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c h a p t e r  1

Introduction

paleonutrition is the analysis of human prehistoric diet and the 
interpretation of dietary intake in relation to health and nutrition. In 
essence, paleonutrition assesses prehistoric diets to determine the biologi
cal and cultural implications for individuals as well as the population as 
a whole, placing archaeological interpretations into an anthropological 
context (Sobolik 1994a). Although food is obtained through diverse and 
innovative means from society to society, the acquisition of food is one 
of the fundamental biological needs of humans and is the driving force 
of human evolution. It is this very diversity that interests anthropologists 
as we try to understand and explain our past so that we can predict and 
focus on our future. This latter goal is important as “much of our future 
survival may depend on our ability to recognize the limits of human 
responses and coping mechanisms, especially in adverse and extreme 
conditions of environmental catastrophe, malnutrition and famine, and 
rapidly changing ecological, political, and economic conditions” (Mar-
tin et al. 1991:1).

Culture is constantly in flux due to various internal and external stim-
uli, including environmental and climatic shifts, population aggregation 
and dispersal, and political and economic turmoil and change (Sobolik 
1994a; Gardner 2007; Sutton and Anderson 2010). Changes in the distri-
bution and availability of food resources, whether due to environmental 
changes, surpluses or famine, reallocation or redistribution of resources, 
and/or political or economic changes, can cause stressful and potentially 
unstable times for humans. Understanding how humans respond biolog-
ically and culturally to these changes is of critical importance. Thus, the 
study of paleonutrition is an integral component of the analysis of food 
acquisition and its role in past human adaptation. Without a firm under-
standing of paleonutrition, human response to changes in food resources 
in diverse societies and environments through space and time cannot be 
fully discerned.
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The goals of this book are to describe the nature of paleonutrition stud-
ies, review the history of paleonutrition research, discuss methodological 
issues on the reconstruction of prehistoric diet, review theoretical frame-
works frequently used in paleonutrition research, and showcase compre-
hensive examples in which paleonutritional analyses have been success-
fully conducted on prehistoric individuals, groups, and/or populations. 
It is hoped that this book will help the reader to understand the past and 
future of paleonutrition research, as well as to recognize the importance 
of an integrative framework with regard to anthropological diet, health, 
and nutritional assessments. While focused on the study of prehistoric 
populations, paleonutrition research can also benefit from the study of 
contemporary populations, as archaeology does, in general, from ethno-
archaeological studies (see Case Study 2 in chap. 6).

The first book specifically addressing paleonutrition was written by 
Elizabeth Wing and Antoinette Brown in 1979 (Wing and Brown 1979) 
and arose from the interest generated by a symposium entitled “Paleonu-
trition: The Reconstruction of Diet from Archaeological Evidence” at the 
1976 annual meeting of the Society for American Archaeology. Although 
they did not precisely define paleonutrition, Wing and Brown observed 
that the most important component of understanding and analyzing 
prehistoric lifeways was ascertaining the most basic aspect of paleonutri-
tion, that being diet and subsistence. They discussed the importance of 
an interdisciplinary approach to dietary research, in which a number of 
disciplines, techniques, and theories from other sciences are used. The 
purpose of their book was to present “diverse research techniques that 
may provide insight into prehistoric foodways” (Wing and Brown 1979:1) 
wherein an integrative approach between faunal, botanical, and human 
remains, as well as cultural data, was advocated for a coordinated under-
standing of prehistoric lifeways. Wing and Brown focused on the nutri-
tional requirements necessary for a healthy existence and applied those 
requirements to the analysis of archaeologically recovered food remains. 
Diverse food procurement patterns observed prehistorically were illus-
trated and the importance of understanding cultural attitudes to subsis-
tence was discussed, with the realization that ascertaining cultural food 
values from archaeological contexts is limited.

The Wing and Brown volume is actually a synthesis of nutritional 
anthropology and paleonutrition, in which the importance of cultural 
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ideology surrounding food and the importance of protein metabolism, 
nutritional requirements, amino acid intake, and metabolic disturbances 
were discussed and given as much importance as the recovery, identifi-
cation, analysis, and interpretation of food remains from archaeological 
sites. Their book only briefly touched upon problems in the identification 
and interpretation of cultural ideological and nutritionally based analy-
ses in a prehistoric context. Further, while Wing and Brown discussed 
the identification and analysis of modern cultural subgroups within a 
larger population context, they did not describe how to accomplish that 
with archaeological remains.

The quest for small-group and individual diet, as opposed to an overly 
simplified dietary analysis of an entire population, is a more recent goal 
of paleonutritional research. In fact, in a later discussion, Wing (1994:315) 
stated that “to truly approach issues of paleonutrition . . . we must address 
many of the details of diet and health that we take for granted in our 
daily lives; how food is distributed among members of a family and within 
the community and whether differential access to food is related to status, 
gender, or age differences.” A goal of the current volume is to showcase 
examples in which paleonutritional assessments of small groups have been 
attempted.

After Wing and Brown (1979), the next two books on paleonutrition 
were edited volumes in which various authors reviewed their research on 
paleonutrition in general (Gilbert and Mielke 1985; Sobolik 1994c). The 
first book (Gilbert and Mielke 1985) included discussions on a number 
of issues, encompassing various archaeological techniques used to recon-
struct prehistoric diet, ranging from the preservation and interpretation 
of archaeologically derived plant and animal remains and paleofeces 
to the importance of ethnographic modeling for dietary reconstruction 
and concluding with information gained from human skeletal material 
through paleopathology, demography, and developmental disturbances. 
Gilbert and Mielke (1985:xiv) stated that their volume provided archaeol-
ogists and students with “a ready reference in which [to] find suggestions 
and possible solutions to problems encountered in the reconstruction of 
the dietary patterns of prehistoric people.” They succeeded in their goal; 
the book is an excellent reference base for researchers looking at alterna-
tive ways to analyze dietary materials. The most applicable research tools 
to analyze prehistoric diet and health were discussed, offering the reader 
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a good overview of the subject and ways in which researchers in the field 
analyze dietary and health remains from a prehistoric context.

In 1993, Southern Illinois University sponsored a conference on 
paleonutrition, led by Kristin Sobolik. At that conference, a number of 
researchers presented their paleonutrition studies within specific disci-
plines, including paleoethnobotany, zooarchaeology, bioarchaeology, and 
paleofecal (or coprolite) analysis. The papers presented at that conference 
were published (Sobolik 1994c), providing an important update on paleo-
nutritional studies. Within that volume, Sobolik (1994a) discussed the 
importance of understanding the taphonomy of biological assemblages. 
Paleoethnobotanical and zooarchaeological assemblages were labeled 
“indirect” sources of dietary information (Sutton 1994), as botanical and 
faunal remains from archaeological sites can be deposited through a num-
ber of processes and potential nonhuman agents. It was made clear that 
some of the remains recovered from archaeological sites are most likely 
human dietary debris, but also that some remains may be debris from 
other human activities, such as the manufacture of clothing, the use of 
firewood, the construction of shelter, and the manufacture and use of tools. 
It was further noted that some remains may be the result of nonhuman 
activity, such as rodents and carnivores. Bioarchaeological and paleofecal 
studies were labeled “direct” indicators of dietary intake because human 
skeletal remains represent a lifetime accumulation of dietary information 
and paleofeces represent the undigested remains of purposeful consump-
tion. Emphasis was placed on the positive aspects and limitations of each 
data set to paleonutritional research and how, through the integration of a 
variety of disciplinary analyses, a more complete picture of the paleonutri-
tion of a population or group of people could be ascertained.

While the series of articles in that volume (Sobolik 1994c) emphasized 
the importance of integrative research, the relevance of dietary assess-
ments using singular data sets was also incorporated. Most of the authors 
attempted to integrate two or more dietary data sets for a more com-
prehensive paleonutritional assessment; however, many of these analyses 
revealed the analytical problems inherent in such an integration, as each 
discipline developed as a separate field and has diverse methods of analy-
sis. For example, Crane and Carr (1994) analyzed botanical and faunal 
remains from Cerros, a Preclassic Maya site in Belize. In their attempt 
to integrate diverse data sets into a more comprehensive analysis, they 
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realized that only the measure of ubiquity could be used to quantify the 
dietary data base, as each data set and associated discipline used different 
quantitative methods of analysis. The ubiquity measure of quantification 
inherently results in a loss of information, but it was the only comparative 
method available at that time to coordinate the analysis.

The conclusions of the 1993 conference and of the volume (Sobolik 
1994c) revolved around the need for archaeologists to attempt to recon-
struct paleonutrition at an individual or small-group level, in addition to 
the population level, as prehistoric populations were made up of many 
smaller groups and individuals who most likely had differential access 
to food resources that affected their health and nutrition. The problem-
atic aspects of obtaining dietary information at the individual and small-
group level from archaeological contexts are numerous; therefore, paleo-
nutritional reconstructions at the population level continue to be more 
frequent.

The purpose of the present volume is to take reviews of paleonutri-
tional analyses and interpretations one step further. Even given the cur-
rent limitations in our ability to reconstruct individual and small-group 
behaviors, a number of paleonutrition studies have been successful at 
such interpretations and several are showcased herein. The most recent 
and innovative methods and techniques used to reconstruct prehistoric 
diet are discussed and assessed, as well as the basic ways in which paleo-
nutrition data are recovered, analyzed, and interpreted. Of particular 
importance is the role that taphonomy plays in the recovery and anal-
ysis of dietary remains. Recent studies on taphonomy are discussed to 
illustrate the primary importance of site formation processes on dietary 
remains, as well as to demonstrate taphonomic reconstructions that can 
be conducted in any site environment to help understand specific site 
formation processes on a more local scale. Many of the discussions about 
the history of the field and about taphonomy in general are taken from 
the recent book on archaeobiology by Sobolik (2003).

History of Research

Interdisciplinary archaeological research is not a recent phenomenon. 
Early on, a few archaeologists conducted such integrative research in 
the quest for a better understanding of the patterns of human lifeways. 
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For example, Rafael Pumpelly (1908) conducted archaeological research 
in the Middle East that involved a number of scientists from diverse 
disciplines (zoology, chemistry, human paleontology, botany, and geo-
morphology), and Robert Braidwood led what was undoubtedly the first 
specifically integrative, long-term archaeological project on the origins 
of food production in the Near East (Braidwood and Braidwood 1950; 
Braidwood 1952). Working in Tamaulipas and the Tehuacan Valley of 
Mexico, Richard MacNeish (1958, 1964, 1967) directed interdisciplinary 
teams of geomorphologists, geneticists, botanists, biologists, and zoolo-
gists, also on the origins of agriculture. Additional large-scale, integrative 
research was conducted in Peru as well (Izumi and Sono 1963; Izumi 
and Terada 1972). Such integrative, interdisciplinary research was being 
carried out by only a few archaeologists, and the incorporation of dietary 
analysis into a more comprehensive statement of prehistoric diet, health, 
and nutrition was not routinely performed.

The most significant aspect in the development of paleonutrition 
was the concept of the “new archaeology” (Binford 1962, 1968) and the 
methodological and theoretical changes it engendered. Tenets of the 
new archaeology included a cultural evolutionary perspective, systemic 
theory as it applied to culture and society, and hypothesis testing using 
deductive reasoning. Ideas related to the new archaeology had previously 
been proposed as the conjunctive approach (Taylor 1948), an approach 
that included the same basic ideas and issues as the new archaeology but 
did not propose a cultural evolutionary perspective.

Later, Flannery (1968) and Clarke (1968) focused on the importance 
of systems theory to the interpretation of archaeological remains, from 
which the concept of cultural ecology, as defined by Steward (1955), 
emerged. Understanding the cultural ecology of prehistoric populations 
and how humans, as biological organisms, fit into the ecological scheme 
of nature and the environment became an important step for paleonutri-
tional research. Archaeologists began to systematically recover biological 
remains from archaeological sites, as questions revolving around diet, 
paleoenvironment, and ecology developed. Along with an increase in the 
recovery of biological remains, due in part to methodological advances 
such as fine-screening and flotation, came an increase in the quality of 
analyses. This made it possible to integrate analyses of biological remains 
at an intersite or regional level.
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Although cultural ecology and the analysis of biological remains first 
became a focus for archaeologists when the age of new archaeology was 
dawning, some excellent earlier studies of human cultural patterns evi-
denced through biological remains set the stage for later systemic analy-
ses. With a few exceptions, as discussed above, these earlier studies were 
not integrated with the data provided by other assemblages and were 
mainly conducted by specialists. Using assemblages from archaeologi-
cal sites, paleoethnobotanists or botanists analyzed the plant remains, 
zooarchaeologists or zoologists examined the animal remains, and bioar-
chaeologists, biologists, or human anatomists evaluated human skeletal 
remains. These earlier analyses were usually not integrated into a cohe-
sive whole, as is prevalent in paleonutrition studies conducted today.

A major goal in contemporary paleonutrition research is to integrate 
data sets from a diversity of disciplines for overall analysis and interpreta-
tion, although this is less common than it should be. A history of each dis-
cipline related to paleonutrition is discussed separately below, including 
paleoethnobotanical, zooarchaeological, bioarchaeological, and paleofe-
cal analyses. The historical aspects of such studies are reviewed here, with 
the understanding that many subdisciplines important for paleonutrition 
research have developed from these main disciplines and that most recent 
research involves an integration and/or evolution of these disciplines.

Paleoethnobotany

Paleoethnobotany is the study of the interaction of humans and plants in 
their environment or, as defined by Renfrew (1973), the study of plants 
used and/or cultivated by prehistoric humans that have survived in 
archaeological contexts. Another frequently used term is archaeobotany, 
defined by Ford (1979) as the collection and identification of botanical 
remains from archaeological sites. Old World archaeologists commonly 
use the term archaeobotany (van Zeist et al. 1991; Miller 1995), whereas 
New World archaeologists generally use the term paleoethnobotany, 
which entails the collection, identification, analysis, and interpretation 
of plant materials recovered from prehistoric sites (Hastorf 1999). The 
inherent difference in these two definitions is that archaeobotany refers 
purely to the technical side of such research whereas paleoethnobotany 
refers to the scientific and interpretive arena (Ford 1979).
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Prior to the twentieth century, the few paleoethnobotanical studies 
conducted were written mainly by botanists or people interested in natu-
ral history. For example, Kunth (1826) analyzed desiccated plant remains 
found in ancient Egyptian tombs, Heer (1872) studied plant remains 
from middens and houses of waterlogged villages in Switzerland, Saf-
fray (1876) analyzed botanical remains from the stomach contents of a 
Peruvian mummy, and a number of researchers focused on the origin of 
Old World cultivated plants (de Candolle 1884; Buschan 1895; Neuwei-
ler 1905).

An initial advance in paleoethnobotanical work occurred at the 
World’s Fair in Chicago in 1893. Part of the exhibit at the World’s Fair 
focused on the lifestyles of North American Indians. Many exhibits 
showed different segments of Indian life, including their use of plants 
native to the New World. It was this event that led Harshberger (1896) to 
examine some dried plant materials from caves in Colorado so that the 
materials could be placed on display. Through that study, he developed 
the idea of using the term ethnobotany for this type of research. After the 
Chicago World’s Fair, there was renewed interest in ethnobotany, which 
was then being conducted mainly by museums, governmental agencies 
(e.g., the U.S. National Herbarium and the U.S. Department of Agri-
culture), and universities. The first Ph.D. in ethnobotany was awarded 
by the University of Chicago to David P. Barrows (1900) for his work on 
the ethnobotany of the Cahuilla Indians of southern California. Barrows 
stressed that ethnobotanical studies must go beyond the applied or eco-
nomic value of plants and focus also on the role plants play in the social, 
religious, and folklore practices of particular groups.

Questions surrounding the origin of cultivated plants in the Old 
World pushed paleoethnobotanical research in that area of the world 
(Schiemann 1951; Helbaek 1960; Renfrew 1969; van Zeist 1988; Hillman 
and Davies 1990; Zeder et al. 2006), while research on Native American 
plant use was the stimulus for North American studies. In the early 1900s, 
the new and emerging field of anthropology began training ethnolo-
gists to work with Native Americans on reservations and to record the 
information that was still available about their past culture and lifeways. 
When early botanists studied North American Indians, their approach 
was mostly utilitarian; they wanted to record information about plants 
and how those plants could be used in the modern world. On the other 
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hand, early ethnologists collected different types of ethnobotanical data 
from the people they studied, focusing on their point of view about the 
plants they used and how these plants fit into their view of the universe.

In his study of plant use by the Plains and Prairie Indian tribes, Gil
more (1919) was the first to note that even though most of these tribes were 
hunter-gatherers, their use of wild plants led to considerable modifica-
tion of the environment. For example, he noted that groups often intro-
duced plants from one region to another, eliminated certain weedy plants 
through burning, and encouraged certain plants to grow by increasing 
the available quantity of plant products (e.g., seeds and tubers).

The 1930s marked a change for the future of ethnobotany; a series of 
events occurred at some important universities that recognized it as a wor-
thy field of study. From 1930 to the 1950s, Edward Castetter established 
a graduate program in ethnobotany within the Department of Biology 
at the University of New Mexico. This was an important event because 
Castetter and his students began to record the ethnobotany of the Indi-
ans still living in the Southwest. In the late 1930s, R. E. Schultes estab-
lished a program in modern ethnobotany at Harvard University, with the 
main emphasis on the search for new plants with medicinal merit. These 
efforts by Schultes and his students tended to focus mainly on recording 
the ethnobotany of Indians living in Central and South America.

In the early 1930s, the University of Michigan created the Ethno-
botanical Laboratory as part of the Museum of Anthropology. Melvin 
Gilmore, and later Volney Jones, headed these programs, which focused 
mainly on plant remains from archaeological sites. In a lecture at the 
meeting of the American Association for the Advancement of Science 
in 1931, Gilmore (1932) detailed the many aspects of his research and 
provided some important clues regarding how he planned to analyze 
plant remains. He also requested that people save plant remains from 
archaeological sites and send them to him for analysis. Once the word 
of Gilmore’s request spread, material from all over North America began 
to arrive at his lab for analysis. In most cases, he was permitted to keep 
the materials, greatly expanding the paleoethnobotanical holdings of 
the museum. He firmly believed that the geographical influences and 
physical environment encompassing human life in a given region must 
profoundly impact human habits and inherited tendencies in the mental 
and material cultures of human groups. Unless the physical environment 



10   paleonutrition

within which a complex of cultural traits derives could be visualized, it 
could never be understood how and why that complex resulted in a par-
ticular pattern.

Despite Gilmore’s contributions, however, it is Volney Jones who 
is considered to be the father of modern ethnobotany. Jones, who was 
Gilmore’s successor in the Ethnobotanical Laboratory, headed the lab 
for more than twenty-five years and analyzed a large number of botani-
cal debris from sites in the eastern and midwestern United States dur-
ing the 1940s and 1950s. The first major ethnobotanical study was from 
the Newt Kash Hollow site in Kentucky (Jones 1936). In this research, 
Jones dealt with the remains of an early Woodland (ca. 700 B.C.) culture 
and reported at least eight plants that were native to North America and 
that he felt were cultivated or semicultivated. He was the first to report 
the physical evidence of tobacco use in a prehistoric site from the early 
Woodland period, and he set the standard for explaining early eastern 
woodland subsistence patterns for years to come.

Other important questions regarding paleoethnobotany have revolved 
around the origins of agriculture, which plants were domesticated, descrip-
tions of paleoenvironments, and how humans used the landscape. With 
the advent of the new archaeology, it became increasingly important to 
recover and save plant remains from archaeological sites due to their 
importance as a data set for testing hypotheses. Other significant areas of 
research revolved around methodological issues: how various plant parts 
should be recovered from sites, how recovered materials should be quan-
tified, and how diverse data sets should be compared. Paleoethnobota-
nists dealt with numerous issues, from the technical aspects of recovery 
to the identification and interpretation of plant remains, including their 
importance in answering broad-scale questions (Hastorf 1999).

Today, paleoethnobotany encompasses many subfields, divided into 
two basic groups: analyses of macrobotanical remains (i.e., seeds, nuts, 
fruits, fiber, wood, and charcoal) and analyses of microbotanical remains 
(i.e., pollen, phytoliths, and microscopic fiber particles). The interpreta-
tion of macrobotanical remains from archaeological sites provides infor-
mation on a number of issues, including the dietary practices of a pre-
historic population. If such remains are preserved at a site and consistent 
sampling of all levels and areas is provided, a wide array of dietary infor-
mation can be ascertained. The information can then be compared with 
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other botanical data from nearby sites to reveal the entire botanical diet 
of a population, changes in dietary practices through time, possible dif-
ferences in status areas of a site or a region, and differential environmen-
tal selection procedures of a population in a specific area. The analysis 
of seed, nut, fruit, and fiber remains can also determine dietary plant 
selectivity, seasonality of site occupation, and possible storage practices 
that could influence nutrition during seasons that provide little plant 
variety to the diet.

Information from flotation samples can be employed to determine 
dietary practices that would not otherwise be revealed, as flotation can be 
used to recover tiny seeds, bones, and charcoal. Flotation is particularly 
useful at archaeological sites in which botanical remains are infrequent 
or not well preserved. Flotation samples can be taken at every level and 
area of a site, as well as from features, pits, and/or hearth fill. Such sam-
ples may assist in determining botanical storage practices, special uses of 
botanical materials, or the differential use of cooking practices of indoor 
and outdoor fires. While the analysis of charcoal does not directly indi-
cate diet and nutrition, such analyses may indicate resource selectivity of 
specific areas (but see Wright 2003).

The analysis of pollen microremains from archaeological sites began 
around the time that paleoethnobotanical studies were being initiated, 
although the analysis of phytolith and calcium oxylate microremains 
has only recently been emphasized (Piperno 1988, 2006a; Pearsall 1988). 
These microremains can determine aspects of prehistoric diet and nutri-
tion that are not obtainable from analyses of macroremains, as they repre-
sent different parts of a plant that may be differentially used or preserved. 
Pollen and phytolith analyses can also complement each other; in many 
situations, phytoliths preserve where pollen does not, and phytoliths can 
identify some plants to a higher taxonomic level than pollen, such as the 
Poaceae (grass) family (Piperno 1988).

Paleoethnobotanical remains are a significant aspect in determining 
paleonutrition, particularly because plants often represent the dietary 
staples for some populations, as humans are “completely dependent 
on plants either directly or indirectly” (Smith 1985:97). As such, the 
analysis of botanical remains from archaeological sites is necessary to 
recognize the importance of plants to the diet and nutrition of a given 
population.
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Zooarchaeology

Zooarchaeology is the study and interpretation of animal remains from 
archaeological sites. Robison (1978) divided the history of the discipline 
of zooarchaeology into three main time periods: Formative, Systematiza-
tion, and Integration. The Formative period lasted from approximately 
1880 to 1950 and encompassed a time when archaeologists were not 
systematically collecting faunal material from sites. Any analysis per-
formed on such remains tended to be conducted by zoologists who were 
interested in the material for biological and environmental reconstruc-
tion, rather than for archaeological purposes. Thus, zooarchaeologi-
cal research tended to be reported in biological publications, whereas 
archaeologists—when interested—tended to focus on one or two species, 
modified bone tools, or remains associated with human burials. Early 
studies were primarily descriptive in nature, although some studies fore-
shadowed the types of questions and directions of study zooarchaeologists 
would take in the future. Such early work includes the analysis of ver-
tebrates and invertebrates from a Maine shell midden site that included 
dietary hypotheses on the importance of different species based on their 
abundance (Loomis and Young 1912) and research on marine shells from 
Arizona pueblos to determine trade routes (Fewkes 1896).

In the Systematization period (ca. 1950 to 1960), archaeologists started 
looking at faunal remains as a means toward obtaining information on 
cultural behavior and adaptations, although methodological and theoreti-
cal techniques were just beginning to be implemented. In fact, the most 
frequently cited article in zooarchaeological literature during this time 
(White 1953) introduced the quantitative concept of minimum number of 
individuals (MNI). In addition, Lawrence (1957) urged analysts to augment 
their focus on identification to include interpretation so that meaning-
ful and stimulating information could be obtained from faunal remains. 
During this period, the results of early long-term, large-scale, integrative 
archaeological studies were being realized (i.e., Izumi and Sono 1963; 
Braidwood and Braidwood 1982) and the importance of faunal remains 
to archaeological interpretations was recognized by the scientific commu-
nity, resulting in regular collection of faunal remains from most deposits.

During this time, zooarchaeology specialists started collecting and 
analyzing samples. These early specialists included T. H. White, John 
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Guilday, and Paul Parmalee (University of Tennessee), Elizabeth Wing 
(Florida Museum of Natural History), and Stanley Olsen (University of 
Arizona), who began to train students as zooarchaeologists. These special-
ists significantly advanced zooarchaeological studies and allowed archae-
ologists to realize the amount of information that could be gained through 
the analysis of faunal material. The collections of faunal remains from 
excavations began to increase and analyses started to appear in archaeo-
logical reports, although mainly as appendices. Zooarchaeology eventu-
ally became a recognized and important field within archaeology.

All of these ideas came together during the Integration period, from 
the 1960s to the present, as the concept of the new archaeology was being 
touted. Cultural ecology and environmental anthropology are the main 
themes of many analyses conducted today as zooarchaeologists integrate 
their research with other disciplines within archaeology. The analysis 
of the faunal remains from a number of sites of the Riverton Culture 
(Winters 1969) has been cited as the first significant zooarchaeological 
analysis of the new archaeology era. Another important analysis was 
conducted by Smith (1975) on the adaptation to the Mississippi area. 
He analyzed the remains from different site types—including uplands, 
lowlands, and swamps—and observed that the prehistoric peoples in this 
region tended to have base camps located on the ecotone between differ-
ent microenvironmental areas. They would then exploit different envi-
ronments, depending upon season and abundance of resources that each 
area could provide.

Today, a number of key issues are addressed by zooarchaeologists. 
The first issue is taphonomy, which encompasses site formation pro-
cesses, middle-range research, preservation and modification of site arti-
facts and ecofacts, and determination of cultural and noncultural site 
components. Next is methodology, encompassing quantification, recov-
ery, identification, and sampling. Third is anthropology, encompassing 
the relationship between humans and the environment, domestication 
of animals (which also has a strong biological component), subsistence 
strategies, human evolution, and human cultural lifeways. Lastly, biol-
ogy encompasses paleoenvironmental reconstruction and the ecology 
and morphology of various animal species (Reitz and Wing 1999).

As with paleoethnobotany, zooarchaeology covers a wide variety of sub-
fields and many analysts become skilled in the identification of particular 
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faunal categories (i.e., invertebrates, fish, birds, or domesticated animals). 
Although gaining skill in faunal identification is one important aspect of 
zooarchaeology, researchers have become increasingly concerned with 
understanding and controlling problems inherent in faunal analyses.

Depending upon excavation procedures, zooarchaeological materials 
can provide the same basic types of information as can paleoethnobo-
tanical remains. In many archaeological sites, faunal materials are often 
better preserved than botanical remains, reducing problems of recovery. 
Distribution of faunal remains can be used to determine changes in 
dietary practices through time, geographical differences in animal utili-
zation, and possible status differences in the people consuming the ani-
mals. Faunal remains also indicate major types of hunting practices used 
and primary habitats exploited, both of which affect nutritional intake.

Bioarchaeology

Bioarchaeology, the analysis of human skeletal remains, is a subdivision 
of physical (or biological) anthropology. Johann Blumenbach is consid-
ered the father of biological anthropology, mainly for his work on cranial 
morphological variation to determine various races of modern humans. 
Earnest Hooton and Aleš Hrdlička are considered the two main origi-
nators of American biological anthropology (Brace 1982). Hooton was a 
professor and researcher at Harvard University for over four decades and 
educated most of the biological anthropologists that were hired by uni-
versities and colleges in the middle part of the twentieth century. Most 
biological anthropologists practicing in America today can trace their 
academic lineage back to Hooton. Hrdlička created the American Journal 
of Physical Anthropology, the premier journal for biological anthropolo-
gists, and founded the American Association of Physical Anthropologists. 
Of interest, however, is that Hrdlička, a renowned Francophile, consid-
ered Paul Broca to be the principal founder of biological anthropology 
and France to be the mother country of that science (Brace 1982; Buiks-
tra and Beck 2006).

As a form of scientific inquiry, bioarchaeology arose out of early inter-
est in understanding and quantifying morphological variation in modern 
human populations or racial groups, and in understanding the position 
of modern humans in relationship to early fossil forms, such as Homo 
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erectus and Neanderthals, and to other primates (Armelagos et al. 1982). 
Bioarchaeologists today are concerned with elucidating processual inter-
pretations for understanding morphological variations in humans and 
human ancestors, in lieu of more historically oriented typological mod-
els that tend to focus purely on description rather than attempting to 
understand and explain the process (Armelagos et al. 1982).

Recording and describing human morphological variation in an 
attempt to discern discrete biological units (i.e., racial groups) within 
human populations was the intent of the earliest bioarchaeological stud-
ies from the late eighteenth century through the present. Much of this 
work has a strong element of biological determinism. A great deal of 
effort was also expended in an attempt to discern and standardize mor-
phological measurements (anthropometry) that would be the most use-
ful for the analysis of biological affinity in human populations. Hrdlička 
was a proponent of standardizing anthropometric measurements (Stew-
art 1947), with particular emphasis on craniometry, measurements of the 
crania, and the cranial index to determine biological affinity, measure-
ment devices that are still used today.

Blumenbach (1969) used his collection of 82 crania to describe his 
earliest views on racial classification and human variation. In his analy-
sis of prehistoric human skeletal material, Broca (1871, 1875) developed 
techniques of anthropometric craniometry still used today. Other early 
studies include the work by Hooton (1930) on skeletal analyses of 1,254 
individuals excavated from Pecos Pueblo in the southwestern United 
States. Hooton (1930) believed that the Pecos Pueblo individuals could 
be racially typed and the racial history of the population understood 
through analysis of the individuals.

Using the cephalic index of Jewish and Sicilian immigrants in the 
United States and comparing the results to populations in their home-
land, Boas (1912) argued against the use of craniometry to determine and 
describe racial differences due to the instability of the cephalic index 
for such determinations. Virchow (1896) also argued against the use of 
cranial measurements to determine racial affinity. Both arguments were 
either ignored or attacked by earlier biological anthropologists (Radosav-
ljevich 1911; Shapiro 1959).

Other bioarchaeologists, however, started to become interested in 
a more holistic approach to skeletal morphological measurements and 
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began looking at functional craniology in which it was believed that 
there were significant environmental and developmental processes that 
affect bone and cranial growth, processes other than pure racial identity 
or grouping (Moss and Young 1960; Moss 1972; Hylander 1975; Carlson 
and Van Gerven 1979). This biocultural approach was used with increas-
ing frequency by bioarchaeologists, such as Angel (1969) on morphologi-
cal and morbidity changes in populations from classical Greece, Buikstra 
(1977) on prehistoric populations in the lower Illinois River Valley, and 
Martin et al. (1991) on populations from Black Mesa in the American 
Southwest.

Paleopathology

Paleopathology is the analysis of disease that manifests itself on bone 
(Ubelaker 1982). Much of the information obtained by paleonutrition-
ists from human remains is derived through the study of paleopathol-
ogy. This is due to the fact that many pathologies are caused by dietary 
stress or inadequacies and health problems, a core data set for paleonutri-
tional analyses. The most frequently used paleopathological assessments 
for paleonutritional analyses involve growth-arrest lines, such as linear 
enamel hypoplasia and Harris lines on long bones; evidence of anemia 
through porotic hyperostosis and cribra orbitalia; and evidence of infec-
tions through periostitis and osteomyelitis.

The earliest paleopathological reports were of nonhuman animal 
remains, such as the pathology of a femur from an extinct cave bear in 
France (Esper 1774), healed trauma from a fossil hyena occipital (Gold-
fuss 1810), pathologies from various vertebrate species found in caves in 
Belgium (Schmerling 1835), and a summary of pathological conditions 
observed on fossil vertebrate species (Mayer 1854). Observations of human 
paleopathology did not begin in earnest until late in the nineteenth cen-
tury since bioarchaeologists were focused on morphological measure-
ments, rather than pathological assessments, which would have required 
discussions of function and causes of such stress indicators. One of the ear-
liest studies was by Meigs (1857:45) on two Hindu crania, one exhibiting 
syphilitic ulcers and the other displaying “cicatrized fracture and depres-
sion of the right frontal malar and superior maxillary bones.” Wyman 
(1868) observed periosteal lesions and dental anomalies in Polynesian 



introduction   17

skulls. The first discussion on prehistoric human disease was presented by 
Jones (1876) on archaeological human remains from the eastern United 
States. Interest in paleopathology increased with studies of the origin of 
diseases, such as syphilis (Langdon 1881; Putnam 1884; Whitney 1886); 
other “anomalies” (Hrdlička 1910, 1927, 1941); and paleopathology synthe-
ses (Williams 1929; Moodie 1931).

Paleopathology today involves scientific research to increase accu-
racy in disease diagnosis and to place disease within a biocultural context 
(Ubelaker 1982). For example, the etiology of porotic hyperostosis was not 
well understood by past researchers. Hooton (1930:316) termed the porotic 
hyperostosis he observed on crania from Pecos Pueblo as “symmetrical 
osteoporosis” and a “mysterious disease.” More recent research by paleo-
pathologists, however, indicates that porotic hyperostosis is caused by a 
number of biocultural processes, the central of which is iron-deficiency 
anemia (El-Najjar et al. 1976; Mensforth et al. 1978; Walker 1985). Porotic 
hyperostosis is exhibited by expansion of the diploe (the central layer of 
the bones of the skull) and cranial lesions and pitting on the surface of 
frontal, parietal, and occipital bones as well as in the eye orbits (called 
cribra orbitalia). The etiologies of cribra orbitalia and porotic hyperos-
tosis are the same, so some researchers do not record these pathologies 
as separate abnormalities, although cribra orbitalia seems to be an early 
expression of anemia and porotic hyperostosis a more severe reflection 
(Lallo et al. 1977) (see further discussion of porotic hyperostosis and 
cribra orbitalia in chap. 2).

Paleofecal Studies

Paleofeces are the fecal remains of prehistoric humans. In some instances, 
paleofeces have been referred to as coprolites, an often misapplied term. 
Coprolites, Greek for copros (dung) and lithos (stones), technically refer 
to fossilized fecal material, usually from prehistoric or extinct animals. 
Paleofeces, however, refer to desiccated prehistoric fecal remains that are 
not fossilized. All of the human feces analyzed to date have technically 
been paleofeces, not coprolites, although the term coprolite is prevalent 
in the literature.

In the past, paleofecal studies have been considered a subdivision of 
paleoethnobotany. However, paleofeces contain a wide variety of dietary 
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constituents, including seeds, fiber, hulls, pollen, phytoliths, parasites, 
feathers, fur, bones, scales, insect remains, and chemical constituents. 
Therefore, paleofecal analyses involve expertise in a number of disciplines 
and should not be placed under the heading of a single discipline.

Paleofeces are a unique resource for analyzing paleonutrition because 
they offer direct insight into prehistoric diet and, in some cases, health. 
The constituents of paleofeces are mostly the remains of intentionally 
consumed food items, with the possible exception of wind-blown pollen 
contaminants and feces-thriving insects. Parasites are also found in paleo-
feces and reflect the parasitic load of the individual, and potentially the 
load of the population, therefore providing direct health data rather than 
dietary data. Proteins and DNA have also been identified from paleofeces, 
providing a broader range of ingested plants and animals as well as provid-
ing direct evidence of the depositor (Sutton et al. 1996; Poinar et al. 2001), 
as intestinal luminal cells are sloughed off during fecal processing.

The potential of human paleofeces as dietary indicators was initially 
realized by Harshberger (1896). The first analysis of paleofecal material, 
however, was not conducted until after the beginning of the twentieth cen-
tury. These initial studies were conducted by Smith and Jones (1910a,b), 
who examined the dried fecal remains from Nubian mummies, and by 
Young (1910) and Loud and Harrington (1929) on North American cave 
material. Early paleofecal analyses were also performed on samples from 
Danger Cave (Jennings 1957), sites in Tamaulipas, Mexico (MacNeish 
1958), caves in eastern Kentucky (Webb and Baby 1957), and stomach 
and colon contents from a mummy (Saffray 1876; Wakefield and Del-
linger 1936). The processing techniques for these early analyses consisted 
of either cutting open the dry samples and observing large, visible con-
tents or grinding the samples through screens, a process that resulted in 
much damage to the constituents.

Improved techniques for analyzing paleofeces were developed by Cal-
len and Cameron (1960), refining a technique developed by Benninghoff 
(1947) for rehydrating herbarium specimens and van Cleave and Ross 
(1947) for rehydrating zoological specimens. These techniques involved 
rehydrating the paleofecal sample in a solution of trisodium phosphate, a 
mild detergent, to gently break apart the materials for ease in screening. 
These techniques, which are still used today, revolutionized the science 
of paleofecal analysis.



introduction   19

Using these improved techniques, early macroanalyses conducted 
on paleofeces included works by Eric O. Callen, who is considered the 
father of paleofecal studies. Callen analyzed what he termed “coprolites” 
from the early 1950s until his death in Ayacucho, Peru, in 1970. He con-
ducted research on a number of paleofecal samples from around the 
world, including samples from Peru (Callen and Cameron 1960), Tam-
aulipas, Mexico (Callen 1965, 1967a), Tehuacan, Mexico (Callen 1967b), 
and Glen Canyon in Utah (Callen and Martin 1969). His extensive col-
lection, which includes thousands of microscope slides of reference and 
coprolite material, as well as numerous seeds, bones, fibers, and resi-
dues from coprolites, is now housed and maintained at the Laboratory of 
Anthropology at Texas A&M University (Bryant 1974a).

Other early analyses were conducted by Bryant and Williams-Dean 
(1975), Heizer and Napton (1969), Heizer (1970), Napton (1969, 1970), 
and Marquardt (1974). Bryant and Williams-Dean (1975) were the first 
to examine human paleofeces from the Archaic period in regions of the 
arid Chihuahuan Desert of west Texas. Napton (1969) and Heizer and 
Napton (1969) studied paleofecal materials from Lovelock Cave, Nevada, 
as a result of which they proposed a lacustrine adaptation in this part of 
the Great Basin. Marquardt (1974) conducted a statistical analysis of two 
groups of coprolites from Mammoth Cave, Kentucky, arguing that the 
populations had similar subsistence strategies.

The Callen and Cameron (1960) rehydration technique was especially 
useful for parasitological analyses, permitting the recovery of fragile ova. 
Early parasitological analyses of paleofeces were primarily from the Great 
Basin in Utah. These studies include works by Fry and Moore (1969), Fry 
(1970a,b, 1976), Hall (1972), and Reinhard et al. (1985). Other parasitolog-
ical analyses were conducted by Hall (1977) on paleofecal material from 
Oregon, by Patrucco et al. (1983) on samples from Peru, by Fount (1981) 
on pre-Columbian mummies representing diverse populations, and by 
Williams (1985) on the analysis of pelvic soil from a Plains burial.

Parasites found in paleofeces can help provide information on pre-
historic health. For example, differences have been noted between the 
prevalence of parasitic disease in hunter-gatherers and agriculturalists 
(Hall 1972; Reinhard 1985; Confalonieri et al. 1991). A number of debili-
tating and possibly life-threatening parasites have been identified from 
agriculturally based paleofeces from the southwestern United States 
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(whipworm, giant intestinal roundworm, threadworms, beef tapeworms, 
dwarf tapeworms, and pinworm), whereas only the pinworm (Enterobius 
vermicularis) has been identified from hunter-gatherer paleofeces (Rein-
hard et al. 1985). Agriculturalists and hunter-gatherers have very differ-
ent subsistence bases and lifeways, which seem to influence the types of 
diseases found in each group and the types of parasites that infect them. 
These studies indicate that increased sedentism (Nelson 1967), increased 
population size, poor sanitation methods (Walker 1985), and close prox-
imity to crops and domesticated animals (Dunn 1968; Fenner 1970) may 
all have led to increased parasitic load in prehistoric populations.

Using samples from Glen Canyon, Utah, Martin and Sharrock (1964) 
were the first to conduct direct pollen analyses on paleofeces, and Cal-
len and Martin (1969) documented the prehistoric ingestion of beeweed 
(Cleome) from samples in the same area. Their microscopic analysis of 
this pollen represented the first evidence of the use of this plant as food 
by humans. Later, Bryant (1974b) conducted pollen analyses on paleo-
feces from Mammoth Cave, reconstructing diet and possible seasonality 
of occupation, and Williams-Dean and Bryant (1975) analyzed samples 
from Antelope House, Arizona. The importance of beeweed to Anasazi 
diet, as well as cultivated corn, beans, and squash, was indicated in an 
early pollen analysis of Hoy House paleofeces (Scott 1979).

Avenues of more recent paleofecal research are very broad. One 
arena focuses on pollen analysis, including the interpretation of pollen 
concentration values in paleofeces (Sobolik 1988a,b) and the identifica-
tion of medicinal plant use (Reinhard et al. 1991; Sobolik and Gerick 
1992). Pollen concentration values help determine which pollen types 
were intentionally ingested and how long pollen resides in the digestive 
tract before deposition. These data are also useful for determining which 
pollen types were ingested medicinally rather than strictly through diet. 
Studies of modern feces have shown that, in general, the more recently a 
pollen type was ingested, the higher its concentration value in the sam-
ple (Kelso 1976; Williams-Dean 1978). As the number of hours or days 
increases after consumption, the pollen concentration value decreases. 
As a result, some pollen can be excreted up to one month after ingestion 
as pollen tends to get caught in the intestinal luminal folds.

Sobolik (1988b) analyzed human paleofeces from Baker Cave, Texas, 
and provided evidence that high pollen concentration values (e.g., more 
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than 100,000 pollen grains/gram) indicate intentionally eaten (eco-
nomic) pollen types that were ingested recently. Lesser concentrations 
of economic pollen suggest they were ingested days before the sample 
was deposited. Most paleofeces also contain a variety of unintentionally 
ingested background or contamination pollen. Therefore, the lower the 
overall concentration of pollen, the harder it is to recognize which types 
were intentionally ingested.

Other areas of more recent research include analyzing phytoliths 
from paleofeces to help determine dietary items that may be missed 
with macro and pollen analyses (Danielson 1993; Meade 1994), assessing 
prehistoric nutrition and health through analyses of paleofecal contents 
(Sobolik 1988a, 1990; Cummings 1989), and ascertaining meals and cui-
sine through cluster analysis (Sutton 1993; Sutton and Reinhard 1995). 
The newest paleofecal research has focused on identification of sex of 
depositor through hormonal studies (Sobolik et al. 1996) and DNA con-
tent (Sutton et al. 1996). This research will be highlighted in later sec-
tions of the book, but it revolves around an important issue in paleonu-
trition research: the search for the diet and nutrition of individuals and 
small groups within a larger population.

Direct and Indirect Data

Paleonutrition data are derived from many divergent sources, including 
skeletal materials, the study of plant and animal remains, paleobiochem-
istry, and others. Such data can be characterized as either direct or indi-
rect (following Sutton 1994). Direct data are those where no inference is 
necessary; the remains are directly linked to human paleonutrition (such 
as constituents in paleofeces or nutritional pathologies in bone). On the 
other hand, indirect data require an inference to link them to human 
paleonutrition; for example, a deer bone from a site infers consumption 
of deer, but does not directly demonstrate it. Some archaeologists view 
indirect data as the technology (e.g., grinding stones) used in food pro-
cessing, a category subsumed under the definition outlined here.

Indirect data constitute the vast majority of paleonutritional data from 
archaeological sites. Most researchers pursue single lines of investiga-
tion, relating the results of their particular research to the paleonutrition 
of a particular population. For example, those working on paleofeces 
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(e.g., coprolites) detail diet but only rarely integrate those findings with 
the skeletal evidence of health and nutrition of the same population, 
partly since such complementary data sets are rare (but see Cummings 
1989; Ericson et al. 1989; Sobolik 1994a). Nevertheless, to move toward 
a full understanding of the paleonutrition of a population, multiple data 
sets are necessary—and the greater the number of complementary data 
sets, the better.

Current studies related to paleonutrition are overwhelmingly con-
cerned with diet and how diet affects health. To understand how diet and 
health are related, however, it is necessary to understand the entire sub-
sistence system. Subsistence is “the procurement [strategies, tactics, and 
technology] of those materials that are necessary for the physiological well-
being of a community,” whereas diet is “what is eaten” and nutrition is “a 
measure of the ability of the diet to maintain the body in its physical and 
social environment” (Dennell 1979:122). Health is a reflection of nutrition 
and other stress experiences. These components are intertwined and an 
understanding of all of the components is necessary for an understanding 
of the whole individual (also see Greene and Johnston 1980; Sept 1992).

Direct and indirect data relating to prehistoric diet, nutrition, and 
health are present in the archaeological record in three basic forms: 
macroremains, microremains, and chemical remains. Macroremains are 
those that are large enough to be distinguished with the naked eye or 
with relatively little magnification. The majority of faunal and botanical 
remains, such as seeds, bones, and preserved impressions, fall into this 
category. Most of these remains are collected from screens (or sieves) in 
the field or through some specialized laboratory processing such as flota-
tion (also usually with screens) (see chap. 4).

Microremains, such as pollen and phytoliths, are those that must 
be identified with the use of specialized microscopy equipment and/or 
techniques. These include light microscopy (simple and compound, 
reflected, polarized, confocal scanning, interference, and Fourier trans-
form infrared methods), electron microscopy (transmission electron, 
scanning electron [SEM; see Parkes 1986, Meeks 1988, and Olsen 1988 
for discussions of SEM uses in archaeology], and emission microscopy), 
X-rays, and acoustic microscopy (refer to Rochow and Tucker [1994] for 
detailed descriptions of each type). Light and electron techniques are the 
most widely utilized for archaeological applications.
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Chemical remains are those substances that are not identifiable by 
visual means, and so must be identified through chemical analyses. 
Such remains fall into two basic categories: visible but unidentified 
organic residues and nonvisible chemical constituents. The first category 
of remains has received considerable attention from the physical sci-
ences, and the identification of materials through gas chromatography 
(GC), mass spectrometry (MS), gas chromatography/mass spectrometry 
(GC/MS), optical emission spectroscopy, and/or infrared spectroscopy 
is becoming increasingly sophisticated (see Parkes 1986:197–199; Pollard 
and Heron 1996:20–74; Young and Pollard 1997). The second category 
includes stable isotope analysis, trace element analysis, immunochem-
istry, ancient DNA (aDNA) analysis, soil chemistry, hair composition 
analysis, and amino acid analysis. This latter category consists of data 
that preclude “the need for individuals to be pathological before dietary 
assumptions can be made, and they can make use of fragmentary, nondi-
agnostic materials” (White 1999:xii).

Future Areas of Research

The future areas of paleonutritional research will revolve around inter-
disciplinary analyses in which a variety of archaeological assemblages are 
used to assess not only the paleonutrition of a population, but also the 
paleonutrition of small groups and subgroups within the larger popula-
tion context. This type of analysis is important because the diet, health, 
and nutrition of small groups within a larger population are diverse in 
modern cultural groups, indicating that such must have been the case 
in the past. To ascertain small-group paleonutrition, analysts will need 
to tease out information on these groups from the archaeological record. 
New technological advances will aid in this endeavor, such as DNA and 
hormonal studies, but the main pursuit will rest with the researcher and 
the types of questions and avenues of research that he or she seeks.

Summary

The study of paleonutrition is becoming more complex and information 
is continually being generated by both new data and the reanalysis of old 
data. As the details of the information increase and the level of analysis 
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becomes more sophisticated, we will be able to expand upon our under-
standing of past diet and behavior. Moreover, the future holds the prom-
ise that additional paleonutritional data will generate new ideas, theories, 
and insights that would have been fanciful only a few years ago.

This volume provides detailed discussions of various aspects of paleo-
nutrition and showcases specific analyses of paleonutrition among eth-
nographic and prehistoric groups in various parts of North America and 
Africa. These case studies include analyses of Great Basin subsistence 
models based on single-leaf pinyon (Pinus monophylla), east African 
highland foraging techniques and the importance of honey, children’s 
health in the American Southwest as a possible consequence of agri-
culture, dietary stress among prehistoric populations in northern Sudan, 
and cuisine in the northern Coachella Valley of California as evidenced 
in paleofeces.
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The Paleonutrition Data Base
Direct Data

in this chapter, we discuss the kinds of data that relate directly to 
human paleonutrition, or those data that do not require an inference to 
be linked to human diet and health (see Sutton 1994). Direct data are 
relatively uncommon components of archaeological sites and are cur-
rently limited to two basic categories: (1) the study of human remains, 
including the analysis of pathology and chemistry, and (2) the study of 
human paleofeces.

Human Remains

Human remains consist of the bones, soft tissue, hair, and/or chemical 
products of humans and may contain direct evidence of paleonutrition.  
Most human remains studied by anthropologists consist of skeletal materi-
als and a great deal of effort has been invested in studying bones, including 
cremations. Unfortunately, the skeleton is probably the least sensitive indi-
cator of nutritional status, particularly for adults (e.g., Allen 1984). Fragmen-
tary human remains, especially those commingled with other materials, 
from a site pose additional challenges, and an analytical approach similar 
to that of faunal remains could be productive (Outram et al. 2005).

The majority of work on human remains has been focused on paleo-
pathology where evidence of specific diseases, trauma (including injuries 
related to warfare), deformation, and nutrition may be identified. Paleo-
pathology employs a variety of data sets, primarily the analysis of bone 
and soft tissues, but may include other inferential data. Recent reviews 
of this field were provided by Bush and Zvelebil (1991), Ortner (1991), 
Roberts (1991), Boyd (1996), Larsen (1997, 2000, 2002), Aufderheide and 
Rodríguez-Martín (1998), Lovell (2000), Walker (2001), Roberts and 
Manchester (2007), and Waldron (2007). Several interesting case studies 
drawing on diverse lines of biological data were presented by Wright and 
White (1996) and Larsen (1994, 1998).
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Disease is the most significant factor in human morbidity and mor-
tality. The detection and identification of diseases in individuals and of 
disease patterns in populations are primary goals in paleopathological 
analyses. Juveniles are more heavily impacted by disease than adults and 
an understanding of juvenile morbidity and mortality can serve as an 
indicator for the health of the population as a whole (see Martin et al. 
1991:125).

Skeletal Analysis

In life, the human skeleton will “respond to a broad range of stimuli, 
ranging from environmental and hereditary stresses to mechanical 
usage” (Stout 1989:41), and will preserve a unique record of past meta-
bolic events. Morphological features on bone may contain a patterned 
record of five basic phenomena: “general growth; mechanical usage dur-
ing growth and adult life; nutrition; genetics; and general health and 
acquired disease” (Frost 1985:222). Some of the inferences that can be 
gained from the analysis of skeletal remains include living conditions, 
cultural interactions, population movements, and changes in nutrition 
and health over time (see Huss-Ashmore et al. 1982; Larsen 1987, 1997, 
2000, 2002; Ribot and Roberts 1996; Mays 1998; Goodman and Martin 
2002). Examples of changes over time may include shifts in economic 
bases, such as from general hunting and gathering to specialized hunting 
and gathering (Lambert 1993) or from hunting and gathering to agricul-
ture (Cohen and Armelagos 1984).

The general techniques utilized in the analysis of individual skeletons 
include metric measurements to determine gross morphology (such as 
stature and sex), methods to measure bone development, and methods 
to determine and describe pathology (such as disease, trauma, deforma-
tion, and nutritional stress). The skeletons of subadults (adolescents, chil-
dren, and infants) are morphologically different than those of adults and 
present their own analytical challenges (Scheuer and Black 2004; Baker  
et al. 2005).

At the population level, demographic data, including stature, sex, age at 
death, and cause of death, can provide information regarding behavior in 
life, general health and diet, and a variety of other issues. Wood et al. (1992) 
cautioned, however, that these issues are complex and the translation of 
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skeletal data directly to conclusions on ancient demography and health 
is not straightforward, creating an “osteological paradox” in which these 
problematic issues could result in flawed conclusions. Recent work in bio-
archaeology, both in methods and in analysis, provides optimism that these 
problems can be resolved (Wright and Yoder 2003; also see Larsen 2006).

A variety of specialized techniques are available to study and evalu-
ate the skeleton, including radiography, magnetic resonance imaging 
(MRI), computerized axial tomography (CAT) scans, positron emission 
tomography (PET) scans, photon absorbiometry, gravimetric techniques, 
thin sections (dry and stained), microradiographed thin sections, macro-
measurements, and micromeasurements. Each of these techniques was 
discussed in some detail by Martin et al. (1985:236–253; also see Frisan-
cho 1990; Buikstra and Ubelaker 1994:165; Chege et al. 1996; Lynnerup 
et al. 1997). Probably the most useful technique in skeletal analysis is 
radiography. Radiographs can show features not visible to the naked eye, 
such as some healed traumas, bone density (e.g., osteopenia or osteopo-
rosis), unerupted teeth (fig. 2.1), and many other aspects of the skeleton. 

figure 2.1. Radiograph of partially erupted and unerupted teeth (tooth buds) 
of an infant from an archaeological site in southern California (photo of an 
X-ray provided by the office of Dr. Jerry Woolf at Woolf Dental in Bakers-
field, California).
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Since there is no danger of overexposure to the bone, multiple radio-
graphs may be taken.

Skeletal analysis is not without limitations. Many results that indicate 
stress do not specify what kind of stress. Also, the older an individual was 
at death, the more difficult it is to determine age at death, so the ages 
of older individuals tend to be underestimated (see Aykroyd et al. 1999; 
Schmitt 2004; Baker and Pearson 2006). Thus, population profiles can 
be skewed, with cohorts spanning longer and longer age ranges as one 
moves up the scale. It is also possible that differences in preservation 
and/or disposal techniques could create sampling bias.

Cremations

In addition to inhumation (burial) in which significant portions of the 
skeleton can be recovered and analyzed, cremation is another common 
method of disposal of the dead. While selected skeletal remains can (and 
often do) survive the cremation process, this type of treatment presents a 
set of problems and opportunities quite different from those of inhuma-
tions. On the negative side, the bone is usually highly fragmented and 
often badly calcined and distorted, making it difficult to obtain complete 
metric and nonmetric data or even to identify specific elements. In addi-
tion, cremation practices often included procedures, such as the stirring 
of a fire, that cause further fragmentation and scattering of the bone. On 
the positive side, burned or calcined bone resists weathering better than 
unburned bone and so may preserve longer. Also, some artifacts, such 
as basketry, might be charred and fairly well preserved in cremation fea-
tures. Lastly, the usual presence of large quantities of charcoal in crema-
tions makes radiocarbon dating of such features easier, without having to 
conduct destructive analyses on the human remains themselves.

A number of studies have dealt specifically with cremations, although few 
have been conducted on remains from North American sites. Only within 
the last few decades have anthropologists anywhere considered cremated 
human remains to be of sufficient scientific value to merit their collection 
and evaluation (e.g., Gejvall 1970; Mays 1998; McKinley 2000). Many of 
these analyses, as well as discussions related to the study of cremated bone, 
have taken place in Europe (Wells 1960; Brothwell 1981) but several impor-
tant contributions have been made by American scholars (Merbs 1967).
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Histological Analyses of Bone

Bone histology (see Martin et al. 1985; Martin 1991) emphasizes histo-
morphology, the microscopic analysis of bone structure, to deduce a vari-
ety of conditions, including “skeletal growth, pathology, maintenance, 
and repair” (Martin 1991:55) and diagenesis (Bell et al. 1991). The goals 
of histological analyses are to examine bone remodeling in populations 
and to relate those patterns to age (e.g., Macho et al. 2005; Pfeiffer et al.  
2006), sex, stature, pathological conditions, and cultural affiliation so that 
differential health statuses can be addressed (Martin 1991:55). Histologi-
cal analysis of bone should include “measure of bone quantity (cortical 
thickness, cortical area, and rate of remodeling) and bone quality (quan-
tification of the size, distribution, and level of mineralization of discrete 
units of bone)” (Martin 1991:55, italics in original).

Another histological approach is the study of the skeletal intermediary 
organization (IO) of bone between the level of the cell (osteon) and the 
organ (the bone structure) (Stout 1989:41). The basic functions of the IO 
are “growth, modeling (changes in geometry of bones), remodeling [e.g., 
pathology], repair, and homeostasis” (Stout 1989:41), and an understand-
ing of the IO may permit the inference of a variety of factors, including 
disease, nutrition, and mechanical usage (Frost 1985:211; also see Marchi 
et al. 2006). It may also be possible to use bone histology to identify the 
species of origin of bone (Davenport and Ruddell 1995; Martiniaková  
et al. 2006) and to even identify disease (e.g., von Hunnius et al. 2005).

Skeletal Pathologies

Most pathologies in skeletal remains are the result of congenital malfor-
mation, disease, trauma, deformation, and/or nutritional deficiencies. The 
most common skeletal pathology is related to degenerative disease, with 
trauma ranking second (White and Folkens 2005:312). Congenital malfor-
mations, trauma, and deformations typically do not relate to diet or nutri-
tion and so are not considered further herein (but see Wells 1964:37–44;  
Turkel 1989; Brothwell 1999; Roberts and Manchester 2007). The other 
two categories of pathology, disease and nutritional deficiency, are dis-
cussed below. An excellent and comprehensive review of human skel-
etal pathology was presented by Roberts and Manchester (2007; also see  
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Steinbock 1976; Ortner and Putschar 1981; Goodman et al. 1984; Işcan and 
Kennedy 1989; Buikstra and Ubelaker 1994:107–158; Ortner 1994; Larsen 
1997; Aufderheide and Rodríguez-Martín 1998; White 2000; White and 
Folkens 2005). Dental pathology is discussed separately below.

Disease Pathologies.  Most diseases are not long-lived enough to result in 
the formation of distinct lesions on the skeleton, although such evidence 
is sometimes recovered and recorded (e.g., Williams 1985; Hershkovitz 
et al. 1998; Roberts and Manchester 2007). Some chronic conditions will 
result in the formation of periosteal reactions, or lesions on the surface 
of the bone, but such lesions are usually nonspecific (Rothschild and 
Rothschild 1997) and poorly understood (Miller et al. 1996; Lewis 2004). 
Periostitis can thus provide an indicator of general infection (see Martin 
et al. 1991:125–146). A few diseases will produce diagnostic bone lesions 
(table 2.1) and so can be identified in individuals and populations. A 
potential and relatively new approach to the identification of disease 
in bone is the possibility of detecting specific pathogen proteins using 
enzyme-linked immunosorbent assay (ELISA; Smith and Wilson 1990), 
other immunological methods (Tuross 1991), and ancient DNA (aDNA; 
Likovsky et al. 2006). Discussions of diseases represented in the skeleton 
were provided by Steinbock (1976), Morse (1978), Ortner and Putschar 
(1981), Brothwell (1981:127–151), Kelley (1989), Larsen (1997:64–108), 
Aufderheide and Rodríguez-Martín (1998), and Roberts and Manchester 
(2007).

Perhaps the most common affliction reflected in the skeleton is bone 
loss (deossification), either osteopenia or the more severe osteoporosis. 
Bone loss can be caused by a number of disorders, including dietary fac-
tors (Huss-Ashmore at al. 1982:423–432). Osteoporosis affects both men 
and women, but affects women earlier in life. This will result in a variety 
of problems, with fractures being the most common, particularly rib frac-
tures (e.g., Brickley 2005). Bone density may also reflect stress in juve-
niles (see McEwan et al. 2005).

Bone density can be measured using a variety of techniques, the best 
being dual-energy X-ray absorptiometry (Arabi et al. 2007:1060), but 
digital photodensitometry (Symmons 2004), metacarpal radiogramme-
try (Ives and Brickley 2005), and quantitative computerized tomography 
(Gonzalez-Reimers et al. 2007) are also used. It is important to point out, 



table 2.1.  Selected Diseases and Corresponding Skeletal Pathologiesa

Disease General Cause Skeletal Pathology

Acute osteomyelitis Infection Lesions in the interior, then 
exterior, distal ends of long bones, 
sometimes in other sites

Chronic osteomyelitis Infection Capsulated abscesses
Chronic osteomyelitis 

(arthritis)
Infection Fusion of joints

Trephonemal disease: 
venereal syphilis

Infection Severe infection, osseous lesions, 
often in cranium

Trephonemal disease: 
endemic syphilis 
(bejel)

Infection Moderate infection, osseous lesions, 
rarely in cranium

Trephonemal disease: 
yaws

Infection Slight infection, osseous lesions, 
primarily in tibia

Tuberculosis Infection Lesions in vertebral column, pelvis, 
joints, and fingers (skeletal 
involvement rare)

Leprosy Infection Lesions and/or osteoporosis in 
extremities and face

Smallpox Viral infection Destruction of metaphyseal bone 
in arms, particularly in elbow; no 
involvement in adults

Anemias Various causes Porotic hyperostosis, cribra orbitalia
Dietary osteopenia: 

scurvy
Vitamin C deficiency Ossification of healed hematomas, 

diaphysis fractures
Endocrine osteopenia Hormone deficiencies Osteoporosis
Stress osteopenia: 

atrophy
Lack of mechanical 

stress
Location-specific osteoporosis

Rickets Vitamin D deficiency 
in subadults

Nonmineralization of osteoid, light 
and brittle bones, deformities

Osteomalacia Vitamin D deficiency 
in adults

Deformities of weight-bearing bones; 
skull rarely involved

Arthritis Age, mechanical 
stress, injury, 
infection

Osteoporosis, bone and connective 
tissue destruction, bone-on-bone 
wear, cysts

Tumors Various Bony lesions and cysts
a Compiled from Steinbock (1976) and Ortner and Putschar (1981).
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however, that diagenesis of archaeological specimens must be consid-
ered in any interpretation (Berna et al. 2004).

Arthritis, or the inflammation of the joints, is another condition asso-
ciated with aging and to some degree body mass (Weiss 2006). How-
ever, arthritis is also associated with workload and mobility and can be  
employed in studies dealing with these issues (e.g., Hemphill 1999; 
also see Baker and Pearson 2006; Lieverse et al. 2006). Osteoarthritis 
is the destruction of the cartilage in a joint and the formation of adja-
cent bone. The visible pathology is often manifested as polished bone 
surfaces (eburnation, from direct bone-on-bone wear), the formation of 
bone along the edges of the joint (lipping; fig. 2.2), and/or bone spurs 
(exostosis) in and around the joint. This disorder is commonly visible 
in vertebrae. Spondylolysis (degeneration of the articular surface of the 
vertebrae) may also be identified in skeletal populations (e.g., Gunness-
Hay 1981; Merbs 2002).

Skeletal evidence of the four major treponemal diseases (venereal 
syphilis, endemic syphilis [bejel], yaws, and pinta) is widespread but it 
is very difficult to distinguish among the four (see Rothschild and Roth-
schild 1996, 1997; Roberts and Manchester 2007), although histological 
identification may be possible (e.g., von Hunnius et al. 2005).

figure 2.2. Bone lipping (osteophytic growth) on the vertebrae of a modern 
adult discovered in southern California (photo provided by Jill K. Gardner).
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Other diseases may also manifest themselves in the skeleton. Tuber-
culosis has now been identified in the skeletal remains of individuals 
around the world based on evidence in bone (e.g., Fink 1985; Micozzi 
and Kelley 1985; Sumner 1985; Arriaza et al. 1995; Conlogue 2002; Mays 
and Taylor 2002; Matos and Santos 2005) and using molecular analy-
ses (e.g., Faerman et al. 1997; Mays and Taylor 2003; Zink et al. 2004). 
Skeletal evidence of leprosy has been noted from burials in England 
(Manchester 1981), Scotland (Taylor et al. 2000), the Czech Republic 
(Likovsky et al. 2006), and India (Robbins et al. 2009). Manchester (1991) 
discussed the evidence for the interaction of these two diseases. An osteo-
sarcoma (cancerous tumor of the bone) was identified from an individual 
in Germany (Alt et al. 2002).

Nutritional Deficiency Pathologies.  Nutritional stress on an individ
ual may also be expressed in bone (see Larsen 1997:29–56; Hoppa and 
FitzGerald 1999; dentition is discussed separately below). Protein-energy 
deficiencies will manifest themselves in general ways (and so be difficult  
to diagnose), while some vitamin-related deficiencies may be more specific. 
Martin et al. (1985:230) argued that skeletal indicators of prehistoric diet 
should be analyzed at the population level, concentrating on “juvenile 
and premature osteoporosis, differential remodeling rates of cortical and 
trabecular bone, growth arresting (Harris lines) of the long bones, and 
iron deficiency anemia” and further noted that, in general, “the skeletal 
response to nutritional stress is an increase in resorption and a decrease 
in formation resulting in a net loss of bone” (Martin et al. 1985:234). 
Another indicator of developmental stress is fluctuating asymmetry (e.g., 
DeLeon 2006).

Bone microstructure can provide a partial record of past nutritional 
events (see Martin 1981; Martin et al. 1985:230–236) as the body responds 
to nutrient deficiencies by borrowing materials from bone that, in turn, 
will recycle reserves at the cost of lowered resistance (Martin et al. 
1985:234). Thus, nutritional stress can be related to premature bone loss 
(see Martin and Armelagos 1986). However, bone preservation must be 
assessed before conclusions based on microstructure can be made (Mar-
tin et al. 1985:236).

Vitamin-related nutritional deficiencies (see Huss-Ashmore et al. 1982; 
Stuart-Macadam 1989; Brickley et al. 2005, 2006) may also be reflected in 
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the skeleton, generally resulting in osteopenia. For example, scurvy (vita-
min C deficiency) results in bone thinning and pathological fractures 
and lesions in fast-growing portions of bones, is most notable in children, 
and has been identified in infant skeletons (Brickley and Ives 2005). A 
deficiency in vitamin D prevents the proper mineralization of bone pro-
teins and the resulting condition—called rickets in subadults and osteo-
malicia in adults—causes bent and distorted bones, often the limbs. Both 
rickets (Ortner and Mays 1998; Mays et al. 2005; Roberts and Manchester 
2007) and osteomalicia (Brickley et al. 2005, 2006) have been identified 
in skeletal populations. Rickets is often seen among agricultural groups 
dependent on grain crops due to a lack of calcium absorption caused 
by the grain chemistry (e.g., Ivanhoe 1985). Stuart-Macadam (1989) pro-
vided a discussion of both scurvy and rickets and outlined the archaeo-
logical evidence for each.

Porotic Hyperostosis and Cribra Orbitalia.  The best-studied manifes-
tation of nutritional deficiency is porotic hyperostosis. Porotic hyperosto-
sis is the skeletal manifestation of any anemia, including both nutritional 
and hereditary (e.g., sickle cell) anemia (see discussions in Martin et al. 
1985:265–269; Stuart-Macadam 1985, 1988, 1989:212–219, 1992a,b; Ascenzi 
et al. 1991; Martin et al. 1991:149–162; Larsen 1997:30–40; Facchini et al. 
2004; Roberts and Manchester 2007:225–232). Anemia can be defined 
as the “subnormal number of red blood cells per cubic millimeter . . . 
subnormal amount of hemoglobin in 100 ml. of blood, or subnormal 
volume of packed red blood cells per 100 ml. of blood” (Kent 1992:2). 
The condition of anemia will stimulate the production of red blood cells 
(RBCs), resulting in an expansion of marrow and a thinning of the outer 
layer of the bone and exposing the trabecular (spongy) interior. These 
lesions may be visible in a variety of locations where thin bone is present, 
including bones of the orbit (cribra orbitalia) and cranium (fig. 2.3).

The etiology of porotic hyperostosis and cribra orbitalia is a syner-
gistic reaction revolving around dietary insufficiency and malnutrition. 
Diets dependent on corn agriculture are deficient in a number of essen-
tial amino acids, as well as iron. With the increased dependence on corn 
agriculture, as in the American Southwest, iron-deficiency anemia can 
develop in individuals who rely too heavily on corn and so are not getting 
a diverse enough nutrient intake. With fluctuating climatic conditions 
and environmental changes, such as periods of drought, a heavy reliance 
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on corn as a dietary staple can result in an increase in iron-deficiency 
anemia.

Other causative agents in this synergistic cycle include the prevalence 
of disease and parasites. Disease tends to be spread in larger, more sed-
entary populations with poor sanitation. Disease also tends to increase 
in populations that are malnourished, in essence proliferating anemia 
in individuals who are already malnourished. In addition, it has been 
observed (Reinhard 1985) that prehistoric populations in the American 
Southwest were infested with a number of potentially debilitating para-
sites. Parasite infestation robs the body of much-needed nutrients and 
may block the absorption of iron, again participating in the proliferation 
of iron-deficiency anemia. A similar case has been made for the prehis-
toric Northwest Coast (Bathurst 2005).

Severe porotic hyperostosis tends to be found more frequently in 
infants and children because their bones are thinner and not fully miner-
alized, whereas adult bone is more resistant. In addition, by six months of 

figure 2.3. Porotic hyperostosis lesions on the skull of an individual (photo 
courtesy of Clark Spencer Larsen).
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age, children have depleted the accumulated iron stores obtained from 
their mother in utero and are trying to triple their blood supply (hema-
topoietic activity); therefore, they need more iron (El-Najjar et al. 1976). 
The increased need for iron confounded by malnutrition and the lack of 
iron in their diet produces severe iron-deficiency anemia. If a child with 
porotic hyperostosis survives into adulthood, the lesions and pitting can 
remain with that individual for a long time, eventually becoming healed 
and remodeled and less evident on the bone (El-Najjar et al. 1976).

Anemia can occur at any time in life and can affect bone. Production 
of RBCs occurs throughout life, but the distribution of RBC-producing 
tissue differs between adults and children. Among adults, RBC produc-
tion is limited to “red” bone marrow that may be found in a number of 
the flat and irregular bones, such as the vertebrae, sternum, innominate 
(especially the ilium), and cranial vault bones. It is among the latter that 
adult-onset anemia is best known.

The two most frequently acquired anemias are iron deficiency and 
anemia of chronic disease (Kent 1992:2). It is commonly assumed that 
iron-deficiency anemia in prehistoric populations was generally the result 
of dietary deficiencies (Kent 1992:3), often due to a dependency on maize 
(also see Von Endt and Ortner 1982). Stuart-Macadam (1998) noted that 
the condition postdates the adoption of agriculture and that the pattern 
of females being more susceptible to the condition is fairly recent. In 
addition, there is now reason to believe that diet may not be the major 
factor affecting anemias but that some chronic disease (or the absence 
of defense against such disease) is a prominent factor in the presence of 
porotic hyperostosis (El-Najjar et al. 1975, 1976; Lallo et al. 1977; Mensforth  
et al. 1978; Kent 1992:13; Stuart-Macadam 1992a, 1992b:155–156; Reinhard 
1992a:251–252; Wadsworth 1992; Schultz et al. 2001; but see Garn 1992:34, 
53; Holland and O’Brien 1997). In sum, current research suggests that 
porotic hyperostosis cannot be explained by dietary factors alone.

Harris Lines.  During times of nutritional stress, normal bone growth 
may be interrupted, resulting in the formation of lines (or bands) of alter-
natively thinner and denser bone mineralization in the growth areas of 
the bone (fig. 2.4). These lines are usually deposited transverse to the 
length of the bone, and are generally referred to as “Harris lines” (Larsen 
1997:40–43), probably the second most commonly studied nutritional 
deficiency. Harris lines may be visible either by radiograph or in cross 



figure 2.4. Harris lines on the tibia of a juvenile (photo of an X-ray provided 
by Dr. Oscar W. Rico at Kern Radiology in Bakersfield, California).
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section. They form only during bone growth, when the individual is rela-
tively young, and so reflect the nutritional stresses of childhood. Due to 
bone remodeling during the adult years, evidence of Harris lines fades 
with age and, since most studies of Harris lines have been conducted on 
adults, the results may not reflect the nutritional status of the individuals 
in adolescence (Vyhnanek and Stoukal 1991). Thus, it is important that 
all segments of a population be studied (Martin et al. 1985:258–259).

Harris lines appear most frequently in long bones, and the tibia (par-
ticularly the distal tibia), femur, and radius are the best bones for study 
(Martin et al. 1985:259). The location of the lines relative to the epiphy-
seal ends may be used to estimate the age at which the individual was 
stressed, although this is a difficult process (Martin et al. 1985:261–263) 
due to problems in accurately dating the events relative to the age of the 
individual. Mays (1995) studied skeletons from a Medieval site in Eng-
land and concluded that Harris lines and other stress indicators were best 
utilized in the study of juveniles.

Harris-line data can also be used to study the nutritional status of 
populations through time. In a study of 102 individuals from diverse time 
periods in California, McHenry (1968) argued that Harris lines decreased 
through time, suggesting a general improvement in health and nutrition.

Dentition

Dental health and condition can be correlated with diet and stress within 
populations (see Goodman et al. 1984; Cruwys and Foley 1986; Goodman 
1988, 1991; Lukacs 1989; Kelley and Larsen 1991; Martin et al. 1991:164–206; 
Hillson 1979, 1996; Larsen 1997:43–56; Langsjoen 1998). Like bone, teeth 
record a partial history of nutritional stress and morbidity during their 
growth period (prenatal to eighteen years). As enamel is not resorbed, the 
record is permanent and so the “biological adequacy of childhood diets 
[by age and sex] can thus be inferred from the dentition of adults” (Rose 
et al. 1985:282).

Whether due to dietary factors (such as the consumption of refined 
sugars) or poor maintenance, poor oral hygiene may result in gum dis-
ease, caries, abscesses, tooth loss, and general infection (spread through 
the bloodstream). Dental problems can alter the normal diet and lead to 
nutritional problems that might appear unrelated to dental pathology. As 



paleonutrition data base:  direct data   39

a result, “population morbidity and mortality levels are directly affected 
to some degree by the prevalence of dental health, which is in turn influ-
enced both directly and indirectly by dietary factors” (Powell 1985:308).

Developmental Defects of Enamel (DDE).  Developmental abnormalities 
in tooth enamel include hypocalcifications and hypoplasias (Federation 
Dentaire Internationale 1982; Rose et al. 1985; Duray 1990; Goodman and 
Rose 1990, 1991; Skinner and Goodman 1992). Both kinds of DDE form only 
during tooth development and enamel growth in young individuals.

Hypocalcifications are discolored patches in the enamel and can form 
during mild disruptions of the mineralization process. The relationship 
of hypocalcification to diet is unclear. A hypoplasia is any deficiency in 
the amount or thickness of the enamel (Goodman and Rose 1990:64) 
and can result in linear creases, pitting, and even the absence of enamel 
observed on the exterior of the tooth. Hypoplasia can result from sev-
eral conditions, primarily localized trauma, heredity, or systemic meta-
bolic disruption during the growth of a tooth (Goodman and Armelagos 
1985:479). An episode of trauma would be localized, affecting only a few 
teeth, while hereditary hypoplasia would affect all teeth. A hypoplasia 
caused by metabolic disruption should show up as a simultaneous event 
in many teeth, relative to the development of the teeth. Enamel is not 
subject to remodeling and so the record of these stresses is preserved 
(Goodman and Armelagos 1988; Goodman and Rose 1990:59), including 
in deciduous teeth (Blakely and Armelagos 1985).

Metabolic stress of just a few days may cause short-term disruption of 
enamel growth, which may result in slight alteration of the matrix of the 
enamel. These episodes may be visible in thin section as small, linear 
bands of discolored enamel, commonly called Wilson bands. As normal 
tooth growth sequence is well understood, the location of Wilson bands 
in the enamel matrix can be used to deduce the age of the individual at 
the time of the metabolic disruption. A recent study of contact period 
materials from Florida (Simpson 2001:175, also see Simpson 1999) found 
a number of defects in enamel microstructure, suggesting that severe 
dehydration due to weanling diarrhea was a serious health problem in 
early mission times.

If metabolic stress lasts from weeks to months, the enamel will stop 
developing, resulting in thinning of the enamel. These episodes may 
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be visible on the surface of the tooth and are commonly called linear 
enamel hypoplasia (LEH). Once the stress is removed, the enamel will 
continue its normal growth, leaving the region of thin enamel on the 
tooth (fig. 2.5). Estimating the age of the individual at the time of the 
stress is difficult (Goodman and Song 1999).

While general associations are known between LEH and a variety of 
clinical conditions, diseases, and malnutrition (see Rose et al. 1985:284–
285), there is not a “clear and consistent relationship between dietary 
deficiency and the formation of enamel defects” (Goodman 1994:171; also 
see Neiburger 1990). Some studies have found a relationship between diet 
and LEH (e.g., Hutchinson and Larsen 1995:95; Mays 1995; Lukacs and 
Walimbe 1998; Lukacs et al. 2001), but others have not (e.g., McHenry and 
Schulz 1976). One must always exercise caution in the diagnosis of these 
conditions, however, since enamel defects may be produced by chemical 
and/or developmental abnormalities, rather than by nutritional stress (see 
Dahlberg 1991; Duray 1996:276), and different teeth have different suscep-
tibilities to growth disruption (Goodman and Armelagos 1985:491), mak-
ing interpretations difficult. LEHs might also be produced as the result 
of other stressors, such as diseases, warfare, population pressures, and the 
like as a result of contact with Europeans (Wright 1990; Hutchinson and 
Larsen 2001). LEH may also be used to measure developmental stress on 
some domestic animals (e.g., pigs [Dobney and Ervynck 2000]), provid-
ing information on resources employed in raising them or on hunted 
animals with implications on subsistence (e.g., Niven et al. 2004).

figure 2.5. Linear enamel hypoplasia on the teeth of a juvenile (photo cour-
tesy of Clark Spencer Larsen).
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Dental Pathologies.  Dental pathologies can take several forms, most 
notably tooth wear (some of which is not pathological), caries (cavities), 
and periodontal disease (see Powell 1985; Hillson 1986, 1996; Lukacs 1989; 
Buikstra and Ubelaker 1994:47–68; Langsjoen 1998). Dental pathologies 
may reflect a variety of circumstances, including general health, some 
aspects of diet, techniques of food preparation, use of teeth as tools and 
for decoration, and even geochemistry (e.g., fluoride in groundwater 
[Hildebolt et al. 1988; Yoshimura et al. 2006]).

Wear of the enamel crown occurs throughout life through a combina-
tion of erosion (chemical dissolution), attrition (tooth-on-tooth contact), 
and abrasion (tooth-to-foreign-substance contact) (Williams and Woodhead 
1986). Some degree of tooth wear is normal, even beneficial, and is not path-
ological, while excessive wear can cause considerable problems (fig. 2.6). 
The amount and type of abrasion depend on occlusion (e.g., Begg 1954), the 
types of food consumed (e.g., those species containing a significant number 
of phytoliths may cause excessive wear [Puech and Leek 1986; Reinhard and 
Danielson 2005; but see Sanson et al. 2007]), the technology involved in food 
preparation (e.g., presence of grit from the use of stone milling tools; but see 
Wolfe and Sutton 2006), and the other uses to which teeth are subjected.

figure 2.6. Tooth wear on the maxilla of a young adult from an archaeologi-
cal site in southern California (photo provided by Jill K. Gardner).
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Attrition and abrasion may be distinguished by wear patterns observed 
microscopically (Powell 1985:308; Cross et al. 1986; Harmon and Rose 
1988; Lukacs and Pastor 1988; Teaford 1991; Larsen 1997; Teaford et al.  
2001) and can be employed to determine broad dietary patterns in humans 
(Walker 1978; A. Walker 1981; Newesely 1993; Lubell et al. 1994). Skinner 
(1996, 1997) identified differences in dental wear between Neanderthal 
and Upper Paleolithic infants, indicating that Upper Paleolithic infants 
received supplemental foods earlier than their Neanderthal counterparts, 
and suggested that this dietary difference may have influenced a popula-
tion increase in the Upper Paleolithic. Dental microwear can also be 
employed to determine the general diet of ancient livestock (Mainland 
1998).

Another mechanism creating tooth wear is their use as tools, such as 
grasping cordage, chewing hides, or holding pipe stems (Molnar 1971, 
1972; Schulz 1977; Larsen 1985; Sutton 1988a; Kennedy 1989:table 1; 
Milner and Larsen 1991). In addition, teeth may have been purposefully 
modified (engraved and/or colored) for cosmetic reasons or removed 
(technically a trauma) for various purposes (see Merbs 1989:172).

The degree of tooth wear has been utilized as a method of determin-
ing the age of an individual at death (e.g., Oliveira et al. 2006). Age is only 
one of the variables in tooth wear, however, and while it is fair to suggest 
that a significantly worn tooth belongs to an adult, the aging of skeletons 
based solely on general tooth wear is not advisable. On the other hand, 
a recent study of crown height on molars on a skeletal population of 
nineteenth-century Dutch of known age at death (Mays 2002) revealed 
a linear relationship between crown wear and age at death, suggesting 
that molar wear might be a good indicator of age within a homogeneous 
population. Nevertheless, it currently seems imprudent to rely solely on 
dental wear as indicators of age at death.

The presence of plaque, calculus, and caries (see Hillson 1986:283–
303) on the teeth may also give clues to diet. Plaque, a combination of 
bacteria and proteins from the saliva, forms on the surface of teeth. The 
bacteria consume sugars and other materials present in the mouth as 
food is consumed by the person and acid is produced as a waste product. 
If sufficient acid is produced, the pH of the plaque is lowered to the point 
that the enamel of the tooth begins to decalcify, producing a caries. If the 
pH level remains high enough, the plaque will not impact the enamel 
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but will instead mineralize to form calculus, a layer of calcified miner-
als and organic materials (Jin and Yip 2002:426) next to the tooth, with a 
layer of plaque on top of the calculus. This calculus can actually serve to 
protect the tooth, lowering the frequency of caries. If at some point the 
pH of the plaque is lowered enough, however, the calculus may become 
decalcified, allowing plaque to penetrate the enamel and cause caries.

Only relatively simple sugars can be processed by oral bacteria. As 
food enters the mouth, saliva begins the digestion process by rapidly 
breaking down sugars and converting simple carbohydrates into sugars. 
These sugars provide the nutrition needed by the oral bacteria, and so 
diets high in sugars and simple carbohydrates encourage the growth of 
oral bacteria and the formation of plaque. Other foods, such as com-
plex carbohydrates, protein, and/or fat, are not converted to sugars in the 
mouth, are not available as nutrition to oral bacteria, and are much less 
conducive to plaque formation (see Powell 1985:313–314, 316; Meiklejohn 
et al. 1988).

Left unchecked, caries can evolve into abscesses, resulting in tooth 
loss, bone loss, general infection, and even death. Many caries and 
abscesses are easily visible in ancient dentition (although not always mea-
sured consistently; see Hillson 2001), and evidence of bone resorption 
may be present. The link between caries and diet is clear but there are a 
number of other factors to consider, such as enamel disruptions that may 
increase the susceptibility to caries (Duray 1990). Other factors, includ-
ing food texture, chemical composition, and frequency of consumption, 
also influence rates of caries (Powell 1985:320).

Another dental pathology that can be detected in ancient teeth is peri-
odontal disease (e.g., Delgado-Darias et al. 2006), a bacterial infection of 
the tissues surrounding a tooth. Untreated infections can result in the 
erosion of gum tissue, abscess, tooth loss, and bone resorption. In most 
instances, periodontal disease is linked to poor oral hygiene, although it 
is possible to have a genetic predisposition to the disease.

Interestingly, the plaque and calculus preserved on ancient dentition 
are not commonly studied, perhaps partly due to the difficulty in directly 
linking them to dietary intake (e.g., Lieverse 1999; Delgado-Darias  
et al. 2006:664). Nevertheless, plaque and calculus can contain impor-
tant nutritional data, as particles—such as food, pollen, phytoliths, starch 
grains, grit, and tephra—can become incorporated into them. These 
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materials can then be recovered and analyzed, and preliminary studies 
(e.g., Dobney and Brothwell 1986; Magennis and Cummings 1986; Fox 
et al. 1996; Brothwell and Brothwell 1998; Reinhard et al. 2001; Yohe and 
Cummings 2001) suggest that the approach holds considerable promise 
in paleonutrition studies. Some work has also been done on the chemis-
try of calculus (Capasso et al. 1995) in an attempt to develop a data base 
for paleonutrition studies.

Dentition may be used as a partial measure of the subsistence econ-
omy and pathology related to nutritional stress. For example, changes 
in tooth wear and pathology could be used to infer shifts in diet among 
hunter-gatherers (e.g., Walker and Erlandson 1986; also see Walker 1978), 
to infer the transition from hunting and gathering to agriculture (e.g., 
Turner 1979; Larsen 1983; Smith 1984; Schmucker 1985; Schneider 1986; 
Larsen et al. 1991; Lillie 1996; Lukacs 1996; Lillie and Richards 2000; 
Eshed et al. 2005; but see Tayles et al. 2000), to delineate differences in 
the diet of agriculturalists due to relative status (Whittington 1999; also 
see Storey 1992, 1999; Valentin et al. 2006), or to infer seasonality of hunt-
ing prey species (Rivals and Deniaux 2005).

Soft Tissue Analysis

Soft tissue comprises most of the human body, including all of the 
organs, muscles, and hair. The majority of human pathology and disease 
is manifested only in soft tissues (see Martin et al. 1985), since with many 
diseases the host dies before the bone can be impacted by a pathogen. As 
a result, the identification of disease from skeletal remains is limited (at 
least with current methods, but see Smith and Wilson [1990] and Tuross 
[1991]). Thus, the recovery and analysis of preserved human soft tissue is 
a relatively rare opportunity that can provide a great deal of information 
currently unavailable from the analysis of skeletal remains alone.

Except under unusual circumstances, most soft tissues are subject to 
rapid decomposition and are not commonly recovered from the archaeo-
logical record, although it is now apparent that hair is quite resilient and 
can preserve in recognizable form in open sites for long periods of time 
(e.g., Bonnichsen 1996; Bonnichsen et al. 2001). The majority of pre-
served human soft tissues is found in mummified remains. These include 
artificially mummified bodies found in places such as Peru, Chile (e.g., 
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Arriaza 1995), and Egypt (see Yohe and Gardner 2004) or the naturally 
mummified bodies found in hot deserts (Peru, North America, northern 
Africa, and China), in cold deserts (e.g., the Arctic and Asian steppes), 
in waterlogged contexts (e.g., the “bog” bodies of northern Europe and 
the materials from the Windover site in Florida), or in other unusual 
conditions, such as “catacomb mummies” (Aufderheide and Aufderhe-
ide 1991). A general review of preserved human bodies was provided by 
Aufderheide (2003; also see Brothwell 1987).

Methods employed to examine preserved human soft tissue remains 
(see Aufderheide 2003) include endoscopic examination (Tapp et al. 
1984; Schäfer et al. 1995), radiography (e.g., Sutton 1980; Notman 1995), 
xeroradiography (selenium impregnated radiographs), MRI (Wallgren  
et al. 1986), PET and CAT scans (Sutton 1980:1230–1307; Vahey and 
Brown 1984; Notman 1986; Pahl 1986; Lewin 1991; Wisseman 1994), and 
various combinations of the above (Notman and Lupton 1995; Notman 
1998). One of the more interesting aspects of determining soft tissue char-
acteristics is when none is recovered on a skeleton and a reconstruction 
of the soft tissue is undertaken based on the skeletal data. For example, 
the face of the Kennewick Man was approximated through the use of 
well-established techniques for facial reconstruction (Chatters 2001).

Soft Tissue Paleopathology

Researchers have examined many thousands of mummies for soft tissue 
pathologies, and numerous studies have dealt with the various cases of 
pathology that have been observed (see Cockburn 1971:52; Whitehouse 1980; 
Cockburn et al. 1998; Aufderheide 2003). For example, Wells (1964:67–70) 
briefly noted the discovery of arteriosclerosis in mummies from Egypt and 
Peru, suggesting a variety of ailments including heart disease, stroke, and 
lung diseases, while the discovery of perforated eardrums in an Egyptian 
mummy led Lynn and Benitez (1974) to suggest the incidence of defective 
hearing.

Zimmerman et al. (1981) conducted a medical examination of an Aleu-
tian mummy, concluding that the person suffered from pulmonary and 
ear infections, atherosclerosis, pediculosis, degenerative joint disease, and 
anthracosis (a common affliction due to the use of indoor fires). Rothham-
mer et al. (1985) performed autopsies on twenty-two Chilean mummies, 
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nine of which showed clinical manifestations of Chagas’ disease, a parasitic 
infection, transmitted by insect bites, that can affect the heart and intes-
tines and can be fatal. These findings suggested that the parasite became 
a serious problem after ca. 500 B.C., when human populations became 
sedentary in that location. Aufderheide et al. (2004) discovered that Cha-
gas’ disease was present in Peru as early as 9,000 B.P. Blackman et al. (1991) 
detected a variety of renal problems in an Andean mummy.

Several additional examples of soft tissue analysis of paleopathologies 
are illustrative. Bourke (1986) undertook a number of medical exami-
nations on Lindow Man, including radiography, MRI, xeroradiography 
(also see Connolly 1986), and CAT scans (also see Reznek at al. 1986), 
and discovered a number of pathologies. Later, Brothwell et al. (1990) 
took radiographs and CAT scans on the Huldremose Woman bog body 
(found in Denmark) to locate the intestinal tract for sampling purposes. 
Finally, Ammitzbøll et al. (1991) conducted detailed X-ray analyses of 
eight mummies discovered at Qilakitsoq, Greenland, and identified a 
variety of pathologies and disease. Radiographic, CAT, and MRI scans, 
coupled with SEM observations, were conducted on 8,000-year-old pre-
served human brain matter from the Windover site in Florida (Haus-
wirth et al. 1991, 1994).

Also of interest is the rare discovery and analysis of tumors (Gerszten 
and Allison 1991) and cancers (Pahl and Undeutsch 1991; Tenney 1991) in 
soft tissues. In addition, pathogens have been discovered in mummified 
soft tissue remains (see Lewin 1991) using microscopy. Some pathogens 
also have been identified in bone (see Smith and Wilson 1990; Tuross 
1991), as have some ancient enzymes (Etspüler et al. 1996). Further, stud-
ies of zoonoses—disease organisms that can move back and forth between 
humans and other animals—have provided important discoveries (e.g., 
Bell et al. 1988). Examples of such diseases are rabies and tuberculosis. 
Brothwell (1991) provided a discussion of zoonoses and their relevance 
to paleopathology.

Analyses of some inorganic materials can be conducted on soft tissues, 
including stable isotopes and trace elements. In addition, renal and blad-
der stone diseases are implied by the presence of stones (Steinbock 1985; 
also see Blackman et al. 1991). The two conditions appear to be related, at 
least in part, to diet; thus, the presence of such stones in burial populations 
could be a source of paleopathological and dietary information. Other soft 
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tissue calcifications, such as pleural plaques, leiomyomas of the uterus, and 
lymph nodules, may also assist in determining disease and other anomalies 
in prehistoric populations (Baud and Kramar 1991).

Analysis of Hair.  Hair (which includes fingernails and toenails) 
contains a diachronic record of the metabolism of an individual that is 
stored in the internal (endogenous) portion of the hair during its growth 
phase. In contrast, the exterior (exogenous) component consists of 
materials that accumulated, at some point in time, on the surface of the 
hair (see Hopps 1974; Sandford 1984:58; Sandford and Kissling 1993). An 
analysis of the exogenous component of hair can reveal details regarding 
external environmental conditions, while the endogenous component 
can provide data on a number of issues, including diet, pollution, and 
toxicology (e.g., Benfer et al. 1978). Sandford (1984:97–268) suggested 
that calcium, magnesium, iron, zinc, copper, and manganese are the six 
primary elements to study in hair.

Hair may be preserved in a variety of circumstances, such as that 
attached to mummies or other skeletal remains, loose materials found 
in soils, and that attached to (or as part of) artifacts. The first two circum-
stances are of special interest, as the hair can be associated with specific 
individuals, and associations between analytical results and the age, sex, 
and/or pathologies of the individual can be made.

Sandford (1984) conducted a study of hair from 168 individuals from 
two Sudanese Medieval Christian period cemeteries, one from the early 
Christian period (A.D. 550 to 750) and one from the late Christian period 
(A.D. 750 to 1450). She determined that there had been little change in 
the diet between the two periods (see Case Study 4 in chap. 6). In addi-
tion, iron deficiency was identified as the likely cause of lesions in the 
orbits (cribra orbitalia; see above) in the population (Sandford et al. 1983). 
In another study, Bresciani et al. (1991:164) employed X-ray fluorescence 
to determine the quantities of trace elements in the hair from the mum-
mies discovered at Qilakitsoq, Greenland, showing the general increase 
in heavy metal pollutants over the last five hundred years. Hair has also 
been used to identify other compounds, including drugs; for example, 
Balabanova et al. (1995) identified cocaine and nicotine in the hair of 
a Peruvian mummy. Isotopic analysis of hair from Nubian mummies 
(Schwarcz and White 2004) revealed a pattern in the use of stored foods.
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It is also possible to recover hair from general archaeological site 
deposits. Hair has been recovered from soils at a number of sites (e.g., 
Grupe and Dörner 1989; Bonnichsen 1996) and can be utilized to gener-
ate information regarding diet and nutrition of the population of a site. 
Hair can also be radiocarbon dated and the hair follicles analyzed for 
aDNA to reveal the genetic imprint of the inhabitants (e.g., Bonnichsen 
et al. 2001). More recently, carbon and nitrogen isotope analysis of hair 
can help reveal details about past diet (Knudson et al. 2007).

Ectoparasites.  Ectoparasites (e.g., lice) found on preserved human 
remains (or in preserved clothing) may be useful in the inference of  
general health conditions. Gill and Owsley (1985) conducted an analysis 
of head lice found on a historic adult male mummy from Wyoming 
and discovered an extensive infestation. They suggested that the level 
of infestation was the result of a decrease in normal grooming activities,  
perhaps as a consequence of social stress related to Euroamerican expansion 
(e.g., starvation, warfare). Mummy II/7 from Qilakitsoq, Greenland 
(Bresciani et al. 1991:162), was heavily infested with head lice, suggesting 
“an extremely low hygienic standard, and perhaps, to some extent also, low 
resistance to the attack of lice.” Lice were also discovered in the feces of 
the individual, indicating the probable consumption of lice, as has been 
observed ethnographically (Bresciani et al. 1991:162; also see Sutton 1988b, 
1995). Lice-infested mummies also are known from other areas of the world 
(e.g., Fry 1976; Cockburn and Cockburn 1980).

Human ectoparasites also may be vectors of disease. Fleas were the 
prime transmitters of bubonic plague in Europe during the Middle Ages 
and continue in this role (see Buckland and Sadler 1989). Along with 
lice, mites, midges, mosquitoes, and other disease vectors, fleas also carry 
typhus, malaria, and other maladies. In addition, some people have aller-
gies to particular insect bites and a number of people die each year from 
bee stings. A discussion of ectoparasites and humans was presented by 
Busvine (1976).

Analysis of Ancient DNA

The application of techniques to recover, isolate, amplify, and identify 
ancient DNA (aDNA) holds the potential to revolutionize archaeology 
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(e.g., Pääbo 1985a,b, 1990, 1993; Thuesen and Engberg 1990; Brown and 
Brown 1992; Persson 1992; Richards et al. 1993; Tuross 1993; Hagelberg 
1994a; Herrmann and Hummel 1994; Thuesen 1995; O’Rourke et al. 
1996, 2000; Mays 1998:197–206; Renfrew 1998; Pääbo et al. 2004; Mul-
ligan 2006). Today, DNA testing/typing is used in a variety of forensic 
applications, such as the identification of war casualties (Holland et al. 
1993), including those from the American Civil War (Fisher et al. 1993).

As DNA is originally present in virtually all organic materials, includ-
ing bone (Hagelberg et al. 1989; Persson 1992; Hagelberg 1994b; Hum-
mel and Herrmann 1994; MacHugh et al. 2000), its recovery in ancient 
specimens could be used to address many research questions. These 
include the identification of pathogens in human remains (Salo et al. 
1995a; Baron et al. 1996; Taylor et al. 1996, 2000, 2001; Braun et al. 1998; 
Faerman et al. 1998; Dixon and Roberts 2001; Sallares and Gomzi 2001; 
Mays and Taylor 2002; Spigelman et al. 2002; Soren 2003; Aufderheide 
et al. 2004; Bathurst and Barta 2004; Likovsky et al. 2006), population 
migrations (Pääbo et al. 1988; Torroni et al. 1992; Stone and Stoneking 
1993, 1996; Kaestle 1995; Kolman et al. 1995; Fox 1996; Kaestle and Smith 
2001), ethnicity and lineage (Nielsen et al. 1994; Torroni et al. 1994; Salo 
et al. 1995b; Parr et al. 1996; Richards et al. 1996; Vargas-Sanders et al. 
1996; Dudar et al. 2003), the sex of human remains (Hummel and Her-
rmann 1994; Thuesen et al. 1995; Lassen et al. 1996; Sutton et al. 1996; 
Colson et al. 1997; Brown 1998, 2001; Götherström et al. 1998; Matheson 
and Loy 2001; Mays and Faerman 2001), the identification of species of 
food remains (Loy 1991, 1996; Hillman et al. 1993; Hardy et al. 1997;  
Butler and Bowers 1998; Barnes et al. 2000; Burger et al. 2002; Newman 
et al. 2002), the identification of species processed on stone tools (Kimura 
et al. 2001; Shanks et al. 2001, 2005), and the identification and tracking 
of domesticates (Brown et al. 1993; Goloubinoff et al. 1993; Rollo et al. 
1994; Loreille et al. 1997; Schlumbaum and Jacomet 1998; Bar-Gal et al. 
2002). The latter three uses of DNA are particularly appropriate when 
dealing with issues of paleonutrition. A consideration of the protocols in 
using skeletal materials in aDNA analysis was presented by DeGusta and 
White (1996).

The two major problems in aDNA analysis are preservation and con-
tamination (see Kolman and Tuross 2000; Mulligan 2006). While it is 
clear that some aDNA survives over time, even over millions of years 
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(e.g., DeSalle et al. 1992), it is not clear in what form such molecules 
survive, if they might have been altered, and whether they can be cor-
rectly identified (Eglinton and Logan 1991; Hedges and Sykes 1992; Rich-
ards et al. 1995; Rogan and Salvo 1995; Handt et al. 1996; Chalfoun and 
Tuross 1999; Poinar and Stankiewicz 1999; Rollo et al. 2002; Yang and 
Watt 2005; Gilbert et al. 2006). Even if well preserved, aDNA samples 
can be easily contaminated by a variety of organisms, especially bacteria 
and fungi, before the sample is recovered; after recovery, contamination 
by the researcher is possible (Richards et al. 1993:19–20).

Paleodemography

Paleodemography is the study of ancient populations—their size, birth 
rate, life span, population structure, growth, morbidity, and mortality (all 
by sex and age). Diet and nutrition are fundamentally linked to these 
demographic components. Most paleodemographic studies are based 
on the analysis of archaeological skeletal populations, which, in turn, 
are subject to a number of assumptions and limitations (as detailed by 
Buikstra and Mielke 1985:362–367; also see Boddington 1987; Corruc-
cini et al. 1989; Holland 1989; Konigsberg et al. 1989; Jackes 1992; Roth 
1992; Verano and Ubelaker 1992; Wood et al. 1992; Meindl and Russell 
1998; Milner et al. 2000; Wright and Yoder 2003; Bello et al. 2005). These 
include an assumption of the uniformity of biological processes, an 
incomplete understanding of small-group population dynamics, archae-
ological sampling biases, and accuracy of sex and age-at-death estimates. 
Another critical concern in paleodemography is that many of the models 
employed were developed by demographers on the basis of analogies 
from modern data that may translate to ancient populations.

Several measures of nutritional deficiencies in human populations 
can be utilized in studies of paleodemography, including studies of 
long-bone growth curves and of adult stature (see Huss-Ashmore et al. 
1982:410–414; also see Danforth 1999). Such studies can be used to show 
general trends of nutrient availability at the population level, or by age, 
sex, and/or gender. Skeletal remains can be used to determine sex and 
age at time of death (see chap. 4), data critical to demographic analysis 
(see Guy et al. 1997; Aykroyd et al. 1999; Wright and Yoder 2003:47–49).
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Human Paleofeces

Preserved human fecal materials, collectively known as paleofeces (fig. 
2.7), are a source of significant information regarding the ingredients of 
prehistoric diet, including condiments (e.g., Trigg et al. 1994; Sutton and 
Reinhard 1995), possible nutrition (Cummings 1994), health (Reinhard 
and Bryant 1992), behavior (see Reinhard and Bryant 1992:270–273), 
pharmacology (e.g., Hillman 1986:103; Reinhard et al. 1991; Sobolik and 
Gerick 1992; Trigg et al. 1994; but see Dean 1993; Reinhard 1993), and 
processing technology (Callen 1967b; Robins et al. 1986; Rylander 1994). 
Most researchers credit Eric Callen (see Callen and Cameron 1960; 
Bryant and Dean 2006) for the initiation of serious paleofecal studies. 
Recent reviews of paleofecal studies are available in Fry (1985), Hillman 
(1986), Sobolik (1990), Reinhard and Bryant (1992), Holden (1994), and 
Bryant and Dean (2006).

Paleofeces provide direct evidence of substances consumed, although 
cess (see below) may be mixed with other materials. Materials can enter 
the digestive system and end up in feces in a number of ways. The most 

figure 2.7. Coprolites (one of the three types of paleofecal material) from 
Hinds Cave, Texas (photo provided by Kristin D. Sobolik).



52   paleonutrition

common and obvious method is by intentional ingestion, as food, medi-
cine, part of religious activities, or even for entertainment purposes (such 
as swallowing goldfish as part of a fraternity initiation). Accidental inges-
tion can also occur, for example, if an unseen item is attached to material 
that was intentionally consumed, if something is unknowingly eaten by 
mistake, or even if the mouth is left open too long (e.g., swallowing a 
winged insect). Paleofeces may also contain parasites and/or postmortem 
intrusive materials (discussed below).

Human paleofeces are the end result of the digestive process and may 
be classified into six primary components (Fry 1985:128):

1.	 Food residues and undigested dietary components
2.	 Intestinal and digestive secretions not destroyed or reabsorbed
3.	 Substances excreted into the digestive tract, primarily phosphates, cal-

cium, salts, iron, and other metals
4.	 Bacteria and their metabolic products
5.	 Cellular elements, which in pathological cases may include blood, 

pus, mucus, serum, and parasites and their ova
6.	 Enteroliths, gallstones, and pancreatic calculi

Bacteria comprise some 25 percent to 50 percent of a paleofecal speci-
men (Fry 1985:128) while the ratios of the various dietary components 
will vary with the specific diet. Both color and odor of specimens will 
also vary; a diet high in meat will be darker in color and highly aromatic 
while a diet high in vegetal matter will be lighter in color and less aro-
matic (Fry 1985:128–129).

Archaeologists or paleoecologists studying human paleofeces make a 
number of assumptions, often with great merit, regarding the nature and 
origin of the specimens. For both intestinal and disassociated specimens 
it is assumed that (1) the materials present in a specimen were intention-
ally ingested by the person from which the sample came, (2) such mate-
rials can be readily identified, and (3) the identified materials represent 
at least part of the subsistence aspect of diet. Substances ingested for 
ceremonial and/or medicinal purposes (Hillman 1986:103; Shafer et al. 
1989; Reinhard et al. 1991; Sobolik and Gerick 1992; Trigg et al. 1994) are 
more difficult to identify and interpret. For disassociated specimens, it 
is further assumed that (4) constituents present in a specimen represent 
the materials consumed within the twenty-four-hour period preceding its 
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deposition (e.g., Fry 1985:128), although this may not be the case (e.g., 
Sobolik 1988a:207; Jones 1986a), and are likely a combination of several 
meals (e.g., Watson 1974:240), and (5) each specimen represents a unique 
elimination event and is not mixed or combined with other such events. 
Despite these assumptions, however, specimens possibly representing 
separate events are sometimes grouped together for analysis, a practice 
that should be avoided as it could result in the mixing of specimens from 
different events or individuals.

Other factors are of note in paleofecal analysis (see Sobolik 1988b:114). 
As only the undigested part of the diet is visually identifiable, a visual 
analysis results in only a partial catalog of the original dietary constit-
uents. With the use of protein residue (e.g., Newman et al. 1993) and 
aDNA (e.g., Sutton et al. 1996; Poinar et al. 2001) analytical techniques, 
a more complete inventory of constituents is possible. Further, tapho-
nomic problems (e.g., digestion, processing, preservation) associated with 
paleofeces are not well understood, although there has been some work 
accomplished in that area (e.g., Calder 1977; Jones 1986a; Rylander 1994; 
Butler and Schroeder 1998). Finally, in spite of a listing of constituents in 
a paleofecal sample and some understanding of the nutritional content of 
foods, the ability of the body to break down and absorb such nutrients is 
not fully understood (see papers in Taylor and Jenkins 1986:232–258).

Of some nutritional interest is the “second harvest,” the practice 
of picking out undigested seeds from dry feces and reprocessing and 
(re)consuming them. This practice was reported by Aschmann (1959:77) 
among Native Americans in the Central Desert of Baja California. This 
practice would seem to be a rather desperate measure and is probably 
indicative of considerable resource stress.

Paleofeces take one of (at least) three basic forms (Greig 1984:49; 
Holden 1994:65–66): (1) gut contents, the intestinal contents of preserved 
human bodies; (2) coprolites, fecal material excreted by a live individual; 
and (3) cess, disaggregated fecal material recovered from locations such 
as cesspits and privies. A fourth category, perhaps best considered a sub-
category of gut contents since it may be associated with a specific indi-
vidual, might include the materials recovered from soil samples taken 
from the stomach/intestinal area of bodies from burials. Unfortunately, 
both human bodies and human fecal materials are very fragile and are 
rarely recovered archaeologically.
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Gut Contents

Gut contents are the materials recovered from the intestinal tract, includ-
ing the stomach, of a preserved (e.g., mummified) human body. These 
materials are generally preserved due to desiccation, freezing, or water-
logging (e.g., in peat). Unlike coprolites or cess, information from the 
analysis of the gut contents of preserved individuals can be coupled with 
knowledge of the sex, age, and general health of the individuals, allow-
ing correlation of these factors with diet (see Reinhard and Bryant 1995; 
Reinhard 1998a). In addition, the general order of constituents ingested 
can be determined by their location in the intestinal tract; in some cases, 
the “last meal” can be deduced, as in the case of Lindow Man (Hillman 
1986; Holden 1986; West 1986). Brothwell et al. (1990) proposed a pro-
tocol for sampling preserved gut contents with minimal damage to the 
body (also see the methods used by Holden [1986] in sampling the gut 
contents of Lindow Man).

Studies on preserved gut contents have been conducted in Peru (for 
a summary see Holden 1994:66), Chile (Holden 1991), Africa (Smith and 
Jones 1910b; Cummings 1989), North America (Zimmerman 1980, 1998; 
Gill and Owsley 1985; Bresciani et al. 1991), and Europe (Hillman 1986; 
Holden 1986; Jones 1986b). There has also been some effort to recover 
“stomach” contents from primary inhumations by taking soil samples 
from the area of the abdomen (e.g., Williams 1985; Shafer et al. 1989; 
Reinhard et al. 1992; Berg 2002). The success of these efforts depends 
on a number of conditions, including bioturbation, preservation, sam-
pling procedure, processing methods, and analysis. Using electron spin 
resonance (ESR) spectroscopy, Robins et al. (1986) were able to con-
clude that some of the gut contents of Lindow Man were cooked, some 
of which was baked bread.

Coprolites

Coprolites are the distinct, formed, and preserved fecal materials excreted 
by a live individual. The word coprolite was originally meant to refer to 
the fossilized feces of ancient animals (Fry 1985:127) and the term is still 
often used to refer to the preserved feces of any animal. For our purposes, 
the term refers only to human coprolites.
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Coprolites generally preserve through desiccation or freezing, but 
sometimes charred specimens are discovered (Hillman 1989:228; Hill-
man et al. 1989:164–166). As coprolites are disassociated from a particu-
lar person, they contain much less information on sex, age, health, and 
other meals than is available from the gut contents of specific individuals. 
Being excreted from a live person, coprolites cannot be the “last meal” of 
a person; such a meal would still be in the gut of the deceased.

The discovery of coprolites is complicated by at least two factors. 
First, coprolites are difficult to recognize in a general site matrix. Copro-
lite specimens may have decomposed too much, they may be of a color 
similar to that of the surrounding soil, or they may just be undetected. 
In addition, other materials can sometimes be misidentified as cop-
rolites (e.g., Sutton et al. 2006). Second, ethnographic data (e.g., Lee 
1984:31–32) suggest that most latrine areas are located away from living 
areas (where most excavations are conducted), making their discovery 
even more difficult.

Coprolites may be discovered singly or in concentrations that prob-
ably represent latrines. While the human population responsible for a 
latrine coprolite deposit generally is assumed to be homogeneous, this 
may not be the case. If a particular segment of the population (e.g., 
based on age, sex, or status) used a specific latrine, the sample would 
not be demographically homogeneous and interpretations based on that 
assumption would be incorrect. Latrine use over time may be an addi-
tional concern. Since these factors cannot currently be controlled, how-
ever, most researchers tend to assume sample homogeneity.

Cess

Cess is an accumulation of disaggregated fecal material, often mixed with 
other debris, recovered from locations such as cesspits and privies, and 
can be in varying states of decomposition (Greig 1984:49). Cess deposits 
form when numerous excretory events occur at the same location, such 
as in a privy, or where such materials are transported to a central location, 
such as a cesspit or other sewage facility. Being a mixture of numerous 
feces events, cess cannot be used to reconstruct individual diet, and since 
it often is mixed with other debris, including undigested and/or discarded 
food remains, it is considered an indirect source of dietary data. In some 
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cases, animal waste has been discarded into a cesspit (Pike 1975:347; Wil-
son 1979), mixing with human waste and making dietary reconstructions 
particularly problematic.

Cess deposits can be identified by the regular patterning of botanical 
and other remains in a confined area (Knörzer 1984:331); in many cir-
cumstances, the preservation of organics can be very good (e.g., McCobb 
et al. 2001). In addition to the remains of dietary items, the eggs of para-
sites can be recovered from cess deposits (Taylor 1955; Pike and Biddle 
1966; Pike 1967, 1968, 1975; Greig 1983:194), providing data regarding the 
general health of the population.

A number of interesting studies have been conducted with cess depos-
its. Dennell (1970) identified seeds from sewer deposits, Greig (1981) 
recovered a wide variety of faunal and botanical remains in a barrel 
latrine, and Knights et al. (1983) discovered that a defensive ditch at a 
Roman fort in Scotland also served as a cesspit and were able to identify 
some foodstuffs. Knörzer (1984) reported the analysis of materials from 
fifteen cesspits from three different temporal periods, in which the com-
position of the diet, the first appearance of cultivated plants, changes in 
cultivated plants, the importation of fruit, and the history of the immigra-
tion of weeds were documented. Working with cesspit materials from dif-
ferent time periods in Amsterdam, Paap (1984) documented some dietary 
variation with regard to social differences.

A Note on Animal Dung

With the exception of most rodent material, animal dung recovered at an 
archaeological site would most likely be present only if the animals were 
in close association with humans. This close association could mean 
that some of the animals, such as dogs, were eating human food and/or 
waste; thus, an elucidation of the diet of those animals could be useful in 
understanding human diet. Other animals, such as domesticated herbi-
vores, would have a different diet, but one that would still be informative 
about human activities and resource procurement and allocation (e.g., 
Robinson and Rasmussen 1989; Panagiotakopulu 1999; Hunt et al. 2001). 
Further, an examination of animal dung and site soil samples may reveal 
the presence of fecal spherulites, microscopic crystalline structures pro-
duced in the guts of some animals. The presence of spherulites can be 
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used to infer the presence of ruminant herbivores and even the condi-
tions of their pastures (Canti 1997, 1998, 1999).

Analysis of Paleofeces

Prior to about 1960, the materials within paleofecal samples were extracted 
either by cutting open the dry samples and identifying the visible contents 
or by grinding the samples through screens. Both of these procedures 
result in considerable damage to the constituents within the specimen 
and a resultant loss of data. Rehydration of the specimens also results 
in damage to the contents, particularly botanical and parasitological, as 
they would swell too rapidly and disintegrate.

Callen and Cameron (1960) developed a method of rehydrating paleo-
fecal specimens by refining similar techniques developed by Benning-
hoff (1947) for rehydrating herbarium specimens and by van Cleave and 
Ross (1947) for rehydrating zoological specimens. The method involves 
rehydrating the paleofecal sample in a mild solution (e.g., 0.5 percent) 
of trisodium phosphate. This technique permits the botanical specimens 
within the fecal matrix to gently rehydrate with little damage and allows 
the matrix to deflocculate and be easily screened. This method, still used 
today, revolutionized the science of paleofecal analysis. Jouy-Avantin  
et al. (2003) developed a standardized method for the description of cop-
rolite specimens.

Holden (1994:69–70) proposed three primary categories of food tis-
sues (macroremains) that could be visually identified in paleofeces. The 
first category is tissues that generally survive in recognizable form, such 
as bone, chitin, hair, some types of shell, feathers, large tendons, and 
cartilage. The second category is that of tissues that may or may not 
survive the digestion process, depending on specific conditions; this cat-
egory includes some plant parts, such as unmilled maize kernels. The 
third category is tissues that do not survive except under unusual cir-
cumstances, such as those that pass through the gastrointestinal system 
at high speed.

Several data sets can be used to determine seasonality of consump-
tion and thus site occupation, particularly pollen (Reinhard and Bry-
ant 1992:251–252; Gremillion and Sobolik 1996). Seasonality estimates 
based on paleofeces are problematic, however, since many resources 
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are storable and can be consumed at any time. As with many aspects of 
any analysis, the more concordant the data, the greater the strength of 
the interpretation.

Macrofaunal Remains in Paleofeces

A variety of “hard tissue” faunal remains may be present in paleofeces, 
including bone (fig. 2.8), feathers, hair, eggshell fragments, marine and 
freshwater shell fragments, insect exoskeletons, egg/pupal casings, and/or 
fish or reptile scales. These remains are typically identified using visual 
techniques; however, some “soft tissue” remains also may be present, such 
as muscle fibers and chemicals. The identification of these remains is 
becoming easier and will increasingly contribute to the data sets.

The bones of most large animals are too large to have been consumed 
whole, so they are most often eaten in some processed form. On the other 
hand, the bones of many small animals, including birds, bats, rodents, 
and reptiles (Sobolik 1993), can be consumed whole. One would expect, 
then, that the identification of faunal remains in paleofeces would be 
skewed toward smaller animals. Even if consumed, bone (especially fish 
bone) can be significantly degraded by the digestive process and may not 

figure 2.8. “Hard-tissue” faunal remains recovered from a coprolite in Hinds 
Cave, Texas (photo provided by Kristin D. Sobolik).
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pass through in a recognizable form (Jones 1986a; Butler and Schroeder 
1998). This can obviously impede the identification of animals that are 
consumed by people, although the discovery of bones impacted by the 
digestive process may facilitate the identification of latrine areas.

Macrobotanical Remains in Paleofeces

Many intact and visually identifiable macrobotanical remains may be  
present in paleofeces (fig. 2.9), either as undigested materials (e.g., 
unmilled maize kernels) or indigestible remains (e.g., fruit pits). Other 
macrobotanical remains that are not so easily identified may also be pres-
ent and analyzed using specialized techniques (see Butler 1988; Prior 
1988; Smith 1988; Neumann et al. 1989; Sobolik 1992; Hillman et al. 
1993; van de Guchte and Edging 1994; Pearsall 2000:170–188). Botanical 
remains are discussed further in chapter 3.

Some macrobotanical remains may contain evidence of processing 
techniques. For example, using scanning electron microscopy, Rylander 
(1994) identified traces of grinding on maize endocarps in coprolites 
from several sites in the American Southwest, suggesting that a variety of 
preparation techniques were used (also see Sutton and Reinhard 1995). 

figure 2.9. Botanical remains (onion fibers) recovered from a coprolite in 
Hinds Cave, Texas (photo provided by Kristin D. Sobolik).
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Rylander (1994) further suggested that variable preparation techniques 
could affect the nutrition available from a particular meal.

Microbotanical Remains in Paleofeces

Microbotanical remains recovered from paleofeces consist of two pri-
mary constituents: pollen and phytoliths. Both of these are discussed in 
more detail in chapter 3.

Pollen.  Pollen may be present in paleofeces, sometimes in very 
large quantities (see reviews by Bryant 1974b,c, 1975; Wilke 1978:70; 
Bryant and Holloway 1983; Williams-Dean 1986; Sobolik 1988a; and 
Reinhard et al. 1991). Pollen recovered from paleofeces may be used to 
determine plants consumed, employed in seasonality determinations, 
and used to supplement other botanical data. For example, Scaife (1986) 
identified cereal pollen in the gut of Lindow Man, complementing the 
macrobotanical evidence of grain consumption.

Phytoliths.  Phytoliths may also be found in paleofeces. While not 
actually organic in nature, phytoliths can be used to identify some of 
the plant species consumed (cf. Bryant and Williams-Dean 1975; Rovner 
1983; Fox et al. 1996; Scaife 1986:134; Piperno 1988, 1991, 2006a; Reinhard 
and Bryant 1992:252–253; Piperno et al. 2000; Tyree 2000).

Other Microbotanical Remains.  The study of fungi (mycology) in 
paleofeces can sometimes provide useful data. Fungi often preserve 
well and “provide insights into the preservation conditions of coprolites” 
(Reinhard and Bryant 1992:250). The recovery of certain taxa in human 
paleofeces may provide indirect evidence of the consumption of species 
that those fungi inhabit (e.g., lagomorphs, rodents, and maize; see 
Reinhard and Bryant 1992:251). Scaife (1986:133) reported the recovery of 
fungal spores in the gut of Lindow Man.

Several attempts have also been made to identify bacteria and viruses 
from paleofeces. Although early efforts proved negative (Sneath 1962; 
Tubbs and Berger 1967), Fry (1976:24) identified cocci bacteria from sev-
eral specimens, Colvin (in Stiger 1977:45) succeeded in culturing some 
cyst-forming anaerobic types from several specimens, and Williams-Dean 
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(1978:224–225) discovered an unidentified virus in a specimen from Hinds 
Cave, Texas, dating between 2,300 and 3,700 years ago. This avenue of 
research remains to be explored fully.

Endoparasites and Ectoparasites in Paleofeces

Endoparasites, primarily helminths (round, flat, thorny-headed worms), 
may be present in many human populations. Evidence of such infesta-
tions is present in paleofeces in the form of eggs, ova, and even adult par-
asites (e.g., Samuels 1965). Such parasites live inside the host and disrupt 
the absorption of nutrients, weakening the individual and leading to a 
variety of health problems. Evidence of parasitic infection may be found 
in all forms of paleofeces, including mummy gut contents (Zimmerman 
1980:123, 1998:149–150; Gill and Owsley 1985; Jones 1986b), coprolites 
(Reinhard et al. 1987; Reinhard 1988, 1992b; Faulkner 1991;), and cess 
(Pike and Biddle 1966; Pike 1967, 1968, 1975; Reinhard et al. 1987:635). 
Reviews of endoparasites in paleofecal remains (archaeoparasitology) 
are available in Fry (1985:138–141), Horne (1985), and Reinhard (1992b, 
1998b).

Early parasitological analyses of paleofeces were primarily from the 
Great Basin in Utah. These studies include works by Fry and Moore 
(1969), Fry (1970a, 1976), Hall (1972), and Reinhard et al. (1985). Other 
parasitological analyses were conducted by Hall (1977) on paleofecal 
material from Oregon, by Patrucco et al. (1983) on samples from Peru, by 
Fount (1981) on pre-Columbian mummies representing diverse popula-
tions, by Williams (1985) on soil around the pelvic area of a burial in the 
Plains, and by Bathurst (2005) on coastal shell middens.

The analysis of endoparasites in paleofeces can be used to infer a 
variety of behaviors (Reinhard 1992b), including (1) the health of the indi-
vidual and/or the general health conditions under which the individual 
lived, (2) population movements (also see Kliks 1990) and trade, and 
(3) changing nutritional and social conditions associated with the tran-
sition from hunting and gathering to agriculture (e.g., Faulkner 1991). 
For example, the presence of hookworms suggests both a health danger 
and unsanitary conditions (see Reinhard and Bryant 1992:254). Even in 
the absence of the actual remains of a parasite itself, other conditions 
might imply their presence. For instance, Dunn and Watkins (1970:177) 
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reported Charcot-Leyden crystals from a Lovelock Cave, Nevada, copro-
lite, suggesting an infection by diarrhea-causing endoparasites.

As mentioned in chapter 1, differences have been noted between the 
prevalence of parasitic disease in hunter-gatherers and agriculturalists 
(Hall 1972). A number of debilitating and possibly life-threatening para-
sites have been identified from agriculturally based paleofeces from the 
southwestern United States (whipworms, giant intestinal roundworms, 
threadworms, beef tapeworms, dwarf tapeworms, and pinworms), 
whereas only the pinworn (Enterobius vermicularis) has been identified 
from hunter-gatherer paleofeces (e.g., Fry 1970a,b; Reinhard et al. 1985).

Agriculturalists and hunter-gatherers have very different subsistence 
bases and lifeways that seem to influence the types of diseases found 
in each group and the types of parasites that infect them. Studies sug-
gest that increased sedentism (Nelson 1967), increased population size, 
poor sanitation practices (Walker 1985), and close proximity to crops and 
domesticated animals (Dunn 1968; Fenner 1970) may all result in an 
increased parasitic load in prehistoric populations.

In addition to indications of the health of the host, the presence of 
certain parasites in human feces provides indirect evidence of people eat-
ing animals that those parasites inhabit (called false parasitism [Reinhard 
1992b:234]). For example, fish tapeworm eggs recovered from coprolites 
in Peru suggested the consumption of raw fish, some eggs in Egyptian 
specimens were derived from the consumption of beef and pork, and 
the presence of other parasite species in Great Basin specimens sug-
gested the consumption of insects and/or rodents (Reinhard and Bryant 
1992:253). Other examples of false parasitism were provided by Reinhard 
(1992b:236–237).

Ectoparasites (e.g., lice, roundworms, fleas) might also sometimes 
be found in paleofeces and can be used to infer general health condi-
tions and the types of species afflicting people at a point in space and 
time. For example, Kenward and Carrott (2001) reported the presence of 
the human whipworm (Trichuris trichiura) in paleofecal material from 
an archaeological site in London that dated to the sixteenth and sev-
enteenth centuries. Whipworm, a type of round worm that infects the 
large intestine, causes trichuriasis, which is a parasitic disease common 
in countries with warm, humid climates. It primarily affects children, 
who may become infected if they consume soil contaminated with eggs 
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of the whipworm. In some cases, it can result in bloody diarrhea and 
iron-deficiency anemia.

Analytical Approaches to Paleofecal Studies

Chemical Studies

The study of paleofecal chemistry is a growing subfield of analysis. In 
addition to visible remains, paleofeces can be expected to contain three 
main categories of organic compounds (Wales and Evans 1988:406):

1.	 Nitrogenous substances, mainly proteins and their constituent amino 
acids

2.	 Lipids that can be divided into three groups: (a) simple lipids, such as 
fats, oils, and waxes; (b) complex lipids, including phospholipids and 
glycolipids; and (c) derived lipids, including cholesterol, steroids, and 
vitamins

3.	 Carbohydrates, such as sugars, starch, and cellulose

Paleofeces are also likely to contain a range of minerals. Each of these 
categories, among others, has been investigated and is considered in 
chapter 3. A problem common to most of these avenues of inquiry is 
an incomplete understanding of the chemical impact the digestive pro-
cess may have on the compounds (e.g., Wales and Evans 1988:407–409; 
Wales et al. 1991:340), although bile acids are known to survive and have 
been identified (Eneroth et al. 1966a,b; Kukis et al. 1978).

Wakefield and Dellinger (1936) conducted analyses of the percent-
ages of nitrogen, calcium, magnesium, sodium, potassium, and phospho-
rus from paleofecal samples derived from a mummy in the southeastern 
United States; Zimmerman (1980:130) identified ammonia and phos-
phates in the feces of an Aleutian mummy; and Fry (1976:22–24, tables 
16–18) analyzed twenty-seven paleofecal specimens from Hogup Cave, 
Utah, for basic chemistry (nitrogen, sodium, calcium, and potassium). 
None of these studies reported unusual results, although Fry (1976:22–23) 
reported a high percentage of sodium, likely the result of high concentra-
tions in drinking water and salt-tolerant plants that were eaten.

Using protein residue analysis, Newman et al. (1993) were able to iden-
tify the presence of proteins in several coprolite samples. It is thought that 
these proteins originated in consumed foods and survived the digestive 
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process. If verified, this technique could be used to address that portion of 
the diet that is “invisible” in traditional paleofecal studies. More work is 
needed on this aspect of analysis. (See chapter 3, under “Immunochem-
istry,” for more information on protein residue analysis.)

The presence of numerous assemblages of apparently butchered 
human bone in the American Southwest is suggestive of cannibalism 
(e.g., White 1992; Turner and Turner 1999; Hurlbut 2000; Lambert et al. 
2000; Novak and Kollmann 2000; Kuckleman et al. 2002; but see Rein-
hard 2006), although there is always the question of whether the materi-
als represented ritual or other activities. Using materials from a small 
Puebloan (Anasazi) site in southwestern Colorado, Marlar et al. (2000) 
made the connection between butchered human remains, the presence 
of human proteins on cutting tools, human myoglobin in ceramic cook-
ing vessels, and human myoglobin within a coprolite—all from the same 
context—to demonstrate the actual consumption of human flesh by 
other humans.

The hormonal content of paleofecal samples can now be measured 
using gas chromatography and radioimmunoassay (Sobolik et al. 1996). 
So far, this method has been used only to determine the sex of the deposi-
tor by measuring the levels of testosterone and estradiol. Although both of 
these steroids degrade through time, it appears that their ratios can still 
be used to determine sex. In the future, such work may also be utilized 
to study endocrine function and hormone metabolism. This method can 
also be employed as a cross-check to aDNA analyses for sex determina-
tion (see “Integrated Analyses” below); once the sex is determined, analy-
ses of the sample constituents can help detect differences in diet between 
the sexes. It is possible that hormone levels could be used to discriminate 
between pre- and postpubescent females, but no such studies have been 
conducted.

Experiments in the recovery and identification of human aDNA in 
paleofeces have been undertaken (Sutton et al. 1996), initially merely to 
determine the sex of the depositor. More recently, analysis of three cop-
rolites from Hinds Cave, Texas (Poinar et al. 2001), resulted in the identi-
fication of four animal and eight plant species, plus haplotype identifica-
tion of the depositors. Clearly, this approach can be very productive.

Lipids (steroids/cholesterols) have been identified in modern human 
fecal samples in a number of studies (Eneroth et al. 1964, 1966a,b;  
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Miettinen et al. 1965; Martin et al. 1973) and have also been found in 
paleofecal materials. Wales et al. (1991:340) warned, however, that due 
to the digestive process, the identified lipids may not have anything to do 
with the food consumed. Lin et al. (1978) identified steroids in several 
coprolites from Lovelock Cave, Nevada, and lipid analysis has been used 
to identify cess in archaeological soils (Knights et al. 1983; Evershed and 
Bethell 1996).

Using visible infrared spectrometer and gas chromatography meth-
ods, Wales et al. (1991) identified beeswax in several coprolite samples 
from an Epipaleolithic site in Syria. Wales et al. (1991) argued that since 
waxes pass through the digestive process chemically intact (while lipids 
are altered), waxes may be useful in identifying their sources (such as 
plant taxa) in a fecal specimen.

Analyses of the odors detected from both modern and ancient rehy-
drated fecal specimens have identified some of the substances consumed 
(Moore et al. 1984, 1985). This technique utilizes both gas chromatog-
raphy and gas chromatography/mass spectrometry analyses and has dis-
covered compounds characteristic of licorice and apple in modern fecal 
specimens of individuals who had eaten those foods (Moore et al. 1985). 
A variety of other components have been identified in ancient specimens 
(Moore et al. 1984; also see Trigg et al. 1994:213–214, appendix 11.1).

Medical Analyses

In theory, fecal material should contain “signatures” of some health 
conditions. Relatively few medical studies on paleofeces have been con-
ducted, however, although it seems that this aspect of paleofecal research 
has considerable potential.

Dunn and Watkins (1970) conducted a series of medical analyses on 
168 coprolites from Lovelock Cave, Nevada (also see Heizer and Napton 
1969; Napton 1970:240–241). These tests included bacteriological studies, 
the discovery of Charcot-Leyden crystals, and the identification of para-
sites (mites [also see Radovsky 1970], rhabditoid nematodes, and some 
unidentified worm eggs). Fry (1976:24) reported the results of medical 
tests of five specimens from Danger Cave, Utah. These tests included 
lipid-class gas chromatography (which indicated no significant differ-
ences between ancient and modern specimens), guaiac test for blood (all  
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negative), the Sudan HCAA (heat and acetic acid) test for hydrolyzed 
fat (positive in three samples), and Gram-stain examination for bacteria 
(all negative for rods but all positive for cocci). Williams-Dean (1978: 
77–78, 223) conducted a number of unsuccessful tests to identify blood 
in several paleofecal specimens from Hinds Cave, Texas. Finally, in an 
attempt to identify potential diarrhea-toxin-producing taxa, Williams-
Dean (1978:96–97, 216–222) pinpointed the remains of two types of algae 
in specimens from Hinds Cave, Texas. While neither was a diarrhea-
causing taxon, the same types were identified in nearby water sources, 
suggesting the use of those water sources in antiquity.

Integrated Analyses

The analysis of paleofeces is rapidly evolving away from a simple list 
of constituents found in a sample. The integration of new analytical 
approaches is beginning to produce a much more detailed picture of 
diet and health. Standard midden-derived subsistence data (e.g., faunal 
and botanical remains) can be combined with materials recovered from 
paleofeces as visible constituents (e.g., Sutton 1993), protein residues 
(Newman et al. 1993), aDNA (Sutton et al. 1996; Poinar et al. 2001), and 
hormones (Sobolik et al. 1996; Rhode 2003). In these ways, a great deal 
of information can be generated, including the sex of the depositor and 
the identification of materials not visually detectable.

Once these data have been obtained, statistical analysis of constitu-
ents can generate information on meals and cuisine, and that informa-
tion can then be used to address questions of diet, health, and status 
(Sutton and Reinhard 1995; Sutton 1998). This wealth of data has only 
just been tapped.

Summary

Direct data present the most conclusive evidence in the paleonutritional 
data base for determining diet and health among prehistoric popula-
tions. Such data are those archaeological and biological materials that 
are clearly related to human paleodiet and nutrition. Direct paleonu-
tritional data come in two forms: human remains (including bones, 
soft tissue, hair, and chemical components) and human paleofeces. By 
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analyzing these direct data, aspects of paleonutrition can provide infor-
mation regarding diet, nutritional stress, health, disease, and a variety of 
other paleopathologies. In turn, this information can elucidate issues of 
human morbidity, mortality, disease patterns and causes, and changes in 
subsistence regimes, among others.

These issues are ultimately relevant to the modern world. If we can 
determine how past peoples managed resource shortages, disease progres-
sion, and other dietary challenges, we may be able to employ the tech-
niques archaeological cultures used to help people today. For example, 
among specific modern North American native groups (such as the Pima 
of Arizona), the prevalence of non-insulin-dependent diabetes mellitus 
(NIDDM) has been the subject of what has been termed the “thrifty” 
genotype (Wendorf and Goldfine 1991). This genotype, believed to have 
originated among North American Paleoindians who practiced a life-
style of hunting and gathering, “allowed a selective advantage during the 
periods of fasting that occurred between big game kills” (Wendorf and 
Goldfine 1991:161). This advantage was then compromised when people 
adopted a more sedentary lifestyle and food resources became more con-
stant. In other words, this genotype “has a selective advantage in a food-
scarce environment [but] can contribute to NIDDM in a food-abundant 
environment” (Wendorf and Goldfine 1991:164; also see Lieberman  
2003).

The promise of such research is clear and vital. As the example above 
demonstrates, the archaeology of nutrition around the world often pres-
ents a perspective on studies of diet and health today that is different 
and essential. This example also shows the exciting research potential 
for DNA analyses in archaeology as our techniques continue to improve. 
Working together, archaeologists and modern medical professionals can 
provide links between prehistoric health responses and medical myster-
ies of modern-day populations.



c h a p t e r  3

The Paleonutrition Data Base
Indirect Data

indirect data are those that cannot be directly and unequivo-
cally attributed to human consumption and so can only be used to infer 
aspects of human paleonutrition. Such data form the majority of infor-
mation considered by archaeologists (see Sutton 1994). Categories of 
indirect data include visible faunal and botanical remains, most chemi-
cal remains, technological remains, and evidence regarding the use of 
landscapes. Unlike the direct data sets discussed in chapter 2, indirect 
data can only be used to infer human consumption and/or use of foods 
and other materials. It also is important to remember that, at least in 
most circumstances, the ecofactual remains recovered from a site do 
not represent the entire range of materials used by prehistoric peoples. 
This is due to processing in prehistory, preservation in the archaeological 
record, and the recovery techniques employed by archaeologists (see the 
discussion of taphonomy in chap. 4).

Faunal Remains

Faunal remains are the remains of animals in archaeological sites—all ani-
mals, not just the large ones (and including humans; see White 1992). Recent 
reviews of faunal studies are available in Klein and Cruz-Uribe (1984), Par-
malee (1985), Davis (1987), Crabtree (1990), Brewer (1992), Lyman (1994a, 
2008), Reitz and Wing (1999), O’Connor (2000), and Redding (2002). Faunal 
remains include a variety of materials, primarily bone, but also shell, soft 
tissues, blood, proteins, chitin, and even impressions in a matrix. Zooarchae-
ologists, those who study faunal remains, tend to focus on bone and shell 
and often do not look for or recover other materials, except in unusual cir-
cumstances. After recovery (the recovery of faunal remains is discussed in 
detail in chap. 4), materials must be properly classified and interpreted (for 
more complete discussions of this aspect of faunal studies, see Lyman 1982, 
1987a,b, 1994b; Parmalee 1985; Brewer 1992; Reitz and Wing 1999).
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The principal goals in the analysis of faunal remains as related to 
paleonutrition are (1) the reconstruction of  human subsistence, including 
behavior and technology associated with subsistence and other aspects of 
culture, and (2) the reconstruction of paleoecology and biogeography. In 
addition, information regarding the use of animals for other than strictly 
subsistence purposes (e.g., entertainment, ritual, pets) also is important. 
Some of the questions an archaeologist may ask about faunal remains 
include:

Which taxa [species] were regularly eaten, which were rarely eaten, and 
which were never eaten [and why]? Which taxa contributed most to the 
diet? When were particular taxa hunted? How much food did different 
taxa provide? Were particular age groups or one sex of a taxon preferred 
over others? Did age, sex, or individual selection vary intertaxonomi-
cally? Where were food animals hunted and how were they hunted [or 
otherwise obtained]? [Lyman 1982:335].

Archaeologists also need to understand a number of issues regarding 
the use of animals as food, including (1) the dynamics of divisions of 
labor, both gender and age related, involved in the procurement of food 
animals, (2) understanding the combinations of foods that were preferred 
to allow a reconstruction of cuisine, and (3) whether there was some sort 
of differential access to certain foods based on age and/or gender. Fur-
ther, it should be kept in mind that animals were used for purposes other 
than as food, such as for raw materials (e.g., dung, hides, and fibers), as 
pets, as labor (transport and traction), and in ceremonies.

Virtually every part of an animal is potentially usable, although not all 
human groups use all parts. The general categories include hide, hair, 
meat, blood, marrow, sinew, bone, and viscera (see Lyman 1987a:table 5.1). 
Faunal remains may take a variety of forms, such as endoskeletons (bone), 
exoskeletons (e.g., shell, insect parts), soft tissue (e.g., mummified or other-
wise preserved remains), and residual chemicals (e.g., proteins). Any or all 
of these materials may be encountered in an archaeological site; however, 
bone and shell are the most commonly recovered faunal remains.

Faunal materials enter an archaeological deposit through a number 
of mechanisms, with human activity being only one. Many animals (e.g., 
rodents, badgers) live their entire lives in sites, die there, and become 
incorporated into the site deposit. When the site is excavated, their bones 
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are collected by archaeologists, along with the bones of animals used for 
food by the human inhabitants of the site. In some cases, the natural 
and cultural remains may be the same species of animal. Of the cultural 
remains, not all are the result of dietary activities. Various animal prod-
ucts (or the live animals themselves) were used for nonfood purposes and 
so enter the record along with the dietary remains.

Vertebrates

Vertebrates (phylum Chordata) are animals with backbones (vertebral 
columns and spinal cords). In most inland sites, most faunal remains are 
vertebrates. Terrestrial (land-dwelling) vertebrates share a common gen-
eral skeleton and many of the bones (elements) have the same names. 
The most common elements will share a basic shape; that is, a humerus 
(upper arm or foreleg) looks similar from species to species.

The primary categories of vertebrates are fish, amphibians, reptiles, 
birds, and mammals. Fish are aquatic animals with gills and fins. Bony 
fishes possess full skeletons of bone, whereas cartilaginous fishes (e.g., 
sharks, rays, and skates) have a skeletal system of cartilage that is often 
reinforced by calcium in heavy load areas (e.g., vertebrae, jaws). Many 
of these reinforced elements will preserve in the archaeological record, 
such as vertebrae, jaws, otoliths, and scales. Each of these elements can 
be informative regarding species, size, season of capture, and even water 
temperature (see Casteel 1972, 1976:38–71; Wheeler and Jones 1989:145–
146, 158; Colley 1990:214; Higham and Horn 2000).

Amphibians (e.g., frogs, toads, and salamanders) and reptiles (e.g., 
crocodiles, turtles, tortoises, lizards, and snakes) are ectothermic animals 
that lay eggs. Many amphibian and reptile skeletal elements are the same 
as in mammals. However, turtles and tortoises have bony shells that, if 
fragmented, may appear to be large mammal cranial parts. A discussion 
of amphibian and reptile remains from archaeological sites was presented 
by Olsen (1968; also see Sobolik and Steele 1996).

Birds are feathered, winged animals, although some are flightless. In 
general, bird bones tend to be rather thin relative to mammal bones and 
thickness of long bones is a key to the initial identification as bird. While 
birds share some skeletal elements in common with mammals, many 
elements are unique. A general treatment of bird remains in archaeology  
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was presented by Serjeantson (2009), and several keys to the identifica-
tion of some of the more common North American (Olsen 1979; Gilbert  
et al. 1981) and British (Cohen and Serjeantson 1986) species are available. 
Fragments of bird eggshells may also be present in a faunal collection.

Mammals are endothermic, (usually) hairy animals who bear live 
young and whose mothers produce milk to feed their young. Mammals are 
divided into three major types—flying, marine, and terrestrial (table 3.1)— 
and share a generally similar limb structure, with common elements. 
Many mammals were used for food and other purposes in antiquity; 
among terrestrial mammals, artiodactyls, lagomorphs, and rodents were 

table 3.1.  Mammalian Orders

Order General Description Comments

Flying
  Chiroptera Bats —

Marine
  Cetacea Whales, dolphins, porpoises Fishlike, fins and tails, no 

hair or external ears
  Pinnipedia Walruses, sea lions, seals Standard-looking limbs, 

hair, and external ears

Terrestrial
  Marsupialia Kangaroos, opossums Pouched
  Insectivora Shrews, moles —
  Edentata Sloths, anteaters, armadillos —
  Lagomorpha Pikas, rabbits, hares —
  Rodentia Chipmunks, marmots, squirrels, prairie 

dogs, mice, rats, beavers, voles, 
porcupines

—

  Carnivora Dogs, coyotes, wolves, foxes, bears, 
raccoons, weasels, skunks, lions, lynx, 
bobcats

—

  Proboscidea Mammoths, mastodons, elephants —
  Sirenia Manatees —

Perissodactyla Horses, burros, hippos Odd-toed, hoofed

Artiodactyla Pigs, camels, elk, deer, moose, caribou, 
pronghorn, cows, bison, goats, sheep

Even-toed, hoofed
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the most widely used and are common constituents in site assemblages 
in many parts of the world.

Invertebrates

Invertebrates (animals without backbones) vastly outnumber vertebrates 
in sheer number of species and individuals, but are relatively uncom-
mon in inland archaeological collections. Archaeologists typically rec-
ognize the remains of mollusks in sites and these remains are usually 
collected, although other invertebrate remains (e.g., insects) usually are 
either not recognized or ignored. Mollusks (phylum Mollusca, com-
monly called shellfish) are animals with soft bodies, often within shells, 
and include clams, oysters, snails, slugs, squids, and octopi. Waselkov 
(1987) provided a discussion of the study of shellfish in archaeological 
contexts (also see Meighan 1970; Bailey 1975), and Evans (1972) dis-
cussed land snails in archaeological contexts.

Archaeologists rarely deal with the insect remains from a site, usu-
ally considering them to be intrusive. However, virtually all peoples have 
eaten and/or used insects in some way and their remains are sometimes 
present in sites. Even if insect remains are recovered, several problems 
exist in their analysis, including taxon identification (there are few com-
parative collections) and quantification (primarily since they tend to be 
highly fragmented). Reviews of insect remains in archaeological contexts 
were presented by Elias (1994) and Sutton (1995).

The remains of other invertebrates, including crabs (Losey et al. 
2004), lobsters, shrimp (marine and freshwater), spiders, scorpions, and 
worms also may be found in archaeological sites. These animals must be 
fully considered in any faunal analysis.

Botanical Remains

The remains of plants (from logs to pollen) found in archaeological sites 
are called botanical remains, although the terms plant, floral, archaeobo-
tanical, and paleobotanical are sometimes used. The term phytoarchae-
ology (Brooks and Johannes 1990) refers to a broader realm that looks 
at the relationship between vegetation and archaeology and includes 
the study of ethnobotanical materials, contemporary plant distributions, 
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and remote sensing to discover traces of the past from the distribution 
of plant communities. Plants include trees, shrubs, herbs, ferns, mosses, 
liverworts, and lichens, among others. The most obvious use of plants 
by humans is as food, but there are many other uses, such as shelter, 
bedding, textiles, cordage, firewood, medicine, and ceremonies. Nonar-
tifactual botanical remains are classified as ecofacts, although many tools 
were manufactured from plant materials, in which case the remains are 
artifacts. Recent summaries of botanical remains in archaeology have 
been presented by Smith (1985), Miksicek (1987), Hastorf and Popper 
(1988), Hillman et al. (1993), Fritz (1994), Bryant and Dering (1995), Gre-
million (1997), Hastorf (1999), Pearsall (2000), and Miller (2002).

In many cases, the plant remains from sites (at least those exca-
vated prior to the development of more sophisticated techniques) were 
incidentally recovered using methods designed to find artifacts, such 
as while screening (the recovery of botanical remains is discussed in 
detail in chap. 4). Until recently, the collection and analysis of samples 
designed specifically for the recovery of botanical remains were relatively 
uncommon. An exception to this is flotation samples taken from fea-
tures or other contexts. Even in those circumstances, however, only large 
floating remains were collected (the material that did not float, called 
the “heavy fraction,” was often discarded). As the discipline has become 
more sophisticated, the existence and value of microremains are becom-
ing more apparent to researchers.

Macrobotanical Remains

Macrobotanical remains are defined as those that are visible to the naked 
eye, such as seeds, charcoal, and fibers, but may also include roots and 
tubers (see Hillman 1989:215; Hather 1994). Such remains are usually 
recovered from archaeological sites only if they have been carbonized to 
some degree or preserved in dry or waterlogged contexts. In open sites, 
uncharred botanical remains are likely to be recent in origin. In circum-
stances of unusual preservation, a much greater diversity of remains may 
be recovered. In addition to the use of traditional visual comparative 
methods, identification of botanical remains may take several special-
ized avenues (see Hillman et al. 1993; Pearsall 2000:170–188), including 
thin-section microscopy (both optical and electron [e.g., Neumann et al. 
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1989; Tomczýnska 1989]), electrophoresis, isotopic analysis, morphomet-
ric analysis by computer (Mangafa and Kotsakis 1996), and by various 
chemical means (e.g., Ugent 1994; Fankhauser 1994).

Seeds

Most of the seeds from prehistoric sites will have been charred (other-
wise, they would not have been recognized and recovered) and will be 
brittle and black in color. Some fresh seeds also are black, however, so 
the texture of the seed must be carefully examined to determine if it is 
charred. Seeds come in varying sizes, from very tiny to the size of maize 
cobs. Some of the most economically important seeds in antiquity are 
quite small (e.g., tobacco) and are unlikely to be recovered in normal 
field screening.

Caution must be exercised in the interpretation of seed remains (see 
Minnis 1981; Miller and Smart 1984; Pearsall 2000:240–242). Charred 
seeds are typically viewed as cultural in origin (Minnis 1981:147; Miksicek 
1987:234–235), often associated with dietary activities; however, they may 
enter, or be moved around in, site soil by a variety of means, including by 
rodents and ants (e.g., Gasser and Adams 1981; Lawlor 1992, 1995).

Seeds, even of known economic plants, also may be incorporated into 
a site as the result of the use of a plant itself, rather than the seed, for 
nondietary purposes such as construction material or fuel (Minnis 1981; 
Miller and Smart 1984). For example, if the superstructure of a house 
was constructed of plant materials that contained seeds (e.g., juniper) 
and the house burned, charred seeds could enter the record in large 
numbers. Clearly, such seeds would not be of dietary significance. Such 
an issue might be resolved if the context of the seeds was considered (e.g., 
Pearsall 1988) and if additional botanical analyses were conducted on 
the remains of the structure, perhaps linking the seeds and charcoal as 
the same species. Such a technique could be applied to hearths as well, 
attempting to tie in seeds with firewood. Thus, while charcoal generally 
is not considered a dietary constituent, its identification and interpreta-
tion could be helpful in determining if certain other materials actually 
were dietary remains (also see Smart and Hoffman 1988; Wright 2003).

Another example is the presence of wild seeds in animal dung used  
as fuel. Such seeds could be charred in the fire and, if recovered in an 
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excavation or hearth sample, might be wrongly interpreted as representing 
species used by humans as food (Hastorf and Wright 1998). It is impera-
tive, therefore, that investigators consider predepositional, depositional, 
and postdepositional processes related to plant usage before assigning 
meaning to macroarchaeobotanical assemblages.

Charcoal

Charcoal is the burned, carbonized remains of plants, usually the woody 
parts (burned seeds usually are considered separately). Charcoal can 
enter a site in a variety of ways, from campfires (ancient and modern) to 
natural fires. Context is important in making this distinction (see Smart 
and Hoffman 1988).

Archaeologists tend to assume that most of the charcoal in a site is 
anthropogenic. One relative measure of activity from layer to layer is 
the quantity of charcoal in the midden. Some archaeologists do not save 
charcoal from screens, however, so this information must be obtained 
from soil samples. Quantification of charcoal (by volume and weight) 
from archaeological contexts is important, as it can aid in the interpreta-
tion of carbonized materials as they relate to the intensity of use, disposal, 
and cultural significance of a site.

It is possible to identify some wood represented by charcoal to the 
genus and perhaps even to the species level (see Thompson 1994; Pears-
all 2000; but see Wright 2003). Identified plant species can be used to 
reconstruct the general environment, thus providing information regard-
ing subsistence potential. In addition, the identification of the taxon of 
charcoal from a hearth feature can demonstrate which plants were being 
used for firewood, charcoal from a burned structure can indicate what 
was being used for the construction of houses, and so forth.

Microbotanical Remains

Microbotanical remains are those plant materials that are visible only with 
the aid of magnification, primarily pollen and phytoliths (see chap. 2). 
Some studies have been conducted on the identification of plant tissue 
remains based on micromorphology (Briuer 1976; Körber-Grohne and 
Piening 1980; Körber-Grohne 1981; Tomlinson 1985; Hillman 1989:215; 
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Neumann et al. 1989; Hather 1991, 1993, 1994; Sobolik 1992; Ancibor 
and de Micou 1995), and this is a promising avenue of research. Pre-
served plant cuticles, the outer protective layer of many leaves, can pro-
vide additional information about plants (see Palmer 1976). In addition, 
starch grain analysis can be used to identify various root crops (see Loy 
1991, 1994; Barton et al. 1998; Piperno and Holst 1998; Haslam 2004; Hor-
rocks 2005; Piperno 2006b) and the relationship between tool type and 
function (Perry 2004).

Pollen

Pollen (fig. 3.1) is, in effect, the sperm cells of plants, and palynology 
is the study of pollen (see Bryant and Holloway 1983; Dimbleby 1985; 
Holloway and Bryant 1986; Moore et al. 1991; Fægri et al. 2000; Pearsall 
2000:249–353). The spores of nonpolleniferous plants and fungi are some-
times considered with pollen. Pollen is ubiquitous in the environment, 
being distributed by a variety of mechanisms. Most pollen is airborne 
dispersed and settles onto all exposed surfaces in a “pollen rain.” Pollen 
usually preserves quite well (but see Bryant and Holloway 1983:195–198; 

figure 3.1. Photo of a pollen grain from pinyon (Pinus edulis) (photo cour-
tesy of PaleoResearch Laboratory, Golden, Colorado).
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Pearsall 2000:348–349) and is commonly incorporated into soils, includ-
ing midden soils, thus forming a record of past vegetation. Much pollen 
is identifiable to genus and so can be used to delineate at least some of 
the species of plants in an area and/or those utilized by past peoples.

The analysis of pollen can be used to address a variety of research 
issues, including reconstruction of past natural environments, detection of 
anthropogenic and/or managed landscapes (Maguire 1983; Flenley 1994; 
Haberle 1994; Kelso 1994), presence of domesticates (Maloney 1994), and 
dietary studies. In the reconstruction of past diets, pollen data may con-
stitute either indirect or direct evidence. Indirect pollen data can be used 
as a supplement to other botanical data to infer ecological conditions at a 
site and to delineate potential resources within the site region. Pollen data 
also can be used in the identification of room use (Hill and Hevly 1968), 
the contents of vessels (Jones 1993), and materials processed on tools, such 
as pollen recovered from a metate. Pollen may also be identified directly 
as a dietary constituent in human paleofeces (Bryant 1975; Wilke 1978:70; 
see chap. 2). The same basic principles also apply to phytoliths (cf. Rovner 
1983; Piperno 1988, 1991, 2006a; Pearsall 1994; see below).

Pollen analysis should be approached with caution, however. Pollen 
records are easy to contaminate (e.g., through sampling or bioturbation) 
and pollen can travel great distances, potentially skewing the record for a 
given area. For example, the pollen record of a lakebed will contain pol-
len from the entire watershed of the lake, not just the immediate area.

Pollen may also be present on the surface of some artifacts and may 
be evidence of the processing of particular plants. For instance, maize 
pollen may be present in large quantities on milling implements used to 
grind maize. The detection of such pollen would indicate the species of 
plants processed and the function of the tool. Similar studies are possible 
on such artifacts as bedrock mortars, basketry, and ceramics (see Bry-
ant and Holloway 1983:214–216). However, it seems clear that additional 
research on pollen deposition and taphonomy will be needed to make 
behavioral inferences from pollen data (Geib and Smith 2008).

Phytoliths

Phytoliths (see Rovner 1983; Piperno 1988, 2006a; various papers in 
Rapp and Mulholland 1992; Piperno and Pearsall 1993; discussions in 
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Pearsall 1994, 2000:355–496) are the microscopic silica bodies that form 
within individual plant cells (fig. 3.2). They develop when the minerals 
in groundwater accumulate within cells (the same residue seen as water 
spots on glasses caused by hard water) where they may form floating bod-
ies within the cell or “shells” in the shape of the cell. When the plant dies, 
the biological tissues decompose in the soil, leaving the phytoliths intact, 
which then enter the soil in large numbers. In addition to soils, phytoliths 
may also come to reside on tools, teeth, containers, and other archaeolog-
ical materials. Being inorganic, phytoliths usually preserve well, and in 
cases of poor organic preservation, they may constitute the sole botanical 
record (e.g., Powers 1988). Like pollen, phytoliths are commonly incorpo-
rated into soils, including midden soils. Unlike pollen, phytoliths are gen-
erally not transported far and so form a local record of past vegetation.

Phytoliths are usually identified using a general morphological typol-
ogy, although recent efforts in computer-assisted morphometrics (Ball  

figure 3.2. Epidermal sheet element from green needlegrass (Stipa viridula) 
with long-cell and short-cell phytoliths in situ (photo courtesy of PaleoRes-
earch Laboratory, Golden, Colorado).
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et al. 1996) are improving identification. Archaeologists are just beginning 
to learn how to properly recover, process, and identify these remains, but 
considerable work is still required to make the method more reliable (see 
Tsartsidou et al. 2007).

As with pollen, phytoliths can be used to address a variety of research 
topics, including reconstruction of past natural environments (Rovner 
1983:242–247; Piperno 1988:200–217, 2006a:165–186; Fredlund 1993), 
detection of anthropogenic landscapes (Piperno 1988:189–192, 208–220), 
documentation of the presence of domesticates (Rovner 1983:249–253; 
Piperno 1988:169–184, 2006a:45–79; Fujiwara 1993; Rosen 1993; Umlauf 
1993; Pearsall 1994; Pearsall et al. 2003; Harvey and Fuller 2005; Trom-
bold and Israde-Alcantara 2005; Mbida et al. 2006), and dietary stud-
ies (Piperno 1988:197, 2006a:163–164; Pearsall 1993). Phytolith data can 
supplement other botanical data to imply past ecological conditions at 
a site (Lewis 1981; Rovner 1983:247–249; Piperno 1988:184–195; Dinan 
and Rowlett 1993) and to delineate potential resources within an area 
(Piperno 1988:195–197). Phytoliths recovered from tool surfaces can help 
identify tool function and plants processed (Rovner 1983:254–256; Piperno 
1988:198, 2006a:163–164; Ryan 1995; Kealhofer et al. 1999), specimens 
found in vessels can help identify vessel use (Jones 1993) or content (Tyree 
2000; Thompson 2006), and those found in association with features can 
help identify the species of stored plants. Phytoliths may cause distinc-
tive wear on teeth, allowing inferences regarding diet (Rovner 1983:253), 
and they may also be discovered within dental calculus, indicating the 
consumption of those species (Rovner 1983:253; Ryan 1995). Phytoliths 
recovered from human paleofeces may be used to identify plants that 
were consumed, either as food or for other reasons (see chap. 2).

Although they are not phytoliths, calcite crystals can also sometimes 
form within plant tissues and may have some utility in the identification 
of plant species. For example, Freitas and Martins (2000) identified calcite 
crystals from storage facilities in Brazil and identified maize and cassava.

Biomolecular Archaeology

Chemical methods are increasingly important in the analysis of archaeo-
logical materials (Barraco 1980; Hedges and Sykes 1992; Loy 1993; Sand-
ford 1993b; Lambert 1997; also see various articles in World Archaeology 
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25[1] 1993). The methods used to characterize and study organic remains 
is herein called biomolecular archaeology (following Barraco 1980) to 
distinguish them from the analyses of inorganic materials. This is clearly 
a multidisciplinary field that includes chemists, biologists, geneticists, 
physicians, geologists, biological anthropologists, and archaeologists. 
The techniques of biomolecular archaeology are applicable to a variety 
of research questions, such as human evolution; the paleobiology, paleo-
geography, and paleodemography of humans; human diet, food webs, 
and subsistence systems; artifact use studies; site formation processes; and 
environmental reconstruction (Thomas 1993:2–3). Of particular interest 
herein are those techniques that can be used to identify specific ancient 
foods, general dietary patterns, domesticates, diseases, general health pat-
terns, and aspects of technology related to subsistence.

Analyses of Organic Residues

Organic residues are amorphous materials lacking clearly identifiable 
morphological features that would distinguish them as bone, wood, 
seeds, or other biologic materials (Heron and Evershed 1993:249; Pearsall 
2000:178–183). Such residues may be visible on the surface of an artifact 
or absorbed into the matrix of the artifact, especially ceramics (Heron 
et al. 1991a; Heron and Evershed 1993:250; Evershed and Tuross 1996; 
Evershed et al. 2000; Craig et al. 2005) and milling stones (Jones 1989). 
Organic residues may represent materials processed (such as foods) or 
manufactured (such as mastics and textiles) (e.g., Jones 1993; Sobolik 
1996; Hardy and Garufi 1998).

In addition to macroscopic and microscopic methods used to identify 
pollen, phytoliths, and/or tissues, organic residues may be analyzed with 
a variety of chemical techniques, including elemental analysis, stable 
isotope analysis, infrared spectroscopy, nuclear magnetic resonance spec-
troscopy, thin-layer chromatography, high-performance liquid chroma-
tography (HPLC), gas chromatography (GC), gas chromatography/mass 
spectrometry (GC/MS), laser microprobe mass analysis (LAMMA), and 
pyrolysis. Reviews of these various techniques are available in Shearer 
(1988), Jones (1989), Biers and McGovern (1990), Evershed et al. (1990, 
1992), Heron et al. (1991b), Heron and Evershed (1993), Fankhauser 
(1994), Ugent (1994), and Pollard and Heron (1996).
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The usual approach in the identification of ancient organic materials 
is to characterize their chemistry and to compare those biomarkers to 
modern known species (see Heron and Evershed 1993:267–270). Much 
research in this area has focused on the use of lipids as biomarkers (Ever-
shed 1993). This research has succeeded in identifying plants and animals 
(Evershed 1993; Fankhauser 1994; O’Donoghue et al. 1996; Dudd et al. 
1999), food residues in vessels (Needham and Evans 1987; Marchbanks 
1989; Charters et al. 1997), food residues (stains) on teeth (Oxenham  
et al. 2002), crop species in the Pacific (Hill and Evans 1988, 1989), and 
the importation of Dead Sea asphalt for use in embalming Egyptian 
mummies (Nissenbaum 1992). Identification of some plant species may 
also be possible with chromatography and spectrophotometry (Ugent 
1994; Malainey et al. 1999a,b).

These analytical techniques are also utilized to identify drugs—ingested 
throughout prehistory for numerous purposes—in ancient tissues. The 
identification of such substances aids in our understanding of ethnophar-
macology, religion, forensics, trade, and perhaps even recreation. For 
example, psychotropic drugs have been discovered in pre-Columbian 
New World mummies (Balabanova et al. 1995) and European bog bod-
ies, perhaps used for ritual purposes (see discussion in Hillman 1986:103). 
In a controversial finding, Balabanova et al. (1992) identified the drugs 
cocaine and nicotine in ancient Egyptian mummies. Since these com-
pounds are supposedly New World in origin, their presence in Old World 
mummies cannot be explained at this time, but may involve problems in 
sampling, contamination, and/or laboratory procedures.

Blood and Lipids

The presence of preserved blood on artifacts and/or other archaeological 
materials can be detected using visual and/or specific chemical meth-
ods. Less specific chemical methods to detect general proteins other than 
blood protein (e.g., hemoglobin) are also used by archaeologists and are 
discussed below. If preservation is good enough, individual blood cells 
can be observed microscopically from mummified human tissues (Zim-
merman 1973), on artifacts (Loy 1983, 1991; Newman and Julig 1989; 
Newman et al. 1996; Loy and Dixon 1998; Shanks et al. 2001), and on raw 
lithic material (e.g., Hortolà 2002). In some cases, identification of the 
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origin of the blood is possible, even to species. Such residues can some-
times even be radiocarbon dated (D. Nelson et al. 1986).

A number of chemical methods are also available to detect blood 
residues (described by Loy and Dixon 1998). Several general tests are 
available to screen for hemoglobin, including guaiac paper tests to detect 
blood in feces (Fry 1976:24; Williams-Dean 1978:77–78, 223) and/or soils 
(e.g., Moffat 1988) and the Ames Hemastix test. A dot-blot test can also 
be employed to detect mammalian blood. Studies by Manning (1994), 
however, have cast doubt on the accuracy of the Hemastix and dot-blot 
tests for blood residues. If blood is identified, the species of origin can 
be determined using several methods, including isoelectric focusing 
(Oshima et al. 1982), hemoglobin crystallization (Loy and Wood 1989; 
Loy and Dixon 1998:28–30; but see Smith and Wilson 1992; Remington 
1994), and aDNA characterization.

The ELISA (enzyme-linked immunosorbent assay) technique is also 
useful in the identification of blood. Smith and Wilson (1990) success-
fully used ELISA to detect and identify hemoglobin in human bone 
tissue. Tuross (1991) was able to extract and identify serum-derived and 
bone-cell-produced proteins from human bone, and Tuross and Dillehay 
(1995) identified the species of origin of blood residues. Cattaneo et al.  
(1994) identified the blood protein albumin in 4,000-year-old human 
bone. But, as noted by Smith and Wilson (1990; also see Brandt et al. 
2002), the degradation of blood proteins over time is a limiting factor in 
interpreting ELISA results. On the other hand, proteins may be quite 
resilient, as when Cattaneo et al. (1995) reported the recovery of albumin 
from ancient human bone that had been cremated.

The study of blood-cell antigen groupings is useful in studying pop-
ulation genetics and population movements (see Henry 1980; Aufder
heide 1989). Most such studies have been conducted on soft tissues and 
a number of analytical problems are known, including poor preservation 
and misidentification of remains. Albumin appears to be the most use-
ful blood protein for genetic investigation (Smith et al. 1995:68). Several 
studies have identified blood groups in mummies, such as those from 
the Arctic (Zimmerman 1980:130, 1998:149), from Egypt (Flaherty and 
Haigh 1986), and from Lindow Man (Connolly et al. 1986:74).

All human tissues possess a human leukocyte antigen (HLA) system, 
which is important in modern medicine to match transplant donors and 
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recipients. The tissue types of family members tend to be similar and, in an 
attempt to determine relatedness between individuals, Ammitzbøll et al. 
(1991:89–94) analyzed the tissue types of eight mummies from Qilakitsoq, 
Greenland, suggesting that many of the individuals were related.

Lipids include a wide variety of compounds, although most archae-
ological studies have concentrated on fatty acids, such as steroids and 
cholesterols (e.g., Evershed 1993:75–76; Fankhauser 1994:228). Evershed 
(1993:93; also see Gülaçar et al. 1990) reviewed the general “properties, 
origins, means of detection, characterization, modes of preservation and 
decay, and application to archaeological investigation” of lipids. The 
recovery and analysis of lipids from human tissues could reveal a variety 
of information, such as general organic preservation and hormone levels 
(see Sobolik et al. 1996).

Lipids have been discovered in the tissues of bog bodies (Connolly 
et al. 1986:73; Evershed 1990, 1991; Evershed and Connolly 1994) and 
mummies (Gülaçar et al. 1990). The usefulness of lipids is not limited to 
human tissues. Lipids may also be used to identify the origin of samples, 
such as fecal materials (Bethell et al. 1993) and plant remains (McLaren 
et al. 1991; O’Donoghue et al. 1996).

Proteins

Very small quantities of proteins can be preserved in the archaeological 
record, and these proteins can be recovered and identified, sometimes 
to the genus level (for recent reviews of this work see Child and Pollard 
1995; Bernard et al. 2007). Ancient preserved proteins can be present on 
stone tools, in human tissues, in human paleofeces, and in soils. A num-
ber of techniques, generally referred to as immunochemistry, can be used 
(see Cattaneo et al. 1993:table 2), but crossover immunoelectrophoresis 
(CIEP) is probably the most common. These techniques, often errone-
ously confused with blood residue analysis (see above), identify proteins 
not just from blood, but from the tissues of any living thing—animals, 
plants (but see Leach 1998), and even pathogens (Tuross 1991; Child and 
Pollard 1992).

Some researchers are skeptical about the applicability of immuno-
chemical methods (e.g., Cattaneo et al. 1993; Downs and Lowenstein 1995; 
Eisele et al. 1995; Fiedel 1996, 1997; Brandt et al. 2002) while others are  
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much more optimistic (e.g., Hyland et al. 1990; Newman 1990; Yohe  
et al. 1991; Kooyman et al. 1992; Newman et al. 1993, 1997, 1998; Tuross 
1993; Shanks et al. 1999; Reuther et al. 2006). It is possible that aDNA 
analysis may be employed to determine the species represented in a 
sample (Loy 1993:52–56, 1996; Newman et al. 1998, 2002; Burger et al. 
2002) and may be used to supplement or even replace immunochemical 
techniques.

Immunochemistry faces a number of technical problems and limita-
tions. An understanding of whether proteins can actually preserve on 
archaeological materials is a major issue. While there is no question that 
proteins are initially present on, for example, an artifact used to butcher 
a deer, proteins are degraded by exposure to ultraviolet radiation (Tuross 
et al. 1996), and it is not clear how long they can preserve in recogniz-
able form; however, preservation for at least hundreds of years has been 
documented (e.g., Newman et al. 1998). Another problem is that we can 
currently only test for several dozen species, meaning many species iden-
tifications will be missed. As more antisera are developed, however, this 
situation will improve.

Recent work has indicated that the standard methods employed for 
the recovery and storage of samples for immunochemical testing are 
destructive to the proteins (Cummings et al. 1996). Typically, proteins 
have been removed from specimens using ammonium hydroxide, which 
breaks the bonds of the proteins from the matrix and places them into 
solution; however, if left too long in solution, the bonds will break down 
too much, degrading the protein to the point where it cannot be rec-
ognized. In addition, the solution is commonly stored in glass vials but 
the proteins in solution will bond with the silica in the glass and further 
decrease the effectiveness of the test. The problem can easily be solved by 
placing the ammonium hydroxide in plastic vials and freezing the vials 
immediately after the proteins have been removed from the specimens. 
As pointed out by Marlar et al. (1995), some standardization of laboratory 
procedures is needed to make the results comparable.

The most significant problem in immunochemistry seems to be with 
the interpretation of results. The testing provides either negative or posi-
tive results. If the results are negative, it may mean that (1) proteins were 
never present in the sample, (2) proteins were present but did not survive 
in detectable form, or (3) proteins were present but the correct species 
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was not tested for. It is currently not possible to distinguish between these 
three alternatives.

It is therefore necessary to deal only with positive results. If the result 
is positive, several interpretations are possible. First, the identified pro-
tein was in the sample as a result of cultural activity, such as yucca pro-
teins being present on a grinding stone because yucca was processed on 
that tool in antiquity. Second, it is possible that the identified protein was 
in the sample as a result of contamination and is not related to cultural 
activity. For example, if a mouse urinated on a grinding stone, one might 
get a positive reaction to mouse but that would not mean that mice were 
ground up on the stone. This possible error can be minimized by pro-
cessing soil samples collected from the vicinity of the artifact to test for 
contaminants. Proteins might also be present on artifacts from handling, 
so great care must be taken during excavation and analysis. Third, it is 
possible that the protein identified in the sample was either misidentified 
or that a false positive was obtained. Some species will cross-react with 
others and this possibility must be considered. These problems remain 
unresolved and great caution must be exercised in the interpretation of 
immunochemical results.

Immunochemistry can have important analytical implications. It is 
now possible to identify proteins on specific tools, thus aiding in the func-
tional interpretation of those tools. For example, milling stones (metates) 
usually are regarded as seed-processing tools; however, Yohe et al. (1991) 
identified various animal proteins on such tools, indicating that particu-
lar animals were processed on the milling equipment. Not only did this 
provide evidence of resource use and associated technology, it also shed 
light on the processing of the bones from those animals, whose visibility 
in the conventional faunal record was much reduced (also see Sobolik 
1993). In addition, it may be possible to identify pathogens in preserved 
human tissues, aiding in the understanding of past human diseases (also 
see Buikstra and Williams 1991).

Another important application of the technique is to expand our 
knowledge of the breadth of resources identified at a particular site (or 
region), resources that may not be present in the traditional (macro) 
dietary record. The following example illustrates the value of the tech-
nique. The macrofaunal analysis of the materials from a 3,400-year-old 
site (CA-SBR-6580) in southern California resulted in the identification 
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of only turtle (Clemmys marmorata) and “large mammal” (Sutton et al. 
1993). In the immunological analysis of both flaked and ground stone 
artifacts from the site, however, pronghorn (Antilocapra americana), deer 
(Odocoileus sp.), waterfowl, fish, rodents (rat), lagomorphs, and either 
porcupine or squirrel were identified, indicating the use of a variety of 
animals (Newman 1993). Nevertheless, the lack of visible faunal remains 
from similarly aged sites in the region has led researchers to suggest a reli-
ance (specialization) on plant resources (cf. Moratto 1984:153). In light 
of these new data, the identification of a wider range of utilized ani-
mal resources suggests that the subsistence adaptation of the prehistoric 
people in this region should be reevaluated. More recently, Kooyman  
et al. (2001) used protein analysis to identify horse (Equus sp.) from a 
Clovis-age site in Alberta.

Inorganic Remains

The analyses of inorganic (elements, minerals, and some compounds 
such as water and carbon dioxide) remains typically include techniques to 
chemically characterize (or source) materials such as glass and metal (e.g., 
Henderson 2000). While such analyses can provide important informa-
tion on various aspects of human behavior (e.g., trade and manufacturing 
processes), other types of inorganic materials related to diet and nutrition 
are contained within the foods people consume. These inorganic remains 
become incorporated into the tissues of the body and a number of these 
materials can be detected and measured. It should be noted, though, 
that the study of these elements cannot be used to directly “reconstruct” 
ancient diet, since they may have environmental origins. Rather, they can 
be used to deduce the general profiles of the different foods consumed 
in life. The major tissue utilized in these analyses is bone (e.g., Lambert 
et al. 1989, 1991; Lambert and Grupe 1993). These studies are conducted 
much less frequently than more traditional approaches, such as faunal or 
botanical analyses, and so are considered here in some detail.

Stable Isotope Analysis

Many elements exist in a number of isotope states; that is, in the num-
ber of neutrons in their nucleus. Depending on conditions, isotopes are 
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either stable or unstable (radioactive). Stable isotopes do not change over 
time, making them ideal for measurement, while radioactive isotopes do 
change over time (but this is the basis of radiometric dating). Stable iso-
topes tend to be absorbed into tissues differentially, due to their unique 
molecular weights. Different types of plants tend to take up different iso-
topes, and animals that eat plants will absorb those isotopes in the same 
ratios as the plants. In theory, humans who eat animals will reflect the 
basic isotopic ratios of those animals. Finally, the stable isotopes within 
a tissue sample can be measured, plotted, and used to deduce the diet of 
the animal (including humans) from which the sample was taken. Con-
versely, isotopic ratios can originate in a number of ways unrelated to diet 
(see Hayes 1982), such as in the biological processes of the consumer, 
which can distort the analytical results (Schoeller 1999; Hedges 2003).

Of the stable isotopes, ten are of biological interest, with carbon, nitrogen, 
and oxygen generally being employed to infer aspects of paleonutrition (e.g., 
DeNiro and Epstein 1978, 1981; Sullivan and Krueger 1981; Schoeninger 
and DeNiro 1984; Turnlund and Johnson 1984; Parkes 1986; DeNiro 1987; 
Aufderheide et al. 1988a; Keegan 1989; Price 1989b; Schoeninger 1989; 
Tieszen and Boutton 1989; Gearing 1991; Pollard et al. 1991; Schwarcz 
1991; Schwarcz and Schoeninger 1991; Katzenberg 1992; Schoeninger and 
Moore 1992; Ambrose 1993; Goldberg 1993; Pate 1994, 1997; Tieszen 1994; 
Katzenberg and Harrison 1997; Larsen 1997:271–290; Mays 1998:182–190, 
2000; Ambrose and Krigbaum 2003; also see Goldberg 1993:table 3 for a 
list of other studies). Isotopes of carbon, nitrogen, and strontium appear to 
be the most useful in paleonutrition studies, although sulfur (e.g., Krouse 
and Herbert 1988; Craig et al. 2006; Privat et al. 2007), hydrogen (Schwarcz 
1991), and calcium (Clementz et al. 2003) have the potential to provide 
clues related to past diet.

Isotopes are initially taken up by plants (see Tieszen 1991) and are 
concentrated in their tissues depending on the metabolic pathway used 
(see below). In general, isotopic values will increase (about 3 to 5 percent 
with d15N; Bocherens and Drucker 2003) by trophic level. Thus, plants 
will have an isotopic signature, herbivores an enriched signature, and 
carnivores a further enriched signature (e.g., Minagawa and Wada 1984), 
although this enrichment may also be influenced by taxon within a tro-
phic level (Sponheimer et al. 2003; Codron et al. 2005). Thus, all ani-
mal tissues contain an isotopic signature that reflects, at least in part, the 
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food consumed. By measuring the isotopes in tissues, usually either bone 
collagen or apatite, a number of attributes of the diet may be deduced, 
although the preservation (see DeNiro 1985), transport, and retention of 
isotopes from food to tissues is not fully understood (e.g., Lee-Thorp and 
van der Merwe 1987; Schoeninger 1989:40–48; Ambrose 1993; Ambrose 
and Norr 1993). Further, DeNiro et al. (1985) demonstrated that extreme 
heating will alter the ratios and suggested that anomalous readings not be 
utilized in dietary reconstructions.

The systematics of carbon isotopes in the food chain are the best 
known (O’Leary 1981; Krueger and Sullivan 1984). Plants incorporate 
carbon into their tissues in one of three known pathways, each of which 
results in a distinct ratio of stable carbon isotopes (13C/12C, with 14C 
being unstable). The three pathways are (1) the Calvin (or “C3”) path-
way where the three-carbon acid, ribulose bisphosphate, is the marker;  
(2) the Hatch-Slack (or “C4”) pathway in which the four-carbon acid, 
phosphoenolpyruvate (PEP), is the marker; and (3) the pathway charac-
terized by crassulacean acid metabolism (CAM), via either the C3 or C4 
path (see table 3.2). Experiments by Ambrose and Norr (1993) suggested 
that the C4 contribution to the diet may be consistently and substantially 

table 3.2.  Some Isotopic Values for 13C and 15Na

Material
General 13C 

Value
General 15N 

Value

Carbonate standard 0 N/A
Normal atmosphere 27 —
Amazon rainforest atmosphere 

(at ground level)
215.5 —

C3 plants (e.g., beans, squash, manioc, 
trees, shrubs, cool-season grasses)

227 13

C4 plants (e.g., amaranth, maize, 
warm-season grasses)

212.5 13

CAMb plants (e.g., cacti, agave) 210 to 222 —
Browsing herbivores 221 15.3
Mixed feeding herbivores 212 —
Grazing herbivores 27 —
a Liberally adapted from van der Merwe (1982:table 1), Schoeninger and Moore (1992:fig. 1), 
and Hard et al. (1996:264--265).
b CAM 5 crassulacean acid metabolism.
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underestimated (also see Schwarcz 2000). It was further argued by Hea-
ton (1999) that d13C values on C3 could vary enough to cause difficulties 
in interpreting small changes in archaeological samples. In addition, it 
was suggested by van Klinken et al. (2000) that marine foods played a 
lesser role in prehistoric diets in Europe, making the interpretation of 
carbon and nitrogen ratios from European samples more difficult.

Work by Fogel and Tuross (2003) indicated that the d13C values in the 
amino acids of samples could be used to differentiate the carbon signals 
derived from plants and animals. Thus, the total carbon intake relative 
to the total protein intake can be measured and the degree of omnivory 
could be calculated.

Nitrogen isotopes derive mostly from protein in the diet (Schoeller 
1999; also see Ezzo 1993:14), and the ratios of 15N/14N can be used to 
deduce breastfeeding (Katzenberg et al. 1996), trophic level (Hedges and 
Reynard 2007), and the relative contribution of plant and animal pro-
teins in the diet. Nitrogen ratios in bone may also be useful in deducing 
past climates (Heaton et al. 1986; but see Ambrose and DeNiro 1987).

Nitrogen values in tissues are measured in reference to the interna-
tional standard of atmospheric nitrogen (ambient inhalable reservoir, 
AIR). Values of about 14 indicate that the protein was derived primarily 
from plants, whereas values in the 111 to 112 range suggest primarily 
animal sources. Values between these two poles indicate mixed protein 
sources. Thus, the use of a ratio of carbon and nitrogen values permits 
the modeling of the relative contributions of plant, terrestrial animal, and 
marine animal foods in human diets, although there is some evidence to 
suggest that the roles of terrestrial and marine resources may be reversed 
in some cases (deFrance et al. 1996).

Analyses of oxygen isotopes are useful in environmental reconstruc-
tion (e.g., Ayliffe and Chivas 1990; Bryant et al. 1994; Stephan 2000), to 
source fish (Dufour et al. 2007), and as indicators of seasonality of shell-
fish (e.g., Kennett and Voorhies 1996; Andrus and Crowe 2000); oxygen-
isotope analyses have also been found suitable in detecting breastfeeding 
and weaning (e.g., Wright and Schwarcz 1998, 1999). Isotopic analysis 
can also be used to identify plant materials unidentifiable by more tradi-
tional means (DeNiro and Hastorf 1985).

Various assumptions are made in isotope analysis (and in trace ele-
ment analysis; see below), including (1) that the isotopic composition 
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of possible foods is known and does not vary, (2) that isotopic levels in 
human tissues reflect those in the diet, (3) that levels are distributed pre-
dictably across the diet, (4) that storage and preparation do not alter the 
levels, (5) that diagenesis does not alter the levels, (6) that isotopic levels 
can be accurately measured, and (7) that sampling is not an issue (Sul-
livan and Krueger 1981; Krueger and Sullivan 1984; Kyle 1986; B. Nelson 
et al. 1986; Buikstra et al. 1989:155–156; Grupe et al. 1989; Schoeninger  
et al. 1989; Schwarcz 1991; Schwarcz and Schoeninger 1991; Ambrose 
and Norr 1992; Hard et al. 1996:265–266; also see Parkington 1987; Armel-
agos 1994; Armelagos et al. 1989; Sillen 1989; Bocherens 2000; Grupe  
et al. 2000; Hedges and van Klinken 2000; Lee-Thorp 2000; Pfeiffer 
and Varney 2000; Schoeninger et al. 2003a,b). The broader the diet, the 
more difficult it is to interpret the measurements, and much work is still 
needed to gain an understanding of their anthropological meaning (Sil-
len et al. 1989), particularly in poorly understood ecosystems (e.g., Lam 
1994). Further, Ambrose (1991) argued that nitrogen isotopic values will 
be higher in hot, arid environments than in cool, wet ones, suggesting 
that an understanding of the environment is necessary to properly evalu-
ate results. Experimental results reported by Ambrose (2000), however, 
suggested that this model was not correct.

Isotope data have been plotted in a number of ways (fig. 3.3), includ-
ing pointlike distributions to illustrate overall similarity in diet, a linear 
distribution to plot the relative contributions of two foods, or a diffuse 
plotting, such as the three-component isotopic diet model proposed by 
Bumsted (1985:542–547; also see Morton et al. 1991).

The majority of stable isotope work has been conducted on bone, 
usually collagen, as bone is the most common archaeologically available 
tissue, although other materials (such as seeds) can be used. Krueger 
and Sullivan (1984; also see Lee-Thorp et al. 1989) suggested that the 
differences in isotopic ratios between collagen and apatite could be use-
ful indicators of paleodiet. While the preservation of collagen is not well 
understood (e.g., Collins et al. 1995; Semal and Orban 1995), it may pre-
serve better than apatite (Ambrose 1987; Grupe et al. 1989), as it appears 
to be less susceptible to contamination (van Klinken 1999); thus, it may 
produce numbers more representative of diet (Tieszen and Fagre 1993a; 
but see Lee-Thorp et al. 1994). A problem in using bone is that it reflects 
only an average of the concentrations of the various elements over a  
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ten- to thirty-year period (the bone replacement rate; see Hard et al. 
1996:264). However, the use of tooth enamel, which does not remodel, 
for isotopic studies can be fruitful (e.g., Balasse 2002; Al-Shorman 2004; 
Clayton et al. 2006; L. Wright 2005; Tafuri et al. 2006).

The carbonate fraction of bone apatite seems to be more susceptible to 
diagenesis and thus may produce less reliable numbers (Schoeninger and 
DeNiro 1982; Lee-Thorp and van der Merwe 1991; Wright and Schwarcz 
1996; Koch et al. 1997; Garvie‑Lok et al. 2004), although not all researchers 
agree on that point (Krueger 1991). One method to test the integrity of bone 
collagen was developed by Parsche and Nerlich (1997). Tykot et al. (1996) 
noted that in order to obtain an understanding of all but the most simple 
food webs, isotope analysis should include measurements from bone col-
lagen, bone apatite, and tooth enamel (also see Wiedemann et al. 1999; 
Lee-Thorp and Sponheimer 2003), coupled with baseline measurements 
from the plant and animal resources of that area (e.g., Schoeninger 1995).

Nielsen-Marsh and Hedges (2000a) suggested that bone diagenesis 
was site dependent, with site hydrology having a strong influence and 

figure 3.3. Plot of isotope data from human bone recovered from three 
archaeological sites in France. The higher nitrogen and lower carbon signa-
tures from Hoëdic and Téviec indicate a greater reliance on marine resources 
(adapted from Schulting et al. [2008]; reproduced by permission).
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bone porosity being the most important factor in bone preservation. In 
a further study, Nielsen-Marsh and Hedges (2000b) concluded that only 
histologically well-preserved bone would return reliable dietary data, but 
Koch et al. (2001) suggested that weathering did not alter the isotopic 
ratios in bone collagen. Ambrose (1990) proposed a protocol for the sam-
ple collection, processing, analysis, and reporting of isotopic data. Some 
work has been done on isotopic analysis of food residues (e.g., Morton 
and Schwarcz 2004; but see Hart et al. 2007) and this may be a promising 
avenue of research. More recently, isotopic analysis has been conducted 
on fossilized hominid bone (Drucker and Bocherens 2004; Lee-Thorp 
and Sponheimer 2006), suggesting that isotopic signature can preserve 
for a considerable time.

Few baseline data are available on isotopic values (but see DeNiro 
and Schoeninger 1983). Balasse et al. (1999) fed cattle specific diets and 
found that dietary changes could be detected using isotopic analysis (also 
see Balasse et al. 2001). Hare et al. (1991) conducted a controlled feeding 
experiment to determine isotopic concentrations in modern animal bone 
as a comparative base, and Richards et al. (2003a) determined that sulfur 
isotopic signatures in horses varied depending on the amount of protein in 
their diet. A similar experiment using pigs (Howland et al. 2003) showed 
the relationship between foods consumed and isotopes, cholesterol, and 
amino acids in the pig bone. Tieszen and Chapman (1995) plotted the iso-
topic signatures for many of the major resources in the Atamaca Desert in 
northern Chile for use as baseline data for prehistoric studies. O’Connell 
and Hedges (1999) compared hair and bone to collagen and keratin from 
the same individuals and found that the values varied greatly between the 
two sample types. Dufour et al. (1999) tested the isotopic concentrations 
of the same species of fish from lakes in a number of European locations 
and found that values varied, suggesting that no single baseline data set 
could be used to evaluate archaeological samples.

Witt and Ayliffe (2001) characterized the isotopic values in the diets of 
red kangaroos, compared those values to the isotopic values in the bone 
collagen, and determined that only adults reflected the diet accurately. 
Nursing infant kangaroos, they found, exhibited skewed isotopic ratios, 
seemingly due to metabolic pathway differences in the production of 
mother’s milk, a situation that may also relate to humans. An isotopic 
study by O’Connell et al. (2001) on modern human tissues (hair and 
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bone collagen) showed different isotopic values between the two sample 
types in the same individual, suggesting that consistency in isotopic sig-
natures between sample types cannot be assumed. Further work on these 
problems is necessary to resolve these issues.

Isotopic analysis has also been used to ascertain the ratios of terrestrial 
to marine foods in the diet (Tauber 1981; Schoeninger and DeNiro 1984; 
Price et al. 1985; Sealy 1986; Walker and DeNiro 1986; DeNiro 1987, 
1988; Hayden et al. 1987; Keegan and DeNiro 1988; Sealy and van der 
Merwe 1988; Parkington 1991; Goldberg 1993; van der Merwe et al. 1993; 
Bourque and Krueger 1994; Gilbert et al. 1994; Lubell et al. 1994; Tieszen 
et al. 1995a; McGovern-Wilson and Quinn 1996; Mays 1997; Richards 
and Hedges 1999; Coltrain et al. 2004; Eriksson 2004; Newsome et al. 
2004; Prowse et al. 2004; Yoneda et al. 2004; Corr et al. 2005; Müldner 
and Richards 2005; Jay and Richards 2006; Keenleyside et al. 2006; Rich-
ards et al. 2006; Valentin et al. 2006; Bocherens et al. 2007; but see Harritt 
and Radosevich 1992; Day 1996; Katzenberg and Weber 1999; Richards 
et al. 2003b; Schulting et al. 2008), the ratios of plant to animal resources 
consumed (Bumsted 1981, 1985; Bocherens et al. 1991, 1999; Harrison 
and Katzenberg 2003; Richards et al. 2003c; White et al. 2004a; Lillie 
and Jacobs 2006), the types of animals that were eaten (van der Merwe 
et al. 2000), whether animals that were consumed were raised locally or 
imported (Klippel 2001; also see Barrett et al. 2008), whether animals were 
foddered (Noe-Nygaard et al. 2005; Pechenkina et al. 2005; Makarewicz 
and Tuross 2006), the role of dairy resources (Mulville and Outram 2005; 
Bocherens et al. 2006), the taxonomic identification of faunal remains 
(Balasse and Ambrose 2005), and for determining the general categories 
of foods eaten (van der Merwe 1982; Hastorf and DeNiro 1985; Ambrose 
and DeNiro 1986; Antoine et al. 1988; Chisholm 1989; Lee-Thorp et al. 
1994; White and Schwarcz 1994; Tieszen et al. 1995b; White 1995; Iacu-
min et al. 1998; Richards et al. 2000; van der Merwe et al. 2003; Yesner  
et al. 2003; Thompson et al. 2005; Bösl et al. 2006).

Other isotopic studies have tackled larger issues such as group mobil-
ity (Sealy and van der Merwe 1985, 1986; Balasse et al. 2002; Bentley  
et al. 2004; Haverkort et al. 2008), general residence location (Hoogewerff 
et al. 2001; Burton et al. 2003; White et al. 2004b; Knudson et al. 2005), 
migration and mobility (White et al. 2000; Dupras and Schwarcz 2001; 
Schweissing and Grupe 2003; Ubelaker and Owsley 2003; Hodell et al. 
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2004; L. Wright 2005; Tafuri et al. 2006; Prowse et al. 2007), social and eco-
nomic status (e.g., Schurr 1992; Reed 1994; Ubelaker et al. 1995; Richards 
et al. 1998; Schutkowski et al. 1999; Cox et al. 2001; Ambrose et al. 2003; 
Polet and Katzenberg 2003; Tomczak 2003; Le Huray and Schutkowski 
2005; Dürrwächter et al. 2006; Honch et al. 2006), population variation 
(Katzenberg 1993), diets based on age (e.g., breastfeeding and weaning: 
Katzenberg et al. 1993; Schurr 1997, 1998; Herring et al. 1998; Wright and 
Schwarcz 1998, 1999; Richards et al. 2006; Bourbou and Richards 2006; 
Turner et al. 2006), the transition to agriculture (Papathanasiou 2003; 
Hu et al. 2006), intensification among hunter-gatherers (Bartelink 2006), 
the use of fertilizer on ancient fields (Commisso and Nelson 2007), crop 
management (Bogaard et al. 2007), and crop yields (Araus et al. 2001).

As noted above, isotopic data may be employed to deduce social struc-
ture. For example, using isotopic data on human bone from two separate 
Mesolithic cemeteries in coastal Brittany, Schulting and Richards (2001) 
detected differences in the consumption of marine foods between the two 
populations. Even more interesting, they concluded that young women 
had consumed fewer marine foods and suggested that these women had 
come to the coast later in life, possibly reflecting an exogamous, patrilo-
cal marriage pattern. Another possible explanation may be differential 
access to certain foods based on sex or status.

In addition, isotopic data can be used in the reconstruction of paleoen-
vironment (van der Merwe 1989; Schoeninger et al. 2000; Schoeninger 
et al. 2003a) and the paleoecology of animals (Jahren et al. 1998; Boche-
rens et al. 1999; Sponheimer and Lee-Thorp 1999). Such studies have 
included the diet of domestic dogs (Cannon et al. 1999; White et al. 
2001a) and camelids (Finucane et al. 2006), wild deer that feed on crops 
(Emery et al. 2000; White et al. 2001a), and even where crops were 
grown (Benson et al. 2003). Katzenberg et al. (2000; also see Schwarcz 
and White 2004) employed a combination of bone chemistry (isotopic 
and trace element) data, hair analysis, and experimental data on food 
known to have been consumed to reconstruct the diet of a large sample 
of skeletons from a historic cemetery in Canada. This study also provided 
comparative baseline data useful for studies of paleodiet.

One of the major research directions using isotopic data has been to 
understand the role of maize (a C4 plant) in the diet (e.g., Vogel and van 
der Merwe 1977; van der Merwe and Vogel 1978; Burleigh and Brothwell 
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1978; van der Merwe et al. 1981; Boutton et al. 1984; Buikstra et al. 1988; 
Katzenberg 1988; White 1988; Ericson et al. 1989; White and Schwarcz 
1989; Burger and van der Merwe 1990; Buikstra and Milner 1991; Bout-
ton et al. 1991; Schurr and Redmond 1991; Blake et al. 1992; Larsen et al. 
1992; Katzenberg et al. 1993; Lee-Thorp et al. 1993; Tieszen and Fagre 
1993b; Chisholm and Matson 1994; Katzenberg et al. 1995; Little and 
Schoeninger 1995; Norr 1995; Ubelaker et al. 1995; Hard et al. 1996;  
Tykot et al. 1996; Larsen et al. 2001; Webb et al. 2004). Similar efforts have 
been made in the analysis of trace elements (see Aufderheide et al. 
1988b; Armelagos et al. 1989; Aufderheide 1989; Buikstra et al. 1989; Price 
1989a), and isotopic data have been combined with other data sets, such 
as trace elements (Spielmann et al. 1990; Katzenberg et al. 2000), paleo-
fecal materials (Matson and Chisholm 1991), faunal remains (van der 
Merwe et al. 2000), and archaeobotanical specimens (Tuross et al. 1994; 
Hard et al. 1996), in order to broaden the perspective.

Evershed et al. (1995) reported the recovery of lipids (steroids and 
cholesterols) from samples of archaeological bone and suggested that 
measurements of 13C isotopes from the lipids could be used in conjunc-
tion with 13C measurements from collagen in isotopic analysis. Additional 
studies in the analysis of cholesterol from bone (e.g., Scott et al. 1999) 
have suggested that it may retain a more reliable isotopic signature than 
collagen and may better represent past diet. Finally, isotopic analysis can 
be used to source wood (Reynolds et al. 2005), to source irrigation water 
(Williams et al. 2005), and to trace the origin of some traded materials, 
such as shell (Vanhaeren et al. 2004), glass (Henderson et al. 2005), and 
textiles (Benson et al. 2006).

Trace Element Analysis

Trace elements are those that occur in minute amounts and may be 
present in the body by being ingested with food or from environmen-
tal exposure. A number of elements may have potential in the study of 
paleodiet, but it may be that only barium and strontium can be utilized 
(Ezzo 1994a,b). General reviews of trace element analyses were provided 
by Klepinger (1984), Buikstra et al. (1989), Sandford (1992), Ezzo (1994a), 
Sandford and Katzenberg (1995), Larsen (1997), Mays (1998:190–196), and 
Sandford and Weaver (2000). In general, there is considerable concern 
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that trace elements may not be very useful (or may be misleading) in the 
reconstruction of paleodiet due to biogenic changes in concentrations 
having little to do with diet and in diagenesis of archaeological materials. 
Nevertheless, efforts to refine the technique continue.

To be useful in studies of paleonutrition, a trace element must follow 
the basic principles of the strontium model (Comar et al. 1957; Toots and 
Voorheis 1965), and Ezzo (1994a, 1994b:610) suggested that a trace ele-
ment must meet at least six criteria. The trace element must (1) be mea-
surable, (2) correlate to dietary intake, (3) concentrate in bone, as bone 
is the most common archaeological material, and (4) not be an essential 
nutrient so as to have an independent concentration, but should (5) imi-
tate the movement and activity of an essential nutrient and (6) be stable. 
Some controlled experiments have been conducted to determine trace 
element concentrations in animal bone (Lambert and Weydert-Homeyer 
1993a,b), although there has been relatively little work accomplished to 
ascertain baseline data in human bone (Hancock et al. 1989, 1993).

Some trace elements are essential for metabolic processes, and seri-
ous health problems may occur if they are lacking. Others are toxic at 
even very low levels. Several trace elements are absorbed into the body 
but serve no metabolic function. For example, calcium (Ca) is absorbed 
into the body and incorporated into bone. If present in food, however, 
the body will absorb some strontium (Sr) and/or barium (Ba) and incor-
porate them into bone in place of some of the Ca and the ratios of Sr 
and Ba to Ca will diminish by trophic level. Thus, many have argued 
that the levels of Ca and the ratios of Sr/Ca and Ba/Ca can be used 
to determine dietary constituents (e.g., Blakely 1989; Sillen 1992; Sillen  
et al. 1995), including marine resources (Burton and Price 1990, 1991). It 
is also important to realize that the Sr/Ca and Ba/Ca ratios are affected 
by a number of other factors, including diets high in calcium and differ-
ences in culinary practices (Burton and Wright 1995). In addition, Bur-
ton et al. (1999:609) argued that Ba/Ca and Sr/Ca ratios vary too much 
in natural plant assemblages to be used in a “quantitative assessment of 
plant/meat ratios” (also see Burton and Price 1999, 2000).

The majority of work on trace element analysis has been performed on 
soft tissues, although most of the archaeological work has been conducted 
on bone (see Gilbert 1985:347–352; Aufderheide 1989:237–253), primar-
ily collagen. On the other hand, Coyston et al. (1999:222) suggested that 
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“bone apatite, which is the mineral phase of bone, may provide a more 
reasonable estimate of the composition of the whole diet,” and Grupe 
(1988) argued that compact bone was the best type to sample. Hair and 
nails are probably more sensitive materials since they reflect very short-
term exposures. Tooth enamel develops during childhood and contains 
a record of trace elements and so reflects childhood diet. As it does not 
remodel during adulthood, tooth enamel is the material of choice for 
trace element analysis and dietary reconstruction (e.g., Ericson 1993; 
Rink and Schwarcz 1995; Richards et al. 2002).

Strontium (see Sealy et al. 1991; Sillen and LeGeros 1991), barium, 
zinc, and lead are the primary trace elements examined in bone (Auf-
derheide 1989; Burton 1996). Strontium apparently does not fractionate 
by trophic level and can be very useful in the identification of residence 
location, particularly of children (as the strontium signature of childhood 
is “locked” in the tooth enamel throughout life). However, Ambrose 
(1987) suggested that strontium may be more susceptible to diagenesis 
than generally thought, although Aufderheide and Allison (1995a; also 
see Sillen and Sealy 1995) argued that bone contaminated to the point 
of altering Sr/Ca ratios can be detected and eliminated from a sample. 
More recent work (Hoppe et al. 2003) has not been as optimistic with 
bone but has suggested that enamel may be the best material to use in 
strontium analysis. While other elements may be useful (e.g., Lambert 
et al. 1979, 1984; Farnum et al. 1995), Ezzo (1994a,b) argued that only 
strontium and barium are productive since the levels of other elements 
are determined by cellular function, rather than just diet.

Anthropological interest in trace elements centers on issues of diet, 
health, and behavioral correlates (Aufderheide 1989:240–241). Trace ele-
ment concentrations in human tissues and bone may be employed to 
investigate a variety of ecological, dietary, and social questions. The relative 
contribution of plant and animal foods (trophic levels) in the diet can be 
estimated (Sillen and Kavanagh 1982; Gilbert 1985:346–347, table 11.1; Eric-
son 1989; Spielmann et al. 1990; Baraybar and de la Rua 1997; Little and 
Little 1997), although some plants may provide a disproportionate amount 
of calcium, skewing estimates of plant/meat ratios (see Burton 1996).

Trace element data have been used to infer similarity of diet by sex 
(Lambert et al. 1979:121, 127; Cook and Hunt 1998), social status (e.g., 
Schoeninger 1979; Aufderheide 1989:246; Vuorinen et al. 1990; Cook 
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and Hunt 1998; Schutkowski et al. 1999), the contributions of marine 
resources (Sealy and Sillen 1988; Francalacci 1989; Burton and Price 
1990, 1991; Aufderheide and Allison 1995b; Baraybar 1999), migration 
and mobility (Katzenberg and Krouse 1989; Price et al. 1994a,b, 2000; 
Grupe 1995; Sealy et al. 1995; Ezzo et al. 1997), identification of group 
affinity (e.g., Verano and DeNiro 1993; Safont et al. 1998), residence pat-
terns (Ericson 1985; Aufderheide et al. 1995; Baraybar 1999), whether a 
woman might have been pregnant or lactating (Blakely 1989), weaning 
patterns (Sillen and Smith 1984), and perhaps seasonality (Herrmann 
1993). Trace element analysis has also been employed to deduce dietary 
deficiencies since levels of various elements that are too high or too low 
may have serious health consequences (Aufderheide 1989:table 1).

In addition, some aspects of pollution can be measured through 
trace element analysis (e.g., Bresciani et al. 1991:164–167). For example, 
Pyatt et al. (2000) measured copper and lead concentrations in various 
samples from the area of a copper mine used during Nabatean, Roman, 
and Byzantine times in southern Jordan and discovered that heavy met-
als not only polluted the area during those times, but continue to do so 
today. High concentrations of some trace elements, such as lead, can be 
used as a measure of industrial activity (e.g., Ericson et al. 1979, 1991), 
ethnicity (e.g., Carlson 1996), status differences (Aufderheide et al. 1981, 
1985, 1988b; Corruccini et al. 1987), and even behavior related to toxicity 
(Kowal et al. 1991; Farrer 1993; Beattie 1995; Keenleyside et al. 1996).

A number of methods may be employed to measure elements (see 
Gilbert 1985:351–352; Aufderheide 1989:241–243, table 2). The most sensi-
tive methods are electroanalysis, mass spectrometry, and neutron acti-
vation analysis (NAA). Spectrographic (emission, absorption, plasma), 
atomic absorption, and various X-ray methods are also common analyti-
cal methods (e.g., Lambert et al. 1979; Bethell and Smith 1989; Winter 
and Marlow 1991; Pollard and Heron 1996). A new method to analyze 
elements is inductively coupled plasma mass spectrometry (ICP-MS).

Problems abound in using trace elements in dietary analyses (see 
Kyle 1986; Runia 1987; Hancock et al. 1989; Sillen et al. 1989; Schwarcz 
and Schoeninger 1991; Ezzo 1994a; Klepinger 1994; Katzenberg and 
Sandford 1995; Sandford and Katzenberg 1995). The primary problems 
are (1) whether element concentration is dependent on diet or whether 
biogenesis has altered the concentration, (2) sampling procedures, and 
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(3) whether the measured concentrations have been altered by diagen-
esis (e.g., Ambrose 1987; Pate and Hutton 1988; Grupe and Piepenbrink 
1989; Tuross et al. 1989; Lambert et al. 1990; Schwarcz and Schoeninger 
1991:287; Ezzo 1992; Radosevich 1993; Sandford 1993a; Farnum et al. 
1995), although it appears that it may be possible to mitigate the diagen-
esis problem (Price et al. 1992; Edward and Benfer 1993). The impact 
of cremation on trace element concentrations in bone is also an issue 
(Grupe and Hummel 1991). Other issues include incomplete data on 
trace element contents for certain resources, the usually large variety of 
foods consumed, the shifting percentages of consumed resources, the 
consumption of some resources high in trace elements (e.g., nuts and 
berries) overwhelming the signature of other resources, and the usually 
small archaeological sample size.

Using ICP-MS, Cordell et al. (2001) measured soil chemistry in three 
sample cornfields in New Mexico, grew corn on those fields, and were 
able to match the corn chemistry to the fields, developing a method to 
trace the geographic location where corn was grown. Ultimately, they 
hope to trace archaeological materials found in the Chaco Canyon area 
to their sources to test the hypothesis that some of the corn had been 
traded in from other regions.

Soil Chemistry Analysis

People and animals alter site soils, resulting in anomalous concentra-
tions of some chemicals, including calcium, magnesium, nitrogen, phos-
phates, and potassium, and they can alter soil pH (Cook and Heizer 1962, 
1965; Eidt 1973). On a large scale, soil chemistry, particularly phosphate 
concentrations, can be used to locate sites (see Woods 1977; Weymouth 
and Woods 1984; Parkes 1986:232–236; Bethell and Máté 1989).

Within a site, soil chemistry can be used to detect a variety of structures, 
with phosphate levels being a primary tool to define midden concentra-
tions, to locate various activity areas (e.g., Chaya 1996; Schlezinger and 
Howes 2000), to identify latrine areas (e.g., an increase in nitrogen), and 
even to detect plowed soils or agricultural fields (Leonardi et al. 1999).

Morgan et al. (1984) conducted analyses on soils from an Arctic site 
and identified “fats” derived from seals, the predominant taxa in the fau-
nal assemblage (also see Nolin et al. 1994). Davies and Pollard (1988) 
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tested the soils around a human burial and detected higher-than-back-
ground levels of organics, including lipids, suggesting that soil analy-
sis may be useful in detecting burials where bone does not preserve. 
Research conducted by Bethell (1991; also see Bethell and Smith 1989) 
on the concentrations of elements in soils showed that this could also be 
an effective method to detect “shadow burials” (no bones, just a stain 
that in proper context can be identified as a burial). Evershed and Tuross 
(1996) identified proteins and amino acids in some soils, associated with 
ceramic vessels.

Other Data Sources

The technology of food production, procurement, processing, transport, 
storage, and consumption can yield a great deal of information regard-
ing paleonutrition. For example, artifact assemblages are often used in 
support of certain interpretations regarding hunting, plant processing, 
or other subsistence practices. If the function of certain tools is simply 
assumed, however, their evidentiary power to deduce dietary patterns may 
be compromised. In addition, the function of features, such as those used 
for storage, can provide considerable insight into diet. Some information 
may also be gleaned from written and/or oral accounts of disease (e.g., 
Andersen 1991; Chase 1991; Kelley 1991) and depictions of disease and/or 
pathologies in art (e.g., Dequeker 1991; Filer 1995:29–39), such as imprint 
paintings of hands that seem to be missing fingers (Wells 1964:32–35,  
figs. 4, 14).

Certain landscape modifications, such as irrigation features, cleared 
fields, and/or deforested areas, might be used to infer some aspects of 
an economic and/or settlement system. In addition to physical features 
in the landscape, conventional ecofactual data (e.g., faunal and botani-
cal remains) could contribute information to landscape studies. Using 
archaeobotanical analyses, carbon-isotope studies on cattle bones, and 
shifting settlement patterns, Reddy (1991) postulated an increasing empha-
sis on pastoralism and adoption of drought-resistant summer crops in the 
late Harappan of India and Pakistan.

Among hunter-gatherers, burning was a common technique to mod-
ify and manage landscapes, for both ritual and subsistence purposes (see 
Lewis 1982). As such, the detection of landscape burning could imply the 
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presence, absence, and availability of certain resources, as well as which 
resources were emphasized. Westbroek et al. (1993) suggested that burn-
ing by hunter-gatherers over the last million years was the impetus for 
large-scale climatic change.

Summary

As discussed in this chapter, indirect data in paleonutrition studies 
include faunal and botanical remains, biomolecular materials, inor-
ganic remains, technology related to food acquisition and processing, 
and landscape modifications. While such data are more open to interpre-
tation than direct data are, they nonetheless provide critical information 
regarding human nutrition during prehistory. Ideally, direct and indirect 
data should be used in tandem, leading to a more comprehensive under-
standing of paleonutrition.

For example, a recent study combining paleofecal, aDNA, immu-
nological protein residue, radiocarbon, obsidian hydration, geoarchaeo-
logical, artifactual, botanical, and faunal analyses provided data on some 
of the earliest evidence of human occupation in the Far West (Jenkins 
2007). At Paisley Caves in south-central Oregon, the recovery of human 
coprolites prompted this multidisciplinary study to verify the identifica-
tion, context, and age of the coprolites. Along with the other data from 
the site, the study indicated that initial occupation of the site took place 
by at least 12,000 years ago.

The Jenkins study is ongoing, and subsequent analyses at Paisley 
Caves have the potential to contribute information regarding nutrition in 
far western North America during Paleoindian times. The point here is 
that if archaeologists plan for such multidisciplinary studies, the data base 
related to paleonutrition (as well as other aspects of human behavior) will 
be greatly enhanced. Only then will we be able to have a more detailed 
understanding of diet and nutrition among prehistoric populations.
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Issues in the Recovery of 
Paleonutritional Data

there are a variety of methods used to recover archaeological mate-
rials important for paleonutritional analyses. These methods are depen-
dent on the type of site that is being excavated, the types of matrix and 
strata from which the remains are recovered, and the kinds of research 
questions being asked. The most important step in the recovery of such 
materials is that the paleonutritionist be involved from the very begin-
ning. The paleonutritionist should be a part of the research design and 
should help plan where excavations will take place and how excavations 
should proceed in order to assist in the recovery of the various materials 
that are necessary for paleonutritional assessments. During actual exca-
vations, the paleonutritionist should be present to collect at least some of 
the samples and to observe depositional conditions and recovery. In this 
way, the paleonutritionist will be able to assess taphonomic factors and 
conditions as well as modify the basic plan of recovery if needed.

The least innovative, but productive, way to recover biological materi-
als is to have a technician collect random, unspecified samples from the 
field and send them in a bag to the paleonutritionist, along with a map of 
the field grid indicating where each sample was collected. The problem 
with this method is that the paleonutritionist has no indication of poten-
tial taphonomic factors, the kinds of cultural or environmental condi-
tions that may have influenced deposition and preservation, whether 
samples were collected from unambiguous cultural features/horizons/
zones, whether the “best” samples were collected, or how the samples 
fit in with the entire site. If the paleonutritionist conducting the analyses 
had never been to the site during excavation and/or had not been a part 
of the excavation design and sample recovery, the analysis of the samples 
may become nothing more than technical identification with little or no 
interpretation. If paleonutritionists wish to contribute to the understand-
ing of prehistory and the importance of biological material in the recon-
struction of past lifeways, they should be involved in the actual recovery 



recovery of paleonutritional data   103

process at all stages. The major issues facing the paleonutritionist in the 
interpretation of materials collected from an archaeological site are a 
clear understanding of taphonomy, the identification of cultural versus 
noncultural materials, and a recognition of how recovery methods may 
have influenced what materials were recovered from a site.

Taphonomy

Taphonomy is the study of site formation processes as they affect the 
preservation, inclusion, and distribution of biological components from 
archaeological sites. Efremov (1940), a paleontologist, defined the term 
taphonomy (taphos [tomb] and logos [law]) as the study of the transition of 
animal remains from the biosphere to the lithosphere. Because the term 
was defined by a paleontologist, most taphonomic studies have focused 
on the recovery and analysis of bone remains, although the taphonomy 
of plant (and other) remains is just as important for archaeological inter-
pretations. Since its inception, the definition of taphonomy has been 
altered to fit the needs of both paleontology and archaeology. Today, the 
study of taphonomy has evolved to include the postfossilization period 
(Lyman 1994a), and the scope of taphonomy now encompasses the his-
tory of biological remains, including their collection and curation (see 
Sobolik 2003).

Because of the broad array of biological, environmental, and human 
agents affecting the preservation, inclusion, and distribution of biological 
remains in archaeological sites, taphonomy should be the first concern of 
all archaeologists and paleonutritionists before they even begin to recover 
these remains. Before walking onto a site, before screening for bones,  
before floating for seeds and charcoal, the archaeologist should be thinking 
about all the agents that could be responsible for the assemblage and that 
may have affected the archaeological site overall. In this chapter, we discuss  
why it is important for the paleonutritionist (and archaeologist) to be 
aware of taphonomic processes at every step of an investigation, particularly 
what types of taphonomic factors could be influencing their assemblages 
and how they might account for these factors in the overall analysis and 
interpretation. As Bunn (1991:438) observed, “Taphonomic studies of mod-
ern analogs have shown the complexity of the processes that affect bones; 
but rather than despair, we should recognize that the processes likely to 
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have operated at a particular archaeological site, and the likely range of 
variability in the patterned effects of those processes, are specifiable.”

Some of the ways that archaeologists and paleonutritionists can help 
determine the taphonomic processes of a site or assemblage are with the 
aid of experimental archaeology and ethnoarchaeology. Experimental 
archaeology and ethnoarchaeology provide avenues for testing hypoth-
eses about site formation processes and artifact assemblage preservation, 
movement, and origin.

In experimental archaeology, researchers can conduct staged experi-
ments, as well as observe modern natural factors, to determine various 
environmental and cultural elements affecting their site and/or assem-
blages. With experimental archaeology, we can stage or observe phe-
nomena that relate to what we see in the archaeological record. In this 
way, it is possible to formulate ideas about how archaeological sites actu-
ally become formed and what types of impacts various factors have on 
the formation process. For example, in a study of bone movement by 
wood rats, Hoffman and Hays (1987) introduced bone from six differ-
ent animal taxa into an active wood rat den and recorded how the rats 
influenced the culturally controlled assemblage. Bocek (1986) observed 
modern rodent ecology to determine the potential effects of rodents on 
archaeological sites. For this study, the experiment was not controlled, 
but rather the observations of those effects were the basis for the analysis 
and interpretations (Bocek 1986).

Another way in which archaeologists and paleonutritionists measure 
the taphonomy of sites or assemblages is through the use of ethnoar-
chaeology. Ethnoarchaeology is the study of living human communities 
by archaeologists for the purpose of answering archaeologically derived 
questions. Data from these studies are particularly useful to taphonomists 
because such studies are, in essence, living demonstrations of the cultural 
processes involved in site formation. For example, in a study of mod-
ern Aché hunter-gatherer camps, Jones (1993) indicated that short-term 
camps have a pattern that is distinct from long-term camps in that the for-
mer have a fire-focused assemblage pattern in which debris is in primary 
context. We can then infer that short-term camps of prehistoric people 
with a similar cultural pattern may contain artifacts in primary context, 
whereas long-term camps may exhibit more assemblages in secondary 
context (see below).
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There are limits to the use of ethnoarchaeological data since modern 
societies have different behaviors and customs that can create artifact and 
site patterns that are different from those of past societies. In addition, 
prehistoric (and modern) human behaviors vary through time and across 
space, so comparing the assemblage patterns of contemporary hunter-gath-
erers in Africa to Paleoindians in North America may be problematic. What 
ethnoarchaeological studies do offer is an arena for observing cause-and-
effect relationships between humans and their environment that cannot 
be obtained through other means. For the rest of this section, we discuss 
the different components of archaeological sites that can affect the tapho-
nomy of biological assemblages used in paleonutritional assessments.

Of primary importance to an archaeologist is the determination of 
whether an archaeological assemblage is actually cultural, whether it was 
deposited and/or modified by humans. There are a variety of ways in 
which biological remains can become deposited in archaeological sites 
that have nothing to do with humans. For the analysis and interpretation 
of human behavior, it is important to ascertain which part of the site and 
which assemblages are due to human behavior and which are not. After 
determining which assemblages are cultural, the researcher can then 
assess whether that cultural material is in primary or secondary context; 
that is, whether this cultural material is in the context in which prehis-
toric humans placed it (primary) or has been moved or modified by other 
processes such as fluvial action, dogs, tree throws, or modern vandals 
(secondary). If it is determined that the assemblage is in secondary con-
text, then it is necessary to determine whether analysis of that assemblage 
will be useful to the overall research agenda and/or questions.

Preservation

Preservation of materials in archaeological contexts is the intersection of 
recognition and recovery, both of which are dependent on the research 
design, field methods, training, laboratory analyses, and skill. Organic 
materials in a site degrade, often to the point that the field archaeologist is 
unable to visually recognize them. Thus, in the eyes of the archaeologist, 
such materials did not preserve. It may also be that the methods used in 
the excavation of a site preclude the recovery of some items; for example, 
the size of the screen mesh used will greatly influence the recovery of 
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animal bone and small artifacts (Thomas 1969; Gobalet 1989; Shaffer 1992; 
Shaffer and Sanchez 1994; Nagaoka 2005). As we learn more and refine 
our methods, such as using finer screens and chemical analyses, we may 
discover that many more data are “preserved” in a site than we thought.

Nevertheless, organic materials do degrade due to a variety of factors, 
including biological, environmental, and cultural issues. In this section, 
we address some of these factors, although this discussion is not intended 
to be exhaustive. It is up to each archaeologist and paleonutritionist to 
analyze and experiment with the types of preservational factors that may 
have influenced or may continue to be influencing the site. Each site is 
different and was formed under unique conditions that affect the ease by 
which data from the site can be recovered.

Biological Preservation Factors

There are a great number of biological factors that influence the pres-
ervation potential of biological remains from archaeological sites. The 
most important biological factor is the presence of saprophytic organ-
isms. Saprophytic organisms are plants and animals that live on dead 
matter and obtain all their nutrients for growth (nitrogen compounds, 
potassium, phosphates, oxidation of carbohydrates) by breaking down 
organic matter. Saprophytic organisms can include larger scavengers 
and rodents, but the term refers mainly to small organisms such as earth-
worms, insects, fungi, bacteria, and microbes. These organisms consume 
organic materials, including biological materials from archaeological 
sites. The environments in which these organisms flourish greatly influ-
ence whether biological assemblages will be preserved (see below).

Other important factors that determine whether biological remains 
preserve include their robusticity, durability, and/or density. The more 
durable a bone or plant part is, the longer it will survive decay by sapro-
phytic organisms and chemical decomposition. Carbonization (burning) 
of plants makes them more resistant to destruction since the carboniza-
tion process converts the chemical constituents of wood and plants to 
elemental carbon, a durable substance that offers no nutrients for sap-
rophytic organisms. Therefore, in many regions of the world in which 
archaeological plant remains are usually degraded, charred plant remains 
may survive in recognizable form and be recovered.
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Burned animal bone, representing various stages from slightly singed 
to calcined, will also preserve better than unburned bone under certain 
conditions. Burning removes protein and alters the calcium content of 
bone. Calcined bone is pure white, friable, and porous, whereas bone 
that is not quite calcined (gray to white in color) is quite durable. Cal-
cined or almost calcined bone preserves well in areas with acidic soils 
where unburned bone is degraded through chemical action (see “Envi-
ronmental Preservation Factors” below).

Plant remains that are more frequently preserved and recovered by 
paleonutritionists are those that contain elements having a structural or 
protective role for the plant and are therefore more durable. Such ele-
ments include cellulose (to a lesser degree), sporopollenin (the main 
component of pollen), silica (the main component of phytoliths), lig-
nin, cutin, and suberin, all of which may be found in pits, seeds, rinds, 
spines, woody components, resin, pollen, and phytoliths. Plant parts that 
do not contain these durable elements tend not to preserve as well in 
archaeological sites and their potential absence should be taken into 
consideration.

Bone, horn, antlers, teeth, hooves, hide, and shell are the most fre-
quently observed animal remains from archaeological sites. These materi-
als are more resistant to decay because they are made of robust structural 
elements such as keratin and collagen (horn and hooves), phosphatics 
(bone, antlers, teeth), and chitin (insect and crustacean exoskeletons) or 
are calcareous (shell) (table 4.1). A shell midden site may contain many 
thousands of durable and well-preserved oyster shells, or a Puebloan site 
in the American Southwest may contain large numbers of carbonized 
corn cobs. It should be noted, however, that the quantity of these well-
preserved remains does not demonstrate that prehistoric peoples were 
eating nothing but oysters or corn at such sites. Preservation affects bio-
logical remains differentially; some remains will be well preserved and 
others will be far less preserved, so keep in mind that field methods and 
basic recognition of remains are always factors in preservation.

Although bone is the most frequently observed animal remain from 
archaeological sites, some bone is more resistant to decay and destruction 
than others. Various bone elements, as well as bone elements from dif-
ferent species, have different structural densities. Larger animals tend to 
have bone with greater density than medium and small animals, so their 
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remains tend to be preferentially recovered from archaeological sites. 
Some exceptions include beaver, whose dense bone has a greater durabil-
ity than most carnivores and other medium-sized mammals. Mammal 
bone also tends to be denser than fish and bird bone and thus is more 
frequently recovered. Denser elements include the mandible, femur, 
humerus, tibia, calcaneus, and astragalus. These bones will also be recov-
ered with greater frequency than less dense elements (Lyman 1994a). In 
addition, adult bones tend to preserve better than those of infants (Guy  
et al. 1997), making paleodemographic reconstructions more difficult.

Another important and often underrated influence on the tapho-
nomy of biological assemblages, particularly bone, is dogs. Dogs have 
been associated with humans for at least ten thousand years and their 
remains are found in numerous archaeological sites around the world. 
Unfortunately, ethnoarchaeological studies have demonstrated that dogs 
can be very destructive to modern bone assemblages. In her study of 
domestic dogs in a modern Aka hunter-gatherer camp in central Africa, 
Hudson (1993) observed that dogs consumed between 74 percent and 
97 percent of the bone elements brought into camp. Due to their bone 
density, skull elements, limb shafts, and the bones of larger animals sur-
vive canine assaults best.

table 4.1.  Chemical Foundation and Decay Resistance of Animal 
Remainsa

Remains Chemical Foundation Decay Resistance

Bone Phosphatic High
Antler Phosphatic High
Ivory Phosphatic High
Teeth Phosphatic High
Horn Keratin and collagen (protein) Low
Hoof Keratin and collagen (protein) Low
Hair Keratin and collagen (protein) Low
Hide Keratin and collagen (protein) Low
Leather Keratin and collagen (protein) Low
Turtle shell Keratin and collagen (protein) High
Arthropod exoskeleton Chitin (protein) High
Mollusk shell Calcareous Medium/high
Bird eggshell Calcareous Low/medium
a Compiled from Carbone and Keel (1985:table 1.1, 9).
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Environmental Preservation Factors

The environment in which plant or animal remains are deposited greatly 
influences their decomposition and whether they will be preserved in 
recognizable form for a month, a year, ten years, a thousand years, or 
longer. Because saprophytic organisms are the main cause of biological 
material destruction, preservation depends mainly on what types of depo-
sitional environments are conducive to or inhibiting to these organisms. 
Carbone and Keel (1985) listed four environmental factors that influ-
ence preservation of biological assemblages: soil acidity, aeration, rela-
tive humidity, and temperature. In addition, other geological conditions 
may also be important for biological preservation.

Saprophytic organisms are intolerant of highly acidic soils and live 
almost exclusively in alkaline soils. Therefore, acidic soils tend to pre-
serve biological materials (organic components) because these materi-
als are not consumed by microorganisms, whereas alkaline soils tend to 
have poor preservation of biological materials. This can be seen in the 
potential for pollen preservation in the Southwest. Because soils in the 
southwestern United States are highly alkaline, preservation of organic 
materials in open areas tends to be poor. Pollen has a strong outer cover-
ing (called exine) made of sporopollenin, one of the strongest natural 
substances known. However, alkaline soils are conducive to fungi and 
bacteria that eat pollen, with the result that those species whose pollen 
contains more sporopollenin in its exine will tend to preserve better.

While alkaline soils usually contain more saprophytic organisms that 
consume organic assemblages (plant remains and organic components 
of bone), the chemistry of such soils fosters the preservation of bone and 
shell (mineral components) better than that of acidic soils. Bone is made 
up of minerals (hydroxyapatite, calcium carbonate, and trace elements) 
and organics (collagen, bone protein, fats, and lipids) in an approxi-
mately 2:1 ratio. The organic components of bone will tend to be eaten 
by saprophytes in alkaline soils, leaving mineral bone components intact. 
Therefore, the structural components of bone are preserved and can be 
recovered in alkaline conditions. Bone does not survive well in acidic 
conditions because acids dissolve the structural bases of minerals, leaving 
only organic traces of bone in the soil. Calcareous shell and antlers are 
preserved under the same conditions as bone.
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For example, soils in Maine tend to be acidic, which limits the pres-
ervation potential of bone. Bone preservation in interior sites is mostly 
limited to specimens that are calcined or almost calcined (see above). 
Although only small pieces of calcined bone are preserved in interior sites 
with acidic soils, bone (mainly uncalcined) is prevalent from archaeologi-
cal shell midden sites along the coastal regions of Maine. Bone preserves 
in these sites because weathering and degradation of the calcareous shell 
matrix produces an alkaline environment conducive to preservation of 
the mineral components of bone. Therefore, the level of preservation at 
archaeological sites in Maine depends upon their location and soil alka-
linity. Although alkaline soils (such as in a shell midden) preserve bones 
better, they will continue to undergo decay, degradation, and alteration 
through time.

Soil pH is not the only factor that influences preservation of biologi-
cal assemblages. For example, while the soil acidity in Maine tends to 
preclude bone preservation, these acidic soils should preserve other 
organics, such as botanical remains, as the acidity inhibits saprophytic 
organisms that eat organics. This is not the case, however, because the 
seasonal freezing/thawing cycle mechanically degrades chemical com-
position and the moisture-rich soil tends to be conducive to saprophytic 
organisms. In many such cases, however, preservation of organics can be 
obtained when they have been carbonized or burned.

One example is the preservation of carbonized botanical remains dis-
covered in a fire hearth in an archaeological site in an interior region of 
Maine, revealing the earliest evidence of squash agriculture in the region 
(e.g., Peterson and Asch Sidell 1996). Another example comes from the 
southwestern United States. As previously discussed, alkaline soils in the 
American Southwest are not conducive to pollen preservation, although 
this region is famous for the preservation of other biological remains 
due primarily to high temperatures, extreme aridity, and relative lack of 
humidity. Saprophytic organisms do not thrive in hot, dry conditions and 
therefore biological preservation in these areas tends to be excellent. Pres-
ervation of organics in open areas of this region, on the other hand, is not 
as good as in enclosed areas (e.g., caves, rockshelters, pueblos) because 
of the increased exposure to weathering (wind, erosion, rain). Bone pre-
serves better in this alkaline environment than other biological assem-
blages, although preservation of all organics in this region is excellent.
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In addition to hot temperatures, cold temperatures also limit the 
amount of decay of biological remains because saprophytic organisms 
cannot thrive in extreme temperature environments. Biological assem-
blages in the Arctic can be as well preserved as in hot, arid regions; how-
ever, most archaeological sites in the Arctic are surface sites with little or 
no subsurface deposits. Because of this constant exposure to weathering, 
some biological remains will become degraded and will not preserve 
well over time. For example, large animal bone remains are ubiquitous 
at these northern sites, whereas botanical remains are less likely to be 
recovered (recovery is also due to cultural impacts; see “Cultural Preser-
vation Factors” below).

Aeration can also affect the preservation of biological materials. Sap-
rophytic organisms cannot live without oxygen, so anaerobic (lacking 
oxygen) environments are more conducive to preservation. Such envi-
ronments include peat bogs, which are famous for the preservation of 
bog bodies and other biological materials (e.g., Stead et al. 1986; Broth-
well 1987), and waterlogged sites, which have been known to contain 
preserved wooden stakes representing the remains of prehistoric weirs for 
trapping fish (e.g., Ames 1994).

Anaerobic conditions may also exist under deep layers of clay or silt 
deposits, providing a good environment for preservation of biological 
materials. One reason carbonized botanical remains were preserved from 
the Little Ossipee North Site in Maine (e.g., Sobolik and Will 2000) is 
that soon after humans made and used fire hearths at the site, there was a 
flooding event of the Saco and Little Ossipee Rivers that capped the site 
with clay and silt deposits, preserving botanical remains in a relatively 
anaerobic environment. The depth of deposit of biological materials is 
an important component of preservation in such environmental condi-
tions; the deeper the material is buried and the more anaerobic the envi-
ronment is, the better the preservation potential.

For instance, a few years ago, a llama farm in Maine donated a llama 
skeleton to the zooarchaeology collection at the University of Maine on 
one condition: The skeleton was to be dug up and collected by the uni-
versity. The llama had been buried for three years in what the owners 
termed a “shallow” grave. One weekend, one of us (KDS) took a group of 
graduate students to the farm to dig up the llama under the assumption 
that a llama buried for three years in a shallow grave in the wet soils of 
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Maine would be nothing but bones. The llama turned out to be deeply 
buried (1.5 to 2 meters) and was in pristine condition with little decompo-
sition of fur or muscle. The depth of burial produced a relatively anaero-
bic environment that inhibited saprophytic activity and thus inhibited 
decay and decomposition. The owners were informed that the research 
team would be back in ten years.

Anything that disturbs an anaerobic environment, however, can 
introduce sources of oxygen and change the environment from one of 
good preservation to one in which saprophytic organisms can thrive and 
cause decomposition. After the head portion of the llama was exposed, 
for example, oxygen was introduced, aerating the soil around the llama. 
Because of this disturbance, the head portion of the llama will probably 
decompose more rapidly than the undisturbed hind portion that main-
tained its relatively anaerobic burial conditions. Nonhuman disturbance 
factors will also affect preservation by introducing aerated matrix regions 
into relatively anaerobic environments, such as rodents or other animals 
that dig deep burrows or pits, worms and insects that dig into the ground, 
plant roots that burrow into the ground, and tree throws that expose pre-
viously undisturbed environments to the aerobic environment.

In addition to introducing aerated soil into anaerobic environments, 
tree throws are also problematic because they mix up and disturb the cul-
tural and noncultural components of a site (fig. 4.1). After the tree decays, 
there may be little evidence to indicate that a major disturbance took 
place in this area of the site. Not only do tree throws move cultural and 
noncultural materials around in a site, they can also introduce objects 
from younger deposits into older areas of the site, making it difficult to 
obtain meaningful radiocarbon dates or biological (and other cultural) 
materials in appropriate cultural zones. Rodents and other burrowing 
animals also move cultural material around, mix younger deposits with 
older deposits, aerate anaerobic environments, and introduce noncul-
tural materials into cultural zones.

Cultural Preservation Factors

Humans also affect the preservation potential of biological materials. 
Before biological remains are deposited, humans can affect their robus-
ticity and structure, either decreasing or increasing their potential for 
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preservation. Humans burn plants and bones, either intentionally or 
unintentionally, increasing the probability that such remains will be 
preserved (see “Biological Preservation Factors” above). In addition, 
humans break apart, macerate, pound, chop, and boil biological mate-
rials before deposition, which decreases their chance of preservation. 
For example, humans break bone to gain access to marrow, sometimes 
pounding the bone into little pieces and boiling it in water to obtain the 
fat content.

figure 4.1. Graphic showing how a tree throw can invert soil profiles and 
transport older materials upward in the soil column (from Will et al. [1996], 
courtesy of James Clark; reproduced by permission).
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Humans also dig pits for various purposes, causing exposure of under-
lying archaeobiological assemblages to a more aerobic environment, 
potentially reducing their preservation (see “Environmental Preservation 
Factors” above). This type of cultural transformation is seen more fre-
quently in larger, multicomponent, and/or stratified sites (where human 
activity was more extensive and diverse and thus can affect culturally 
older deposits) than in small, single-component sites (where the evi-
dence of human activity tends to be more centralized).

Ultimately, the main factor that affects whether biological materials 
will become deposited in archaeological sites is whether humans used 
that material or even brought it to a site. The types of materials (includ-
ing materials other than biological remains) humans use and bring back 
to a site indicate what type of site it is, such as a base camp, hunting 
camp, or butchering site. Archaeological bone is mainly the result of 
meat- and tool-gathering behaviors of humans. Gathering meat involves 
disarticulation and skinning of scavenged or hunted prey and defleshing 
of bone. In the case of a large animal, much of this activity may take 
place outside the base camp; therefore, not all bone from an animal will 
be brought back to the base camp and become deposited in the archaeo-
logical record (the “schlepp effect” [Daly 1969:149]).

Another example of cultural preservation is the processing of agave 
plants by prehistoric and historic peoples of the southern plains and 
southwestern deserts of North America. Agave is a desert succulent 
that has long, flat, sharp leaves aboveground and a nutritious, compact 
“heart” belowground. The nutritional value of the “heart” peaks just 
before the plant is ready to send up its reproductive stalk, so it is at this 
time that humans would dig up the plant. First, the sharp leaves would 
be cut from the rest of the plant and then the “heart” would be dug up. 
The “heart” would then be roasted in earthen ovens for at least forty-
eight hours to make it edible. People would eat parts of the agave “heart” 
at the earthen oven site and then take the rest back to camp to share and 
eat there. Numerous chewed pieces of agave, called quids, have been 
found in base-camp sites. From this example, we can see that remains of 
agave will be found at procurement sites (leaves), at earthen oven sites 
(remains of agave in the ovens as well as surrounding the site), and at 
base camps (quids). In addition, people used agave leaves for items such 
as basketry, sandals, paintbrushes, twining, and clothing, so the fibrous 
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remains of agave would probably be found in any site at which agave 
was used.

Cultural versus Noncultural Assemblages

Some of the many factors that can affect the preservation potential of 
biological materials were discussed above. When biological remains are 
recovered, they need to be assessed as to whether they are cultural or 
noncultural in origin. A cultural context is defined as a setting that has 
been physically altered or added to as a result of human activity. Evi-
dence of this activity may include features (e.g., postholes, hearths, build-
ings), portions of stratigraphic layers (middens, living surfaces), and/or 
artifact concentrations. Noncultural archaeological contexts are those for 
which human activity is not indicated. Most sites have within them both 
cultural and noncultural contexts; that is, sites are commonly formed 
by a combination of cultural and noncultural processes. Therefore, the 
archaeologist needs to determine which portions of a site are cultural 
and which are not. The paleonutritionist can contribute greatly to this 
determination by analyzing which biological assemblages are cultural 
and which are not.

Most taphonomic studies addressing the issues involving cultural and 
noncultural material have focused on accumulation and modification 
of faunal remains. These studies have indicated that there are a large 
number of factors, such as carnivores, rodents, owls, and raptors, that 
influence bone assemblages deposited at archaeological sites. All of these 
animals accumulate bone and may deposit bone not used by humans 
into archaeological sites. This noncultural bone is usually distinguish-
able from cultural, human-deposited bone.

Carnivore influence on a bone assemblage can be recognized by the 
surface attributes of individual bone specimens. When chewing or gnaw-
ing, animals leave characteristic marks on bone. Microscopic examina-
tion of bone can reveal incisions, scratches, gouges, punctures, and pit-
ting. Some of these marks are exclusively of human origin, while others 
are clearly of noncultural origin. Punched holes, striations, scoop marks, 
and crunching/splintering are examples of tooth marks left on bone by 
animals. For example, canids will create shallow grooves or channels 
transverse to the longitudinal axis on long bones because the long and 
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thin shape of these bones prevents bone from being gnawed in other 
directions. Punched holes, or tooth perforation marks, occur where hard 
bone is thin or soft, such as at the blade of the scapula or the ilium. These 
marks may appear as small hollows if the tooth did not fully pierce the 
bone surface. Striations occur on bone surfaces where carnassial teeth 
have scraped the surface in an attempt to reach the marrow cavity. Tooth 
scratches tend to follow the surface of the bone, deeper on convex sur-
faces and shallower on concave surfaces.

In contrast, cut marks of human origin tend to be uniform in depth. 
Where the epiphysis has been removed, scratches that are parallel or 
diagonal to the longitudinal axis of the bone may be present on the 
diaphysis. Compact bone may also be gnawed away to gain access to 
spongy bone, leaving overlapping striae and a scooped-out appearance on 
bone surfaces. Finally, marrow is reached by larger animals by crunch-
ing through bone, causing longitudinal splintering. Smaller canids will 
remove epiphyses to weaken bone structure prior to crunching through 
the diaphysis.

Humans mark bone while butchering, skinning, and preparing food. 
Cuts are purposely placed for a desired result. Skinning an animal can 
leave cut marks on the underside of the mandible and cut marks that 
encircle the distal ends of limb bones. Since cultural marks are created 
on bone in butchering, cut marks cluster around articular surfaces or 
in areas of major muscle attachment. Marks will differ between species 
due to variances in joint strength. Bone struck with stone tools will leave 
crescent-shaped notches at the point of impact and bones broken during 
butchering by “grooving and snapping” have heavy incisions along the 
broken edges. Differences between the shapes of cut marks from tools 
and those from carnivore tooth damage are also readily identifiable. Tool 
marks are characterized by fine striations within the furrow made by cut-
ting action. These striations are thought to be created by irregularities on 
the working edge of the tool. Tooth marks lack striations but exhibit ridges 
perpendicular to the direction of the mark, caused by uneven force applied 
by the animal to the bone. These are often called “chatter marks.”

Another way that archaeologists and paleonutritionists distinguish 
cultural from noncultural bone is the presence of small animals, par-
ticularly rodents, in the assemblage. Small animals excavated from sites 
are often considered noncultural or contaminants by some researchers; 



recovery of paleonutritional data   117

however, to disregard them as possible human food refuse may underes-
timate the importance of small animals to the dietary inventory of prehis-
toric peoples. A wide variety of small animals have been recovered from 
paleofeces, indicating that they were eaten by prehistoric people; thus, 
their bone remains in archaeological sites may be due to cultural factors 
(Sobolik 1993). For instance, numerous paleofeces from archaeological 
sites in southwest Texas contain bone remains from small animals; 333 
paleofeces have been analyzed for their macrocontents, 245 (74 percent) 
of which contained small bone remains and 123 (33 percent) specifically 
contained rodent remains (Sobolik 1988a).

Other ways to determine cultural versus noncultural bone are through 
analyses of potential taphonomic agents in a particular region. Research 
on taphonomic factors that may have influenced site depositional pro-
cesses and biological assemblage preservation and incorporation must be 
regional, site specific, and fairly inclusive, because different factors are 
at work in different areas and time periods. It is not as useful to focus on 
one aspect of taphonomy at a site and ignore other possible influences. 
For example, one of us (KDS) conducted a taphonomic study of the fau-
nal remains from a prehistoric hunter-gatherer base camp in Big Bend 
National Park, Texas. The factors that influenced faunal deposition at the 
site were rodent burrowing and carnivore scat deposition. Other poten-
tial taphonomic factors that were not as important were fluvial deposi-
tion and/or modification and raptor pellet deposition.

Because of the wide variety of taphonomic factors that may have 
influenced the biological assemblages in an archaeological site and the 
importance of understanding taphonomic history, many paleonutrition-
ists may become fixated on data collecting at the quantitative level with-
out looking at the big picture. Before examining 5,000 bone fragments 
for the presence of cut, tooth, or gnaw marks, it is necessary to assess 
whether such analysis is necessary for the overall research goals. As an 
example, Shipman (1986) examined more than 2,500 bones under a scan-
ning electron microscope looking for human and nonhuman marks. She 
observed numerous instances in which human cut marks were made 
over scavenger tooth marks, allowing her to conclude that early humans 
(hominids) were actually scavengers rather than hunters; they obtained 
meat by scavenging portions after other carnivores had made the kill. 
Shipman’s painstaking analysis was for a purpose—it contributed to the 
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big picture. Although not all of our analyses may have such grandiose or 
far-reaching implications as Shipman’s, we need to be constantly think-
ing of how our data fit into the big picture and what research goals we 
may help answer.

Context

Ultimately, the question of whether a biological assemblage is cultural 
or noncultural is one of context. Interpretation of context occurs at all 
stages of research, from excavation to analysis. During excavation, the 
presence of artifacts (such as stone tools or ceramics) in direct archaeo-
logical association with biological materials provides evidence that they 
may have a cultural origin.

Disturbances to context should be evaluated critically. Potential distur-
bances are numerous and can include tree throws and carnivore or other 
animal modification as evidenced by the presence of scat, burrows, and 
gnaw marks on bone. Rodent burrows are commonly identified intru-
sions into archaeological contexts and are often easy to recognize dur-
ing excavation. Rodents are notorious for introducing noncultural bone 
into archaeological sites, as well as moving cultural material out of their 
primary contexts. The actions of these agents can displace, introduce, or 
remove artifacts or ecofacts from their original point of deposition. As pre-
viously discussed, humans, both prehistorically and in modern times, dis-
turb archaeological contexts and move cultural materials from a primary 
to a secondary context.

Biological materials can be disturbed and moved into or out of a site 
by numerous agents of accumulation, such as water and wind. For exam-
ple, these materials can be removed from their primary context in an 
archaeological site and redeposited in a secondary context by fluvial pro-
cesses. Typical fluvial contexts are channels, floodplains, lake margins, 
point bars, and coastal settings. Because water can move artifacts out of 
their primary context, many times archaeological sites have been “dis-
covered” when, in fact, they are nothing more than artifacts in second-
ary context. Will and Clark (1996) conducted an experimental archae-
ology study in which it was documented that artifacts can be moved 
great distances along lakeshores due to wave action and ice movement. 
This study helped to explain why numerous sites were recorded during 
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the initial survey along a large impounded lake, but, upon excavation, 
some of these sites consisted merely of surface lithic debris. Although the 
experiment was conducted on lithic artifacts, the same could hold true 
for biological materials as well.

Fluvial action can move cultural remains out of a site as well as 
deposit noncultural materials into a site. Fluvial effects on bone have 
been extensively studied, whereas such effects on botanical materials 
are not as well known. Surface abrasion and rounding of bone surfaces 
are attributes of bones that have been transported by water. Orientation 
may also be a sign that bone specimens have been moved by fluvial  
processes—heavier ends of elongate elements point upstream. Elements 
with low density, low weight, and a high surface-area-to-volume ratio, 
such as innominates and scapulae, are more likely to be transported long 
distances. Shape will also influence transportability—long, flat bones are 
more likely to be transported than round ones.

In a classic study on the effects of fluvial action on bone, Voorhies 
(1969) experimented with bones from medium-sized animals to deter-
mine their transportability in flowing water. Faunal elements were divided  
into groups, placed in a flume, subjected to flowing water, and their 
movements charted. Group I elements included ribs, vertebrae, sacrum, 
and sternum. These elements were immediately moved by slow-moving 
currents. Group II was composed of the femur, tibia, humerus, metapo-
dia, pelvis, and radius, which were gradually carried away in a moderate 
current. A few elements, including the scapula, ulna, and phalanges, were 
between Groups I and II. The skull and mandible belonged to Group III 
and were only moved by strong currents, while the mandibular ramus 
was intermediate to Groups II and III. Thus, Voorhies (1969) demon-
strated that an assemblage composed of elements representing all of the 
groups was probably not affected by fluvial action. However, if an assem-
blage consists only of elements from one group, fluvial action should be 
considered as contributing to the taphonomy of the assemblage.

Discussion

Determining the taphonomy of biological materials recovered from an 
archaeological site is the first and most important step an archaeobiolo-
gist takes in the analysis and interpretation of such remains. It is critical to 
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determine how the botanical or faunal remains became deposited in a 
site and all the potential factors influencing that deposition. The archae-
ologist must ask whether the biological remains from a particular site are 
cultural or merely represent deposition through noncultural agents. If 
remains are determined to be noncultural, they may be useful in analyses 
of paleoenvironment but they are not useful for direct analyses of human 
activity. Even if biological materials are considered to be deposited as a 
direct result of cultural activity, they may be out of primary context due 
to postdepositional factors, such as vandalism, animal burrowing, and 
human digging. Depending on research goals, biological materials out of 
primary context may not be useful for analysis and interpretation, even if 
they are considered cultural; the time, money, and effort spent on their 
analysis may be too great for many research projects.

In all stages of an archaeological project, decisions need to be made 
regarding the effectiveness and potential of each step. It is up to the 
archaeologist to determine which sites are to be tested or analyzed fur-
ther and which will yield the most information during the typically short 
field season. After the archaeologist has made these decisions and the site 
has been excavated, it is up to the paleonutritionist (who, it is hoped, has 
been involved during all phases of excavation) to determine which mate-
rials from a site are worth the expenditure of diminishing supplies of time 
and money. In other words, the paleonutritionist must determine which 
materials will help answer research goals, which will assist in interpreta-
tions of past human lifeways, and which are cultural and in good context. 
Understanding taphonomy will help to answer these questions. Paleonu-
tritional analyses and interpretation cannot profitably proceed without 
this understanding.

Archaeological Recovery Methods

Materials related to paleonutrition can be recovered in the same fashion 
as other archaeological remains; during normal excavation and screen-
ing, such remains can be removed from the matrix or picked up in the 
screen. The majority of archaeological sites are excavated using dry and/
or wet field screening. The use of 1/4-inch mesh screen to process site 
soils is commonplace but is a rather crude method for the recovery of 
biological data (and even for some artifacts). Because these materials 
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may be too small to be observed with the naked eye during excavation or 
to be caught in traditional screens, most biological materials are recov-
ered during fine-screening and flotation (usually in the laboratory). Bio-
logical materials that are collected during normal excavation procedures 
should be bagged separately from those recovered during fine-screening 
and flotation.

Numerous studies have demonstrated that the use of fine screens (1/8-
inch or 1/16-inch screens) and flotation devices is essential for an adequate 
recovery of paleonutritional materials. Studies on the efficiency of various 
screen sizes have shown that the loss of data increases in percentage as the 
type of animal (or element) gets smaller and as the screen size gets larger 
(Thomas 1969; Gobalet 1989; Shaffer 1992; Shaffer and Sanchez 1994; 
Nagaoka 2005). In fact, some species may be missed entirely (table 4.2).

The importance of flotation techniques in the recovery of botanical 
remains has also been realized through a number of research projects; 
the study by Struever (1968) is usually cited as the first thorough discus-
sion. Flotation uses water to separate lighter (less dense) material, usually 
organics, from heavier (more dense) material, usually inorganic matrix 
but also including some bone. Although flotation was used sporadically 
prior to the 1960s, the development of the “new archaeology” (Binford 
1962, 1968), with its emphasis on the recovery and interpretation of eco-
logical and environmental remains from archaeological sites, led to the 
acceptance of flotation as an important tool for botanical data recovery.

If entire taxa are not recovered due to the use of large-mesh screens, 
a miscalculation of the relative importance of particular species can 
easily result in the development of a spurious subsistence model (e.g., 
Gordon 1993). As the analytical aspects of dietary models become more 
sophisticated, it is astonishing to see the continued (and customary) use 
of 1/4-inch screen in the field in many parts of the world (and even no 
screening in some places!), including some regions of North America.

Fine-screening is a simple technique in which a known quantity of 
matrix is passed through a fine-mesh screen (usually 1/8- or 1/16-inch 
mesh). This can be done by using a separate fine screen by itself or plac-
ing the screen within or underneath the framework of an existing coarse 
screen (usually 1/2- or 1/4-inch mesh), thereby screening the same matrix 
with coarse and fine screen. This type of screening method is easiest 
when dealing with dry matrix. When fine-screening wet matrix such as 
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clay or mud, it is easier to water-screen the samples so that the matrix can 
be easily broken apart, water-cleaned, and identified. In clay or muddy 
soils, biological remains may turn the same color as the matrix, making 
identification difficult.

The advantage of fine-screening and water-screening is the increased 
recovery of smaller remains. The main disadvantage of these types of 
screening techniques is that fragile biological remains, such as seeds, 
charcoal, and small bone, are easily broken down due to the mechanical 

table 4.2.  Comparison of Results from Screen Size and Faunal Recovery Rate 
Studies

Study and Taxon
Size of Live 

Animal

Bone Recovery 
Percentages

1/4-
inch 

screen

1/8-
inch 

screen

1/16-
inch 

screen

Shaffer and Sanchez (1994:tables 1 and 2)
  Least shrew (Cryptotis parva) 4–7 g 3%a 3%a —
  Deer mouse (Peromyscus sp.) 18–35 g 3%a 29%a —
  Ground squirrel (Spermophilus sp.) 140–252 g 18%a 53%a —
  Cottontail rabbit (Sylvilagus sp.) 600–1,200 g 47%a 68%a —
  Fox (Vulpes sp.) 4,500–6,700 g 76%a 91%a —

Thomas (1969:393, table 1b)
  Mouse-sized mammals 100 g 16% 81% 100%
  Squirrel-sized mammals 100–700 g 40% 82% 100%
  Rabbit-sized mammals 700–5,000 g 53% 97% 100%
  Coyote-sized mammals 5,000–25,000 g 98% 100% 100%
  Deer-sized mammals 25,000 g 99% 100% 100%

Kobori (1979)
  Unspecified mammals — 8.3%c 51.3%c —

Gobalet (1989:table 2)
  Tule perch (Hysterocarpus traskii) 16 cm TLd 6%e —   94%e

 � Sacramento perch (Archoplites  
  interruptus)

60 cm TLd 4%e —   96%e

a Percentage of element category (e.g., skull, femur, carpal) represented.
b Calculated from the materials from all levels at Smoky Creek Cave, Nevada.
c Percentage of total bone recovered from combined excavation units 2 and 5.
d TL 5 total length.
e Percentage of total number of elements recovered.



recovery of paleonutritional data   123

nature of screening and the impact of high-pressure water on the sample. 
Because of this disadvantage, flotation is usually the method of choice by 
paleonutritionists to recover fragile botanical remains. There are a wide 
variety of flotation methods, with each analyst tending to prefer a specific 
technique. A review of the types of flotation methods employed by vari-
ous projects around the world was presented by Pearsall (1988). Some of 
these techniques are reviewed here. Whatever method is used, it remains 
important to properly analyze the results (e.g., P. Wright 2005).

Flotation Techniques

The initial flotation method employed by Struever (1968) was called 
the “immersive method” or the “apple method” and was useful in areas 
where there was running water in which to float the samples. For this 
method, one would use washtubs with screens welded in the bottoms 
and partly immerse the tub in the water source (e.g., creek, river, pond, 
lake). The archaeological soil is then added to the tub and all floating 
material is skimmed off with cheesecloth. For this method, it is possible 
to use multiple people and tubs to keep the process going, resulting in the 
ability to float great volumes of material rapidly. The heavy fraction (the 
material that sinks to the bottom of the tub) is then dumped in a bucket 
of zinc chloride (1.9 specific gravity) and separated further (some mate-
rial that originally sinks will float in zinc chloride). The disadvantages of 
this method are that you have to strain the zinc chloride in cheesecloth 
after each use to prevent contamination, the process makes bones and 
calcium carbonates foam due to the hydrochloric acid in the zinc chlo-
ride preparation, it is costly, and it irritates skin and eyes.

Helbaek (1969) developed a similar technique to float samples in 
areas in which water is scarce. In this method, soil is dumped into a 
bucket full of water, the soil is stirred, and the top portion of the water is 
poured onto a fine-mesh screen to collect the light fraction. The heavy 
fraction at the bottom of the bucket is either discarded (not the preferred 
option) or dried for later examination. The process is repeated with new 
water for each sample. In addition to this process, Helbaek used carbon 
tetrachloride rather than water because it has a higher specific gravity 
(1.8), which increases organic material recovery. Carbon tetrachloride is 
costly, however, and we now know that it is carcinogenic.
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A frequently used flotation method in archaeology today is the oil 
drum method. This technique is also called the “SMAP” (Shell Mound 
Archaeological Project) flotation method and was first used by Watson 
(1976). It involves pumping water from a nearby source into the bot-
tom of a 55-gallon drum that has a screen-bottomed bucket inset at the 
top. Archaeological soil is dumped into the screen-bottomed bucket; the 
light fraction floats and the heavy fraction is caught at the bottom of the 
bucket. The light fraction is skimmed off the surface with a coffee strainer 
and dumped onto newspaper to dry and then be sorted. This technique 
can process a great deal of soil even when water is limited because water 
in the 55-gallon drum can be reused from sample to sample.

A similar technique was used at the NAN Ranch, a Mimbres puebloan 
site in southwest New Mexico (Sobolik et al. 1997). A 55-gallon drum 
was filled with water from a hose (fig. 4.2). The drum had a large hole 

figure 4.2. Example of a SMAP flotation system used at the NAN Ranch 
Ruin, New Mexico, under the direction of Harry J. Shafer (photo provided 
by Kristin D. Sobolik).
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in the bottom that was closed with a screw-top. This hole was used to 
drain water and the heavy fraction once it had been utilized a number 
of times. Water entered the drum through a hose attached to a ring aera-
tion system, creating a frothing, moving system that churned the soil and 
induced organics to float to the top. Soil was dumped into the drum; the 
light fraction floated to the surface with the aid of the aeration system, 
where it ascended a slanted spout, attached to the top edge of the drum, 
into cheesecloth on a catchment area. The light fraction in the cheese-
cloth was then hung to dry on a clothesline before being sorted and ana-
lyzed. The heavy fraction sank to the bottom of the drum, where it was 
periodically drained through the large hole in the bottom.

A potential problem with this technique and other mechanical tech-
niques is that numerous samples are often floated using the same water, 
possibly introducing contamination from sample to sample. Unless you 
have access to large amounts of water and time, it is not feasible to empty 
the drum after every sample. If the water is reused, each sample can be 
“run” or floated for longer periods of time in an attempt to eliminate 
light-fraction contamination.

Recovery of Fine-Screen/Flotation Specimens

The easiest method for recovery of biological remains from archaeologi-
cal sites combines fine-screening and flotation in one simple step. This 
method is time efficient, does not create the potential for contamination, 
can be accomplished by one person, uses small amounts of water, does 
not use potentially dangerous chemicals, and is sensitive to individual 
soil sample types. Referred to here as the “combination method,” it origi-
nates from the first basic manual flotation techniques generated before 
archaeologists and paleonutritionists started using more “scientific” tech-
niques. The technique does not have the limitations of the more sophis-
ticated methods and retains all of the positive characteristics. For more 
detailed descriptions of this technique and its modifications, see Pearsall 
(2000:35–50).

The combination method involves a basic plastic or metal bucket in 
which the bottom has been removed and a fine screen (1/8-inch or 1/16-
inch mesh) attached in its place. The bucket is set into a tub or directly 
into a sink (if flotation is being conducted in the laboratory) or outside in 
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an area that can become very wet without damaging the site (if flotation 
is being conducted in the field). The bucket is placed in the tub with 
approximately five inches remaining at the top above the tub. A hose or a 
faucet runs water into the bucket and then into the tub. A known quantity 
of soil is added slowly into the bucket. The light fraction will float to the 
surface where it is collected with a fishnet and dumped onto a labeled, 
paper-lined tray for drying. The light fraction is collected continuously 
until organics stop floating to the surface. Flotation is assisted manually 
as the operator churns the soil with his/her hand to induce organics to 
float to the surface and soil to pass through the screen at the bottom. This 
step allows each individual sample to be floated for a greater or lesser 
period of time and to be manually assisted to some degree.

After all of the light fraction has been collected, the bucket is removed 
from the tub and the material caught in the bottom screen portion is 
placed on a separate labeled tray for drying. This sample is called the 
heavy (and fine-screened) fraction. The bucket and tub are then rinsed 
clean and new water is added to the system for the next sample, thus 
eliminating potential contamination from sample to sample. This system 
can be operated by one person and can be run continuously, allowing 
numerous samples to be processed in a short period of time.

Recovery of Pollen and Phytolith Samples

As noted in chapters 2 and 3, pollen and/or phytolith samples should be 
taken throughout the site for analysis of human dietary patterns, as well 
as from areas surrounding the site for possible paleoenvironmental analy-
sis (table 4.3). Pollen and/or phytolith sample collection from archaeo-
logical sites involves the retrieval of matrix samples from a column in 
exposed stratigraphic profiles. Because the focus of sample collection in 
archaeological sites is to understand human activity, samples should be 
chosen from areas of the site that have good cultural context. In most 
cases, individual samples should not be randomly collected through-
out the site; a column sampling technique from a fully excavated strati-
graphic profile should be used so that potential changes through time 
can be delineated. In many cases, good cultural context is not known 
until after excavation; therefore, pollen column samples should be taken 
from a variety of areas throughout the site.
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Pollen and phytolith samples are taken after excavation has been 
completed in an area and a stratigraphic profile has been exposed (Dim-
bleby 1985; Piperno 1988; Horrocks 2005). In most cases, pollen and/or 
phytolith samples should be taken in a contiguous fashion so that the 
samples are close together and will represent a range of pollen deposited 

table 4.3.  Basic Flotation/Fine-Screening Sampling Procedures

Flotation and Fine-Screen Sampling
1. � Randomly select 1- by 1-m pits for sample collection. As excavation area grows, 

randomly add pits from which to sample.
2. � Select one quad of the pit for sample collection, such as the SW quad. 

Systematically collect a 2-liter sample from each level of that quad using a 
bucket with the 2-liter volume clearly delineated (or with whatever volume 
you want to use delineated).

3. � Collect samples from any archaeological feature encountered, such as 
hearths, pits, caches, floors, and other anomalies, carefully recording sample 
volume. Samples should only include feature matrix, not surrounding matrix.

4. � Collect samples from noncultural deposits for a comparison with cultural 
deposits and as a standard, carefully recording sample volume.

5. � Provide each sample with a separate, unique field sack or lot number.

Pollen and Phytolith Sampling
1. � Select an exposed profile of material in good cultural context from a pit that 

has been entirely excavated.
2. � Establish how many samples you are going to collect from the profile in 

column fashion. You can collect one or two samples from each cultural 
zone, from each stratigraphic level, or every 5 to 10 cm along the column. 
Label bags according to the location of each potential sample and provide a 
separate field sack or log number for each.

3. � Prepare for sample collection, making sure all of your materials are handy as 
collection needs to take place quickly and efficiently to avoid environmental 
pollen and phytolith contamination. Materials include a trowel, spoon or 
other small collecting device, water, towel, and labeled plastic bags.

4. � Start taking approximately 100- to 200-ml samples from the bottom of the 
column working to the top. The trowel and spoon should be cleaned before 
each sample collection with clean water and dried with a clean towel. Each 
sample should be taken after the profile area has been scraped clear with a 
trowel. The samples are taken with a spoon and placed into a clean, labeled 
bag. The trowel and spoon are rewashed for the next sample collection.

5. � Back at the laboratory, the sample can be split for pollen and/or phytolith 
processing.



128   paleonutrition

from that time period that will overlap with the range observed from 
samples taken below and above the strata (assuming the strata are not 
mixed). Therefore, samples are usually taken 5 to 10 centimeters apart. 
Sometimes, however, samples can be taken strictly following the natu-
ral stratigraphy, particularly if the natural strata occur in levels less than  
10 centimeters.

Because pollen and phytoliths are ubiquitous in the natural environ-
ment, contamination is an important issue. During sample collection, all 
recovery equipment must be cleaned and wiped to avoid modern pollen 
and phytolith contamination from the air as well as contamination from 
one sample to the next. All supplies needed for sample collection should 
be on site and plastic bags should be prelabeled (each with its own field 
sack or lot number). Supplies needed include a trowel, spoon, water, 
cloth or towel, and prelabeled plastic bags. Sample collection should 
proceed from the bottom of the column up to avoid contamination from 
upper deposits. The trowel should be washed and dried and then used 
to scrape the profile clean. At each designated sample collection spot, a 
newly washed and dried spoon (or other useful collection device) is used 
to retrieve approximately 100 to 200 milliliters of newly exposed matrix 
that is immediately placed into the appropriately labeled bag. The profile 
of the next sample collection spot is then cleared with a newly cleaned 
and dried trowel and a newly washed and dried spoon is again used to 
collect the next sample. Because of the destructive process sampling has 
on the profile, it is recommended that such sampling take place after 
excavation and profile mapping have been completed.

In addition to samples derived from stratigraphic profiles, pollen and/ 
or phytolith specimens can also be collected individually from archaeolog-
ical features, such as pits, caches, hearths, burials, and floors, to ascertain 
potential human activity from these areas. To better understand whether 
pollen and/or phytoliths from an archaeological site are related to human 
activity or basic environmental conditions, samples should also be taken 
away from the site so that an understanding of environmental conditions 
in relation to human-modified conditions can be achieved. Such samples 
usually include collecting modern matrix from the surface to compare 
with archaeological samples. For this, a number of 100- to 200-milliliter 
matrix samples should be collected, or the “pinch” method can be used 
in which a number of “pinches” of matrix are collected from around the 
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site and combined for a single modern pollen sample. Another collec-
tion method involves taking pollen samples from a natural profile away 
from the archaeological site to use as a time/depth comparison to samples 
within the site. To do this effectively, however, both sample areas need to 
have good chronological control, usually through radiocarbon dating.

Recovery of Paleofecal Remains

As noted in chapter 2, paleofeces are desiccated human feces that can be 
preserved in arid or frozen conditions and contain the food remains of 
what past peoples consumed. Paleofeces tend to be recovered in desert 
regions of the world (including the frozen Arctic desert), as well as in 
caves and rock shelters with constant temperature and minimal contact 
with water and wind. During normal excavation procedures, paleofe-
ces (generally in the form of coprolites) are difficult to recognize if the 
excavator does not know what to look for (see fig. 2.7). Many paleofecal 
specimens may have been thrown out in the backdirt piles if excavators 
thought they were clumps of dirt. Coprolites have been recovered singly 
from midden deposits or in large quantities from room blocks, surfaces, 
or areas of a site that were used as latrines. In a latrine situation, copro-
lites may be distinguishable as separate entities or they may be found as 
a large horizon.

Excavation of these unique specimens should focus on the recovery 
of individual samples, which should be placed in separately labeled bags. 
Each sample represents short-duration food intake by a single individual, 
so recovery of individual samples is preferred to the excavation of large 
clumps of latrine areas, which represent the dietary intake of a number of 
individuals. Due to new analytical methods, it is now possible to recover 
DNA and hormones from paleofeces (Sobolik et al. 1996; Sutton et al. 
1996), providing a wonderful data base by which to answer research ques-
tions. To conduct analysis of human DNA from paleofeces, the samples 
must not be touched (contaminated) by humans. Therefore, paleofeces 
should be collected using sterile, latex gloves, and each sample should 
be placed in a separate, clean bag to avoid contamination. The samples 
should not be handled, breathed on, or removed from the bag until they 
are analyzed in the laboratory. The identification of paleofeces was dis-
cussed in detail in Fry (1985).
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Recovery of Human Skeletal Remains

Human skeletal remains are usually encountered as burials or partial  
burials in many areas of excavation, in the midden, under house floors, 
and in pits scattered throughout the site. Human bone can also be 
encountered randomly, in situations that do not resemble a burial pat-
tern. Recovery of human skeletal remains should proceed with the utmost 
care and caution in order to retrieve as much information, material, and 
remains as possible. Burials should be treated as a separate “feature” or 
entity of the excavation, and all materials and remains associated with a 
particular burial should be labeled, boxed, and curated separately. Burials 
should be recorded and mapped in situ, and each bone or portion of the 
burial should be removed carefully, usually using small brushes, picks, 
and forceps. Care should be taken that the bones receive as little trauma 
as possible during excavation and removal, not only out of respect for 
the deceased, but also because researchers need to analyze the surface 
structure of the bone for possible health and nutritional indicators. Bones 
should be wrapped in some type of cushioning material and should be 
placed only in boxes containing other bones from that particular burial. 
Burial matrix should not be coarse-screened; all matrix from a burial 
should be collected for fine-screen/flotation and pollen and/or phytolith 
analyses.

Excavation and Sampling

Even using the quick, easy, and efficient flotation and fine-screening 
method described above, fine-screening and flotation are still time con-
suming and costly, so it is not usually feasible to collect all or even a 
large quantity of the matrix from an archaeological site through such a 
system. Therefore, a sampling strategy needs to be employed to deter-
mine which biological samples will be collected for fine-screening and 
flotation and the locations from which they will be taken. As discussed 
previously, the answers to these questions rely heavily on site taphonomy 
and the research design.

To understand issues of paleonutrition, human diet, and subsistence, 
collected samples should be clearly associated with cultural areas of the 
site, again realizing that it is not likely that all portions of a particular site 
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were deposited and/or modified by humans. If one of the research goals is 
paleoenvironmental reconstruction, it is best to collect samples in areas 
that are not considered cultural and/or modified by humans; therefore, 
sample collection should take place away from the archaeological site so 
that the information obtained is focused primarily on environment and 
not on human selection. If the research interest is in human impacts on 
paleoenvironment (and vice versa), then samples should be collected in 
both cultural and noncultural contexts.

Most archaeologists and paleonutritionists are interested in some 
aspect of human use of plants and animals. For that research goal, bio-
logical samples should be collected in areas of the site that are considered 
cultural zones, horizons, and levels. In some cases, cultural affiliation 
can be determined on the basis of artifacts and biological samples; there-
fore, such samples should be taken from a variety of areas of the site. 
Since cultural affiliation can be difficult to determine, it is best to collect 
as many samples as possible. In addition, biological samples can help 
to ascertain whether different areas of a site are cultural or noncultural, 
whether rodents were ubiquitous in an area, and/or whether deposition 
represents carnivore habitation or alluvial deposition rather than human 
occupation. The basic procedures for sample collection presented here 
should be modified to fit the needs of each researcher and the vagaries 
of each site.

In most archaeological sites, biological samples should be collected 
from sequential excavation levels so that a progression of samples is 
obtained from an area. Samples do not have to be collected from every 
level of every excavation unit, but once an excavation unit is chosen for 
fine-screen/flotation sample collection, samples should be retrieved from 
every level of that unit. The archaeologist can determine what excavation 
levels are ascribed to the same cultural zones depending on stratigraphy, 
dating, and midden formation. Nevertheless, it is still necessary to col-
lect biological samples from every level to help in cultural-zone deter-
mination and to be able to develop a progression of plant and animal 
use through time, assuming that the deposits represent cultural zones in 
chronological order.

Fine-screen/flotation samples can be collected from every level by 
using one of the quadrants from a 1- by 1-meter square designated for col-
lection of samples. One quadrant from each level can be chosen from 
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which to collect all samples, but any quadrant is sufficient as long as 
collection procedures are consistent. The sample recovered from each 
level should have the same volume so that concentration comparisons 
can be made. A 2-liter sample is usually of sufficient volume to obtain 
a representative sample from each level, but the volume collected can 
be increased if necessary. It is important, however, to always record the 
volume collected, with each level bagged and recorded separately. Each 
bag is then taken to the in-field flotation center or back to the laboratory 
for flotation and fine-screening.

In addition to sample collection in each level of specified units at a 
site, biological samples should also be taken from any feature or specific 
cultural context that is encountered, such as hearths, floors, caches, pits, 
and any anomalies. The materials from such features should be collected 
separately from the unit in which level samples are collected. Most, if not 
all, of a small feature should be collected for flotation and the sample 
volume should be carefully recorded.

The most important part of collecting samples from features is to 
include only matrix from the feature itself; matrix from surrounding 
deposits should not be included in the sample. Therefore, excavation and 
sample collection surrounding and including features should proceed 
using natural rather than arbitrary stratigraphy. If excavations are being 
conducted using arbitrary levels, excavation procedure should change 
to natural levels when features or other natural stratigraphy are encoun-
tered, particularly if biological samples are to be taken in that area.

Archaeological Laboratory Methods

Paleonutritional analyses involve a significant amount of technical exper-
tise that is learned through training, experience, and many hours of  
analysis. Because analyses are time consuming and involve a great deal 
of experience, many paleonutritionists are specialists or experts in a 
particular area or on particular botanical or faunal taxa, such as plants, 
pollen, mammals, fish, gastropods, or specific domesticates. Technical 
expertise is the backbone of paleonutritional analysis, and technical 
identification and analysis can be the most time consuming and often 
most tedious step. Without that expertise, however, it would not be pos-
sible to answer a broad range of questions about the biological materials, 
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including botanical and faunal remains, of a particular archaeological 
site or region. The most rewarding aspect of paleonutrition is not when 
a certain plant or animal bone has been identified (although such small 
victories are exciting), but when the identification of an entire biologi-
cal assemblage leads to new discoveries, answers previously unanswered 
questions, or indicates that a modification of a hypothesis is necessary.

A critical component of biological analyses is the use or generation of 
an extensive reference collection of modern plants and/or animal bones 
to use for comparative purposes. Paleonutritionists should be familiar 
with the plants and animals in an area in which archaeological samples 
are collected and should have an extensive reference collection from 
that area before proper identification and analysis can take place. One 
of the reasons paleonutritionists should be involved in the overall project 
and be present during excavations is that they can collect modern refer-
ence samples from the surrounding area.

For paleoethnobotanists, collecting reference specimens involves the 
retrieval of a wide variety of complete plants from different seasons so that 
the life cycle of the plant is represented in the sample. Complete plants 
can be collected in a plant press and dried for preservation. Other refer-
ence samples should include pieces of wood, nuts, seeds, berries, roots, 
and phytoliths from all parts of each plant. Pollen reference samples are 
also collected from individual plant flowers during the appropriate sea-
son. The processing of modern plants needs to be undertaken to remove 
pollen and phytoliths for reference samples. The most important part of 
collecting modern species to use as comparative reference samples is that 
the modern species need to be definitively identified or they are useless 
and potentially problematic.

For zooarchaeologists, reference-sample collecting involves deflesh-
ing animals to recover all the bones. Animals can be obtained, usually 
with an appropriate permit, via the collection of roadkills or through 
taxidermy businesses. A number of animals are on the endangered spe-
cies list, however, and cannot be legally collected, whereas others (e.g., 
carnivores) may carry diseases such as rabies and should be avoided. A list 
of these endangered species, as well as collection permits, can usually be 
obtained through the U.S. Fish and Wildlife Service or the state’s wild-
life office or other similar state agency. Reference collections can also be 
obtained through the use of existing laboratory comparative material.
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The most important aid to technical identification of biological remains 
is comparative reference collections. In addition, a number of identifica-
tion guides or atlases are available to further aid in identifications, but 
these can and should be used in conjunction with, never in place of, a 
comparative reference collection (see below for examples of reference 
guides). Analysts should know where various collections are housed and 
be able and willing to use them if necessary.

Laboratory Analysis of Botanical Remains

Botanical remains recovered during coarse screening should be sorted 
into similar categories or groups from which identification can proceed. 
All of the material, however, should continue to be labeled and associ-
ated with the particular field sack or lot number assigned to the botanical 
remains from that excavation provenience and level in the field. Samples 
should not be washed or modified through brushing or removing adher-
ing matrix unless required for identification.

The most tedious and time-consuming aspect of botanical analysis is 
the sorting of flotation samples. Depending on the volume of material, 
samples can be split into different sizes by screening them through nested 
geological sieves (2-millimeter size and less), which can make it easier to 
sort. Samples should be sorted using a magnifying lens or microscope 
(10X, 20X), with all botanical remains sorted into recognizable entities 
such as seeds, charcoal, sticks, fiber, wood, leaves, and miscellaneous 
unidentified items. Care should be taken to make sure that all sorted and 
identified items are correctly bagged and labeled.

After the remains have been sorted, they can be identified to par-
ticular taxon and element using comparative collections, with the aid 
of identification guides. Some useful identification guides for botani-
cal remains include Martin and Barkley (1961), Appleyard and Wildman 
(1970), Western (1970), Leney and Casteel (1975), Gunn et al. (1976), 
Montgomery (1977), Dimbleby (1978), Core et al. (1979), and Catling 
and Grayson (1982). The samples can then be quantified to aid in anal-
ysis and interpretation. Different paleoethnobotanical recording tech-
niques and a fairly extensive list of references on the identification of 
domesticates can be found in Pearsall (1988).
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Quantification

The quantification of plant remains is a significant problem in the iden-
tification of archaeobotanical materials. The main reason for this is that 
many researchers use different quantification methods, and few compar-
ative papers have been published on the different procedures for quan-
tifying archaeologically derived botanical remains and assessing their 
strengths and weaknesses (for exceptions, see Hastorf and Popper 1988).

The presence/absence (or ubiquity) method incorporates the fre-
quency with which each taxon occurs within a group of samples. Either 
a taxon is present in a sample or it is absent. No matter what other kinds 
of quantification methods are employed during analysis, every study uses 
presence/absence. Since it is a nearly universally used technique, this 
type of quantification allows for easy comparison between different sam-
ples. As a technique, the presence/absence method reduces the effects of 
differential preservation and sampling, although the number of samples 
and groupings within a sample will affect results; the more groups that are 
recognized in a sample, the more important a common botanical constitu
ent will seem and the less important an infrequent botanical constituent 
will seem. This is also the case as the sample number is increased.

In the percentage-weight method, all of the botanical constituents in 
a sample, including both flotation and coarse-screened samples, are sepa-
rated and weighed. The weights are compared directly or are reflected as 
a percentage weight of the total. As the weight technique is a frequently 
utilized method for quantification, analyses conducted with this method 
are easier to compare with other studies. The major drawback of this 
method is that it underestimates the lighter contents, such as fiber, and 
overestimates the heavier contents, such as charcoal.

Another frequently used quantification technique is the percentage-
count method, in which the botanical remains of a specific taxon are 
counted and compared to the total botanical count. This method tends 
to overestimate botanical remains that are easily broken or contain more 
fragments to begin with, such as fiber particles and charcoal. This tech-
nique is useful, however, in that it provides a quantification method that 
is not time consuming, is relatively easy to accomplish, and is additive 
in that analyses can be added to each other without having to change 
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numbers (similar to the NISP quantification method for faunal remains; 
see below).

In the percentage-volume method, all materials from the sample are 
separated and placed into similar containers. The number of contain-
ers each constituent fills is then compared to the total. This technique 
is fairly sufficient in estimating the amount of each item in a sample, 
although it is very cumbersome and imprecise. Thus, this method uses 
more “guestimation” than other quantification methods. It is also not 
widely used in archaeology, making comparisons difficult.

For the percentage-subjective method, all of the botanical constitu-
ents in a sample are aligned in their proper order, from most frequent to 
least frequent, and are then placed into preset percentage groups. These 
percentage groups provide a range of error, without any bias being intro-
duced. Each constituent is placed into these different percentage groups 
when the sample is being sorted and separated. This technique is the 
least time consuming and most cost efficient and does not provide the 
drawbacks of the other quantification techniques. The percentage-subjec-
tive method does not overestimate larger items or items that are broken 
into numerous pieces. The problems with this technique are threefold:  
(1) quantities are presented as a range so data cannot be easily manip-
ulated statistically, (2) it is not cumulative so more samples cannot be 
added to the total analysis, and (3) it is not widely used, making compari-
sons between different studies difficult.

Pollen Analysis

Pollen analyses from archaeological sites and other environmental con-
ditions can offer a diversity of information on prehistoric populations and 
subsistence practices that cannot be determined through the sole analy-
sis of other biological remains. Pollen is prevalent in the environment, 
has a sturdy structure, and can be recovered from many sample types. 
A number of research avenues can be pursued with pollen, including 
paleoenvironmental reconstruction, archaeological dating techniques, 
and paleodiet.

Pollen is a sturdy structure due to its exine (outer layer), which is com-
posed partly of sporopollenin, a strong, resistant substance. The inner 
layer of pollen (intine) consists of cellulose, which is easily degraded 
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after a short length of time, such as in archaeological deposits. When the 
cellulose layer of the intine is degraded, only the outer layer containing 
sporopollenin remains. However, this layer is often sufficient for iden-
tification because the exine contains distinct sculpturing patterns and 
aperture shapes, allowing for pollen identification to be made, to the 
species level in some instances.

Pollen types are divided into insect-pollinated plants (zoophilous) 
and wind-pollinated plants (anemophilous). Insect-pollinated plants pro-
duce few pollen grains and are usually insect specific to ensure a high 
rate of pollination. Such plants generally produce fewer than 10,000 pol-
len grains per anther (Fægri et al. 2000). These pollen types are rarely 
observed in the pollen record due to their decreased occurrence in nature 
and method of pollination. Wind-pollinated plants, on the other hand, 
produce large amounts of pollen to ensure pollination and are frequently 
found in the pollen record. An example of the enormous quantity of pol-
len that is produced by some plants was provided in the study conducted 
by Mack and Bryant (1974), who found pine pollen percentages over  
50 percent in modern deposits where the nearest pine tree was more 
than 100 miles away. Fægri et al. (2000) stated that an average pine can 
produce approximately 350 million pollen grains per tree.

It is important to recognize the difference between pollination types 
in archaeological samples, because a high frequency of wind-pollinated 
pollen types most likely indicates natural environmental pollen rain 
rather than human activity. High frequencies of insect-pollinated pol-
len types, however, may indicate human use and modification of that 
particular plant. Understanding the context of samples is imperative to 
understanding potential human depositional patterns.

There are a variety of ways to process pollen samples, although the basic 
procedure involves removing organics, silicates, and carbonates. A basic 
procedure by which to extract pollen from soils is provided in table 4.4. 
Pollen extraction should be done by trained technicians who realize the 
potential problems and dangers with each step and take appropriate pre-
cautions to avoid damage to the sample or injury to the analyst.

As with any other identification, pollen identification must proceed 
using a modern comparative collection from representative pollen types 
in the region from which the samples originated. Like the study of faunal 
remains, learning to identify pollen is time consuming and takes practice 



table 4.4.  Standard Pollen Extraction Procedurea,b

Step I: Removal of Large Organic or Mineral Particles
1. � Remove 30 to 50 ml of soil from the sample collected. If samples come from 

heavily weathered areas or alluvial sediment, use 100 ml of soil.
2. � Screen samples through a 1-mm mesh screen into a beaker. Discard material 

caught in screen.
3. � Add 1 to 2 Lycopodium spp. spore tablets, carefully recording number of 

spores per tablet.

Step II: Removal of Carbonates
4. � Add concentrated HCl (38%) to remove carbonates and dissolve calcium 

bonding in spore tablets. Stir and allow reaction to take place. If reaction 
causes foam, use fine spray of ethanol to disperse.

5. � Pour off and discard liquid fraction. Add 1,000 ml of distilled water to 
sediment in beaker and stir. Let solution settle for 2 hours. Repeat this step 2 
more times. Place remaining sample in 50-ml centrifuge tubes.

6. � Centrifuge the residue at 2,000 rpm for 15 seconds. Discard liquid fraction.

Step III: Removal of Silicates
7. � Transfer remaining sediment into plastic beakers and add small amounts of 70% 

HFc acid until matrix sample is covered. Stir occasionally and sit overnight.
8. � Add distilled water to beaker and stir. Let solution settle for 2 hours. Pour off 

and discard liquid fraction in fume hood sink. Repeat this step at least 2 more 
times. Place remaining sample in 50-ml centrifuge tubes.

Step IV: Removal of Organics
9. � Rinse residue in glacial acetic acid to remove water. Centrifuge and decant.
10. � Prepare acetolysis mixture: 9 parts acetic anhydride, 1 part sulfuric acid.
11. � Add acetolysis mixture to samples, stir thoroughly, and place in a boiling 

water bath for 5 minutes. Do not mix water from water bath with acetolysis 
mixture! Remove, centrifuge, and decant. Repeat.

12. � Wash sample in distilled water. Centrifuge and decant. Repeat.

Step V: Slide Preparation
13. � Place remaining residue in a small vial with glycerin for curation. Label.
14. � Take a small portion of glycerin-mixed residue and place on a microscope 

slide. Place coverslip over sample and secure with nail polish or other 
sealant. Identify and count pollen.

a Table taken from Sobolik (2003).
b Pollen extraction techniques involve the use of toxic chemicals. Extraction should never be 
attempted without a fully functioning fume hood and protective coat, gloves, and goggles. 
Processing should be done by a trained technician.
c Use of HF must be restricted to a fume hood. HF fumes are very harmful and can cause 
permanent damage to lungs and nose if inhaled. Contact with HF can be fatal so always wear 
plastic coat, plastic gloves, and plastic face mask.
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and experience. After analysis, pollen data can be illustrated in a variety 
of ways, but most data are presented as a pollen diagram (fig. 4.3). Most 
diagrams present data in stratigraphic and chronological order, with the 
bottom of the diagram representing the deepest (and hopefully oldest) 
deposits and the top representing the youngest, and in many cases the 
modern, deposits. Pollen taxa are listed along the top border with their 
observed percentages from each sample provided in black. Because this 
sample represents a stratigraphic profile or column, the data are pre-
sented as a change through time; therefore, the pollen percentages are 
filled in black from one sample (or pollen zone) to another.

A second example (fig. 4.4) illustrates pollen identified from individ-
ual paleofecal samples, rather than from a continuous pollen and strati-
graphic profile. This type of presentation can also be used for individual 
pollen samples, such as surface samples or samples from archaeological 
features, rather than pollen stratigraphic column samples. In this diagram, 
the individual samples and associated radiocarbon dates are presented  

figure 4.3. Pollen diagram from the Guapiabit site in southern California 
(from Cummings [1996:fig. 1]; reproduced by permission).
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on the left axis. Pollen taxa are presented across the top and their per-
centages as observed in each sample are illustrated. In this particular 
case, crop pollen is designated separately from wild plant pollen (which 
is not shown here), and pollen concentration values are indicated by the 
relative lengths of the horizontal lines.

Pollen concentration values are determined through the analysis of 
the number of prehistoric pollens versus the Lycopodium sp. tracer spores 

figure 4.4. Pollen diagram from Mammoth Cave paleofeces (modified from 
Gremillion and Sobolik [1996]; reproduced by permission).
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added to each sample before processing (e.g., Sobolik 1988a). Concen-
tration of pollen in the sample is determined through a simple formula 
in which the amount of spore grains added is multiplied by the amount 
of prehistoric grains counted in the sample. This number is divided by 
the number of spore grains counted multiplied by the amount of sedi-
ment processed. Concentration values are important for pollen analysis 
in that they help determine the amount of prehistoric pollen present in a 
sample and can help assess depositional rates (for soil samples) and pos-
sible pollen ingestion (for paleofecal samples).

Phytolith Analysis

As with pollen, different plants produce diverse, and often unique, mor-
phological phytolith types. Unlike pollen, it has been observed that differ-
ent parts of the plant produce morphologically different phytolith types, 
making the use of comparative collections from all plant parts essential. 
However, in some areas in which pollen analysis is not distinctive (such 
as with grasses), phytolith analyses can produce excellent results. Phyto-
liths can also be preserved in environmental conditions in which pollen 
is degraded or absent, and they can be used in conjunction with pollen 
analyses for a more complete paleoenvironmental and archaeological 
picture. For extensive information on identification and interpretation of 
phytoliths see Piperno (1988, 2006a), Rapp and Mulholland (1992), and 
Piperno and Pearsall (1993).

There are a variety of ways in which phytolith analysts process sam-
ples. As Pearsall (1988) noted, side-by-side tests need to be conducted on 
the various processing techniques to determine what works best under 
which conditions. All basic phytolith processing, however, involves float-
ing phytoliths from matrix using heavy density separation. Steps sur-
rounding heavy density separation vary from analyst to analyst. The basic 
procedure used by Piperno (1988) is outlined in table 4.5.

Laboratory Analysis of Faunal Remains

Most faunal remains are recovered from archaeological sites through coarse 
screening, but also from columns and other samples. Faunal remains should 
be analyzed in the same basic fashion as botanical materials. These remains 



table 4.5.  Phytolith Extraction Procedurea,b

Step I: Separation of Phytoliths and Removal of Clay
1. � Defloculate soil samples with 5% solution of Calgon or sodium bicarbonate.
2. � Screen with 53-m mesh screen. Keep the sample caught in the screen.
3. � Place remaining sample (which passed through the screen) in large beakers 

and add water to 3/4 full. Stir vigorously. Let solution settle for 1 hour. Pour off 
and discard liquid fraction. Repeat at least 5 times.

4. � Place remaining sample in 100-ml beakers and add water. Stir, let settle for  
3 minutes, and pour off supernatant liquid into a 1,000-ml beaker (this 
separates fine and coarse silt fractions). Repeat, allow to settle for 2 minutes, 
and pour off supernatant liquid into the same 1,000-ml beaker. Repeat at least 
5 times.

Step II: Removal of Carbonates
5. � Place 1–1.5 g of each silt sample and the screened sand sample (3 samples  

total) in test tubes; rinse with distilled water.
6. � Add HCl (10%) to remove carbonates, centrifuge at 500 rpm for 3 minutes, 

and pour off liquid fraction. Repeat until no reaction is observed. Rinse with 
distilled water.

Step III: Removal of Organics
7. � Add hydrogen peroxide (3%) or concentrated nitric acid to remaining sample. 

Place in boiling water bath until reaction stops. Repeat.
8. � Conduct heavy density separation with zinc bromide, specific gravity 2.3. Mix 

10 ml of heavy density solution to samples and centrifuge at 1,000 rpm for  
5 minutes. Remove liquid (containing phytoliths) to a second centrifuge tube. 
Remix initial sample and repeat centrifugation. Remove liquid to second 
centrifuge tube. Repeat if necessary.

9. � Add distilled water to liquid portion in 2.5:1 ratio. Centrifuge at 2,500 rpm for 
10 minutes, decant, and discard liquid. Repeat twice.

10. � Wash in acetone.

Step IV: Slide Preparation
11. � Place remaining residue in a small vial with Permount for curation. Label.
12. � Take a small portion of Permount-mixed residue and place on a microscope 

slide. Place coverslip over sample and secure with nail polish or other sealant. 
Identify and count phytoliths.

a Compiled from Piperno (1988).
b Phytolith extraction techniques involve the use of toxic chemicals. Extraction should never 
be attempted without a fully functioning fume hood and protective coat, gloves, and goggles. 
Processing should be done by a trained technician.
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should not be washed unless they have matrix adhering to them that 
hinders identification (clean bones are almost always easier to identify 
than dirty ones). When bones can be easily identified, washing, brushing, 
or other modifications should be avoided because this may cause bone to 
break or crumble and may add marks on the bone that can obscure pre-
historic modifications (such as cut marks and gnaw marks). In fact, Sut-
ton (1994) recommended that most artifacts, including archaeobiologi-
cal remains, should never be washed because it may damage or destroy 
important evidence such as organic and protein residues. In addition, 
our increasing awareness of nonvisual remains associated with archaeo-
logical samples, such as aDNA, makes it clear that the less we handle and 
modify any archaeological materials, the better.

Sorting fine-screen samples for smaller faunal remains can be quite 
time consuming. If there is a great deal of matrix associated with the 
fine-screen sample (which has been recovered with flotation samples 
and essentially water-screened), then the sample may be passed through 
nested geological sieves to separate the sample into size groupings for 
ease in sorting and identification. The samples recovered from fine 
screens are smaller and thus may be harder to identify. A good compara-
tive collection of all sizes of animal species is particularly important for 
this stage of analysis, including smaller fish, rodents, shrews, bats, rep-
tiles, amphibians, and small birds. The species diversity recovered from 
a site usually increases dramatically once fine-screening has been com-
pleted and the samples are analyzed (Reitz and Wing 1999). After the 
remains have been sorted, they can be identified to taxon and element 
using comparative samples. In some instances, identification guides can 
be a useful adjunct for identification. Some useful faunal identification 
guides include Olsen (1968), Casteel (1976), Gilbert et al. (1981), McGin-
nis (1984), Cannon (1987), Gilbert (1990), Sobolik and Steele (1996), and 
Claassen (1998).

Quantification

Quantification in zooarchaeological studies has been conducted with 
more precision and frequency than in paleoethnobotanical studies, and 
papers on the subject are more prevalent (Krantz 1968; Bökönyi 1969; 
Casteel 1976; Lyman 1979; Gilbert and Singer 1982). The most frequently 
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used techniques are presence/absence (ubiquity), number of identified 
specimens (NISP), and minimum number of individuals (MNI). Other 
quantification techniques that have been used include minimum num-
ber of elements (MNE), meat weight, and various taxonomic diversity 
and richness indices (Reitz and Wing 1999). Some of these techniques 
are discussed below (for more detailed discussions, see Grayson 1984; 
Klein and Cruz-Uribe 1984; O’Connor 2000).

The presence/absence (or ubiquity) method is inherent in all faunal 
analyses and allows different samples to be easily comparable. The use of 
this method reduces the possibility of errors in interpretation due to dif-
ferential preservation of the sample as well as by increasing the number 
of sample divisions. As the sample is increasingly divided into smaller 
groups or the sample size is increased, constituents that occur more fre-
quently will seem to be more important, whereas constituents that are 
less frequent will occur in fewer samples and will be considered of mini-
mum importance. Presence/absence information has proven useful for 
zoogeography and paleoenvironmental reconstruction as well as dietary 
purposes.

The use of NISP is also common in faunal analyses and involves a 
raw count of the bones from each taxon. NISP numbers can be obtained 
from different analytical units, from a single excavation level to the entire 
site. One drawback to NISP is that it tends to overestimate the frequency 
of taxa in an assemblage. NISP can increase with bone breakage (either 
by prehistoric activity or due to postdepositional factors), thus inflating 
the number of animals thought to be represented at a site. In addition, 
some animals contain more elements than others, such as turtles and 
alligators (teeth), and their NISPs will therefore be higher. Such infla-
tion of NISP could lead to an overestimation of the contribution of par-
ticular taxa to the human diet.

Another frequently used quantification technique is MNI, which is a 
measurement of the minimum number of animals that are present in a 
sample by calculating the most abundant element of each taxon identi-
fied. MNI may also be calculated according to number of different sides 
(left or right) of the most abundant element, matching elements, sex, and 
age. This type of quantification reduces the possibility of overestimating 
the number of individuals when it is assumed that each element or frag-
ment represents a different animal. The MNI quantification method is 
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not biased toward animals with more bony parts (e.g., crocodiles, turtles, 
and armadillos), animal bones that are more fragmented (e.g., due to 
bone marrow processing), or animals that were brought to a site in frag-
mentary form (e.g., hindquarters or ribs) (Klein and Cruz-Uribe 1984).

Several problems can arise from the use of MNI. One is that differ-
ent aggregation techniques will produce different MNI counts (Grayson 
1984). As the faunal sample is divided into smaller aggregates (e.g., ana-
lytical units, such as a level in an excavation unit), the MNI for each 
taxon increases because the most abundant element of each taxon could 
be different for each aggregate. Another problem with the MNI method 
is that animals that occur in low numbers will tend to be overestimated, 
whereas more commonly represented animals will be underestimated. 
For example, when one bird bone is observed, the MNI for birds is 1. 
If ten different rabbit bone elements are observed, the MNI for rabbits 
could also be 1, even though there is a high probability that the rabbit 
bones are from more than one animal.

In addition, different investigators will determine the MNI differently. 
Some will calculate the most abundant element, whereas others will dis-
tinguish left from right elements, and will even try to match different 
elements according to size, age, and sex of the animals. At Baker Cave, 
for example, MNI was determined using the most abundant element 
of each taxon, as well as left/right sides and age determination (Sobolik 
1991). Some of these issues can be mitigated by the use of statistical meth-
ods (Orchard 2005).

Simple quantification figures on bone do not necessarily reflect eco-
nomic importance. For example, if a particular faunal collection con-
tains the remains (MNI) of ten small mammals and one large mammal 
used as food, which animal was more important to the diet in prehistory? 
A simple numeric calculation would show a 10:1 ratio in favor of small 
mammals. However, if the small mammals weighed one pound each 
(a total of ten pounds) and the large mammal weighed one hundred 
pounds, the ratio would be 10:1 in favor of the large mammal. Clearly, 
such calculations can be important to interpretation.

There have been studies conducted for mammals (e.g., White 1953; 
Stewart and Stahl 1977; Lyman 1979; Stahl 1982) and fish (e.g., Casteel 
1974) to calculate the live weight, available meat (food utility index [see 
Metcalfe and Jones 1988], the live weight minus bone and hide), and 
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usable meat (what people might actually eat) for a number of species. 
While these measures are approximate and not widely used in analysis, 
they do provide some general idea about animal size and meat contri-
butions (see table 4.6). It should be remembered, however, that recov-
ery techniques (especially the use of 1/4-inch screens) are biased toward 
large animals and that body weight calculations may serve to increase 
the bias.

A variety of other data from zooarchaeological remains can be 
obtained to add further detail to understanding prey populations, the 
human impact on these populations, and human adaptations. These 
include age profiles, mortality profiles, sex differences, and the like (see 

table 4.6.  Estimated Edible Meat for Selected Species

Common Name Scientific Name
Total 

Edible (g) Reference

Canada goose Branta canadensis 2,089 White 1953
Mallard duck Anas platyrhynchos 653 White 1953
California quail Callipepla californicus 130 White 1953
Siberian husky (dog) Canis familiaris 10,432

17,000
White 1953
Stewart and Stahl 1977

California sea lion Zalophus californianus 130,550 White 1953
Ringed seal Phoca hispida 64,774

27,760
White 1953
Stewart and Stahl 1977

Elephant seal Mirounga angustirostris 1,305,500 White 1953
Walrus (male) Odobenus rosmarus 522,200 White 1953
Prairie dog Cynomys spp. 560 White 1953
Ground squirrel Spermophilus spp. 373 White 1953
Eastern grey squirrel Sciurus carolinensis 440

162
White 1953
Stewart and Stahl 1977

American beaver Castor canadensis 13,335
6,134

White 1953
Stewart and Stahl 1977

Pack rat Neotoma spp. 261 White 1953
Jackrabbit Lepus spp. 1,120 White 1953
Cottontail rabbit Sylvilagus audubonii 653 White 1953
Mule deer Odocoileus hemionus 37,300 White 1953
Pronghorn antelope Antilocapra americana 20,515 White 1953
Bison (male)
Bison (female)

Bison bison 335,700
147,200

White 1953

Armadillo Dasypus novemcinctus 2,798 White 1953



recovery of paleonutritional data   147

Reitz and Wing 1999:171–238). For example, the sex and age profiles in 
domesticated populations should be quite different than in wild popula-
tions. In domesticated populations, only a few males are needed to breed 
with the females and many of the young males would be killed for their 
meat and hides. The females would not be killed but retained for breed-
ing and milking purposes. Thus, the age and sex profiles in the skeletal 
materials from a site should show many young males, a few old males, a 
few young females, and many old females.

Laboratory Analysis of Paleofeces

Prior to analysis, paleofecal specimens must be dissected and the con-
stituents identified. Great care must be exercised in this process to avoid 
ruining the data. As most specimens are dehydrated, they must be rehy-
drated. Rehydration in trisodium phosphate solution (0.5 percent) for at 
least forty-eight hours is the typical method used, as dry-screening and 
water-screening tend to damage fragile components, reducing the abil-
ity to identify them. Observations of the color, odor, and surface film of 
paleofecal rehydration liquid should be made. If possible, one-half of 
each paleofecal sample should be conserved for future analyses and, it is 
to be hoped, better techniques.

The rehydrated samples should then be screened with 850- and 250-
micrometer (0.03- and 0.01-inch) mesh screens to retain macrobotanical 
and macrofaunal materials. The materials caught in the mesh screens 
should be placed on drying paper and allowed to dry before analysis. The 
dried macroremains should be sorted and analyzed under a microscope, 
usually at 10X or 20X magnification. The debris that passes through the 
micrometer mesh screens should be caught in a beaker and allowed to 
settle for at least three hours. The liquid should then be siphoned off, 
leaving the heavy sedimentation that may contain pollen, phytoliths, and 
endoparasites. Processing for pollen and phytoliths from paleofeces should 
continue using normal processing procedures (see tables 4.4 and 4.5).

Processing for endoparasites involves concentrating the heavy sedi-
mentation material with the use of a centrifuge and placing it into vials 
in a solution of acetic formalin alcohol (AFA), which prevents fungal 
and bacterial growth. The material should be allowed to settle via grav-
ity. Once settled, the upper portion should be siphoned with a pipette 
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and microscope slides made with this upper portion and glycerol. Micro-
scope slides should be scanned at 400X on a stereoscopic microscope for 
possible endoparasitic remains.

Quantification

Quantification and analysis of paleofecal constituents continue to be an 
issue (see discussions in Fry 1985:142–143; Bryant 1994:155) for a variety of 
reasons. First, the visible constituents represent only a portion of the diet, 
those materials that, for whatever reason, survived digestion. An emerg-
ing solution to this problem lies in the chemical identification of constit-
uents, allowing for a more complete inventory of materials consumed.

The second issue is the need to measure the quantities of the materi-
als identified in the specimen. Such approaches include a general esti-
mate of abundance per specimen and then overall percentage (Yarnell 
1969:45), an actual count of macrofossils per specimen (Jones 1988:23), 
and quantification by weight (Napton 1969).

The final issue is translating quantities of identified constituents into 
quantities of food originally consumed. This continues to be difficult, as 
the process of the reduction of mass of consumed foods in the digestive 
process is unknown, likely resulting in some constituents being overrep-
resented and others being underrepresented. There have been attempts, 
however, to correct the ratio of quantities of fecal constituents to quantity 
of food consumed by applying a conversion factor (Fry 1985:142; Holden 
1990; also see Holden 1994:73–74). Still, most researchers generally disre-
gard these problems and focus on the constituents present in a paleofecal 
specimen, where they are usually listed and discussed as to their impor-
tance (relative abundance is assumed to represent relative importance) 
in the diet.

There have been some recent efforts to statistically analyze the pat-
terns of resource combination and utilization (e.g., intra-specimen varia-
tion; Sutton 1993, 1998; Sutton and Reinhard 1995) in order to determine 
patterns of food preferences and combinations (cuisine). This work is 
ultimately based on old-style quantification, however, and suffers from 
the same basic limitations. Most paleofecal analysts tend to quantify 
macroremains with the same methods used by paleoethnobotanists in 
their quantification of botanical remains.
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Laboratory Analysis of Human Remains

Most archaeological human remains consist of bones, although pre-
served tissues (such as flesh, hair, and/or chemicals) may also be recov-
ered. Human remains comprise an important source of information 
regarding a wide variety of anthropological questions, including diet and 
nutrition, health, social status, cultural practices, and paleodemography. 
The study of human remains is also important from the standpoint of 
forensics (Dailey 1983; Cox and Mays 2000).

Recovered human remains are frequently from the intentional dis-
posal of the dead, either as inhumations or cremations. Many materials 
are recovered from a variety of other contexts, however, such as the “Ice-
man” discovered in 1991 in the Alps of central Europe who died in situ 
and was not intentionally buried (e.g., Sjøvold 1992).

Inhumations are bodies that are buried or entombed unburned. A 
primary inhumation is a burial located in the place in which it was origi-
nally interred. A secondary inhumation is a burial that has been interred 
long enough for the soft tissues to decompose, after which the bones are 
disinterred and reburied in another location, perhaps in a container such 
as a ceramic vessel or in an ossuary. The catacombs in Paris and Rome, 
where the bones of hundreds of thousands of individuals are interred, are 
examples of ossuaries. In these facilities, the bones of specific individu-
als tend to become mixed with those of other individuals, reducing the 
interpretive value of the remains for anthropological study. In spite of 
these problems, considerable information regarding past populations can 
be gained by the study of ossuary remains (Ubelaker 1974).

Cremations are bodies that have been intentionally burned. The effi-
ciency of such burning is variable and there may be significant quanti-
ties of bone that survive. Like inhumations, a cremation may be primary 
(buried in the pit in which it was burned) or secondary (interred away 
from the cremation pit, as in western societies). The bones (or bone frag-
ments) that survive the process of cremation can often be productively 
analyzed (see chap. 2).

Individuals may be interred (either as inhumations or cremations) 
singly (isolated interments) or in groups (multiple interments). Cem-
eteries usually consist of a number of individual and/or multiple inter-
ments within a specific area. Over time, interments may infringe upon 
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one another, creating confusion regarding which remains and offerings 
belong to which body and at which time.

Identification and Analysis

The data points used in the identification and classification of human 
remains are fairly extensive (see Buikstra and Ubelaker 1994:177–182; 
White and Folkens 2005:67–74) and generally follow those used in the 
analysis of faunal remains. Basic skeletal data include the identification 
of the element, the side of the body, which end of the bone (proximal 
or distal), the degree of epiphyseal fusion in long bones, the condition 
of any articular surfaces, metric data, nonmetric data (such as modifi-
cations and pathologies), and the minimum number of individuals in 
the collection (number of identified specimens [NISP] is not typically 
employed in reference to human remains). Extensive discussions and 
descriptions of human bone and their identification can be found in Bass 
(1987), White (2000), and White and Folkens (2005).

The skull consists of thirteen major and sixteen minor bones. The 
skull minus the mandible comprises the cranium, and the skull minus 
the facial bones comprises the calvarium. Skull bones are relatively  
thin, often curved, and possess a number of distinctive characteristics, such 
as sutures, sinuses, foramina, passages, and dentition. Humans normally 
possess thirty-two teeth: twelve molars, eight premolars, four canines, and 
eight incisors. Infants are generally born with unerupted teeth that erupt 
within the first few years. These teeth are deciduous (“baby teeth”) and 
are lost as the permanent teeth replace them. The general timing and 
sequence of tooth eruption is well known and can serve as an important 
method to determine age. Deciduous teeth can be easily distinguished 
from permanent teeth, since they are smaller, often lack roots, and have 
thinner enamel (see Bass 1987:263; White and Folkens 2005:136). As each 
person loses a set of deciduous teeth during life, the presence of such teeth 
at a site is not necessarily indicative of a burial. Patterns of tooth wear can 
be informative as to the diet, health, and age of a population (see below).

In an adult, the postcranial skeleton consists of 177 bones. Twenty-
seven of these are single bones, such as the vertebral column and the 
sternum. The remaining 150 are paired left and right bones. In humans 
(after Bass 1987:7), the long (limb) bones are tubular in cross section and 



recovery of paleonutritional data   151

are relatively long (greater than 20 centimeters). Short bones are small 
(less than 10 centimeters) tubular bones and include the clavicles and 
the bones of the hands and feet. Flat bones include the pelvis, scapulae, 
ribs, and sternum. Irregular bones include the vertebrae, carpals, tarsals, 
and patellae.

Analytical Approaches

Metric Analysis.  Many measurements can be made on the skeleton and 
some of these measurements can be combined to produce indices that 
serve to describe the bones. Absolute measurements are useful for some 
purposes, such as the determination of stature, while various indices are 
used for other purposes. The basic measurements include the maximum 
length of the bone, the diameter of the midpoint of tubular bone, and 
the maximum width of the ends of the bones (for detailed discussions, 
see Brothwell 1981; Bass 1987; Buikstra and Ubelaker 1994; White 2000; 
White and Folkens 2005).

Nonmetric Analysis.  Nonmetric variations are those that cannot 
be discovered by simple measurement. These include variations in 
the number of teeth, crowding or impaction of teeth, variation in the 
shape of the bones, variation in the number and placement of various 
foramina, degree of ossification, variation in the interior structure of 
the bone, presence or absence of some features, and many other traits. 
Many nonmetric traits may be related to environmental influences or to 
circumstances relating to the life of the specific individual, such as joint 
wear in people who walked a great deal and changes in the leg bones of 
someone who sat cross-legged for long periods.

Estimations of Age, Sex, Stature, and Race.  There are various ways 
to estimate age in an individual at death (see Buikstra and Ubelaker 
1994:21–38; Hoppa and Vaupel 2002; White and Folkens 2005:363–385). 
These methods include changes in the pubic symphysis (Suchey and 
Brooks 1986a,b), the metamorphosis of the auricular surface of the ilium 
(Lovejoy et al. 1985a,b; but see Storey 2006), basiocciput osteometrics 
(Tocheri and Molto 2002), sternal rib-end morphology (e.g., Yoder et al. 
2001), and epiphyseal closure (the fusing of the ends on the shaft of a 
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long bone). Unfused epiphyses indicate an infant or early juvenile, while 
fully fused bones are likely those of adults. Closure of cranial sutures, 
both endocranial and ectocranial, is also indicative of age (see Meindl 
and Lovejoy 1985; White and Folkens 2005:369–372), although suture 
closure and obliteration schedules seem to vary considerably with race 
and sex (Rogers 1984). Recent research has indicated, however, that these 
methods may not be suitable for all populations (Schmitt 2004). Bone 
histology is also a useful technique for age determination (see Stout 1992; 
Ericksen 1997; Macho et al. 2005).

Dental attributes may also be useful to determine age at death. The 
analysis of dental eruption is also employed as both the sequence and 
timing of tooth eruption and replacement are reasonably well known 
and can help (coupled with other indicators) to estimate age of juve-
niles and subadults (see Smith and Avishai 2005). General tooth wear 
is also an indicator of age (e.g., Brothwell 1981:71–72; Walker et al. 1991; 
Miles 2000; Oliveira et al. 2006), but diet is also a major factor. Tooth 
microstructure (FitzGerald and Rose 2000) and the dimensions of the 
pulp chamber within teeth (e.g., Luna 2006) may also be used to esti-
mate skeletal age.

The methods generally employed to estimate skeletal age may be 
biased, reflecting the age structure of the reference sample (Bocquet-
Appel and Masset 1982), one of the paradoxes noted by Wood et al. 
(1992). Recent work on a new technique called transition analysis (e.g., 
Boldsen et al. 2002), however, holds promise for being more objective 
and accurate by attempting to resolve some of the problems associated 
with estimating adult age.

The determination of the sex of an individual is also of great ana-
lytical importance. In humans, sexual dimorphism in the skeleton is not 
great and so is not a clear indicator of sex, although, in general, the skel-
etal elements of females tend to be smaller and less robust than those of 
males and analysis of large skeletal series can provide good probabilities 
for general analyses.

The sex of adults can be determined by several basic techniques, 
including the size of the “passage” through the complete pelvis, width of 
the sciatic notch, measurement of the subpubic angle, visual characteris-
tics of the os pubis (e.g., Phenice 1969), and discriminant analysis of the 
femur and humerus (Dittrick and Suchey 1986). Other bones useful in 
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sexing a skeleton are femoral neck diameter (e.g., Stojanowski and Seide-
mann 1999) and hand and foot bones (e.g., Wilbur 1998). In addition, 
new statistical techniques have been developed for dealing with sexing 
of fragmentary skeletal material (Kjellström 2004).

The sex of prepubescent individuals is much more difficult to deter-
mine, although aDNA analysis can now be employed for that purpose 
(Hummel and Herrmann 1994; Faerman et al. 1995, 1998; Stone et al. 
1996; Colson et al. 1997; Cunha et al. 2000; Stone 2000; Matheson and  
Loy 2001; Mays and Faerman 2001; Smith and Avishai 2005). For more  
detail on sexing techniques, refer to the discussions in Bass (1987:200–206), 
Buikstra and Ubelaker (1994:16–21), and White and Folkens (2005:385–398).

Stature (height) is estimated by the measurements of bones applied 
to a formula (e.g., that of Trotter 1970; also see Raxter et al. 2006). Unfor-
tunately, populations vary widely and there is no single, valid measure. 
Stature tables for American whites (male and female), American blacks 
(male and female), and Mesoamericans (male and female) were pro-
vided by Bass (1987:22–29).

Based on current knowledge, race can only be estimated from the 
skull and dentition (Bass 1987:83). The skulls of Caucasoids, Negroids, 
and Mongoloids (including American Indians) exhibit a number of dis-
tinguishable characteristics (see Bass 1987:83–92). One of the indicators 
of Mongoloids is the presence of shovel-shaped incisors, a depression 
present in the lingual aspect of the maxillary incisors.

Pathologies.  Pathologies in skeletal remains are the result of congenital 
malformation, disease, trauma, deformation, and/or nutritional deficiencies, 
with the two most common forms being those related to degenerative 
disease and trauma (White and Folkens 2005:312). Discussions of disease 
and nutritional pathologies were presented in chapter 2.

Postmortem Alterations.  Bone is modified during life in various ways, 
through genetic control, pathologies, and stress (e.g., robust muscle 
attachments in an individual who was used to heavy work); however, 
postmortem modifications also occur. Many of these modifications will 
occur as natural processes, such as decomposition of the tissues, soil 
conditions, roots, and animal gnawing. Cultural postmortem modifica
tions also may occur and manifest themselves on the skeleton. Examples 
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include cremation and breakage patterns and/or tool marks that might 
indicate cannibalism (see White 2000:477–489).

Other Analyses.  A variety of other techniques are employed in the 
analysis of human remains. These include radiography, microscopy, bone 
chemistry, and DNA analysis. Each of these approaches was discussed in 
detail in chapter 2.

Summary

Excavation and recovery of biological samples and pollen and/or phyto-
lith samples from archaeological sites for paleonutritional assessments 
can follow a basic procedure from site to site. Modifications to this pro-
cedure may be made depending on site type, environmental conditions, 
time and money constraints, and research design. It is always best, how-
ever, to collect more samples than needed for analysis for a particular 
project. Excavation is destructive and there are no second chances. Fifty 
years from now, other researchers may need particular samples to help 
answer a research question, or an additional sample may be needed from 
a particular area of an excavated site in the event that samples were not 
collected from that area and such samples are needed to complete the 
analysis. Having matrix samples sitting on a shelf for possible future anal-
ysis is preferable to having samples lost in the backdirt pile.

No matter what types of paleonutritional analyses are conducted at a 
site, the most important aspect of interpretation is integration between the 
various assemblages and analyses conducted (Sobolik 1994a; Reitz et al.  
1996). A more complete picture of prehistoric lifeways and paleoenvi-
ronmental changes can be revealed through the integration of biological 
analyses. Integration between different assemblages can be difficult given 
the diverse ways in which biologists identify, analyze, and interpret vari-
ous archaeological remains. In many of the case studies presented in this 
book (see chap. 6), the researchers have attempted to integrate diverse 
biological analyses, despite the fact that the basic techniques (such as 
quantification) were not uniform across disciplines or even between ana-
lysts. Paleonutritional reconstructions can rarely be effective, encompass-
ing, and broad based without integration.
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Integrative paleonutritional research does not always mean that a 
number of separate analyses should be combined into some conclusion. 
Integration can and should involve research on modern species ecology, 
as well as ethnographic and/or ethnohistoric information where feasible. 
Ultimately, integration must take place at the site or regional level as the 
paleonutritionist works with the archaeologist (although they may be the 
same person) to synthesize all of the information obtained from a site 
excavation into a cohesive final statement.
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Interpretation and Integration

many of the archaeological data currently available on past 
human behavior are related to food acquisition and consumption. These 
data include ecofacts (e.g., seeds, bones), artifacts (e.g., procurement and 
processing tools), architectural remains (e.g., storage features), and settle-
ment patterns (e.g., the distribution of food procurement sites across the 
landscape). As such, diet is one of the more obvious aspects of human 
behavior observable in the archaeological record and thus lends itself 
more readily than others to investigation. The interpretation and integra-
tion of dietary data vary in complexity from lists of resources to models of 
behavior, with the latter ultimately being more informative about ques-
tions related to paleonutrition.

A number of approaches have been undertaken in attempts to cor-
relate human behavior with diet, nutrition, and/or subsistence within  
particular populations. These include ecological perspectives, gender 
studies, ethnicity, sociopolitical organization, resource intensification, and  
biological reconstructions. In this chapter we describe these differ-
ent approaches and provide specific examples of some of these studies. 
This discussion is not intended to constitute an all-inclusive list of such 
approaches; rather, it provides a sampling of the possibilities that exist for 
examining issues of diet and nutrition among prehistoric populations.

Ecological Perspectives

Ecology is the study of the interaction of an organism with its environ-
ment. Human ecology is the study of the interaction of humans with 
their environment. Cultural ecology, a subdiscipline of human ecology, 
is the study of the interaction of culture on human adaptations (see Sut-
ton and Anderson 2010). Given that many of the data available in the 
archaeological record are dietary, a number of theoretical approaches 
based on ecology are used to interpret the past. Among these approaches 
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are evolutionary ecology and evolutionary archaeology, both of which 
apply biological selection theory to the study of archaeological data.

Within archaeology, however, there has been considerable debate 
about how closely the strict biological model of selection can be applied 
to the study of past cultures (e.g., Spencer 1997; Boone and Smith 1998; 
Lyman and O’Brien 1998; Neff 2000; Flannery 2002). Culture is a power-
ful force in adaptation, and any evolutionary explanation must include 
the role of culture, such as behavior, decision-making, and sociopolitical 
factors. Mechanisms of change include invention, diffusion, social and 
political upheavals, and migrations and diasporas.

Evolutionary Ecology

Evolutionary ecology begins with the supposition that societies func-
tion like organisms and that varying cultural practices, including diet, 
are traits upon which selection acts (see Smith and Winterhalder 1992; 
Winterhalder and Smith 1992). Cumulative selection pressures then act 
on societies and complexes, depending on the outcome of their choice 
of practices (e.g., Richerson and Boyd 1992).

The approach used most often in evolutionary ecology is optimiza-
tion, primarily through the application of some model of optimal diet 
(e.g., Maynard Smith 1978; Stephens and Krebs 1986). Such models 
are used to explain some aspects of behavior related to the utilization 
of resources (Jochim 1983:157) and are generally derived from optimal 
foraging theory, which emphasizes net efficiency (a least-cost hypothesis) 
and minimization of risk as its guiding principles. Optimization models 
were originally developed by economists, borrowed by biologists to pre-
dict the behavior of animals in relation to their diet and feeding strate-
gies, and then applied to humans by anthropologists (see Winterhalder 
1981; Smith 1983).

Most optimization studies have been conducted on hunter-gatherer 
groups rather than agriculturalists, apparently because hunter-gatherers 
are supposed to behave like other animals, foraging for their food and 
wandering about the landscape (Ingold 1987:11). Conversely, agricultur-
alists are food-producing landholders who are viewed as somehow set 
apart from nature, making the application of optimization models less 
attractive (but see Gregg 1988).
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All optimization models have four basic components (Gardner 1992:18). 
Each requires (1) an actor (e.g., people) to choose among the different 
alternatives, (2) a currency (e.g., calories or protein) by which the payoff 
on the decisions can be measured, (3) a variety of available resources from 
which to choose, and (4) a set of constraints, factors that limit the alter-
natives and payoffs. The primary optimization models used are (1) diet  
breadth (e.g., Simms 1984, 1985), (2) patch choice (e.g., Smith 1983),  
(3) central place foraging (e.g., Bettinger 1991), (4) linear programming 
(e.g., Gardner 1992), and (5) focal-diffuse (e.g., Cleland 1976).

Optimization models contain two inherent problems: The environ-
mental conditions and constraints of the study are rarely understood, and 
the models really only test biological responses, not cultural behavior. 
This situation is constantly improving as more detailed data become 
available and are incorporated into new studies. For example, the pro-
ductivity of different species of pinyon can vary significantly and it is 
important to use the correct species to model diet in the past (see Case 
Study 1 in chap. 6).

It must be remembered that simple optimization models adopted 
directly from biology cannot account for the diversity of cultural behav-
iors and factors influencing economic decision-making processes (see 
Jochim 1998:23–26). On the other hand, such models are not designed 
to investigate cultural factors; in reality, they are designed to account for 
the biological aspect of behavior so that the cultural side can be isolated 
and investigated by other means.

Even with these limitations, optimization models can be very useful 
and are often employed as at least a “first pass” by archaeologists recon-
structing past societies (Winterhalder and Smith 1981). It is necessary to 
work through the various issues, identify and deal with problems, and 
refine the models and data accordingly. The goal is to learn about the 
past, and optimization models are tools to accomplish this. Within evolu-
tionary theory, optimization models appear to be the best, if not the only, 
current way to explore the interaction between people and their environ-
ment (e.g., O’Connell 1995; Broughton and O’Connell 1999).

An important product of the use of optimization models by archae-
ologists is the unification of research efforts working with botanical and 
zoological remains. The use of a model that can be applied to both data 
sets means that both plants and animals can be considered in the same 
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study, providing a much greater depth of understanding of paleonutrition 
(e.g., Gardner 1992:12).

Evolutionary Archaeology

Another ecological approach is evolutionary archaeology. This method 
adopts a strict perspective of Darwinian evolution (Maschner 1996; 
O’Brien 1996; O’Brien and Lyman 2000; Leonard 2001) to explain cul-
ture change as the result of direct selective processes on the variation 
among artifact types and frequencies, resulting in the change of those 
types and frequencies over time.

In this approach, archaeological traits are treated as if they were bio-
logical traits, with selection acting (positively or negatively) on artifacts, 
systems, and behaviors. Selective pressures on these traits will then trans-
late to selective pressure on cultures as a whole. While evolutionary ecol-
ogy and evolutionary archaeology share a basic approach, evolutionary 
archaeology tends to be more focused on material culture rather than 
diet. With this in mind, a considerable amount of material culture is 
devoted to fulfilling nutritional needs, so evolutionary archaeology can 
be very important in studies of paleonutrition.

To illustrate the application of evolutionary archaeology to a prehis-
toric population, in a study of agricultural engineering and technology 
in the American Southwest, Maxwell (1995) examined the nature and 
distribution of fields that were covered in gravel. It was determined that 
the gravel had been intentionally placed on the fields as a mulch of some 
sort. Gravel can store excess heat and slow the evaporation of water. Max-
well (1995:122) concluded that the rock mulch could “offer an advantage 
in crop production to farmers living in regions with periods of low or 
variable rainfall and low temperatures.” The region in which the rock-
mulched fields were discovered was an area of both low precipitation and 
low temperature. As a result, it was determined that the use of rock mulch 
was an adaptive trait that enabled the farmers to be more successful.

In their evolutionary perspective on prehistoric hunting in California, 
Hildebrandt and McGuire (2002:231) observed that increased population 
densities during the middle and late Holocene may account for the “imbal-
ances between human populations and the availability of highly ranked 
food resources.” As a result of these imbalances, according to optimal  
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foraging theory, foraging efficiency should decline while reliance on 
smaller prey should increase. In contrast, Hildebrandt and McGuire 
(2002:231) argued that large-game procurement throughout California 
was actually increasing during the middle and late Holocene.

On that assumption, Hildebrandt and McGuire (2002:231–232) posed 
the question “why, when there is a consensus that human populations 
were increasing and subsistence activities intensifying, would there be a 
corresponding increase in the taking of higher-ranked, large-animal taxa, 
at the expense of lower-ranked small animals?” They suggested that it 
may have to do with conferring fitness on males in that it would increase 
mating opportunities, provide favored treatment for their offspring, and 
facilitate communication with allies and adversaries (Hildebrandt and 
McGuire 2002:232). In other words, it was linked to sexual selection 
and prestige (also see Bettinger 1991:200–201), or what Hildebrandt and 
McGuire (2002:235) referred to as “show-off hunting” (also see Brough-
ton and Bayham 2003; Hildebrandt and McGuire 2003).

Gender Studies

Meyers (2003:190) defined gender as “the social construction or cultural 
interpretation of sexual difference, especially as it results in assigning indi-
viduals, artifacts, spaces, and bodies to categories.” In the anthropological 
sense, gender is defined differently than sex. Sex is an individual’s chromo-
somal makeup; that is, a female has two X chromosomes and a male has 
an X and a Y chromosome, with a few exceptions based on genetic anoma-
lies. Gender refers to a social category of behavior in which an individual’s 
role and/or status are typically defined as either “male” or “female” regard-
less of their chromosomal makeup; as such, gender is typically a function 
of socialization and can be self-assigned. Gender roles other than male or 
female, such as homosexuals or transvestites, exist in many societies and 
are often considered normal; in fact, in some cultures, they are thought 
to be imbued with special insight. Gender concepts change through time 
within a culture, and some cultures assign greater significance to gender 
differences than do others. The gender of an individual can be recognized 
by others within a given society through appearance (e.g., clothing, hair-
styles, adornment), activities (“male” and “female” work), and/or styles of 
social interaction (see Case Study 2 in chap. 6).
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Archaeologists attempt to identify genders in past cultures, to deter-
mine their importance within a particular group, and to interpret the 
meaning of gender within the worldview of that group. To study gender in 
past cultures, archaeologists can employ evidence from various sources, 
including ethnographic analogy, historical documents, dietary data, skel-
etal and mortuary data, and representational art (Costin 1996:116–117, 
2002). During the last few decades, there has been much archaeological 
interest in gender, more specifically the theoretical perspective of gen-
der in both prehistoric and historical contexts (e.g., Conkey and Spector 
1984; Ehrenberg 1989; Gero and Conkey 1991; Wylie 1992; Little 1994; 
Wall 1994; Wright 1996; Conkey and Gero 1997; Nelson 1997; Grauer 
and Stuart-Macadam 1998; Hill 1998; Price 1999; Dowson 2000; Schmidt 
and Voss 2000; Claassen 2002). In archaeological contexts, for example, 
some artifacts are typically assigned to gender-specific tasks. For example, 
milling stones (e.g., manos and metates) are usually regarded as “female” 
tools, while projectile points are considered “male” tools. Of course, it 
is not that simple, as many gender-ascribed tools were used throughout 
prehistory for multiple purposes by both males and females.

Although most dietary data cannot currently be linked with specific 
individuals, it is now possible to identify, using aDNA (Sutton et al. 1996) 
and hormonal evidence (Sobolik et al. 1996), whether a paleofecal speci-
men was from a male or a female. Once the sex of an individual has been 
determined, the specifics of the diet can then be detailed, thus elucidating 
differences between male and female diets and cuisine. Such information 
has the potential to inform archaeologists about differential access to various 
foods, medicines, and other consumables, indicating power and prestige 
relationships between the sexes. As such, gendered archaeology enlightens 
us about the past lives of men as well as women. As Meyers (2003:185) 
pointed out, “Because people have rarely lived gender-segregated lives, 
learning about one gender provides information about the other.”

In a study conducted by White et al. (2001b), stable carbon isotope and 
nitrogen isotope data for bone collagen and apatite on Maya skeletons in 
Belize were employed to interpret social complexity and food systems. 
Spanning the time between the Preclassic and Postclassic periods, sev-
eral shifts in the consumption of C4 foods (tropical grasses, particularly 
maize) demonstrated differential access between males and females, in 
that males consumed more meat and C4 foods than females did (White 
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et al. 2001b:371). High status was also indicated by the consumption of 
large quantities of C4 foods among some individuals.

In his discussion of the role of insects in the human diet of hunter-
gatherer groups around the world, Sutton (1990:195) noted a pattern of 
differential access to protein sources in some contemporary societies, 
such as the Yanomamo of northwestern Brazil and the Tukanoan of 
the northwest Amazon. In these societies, males obtained most of their 
protein from vertebrates while females consumed a much larger propor-
tion of insects. Observing the same pattern in modern-day chimpanzees, 
Sutton (1990) suggested that this pattern may have its roots in antiquity, 
perhaps as early as the Plio-Pleistocene. At that time, hominid females 
may have focused on insects for protein in response to male-dominated 
use of vertebrates. Because of their abundance and easy availability, a 
reliance on insects by some females “may have resulted in a greater suc-
cess of those individuals and their offspring, and such differential success 
may (in part) have led to the development of the genus Homo” (Sut-
ton 1990:195). Testing this idea archaeologically could take two forms:  
(1) trace element or stable isotope analysis of human bones to detect the 
consumption of insects and (2) the recovery of fossilized insect parts and/
or the tools used to process insects (Sutton 1990:203).

Ethnicity

Ethnicity is a difficult concept to define. Bloch-Smith (2003:402–403) 
defined it in terms of ethnic groups, or “a group of people larger than 
a clan or lineage claiming common ancestry” related by descent and 
kinship. Ethnicity can be conveyed by way of various characteristics, 
including language, ritual behavior, physical features, material culture, 
and dietary choices (Finkelstein 1996:203). Nevertheless, it is difficult 
to delineate ethnic boundaries, even among modern societies, because 
there is “no simple one-to-one relationship between ethnic units and cul-
tural similarities and differences” (Barth 1969:13–14; also see Finkelstein 
1996:203). This is an even more formidable task when dealing with past 
cultures, as only selected cultural materials will preserve and/or be dis-
covered in the archaeological record.

From an archaeological perspective, it may be possible to detect 
ethnicity through analyses of what foods people consumed and how 
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the foods were consumed (see Case Study 5 in chap. 6). As Finkelstein 
(1996:206) noted, “Culinary practices often rival ideology and religion in 
terms of cultural conservatism, and food is one of the primary symbols 
manipulated by people seeking to maintain their cultural identity and 
group solidarity.” Many factors can influence dietary patterns within a 
particular ethnic group, including acculturation, culture contact, and 
the availability of resources.

Ethnicity is often determined based on trait lists that are thought to 
be ethnically distinct markers. But such trait lists rely on “fragments from 
the cultural whole . . . on the basis of an evolving routinization of ethno-
graphic genres” (Hannerz 1992:21). The definition and determination of 
ethnicity are also problematic in that it is difficult to determine whether 
ethnicity is ascribed from within the group itself or by outside groups. As 
such, it has been argued either that ethnic groups are a myth or that they 
are artificial constructs (e.g. Miller 2004:56).

In an attempt to identify the Israelites who opposed the Philistines 
from the twelfth through the early tenth centuries B.C., Bloch-Smith 
(2003:415–416) observed that there were four distinguishing traits of 
Israelites: circumcision, maintaining a short beard, abstaining from eat-
ing pork, and military inferiority. The taboo on pork has typically been 
considered a way of differentiating archaeologically between Israelites 
and Philistines through analyses of pig bones. However, in a study of 
pig bones from Israel, Syria, Iraq, eastern Anatolia, and Egypt, Hesse 
and Wapnish (1997) concluded that interpretations of the absence of 
pig remains as an ethnic marker for the Israelites must be tempered by 
sociocultural, economic, and temporal factors. In other words, “It is not 
sufficient to show that a people did not consume pork, but one must also 
demonstrate how this abstinence was integrated into the social life of 
their community” (Gandulla 2000:657).

In his study of subsistence practices at five French colonial sites in 
North America, Becker (2004) observed that the types of food people eat 
can be determined both by cultural practices and by the environment in 
which a particular ethnic group lives. For example, cultural (or ethnic) 
identity can be inferred though selective consumption—that is, consum-
ing certain foods to the near exclusion of others. Selective consumption 
can also provide information regarding social distance between people. 
As a result of his analysis of variation in the subsistence patterns of the 
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groups at these five sites, Becker (2004) argued that it was possible to 
view the different ways in which cultural identities were expressed at 
each site.

In an analysis of the faunal remains from prehistoric Iroquoian and 
Algonquian sites along the St. Lawrence estuary between about 500 and 
1,000 years ago, St. Pierre (2006) argued that these two populations devel-
oped different patterns of resource exploitation within the same environ-
ment. The faunal remains from Iroquoian sites contained a much larger 
proportion of sea mammal bones, whereas those from Algonquian sites 
consisted primarily of land mammals. There were also differences in the 
proportions of harbor seals and harp seals between the two groups, with  
Algonquians primarily hunting the former and Iroquoians the latter  
(St. Pierre 2006:4). In addition to issues regarding ethnicity, these patterns 
offered clues regarding the negotiation of borders and resource exploita-
tion between these two populations (St. Pierre 2006:5).

Scott (2001) documented what she believed to be ethnic differences in 
food consumption among French, Anglo-American, and African Ameri-
can groups between 1820 and 1890 at Nina Plantation, a sugar and cotton 
plantation in central Louisiana. She also compared the differences in 
diet among the plantation inhabitants during the pre-Emancipation and 
post-Emancipation years. While the differences were not always distinct, 
Scott (2001:671) argued that her evidence demonstrated “the relations of 
power that existed on the plantation as well as the ways in which ethnic-
ity and economic class affected diet.”

Sociopolitical Organization

Social organization refers to the ways in which individuals and social 
units interact to form a society (see Case Studies 2 and 3 in chap. 6). It 
includes, but is not limited to, such social institutions as marriage, kin-
ship, family, social stratification, settlement, and subsistence practices. 
Political organization is the myriad of ways that people have devised to 
maintain order internally and externally and includes warfare, trade, and 
culture contact, to name a few. Because they are intimately tied to each 
other, these two terms are often combined and called sociopolitical orga-
nization. Many of these facets of sociopolitical organization are closely 
tied to diet and nutrition, such as social stratification (e.g., differential 
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access to preferred food resources), settlement (e.g., farming versus forag-
ing food resources), warfare (e.g., external conflict over food resources), 
and trade (e.g., exchange of local for nonlocal food resources).

For example, differential access to important resources, such as water, 
food, weapons, and information, can reveal a great deal about diet and 
nutrition. Archaeologically, this can be observed in faunal assemblages 
and human skeletal remains in terms of who is consuming what, which 
ultimately may tell us why those differences existed. This difference in 
access frequently results in social, economic, and/or political inequali-
ties within a specific group or between adjacent and/or related groups. 
The degree of stratification and inequality in a society is one aspect of its 
sociopolitical organization and complexity.

In a study that examined the faunal assemblage from the site of Colha 
in northern Belize, Shaw (1999:83) argued that the Preclassic period 
Maya (250 B.C. to A.D. 250) engaged in “considerable experimentation 
and variation in the strategies used to acquire meat for food.” The strate-
gies that focused on meat procurement and resource control provided 
support for the large populations of the late Classic period, which ulti-
mately resulted in the development of social and economic inequality. 
This shift in faunal procurement strategies suggests that the inhabit-
ants had the ability, “through social and economic means, to remove 
[themselves] from the relative subsistence autonomy of earlier periods 
and move to a strategy of indirect procurement through trade or tribute” 
(Shaw 1999:97).

While noting that postcontact pressures have disturbed the distribu-
tions of plant and animal resources in the Great Basin, Fowler (1986:64) 
attempted to delineate the role of plants and animals in the diets of eth-
nographic groups in this region, including how certain species were 
manipulated and the role different species played in the worldview of 
the cultures that resided there. She observed that the acorn did not play 
as significant a role in the Great Basin as it did in California; rather, 
pine nuts were of greater importance. Fowler (1986:93–95) observed that 
while the subsistence regime of most Great Basin groups was related to 
resources that could be hunted and gathered, most groups manipulated 
the environment in a number of ways, including burning to increase 
yields, broadcast sowing of seeds, pruning, watering, and some irriga-
tion of the natural vegetation. These practices indicate a significant and 
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detailed knowledge of the environment, a critical component of socio-
political organization.

Resource Intensification

The concept of resource (or subsistence) intensification is typically 
defined as having two related components: “an increase in productivity 
per areal unit of land” along with “an associated decrease in productive 
efficiency” (Broughton 1999:5). It was first applied to historical agricul-
tural groups as a means of explaining human population growth (Bos-
erup 1965). Since that time, the application of resource intensification 
models has become relatively common in explaining the subsistence 
economics of prehistoric hunter-gatherer groups (e.g., Bartelink 2006; 
Broughton 1994, 1999; Raab 1996; Wohlgemuth 1996; see Case Study 5 
in chap. 6). According to Raab (1996:66), resource intensification mod-
els predict two related trends: “the addition of increasingly ‘marginal’ 
food species to the diet . . . and increasing investments in the technolo-
gies required to exploit the new food items in a cost-effective way.” Such 
models are typically associated with population-resource imbalances and 
higher levels of sedentism during the late Holocene (Bartelink 2006:4; 
also see Broughton and O’Connell 1999).

Broughton’s (1999) study of resource intensification employed prey 
body size as a measure of prey profitability in his analysis of the Emeryville 
Shellmound along San Francisco Bay, where he observed that sturgeon, 
which was the largest fish from the site, declined in relative abundance 
through time. This decline was also apparent among various large mam-
mal species, including deer and elk, during the approximately 600-year 
occupation span of Emeryville. Then, beginning about 2,000 years ago, 
this trend was reversed, with deer dramatically increasing in abundance 
until about 700 years ago. This reversal was thought to be due to “an 
increasing use of distant less-depleted deer patches in the hinterlands 
of the region and was supported by a variety of faunal data” (Broughton 
1999:viii).

In another example, mollusks from the Quoygrew site in Orkney, 
Scotland, led Milner et al. (2007:1461) to suggest a trend toward the 
intensification of marine resources at the end of the first millennium 
A.D. The stratified midden of the site, which dated from approximately 
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the tenth to the thirteenth centuries, contained predominantly limpets, 
thought to have been used to bait fish. These limpets demonstrated a 
reduction in size through time. To test whether this reduction in size was 
related to intensification in exploitation, Milner et al. (2007) conducted 
an analysis of limpet shoreline location. They also used age data to dem-
onstrate a lowering of average age, which suggested intensification in 
gathering during the eleventh and twelfth centuries at the site (Milner 
et al. 2007:1461).

Biological Reconstructions

Biological archaeologists can examine the question of diet in human 
populations through studies of human remains, such as skeletal data, 
paleofecal studies, and isotope analyses (see Case Studies 3 and 4 in 
chap. 6). Teeth and bones can provide valuable data for interpreting the 
lifeways of past cultures, although “many American archaeologists have 
not appreciated the full potential of osteological research as a source of 
information on biocultural behavior and human adaptation” (Owsley  
et al. 1989:122; also see Larsen 1997). Such information can then be used 
to develop biological reconstructions, which include analyses of age, sex, 
stature, pathological conditions, and paleodemography within a specific 
population or between two or more populations.

For example, using stable carbon and nitrogen isotopic analysis on 
skeletal specimens from the Stillwater Marsh, Schoeninger (1995:102) 
noted that some individuals consumed a large amount of C4 foods, 
despite the fact that none of the identified plants were C4. While this sug-
gests that nonlocal C4 foods were exploited, “two of the faunal samples 
[hare and duck] have d13C values indicating that up to 70 percent of their 
diet was a C4 plant (or plants) or a CAM plant with a C4 signature.” The 
study also revealed that, based on isotope analysis, there was no obvious 
patterning within the group under analysis in terms of age at death or 
sex (Schoeninger 1995:102). The conclusion of the study was that prehis-
toric peoples of the Carson Desert ate a variety of foods, with distinctly 
different diets at various times throughout the occupation of the region 
(Schoeninger 1995:105).

Based on the skeletal remains from two archaeological sites located 
on the island of northern Ambergris Cay, Belize (San Juan and Chac 
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Balam), Glassman and Garber (1999:123) observed that, despite a small 
sample size, a pattern seemed to emerge demonstrating that the stature 
of individuals assigned to the elite members of the population averaged 
167.1 centimeters compared to an average of 162.0 centimeters for indi-
viduals assigned to the middle and low status groups. This suggested to 
Glassman and Garber (1999:123) that, in some highly stratified societ-
ies, individuals in higher social positions had better diets and were thus 
healthier than individuals of lower social standing. Other morphological 
indicators of nutritional stress among the Ambergris populations included 
Harris lines, dental enamel hypoplasias, and porotic hyperostosis (Glass-
man and Garber 1999:126).

The results of an isotopic analysis of burials from the Mesolithic sites 
of Téviec and Hoëdic in Brittany, France, demonstrated the significant 
use of marine resources by the inhabitants of these two sites (Schulting 
and Richards 2001). On the other hand, there were unexpected differences 
between the two sites, as the people of Hoëdic received up to 80 percent 
of their protein from the sea, whereas the people of  Téviec made relatively 
equal use of marine and terrestrial proteins. Further, at both sites, women 
(especially young women) consumed fewer marine resources, suggesting 
an exogamous, patrilocal marriage pattern (Schulting and Richards 2001).

Summary

As the above examples demonstrate, there are a number of theoretical 
approaches that can be used to extract data from the archaeological 
record in order to provide information on past human behavior related 
to diet and nutrition. With the exception of biological reconstructions, 
which can provide direct evidence of diet, most of these approaches are 
indirect indicators of diet, such as inferences regarding differential access 
based on gender, ethnicity, and/or status. In tandem with a variety of 
archaeological data, however, such studies offer valuable insights into 
the dietary and nutritional patterns of past populations.

Future Directions

As the examples in this book have illustrated, we currently have a great 
deal of data about past diet and nutrition and have begun to integrate 
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these data toward an understanding of human behavior. The gaps in our 
knowledge remain considerable, however, and basic baseline data on 
diet and nutrition are still needed for many groups worldwide. Some 
researchers have a tendency to discontinue seeking baseline data when 
they begin to see a pattern of redundancy, believing that there is nothing 
left to learn about a particular group. We would argue, however, that 
even redundant data are important and should continue to be sought. 
Understanding stability is as important as understanding variation or 
change in the environments and/or behaviors of human groups. We 
learn something in either case.

Information about paleonutrition exists in a number of data sets, 
including faunal, botanical, and bioarchaeological, but we rarely recover 
complete data sets for any particular group in an archaeological context. 
In other words, we may know something about the faunal utilization of 
Group A, the plant usage of Group B, and the aDNA of Group C, but 
we do not often have the luxury of controlling all three of these sets of 
data within one group. There is a considerable need to generate comple-
mentary data sets for each group under study so that comparisons can be 
made and concordant data for hypothesis testing can be generated.

Paleonutrition studies continue to become greater in scope and 
sophistication. There is an increasing trend to combine botanical and 
faunal data from archaeological excavations to gain a more complete 
picture of the resources that were used by a group. Analytical technol-
ogy—such as gas chromatography/mass spectrometry—is now commonly 
utilized to generate new data sets, often in combination with traditional 
faunal and botanical studies. The application of aDNA data to problems 
in paleonutrition studies—such as population movements—is very excit-
ing and promises to move us into realms of knowledge only imagined a 
few decades ago.

Our understanding of paleonutrition must be expanded beyond 
behaviors related to obtaining food to include a series of other behav-
iors related to the consequences of diet. For example, environmental 
conditions will influence choices made by a group about the types and 
quantities of foods that can be obtained, which in turn will influence 
certain behaviors within a group (e.g., within the theory of evolution-
ary archaeology, which animals get hunted using which tactics and with 
what technology). Surpluses or shortages of resources could influence 
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sociopolitical organizational responses (e.g., who has what power), which 
can influence the equality of subgroups (e.g., different genders) within 
a group.

Ultimately, studies that combine and integrate suites of data sets—
including faunal and botanical, isotopic, aDNA, pathology, technology, 
settlement patterns, ecology, sex and gender, and socioeconomic—will 
provide a much richer understanding of the past than we currently have. 
Studies of paleonutrition can lead the way.
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Case Studies

This chapter presents five case studies on paleonutrition and related 
issues. Three of these case studies come from North America, including 
the Great Basin, the American Southwest, and the northern Coachella 
Valley of California. Two come from Africa, one from east Africa and one 
from northern Sudan. The topics of these case studies cover a wide range 
of research, including some of the personal research of the authors. One 
of the studies, of contemporary east African foragers, illustrates the appli-
cability of the study of contemporary groups to the study of prehistoric 
populations.

Case Study 1, “Pinus monophylla and Great Basin Subsistence Mod-
els,” is a reanalysis of previous data on pinyon, with a different interpre-
tation on the value of pinyon to prehistoric peoples in the Great Basin. 
Case Study 2, “East African Highland Foragers,” demonstrates the impor-
tance of the combination of hunting and honey collecting among east 
African highland groups, primarily the Okiek. In Case Study 3, “Chil-
dren’s Health in the Prehistoric Southwest,” a slightly different approach 
is taken. In this study, the authors first synthesize the previous research on 
the topic of children’s health in the Southwest and then provide an analy-
sis of the data that is first seen in this volume. Case Study 4, “Complemen-
tary Paleonutritional Data Sets: An Example from Medieval Christian 
Nubia,” highlights dietary stress during the Medieval Christian period 
(ca. A.D. 550 to 1450) in northern Sudan (once known as Upper Nubia), 
as evidenced in mummies recovered during archaeological excavations. 
The final case study, No. 5, “An Evolving Understanding of Paleodiet in 
the Northern Coachella Valley, California,” is a comparison of models 
related to diet among the prehistoric and ethnographic Cahuilla in the 
Coachella Valley of California, and how paleodiet and other factors may 
have contributed to settlement shifts.

It is hoped that these case studies will stimulate future such analyses 
among archaeologists (and related professionals) and aspiring students in 
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the field. Such studies could also lead to additional reanalyses of previous 
research, possibly leading to new interpretations of old ideas based on 
more recent information. The future of paleonutritional research is an 
open door inviting all interested scholars to enter.

Case Study 1: Pinus monophylla and Great Basin Subsistence 
Models

In formulating models of human adaptation, it is important that the 
environmental parameters be understood and that accurate infor-
mation be employed. This case study illustrates the use of informa-
tion regarding the behavior of one species of pinyon to model the 
behavior of another. This study led to a miscalculation of the avail-
ability and productivity of the species in question and an underes-
timation of the value of pinyon in Great Basin subsistence systems 
(see Sutton 1984).

In a landmark study, David H. Thomas (1971, 1973) formulated 
a model (called Basin I) of prehistoric central Great Basin subsis-
tence and settlement patterns based on ethnographic data gathered 
by Julian Steward (e.g., 1937, 1938) and others. Thomas concluded 
that from about 5,500 B.P. to the time of historic contact, the archae-
ological record of the Reese River Valley in central Nevada reflected 
the same basic land-use system that characterized the ethnographic 
period. To create Basin I, Thomas modeled the availability and pro-
ductivity of the suite of resources utilized by the ethnographic West-
ern Shoshone. The exploitation of single-leaf pinyon (Pinus mono-
phylla) was an integral part of that adaptation, and the ethnographic 
pattern of its use was a key element in the archaeological predictions 
derived from the model. Similar models, also employing pinyon, 
have been used in other subsistence studies in the Great Basin (e.g., 
Bettinger 1975; Thomas 1983) and, at least partly as a result of these 
models, pinyon has gained the reputation of having been an erratic 
and unpredictable aboriginal food source.

To understand how pinyon was used by the prehistoric inhabit-
ants of the Great Basin, it was necessary to understand the behavior 
of pinyon. The species of pinyon that grows in the central Great 
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Habitat and Description

The range of P. monophylla (fig. 6.1) is confined primarily to the central 
and southwestern Great Basin, including western Utah; northeastern, 
central, and southern Nevada; the eastern slopes of the Sierra Nevada; 
and interior southern California (Sargent 1922; Mirov 1967). The species 
is adapted to semi-arid desert mountains ranging in elevation from about 
1,500 to 2,300 meters (Britton 1908; Mirov 1967). The range of P. edulis 
(fig. 6.1) is confined to Colorado, eastern Utah, Arizona, New Mexico, 
and parts of Texas and Wyoming (Sargent 1922; Mirov 1967). P. edulis is 
adapted to the drier mountain ranges at elevations from about 1,800 to 
2,400 meters (Britton 1908). Generally speaking, P. monophylla trees are 
bigger and have larger cones than P. edulis, and the two species have a 

Basin is P. monophylla. At the time of the Reese River Valley study, 
however, specific data on P. monophylla were lacking. As a proxy, 
Thomas used ecological data from the Colorado pinyon (P. edulis) 
for his simulation of pine nut harvests over a 200-year period. Based 
on Little (1938), Thomas (1973:160) “assumed that the behavior of 
Pinus monophylla [was] comparable to that of P. edulis.” Using the 
behavioral data from P. edulis, Thomas modeled cone crop fre-
quency and yield, seed (food) yield, and harvest estimates on pinyon. 
The model was then run through a computer to produce a recon-
struction of the environment to be compared to the archaeological 
record. Based on the expectations produced by the model and on 
the archaeological data obtained from the study area, Thomas con-
cluded that the cultural adaptation recorded in ethnographic times 
was substantially the same for the last 5,500 years.

Unfortunately, the assumption that the behavior of P. edulis was 
basically the same as that of P. monophylla was in error, as shown 
by data compiled on P. monophylla after Thomas had completed 
his study. The use of P. edulis as a proxy resulted in a considerable 
underestimation of the productivity of P. monophylla and a misun-
derstanding of the use of this resource by Great Basin peoples. The 
points of error are discussed below (also see table 6.1).
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differential geographic distribution. It is also important to note that the 
cones of both species mature in their third growing season (Ligon 1978).

Species Behavior

Cone Crop Frequency

Citing the work of Little (1941), Thomas (1971) estimated that a P. edulis 
tree will produce cones (cone crop frequency) at two to five years. These 

table 6.1.  Comparative Data on Pinus monophylla and Pinus edulis

P. monophylla P. edulis

Tree height 6 to 15 metersa 3 to 12 metersa,b

Cones mature in Late Augustc Septembera,c

Cones fall in September to 
Octoberc

Septemberc

Average cone length 4.0 to 6.5 
centimetersa

2.0 to 5.0 
centimetersd

Crop frequency 1 to 2 years (avg.,  
1.5 years)a

2 to 5 years 
(avg., 3.5 years)d

Unshelled seeds per bushel of cones 1.7 to 4.7 pounds 
(avg., 3.2 pounds)a

3.3 poundsa

Average shelled seed length 1.5 centimetersb 1.2 centimetersb

Number of unshelled seeds per pound 1,100a 1,900a

Percentage of seed weight taken up by 
the shell

30a 42a

Edible seeds per pound of unshelled 
seeds

0.70 pound 0.58 pound

Average edible seed yield per year 
(edible seeds divided by crop 
frequency)

0.47 pound 0.16 pound

Calories per pounde 2,250 3,190
Bottom Line:  Average calories 

available (yield times calories) per 
year

1,057 510

a Schopmeyer (1974).
b Britton (1908).
c Ligon (1978).
d Little (1941).
e Farris (1982:table 2).
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data have been replicated more recently (Schopmeyer 1974) and a cone 
crop frequency of two to five years for P. edulis appears to be confirmed. 
The cone crop frequency for P. monophylla was extrapolated by Thomas 
(1971) using the P. edulis data, as there were no independent data available 
for P. monophylla at that time. Specific data on the cone crop frequency 
of P. monophylla are now available (Schopmeyer 1974) and show that the 

figure 6.1. Distribution of Pinus monophylla and Pinus edulis in the Great 
Basin (from Sutton 1984:241; reproduced by permission).
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cone crop frequency of P. monophylla is one to two years, a substantial 
difference from P. edulis.

Other quantitative data on P. monophylla cone crops seem to indicate 
frequent cone crop production. Forcella (1978) examined a small sample 
of trees in eight P. monophylla stands (five trees per stand) in southern 
Idaho and northern Nevada and estimated cone production over a ten-year 
period. He concluded that “the overall cone crops in pinyon communities 
are highly irregular” (Forcella 1978:171), but added that seed crops measured 
in his study exceeded the overall ten-year sample average in two or three 
years, with such crops followed by average yields in about half of the study 
plots. Poor crop yields (below the ten-year average) were also recorded. 
Forcella (1978) suggested that variation in cone crop size might serve as a 
defense against the pinyon cone moth (Eucosma bobana) by not allowing 
the moths to concentrate in particular stands over successive years. The 
life cycle of the pinyon jay (Gymnorhinus cyanocephalus), which subsists 
primarily on pinyon nuts (Lanner 1981), suggests that the crops of P. mono-
phylla must occur often and be at least somewhat consistent.

It is clear that pinyon cone crops do fail, but such failures are prob-
ably confined to specific stands (cf. Lanner 1983). Unfortunately, there 
is no clear definition of what a “stand” is or how large “stands” are. Crop 
failures of radical proportions do occur but may be quite limited in 
geographical extent. Widespread crop failures might be quite rare, and 
none were reported by Forcella (1978). While the above data are not 
conclusive, they do support the suggestion that cone crop frequencies of 
P. monophylla are higher than those of P. edulis.

Cone Crop Predictability

It takes three seasons for a pinyon cone to mature. During the second 
growing season, more than a full year prior to their maturity, small cones 
often are plainly visible on the tree. They are virtually right next to the 
near-mature cones of the current crop and should have been easily 
observable during pinyon harvests (cf. Wheat 1967:116; Sutton 1984:fig. 2).  
There should, therefore, have been little problem in estimating the crop 
for the next year, making the crop of the following year highly predict-
able. Monitoring of the cones throughout the year would add to the reli-
ability of the predictions.
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Seed Yield

Based on sample plots throughout the range of pinyon, the pounds of 
seeds per bushel of cones has been estimated for the two species (Schop-
meyer 1974:622–623). The data indicate that the seed yield (pounds per 
bushel) in P. monophylla is sometimes larger but perhaps more erratic 
than that of P. edulis.

The seeds of Pinus monophylla are substantially larger than those 
of Pinus edulis. According to an analysis of yield data (Schopmeyer 
1974:622–623), P. monophylla averages 1,100 unshelled seeds per pound 
of seeds while P. edulis averages 1,900 seeds per pound. In addition, the 
shells of P. edulis comprise an average of 42 percent of the seed weight 
whereas the shells of P. monophylla average 30 percent of the total weight 
(Lanner 1981). As a result, P. monophylla produces about 12 percent 
more edible material per pound of seeds than P. edulis, a substantial 
difference.

A nutritional analysis of several species of pine, including P. mono-
phylla and P. edulis, was reported by Farris (1982). Several major dif-
ferences exist between P. monophylla and P. edulis, including a higher 
fat and protein content in the latter and a higher carbohydrate content 
in the former. The seeds of P. edulis have a higher caloric value and 
would seem to have more of several important minerals (Farris 1982). On 
the other hand, P. monophylla contains larger proportions of twelve of 
twenty-two amino acids (see Madsen 1986:table 2).

Good Years and Bad Years

The model proposed by Thomas predicted that Great Basin peoples 
could expect a “good” crop of pine nuts every 7.7 years with an “accept-
able” (good or fair) crop every 5.4 years (Thomas 1971:26). Crop failure 
(undefined by Thomas) could, by implication, be expected in most years. 
The criteria of “good” and “fair” used by Thomas (1971, 1972) were based 
on mid-1940s Forest Service estimates of seed yield (on P. edulis) from a 
field station near Tucson, Arizona. These data were originally intended 
to measure harvests in modern economic terms, not in aboriginal eco-
nomic terms, and are somewhat confusing. A “good” harvest to the For-
est Service in Arizona was 100,000 pounds of seeds per township (4.34 
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pounds per acre), the equivalent of 30,000 pounds (1.3 pounds per acre) 
for Great Basin pinyon densities (after Thomas 1971:30). A “fair” seed 
crop would have been 50,000 pounds for Arizona, or 15,000 pounds (0.65 
pound per acre) for the Basin. Pinyon crop failure for the Basin would 
apparently be less than 0.65 pound of seeds per acre.

Based on the data provided by Thomas (1971:30) for aboriginal popula-
tion density and pinyon needs (21 persons per township [36 square miles] 
requiring a total of 6,300 pounds of seeds [0.27 pound per acre] per year), 
there could be a serious failure based on the Forest Service standard, 
although there would be ample pinyon seeds still available to support the 
aboriginal population. While there were certainly local cone crop fail-
ures and “bad” years, it is difficult to see how P. monophylla could have 
been an unreliable food source. The use of modern standards to predict 
prehistoric conditions of pinyon appears to have been a serious flaw.

Discussion

The behaviors of P. edulis and P. monophylla are quite different. Thus, 
the predictions of central Great Basin pinyon crops made by Thomas 
based on the behavior of P. edulis were incorrect, and it seems that  
P. monophylla would have been at least twice as productive in average 
available calories as P. edulis (see table 6.1). The use of modern stan-
dards to define crop failures in aboriginal times compounds the issue. 
One could argue that the conclusions reached by Thomas were based  
on incorrect data, and the conclusions based on those data are probably 
not valid. To construct and use models, one must begin with accurate 
data. If not, the results of the models will be unsatisfactory and could 
distort our understanding of the societies involved.

In the Great Basin, the conclusions of the Basin I study are widely 
held as “gospel” and much of the interpretation of the prehistory of the 
region is based on the premise that there was some sort of cultural con-
tinuity in the central Great Basin for the past 5,500 years. This has had a 
profound effect on a number of issues, most notably linguistic prehistory. 
The model of an expansion of Numic groups across the Great Basin 
beginning about 1,000 years ago (see Madsen and Rhode 1994) has been 
countered by an alternative model suggesting that Numic groups origi-
nated in the central Great Basin (Aikens and Witherspoon 1986). This 
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latter model was based, in a large degree, on the premise of a cultural 
continuity in the central Great Basin.

The new pinyon data would, no doubt, greatly alter the original con-
clusions of the Thomas (1971) study and call into question all of the work 
that used those conclusions as their baseline premise. Having a good 
understanding of pinyon biology could have a profound impact on inter-
pretations of Great Basin prehistory.

Case Study 2: East African Highland Foragers

The foragers turned pastoralists of the east African highlands sub-
sisted mainly on hunted foods supplemented by honey, a small 
amount of gathered plants, and some traded domesticated foods 
(Cronk 2004). Wild game has always been considered extremely 
important to diet and nutrition by these peoples, whereas the impor-
tance of honey has been considered mainly symbolic or religious in 
nature (Blackburn 1971, 1982a,b). Honey consists primarily of car-
bohydrates, one of three sources of caloric energy (the other two 
being protein and fat). The ubiquitous combination of hunting and 
beekeeping in the eastern African highlands most likely has served 
the purpose of providing alternative energy sources with ingestion of 
carbohydrate-rich honey. As such, honey is an essential dietary item 
providing a unique source of caloric energy. Combining honey and 
hunting in this region is therefore nutritionally adaptive.

Recent attention has focused on the nutritional adequacy of 
diets, whether relating to modern cultural groups (Farris 1982; 
Kuhnlein et al. 1982; Ramos-Elorduy de Conconi et al. 1984), pre-
historic populations (Dennell 1979; Ezzo 1994c; Sobolik 1994b), or 
processes of hominid evolution (Bumsted 1985; Sealy and van der 
Merwe 1985). Protein is an integral component of proper nutrition 
and, as noted above, one of three sources of caloric energy. Speth 
(1989, 1990) and Speth and Spielmann (1983) observed that there 
seems to be an upper limit in the amount of caloric energy that can 
be acquired through protein sources without the consequences of 
deleterious health effects. This maximum limit has been defined as 
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Human Energy Requirements

Energy is the essential outcome of the body’s use of dietary constitu-
ents. Energy requirements for human growth are obtained through the 
ingestion of protein, fat, and carbohydrates. One gram of fat provides  
9 kilocalories of energy, whereas 1 gram of carbohydrates or 1 gram 
of protein provides 4 kilocalories of energy. Although fat is the most 
concentrated source of energy (Shahied 1977), carbohydrates are actu-
ally the least expensive source of energy (Sherman 1941; Roehrig 1984; 
Guthrie 1986). This assessment is based on the thermic effect (or spe-
cific dynamic action) of foods. The thermic effect of carbohydrates is 
only 6 percent (Speth and Spielmann 1983), indicating that for every  
100 grams of carbohydrates ingested 6 grams are used to drive metabo-
lism. This is in contrast to a 6 percent to 14 percent thermic effect for fat 
and 30 percent thermic effect for protein (Speth and Spielmann 1983). 
Protein, therefore, is the least efficient energy source while carbohy-
drates are the most efficient.

Humans can convert glycerol fats and amino acids to glucose, reliev-
ing the body of its need for carbohydrates, although the best source of 
energy and glucose is through carbohydrate ingestion (Committee on 
Dietary Allowances 1980). Carbohydrates are found mainly in plant food 
sources, and an intake of at least 100 grams of carbohydrates a day is rec-
ommended, primarily to prevent an increased ingestion of protein as an 
energy source (Guthrie 1986). The lack of carbohydrates in the diet leads 
to breakdown of tissue protein, ketosis, dehydration, and loss of cations 
(Committee on Dietary Allowances 1980).

Recent nutritional studies have indicated that in optimal conditions, 
15 percent of caloric intake should be derived from protein, 30 percent 
to 35 percent from fat, and 45 percent to 55 percent from carbohydrates 
(Lloyd et al. 1978; Cahill 1986; Guthrie 1986; Poduch et al. 1988). Caloric 

approximately 50 percent (or 300 grams) of total ingested calories 
obtained from protein. Therefore, other sources of caloric energy 
are important in maintaining a nutritional balance and avoiding the 
ill effects of a high-protein diet.
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intake percentages vary among societies. For example, it has been estimated 
that modern Americans acquire 43 percent to 58 percent of their energy 
from carbohydrates, 12 percent from protein, and 30 percent to 45 per-
cent from fat (Guthrie 1986). Hunter-gatherer groups, however, tend to 
consume larger amounts of protein. The !Kung San of Botswana receive  
16 percent of their calories from protein (Lee 1979), and the northern 
Ache of Paraguay derive 39 percent of their calories from protein (Hill 
1988). The highest percentage of protein consumption occurs in arctic 
and subarctic regions, however, with a range between 15 percent and 
45 percent (Sinclair 1953; Draper 1977, 1980; Schaefer 1977). Research-
ers analyzing prehistoric hunter-gatherer diets have estimated that early 
humans received between 25 percent and 34 percent of their caloric 
intake from protein, 45 percent to 60 percent from carbohydrates, and 
only between 15 percent and 21 percent from fat (Robson and Wadsworth 
1977; Eaton and Konner 1985).

Dietary protein can originate from either plants or animals; however, 
protein derived from animals is most useful for human dietary require-
ments because of the diversity and variety of amino acids in animals, 
whereas plant protein may be deficient in one or more essential amino 
acids (Hegsted 1978; Guthrie 1986). The highest percentage of protein 
in the diet of modern human populations has been calculated to be less 
than 50 percent of total caloric intake. This intake level seems to be a 
crucial cutoff point in the amount of protein that humans can ingest with-
out deleterious effects. Protein consumption above 50 percent of total 
calories may surpass the level at which the liver can perform amino acid 
metabolism, as well as the amount of urea the body can synthesize and 
excrete (Noli and Avery 1988; Speth 1990). Some deleterious effects of 
increased protein consumption include dehydration, electrolytic imbal-
ance, calcium loss, elevated levels of blood ammonia, and hypertrophy 
of the liver and kidneys (Miller and Mitchell 1982; Cahill 1986; McArdle 
et al. 1986; also see Speth 1990).

Speth (1989) argued that meat (and meat protein) from larger game 
sources was probably not an important aspect of early hominid dietary 
practices; dietary energy was probably achieved through the ingestion 
of plant foods and smaller insects and animals. Larger African ungulates 
are particularly lean and devoid of fat, with average fat levels reaching  
4 percent during optimal times (Speth and Spielmann 1983; Speth 1987) 
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and decreasing to 1 percent to 2 percent during lean times (Speth 1987). 
Due to the inefficiency of protein as an energy source, as well as the del-
eterious effects resulting from high protein intakes, Speth (1989) argued 
that lean African ungulates were probably not sought as a preferable 
food source, particularly during times of resource stress. Vegetable foods, 
many of which are rich sources of fat and carbohydrates, would probably 
have been their primary foraging targets.

In another study, Speth and Spielmann (1983) hypothesized that, 
again due to the inefficiency of protein and the detrimental effects of 
high protein consumption, hunter-gatherers may have been forced to 
decrease their emphasis on hunting larger ungulates during times of 
stress. During lean times, “protein is simply an expensive source of cal-
ories” (Hegsted 1978:64). Larger ungulates would also be nutritionally 
stressed and their fat content would decrease, resulting in a larger portion 
of animals containing pure protein rather that a mixture of protein and 
fat. Speth and Spielmann (1983) discussed other possible strategies for 
capturing alternative energy sources during times of stress, such as the 
selective procurement of animals with high fat content, building up a 
reserve of body fat during optimal times, applying labor-intensive tech-
niques of bone grease acquisition, and foraging for and/or storing carbo-
hydrate-rich plant foods.

The Nutritional Value of Honey

Honey has been and continues to be an important food source for vari-
ous prehistoric and historical cultural groups throughout the world (Fra-
ser 1951; Cipriani 1966; Turnbull 1966; Pager 1973) and was used for thou-
sands of years before the introduction of cane or beet sugar (Crane 1975). 
Today, honey is a key commercial trade product, as honey is a staple 
resource on its own and not necessarily as an ingredient in other foods 
(Perlman 1974; Crane 1975, 1980). In 1973 alone, the United States pro-
duced 107,985 tons of honey, exporting 7,985 tons and importing 4,854 
tons (Crane 1975).

The sweet composition of honey depends on two main factors: the 
composition of different plant nectars, which vary in types and concentra-
tions of sugars, and external factors such as weather, climatic conditions, 
and beekeeper practices (Crane 1975). There are a variety of vitamins 
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and minerals found in honey (table 6.2), although carbohydrates (sugars) 
contribute the largest amount of nutrients (Perlman 1974; Crane 1975, 
1980). The average carbohydrate content of honey in the United States is 
78.10 percent, while the average found in African honey is 76.18 percent 
(table 6.3). The energy value of honey is 304 kilocalories per 100 grams 
(table 6.3), or 1,380 kilocalories per pound (Watt and Merrill 1963). Acids, 
minerals (ash), protein and amino acids, trace elements, and enzymes 
are also present in honey, but only in minor amounts (Anderson and 
Perold 1964; Crane 1975). Most carbohydrates that are found in honey 
are monosaccharides, predominantly the sugars laevulose and dextrose, 
which make up 85 percent to 95 percent of honey carbohydrates (Crane 
1975). Disaccharides are also present in honey, but are very rare (White 
and Hoban 1959; White et al. 1962).

table 6.2.  Nutrients in Honey in Relation to Human 
Requirementsa

Nutrient
Average Amount
(100 g of honey)

U.S. Recommended 
Daily Intake

Energy 304 kcal 2,800 kcal

Vitamins
B1 (thiamine) 0.004 to 0.006 mg 5,000 mg
Riboflavin 0.02 to 0.06 mg 1.5 mg
Nicotinic acid 0.11 to 0.36 mg 20 mg
B6 (pyridoxine) 0.008 to 0.32 mg 2.0 mg
Pantothenic acid 0.02 to 0.11 mg 10 mg
C (ascorbic acid) 2.2 to 2.4 mg 60 mg
Minerals
Calcium 0.004 to 0.05 g 1.0 g
Chlorine 0.002 to 0.02 g —
Copper 0.01 to 0.1 mg 2.0 mg
Iron 0.1 to 3.4 mg 18 mg
Magnesium 0.7 to 13 mg 400 mg
Manganese 0.02 to 10 mg —
Phosphorus 0.002 to 0.06 g 1.0 g
Potassium 0.01 to 0.47 g —
Sodium 0.006 to 0.04 g —
Zinc 0.2 to 0.5 g 15 g
a Taken from Crane (1975).
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The Lifestyle of East African Highland Foragers

Forager/pastoralists of the east African highlands include as many as 
three dozen diverse groups located throughout the forests of Kenya and 
Tanzania (Blackburn 1974). Although these groups were once com-
monly referred to as “Dorobo,” it is now widely understood that this is a 
derogatory term without validity as a tribal designation. The groups are 
more properly referred to by their individual names, such as the Muko-
godo just north of Mount Kenya and the Okiek of the Mau Escarpment 
and some other areas (fig. 6.2). These groups share similar technologies, 
social structures, belief systems, and subsistence strategies (Blackburn 
1974). Many of them have recently made the transition from a mobile 
hunting and gathering way of life to one primarily of pastoralism (Hunt-
ingford 1953; van Zwanenberg 1976; Blackburn 1982a,b; Cronk 1989a,b,c, 
2004). For the Mukogodo, this transition began immediately after the 
turn of the twentieth century, with the most significant change occurring 
between 1925 and 1936 (Cronk 1989b, 2004).

The most valuable data available on the diets of these groups while 
they were still hunter-gatherers have come from studies of the Okiek of 
northern Tanzania and southern Kenya. Due to overall similarities of 
the subsistence economies of these groups, however, the same insights 
into the dietary role of honey likely apply to the non-Okiek beekeeping 
groups as well. The combination of hunting and beekeeping is wide-
spread in the forager subsistence of this region. Hunting provides most of 

table 6.3.  Average Percentage Carbohydrate Composition of Honey from the 
United States and Africaa

General
Carbohydrate

Specific Carbohydrates

Country Dextrose Laevulose Sucrose Maltose Dextrin

Angola 78.62 33.9 36.4 0.86 6.48 0.98
Mozambique 77.57 32.0 36.2 1.10 6.51 1.76
Portuguese Guinea 77.72 31.2 38.3 1.06 6.36 0.80
Sao Tome and  
  Principe

73.57 31.0 34.8 0.61 5.97 1.19

South Africa 73.44 31.5 35.5 0.54 5.40 0.50
United States 78.10 31.3 38.2 1.30 7.30 —
a Taken from Crane (1975), Anderson and Perold (1964), and White et al. (1962).



figure 6.2. Location of the various Okiek groups in east Africa (redrawn 
from Blackburn [1982b:fig. 13.1]; reproduced by permission).
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the dietary energy required by the population, although beekeeping and 
honey consumption play an essential role in both forager subsistence and 
symbolism (Blackburn 1971; Cronk 1989a). Moreover, although hunting 
provides the most calories, foragers spend a great deal of their foraging 
time in the acquisition of honey and the upkeep of beehives (Blackburn 
1971, 1982a,b). Before the shift to pastoralism, the main source of food 
came from hunting and trapping, collecting honey, and gathering wild 
plant foods. Blackburn (1971) indicated that the Okiek estimated that  
70 percent of their diet came from meat, 15 percent from honey, 14 per-
cent from domestic foods acquired from other tribes, and less than 1 per-
cent from wild vegetables or fruits.

Blackburn (1982a:13) observed that “honey-gathering is the most 
important activity of the Okiek,” mainly because of its symbolic signifi-
cance. Honey is considered sacred, and a variety of taboos and rituals 
are associated with gathering and consuming honey (Huntingford 1953, 
1955; Blackburn 1971). The symbolic nature of honey is also indicated 
by the amount of time and energy spent in collecting and storing honey 
(Blackburn 1971, 1982a,b).

Honey is obtained from both natural and man-made hives (Cronk 
1989a), although the majority of Okiek honey comes from the latter 
(Huntingford 1955). Man-made hives are constructed after a tree has 
been cut down and a section taken from the tree and hollowed out 
(Huntingford 1955; Blackburn 1982a). The hollowed section is sealed 
with wooden boards at two ends, and a small notch is made at one end 
to allow entrance for bees, as well as for prying it open to get at the 
honey (Cronk 1989a). The hive is placed in the branches or crotch of a 
tree, avoiding trees with low branches so that the honey badger cannot 
get the honey (Huntingford 1955; Blackburn 1982a). The honey is col-
lected using smoking sticks to calm the bees. Men do not wear protective 
clothing and bee stings are common but rarely serious (Blackburn 1982a; 
Cronk 1989a).

Honey is eaten by the gatherer’s family, used in trading partnerships, 
made into a fermented drink, or stored for later use (Huntingford 1953; 
Blackburn 1982a,b; Cronk 1989a). The Mukogodo store honey by leaving 
it to harden in sealed containers. Traditionally, containers of honey were 
placed in caves whose locations were kept hidden from other members 
of the tribe (Cronk 1989a). Honey may have been kept in the cave for a 
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couple of years before it was used. The ability to store honey probably 
increased the importance of honey to the diet (Cronk 1989a).

Since their recent subsistence change to pastoralism, people in the 
east African highlands rarely hunt, and the importance of wild plant and 
animal foods has been replaced by traded cultivated crops and livestock. 
Among the Okiek, the percentage of the diet from meat has decreased to 
approximately 30 percent, honey has decreased to 10 percent of the diet, 
and the largest percentage (60 percent) consists of posho (cooked maize 
meal) and milk (R. Blackburn, personal communication 1990). Blackburn 
(1971) also estimated that as much as 75 percent of the diet may include 
garden crops. Similar protein contributions to total caloric energy have 
also been observed for other pastoralists in the area. Masai pastoralists 
have a protein intake of 30 percent to 35 percent of calories (Ho et al.  
1971; Taylor and Ho 1971), and Turkana pastoralists average between  
21 percent and 30 percent protein intake of calories (Galvin 1985).

Honey is still an important dietary item, however, although its sig-
nificance has decreased in recent times. Okiek informants stated that 
they prefer honey over meat and posho (R. Blackburn, personal com-
munication 1990), and when honey and meat are brought home from a 
foraging expedition, honey is the favored commodity (Blackburn 1971). 
Blackburn (personal communication 1990) estimated that an adult male 
consumes 400 pounds of honey per year (table 6.4), although he had 
earlier placed the average at 300 pounds of honey per year (Blackburn 
1971). Blackburn’s Okiek informants also stated that males eat as much as  
4 pounds of honey per week to 2 pounds per day if it is available. Black-
burn (1971) also noted that during hunting/foraging expeditions, men may 
eat as much as 3 pounds of honey per day, although this large amount of 
honey consumption is confined to actual expedition days.

An estimation of the caloric contribution of honey to Okiek diet dur-
ing the traditional foraging time period is indicated in table 6.4. This 
table illustrates that Okiek males ingest, on average, between 787 and 
4,347 kilocalories per day of honey, a range of 28 percent to 155 percent 
of their daily caloric requirements. Higher estimates most likely indicate 
consumption during honey expeditions rather than average daily intake. 
Assuming that the average Okiek male requires 2,800 kilocalories per 
day, an assumption that may be incorrect due to cultural, environmental, 
and physical differences among populations (Stini 1975; Srinivasan 1981; 
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Seckler 1982; Messer 1986), a large portion of Okiek caloric requirements 
is met by the ingestion of honey. In fact, the average amount of honey 
(and therefore carbohydrates) ingested by Okiek males approximates the 
amount of carbohydrates that nutritional sources suggest normal diets 
should contain—between 45 percent and 55 percent (Cahill 1986; Guth-
rie 1986; Poduch et al. 1988).

One of the significant points in this discussion of honey ingestion is 
the reliance on data from Okiek males. Data on honey consumption are 
limited mainly to male informants (R. Blackburn, personal communica-
tion 1990), and males usually consume the most honey, particularly dur-
ing the honey-gathering season (Blackburn 1971). During honey season, 
men travel into the forest to collect honey. During these expeditions, a  
large part of  the honey collected may be consumed by males, and portions 
that are brought home are “retained by the owner for his children, for 
selling or trading and for making wine” (Blackburn 1971:78). One-third 
of the honey that is brought back is usually given to children, and “the 
wife takes little or none for herself” (Blackburn 1971:80). The amount of 
honey that females consume is unknown; therefore, the importance of 

table 6.4.  Estimated Male Okiek Honey Ingestiona

Honey Ingestionb
kcal/day

(avg.)

Percentage of 
Required

2,800 kcal/day

Pastoral Society (10% of diet)
400 lb/year 1,518 54
300 lb/year 1,134 41
4 lb/week 787 28
3 lb/day (if available) 4,140 148
2 lb/day (if available) 2,760 99

Traditional Society (15% of diet)
420 lb/year 1,587 57
315 lb/year 1,191 43
4.2 lb/week 828 30
3.15 lb/day (if available) 4,347 155
2.1 lb/day (if available) 2,898 104
a From Blackburn (1971; personal communication 1990).
b Honey provides 1,380 kcal/lb.
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carbohydrate ingestion in relation to protein for the entire population 
cannot be calculated or even assumed.

Discussion

Honey is an extremely important dietary resource for east African high-
land foragers, particularly males. During traditional foraging periods, if 
honey is not available, most of the human caloric energy requirement 
would be met through the ingestion of protein. Admittedly, fat would 
also contribute to the total caloric energy requirement through ingestion 
of fatty animal meat; however, this contribution would be minor in com-
parison to that of protein. Most caloric energy of modern-day pastoralists 
is provided by agricultural or garden crops, consisting mainly of carbo-
hydrates. Honey has always been important in the traditional forager diet 
of this region of Africa, because it is an extremely substantial source of 
carbohydrates, an energy food source that can complement the energy 
provided by protein.

Honey collecting and hunting are recurrent themes observed through-
out foraging societies in east Africa (Blackburn 1971; Cronk 1989a). This 
combination is probably essential due to the extensive amount of protein 
provided by a hunting subsistence pattern. If the contribution of protein 
to the total caloric energy requirement exceeds approximately 50 percent, 
then the population will probably experience a variety of deleterious health 
effects (Speth and Spielmann 1983; Speth 1989, 1990). In this part of the 
world, honey has always provided an easy and important energy alterna-
tive. More than 75 percent of the content of honey consists of carbohy-
drates, an excellent and efficient source of energy, and honey is a highly 
ranked resource for this reason. The combination of honey collecting and 
hunting, particularly in east Africa, is a nutritionally efficient strategy.

Case Study 3: Children’s Health in the Prehistoric Southwest

Children’s health in the prehistoric American Southwest has been 
the subject of a number of studies, particularly given the relative 
abundance of well-preserved human skeletal remains excavated from 
the region. Most researchers, however, have addressed the question 
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of children’s health from a very local, site-specific perspective rather 
than from a broader, southwestern perspective. For this case study, 
we synthesize data from previously analyzed human skeletal remains 
in different cultural contexts (Anasazi, Mogollon, Hohokam, Sina-
gua, Mimbres, and Salado), site sizes (small and large), and time 
periods (A.D. 1 to the protohistoric period) in order to address the 
issue of children’s health from a broader perspective (Sobolik 2002). 
This synthesis reviews and discusses the main health indicators that 
are observable on human skeletal material and attempts to ascertain 
any patterns of children’s health through time and across cultural 
boundaries in the prehistoric Southwest.

Southwestern archaeologists have long speculated on the human 
biological consequences of the adoption of corn agriculture. There is 
strong evidence that the climate in the Southwest was almost always 
marginal for subsistence reliance on corn agriculture (Ford 1968; 
Rose et al. 1981; Wetterstrom 1986). Human diet and health eventu-
ally suffered as a result of such reliance, with conditions progressing 
from bad to worse as the agricultural subsistence base increased in 
importance through time, inducing “endemic nutritional inade-
quacy” (Palkovich 1984a:436) for populations in the Southwest. Stod-
der (1990) also indicated that health problems increased through 
time and at larger sites as populations became more sedentary, reli-
ance on corn agriculture became more pervasive, and the rate of 
infectious disease transfer increased. Population aggregation and the 
subsequent increase in site size associated with increased reliance 
on corn agriculture have also been cited by Walker (1985) as prob-
able causes for increased health problems such as anemia.

Therefore, many researchers believe that the health of prehistoric 
Southwest populations deteriorated through time as people became 
more sedentary, aggregated in larger sites, and became more reli-
ant on corn agriculture. The health of children in such a setting is 
viewed as potentially disastrous as infant mortality rates increased. 
Differences in health status within Southwest populations through 
time, from small and large sites and from different cultural affilia-
tions, are analyzed in this case study in order to discern the effects of 
these differences on children’s health.
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Methods

To obtain information on children’s health throughout the Southwest, 
the literature on analyzed human skeletal remains was reviewed. In par-
ticular, reports of subadult burials, stature estimates, and pathologies 
relating to health were examined. This review did not include studies 
where relevant information was not listed, such as number of subadult 
burials and pathological analyses. We realize that although we present a 
large number of analyzed assemblages, we do not have the entire pub-
lished scope of human skeletal analyses from the Southwest. Most likely, 
a number of analyses reside in contract archaeology reports as well as in 
other published literature of which we are unaware. It is hoped that the 
analyses we did review are representative of the studies that have actually 
been conducted.

In total, 9,703 human remains from the Southwest were reported 
from various sites (table 6.5). Individuals were categorized by the site 
from which they were excavated, the site size as recorded by the analyst, 
cultural affiliation, and time period. Anasazi human remains were the 
most frequently recovered and reported, and an analysis of differences in 
children’s health due to site size and time periods was conducted with 
this large sample using chi-square analysis. Due to small sample sizes for 
Mogollon, Hohokam, Sinagua, Mimbres, and Salado burials, analyses 
of significant differences in site size and time periods cannot be accom-
plished with these samples at this time.

Health Indicators

There are a variety of indicators directly related to the health of an indi-
vidual that can be obtained from a human skeletal sample. To specifically 
analyze children’s health, it should be noted that health patterns revealed 
on adult skeletons are, in many cases, the result of that individual’s health 
as a child. Therefore, studies of children’s health involve an analysis of all 
the individuals in the population and of the population’s health in gen-
eral. Health indicators used in this study are childhood mortality rates, 
adult stature, evidence of anemia through porotic hyperostosis and cribra 
orbitalia, growth-arrest indicators through linear enamel hypoplasias and 
Harris lines, and evidence of infection (periostitis).
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196   paleonutrition

Childhood Mortality Rates

Childhood mortality rates are a direct reflection of the health of children in 
a population, assuming that the recovered human remains are an accurate 
representation of that population. However, there are several biases when 
using subadult burial rates to estimate childhood mortality for a popula-
tion (Moore et al. 1975). In archaeological contexts, burials of children 
and infants (subadults) tend not to be as well preserved as burials of adults 
because infant and children bones are smaller and less dense. This was 
especially problematic with early archaeological techniques that focused 
on the recovery of larger and more obvious remains, usually with the aid 
of shovels, which is not conducive to the recovery of human remains in 
general and children’s bones specifically. Even when recovered, early 
archaeologists were not typically interested in the study or curation of sub-
adult skeletal remains. Many times they were discarded or not excavated 
at all. Some of the largest sample sizes used in this study are from early 
excavations. Therefore, the number of recorded and analyzed subadults 
from southwestern sites is clearly an underrepresentation of the number of 
subadults that actually died and were buried at a particular site.

Childhood mortality rates, as reflected in the number of subadult 
burials, are very high (table 6.6). The childhood mortality rate as dem-
onstrated by the total number of subadult and adult burials for the 
entire Southwest is 42 percent. Today, such a high mortality rate is only 
approached by modern populations experiencing severe malnutrition 
and stress (Puffer and Serrano 1973; Stini 1985). Frequencies of subadult 
to adult burials in southwestern populations vary from 25 percent for 
Hohokam sites to 51 percent for Mogollon sites. Anasazi small sites have 
a 44 percent subadult/adult burial ratio and Anasazi large sites have a 
35 percent subadult/adult burial ratio (table 6.7). This is a significant 
difference, indicating that childhood mortality rates were higher in Ana-
sazi small sites than in large sites, contrary to the notion that as site size 
increases, childhood mortality rates also increase.

Moreover, significant temporal differences are also noted between 
ratios of subadult/adult burials in early versus later time periods at Ana-
sazi sites (table 6.8). Childhood mortality rates are actually higher during 
earlier time periods than later time periods, again contrary to the idea that 
children’s health decreases through time. Pueblo Bonito samples are both 
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included and removed from this analysis because of their atypical age distri-
bution and their supposed high-ranking status (Palkovich 1984b). Removal 
of Pueblo Bonito samples does not affect the significant differences noted 
with chi-square analysis. It is unfortunate that there are no large human 
skeletal samples from hunter-gatherer time periods in the Southwest so 
that comparisons can be made between populations living on a varied 
subsistence base versus populations more dependent on agriculture.

table 6.7.  Cultural Affiliation and Site Size Differences for Subadults at 
Selected Southwestern Sites

Cultural Affiliation No. of Subadults/Adults
Percentage of 

Subadults

Anasazi small sites 636/1,432 44
Anasazi large sites 1,050/2,984 35
Anasazi total sitesa 1,697/4,480 38
Hohokam sites 87/351 25
Mogollon sitesb 1,193/2,325 51
Salado sites 307/832 37
Sinagua sites 444/896 50

TOTAL 
subadults in Southwest 	 3,728/8,884	 42
a Data include Dolores Project sites (see table 6.6).
b Using data from the original Galaz excavation (Anon and LeBlanc 1984; see table 6.6). 

table 6.8.  Temporal Differences in Anasazi Subadults

Time Perioda

No. of  
Subadults/

Adults
Percentage 

of Subadults

P I (A.D. 750–1000) 97/235 41
P II (A.D. 1000–1150, not including Pueblo Bonito) 229/491 47
P II (A.D. 1000–1150, including Pueblo Bonito) 256/603 42
P I/II combined (not including Pueblo Bonito) 326/726 45
P I/II combined (including Pueblo Bonito) 353/838 42
P III (A.D. 1150–1300) 117/264 44
P IV (after A.D. 1300) 813/2340 35
P III/IV combinedb 925/2640 35
a Data used from sites listed in table 6.6; P 5 Pueblo.
b Including data from Cochiti sites (see table 6.6).
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Stature Estimation

Adult stature is employed by modern human biologists as a measure of 
overall health and is a good measure of cumulative stress throughout 
childhood (Huss-Ashmore et al. 1982; Falkner and Tanner 1986). Stat-
ure has a number of causative agents, including genetics, environmental 
stress, nutritional intake, disease rates, and psychological stress. Stature 
estimations are made using measurements of long bones, mainly the 
femur and tibia, and usually follow formulas devised by Genoves (1967) 
with Mesoamerican populations.

Stature seems to be similar throughout prehistoric populations in 
the Southwest, although some trends are apparent. The mean statures 
for prehistoric populations range between 147.7 centimeters for Anasazi 
Carter Ranch Pueblo females to 169.3 centimeters for Pueblo Bonito 
males (tables 6.9 and 6.10). Pueblo Bonito males and females have the 
highest stature range for Southwest samples, another potential indicator 
of their high-ranking status. The Sinagua tend to have the lowest stature 
range. Anasazi male stature in small sites seems to be slightly higher than 
for males in larger sites (if Pueblo Bonito samples are excluded) and Sin-
agua females seem to be slightly shorter, on average, than females from 
other Southwest areas. Unfortunately, these trends cannot be statistically 
compared because the number of individuals used to determine mean 
stature in each population was not provided by all researchers. There-
fore, stature ranges can only be quantified and overall trends observed.

Porotic Hyperostosis and Cribra Orbitalia

The etiology of porotic hyperostosis has been discussed by a number 
of researchers (e.g., El-Najjar et al. 1976; Mensforth et al. 1978; Martin  
et al. 1985; Walker 1985). Porotic hyperostosis is exhibited by expansion 
of the diploe and cranial lesions and pitting on the surface of frontal, 
parietal, and occipital bones, as well as in the eye orbits (cribra orbita-
lia). The etiologies of porotic hyperostosis and cribra orbitalia are the 
same, so some researchers do not record these pathologies separately, 
although cribra orbitalia seems to be an early expression of anemia and 
porotic hyperostosis is a more severe form (Lallo et al. 1977). As noted 
in chapter 2, porotic hyperostosis is often found in populations who are 



table 6.9.  Stature Estimation at Selected Southwestern Sites

Site

Stature Estimation (cm)a

ReferenceMale Female

Anasazi Small Sites
  Black Mesa (A.D. 800–1050) 167.0 156.5 Martin et al. 1991
  Yellowjacket sites 158.75 160.52b Swedlund 1969
  Black Mesa (A.D. 1050–1150) 163.1 152.5 Martin et al. 1991
  Sundown 166.0 155.0 Merbs and Vestergaard 1985
  Mancos Canyon sites 168.5 157.5 Robinson 1976
  Carter Ranch Pueblo 162.2 147.7 Danforth et al. 1994
  Chaco Canyon 164.7 (U) 157.4 (U) Akins 1986

Anasazi Large Sites
  Mesa Verde 162.0 152.0 Bennett 1975
  Pueblo Bonito 169.3 (U) 162.0 (U) Akins 1986
  Mesa Verde, Site 34 161.3 (U) 148.6 (U) Reed 1965
  Gran Quivira 166.7 (TG) 153.6 (TG) Scott 1981
  Arroyo Hondo Pueblo 
    (A.D. 1300–1370)

163.87 156.24 Palkovich 1980

  Arroyo Hondo Pueblo 
    (A.D. 1370–1425)

165.64 153.47 Palkovich 1980

  Tijeras Pueblo 160.13 150.35 Ferguson 1980
  Paa-ko 164.44 151.61 Ferguson 1980
  San Antonio 162.63 153.00 Ferguson 1980

Cochiti Sites 164.41 (T)
163.86 (TG)

154.64 (T) Heglar 1974

  Pecos Pueblo 161.7 150.1 Hooton 1930
  Dolores Project sites 162.31 155.95 Stodder 1987

Hohokam Sites
  La Ciudad 164.1 155.6 Fink and Merbs 1991
  Grand Canal Ruins 165.3 160.2 Fink and Merbs 1991
  Casa Buena 163 153 Fink and Merbs 1991

Mogollon Sites
  NAN Ranch 162.2 154.9 Patrick 1988
  Galaz Ruin 166.88 156.57 Provinzano 1968
  Point of Pines 161.3 152.85 Bennett 1973
  Point of Pines 162.1 153.7 Bennett 1973

(Continued)
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dependent on corn agriculture, leading to deficiencies in essential amino 
acids, which ultimately leads to dietary insufficiency, malnutrition, and 
iron-deficiency anemia. This is especially true in environments such as 
the Southwest, where fluctuations in the climate and environment (e.g., 
drought) are relatively common.

table 6.9.  (Continued)

Site

Stature Estimation (cm)a

ReferenceMale Female

Sinagua Sites
  Lizard Man Village 160.5 152.0 Kamp and Whittaker 1999
  Tuzigoot 166.4 154.6 Caywood and Spicer 1935; 

Forsberg 1935
  Nuvakwewtaqa 
    (Chavez Pass Ruin)

147.3–172.1;  
mean 5 158.2

Iwaniec 1989

a Stature estimation using formula developed by Genoves (1967) unless otherwise indicated; TG 5 Trotter 
and Gleser 1958; T 5 Telkkä 1950; U 5 unknown formula.
b One tall individual has increased female stature estimation.

table 6.10.  Stature Estimate Ranges at Selected Southwestern Sites 
(summarized from Table 6.9)

Sites
Male Stature Estimate 
Ranges (cm)

Female Stature Estimate 
Ranges (cm)

Anasazi small sites 158.75–168.5 147.7–160.52

Anasazi large sites 160.13–169.3 (including 
Pueblo Bonito)

160.13–166.7 (not 
including Pueblo 
Bonito)

148.6–162.0 (including Pueblo 
Bonito)

148.66–156.24 (not including 
Pueblo Bonito)

Anasazi combined 158.75–169.3 (including 
Pueblo Bonito)

158.75–168.5 (not 
including Pueblo 
Bonito)

147.7–162.0 (including Pueblo 
Bonito)

147.7–160.52 (not including 
Pueblo Bonito)

Hohokam 163.0–165.3 153.0–160.2

Mogollon 161.3–166.88 152.85–156.57

Sinagua 160.5–166.4 152.0–154.6
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Evidence of porotic hyperostosis in prehistoric populations in the 
American Southwest is difficult to quantify because researchers have 
recorded their results differently. Some researchers recorded only the 
percentage of affected individuals without providing the number of 
individuals, some combined the percentage of porotic hyperostosis and 
cribra orbitalia into one category (making it impossible to separate the 
two for comparative purposes), and others recorded only the frequency 
of porotic hyperostosis present in infants and children.

Overall, however, it appears that a large segment of each population 
in this synthesis was affected with iron-deficiency anemia as exhibited 
by porotic hyperostosis. Rates of porotic hyperostosis at Anasazi sites in 
which researchers recorded the number of affected individuals indicate 
that frequencies of anemia were very high (table 6.11). Populations at 
smaller sites had significantly greater frequencies of anemia than at 
larger sites, and populations during earlier time periods had significantly 
greater rates of anemia than during later time periods. This is the case 
even when Hooton’s (1930) data from Pecos Pueblo is removed from the 
calculations. Hooton did not realize the etiology of porotic hyperosto-
sis, which he termed “symmetrical osteoporosis” and a “mysterious dis-
ease” (Hooton 1930:316), so it is unknown whether he correctly identified 
porotic hyperostosis in all cases. The rates of porotic hyperostosis at other 
sites were not statistically compared due to small sample sizes.

Much of the data used for comparing porotic hyperostosis and there-
fore anemia rates come from the study of El-Najjar et al. (1976). They 
looked at a variety of sites in the American Southwest and concluded 
that anemia rates were higher at sites in canyon regions where the popu-
lations were more dependent on agriculture and lower at sites in sage 
plains regions where they would have greater access to iron-rich animal 
products. Further, the data for this study indicate that site size and time 
period of occupation are important factors; larger sites and later time 
periods have a lower rate of anemia.

Linear Enamel Hypoplasias

Linear enamel hypoplasias (LEHs) are developmental growth distur-
bances that appear as linear depressions on the surface of tooth enamel. 
These depressions represent temporary cessation of enamel formation 
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due to nutritional stress or infectious disease. The location of LEH deter-
mines how old the individual was when tooth enamel was forming and 
stress occurred (Goodman and Rose 1990), although LEH may not be 
apparent on teeth that have severe wear (Stodder 1990). Severe tooth 
wear is ubiquitous among Southwest populations. Most researchers ana-
lyze the buccal surface of incisors and canines for evidence of LEH. The 
presence of multiple LEHs per individual indicates that that individual 
experienced a number of stresses.

The problem in comparing LEH in Southwest populations is that, 
again, researchers are not consistent in how they record pathologies. 
Some researchers provide only the percentage of individuals with LEH 
and do not provide the number of individuals actually affected. Others 
record the percentage of teeth that are affected and do not provide the 
number of individuals these teeth represent. Still others record both 
deciduous and permanent teeth that are affected, again with no indica-
tion of the number of individuals who are represented by each sample. 
Thus, statistical comparisons of LEH across cultural boundaries and 
through time in the Southwest cannot be accomplished.

LEHs and the nutritional and disease-related problems causing them 
usually show up in high frequencies in human skeletal samples that 
have been analyzed for that particular pathology. The presence of LEH 
ranges from a high of 94 percent of permanent teeth in the individuals 
at Hawikku to a low of 7 percent in the individuals at Arroyo Hondo 
Pueblo. This is unusual considering the very high childhood mortality 
rate at Arroyo Hondo (56 percent; see table 6.6); however, LEHs repre-
sent a temporary cessation of growth and development, not a permanent 
condition. The children at Arroyo Hondo may not have had the chance 
to resume normal growth after a serious stress event.

Harris Lines

Harris lines are growth-arrest lines that occur on long bone shafts  
(fig. 2.4). Harris lines are actually lattice-like plates of bone that form in 
the metaphysis of long bones after growth resumes following an acute 
disruption. There is great debate, however, regarding the cause of Harris 
lines, although severe nutritional stress and disease most likely played 
significant roles. Some scholars estimate that the process of growth arrest 
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and resumption may take place in as little as one week (Steinbock 1976; 
Goodman et al. 1984). Harris lines are visible only on radiographs; there-
fore, they are often not recognized in many skeletal analyses.

Only a few studies summarized here analyzed human skeletal mate-
rial for Harris lines. Adults from Carter Ranch Pueblo were reported to 
have exhibited an 80 percent rate of Harris lines, whereas Grasshopper 
Pueblo exhibited a 20 percent rate. Other studies recorded the average 
number of Harris lines per individual: Grasshopper Pueblo individuals 
had an average of 7.4 Harris lines per individual, Hawikku individu-
als exhibited 4.16 lines per individual, and San Cristobal Pueblo indi-
viduals displayed 3.66 lines per individual. As relatively few researchers 
analyzed long bones for the presence of Harris lines, a comparison of 
Southwest samples cannot be provided.

Periosteal Infections

Periosteal lesions are nonspecific infections seen on the outer surface of 
bone, whereas osteomyelitis and osteitis are infections involving the inner 
cortex and marrow cavity of bone. Periosteal lesions are usually caused by 
treponematosis and treponemal disease, such as pinta, yaws, and syphilis, 
but can also be caused by tuberculosis and leprosy. There is little agree-
ment about the actual cause of most periosteal lesions, but a diagnosis of 
infection and infectious disease can be made in many cases.

Only a few studies noted the presence of periosteal infections and 
these, of course, were recorded in different ways. Periosteal infection 
seems to have been a common problem for prehistoric Southwest popu-
lations. Kelley (1980) observed that infectious disease was the main factor 
in the death of infants and children of such populations. Wade (1970:172) 
reported that in Puerco Valley, “certainly the major cause of death in 
infants can be attributed to disease.” Finding the actual source and cause 
of periosteal infections and infectious disease is the problem. The effects 
of infectious disease would have been intensified by underlying morbid 
conditions of dietary deficiency, malnutrition, and parasitism (Hinkes 
1983), conditions that were prevalent in the prehistoric Southwest.

A few scholars have indicated that in some cases children in prehis-
toric populations could have died swiftly due to virulent gastrointestinal 
and upper respiratory infections (Hinkes 1983). Such swift deaths would 
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not have allowed pathological evidence, such as porotic hyperostosis, 
enamel hypoplasias, Harris lines, or periosteal infections, to manifest 
itself on the skeleton. This may be the reason that these pathological 
markers occur with less frequency in populations from larger sites and 
from later time periods.

Other Potential Health Indicators

Although not identified or recorded in great quantities by Southwest 
researchers, there are a few other potential health indicators that could 
have been deleterious for children’s health. These include tuberculosis, 
ear infections as evidenced in the mastoid, and infections resulting from 
cranial deformation through the use of cradleboards and as evidenced by 
occipital lesions.

Tuberculosis is an infection caused by Mycobacterium tuberculosis 
and can be observed on the skeleton, primarily on the spine but also in 
other areas such as the ribs, sternum, and knees (El-Najjar 1979). It was 
once thought that tuberculosis originated in the Old World and spread to 
the New World after contact by Columbus (Buikstra 1981). As the result 
of increasing evidence of tubercular lesions on prehistoric skeletons, 
however, it is now believed that tuberculosis was present in the New 
World before A.D. 1492. In the Southwest, tubercular lesions have been 
observed on a growing number of skeletal samples (see Hinkes 1983), 
although researchers continue to argue about whether specific infections 
can be attributed to tuberculosis or are a reflection of other infectious 
diseases (Fink 1985). Even if a small number of individuals from a popu-
lation are observed to be infected with tuberculosis, the infection rate for 
the population would be much higher as only 5 percent to 7 percent of 
all tubercular cases are manifested on bone (Steinbock 1976). Therefore, 
the infrequent occurrence of tuberculosis on skeletons from the South-
west could indicate that a large portion of the population was infected. 
As such, this could indicate high infection rates for infants and children, 
leading to a high incidence of childhood mortality due to tuberculosis.

Mastoid infection leading to ear infection, called mastoiditis, is not 
commonly reported for prehistoric Southwest populations. Titche et al. 
(1981) analyzed 742 skulls from various Mogollon sites in an attempt to 
understand patterns of high otitis media (ear infection) in modern Indian 
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populations. Their study revealed that 17 percent of the prehistoric indi-
viduals in their study exhibited evidence of ear infection. They considered 
this rate to be low compared to infection rates in modern populations. 
Martin et al. (1991) also indicated the presence of mastoid infections in 
up to 16.6 percent of the prehistoric population from Black Mesa. Only 
in rare and very severe cases would ear infections cause death, although 
chronic ear infections can lead to acute hearing loss in an individual.

Cranial deformation occurred through the use of cradleboards in 
newborns and infants, a common cultural practice by a number of pre-
historic and protohistoric Southwest groups. It is unknown whether cra-
nial deformation occurs intentionally or unintentionally as a result of 
transporting infants in cradleboards. The results are differing degrees of 
occipital flattening, which can be observed in subadult and adult cra-
nia. Researchers are beginning to realize the potential deleterious effects 
of this condition and the probable association with occipital infections 
and supra-inion depressions, which may result in newborn and infant 
death (Stewart 1976; Holliday 1993; Derrick 1994). Holliday (1993:283) 
stated that “the pressure and friction of an infant’s head against a cradle-
board may have (1) produced ischemic ulcers, (2) produced the condi-
tions favorable for bacterial infections such as impetigo or carbuncles, or  
(3) complicated the treatment of other infections appearing on the back 
of the scalp.” Derrick (1994) analyzed healed supra-inion lesions in adults 
and one active lesion in a cranially deformed infant from prehistoric pop-
ulations in Texas and Arkansas, indicating that the infant may have died 
as a result of cranial infection exacerbated and/or caused by cradleboard-
ing. Scholars in the Southwest seldom report occipital lesions as a pos-
sible result of cranial deformation. It is unknown whether this indicates 
that infection from this source is actually rare or researchers are not look-
ing for this particular pathology.

Discussion

The health of children in prehistoric and protohistoric agricultural groups 
of the southwestern United States illustrates a pervasive pattern of high 
infant mortality, malnutrition, and disease. Children’s malnutrition and 
ill health do not appear to decline through time; in fact, evidence indi-
cates that the emergence of agricultural practices and sedentism led to 
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the observed high rates of infant mortality, anemia, and infection. In 
conjunction, children at small sites seemed to suffer more ill health 
effects than children at larger sites. This does not mean, however, that 
children’s health greatly improved through time and at larger sites. It 
seems that after the introduction of agriculture, children at all sites and 
at all times suffered pervasive ill health, chronic malnutrition, and highly 
infectious disease that seemed to function in a synergistic interaction. 
Even children of supposedly high-ranking lineages were not immune 
to the pervasive pattern of ill health. Children found in Pueblo Bonito 
burial rooms experienced dietary inadequacy, as evidenced by high fre-
quencies of anemia and infections (Palkovich 1984b).

In effect, children’s pervasive ill health in the prehistoric Southwest 
was influenced by a variety of factors that surrounded the introduction of 
agriculture in a marginal environment. These factors included malnutri-
tion through the adoption of a nutritionally inadequate subsistence base; 
a greater incidence of infectious disease spread through an increasingly 
susceptible population weakened by malnutrion; and an increase in ane-
mia due to malnutrition, infectious disease, and parasitic infections prev-
alent in a more sedentary, aggregated population dependent on agricul-
ture. Children would have been particularly susceptible to these factors 
due to their increased nutritional needs for growth and development.

Case Study 4: Complementary Paleonutritional Data Sets: An 
Example from Medieval Christian Nubia

Many archaeological inferences are made using single data sets, such 
as a faunal analysis employed to outline the diet of the inhabitants 
of a site. This practice is often due to the paucity of complementary 
data, selective sampling, and/or failure to budget for such analyses. 
When multiple data sets are available, archaeologists eagerly employ 
them to add depth to their analyses, such as using artifact styles, 
obsidian hydration assessments, and radiocarbon assays to date the 
occupation of a site. Multiple data sets for paleonutrition studies are 
not commonly analyzed but, when they are, they can be used to 
increase the depth of such studies. Most archaeologists detail and 
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Dietary Stress

The general occurrence of cribra orbitalia (see Case Study 3) in various 
parts of the world has been attributed to the presence of abnormal hemo-
globin, such as sickle cell anemia and thalassemia, as an adaptation to 
malaria (see Carlson et al. 1974). To investigate this general hypothesis, 
Carlson et al. (1974) examined skeletal data from a series of cemeteries 
in Nubia for evidence of active and healing lesions of cribra orbitalia 
and compared the results to archaeological and ethnographic evidence 
of diet. They concluded that the incidence of cribra orbitalia in Nubia 
was more likely the result of chronic iron-deficiency anemia due to a 
diet lacking in iron, complicated by weanling diarrhea and high rates of 
parasitic infection (Carlson et al. 1974:405).

In 1979, excavations were undertaken at two cemeteries in Kulubnarti, 
where a total of 406 individuals was recovered. One cemetery (21-S-46;  
N 5 218) dated from the early Christian period (ca. A.D. 550 to 750) while 
the other (21-R-2; N 5 188) dated from the late Christian Period (ca. A.D. 
750 to 1450) (Van Gerven et al. 1981). The remains were in relatively good 
condition and many contained preserved tissues, hair, and paleofecal 
remains. An analysis of the skeletal materials suggested that there was a 
significant difference in juvenile (birth to fourteen years of age) mortal-
ity between the two groups, with mortality rates in the early Christian 
sample being substantially higher (Van Gerven et al. 1981:403).

list the foods represented in botanical and zooarchaeological data 
sets, but few examine the nutritional content of those foods and how 
nutrition impacted the population in question.

One of the first studies to examine nutrition was that of Cum-
mings (1989), who employed multiple lines of data from a series of 
mummified remains recovered from two Medieval Christian ceme-
teries at Kulubnarti in Upper Nubia, now northern Sudan (fig. 6.3). 
Dietary constituent data from paleofeces were obtained and their 
nutritional values were determined. The results were then com-
pared with data derived from previous studies of skeletal pathologies 
and hair, all of which were used to address the question of dietary 
stress in the Medieval Christian period (ca. A.D. 550 to 1450).
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figure 6.3. Location of the Kulubnarti site, northern Sudan (redrawn from 
Cummings 1989:fig. 1; reproduced by permission).

To measure stress between the two populations, Van Gerven et al. 
(1981) recorded the frequency of cribra orbitalia. It was found that there 
was a “high correspondence to probabilities of dying from nine months 
when the first signs of the lesion appear through the early adult years” 
(Van Gerven et al. 1981:404). A similar pattern was apparent among sub-
adults and older adults, suggesting that the chronic stresses identified by 
Carlson et al. (1974) were acting on both populations.

To test the proposition that cribra orbitalia was associated with chronic 
iron-deficiency anemia, Sandford et al. (1983) and Sandford (1984) ana-
lyzed hair samples for major and trace elements from 168 individuals 
of different ages and both sexes from the two cemeteries at Kulubnarti.  
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Sandford et al. (1983:839) found that those individuals with cribra orbitalia 
had low levels of iron and magnesium, but that iron levels were “not, in 
comparison to modern values, particularly low.” They concluded that the 
anemia associated with the observed frequencies of cribra orbitalia was the 
result of a lack of iron and magnesium due to “reduced dietary availabil-
ity combined with gastrointestinal losses and increased element demands 
due to parasitic infections” (Sandford et al. 1983:842). Thus, Sandford  
et al. (1983) generally supported the hypothesis put forth by Carlson et al. 
(1974) and Van Gerven et al. (1981), but suggested that the availability of 
magnesium was a significant factor. Additional discussions of these issues 
were presented in Armelagos et al. (1984) and Martin et al. (1984).

The Cummings Study

To further test the dietary stress hypothesis proposed by Carlson et al. 
(1974) and supported by Sandford et al. (1983), Cummings (1989) under-
took to study the paleofecal remains directly associated with the skeletal 
materials from the two excavated cemeteries at Kulubnarti. The goal was 
to identify the diet and determine what influence diet may have had on 
the incidence of cribra orbitalia. During the excavation of the cemeter-
ies, paleofecal specimens had been recovered from a number of the indi-
viduals, for which the analysis of pathologies (Van Gerven et al. 1981) and 
hair elements (Sandford et al. 1983) had been conducted, many of which 
were of known sex and age.

Specimens from a total of 48 individuals were analyzed for faunal 
and botanical macrofossils, pollen, phytoliths, and parasites. Of those  
48 individuals, 33 came from the early Christian cemetery and 15 came 
from the late Christian cemetery. Thus, the data provided a diachronic 
comparison of the diet between the two periods.

The paleofecal data were used to identify a primary diet of sorghum 
and dates, supplemented by a number of other foods, including legumes, 
some greens, fish, and meat (pig and alligator). Although not identified 
in the paleofecal samples, it seems likely that other foods, such as milk, 
were also consumed. In her analysis of the nutritional content of the 
identified dietary constituents, Cummings (1989:191–192) noted that the 
diet would likely have been deficient in iron and numerous water-soluble 
vitamins, particularly C, B6, B12, and folacin.
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Cummings (1989:128) reported that the diet of the adults in the early 
Christian sample appeared to have been somewhat more diverse than 
the diet in the late Christian sample. This same pattern was more appar-
ent in the juvenile diet, although the sample size was smaller. In the 
early Christian sample, the diets of the adults and juveniles were similar 
(Cummings 1989:128), whereas the adults in the late Christian sample 
were consuming a greater variety of foods than juveniles (Cummings 
1989:135). Overall, though, Cummings (1989:193) concluded that the 
diets were essentially the same between the early and late populations 
and that the high incidence of cribra orbitalia observed in the juveniles 
of each period was due to a series of nutritional deficiencies during child-
hood, along with the stress of weaning. Thus, Cummings (1989) corrobo-
rated the hypothesis originally developed by Carlson et al. (1974) and 
supplemented by Sandford et al. (1983) while adding detail regarding 
dietary and cultural factors.

Case Study 5: An Evolving Understanding of Paleodiet in the 
Northern Coachella Valley of California

Interior southeastern California contains a large structural depres-
sion, the Salton Sink, the bottom of which lies below sea level. This 
depression is bounded by the coastal mountains on the west and 
by a series of smaller ranges on the east. The Coachella Valley sits 
in the northern, and narrower, portion of the depression while the 
Imperial Valley lies to the south (fig. 6.4).

The Salton Sink lies within the Colorado Desert and is gener-
ally arid. At various times in the past, however, the Colorado River 
changed its regular course and flowed into the Salton Sink, forming 
a large freshwater lake called Lake Cahuilla (also known as Lake 
LaConte or the Blake Sea). The sink filled and the lake reached 
a maximum size of 185 kilometers long, 55 kilometers wide, and  
97 meters deep, at which time it overflowed into the Gulf of Califor-
nia. When the Colorado River would reestablish its regular course, 
Lake Cahuilla would rapidly desiccate, perhaps in as little as sixty 
years (Wilke 1988:4), and the associated lake habitats would disappear. 
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The Environment

The northern Coachella Valley is within the Colorado Desert. Rain-
fall averages about 3 inches per year and temperatures can reach about  
120 degrees Fahrenheit in the summer (see Felton 1965). The valley is 
dominated by a creosote bush scrub biotic community that is home to a 
number of xeric-adapted plant and animal species (see Munz and Keck 
1949, 1950). Extensive groves of mesquite (Prosopis sp.) are present in the 
lower elevations of the valley.

As Lake Cahuilla filled, a number of lacustrine habitats formed, 
including deep and shallow water, beaches, and marshes. As the water 
from the Colorado River flowed into the lake, the species present in 
the river colonized the lake. The major fish species included bonytail 
chub (Gila elegans), razorback sucker (Xyrauchen texanus), the Colo-
rado pike minnow (Ptychocheilus lucius), and mullet (Mugil cephalus), 

It seems likely that most of the freshwater plants and animals would 
have died out due to rising salinity, even before the actual disappear-
ance of the water (e.g., Wilke et al. 1975:49).

As the lake refilled, the associated habitats were occupied by peo-
ple, who modified their economic systems to take advantage of the 
abundant lacustrine resources. When the lake would disappear, the 
settlement and subsistence systems would adjust to the drier condi-
tions. At least three, possibly four, stands of Lake Cahuilla have been 
documented within the last 2,100 years (see Weide 1976; Wilke 1978; 
Waters 1983), with the final stand being dated between 800 and 500 
B.P. (Wilke 1978:57; also see Schaefer 1994:67–74) or perhaps a bit 
later (e.g., Laylander 1997:68).

A considerable portion of the archaeological work conducted at 
ancient Lake Cahuilla has focused on its northern shore, located in 
the northern portion of the Coachella Valley, and much of that work 
has focused on the final lakestand. This is due, in part, to the easier 
accessibility of that area to researchers, as well as the greater pace of 
development, which has generated a large number of environmen-
tally related archaeological investigations.
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all of which were used by the native peoples of the region. Freshwater 
mussels (Anodonta dejecta) inhabited the shallow waters of the lake and 
were heavily exploited by the people. Various birds also resided at Lake 
Cahuilla, including shorebirds, waterfowl, and terrestrial species, many 
of which were hunted. In addition, many aquatic plants, including cattail 
(Typha) and bulrush (Scirpus), were present within a freshwater marsh 
plant community.

It is important to note that the presence or absence of the lake was 
due to the changing course of the Colorado River, and not to any fluc-
tuations in the weather or climate in the Salton Sink. Even when Lake 
Cahuilla was full, the creosote biotic community dominated terrestrial 

figure 6.4. Map of the Salton Basin, showing the Coachella Valley, the 
extent of ancient Lake Cahuilla, and the locations of sites discussed in the 
text (from Sutton [1998:88]; reprinted by permission from American Antiq-
uity, vol. 63, no. 1).
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habitats away from its shores, and the human occupants of the area had 
access to mountain, desert, and lacustrine biotic communities.

The Ethnographic Data Base

The Cahuilla lived (and many continue to live) in the region surround-
ing the Coachella Valley. Three basic divisions of the Cahuilla are recog-
nized: the Mountain, Pass, and Desert Cahuilla. General descriptions of 
Cahuilla society have been provided by Barrows (1900), Hooper (1920), 
Kroeber (1925), Curtis (1926), Strong (1929), Drucker (1937), Bean (1972, 
1978), Bean and Saubel (1972), and Bean et al. (1995).

In historical times, the Desert Cahuilla occupied the floor of the 
northern Coachella Valley, above and below the fossil shoreline of Lake 
Cahuilla. Villages consisted of loose clusters of houses covering a square 
kilometer or more and were located either at springs or at locations with 
high water tables where wells could be excavated. Wilke and Lawton 
(1975:fig. 6) and Wilke (1978:fig. 26) mapped the locations of the historic 
villages, providing the basis for an understanding of the ethnographic 
settlement pattern. These villages were located such that about 80 per-
cent of resources used could be found within 5 miles; thus, no major 
population movement was needed for subsistence purposes (Bean and 
Saubel 1972:20).

Ethnographic information on the diet of the Desert Cahuilla has 
been obtained by a number of researchers, most notably Barrows (1900) 
and Bean and Saubel (1972). More than 200 species of wild plants were 
exploited (table 6.12) and were obtained from a variety of valley and 
mountain ecozones. The primary staple plants were undoubtedly mes-
quite (which grew on the valley floor), agave, yucca, and pinyon, with 
various grass seeds filling out the majority of the plant component of 
the diet. In addition, agricultural crops of corn, beans, and squash were 
grown in late prehistoric times (Wilke and Lawton 1975), with wheat, 
melons, barley, and fruit trees being added after European contact (Bean 
and Mason 1962; Lawton and Bean 1968).

A variety of animals was also utilized by the Cahuilla (see table 6.12), 
with small animals such as rodents and insects probably providing the 
majority of the calories, although lagomorphs (rabbits and hares) were 
important game animals. In ethnographic times, when Lake Cahuilla 



table 6.12.  Summary of the Major Food Resources Used Ethnographically by 
the Cahuillaa

Plants Animals

Common Name Scientific Name Common Name Scientific Name

Agave Agave deserti Chuckwalla Sauromalus obesus
Spanish bayonet Yucca whipplei Mourning dove Zenaidura 

macroura
Wild onion Allium validum Roadrunner Geococcyx 

californianus
Barrel cactus Echinocactus acanthodes California quail Lophortyx 

californica
Goosefoot Chenopodium spp. Various ducks cf. Anas spp.
Catclaw Acacia Gregii Gray Various fish N/A
Ocotillo Fourquieria splendens Various insects N/A
Honey mesquite Prosopis juliflora Cottontail rabbit Sylvilagus 

audubonii
Screwbean Prosopis pubescens Black-tailed jackrabbit Lepus californicus
Manzanita Arctostaphylos spp. Various mice cf. Perognathus sp.
Lily Hesperocallis undulata Various rats cf. Neotoma sp.
Mormon Tea Ephedra nevadensis Various squirrels cf. Ammospermo 

philus sp.
Sugar bush Rhus ovata Mule deer Odocoileus  

hemionus
Tule Scirpus sp. Pronghorn Antilocapra 

americana
Wild rose Rosa californica Mountain sheep Ovis canadensis
Cattail Typha latifolia
Assorted berries N/A
Mohave yucca Yucca schidigera
Cactus Opuntia sp.
Assorted grass seeds N/A
Chia seeds Salvia columbariae
Saltbush seeds Atriplex spp.
Pinyon Pinus monophylla
Palm tree fruit Washintonia filifera
Thimbleberry Rubes parviflorus
Wild raspberry Rubus leucodermis
Wild blackberry Rubus vitifolius
Juniper berry Juniperus californica
Chokecherry Prunus virginiana

(Continued)
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was absent, only a few small fish were available in local waterways. Water-
fowl were also uncommon.

Initial Archaeological Studies

A number of archaeological investigations had been undertaken in the 
northern Coachella Valley during the twentieth century, but virtually 
none of the results have been published (for overviews see Crabtree 1981; 
Schaefer 1994; Schaefer and Laylander 2007). Several radiocarbon dates 
on materials associated with ancient Lake Cahuilla have been reported, 
but only very cursory descriptions of the materials were provided (see 
Wilke 1978:table 3).

Among the earliest reported studies in the northern Coachella Val-
ley was in 1972, with the survey and testing of a site within the mouth of 
Tahquitz Canyon, located in Desert Cahuilla territory just south of Palm 
Springs. Wilke et al. (1975) documented a Cahuilla presence at the site 
during the late Prehistoric period (ca. 300 B.P.), prior to contact and 
after the last stand of Lake Cahuilla. Four major seed genera were recov-
ered from hearth features at the site: Dicoria, Sesuvium, Chenopodium, 
and Lupinus (Wilke et al. 1975:60). The first two genera had not previ-
ously been documented as resources that were used by the ethnographic 
Cahuilla, so the archaeological data from this study expanded the num-
ber of plants used by the Cahuilla (Wilke et al. 1975:61). The faunal data 
from the site did not add new genera. Wilke et al. (1975:69) believed that 
the occupation of the mouth of Tahquitz Canyon was related to a settle-
ment shift away from Lake Cahuilla.

table 6.12.  (Continued)

Plants Animals

Common Name Scientific Name Common Name Scientific Name

Acorns Quercus sp.
Mistletoe Phoradendron spp.
California holly Heteromeles arbutifolia
a Compiled from Bean and Saubel (1972:20–21) and Bean (1978:table 1).
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The Wilke Study

In the early 1970s, Philip J. Wilke began a study of the last stand of Lake 
Cahuilla, concentrating on a number of sites in the northeastern Coachella 
Valley. Wilke worked at two large sites in that region, Myoma Dunes  
(CA-RIV-1766) and Wadi Beadmaker (CA-RIV-881) (see fig. 6.4), where 
he excavated a number of units, hearths, structures, and latrines. Exten-
sive quantities of artifactual and ecofactual materials were recovered, but 
only a portion of the paleofecal data were published (Wilke 1978).

Myoma Dunes is a series of habitation areas located in mesquite-
anchored sand dunes along the northernmost shore of Lake Cahuilla 
(fig. 6.4). The site in Wilke’s study is located on the floor of the northern 
Coachella Valley and is not directly adjacent to upland habitats. Many 
features, artifacts, ecofacts, and about 1,000 coprolites were recovered. 
The analysis of the materials recovered from the site was limited to a 
sample of the coprolites (N 5 99) from three latrine features (Beds A, B, 
and D; Wilke 1978), and few of the other data were reported. Radiocar-
bon dates from several of the coprolites placed the general occupation of 
the site to the final stand of the lake (ca. 500 B.P.; Wilke 1978:table 3).

The Wadi Beadmaker site is the remnant of an extensive camp located 
along the northeastern shore of Lake Cahuilla and was radiocarbon dated 
to roughly the time of the final lakestand (ca. 500 B.P.; Wilke 1978:98). 
Excavations at the site resulted in the recovery of numerous artifacts, 
ecofacts, and approximately 70 coprolites. As with Myoma Dunes, the 
analysis of the materials recovered from the site was limited to a sample 
of the coprolites (N 5 10; Wilke 1978) and some of the faunal materials.

While incomplete, Wilke’s study had two results. First, a basic 
understanding of the resources used by the Cahuilla in late Prehistoric 
times was firmly established. A combination of lake, desert, and upland 
resources was documented and a basis of comparison with the ethno-
graphic period was created. Second, based on ethnographic analogy and 
the data from the analysis of the coprolites from the two sites, Wilke 
(1978:103) proposed a settlement and subsistence model for the late Pre-
historic period in the northern Coachella Valley. It was hypothesized 
that while Lake Cahuilla was full, the settlement and subsistence pat-
tern consisted of permanent villages along the lakeshore coupled with a 
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series of temporary upland seasonal camps to exploit upland resources. 
After desiccation of the lake, the environment again became dry. The 
pattern then shifted to one in which the villages were centered on perma-
nent springs rather than the lakeshore. The economic focus shifted from 
aquatic to terrestrial resources, likely resulting in increasing utilization of 
the surrounding uplands, along with a population increase in those areas 
(Wilke 1978:113).

The La Quinta Study

In 1985, excavations were undertaken at the La Quinta site (CA-RIV-1179), 
located along the northwestern shore of Lake Cahuilla (fig. 6.4) in an eco-
tone of at least three environmental zones: lakeshore, desert, and moun-
tain. The La Quinta site consisted of a fairly large, open camp dating from 
the final stand of Lake Cahuilla (ca. 500 B.P.) and contained numerous 
artifacts, ecofacts, cremations, and 128 coprolites. The site was interpreted 
as a seasonal camp (Wilke and Sutton 1988:162). A full analytical report on 
the recovered materials was produced (Sutton and Wilke 1988) and is the 
only such comprehensive report for a major site in the region.

The dietary evidence from the La Quinta site consisted of the stan-
dard botanical and faunal materials recovered from the excavations, 
along with materials recovered in the paleofecal specimens. The botani-
cal remains from the site (table 6.13) included a number of genera known 
to have been used by the ethnographic Cahuilla, but also three genera 
(Oligomeris, Juncus, and Sesuvium) not listed among the important eth-
nographic Cahuilla food species (Swope 1988). Interestingly, these same 
three genera were not identified in the paleofecal samples from the site 
(see Farrell 1988).

The faunal remains recovered from the excavations (table 6.14; Sut-
ton and Yohe 1988; Follett 1988) at the La Quinta site revealed a number 
of interesting results. A wide variety of animals was represented, includ-
ing reptiles and birds, considerable fish, and many mammals. Several of 
these species, specifically bighorn sheep and waterfowl, were not identi-
fied in the paleofecal samples (Farrell 1988). In addition, razorback sucker 
remains were much more common in the midden than in the coprolites, 
suggesting that some sort of bone removal process (e.g., filleting) was 
involved in the preparation of razorback sucker for consumption.
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The faunal record from the La Quinta site provided insight into the 
availability of animal resources in the time leading up to the final stand 
of Lake Cahuilla. All of the reptiles, birds, and mammals identified in the 
faunal assemblage are found in the region today, implying that the same 
habitats present today were exploited during the prehistoric site occupa-
tion. Fish were important, although the fish remains suddenly decreased 
in the upper portion of the deposit, and the remains of other animals, 
primarily lagomorphs and birds (particularly quail), increased. Sutton 
and Yohe (1988:113) suggested that this change in taxa “might reflect the 
decreasing availability of fish in conjunction with the desiccation of the 
lake,” resulting in an increasing reliance on terrestrial habitats.

table 6.13.  Botanical Remains from the Midden Recovered by Flota-
tion at La Quinta (CA-RIV-1179)a

Context Cat. No. Species

Hearth 1 108-4-6A Chenopodium, Juncus, Oligomeris linifolia, Prosopis 
glandulosa var. torreyana, Scirpus acutus, Scirpus, 
Sesuvium verrucosum, unidentified

Hearth 2 108-4-33 Chenopodium, Scirpus acutus, Scirpus validus, 
Sesuvium verrucosum

Hearth 3 108-8-9A Chenopodium, Juncus, Oligomeris linifolia, Prosopis 
glandulosa var. torreyana, Scirpus acutus, Scirpus 
validus, Sesuvium verrucosum, unidentified

Hearth 4 108-17-56 Chenopodium, Juncus, Scirpus acutus, Scirpus validus, 
Sesuvium verrucosum, unidentified

Hearth 5 108-8-21 Amaranthus, Juncus, Prosopis glandulosa var. 
torreyana, Scirpus acutus, Scirpus validus, Sesuvium 
verrucosum, Typha

Hearth 6 108-8-29 Scirpus acutus, unidentified
Hearth 7 108-12-25 Scirpus
Hearth 8 108-12-27 Chenopodium, Scirpus acutus, Sesuvium verrucosum
Hearth 8 108-12-34 Scirpus acutus, unidentified
Hearth 9 108-14-33 Scirpus acutus
Soil sample 108-16-73 Chenopodium, Juncus, Scirpus acutus, Scirpus validus, 

Sesuvium verrucosum
Soil sample 108-19-21 Chenopodium, Juncus, Scirpus acutus, Sesuvium 

verrucosum
a From Swope (1988:table 22).
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The third major data set from La Quinta was derived from the paleo-
feces: 30 of the 128 coprolites recovered from the site were analyzed (Far-
rell 1988). The breadth of the identified taxa (table 6.15) was less than 
Wilke (1978) had documented at the Myoma Dunes and Wadi Bead-
maker sites. Fish was identified in all of the paleofecal specimens and 
several appeared to consist primarily of cattail (Typha sp.) pollen. Farrell 
(1988:139) concluded that fishing “was an extremely important activity 
on a day-to-day basis” and that the site was occupied primarily during the 
late spring and/or early summer.

table 6.15.  Constituents of the Coprolites (N 5 30) from La Quinta 
(CA-RIV-1179)a

Constituent Nb Abundant Frequent Infrequent Trace

Plants
  Cattail (Typha) anthers 21 15 2 2 2
  Hardstem bulrush (Scirpus acutus) seed 5 — — — 5
  Softstem bulrush (Scirpus validus) seed 4 — — — 4
  Unspecified bulrush (Scirpus sp.) seed 14 — — — 14
  Honey mesquite (Prosopis glandulosa var.  
    torreyana) seed

1 — — — 1

  Dicoria (Dicoria canescens var. canescens)  
    seed

1 — — — 1

  Unspecified goosefoot (Chenopodium sp.)  
    seed

1 — — — 1

  Unidentified seeds 12 — — — 12
  Charcoal fragments 30 3 4 9 14

Animals
  Bonytail chub (Gila elegans) 12 — — — 12
  Razorback sucker (Xyrauchen texanus) 2 — — — 2
  Unidentified fish 30 12 6 4 8
  Cottontail rabbit (Sylvilagus sp.) 1 — — — 1
  Unidentified mammal 1 — — — 1
  Desert tortoise (Gopherus agassizi) 1 — — — 1
  Chuckwalla (Sauromalus obesus) 1 — — 1 —
  Unidentified reptile 1 — — — 1
  Unidentified vertebrate 3 — — — 3
  Unidentified insect 9 — — — 9
  Mollusk (cf. Anodonta dejecta) 2 — — — 2
a From Farrell (1988:table 23).
b Number of specimens in which the item occurred.
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The excavations at the La Quinta site revealed a great deal of infor-
mation regarding the paleonutrition of the inhabitants of the northern 
Coachella Valley during the last stand of Lake Cahuilla. La Quinta pro-
vided the first large-scale midden-derived data set on the use of plants 
and animals from that time period and revealed details about the use of 
resources from different ecozones. The coprolite data augmented and 
complemented the other data and provided an important basis of com-
parison to other coprolite data sets from elsewhere in the valley.

Additional Excavations in the Northern  
Coachella Valley

A number of other excavations were conducted in the region in the 1980s 
and 1990s that added to an understanding of human diet. Work at CA-
RIV-2827 (Sutton 1988c), a small camp near the La Quinta site, resulted 
in the recovery of a considerable range of ecofactual materials, including 
mesquite (Prosopis sp.) seeds and the remains of freshwater shell, fish, 
reptiles, birds, and mammals. Three coprolites were discovered and ana-
lyzed (see Farrell 1988:133). Each was found to contain large amounts of 
fish bone, some insects, and only a few plants.

Several other sites were test-excavated in the La Quinta area in 1990 
(Yohe 1990a). Of these, the CA-RIV-3682 site was dated between 620 and 
240 radiocarbon years B.P. (Yohe 1990a:26) and contained considerable 
artifactual and faunal materials but no botanical remains. In addition, 
26 coprolites were recovered. Considerable fish was identified in the fau-
nal assemblage, but nearly half of the faunal material was not fish (Yohe 
1990b:57), and rodents seemed to have been an important resource. A 
nearby site (CA-RIV-2936), dated by diagnostic artifacts to about the same time 
as CA-RIV-3682, contained few fish bones but considerable mammal bone, 
including bighorn sheep (Yohe 1990a:table 11). Several other sites in close prox-
imity (CA-RIV-3679 and CA-RIV-3680/3681) contained similar faunal assem-
blages, but dated to about 1,000 years earlier (Yohe 1990a:91, table 12).

Further Analysis of the Coprolite Constituents  
from La Quinta

In 1993, additional analysis of the coprolite data from the La Quinta site 
(from Farrell 1988) was undertaken by Sutton (1993). The objective of that 
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study was to conduct a cluster analysis of the various coprolite constituents 
to search for patterns of resource utilization. At a coarse level, although 
the La Quinta coprolite data might appear to be relatively homogeneous 
(e.g., “fish in every sample, cattail in most”), it was thought that patterns 
of food combinations regarding dietary preferences, habits (e.g., meals), 
and differences in the seasonal use of resources might be detectable. The 
faunal and botanical materials recovered from the general midden were 
then compared to the coprolite data in an attempt to delineate additional 
patterns between the two data sets.

The constituents from the coprolites (N 5 30) fell into four distinct 
clusters (see table 6.16): (1) cattail and few fish; (2) abundant unidentified 
fish and a few other constituents; (3) abundant bonytail and unidentified 
fish; and (4) abundant razorback and unidentified fish. A number of pat-
terns were apparent. First, it is clear that the diet was not uniform; rather, 
it was varied, likely on a seasonal basis. Second, the importance of fish 
and other aquatic resources appears to have changed seasonally, despite 
the presumed constant availability of fish.

Several specific combinations of resources were found, perhaps con-
stituting the remains of meals. Cattail appears to have been consumed 
largely by itself. Terrestrial animals were apparently not consumed in 

table 6.16.  Paleofecal Constituent Clusters from La Quinta (CA-RIV-1179)a

Cluster N Primary Constituents Culinary Inference Seasonality Inference

1 13 Abundant cattail, few fish Meals of cattail Spring, summer
2 7 Abundant unidentified 

fish, some mammals 
and reptiles, few plants

Mixed meals, fish 
unidentified due to 
processing, other 
resources included 
in meals

Late winter/early 
spring?

3 8 Abundant bonytail and 
unidentified fish 
(mostly charred)

Meals of bonytail Summer?

4 2 Abundant razorback 
and unidentified fish 
(cattail is abundant in 
one specimen)

Meals of razorback Summer?

a From Sutton (1993, 1998:table 2).
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meals with cattail, although some fish was included. In addition, bul-
rush often was identified in specimens containing bonytail. Bonytail 
seems to have been the preferred fish, although razorback occasionally 
was consumed (the same pattern existed at Myoma Dunes Bed A; Wilke 
1978:82). The two fish species were not identified in the same specimen, 
suggesting differential use and/or preparation of these fish.

Two other observations were made by Sutton (1993). The first is that 
fish, which have generally been viewed as an everyday staple (e.g., Wilke 
1978; Farrell 1988), did not appear to have been a staple at certain times, 
specifically during that portion of the year when cattail was consumed. 
As cattail pods ripen from late fall to early spring, presumably it is during 
this time that consumption is at its greatest. Terrestrial animals may have 
been more important at lakeside sites than previously thought. Second, 
it seems that cattail was very heavily exploited when available, perhaps to 
the exclusion of other resources.

Finally, Sutton (1993) offered an alternative to the settlement/subsis-
tence model proposed by Wilke (1978; see above). Wilke and Sutton 
(1988:162) argued that the La Quinta site was a seasonal camp occupied 
during the spring and/or summer and that the inhabitants of La Quinta 
moved to another residential base camp (or camps) for the fall and win-
ter. The location of such camps is unknown but might be situated in 
the uplands and/or another lakeshore location, such as Myoma Dunes 
where a winter occupation is indicated (Wilke 1978).

Sutton (1993) suggested that the La Quinta site was part of an inter-
mediate settlement/subsistence system, one between the lake-focused 
pattern proposed by Wilke (1978) and that observed in ethnographic 
times. Sutton (1993) concluded that people living around Lake Cahuilla 
at the time of its final stand (ca. 500 B.P.) functioned within a complex 
system of seasonal resource use and changing settlement. There is little 
doubt that people camped near the lake to exploit the resources there, 
such as fish, cattail, and waterfowl.

A Refinement of Diet and Cuisine

Following the cluster analysis of the La Quinta coprolite constituents 
(Sutton 1993), a statistical study of the paleofecal data from the Myoma 
Dunes, Wadi Beadmaker, and La Quinta sites was conducted by Sutton 
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(1998). As noted above, together these three sites contained almost 1,200 
coprolites (of which 139 were analyzed) and complementary botanical 
and faunal data sets. Analyses of the coprolites from these three sites had 
previously been conducted (Wilke 1978; Farrell 1988) and those speci-
mens formed the data base for the Sutton (1993) study, with the excep-
tion of two specimens that did not contain constituent data. Each of the 
four data sets (Myoma Dunes Beds A, B, and D, and Wadi Beadmaker) 
was analyzed individually, compared to the previous La Quinta study, 
then combined with the La Quinta data and analyzed as a single sample 
(Sutton 1998).

The goal of the study was twofold (Sutton 1998): (1) to conduct a 
cluster analysis of the coprolite constituents from Myoma Dunes and 
Wadi Beadmaker (Wilke 1978), and then to compare the results to the La 
Quinta data in order to test the two settlement/subsistence models offered 
by Wilke (1978) and Sutton (1993), and (2) to determine any patterns of 
food preferences and combinations within the samples in an attempt to 
elucidate both diet and cuisine. In reference to the competing models, 
if Myoma Dunes and Wadi Beadmaker were permanent lakeshore vil-
lages, the coprolite clusters from those sites were expected to reflect a diet 
that contained resources available during all seasons, including dicoria 
(Dicoria canescens) and pinyon (Pinus monophylla). In addition, aquatic 
resources should also be emphasized at both sites.

The analysis of the Myoma Dunes Bed A sample (N 5 75) identi-
fied seven clusters, each having a defining resource (table 6.17). Five 
clusters reflected the use of spring and/or summer resources and two 
clusters reflected winter resources. Sutton (1998:98) argued that this may 
reflect an occupation by a population that was largest in the spring and 
summer and smallest in the winter, along with changing and/or differing 
resource procurement tactics. The Myoma Dunes Bed B sample (N 5 
10) revealed two clusters, each with a defining resource. Most of the spec-
imens reflected the use of spring and/or summer resources. Two clus-
ters were identified in the Myoma Dunes Bed D sample (N 5 12), each 
with a key resource. Cluster 1 reflected the use of spring and/or summer 
resources, while Cluster 2 reflected winter resources. Sutton (1998:100) 
suggested that this indicated a winter occupation.

The analysis of the Wadi Beadmaker sample (N 5 10) resulted in the 
identification of three clusters, each having a key resource (table 6.18). 



table 6.17.  Paleofecal Constituent Clusters from Myoma Dunes (CA-RIV-1766)a

Cluster N Primary Constituents Culinary Inference
Seasonality 
Inference

1, Bed A 11 Abundant bonytail and 
unidentified fish, 
frequent charcoal, trace 
amount of plants

Meals of fish, mostly 
processed

Summer

2, Bed A 16 Abundant cattail, some 
bulrush, some fish (some 
bonytail, but mostly 
unidentified), frequent 
charcoal, some coot

Meals of cattail 
supplemented 
with bulrush and 
processed fish

Late spring, 
summer

3, Bed A 13 Abundant fish (bonytail, 
razorback, and 
unidentified), frequent 
cattail and bulrush, some 
mesquite

Meals of bonytail 
and/or razorback, 
supplemented with 
cattail and bulrush

Late spring, 
summer

4, Bed A 8 Frequent mammals (hare 
and unidentified), 
dicoria, mesquite and sea 
purslane, trace of fish

Meals of mammals 
supplemented with 
dicoria, mesquite, 
and purslane

Winter

5, Bed A 10 Abundant goosefoot and 
mesquite, some coot, 
trace of fish

Meals of goosefoot, 
usually with 
mesquite, some coot

Late spring, 
early summer

6, Bed A 12 Abundant mesquite, 
frequent unidentified 
fish, some mammals, 
some sea purslane

Meals of mesquite, 
mixed with either 
fish and/or mammal 
or sea purslane

Summer to fall

7, Bed A 5 Abundant dicoria and 
mesquite (a combination 
of dicoria, mesquite, 
unidentified fish, 
pine, and coot in one 
specimen)

Meals of dicoria 
and mesquite, 
supplemented with 
a variety of other 
resources

Winter

1, Bed B 2 Unidentified fish Meals of processed fish Undetermined
2, Bed B 8 Abundant panic grass, 

frequent mesquite, 
some unidentified fish, 
insects, cattail, goosefoot, 
amaranth, and purslane

Meals of panic grass, 
often supplemented 
with mesquite, each 
supplemented with 
another, different 
resource

Spring, summer

(Continued)
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One cluster reflected the use of spring and/or summer resources and two 
clusters reflected winter resources. The faunal data from the site (Wilke 
1978:table 13) demonstrated that a variety of terrestrial animal resources 
were processed and/or consumed.

Discussion

Sutton (1998) observed several patterns in the distribution and relative 
abundance of the resources by site (table 6.19). Mesquite was largely 
absent from the La Quinta and Wadi Beadmaker samples, whereas it was 
fairly important in the Myoma Dunes samples, suggesting a middle to late 

table 6.17.  (Continued)

Cluster N Primary Constituents Culinary Inference
Seasonality 
Inference

1, Bed D 7 Abundant cattail 
anthers and pollen 
and unidentified fish, 
abundant bonytail in 
some specimens

Meals of cattail and 
fish

Spring, summer

2, Bed D 5 Frequent mesquite, 
abundant panic grass in 
two specimens, frequent 
dicoria in two specimens, 
some unidentified fish

Meals of mesquite, 
supplemented with 
dicoria, fish, and 
panic grass

Winter

a Compiled from Sutton (1998:tables 4, 6, and 8).

table 6.18.  Paleofecal Constituent Clusters from Wadi Beadmaker 
(CA-RIV-881)a

Cluster N Primary Constituents Culinary Inference
Seasonality 
Inference

1 6 Abundant unidentified 
fish, some charcoal

Meals of processed 
fish

Late winter/
early spring?

2 2 Abundant bonytail and 
unidentified fish, 
some charcoal

Meals of fish Summer

3 2 Abundant panic grass Meals of panic grass Winter
a From Sutton (1998:table 10).
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summer occupation of the former two sites with little to no use of stored 
mesquite (Sutton 1998:101). A number of other plants showed skewed 
distributions, including panic grass and dicoria, and a large number of 
resources (see table 6.13) were absent from the La Quinta samples.

Twelve distinct resource clusters were identified in the five data sets 
(table 6.20; Sutton 1998). Eight clusters were unique, occurring at only 
one site each, while three other clusters occurred at two localities each. 

table 6.20.  Concordance of Coprolite Clusters from the Northern 
Coachella Valleya

Primary Cluster Constituents Site/Cluster

Abundant cattail, few fish La Quinta/1
Myoma Dunes A/2

Abundant cattail and fish (bonytail and unidentified) Myoma Dunes D/1

Abundant unidentified fish, some mammals and reptiles, 
few plants

La Quinta/2
Wadi Beadmaker/1

Abundant bonytail and unidentified fish La Quinta/3
Myoma Dunes A/1
Myoma Dunes B/1
Wadi Beadmaker/2

Abundant razorback and unidentified fish La Quinta/4

Abundant fish (frequent bonytail, razorback, and 
unidentified), 
frequent cattail and bulrush, some mesquite

Myoma Dunes A/3

Frequent mammals, dicoria, mesquite and sea purslane, 
only trace of fish

Myoma Dunes A/4

Abundant goosefoot and mesquite, some coot, only trace 
of fish

Myoma Dunes A/5

Abundant mesquite, frequent unidentified fish, some 
mammals, some sea purslane

Myoma Dunes A/6

Abundant dicoria and mesquite Myoma Dunes A/7
Myoma Dunes D/2

Abundant panic grass, frequent mesquite, some 
unidentified fish, insects, cattail, goosefoot, amaranth, 
and purslane

Myoma Dunes B/2

Abundant panic grass Wadi Beadmaker/3
a From Sutton (1998:table 13).
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One cluster, comprised of abundant bonytail and other unidentified fish, 
was present at four localities. While no correlation between clusters and 
environmental zones was made, it was apparent that a variety of resource 
combinations and meals were represented.

Animal protein seems to have been derived from either fish or mam-
mals, but they were generally not identified in the same sample. Since 
both of these resource categories should have been available at the same 
time, the pattern may reflect some dietary preference, an aspect of cui-
sine, and/or a processing factor. For fish, razorback and bonytail appeared 
to occur independently of each other, suggesting a clear pattern in pref-
erence and/or processing.

One of the goals of the Sutton (1998) study was an evaluation of the 
merits of the several settlement/subsistence models proposed for the area 
during the late Prehistoric period (Wilke 1978; Sutton 1993). At issue was 
whether the major sites on the shoreline of Lake Cahuilla were occupied 
year-round, thus forming the foundation of a system centered on the lake. 
The key issue was the presence of a winter-related diet at those sites.

Wilke (1978:104) argued that a winter diet should have included dico-
ria, supplemented by stored seeds, with fish and waterfowl also being 
important. Dicoria was present in 22 specimens, but fish is not notice-
ably more important in those samples than in other specimens, and coot 
(a waterbird) was rarely found with dicoria. Of the 137 specimens from 
the five data sets, a total of 20 (14.6 percent) supports a winter diet. This 
suggests that there was only a limited occupation of the sites during the 
winter and that the majority of the population had gone elsewhere dur-
ing that time. Thus, if the various sites other than La Quinta were occu-
pied in the winter, it would have been by reduced populations. Based on 
these conclusions, the Wilke (1978) model of large, permanent lakeside 
villages was not supported (Sutton 1998). It was further argued that the 
ethnohistoric pattern of large, permanent springside villages must have 
developed from a system of large spring/summer and small winter habi-
tation sites (Sutton 1998).

Summary

Since the late 1800s, there have been attempts to understand the ethno-
biology and diet of the Cahuilla people living in the northern Coachella 
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Valley. Ethnographers first documented Cahuilla ethnobotany (e.g., Bar-
rows 1900), then augmented that understanding with further study (Bean 
and Saubel 1972). Later, archaeologists began to investigate the Cahuilla 
diet just prior to contact and then in relation to the exploitation of 
resources associated with a large lake in the region. The presence of the 
lake, and its desiccation some 500 years ago, demonstrated a dynamic 
environment and provided a basis for detailing the evolution of Cahuilla 
diet in response to the changing environment.

This case study demonstrates an evolution in the understanding of diet 
in a particular region and among a particular people. Paleodietary data 
sets from sites associated with Lake Cahuilla were obtained and a model of 
settlement and subsistence was formed (Wilke 1978). Additional data were 
acquired (Sutton and Wilke 1988) and a better understanding of lacus-
trine adaptation was the result. These data were reanalyzed and a new 
settlement/subsistence model was proposed (Sutton 1993). Finally, a sta-
tistical analysis of paleofecal data from a number of sites in the region was 
conducted (Sutton 1998) and the Wilke (1978) model was rejected. This 
statistical analysis provided the most complete picture yet of trends in diet 
and cuisine in the northern Coachella Valley during the last 500 years.
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