Table 2:  Mechanical properties of the hybrid multi-axial grid.

Vertical Horizontal Diagonal
Nspecimen 8 8 9
G 1387 N/mm? 1046 N/mm? 1458 N/mm?
Co.V. 13.1% 20.4 % 5.0 %
Guk 1024 N/mm? 620 N/mm? 1311 N/mm?
Bum 3.2% 2.8% 3.7%
Co.V. 9.0% 15.6 % 10.6 %
B 2.6 % 19% 29%
= 43269 N/mm? 37516 N/mm2 40067 N/mm2
Co.V. 5.7 % 21.6 % 9.3%

3.2 Mechanical properties of the mortar
component of the EQ-GRID system

The matrix of the EQ-GRID system is a natural hydraulic lime-based (NHL) mortar
whose mechanical properties were determined through bending and uniaxial compression
tests.

The bending tests were performed on three specimens with dimensions equal to
40x40x160 mm after 28 days of maturation. Then, the six halves obtained by the previous
samples were subjected to uniaxial compression. In this way, six compression tests on
mortar prisms with dimensions 40x40x80 mm could be carried out. This test method is
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suggested by the DIN EN 196-1 and allows obtaining the average flexural tensile strength
fim and compressive strength fom of the EQ-GRID matrix. The results are summarized in
Table 3.

Table 3:  Mechanical properties of the EQ-GRID system’s matrix.

fem (28 days) Co.V. fim (28 days) Co.V. Em fy
14.95 N/mm? 3.6% 5.13 N/mm? 0.9% 7.5 GPa 0.5 N/mm?

Finally, Table 3 also reports the elastic modulus Enx and the pull-off strength f, declared
by the manufacturer [77].

3.3 Tensile properties of the EQ-GRID system

The mechanical properties of the EQ-GRID system were obtained from direct tensile
tests performed on composite specimens. Two different test setups were adopted (Figure
3.4).

]

Clamping grips Clevis-type grips

Figure 3.4:  Direct tensile tests on composite coupons: scheme of the test setups

In the first one, the samples were clamped in the wedge grips of the testing machine. A
lateral pressure of 5 bar was applied to avoid sliding the specimen in the load introduc-
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tion area (Figure 3.4). On the contrary, the axial load was transferred by adhesion using
the clevis-type grips (Figure 3.4). In this case, sanded aluminium tabs connected to the
grips were glued with epoxy resin to the ends of the composite specimens. This gripping
mechanism is suggested by Annex A of the American standard AC434 [53].

Therefore, thirty direct tensile tests were carried out monotonically under displacement
control with a constant rate of 0.5 mm/min at ambient laboratory conditions. An MTS
electro-hydraulic universal testing machine equipped with an MTS 100 kN load cell was
used. The first fifteen tests were performed adopting the clamping grips and the second
fifteen with the clevis-type. Therefore, ten samples were tested for each main direction of
the grid (five per test setup). The vertical displacement and the tensile load were record-
ed.

3.3.1 Direct tensile tests with clamping grips

This test method aims to simulate a strengthening application in which the grid is me-
chanically anchored at its ends. The expected failure is the tensile breaking of the fibres.
Some constructive details, such as connectors or turning the grid in the corners of the
building (Figure 3.5), can reproduce a mechanical anchorage.

Figure 3.5:  Examples of construction details for the application of the EQ-GRID system [73]

The preparation’s stages of the coupons are illustrated in Figure 3.6. The first matrix
layer (3 mm thick) was rolled out on the wood formwork. Then, grid strips with dimen-
sions 50x440 mm and 85x440 mm were embedded in the still fresh mortar for a length of
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300 mm, leaving free their ends for 120 mm. The application was completed by covering
the textile strips with the second layer of matrix (5 mm thick, wet on wet application).
The total thickness hs of the coupons was 8 mm.

a) The first layer of matrix is applied, b) The second layer of matrix is applied
and the EQ-GRID strips are positioned

¢) The aluminium tabs are glued d) The composite coupons with the
aluminium tabs are ready

Figure 3.6:  Preparation of the composite specimens for the tensile tests with clamping grips

Finally, the samples were conditioned for 28 days in the laboratory climate room for the
maturation of the inorganic matrix (25°C, 55% humidity). Moreover, sanded aluminium
tabs were glued on the free ends of the samples to ensure homogeneous stress distribution
near the gripping area of the testing machine. It is worth specifying that only the grid was
clamped during the tests, as the ultimate tensile stress and strain of the composite speci-
mens may vary, depending on the pressure applied in the gripping areas [50].
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Figure 3.7:  Direct tensile test on composite specimens with clamping grips

The test results are depicted in Figure 3.8, in which the response curves are shown for
each main direction of the grid (vertical, horizontal and diagonal).

2500 Clamping grips —Vertical
—Horizontal
—Diagonal
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Figure 3.8:  Experimental results of the direct tensile tests on EQ-GRID composite specimens with clamping-
grips
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3.3 Tensile properties of the EQ-GRID system

The stresses are referred to the homogenized cross-section area of the bare textile Aeq. In
this way, the results are not affected by any possible variations of the mortar cross-
section. The strain is evaluated based on the global displacement measured between the
wedge grips of the testing machine since no sliding occurred in the gripping areas.

As shown in Figure 3.7, the coupons were initially uncracked until the tensile strength of
the mortar was reached (stage 1). Therefore, the first cracking stress of the matrix fem can
be calculated:

_ Fcr,M

f =
w, - h,

(3.10)

cr,M
Where Ferm is the first cracking load, ws and hs are respectively the samples’ width and

the thickness. Table 4 reports the mean matrix cracking stresses fe,w for the three direc-
tions of the grid.

Table 4:  First cracking stress of the matrix with clamping-grips

Vertical Horizontal Diagonal
ferm 1.00 N/mm? 1.34 N/mm? 0.96 N/mm?
Co. V. 15.8% 11.2% 5.7%

During the second test phase, cracks developed (stage 1) and became wider. After that,
the load was carried almost exclusively by the fibre wires up to failure (stage II). There-
fore, the whole tensile response curve of the EQ-GRID system up to the fibres’ breaking
(Figure 3.9) could be obtained through the clamping-grip method.

Table 5:  Mechanical properties of the composite specimens tested with clamping grips

Direction fclamping,cr Eclamping,cr fclamping,u Eclamping,u
Vertical 275 N/mm? 0.22% 996 N/mm? 2.0%
Co. V. 15.8% 22.1% 3.6% 4.5%

Horizontal 373 N/mm? 0.41% 673 N/mm? 2.3%
Co. V. 11.2% 12.5% 6.9% 15.4%
Diagonal 1261 N/mm? 0.37% 1591 N/mm? 2.1%
Co. V. 5.7% 24.0% 2.5% 27.6%

It is worth noting that, since the grid was embedded in the mortar, it was not free to strain
as the bare textile. For this reason, the average ultimate stress and strain values, feamping.u
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

and eclampingu, OF the vertical and horizontal direction are lower than the ones of the bare
textile (Table 2). On the contrary, the diagonal direction reached a tensile strength slight-
ly higher than bare textile because of the horizontal wires’ contribution. In this context,
the horizontal fibres present in the diagonal composite specimens were also stressed for
the following reasons:

¢ presence of the matrix, which transferred the tensile load to the fibre bundles after
cracking;

e greater width of all the diagonal samples due to the greater aperture size of the
grid in this direction (Figure 3.9);

e low inclination angle of the horizontal wires to the test direction (30°).

Vertical Horizontal Diagonal

Figure 3.9:  Direct tensile tests on EQ-GRID composite specimens with clamping-grids

Finally, the average number of cracks and distance between these were equal to 2 and 10
cm for the samples in the vertical direction. The specimens in the horizontal direction
developed 3 cracks with an average distance of 7.5 cm, and those in diagonal direction
showed 2.4 cracks with a mean distance of 8.8 cm.

3.3.2 Direct tensile tests with clevis-type grips

Fifteen tensile tests were carried out on composite specimens with clevis-type grips
(Figure 3.11) according to Annex A of the American standard AC434. This test method
aims to simulate an FRCM application in which the grid is not anchored at its ends and
whose response mainly depends on the bond between textile and matrix. Therefore, both
tensile fibres’ breaking or their slippage within the matrix are possible failures.
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3.3 Tensile properties of the EQ-GRID system

The preparation stages of the samples were the same as the first fifteen coupons, but in
this case, the strips were completely embedded in the matrix for a length of 460 mm (no
free ends of bare textile, Figure 3.10).

Therefore, the tensile load, the vertical displacement of the machine and LDTVs have
been recorded. The results of the performed tensile tests are presented in terms of stress-
strain curves in each main direction of the textile component (Figure 3.12).

i

Figure 3.11: Direct tensile tests on EQ-GRID composite specimens with clevis-type grips
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

The load was transferred from the testing machine to the specimens by adhesion through

the clevis-type gripping mechanism. Thus, the obtained tensile response curves are only
influenced by the textile-matrix bond.

s o et —Vertical
2500 ClLVlb-tpr S Horizontal
—Diagonal

[N/mm?]

clevis

Figure 3.12: Results of the direct tensile tests on EQ-GRID composite specimens with clevis-type grips

As shown in Figure 3.12, the first phase of the system’s response is linear elastic (stage

1). The tensile load was mainly carried by the mortar, which remained uncracked until its
tensile strength was reached.

The first cracking stress fcrm 0f the mortar is calculated with Eq. (3.10), and it is reported
in Table 6 for each direction of the grid. It is worth pointing out that the values of fe-m in
Table 6 are similar to each other and those obtained from direct tensile tests with clamp-
ing-grips (Table 4).

Table 6:  First cracking stress of the mortar with clevis-type grips

Vertical Horizontal Diagonal
ferm 1.04 N/mm? 0.99 N/mm? 1.12 N/mm?
Co.V. 41.2% 32.6% 17.7%
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3.3 Tensile properties of the EQ-GRID system

After stage I, cracks developed, and the load was gradually transferred from the matrix to
the grid. Compared to the tensile tests with clamping grips, the cracking phase (stage 1)
was distributed over a wider strain range and the cracked phase (stage Il) over a smaller
one.

The specimens in the vertical direction presented an average number of cracks equal to
2.75. The distance between these was about 12.8 cm. Moreover, the samples in the
horizontal direction showed 4 cracks with an average distance of about 8.2 cm and those
in diagonal direction developed 3 cracks with a mean distance of 13.6 cm.

These results show that the horizontal direction has a better textile-matrix bond than the
vertical one because of the higher number of cracks with lower distances. In this context,
the horizontal AR glass wires are less smooth since the fibres cannot be uniformly bun-
dled during the production process. Thus, the bond is improved, and the breaking of some
threads could occur in two samples. As depicted in Figure 3.12, two curves of the hori-
zontal direction are characterized by a strength drop after the peak stress.

Therefore, Table 7 reports the average first cracking stress feieviscr, maximum strength
fetevis,u, and corresponding strains ecievis.cr aNd Eclevis,u-

Table 7:  Mechanical properties of the EQ-GRID system tested with the clevis-type grips

Direction fetevis,cr Eclevis,cr fetevis,u Eclevis,u
Vertical 287.3 N/mm? 0.07% 551.3 N/mm? 1.2%
Co.V. 41.2% 12.8% 6.3% 20.1%
Horizontal 276.6 N/mm? 0.06% 665.9 N/mm? 2.4%
Co.V. 32.6% 26.9% 16.3% 18.5%
Diagonal 1482.7 N/mm? 0.11% 1843.9 N/mm? 2.5%
Co.V. 17.7% 18.4% 7.4% 9.3%

Also, in this case, the average diagonal tensile strength is higher than the bare textile
since the horizontal wires present in the composite specimens were also stressed. The
diagonal coupons’ width was greater than the other ones (95 mm versus 60 mm), and the
horizontal wires’ inclination was only 30° to the test direction. Moreover, the grid was
not mechanically anchored, and the tensile load was transferred from the matrix to the
textile component only by adhesion. Therefore, the horizontal glass wires could give a
contribution even greater than that observed with the clamping grips. In fact, feevisuy and
folamping,u are respectively equal to 1843.9 N/mm?2 and 1591 N/mm?,
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3.4 Double-lap shear-bond tests

Twelve double-lap shear tests were carried out to investigate the EQ-GRID system’s
bonding behaviour when applied to a masonry unit. The adopted support was the hollow
clay brick “WZI Poroton 2 DF 0,9/12” (240x115x113 mm), which was cut into two equal
parts. The strengthening system was applied on both sides for a width of 113 mm. As
depicted in Figure 3.13, three bonding lengths were investigated (4 cm, 8 cm and 12 cm).

The first matrix layer 3 mm thick was applied to the dry masonry unit. Then, the grid
strips were embedded in the still fresh mortar. Finally, the second matrix layer, 5 mm
thick, was applied (wet on wet application). In this way, the grid was completely covered
by the mortar, and the total system’s thickness was 8 mm.

4 cm 7 8 cm 12 cm

Bonding a4 Bonding Bonding

length ‘. length length

Figure 3.13: Double-lap shear-bond tests: bonding lengths

The experimental program included three tests for each main direction of the grid (Table
8). Three further tests were performed only for the specimens in the vertical direction, in
which the diagonal fibre yarns were cut. Thus, their possible influence on the failure
mode was also investigated.

The tests were carried out at ambient laboratory conditions with an MTS electro-
hydraulic universal testing machine equipped with a load cell of 100 kN. They were
performed under displacement control with a constant rate of 10 mm/min, and the tensile
load was applied through steel plates bonded on the perforated surfaces of the masonry
units with epoxy resin. The test setup is depicted in Figure 3.14. The tensile load and the
vertical displacement of the machine were recorded.

The experimental results are expressed in terms of stress-displacement diagrams for each
direction (Figure 3.15). The stresses are always referred to the homogenized equivalent
cross-section of the bare textile. In this way, any possible variation of the matrix could
not influence the results.
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3.4 Double-lap shear-bond tests

Table 8:  Double-lap shear-bond tests: tested specimens

ID specimen Masonry unit Bonding length | Direction of the grid
V1 4cm
V2 8cm
V3 WZI Poroton 2 DF 12 cm Vertical
V4 0,9/12 4cm
V5 8cm
V6 12 cm
H1 WZI Poroton 2 DF 4 om .
H2 0,9/12 8cm Horizontal
H3 12 cm
D1 4cm
D2 wzl P(;), ;c;tlozn 2DF 8cm Diagonal
D3 12 cm

Figure 3.14: Double-lap shear-bond tests
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Figure 3.15: Double-lap shear-bond tests: stress - vertical displacement curves

Table 9 reports the maximum shear-bond stress fuond.dounlemax @and the corresponding
vertical displacement vmnax achieved by each specimen.

It is worth noting that the strength attained by the V1, V2, V3 specimens is almost con-
stant, and the post-peak values improve with increasing bonding length (Figure 3.15).
Furthermore, the diagonal wires of the V4, V5, and V6 samples were cut, and their
possible contribution was excluded. However, only the V4 specimen reached a lower
shear-bond strength. The V5 and V6 samples attained higher values. The diagonal fibres
could not substantially contribute because of the small samples’ size and their inclination
to the vertical (60°). All six specimens were characterized by the slippage of the fibres
within the mortar, confirming the strong influence of the bond at the grid-matrix interface
on the system’s strength.
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3.4 Double-lap shear-bond tests

Table 9:  Results of the double-lap shear-bond tests

ID foond,double,max [N/mm?] Vimax [mm] Bonding length
V1 598.9 1.00 4 cm
V2 554.4 1.90 8cm
V3 518.2 1.78 12 cm
V4 429.9 0.58 4 cm
V5 675.6 2.29 8cm
V6 719.3 2.06 12 cm
H1 557.2 1.27 4.cm
H2 678.5 2.14 8cm
H3 753.2 2.42 12 cm
D1 3529.9 0.93 4 cm
D2 3207.3 0.82 8cm
D3 4060.0 1.50 12 cm

Furthermore, the specimens in the horizontal direction, H1, H2, H3, reached strength
values similar to those obtained from the tensile tests with clevis-type grips. In fact, the
mean shear bond strength is equal to 663 N/mm2. The breaking of some glass wires
characterized the failure mode. Therefore, compared to the vertical direction, the grid-
matrix bond is higher in the horizontal one.

Finally, the samples D1, D2, D3 attained strength values greater than those obtained from
the direct tensile tests with clevis-type grips. The load was also transferred from the
matrix to the grid by adhesion, but the specimens’ width was greater than the composite
coupons (113 mm versus 95 mm). Therefore, the strength contribution of the horizontal
yarns was even higher than in the direct tensile tests. Furthermore, the stress-
displacement curves of the diagonal direction show a sudden strength drop after the peak
(Figure 3.15), which corresponds to the breaking of some glass wires. Thus, the high
bond of the grid with the matrix could also be confirmed for the diagonal direction.

It is important to stress that no debonding at the system-brick interface was observed in
all the double-lap shear-bond tests. Since the mortar can penetrate the openings of the
fibre mesh very well and has a very high adhesive resistance, only two failure modes
were observed: slippage or partial wires’ breaking.
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

3.5 Single-lap shear-bond tests

Five single-lap shear-bond tests were carried out for the vertical direction of the EQ-
GRID system. As depicted in Figure 3.16, the textile strips (50x500 mm) were applied on
a clay brick with dimensions of 240x115x71 mm, and the bonding length was 200 mm.

=50 mm
300 mm
IQO mm
- T
200 mm | | -
20 mmJ -— " 50 mm
—'115 mm =

Figure 3.16: Dimensions of the specimens prepared for the single-lap shear-bond tests

The application’s phases are illustrated in Figure 3.17. The first matrix layer was applied
to the masonry unit. Then, the grid strip was embedded with the aid of a steel trowel in
this still fresh layer. Finally, the application was completed with the second matrix layer.

Figure 3.17: Preparation’s phases of the samples for the single-lap shear-bond tests
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3.5 Single-lap shear-bond tests

The specimens were left for 28 days at ambient laboratory conditions. Since the free part
of the grid strip was clamped between wedge grips of the testing machine, aluminium-
sanded tabs glued with epoxy resin were also adopted. Therefore, the samples were tested
under displacement control with a constant rate of 0.5 mm/min using an MTS electro-
hydraulic universal testing machine equipped with a load cell of 100 kN. In the adopted
test setup (Figure 3.18), the masonry unit was restrained between two steel plates con-
nected through four steel bars and the bottom plate was gripped to the testing machine.
The displacement and the applied load were recorded continuously during the test. One
LVDT reacted against a thin aluminium plate glued to the bare textile immediately
outside the bonded length.

Figure 3.18: Single-lap shear bond tests

The results are expressed in terms of strength-displacement diagrams (Figure 3.19). The
stresses are calculated considering the homogenized equivalent cross-sectional area of the
bare textile. Four samples failed by fibre’s breaking. Only the “Shear V2 sample showed
the slippage of the grid into the matrix. After the peak, the curve of this specimen de-
creases progressively and doesn’t have any sudden strength drop. The diagram depicted
in Figure 3.19 confirms this behaviour.

Moreover, no debonding at the system-brick interface or detachment of the grid from the
mortar layers was observed. The average maximum shear-bond strength foondsinglem 1S
equal to 971.2 N/mmz2 (Co.V. = 4.1%) at a mean vertical displacement value of 1.86 mm
(Co.V. = 18.8%). It is worth noting that the average tensile strength obtained from the
direct tensile tests on composite specimens with clamping grips is equal to 996 N/mm?
and the width of the composite part was the same (60 mm). This result confirms that the
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

fibre’s breaking was the failure mode that influenced the shear-bond strength in the
adopted test setup.

Single-lap shear-bond tests

1200 —Shear V1
—Shear V2
1000 g Shear V3
— ¢ —Shear V4
E 300 Shear V5
= 600
2 400 \\
200 o T
0
0 1 2 3 4 5
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Figure 3.19: Stress-displacement diagrams obtained from the single-lap shear-bond tests

3.6 Cyclic lateral shear tests

The cyclic lateral shear tests allow evaluating the basic parameters of the seismic re-
sponse of masonry panels, such as in-plane strength, displacement capacity and ductility.
No technical standard exists for this type of test. Only a guideline of the RILEM technical
committee gives indications [78].

For the foreseen experimental program, twelve masonry specimens (125 x 125 x 24 cm)
with ten courses of bricks (Figure 3.20) were prepared. Four samples were in the original
condition, and eight were reinforced with the application of the EQ-GRID system. Table
10 summarizes the specimens’ characteristics.

Two types of masonry units were adopted: calcium-silicate and hollow clay bricks. The
first was the “KS Heidelberger 4DF 20/2,0” (24 x 24 x 11.3 cm) with a 1.4% hole pat-
tern. The second was the “WZI Poroton 3DF 0,9/12” (24 x 17,5 x 11.3 cm) with 34%
rectangular perforation.

The mortar mix used to produce the specimens had a weight ratio of hydraulic lime CL
90, sand, cement and water equal to 1.1 kg : 1.2 kg : 14.9 kg : 3 kg. The mechanical
properties were obtained through bending and uniaxial compression tests, according to
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3.6 Cyclic lateral shear tests

DIN EN 196-1. Therefore, six mortar prisms 40 x 40 x 160 mm were prepared and
subjected to bending tests after 28 days of maturation. Then, the two halves of each
specimen obtained from the bending tests were tested under uniaxial compression, as
suggested by DIN EN 196-1. This method allowed performing compression tests on
twelve mortar cubes 40 x 40 x 40 mm. Thus, the resulted mean values of the mortar
flexural tensile strength fm and compressive strength fy are shown in Table 10.

KS panel WZI panel
[ T T T 1 10 [ T T 1T T T 1
[ T 9 L T T 1
| “H"H“ \III §' Ilu\I”I"IIHHHII“II
5 (C T T T 11 6 o o
& L 1 1 5 -
- I [ 1 4 [ + T T 1 [}~
LI 1 1 3 LT
[ T T T 1 2 [ T T T I [ 1
LT T 1 1 I
125 cm 24 cm 125 cm
Figure 3.20: Geometry of the tested masonry walls
Table 10: Tested masonry specimens
ID Masonry Unit Mortar EQ-GRID Vfgzga'
KS 01 KS Heidelberger _ 240 kN
KS 11 - 7 fm = 1.8 N/mm2 On one side 240 kN
KS 12 - fwe = 0.58 N/mm?2| On one side 120 kN
KS21 On both sides| 120 kN
KS 2 2 On both sides| 120 kN
WZ1. 01 WZI Poroton ' 240 kN
WZ1 0 2 ty =12 mm - 120 kN
Wzl 11 fu=1.8 N/mm2 | On one side 240 kN
WZl 12 fwt=0.58 N/mm2| On one side 120 kN
Wzl 2 1 On both sides| 120 kN
Wzl 2 2 On both sides| 120 kN

Finally, the preparation phases of the strengthened panels are illustrated in Figure 3.21.
After applying the first matrix layer, the grid was embedded in the fresh mortar with the
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

aid of a steel trowel. Then, a second layer of the same mixture was applied, covering the
grid completely (wet on wet application). The total thickness of the finished reinforce-
ment was about 8 mm.

a) Application of the first layer of b) Positioning of the textile component ¢) Applied system
matrix on the masonry panel of the EQ-GRID system and rolling out
of the second layer of matrix

Figure 3.21: Application of the EQ-GRID system on a masonry wall

3.6.1 Testsetup of the cyclic lateral shear tests

The specimens were tested at the Karlsruhe Institute of Technology within the European
research project “MULTITEXCO - High Performance Smart Multifunctional Technical
Textiles for the Construction Sector”. The adopted test setup is shown in Figure 3.22.

The first step of the testing procedure was to fix the panels to the existing structural floor.
Then, a vertical hydraulic actuator of 500 kN with a relative load cell of 500 kN applied a
constant force equal to 120kN or 240kN (Table 10) that was kept constant during the test.
These values corresponded to applying a uniform compressive stress of 0.4 N/mm? (120
kN) and 0.8 N/mm2 (240kN) at the top of the panels. In this respect, a load-distributing
plate positioned on the top of the upper steel beam allowed the introduction of uniform
normal stress in the specimens. Then, the cyclic displacements were applied through a
horizontal hydraulic actuator of 1000 kN with a relative load cell of 1000 kN. The verti-
cal and horizontal beam movements were decoupled thanks to a PTFE plate.

The experimental program provided for the application of alternated lateral displacements
with increasing amplitude (Imm, 2mm, 4mm, 6mm, 8mm, 10mm, 12mm, 14mm, 16mm,
18mm, etc.) imposed quasi-statically up to the specimen collapse. The duration of each
sinusoidal cycle was 120 seconds.
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3.6 Cyclic lateral shear tests

Figure 3.22: Cyclic lateral shear test: test setup

The displacements were introduced directly in the middle of the upper beam through a
steel bolt. In this way, a symmetrical behaviour in compression as in the tensile was
allowed. Furthermore, no mechanical fixing to the head beam was needed [79], and the
deformation was transferred in the masonry specimen only by friction. Moreover, the
panels were instrumented to get the most important experimental data. Forces and dis-
placements of the vertical and horizontal cylinders were recorded. Two inductive dis-
placement transducers (+ 100 mm) positioned at the top of the specimens also measured
the horizontal displacements. The free rotation of the head beam was prevented with four
vertical threaded bars (two on the left and two on the right of the wall). For this reason,
two inductive displacement transducers (+ 100 mm) were placed vertically on the upper
steel beam to record an eventual rotation during the tests. Each bar was pre-tensioned
with a normal force of 9 kN, and the internal normal force was recorded with two load
cells.

3.6.2 Interpretation of the experimental results of the
cyclic shear tests

A common interpretation of the cyclic lateral shear tests’ experimental data is to idealize
the envelope of the hysteresis loops with a bilinear force-displacement curve, as shown in
Figure 3.23.
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Figure 3.23: Cyclic envelope and equivalent bilinear curves

In this case, the definition of force-displacement relationships is relatively simple since
the post-peak area is not taken into account completely. The first part of the equivalent
response is linear elastic, and the secant stiffness ksec can be calculated between zero and
70% of the maximum shear force Vmax (V1 in Figure 3.23). In this range of values, the
panels are generally not cracked. Therefore, the behaviour can be approximated linear
elastic [18]. Then, the ultimate displacement uy is found on the cyclic envelope curve at a
residual lateral strength equal to 80% of the maximum force (0.8Vmax in Figure 3.23). The
ultimate shear force V, is obtained through the equivalence of the energies dissipated
from the experimental and the equivalent curve. It is worth pointing out that this interpre-
tation is too conservative in the case of walls reinforced with the EQ-GRID system.

During the experimental campaign, it was observed that most of the strengthened speci-
mens presented only slight damage at the displacement u, or even no structural damage.
The bilinear idealisation cannot completely consider the better crack pattern, the higher
displacement capacity and residual strength after the peak of the reinforced panels. In this
respect, the European Macroseismic Scale EMS-98 [80] defines five damage levels for
masonry buildings under earthquake load, ranging from no structural damage to destruc-
tion. Thus, the cyclic envelope curves may be idealized through multilinear force-
displacement relationships consistent with this phenomenological approach.

As shown in Table 11, five damage levels are identified for the tested masonry panels,
and progressive strength drops are assigned by achieving the damage degrees DL3, DL4
and DL5. In this way, the post-peak structural behaviour is completely considered, and a
more detailed equivalent response can be determined.

Therefore, starting from the linear elastic range of the multilinear curve (Figure 3.24), the
secant stiffness ks is calculated between zero and Vi (V1 = 0.7Vmax). Then, the horizontal
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3.6 Cyclic lateral shear tests

displacements at DL3, DL4 and DLS5, i.e. us, us, and us, can be identified at a defined

percentage of residual lateral strength.

Table 11: Classification of damage for the tested masonry panels

DL1 No damage
DL2 Slight damage
DL3 Moderate damage
DL4 Heavy damage
DL5 Near collapse

V<

DL2 DL3

Uel,2 us3

DL4
DL5

U4 us u

Table 12 shows the values chosen for the tested “KS” and “WZI” specimens based on the
observed damage pattern.

|ZAN

| ZQAN

|:| Aenv.3 |:| Amuir.3
Vnae b [ Aenv.4 Vomaw - — — — — _ [ Amuit4
[::I Aenv.s |:| Amulr.5
Vit--4!
] f N
3 N
<A Jefed Sl ol [
= A " N
-4 1
- >
U3 w4 us u liel ] Uel,2 us  u4 Us u
Figure 3.24: Cyclic envelope and equivalent multilinear curves
Table 12: Defined percentages of residual lateral strength Vp_ at the DLs 3,4 and 5
EQ-GRID VbL3 Vb4 Vbis
KS” - 0.80V/max 0.60Vmax 0.40Vmax
specimens on one side 0.70Vmax 0.50V max 0.30Vmax
on both sides 0.70Vmax 0.50V max 0.25Vmax
WD - 0.80V/max 0.60Vmax 0.40Vmax
. on one side 0.80Vmax 0.60V max 0.40Vmax
specimens -
on both sides 0.70Vmax 0.50V max 0.30Vmax
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Furthermore, the ultimate shear forces V.3, Vua and Vs are calculated, ensuring the
energy equivalence between the experimental and equivalent curves. To this aim, the area
below the multilinear curve is divided into three parts, Amuit3, Amuita and Amats, (Figure
3.24):

Vis
Ans =Vy 57Us — 2k, (3.11)
Aviia =V '(u4 - us) (3.12)
Anies =Vus '(us —U4) (3.13)

Where ks is the secant elastic stiffness calculated through Eq. (3.14):

V,

Keee = — 14
ueI 1 (3 )

V1 is the elastic shear force equal to 70% of Vmax and ue1 is the corresponding experi-
mental displacement value (Figure 3.24). Thus, the ultimate shear forces Vi3, Vua and Vs
can be obtained through the equivalence of the areas below the cyclic envelope and the
multilinear curve, as follows:

2: nv.
&nvs = Anult.3 :>Vu,3 = ksec '£U3 - L'I32 - kI% 2 J (315)
A%nvA = Anult.A :>Vu,4 = U&Tl‘; (316)
4 3
A%nvfa = Anult.s :>Vu,5 = u&iv-lj (317)
5 4

It is important to stress that each applied horizontal displacement was cyclically imposed

three times during the tests. For this reason, six backbones and six equivalent curves are

calculated for each specimen. Since this interpretation aims to identify just one equivalent

curve, the average value of the ultimate shear forces Vi3, Vu4, Vus is considered. On the

contrary, the minimum one is chosen for the ultimate displacements us, us, and us. There-

fore, the ductility  reached at each DL can be determined with Eq. (3.18):
U, u Ug

. 4 .
HpLz = y HpLa = y Hps =
uel,z l'lel,2 uel,z

(3.18)

Where the elastic limit displacement ue,2 is calculated through Eg. (3.19):
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Uy, = - (3.19)

Finally, the deformation capacity of the tested panels is expressed in the following in
terms of drift. Since the rotation of the upper steel beam was negligible, the drift d is
defined as the ratio between the horizontal displacement u and the height of the specimen
h:

c

d, =—=; dszuﬁ; d4:ﬁ; dszuﬁ (3.20)

3.6.3 Experimental results of the “KS” masonry panels

3.6.3.1 Unstrengthened “KS” specimens

The unstrengthened panels in calcium-silicate bricks were the “KS 0 1” and “KS 0 2”.
The samples were characterized by the same geometrical and mechanical properties. The
first one was tested under a constant vertical force of 240 kN and the second one under a
constant force of 120 kN. The hysteresis and the three envelope curves of the first speci-
men are depicted in Figure 3.25.

V [kN]

Experimental values

==-1Ist cycle backbone

-300

----- 2nd cycle backbone

-1 % D,
Drift [%] = - 3rd cycle backbone

Figure 3.25: Hysteresis and backbone curves of the “KS 0 17 specimen
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Nine displacement steps (from 1 mm to 16 mm) were applied. During the last one, at the
end of the second cycle, the panel collapsed. The maximum horizontal force Vmax record-
ed during the test was 250.6 kN at a horizontal displacement of 7.57 mm. The equivalent
multilinear curve is shown in Figure 3.26. The displacement values us, us, Us are identi-
fied on the backbone curves at a residual lateral strength equal to 80%, 60% and 40% of
Vmax-

z
= 16 -1.2 \(7)\ 04 _ 0.8 12 1.6
- “.
—DL1-DL2
) —DL2-DL3
/-200 DL3-DL4

2250 —DL4 - DL5

AT - - Ist cycle backbone
- 2nd cycle backbone

Drift [%] --= 3rd cycle backbone

Figure 3.26: Equivalent multilinear curve of the “KS_0_1” specimen

The “KS_0_1” panel showed a mixed shear failure with diagonal cracks passing through
the mortar joints and the bricks. Figure 3.27 illustrates the DLs reached by the specimen.
Furthermore, some parameters of the equivalent multilinear curve, such as the values of
drift and residual resistance at each DL, are summarized in Table 13, where the ductility
uoLi is always calculated with reference to the displacement Ue,2.

Table 13: “KS_0_1” specimen: parameters of the equivalent multilinear curve

“KS 0 1” specimen
d2 = 0.38%
d2 - 620/‘; Vs = 215 kN MoLs = 1.6
3 — U,
d4 =0.75% Vu,4 = 155 kN UpbLa = 2.0
d5 =0.93% Vu,5 =905 kN UpLs = 2.4
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Ve

DL4: side A

DLS: side A

Figure 3.27: Damage levels reached by the “KS_0 1" specimen

The “KS_0_2” specimen also failed by shear with diagonal cracks from corner to corner,
but compared to the previous sample, they developed mainly through the mortar joints.
Some inclined cracks occurred in the masonry units at the centre and compressed toes of
the panel (Figure 3.30), areas in which a higher concentration of stress was provided.

The hysteresis and envelope curves are shown in Figure 3.28. Six displacement steps
(from 1 mm to 10 mm) were applied. The maximum horizontal force Vmax Was equal to
158.58 kN, and it was recorded at a horizontal displacement of 7.44 mm. It is worth
noting that, compared to the “KS_0 17 specimen, the value of Vmax is about 100 kN lower
since the second specimen showed “stepped-stairs” cracks due to the lower applied
normal stress. On the contrary, the failure mechanism of the “KS 0 17 specimen was
influenced by the achievement of the brick tensile strength. After attaining the maximum
shear force, a resistance degradation occurred, and the test was stopped. Therefore, there
was insufficient experimental data to calculate the equivalent multilinear curve, and only
the bilinear one is determined (Figure 3.29).
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Figure 3.28: Hysteresis and envelope curves of the “KS_0_2” specimen
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Figure 3.29: Equivalent curve of the “KS_0 2” specimen

Table 14: “KS 0 2” specimen: parameters of the equivalent bilinear curve
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3.6 Cyclic lateral shear tests

3 ‘KS_O_Z, >

d2 = 0.29%
dsz = 0.51%

Vu,3 =133.30 kN UpL3 = 1.8

The final cracking pattern of the “KS 0 2” sample is shown in Figure 3.30, in which the
“stepped-stairs” cracks are evident. Therefore, the parameters of the equivalent bilinear
curve are indicated in Table 14. The displacement us is identified on the backbone curves
at a residual lateral strength equal to 80% of Vimax.

Figure 3.30: “KS_0_2” specimen: cracking pattern at the end of the test

3.6.3.2 “KS” specimens strengthened on one side

The “KS” specimens strengthened on one side were the “KS 1 17 and “KS_1 2”. They
had the same geometrical and mechanical properties as the URM panels. The first one
was tested under a constant vertical force of 240 kN and the second one under a constant
value of 120 kN. The hysteresis loops with the three envelope curves of the “KS 1 17
sample are depicted in Figure 3.31.

Compared to the URM specimen, the “KS 1 17 panel showed higher lateral strength and
displacement capacity. Ten displacement steps from 1 mm until 18 mm were applied, and
the maximum attained shear force was 271.4 kN. This value was recorded at a horizontal
displacement equal to 9.85 mm. Moreover, the residual strength measured during the
third cycle of the last step was about 50 kN.
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Figure 3.31: “KS_1_1” specimen: hysteresis and backbone curves
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Figure 3.32: “KS_1_1” specimen: equivalent multilinear curve
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3.6 Cyclic lateral shear tests

The panel showed a mixed shear failure with diagonal cracks that developed along the
mortar joints and the bricks, and no debonding of the EQ-GRID system was observed.
The different states of damage are depicted in Figure 3.33

DL3: side A DL3: side B

DLS5: side A DL5: side B

Figure 3.33: “KS_1_1” specimen: damage levels
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

Concerning the calculation of the equivalent multilinear curve, the horizontal displace-
ments Us, Us, Us are identified at a residual lateral strength equal to 70%, 50% and 30% of
Vmax, Since the EQ-GRID system improves the cracking pattern of the panel. Compared to
the URM sample, the achievement of the DLs 3, 4 and 5 occurred at greater drift values.

Table 15: “KS_ 1 1” specimen: Values of drift and residual resistance for the different states of damage

“KS 1 1” specimen
d> = 0.46%
dz ~05 20/2 Vus = 230.69 kN koLs = 1.8
ds = 1.00% Vu,4 =146.35 kN UbLs = 2.2
d5 =1.22% Vu,5 =94.41 kN UbLs = 2.6

The second “KS” specimen strengthened on one side, i.e. the “KS 1 27, achieved a
lateral shear strength equal to 204.36 kN at a horizontal displacement of 7.50 mm. This
resistance value is lower than the previous sample since the panel was subjected to lower
normal stress. In this case, the constant vertical load was 120kN. Thus, the displacement
capacity of the “KS_1_2” specimen was a little bit higher than the one of the “KS 1 17
panel. Eleven displacement steps, from 1 to 20 mm, were applied, and the damage mech-
anism was a little less brittle.

The final damage pattern is shown in Figure 3.34. It was characterized by a mixed shear
failure with cracks mainly along the mortar joints.

Figure 3.34: Final cracking pattern of the “KS_1_2" specimen
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3.6 Cyclic lateral shear tests

Moreover, some masonry units were cracked in the higher stress concentration areas, i.e.
the panel’s centre and the compressed toes.

Since the test data in the post-peak phase were not completely reliable, only the first part
of the hysteresis curve until the maximum shear force achievement is depicted in Figure
3.35.
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Figure 3.35: Hysteresis curve of the “KS 1 2" specimen

3.6.3.3 “KS” specimens strengthened on both sides

The calcium-silicate brick masonry specimens strengthened on both sides were the
“KS 2 17 and “KS_2 2”. They were both tested under a constant vertical load of 120
KN. The hysteresis and the backbone curves of the first sample are depicted in Figure
3.36. The maximum shear force reached from this specimen is equal to 271.5 kN, and it
was recorded at a horizontal displacement of 12.78 mm. It is worth noting that, thanks to
the EQ-GRID system, fourteen displacement steps (from 1 mm to 32 mm) were applied,
and the resistance increased by 71% compared to the unreinforced sample “KS 0 2”.
Moreover, the maximum achieved drift is equal to 2.4%, and it was recorded during the
first cycle of the last displacement step. The equivalent multilinear curve is shown in
Figure 3.37. The horizontal displacements us, us, Us are defined on the backbones at a
residual shear strength equal to 70%, 50% and 25% of Viax.
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Figure 3.36: “KS_2_1” specimen: hysteresis and backbone curves
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Figure 3.37: “KS_2_1” specimen: the equivalent multilinear curve
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3.6 Cyclic lateral shear tests

The “KS 2 1” specimen failed with diagonal cracks from corner to corner, and no
debonding of the strengthening system was observed. Thanks to the high bond properties
of EQ-GRID with the masonry support, the panel structure was held together by the
system. Thus, larger displacements could be applied without losing the stability of the
panel. Moreover, horizontal cracks occurred in the lower bed joint after the drift value of
1.8% (Figure 3.38), and large displacements with a relative constant strength of about 60
kN were measured. The panel began to show sliding behaviour. Therefore, the residual
lateral strength was relatively constant in the latest steps.
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DLS: side A DL5: bottom left corner of the side A

Figure 3.38: “KS_2_1” specimen: damage levels

The “KS 2 2” panel also failed with two diagonal cracks from corner to corner. The
hysteresis and the envelope curves are depicted in Figure 3.39. The maximum shear force
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

recorded during the test is equal to 252.5 kN, and it was measured at a horizontal
displacement of 9.69 mm.
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Figure 3.39: “KS_2_2” specimen: hysteresis and backbone curves
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Figure 3.40: “KS_2_2” specimen: the equivalent multilinear curve
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3.6 Cyclic lateral shear tests

Compared to the URM specimen “KS 0 2”, the resistance increased by about 60%. It is
worth noting that the hysteresis loops appear to be non-symmetrical in the last phase of
the test, with positive strength values greater than the negative ones. The reason is to be
found in the non-symmetrical damage that the specimen showed. As illustrated in Figure
3.41, three horizontal cracks developed in the left bottom corner during the latest
displacement steps, and only one horizontal crack formed in the right bottom corner.
Therefore, the panel showed a non-symmetrical sliding behaviour.

The equivalent multilinear curve is depicted in Figure 3.40. The horizontal displacements
Us, Us, Us are defined on the backbones at a residual strength equal to 70%, 50%, 25% of
Vmax-

| Y e
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© =i [[IJYe
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DL3: side A DL4: side A
- o |

KS 02
03 02 2016
18.MM
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Figure 3.41: “KS_2_2” specimen: damage levels
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Chapter 3: Experimental characterization of the EQ-GRID strengthening system

Finally, Table 16 reports the parameters of the multilinear curves for the “KS 2 1 and
“KS 2 2” specimens.

Table 16: Values of drift and residual resistance for the “KS” specimens strengthened on both sides

“KS 2 1~ “KS 2 2”

d2 =0.70% d2 = 0.53%
Vu3 =252 kN =1

EERY7 Hows = 1.6 1 0.00%

d4 =1.27% Vu'4 =179 kN UpLa = 1.8 d4 =1.14% Vuy4 =171 kN HUbL4 = 2.1

d5=21.37% | Vus =127 KN| pps=2.0| ds=1.26% | Vus=120kN| pps=2.4

Vus=231kN pos=1.9

It is worth pointing out that both panels reached the DL3 at drift values higher than the
“KS_0 17 specimen at the DL5 (ds = 0.93%). Compared to the URM sample, the average
values of ds, ds and ds increased by 72%, 61%, 41%.

3.6.4 Experimental results of the “WZI” masonry panels

3.6.4.1 “WZI" unstrengthened specimens

The “WZI_0_1” and “WZI_0_2” specimens were unstrengthened panels in hollow clay
brick characterized by the same geometrical and mechanical properties. They were tested
under a constant vertical force of 240 kN and 120 kN, respectively. Compared to the
unreinforced “KS” panels, both “WZI” samples showed more brittle behaviour. In this
regard, seven displacement steps, from 1 mm to 12 mm, were applied to the “WZI 0 1~
specimen, which presented a very brittle behaviour with a sudden diagonal cracking up to
the collapse. The specimen reached the DLs 3, 4 and 5, respectively, during the first,
second and third cycle of the last displacement step. As shown in Figure 3.44, the panel
collapsed completely, losing its ability to resist any further horizontal action.

Figure 3.42 illustrates the hysteresis and the backbone curves of this specimen. The
maximum attained shear force is equal to 218.3 kN, and it was recorded when the first
diagonal cracks appeared from the centre to the corners, mainly through the bricks. The
horizontal displacement value at the peak shear force was 8.0 mm.

The equivalent multilinear curve is shown in Figure 3.43. Table 17 reports the drift and
residual resistance values at the different DLs.
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Figure 3.42: Hysteresis and backbone curves of the “WZI 0_1” specimen
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Figure 3.43: Equivalent multilinear curve of the “WZI_0_1” specimen

123



Chapter 3: Experimental characterization of the EQ-GRID strengthening system

DLS: side A

Figure 3.44: “WZI_0_1” specimen: damage levels

Table 17: Values of drift and residual resistance for the “WZI_0_1” specimen

“WZL 0 17
d2 = 0.39%
0 eoo/: Vis =216 kN UpLs = 1.5
3=U.
d4 = 0.65% Vu|4 = 144 kN UpLa = 1.7
d5 =0.71% Vu|5 =88 kN UpLs = 1.8

The “WZI_0_2” panel also attained the in-plane lateral resistance with diagonal cracks
forming mainly through the bricks. The maximum shear force reached by this specimen
is equal to 197.5 kN, and it was recorded at the horizontal displacement of 7.37 mm. It is
worth specifying that the lateral resistance achieved from the previous panel was only
20.8 kN higher. Although the applied vertical load was very different, both “WZI” panels
presented diagonal cracking with tensile failure of the masonry units. For this reason, the
strength values of these two URM specimens are not so different from each other.
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3.6 Cyclic lateral shear tests

However, the “WZI_0 2” panel showed a less brittle behaviour because of the lower
constant vertical force. Eight displacement steps, from 1 mm to 14 mm, were applied.
The sample collapsed during the first cycle of the last step. The final cracking pattern was
characterized by the partial loss of the panel’s structure (Figure 3.45), as for the
“WZI_0_1” specimen (Figure 3.44) but slightly less severe.

Figure 3.45: Final cracking pattern of the “WZI_0_2” specimen
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Figure 3.46: Hysteresis curve of the “WZI_0_2” specimen
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Figure 3.46 shows the first part of the hysteresis curve since the experimental data in the
post-peak phase were not completely reliable. Therefore, the equivalent multilinear curve
is not determined in this case.

3.6.4.2 “WLZI” specimens strengthened on one side

The “WZI” specimens strengthened on one side were the “WZI 1 1” and “WZI 1 2”
panels. They had the same geometrical and mechanical properties. The first one was
tested under a constant vertical load of 240 kN and the second one under a constant load
of 120 kN. The in-plane lateral resistance achieved by the “WZI 1 1” specimen was
equal to 251.45 kN, and it was recorded at a horizontal displacement value of 9.77 mm.
The hysteresis and the three envelope curves of the “WZI 1 17 panel are depicted in
Figure 3.47.
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Figure 3.47: “WZI_1_1” specimen: hysteresis and backbone curves

Nine displacement steps (1 mm to 16 mm) were imposed. During the first cycle of the
last step, the sample collapsed, losing the capacity to resist further horizontal actions. As
illustrated in Figure 3.47, the residual strength tends to zero in the last hysteresis loop.
However, the curve shows a greater energy dissipation than the unreinforced specimen
“WZI_0 17 (Figure 3.42). The presence of the system on one side allowed reaching
higher drift values and a better crack pattern at the same time. In this regard, the average
maximum drift achieved by the “WZI 0 1” and “WZI 1 _1” specimens were 0.81% and
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0.96%. Moreover, the in-plane strength was also improved by the EQ-GRID system. The
“WZI 0 17 sample recorded a value of 218.3 kN, while the reinforced specimen
“WZI 1 17 attained a lateral resistance of 251.45 kN.
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Figure 3.48: “WZI_1_1” specimen: the equivalent multilinear curve

Figure 3.48 illustrates the equivalent multilinear curve. The drifts and residual resistances
are indicated in Table 18.

Table 18: Values of drift and residual resistance for the “WZI_1_1” specimen

“WzI 1 17
dz2 = 0.46%
d2 -0 76(%(; Vu,3 =232 kN UpL3 = 1.7
3=0U.
d4 =0.86% Vu,4 =166 kN UpbLa = 1.9
d5 =0.95% Vu,5 =121 kN UpLs = 2.1
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DL5: side A DL5: side B

Figure 3.49: “WZI _1_1” specimen: damage levels

The DLs reached by the “WZI 1 1” sample are shown in Figure 3.49. Like the URM
specimens, the failure was characterized by diagonal cracks passing mainly through the
bricks. The breaking of some masonry units at the centre and the bottom corners of the
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panel was also evident. Therefore, the in-plane lateral resistance was influenced by the
achievement of the brick tensile strength.

The failure of the second specimen strengthened on one side, i.e. the “WZI 1 2”, was
less brittle than the “WZI 1 17 sample since the applied vertical load was lower (120
kN). Compared to the unreinforced panel “WZI_0 27, the “WZI 1 2” specimen showed
similar behaviour in terms of maximum shear force. The lateral resistance is equal to
195.7 kN, but the post-peak strength and displacement capacity are higher than the
“WZI_0_2” panel. No debonding failure of the EQ-GRID system was observed. The
adhesion of the mortar matrix to the masonry substrate was very strong. The strengthen-
ing system kept the panel’s structure together, allowing dissipating more energy. Moreo-
ver, it improved the final cracking pattern since the damage state was less severe (Figure
3.50).

Figure 3.50: “WZI_1_2” specimen: cracking pattern at the end of the test

Compared to the “WZI_0_2” specimen, one more displacement step was applied for a
total of eight steps (1 mm to 14 mm). The residual lateral strength was about 30 kN in the
last cycle, like the URM sample, but it was recorded at a higher displacement value.

Finally, the experimental data were not completely reliable in the post-peak phase.
Therefore, only the first part of the hysteresis loops is shown in Figure 3.51, and the
equivalent multilinear curve is not determined in this case.
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Figure 3.51: Hysteresis and backbone curves of the “WZI 1 2" specimen

3.6.4.3 “WZI” specimens strengthened on both sides

The “WZI” specimens strengthened on two sides were tested under a constant vertical
load of 120 kN. Compared to the URM panels, the “WZI 2 1” and “WZI 2 2 samples
showed higher dissipative behaviour. They were subjected to eleven displacement steps
(from 1 mm to 24 mm). The last one was repeated only two times since the panels col-
lapsed with a residual lateral strength equal to 36 kN and 32.5 kN, respectively. Moreo-
ver, the specimens showed good performance also in terms of load capacity. They at-
tained a lateral strength of 280.47 kN and 255.33 kN at a horizontal displacement equal
to 15.1 mm and 10.2 mm, respectively. Thus, compared to the “WZI_0_2” sample, the
average improvement of load-bearing capacity is about 40%.

The hysteresis and the three envelope curves of the “WZI 2 17 panel are depicted in
Figure 3.52. The maximum drift value achieved during the last hysteresis loop is 1.85%.
The equivalent multilinear curve is shown in Figure 3.53. The horizontal displacements
Us, U4, Us are defined on the backbones at a residual shear strength equal to 70%, 50% and
30% of Vinax.
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Figure 3.52: Hysteresis curve of the “WZI_2_1" specimen
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Figure 3.53: Equivalent multilinear curve of the “WZI 2 1” specimen
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Figure 3.54: Damage levels of the “WZI_2 1 specimen

The hysteresis and envelope curves of the “WZI_2 2” panel are depicted in Figure 3.55.
The equivalent multilinear curve of this specimen is shown in Figure 3.56. As for the
previous sample, the horizontal displacements us, us, Us are defined on the envelope
curves at residual strength values equal to 70%, 50% and 30% of Vimax. The achieved DLs
are illustrated in Figure 3.57.

It is worth pointing out that both specimens presented sub-vertical cracks across the
thickness during the last phase of the test. Stress concentrations due to the bending
moment at the top and bottom of the panel caused the achievement of the masonry
compressive strength. No delamination of the reinforcing system was observed. Only
local detachments of the outer mortar layer at the centre of the panels occurred.
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Figure 3.55: Hysteresis curve of the “WZI 2 2” specimen
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Figure 3.56: Equivalent multilinear curve of the “WZI 2 2” specimen
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Furthermore, Table 19 summarizes the parameters of the equivalent multilinear curves of
the “WZI 2 1” and “WZI 2 2” specimens. Both panels attained the DL3 at drifts higher
than the “WZI 0 1” specimen at the DL5 (dswzi_o1 = 0.73%). Finally, the average
values of ds, ds and ds increase, respectively, by 76%, 92% and 99% compared to the
non-reinforced sample.

Table 19: Values of drift and residual resistance for the WZI specimens strengthened on both sides

“WZI2_1” “WZI 22"
d, = 0.60% d, = 0.51%

Vu3=253KkN | pots =20 Vi3 =237 kN =17
da=123% | Hore di=088%| Hore
ds=1.57% Vu,4 =162 kN UbL4 = 2.6 ds = 0.93% Vu,4 =169 kN UpLa = 1.8

ds=1.70% | Vus=108kN| pos=2.8| ds=1.20% | Vus=107KkN| pps=24

DL3: side A DL4: side A

[

DLS: side A DLS5: bottom right corner of the side B

¥

Figure 3.57: Damage levels of the “WZI 2 2” specimen
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Chapter 4

In-plane strength of the tested “KS”
and “WZI” masonry panels

The in-plane load-bearing capacity of the tested “KS” and “WZI” masonry piers is
analytically determined in this chapter. The shear and flexural strength criteria described
in 8 1.3 are adopted for the URM panels. Furthermore, two different calculation ap-
proaches are used to determine the shear resistance of the specimens reinforced with EQ-
GRID. The cross-sectional analysis is also performed to evaluate their flexural bearing
capacity. Therefore, the in-plane failure domains are obtained from the envelope of the
adopted shear and bending strength criteria in the N -V plane. Finally, the analytical
results are compared to the experimental ones for validation.

4.1 In-plane failure domains of the
unstrengthened “KS” and “WZI” masonry
panels

The Mann and Muller theory [23] illustrated in § 1.3 is adopted to calculate the in-plane
shear resistance of the unstrengthened masonry panels. The following formulations are
used:

Vra :min(vl; t,Iim) (4.1)
_I_t fva y .

Vo= b (1+y.¢+1+#.¢ G"j (4.2)

_I't i 1+ﬁ (4.3)

t,lim —F' 23 fm

where:

e | and t are the length and thickness of the panels, i.e. 1250 mm and 240 mm;
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Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

¢ bisequal to 1 since the height of the tested panels is 1250 mm;

Furthermore, the flexural resistance is calculated with Eq. (4.4), obtained neglecting the
masonry tensile strength and considering a stress-block distribution of the compressive
stresses at one end section, as described in § 1.3:

12t o
M, =—0, |1-———— 4.4
M2 ( o.ss-fm,uj (*+4)
Thus, the ultimate shear force under bending failure is calculated as follows:

M., M
VE =R _ Trd 4.5
RS T T 05h (4.5)

Where h is the height of the panels, i.e. 1250 mm.

Finally, the average material properties adopted for the URM “KS” and “WZI” speci-
mens are defined in § 4.1.1.

4.1.1 Experimental validation

The masonry compressive strength is calculated after Eurocode 6 [81] and the German
National Annex [28] since no experimental data were available. Therefore, the character-
istic values fm ks and fm xwzi are determined through Egs. (4.6) and (4.7):

frks = 0.95- flee® - £01% =0.95. 25 .1.8% = 6.87N / mm2 (4.6)

o = 0.69- FO55 . £0192 — 0,69.15°%% .1 8°%% — 3. 70N / mm? @.7)

m,k,WzlI
Where fy ks, fowzi and fy are the units and mortar compressive strength.

The average values fnuxs and fmuwz are calculated with Egs. (4.8) and (4.9):

f

R 6'_877 — 9.8IN / mm2 (4.8)
f

fruwa = % = % =5.28N / mm? (4.9)

Moreover, the Young’s modulus E perpendicular to the bed joints and the shear modulus
G are obtained from the characteristic masonry compressive strength through the formu-
lations provided by Eurocode 6 ([81], [28]):

136



4.1 In-plane failure domains of the unstrengthened “KS” and “WZI” masonry panels

Eys =950- f, , s =950-6.87 = 6522N / mm? (4.10)
Gys =0.4-E,, =0.4-6522 = 2608.8N / mm2 (4.12)
Eyy =1100- f, , yy =1100-3.70 = 4068N / mm? (4.12)
Gyy =0.4-E,, =0.4-4068=1627.2N / mm? (4.13)

Concerning the initial shear strength fymo, it is assumed 0.17 N/mm2 for the “KS” speci-
mens and 0.30 N/mm? for the “WZI” panels, as suggested from the German masonry
manual “Mauerwerk Kalender” for these types of masonry [82]. The interlocking pa-
rameters ¢ks and ¢wz are respectively equal to 0.94 and 1.29, and they correspond to a
“stepped-stair” cracks inclination angle of about 45° and 53° (Figure 4.1).

"KS" panel "WZI" panel
LT T T ] L T T T 1
A ) §

74
450
<

Figure 4.1:  “Stepped-stair” cracks inclination

Moreover, since the masonry has a good texture, both local coefficients of friction, piks
and pwzi, are assumed to be 0.8, obtaining in this way an equivalent coefficient of friction
Heq OF about 0.4. Regarding the tensile strength of the units, fu ks and forwzi, the first one is
assumed to be 0.063f, ks, as suggested from the German masonry manual “Mauerwerk
Kalender” [82] for the calcium-silicate unit, where f, ks is the compressive strength of the
brick. The second one is assumed 0.06f,wz. Since the specimen “WZI_0_1” attained the
shear resistance with the formation of diagonal cracks passing only through the bricks, it
has been possible to calibrate this value so that the sample’s dominant failure mode was
predicted by Eq.(4.3). Therefore, Table 20 summarizes the average values of the mechan-
ical properties necessary to determine the in-plane strength domains of the tested panels
shown in Figure 4.2.

137



Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

Table 20: Average values of the mechanical properties of the unstrengthened masonry panels

“KS” unstrengthened panels
fruks fumoks UKs Oks fumo red,ks Wred KS forks
[N/mmz?] | [N/mm?] [-] [-] [N/mm2] [-] [N/mm?]
9.81 0.17 0.8 0.94 0.10 0.46 1.58
“WZI” unstrengthened panels
fm,u,WZl fva,WZI Hwzi ¢WZ| fva,red,WZI Hred, Wzl fbt,WZI
[N/mmz?] | [N/mm?] [-] [-] [N/mm2] [-] [N/mm?]
5.28 0.30 0.8 1.29 0.15 0.39 0.90
_ "KS" unstrengthened panels "WZI" unstrengthened panels
700 400
600 T 350
500 i o : 300
Z 400 ' = 230
2 Z 200
= 300 > 150
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Figure 4.2:  In-plane failure domain of the unstrengthened masonry panels

Finally, the experimental values Veq are compared to the analytical ones for each URM
specimen in Table 21, and they are also depicted in Figure 4.3.

As illustrated in § 3.6.3.1, the “KS 0 1” panel presented a mixed shear failure with
diagonal cracks passing through the mortar joints and the bricks. The analytical shear
resistance V: is equal to 208.47 kN, and it is lower than the experimental one, Veq, since it
corresponds to the diagonal cracking only through the mortar joints.

Table 21: Experimental values and analytical estimation of the shear strength of the unstrengthened masonry

panels
ID specimen VEed [KN] Vi [kN] Viiim [KN] Vra [KN]
“KS 0 17 250.61 208.47 278.06 208.47
“KS 0 2~ 158.58 143.98 254.35 143.98
“WZI 0 1~ 218.29 190.21 180.86 180.86
“WZI 0 2~ 197.49 158.47 169.10 158.47
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4.1 In-plane failure domains of the unstrengthened “KS” and “WZI” masonry panels

It is worth noting that the limit shear resistance Vyim (278.06 kN) is higher than Vgq
(250.61 kN); thus, the mixed failure is validated.

Furthermore, there is a very good match between the analytical and experimental shear
resistances for the “KS 0 2 specimen. In fact, the maximum horizontal force recorded
during the test was 158.58 kN, while the expected value Vgrq is 143.98 kN. This result
confirms the formation of “stepped-stair” cracks.

Regarding the “WZI” specimens, it is worth pointing out that they showed a more brittle
behaviour than observed in the “KS” panels. The experimental lateral resistance of the
“WZI_0_1” sample was attained by achieving the brick tensile strength, as it failed with
diagonal cracks only through the masonry units. This result is analytically validated since
Vra is equal to the limit value Viiim (180.86 KN). Finally, the “WZI_0 2” panel presented
a mixed shear failure with diagonal cracks passing through the mortar joints and the
bricks. The shear resistance Vgq is equal to 158.47 kN, and it is lower than the experi-
mental value Veq since it corresponds to the diagonal cracking only through the mortar
joints. The mixed failure is also, in this case, validated because the limit shear resistance
Viiim (169.10 KN) is higher than Veq (197.49 kN).

"KS" and "WZI" unstrengthened panels

300
mKS 01 ®mKS 02

e

250 qwzio 1 ewzI 0 2

200 .
;‘ [ ]
= 150 -
~ 100
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0
0 50 100 150 200 250 300

Viea [kN]

Figure 4.3: Experimental and analytical in-plane shear resistance of the “KS” and “WZI” unstrengthened
panels
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Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

4.2 In-plane failure domains of the “KS” and
“WZI” masonry panels strengthened with EQ-
GRID

As observed in § 3.6, the EQ-GRID system improves the in-plane load-bearing capacity
of masonry panels. Therefore, the definition of its tensile strength is the first necessary
step for determining the in-plane failure domain of the tested panels. Two different
approaches to calculate the shear resistance are described in the following paragraphs.
Finally, a cross-section analysis is performed to consider the increase of in-plane bending
resistance due to the system.

4.2.1 Determination of the EQ-GRID system’s tensile
strength

The average tensile strength of the EQ-GRID system is defined based on the results of
the performed experimental campaign. The double- and single-lap shear-bond tests have
shown that the mortar has a very high adhesive strength since no debonding was observed
at the system-brick interface. Moreover, two different masonry units were adopted as
standard support (hollow and full clay brick), and only the fibres breaking, or slippage
within the matrix occurred as failure modes. Also, during the cyclic lateral shear tests, no
debonding of the system from the masonry panels was observed.

Therefore, the experimental results confirm that the mortar can penetrate very well
through the mesh openings of the grid. The latter never detached from the matrix layers.
For this reason, it may be assumed for the tested masonry that the tensile strength of the
system is influenced only by the bond at the grid-matrix interface. To this aim, the stress
and strain values obtained from the direct tensile tests with clevis-type and clamping
grips are considered, and two exploitation ratios of the bare textile strength, #cevis and
Nelamping, CaN be defined, as follows:

fclevis,u
Motevis = p (4]_4)

u,m

f

clamping,u

(4.15)

nclamping =

O-u,m

Where fevisy and faampingu are the mean tensile strength of the composite specimens,
according to the adopted test method, and aym is the mean tensile strength of the bare
textile. These values are directly compared in Table 22.
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4.2 In-plane failure domains of the “KS” and “WZI” masonry panels strengthened with EQ-GRID

Table 22: Mechanical properties of the EQ-GRID system from the performed tensile tests.

Test Composite Bare textile Exploitation
method | Clevis-type grips| Clamping grips | Clamping grips ratios
Direction fclevis,u Eclevis,u fclamping,u Eclamping,u Gu,m €u,m Nclevis | Tclamping
[N/mm2?]| [%] | [N/mm?] [%] [N/mm?]| [%] | [%] [%]
\% 551 1.2 996 2.0 1387 2.8 40 72
H 666 24 673 2.3 1046 3.2 64 64
D 1844 25 1591 21 1458 3.7 100 100

It is worth noting that the average tensile strengths of the EQ-GRID system in the hori-
zontal direction, feievisy and felamping,u, are both equal to 64% of the bare textile’s one. The
corresponding failure strains are 2.4% and 2.3%, respectively.

On the contrary, the exploitation ratios for the vertical direction, #cievis and #clampings
depend on the adopted test method since the failure modes of the composite specimens
were different. In the test setup with clevis-type grips, the tensile load was transferred
from the matrix to the textile strip by adhesion. Therefore, the wires could slip after
reaching the maximum strength. The diagrams of the vertical direction depicted in Figure
4.4 (clevis-type grips) confirm this behaviour. The curves have a softening branch after
the peak and not the sudden strength drop typical by the fibres’ tensile failure (Figure 4.4,
clamping grips). For this reason, the exploitation ratios, #cevis and #ciamping, N the vertical
direction are equal to 40% and 72%. The corresponding ultimate strains also are quite
different, 1.2% and 2.0% for the first and second test method.

Vertical

¢ Horizontal
—Diagonal —Diagonal
2000

Clevis-type grips Vertical 2500 Clamping grips

2500 Horizontal

2000

1500 1500

[N/mm?]
, [N/mm?]

£ 1000 2 1000

500 500

Figure 4.4:  Stress-strain curves of the EQ-GRID system obtained from tensile tests carried out with clevis-
type and clamping grips

141



Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

Furthermore, it is possible to assume that both exploitation ratios are equal to 100% in the
diagonal direction since the tensile strengths, fcievisu and feiamping,u, are higher than the bare
textile’s one, oty (Table 22). It is worth specifying that the composite samples’ width was
greater (95 mm) in this direction than the other composite specimens (60 mm) because of
the different wires’ arrangement. Since the axial load was transferred only by adhesion in
the test setup with the clevis-type grips, the horizontal fibres present in the composite
specimens were also stressed, as their inclination angle was 30° to the test direction.
Moreover, Figure 4.4 (clevis-type grips) shows that the cracking phase of the diagonal
composite samples is distributed over a wider range of deformations than the other two
directions. The maximum strength values are achieved at the end of the cracking phase;
after that, the tensile stresses decrease.

On the contrary, the diagonal specimens’ tensile strength, foampingu, Was attained during
the cracking phase. It is important to highlight that, in this case, the load was directly
transmitted from the clamping grips to the grid, which in turn transferred it to the matrix.
Therefore, the uncracked mortar layers allowed the activation of the horizontal fibres
present in the samples. In this way, they could contribute to the strength of the composite
specimens during the cracking phase. It is worth noting that this contribution decreases
with the formation of cracks and disappears in the samples’ cracked state. Therefore, the
strain value, sgamping,u, 1S lOwer than the bare textile since it corresponds to the strain at the
average maximum stress attained during the cracking phase and not at the breaking of the
glass fibre. The latter happened just at the end of the formation of the cracks; after that,
only the PP fibres carried the tensile load. The complete diagrams of the samples tested
with clamping grips in the diagonal direction are depicted in Figure 4.5. The tensile
strength achieved in the cracked state is not considered since the strain values are very
high in this phase (until 26%).

Furthermore, the technical standard CNR-DT 215/2018 defines a conventional stress
limit, oiimconv, fOr design and verification problems. As illustrated in § 2.2.1, it represents
the bond strength of the system and is obtained from single-lap shear-bond tests. It
corresponds to the characteristic value of the maximum tensile force recorded during the
tests divided by the equivalent cross-section area of the bare textile. Then, the conven-
tional strain limit is defined as &iim,conv = alimconv / Er, Where E; is the average Young’s
modulus of the grid. It is worth pointing out that the mean values are considered in this
work since the aim is to calculate the in-plane lateral resistance of the tested masonry
panels.

Furthermore, the single-lap shear-bond tests were carried out only for the vertical direc-
tion of the EQ-GRID system. The average maximum shear-bond strength foong singlem 1S
equal to 971.2 N/mm?, and it is very close to the tensile strength feiamping,u Obtained for this
direction (996 N/mm2). It is worth noting that in both test setups, the free ends of the
textile strip were clamped between the wedge grips of the testing machine, and the fibre’s
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4.2 In-plane failure domains of the “KS” and “WZI” masonry panels strengthened with EQ-GRID

breaking was the failure mode. Therefore, these results may be adopted when the grid is
applied with mechanical connectors or extended up to a significant distance (e.g. at least
20 cm) from the cross-section with maximum tensile stress or turned over the corners of
the walls.

2500 ;
—Diagonal

Cracking phase Cracked phase
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Figure 4.5:  Stress-strain curves of the composite specimens in the diagonal direction from the tensile tests
with clamping grips

Moreover, since the specimens were tested with different bonding lengths (4 cm, 8 cm
and 12 cm), it is impossible to obtain an average strength from the double-lap shear-bond
tests. However, the results have shown that only the bond between textile and matrix
influences the resistance. Thus, it is reasonable to adopt the mean tensile strengths, feievis.u,
as conventional stress limit for calculating the in-plane failure domains of the tested “KS”
and “WZI” masonry panels. It is worth noting that this assumption is coherent since the
EQ-GRID system was applied without any mechanical connectors, and it was not an-
chored to the upper or bottom steel beam or turned over the thickness of the specimen
(Figure 3.21).

Therefore, Table 23 shows the average values of giim,conv, €limconv USed to determine the in-
plane strength domains of the tested “KS” and “WZI” masonry panels. It is worth point-
ing out that the grid’s tensile properties are adopted for the diagonal direction since the
exploitation ratio #cevis 1S 100% and the average tensile modulus E; corresponds to the
secant one reported in Table 2.
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Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

Table 23:  Average values of 6iimconv, €limconv @nd Er of the EQ-GRID system adopted for the calculation of the
in-plane failure domains of the tested “KS” and “WZI” masonry panels

Direction Glimconv (AVQ.) Elimconv (QVY.) Es
\ 551 N/mm? 1.27% 43269 N/mm?
H 666 N/mm? 1.78% 37516 N/mm?
D 1458 N/mm? 3.64 % 40067 N/mm?

Furthermore, the characteristic values of 6iimconv and eiimcony Can be calculated as the
average ones minus Ky times the standard deviation STD, as recommended by Annex D of
Eurocode 0. Therefore, Table 24 shows a proposal since the available experimental data
are limited in number.

In this respect, two characteristic values of aiim,conv and &iimconv are given for the vertical
direction since the tensile response of the system is influenced by the mechanical anchor-
age of the grid, in this case. The first ones are obtained considering the single-lap shear
bond tests and the direct tensile tests performed with clamping grips, as the experimental
results are very close. The second ones are obtained from the tensile tests performed with
clevis-type grips.

Regarding the horizontal direction, the characteristic conventional stress and strain limits
are calculated, considering the direct tensile tests with clevis and clamping type grips. As
shown in Figure 4.4, the obtained experimental response is very similar; thus, both results
are considered.

Finally, the characteristic values of 6iimconv and eiimcony for the diagonal direction are
obtained from the tensile tests performed on the bare textile specimens since the grid’s
tensile strength exploitation ratio is 100%.

Table 24: Proposal of characteristic values of 6iim,conv, iim.conv OF the EQ-GRID system

Direction Glim,conv (Char.) €lim,conv (Char.) Nspecimens kn
\% 470 N/mm? 1.09 % 5 (clevis) 2.33
Vv 869 N/mm? 2.01% 10 (clamping + 1.92
single-lap shear tests)

is +

H 517 N/mm2 1.38% 10 (clevis 1.92
clamping)

D 1311 N/mm? 3.27% 8 (grid) 2.00
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4.2 In-plane failure domains of the “KS” and “WZI” masonry panels strengthened with EQ-GRID

4.2.2 Proposal of modification of the masonry shear
strength with the EQ-GRID system

The cyclic lateral shear tests described in § 3.6 have shown that the EQ-GRID system can
improve the in-plane load-bearing capacity of masonry panels. Therefore, a possible way
to consider the presence of the textile reinforcement is to increase the masonry material
properties, as also suggested by Urban in [83]. In this respect, Urban proposed to modify
the masonry initial shear strength fime through the EQ-GRID system’s diagonal tensile
resistance. Furthermore, he suggested improving the brick tensile strength fi using the
system’s resistance in the three main directions (vertical, horizontal and diagonal).

The approach presented in this work originates from the formulations proposed in [83],
but it is based on the experimental observations illustrated in Chapter 3. During the cyclic
lateral shear tests, it was evident that the system was mainly stressed in the direction
parallel to the shear force when diagonal cracks opened. Therefore, the proposed ap-
proach is based on modifying the initial shear strength funo and the brick tensile strength
for through the EQ-GRID system’s resistance in the direction parallel to the acting shear
force. Figure 4.6 schematically shows the deformation of the horizontal and diagonal
fibre yarns when a shear crack opens. It is worth noting that, compared to a common
biaxial textile mesh, EQ-GRID has the advantage that the directions activated during the
shear failure are two and not only one. In this regard, the diagonal fibre yarns are tilted
30° to the horizontal to maximize the strengthening effect under shear failure [83].

MEd

NEd

Figure 4.6:  Diagonal cracking of a masonry pier strengthened with EQ-GRID
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Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

Furthermore, as shown in § 3.6, the EQ-GRID system can also increase the deformation
capacity of the reinforced structural element. In fact, the polypropylene wires arranged in
the diagonal direction have a very high ultimate tensile strain (> 20%) and allow the
panel structure to be held together even in the advanced cracking stage, improving the
element’s stability.

Therefore, Egs. (4.16) and (4.17) are proposed to modify the initial shear strength fum, and
the brick tensile strength fy: of a masonry pier through the EQ-GRID system’s resistance
in the direction parallel to the acting shear force:

E, . & t,n+E 4 & -t
fvmoys — fvmo +nf [ f.h lim,conv,h ~ “eq,h t f.d lim,conv,h  “eq,d ] (416)
fbt's _ fb[ +n, ( Ef,h * Elim,conv,h 'teq,h : Ef,d * Elim,conv,h 'teq,d j (417)

Where:

e fumo and fy: are the average initial shear strength and brick tensile strength of the
unstrengthened masonry;

e n; is the total number of textile layers. It is equal to 1 when the system is applied
only on one side and 2 for application on both sides;

e E¢h and Esq are the average Young’s modulus of the bare textile in the horizontal
and diagonal direction (Table 23).

® cimconvh IS the conventional strain limit of the fibres arranged parallel to the shear
force. i.e. the horizontal direction (§ 4.2.1);

teq,n and teq,q are the homogenized equivalent thickness of the textile in the horizon-
tal and diagonal direction (Eq. (3.6));

e t is the thickness of the panel without strengthening system.

Finally, it is important to note that the friction coefficient 4 is not modified since it is an
intrinsic property of the mortar joint, and the presence of the system does not influence it.
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4.2 In-plane failure domains of the “KS” and “WZI” masonry panels strengthened with EQ-GRID

4.2.3 In-plane strength of masonry panels reinforced with
the EQ-GRID system according to CNR-DT 215/2018

As shown in § 2.2.2, the technical standard CNR-DT 215/2018 proposes to calculate the
in-plane shear resistance of a strengthened masonry panel, Vrgs, as the sum of the shear
resistance of the URM panel under diagonal cracking, Vurwm, and the increase of strength
due to the reinforcing system, Vs

Veais =Vorw Ve s (4.18)

Since the shear failure with diagonal cracking stresses the EQ-GRID system mainly
parallel to the shear force, the formulation of Vs (Eq. (2.7)) can be expressed considering
the tensile strength of the horizontal and diagonal fibres, as follows:

1
Vir = 7/_ n Iy e '(Ef.h “Eiimconvih “Tegh T Ef.d * Eiimconv.n  Leq,a ) (4.19)
Rd

Where:

e E:h and Esq are the average Young’s modulus of the bare textile in the horizontal
and diagonal direction (Table 23);

® cimconvh IS the conventional strain limit of the fibres arranged parallel to the shear
force, i.e. the horizontal direction (8 4.2.1);

® teqn and teqq are the homogenized equivalent thickness of the textile in the horizon-
tal and diagonal direction (Eq. (3.6));

Moreover, CNR-DT 215/2018 suggests reducing the shear contribution Vis by at least
30% for application of the strengthening system only on one side of the wall, and con-
nectors shall be applied to fix the grid to the wall. As shown by the experimental results,
the matrix can penetrate very well in the mesh openings of EQ-GRID, and it has a very
high pull-off strength. Furthermore, no debonding of the system from the masonry
substrate or detachment of the grid from the matrix layers was observed during the cyclic
lateral shear tests. Therefore, it is generally applied without transversal connectors, and
the reduction of the shear contribution Vi; is not considered in this case.

Regarding the in-plane flexural strength domain of a masonry pier strengthened with EQ-
GRID, it can be determined through a cross-sectional analysis performed under the
following assumptions:

¢ plane sections remain plane after loading;

e strain compatibility between masonry and strengthening system;
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Chapter 4: In-plane strength of the tested “KS” and “WZI” masonry panels

e contribution of the strengthening system in compression is neglected.

It is worth noting that the in-plane bending failure of a masonry pier is generally charac-
terized by sub-vertical cracks at the compressed toe and sub-horizontal cracks at the
tensioned part (Figure 4.7). Therefore, the reinforcing system is mainly stressed in the
direction parallel to the axis of the structural element, i.e. the vertical direction. As
depicted in Figure 4.7, when the cracks appear at the tensioned part, the vertical and
diagonal fibres can have the same deformation. Furthermore, the stress-strain diagram of
EQ-GRID is assumed linear elastic (Figure 4.8), and the ultimate tensile strain is the
conventional strain limit ejim convy defined in § 4.2.1. Thus, the corresponding conventional
strength limit f;,, takes into account both strength contributions and is defined as follows:

f,=E ty T Efg-

fv ‘glim,conv,v : eq,V glim,conv,v 'teq,d (420)

tu

Where:

e E:, and E;q are the average elastic modulus of the bare textile in the vertical and
diagonal direction (Table 23);

® ciim,convyv 1S the mean conventional strain limit for the vertical direction (8 4.2.1);

® teqn and teqq are the homogenized equivalent thickness of the textile in the horizon-
tal and diagonal direction (Eq. (3.6)).

il

Figure 4.7:  Bending failure of a masonry pier strengthened with EQ-GRID
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Moreover, the adopted masonry compressive stress diagram is rectangular with a uniform
stress equal to afyny (Figure 4.8). This latter is distributed over an equivalent compressive
zone equal to pyn, where y, is the distance from the outermost compressed fibre to the
neutral axis. The coefficients a and £ are respectively 0.85 and 0.8. The masonry ultimate
strain, emy, can be assumed 3.5 %o unless experimental data are available and its tensile
strength is neglected.

Therefore, the in-plane resistance domain of a masonry pier reinforced with the EQ-
GRID system can be determined in two steps:

¢ |dentification of the failure mode;

e Calculation of the normal force Ngrqgs and bending moment Mgqys With two equa-
tions of equilibrium of the internal forces.

Masonry

Sma S

(X.,fm,u f—
'
'

== =
Emu Em Ev

Figure 4.8:  Adopted stress-strain diagrams of the masonry and the EQ-GRID system for the bending failure

As shown in Figure 4.9, the system is applied along the entire length | of the panel.
Therefore, the distance dr between the outermost reinforcement fibres that attain the
conventional strain limit is equal to I.

Five failure modes can be identified by the following conditions, in which ¢; and ¢, are
respectively the tensile and compressive strain attained by the outermost fibres of the
panel’s cross-section:

e Failure mode O: the cross-section of the panel is uniformly tensioned, ¢1 = & =

Elim,conv,vs

e Failure mode 1: the cross-section of the panel fully tensioned, &1 = &iim,convy and &
=0;

e Failure mode 2: the masonry and the EQ-GRID system achieve their ultimate
strains, &1 = €limconvy and &2 = emu;
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¢ Failure mode 3: the cross-section of the panel is fully compressed, &1 =0 and &, =

Em,u,

e Failure mode 4: the cross-section of the panel is uniformly compressed, &1 = &2 =

Emu.
Masonry panel's Failure mode 0
cross-section
[ =df [ =df
Failure mode 1 Failure mode 2
) I = df i I = df \I&2=£m,u
Failure mode 3 Failure mode 4
er=0
\I &E2 = Emu &l = Sm,ul I &£2 = Em,u

[ =df [ =df

Figure 4.9: Possible failure strain distributions of a masonry cross-section reinforced with the EQ-GRID
system

Failure mode 0 is the ideal situation of uniform tension, both stress and strain distribu-
tions are constant, and the neutral axis yno lies outside the section at infinity (Figure 4.10).

Failure mode 0

l=df

Figure 4.10: Stress-strain distributions of failure mode 0
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Therefore, the resultant of the compressive stresses, Fmuo, iS zero, and that of the tensile
stresses, Fiuo, is calculated as follows:

I:t,u,O = (Ef,v *Elimconv,y N 'teq,v + Ef,d “Elimeonv,y N 'teq,d ) df (421)

Where ny is the total number of textile layers (for one side application is 1, while for both
sides application is 2).

To ensure the force and moment equilibrium, the ultimate normal force Nrq,o is equal to
Ftu,0 and the bending moment Mgqso is O since it is calculated at the cross-section’s centre
of gravity, I/2.

NRd,s,o = Ft,u,O (4-22)
Mggso =0 (4.23)

With failure mode 1, the cross-section is still completely tensioned, but the strain and
stress distributions are linear (Figure 4.11). The system attains its tensile strain limit,
Elimconvy, @Nd & i 0. Thus, the neutral axis depth yy: is equal to ds.

Failure mode 1

[ =df

Figure 4.11: Stress-strain distributions of failure mode 1

The resultant of the compressive stresses, Fmu1 is zero, while Fi,1 can be calculated as
follows:
(E n; -t +Ef.d * Elimeonvy * N 'teq,d)'df

v " Climconvy eq,v
Fug =—— v (4.24)

The ultimate normal force Ngrqg1 and bending moment Mgqs1 can be easily obtained; the
first one is equal to F,1 and the second one is calculated at I/2:
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NRd,s,l = Ft,u,l (4-25)
F,,-d
Megs1 = —t'ug f (4.26)

Failure mode 2 is defined under the assumption that both masonry and system attain their
Stl’aln I|m|t5 (81 = &lim,conv,v and &2 = gm,u).

Failure mode 2

\] &2 = Emu

Fm,u,z

o 1:1‘] af mu

2/3(df - yn2) Pvn2

[ = df

Figure 4.12: Stress-strain distribution of failure mode 2

Therefore, the neutral axis depth yn, is determined according to the strain distribution
shown in Figure 4.12:

d, &,

yn2 = (51 +82)

(4.27)

The resultant of the compressive and tensile stresses, Fmu2 and Fiy 2, are calculated with
the following equations:

Fm,u,2 = (afm,u ﬂt) Yo (428)
E _ (Ef,v * Elimconv,v n; 'teq,v + Ef,d * Elimconv,v N 'teq,d )(df - ynZ) (429)
t,u,2 2

The ultimate normal force Nrgs2 and bending moment Mgqs2 are obtained from the force
and moment equilibrium equations, as follows:
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NRd,s,Z = Fm,u,2 - Ft,u,2 (430)
d 2 d
MRd,s,Z = Fm,u,z (é_%j_k Ft,u,z '[ynz +§(df - yn2)_7fj (431)

Failure mode 3 is characterized only by masonry crushing. As depicted in Figure 4.13,
the strain & attains its ultimate value emy and the system is not subjected to tension (&1 =
0). Thus, the neutral axis depth ys is equal to ds.

Failure mode 3

e1=10
\J gz:amju

F m,u,3

afm,u | ? I (me,u

pyn3

I =df

Figure 4.13: Stress-strain distribution of failure mode 3

The resultant of the tensile stresses Fiu3 is zero, while Fn3 can be calculated through
Eq. (4.32):
Fm,u,3 =a fm,u -t ﬂdf (432)

Therefore, the ultimate normal force Nrqss is equal to Fnys and the bending moment
MRgds3 can be determined with Eq. (4.34):

NRd,s,3 = l:m,u,3 (433)

d; pd;

MRd,s,a = Fm,u,3 (?_T] (4.34)

Finally, the cross-section is uniformly compressed with failure mode 4. As a result, both
stress and strain diagrams are constant (Figure 4.14), and the neutral axis yns lies outside
the section at infinity.

The resultant of the tensile stresses, Fiu4 is zero, and that of the compressive stresses,
Fm.u.4 is calculated as follows:
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I:m,u,4 :afm,u tdf (435)

Failure mode 4

&1 = Emu | l &2 = Emu

F m,u,4
afm,u I T | afm,u

[=df

Figure 4.14: Stress-strain distributions of failure mode 4

Thus, the ultimate normal force Ngrqys4 is equal to Fru4 and the bending moment Mggs.4 iS
Zero:

NRd,s,A = I:m,u,4 (436)

Meisa =0 (4.37)

Therefore, to obtain the in-plane flexural failure domain, it is necessary to calculate the
ultimate shear force with Eq. (4.38):

MRd‘s
hl

Vaas = (4.38)
Where Mgq; is the ultimate bending moment and h’ is the shear length, defined as the

distance between the end section of the panel and that with zero moment (i.e., h/2 for
elements with double-fixed boundary conditions and h for cantilevers).

Figure 4.15 shows two in-plane flexural strength domains of a masonry pier. The first one
is with EQ-GRID and the second one is without EQ-GRID. It is worth noting that, thanks
to the strengthening system, the structural element can also be subjected to normal tensile
forces, i.e. Nraso and Nrgs1. In fact, the first part of the domain is shifted towards the
negative values of N. Moreover, the contribution of the strengthening system to the in-
plane flexural resistance of the panel is maximum between failure mode 1 and 2 since the
system attains its limit strain. After that, the resistance improvement decreases since the
masonry achieves its ultimate strain. In this regard, the strengthening effect of the system
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becomes smaller values at higher values of N, as the compressed part of the cross-section
increases. Finally, from failure mode 3, the masonry is completely compressed, and the
system cannot give any strength contribution.

Bending strength domain with EQ-GRID
Bending strength domain without EQ-GRID

N

N

Figure 4.15: In-plane flexural strength domains of a masonry pier with and without the EQ-GRID system

4.2.4 Experimental validation

The in-plane shear strength of the tested “KS” and “WZI” masonry panels is compared to
the experimental values for validation. Both calculation approaches discussed in the
previous paragraphs, i.e. modification of the masonry shear strength and the formulations
after the CNR-DT 215/2018, are adopted. To this aim, the masonry’s average material
properties defined in § 4.1 are assumed. The mean conventional strain limit &jim conv,n and
the Young’s secant modulus, Esn and Ezq, Of the bare textile reported in Table 23 are used
for the EQ-GRID system.

Therefore, the mechanical properties of the masonry are improved with the following
formulations:

E. & t . +E -8 -t
fvmovs - fvmo +nf [ f,h lim,conv,h ~ “eq,h t f.d lim,conv,h eq,dJ (439)

E 'gimconv 'te +E 'gimconv 'te
fbtys — fht +nf ( f,h “limconv,h ~ ‘“eg,h t f.d lim,conv,h q,dJ (440)
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It is worth noting that the product (&umeonn Eqntan + Eimann - Era ‘) 1S €qual to

27.74 N/mm, which corresponds to the system’s average strength limit under diagonal
cracking. Thus, the mean initial shear strength fymo of the unreinforced “KS” panels
improves by 68% and 136% when the EQ-GRID is applied on one or two sides of the
panel:

27.74N / mm
f =0.17N/mm2+1.| ———— [=0.29N / mm?2 .
vmO0,KS, sl ( 240mm j (4 41)
27.74N / mm
f =0.17N/mm2+2-] ——— | =0.40N / mm2
vmo0,KS,s2 ( 240mm j (442)

Furthermore, the average initial shear strength fumo of the unstrengthened “WZI” panels
increases by 39% and 77% for one and two sides applications:

27.74N [ mm
f =0.30N/mm2+1.| ——— |=0.42N / mm2
vmo,WZlI ,s1 ( 240mm ) (443)
27.74N /mm
f =0.30N/mm2+2-| ——— |=0.53N / mm?2
vmo,wzl ,s2 ( 240mm j (444)

Concerning the mean brick tensile strength of the unreinforced “KS” panels, it has an
improvement of 7% and 15% when the system is applied on one or two sides:

fy oo =1.575N /mm2+1-(%j —1.69N / mm2 (4.45)
o s.0p =1.575N / mm2+2-(%j ~1.8IN / mm? (4.46)

Finally, the average brick tensile strength of the unstrengthened “WZI” panels increases
by 13% and 26% in the case of one and both sides application, respectively:

foowz o = 0.90N / mm2 +1- (%J =1.02N / mm? (4.47)
ooz s = 0.90N /mm2+2. (%j =1.13N / mm?2 (4.48)

Therefore, Table 25 shows the modified mechanical properties, fumos and fus, Obtained
with the proposed formulations, the friction coefficient y, the interlocking ¢, the length |
and thickness t of the tested specimens.
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Table 25: Mechanical properties of the panels strengthened with EQ-GRID

“KS” strengthened panels

N fumokss i ¢ Totks.s I t
[-] [N/mm?] [-] [-] [N/mm?] [mm] [mm]
1 0.29 0.8 0.94 1.69 1250 240
2 0.40 0.8 0.94 1.81 1250 240
“WZI” strengthened panels

N fumowzis i ¢ Torwzis I t
[-] [N/mm?] [-] [-] [N/mm?] [mm] [mm]
1 0.42 0.8 1.29 1.02 1250 240
2 0.53 0.8 1.29 1.13 1250 240

Furthermore, to validate the calculated values, the maximum shear force attained during
the laboratory tests, Veg, is directly compared with the analytical shear resistance, Vrdmod-
To this aim, the Mann and Miller formulation is used with the modified material proper-
ties, fumo,s and fuis, as follows:

VRd,mod = min(Vt,mod ;Vl,lim,mod) (449)
I -1 fvas M
V. = 2 .
Lmed =y (1+ﬂ'(/)+1+/1~(/) UV] (4.50)
I -t fb s Gv
Vt,lim,mod :F' 2t3 AT f (4.51)

bt,s

Moreover, the in-plane shear resistance Vrqs is calculated after CNR-DT 215/2018 with
Eq. (4.52):

. 1
VRd,s :mm( I’Vt,lim)+ el
Rd

(4.52)

'(glim,conv,h . Ef,h 'teq,h +‘9Iim,conv,h : Ef,d 'teq,d )
where:
* yra IS @ model safety factor equal to 2;

* n; is the total number of applied textile layers; for one side applications is 1 while
for both sides application is 2;
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e |; is the design length of the applied reinforcement. It is measured orthogonally to
the shear force, and in any case, it cannot be assumed to be greater than the di-
mension of the wall H indicated in Figure 2.10. For all the tested panels, Is is
equal to the height h of the specimens (1.25 m);

* cimconvh 1S the conventional strain limit of the fibres arranged parallel to the shear
force, i.e. the horizontal direction (Table 23);

e E:n and E:q are the average Young’s modulus of the bare textile in the horizontal
and diagonal direction (Table 23);

teq,h and teqa are the homogenized equivalent thickness of the system in the hori-
zontal and diagonal directions.

As for the previous method, also, in this case, the product
(glim,conv,h “Etntagn T Eimeown " Era e ) corresponds to the average strength limit of the

system under diagonal cracking, and it is equal to 27.74 N/mm. Thus, the strength contri-
bution Vi is calculated in the case of one and both sides application, as follows:

Vi = % -1.1.25m-27.74kN / m =17.3kN (one side) (4.53)

Vs :%~2-l.25m-27.74kN /m=234.7kN (both sides) (4.54)

Finally, Table 26 directly compares the experimental and analytical in-plane shear
strengths of the tested panels.

Table 26: Experimental and analytical shear strengths of the “KS” and “WZI” panels strengthened with EQ-

GRID
ID VEd Vt,mod Vt,lim,mod VRd,mod VRd,s

specimen [kN] [kN] [kN] [kN] [kN] EQ-GRID

“KS 1 17| 271.40 234.86 296.16 234.86 232.43 .
== On one sidg

“KS 1 27| 204.36 193.73 281.18 193.73 191.29
“KS 2 17| 271.49 234.46 304.51 234.46 229.58 On both
“KS 2 27| 252.50 235.97 305.06 235.97 231.09 sides

“WZI 1 1 251.45 224.52 203.56 203.56 204.29

On one sidg

“WZI 1 27 195.68 173.60 184.34 173.60 173.89
“WZI 2 17 280.47 224.56 213.54 213.54 215.63 On both

“WZI 2 27 255.33 218.11 211.07 211.07 213.30 sides
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Analyzing the results of the “KS” specimens, it is possible to conclude that the experi-
mental values Veq are between the theoretical ones, Vimod and Vijimmod, cOnfirming the
mixed shear failure shown by the specimens. Only for the “KS 1 2” panel, Veq is slightly
lower than the theoretical one Vimod. On the other hand, the shear strength of the “WZI”
samples is reached analytically by the tensile failure of the masonry units (Vi jimmod). Only
the theoretical resistance of the “WZI 1 2” panel corresponds to the diagonal cracking
along the mortar joints (Vymod). Thus, the analytical results confirm the experimental
observations. Moreover, a very good match is found between the resistance obtained with
the proposed approach (Vrgmod) and after the CNR-DT 215/2018 (Vrds). The maximum
percentage difference between Vrgmod and Vrys is +2.1% for the “KS” panels and -1.0%
for the “WZI” specimens.

"KS" panels strengthened on one side "KS" panels strengthened on both sides
300 300
mKS 1.1 mKS 1.2 mKS 21 mKS 22
A
= 250 oKS 1 1 mod «KS | 2 mod a = 250 oKS 2 1 mod ®KS_ 2 2 mod e
= 200 . = 200
2 150 4 150
> >
Z 100 Z 100
> >
50 50
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Vg [kN] Vg [kN]
"WZI" panels strengthened on one side "WZI" panels strengthened on both sides
300 300
s WZI 1 1 " WZI 1 2 = WZI 2 | " WZI 2 2
Hep .
= 2ot eWZl 1 1 mod e WZ 1 2 mod = 250 o WZl 2 1 mod e WZI 2 2 mod
.
= 200 . = 200 ¢
z 150 Z 150
> -
2100 2100
> >
50 50
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Vg [kN] Vi d [kN]

Figure 4.16: Experimental validation of the theoretical in-plane shear strength of the tested panels

In this regard, Figure 4.16 shows the experimental shear strength Veq versus the theoreti-
cal one for one or two sides applications of EQ-GRID, in which the values are properly
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marked to differentiate Vramod (red points) from Vegs (light blue squares). This compari-
son confirms that both calculation methods provide a safe estimate of the experimental
results. Furthermore, the cross-section analysis described in the previous paragraph is
also performed. Figure 4.17 shows the in-plane flexural and shear strength domains of the
“KS” and “WZI” panels reinforced with EQ-GRID. Since the shear failure domain is
calculated with the proposed approach and after CNR-DT 215/2018, a very good agree-
ment between the calculation methods is evident. Finally, the values of the normal forces
Nrass, calculated for each failure mode, are indicated in Table 27.

"KS" panel strengthened on one side "KS" panel strengthened on both sides
700 700
600 600
500 500
_7‘_ 400 ; 400
= 300 > 300
200 Bending with EQ-GRID 200 Bending with EQ-GRID
100 Shear CNR DT-215/2018 100 Shear CNR DT-215/2018
0 —Shear proposed method 0 —Shear proposed method
-60 240 540 840 1140 1440 1740 2040 2340 2640 -60 240 540 840 1140 1440 1740 2040 2340 2640
N [kN] N [kN]
"WZI" panel strengthened on one side "WZI" panel strengthened on both sides
400 400
350 350
300 300
— 250 — 250
F
£ 200 & 200
> 150 Z 150 TR
100 Bending with EQ-GRID 100 Bending with EQ-GRID
50 Shear CNR DT-215/2018 50 Shear CNR DT-215/2018
5( 3 -
, —Shear proposed method 0 —Shear proposed method
(
60 140 340 540 740 940 1140 1340 60 140 340 540 740 940 1140 1340
N [kN] N [kN]

Figure 4.17: In-plane failure domains of the tested masonry panels

Table 27: Normal forces Nrgs calculated at the flexural failure modes from 0 to 4

ID panel NRd;s,0 [kN] NRrd,s1 [kN] NRrd, s,2 [kN] NRrd;s,3 [kN] NRd;s4 [kN] EQ-GR|D
“KS 17 -28.35 -14.17 420.07 2000.82 2501.03 | One side
“KS 2~ -56.70 -28.35 408.95 2000.82 2501.03 | Both sides
“WZI 17 -28.35 -14.17 221.16 1077.84 1347.30 | One side
“WZI 2” -56.70 -28.35 210.04 1077.84 1347.30 | Both sides
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Chapter 5

Modelling of cyclic lateral shear tests
with the Equivalent frame method

5.1 Description of the modelling

The numerical modelling results of the cyclic lateral shear tests illustrated in 8 3.6 are
presented in this chapter. The panels are modelled as masonry piers through the nonlinear
ML-BEAM element implemented in the TREMURI software (8 1.5.2, § 2.4). As shown
in Figure 5.1, this element is characterized by two nodes, i and j, three kinematic varia-
bles (u, v, ¢) and three generalized forces (V, N, M) at each node. The assumed element’s
height h, width I and thickness t are equal to the dimensions of the specimens, i.e. 1250 x
1250 x 240 mm.

Idealization of the masonry panel DLO DLI ~ DL2 DL3 DL4 DL5

N M.
(, Wy 0) TN " A

kg K

el sec

Failure mode:

-~
VIV (Vrgs)

0.8 1 y |:| Flexural
ko
h 0.6 7
’
Ve r Shear
04 7 Vreh,B =
. M Mi } 0.2 Vres‘A Mixed
(1, wy ) T v
i y
i uou, u; uy u; u

Figure 5.1: Idealization of the single panel and monotonic constitutive law of the ML-BEAM element
implemented in TREMURI, from [14], [46]

The panels’ elastic behaviour is modelled through the secant stiffness ksec resulting from
the experimental multilinear curves (Eq. (3.14)). In this regard, the horizontal elastic
displacement uj. of the ML-BEAM element is calculated after the beam theory through
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Chapter 5: Modelling of cyclic lateral shear tests with the Equivalent frame method

the shear and flexural stiffness. Thus, Eq. (5.1) is obtained when the element’s base is
fixed (Ui = vi = ¢ = 0) and the upper rotation constrained (u; # 0; vj # 0; ¢ = 0):
V,h v,h®

——+

GA 12E_|I

Uje =Ujes TUjep =X (5.1)

Where:
e v is the shear coefficient equal to 1.2 for rectangular cross-sections,
e Vs the shear force,
e h is the height of the panel,
e G and Ese are the elastic shear and secant moduli,
e Aand I are the area and moment of inertia of the panel’s cross-section.

By assigning the unit value to Vj, the elastic secant stiffness ks of the ML-BEAM ele-
ment can be determined as follows:
1 1 1 1
= " h W h h’
Ue UjestUjer AL 7 n (5.2)
GA 12E_.I 04E_A 12E_I

Since ks is experimentally determined through Eg. (3.14), the Young’s modulus Esec
adopted in the modelling is obtained by inverting Eq. (5.2):

e o [, 5.3
Sec Sec Zol4A 12' ( . )

It is worth noting that the value of Es is usually lower than the one at the beginning of
the elastic phase, as it represents the cracked stiffness of the element.

Furthermore, the panel attains its maximum in-plane resistance at the end of the elastic
response (Figure 5.1). Veg (0Or Vrgs for the reinforced element) is calculated by the pro-
gram as the minimum between the chosen failure criteria and considering the current
axial force acting at each load step. In this respect, the Mann and Miiller theory [23] is
adopted for the shear failure (Egs. (1.18) - (1.19)), and the increase in strength is comput-
ed after CNR-DT 215/2018 (8 4.2.3). Concerning the in-plane flexural failure, the re-
sistance of the URM panels is calculated, neglecting the masonry tensile strength and
assuming a stress block normal distribution at the compressed toe (Eqgs. (1.25) - (1.26)).
For the specimens reinforced with EQ-GRID, the cross-section analysis shown in § 4.2.3
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is performed. It is important to note that the ML-BEAM element can only reproduce the
same cyclic behaviour and type of failure as the tested panels if the improved in-plane
flexural capacity is also taken into account. For this reason, the strengthening effect of the
EQ-GRID system is computed after CNR-DT 215/2018 and not through the proposed
modification of the masonry material properties. As shown in § 4.2.4, the adoption of the
modified masonry material properties, fumos and fos (EQs. (4.16), (4.17)), leads to maxi-
mum shear resistances very similar to those obtained after CNR-DT 215/2018 (Egs.
(4.18), (4.19)). However, some strengthened panels showed a hybrid behaviour during
the post-peak phase that only with the increased flexural capacity can be reproduced. In
this respect, the mixed failure mode is possible in the modelling through the parameters
a: and a; illustrated in Figure 1.40. They are assumed 0.95 and 1.25, respectively, and
define two areas close to the intersection points of the flexural and shear domains in
which the hybrid behaviour can occur.

Furthermore, the nonlinear response of the tested specimens is modelled by assigning
progressive strength degradations (Vress, Vres4 in Figure 5.1) at defined drift values until
very severe damage levels. Different values can be assumed through the ratio Vies,i / Vra
(Vra,s) to describe the bending and shear response of the panels. They are indicated for
each specimen in the next paragraphs. Thus, when the hybrid failure mode occurs, the
average values of Vie,i / Vra (Vras) are calculated by the program starting from those
assigned for the shear and bending failure.

Concerning the hysteretic response of the tested panels, the parameters ci, ¢z, ¢3 for the
shear behaviour (Table 28) are calibrated based on the experimental results, as all the
samples showed diagonal shear cracks. Moreover, since no specimen failed by pure
bending, it was impossible to calibrate the parameters ci, C2, C3, €4 for the flexural failure.
Therefore, the values reported in Table 28 are consistent with those adopted in [46] for
the non-linear modelling and time-history analyses of masonry Italian code-conforming
buildings.

Table 28: Parameters adopted for the cyclic response of the ML-BEAM element

“KS” specimens
Shear Bending
c1=04 | c=06| ¢=0 | ¢=09 | c=08 | c:=06 | ci=05

113

WZI” specimens
Shear Bending
c1=06 | =08 =0 [ c1=09 | =08 | =06 | c.=05
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Regarding the modelling phases, all the analyses are performed by first applying the
panel’s self-weight and the constant vertical load Ny, as imposed during the test. Then,
the experimental values of the horizontal displacements recorded at the top of the walls,
u, are applied to the node j of the element through incremental static analyses performed
under displacement control. Concerning the boundary conditions, the base of the element
is considered fixed (ui = vi = ¢ = 0) while the top has only one d.o.f. constrained (u; # O;
vj # 0; ¢g = 0). This latter assumption is reasonable since the experimental values of top
rotation are so small that they may be neglected in the numerical model. As depicted in
Figure 5.3, the rotation of the steel beam positioned on the top of the panel was limited
by four threaded rods with a diameter of 32 mm (two bars on each side of the sample).
For example, Figure 5.2 shows the top rotation - drift diagram of the unstrengthened
specimen “WZI 0 1.

06 -04 02 0 02 04 06 08

- -0.8
-0.005
=3 N
E -0.01 -
; -0.015
-0.02
-0.025
-0.03
Drift [%] —WZI_0_1 panel

Figure 5.2:  Specimen “WZI_0_1": rotation at the top of the panel

In this case, the rotation values are equal to about +0.005 rad, and only at the end of the
test, when the specimen collapsed, the maximum was -0.03 rad. Therefore, it is reasona-
ble to assume that they may be neglected for the modelling.

Moreover, the axial force developed in the four threaded rods during the tests (Figure 5.3)
was recorded by two load cells.

Thus, the total normal force acting on the node j of the element, N; (Figure 5.3), can be
calculated as follows:
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N, :—(%Jr Nv+2Nv1+2NV2) (5.4)

Where:
e Gy is the panel’s self-weight,
¢ N, is the normal force applied by the vertical actuator,
e 2N.1, 2Ny, are the forces developed in the threaded bars.

It is worth noting that Ny is a constant value, while Ny and Ny, are variable since the tests
were cyclically performed.

Ny
,L‘
| a | a i
u
ZJE vl : 21\: v2 = [ Idealization of the masonry panel
* HEB 300 | O) e 1\% M.
i e o v
[ T T T 1 d
[ T T T
2 threaded bars | | I I | 2 threaded bars h
® =32 om C T T 1 ®=32mm L7
[ 1 1 1
T T 1
L 1 [ T 1 Nitm,| |
[ 1 1 I (u, wy ;) {
HEB 300 - v,
—

Figure 5.3:  Scheme of the normal forces acting on the tested masonry panels

Therefore, as the vertical stress influences the load-bearing capacity of a masonry pier, it
is important to consider this variation during the modelling. To this aim, the normal force
N; defined with Eq. (5.4) is also equal to Eq. (5.5). The latter is calculated through the
axial stiffness of the ML-BEAM element:

ESSCA ESECA

N, =~ . Vv, + H v (5.5)
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Since the experimental values of N; are known and the node i is constrained (vi = 0), the
vertical displacement of the node j under the normal force N; can be easily obtained by
inverting Eg. (5.5):

(5.6)

In this way, the variation of normal force can be defined in the input by assigning both
displacements, u; and v;, simultaneously, through incremental static analyses performed
under displacement control. It is worth noting that the TREMURI program calculates the
normal force N; with Eq. (5.5) at each load step and, if necessary, performs a nonlinear
correction based on the comparison with the limit resistance Ngq4 Of the element (Table
27). Since Nry4 is never attained during the modelling, the elastic prediction of N;j through
Eqg. (5.5) leads to results that concur exactly with the experimental ones even when the
element is in the non-linear phase under shear forces.

Therefore, the modelling results are presented in the next paragraphs in terms of internal
forces’ and moments’ diagrams. In this regard, the experimental values of bending
moment at the top and base of the panel, M; and M;, are so calculated:

M, =2(N,-N,)a (5.7)
M, =V,h—M, (5.8)

Where a is the distance between the threaded bars and the centre of the panel (Figure
5.3).

5.2 Modelling results of the calcium-silicate brick
masonry panels

5.2.1 “KS” unstrengthened specimens

The modelling results of the cyclic lateral shear tests performed on the “KS 0 1” and
“KS_0 2” specimens are presented in this paragraph. The secant elastic stiffness of the
ML-BEAM element, ks, is experimentally obtained from the equivalent multilinear
curves of both samples. The masonry mechanical properties are the same as those adopt-
ed in § 4.1.1 to calculate the in-plane failure domain of the unreinforced “KS” panels. In
this respect, Table 29 reports the average values of masonry compressive strength, fimu ks,
initial shear strength, fumoks, local coefficient of friction, uxs, interlocking parameter, ¢ks
and tensile strength of the brick, fu.xs, adopted for the modelling.

166



5.2 Modelling results of the calcium-silicate brick masonry panels

Since the “KS 0 1” specimen failed with diagonal cracks, the drift and residual re-
sistance values defined for the shear failure (Table 30) are obtained from the equivalent
multilinear curve determined in 8§ 3.6.3.1. Concerning flexural behaviour, the drifts are
assumed to be twice those adopted for the shear, as no experimental data were available
for this type of failure.

Table 29: Average values of the mechanical properties of the unstrengthened “KS” masonry panels

“KS” unstrengthened panels

frn,u ks fumoks sk dks Tumo,red ks Lred KS fotks
[N/mmz?] | [N/mm?] [-] [-] [N/mm2] [-] [N/mm?]
9.81 0.17 0.8 0.94 0.10 0.46 1.58

It is important to stress that this assumption is consistent with the indicative values
proposed by the Italian technical standard CNR-DT 212/2013 “Guide for the Probabilis-
tic Assessment of the Seismic Safety of Existing Buildings™ [25]. The residual resistances
for the flexural damage are also coherent with CNR-DT 212/2013.

Table 30: “KS_0_1" specimen: values of drift and residual resistance

. Residual resistance
D”ﬂ (Vres,i / VRd)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =0.62% d4,s =0.75% dsys =0.93% 0.72 0.44
Bending d3,B =1.24% d4,B =1.5% dS,B =1.86% 1.0 0.85

The experimental results are compared to the numerical ones in terms of internal forces,
Vi, N;, and moments, Mi, M;. In Figure 5.4 are shown the results of the “KS 0 1 speci-
men, which was tested under the constant vertical load of 240 kN.

It is worth noting that a very good match between the experimental and numerical dia-
grams is provided. The values of normal force N; concur exactly with those recorded
during the test. Moreover, the maximum shear force Vjmax is 208.62 kN. It is very close to
the one calculated in 8 4.1.1 (Vrs = 208.47), and the hysteretic response reliably repro-
duces the experimental curve. Concerning the bending moments, M; and M;, the first one
is underestimated, while the second is overestimated. This approximation is due to the
assumption that the rotation at the top of the panel, ¢;, is constrained. However, it does
not influence the shear force V; since the latter is always in equilibrium with the sum of
the moments (Eq. (5.9)).
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M, +M.
J.:TJ (5.9)

Where h is the height of the element.
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Figure 5.4:  Specimen “KS_0_1": internal forces and moments

The “KS_0 17 panel attains the in-plane strength with shear failure from DL2 to DL5,
reproducing correctly the cracking pattern observed during the test. The failure domain in
Figure 5.5 also confirms this result since N; varies between 243 kN and 393 kN. In this
range, no mixed failure can occur. The latter is only possible at normal force values

between 51 kN and 93 kN and between 1690 kN and 1930 kN.
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Figure 5.5:  In-plane failure domain of the “KS” unstrengthened panels

Concerning the masonry properties of the second unstrengthened “KS” specimen, they
are the same as those adopted for the previous sample. The drifts and residual resistances
assumed in the modelling with TREMURI are shown in Table 31.

Table 31: “KS_0_2” specimen: values of drift and residual resistance

. Residual resistance
D“ﬂ (Vres,i / VRd)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =0.51% d4,s =0.75% dsys =0.93% 0.72 0.44
Bending d3,B =1.0% d4,B =1.5% dS,B =1.86% 1.0 0.85

As described in § 3.6.3.1, the “KS 0 2” panel was tested under the constant vertical load
of 120 kN, and the test was stopped shortly after achieving the maximum horizontal
force. Therefore, only the equivalent bilinear curve could be determined, from which the
drift ds s was obtained since the specimen failed by diagonal cracking (ds is assumed to
be twice). For this reason, the drifts and residual resistances defined for the DLs 4, 5 are
the same as those assumed for the previous sample. The in-plane strength domain in
Figure 5.5 confirms that no hybrid behaviour can occur since the normal force N; varies
between 123 kN and 273 kN.

Furthermore, as shown in Figure 5.6, the numerical results reproduce very well the
experimental ones. The element achieves the in-plane strength by shear failure. The
maximum shear force Vjmax is equal to 144.09 kN, and it is very close to the expected one
(Vrda = 143.98). The cyclic behaviour is also very well reproduced from DL2 to DL3
(DL4 is not reached). As depicted in Figure 3.30, the panel showed a final experimental
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cracking pattern between DL3 and DL4. Thus, it is possible to conclude that the numeri-
cal results find an excellent correspondence with the experimental ones, although the
imposed values of drift and residual strength at DLs 4, 5 are those of the previous sample.
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Figure 5.6: “KS_0_2” specimen: internal forces and moments
{4 » = = =
5.2.2 “KS” Specimens strengthened on one side with the

EQ-GRID system

The first calcium-silicate brick masonry panel strengthened EQ-GRID and modelled in
TREMURI is the “KS 1 1 specimen. The adopted masonry mechanical properties are
reported in Table 30. The increase in shear strength is computed after CNR-DT 215/2018
through Egs. (4.18) - (4.19), where the total number of applied textile layers ns is one
since the grid was applied only on one side. In this respect, the FRCM design length I; is
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5.2 Modelling results of the calcium-silicate brick masonry panels

1.25 m, and the average strength of the system under diagonal cracking is equal to 27.74
kN/m (: glim,conv,h : Ef,h .teq,h + glim,cunv,h : Ef,d 'teq,d ) .

Moreover, the TREMURI program checks that the shear force calculated at each load
step does not exceed the diagonal crushing resistance Vi, as suggested by CNR-DT
215/2018. For the “KS” masonry, Vi is equal to:

V,, =025 f . -t-d, =0.25.9.81-240-1250 = 735.75kN (5.10)

Where:
¢ fmuks is the average masonry compressive strength (Table 30);
e tis the thickness of the specimen (240 mm);

e d: is the distance between the compressed edge of the panel and the fibre of the re-
inforcement that attains the highest tensile strain. As the EQ-GRID system is
applied on the entire panel’s surface, d: corresponds to the sample’s length (1250
mm).

Furthermore, the adopted drifts and residual resistances are shown in Table 33. The
values for the shear damage are obtained from the equivalent multilinear curve calculated
in 8 3.6.3.2 since the sample failed by diagonal cracking. Then, the drifts chosen for the
flexural behaviour are equal to twice those adopted for the shear, as observed in § 5.2.1.
The assumed residual resistances are consistent with the values suggested by CNR-DT
212/2013 [25].

Table 32: “KS_1_1” specimen: values of drift and residual resistance

. Residual resistance
Drlft (Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =0.82% d4,s =1.0% dsys =1.22% 0.63 0.41
Bending d3,B =1.64% d4,B =2.0% dS,B =2.44% 1.0 0.85

The results of the modelling in TREMURI are presented in Figure 5.7 with the experi-
mental ones. The “KS_1 1” specimen was tested under the constant vertical load of 240
kN. The maximum shear force Vjmax Obtained from the numerical modelling, is equal to
232.53 kN, and it is very close to the expected one Vrys = 232.43 kKN. The ML-BEAM
element reaches the in-plane resistance with shear failure from DL2 until DL5, reproduc-
ing, in this way, the cracking pattern observed during the test.
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Figure 5.7:  “KS_1_1” specimen: internal forces and moments

The strength domain of the panel in Figure 5.8 confirms this type of failure since the
normal force N; varies between 243 kN and 407 kN (Figure 5.7). In this range of values,
no hybrid behaviour can occur. It is only possible at normal forces between 48 kN - 106

kN and 1636 kN - 1906 kN.

Furthermore, as shown in Figure 5.7, the bending moments, M; and M;, are under- and
overestimated, respectively. The assumption made on the rotation at the top of the panel
(p; = 0) causes the difference with the experimental values. However, this approximation
does not influence the shear force values because the global equilibrium of the element is

always correctly ensured.

Moreover, as described in § 3.6.3.2, the experimental data of the second calcium-silicate
brick masonry panel strengthened with EQ-GRID, i.e. the “KS 1 2 specimen, were not
completely reliable in the post-peak phase of the test. Therefore, only the first part of the
hysteresis curve, until achieving the maximum shear force, is modelled in TREMURI.
The masonry mechanical properties assumed for the “KS 1 2” panel are indicated in
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Table 30. The strengthening effect of the EQ-GRID system is calculated with the ap-
proach proposed by CNR-DT 215/2018.
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Figure 5.8:  In-plane failure domain of the “KS” panels strengthened on one side

Normal force

Shear force
250
200

-100
) g
> 08 -06 06 08 Z
-250
z -200 =00
2250 —KS_1_2 panel 2350 —KS_1_2 panel
d [%] —TREMURI d [%] —TREMURI
Bending moment Bending moment
250 250
200 200
150
) E
z Z
o= =
= 08 06 08 = -08 0.8
-150
-200
2250 KS_1_2 panel 2250 —KS_1_2 panel
d[%] —TREMURI d[%] —TREMURI

Figure 5.9: “KS_1_2” specimen: experimental and numerical values of internal forces and moments

173



Chapter 5: Modelling of cyclic lateral shear tests with the Equivalent frame method

The adopted values of drift and residual resistances are equal to those defined for the
“KS 1 1” panel (Table 32) since the equivalent multilinear curve could not be deter-
mined in this case.

Therefore, the experimental and numerical results are presented in Figure 5.9, in which it
is evident the very good correspondence. The maximum shear force Vjmax, reached by the
ML-BEAM element, is equal to 191.36 kN, and it is very close to the expected one, Vrgs
=191.29 kN (the specimen was tested under the vertical load of 120 kN).

Finally, the element achieves the in-plane strength with shear failure, but it doesn’t reach
the DL3, as during the first part of the test. The strength domain of the panel (Figure 5.8)
confirms that no mixed failure could occur since the normal force N; varies between 123
kN and 335 kN (Figure 5.9).

5.2.3 “KS” specimens strengthened on both sides with the

EQ-GRID system

The modelling results of the “KS 2 1 specimen are shown in Figure 5.10 with the
experimental ones. As for the samples reinforced on one side, the adopted masonry
mechanical properties are indicated in Table 30. The linear elastic response of the ML-
BEAM element is defined through the secant stiffness obtained from the equivalent
multilinear curve calculated in § 3.6.3.3. The improved shear resistance of the panel is
taken into account with Eqgs. (4.18) - (4.19), where n; is equal to 2 since the grid is ap-
plied on both sides of the specimen. Furthermore, the shear force calculated by the
TREMURI program at each load step never exceeds the diagonal crushing resistance Vi
defined in Eq. (5.10).

Therefore, the drifts and residual resistances adopted for the shear damage (Table 33) are
obtained from the equivalent multilinear curve of this specimen. The values chosen for
the flexural behaviour are assumed equal to twice those adopted for the shear failure. The
residual resistances are consistent with CNR-DT 212/2013 [25].

Table 33: “KS_2 17 specimen: values of drift and residual resistance
Residual resistance
Drift
(Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,5 =1.21% d4,s =1.32% ds,s =1.61% 0.63 0.33
Bending d3,B =2.42% d4,B =2.64% ds,B =3.22% 1.0 0.85
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5.2 Modelling results of the calcium-silicate brick masonry panels

As shown in Figure 5.10, the numerical results have a good match with the experimental
ones since the ML-BEAM element reaches the in-plane strength with shear failure from
DL2 until DL5. The hysteretic behaviour is also well reproduced.

Normal force

Shear force
300 25 -2 -15 -1 ()i() 0 05 1 1.5 20 25
=2.0 -4 =12 - =0.3 i P ) Z p. %
250 14 -50

2 )
> 252 502
300 KS 2 1 panel 400 KS_ 2 1 panel
d[%)] —TREMURI d[%] —TREMURI
Bending moment Bending moment
300 300
250 250
200 200
150 150
100
z — £ —
24, [~} —
R o s Pl 25|50 25 2 15 2 25
=150
-200
-250
-300 KS 2 1 panel KS 2 1 panel
d[%] —TREMURI 4% —TREMURI

Figure 5.10: “KS 2 1” specimen: experimental and numerical values of internal forces and moments

The maximum shear force Vjmax obtained from the modelling, is equal to 229.62 kN,
which is very close to the theoretical one (Vras = 229.58 kN). Moreover, the strength
domain depicted in Figure 5.11 shows that the mixed failure is possible at normal force
values between 45 kN - 120 kN and 1590 kN - 1880 kN. Since Nj varies between 123 kN
and 363 kN (Figure 5.10), no mixed failure occurs. It is important to stress that the cross-
section analysis described in § 4.2.3. is also performed by the program. In this case, the
consideration of the increased in-plane flexural capacity is fundamental to reproduce the

panel’s experimental behaviour correctly.
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"KS" panel strengthened on both sides
700

600
500
400
300
200
100

0
-60

[] Mixed failure

V [kN]

Bending with EQ-GRID

Shear with EQ-GRID
(CNR-DT 215/2018)
240 540 840 1140 1440 1740 2040 2340 2640
N [kN]

Figure 5.11: In-plane failure domain of the “KS” panels strengthened on both sides

Moreover, the second calcium-silicate brick masonry specimen strengthened on both
sides with EQ-GRID, i.e. the “KS 2 2” panel, is also modelled in TREMURI. The
adopted material properties and the improved in-plane load-bearing capacity are imple-
mented in the program as for the previous sample. The drifts and residual resistances for
the shear damage are obtained from the equivalent multilinear curve determined in §
3.6.3.3 since the panel failed by diagonal cracking (Table 34).

Table 34: “KS_2 2” specimen: values of drift and residual resistance

. Residual resistance
D“ft (Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =1.07% d4,s =1.20% dsys =1.46% 0.65 0.39
Bending d3,B =2.14% d4,B = 2.40% dS,B =2.92% 1.0 0.85

The drifts for the bending damage are assumed twice those of the shear failure, and the
adopted resistances are coherent with CNR-DT 212/2013 [25].

Therefore, the experimental and numerical results are compared in Figure 5.12. The
maximum shear force, Vjmax, attained during the analysis is equal to 231.13 kN, and the
expected value, Vrgs, is 231.09 kN (the “KS 2 2” was tested under the constant vertical
load of 120 kN). Moreover, the ML-BEAM element achieves the in-plane resistance with
shear failure from DL2 until DL5. No mixed failure occurs since the absolute values of N;
vary between 123 kN and 367 kN (Figure 5.12). Finally, also in this case, the considera-
tion of the improved in-plane flexural capacity is fundamental to reproduce the panel’s
hysteretic behaviour correctly.
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Figure 5.12: “KS 2 27 specimen: experimental and numerical values of internal forces and moments

5.3 Modelling results of the hollow clay brick
masonry panels

5.3.1 “WZI” unstrengthened specimens

The cyclic lateral shear tests performed on the unreinforced “WZI” specimens are mod-
elled with the Equivalent frame method implemented in the TREMURI program. The
elastic properties of the ML-BEAM element are defined through the secant stiffness, Ksec,
which is obtained from the calculation of the equivalent multilinear curve (8 3.6.4.1).
Moreover, Table 35 reports the adopted average values of masonry compressive strength
fmuwz, initial shear strength fumowzi, local coefficient of friction uwz, interlocking pa-

rameter ¢wz and tensile strength of the brick fo,wzi.
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Table 35:  Average values of the mechanical properties of the unstrengthened “WZI” masonry panels

“WZI” unstrengthened panels

fm,u,WZI fva,WZI Hwzi ¢WZ| fva,red,WZI Hred, Wzl fbt,WZI
[N/mm2?] | [N/mm?] [-] [-] [N/mm?] [-] [N/mm?]
5.28 0.30 0.8 1.29 0.15 0.39 0.90

The modelling results and the experimental values of the “WZI 0 1” panel are shown in
Figure 5.13. The maximum shear force reached by the ML-BEAM element is equal to
180.86 kN, and it concurs exactly with the expected value of resistance, Vrq. The as-
sumed drifts and residual resistances are indicated in Table 36.
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Figure 5.13: “WZI 0_1” specimen: experimental and numerical values of internal forces and moments
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Table 36: “WZI_0_1” specimen: values of drift and residual resistance
. Residual resistance
Drift
(Vres,i / VRd)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3s=0.60%| dss=0.65%| dss=0.73% 0.69 0.47
Bending d3g=1.20%| dsg=1.30%| dspg=1.46% 1.0 0.85

Regarding the shear damage, the adopted values are obtained from the equivalent multi-
linear curve determined in § 3.6.4.1 since the panel failed by diagonal cracking. Concern-
ing the flexural behaviour, the chosen drifts are equal to twice those assumed for the
shear failure. The residual resistances suggested by CNR-DT 212/2013 [25] are adopted.

The ML-BEAM element attains the in-plane strength showing shear damage from DL2 to
DL5 and finding a good match with the cracking pattern observed during the test. The
failure domain of the panel also confirms this result since the absolute values of N; vary
between 242 kN and 381 kN. As depicted in Figure 5.14, no mixed failure can occur in
that range. It is only possible at normal force values between 74 kN - 136 kN and 885 kN

- 1025 KkN.
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Figure 5.14: In-plane failure domain of the unstrengthened “WZI” specimens
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Concerning the “WZI_0_2” panel, the diagrams of the internal forces and moments are
shown in Figure 5.15.
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Figure 5.15: “WZI_0_2” specimen: experimental and numerical values of internal forces and moments

It is important to stress that, since the experimental values recorded in the post-peak
phase of the test were not reliable, the equivalent multilinear curve of the “WZI 0 2”
panel could be not determined. Therefore, the modelling is performed using only the
available test data, and the values of drift and residual resistances are assumed equal to
those defined for the “WZI_0 17 specimen (Table 36).

Moreover, as depicted in Figure 5.15, the maximum shear force, Vjmax, attained during
the modelling is 158.56 kN, and it is very close to the expected one (Vrs = 158.47 kN). It
is worth noting that the absolute values of N; vary between 122 kN and 290 kN (Figure
5.15). Therefore, the ML-BEAM element shows a hybrid behaviour in the range 122 kN -
136 kN. However, since these values were recorded during the transition from positive to
negative displacements and vice versa, it is only temporary. In fact, the ML-BEAM
element achieves the in-plane resistance with shear damage until DL3, as during the first
part of the test (Figure 5.16).

180



5.3 Modelling results of the hollow clay brick masonry panels

Figure 5.16: “WZI_0_2” specimen: damage state at the end of the first part of the test (DL3)

5.3.2 “WZI” specimens strengthened on one side with the
EQ-GRID system

The cyclic lateral shear tests carried out on the “WZI 1 _1” and “WZI_1_2” specimens
are also modelled in TREMURI. As described in 8 5.1, the elastic secant stiffness, Ksec, is
experimentally obtained by calculating the equivalent multilinear curve. The masonry
mechanical properties are equal to those adopted for the unreinforced WZI specimens
(Table 35). The improved load-bearing capacity is calculated with the design approach of
the CNR-DT 215/2018, as for the “KS” specimens. Thus, the shear resistance Vrgs iS
obtained through Eq. (4.19), in which n is equal to 1 since the grid is applied only on one
side of the panels. Moreover, the shear force calculated by the program, Vj, is always
lower than the diagonal crushing resistance Vic:

V,, =025 t-d, =0.25.5.28-240-1250 = 396kN (5.11)

Where fnuwzi is the average masonry compressive strength (Table 35), t is the thickness
of the wall (240 mm), dx is the distance between the compressed edge of the panel and the
fibre of the reinforcement that attains the highest tensile strain. As the EQ-GRID system
is applied on the entire surface, dr corresponds to the length of the specimen (1250 mm).

The drifts and residual resistances adopted for the modelling of the “WZI 1 _1” specimen
are summarized in Table 37. Since the panel showed diagonal cracks during the test, the
values indicated for the shear damage are obtained from the equivalent multilinear curve
(8 3.6.4.2). Concerning the bending failure, the chosen drifts are equal to twice the values

181



Chapter 5: Modelling of cyclic lateral shear tests with the Equivalent frame method

assumed for the shear damage, and the residual resistances are coherent with CNR-DT

212/2013 [25].

Table 37: “WZI_1_1” specimen: values of drift and residual resistance

. Residual resistance
Drift (Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear dss=0.62%| dss=0.75%| dss=0.93% 0.72 0.44
Bending | d3g=1.24%]| dsg=1.5% | dsg=1.86% 1.0 0.85

The numerical results of the “WZI 1 17 specimen are directly compared with the exper-
imental diagrams of the internal forces and moments, as depicted in Figure 5.17.
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Figure 5.17: “WZI 1 _1” specimen: experimental and numerical values of internal forces and moments
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The sample was tested under the constant vertical load of 240 kN, and the normal force
N; varies between 242 kN and 422 kN. As shown by the failure domain of the panel
(Figure 5.18), no mixed failure can occur in this range. The latter is only possible at
normal force values between 73 kN - 163 kN and 833 kN - 998 kN. Therefore, the ML-
BEAM element achieves the in-plane strength with shear failure from DL2 to DL5. The
maximum attained shear force, Vjmax, iS equal to 204.23 kN, and it is very close to the
expected value (Vras = 204.29 kN). As depicted in Figure 5.17, the results reproduce the
hysteretic response of the panel very well and have a good match with the behaviour
shown during the test.

"WZI" panel strengthened on one side

400
350
300
= 250 [ Mixed failure
< 200
> 150 Bending with EQ-GRID
100 Shear with EQ-GRID
50 (CNR-DT 215/2018)

0
60 140 340 540 740 940 1140 1340
N [kN]

Figure 5.18: In-plane failure domain of the “WZI” specimens strengthened on one side

Concerning the “WZI 1 2” panel, the experimental and numerical diagrams are reported
in Figure 5.19. Since the test data were not completely reliable in the post-peak phase,
only the first part of the hysteresis curve, until the attainment of the maximum shear
force, has been modelled with TREMURI.

The sample was tested under the constant vertical load of 120 kN, and the absolute values
of N;j vary between 122 kN and 285 kN. Therefore, during the modelling with TREMU-
RI1, the mixed failure occurs at normal force values between 122 kN and 163 kN, as
shown by the failure domain of the panel (Figure 5.18). The adopted values of drift and
residual resistances are equal to those of the “WZI_1_1” panel (Table 37), as the equiva-
lent multilinear curve could not be determined. The maximum shear force V;max reached
by the ML-BEAM element is equal to 173.92 kN, the expected value, Vrgs, is 173.89 kN.
Finally, the element achieves the in-plane strength with shear failure, but it doesn’t reach
the DL3, as during the first part of the test.
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Figure 5.19: “WZI 1 _2” specimen: experimental and numerical values of internal forces and moments

5.3.3 “WZI” specimens strengthened on both sides with
the EQ-GRID system

The modelling results of the cyclic lateral shear tests performed on the “WZI 2 1” and
“WZI_2 2” specimens are presented. The elastic properties of the ML-BEAM element
are defined through the secant stiffness, ks, Obtained from the equivalent multilinear
curve determined in 8 3.6.4.3. The masonry mechanical properties are described in Table
35. The in-plane shear resistance is calculated through Eqs. (4.18) and (4.19), in which n;
is equal to 2 since the textile is applied on both sides of the panels. Furthermore, the shear
force Vj calculated at each load step is always lower than the diagonal crushing resistance
Vie (Eq. (5.11)) for both specimens. The in-plane flexural capacity is calculated through
the cross-section analysis described in § 4.2.3. Therefore, the numerical and experimental
results of the “WZI_2 17 panel are firstly presented (Figure 5.22). The maximum shear
force Vjmax attained by the ML-BEAM element, is equal to 215.51 kN, which is very

184



5.3 Modelling results of the hollow clay brick masonry panels

close to the expected one calculated in § 4.2.4 (Vras = 215.63 kN). The drifts and residual
resistances adopted for the modelling are summarized in Table 38.

Table 38: “WZI_2 17 specimen: values of drift and residual resistance

. Residual resistance
Drift (Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3s=1.20%| dss=1.40%| dss=1.60% 0.55 0.35
Bending | dsg=2.40%| dag=2.80%| dsg=3.20% 1.0 0.85

It is worth noting that the “WZI_2 1” sample achieved the in-plane resistance with the
formation of diagonal cracks from corner to corner, but it also showed sub-vertical cracks
across the thickness during the post-peak phase. As depicted in Figure 5.20, stress con-
centrations at the compressed toes caused the achievement of the masonry compressive
strength. Therefore, the values indicated in Table 38 for the shear failure are lower than
those obtained from the equivalent multilinear curve calculated in § 3.6.4.3 (Table 19).

Figure 5.20: Sub-vertical cracks in the “WZI” specimens strengthened on both sides

Moreover, it is important to stress that the experimental behaviour of the panel can be
correctly reproduced thanks to the cross-section analysis performed by the program to
calculate the in-plane flexural capacity. In this regard, Figure 5.21 shows the in-plane
strength domain of the “WZI” panels, in which the orange and grey lines represent the
bending and shear domain when the reinforcing system is applied on both sides of the
specimens. The dotted line corresponds to the bending domain of the unreinforced panel.
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Figure 5.21: In-plane failure domain of the “WZI” specimens strengthened on both sides
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Figure 5.22: “WZI 2 1” specimen: experimental and numerical values of internal forces and moments
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5.3 Modelling results of the hollow clay brick masonry panels

If the strengthening effect of the EQ-GRID system on the shear and flexural capacity is
considered, the mixed failure can occur at normal force values between 75 kN and 205
kN. On the contrary, if the contribution of the EQ-GRID system to the flexural strength
of the panel is neglected, the mixed failure can occur at normal force values between 143
kN and 375 kN.

Since the variation range of N; is 122 kN - 387 kN (Figure 5.22), the ML-BEAM element
would present a hybrid behaviour in most of the load steps if the improvement of flexural
strength is neglected. Furthermore, during the final phase of the modelling, in which the
normal force values are lower than 143 kN, the element would show only bending failure.

Therefore, the cyclic response of the sample can be correctly reproduced only by consid-
ering the contribution of EQ-GRID in the shear and flexural strength of the panel. In this
case, the ML-BEAM element can attain the maximum horizontal force showing the shear
failure. Then, only in the post-peak phase, when the acting normal force is lower than 205
kN, it can present the hybrid behaviour observed during the test.

Concerning the “WZI 2 2” panel, the experimental and numerical results are compared
in Figure 5.23. The maximum shear force achieved during the modelling is equal to
213.19 kN, which is very close to that calculated in § 4.2.4 (Vras = 213.30 kN). The
adopted drifts and residual resistances are summarized in Table 39.

Table 39: “WZI_2 2” specimen: values of drift and residual resistance

. Residual resistance
D“ﬂ (Vres,i / VRd,s)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =0.88% d4,s =0.93% dsys =1.20% 0.70 0.45
Bending d3,B =1.76% d4,B =1.86% dS,B = 2.40% 1.0 0.85

It is worth pointing out that the “WZI 2 2” specimen reached the in-plane shear re-
sistance with the formation of diagonal cracks and presented sub-vertical cracks across
the thickness during the post-peak phase. Therefore, as for the “WZI 2 17 panel, the
experimental behaviour can be numerically reproduced only considering the increased
shear and flexural strength due to EQ-GRID. In this regard, Figure 5.23 shows that the
absolute values of N; vary between 122 kN and 363 kN, and the mixed failure is possible
in the range 122 kN - 205 kN, as during the test.
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Figure 5.23: “WZI 2 2” specimen: experimental and numerical values of internal forces and moments
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Chapter 6

Modelling of shaking table tests with
the Equivalent frame method

The three-dimensional model of a hypothetical prototype masonry structure was tested on
the seismic shaking table of the Dynamic Testing Laboratory at the Institute of Earth-
quake Engineering and Engineering Seismology (1ZIIS) in Skopje from February to
September 2013 [73]. Figure 6.1 shows the geometry of the three-dimensional BM
model.

3D MODEL
=] RC Shell
‘ 1 Brick Wall
4 § ] RC Shell
8 . ‘ | Brick Wall
'E': i ) —~_|RC Fundation

150

1
35| L

N-S§ = x-direction in TREMURI
L 326 e E-W = y-direction in TREMURI

Figure 6.1: BM model: the unstrengthened three-dimensional model [73]
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

The experimental campaign was carried out to validate the EQ-GRID system as seismic
retrofitting technology for traditional historic masonry structures. Therefore, a two-story
brick masonry building with reinforced concrete floors was chosen as a prototype struc-
ture. It represented most of the existing residential and public masonry buildings of the
second half of the XX century in the Republic of Macedonia and on the territory of the
Balkan region.

The geometrical scale of the three-dimensional BM model was 1:2. It was chosen based
on the following criteria:

e Dimensions of the shaking table (4.5 m x 4.5 m);

e Allowed total height and weight on the shaking table (10 m and 400 kN, respective-
ly);

e Realistic reproduction of the possible failure mechanisms of masonry walls under
seismic actions.

Thus, the total length, width and height of the building were 4.24 m, 3.06 m and 3.30 m,
respectively (Figure 6.1). The structural system consisted of five bearing walls, four
facades and one in the middle (Figure 6.2).

Figure 6.2:  Construction of the BM model [73]
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

The walls were constructed in a running bond with a thickness of 12.5 cm (Figure 6.3).
The adopted bricks were manufactured with 12.5 x 6 x 3.25 cm dimensions to reproduce
the standard brick size of 25 x 12 x 6.5 cm. The mortar joints were prepared with a
lime/cement/sand ratio equal to 1/1/3, river sand with fraction 0-2 cm as filler, and water.
The thickness of the vertical and horizontal mortar joints was equal to 0.5 cm [73].
Therefore, the physical, chemical and mechanical masonry properties were similar to
those of the hypothetical prototype structure.

Corner joint facade wall- middle wall joint

Figure 6.3:  Masonry pattern of the BM model [73]

Table 40 shows the average compressive strength of the adopted solid clay brick and
mortar. The values were experimentally obtained through compressive tests performed on
bricks and mortar prisms.

Table 40: Average values of compression strength of the solid bricks and lime-cement mortar of the BM

model [73]
Solid clay brick Mortar (cement: clay: sand=1:1: 3)
f, = 20,12 MPa fm = 15,52 MPa (28 days)

Moreover, a reinforced concrete foundation with dimensions of 3.26 x 4.76 x 0.30 m was
built to transport and anchor the structure on the shaking table (26 anchors were used).
After the construction phase, the BM model was left to dry for 30 days at the place where
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

it was constructed. Finally, it was transported with a 90-tons auto crane on the shaking
table [73].
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Figure 6.4:  Foundation plan of the BM model [73]

The model was dynamically tested by applying two main types of earthquakes in its W-E
direction: one local (Northridge, 1994) and two distant (EI Centro, 1940 and Petrovac N-
S, 1979). The time histories were scaled in compliance with the principles of modal
analysis, and their application was made gradually, increasing the peak ground accelera-
tion [73].

Table 41 shows the selected experimental tests starting from moderate to destructive
intensities and the reached damage level.

Since the experimental campaign aimed to investigate the effectiveness of the EQ-GRID
strengthening system by comparing the behaviour of the retrofitted structure with the
original one, the testing program provided for the application of earthquake excitations
with a gradual increase in intensity. In this way, the progressive development of cracks,
the modification of the dynamic characteristics, the elasticity limit, i.e. occurrence of the
first cracks, and the failure mechanisms could be monitored.
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Table 41: Dynamic input excitation of the BM model [73]

Earthquake Span [%] ainput [0] Damage BM model
El Centro 50 0.14
Petrovac 36 0.16
Northridge 16 0.18 -
El Centro 65 0.18
Petrovac 40 0.18
El Centro 75 0.21
Petrovac 45 0.20 Initial fine cracks
Northridge 20 0.21
El Centro 80 0.27 Further propagation
Northridge 25 0.23 of initial cracks
Petrovac 50 0.22
Petrovac 70 0.32 Damage develop-
ment
Petrovac 75 0.35

The BM model was tested until observing considerable damages. As depicted in Figure
6.5, the North-East corner of the model resulted dislocated at the end of the dynamic
tests. Therefore, it was first directly stabilized on the shaking table. Then, the structure
was transported back to the place where it was constructed. The cracks were repaired
through injection of lime-cement based mixtures. Finally, the EQ-GRID system was
applied on the outer side of the walls.

Figure 6.5: Damage to the North-East comer of the BM model and transportation from the shaking table
[73]

As illustrated in Figure 6.6, the grid was applied with 10-15 cm overlapping in the
following order:

e at the window and door corners (diagonal textile strips),

193



Chapter 6: Modelling of shaking table tests with the Equivalent frame method

e around the floor slabs,
¢ around the foundation slab,

e from the top of the walls to the foundation.

Figure 6.6:

Figure 6.7:  Retrofitting phases of the BM-SR model — anchoring detail [73]
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Moreover, the grid was anchored into the foundation through steel L-profile and bolts at
regular distances of 15-20 cm along the perimeter of the facade walls (Figure 6.7).

Finally, the model was left drying for 30 days at the construction place and then posi-
tioned on the shaking table, where it was appropriately anchored through 26 anchors
(Figure 6.8).

Figure 6.8:  Transportation of the BM-SR model and positioning on the shaking table [73]

The BM-SR model was subjected to the same dynamic tests’ series of the unstrengthened
specimen to directly compare the experimental results and evaluate the EQ-GRID sys-
tem’s performance. Table 42 shows the list of the scaled earthquakes with the structural
damage reached by both structures. Due to the presence of the system, the BM-SR model
was tested under higher intensities of input excitation. It is worth noting that the maxi-
mum acceleration applied at the base of the BM-SR model (Petrovac 260) is about 3.45
times higher than the last one assigned to the unstrengthened structure (Petrovac 75).

Therefore, both BM and BM-SR specimens are modelled with the equivalent frame
method. The frame-type representation of the structure is depicted in Figure 6.9, in which
piers, spandrels, r. c. beams and rigid nodes assemble each wall. The concrete slabs are
simulated as rigid diaphragms. It is important to stress that the r. c. beams are introduced
in the modelling to consider that the masonry spandrels are interrupted by the concrete
slabs. Therefore, the beams’ dimensions are assumed equal to the wall and slab thickness
(bxh=125x15cm).

Concerning the masonry panels, the ML-BEAM element is adopted for both BM and
BM-SR models. The initial stiffness ke is calibrated through modal analyses since the
natural frequencies of the BM and BM-SR models were measured before and after testing
by ambient vibration and random excitation techniques.
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Table 42: Dynamic input excitation of the BM-SR and BM models [73]

Damage BM-SR

Damage BM model

Earthquake Span [%] input [0] model

El Centro 50 0.14

Petrovac 36 0.16
Northridge 16 0.18 - -

El Centro 65 0.18

Petrovac 40 0.18

El Centro 75 0.21

Petrovac 45 0.20 - Initial fine cracks
Northridge 20 0.21

El Centro 80 0.27 Further propagation
Northridge 25 0.23 i of initial cracks

Petrovac 50 0.22 Damage

Petrovac 70 0.32 Initial fine cracks development

Petrovac 75 0.35

Petrovac 100 0.51

Petrovac 120 0.60 .

El Centro 100 0.31 Furth.er. propagaﬂon

of initial cracks

Petrovac 150 0.82

Petrovac 180 0.92 )

Petrovac 220 1.04 Damage

Petrovac 260 1.22 development

Petrovac 250 121

The progressive stiffness degradation in the elastic phase is considered by assigning two
proper ratios. The first one is between the initial and secant stiffness, and it is assumed
equal to 1.6. The second one, ko (Figure 1.41), is defined between the shear at the end of
the initial elastic phase and the shear strength attained by the element. It is assumed 0.7
for the piers and 0.5 for spandrels. The experimental evidence presented in [84], [85] and

[30] confirms these assumptions.

The maximum strength of the panels is calculated as the minimum obtained from the
chosen failure criteria. The Mann and Miiller theory [23] is adopted in the case of shear
failure. Egs. (1.18), (1.19) for the piers and Eqgs. (1.29), (1.30) for the spandrels are
implemented in the TREMURI program. The increase in strength due to the EQ-GRID
system is computed after CNR-DT 215/2018, as shown in § 4.2.3.
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Figure 6.9:  Frame-type representation of the walls of the BM and BM-SR Model in TREMURI
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Moreover, the shear resistance of URM piers associated with the flexural failure mode is
calculated, neglecting the tensile strength of the masonry and assuming a stress block
normal distribution at the compressed toe (Egs. (1.25) and (1.26)). The formulation
proposed by Cattari and Lagomarsino, illustrated in § 1.4, is adopted for the URM
spandrels. Finally, the cross-section analysis discussed in § 4.2.3 is performed for the
panels strengthened with EQ-GRID.

It is worth remembering that the hybrid failure mode is possible in two areas close to the
intersection points of the flexural and shear domains. As depicted in Figure 1.40, they are
identified through the parameters a; and a,, which are assumed 0.95 and 1.25, respective-

ly.

Moreover, the strength values of the masonry elements are defined based on the results of
the first part of the experimental testing and values typical for solid clay brick masonry.
By comparing the damage attained during the shaking table tests with the results of
nonlinear static (pushover) analyses, it is possible to confirm the assumed mechanical
properties, drift values and residual lateral strengths.

Furthermore, the parameters necessary to describe the panels’ cyclic shear and flexural
response are shown in Table 43. As reported in [46], these values are calibrated on
experimental results ([30], [86]), and they are adopted for the non-linear modelling and
time-history analyses of masonry Italian code-conforming buildings.

Table 43: Parameters of the cyclic response of the ML-BEAM element adopted for the BM and BM-SR model

Piers
Shear Bending
;=08 | =08 | c3=0 | =09 | =08 | ¢s=06 | ci=05
Spandrels
Shear Bending
=02 | =0 | c=03] =02 | =0 | =03 | cs=08

Finally, nonlinear dynamic analyses are performed to compare the experimental values of
accelerations and displacements with the numerical ones and confirm the results obtained
with the static analyses.
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6.1 The unstrengthened BM model

6.1.1 Modal analysis of the BM model

The modal analysis allows identifying the mode shapes, natural frequencies/periods and
modal masses of a structure in its original condition. As shown in Figure 6.10, the seis-
mic masses are assumed to be lumped at each model’s level. It is worth noting that only
the dead loads need to be considered, as no accidental loads were present during the test.

N
LE\’E] 2 m2 | njﬁunr,_’ + -("nuwh’.\..\' + ”TMUH.\‘._1J/2
@
o <
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Figure 6.10 Scheme of the seismic masses of the BM model

Therefore, assuming the material density of the reinforced concrete y. equal to 25 kN/m3,
the masses of the floors, Mioor1 and Mioor 2, are calculated, as follows:

25-10°
floor 1 7c Aﬂoor 1 floor,l 98 (4 245 3 058) o 25 N (61)
=8269.11kg
25-10°
floor 2 7/0 Aﬂoor 2 roor,Z 98 (4 245 3 058) 0 15 - (62)
=4961.26kg
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Where Asigors and Asioor,2, hricor,1 @and hroor2 are the areas and thicknesses of the first and
second floors. It is important to stress that an additional RC plate was constructed on the
first floor to create an additional load, as this was not connected to the walls. For this
reason, the thickness of the first slab, hsoor,1, is equal to 0.25 m.

The masses of the walls in x- and y-direction, Myaisx and Myaisy, are determined assum-
ing the material density of the masonry equal to 1950 kg/m3 [73]. The thickness and the
clear interstorey height of each wall are equal to 0.125 m and 1.50 m, respectively.

Myts x = Vimasonry Vs x = 1950+ (2-4.245-4.0.75-0.683)-0.125-1.50

’ ’ 6.3
mwalls,x = 260508kg ( )
mwalls,y = ymasonry 'Vwalls,y

=1950-(3-2.81:1.50—(2-0.683-0.75+3-0.725-1.2))-0.125 (6.4)
M., = 2193.75kg

Vuwalisx and Vwaiisy are the volumes of the masonry walls placed in x- an y-direction of the
model.

Therefore, assigning the calculated masses to each level (Figure 6.10), the lumped seis-
mic masses, mo, m; and my, are obtained:

mwalls,x + mwalls, 260508 + 219375
m, = Y= =
0

2 2 (6.5)
= 2399.41kg
m +m
ml — mﬂoom + 2( walls, x 2 walls,y j —
2605.08+ 2193.75 (66)
:8269.11+2-( ot . j:13067.87kg
Myatse T Maatis.y j (2605.08+ 2193.75)
m, =m ————— |=4961.26 =
2 floor,2 +[ 2 + 2 (67)
= 7360.84kg
Finally, the total mass of the model, My, is equal to:
Mg =My + M, +m, = 22828.12kg (6.8)

Table 44 shows the values calculated by the TREMURI program. They are very close to
those determined with Egs. (6.5) - (6.8).
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Table 44: Seismic masses of the BM model calculated by TREMURI

Level Nodes of the level Mass of the level
0 19;22; 1;4; 7, 10; 13; 16 mo = 2472.72 kg
1 20;23;2;5;8;11; 14; 17 m; = 12684.06 kg
2 21;24; 3;6;9; 12; 15; 18 my = 7446.35 kg

Mot = 22603.13 kg

Therefore, the natural frequencies f, periods T and modal masses my, my of the first ten
mode shapes obtained with the TREMURI program, are reported in Table 45.

Table 45: Natural frequencies f, periods T and modal masses m,, my of the BM model calculated by TREMURI

Mode shape f [Hz] T [s] my [kg] my [ka]
1 10.71 0.093 0.001 17850.13
2 13.74 0.073 163.87 0.066
3 14.98 0.067 16813.18 0
4 28.10 0.036 0 2263.57
5 35.72 0.028 6.12 0.012
6 40.10 0.025 3073.90 0
7 49.06 0.020 0.005 0.84
8 50.26 0.020 24.31 0
9 51.45 0.019 0.002 3.23
10 52.56 0.019 27.29 0
£ P3,
P4 Ps p M ps e
(I
P1 ——pi —

X

s mode shape 3 mode shape

Figure 6.11: First and third mode shape of the BM model calculated by TREMURI
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The first vibration mode (Figure 6.11) is translational along the East-West direction of
the structure (y-direction in TREMURI) with a frequency of 10.71 Hz and modal mass
equal to 79% of the total model’s mass, M. On the contrary, the third mode shape
(Figure 6.11) is translational along the North-South direction (x-direction in TREMURI)
with a frequency of 14.98 Hz and modal mass equal to 74% of the total model’s mass,
Mot Since the natural frequencies of the BM model were measured during the first part of
the tests by the ambient vibration and random excitation techniques, they can be com-
pared with the fundamental frequency calculated by TREMURI. In this way, it is possible
to calibrate the elastic properties of the ML-BEAM element for the masonry piers and
spandrels. Table 46 shows the values adopted for the elastic moduli perpendicular and
parallel to the bed joints adopted. As suggested in the literature and most codes for
masonry buildings, the shear modulus G is assumed equal to 0.4E.

Table 46: Natural frequencies of the BM model and assumed elastic moduli

Experimental (before testing) TREMURI
Direction f f f E = G
10.95 Hz
E-W (ambient 10.71 Hz
v- vibration) 10.57 Hz ( 15; mode 2150 1075 860
L 10.18 Hz (average) N/mm2| N/mmz2| N/mm?2
direction) shape)
(random
excitation)

6.1.2 Pushover analyses of the BM model

Four monotonic and two cyclic nonlinear static analyses are carried out in the East-West
direction of the BM model (y-direction in TREMURI) to compute the response of the
tested building under increasing lateral loads.

The pushover procedure implemented in TREMURI transforms the problem of pushing a
structure, maintaining constant ratios between the applied forces, into an equivalent
incremental static analysis with displacement control at only one d.o.f. [14]. In this case,
the controlled d.o.f. is the horizontal displacement uy of node 18 of the P3 wall since the
displacement of the second storey was experimentally measured through a linear potenti-
ometer named LPO06, positioned at that point [73]. Since the values recorded by this
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6.1 The unstrengthened BM model

sensor are absolute displacements and the nodes at the base of the numerical model are
fixed, the difference (LP06 - LPO1) [73] is considered for the modelling *.

The nonlinear static analyses can be carried out with different load patterns. The results
are generally expressed in terms of a base shear versus control node displacement rela-
tionship, i.e. the so-called pushover curve. The two most commonly adopted force distri-
butions are the uniform and the triangular inverse. The first one is proportional to the
mass of the levels, while the second one is proportional to the mass and height of the
levels. Both force distributions may be considered as boundary conditions for seismic
analyses. The actual dynamic response of the structure can be assumed to be within these
two solutions, and the real failure mode is generally predicted by one of the two distribu-
tions [87].

Since the pushover curve may be considered an envelope of the dynamic response of a
structure, the monotonic pushover analyses’ results are first discussed. In this way, it is
possible to individuate the best force distribution to interpret the failure mechanism
observed during the test and calibrate the material properties and drift values of the
masonry elements (piers and spandrels).

Table 47: Mechanical properties of the solid clay brick masonry

. . NTC 2018
Material properties (explanatory Circular) TREMURI
= 2
Compressive strength fi,, (mi2nl6an:ria|:l</r\r;;rl1ues) 5.0 N/mm?
Compressive strength funu - 2.5 N/mmz2
Young’s modulus E 1200 + 1800 N/mm? 2150 N/mm?
g (min. and max. values)
Young’s modulus E; - 1075 N/mm?
= 2
Shear modulus G 400 =600 N/mm 860 N/mm?

(min. and max. values)
0.13 + 0.27 N/mm2

Initial shear strength fumo . 0.13 N/mm?
(min. and max. values)
Friction coefficient u 0.577 0.577
Brick tensile strength fy: 0.1fy 0.20 N/mm2
. 2A
Interlocking ¢ ¢=—y 1.18
AX

L The linear potentiometer LPO1 was positioned on the foundation of the BM model to measure its absolute
displacement. The complete arrangement of the adopted sensors is indicated in [73].
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

Table 47 shows the average mechanical properties suggested by the explanatory Circular
of the Italian Building Code NTC 2018 [22] for existing solid clay brick masonry and
those adopted for the modelling with TREMURI. It is important to stress that minimum
and maximum average values are given since the masonry quality is usually not a con-
stant factor for the existing buildings.

The average compressive strength perpendicular to the bed joints, fn,, is obtained from
three compressive tests carried out on masonry panels during the first part of the experi-
mental characterization [73]. It is worth noting that it is 1.2 times higher than the maxi-
mum indicated by the Italian Building Code in Table 47. Moreover, the value assumed
for the Young’s modulus perpendicular to the bed joints, E, is also 1.2 times higher than
the maximum one. Since the tests performed on the bricks and mortar prisms in the first
part of the experimental testing showed that the masonry quality of the BM model is
good (Table 40), the adopted values are consistent with the type of masonry.

Finally, the initial shear strength fumo, the friction coefficient x and the tensile brick
strength fy are assumed equal to 0.13 N/mmg2, 0.577 and 0.20 N/mm?2, as suggested by the
Italian Building Code. It is important to stress that only the piers of the middle wall under
the first floor (elements 55 and 56 of the P5 wall in TREMURI) failed with diagonal
cracks during the shaking table test. If initial shear strength values higher than 0.13
N/mm? are adopted, the bending-rocking behaviour becomes relevant for these elements,
and the numerical model can’t reproduce the experimental results well.

6.1.2.1 Monotonic pushover analyses of the BM model

The load pattern proportional to the masses allows examining the response of a building
under extensive damage. Force redistributions among the levels are prevented, and
actions at lower storeys cannot shift to higher ones [87].

In the case of the BM model, the seismic masses my and m; are quite different. Therefore,
the force distribution is not uniform along with the building height and the load multiplier
Ai assumes unit value at the first level. Thus, the vector [4] is calculated as follows:

- m, 7446.35

4] % | | morm+m, | | 247272+ 12684.06 + 7446.35 | _
A m, 12684.06
- m,+m +m, | |2472.72+12684.06+ 7446.35 (6.9)
[0.33 4, =059
= } =[1]=
056 2 =1.00
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6.1 The unstrengthened BM model

With this type of distribution, the final damage observed during the test is well represent-
ed by the modelling in TREMURI. It is worth pointing out that the comparison between
the experimental and numerical model is made based on the experimental observations
reported in [73] and evaluating the shear-drift curve of the masonry elements. In this way,
the drifts of the ML-BEAM elements can be well-calibrated, and a clear overview of the
final state of damage can be obtained. In this regard, Table 48 summarizes the values of
drift and residual resistance chosen for the masonry piers and spandrels.

It is worth noting that experimental evidence, e.g. [30], [31], [45], has shown that the
spandrels generally achieve drifts significantly higher than those adopted for piers. In
particular, the values indicated in Table 48 are consistent with those suggested by the
Italian technical standard CNR-DT 212/2013 [25] for masonry spandrels supported by
concrete lintel and tie beam.

Table 48: Drift values of the masonry piers and spandrels for the BM model

Masonry piers
. Residual resistance
Drift (Vres,i / VRd)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =0.6% d4,s =1.1% dsys =1.6% 0.7 0.4
Bending d3,B =1.2% d4,B =2.2% dS,B =3.2% 1.0 0.85
Masonry spandrels with concrete lintel and tie beam
. Residual resistance
D“ﬂ (Vres,i / VRd)
Damage DL3 DL4 DL5 DL3 — DL4| DL4 — DL5
Shear d3,s =1.2% d4,s =2.0% dsys =2.6% 1.0 0.8
Bending d3,B =1.2% d4,B =2.0% dS,B =2.6% 1.0 0.8

Moreover, Figure 6.12 shows the pushover curves of two monotonic non-linear static
analyses with load pattern proportional to the masses (one performed in the positive y-
direction of the model and the other in the negative one). The attained maximum and
minimum base shear forces are equal to 51.66 kN and -50.95 kN, respectively. Hereafter,
the results of the nonlinear static analysis performed in the +y direction are in detail
discussed. The horizontal displacement u, of node 18 is chosen as controlled d.o.f.,
whose limit value is the maximum relative displacement (LP06 - LP01 = 17.073 mm)
measured during the last earthquake applied to the BM model (Petrovac 75).

Moreover, it is important to specify that the P2, P4, P5 walls are stressed in-plane since
they are in the same direction of the seismic input. On the contrary, the P1, P3 walls are
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

positioned in the x-direction of the model and are stressed out-of-plane. Therefore, the
results of the P2 wall are firstly presented. In this regard, the experimental and numerical
damage patterns are depicted in Figure 6.13, in which the most damaged elements are the

21 and 22, as experimentally for the BM Model.

Monotonic pushover proportional to the mass
Node 18 60
50

40

30

20

10

0
-20 -15 5 10 15 20

VB;N; [kN]

=50
-60
Node 18 uy [mm]

—TREMURI BM Model

Figure 6.12: Monotonic pushover curves of the BM model with load pattern proportional to the masses

N 65_ ) = fﬁ
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N 63 64
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4
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Figure 6.13: P2 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover
analysis in the +y direction with load pattern proportional to the masses)
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6.1 The unstrengthened BM model

In particular, pier 21 shows a bending behaviour, while pier 22 presents a mixed shear-
flexural failure. Furthermore, pier 23 reaches the bending resistance, but it does not
exceed the DL3. The maximum drift value attained by this latter is about 1.0% (Figure
6.14), and it is lower than the imposed limit of 1.2%. This result confirms the experi-
mental evidence that pier 23 is less damaged than the 21 and 22. Moreover, the upper
elements are only slightly stressed, as experimentally observed after the shaking table test
(no evident cracks were present [73]).

Pier 21 Pier 22
8 8
6 0 ‘ i — —
Z 4 <4 |
E S . o = 9 ‘
2 e —— 2|
' \
0 0
0 0204 06 08 1 1.2 14 1.6 0 0204 06 08 1 1.2 14 16
d[%) d[%)]
Pier 23 Pier 24
8 8
6 6
Z 4 Z 4
=, =
= [ —= =
| —
0 0
0 02040608 1 12 14 1.6 0 02040608 1 121416
d [%] d [%]
Pier 25 Pier 26
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Figure 6.14: BM model: shear-drift diagrams of the masonry piers of the P2 wall (monotonic pushover in the
+y direction with load pattern proportional to the masses)

As shown in Figure 6.14, the maximum drift reached by the elements 24, 25, 26 is equal
to 0.36%. Therefore, it is possible to assume that the upper piers are not visible cracked,
and the damage is concentrated in the bottom ones. Finally, the masonry spandrels and
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

the r. c. beams are not damaged except for spandrel 18 that achieves the shear strength
(spandrels 16 and 17 show only a degradation of the initial elastic stiffness ke).

Concerning the masonry elements of the P4 wall, they show the same shear-drift dia-
grams of the P2 since they are identical. Therefore, Figure 6.15 illustrates only the
experimental and numerical final damage pattern of the P4 wall.

N 73 74
43
N 7 7
4 3w
47 X
B o
ML 10

Figure 6.15: P4 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover
analysis in the +y direction with load pattern proportional to the masses)

Figure 6.16: P5 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover
analysis in the +y direction with load pattern proportional to the masses)

Moreover, the final failure mechanism showed by the middle wall P5 is reported in
Figure 6.16. The masonry pier 55 reaches the shear resistance with diagonal cracking,
confirming the experimental damage, and the maximum drift value is lower than 1.0%
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6.1 The unstrengthened BM model

(Figure 6.17). Therefore, it has exceeded the DL3 since dss is equal to 0.6%, but it
doesn’t attain the DL4 (dss = 1.1%). Moreover, pier 56 achieves the bending resistance,
and the maximum drift is 1.1%, which means that it is largely in the non-linear range but
just before the DL3 (dsg = 1.2%). It is worth noting that this type of damage was
experimentally observed. As depicted in Figure 6.16, piers 55 and 56 also show
horizontal cracks at the bottom corners.

Pier 55 Pier 56
25 25
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Figure 6.17: BM model: shear-drift diagrams of the masonry piers of the P5 wall (monotonic pushover in the
+y direction with load pattern proportional to the masses)

On the contrary, the upper elements 57 and 58 are only slightly stressed. They achieve
the bending resistance and are far from the DL3 since the maximum drift value is equal to
0.25%, attained by pier 58 (Figure 6.17). Therefore, it is possible to assume that these
elements are not cracked, as observed after the shaking table test. Finally, the masonry
spandrels 53 and 54 achieve the shear strength, and the reinforced concrete beams are not
damaged.

Concerning the P1 and P3 walls, they are positioned in the x-direction of the model and,
for this reason, loaded out-of-plane. Figure 6.18 shows the final DLs obtained with
TREMURI. The elements 1, 4, 13 of the P1 wall remain linear elastic; the masonry
spandrels 2, 3, 5, 6, 7, 8 and piers 12, 14 present only a degradation of the initial stiffness
ke Piers 9, 11 attain the bending resistance remaining, however, at the beginning of the
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Chapter 6: Modelling of shaking table tests with the Equivalent frame method

plastic phase. It is worth noting that pier 10 is subjected to a vertical tensile force since
the seismic input is applied in the direction perpendicular to the wall, and the building has
a stiff floor. In this case, the program deactivates the element, as the masonry tensile
strength is neglected, and the unreinforced pier cannot be subjected to normal tensile
forces. Finally, all the elements of the P3 wall remain in the linear elastic phase.

N 6l Ni5 62 Nz 69 70 =1
—_ 7 ‘ 8 33 34
12 = 14 38 =2 40
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35 36 37
27 30
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Figure 6.18: P1, P3 walls of the BM model: numerical final DLs (monotonic pushover in the +y direction with
load pattern proportional to the masses)

Regarding the monotonic pushover analysis performed in the -y direction with load
pattern proportional to the mass, the results are very similar to those obtained in the
positive one. Therefore, they are reported in Chapter 8. In this case, the maximum hori-
zontal displacement u, imposed on the contro