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Preface 

In the last few years more and more companies are organizing their software business 
adopting the “as a service” approach, that is, offering it for usage but keeping the 
control of its operation entirely within the boundaries of the company itself. This 
shows a number of advantages both from the technical and business perspectives 
and, at the same time, requires new ways of organizing and managing the lifecycle of 
software. The DevOps movement was born to address this requirement and highlights 
the importance of ensuring that operation and development are well coordinated and 
work together in a seamless way. 

In this context, researchers and practitioners have started exploring the possibility 
of automating resource provisioning, software deployment, and ops-specific oper-
ations thanks to the development of Infrastructural software. Such infrastructural 
software, also called Infrastructure as Code or IaC, can be treated as any other type 
of software and, therefore, subject to versioning, debugging, verification, reuse, and 
the like. Nowadays, multiple IaC languages and frameworks have been developed, 
each of which has its own peculiarities, focuses on specific tasks—from provisioning 
to configuration, deployment and operation—, is able to manage specific resources, 
and requires a significant language-specific and operation-specific knowledge. 

The SODALITE H2020 project aims at offering a contribution to this endeavor 
by proposing a smart development environment for IaC and corresponding tools to 
support the automation of various deployment and operation phases. The aim of this 
book is to describe the approach and toolset proposed by this project. It presents also 
some case studies that show the practical utility of the approach, and hints for the 
usage of SODALITE in other cases. The book is structured as follows:

• Chapter 1 provides an overview of the motivations for the development of a new 
approach and framework in the area of IaC, of the state of the art, and of the 
challenges to be addressed. Moreover, it describes the innovations introduced by 
SODALITE.

• Chapter 2 presents a general overview of the SODALITE approach and of the 
workflows it supports.
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• Chapter 3 focuses on the problem of defining deployment models for complex 
application and presents the solution proposed by SODALITE in this context.

• Chapter 4 presents our approach to ensure the quality of IaC and to create 
optimized execution containers for components running on High Performance 
Computing (HPC) clusters.

• Chapter 5 presents the SODALITE runtime environment, including the features 
to support adaptation of running systems and identification of refactoring 
possibilities for the IaC associated to a certain software.

• Chapter 6 describes how the SODALITE approach can be used to deploy complex 
software across various platforms in the Cloud, Edge, and HPC domains, with a 
specific focus on OpenStack, AWS EC2, Kubernetes, and PBS Torque/Slurm.

• Chapter 7 describes the case studies in which the SODALITE approach has been 
used.

• Finally, Chap. 8 concludes the book by providing an overview of how the 
SODALITE results are being packaged in ready-to-use tools and then discussing 
about future research challenges. 
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3 The SODALITE Model-Driven Approach . . . . . . . . . . . . . . . . . . . . . . . . 23 
Jesús Gorroñogoitia, Dragan Radolović, Zoe Vasileiou, 
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Chapter 1 
Orchestrating Heterogeneous 
Applications: Motivation and State of the 
Art 

Elisabetta Di Nitto and Daniel Vladušič 

Abstract This chapter presents the motivation for SODALITE highlighting the dif-
ficulties faced by developers of complex applications when they need to deploy such 
applications in execution contexts where the usage of heterogeneous resources (HPC, 
Cloud and Edge) coexist. An overview of the state of the art to highlight gaps and 
open issues is also presented. 

1.1 Preliminaries 

In recent years, the global market has seen a tremendous rise in utility computing, 
which serves as the backend for practically any new technology, methodology or 
advancement from healthcare to aerospace. General purpose GPUs are becoming 
common currency in datacentres while specialized FPGA accelerators, ranging from 
deep-learning specific accelerators to burst buffers technologies, are becoming “the 
big coin”, enormously speeding up applications execution and likely to become com-
mon in the near future. We are entering a new era of heterogeneous, software-defined, 
high-performance computing environments. In this context, SODALITE aims to 
address this heterogeneity by focusing on how to deploy and operate complex soft-
ware into environments that comprise accelerators/GPUs, configurable processors, 
and non-x86 CPUs such as ARMv8. 

In our view, a complex software system is composed of several and different 
components built for different purposes, featuring different execution models (from
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2 E. Di Nitto and D. Vladušič

microservices to batch jobs) and requiring different QoS. For example, consider a 
web application that runs an AI inference algorithm to recognize specific objects 
within some images or to identify the products that a certain user will, likely, prefer. 
In this case, a heterogeneous setting would be the best choice for deploying such 
an application. More specifically, the microservices and web server will find their 
optimal configuration on the cloud, while at least part of the inference algorithm or 
its training phase may run more effectively on an HPC cluster based, for instance, 
on GPUs.

Having the application to be executed in a heterogeneous infrastructure can bring 
several advantages in terms of efficient use of the available resources and effective 
execution of the system. Nevertheless, being able to effectively deploy and operate 
application components in a heterogeneous environment today requires an in-depth 
knowledge of each target infrastructure, of the execution models each of them sup-
ports, and of the mechanisms that can be exploited to efficiently enable information 
exchange between the application parts deployed on different types of resources. 

In general, Infrastructure as Code approaches do support effective deployment 
of applications but, at the same time, highlight a number of challenges. In the next 
sections, we will provide a brief analysis of the state of the art in the main relevant 
areas of modelling, deploying and operating complex applications (Sect. 1.2), we will 
then highlight the challenges that are left open by the available approaches (Sect. 1.3) 
and, finally, we will highlight the main innovations offered by SODALITE to cope 
with these challenges (Sect. 1.4). 

1.2 State of the Art Analysis 

1.2.1 Application Deployment Modelling 

Approaches supporting application deployment assume that the application DevOps 
team develops a deployment model, that is, a specification of the components belong-
ing to the application and their connectors, as well as their dependencies on a specific 
technological stack, if any. Infrastructure as Code approaches, such as TOSCA [9] 
and Ansible1 do offer effective means to specify a deployment model. When this 
model is available, then an orchestrator can execute it and deploy the corresponding 
components on the available resources. 

TOSCA is a standard IaC language that was designed to support a Cloud infor-
mation model that can be extended through the definition of new node types and 
through inheritance. TOSCA itself is implementation agnostic. This means that the 
implementation of operations aiming at controlling the lifecycle of nodes (e.g., cre-
ation, scaling, deletion, …) can be defined in a wide spectrum of languages ranging 
from bash scripts and Python to infrastructure management tools like Chef, Puppet or 
Ansible. These three are all open-source tools mostly designed to help DevOps con-

1 https://www.ansible.com/. 
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1 Orchestrating Heterogeneous Applications: Motivation and State of the Art 3

figure and manage the infrastructure. Both Chef and Puppet have been designed as an 
Agent-master solution and thus need agents installed on each node for configuration. 
The offered IaC language is Ruby-like, which is usually considered difficult to learn. 
Ansible offers a simple and clean declarative IaC language which is widely accepted 
and easy to learn and adopt. Also, Ansible is characterized by a vast community 
support and probably the largest set of cloud infrastructure libraries support (Ansible 
Galaxy). Ansible is an inherently simple agentless approach to remote infrastructure 
management and is implemented through the standard Python Paramiko SSH library 
enabling the DevOps to manage any infrastructure accessible through SSH. 

Wurster et al. [14] propose the concept of the essential deployment metamodel 
(EDMM) that captures the essential parts of declarative deployment models. In a 
recent survey, Bergmayr et al. [2] reviewed the current approaches to modeling cloud 
applications. They observed that existing modeling languages lack interoperability, 
and, to cope with this, suggested to leverage the TOSCA standard. In [16], they 
identified an EDMM-compliant subset of TOSCA, to enable the transformation from 
TOSCA-based specifications of deployment models to those in the languages used 
by the industrial infrastructure as code (IaC) tools such as Ansible and Terraform. 

As observed in [2, 15], there are several graphical modeling tools (IDEs) in exis-
tence for cloud infrastructure and deployment modeling, for example, Vino4TOSCA 
[5] and OCCIware [17] provide visual notations for TOSCA and OCCI (Open 
Cloud Computing Interface) modeling elements, respectively. OCCI is a standard 
for managing any cloud resources. In contrast, ARGON [11, 12], DICER [1], and 
SWITCH [13] provide the domain specific languages (DSLs) tailored to specific 
application domains, for example, public cloud infrastructures including their elas-
ticity, data-intensive (big data) applications, and containerised microservice-based 
cloud-native applications. 

1.2.2 Application Deployment and Operation 

A common approach to enacting high-level or visual deployment models is to trans-
form them into artifacts that can be used by an orchestrator or deployment automation 
tool. For example, ARGON and DICER employed model-to-model (M2M) trans-
formations to convert the models in their DSLs into deployable IaC artifacts, for 
example, TOSCA blueprints and Ansible. Brabra et al. [4] also applied M2M trans-
formations to transform TOSCA-based models into Docker and Docker compose 
configurations. Bernal et al. [3] proposed a UML profile to model the key elements 
of a cloud application and infrastructure, and used M2M transformations to translate 
UML-based application models to the configuration files for a cloud simulator, which 
enables the analysis of the performance of the application. 

For what concerns the enactment of IaC, there exist TOSCA and OCCI based 
orchestrators or runtime environments for cloud applications [2, 13, 17], including 
multi-cloud [7, 8]. Two interesting approaches that focus on hybrid cloud and HPC 
applications are Croupier [6] and INDIGO [10]. Croupier is not fully compatible
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with the official TOSCA standard as it uses its own adaptation of the TOSCA model. 
The INDIGO PaaS Orchestrator2 allows instantiation of resources on the hybrid 
virtualized infrastructures (private, public clouds, virtual grid organizations) with 
the use of TOSCA YAML Simple Profile v1.0. It is integrated with other INDIGO 
services to enable best placement of the resources based on SLA and monitoring 
from the available list of cloud providers. In order to deploy, configure and update 
IaaS resources, the orchestrator uses an Infrastructure Manager (IM) that interfaces 
with multiple cloud sites in a cloud-agnostic manner. Although the INDIGO PaaS 
orchestrator allows to spin up a virtual cluster (e.g. managed by batch systems such 
as PBS Torque/Slurm/Mesos) using TOSCA, the workflow management of the jobs 
is not directly supported and it assumes the usage of workflow management sys-
tems (e.g., Kepler) on top of deployed virtual infrastructure. Similarly, the partial 
reconfiguration is done on IaaS resources and it does not operate on the application. 

1.3 Open Challenges 

From the brief overview in the previous section, it should be clear that approaches 
supporting the specification of deployment models and their execution to orchestrate 
the deployment of complex applications do exist and they include also TOSCA, a 
standardization effort that is raising the interest of multiple organizations both in 
academia and industry. However, when exploiting such approaches, a number of 
challenges must be faced. 

First, defining a proper deployment model for a complex application is not an 
easy task. As an example, Fig. 1.1 shows a small portion of a deployment model 
that describes some components from SNOW, one of the SODALITE use cases. 
The description exploits the SODALITE Domain Specific Language, but any of the 
available IaC approaches would provide similar results. The figure is incomplete and 
refers only to three out of the about 10 components of the whole architecture. The 
lines in the figure show various kinds of relationships between the components of the 
SNOW architecture. Capturing all of them, together with all the needed properties is 
mandatory to enable the automation of the application deployment and configuration 
and gives an idea of the complexity of the specification effort. The problem we see 
is that current approaches do not provide guidance to the developers of such models 
that, as a consequence, must be very experienced. 

Second, even when an expert able to master TOSCA and Ansible, or any other 
similar IaC approach, is available, still this expert will need to have at his/her disposal 
the specification of the resources to be used for deployment. In fact, every resource 
is assumed to be specified before its usage. This specification should include many 
peculiarities and details that vary from provider to provider, especially when we want 
to ensure optimized performance of the application to be executed. In some cases, the

2 https://github.com/indigo-dc/orchestrator. 
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Fig. 1.1 Graphical representation of the SNOW deployment model 

amount of available resources is not even known in advance and must be discovered 
on the fly. This is especially the case when using edge devices. 

Finally, every new type of resource, even different traditional cloud IaaS, offer dif-
ferent APIs and different access control mechanisms. Thus, exploiting such resources 
and monitoring them and being able to adapt the application based on their status 
is, per se, a non-trivial task, even if nowadays these are supported by various exper-
imental orchestrators and initiatives.
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1.4 Innovations Offered by SODALITE 

SODALITE tries to address the problems described in the previous section by pro-
viding intelligent assistance during the deployment model creation phase and in 
enabling the end users to include in a deployment model pieces of information suit-
able to support the definition of QoS constraints, the optimization of used resources 
and a proper configuration of the execution and monitoring environment. 

Moreover, SODALITE supports resource experts in modeling their resources and 
in automating the process of discovering new resources and deriving suitable models 
for them. 

It offers light-weight execution environments, which are essentially cross-platform 
containers that enable the user to execute, with different performance, the same appli-
cation components on heterogeneous resources in a seamless way and allow them to 
be built automatically. 

Another important aspect concerning SODALITE is enabling design-time opti-
mization of applications. To exploit HPC resources in the best possible way, the 
application code may need to be tuned and/or scaling actions may need to be exe-
cuted (e.g., increasing the number of cores, accelerating with GPUs or coprocessors, 
enabling faster storage, etc.). Such actions must be tailored considering the type 
of application components to be deployed, their QoS requirements and the avail-
able resources. The SODALITE Application Optimizer, MODAK, focuses on these 
issues and offer a framework that, given the specification of a few constraints as part 
of a deployment model, is able to generate the scripts to be executed in an HPC 
environment to achieve an optimized execution of application components. 

SODALITE supports also the identification of defects in deployment models and 
of possible reconfiguration options of running application configurations. Thanks to 
machine learning, SODALITE analyses the previous history of deployment models 
that had to be corrected to identify defects, thus building a taxonomy of defects that 
is then used to provide suggestions to DevOps experts. Defects include code smells, 
errors and anti-patterns. 

At runtime, SODALITE enables on the fly optimization of applications by dynam-
ically scaling in and out computational resources depending on the specific applica-
tions being considered, but also by identifying, through machine learning, possible 
configurations that perform better than others and suggest them to DevOps experts 
when the monitoring system reveals the presence of problems in the current config-
uration 

Another considered aspect concerns the support to data placement-aware deploy-
ment and to data movement between HPC, Cloud and edge resources. These 
aspects are very important as they have a strong impact on application performance. 
SODALITE optimizes data movement at two different levels: single components and 
compositions of multiple components. For the former case, we explore asynchronous 
data transfer, caching, and prefetching of the data. For the latter case, we explore 
using efficient data movement across storage and network to improve the workflow 
performance.
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Providing proper identity and access management is a crucial part of protecting 
both user data and sensible project information. There are two different facets we 
consider in the scope of SODALITE. The first one concerns the mechanisms that 
control access to the SODALITE platform itself. This is covered through a role-based 
Identity and Access Management (IAM) implementation (keycloak) for SODALITE 
users and other implementations for secret and credential management (e.g., Vault or 
similar). The second aspect concerns the possibility to model privacy and security-
related resources, such as Virtual Private Networks, so that they can be instantiated 
and reused in the deployment models of specific systems and, thus, their deployment 
and configuration be automated as well. 

1.5 Book Objectives 

The objective of this book is to: (i) present the approach and tools constituting the 
SODALITE solution, (ii) to describe how the approach can be used by a DevOps 
team, and (iii) how it has been adopted by the three SODALITE case studies. 
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Chapter 2 
The SODALITE Approach: An Overview 

Luciano Baresi, Elisabetta Di Nitto, and Daniel Vladušič 

Abstract This chapter presents the main characteristics of SODALITE to give the 
reader an overall picture, which will be detailed in the following chapters. 

2.1 Introduction 

As discussed in the previous chapter, SODALITE focuses on the configuration, 
deployment and operation of complex applications. Often these are developed by 
specialists of particular application domains and particular development technolo-
gies that, however, are not necessarily expert of the resources from which applications 
could benefit for their execution. This implies that for such teams it is not easy to take 
care of IT-intensive tasks such as handling the deployment of complex applications 
on multiple heterogeneous infrastructures, making this process repeatable with no 
errors, fine tuning the execution of applications in order to keep performance and 
costs under control. 

There are many evidences of the complexity of such tasks that have lead to the 
introduction of the DevOps lifecycle, to reinforce the importance and the advantages 
of a good cooperation between Dev and Ops, and to the emergence of the Infras-
tructure as Code (IaC) paradigm, which implies the possibility to write software that 
defines the way applications should be deployed, configured and executed. 
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10 L. Baresi et al.

While the literature presents several approaches that support some DevOps and 
IaC activities in a cloud environment, the main novelty of SODALITE is essentially 
to create a complete framework tackling multiple DevOps aspects and targeting 
multiple types of resources. 

2.2 SODALITE Main Features 

The envisaged platform is supposed to serve different users, who are experts in dif-
ferent aspects, related to the definition and operation of software-defined computing 
infrastructures, and requires resources to carry out the different activities. Figure 2.1 
presents the use cases served by the features provided by SODALITE. Before dis-
cussing the use cases, we must introduce the different actors with which they interact. 
These can be grouped in human actors and resources. 

The envisaged human users are the following. To ease their harmonization in the 
context of a standard life-cycle, they can also be mapped onto the roles in charge 
of some of the processes defined in the ISO/IEC/IEEE standard 12207 Systems and 
software engineering—Software life cycle processes [1]:

• Application Ops Expert (AOE) is in charge of operating the application and, 
as such, is in charge of all the aspects that refer to the deployment, execution, 
optimization and monitoring of the application. He/she is supposed to know the 
applications to execute and the requirements on both the deployment/execution 
environment and the quality of services he/she is interested in. This role can cor-
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respond to ISO/IEC/IEEE role in charge of Operation processes and maintenance 
processes as they focus on the day-by-day operation.

• Resource Expert (RE) is in charge of dealing with the different resources required 
to deploy and execute the application. This role is in charge of application com-
ponent technologies, of cloud, HPC, and GPU-based computing infrastructures, 
or of middleware solutions for both storing data and allowing components to 
communicate. This role can correspond to IEEE roles in charge of Infrastructure 
management and Configuration management processes, given they are supposed 
to allocate and manage resources and configurations.

• Quality Expert (QE) is responsible for the quality of service both provided by 
the execution infrastructure and required by the executing application. Being part 
of the SODALITE ecosystem, he/she is in charge of offering libraries of pat-
terns for addressing specific performance and quality problems in the SODALITE 
applications. This role can can correspond to IEEE roles in charge of Quality Man-
agement and Quality assurance processes because they oversee the overall quality 
of deployed applications and thus of the project itself.

The resources of interest for SODALITE cover the ones needed to operate appli-
cations on SODALITE. These can be specialized in:

• Application components are the executables the applications of interest are par-
titioned in. These components can be based on diverse technologies and come 
both as black-boxes and as complete packages, that is, the executables come with 
source code and with any other external artifact needed to compile, deploy, and 
execute them.

• Execution platforms provide the means to execute the different application com-
ponents. They can be cloud based elements (e.g., virtual machines or containers), 
HPC infrastructures, or clusters of GPUs.

• Middleware frameworks provide the underlying glue and help both store the dif-
ferent data and artifacts and make the different elements communicate. Among the 
others, middleware frameworks include communication elements such as VPNs 
(Virtual Private Networks) and any other element needed to configure the interac-
tion between the other resources or the application components. 

Identified use cases reflect the main activities human actors can trigger or partici-
pate in as part of the life cycle management of IaC. Lack of room does not allow us to 
provide the details of each single use case. Figure 2.1 provides a high-level view of 
the scope of the project while Table 2.1 lists all the use-cases covered by the project. 
The rationale behind the different use cases is the following:

• To make the SODALITE framework usable by AOEs, it must be populated with 
information concerning the resources that can be exploited at runtime. This requires 
modelling resources (UC13) and making them available, as part of the SODALITE 
Domain Specific Language, to AOEs. This activity is performed by Resource 
Experts who are also in charge of mapping the modelled resources into specific 
optimization patterns (UC12). These experts can then also search for the resources 
they need by querying the system for already-defined resources (UC17).
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Table 2.1 SODALITE use cases 

ID Use case AOE RE QE 

UC1 Define application deployment model �
UC2 Select resources �
UC3 Generate IaC code �
UC4 Verify IaC �
UC5 Predict and correct bugs �
UC6 Execute provisioning, deployment and 

configuration
�

UC7 Start application �
UC8 Monitor runtime �
UC9 Identify refactoring options �
UC10 Execute partial redeployment �
UC11 Define IaC bugs taxonomy �
UC12 Map resources and optimisations � �
UC13 Model resources �
UC14 Estimate quality characteristics of 

applications and workload
�

UC15 Statically optimise application and 
deployment

�

UC16 Build runtime images �
UC17 Platform resource discovery �
UC18 Deployment governance �

• The Quality Expert defines a bug taxonomy for IaC (UC11) that helps AOEs in pre-
dicting bugs (UC5). Moreover, he/she experiments with application components 
and prototypes to estimate their quality characteristics (UC14).

• AOEs start their activity by defining an application deployment model (UC1). 
This model includes the main components of an application and any constraint 
or requirement on their deployment, configuration or execution. At this point 
they can either rely on the resources the SODALITE system would assign by 
default, or they could select specific resources (UC2). After this step, they are 
ready to trigger the automatic generation of IaC code (UC3) and its verification 
(UC4) as well as bug prediction and correction (UC5) and static optimization 
(UC15) aiming at improving application performance. Of course, these activities 
may lead to some reiteration in the mentioned use cases until the point in which, 
as part of the IaC code generation, AOEs generate the needed runtime images 
(UC16). Then AOEs can trigger the execution of provisioning, configuration and 
deployment (UC6), start the application (UC7) and start monitoring the execution 
(UC8) with the purpose of checking that everything is working well and, in case 
of problems, of identifying possible refactoring and deployment improvement 
options (UC9). As a result of this identification, they can go back to the modelling
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and IaC generation/verification/optimization phases and, at this point, trigger a 
partial redeployment of the system (UC10). After completing a deployment, they 
can also take care of governing it (UC18).

All use cases are mandatory steps for a proper usage of SODALITE, with the 
exception of the following ones that concern steps that can either be triggered by the 
actors or can be skipped. Select Resources since default resources can be assigned 
to an application if no one is selected Predict and Correct Bugs as the AOE may 
be willing to exclude this automated correction and may want to take care of bugs 
by himself/herself. Monitor runtime as, while monitoring is highly beneficial, it 
may introduce an overhead that users may want to exclude. Of course, excluding 
monitoring implies that UC9 and UC10 (refactoring and redeployment) cannot be 
performed. Identify Refactoring Options, Execute Partial Redeployment, and 
Statically Optimizer Application and Deployment represent the most advanced 
features offered by SODALITE, but the user can still use the platform without exploit-
ing them. 

2.2.1 Workflows 

This section presents the main workflows supported by the SODALITE platform. 
They are focused on three major primary users of SODALITE—Application Ops 
Experts, Resource Experts, and Quality Experts—plus a secondary user, the system 
administrator in charge of deploying and configuring the SODALITE platform itself. 
In the following we present the workflows associated with these types of users and 
highlight the artifacts produced in these workflows and where they are located during 
a normal execution of the SODALITE platform. 

Figure 2.2 presents the workflow typically followed by the Resource Expert. 
He/she is in charge of creating resource models and Ansible playbooks to support the 
execution of the corresponding operations. In the case a model of the resource under 
consideration is already available, for instance, because the Platform Discovery has 
automatically defined the resource, the Resource Expert will limit his/her work to 
the selection of a specific resource and to the creation or the selection, in case they 
are already available, of the Ansible Playbooks that implement the operations to be 
executed for that resource if needed. 

The Resource Expert performs his/her activities by exploiting two SODALITE 
tools, the IDE for all modeling/editing activities and, indirectly, the Platform Dis-
covery. 

The Knowledge Base is the main data store used in this workflow. It includes the 
resource models and it is updated with the URL of the Ansible scripts associated to 
such resource models. The Ansible Modules Repository is an off-the-shelf directory 
offered by the Ansible community and including all available modules. The Ansible 
playbooks used or produced within the context of SODALITE can be made available
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Fig. 2.2 Workflow for the Resource Expert 

on any datastore, including a git repository, that supports their identification through 
a proper URI. 

Application Ops Experts are involved in two types of activities within the con-
text of SODALITE, those concerning the design of AADMs and those concerning 
the execution of the corresponding TOSCA and Ansible scripts and the application 
runtime. 

Figure 2.3 shows the design time activities performed by Application Ops Experts 
to prepare the deployment of a complex application. First they focus on preparing 
the images of the application components by packaging them in proper execution 
containers; this activity is supported by the Image Builder. In parallel, they define 
the Abstract Application Deployment Model (AADM) through the SODALITE IDE. 
This task is an iterative activity that requires interaction with the SODALITE Knowl-
edge Base and terminates when the user is satisfied by their AADM. When images and 
the AADM are saved in the Image Repository and Knowledge Base, respectively, the 
AOE generates the TOSCA blueprint. If needed, the optimization of component code 
and associated containers is performed as part of this phase. The resulting TOSCA 
blueprint is stored in any repository, e.g. Git, that offers a URI-based mechanism 
for identifying its elements. Finally, the TOSCA Blueprint, together with the asso-
ciated Ansible playbooks (defined by the Resource Experts) are analyzed to assess
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Fig. 2.3 Design-time workflow for Application Operation Expert 

Fig. 2.4 Runtime workflow for Application Operation Expert

the presence of possible problems and bug smells that, if revealed, bring the AADM 
back into the modeling phase. 
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Fig. 2.5 Workflow for Quality Expert 

Figure 2.4 describes the runtime activities that are overseen by AOEs. They are 
all automated, but their results can be inspected through proper dashboards. The 
process starts with the orchestration of a TOSCA blueprint and the associated Ansible 
Playbooks. The result of this step, when successful, is a complex application ready 
to start its execution. After execution starts, the continuous activities concerning 
monitoring, auto-scaling, and refactoring are performed. Refactoring can result in 
changes in the TOSCA blueprint that trigger a new deployment orchestration step. In 
this process, monitoring data are produced by the monitoring platform and exploited 
by the auto-scaling mechanism for short-term fine-tuning and by the refactoring for 
identifying longer term potential issues. TOSCA blueprints are retrieved and stored, 
when changed, in any suitable repository as already discussed in reference to the 
design time activities. 

The Quality Expert is in charge of developing proper optimization models that 
constitute the inputs to the Application Optimizer (MODAK). He/she is assumed to 
run, externally to SODALITE, benchmarks to measure the characteristics of available 
resources. Based on these, he/she defines the optimization models based on the 
data acquired during the benchmark phase. The creation of Optimization Models is 
supported by the IDE, while the models are stored in the SODALITE Knowledge 
Base. Figure 2.5 provides an overview of the described workflow. 

The last workflow associated with the usage of SODALITE concerns the activities 
carried out by the system administrator in charge of making the SODALITE platform 
available to other users. Given that this platform comprises multiple components, it 
is, by definition, a complex application. As such, its deployment and configuration 
have been automated through a proper TOSCA blueprint. This workflow is then 
completely automated.
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2.3 SODALITE Overall Architecture 

Figure 2.6 shows the SODALITE platform architecture. It is organized in three layers, 
the Modelling layer, the Infrastructure as Code layer, and the Runtime layer. 

The Modelling layer includes a set of SODALITE domain ontologies, resulted 
by the abstract modelling of the related domains (applications, infrastructure, per-
formance optimization and deployment), and constituting the Semantic Knowledge 
Base. A dedicated middleware (Semantic Reasoner) is in charge of the population of 
data and the application of rule-based Semantic Reasoning. The IDE offers support 
for the final users for the design of deployment models. 

The Infrastructure as Code Layer (IaC Layer) offers APIs and data to support the 
optimization, verification and validation process of both Resource Models (RM) and 
Abstract Application Deployment Models (AADM). Moreover, it prepares a valid 
and deployable TOSCA blueprint through the IaC Builder and offers the Platform 
Discovery Service, which supports the tasks of the Resource Expert by creating a

Fig. 2.6 Runtime workflow for Application Operation Expert
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valid TOSCA platform resource model to be stored into the SODALITE Knowledge 
Base.

The Runtime Layer of SODALITE is in charge of the (re)deployment of 
SODALITE applications into heterogeneous infrastructures, their monitoring and 
dynamic reconfiguration. It is composed of the following main blocks: (i) An Orches-
trator that receives the IaC description of the application to be deployed or re-
deployed and executes it by deploying the application components on the target 
infrastructure. (ii) A Monitoring system which enables the users to visualize multi-
ple metrics and the refactoring mechanism to initiate any needed recovery action. (iii) 
A Refactoring component that identifies possibilities for increasing the efficiency of 
the system and proposes to the end users possible redeployment options. 

SODALITE provides tools and methods to authenticate and authorize actions on 
API endpoints using open-source Identity Management and Secure Secret handling 
tools. While authorization is required—a single SODALITE endpoint can manage 
different infrastructures belonging to different domains. Apart from proper authen-
tication and authorization of user actions, safe secret management across the whole 
deployment pipeline is also required and ensured by SODALITE. 

As a basis for authorization the OAuth 2.0 protocol was chosen, which is the 
de-facto industry standard for authorization. As for IAM provider, SODALITE uses 
Keycloak—a popular and widely used open source tool which simplifies the creation 
of secure services with minimal coding for authentication and authorization. It allows 
wide customization of options exceeding the needs of SODALITE. Along with the 
basic authentication mechanism provided by Keycloak, SODALITE can also support 
such features as 2-factor authentication and seamless integration with third party 
identity providers like Google or GitHub. 

Apart from properly authorising user’s actions, the Security Pillar handles also 
infrastructure secrets like RSA keys, tokens, and passwords. This involves two points 
to be addressed: Security of data in use and security of data at rest. 

The first point is mitigated by properly handling the secrets across the whole 
pipeline: unencrypted information is not stored, security critical parts are not logged, 
users are managed on virtual containers that host the SODALITE components. For 
addressing the second point, Hashicorp Vault was chosen, which is probably the most 
widely used open source tool for secret management. 

2.4 A Running Example: Snow 

This section is dedicated to an overview of the Snow example that will be used in the 
following chapters in all cases we want to exemplify the usage of the SODALITE 
features. 

Snow exploits the operational value of information derived from public web media 
contents to support environmental decision-making in a-snow dominated context. An 
automatic system crawls geo-located images from heterogeneous sources at scale, 
checks the presence of mountains in each photo, identifies individual peaks, and
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Fig. 2.7 Snow: Foreseen pipeline 

extracts a snow mask from the portion of the image denoting a mountain. Two main 
image sources are used: we crawl touristic webcams in the Alpine area and search 
Flickr for geo-tagged user-generated mountain photos in the Alpine region. 

Both image types carry, explicitly or implicitly, information about the location 
where the image is taken, but require estimating the orientation of the camera during 
the shot, identifying the visible mountain peaks, and filtering out images not suitable 
for snow analysis (e.g., due to fog, rain etc.). 

The two multimedia processing pipelines, shown in Fig. 2.7, share common steps 
but also have differences. 

Pictures from Flickr tagged with a location corresponding to a certain mountainous 
region do not ensure the presence of mountains. For this reason, the presence of 
mountains in every photograph is estimated and the non-relevant photographs are 
discarded. The process to classify an image first computes a fixed-dimensional feature 
vector, which summarizes the visual content, and then provides it to a Support Vector 
Machine (SVM) classifier to determine whether the image should be discarded or 
not. A dataset of images annotated with mountain/no mountain labels is needed to 
train the model. 

Outdoor webcams represent a valuable source of visual content. They expose 
a URL which returns the most recent available image. In this case, the resulting 
images need to be filtered by the weather conditions, since these can significantly 
affect short- and long-range visibility. Additionally, snow cover changes slowly over 
time, so that one measurement per day is sufficient; for this reason, an aggregation 
of the images obtained during the day is desirable. 

The distance between the shooting location and the framed mountains can be 
very high (tens of KMs). The photo geotag only is not sufficient for the analysis of 
the mountains. It is necessary to determine which portions of the image represent 
which mountains, identify the geographical correspondence of each pixel: estimate 
whether it is a terrain surface or sky, what is the corresponding geographical area, 
what are its GPS coordinates, altitude and distance from the observer. Once an 
image is geo-registered, the portion of the image that represents the mountain area 
can be analysed and divided into snow and non-snow areas. Mountain Image Geo-
registration (MIGR) is done by finding the correct overlap between the photograph 
and a 360-degree cylinder with a virtual mountain panorama, i.e., a synthetic image 
of the visible mountain skyline generated with a projection from DEM (Digital 
Elevation Model) data and from the camera shooting position. 

A snow mask is defined as the output of a pixel-level binary classifier that, given 
an image and a mask M that represents the mountain area as inputs, produces a
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mask S that assigns each pixel of the mountain area a binary label denoting the 
presence of snow. Snow masks are computed using the Random Forest supervised 
learning classifier with spatio-temporal median smoothing of the output. To perform 
the supervised learning a dataset of images with an annotation at pixel level indicating 
if the pixel corresponds to the snow area is needed. 

The pipeline produces a pixel-wise snow cover estimation from images, along 
with a GPS position, camera orientation, and mountain peak alignment. Thanks to 
the image geo-registration and orthorectification (using the associated topography 
data) it is possible to estimate the geographical properties of every pixel, such as its 
corresponding terrain area and altitude. Consequently, it is possible to compute the 
snow line altitude (the point above which snow and ice cover the ground) expressed 
in meters. 

The virtual snow index for an image is defined as: (x, y)|S(x, y) = 1vsi  (x, y), 
where vsi is a virtual snow index function that transforms a pixel position into a snow 
relevance coefficient and can be defined as vsi  (x, y) = 1 and S(x, y) = 1 indicates 
it will be calculated for each pixel that corresponds to the snow mask obtained in 
previous step. 

2.5 Conclusion 

In this chapter we have provided an overview of the SODALITE target users, of the 
workflows SODALITE supports for them and of the SODALITE architecture. We 
have also briefly described a case study, Snow, that will be used in the following 
chapters to exemplify specific aspects of our approach. 

The individual components of the SODALITE toolset are presented in the follow-
ing chapters. They are all available as open source software1 and as containerized 
Docker images.2 
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Chapter 3 
The SODALITE Model-Driven Approach 

Jesús Gorroñogoitia, Dragan Radolović, Zoe Vasileiou, Georgios Meditskos, 
Anastasios Karakostas, Stefanos Vrochidis, and Michail Bachras 

Abstract The specification of deployment topologies for complex applications dis-
tributed across multiple heterogeneous infrastructures is a difficult process that 
encompasses multiple modeling tasks, engaging several actors, including applica-
tion ops experts, resource experts on the specification of the target infrastructure 
resources, quality experts on the application optimization, and application admin-
istrators on the deployment governance. SODALITE proposes a novel infrastruc-
ture as a code (IaC) modeling framework that provides a model driven engineering 
approach for the authoring of application- and infrastructure-level specifications, 
realizing an instantiation of an infrastructure as a code (IaC) modeling framework. 
This chapter introduces the SODALITE IDE and the IaC services. The IDE enables 
SODALITE expert roles to model (conforming to the SODALITE DSMLs) and 
generate IaC artefacts facilitating the app deployment. Experts are assisted in the 
modeling phase by the semantic knowledge inference and validation capabilities of
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a Knowledge Base (KB), which is populated with IaC descriptions for resources 
semi-automatically discovered from target heterogeneous infrastructures. The IDE 
leverages the SODALITE IaC services for automatic target image preparation and 
IaC artifacts generation upon deployment.

3.1 Introduction 

Cloud computing and infrastructure virtualization are one of the well-known leading 
technologies that companies are increasingly embracing. 

The issues that virtualisation and expansion of infrastructure as a service based 
approach introduced are the scalability, inventory management, complex network-
ing management, security policies, etc. Large scale virtual infrastructure systems are 
difficult to control and manage and therefore usually need high level code snippets, 
scripts or other advanced software artifacts to manage resources, services, deploy-
ments, upgrades, etc. The concepts of handling the code produced to manage and 
automate infrastructure provisioning and manage systems can be defined as Infras-
tructure as Code (IaC) management. The usage of IaC in the DevOps toolchain 
enables: 

• Cost effectiveness as automation efforts reduce simple and repetitive tasks; 
• Speed and efficiency as DevOps teams have tools for releasing infrastructure 
updates and services much faster than in manual configuration scenario; 

• Immutable infrastructure as changes are applied by rebuilding resources instead 
of modifying the existing resources; 

• Possibility of applying traceability, validation and testing to help reducing the 
number of errors, mitigating risks, and leading to robust setup for built in security. 

However, the adoption of IaC implies also an increased complexity at it requires a 
deep knowledge of the target infrastructures and of multiple IaC scripting languages 
to support the initial application deployment and application lifeycle management, 
including upgrades, re-installations, reconfiguration, re-adaptation etc. 

Many cloud resource management standards have been proposed for addressing 
those interoperability and portability issues, such as TOSCA,1 CIMI,2 and OCCI.3 

However, those standards still cause interoperability problems, since the model-
ing languages and the semantics differ among standards, resulting in non-reusable 
resources. Thus, there is a high need for modeling the application components and 
the resources in a standard machine-readable format. 

To this end, Semantic Web technologies can promote interoperability, re-usability, 
and intelligent decision support to various cloud-based systems. In SODALITE, we 
have developed a rich conceptual meta-model that is based on the best practices on

1 http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html. 
2 https://www.dmtf.org/standards/cloud. 
3 https://occi-wg.org/. 
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ontology engineering in order to create a formal abstraction of the application and 
the resources by representing the functional and non-functional requirements and 
interlink them with other dependencies, and relationships. This meta-model aims 
to create a formal abstraction of the application and of its resources by represent-
ing the functional and non-functional requirements and the dependencies among 
components. 

However, the ontological model is not preferred as a front-end language, as it is not 
user-friendly. Thus, a Domain Specific Language (DSL) has been designed to pro-
vide a programming-oriented way to describe these models by offering a lightweight 
language abstraction that hides the complexity of the ontologies. Accordingly, our 
SODALITE Integrated Development Environment (IDE) enables the application 
developer to create DSL-compliant models for her application and infrastructure 
resources. Then, the following processes for container-image preparation and IaC 
scripts generation result in the creation of a valid TOSCA CSAR blueprint. 

The rest of this chapter is organized as follows. Section 3.2 presents the SODALITE 
Domain Specific Languages and the corresponding editors that are part of the 
IDE. Section 3.3 presents how the knowledge is represented in terms of ontologies. 
Section 3.4 shows the smart features offered by the IDE thanks to the ontologi-
cal inference. Section 3.5 describes the procedure how a user can prepare container 
images of the applications. Section 3.6 presents the final steps toward the preparation 
of proper and ready to be executed Infrastructure as Code (IaC). Finally, Sect. 3.7 
concludes the chapter. 

3.2 The Modeling Approach and the IDE 

The modeling of the deployment topology of complex applications across heteroge-
neous infrastructures engages a multidisciplinary team, consisting of several roles, 
namely Application Ops Experts (AOEs), Resource Experts (REs) and Quality 
Experts (QEs), introduced in Sect. 2.2.1, who are involved in the specification of 
different deployment concerns. The SODALITE IDE supports these roles, through 
different editors, to address their modeling needs. Each editor is specialized in the 
creation of a kind of models, which are compliant to one of the SODALITE DSLs, 
that describe a concrete aspect relevant for specification of the application deploy-
ment topology. The SODALITE DSLs are described in the following paragraphs. 

3.2.1 Abstract Application Deployment Model (AADM) 

AOEs tackle the modeling of an application topology as a model instance of the 
AADM DSL. An AADM is a topology, that is, a connected graph of application 
components that declares the relationships among them and the requirements to 
the infrastructure resources they need. They can be resolved, either at design or 
deployment time, through the concrete selection of the suitable resources from a
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target infrastructure. As the ultimate purpose of this AADM DSL is to simplify the 
modeling of the application deployment topology, and its conversion into a TOSCA 
[12] blueprint by the IaC layer (see Sect. 3.6), this DSL borrows modeling concepts 
for TOSCA topologies, such as node templates and policy definitions. Moreover, 
leveraging TOSCA in SODALITE DSLs largely simplifies their adoption among 
end-users already familiarized with this de-facto Cloud deployment language. List-
ing 3.1 shows an excerpt of an AADM for the Snow UC application. In there a 
snow-weather-condition-filter component is declared as an instantia-
tion of the abstract type DockerizedComponent. It overrides some of the prop-
erties inherited from that type, in order to further specialize the component. More-
over, it declares an explicit dependency on another component, snow-mysql, and 
expresses some requirements such us the registry and network to be used, as 
well as the infrastructure resource where to host the component. Finally, it makes 
use of a specific optimization that is described in the next paragraph. Despite these 
requirements have been specified at design time in this example, the abstract nature 
of the AADM permits the resolution of the mandatory requirements in the topol-
ogy at deployment time, assisted by the inference and reasoning capabilities of the 
SODALITE ontology (see Sect. 3.4).
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3.2.2 Optimisation Model (OM) 

QEs tackle the design of deployment optimizations as instances of the Optimization 
Model (OM) DSL (see Sect. 4.4.2). Such instances can be bound to components 
declared in AADMs as in Listing 3.1. Listing 3.2 shows an example of optimization 
model for components that use the TensorFlow AI training library. At a top level, QEs 
build the optimisation model by specifying whether to enable optimal build for the 
target (enable_opt_build) and auto-tuning (enable_autotuning) and the application 
type (app_type). Then, QEs add section-specific options that the optimiser can use 
to select an optimised container and provide target-specific runtime options. 

In the example, opt_build node specifies the node architecture of the target and 
autotuning specifies the tuner tool and its input. The application-specific options are 
listed in the app_type-ai_training node, with sub-node config listing the application 
configuration and data listing the data settings. The ai_framework-tensorflow shows 
the AI framework-specific options for optimisation. Based on the optimisation model, 
the application optimiser maps the optimal application parameters and deployment 
settings to that of the target hardware and selects an optimised container. 

Optimization models are shareable and can be linked to any application compo-
nent node declared in an AADM topology by setting the optimization parame-
ter. As an example, the snow-weather-condition-filter component node, 
described in Listing 3.1, can be associated with the optimisation model (for a Tensor-
Flow AI trainng application) in Listing 3.2. When a node in the AADM is associated 
to an optimization model, the semantic reasoner validates the association by cross 
checking entries like the application type and target architecture. At deployment time, 
the AADM and the associated optimisation model are passed on to the application 
optimiser that actuates the definition.
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3.2.3 Resource Model (RM) 

REs tackle the modeling of infrastructure resources as model instances of the 
Resource Model (RM) DSL. This DSL defines classes for describing new resource 
types, their capabilities, requirements, relationships and interfaces. Alike AADM 
DSL, RM DSL borrows concepts from TOSCA for the specification of resource 
types, their relationships, associated policies and other aspects. Listing 3.3 shows an 
example of new resource type, the ConfigurationDemo, a specialization of a 
SoftwareComponent. The RE declares a new property, mysql-db-pass and 
expresses the requirement remote-server restricted to VM resources that offer a 
Compute capability, being this requirement bound through the DependsOn rela-
tionship. Moreover, the RE specialises the create operation of the Standard 
interface, by declaring new inputs, namely the remote-server and the mysql-
db-pass, and by providing an Ansible implementation for this operation. This can 
be done either directly writing or reusing an Ansible playbook or by exploiting the 
Ansible DSL and associated editor as described in Sect. 3.2.4.
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AADM, OM and RM are interlinked. The AADM imports both the OM and the 
RM so that application components in an AADM model can refer to optimization 
models and can be instantiated as component instances of the types defined within 
RM models. This split of metamodels for the different modeling concerns permits 
these three roles to focus only on one of those concerns by using a single metamodel. 

3.2.4 Ansible Model (AM) 

As mentioned in the previous section, the Resource Expert may decide to implement 
operations defined in a Resource Model as Ansible Models that are then translated 
into executable Ansible playbooks. The IDE, in fact, implements an Ansible DSL 
and offers to the users suggestion and verification facilities that allow them to create 
Ansible Models in an easy way. 

For each specified operation within a Resource model, the user can select the 
option to generate the abstract Ansible model and, then, the corresponding Ansible 
script for further development. As a result, as shown in Fig. 3.1, a folder is created 
for each defined node type, together with a subfolder with the name of each of its 
TOSCA interfaces. Finally, for each TOSCA operation, a .ans file, containing the
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Fig. 3.1 Ansible Model folder structure 

Fig. 3.2 Ansible Model editing support 

abstract Ansible model is created. After this model is completed, the user can then 
generate the corresponding .yaml file, containing the Ansible concrete code. 

During the Ansible Model creation task, the user is supported in all steps. For 
instance, the IDE suggests the names of the operations to be defined, based on 
the RM definition and highlights syntax errors. Moreover, it gives to the user the 
possibility to use as variables in the Ansible Model the inputs that have been defined 
in the Resource Model (see Fig. 3.2). 

An interesting feature that enables reuse of preexisting code, is the possibility 
for the user to import and use in an Ansible Model the modules available within 
the Ansible Galaxy repository.4 The IDE, in fact, first, enables the user in browsing 
through the Galaxy modules. Then, it provides content assistance for each Ansible 
module parameter, emphasizing the required ones. It also informs the user about 
inserting values for each parameter by displaying the value type that each parameter 
expects and presenting the acceptable values and the official description that helps 
the user understand its purpose. Moreover, the Ansible editor’s content assistance 
offers suggestions for standalone roles available on Ansible Galaxy and Ansible roles 
included in Ansible collections.

4 https://galaxy.ansible.com/. 


 -1461 59742 a -1461 59742 a
 


3 The SODALITE Model-Driven Approach 31

The validation mechanisms are a significant addition to the Ansible editor because 
they allow the end-user to identify mistakes in the Ansible model directly and avoid 
the repetitive execution of the Ansible script before fixing all the defined errors. 

3.2.5 Monitoring Alerting Rule Model 

AOEs can also describe the rules that determine the triggering of alerts when the 
monitoring of their deployed applications reveal some anomalous situations. When 
the rule condition applies, the associated alert is dispatched by the SODALITE 
Monitoring (see Sect. 5.4) and captured by Refactoring (see Sect. 5.5), which 
eventually computes corrective actions on the affected deployed application. List-
ing 3.4 shows examples of alerting rules for Snow UC. These alerting rules are 
based on Prometheus PromQL5 language. Each alerting rule model consists of one 
or more rules, organised in groups. Each rule consists of an expression, formalized 
in PromQL, which describes the condition, expressed as a boolean-evaluated expres-
sion, that has to be held during a given time duration (expressed in the for attribute)

5 https://prometheus.io/docs/prometheus/latest/querying/basics/. 
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to trigger the alert. The expression consists of a combination of monitoring metrics, 
processed by functions, aggregation functions and filters. The severity label 
attribute specifies the severity associated with the triggered alert, and it is interpreted 
by the endpoint that captures it, that is, the Refactoring. 

3.2.6 The IDE 

SODALITE DSLs modeling is supported by the SODALITE IDE,6 which is based on 
Eclipse.7 The IDE offers textual and graphical editors for creating AADM models, 
and textual editors for OM and RM and Ansible models. The DSL grammars, parsers, 
serializers and textual editors have been developed by using XText.8 The graphical 
viewers and editors, and the form-based property views have been implemented 
by using Sirius.9 The synchronicity between textual and graphical editors has been 
set up by using the XText-Sirius Integration.10 Textual editors for AADM, OM, 
RMs and Ansible models are intended for skilled modelers who require fast and 
high modeling productivity. These editors provide context-aware intelligent content-
assistance to guide modelers through the syntax and content of the SODALITE DSLs, 
suggesting possible elements to be inserted into the model at the point of typing (see 
Sect. 3.4). A graphical editor (see Fig. 3.3) and its accompanying form-based editors 
for AADM are also available, and support similar intelligent content-assistance. 
They are intended for modelers who prefer the visual modeling based on a canvas 
where to drag and drop entities selected from a palette, but also for textual modelers 
that appreciate a visual representation of the AADM model. They are synchronized 
with the textual editor so that changes in the textual model are immediately reflected 
(upon saving) in the graphical and the form-based property views, and vice versa. The 
AADM visual representation resembles the one adopted in TOSCA documentation 
(which is not a standardized one). 

The IDE only requires from AOEs and RMs the provision of mandatory infor-
mation they own about their application topology and/or required infrastructure 
resources, and relies on the Knowledge Base (KB) to complete the model either 
at the design or deployment time. The IDE also exploits the reasoning engine to assist 
modelers during the authoring of AADM or RM models, by suggesting them suitable 
choices to fulfil certain model entities, including the overriding of properties inher-
ited from super types, the resolution of mandatory requirements, the proper selection 
of component types, etc. (see Sect. 3.4). AADM and RM models are stored into the 
SODALITE KB to be reused and shared with other modelers.

6 https://github.com/SODALITE-EU/ide. 
7 https://www.eclipse.org. 
8 http://www.eclipse.org/Xtext/. 
9 https://www.eclipse.org/sirius/. 
10 https://github.com/altran-mde/xtext-sirius-integration. 
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Fig. 3.3 Excerpt of Snow AADM graphical view 

The IDE textual editors conduct syntactic validation (i.e. to ensure DSL compli-
ance) during the modeling phase. Semantic validation is conducted by the reasoning 
engine and by the optimization sub-system. All detected errors and warnings, as well 
as possible fixes, are presented to the user in the IDE and associated to the affected 
component. 

Besides supporting DSL modeling, the IDE offers an user interface for most of 
the SODALITE user-driven processes, namely: 

• Model Management in KB. AADMs and RMs can be saved (wizard assisted) into 
a remote shareable Knowledge Base for further reuse by other users. In case of 
AADMS, versioning is available to distinguish between different versions of the 
same application deployment. Moreover, the IDE offers a KB Browser View 
to browse all those available models in the Knowledge Base for which the 
user has read permissions. Selected models can be retrieved into the user’s local 
Eclipse workspace for further edition, or deleted (if user’s has write permissions) 
when not needed (see Fig. 3.4). 

• AADM Deployment. AoEs can select AADMs in the IDE project explorer 
view for deployment. A popup wizard guides the user through the deployment 
process, requesting the AADM inputs, as well as the orchestrator config-
uration (see Sect. 5.2), such as the number of workers for parallel deployment 
(see Fig. 3.5). Optionally, AoEs can request the wizard to complete the AADM 
by resolving unfulfilled component requirements, leveraging the Knowledge 
Base inference capabilities (Complete AADM check box in wizard). The 
deployment process continues in the IDE background notifying the user about 
its status.
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Fig. 3.4 IDE KB View

• Deployment Governance. AoEs can browse all their owned deployments in the IDE 
deployment governance view (see Fig. 3.6), which shows them grouped 
by application (i.e. blueprint in the orchestrator terminology). Details of 
each deployment are shown, including external links to associated monitoring 
dashboards, which are accessible in Web browsers. Failed deployments can be 
resumed for initial state or from the first failing node. Selected deployment and 
empty blueprints can be removed when unneeded. 

• Image building. Images for VM creation, required by applications to be deployed, 
can be created by the image builder and registered into the image 
registry from the IDE by providing a image file descriptor (see Sect. 3.5). 

• Resource discovery. Target infrastructure resources can be automatically dis-
covered and their associated RMs created by the Platform Discovery 
Service (see Sect. 2.2.1) and stored into the Knowledge Base. This pro-
cess can be triggered from the IDE for selected infrastructure types. 
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Fig. 3.5 Deployment Wizard 

Fig. 3.6 Deployment Governance View
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3.3 Knowledge Representation and Ontologies 

Semantic Web technologies, and particularly, ontologies represent the domain knowl-
edge in a formal and abstracted manner that fosters advanced reasoning. Therefore, 
in SODALITE, ontologies were adopted for capturing the TOSCA meta-model that 
contain complex semantics such as subsumption hierarchies and multi-role concepts. 
Through the use of ontologies, SODALITE mainly aims to (i) follow a common, 
extensible, and formal standardised model in order to describe cloud-related con-
cepts (ii) capture both the structural and semantic relationships in an unambiguous 
manner by managing the information in the form of Knowledge Graphs (iii) create 
an interpretation and validation layer, for example, for inferring validation errors and 
smells [2] by following the semantics of TOSCA [3], and by reusing existing rule 
languages and logic-based frameworks. 

3.3.1 Background in Ontologies 

An ontology is a formal, explicit specification of a shared conceptualisation [10]. 
The world “ontology” is used with different meanings in different communities [14]. 
Namely, both the philosophy and computational field share in common the attempt 
to represent the knowledge formally as a set of concepts along with the relations 
among them. They have become such popular mainly due to the promise of the 
semantic interoperability and common understanding among different parties [5]. 
Their expressivity and level of formalisation depend on the knowledge representation 
language used. The Semantic Web is an extension of the current Web by annotating 
the resources with meta-information for establishing a common representation across 
heterogeneous sources. Ontologies play a key role within the Semantic Web by 
enabling the weaved knowledge to be interpreted into a machine-understandable 
format. In pursuit of that objective, the Web Ontology Language (OWL) is a key 
Semantic Web Ontology Language that is part of the W3C standard and was designed 
to represent complex knowledge. 

The OWL language has been heavily influenced by the Description Logics. 
Description Logics (DLs) is a popular knowledge representation formalism. A DL 
knowledge base consists of two different types of statements, an ABox (assertional 
knowledge) and a TBox (terminological knowledge) [4]. The TBox describes the 
structure of the data stating general properties of concepts and roles, in other words 
the ground truth, while the ABox contains the instances of the concepts defined in 
the TBox. For instance, the TBox axiom Compute�Root asserts that all objects that 
belong to the concept Compute, are members of the concept Root too. The Abox are 
the real world entities, the instances of the TBox classes. For example, Compute(vm) 
and hasProperty(vm,name) express that vm has a property, which is described by the 
name instance. For representing the data of the Semantic Web, a set of web-based
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knowledge representation languages has been developed. Some of those languages 
are: RDF (Resource Description Format), RDF(S) (RDF Schema), and OWL [1]. 

• RDF: The RDF is a language for describing resources on the Web, was originally 
released as a W3C recommendation in 1999, and updated in 2004 and in 2014. The 
RDF data model is based on graphs, as opposed to tuples that underlie relational 
data models. In RDF, a data graph is constructed by the union of a number of 
three part assertions, called triples. A triple is composed of three parts: a subject, 
a predicate, and an object. 

• RDF(S): RDF provides the basis for the Semantic Web, but it is limited in express-
ing the definition of the resources and their relations. RDF(S) is a standard that 
released along with the second generation of RDF in 2004 (and updated in 2014) 
and based on RDF. It defines classes and properties extending the base RDF vocab-
ulary and provides support for more expressive knowledge modelling semantics. 
Using the RDF(S) vocabulary, it is possible to model lightweight ontologies, con-
sisting of concepts, relations and their hierarchies. 

• OWL: The OWL was developed simultaneously with RDFS to provide more 
high-level expressiveness. It is a knowledge representation language widely used 
within the Semantic Web community for creating ontologies. OWL has three 
expressive sub-languages: OWL Lite, OWL DL, and OWL Full. OWL Full is the 
most expressive, but due to the high degree of expressiveness, it is undecidable. 
As a result, OWL DL is primarily used as a more expressive dialect. However, 
due to the tree model property [16], OWL can model only domains where objects 
are connected in a tree-like manner. This constraint is quite restrictive for many 
real-world application, therefore, the W3C working group produced the OWL2 
[9]. OWL2 is a revised extension of OWL, commonly referred as OWL1. Some of 
the most prominent extensions are constructs for specifying cardinality, and value 
restrictions, and complex property inclusion axioms (property chains). OWL2 is 
divided into three different profiles, OWL2 EL, OWL2 QL, and OWL2 RL. 

The SODALITE capitalizes on the most expressive features of OWL2: 

• Meta-modeling: It is the practice of treating individuals as classes. One feature 
of meta-modeling is that it must be possible to assign properties to classes in the 
model. This way it is possible to assert the membership of classes in meta-classes 
and interconnect them via meta-roles [8]. The direct semantics of OWL2 do not 
allow for meta-modeling, but OWL2-DL supports it by the use of punning [11]. 
Punning allows for using the same identifier e.g. for an individual and a class. The 
main motivations for meta-modelling are that a model often needs to play more 
than one role in an application, reusability is promoted, and complex situations 
can be modeled more effortlessly. 

• Ontology Design Patterns: An Ontology Design Pattern (ODP) models a recur-
rent ontology design problem. ODPs can be viewed as small, modular and reusable, 
and templates based on these patterns or other regularities in the ontology [15]. 
They can be also viewed as as a way of bottom-up pattern finding that is then reused 
across the ontology and offerred a a ’best practices’ design solution. For achiev-
ing better degree of knowledge sharing, reuse and interoperability, SODALITE’s
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conceptual model reuses the DnS ontology [6] pattern of DOLCE+DnS Ultralite 
(DUL) ontology [7]. 

3.3.2 SODALITE Conceptual Model 

In SODALITE we propose an ontology-based framework [13] for capturing and 
interlinking TOSCA-based descriptions of cloud applications and resources. In this 
section, it will be described the conceptual model and the modeling decisions for 
implementing the ontology-based semantic abstraction layer of SODALITE. 

The SODALITE semantic models include the SODALITE meta-model and the 
domain ontology: (i) The SODALITE meta-model is the formal ontology pattern 
that is used in all the different levels of abstraction (ii) The domain ontology, which 
is Tier 0, contains the TOSCA normative types and provides the vocabulary that will 
be used in the other two modelling layers (tiers), namely Tier 1 (resources) and Tier 
2 (pattern instantiations). 

3.3.2.1 Tiers 

SODALITE follows a modular, 3-tier approach to capture the knowledge. In all 
the tiers, the SODALITE ODP is used in order to foster a unified representation 
paradigm for enabling a unified and complete model that promotes interoperability, 
extensibility and smooth knowledge management. The tiers are described in detail 
as follows (Fig. 3.7): 

• Tier 0: This is the static tier of the model. It contains the TOSCA vocabulary, 
namely the TOSCA meta-model in the conceptual SODALITE ODP. For example, 
all the TOSCA built-in types are modelled in this tier with all their relationships 
and associations. 

• Tier 1: This tier involves all the custom resource types created by Resource 
Experts. Those custom types extend the TOSCA built-in types. 

• Tier 2: These are the instances composing the Abstract Application Deployment 
Model (AADM), named also as “templates”, and are reusable combinations of 
Tier 0 and Tier 1 types. Application Ops Experts create the AADM using the DSL 
in the SODALITE IDE (see Sect. 3.2). 

3.3.3 Descriptions and Situations Pattern (DnS) 

For better degree of knowledge sharing and reuse, the SODALITE ODP is a spe-
cialised instantiation of the Descriptions and Situations (DnS) ontology pattern that is
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Fig. 3.7 Overview of the SODALITE modelling layer 

part of DOLCE+DnS Ultralite (DUL). The Descriptive Ontology for Linguistic and 
Cognitive Engineering (DOLCE) focuses on cognitive issues and aims at capturing 
ontological categories underlying natural language and human common sense. The 
DOLCE + DnS Ultralite is a light version which has been simplified and improved. 
In SODALITE, we adopted the DnS design pattern which is part of the aforemen-
tioned light version of DOLCE ontology. The purpose of DOLCE + DnS Ultralite 
ontology is to provide the basis for easier interoperability among middle and lower 
level ontologies. 

The DnS pattern is presented in Fig. 3.8. This pattern captures the notion of “Situa-
tion” out of the state of affairs, with their interpretation being provided by a “Descrip-
tion”. 

• Situation: a set of domain entities that are involved in a specific pattern instanti-
ation 

• Description: represents the descriptive context of a situation that defines the con-
cepts that classify the domain entities of a specific pattern instantiation. In such a 
way, views are created on the situtations. 

• Concepts and parameters: Classify domain entities describing how they are inter-
preted in a particular situation. Each concept might have one or more parameters 
for describing additional descriptive context.
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Fig. 3.8 Core DnS pattern in DuL 

3.3.4 SODALITE Meta-Model 

The SODALITE meta-model, which is depicted in Fig. 3.9, extends the core DnS 
pattern by specializing the core DUL concepts in order to model TOSCA definitions. 

• SodaliteSituation: It represents a situation such as a node template or type 
(SodaliteSituation � dul:Situation). 

• SodaliteDescription: Each situation is related with (soda:hasContext) a descrip-
tion (SodaliteDescription�dul:Description) that contains the attributes properties, 
interfaces, requirements etc. 

• SodaliteConcept and SodaliteParameters: Each description has a specification 
(soda:specification � dul:defines) that involves one or more zero concepts such 
as attributes, properties, requirements e.t.c) and each Concept has one or more 
parameters (soda:hasParameter � dul:hasParameter) for describing more nested 
content. Each SodaliteConcept classifies one SodaliteEntity (soda:SodaliteEntity
� the dul:Entity). 

3.3.5 Example: Tier 1, Tier 2 

In Tier 1, it is noteworthy the OWL2 meta-modelling capabilities of the resources, 
as they are both classes and instances. For example, in Fig. 3.11, it is presented that the 
sodalite.nodes.DockerizedComponent is a class (rdfs:subClassOf 
tosca.nodes.SoftwareComponent), and also an instance, as it participates 
in a property assertion soda:hasContext. By using the meta-modelling (pun-
ning), we promote reuse as we can have subsumption hierarchies since the node types 
can be classes, and also have descriptive context (e.g. properties, capabilities) by the 
role of instance. Henceforth, the templates, which are instances of the types, inherit 
this descriptive knowledge of the types leading to more comprehensive and reusable



3 The SODALITE Model-Driven Approach 41

Fig. 3.9 SODALITE meta-model (extension of DUL) 

knowledge components. Especially, in this domain where the knowledge is captured 
in different levels, namely normative types, resources and applications, the adoption 
of the meta-modelling enables this knowledge representation. Some examples of the 
Tier 1 and Tier 2 follow: 

• Tier 1: In Fig. 3.10, the SODALITE ODP capabilities are demonstrated through 
an instantiation of a pattern that captures the definition of a node type. The 
depicted node type is custom and inherits a normative TOSCA node type, the 
tosca.nodes.SoftwareComponent. 
Since the purpose is to show the SODALITE ODP, only an excerpt of the node 
type is depicted. It is presented the correspondence between the TOSCA elements 
and the ODP concepts. Namely, each node type is a Situation, that contains a 
Description containing various concepts. The same rationale is followed in the 
static layer, Tier 0. 
Figure 3.11 depicts an excerpt from the Knowledge Graph of the aforementioned 
node type. More specifically, the requirement and the attribute are captured as 
instances of the tosca:Requirement and tosca:Attribute correspondingly. Each con-
cept classifies the property that is modelled, for example tosca:host. Any other 
nested information is captured through the definitions of the SodaliteParameters. 
Each concept, such as ex:SodaliteParameter_2 in our example, can have 
a description by using the dcterms:description property of Dublin Core.11 

• Tier 2: In Fig. 3.12, an excerpt of the snow-weather-condition-filter 
node template’s knowledge graph is depicted, and its full version is shown in 
Listing 3.1.

11 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/. 
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Fig. 3.10 Example TOSCA custom node type and high-level assignment of SODALITE ODP 
concepts 

The ODP is used similarly with the Tier 1. Precisely, each template is captured 
as a situation that has a description. Each description contains concepts such as 
properties, attributes, requirements etc. Each concept classifies a property and 
represents the nested knowledge as parameters. Listing 3.5 depicts the definition 
of the snow-weather-condition-filter as an instance of the sodalite.nodes. 
DockerizedComponent resource. 

3.4 A Smart Environment for Developing IaC 

The smartness in the SODALITE Modelling layer primarily arises from the semantic 
inference capabilities of the KB. This task is performed by the Semantic Reasoner. 
In this section we focus on the main features it offers. 

3.4.1 Context-Aware Content Assistance 

Smart context-aware content assistance is offered to the user by means of suggestions 
during the authoring of the models. This modelling assistance is mostly based on 
the inference and reasoning capabilities of the KB. Since the models are saved as 
interconnected RDF knowledge graphs, the information is represented as a network
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Fig. 3.11 Example node type 

Fig. 3.12 Example node template ontology
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of relationships that capture both the structural and semantic relationships in an 
definite manner. Thereby, the KB can be easily reasoned for supporting discovery, 
reuse, and validation. In respect of the validation of the models, in the Sect. 4.2, we  
describe the intelligent services checking the validity of the AADM during the design 
phase. Regarding the discovery and reuse, some of the cases that the KB suggests to 
the modelers are:

• Available infrastructure resources that satisfy the requirements of the application 
components. Thus, the requirements of an application component can be com-
pleted more easily, as the KB can suggest suitable resources that can serve as a 
host, dependency, network and other requirements. An example SPARQL query, 
that is used for discovering the aforementioned resources, is depicted in Listing 
3.6, which retrieves the type (value) that is defined in a specific requirement 
(requirementName) of a resource definition. Then templates of this specific 
type are discovered in order to satisfy requirements of an application component. 

• Concepts. Concepts such as the interfaces, properties, and capabilities. They can be 
assigned to the infrastructure and application components depending from which 
type they are derived or instantiated. In Listing 3.7, a SPARQL query that discovers 
properties for an application component is depicted. 

• Infrastructure and application components that belong to a specific group. For 
example dockerized application components, or components of a specific use case 
e.g. snow. In Listing 3.8, a SPARQL query returning all the templates that are saved 
in the workspace of the snow use case. By leveraging how the data set is split in 
a Knowledge Base, the models can be grouped in graphs enabling the reusability 
as the users can discover models and resources among them.
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Fig. 3.13 Content assistance for properties 

Fig. 3.14 Content assistance for requirements 

The IDE relies on the KB Reasoner to assist DSL modelers with context spe-
cific suggestions at the point of edition. Upon request, the IDE displays a drop-down 
list of suggestions obtained from the KB Reasoner after sending a query that 
include the edition context. The user can browse the list, select one option, which will 
be inserted at the cursor point. In Fig. 3.13 IDE offers the properties defined in the hier-
archy of type sodalite.nodes.DockerizedComponent, whose defaults 
can be overridden for the instance snow-weather-condition-filter. In  
Fig. 3.14 IDE offers available infrastructure resource instances (defined locally within 
the AADM or available in the KB) that can fulfill the host requirement of the 
snow-weather-condition-filter component.
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Fig. 3.15 Abstraction DSL 
example 

3.4.2 Abstraction 

Since the creation of the deployment model requires the acquaintance with vari-
ous IaC languages, their execution mechanisms, and with different heterogeneous 
infrastructures, the abstraction of the SODALITE DSL is uppermost for lessening 
the modeller’s effort. In pursuit of making the DSL as abstract as possible, we apply 
deep inference reasoning on the interlinked knowledge that is saved in KB so as to 
concretize the AADM. Precisely, with the abstracted DSL, some information in the 
deployment model can be omitted by the modeller. 

The abstraction primarily focuses on the requirements of an application compo-
nent. The user can totally omit the requirements where, for instance, it is defined 
where an application can be hosted, which network is needed, which resources 
are dependencies such as database.In Fig. 3.15, an excerpt of the snow-weather-
condition-filter is depicted, where it is shown that all the requirements can be totally 
omitted by the modeller, and the KB can autofill the model. 

3.5 Preparation of Container Images 

Unlike the usage of Hypervisors for provisioning and virtualizing underlying hard-
ware through virtual machines, container engines virtualize the operating system 
(such as Linux or Windows) having each container holding only the application and 
its libraries and the needed dependencies. Containers can leverage the features and 
resources of the host OS making them small, fast, and portable. Being lightweight 
containers improve CPU and memory utilization of physical machines. Contain-
ers also facilitate building of granular applications making them an ideal choice 
for service oriented architecture approach such as microservices architectures, mak-
ing components independently deployable. At the same time containers provide the
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DevOps teams the level of flexibility and portability making them a great choice for 
running applications on heterogeneous environments such as multi-cloud, HPC or 
Edge. 

Having the possibility to create deployable images and the tools for building 
these application images within SODALITE, a user can leverage transportability of 
application deployments between different systems and architectures. SODALITE 
uses the Image Builder component to pre-build application images for target-
ing an OS virtualizer such as Docker.12 The Image Builder component itself is a 
dockerized REST API encapsulation of the xOpera lightweight orchestrator and a 
TOSCA/Ansible blueprint that is executed by the orchestrator. It can be configured 
to run different image building workflows enabling the user to build the applica-
tion from source or tar images and push the created image to a Docker registry. 
Figure 3.16 shows the architecture of the Image Builder component. The image 
building workflows for building runtime images are running prior to deployment of 
the TOSCA blueprint, before the orchestrator starts with the execution of the blueprint 
deployment e.g., provisioning the infrastructure and deployment of the application. 
The building process can be automated through REST API calls or run manually 
from SODALITE Smart IDE (Sect. 3.2). In this case the user is able to check period-
ically for the status of the image building process. Since the image building process 
can take some time the REST API provides an asynchronous implementation of the 
image building. Listing 3.9 shows an example of a JSON build parameters for the 
Snow WebCamCrawler component. 

The encapsulation of the xOpera lightweight orchestrator and TOSCA blueprints 
into the REST API enables the image building functionality to be accessible from 
any component in SODALITE framework or be just reused as a separate blueprint 
if needed. The extendable nature of these TOSCA blueprints provides a high level 
of reusability of the code for supporting the image building process. Image Builder 
implements the process of building the images through TOSCA v1.3 blueprint. Image 
builder also supports session handling and authentication/authorization by JWT 
tokens making it easy to integrate with Identity and Access Management providers. 

An important innovative feature has been implemented giving the user the possi-
bility to create multiple image variants in a single image building workflow run. Image

12 https://www.docker.com/. 
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Fig. 3.16 Image Builder Architecture 

builder exposes its functionalities through both multifunctional CLI and REST API, 
and can be also used in a CI/CD scenario. The image is regularly pushed to the public 
DockerHub registry under sodaliteh2020/image-builder-api.13 The source code and 
extensive information on how to build, use and deploy the Image builder is 
provided in the Image Builder GitHub repository.14 

3.6 Infrastructure as Code Preparation 

The SODALITE runtime layer relies on the declarative OASIS TOSCA standard 
v1.315 to receive the definition of infrastructural resources needed for a certain appli-
cation, their relationships, and the mapping of application components onto these 
infrastructural elements. TOSCA is implementation agnostic, meaning that it does

13 https://hub.docker.com/r/sodaliteh2020/image-builder-api. 
14 https://github.com/SODALITE-EU/image-builder. 
15 https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-
Profile-YAML-v1.3-os.html. 
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not suggest a recipe for the implementation of the node operation lifecycle, but, 
instead, specifies the interfaces associated to these lifecycle operations and can rely 
for their implementation on practically any high or low level language. SODALITE 
has chosen Ansible as a high level configuration management declarative language for 
the implementation of lifecycle operations for having maximum impact on DevOps 
teams that already use configuration management tools. 

The goal of IaC preparation is the one of generating correct TOSCA code from 
AADMs written in the SODALITE DSL. 

All SODALITE models, including abstract application deployment models 
(AADMs) and resource models (RMs), are stored in the semantic Knowledge Base 
(KB), as explained in Sect. 3.3. All the interactions to the KB are implemented 
through the Semantic Reasoner API, which handles the export of the models into a 
JSON model definition (AADM JSON). The AADM JSON model definition is self-
sufficient and provides all the node definitions, optimization models (Sect. 3.2.2), 
application deployment topology definitions, as well as references to Ansible play-
books needed for the configuration of the application deployment and the creation of 
a valid self-contained TOSCA v1.3 blueprint in the Cloud Service Archive (CSAR) 
format, defined in the OASIS TOSCA standard. A CSAR contains definitions of 
all TOSCA node, relationship, artifacts types and templates, needed to deploy an 
application. 

IaC Blueprint Builder is the component that takes the AADM JSON 
model definition and creates a valid CSAR, deployable through the SODALITE 
Orchestrator (xOpera) via its REST API endpoint. The IaC Blueprint Builder is 
implemented in Python and encapsulates three distinct subcomponents: 

• Swagger REST API exposes and implements a REST API that forwards the calls 
for parsing of AADM JSON and creation of the TOSCA CSAR; 

• Abstract Model Parser internally parses an AADM JSON and builds a TOSCA 
blueprint representation as a tree data structure, 

• IaC Blueprint Builder creates a TOSCA blueprint based on the internal tree repre-
sentation, packs the blueprint in a CSAR and registers the CSAR with the Orches-
trator via xOpera REST API endpoint. 

Additional actions are performed by the IaC Blueprint Builder, in cases 
an AADM JSON contains a reference to an Optimization Model (OM). The 
Abstract Model Parser extracts the node template, which has an optimiza-
tion model associated to it, and creates an request to MODAK (Sect. 4.4) to return the 
reference to the optimized container image and content of the optimized job script. 
The Parser then substitutes the returned values with respective properties (container 
runtime and job script content) of the node template, allowing the Orchestrator to 
retrieve and use the optimized container images and job scripts to deploy an applica-
tion. Figure 3.17 presents a complete sequence diagram, where IaC generation from 
an AADM JSON and internal and external components interactions are outlined. 

The IaC Blueprint Builder has been integrated into the SODALITE security pillar 
to check authentication and authorization of the calling client with the IAM Service 
API (Keycloak). The IaC Blueprint Builder is dockerized and its container image
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Fig. 3.17 UML sequence diagram showing the IaC generation 

can be found in the public DockerHub under sodaliteh2020/iac-blueprint-builder.16 

Additionally, the source code is available in IaC Blueprint Builder GitHub reposi-
tory.17 

3.7 Conclusion and Future Work 

In this chapter, we have presented the SODALITE design-time IaC modeling frame-
work. It permits SODALITE roles to model different facets of the deployment topol-
ogy of complex applications across heterogeneous infrastructures. It adopts a com-
bined meta-modeling (based on DSLs) and semantics (based on ontology graphs) 
approach, which leverages the high expressiveness of DSL human-centric languages 
and the deep knowledge inference and reasoning capabilities of ontology graphs. 
We have introduced the SODALITE DSLs, designed for modeling different aspects 
of optimized applications and the required infrastructure resources. We have also 
introduced the IDE that offers textual and graphical editors for creating DSL model 
instances and for accessing the main SODALITE processes. The joint collaboration 
of the IDE and the KB helps the modeler with the intricacies of the models, helped 
by the context-aware content assist, the semantic validation and the smell detection. 
We have also introduced the ontology schema, created for assisting on the modeling 
of DSL model instances, split into tiers that accounts for the different facets of the 
deployment topology, leveraging the Descriptions and Situation Pattern. And finally, 
we have introduced the IaC framework, which consumes DSL models to gener-
ate the artifacts required for the application deployment by the Orchestrator of the

16 https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder. 
17 https://github.com/SODALITE-EU/iac-blueprint-builder. 
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SODALITE Runtime Layer. As future work, we plan to extend SODALITE DSLs 
and the semantic inference to cover the unsupported modeling capabilities of the 
TOSCA standard, to extend the content assistance to offer smarter recommendations 
and wider semantic validation, as well as the graphical modeling support for RMs. 
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Chapter 4 
Quality Assurance and Design-Time 
Optimization 

Indika Kumara, Alfio Lazzaro, Nina Mujkanovic, Zoe Vasileiou, 
and Damian A. Tamburri 

Abstract Heterogeneous applications are getting more and more complex, making 
the authoring of their deployment models an error-prone and demanding task. Het-
erogeneous resources also make performance optimization of applications complex. 
In this chapter, we will present the quality assurance and application optimization 
support of the SODALITE framework, which offers the capabilities for verifying 
deployment models, detecting bugs and smells in them, and optimizing applica-
tion components for specific hardware resources. This chapter discusses how the 
above-mentioned capabilities of the SODALITE framework can be used to develop 
optimized, defect-free deployment models. 

4.1 Introduction 

The SODALITE modeling layer produces the deployment model of an application 
in terms of Infrastructure as Code (IaC) scripts. IaC simplifies the provision and 
configuration of the IT infrastructure at scale. As the size and complexity of IaC

I. Kumara (B) 
Jheronimus Academy of Data Science, Tilburg University, Tilburg, The Netherlands 
e-mail: i.p.k.weerasinghadewage@tilburguniversity.edu 

A. Lazzaro · N. Mujkanovic 
HPE HPC/AI EMEA Research Lab, Basel, Switzerland 
e-mail: alfio.lazzaro@hpe.com 

N. Mujkanovic 
e-mail: nina.mujkanovic@hpe.com 

Z. Vasileiou 
Information Technologies Institute, Centre for Research and Technology Hellas, 
Marousi, Greece 
e-mail: zvasilei@iti.gr 

D. A. Tamburri 
Jheronimus Academy of Data Science, Technical University Eindhoven, Eindhoven, 
The Netherlands 
e-mail: d.a.tamburri@tue.nl 

© The Author(s) 2022 
E. Di Nitto et al. (eds.), Deployment and Operation of Complex Software in Heterogeneous 
Execution Environments, PoliMI SpringerBriefs, 
https://doi.org/10.1007/978-3-031-04961-3_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04961-3_4&domain=pdf

 854
39924 a 854 39924 a
 

 854 43909 a 854 43909 a
 

 854
46787 a 854 46787 a
 

 854
51879 a 854 51879 a
 

 854 56971 a 854 56971 a
 

 -2047 61852 a -2047 61852 a
 


54 I. Kumara et al.

projects increase, it is critical to maintaining the code and design quality of IaC 
Scripts [6, 7] According to a recent report on Cloud Threat,1 nearly 200,000 insecure 
IaC templates were found among IaC scripts used by a set of enterprises, and 65% 
of cloud incidents are due to misconfigurations. Thus, the detection and correction 
of defective and erroneous IaC scripts are of paramount importance. To address this 
problem, the SODALITE platform offers a set of tools to detect defects such as errors 
and code smells.

In addition to the generation of the IaC scripts, the deployment process can also 
create container images for application components. Software application developers 
and users are now targeting diverse computing platforms, such as on-premise super-
computers and clouds with heterogeneous node architectures. Compute intensive 
applications such as Artificial Intelligence (AI) training that use High-Performance 
Computing (HPC) have specific requirements for specialized execution environ-
ments, including computing accelerators, high speed interconnects, and fast memory 
and storage. Even if software-defined environments provide flexibility and porta-
bility, we still need applications to use and benefit from these diverse resources 
optimally. For example, AI training frameworks require target-specific libraries and 
drivers to be configured. In the context of HPC infrastructures, with various hard-
ware and software dependencies and libraries, building or selecting an optimized 
container for deploying AI-based components is crucial. The same concepts apply to 
Message Passing Interface (MPI) applications, where the applications have to effi-
ciently use the network to get performance and parallel scalability. To address these 
issues, SODALITE offers an application optimizer called MODAK that maps the 
optimal application parameters to the infrastructure target by building or selecting 
an optimized container and then encoding optimizations in a job script. 

The rest of this chapter is organized as follows. Section 4.2 presents the support 
for validating the deployment topology of an application and verifying arbitrary con-
straints on the components and their properties. Section 4.3 discusses the detection 
of smells and bugs in IaC using rule-based and data-driven approaches. Section 4.4 
presents the MODAK tool in detail, and Sect. 4.5 concludes the chapter. 

4.2 Verifying IaC 

Validation services are provided to the user during the authoring process of the 
deployment models. Based on the deployment models saved as interconnected 
Knowledge Graphs, described in Chap. 3, powerful semantic queries can run upon 
the Knowledge Base using strong inference for uncovering new information out of 
existing relations. Additional to advanced context-aware searching, matchmaking, 
and reuse, described in the previous chapter, pre-deployment validation is a crucial 
component that ensures a reliable IaC deployment model.

1https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-1h21. 
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The validation of the AADM, during the design phase, is aiming at checking the 
consistency of the structures. In TOSCA, the type system supports inheritance as a 
type can extend another, inheriting all its concepts (e.g. properties, capabilities). Each 
template of the AADM is an instance of a specific type, namely an infrastructure 
resource or software component, and gets validated against this type definition. 

4.2.1 Validation Cases 

Using custom reasoning logic, semantic validation errors can be inferred with regards 
to the TOSCA type definition. The assigned values to the component templates are 
validated against the corresponding type schema. 

4.2.1.1 Topology Validation 

There are errors in the deployment model that are onerous to be manually detected 
as it is needed to manually check all inter-node relationships in a TOSCA applica-
tion topology and their interconnection constraints. Based on the validity conditions 
of the Sommelier [3], an open-source validator of TOSCA application topologies, 
our services are validating the interconnections of the deployment model. All the 
TOSCA elements, that are forming a relationship, are checked, namely the source 
(Requirements of a node), the relationship itself, and its target (a node or a capability 
of a node). 

In TOSCA [9], various components, such as an application, a database, are mod-
eled as templates and are instances of types, such as node types, relationship types, 
and capability types. The node types contain the definitions of the requirements of 
a component, the capabilities that are offered for other components. The capabil-
ity types express the capabilities and valid_source_types (valid names of 
Node Types that are supported as valid sources of any relationship). The relationship 
types denote the explicit relationships between the nodes, or alternatively implicit 
relationships are declared through requirements. 

4.2.1.2 Required Properties 

In the type schema, it is optionally to be defined if a property is required to be assigned 
to a template by the required key. Therefore, if there exists a property definition in 
a type and required equals true, and there is no default value, then such a property 
should be assigned to the templates being instances of this type. In Listing 4.1, 
a TOSCA node type definition is depicted with the name mandatory property. In 
Listing 4.2, a SPARQL query detecting the required properties is shown.
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List. 4.1: Excerpt of a TOSCA node type definition with a required property 
1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 

List. 4.2: SPARQL Query detecting required properties 

4.2.1.3 Property Values 

Each property definition of the node type includes a type of the assigned property 
value. There are various property types such as string, integer, list, and 
map. A node type that has two properties with the type string and integer defined is 
shown in Listing 4.3. Rule-based reasoning infers if the assigned template property 
values are valid according to the type, using SPARQL queries upon the Knowledge 
Graphs. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

List. 4.3: Part of a TOSCA node type with properties of different types
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4.2.1.4 Constraints 

A constraint clause might be optionally present in the property definition of the 
type defining the allowed values that can be assigned in the corresponding template 
property. The constraints can be as simple as a list with valid values, shown in Listing 
4.4 or a given range (e.g. greater than, less than), or as complex as an object of a 
custom type. In Listing 4.5, a SPARQL query is shown that retrieves the properties 
of a type that have constraints with a list. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

List. 4.4: Part of a TOSCA data type with property value constraints 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

List. 4.5: SPARQL Query returning only the constraints of a type including a list 

4.3 Detecting Smells and Linguistic Anti-patterns in IaC 

SODALITE developed the tools that can detect such smells and linguistic anti-
patterns in IaC. A software smell is any characteristic in the artifacts of the software 
that possibly indicates a deeper problem or quality issue [11]. Linguistic anti-patterns 
are recurring poor practices concerning inconsistencies among the naming, documen-
tation, and implementation of an entity, which have shown to be a good proxy for 
defect prediction [1].
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Fig. 4.1 An Overview of our Approach to TOSCA Smell Detection 

4.3.1 Semantic Approach to Detecting Smells 

SODALITE proposes a semantic rule-based approach to detect the smells and antipat-
terns in IaC, for example, smells in TOSCA blueprints [8]. Our framework facilitates 
the generation of knowledge graphs to capture TOSCA-based deployment models. 
The aim is to map IaC code constructs to self-contained, independent, and reusable 
knowledge components, amenable to analysis and validation using Semantic Web 
standards, such as SPARQL. A semantic approach helps us to deal with structure and 
semantic relations over various types of resources, their relationships, and properties. 
The semantic reasoning process is able to draw new and hidden knowledge from the 
existing information. 

Figure 4.1 shows the high-level architecture and workflow of our approach to 
detect the occurrences of smells in deployment model descriptions. More specifically: 

• Population of Knowledgebase. Resource Experts populate the knowledgebase 
by creating resource models (ontology instances representing resources/nodes 
in the infrastructure) using SODALITE IDE. Platform Discovery Service may 
(semi-)automatically update the knowledge base by creating resources models. 

• Definition of Smells Detection Rules. We use the semantic rules in SPARQL 
to detect different smells in deployment models. SODALITE developed rules to 
detect common security and implementation smells. New, additional rules can be 
defined to detect new types of smells. 

• Detection of Smells. Application Ops Experts create the AADM instances for 
representing the deployment models of the applications. The AADM is automati-
cally translated into the corresponding ontological representation and is saved in 
the knowledgebase. The smell detection rules are applied over the ontologies in 
the knowledgebase to detect deployment model-level smells. If a smell is detected, 
the details of the smell are returned to the Application Ops Experts. The detected
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Table 4.1 Smells, their descriptions, and the abstract detection rules 

Smell Smell Description Abstract Detection Rule 

Admin by default Default users are 
administrative users 

isUser (x.name) ∧ isAdmin 
(x.name) 

Empty password A password as a zero-length 
string 

isPassword(x.name) ∧ 
(isEmpty(x.value) 
isEmpty(x.defaultValue)) 

Hard-coded secret Secrets such as usernames and 
passwords are hardcoded 

(isPassword(x.name) ∨ isUser 
(x.name) ∨ isSecKey 
(x.name)) ∨ 
∼(isEmpty(x.value) ∨ 
isEmpty(x.defaultValue)) 

Suspicious comment A comment includes the 
information indicating secrets 
and buggy implementations, 
etc. 

hasComment(x) ∧ 
isSuspicious(x.comment) 

Unrestricted IP address Using “0.0.0.0” or “::” as 
binding IP addresses of servers 

isIPAddress(x.name) ∧ 
(isInvalidBind (x.value) ∨ 
isInvalidBind (x. 
defaultValue)) 

Insecure Communication Using insecure communicate 
protocols, instead of secure 
their counterparts 

(isURL(x.value) ∧ 
isInsecure(x.value)) ∨ 
(isURL(x.defaultvalue) ∧ 
isInsecure(x.defaultvalue)) 

Weak Crypto. Algo. Use of weak cryptography 
algorithms such as MD5 and 
SHA1 

hasWeakAlgo(x.value) ∨ 
hasWeakAlgo(x.defaultvalue) 

Insufficient Key Size The key used by an encryption 
algorithm is less than the 
recommended key size, e.g., 
2048 bits for RSA algorithm 

isCryptoKeySize(x.name) ∧ 
(hasInsufficientKey-
Size(x.value) ∨ 
hasInsufficientKey-
Size(x.defaultvalue)) 

Inconsistent naming 
convention 

The conventions used for 
naming nodes, properties, 
attributes, etc., are inconsistent 

(case==‘CamelCase’→ 
isCamelCase(x)) ∨ 
(case==‘SnakeCase’→ 
isSnakeCase(x)) 
∨(case==‘DashCase’→ 
isDashCase(x)) 

Invalid Port Ranges TCP port values are not within 
the range from 0 to 65535 

isTCPPort(x) ∨ 
(outOfValidRange (x.value) ∧ 
outOfValidRange 
(x.defaultvalue)) 

smells are shown in the IDE as warnings. The same flow applies to Resource Ops 
Experts, as they also receive warnings for their resource models. 

Table 4.1 shows the (abstract) rules to detect 10 TOSCA smells. The rules are 
implemented as SPARQL queries for specifying detection rules. Listing 4.6 shows
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an excerpt from the SPARQL query for detecting Admin by default smell. Line 
4 implements the function is User using a regex matching. Lines 5–9 retrieve the 
default value for a property of a node. Line 14 realizes the function isAdmin using 
the IN operator. The SPARQL queries for the other smells are available online in the 
SODALITE GitHub repository. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

List. 4.6: Part of AdminByDefault SPARQL Query. 

4.3.2 A Learning-Based Approach for Detecting Linguistic 
Anti-patterns 

We develop a novel approach to detect linguistic anti-patterns in IaC using deep 
learning and word embeddings [2]. We focus on name-body inconsistencies in IaC 
code units, for example, tasks in Ansible playbooks or roles. We use the Convolutional 
Neural Networks (CNN) [5] as the deep learning algorithm, and Word2Vec [4] as  
the word embedding method. CNNs are neural networks that consist of neurons with 
learnable weights and biases. Word2vec is a two-layer neural network that processes 
text by creating vector representations from words. 

Figure 4.2 shows the workflow of our approach: 

• Corpus Tokenization. Given a corpus of Ansible tasks, this phase generates token 
streams for both task names and bodies. To tokenize a task’s body while considering 
its semantic properties, we build and use its abstract syntax tree. 

• Data Sets Generation. Finding a sufficient number of real buggy task examples 
containing inconsistencies is challenging. Therefore, as in [10], we apply simple 
code transformations to generate buggy examples from likely correct examples. 
We perform such transformations on the tokenized data set and assume that most 
corpus tasks do not have inconsistencies. 

• From Datasets to Vectors. We employ Word2Vec to convert the token sequences 
into distributed vector representations (code embeddings). We train a deep learning 
model for each Ansible module type as our experiments showed a single model 
does not perform well, potentially due to low token granularity. Thus, the tokenized
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Fig. 4.2 Linguistic anti-patterns detection pipeline 

data set is divided into subsets per module, and the code embeddings for each subset 
are separately generated. 

• Model Training. This phase feeds the code embeddings to a CNN model and trains 
the model to distinguish between the tasks having name-body inconsistencies from 
correct tasks. The trained model is stored in the model repository. 

• Inconsistency Detection. The trained models (classifiers) from the model repos-
itory are employed to predict whether the name and body of a previously unseen 
Ansible task are consistent or not. Each task is transformed into its corresponding 
vector representations, which can be consumed by a classifier. 

We evaluated our approach with an Ansible dataset systematically collected from 
open source repositories. Table 4.2 presents the inconsistency detection results for the 
top 10 Ansible modules in our data set. Overall, our approach yielded an accuracy 
ranging from 0.785 to 0.915, AUC metric from 0.779 to 0.914, and MCC metric 
from 0.570 to 0.830. Our approach achieved the highest performance for detecting 
inconsistency in the file module, where the accuracy was 0.915, the F1 score for the 
inconsistent class was 0.92, and the F1 score for the consistent class was 0.91. 

4.4 Optimizing Containerized Applications 

The MODAK (Model Optimized Deployment of Applications in Containers) pack-
age, a software-defined optimization framework for containerized MPI and AI appli-
cations, is the SODALITE component responsible for enabling the static optimization 
of applications before deployment. Application optimization is enabled using perfor-
mance modeling and container technology. Containers provide an optimized runtime 
for application deployment based on the target hardware and along with any soft-
ware dependencies and libraries. MODAK aims to manage the optimized application 
containers for the deployment to infrastructure in a software-defined way.
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Fig. 4.3 MODAK architecture 

4.4.1 Architecture 

Figure 4.3 gives an overview of the MODAK components. MODAK exposes a high-
level application API for the two types of applications supported: AI training and 
inference and MPI-parallelized applications. We pass this information to MODAK, 
which matches it with the performance model outputs to produce a job script for the 
execution submission of the optimized container. MODAK can also auto-tune and 
auto-scale applications based on user input. MODAK requires the following inputs: 

• Job submission options for batch schedulers such as SLURM and TORQUE 
• Application configuration such as application name, run and build commands 
• Optimization DSL with the specification of the target hardware, software libraries, 
and optimizations to encode, as well as inputs for auto-tuning and auto-scaling. 
Examples of the DSL are provided in Sect. 6.4.4. 

After providing the inputs, MODAK produces a job script (for batch submission) 
and retrieves a pre-built optimized container that can be used for application deploy-
ment. An image registry contains MODAK optimized containers, while performance 
models, optimization rules, and constraints are stored and retrieved from the Model 
repository. The Singularity container technology was chosen to provide a portable 
and reproducible runtime for the application deployment, due to better performance 
and native support for HPC resources than other popular container technologies. 
In the Sect. 4.4.2 we describe in detail each MODAK component with the related 
features.
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4.4.2 Features 

MODAK automates optimization using four main components, as described below: 

• Mapper. The Mapper maps application deployment to an optimized container 
based on the user-specified input (DSL). While most AI applications are deployed 
in containers, this is not the default option for MPI parallel applications. Containers 
should provide an optimized runtime for the application deployment. With diverse 
hardware and software dependencies and libraries, building or selecting an opti-
mized container for application deployment is crucial. For example, MPI libraries 
on the host machine and in the container should match when deploying applications 
on HPC systems in order for the container to use the hardware-optimized version of 
MPI available on the host. AI training frameworks require target-specific libraries 
and drivers to be configured. Even though Docker and Singularity support labeling 
containers, they are seldom used when developing them. To overcome this issue, 
containers are pre-built for different hardware and MODAK labels them with 
supported hardware and software information, including any optimizations. An 
application user uses a similar JSON format to query for an optimized container, 
and the mapper returns the container type, location, and file name. The user can 
pull the container from the hub and execute the application with that runtime. Cur-
rently, MODAK supports TensorFlow, PyTorch, MXNet, MPICH, OpenMPI, and 
MVAPICH2 containers for x86 and NVIDIA GPUs. This can be further extended 
to support specific network interconnects, and storage filesystems like Lustre. 

• Enforcer. The optimization process depends not only on application and infras-
tructure but also on the configuration and data. MODAK allows users to define 
optimization rules that are enforced for deployment. The Enforcer component 
returns the optimization script to be used based on the rules and user-selected 
optimizations in the input DSL. For example, enabling graph compiler-based opti-
mizations in an AI framework requires environment settings to be modified. For 
MPI-based applications, there are many environment settings that change the way 
message passing is optimized based on message size and communication pattern. 
Data-related optimizations may involve the possibility to automatically copy the 
data to fast disks, if available, to improve I/O bound applications. MODAK can 
embed the chosen optimizations in the job script submitted to a batch scheduler. 

• Autotune. Applications and their dependencies have many configurable parameters 
which can drastically change performance when altered. Tuning all the parameters 
is both resource-intensive and time-consuming. Autotuning frameworks help make 
automated choices regarding application build and deployment, the algorithms they 
use, and the way the application is launched or changes code. 

• Autoscale. Scaling applications to more nodes improves the performance of most 
MPI parallel applications. The parallel speedup and scaling efficiency is defined 
as follows 

Parallel Speedup = Tref 
Tparallel 

(4.1)
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Efficiency = 
nref Tref 
n Tparallel 

(4.2) 

where Tref and Tparallel correspond to the runtime on a reference number of nodes 
nref (usually a single node), and the runtime on n nodes, respectively. While we aim 
to achieve higher speedups as we increase nodes, poor efficiency denotes higher 
overheads and higher costs. Applications are usually scaled until the efficiency 
drops below a certain percentage. In MODAK, we can predict the efficiency and 
speedup of an application on n nodes based on the performance prediction model. 
This allows MODAK to automatically scale applications to a certain number of 
nodes based on the model prediction. Using the parallel efficiency metric specified 
by the user, Autoscale aims to predict the scale at which parallel efficiency is 
achieved, and automatically increase the number of nodes of the deployment. 

4.5 Conclusion and Future Work 

In this chapter, we have presented the design-time quality assurance and optimization 
support of the SODALITE framework. To enable the deployment of defect-free IaC 
scripts, we offer the tools to verify IaC scripts against various constraints, and defect 
smells and linguistic anti-patterns in them. We use semantic rule-based techniques 
and deep learning-based techniques, as appropriate. Moreover, to optimize AI or 
MPI workloads with different configurations and data sets for heterogeneous infras-
tructure targets, we introduced MODAK, a novel tool that maps optimal application 
parameters to infrastructure using performance modeling and container technology. 
MODAK optimized containers were tested on the internal SODALITE HPC Testbed. 
The test scenarios were taken from the SODALITE use cases compute-intensive 
tasks. We found that the performance boost of using optimized application contain-
ers can reach up to 10x compared wit the unoptimized versions of the application. 

As future work, we plan to extend our smell and defect detection support to detect 
more linguistic inconsistencies and misconfigurations in different IaC languages. We 
will also extend MODAK to support machine learning applications for the edge. 
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Chapter 5 
The SODALITE Runtime Environment 

Indika Kumara, Giovanni Quattrocchi, Dragan Radolović, Kamil Tokmakov, 
Jesús Ramos Rivas, and Willem-Jan Van Den Heuvel 

Abstract Modern applications need to be dynamically orchestrated on heteroge-
neous infrastructures for reasons such as performance, regulation compliance, or 
cost. This chapter presents the SODALITE runtime environment that can deploy, 
monitor, and manage applications on heterogeneous infrastructures consisting of 
Cloud, HPC, and Edge resources. The SODALITE runtime deploys the applica-
tions in the target infrastructures based on the deployment artifacts generated by the 
SODALITE model-driven approach presented in Chap. 3. It can also monitor the 
deployed applications and their infrastructure resources, generate alerts, and adapt 
application deployments. 

5.1 Introduction 

Modern computing infrastructures consist of heterogeneous, software-defined, high-
performance computing environments and resources, including Cloud servers, Edge
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Fig. 5.1 The architecture of the SODALITE runtime environment 

accelerators, HPC clusters, and Serverless platforms. Advanced applications require 
complex and heterogeneous deployments that match their components with the 
infrastructure that offers the best performance fulfilling their requirements. In this 
context, SODALITE aims to address this heterogeneity by providing a toolset 
that enables developers and infrastructure operators to achieve faster development, 
deployment, and execution of applications on different heterogeneous infrastructures 
In particular, the runtime layer of SODALITE is responsible for the orchestration, 
monitoring, and adaptation of applications on these infrastructures.

Figure 5.1 shows the high-level architecture of the SODALITE runtime envi-
ronment, which consists of the components Orchestrator, Monitoring System, and 
Refactoring System. Orchestrator is responsible for (re)deploying a given application 
on the Cloud-Edge-HPC hybrid infrastructures by executing IaC scripts as neces-
sary. It receives the initial deployment model (from a developer) or a new alternative 
deployment model (from Refactoring System) as a TOSCA model instance. The 
developers can use the SODALITE IDE to create deployment models for applica-
tions and trigger their (re)deployment. Monitoring System collects different metrics 
and events from both the application and Cloud-Edge-HPC infrastructure. It can also 
emit alerts, which are complex events over metrics or simple events. In response to the 
events from Monitoring System, Refactoring may decide to modify and reconfigure 
the current deployment model instance of the application. 

In the rest of this chapter, we discuss the SODALITE runtime environment in 
detail. We first present the design and capabilities of the Orchestrator (Sect. 5.2), 
highlighting its deployment and redeployment operations. Next, we focus on the 
approach to support data management and data transfer between the cloud and HPC 
clusters (Sect. 5.3) and on monitoring applications and infrastructure with the Mon-



5 The SODALITE Runtime Environment 69

itoring System (Sect. 5.4). Finally, our support for the adaptation of the deployment 
models (Sect. 5.5) and managing resources at runtime (Sect. 5.6) is discussed. 

5.2 Orchestrating Applications 

The SODALITE Orchestrator is capable of deploying, undeploying, and redeploying 
applications over heterogeneous infrastructures. The applications to be deployed 
are packaged as CSAR (TOSCA Cloud Service Archive) files. Our Orchestrator, 
namely xOpera,1 is a meta-orchestrator that coordinates multiple low-level resource 
orchestrators. xOpera is compliant with TOSCA YAML v1.3 standard. 

5.2.1 Architecture of Orchestrator 

Figure 5.2 shows the high-level architecture of the Orchestrator, which mainly con-
sists of Meta-Orchestrator, IaC-based Orchestration Layer, Image Registry, Authen-
tication and Authorization Manager, and Application Data Manager.

• Meta-Orchestrator coordinates the low-level resource orchestrators of the execu-
tion platforms through the IaC-based Orchestration Layer to deploy and manage 
applications. SODALITE runtime currently supports five key types of execution 
platforms: Edge (Kubernetes), private Cloud (OpenStack and Kubernetes), pub-

Fig. 5.2 Architecture of the Orchestrator

1 https://github.com/xlab-si/xopera-opera. 
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lic Cloud (AWS), federated Cloud (EGI OpenStack), and HPC (TORQUEand 
SLURM).

• IaC-based Orchestration Layer is responsible for acquiring, allocating, and con-
figuring resources from the execution platforms, and deploying and configuring 
application components using those resources. SODALITE uses Ansible as the IaC 
tool. Ansible playbooks realize the lifecycle operations for nodes/relationships in 
a deployment model in TOSCA.

• Image Registry stores container images. It can be a private or public repository, 
for example, Docker Hub or Google Container Registry. The private repositories 
should provide REST APIs to pull the images through IaC.

• Authentication and Authorization Manager handles the user and secrets man-
agement across the whole SODALITE stack. It applies role-based access control 
and token-based authentication. Each TOSCA blueprint and deployment is asso-
ciated with a project domain with specific roles, an access type to which requires 
a token with specific JWT (JSON Web Token) claims. Each critical orchestra-
tion operation such as deployment, undeployment, deployment updates can only 
be performed by providing a valid access token. The implementation uses the 
Keycloak2 identity and access management solution.

• Application Data Manager incorporates various transfer protocols and endpoints 
to achieve transparent data management across multiple infrastructure providers. 
Section 5.3 discusses data management capabilities in detail.

5.2.2 Orchestration APIs 

The Orchestrator exposes its capabilities as RESTFul APIs.

• Blueprint Management. The blueprints (CASR files) can be added, removed, 
updated, and queried. The blueprints can also be accessed and managed through Git 
user accounts. Blueprint metadata such as id, version, and name can be obtained.

• Deployment Management. The applications can be deployed, and undeployed 
based on their blueprints. The deployment status and history can be obtained, and 
the failed deployments can be resumed. Application redeployment is requested by 
submitting the new version of the application deployment model. The Orchestrator 
will calculate the difference between the deployed instance and the new blueprint 
and will (un)deploy it. The new blueprint can be another version of the previously 
used blueprint or some version of another blueprint.

• Blueprint Inspection. The Orchestrator can also validate the syntax of TOSCA 
blueprints based on the version v1.3 of TOSCA Simple YAML Profile specifica-
tion. It also supports calculating the differences between the current deployment 
state and a new blueprint.

2 https://www.keycloak.org/. 
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5.3 Managing Application Data 

The components of heterogeneous applications are deployed across various exe-
cution platforms to utilize the capabilities of the different platforms. As such, one 
component can use HPC resources for better performance of batch computation, 
while another Cloud resources for better scalability and elasticity. Furthermore, this 
is also a possibility of processing on Edge devices. Using such a hybrid setup, where 
dependent components of the applications are deployed across various platforms, 
might require data transfers from one platform into another, and the orchestration 
system must support them. In this section, we explore the possibilities of data trans-
fers between application components deployed across multiple infrastructure targets. 

The current data management services found in scientific communities (e.g. 
FTS3,3 Rucio,4 DynaFed,5 OneData6 ) mostly focus on HPC and Cloud storage 
platforms and do not cover Edge, IoT and serverless platforms. Inversely, Edge 
and serverless platforms (e.g. MQTT,7 Apache Kafka,8 Fledge,9 Apache NiFi10 and 
StreamSets11 ) target stream and Cloud storage platforms, but do not target HPC plat-
forms. Therefore, in order to meet the SODALITE objectives for supporting hetero-
geneous infrastructures, data management for mentioned platforms shall be provided. 

The RADON project12 has developed a set of standard TOSCA libraries13 for 
lifecycle management of data pipelines, which is inline with IaC-based orchestra-
tion in SODALITE. The concept of data pipeline allows composition of application 
components (e.g. microservices, serverless functions or self-contained components) 
as independently deployable and scalable pipeline tasks with the data movement and 
possible data transformation between the components ([4]). As an underlying tech-
nology for data pipelines, Apache NiFi service is used. It exposes a REST API for 
data flow management between pipeline elements (blocks) and also provides con-
nectors to various platforms and storage systems, such as S3, GCS, Azure, Apache 
Kafka, HDFS, MQTT, HTTP, (S)FTP, etc. This enables fetching data from one stor-
age provider and pushing data to another provider as a pipeline task. As part of the 
collaboration with RADON project, we studied the feasibility of using data pipelines 
as components to unify data management between various heterogeneous platforms. 
SODALITE extended RADON’s TOSCA and IaC libraries for data pipeline man-

3 https://github.com/cern-fts/fts3. 
4 https://github.com/rucio/rucio. 
5 https://lcgdm.web.cern.ch/dynafed-dynamic-federation-project. 
6 https://github.com/onedata/onedata. 
7 https://mqtt.org/. 
8 https://github.com/apache/kafka. 
9 https://github.com/fledge-iot/fledge. 
10 https://github.com/apache/nifi. 
11 https://github.com/streamsets/datacollector. 
12 https://radon-h2020.eu/. 
13 https://github.com/radon-h2020/radon-particles. 
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agement, which currently target multi-cloud storage and serverless platforms, with 
GridFTP support—a common file transfer protocol used in HPC. This enables an 
interoperability between HPC, Cloud storage types and data streams. Extended 
TOSCA libraries can be found in the joint RADON-SODALITE organization.14 

Fig. 5.3 IaC data pipeline 
management architecture

14 https://github.com/RADON-SODALITE. 
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Figure 5.3 depicts an overview on data pipeline management. The Orchestrator 
exposes a REST API for deployment of a CSAR, which contains a TOSCA appli-
cation topology description along with TOSCA node types, IaC and other depen-
dencies. The application topology must specify pipeline blocks and connections 
between them, as well as specify which NiFi instance to use and whether the orches-
trator must create a new instance or use the existing instance of NiFi. On the lower 
level, to instantiate a pipeline block, the orchestrator uses NiFi REST API to upload 
a NiFi XML template that describes the pipeline block. NiFi then registers the tem-
plate and returns the ID of the pipeline, which in turn is used by the Orchestrator to 
request NiFi for the pipeline execution. Same happens for every pipeline block in the 
application topology. At this point, the registered pipeline blocks are established and 
functional, and the Orchestrator relies on NiFi instances to perform data movements 
between the pipeline blocks or move data to a certain storage system as a pipeline 
task. 

A PipelineBlock [3], depicted in Fig. 5.4, is an entity that executes pipeline tasks, 
such as data processing, API calls invocation, fetching data from or pushing data 
to remote storage systems or stream platforms, etc. The PipelineBlock may contain 
input (DataIngestionQueue) and output (DataEmissionQueue) queues for buffering 
input and resultant data. Using these queues, multiple PipelineBlocks can be con-
nected sequentially, forming a group of PipelineBlocks. Similarly, multiple groups 
can also be connected using InputPipes—gateways for receiving input data from the 
previous group or external data source, and OutputPipes—for forwarding resultant 
data to the next group or external data sink. 

Fig. 5.4 Architecture of 
data pipeline block [3]
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Fig. 5.5 A hierarchy of featured TOSCA node types 

The IaC data management features are limited to the capabilities and functional-
ities offered by Apache NiFi. We mainly focus on utilising NiFi for multi-protocol 
and multi-platform data movement, abstracted in TOSCA and IaC. Current structure 
of featured TOSCA node types for data pipeline blocks is presented in Fig. 5.5, and 
they can be categorised into four classes of pipeline blocks and can be extended: 

1. Source pipeline blocks—for consuming data from a data endpoint (e.g. HTTP, 
FTP, S3, GCS, Kafka, MQTT, GridFTP). 

2. Destination pipeline blocks—for publishing data to a data endpoint (e.g. HTTP, 
FTP, S3, GCS, Kafka, MQTT, GridFTP). 

3. Midway pipeline blocks—for executing data processing tasks (e.g. local data 
processing, encryption, invoke serverless FaaS). 

4. Standalone pipeline blocks—for performing independent activities (e.g. copy 
from S3 to S3). 

Listing 5.1 depicts an example of two data pipeline blocks that allow the data 
transfer between GridFTP server and an S3 bucket. PubsS3Bucket is a data pipeline 
block that publishes data to an S3 bucket, whereas ConsumeGridFtp consumes data 
from a GridFTP server. The ConsumeGridFtp pipeline block has a connectToPipeline 
requirement, which points to the PubsS3Bucket pipeline block, therefore connecting 
these data pipeline blocks and performing data transfers between GridFTP and S3.
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List. 5.1: Snippet of TOSCA node template with S3 publisher and GridFTP consumer 
that allow data transfer from GridFTP server to an S3 bucket 

5.4 Monitoring Applications and Infrastructures 

The deployed application is continuously monitored, allowing the user to consult the 
state of the deployment as well as making the data available to other components 
such as Deployment Refactorer. The main requirements the monitoring system must 
meet are: 

1. Dynamic addition and deletion of monitored components 
2. Monitoring of different levels (infrastructure, runtime environment and applica-

tion) 
3. Transparency to the user 
4. Possibility to add alerting rules for specific components 
5. Access to metrics filtered by deployment, so that they are only available to the 

deployment owner. 

We designed the monitoring system to meet these requirements (see Fig. 5.6). 
The APIs that appear on the figure are the ones used by components outside of the 
monitoring system. The system is composed of the following elements:

• Monitoring server: It collects metrics from the exporters and saves them, exposing 
a service to other components to get monitoring data. It also detects alerting rule 
violations and triggers alerts.
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• Alert manager: When an alert is triggered by the monitoring server, it sends the 
alert to the subscribed services, like the Deployment Refactorer.

• Rule server: Allows the dynamic creation of alerting rules, registering them in the 
monitoring server.

• Exporter registry: Allows the dynamic registration and deregistration of exporters 
in the monitoring server.

• Dashboard server: Stores dashboards and makes them available to users. The dash-
boards aggregate the metrics stored in the monitoring server and present them in 
a meaningful way. There are different types of dashboards depending on the type 
of exporter they aggregate the metrics from.

• Dashboard registry: It allows the dynamic creation of dashboards in the dashboard 
server, also manages the user permissions to access each dashboard so that each 
user can only view the metrics belonging to their deployments.

• Exporters: They collect the metrics from the monitored resources and expose them 
to the monitoring server. There are different types depending on which resource 
they monitor. 

The rest of this section will discuss these components and their implementations in 
detail. carries out, as well as some details on their implementation. 

5.4.1 Exporters 

The main task of exporters is probing a resource to extract data, treat this data if 
necessary to convert it to meaningful metrics, and expose these for the monitoring 
service. There are different types of exporters depending on the resource they can 
extract metrics from. 

Fig. 5.6 The architecture of the SODALITE@RT monitoring system



5 The SODALITE Runtime Environment 77

Exporters are made up of different collectors, each of them collecting a different 
type of metrics. For example, to expose a VM’s OS metrics the node exporter is used, 
which, among others, has the CPU, netstat, and file-system collectors to monitor CPU 
usage, file-system status, and operating system’s network statistics respectively. 

In SODALITE there are 5 exporter types in use:

• Node exporter: Extracts a machine’s OS metrics, such as CPU and RAM usage, 
context swaps, and file-system stats. One of them is deployed on each virtual 
machine and edge node.

• Skydive exporter: Exposes the infrastructure’s network statistics such as network 
flow and traffic metrics.15 

• HPC Exporter: To monitor the jobs submitted to an HPC as well as the HPC’s 
infrastructure status (available nodes, queue status, etc.).

• Edge exporter: It contains accelerator-specific collectors for any attached hetero-
geneous accelerators (e.g., Edge TPU and GPU). They provide specific insight 
into the attached accelerators. This may include aspects such as the number of 
devices available, the load average, or thermal properties. 

The Ansible playbooks that are responsible for setting up nodes also deploy the 
exporters associated with each node. The configuration parameters for exporters can 
be provided using TOSCA node properties. Listing 5.2 shows a snippet of an Ansible 
playbook that installs the EdgeTPU exporters into the edge nodes in a Kubernetes 
cluster. It uses the Ansible modules for executing the relevant Helm charts. By having 
the exporter creation and registration in the exporter registry in the standard Ansible 
playbooks, these actions are transparent to the user, who only needs to provide high-
level settings for the exporters. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

List. 5.2: Snippet of an Ansible playbook for installing the EdgeTPU exporter. 

5.4.1.1 HPC Exporter 

The HPC exporter is a special case. It connects to an HPC front-end through SSH and 
runs commands to gather information about the queues, node status, and job statistics.

15 http://skydive.network/.
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In order to carry out this task it needs to have the user’s SSH credentials, it also must 
be deployed on a different machine than the HPC front-end itself, since it needs to 
use port 9110 to expose the metrics to the monitoring server, and most HPC’s would 
not allow arbitrary ports to be open for security reasons. In order to solve this issue, 
there is only a single HPC exporter deployed alongside the rest of the monitoring 
system’s core components, as part of SODALITE’s back-end. The exporter, aside 
from exposing an endpoint for the monitoring server to collect metrics, also exposes 
3 more endpoints, which form an API:

• /create: It accepts a JSON object containing the necessary configuration to monitor 
a given HPC front-end. It creates a collector in the HPC exporter and registers its 
association with the deployment ID and user that created it. All the metrics exposed 
by this collector will include labels to identify which deployment it is a part of.

• /delete: Removes the selected collector
• /addJob: It accepts a JSON object which contains a deployment ID and a Job ID, 
and adds the Job ID to the collector’s list of jobs to monitor. 

All the calls to this API are secured with the same JWT system used across 
SODALITE to ensure that only authorized users can create, delete and modify col-
lectors and that users can only delete and modify their own collectors. This system 
is also used to retrieve the SSH credentials needed to connect to the HPC’s front-end 
from the secrets vault. This way no SSH credentials need to travel unsecured as part 
of the configuration settings. 

5.4.2 Monitoring Server 

The monitoring server is the central piece of the monitoring system. Its job is to 
collect the metrics from all the registered exporters and store them in a database, in 
a time-series format. This component offers an API so that other components can 
query data. These queries are done in the server’s own query language, which allows 
for data aggregation and filtering. This API is mainly used by the Dashboard server 
since in SODALITE, users do not have direct access to this monitoring server. This is 
due to security considerations since users should only have access to metrics coming 
from their own deployments’ components. 

The monitoring server also allows the definition of alerting rules, which consist of:

• An condition written in the monitoring server’s query language that, when met for 
a certain amount of time, triggers an alert.

• For how long the condition must be met so that the alert is triggered.
• The severity of the alert
• The contents of the alert that will be sent to the Alert Manager when the alert 
is triggered. This may include information about the instance that generated this 
alert, or other context information.
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An example of an alert that triggers when a VM’s CPU usage has exceeded 75% 
(within the deployment with monitoring ID 7acf2a5-da51s4da-
as44d1c1a8ftr) is shown in Listing 5.3. When an alert is triggered, the mon-
itoring server sends it to the Alert Manager, which is the component tasked with 
distributing the alerts to the subscribed services. The main service that consumes the 
alerts is the Refactoring Engine, which uses the alerts to trigger refactoring actions 
based on the content of such alerts. 
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List. 5.3: An alerting rule for indicating high CPU usage in a node. 

Rules cannot be dynamically added to the monitoring server by default. That 
is why the rule server exists. It consists of an API that allows the registration and 
removal of alerting rules on the monitoring server. The IDE has a module that allows 
users to create, edit, and add alerting rules to deployments they own through this 
component (see Sect. 3.2.5). 

5.4.3 Exporter Registry 

Much like with alerting rules, the monitoring server does not allow for the dynamic 
registration of exporters. All the endpoints it scrapes metrics from must be known at 
the time of deployment. In order to allow dynamic creation of resources during the 
lifetime of the platform, a key aspect of SODALITE, the exporter registry is used. 

The targets for the monitoring server are actually endpoints offered by the exporter 
registry. There is an endpoint for each type of exporter. When a new exporter is 
deployed (for example, when a new VM is created as part of an application deploy-
ment), the address of the new exporter is registered with the exporter registry, which 
ensures that when the monitoring server scrapes metrics, it also scrapes from all its 
registered exporters. 

5.4.4 Dashboard Server 

The users see all the metrics collected by the monitoring system on a dashboard 
that has been created for each deployment and exporter type. Each dashboard can be
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Fig. 5.7 Example of dashboard showing metrics collected by node exporters 

accessed on a web browser and is a set of graphs and indicators that aggregate the 
metrics from the corresponding Monitoring ID and exporter type. The component that 
hosts the dashboards is the dashboard server, which also takes care of authenticating 
users to make sure only users that have access to a Monitoring ID can view its 
dashboards. 

An example of a dashboard for node exporters is shown in Fig. 5.7, it includes 
a list of the VMs that are part of the dashboard’s deployment and allows the user 
to select one of them to view detailed metrics such as CPU, memory, or disk usage 
graphs, as well as other indicators like the number of context swaps. 

To ensure that a dashboard only contains information from a certain deployment, 
the Monitoring ID the dashboard belongs to is hard-coded when it is created, which 
means that there must be a way to create dashboards dynamically, a task fulfilled by 
the dashboard registry. 

5.4.5 Dashboard Registry 

The dashboard registry consists of an API that exposes a number of endpoints, all 
secured by the JWT generated by Keycloak when the user logs in the IDE:

• /dashboard (POST): The registry creates one dashboard per exporter type from a 
set of templates for the required monitoring ID on the dashboard server. It also
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sets the dashboard permissions so that only the user that made this call is able to 
view these dashboards.

• /dashboard (DELETE): Deletes the dashboards that belong to the provided moni-
toring ID, if the user has the access to them.

• /dashboard/user (GET): Returns the URL of all the user’s dashboards
• /dashboard/deployment/<monitoring_id> (GET): Returns the URL of the dash-
boards that belong to the given monitoring ID, only if the user has access to them. 

By using this system we can ensure the security of the monitoring system and at 
the same time allow for great scalability and flexibility, key values of SODALITE. 

5.5 Adapting Application Deployments 

In response to the data collected and events received from Monitoring System, 
Deployment Refactorer decides and carries out the desired changes to the current 
deployment of a given application. In this section, we present the architecture and 
the key capabilities of Deployment Refactorer. 

5.5.1 Architecture of Deployment Refactorer 

Figure 5.8 shows the architecture of the Deployment Refactorer. The overall deploy-
ment adaptation logic can be codified as an ECA (Event-Condition-Action) policy. 
Policy Engine can enact and manage such policies. In order to build complex poli-
cies, Deployment Refactorer provides a set of utilities: Workload Predictor, Perfor-
mance Predictor, Deployment Configuration Selector, and Performance Anomaly 
Detector. Workload Predictor uses linear and polynomial regression models to fore-
cast the workload (the number of requests for the next period). Given the predicted 
workload and the deployment options used, Performance Predictor can predict the 
performance metrics. If the current deployment model variant cannot meet the per-
formance goals, Deployment Configuration Selector can be used to find an alternative 
deployment model from the allowed set of deployment model variants (expressed in 
the deployment variability model). Performance Anomaly Detector can be used to 
continuously monitor the current deployment for anomaly behaviors, and generate 
alerts. The predictive ML models used by each of these components are stored in 
the Predictive Model Repository. The features used by such models are stored in 
the Feature Store. In the rest of this section, the support for the key capabilities of 
Deployment Refactorer is presented.
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Fig. 5.8 Architecture of Deployment Refactorer 

5.5.2 Policy-Based Deployment Adaptation 

To allow a software engineer to define the deployment adaptation decisions, we 
provide an ECA (event-condition-action) based policy language. Figure 5.9 the key 
concepts of the policy language. A policy consists of a set of ECA rules.

• Events and Conditions. A  condition of a rule is a logical expression of events. We 
consider two common types of events pertaining to the deployment model instance 
of an application: deployment state changes and application and resource metrics. 
The application and resource metric events include (raw or aggregated) primitive 
metrics collected from the running deployment, for example, average CPU load, 
as well as alerts or complex events that represent predicates over primitive metrics, 
for example, the above-mentioned HostHighCPULoad alert.

• Actions. The actions primarily include the common change operations (Add, 
Remove, and Update) and the common search operations (Find and EvalPred-
icate) on nodes, relations, and their properties. Additionally, the custom actions
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can be implemented and then used in the deployment adaptation rules, for example, 
actions for predicting the performance of a particular deployment model instance 
or predicting workload. To ensure the safe and consistent changes to the deploy-
ment model instance, Deployment Refactorer makes the change operations to a 
local representation (a Java Object model) of the deployment model (represented 
using the concept of models@runtime [2]). Once the adaptation rules in a rule 
session are executed, Deployment Refactorer translates the current local object 
model to a TOSCA file and calls the update API operation of the Orchestrator 
with the generated file. 

The Deployment Refactorer cadaptation policies. It supports the addition, removal, 
and update of policies. It can parse given policies, process events, and execute the 
policies. The policy rules are triggered as their conditions are satisfied, and the desired 
changes are propagated to the deployment model instance. 

Listing 5.4 shows an example of a deployment adaptation rule that reacts to the 
events HostLowCpuLoad and HostHighCpuLoad by moving the snow application 
between a medium VM and a large VM. 

5.5.3 Data-Driven Deployment Switching 

We use a machine learning-based approach to implement deployment switching. 
In particular, we use a performance model that can predict the performance of a 
given deployment alternative in terms of deployment options used by the variant. 
The deployment options represent architectural and resource selection decisions that

Fig. 5.9 Meta-model of the deployment adaptation policy language
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1 rule "HostHighCpuLoad" 
2 when 
3 $f1 : Alert (name  ==  "HostHighCpuLoad") 
4 then 
5 Node snowvm2node = refMgt .findMatchingNodeFromRM("( ?name = \"snow−vm_new_2\" ) 

" ) ;  
6 AADMModel aadmModel = refMgt .getAadm() ; 
7 aadmModel.addNode(snowvm2node) ; 
8 List<Node> nodes = refMgt .getNodeMatchingReqFromRM("snow/snow−vm−2") ;  
9 for (Node node : nodes) { 
10 aadmModel.addNode(node) ; 
11 } 
12 aadmModel. updateProperty("snow−skyline−extractor"  , "ports" , "8080:8080") ;  
13 aadmModel.updateRequirement("snow−skyline−extractor"  , "host" , "snow−docker−host 

−2") ;  
14 . . .  
15 refMgt .saveAndUpdate() ; 
16 end 
17 
18 rule "HostLowCpuLoad" 
19 when 
20 $f1 : Alert (name  ==  "HostLowCpuLoad") 
21 then 
22 AADMModel aadmModel = refMgt .getAadm() ; 
23 aadmModel.removeNode("snow−vm−2") ;  
24 aadmModel.removeNode("snow−docker−host−2") ;  
25 aadmModel.removeNode("snow−docker−registry−certificate−2") ;  
26 aadmModel. updateProperty("snow−skyline−extractor"  , "ports" , "8082:8080") ;  
27 aadmModel.updateRequirement("snow−skyline−extractor"  , "host" , "snow−docker−host 

" ) ;  
28 . . .  
29 refMgt .saveAndUpdate() ; 
30 end 

List. 5.4 A snippet of a deployment adaptation rule 

are made by the experts when creating deployment models, for example, inclusion 
or exclusion of a web cache, use of a cluster mode, and use of a large VM or small 
VM. The initial performance models are built offline, and at runtime, based on the 
monitored data, the models are retrained as necessary, for example, if the model 
accuracy drops below a predefined threshold. Figure 5.10 shows the design time and 
runtime workflows of our deployment switching approach.

We first model the allowed set of deployment variants for a given application 
based on the deployment decisions, their instantiations, and their inter-dependencies. 
Based on this deployment variability model, we select an initial valid sample of 
deployment variants and measure the performance of each variant in the sample. We 
use the measured application performance dataset to train a predictive model and 
then evaluate its performance. If the model prediction accuracy is unacceptable, the 
performance of an additional sample of deployment variants is measured and used 
to retrain the model.
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To model the allowed variations in the deployment topology of an application, 
we use the feature modeling technique, which is a widely-used variability modeling 
technique [1], and is also supported by open source and commercial tools. We used 
FeatureIDE,16 which is an Eclipse plugin that can be installed into the SODALITE 
IDE. A feature model can represent the commonalities and variations in a family 
of artifact variants as configuration options and their inter-dependencies and other 
constraints. An artifact can be a software system, application, design model, and 
more. By respecting all the constraints defined by the feature model, we can select 
a subset of configuration options (called a feature configuration), which represents 
a valid artifact variant or a family member. The feature leaf nodes can represent the 
component deployment options, which are the unique assignments of application 
components to VMs. Similarly, the feature group nodes (non-leaf nodes) and their 
hierarchical organization capture the logical decomposition of the deployment deci-
sions. For example, the web server and the database cache can be deployed together 
(co-deployment) or separately (separate-deployment), which can be modeled using 
an XOR feature group. 

To sample a variability model (i.e., to select a subset of deployment model vari-
ants), there exist many sampling strategies proposed by the research literature in the 
performance modeling of configurable systems. In our current implementation, we 
experimented with three sampling techniques: random sampling, T-wise sampling, 
and dissimilarity sampling. 

To collect data for offline training of models, we used the benchmarking approach 
due to our preference for the accuracy of the performance data. For each deployment 
variant in the sample, we select the component deployment options, create them in 
the target environment, subject the application to a range of workloads using a load 
testing tool, and collect the performance metrics (response time) per workload. 

To build the predictive models, the current literature in configurable systems 
has used many different learning algorithms, including traditional machine learn-
ing algorithms as well as deep learning models. In our current implementation, we 
used the following three models: Decision Tree Regression (DTR), Random Forest 
Regression (RFR), Multilayer Perceptron Neural Network (MLP). The performance

Fig. 5.10 Workflows of building and using predictive models for making deployment switching 
decisions

16 https://featureide.github.io/. 
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prediction model is used at runtime to predict the performance of a given deploy-
ment variant for a given workload. If the current deployment model cannot satisfy 
the performance goals, then, a deployment model variant that can meet the perfor-
mance goals is selected. For more information, we refer the readers to the relevant 
publication at [5].

5.5.4 Data-Driven Anomaly Detection 

An anomaly can be defined as a rare event where the system behavior deviates from 
what is standard, normal, or expected. For example, a service could use an anomalous 
amount of resources, or the service network exhibits traffic anomalies. The ability 
to detect anomalies and trigger corrective actions is critical to maintain the quality 
of service and to prevent runtime service failures and undue usage of resources. In 
the SODALITE project, we consider the anomalies as Chaos that can occur in a 
containerized microservice system, for example, CPU Hog, Pod Delete, and Pod 
Network Corruption. 

We aim to detect whether a compute node or a cluster is anomalous and classify the 
type of the anomaly at runtime, independent of the microservice application that is 
running on the compute node or the cluster. To detect and classify anomalies, we use 
a machine learning-based approach (see Fig. 5.11). We first build the machine learn-
ing models at the design time by utilizing historical resource usage and performance 
data that are collected from healthy and anomalous situations. Then, at runtime, we 
apply these models to the monitoring data from the application deployment to detect 
anomalies. The monitoring data is also used to update and adapt the models. By 
utilizing various capabilities of SODALITE (e.g., monitoring and alerting, platform 
and resource discovery, policy-based adaptation, and redeployment), the runtime 
detection and correction of anomaly behaviors are supported. We used three types of 
machine learning algorithms to build anomaly predictors: Decision Tree, Random 
Forest, and AdaBoost. All three models were able to predict anomalies with at least 
97% accuracy. 

5.5.5 TOSCA Compliant Refactoring Option Discovery 

The Deployment Refactorer uses refactoring options for adapting a given deploy-
ment model. A refactoring option represents one or more nodes in a deployment 
model. Deployment Option Discoverer uses semantic web technologies for discov-
ering TOSCA-compliant resources and deployment model fragments or refactoring 
options. It considers constraints on node attributes, node requirements, node capa-
bilities, and node policies. The semantic annotation of resource models including
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Fig. 5.11 An Overview of our Anomaly Detection Approach : a Training Workflow (Offline and 
Runtime), b Prediction Workflow (Runtime) 

the attached policies enables machine reasoning which is then used for both the 
discovery and the composition of resources. 
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List. 5.5: Snippet of the SPARQL Query Generated for Retrieving Nodes Matching 
the Constraint flavor = "m1.small" && image = "centos7" 

The Deployment Option Discoverer performs matchmaking by executing the 
SPARQL queries over the ontologies in the knowledgebase. It provides high-level 
system support to the Deployment Refactorer to allow searching for resources, for 
example, find (a logical expression over node properties). It has the SPARQL query 
templates for different types of resource matchmaking. The query templates are 
instantiated with the input data received through the high-level API operations. List-
ing 5.5 shows a snippet of the SPARQL Query generated for retrieving nodes match-
ing the constraint flavor = “m1.small” && image = “centos7”.
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Fig. 5.12 Architecture of the SODALITE Node Manager 

5.6 Vertical AutoScaling and Smart Scheduling 

Component Node Manager aims to deploy and manage applications on existing 
resources deployed by the SODALITE users or by component Deployment Refac-
torer. In particular, Node Manager provides two main features that are complemen-
tary to the ones of the Deployment Refactorer: (i) it provides fast vertical scaling of 
computing and memory resources, and (ii) it provides scheduling to select the proper 
executor (i.e., a CPU or a GPU) for a given request. 

While the model of Node Manager is general enough to support different plat-
forms, its current implementation is based on TensorFlow.17 TensorFlow is one of 
the most used frameworks for developing and executing Machine Learning appli-
cations that can be run on both CPUs and GPUs. Specifically, Node Manager uses 
TensorFlow Serving, an image of the container provided by TensorFlow that allows 
ML applications to be run as Docker18 containers.

17 https://www.tensorflow.org. 
18 https://www.docker.com. 
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The architecture of Node Manager is shown in Fig. 5.12. Node Manager deploys 
containerized applications on a Kubernetes19 cluster and provides two main types 
of node: a dispatcher and a set of worker nodes (Kubernetes nodes). The dispatcher 
receives the incoming requests from the users of the different apps and acts as a smart 
load balancer. 

It first stores the requests in a dedicated queue and, according to the requirements 
(Service Level Agreement) of the applications and their performance, it schedules 
them for execution on a fast GPU or a CPU. In the workers, dedicated control 
theoretical planners (CT in the figure) vertically scale the CPU cores allocated to 
each containerized application given the monitored performance of the system and 
the work done by the GPU. On each worker node, a Supervisor is also deployed to 
manage resource contention among the different running applications. 

As soon as a user submits a trained model, along with its SLA, Node Manager 
Launcher generates or updates required Kubernetes deployments and services to let 
the system deploy and manage the application containers. 

To exploit the CPUs and GPUs of a node, each application is bound to a specific 
device. In particular, given m applications selected to be deployed onto a worker 
node, Node Manager provisions:

• m containers containing one model each, and binds them to the node’s CPU(s)
• one container, containing all the apps, for each GPU
• one container that includes the control theoretical planners for all the models, the 
Supervisor, and one actuator implemented as a Kubernetes volume. 

Since we assume that the worker depicted in Fig. 5.12 comes with two GPUs, and 
it manages three applications, Node Manager deploys six containers in total. 

The deployment and configuration of the Node Manager and of users’ applications 
can be done using TOSCA blueprints. 

In order to deploy applications, users of Node Manager must create an AADM 
similar to the example provided in Listing 5.6.

19 https://kubernetes.io. 
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List. 5.6: Deploying applications through Node Manager 
Users must use a node template of type sodalite.nodes.nodemanager. 

deploy in order to be able to correctly interface with the deployed Node Manager. 
The type requires the definition of the following properties:

• endpoint: the endpoint to contact to deploy the applications, by default it is 
equal to <Node Manager IP>:5000/deployment

• models: an array that contains essential metadata of each application. In particular 
each element must specify: 

– the name of the application and its version. 
– the sla (maximum allowed response time for the application) and its nominal 
response time (profiled_rt). This value must be obtained by measuring on 
average the end-to-end latency of a request with an empty queue.
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– a tuning parameter of control theoretical planner (alpha). The higher its value, 
the faster the controller’s responses to sudden changes in the performance. A 
too high value, could lead to oscillating resource allocation (default value is set 
to be 0.5). 

– a URL pointing to the TensorFlow model of the application (tfs_model_url) 
– the initial number of container replicas for the app (initial_replicas).

• available_gpus: the amount of gpus available on each machine
• tfs_image: the Docker image of the TensorFlow serving container (default is 
set to tensorflow/serving:latest).

• k8s_api_configuration: metadata regarding the Kubernetes clusters (clus-
ters, users and contexts) as specified at https://kubernetes.io/docs/tasks/access-
application-cluster/configure-access-multiple-clusters/. 

5.7 Conclusion and Future Work 

The SODALITE platform enables the deployment of complex applications on hetero-
geneous Cloud-Edge-HPC infrastructure. It supports the modeling of heterogeneous 
application deployments using the TOSCA open standard, deploying such appli-
cations based on created models, and monitoring and adapting application deploy-
ments. SODALITE runtime employs machine learning-based approaches to switch-
ing between different deployment variants and detecting performance anomalies. 
SODALITE runtime includes the distributed control-theoretical planners that can 
support vertical resource elasticity for containerized application components that 
use both CPU and GPU resources. 

We will be conducting future work in two key directions. On the one hand, we will 
further develop the SODALITE runtime by incorporating new infrastructures such 
as Open FaaS and Google Cloud, and by completing the integration of the runtime 
layer within the overall SODALITE stack. On the other hand, the monitoring and 
deployment adaptation support will be extended for the Edge-to-Cloud continuum. 
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Chapter 6 
SODALITE in Context 

Kamil Tokmakov and Indika Kumara 

Abstract This chapter will look at the application and integration of the SODALITE 
toolkit across various platforms in the Cloud, Edge, and HPC domains, with a spe-
cific focus on OpenStack, AWS EC2, Kubernetes, and PBS Torque/Slurm. While 
Chap. 7 provides a deep dive into the operational environment of the individual 
use cases, this chapter will focus more on general application and deployment pat-
terns of SODALITE alongside existing deployments, demonstrating ways in which 
SODALITE can be leveraged more generally by SODALITE users in these respective 
environments. 

6.1 Introduction 

This chapter describes a general usage of SODALITE platform and serves as a guide 
for SODALITE users to create, adapt or extend their respective SODALITE models in 
order to provide a support for resource provisioning, optimization and deployment of 
application components in HPC, Cloud and Edge infrastructures. The SODALITE 
users are categorized into three types: Application Ops Experts (AOE), Resource 
Experts (RE) and Quality Experts (QE). Each type is performing a certain workflow
- a set of common activities associated with the user type. 

As such, a RE models available infrastructure resources and provides implemen-
tation artifacts that manage a lifecycle of the resources: instantiation and tear down of 
resources. A QE provides optimization models that are used to select and configure 
optimal application runtime for specific infrastructure target. An AOE then develops 
an abstract application deployment model that constitutes application topology and 
consists of the instances of the node types defined in the resource models, relation-
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ships between the instances (e.g. dependency or host relationships) and association 
of optimization models into the instances. Upon the deployment of the application, 
an AOE can then monitor its runtime.

For more information on SODALITE users and their workflows, one can refer to 
Chap. 2. Furthermore, Chap. 3 discusses on application, resource and optimization 
models, whereas deployment and monitoring are outlined in Chap. 5. 

This chapter is organized as follows. Section 6.2 provides details on the actions to 
be executed by Resource Experts who shares the models of the available resources to 
the other user types. Section 6.3 focuses on the activity of Quality Experts. Section 6.4 
presents the core work of Application Ops Experts (AOE). Finally, Sect. 6.5 con-
cludes the chapter. 

6.2 Resource Expert 

The Resource Expert (RE) follows the workflow depicted in Fig. 2.2. He/She develops 
Resource Models (RM) and implementation artifacts, such as Ansible playbooks, 
templates or configuration files, that will be performing the lifecycle operations over 
the infrastructure, middleware and other resources. Alternatively, the RE can use 
the Platform Discovery to automatically define the resources. The SODALITE IDE 
repository contains reference examples of resource models1 and the iac-modules 
repository2 contains their TOSCA counterparts and Ansible playbooks. 

Typical resources in the cloud environment that the RE models are the following: 
(1) credentials to access cloud provider; (2) a keypair - an SSH public key that will 
be embedded into a virtual machine (VM) for the remote access; (3) a security group 
and rules - a list of firewall rules that define ingress ports for accessing the VM or 
egress ports for the VM to have an access to; (4) a virtual machine (VM), specifying 
the properties of the VM (flavor, image, network, etc.) and associating keypair and 
security rules. 

Listing 6.1 presents an example of a resource model for OpenStack VM, where 
properties, such as VM name, image, network, flavor, SSH keypair, security group, 
OpenStack credentials via environment variables, etc., can be provided to specify 
the configuration of the VM. The RE can define lifecycle operations in the model 
and associate implementation artifacts and inputs to these artifacts to a particular 
operation. Possible operations are: create, configure, start, stop, delete. In the example 
(lines 14–25), the create and delete operations are defined with the inputs taken from 
the values of the properties, and Ansible playbooks used as implementation artifacts.

1 https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples. 
2 https://github.com/SODALITE-EU/iac-modules. 
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List. 6.1: Snippet of resource model for instantiation and deletion of an OpenStack 
VM 
In Listing 6.2, an Ansible playbook for an OpenStack VM creation is shown. The 

inputs that are previously defined in the resource model are passed to the playbook as 
Ansible variables. OpenStack modules (e.g. os_server) are used to interface with the 
OpenStack control plane, and environment property is used for setting OpenStack 
environment variables also obtained from the inputs. The playbook may also include 
tasks with set_data module to set the attributes of the resource model, such as public 
address and ID of the VM, to be later used for VM deletion or as input to other 
resource models with the hosting dependency. 

List. 6.2: Snippet of an Ansible playbook for creating an OpenStack VM
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Unlike the cloud resources that are instantiated dynamically - e.g. a virtual 
machine, in HPC case, the resources are static and access to an HPC cluster is 
usually done via a single SSH endpoint of the frontend node. The RE must define 
the models and the implementation artifacts that will access the cluster and interface 
with the workload managers, such as PBS or Slurm, to submit batch jobs. 

Listing 6.3 shows an example of the resource model for defining an access to and 
job submission in HPC cluster. Scheduler property of the WorkloadManager node 
type defines the workload manager to interface with, whereas username and SSH key 
define the credentials needed to access the cluster. Alternatively, the SSH key can be 
retrieved by the Orchestrator from the secrets vault (see Sect. 2.3) in order to connect 
to the target cluster. The Job node type defines the properties of the job, e.g. name, 
number of nodes and walltime, that will be configured at the job submission. It also 
defines the host requirement that must be assigned to a workload manager instance. 
With respect to the lifecycle operations, the job creation and configuration are setting 
the job script in the file system of the cluster, whereas the start operation submits the 
job via the workload manager’s interface, such as qsub and sbatch commands for job 
submission in PBS and Slurm, respectively. 

List. 6.3: Snippet of a resource model for HPC cluster access and job submission 
In the similar way, the RE can provide resource models for Kubernetes. The 

Kubernetes cluster definition should contain the properties for cluster access, e.g. 
via kubeconfig file, whereas Kubernetes objects can be defined in node types that 
require the Kubernetes cluster instance for their creation. Ansible provides Kuber-
netes module3 that allows to interface with Kubernetes API to deploy objects, and 
Ansible playbooks containing this module can operate the lifecycle of the objects.

3 https://docs.ansible.com/ansible/latest/collections/kubernetes/core/k8s_module.html. 
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To enable monitoring, RE should develop the implementation artifacts that will 
create a node exporter and register it with SODALITE Monitoring System. For 
example, in order to monitor the jobs deployed to the HPC and the state of the 
queues/partitions, a collector needs to be registered on the HPC Exporter (see 
Sect. 5.4.1.1). To carry out this task a start operation can be added to the life-
cycle of the sodalite.nodes.hpc.WorkloadManager node, presented previously, with 
its corresponding Ansible playbook (see Listing 6.4). scrape_interval, which limits 
how often monitoring calls can be made to the HPC, and hpc_label, which tags the 
metrics coming from the HPC with a user defined name are optional properties of 
sodalite.nodes.hpc.WM to configure the collector. 

List. 6.4: Ansible playbook to create a collector on the HPC exporter 
Every time a job is deployed on the HPC a call needs to be made to the HPC 

Exporter to register the job-id on the corresponding collector, so it can be monitored. 
This can be achieved by adding an operation to the sodalite.nodes.hpc.Job node’s 
start playbook (see Listing 6.5) 

List. 6.5: Snippet in the job deployment playbook to register a jobid in the HPC 
Exporter 

In order to monitor a VM, in the Ansible playbook associated to the create node 
lifecycle operation of this node, an instance of both a node exporter and a Skydive 
agent can be deployed on the VM. The node exporter can then be registered with 
Prometheus by making the necessary call to Consul. 

Once the resource models and implementation artifacts are developed, the RE 
saves the models in the Knowledge Base. The Application Ops Expert can then use
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them to deploy their applications or other REs can extend them to provide additional 
properties or functionalities. 

6.3 Quality Expert 

The role of the Quality Expert (QE) is provide optimization models (OM) that will 
be used as inputs to the Application Optimizer (MODAK, see Sect. 4.4) to select the 
optimized container runtime for an application to run on a particular infrastructure 
target. The workflow of the QE is presented in Fig. 2.5, where the QE measures 
performance characteristics of resources of a particular infrastructure provider and 
derives its performance model, saves these characteristics and the model into the per-
formance registry of MODAK, and based on the them defines optimization models. 

MODAK exposes the following endpoints to populate its performance registry: 

1. infrastructures: to define the parameters of a particular infrastructure: such as 
hardware, storage classes and workload managers. Listing 6.6 shows an example 
of a cluster definition, where Slurm workload manager is defined with two storage 
mount points and the gpu partition, with 5 compute nodes, each having 32 cores 
of x86 Zen2 architecture CPU, 2 NVIDIA Tesla P100 GPUs and 256 GiB of 
memory. 

2. scripts: to define scripts that enable certain optimization steps in the job script, 
such as modules loading, setting environment variables, etc. Listing 6.7 is an 
example, where for a particular infrastructure, Cray Program Environment (CPE) 
for GNU should be loaded. 

3. models: to define scaling models associated to a particular application. Listing 6.8 
shows an example, where parallel efficiency of 0.8 is set to determine the scaling 
of application following Amdahl’s law. 

List. 6.6: Snippet of a MODAK request for infrastructure made by QE



6 SODALITE in Context 99

List. 6.7: Snippet of a MODAK request for scripts made by QE 

List. 6.8: Snippet of a MODAK request for scaling models made by QE 

6.4 Application Ops Expert 

The Application Ops Expert (AOE) typically follows the design and runtime work-
flows, depicted in Figs. 2.3 and 2.4. He/She firstly creates application container 
images either manually or via Image Builder and pushes them into the image reg-
istry. Then, AOE defines an abstract application deployment model (AADM) - a 
model that constitutes application topology: it consists of the instances of the node 
types defined in the resource models by RE, relationships between the instances (e.g. 
dependency and host relationships) and association of optimization models into the 
instances. Reference examples of abstract application deployment models can be 
found in the SODALITE IDE repository.4 

When the AADM is developed, AOE deploys it via SODALITE IDE. Upon the 
deployment of the application, the AOE can then monitor its runtime using the dash-
board of the Monitoring System. During the runtime, the Refactorer can determine 
whether the application needs additional resources or the resources are overutilized, 
and the respective scaling can then be performed. 

The following subsections will present how AOE can use the resource and opti-
mization models already available in SODALITE for deployment over OpenStack, 
Slurm and Kubernetes. The resource models for AWS EC2 is similar to the ones 
for OpenStack, hence they are omitted for brevity, but can be easily adapted to the 
examples for OpenStack. The same applies to usage of a particular HPC workload 
manager. The examples for Slurm can also be adapted for PBS case. This section 
completes with the usage of optimization models and runtime monitoring.

4 https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples. 
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6.4.1 Deployment Over OpenStack 

A general use case of instantiating a VM in OpenStack involves the following steps: 
(1) obtaining valid credentials; (2) creation of an SSH keypair; (3) creation of a 
security group and rules; (4) creation of a VM, specifying the properties of the VM 
(flavor, image, network, etc.) and associating keypair and security rules. 

SODALITE provides openstack module that contains resource models (RMs) 
needed to execute such use case. The OpenStack credentials can be specified as an 
input to an AADM. These credentials should be specified as OpenStack environ-
ment variables, such as OS_AUTH_URL, OS_PROJECT_NAME, OS_USERNAME, 
OS_PASSWORD, via  os_env parameter. The env input can then be retrieved via 
get_input function across the whole AADM, whenever a new OpenStack resource 
needs to be instantiated. 

An SSH keypair can be created either manually in OpenStack dashboard or via 
sodalite.nodes.OpenStack.Keypair node type. For the latter, the name of the keypair 
and a public key should be specified along with OpenStack credentials. For creation 
of a security group and rules, it is necessary to specify the name of group as well as 
a list of firewall rules, each containing the protocol, port range, direction (ingress or 
egress) and the remote IP prefix that further restricts access to the VM at the network 
level. A resource model for creation of a VM contains required properties that need 
to be specified in the AADM, such as the name of a VM, image, flavor, keypair and 
username used for SSH connection. If default network and security group assigned 
to the VM by OpenStack shall be altered, the respective properties can be defined. 

Overall, Listing 6.9 shows an example of a security group for HTTPS proto-
col and a VM creation that runs Ubuntu 18.04 LTS image and has the security 
groups assigned. The protected_by requirement represents a dependency relation-
ship between the VM and security group, i.e. the security group shall be created first 
to be later assigned to the VM.
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List. 6.9: Snippet of OpenStack security group creation for HTTPS and OpenStack 
VM creation 
Once the OpenStack compute resources are specified, it is now possible to define 

application deployment on top of the resources. The OpenStack VM node type 
(sodalite.nodes.OpenStack.VM) is derived from the standard TOSCA compute node 
type and provides the host capability. Therefore, a software component, which 
requires a host relationship to be specified, can use OpenStack VM as the host, 
where the software component will be deployed, e.g. sodalite-os-vm. Altogether, 
SODALITE provides prerequisites for the deployment of an application in Open-
Stack: the security firewall rules that open ports necessary for the application, the 
management of keypairs and credentials for management of VMs, application con-
figuration and deployment. A user can define custom node types that require a host, 
which then can be instantiated in an AADM, specifying an OpenStack VM in the 
host requirement. 

6.4.2 Deployment Over Slurm 

An HPC cluster and access to it can be modeled using the sodalite.nodes.hpc.WM 
node type of the batch module, as shown in Listing 6.10. In the cluster model, the 
scheduler type can be specified as e.g slurm or torque, otherwise the batch type is 
assumed - a generic cluster not managed by any resource manager. Username and 
ssh-key are used to connect to the frontend node of the cluster with the hostname 
specified in the public_address attribute. The ssh-key property specifies the path 
to the SSH key in the Orchestrator’s file system to use for the connection and is 
optional when the default SSH key is preferred or SSH client is configured in the
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ssh_config file. Alternatively, the SSH key can be uploaded by the user and retrieved 
by the Orchestrator from the secrets vault (see Sect. 2.3) in order to connect to 
the target cluster. The model also contains optional optimizations capability, which 
specifies the target name that serves as an identifier for MODAK to retrieve additional 
optimizations if MODAK has knowledge about the target cluster. 

List. 6.10: Snippet of an HPC cluster model 
In order to define or install (as a privileged user) a container runtime used in the 

cluster, sodalite.nodes.batch.Container.Runtime can be used. It provides properties 
to specify which runtime to use, where the images will be stored, and in case of 
pulling images from the private registry, where the certificates and the registry are 
located. Currently, only the Singularity runtime is supported for batch applications. 
The runtime instance should also specify the host requirement, e.g. slurm-cluster-A. 

An example of the definition of a containerized HPC application is presented in 
Listing 6.11, where the name of the application, type, preferred number of MPI ranks, 
executable, and arguments can be specified. Additionally, the build parameters can 
be provided, defining the source, which can also point to a Git repository or tarball, 
and build command. The optimization parameter defines the optimization model 
associated to the application, such that an optimized container runtime image will 
be selected. The details of optimization models will be presented later in the section. 
The host and runtime requirements define the target cluster where the application 
will be deployed and which runtime shall be used. The runtime requirement also 
defines the location where the optimized container images should be pulled from. 

List. 6.11: Snippet of a containerized application definition 
Batch jobs contain job headers and commands to execute applications, including 

configurations of the application environments, such as loading of the necessary 
libraries and drivers, and exporting variables. Job headers specify the parameters of
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the jobs, such as number of nodes, cores, memory, maximum walltime, queue, etc. 
The headers format is specific to the resource manager in-use, i.e. the job headers 
for PBS are different from the ones in Slurm. Therefore, the job parameters were 
unified in the node type for batch jobs sodalite.nodes.batch.Container.JobExecution, 
and the resource manager is not explicitly specified, but rather derived from the host 
requirement, as shown in Listing 6.12. MODAK then generates a job script with 
the required job headers for the specified resource manager, as well as commands 
to prepare the environment and execute the application. The generated job script is 
then ready for execution on the cluster. 

List. 6.12: Snippet of a batch job definition 
A workflow of batch jobs is an ordered execution of jobs. SODALITE provides 

node types that start the jobs on the cluster sodalite.nodes.workflow.Job and wait for 
the job results sodalite.nodes.workflow.Result. If the job result is successful, the the 
next job in the workflow is executed; in case of a failure, the workflow terminates. 
Once the failed job is fixed, the workflow can be resumed from the failed job, so that 
previously executed jobs are not executed again. The workflow order can be specified 
using the dependency requirement. Independent jobs can be parallelized internally 
by the SODALITE orchestrator to decrease the deployment time. 

6.4.3 Deployment Over Kubernetes 

SODALITE provides several resource models, such as clusters, nodes, Kuber-
netes definitions and Helm charts, in the kube module that help to develop the 
deployment model for Kubernetes applications. To define a Kubernetes cluster, 
sodalite.nodes.Kubernetes.Cluster node type is used, as shown in Listing 6.13. user-
name property and public_address attribute define the target host, where the Kuber-
netes client is installed. It can be either orchestrator or a remote gateway host, which 
can access a Kubernetes cluster. Kubeconfig files contain information about clusters, 
users, namespaces and authentication mechanisms for accessing defined clusters. 
While kubeconfig property defines the path to the kubeconfig file, which already
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exists on the target host, kubeconfig_raw defines the raw values for kubeconfig, 
which will be created and later deleted, once the deployment finishes. 

List. 6.13: Snippet of a Kubernetes cluster and node definition 
The hardware characteristics of nodes of a Kubernetes cluster are defined in 

the sodalite.nodes.Kubernetes.Node node type and can be either populated by the 
Resource Experts or discovered with Platform Discovery Service. This node type 
provides properties for describing hardware characteristics, such as number of CPUs, 
CPU architecture, number of accelerators (GPUs, EdgeTPUs), that serve as a hint 
to the AOE to select the node, where the pods will be scheduled to based on the 
hardware requirements. As an example, Listing 6.13 presents a node that contains 
an EdgeTPU, a GPU and an ARM64 CPU. 

In order to deploy an application on Kubernetes, Helm charts can be used. Helm 
charts can be deployed cluster-wide or targeting a specific node, e.g. with accel-
erators. In both cases, the properties are common and can define the Helm chart 
repository, name, version and values, however, node specific deployment must define 
additional kube_node requirement to specify the target node of the Kubernetes clus-
ter. An example of a node specific deployments of MySQL database is outlined in 
Listing 6.14. The kube_node requirement specifies the node with a GPU, as defined 
earlier in Listing 6.13, hence the chart can utilize the GPU to run its workloads. 
Without this requirement, the deployment will be cluster-wide.
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List. 6.14: Snippet of a node specific application deployment via Helm chart 

6.4.4 Optimization Models 

In Sect. 6.4.2, the  optimization parameter was introduced for batch applications to 
associate the optimizations that will be applied to the application. The SODALITE 
IDE provides an optimization model editor to create such optimizations, which will 
then be included in the container runtime images selected by MODAK. An optimiza-
tion model has the following structure:

• enable_opt_build: specifies whether an optimized build specific to a particular 
hardware target should be included. The list of targets is in opt_build parameter.

• enable_autotuning: specifies whether autotuning should be included. See 
Sect. 4.4.2 for details.

• app_type: specifies application type. Currently traditional HPC and AI training 
are supported.

• opt_build: specifies the hardware target (CPU and accelerator types) for the opti-
mized container.

• autotuning: specifies optional configuration for the autotuning. Users will provide a 
script that can be used some application input parameters for the best performance.

• app_type-hpc and app_type-ai_training: specifies the optimization configuration 
specific to HPC or AI training application types.
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List. 6.15: Snippet of optimization models used for HPC and AI training 
Listing 6.15 shows two optimization models that represent an optimization for 

HPC with the MPICH v3.1.4 MPI library, and AI training using TensorFlow 2.1 with 
XLA accelerated with Nvidia GPUs. These optimization models can be associated 
to the HPC and AI applications in AADM. MODAK will then select optimized 
container runtime images and generate build and run instructions for executing the 
applications using these optimized images. The config parameter in the optimization 
configuration for HPC applications specifies which parallelization type should be 
chosen as an optimization: MPI, OpenACC, OpenCL or OpenMP. For each of the 
parallelization types, further configurations can be provided, such as a specific MPI 
library (MPICH, OpenMPI, MVAPICH) and version, the compiler for OpenACC 
and OpenCL, or affinity for OpenMP. For AI training applications, config specifies 
an AI framework, such as TensorFlow, PyTorch, or Keras. For each framework the 
version can be selected and further acceleration can be enabled, such as XLA for 
TensorFlow or Glow for PyTorch. 

6.4.5 Monitoring and Refactoring 

Once an application has been deployed, the AOE can monitor in real time the metrics 
generated by the different exporters on Grafana. In the Governance View of the IDE 
a link is provided for each of the Dashboards that are created automatically for the 
deployment. The AOE can log in Grafana through the Keycloak account. Figure 5.7 
shows an example of the node exporter dashboard, containing metrics for the VMs 
that have been deployed as part of the application.
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The IDE provides an editor for alerting rules, the AOE can use it to define rules that, 
when violated, signal the refactoring engine to redeploy an application modifying the 
necessary parameters. The rules are written in PromQL and the IDE assists in their 
definition with contextual suggestions similar to the resource and AADM editors. 
Listing 6.16 shows an example of an alerting rule that gets triggered when a VM’s 
disk is over 80% full. When the rules are ready they can be registered on the backend 
by the IDE itself, which sends it to the rule-server, an API used to register the rules 
on Prometheus dynamically. 

List. 6.16: Disk full alerting rule 
In response to the alerts generated by the SODALITE monitoring layer, the appli-

cation may need to be reconfigured and deployed. The AOE can define such adap-
tation decisions as set of ECA rules, and configure the deployment refactorer with 
those rules. Listing 6.17 shows an example of an adaptation rule that reacts to the 
event OutOfDiskSpace by replacing the VM that host the snow application between 
a new VM having a sufficient disk. 

List. 6.17: A snippet of a deployment adaptation rule
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6.5 Conclusion 

This chapter provided examples of common usage of SODALITE platform by the 
users, who are responsible for different cases. While the role of the Resource Expert 
is to define resource models and implementation artifacts, the Quality Expert defines 
optimization models that help to statically optimize the applications. Both of them 
share their respective models with Application Ops Expert, who incorporates the 
models in the abstract application deployment model, in order to deploy applications 
into various execution platforms in the Cloud, Edge, and HPC domains. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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by ways in which the SODALITE approach was successfully applied to address the 
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7.1 Introduction 

The SODALITE approach has been applied during the development of the project to 
three different case studies. They have shown to be quite complementary one with 
respect to the other and have allowed us to experiment with different aspects of the 
SODALITE platform. 

The rest of this chapter is dedicated to the presentation of all the three cases. 
More specifically, Sect. 7.2 presents the Snow use cases, which has been already 
introduced in Chap. 5; Sect. 7.3 presents the in silico clinical trials use case, which 
shows strict QoS requirements and the need to be executed on HPC; Sect. 7.4 provides 
an overview of the Vehicle IoT case, which introduces a new challenging execution 
environment, that is, the edge. Finally, Sect. 7.5 concludes the paper. 

7.2 Snow Use Case 

The Snow use case has been briefly introduced in Chap. 2. This section provides 
further details on it and on how the usage of the SODALITE platform has been 
beneficial for modeling the use case deployment and for its execution. 

The use case is about collection of images from multiple sources, their analysis and 
transformations to deduce from them information about the amount of snow available 
on mountains and, therefore, the available reserve of water. Application components 
are logically organized in a pipe and filter approach and are mostly executed on 
cloud resources. In this context, SODALITE offers proper mechanisms to model the 
deployment of the system and to control its operation and reconfiguration. 

The following subsections will elaborate more on the motivation behind the use 
case, describe the main components of the use case, and provide more details on how 
SODALITE was used to deploy the use case and on the achieved benefits. 

7.2.1 Background and Motivation 

With climate change impacting the planet, the issue of water scarcity has entered 
political discourse globally. Even in countries that do not yet suffer water poverty, 
conservation has become a prominent goal. Making good use of water implies pre-
dicting its availability and planning usage in a way that satisfies the potentially 
conflicting objectives of industry, agriculture, and the common people. 

In mountain regions, the water stock is essentially preserved in the form of snow 
and permafrost. The Alps are the highest and most extensive mountain range system 
that lies entirely in Europe. The climate changes have a deteriorating impact on the 
region, negatively affecting the ecosystem as well as a population of 14 million people 
spread across eight countries. The problem is worsening with increasing recorded
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annual average temperatures and decreasing precipitation levels. At the same time, 
ground monitoring infrastructures have not been updated due to high investment 
requirements. This calls for novel instruments for the low-cost, high resolution, high 
accuracy monitoring of the dynamics of environmental events and conditions in 
mountain regions, especially in the Alps. 

The Snow Use Case plans to provide a solution by improving the capillarity of 
mountain environment monitoring. It applies advanced image processing workflows 
capable of extracting useful environment information from large collections of pub-
licly available mountain related multimedia data. 

7.2.2 The Snow Detection Pipeline 

The solution pursued in the Snow Use Case is an original method to derive informa-
tion on mountain snow coverage from a massive amount of public web content (user 
generated photos and images captured from touristic web cams). The method uses 
an image processing workflow that aligns the picture taken by the user or crawled 
from a touristic web cam to a synthesized rendered view of the terrain that should 
be seen from the camera point of view; the synthetic panorama is generated by a 
projection applied to a (publicly available) Digital Elevation Model (DEM) of the 
Earth.1 This supports decision-making in a snow dominated mountain context, e.g., 
the prediction of water availability from snow coverage in mountain peaks. 

Content acquisition and processing rely on crawling geo-located images from het-
erogeneous sources at scale. The proposed approach elaborates content by assessing 
the presence of mountains in each photo, identifying individual peaks, and extracting 
a snow mask from the portion of the image denoting an identified mountain. Archi-
tecturally, the system is distributed between several data centers. The alignment step 
is computationally intensive and can run on CPU, but is best executed on GPUs. 
The alignment operation must be executed for every acquired image. In particular, 
the image analysis workflow extracts the skyline for an image taken in uncontrolled 
conditions, and thus must implement a multi-stage, GPU-intensive sequence of steps, 
including image normalization, jitter compensation, occlusion detection, and skyline 
extraction. Given the massive amount of images to be processed to monitor the entire 
Alpine region over a long period of time (in the order of millions of images per year), 
the workflow must be deployed on a massively scalable, GPU-enabled architecture. 

Figure 7.1 shows the different components of the pipeline. Two main image 
sources are used: touristic webcams in the Alpine area and geo-tagged user-generated 
mountain photos in a 300 × 160 km Alpine region. The subsections below describe 
the components of the pipeline in details.

1 https://www2.jpl.nasa.gov/srtm/. 
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Fig. 7.1 Components of the Snow use case pipeline 

Fig. 7.2 Examples of crawled images 

7.2.2.1 User Generated Image Crawler 

This component crawls Web image sharing sites for images representing mountains. 
It takes as input the coordinates of a rectangular geographical region and mountain-
related keywords, then fetches images from the specified area whose metadata contain 
the keywords. To do so, it opens a connection to the query API of the image sharing 
site, submits queries formulated with the input keywords and search area, retrieves 
images that match the query, downloads the images, saves them on disk and stores 
their metadata in the database. Flickr is exploited as the data source for user-generated 
photographs, as it contains a large number of publicly available images, many of 
which have an associated geotag (GPS latitude and longitude position saved in the 
EXIF (Exchangeable Image File Format) container of the photograph). Figure 7.2 
shows two examples of crawled images. 

7.2.2.2 Mountain Relevance Classifier 

Images tagged with a location within a mountainous region may not portray mountain 
landscapes. For this reason, the probability of mountain presence is estimated and
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Fig. 7.3 Crawled image of a mountain (left) and not a mountain (right) 

the non-relevant photographs are discarded. This component takes as input an image, 
computes a fixed-dimensional feature vector that summarizes its visual content, and 
feeds the vector to a multi-layer perceptron classifier that determines whether the 
image is relevant. A dataset of images annotated with mountain/no-mountain labels 
is used to train the model. Figure 7.3 exemplifies positively (left) and negatively 
(right) classified images. 

7.2.2.3 Webcam Image Crawler 

Outdoor webcams represent a valuable source of visual content. Their images must 
be filtered by weather conditions, because these can significantly impact the visibility 
of mountains. Since snow cover changes slowly over time, multiple webcam images 
of the same day can be aggregated so as to produce only one representative sample per 
day. Public webcams expose a URL which returns the most recent available image. 
The webcam crawler loads the list of all the webcams and starts an asynchronous 
loop for each of them. At each iteration, it checks the current webcam image and 
adds it to the dataset if it is changed w.r.t. the previous access. It then idles for 1 s 
and starts over again. The image check is performed only on the first 5KB of the 
image, which are hashed and compared to the previous hash of the same webcam: if 
the hash is different, it is saved as the new hash and the whole image is downloaded. 
The first image acquired from every webcam is discarded, because it may be stale 
(some webcams, due to failures, expose the same images for days). 

7.2.2.4 Weather Condition Filter 

Clouds, rains and snowfalls may hinder visibility significantly and thus only a fraction 
of the acquired images can be exploited for estimating snow cover. The weather 
condition filter is based on the assumption that, if the visibility is sufficiently good, 
the skyline mountain profile is not occluded. The component takes as input a webcam 
image and outputs a Boolean value indicating if a mountain skyline is visible or not.
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7.2.2.5 Daily Median Image Aggregation 

Good weather images might suffer from challenging illumination conditions (such as 
solar glare and shadows) and moving obstacles (such as clouds and persons in front 
of the webcam). Yet snow cover changes slowly over time, so one image per day is 
sufficient. This component aggregates the images collected by a webcam in a day 
and outputs a single image per webcam obtained by applying the median operator 
along the temporal dimension. Such a median image also removes temporary lighting 
effects and occlusions. 

7.2.2.6 Skyline Extraction 

To geo-reference the snow cover, it is necessary to determine which portions of the 
image represent which mountains and estimate for each pixel its content (terrain or 
sky) and the corresponding GPS position, altitude, and distance from the observer. 
Mountain image geo-registration is done by finding the correct overlap between the 
photograph and a 360-degree virtual panorama. To align the photo and the virtual 
panorama, the landscape skyline is extracted from the photo, by finding the pixels 
that represent the boundary between the terrain and the sky with a pixel-level binary 
classifier. The classifier is trained using a dataset of mountain images, annotated with 
the skyline boundary. The component takes as input an image, the camera field of 
view and shooting position, and outputs a skyline mask. Figure 7.4 shows a sample 
image (left) and the extracted skyline represented as a binary mask (right). 

7.2.2.7 360 Panorama Generation 

The virtual panorama is a synthetic image of the visible mountain skyline generated 
by projecting the Digital Elevation Model (DEM) of the Earth provided by the NASA 
SRTM data set from the camera shooting position. The component is deployed as

Fig. 7.4 Sample image (left) and extracted skyline represented as a binary mask (right)
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Fig. 7.5 Example of 360-degree virtual panorama with the skyline visible from a given location 

a service that takes as input the coordinates of a location and generates an image 
corresponding to the 360-degree panorama visible from that point. Figure 7.5 shows 
an example of a 360-degree virtual panorama with the skyline visible from a given 
location.

7.2.2.8 Panorama Alignment 

The alignment between the skyline of the real image and of the virtual panorama can 
be seen as the search for the correct overlap between two cylinders: one containing 
the 360-degree virtual panorama and the other one containing the skyline extracted 
from the photo. The component takes as input the real and virtual panorama images 
and returns the real image annotated with a mask that represents the portion of the 
image that contains the mountain registered with the virtual panorama. Figure 7.6 
shows an example of alignment between the 360-degree virtual panorama and the 
skyline extracted from the image. 

7.2.2.9 Snow Mask Computation 

A snow mask is the output of a pixel-level binary classifier that, given an image 
and a mask M that represents the mountain area as input, produces a mask S that 
assigns each pixel of the mountain area a binary label denoting the presence of snow. 
Snow masks are computed using the Random Forest supervised learning classifier 
with spatio-temporal median smoothing of the output. The classifier is trained with 
images annotated at the pixel level indicating if the pixel corresponds to the snow 
area. Figure 7.7 shows an example of an image and its snow mask.
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Fig. 7.6 Example of alignment between the 360-degree virtual panorama and the skyline extracted 
from the image 

Fig. 7.7 Example of an image and of the snow mask generated from it 

7.2.2.10 Snow Index Computation 

The pipeline produces a pixel-wise snow cover estimation from images, along with 
a GPS position, camera orientation, and mountain peak alignment. Thanks to the 
image geo-registration with the DEM data it is possible to estimate physical and 
geographical properties of every pixel, including its type (snow/no snow) and altitude. 
Consequently, it is possible to compute the snow line altitude (the point above which 
snow and ice cover the ground) expressed in meters. 

7.2.3 How SODALITE is Used 

The Snow Use Case takes advantage from SODALITE in multiple ways. More specif-
ically:
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• to enable training of the skyline extractor, we exploit SODALITE ability to auto-
mate the deployment of application components on HPC resources and to optimize 
their execution;

• to manage the allocation of heterogeneous resources (i.e., CPUs and GPUs) at 
runtime, we used component Node Manager that allows to efficiently provision 
resources with the goal of minimizing SLA violations

• to automate the deployment of the whole pipeline on a cloud infrastructure, we 
rely on the definition of an articulated Abstract Application Deployment Model 
that containerizes application components and distributes them on different virtual 
machines;

• to inject images from data sources, e.g. webcam, we have used the integration 
between NiFi and SODALITE. 

More details on these aspects are described in the following subsections. 

7.2.3.1 Deployment on HPC 

The training of the skyline extraction component has been optimized for the execution 
on HPC resources. The goal of this component is to obtain the landscape skyline of 
a photograph via a DL classification method run in TensorFlow. The dataset used for 
the training consists of 8,856 images with skyline annotations, from which 80% is 
used for training and validation and the remaining 20% for testing. The component 
was initially trained using TensorFlow 1.11. The training was performed with a 
baseline container taken from DockerHub (tensorflow/tensorflow:1.11.0-gpu-py3) 
and converged within approximately 7.2 h on one GPU node of the HPC testbed 
(using single core execution). The training executed until convergence was achieved 
and early stopping initiated at epoch 20. 

The first step of the optimization process was the porting of the Python training 
code for TensorFlow 2.2, as it has been optimized by the developers to outperform the 
outdated TensorFlow 1.11. Therefore, we built an optimized Singularity container 
with TensorFlow 2.2. As a sanity check, we performed a run until convergence 
which finished within 8056 s (approximately 2.3 h) and 20 epochs. As training times 
converge across epochs within 2-3 epochs, we trained the skyline extractor for 5 
epochs across every further optimization we considered. For the initial Singularity 
container with TensorFlow 2.2, that took 3473 s, of which 872 s constitute training 
time, while the rest includes data batching time. This is a well-known bottleneck for 
DL applications involving massive datasets. To account for this, we optimized the 
Python code to perform batch dataset prefetching to the GPU via the TensorFlow 
Data API. This shortens the execution pipeline by performing training and data input 
concurrently. The training time thus improved to 2181 s, of which 514 s constitute 
training time. As a final optimization, we optimized the data movement by staging 
the dataset on an SSD attached to the GPU node. The dataset was moved to the SSD, 
and the dataset directory passed to Singularity via file binding. This optimization 
improved the training time to 424 s, of which 236 s constitute training time. This
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yields an 8.2x speedup improvement over the initial TensorFlow 2.2 run. We tested 
additional optimizations such as using XLA and various combinations of SSD, GPU 
prefetching, and XLA, but these did not yield significant improvements. Finally, we 
executed the optimized container up to convergence. It takes 2042 s with 21 epochs. 
Overall, this is a 12.7x speedup. 

MODAK (see Sect. 4.4) can be used to automate the process of choosing an 
optimal container, thus returning the best possible container, in this case one that 
stages the dataset to an SSD. 

7.2.3.2 Resource Management 

As shown in Sect. 5.6 component Node Manager is able to manage a set of appli-
cations that share a cluster of heterogeneous resources. Users set SLAs for each 
applications and the Node Manager (i) deploys containers for the applications using 
Kubernetes, (ii) schedules incoming requests on either GPUs or CPUs according to 
application needs, (iii) dynamically allocates CPU cores to avoid SLA violations. In 
the context of Snow UC we configured Node Manager to control application sky-
line extractor along with other third party apps (ResNet, GoogLeNet, and VGG16) 
on a shared cluster deployed on the Azure public cloud. The cluster was composed 
of three virtual machines: one VM of type HB60rs with a CPU with 60 cores and 
240GB of memory, and two VMs of type NV 6 equipped with a NVIDIA Tesla 
M60 GPU and a CPU with 6 cores and 56GB of memory. An additional instance of 
type HB60rs was used for generating the client workload. Different shaped, highly 
varying synthetic workloads were tested in all the experiments run and the different 
applications were run in random combinations concurrently on the servers. 

The first type of experiment conducted was about varying either the input workload 
or the set-point of the system to test the ability of Node Manager to rapidly adapt 
the resource allocation to the new state. Results showed that the Node Manager is 
able to efficiently adapt to different unforeseen conditions. Figure 7.8 shows how 
Node Manager quickly reconfigures the resources when the SLA is changed (around 
second 80) for application skyline extractor to avoid SLA violations. 

Node Manager was compared with a rule-based approach that schedules incoming 
requests using a round-robin approach on available CPUs and GPUs and dynamically 
scales the resources using a rule-base engine. Different synthetic workloads were 
tested and the Node Manager outperformed the baseline in all the experiments obtain-
ing overall 96% fewer SLA violations while using 15% fewer resources. Figure 7.9 
shows the different behavior of the systems ( with the same workload when all the 
four applications were running concurrently. While Node Manager can quickly react 
to changes, rule-based approach often violates the SLAs for applications ResNet and 
VGG16. 

By adopting the Node Manager, use case owners can deploy components that 
exploit heterogeneous resources, set constraints on their response times and have the 
platform automatically managed for optimizing resource allocation and fulfill the
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desired goal. Node Manager is able to control multiple applications at the same time 
and to govern potential resource contention scenarios among concurrent applications. 
As clearly shown in Fig. 7.9, Node Manager outperforms a rule-based approach by 
order of magnitude. The SLA violations are minimized (96% improvement) and the 
resources are precisely allocated to the different containers (15% improvement). 

Fig. 7.8 Skyline extractor 
controlled by Node Manager 

(a) Node Manager (b) Rule-based approach 

Fig. 7.9 Comparison
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List. 7.1: Snippet of the Snow UC AADM 

7.2.3.3 Deployment on the Cloud 

The Snow Use Case was modeled using SODALITE AADM to facilitate its deploy-
ment on the SODALITE testbed. Figure 7.10 shows how components were deployed 
onto two VMs provisioned using OpenStack. The first VM contains more compo-
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Fig. 7.10 Deployment of the Snow UC on SODALITE testbed 

nents but they are generally less demanding of resources than the four deployed on 
the second virtual machine. Listing 7.1 reports an extract of the AADM. Lines 1–3 
declare the snow module and import the necessary dependencies where Docker and 
OpenStack types are declared. Lines 5–10 define the inputs (partially omitted) of the 
AADM. These values must be prompted by the user before starting a deployment. 
Lines 13–22 show how the security rules for the OpenStack VMs are defined. In 
particular ports between 8080 and 8084 are opened so that Snow components can 
be used by clients after the deployment. Lines 24–41 declare the two VMs. These 
nodes use some of the inputs declared above (e.g., ssh-key-name) and are protected 
by the defined security rules (e.g., lines 36–37). Lines 43–53 define Docker related 
nodes, namely a Docker host, registry and network. Finally lines 55–82 report the 
definition of component snow-webcam-crawler. The node is declared as a container 
with an image that is assumed to be stored in the Docker registry defined at lines 
47–49. The component has some key requirements: a docker host (lines 68–69), a 
MySQL database (lines 70–71) which definition is omitted herein, a Docker network 
(lines 72–73) and registry (lines 74–75). 

7.2.3.4 Data Management 

One of the tasks of Snow UC component - WebCam Crawler - is to pull images 
from public webcams and store the images in either local file system or in a MinIO 
(S3 compatible) object storage. Data Management component is an alternative to 
WebCam Crawler with the benefits for scalable data movement and support for
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Fig. 7.11 Data pipeline, connecting HTTP Consumer and S3 Publisher 

various heterogeneous data sources. Data Management component creates a data 
pipeline, consisting of HTTP consumer and S3 Publisher - shown in Fig. 7.11, that 
allows to periodically get the images from the public webcam and store them in S3 
storage. 

Listing 7.2 shows an AADM for such data pipeline. The webcam-consumer com-
ponent is a subpipeline that receives the JSON list of objects (List), containing URL 
of the webcams and any arbitrary data that can be used e.g. to name the images in 
a specific format in Filename, and downloads the images. These arbitrary data can 
be extracted through AttributeMap. The  ListHTTPSchedulingPeriodTimer property 
sets the scheduling of pulling the images, e.g. once a minute. The connectToPipeline 
requirement connects the subpipeline to another subpipeline - S3 Publisher, which 
saves the downloaded images into the specific S3 bucket. Additional properties of 
the S3 Publisher include access and secret keys and the endpoint to the S3 storage. 

List. 7.2: Snippet of the AADM for data management to periodically transfer webcam 
images to S3 storage
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7.2.4 Benefits of Using SODALITE 

The Snow Use Case represents a typical scenario in which a complex data processing 
pipeline comprising components with very different non-functional requirements and 
resource usage profiles should be deployed and administered over a long period of 
time. The application targets public administrations, such as environment protection 
agencies and water bodies regulators, which makes simplicity of maintenance and 
cost effectiveness prominent requirements. 

In such a scenario, the first benefit of SODALITE is the advantage of a model-
driven approach. In fact, the definition of the Abstract Application Deployment 
Model proven to be an effective tool to raise to the conceptual level of architecture 
design the problem of defining the details related to the pipeline deployment, so as 
to enable an effective communication between the operation manager and the appli-
cation owners. More specifically, an analysis of the pipeline from the deployment 
and operation perspective has highlighted a number of design and implementation 
issues concerning, among the others, the approach adopted to coordinate the pipeline 
components, the way to manage data transfer between components, the importance 
of clearly identifying all software layers to be wrapped in each component con-
tainer, as well as the need to parametrize the application software for what concerns 
information such as IP addresses and user credentials. The importance of the AADM 
definition increases even further when considering the case in which the Snow system 
is hosted by a third party, a frequent case in PAs. In this case, the explicit definition 
of the AADM simplifies the migration from one provider to the other compared to 
the case when the deployment and configuration of the system is manually handled. 

A second benefit is the monitoring of complex runtime conditions possibly span-
ning multiple components and measured by means of declarative rules. Such a capa-
bility goes well beyond the alarm triggers of commercial cloud platforms and is 
essential in such an articulated and heterogeneous pipeline as the one of the Snow 
Use case, where many things can get critical at the same time. 

Other benefits, not even foreseen in advance, concern the possibility to take advan-
tage not only of the cloud but also of HPC clusters for specific operations (the skyline 
extraction in our case), to exploit the Node Manager for increasing the efficiency of 
execution and to exploit SODALITE-ready mechanisms for data transfer. 

7.3 In-Silico Clinical Trials Use Case 

This section describes the in-silico clinical trials use case and how the usage of the 
SODALITE platform is beneficial for the use case execution. The use case reproduces 
real clinical trials in biomecanics by means of simulation to determine optimal bone 
implant systems for patients with spinal conditions. The workflow of the use case 
was originally executed on a specific HPC infrastructure, however, with SODALITE 
the hybrid execution of the workflow was achieved, additionally targeting cloud
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environments. Moreover, SODALITE provided a user interface, which assists in the 
development of deployment model for the use case workflow, and helped to optimise 
the runtime execution of certain components of the use case. 

The following subsections will elaborate more on the motivation behind the use 
case and describe the simulation chain of the use case, as well as provide more details 
on how SODALITE was used to deploy the use case and what were the benefits of 
SODALITE usage for the use case. 

7.3.1 Background and Motivation 

The in-silico clinical trials for spinal operations use case targets the development of a 
simulation process chain supporting in-silico clinical trials of bone-implant-systems 
in Neurosurgery, Orthopedics, and Osteosynthesis. It deals with the analysis and 
assessment of screw-rod fixation systems for instrumented mono- and bi-segmental 
fusion of the lumbar spine by means of continuum mechanical simulation methods. 
As a novelty, we consider the uncertainty inherent in the computation by means of 
probabilistic programming. The simulation chain consists of a number of steps that 
need to be fulfilled in order and can be thought of as a pipeline. The output of each 
step serves as input to the next step. 

The use case addresses one of the most prevalent health problems experienced 
by the populations of developed nations resulting in enormous losses of productivity 
and costs for ongoing medical care. The simulation process developed within this 
use case will optimize the screw-rod fixation systems based on clinical imaging 
data recorded during standard examinations and consequently target the lowering 
of the reported rates of screw loosening and revisions, enhance safety, expand the 
knowledge of the internal mechanics of screw-rod fixation systems applied to the 
lumbar spine and finally reveal optimization potential in terms of device application 
and design. 

7.3.2 The Simulation Chain of Clinical Trials Use Case 

The individual steps for the simulation chain can be seen in Fig. 7.12. First, the  
Image Processing and Filtering component receives three data sets reconstructed in 
different image planes and generates a high resolution image dataset. The Extraction 
component then takes this enhanced imaging dataset and extracts a geometry for 
the vertebral bodies. The de-facto standard for doing this is the marching cubes 
algorithm, for which many implementations exist. 

Next, the Discretization component generates a volume-mesh inside the surface 
geometry. This enables one to treat the mesh as a set of finite elements and to use the 
existing finite elements methodology. The Density Mapping component takes the
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Fig. 7.12 The simulation chain of the Virtual Clinical Trial use case 

original image data and maps it onto the volume-mesh. In doing this, each element 
inside the mesh is assigned a density value. 

This enhanced meshed geometry is then fed into the Probabilistic Mapping com-
ponent. Here the values for density are transformed into values for elasticity, as this 
is what is actually needed for the simulation. Because of the uncertainty that is inher-
ent in this transformation, we use a probabilistic programming approach. Eventually, 
boundaries for the 95% highest density interval as well as the mode are computed. 

These data are used in the input decks for the last step, the Solver component. 
Here, the finite element method is actually used in computing a solution that describes 
the structural mechanics inside the vertebral bodies. 

7.3.2.1 Image Processing and Filtering 

The image processing and filtering component is composed out of several processing 
steps, integrated into a pipeline via the Visualization Toolkit2 (VTK), which provides 
all steps as ready-to-use algorithms with corresponding python bindings. As input 
the implemented pipeline takes three image series in VTK file format,3 which are 
reconstructed in different image planes i.e. whose resolution differs along the three 
coordinate axes as described in the Extraction section below. As output it delivers an 
integrated dataset in VTK file format. 

Since the data are represented as image data, i.e. as a rectilinear grid, each dataset’s 
reconstruction plane is originally aligned along the xy-coordinate plane. Due to that 
the first step is to rotate them back into their original scanner coordinate system as 
specified in the header of the original DICOM image series. Subsequently all three

2 http://www.vtk.org. 
3 https://lorensen.github.io/VTKExamples/site/VTKFileFormats/. 
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datasets are resampled and interpolated to a rectilinear grid which provides high 
resolution in each of the three coordinate planes. 

7.3.2.2 Extraction 

In the original pipeline implementation the Extraction step was directly based on the 
clinical imaging datasets, which were first analyzed with respect to their content as 
well as their quality using 3D Slicer. 

The datasets used for the developments were provided by the clinic for neu-
rosurgery at the university medical center Knappschaftskrankenhaus Bochum, Ger-
many as DICOM (Digital Imaging and Communications in Medicine) datasets. While 
there is no standard on how DICOM datasets have to be stored physically, they are 
organized logically by header information stored within each image. In Fig. 7.13 it 
can be seen that the datasets are logically organized firstly by patient and secondly 
by so called studies, which in turn can contain several series. 

Even though the datasets contain several imaging modalities like full body X-
ray images, dual energy X-ray absorptiometry (DXA) scans, magnetic resonance 
imaging (MRI) data, as well as computer tomography (CT) images, we currently 
concentrate on the CT-images as they are the basis for the three dimensional (3D) 
reconstruction of the spine’s bone structures. 

The analysis of the datasets revealed that, for each patient, three studies contain 
5-8 series with CT-data, which are recorded pre-operatively (without the implant), 
directly after surgery (with the implant), and after several weeks during clinical 
control examination. Further on, it was found that out of the 5-8 series, each study 
contains at least three CT-series each with a different reconstruction plane. The

Fig. 7.13 Logical organization of patient datasets
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Fig. 7.14 y-z cut contour line and x-y cut contour line - x-y reconstructed dataset 

remaining CT-series contained different information like dose reports, or in some 
cases additional CT-series treated with different smoothing kernels.

The left subfigures of Fig. 7.14 show an isosurface along with two cutting planes 
and resulting contour lines. As a basis for this feature extraction we took the CT-
series from the pre-operative study, reconstructed in the x-y-plane. In the bottom-right 
subfigure the contour line of a vertebra in the x-y-plane is shown in detail. It can be 
seen that the vertebra’s contour was extracted smoothly. In the top-right subfigure 
the contour line of the same vertebra, taken on the y-z cutting plane is shown. Here 
it can be seen that the vertebra’s contour could not be extracted smoothly due to the 
low resolution of this CT-series in the y-z- direction. 

For the results shown in Fig. 7.15 the same feature extraction as shown in Fig. 7.14 
was applied to the CT-series from the pre-operative study reconstructed in the y-z 
plane. In contrast to Fig. 7.14, in the top right subfigure of Fig. 7.15 it can be seen 
that the contour line on the y-z cutting plane in that case reproduces the vertebra’s 
contour smoothly. In the lower right subfigure of Fig. 7.15, however it can be seen 
that the contour in the x-y plane is no longer reproduced smoothly once the feature 
extraction is based on the CT-series reconstructed in the y-z plane. 

From these analyses it was concluded that exploiting only one CT-series for geom-
etry extraction is not feasible and additional image processing steps have to be intro-
duced as explained in the previous subsection. 

7.3.2.3 Discretization 

Based on the three surface meshes volume meshing of the bone geometries is per-
formed. Targeted libraries for 3D volume mesh generation are currently Netgen or 
NGSolve. Additionally the boundary conditions i.e. the supports and the loadings 
have to be discretized and structural model features like muscle strands, tendons and
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Fig. 7.15 y-z cut contour line and x-y cut contour line - y-z reconstructed dataset 

cartilage have to be attached to the modeled bone geometries. As a result of this step 
the completed models will be written out as so called solver input decks still with a 
homogeneous material distribution. 

7.3.2.4 Density Mapping 

In this step, the three input decks as well as the three CT data sets are taken as input. 
By means of direct geometrical mapping, the grayscale distribution of the improved 
imaging data produced by the Image Processing and Filtering step is mapped onto 
the volume mesh provided by the discretization. After the mapping, each element 
in the volume mesh holds a density value. The Density Mapping step is written in 
Fortran 2003. Its initial implementation was started in 2007 and is documented by 
Schneider [1]. The algorithmic principles are published by Schneider et al. [2]. 

Since the original implementation relied on an internal data format and was not 
able to load DICOM datasets with the given complex structure, the data input part 
had to be modified. 3D Slicer, which was used for the analysis of the datasets, has 
a very advanced DICOM reader implemented and is also able to export the loaded 
data as VTK STRUCTURED_POINTS.4 Because of these features and since the 
Image Processing and Filtering stepis also based on VTK, it was decided to add the 
capability to load VTK STRUCTURED_POINTS data in VTK XML format to the 
Density Mapping component. By this extension, the Density Mapping step is now 
able to map the density distribution from the CT-data on the Meshed Geometry. This 
results basically in one density value per element. 

To give an impression of the resulting density distribution, the final mapping result 
is visualized side by side with the original data in Fig. 7.16. Since the probabilistic

4 https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf. 
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Fig. 7.16 Density Mapping component - Left: Input data - Right: Mapping result 

mapping step acts locally on each element, no topological information has to be 
passed on between the density mapping component and the probabilistic mapping 
component. Everything that has to be passed is a list that contains one integer value 
per element representing its averaged density value. These values have to be passed 
as a file containing binary 64-bit integer values. 

7.3.2.5 Probabilistic Mapping 

Based on the input from the Density Mapping component, the Probabilistic Mapping 
component produces three probability distributions per element, one for each of 
the three elastic moduli of an orthotropic stiffness matrix. This is done by means 
of the transfer functions between density and orthotropic elastic moduli given in 
Schneider et al. [2]. The low and high bounds and the mode of 95% confidence 
interval are computed from the aforementioned probability distributions. This finally 
results in the output of three files where each file contains three elastic moduli for each 
element. 

Since these outputs have to be extended by shear moduli and poisson ratios to 
form complete, orthotropic material distributions and then become integrated with 
the Meshed Geometry to form a complete Input Deck, i.e. the Enhanced Meshed 
Geometry, the data path in the simulation process chain was changed from the orig-
inal layout. Instead of treating the Enhanced Meshed Geometry directly with the 
Probabilistic Mapping component and passing its output directly to the Solver com-
ponent, its output is now sent to the Applying Boundary Conditions component. This 
change in the data flow was decided during the parallel development of the Prob-
abilistic Mapping component and the prototype of the Code_Aster5 model. During 
the development, it was recognized that it would amount to less effort to add the

5 https://www.code-aster.org/. 
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integration of the results from the Probabilistic Mapping component to the Applying 
Boundary Conditions component than to implement the treatment of the Enhanced 
Meshed Geometry by the Probabilistic Mapping component. This was due to the 
fact that in the Density Mapping component, from which we derived the Applying 
Boundary Conditions component, the algorithmic part was already implemented and 
only the output part had to be changed. 

7.3.2.6 Applying Boundary Conditions 

The Applying Boundary Conditions component is derived from the original imple-
mentation of the Density Mapping component. The component integrates each of the 
three output files of the Probabilistic Mapping component with the Meshed Geometry 
in Code_Aster med file format. It generates three Enhanced Meshed Geometries in 
Code_Aster’s med file format which include inhomogeneously distributed material 
Information needed by Code_Aster. 

7.3.2.7 Solver 

In the Solver component, a reference model prototype had been developed for 
ABAQUS and transferred to Code_Aster format. Initial results of this development 
are displayed in Fig. 7.17. 

Additionally, the coupling of the Applying Boundary Conditions component to the 
Solver component was implemented. The implementation of the coupling required 
basically the implementation of the mesh output in Code_Aster’s HDF5-based MED-
format and the implementation of the output of Code_Aster’s input parameter file to 
the Applying Boundary Conditions component. 

Fig. 7.17 Density Mapping component - Left: Input data - Right: Mapping result
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7.3.3 How SODALITE is Used 

The in-silico Clinical Trials use case reproduces real clinical trials in biomecanics by 
means of simulation to determine an optimal fixation and function of bone implant 
systems for patients with spinal conditions (e.g. disk displacement or prolapse). The 
use case is being developed by HLRS and was originally strictly HPC driven, i.e. it 
was realised as a workflow executed on a particular HPC infrastructure provider. This 
limits the adoption of the developed methodology in biomechanical clinical trials for 
medical device manufacturers or medical research institutes due to the specifics of 
the target execution environment of the use case. 

Therefore, Clinical UC expects SODALITE to be beneficial in moving the process 
towards production-like environments with the following improvements: 

1. Increase the effectiveness and productivity of component deployment. 
2. Ease the adaptation to different IT-infrastructures (supercomputers, Clouds, on-

premise) and different hardware. 
3. Lower the efforts for component integration. 
4. Lower the efforts for data management. 

The rest of the subsection presents how SODALITE platform was used in the 
scope of Clinical UC. 

7.3.3.1 Clinical UC Workflow Orchestration 

SODALITE produced a set of reference TOSCA libraries and Ansible playbooks6 

for provisioning of VMs in Cloud (AWS EC2 and OpenStack) as well as execution of 
batch jobs on HPC clusters, managed by resource manager, such as PBS Torque and 
Slurm. Clinical UC validated these libraries by executing the workflow on the single 
and multiple HPC and Cloud targets using the SODALITE orchestrator. Addition-
ally, SODALITE developed TOSCA libraries for data movement with GridFTP, a 
data transfer protocol widely offered by HPC infrastructure providers, thus enabling 
multitarget workflow execution of Clinical UC components with data dependencies. 

Clinical UC benefited from this development as it allowed the distribution of the 
workflow execution from a single infrastructure target into multiple targets, utilising 
the capabilities offered by various providers. For example, less capable but more 
available virtual resources can be used for UC components that do not demand a lot 
of computation resources, while bare-metal and more capable resources can be used 
for more compute-demanding tasks. Possible setups for the workflow execution of 
the Clinical UC are presented later in Sect. 7.3.4.

6 https://github.com/SODALITE-EU/iac-modules. 
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7.3.3.2 Clinical UC Workflow Optimization 

Together with optimization experts (Quality Experts), we focused on optimization 
of the Code_Aster Solver component, which is contributing the most to the total 
execution of the workflow. For Code_Aster, we compared the performance of the 
MODAK optimised container with that of the official Code_Aster container.7 The 
experiment was performed on the MC partition of the Cray XC50 “Piz Daint” super-
computer at the Swiss National Supercomputing Centre (CSCS). Each node of the 
system is equipped with a dual-socket CPU Intel Xeon E5-2695 v4 @2.10GHz (18 
cores/socket, 64/128 GB RAM). On a single thread, the MODAK containerised 
application had an average execution time of 725 s, while the official Code_Aster 
container executed for 745 s. This is a 3% speed-up. 

Furthermore, with the build of parallel Code_Aster, additional optimised con-
tainer images are being prepared for parallel execution of the Solver, which is 
proven to reduce the execution time significantly. The runtime tests were carried 
out on the HLRS system Vulcan using computing nodes with Intel Xeon Gold 6138 
@2.0GHz Skylake processors and 192 GB of main memory, and different underlying 
solver libraries (MUMPS8 and PETSc9 ) with and without METIS10 partitioner were 
applied. The results of the runtime tests are given in Table 7.1. 

7.3.3.3 Clinical UC Workflow Modeling 

SODALITE IDE offers a context-assistance and models validation that was useful 
during the modeling of the Clinical UC deployment. Moreover, SODALITE IDE 
offers optimization specification, which allows to create optimization recipes (with 
the help of Quality Experts) and apply optimizations to a particular application 
component, which in turn is executed using optimized container runtime. 

Using SODALITE IDE, we modeled and deployed the single and multi-targets 
use case workflow executions on HLRS HPC testbed with the optimization applied to 
the Probabilistic Mapper for parallel execution, as described in Sect. 7.3.4. Resource 
Experts have provided HPC resource models and models for workflow execution. 
Clinical UC developers acted as Application Ops Experts and created an AADM 
(Abstract Application Deployment Model) for the use case deployment, utilizing 
provided resource models. Quality Experts helped to develop optimization recipes 
to enable MPI pluralization for Probabilistic Mapper, during runtime of which, it 
was built and executed within optimized container runtime. 

During the development of AADM for Clinical UC, SODALITE IDE assisted 
with modeling, e.g. offering available node types and resolving requirements for 
node templates. Inconsistencies in deployment models (e.g. mismatch of node types

7 https://github.com/codeaster/container. 
8 http://mumps.enseeiht.fr/. 
9 https://www.mcs.anl.gov/petsc/. 
10 http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview. 
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Table 7.1 Results of bare metal runtime tests of parallel Code_Aster 

Solver Partitioner #-MPI-Procs Walltime (s) 

MUMPS – 4 654.52 

MUMPS – 8 442.66 

MUMPS METIS 8 226.87 

PETSc METIS 8 67.43 

in requirements) were also checked and reported back instantly at the development 
time. Since initially we started deployment modeling using TOSCA with a simple 
YAML editor, we found the usage of the SODALITE IDE extremely convenient, 
error reducing and effort saving for failure resolution and component integration. 

7.3.4 Deployment Architecture 

The components of the Clinical Trials UC can be deployed with SODALITE in 
various Cloud platforms and HPC systems. We validated the following deployment 
cases: 

1. Single target HPC system managed by either PBS Torque or Slurm 
2. Multiple HPC targets with data transfers using GridFTP 
3. Cloud and HPC targets with data transfers using GridFTP. 

The PBS Torque target is a bare-metal cluster and has MPICH as an MPI imple-
mentation, whereas the Slurm target is virtual (deployed via EGI EC311 ) and uses 
OpenMPI as an MPI implementation. As Cloud target, OpenStack and AWS EC2 is 
used. Both HPC and Cloud targets are modelled in an AADM that is reused across 
different cases. 

To ensure portability of application components deployed over these targets, Sin-
gularity container runtime was used. In case of HPC, the compatibility should also be 
respected at the level of communication between processes with MPI. As such, the 
version and implementation variant of MPI (e.g. OpenMPI and MPICH) included 
in the container image must match with the MPI setup of the host. In the Clinical 
UC workflow, the Probabilistic Mapper component can be run in parallel with MPI. 
Optimization model is associated with this component, and this helps MODAK to 
select a container compatible with the MPI of the target host, i.e. either OpenMPI or 
MPICH will be selected, depending on what the target host supports. 

In the first case, the partial workflow of Clinical UC is executed in a single 
HPC target, as depicted in Fig. 7.18. The AADM for this case consists of definition 
of workflow components, executed in the specific order defined with dependency 
relationship between the components. To define where the component should be

11 https://docs.egi.eu/users/cloud-compute/ec3/. 
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Fig. 7.18 Deployment of Clinical UC over a single HPC target, either PBS Torque (used in HLRS 
HPC Testbed) or Slurm (used in EGI EC3 Virtual Cluster) 

Fig. 7.19 Deployment of Clinical UC over multiple HPC targets with the third-party data transfers 
between the GridFTP servers, initiated by GridFTP client 

deployed, the host relationship between the component and the target is used. In this 
case, we specify either PBS Torque or Slurm cluster for all the components. 

In the second case, the partial workflow of Clinical UC is distributed across mul-
tiple HPC targets, as depicted in Fig. 7.19. Density Mapper and Boundary Condition 
components are hosted in the Slurm cluster, whereas the Probabilistic Mapper is 
hosted in the PBS Torque cluster. Additionally, a GridFTP client is deployed in 
OpenStack, such that a 3rd party data transfer between the clusters is performed, 
thus allowing to transfer intermediate results of the workflow. Compared to the first 
case, the workflow order was extended by adding the data transfer steps between the 
component execution, to ensure that a dependent component will first receive the 
needed data from the previous step before its execution.
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Fig. 7.20 Deployment of Clinical UC over Cloud and HPC targets with the data transfers between 
the GridFTP client and server 

The third case, depicted in Fig. 7.20 is similar to the second case with the difference 
that Density Mapper and Boundary Condition components are hosted in a VM (either 
AWS or OpenStack). The GridFTP client is co-located in the VM and moves the data 
to and from the HPC cluster after the respective component execution is finished. 

7.3.5 Benefits of Using SODALITE 

The workflow of Clinical UC was executed with the SODALITE platform. Mod-
elling, optimisation and orchestration aspects of the platform were validated and 
evaluated in the context of the Clinical UC, showing the use case improvements in 
the following: 

1. Originally, Clinical UC workflow was HPC-driven and executed in a single HPC 
cluster. With SODALITE, the workflow execution is distributed across multiple 
infrastructure targets. 

2. The execution of the Solver (Code_Aster) component of Clinical UC in a con-
tainer was optimised. Furthermore, parallel build and execution became possible, 
promising further reduced execution time. 

3. The workflow was modelled in SODALITE IDE, which reduced the effort for 
development of the deployment code, compared to TOSCA, as it became easier 
to integrate new components and avoid possible deployment errors. Addition-
ally, optimised container runtime can be automatically provided based on the 
optimisation options specified in SODALITE IDE.
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7.4 Vehicle IoT Use Case 

This section describes the Vehicle IoT use case and how the usage of the SODALITE 
platform is beneficial for the use case execution. The use case is centered around the 
development of services useful to support the management of car fleets. As discussed 
in the following subsections, the use case is composed of a significant number of 
components and services that run on different operational environments. End-user 
apps are typically executed on mobile devices of various kinds. Special services with 
strict latency requirements are executed at the edge, either on special-purpose devices 
installed on the cars or at the periphery of the system. Specific tasks that require a 
significant amount of resources, such as those related to model training activities, 
are executed on HPC resources or on the cloud. In this context, SODALITE offers 
proper mechanisms to control the deployment, operation and reconfiguration of the 
whole Vehicle IoT system. 

The following subsections elaborate more on the motivation behind the use case, 
describe the main components of the use case, and provide more details on how 
SODALITE was used to deploy the use case and on the achieved benefits. 

7.4.1 Background and Motivation 

Through the combination of vehicle telemetry, instrumentation, and behavioural 
data, insurance companies are able to shape a more holistic view of an individual 
driver’s overall risk profile based on empirical analysis of driving data (referred to 
as usage based-insurance, or UBI) - areas that have traditionally relied upon static 
data points over which the individual has little control, and which have been more 
focused on risk probability than empirical analysis (these factors include, e.g. age, 
gender, marital status, make/model of vehicle, etc.). While UBI models have been 
successfully engaged in markets with a more relaxed and homogeneous regulatory 
environment, European industry (and citizens) have been hesitant to pursue this 
model without adequate safeguards for personal data protection and privacy rights
- a situation remedied in part by the coming into force of the GDPR (General Data 
Protection Regulation). 

The growth of Connected Car data and concerns over data usage are further 
compounded by: (1) Individual expectation of contextualised service offerings that 
respect personal preferences and privacy expectations; (2) Service providers aiming 
to deploy service offerings across an increasingly dynamic environment; and (3) 
growing trend of drivers seeking to analyse and benefit from their own driving data 
directly. 

These growing expectations, both from individuals and businesses, lead to an 
enormous increase in the volume and rate of the sensor data, its aggregation, and 
its analysis, at various hierarchical levels. This data, in turn, must be processed in
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line with the relevant privacy constraints and regulatory restrictions it is subject to -
aspects subject to dynamic change, while also being highly latency-sensitive. 

This leads to two key architectural demands: (1) an increasing amount of in-vehicle 
data processing and intelligence at the network edge, and (2) increased computational 
capacity to process large amounts of data in a timely manner - at varying levels of 
granularity (e.g. device-local, vehicle-local, fleet-wide) - including both fleet-wide 
big data analytics, as well as periodic online retraining of machine learning models 
that support the deployment. 

Thanks to this case study, it is possible to demonstrate the ability of SODALITE 
to deploy applications through the whole continuum from the cloud to the edge, to 
refactor the deployment depending on the system configuration at runtime and to 
ensure privacy preservation. 

7.4.2 The Vehicle IoT Case Architecture 

Figure 7.21 presents the structure of the VehicleIoT system. It includes end-user apps 
running on IoT devices such as smartphones and watches, a special-purpose device 
installed on cars and a number of components at the edge that enables the connection 
with specific microservices, including License Plate Recognition, Reverse Geocod-
ing, and Drowsiness Detection. Many of these microservices, in turn, leverage trained 
machine learning models, and are able to quickly provide results with minimal com-
putational overhead, providing the opportunity to re-deploy and run these services 
at different hierarchical levels (backend, in-vehicle edge gateway, smartphone, etc.).

Fig. 7.21 Overview of the VehicleIoT architecture
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Fig. 7.22 The VehicleIoT edge part configuration 

The edge part of this case study is managed through Kubernetes and is assumed 
to be located partly on each car and partly on the premises of some fleet management 
company, as show in Fig. 7.22.

The following subsections present in detail the most relevant features offered by 
the system. 

7.4.2.1 License Plate Detection 

Within the Vehicle IoT Use Case, individuals may, at various times, submit license 
plate images for recognition. This can be done for various purposes, including the 
initial registration of the vehicle with the mobile app (as one possible registration 
mechanism - of particular interest in countries which provide open access to their 
vehicle registration databases), evidence to support claims preparation (in the case of 
a collision), etc. In order to benefit from improved plate recognition, the license plate 
recognition service relies on a machine learning model that is trained by leveraging 
appropriate resources (Cloud or HPC). This is envisioned across a number of steps:

• Inclusion of user-generated images in the training data set;
• Plate extraction from uncropped training data (Bulk processing);
• Re-training model on suitable backend resource (e.g. GPU cluster);
• Validating control set against the new model (regression detection);
• Re-deployment / update of plate recognition microservice backed by the new 
model. 

This process is summarised in Fig. 7.23.
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Fig. 7.23 The License Plate Recognition Pipeline 

7.4.2.2 Drowsiness Detection 

Drowsiness Detection aims to determine when a Driver is at risk of falling asleep at 
the wheel and taking evasive actions (e.g., playing a loud noise, triggering a vibra-
tion, etc.) in order to alert the driver to the problem before a more serious incident 
occurs. Drowsiness detection is typically carried out using a couple of different 
methods, with differing levels of accuracy and invasiveness. While the gold stan-
dard (and most accurate method) for drowsiness detection remains ECG monitoring, 
ECG measurement itself is invasive and requires active participation by the individ-
ual under monitoring, making it a poor fit for passive observation of a driver. The 
most common non-invasive methods, on the other hand, are PERCLOS (Percentage 
of eyelid closure) - measuring the proportion of time that the eyelids are between 
80-100% closed, and blink detection (Blink detection methods further being split 
between blink frequency and duration detection). While the PERCLOS method is 
fairly well established, it has also been found to generate false positives in scenar-
ios that are compatible with the driving activity. For this reason, blink detection is 
investigated in this case. 

It is important to note that drowsiness detection is highly latency-sensitive and 
must be done in real-time in order to be as accurate as possible and to alert the driver 
at the time they need to be alerted. Blink duration can be summarized as awake 
(<400 ms blink duration), drowsy (400–800 ms blink duration) and sleepy (blink 
duration >800 ms). 

With current wireless technologies demonstrating round-trip latencies near 50– 
200 ms (for 4G) and 500 ms (for 3G) with good connectivity, a backend-deployed
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monitoring service cannot be expected to reliably identify and respond to drowsiness 
events in time - necessitating a push-down of the service delivery to the Vehicle 
itself. 

7.4.2.3 Intrusion and Theft Detection (Face Recognition) 

Intrusion detection builds on the face detection model developed in the drowsiness 
detector and defines a face recognition model capable of identifying the authorized 
driver’s face. In the case where someone other than the designated driver is found to 
be driving the vehicle, further actions can be taken by the system. These may include 
notifying the authorized driver and seeking confirmation of a driver switch, notifying 
a fleet manager, streaming vehicle telemetry to a third party, etc.). 

In contrast with drowsiness detection, intrusion and theft detection is not directly 
latency-sensitive, and as it does not require real-time access to the driver’s video 
stream, is suitable for backend deployment as a long-lived microservice. While the 
authorized driver may indeed wish to know if someone is stealing their vehicle as 
quickly as possible, the added round-trip latency associated with mobile communi-
cations is unlikely to have a measurable impact on any asynchronous notifications 
that may result from the analysis. 

A unique characteristic of this service is that custom classifiers must be modelled 
and trained in order to provide value for the Driver (that is, SVC models capable of 
identifying the authorized Driver’s face - which the driver may take with them). This 
may involve dynamic training of vehicle-restricted classification models or may be 
open for sharing across a fleet of vehicles, or any other vehicle the end-user may use, 
dependent upon their individual privacy preferences and sharing settings. 

Notably, the infrequent nature of the invocation also makes this an ideal candidate 
for serverless deployments. 

7.4.3 How SODALITE is Used 

The vehicle IoT use case makes effective use of the SODALITE platform.

• SODALITE IDE and deployment workflow is used to automate the deployment 
of the application over the cloud and edge infrastructure.

• Kubernetes support is used to model the Edge cluster and to deploy the services 
on the Edge nodes.

• Platform discovery service is used to discover the changes to the Edge cluster, 
for example, appearing and disappearing of Edge nodes (CPU and GPU), and 
to atomically update the knowledgebase to reflect the current state of the Edge 
testbed.

• Image Builder is employed to create the container images of the service variants 
optimized for specific Edge accelerator hardware devices.
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Fig. 7.24 Vehicle IoT case study deployment architecture 

• The monitoring and refactoring components are employed to collect various met-
rics from Edge devices, to generate alerts based on the collected metrics, and to 
perform the necessary changes to the application deployment at runtime. 

7.4.3.1 Deployment Architecture 

Figure 7.24 shows the deployment of the vehicle IoT case study in the SODALITE 
cloud and Edge testbeds. Some services (e.g., drowsiness detector, the MySQL stor-
age, and the reverse geocoder) are deployed on edge nodes, while other services (e.g., 
region router and echo services) are deployed on cloud VMs. Three edge devices are 
Raspberry Pi 4, Google Coral AI Dev Board, and NVIDIA Jetson Xavier NX. Their 
accelerators are NCS2 (Neural Compute Stick 2), EdgeTPU, and NVDLA x2. 

7.4.3.2 Monitoring and Refactoring 

The vehicle IoT use case employs the SODALITE runtime layer to implement 
two deployment adaptation scenarios: location-aware redeployment and alert-driven 
redeployment. In the first scenario, the application deployment is adapted in response 
to changes in legal jurisdiction, helping the application to maintain both service con-
tinuity and meet its compliance requirements as vehicles travel between countries. 
The second scenario uses edge-based monitoring and alerting to throttle an applica-
tion deployment that has exceeded thermal tolerances to mitigate the risks of rising 
temperature inducing inference failure. The EdgeTPU run-time libraries are provided
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in -max and -std versions. Using the image builder, the two different variants of the 
inference application containers, each linked against one version of the run-time 
library, using an appropriate accelerator-specific base container were created. The 
deployment refactorer can switch between these two variants as thermal trip points 
of the devices change. 

List 7.3: A snippet of the deployment adaptation rules used by the vehicle IoT case 
study 
List 7.3 shows two adaptation rules used by the case study. The first rule reacts to 

the event LocationChangedEvent by replacing the hosting VM and the second rule 
reacts to the alert TempCritical by replacing the hosting edge node. The predicates 
over the TOSCA node properties, for example, location and variant are used to find 
the correct TOSCA node templates. 

7.4.4 Benefits of Using SODALITE 

The SODALITE platform improved the vehicle IoT use case in the following aspects:

• The ability of the SODALITE platform to seamlessly orchestrate applications 
over hybrid heterogeneous infrastructure eased the deployment of the vehicle IoT 
application. The SODALITE IDE and the guidance provided by the SODALITE 
Knowledge Base simplified the development of the deployment model for the 
application.
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• The image builder and the application optimization components helped to uti-
lize heterogeneous edge devices by enabling creating device-specific variants of 
application services.

• The SODALITE runtime improved the responsiveness of the vehicle IoT appli-
cation by enabling monitoring of the application and the hosting infrastructure 
resources and codifying and enforcing of deployment adaptation decisions. 

7.5 Conclusion 

This chapter demonstrated the usage and benefits of SODALITE in the context of 
the three case studies, each of which required a specific execution and operational 
environment in Cloud, HPC and Edge platforms. 

As such, using SODALITE platform, Snow use case has successfully managed 
the lifecycle of its execution pipeline in private Cloud, trained its deep learning 
component in HPC resources using optimized container runtime and utilized run-
time optimization of resource allocation. Clinical use case managed to extend its 
workflow execution from a single HPC infrastructure to multiple HPC and Cloud 
platforms and utilize optimized container runtimes. Vehicle IoT use case leveraged 
SODALITE to deploy its application components in Cloud and Edge infrastructures, 
to build container image variants optimized for specific Edge accelerator hardware 
devices and to handle dynamics of the Edge infrastructure, such as appearance of 
new hardware in edge nodes. 

The experiments performed by the case studies demonstrate that SODALITE 
is able to handle complex use cases in various domains and execution platforms 
and achieves its objectives to enable simpler and faster development of IaC and 
deployment and execution of heterogeneous apps in HPC, Cloud and other software 
defined computing environments. 
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Chapter 8 
Toward Impact Generation and Future 
Research 

Joao Pita Costa, Elisabetta Di Nitto, and Indika Kumara 

Abstract This book has presented the main results developed by the SODALITE 
project, some examples of models an end-user can develop for the purpose of exploit-
ing the SODALITE deployment and operation features, and the three specific case 
studies that have been used as first experimental playground for the approach. In this 
chapter we wrap up by first providing an overview of how the SODALITE results 
are being packaged in ready-to-use tools and then discussing about future research 
challenges. 

8.1 Impact Generation: The SODALITE Stack 

In order to determine the scope of the SODALITE technology from the perspective 
of the usefulness of its inventions, i.e., its innovation, we organized the SODALITE 
results as a stack of five innovation layers that highlight the multidimensional capabil-
ity of this software toolset (see Fig. 8.1 for illustration and [1] for the formal definition 
of software stack that we follow). All layers shown in the figure can either be used 
in combination with each other or they can be adopted in isolation and exploited in 
any TOSCA-based context. 
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Fig. 8.1 Layered presentation of the SODALITE stack 

The first innovation layer includes all elements that constitute the SMART IDE 
(see Chap. 3) and allow end users to define Abstract Application Deployment Models 
and to transform them into executable IaC. 

The second innovation layer, FindIaCBug offers the verification and bug pre-
diction features (see Chap. 4, Sects. 4.2 and 4.3). 

The third and fourth innovation layers,MOORING and REFIT, focus, respectively, 
on orchestration of deployment (see Sect. 5.2) and monitoring and reconfiguration 
(see the rest of Chap. 5). 

Finally, the last innovation layer includes POET, which encompasses the perfor-
mance optimization mechanisms available at design time (Chap. 4, Sect. 4.4) and at 
runtime (Chap. 5, Sect. 5.6). 

All above layers are sustained and supported by four pillars that constitute the main 
structure of the whole SODALITE solution. These concern the usage of semantic 
and AI technologies (the semantic intelligence pillar), the attention to Quality of 
Service, the focus on enabling the usage of heterogeneous infrastructures and, finally, 
the emphasis on security and privacy. For space reason, this last point has not been 
described in detail in this book. On the one side, it concerns the adoption of state of 
the art approaches to access and secret management, security vulnerability scanning, 
and code inspection. On the other side, it includes the attention to the quality and 
security issues in IaC scripts generated from the deployment models created by the 
users through the Smart IDE (see Chap. 4).
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8.2 Future Research 

SODALITE represents one of the first attempts to tackle the problem of simpli-
fying the work of those who need to automate the deployment and operation of 
complex software. In particular, SODALITE has tried to address the problem from 
multiple perspectives, from the introduction of smart editing features to the usage 
of ontologies and machine learning to infer possible bugs as well as possible code 
completion. Problems such as the automated generation of execution containers and 
the identification of the optimal ones given a specific execution environment have 
been addressed as well, together with the automated generation of models for the 
discovered resources and the automated identification of possible refactoring options. 

The solutions we have developed show that all above problems can be addressed. 
There are though a number of challenges that are still to be addressed. Among the 
others, we highlight the following ones.

• Single modelling approach and compatibility with multiple IaC languages: even  
if SODALITE offers modelling support to the definition of application deploy-
ment models, still the user does not face a single modelling paradigm, but he/she 
should be able to handle the usage of multiple Domain Specific Languages that are 
heterogeneous in terms of their characteristics. A single paradigm for specifying 
application deployment would certainly help the users and facilitate their work. If 
the result of the modelling phase could be translated into multiple languages, the 
approach could be adopted by users of different orchestration frameworks (e.g., 
TOSCA and Terraform).

• Deployment and operation frameworks for the cloud continuum: SODALITE has 
considered HPC, Cloud and edge resources. A natural continuation of the project 
would be to manage heterogeneous resources as a seamless continuum where com-
ponents could be dynamically deployed on the most suitable resource types and 
could be moved in the continuum if the situation in terms of resource consumption 
and application-level requirements evolves. 

Both aforementioned areas are becoming the focus of new projects and initiatives 
(see, for instance, the H2020 PIACERE project1 ). We do hope that the findings, 
experience, and concrete results we have achieved in SODALITE will be beneficial 
for them and, possibly, reused and extended.

1https://www.piacere-project.eu/. 
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