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Preface

This book is an introduction to the main ideas and results of inquisitive logic. Inquis-
itive logic is a novel approach to the central notions of logic which makes it possible
to extend the traditional boundaries of the discipline. In inquisitive logic, we can
formalize not only declarative sentences like “Alice passed the test” and “every
student passed the test”, but also interrogative sentences like “whether Alice passed
the test” and “which students passed the test”. The central notions of logic—including
entailment, connectives, quantifiers, and proofs—are generalized in such a way that
they apply uniformly to both kinds of sentences. In the past few years, research
on inquisitive logic has flourished, as witnessed by a wealth of recent publications,
stemming from different research communities and countries (see the bibliography
in Appendix A). This book offers the first book-length introduction to the subject
and aims to fulfil three different roles.

First, it is intended to serve as a standard reference for the growing research
community working on inquisitive logic, and as an accessible entry point for young
researchers interested in contributing to this field.

Second, it is designed to serve as a textbook in graduate-level courses. In order
to make the book suited to this use, special attention has been paid to motivating the
enterprise and the basic design choices in detail, and to illustrating the key notions
with concrete examples and figures. Moreover, in each chapter, a set of exercises is
provided. Some of these exercises are designed to familiarize the students with the
notions and the techniques covered in the chapter; others are more research-oriented,
challenging students to prove by themselves some interesting results that go beyond
the content covered in the chapter.

Third, the book will serve as an overview of the field of inquisitive logic
for researchers working in neighboring areas, both inside and outside of logic.
Within logic, the audience includes logicians working on modal logic, intuition-
istic logic, team-based logics, inferential erotetic logic, dynamic epistemic logic,
truth-maker logics, and information-based approaches to substructural logics—all
areas with significant ties to inquisitive logic. Outside of logic, it will be relevant
to current research in natural language semantics (for instance, on the semantics
of questions and question-embedding verbs), philosophy of language (aboutness,
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viii Preface

hyper-intensionality), epistemology (contrastive knowledge), philosophy of mind
(question-directed attitudes), and metaphysics (supervenience).

The book is a thoroughly revised, extended, and updated version of the first half
of my doctoral dissertation (Chaps. 1–5 of [1]). Parts of the material have also been
presented in the form of articles, the most important references being [2, 3, 5]. With
respect to the dissertation, Chap. 5 has been extended substantially to reflect some of
the recent advances on inquisitive first-order logic, mostly due to Gianluca Grilletti
(see [6–9]).

In preparing the book, much effort has been put in optimizing the coherence and
smoothness of the presentation, especially in the light of two experiences teaching
the present material as a graduate-level course at LMU Munich.

Inquisitive logic builds on inquisitive semantics, an approach to the modeling of
meaning which allows for a uniform analysis of statements and questions. As such,
the present book is related to the textbook Inquisitive Semantics [4]. However, the
two books are concerned with different enterprises and directed at different commu-
nities. The Inquisitive Semantics book aims to offer a novel framework for the formal
analysis of natural language semantics and pragmatics; the core ideas are motivated
by linguistic observations, and the focus is on applications in linguistics (indeed, the
book is part of the series Oxford Surveys in Semantics and Pragmatics, whose target
audience consists mainly of linguists and philosophers of language). By contrast,
this is a book in formal logic: our primary aim here is not to investigate the struc-
ture of natural languages, but rather to develop formal languages that can be used
to unambiguously regiment statements and questions, study their semantic relations,
and carry out inferences with them. The importance of taking questions into account
in logic is motivated here, not based on the presence of questions in natural language,
but based on the fact that extending logic to questions allows us to analyze impor-
tant logical notions and to carry out interesting kinds of inferences. What we will
argue is that questions are extremely interesting from the perspective of formal logic.
Relatedly, the target audience for the present book consists primarily of logicians
and logic students, rather than linguists and philosophers of language. As a conse-
quence, much attention is paid to matters which are not covered in the Inquisitive
Semantics book, such as the mathematical properties of various inquisitive logics,
the development of proof systems, and the relations between inquisitive logic and
other logical formalisms.

This book would not have been possible without the help of many colleagues and
friends. The first acknowledgment goes to Jeroen Groenendijk and Floris Roelofsen,
my travel companions in the development of inquisitive semantics. Secondly, as
reflected by the bibliography in Appendix A, many people have contributed to the
development of inquisitive logic, the subject of this book: for the prominence of their
contributions Iwould like to thank especiallyVít Punčochář,GianlucaGrilletti, Thom
van Gessel, and Salvador Mascarenhas. Throughout the years in which I worked on
thematerial in this book, I havebeen fortunate to learn fromanumber of collaborators,
especiallyMariaAloni,MartinOtto, FanYang,Rosalie Iemhoff, LucasChampollion,
and Nadine Theiler. Thanks to Jouko Väänänen, Hannes Leitgeb, Wesley Holliday,
Justin Bledin, YanjingWang, Andrzej Wiśniewski, and Valentin Goranko for fruitful
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discussions on inquisitive logic and related topics. I am also very grateful to the MA
students of the Munich Center for Mathematical Philosophy who took my course
on inquisitive logic: their questions and comments have helped me to optimize the
presentation of the material. Finally, many thanks to Adrian Ommundsen and two
anonymous reviewers for detailed comments on a first draft of this book.

Padua, Italy Ivano Ciardelli
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Chapter 1
Introduction

1.1 Motivation

In logic, we study properties of sentences, such as truth, falsity, necessity, and contin-
gency, relations between sentences, such as entailment and consistency, and practices
involving sentences, such as argumentation. However, by sentences, we normally
only mean sentences of a certain particular kind: declarative sentences—statements,
and their counterparts in formal languages.

There are principled reasons for this restriction, which is worth examining. If
we approach logic from the semantic side, the focus is on truth: the meaning of
logical operators is captured in terms of how the truth conditions of a compound are
derived from the truth conditions of its components, and the central notion of logical
entailment is construed in terms of truth preservation: an entailment is valid if the
truth of the premises guarantees the truth of the conclusion under every interpretation
of the non-logical symbols. If we approach logic from the syntactic side, the focus is
on inference: on the basic rules that govern inference with certain logical constants,
on the ways these rules can be used to build proofs, and on the information encoded
by these proofs.

In this book, we are concerned with interrogative sentences—questions, and their
counterparts in formal languages. Questions play a crucial role in language in many
ways (see Ciardelli et al. [1] for an overview), and accordingly, they are a major
topic in linguistics. By contrast, in spite of some amount of work, in logic they have
remained somewhat marginal. In view of the central concerns of logic as outlined
above, this should not surprise us. Take, for instance, the question what the capital
of Spain is. It is intuitively unclear what it would mean to ask whether this question
is true or false. Arguably, questions are not the sort of sentences which are capable
of being true or false—in technical jargon, they are not truth-apt. And given that
the semantic notion of logical entailment is construed in terms of truth, entailment
claims are not applicable to questions either. Things do not look more promising
if we start from the syntactic side. It is intuitively unclear what it would mean to
suppose or to conclude a question—say, what the capital of Spain is—as part of an
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inference, and what it would mean for an inference involving such moves to count as
valid. So, there are serious reasons why questions have played only a marginal role in
logic: it would seem that those notions which are the central concern of logic—truth,
entailment, valid inference—are simply not applicable to questions.

The aim of this book is to show that in spite of these considerations, the scope
of logic can in fact be extended to questions in a way which is conceptually natural,
formally well-behaved, and theoretically fruitful. We will see that, if we switch from
the standard truth-conditional perspective on semantics to an informational perspec-
tive, it is possible to give a unified semantic analysis of statements and questions.
Building on this foundation, called inquisitive semantics, it is possible to design
conservative extensions of classical propositional, predicate, and modal logic that
encompass questions alongside statements.

A first benefit of this uniform approach is the following. Logic is supposed to pro-
vide an analysis of certain logical items in language, including connectives, quanti-
fiers, and modalities. Some of these items can be combined not only with statements,
but also with questions:

(1) a. Alice rented a car and she booked a hotel.
b. What kind of car did Alice rent, and which hotel did she book?

(2) a. If Alice wins a free trip, she’ll go to Athens.
b. If Alice wins a free trip, where will she go?

(3) a. Every student read a book.
b. What book did every student read?

(4) a. Bob knows that Alice lives in London.
b. Bob knows where Alice lives.

The standard analysis of these items in terms of truth conditions only captures their
role in the a-sentence of each pair. Our approach will yield a more general analysis
which, while coming down to the standard analysis in the case of statements, allows
us to understand how these items work uniformly across statements and questions.

A second benefit of the new semantic foundation is that it allows us to extend
the central notion of logic, the notion of entailment, beyond statements, so that we
can study entailment relations involving questions as premises or as conclusions.
As it turns out, this in fact results in an exciting generalization of the scope of
logic: several interesting logical notions turn out to be instances of logical entailment
involving questions as premises and/or as conclusions. Among these, perhaps the
most interesting case is given by the relation of dependency. This is a ubiquitous and
important logical relation, which we are going to discuss in detail in the next chapter.
For now, let me give an impressionistic illustration. Here is an example of a standard
entailment, involving statements.

(5)

{
Alice and Bob live in the same city
Alice lives in Munich

}
|= Bob lives in Munich
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Here is one way to read this claim: the information that Alice and Bob live in
the same city, combined with the information that Alice lives in Munich, yields the
information that Bob lives in Munich. Once questions are brought into the picture,
we are going to have entailments such as the following.

(6)

{
Alice and Bob live in the same city
Where Alice lives

}
|= Where Bob lives

We can read this as follows: the information that Alice and Bob live in the same
city, combined with the information where Alice lives, yields the information where
Bob lives.1 Notice the difference between the two examples: in (5) we are concerned
with a relation holding between three specific pieces of information. The situation
is different in (6): what this entailment amounts to is that, given the information that
Alice and Bob live in the same city, any information determining where Alice lives
yields some corresponding information determining where Bob lives. As we will
discuss, we can see this as a relation involving two types of information—think of
them as type ‘Alice’s place of residence’ and ‘Bob’s place of residence’. Entailment
captures the fact that, given the information that Alice and Bob live in the same city,
information of the first type yields information of the second type.

Realizing that dependencies are entailments is not just a neat insight, but has
very concrete repercussions: it allows us to apply to dependency the many tools and
ideas that logicians have developed for entailment. Here is a prominent example: to
track entailment, in logic we develop proof systems. Since dependencies are cases
of entailment, it will be possible to formally prove dependencies in a proof system
equipped with questions. In fact, we will see that such proofs have an interesting
kind of constructive content, reminiscent of the proofs-as-programs interpretation
of intuitionistic logic: a proof of a dependency encodes a method for computing the
dependency, i.e., for turning answers to the question premises into an answer to the
question conclusion.

This will take us to consider in more detail the role of questions in proofs. It will
turn out that, if understood in the right way, using questions in a proof is far from
meaningless: on the contrary, questions turn out to be powerful tools for inference.
A question may be used in a proof as a placeholder for arbitrary information of the
corresponding type. For instance, in our proof systems we will be able to assume the
question where Alice lives; in doing so, we are assuming an arbitrary specification of

1 Some might wonder why in these illustrations we use the indirect form of the question, “where
Alice lives” instead of the direct form, “where does Alice live?”. The two forms arguably share the
same semantic content (see Belnap [2], Ciardelli [3], Groenendijk and Stokhof [4]). However, the
direct version of the question is conventionally associated not only with a certain semantic content,
but also with a certain force, related to the speech act of asking. Just like we distinguish the content
of a statement from its assertion, it is crucial to distinguish the content of a question from the act of
asking it. In our view, the development of a logic of questions has been hindered by a failure to make
this distinction. A question content has many roles to play besides providing a content for asking
acts: it plays a role in compositional semantics, in thought, and crucially for us, it stands in logical
relations to other contents (for detailed discussion of this point see Ciardelli [4]). Throughout the
book we tend to use the indirect form in our examples to emphasize that we are concerned with the
semantic content of questions, and not with the speech act of asking the question.
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Alice’s place of residence, without assuming anything more specific about what this
information is. On that basis, we can then make inferences to what other information
we are ensured to have. When we conclude, say, the question where Bob lives,
that means that, given the assumptions, we are guaranteed to have information that
determinesBob’s place of residence. Thus, in our proofs, a question essentially serves
as a placeholder for arbitrary information of a certain type, in much the same way
as an individual constant may be used in first-order proofs as a placeholder for an
arbitrary individual satisfying a certain formula.

Thus, what we aim to show in this book is that extending logic to questions is
not only possible, but also very interesting from a purely logical perspective: once
we bring questions into play, we can apply the tools of logic to analyze new and
important kinds of logical notions, and to regiment new kinds of inferences.2

1.2 Content and Structure of the Book

In this book, we will substantiate the claims made in the previous section by showing
how classical propositional and predicate logic can be extended in a principled way
with questions. We will illustrate how the resulting systems can be used to formal-
ize various classes of questions and to investigate logical relations involving them.
We will explore in detail the meta-theoretical properties of these systems and their
philosophical significance, also discussing alternative design choices at some crucial
points. We will present complete proof systems for inquisitive propositional logic
and for an important fragment of inquisitive first-order logic, and we will use these
proof systems to illustrate how questions allow us to manipulate arbitrary informa-
tion in inferences. We will also highlight some important open problems in the area,
with the aim of stimulating further research on these problems.

We begin in Chap.2 by laying out the foundations of inquisitive logic, introducing
the key notions of the approach and discussing the significance of entailment in our
generalized setting. In Chap. 3 we show how classical propositional logic can be
extended with questions and study the meta-theoretic properties of the resulting
inquisitive propositional logic. In Chap.4 we develop a natural deduction system
for this logic, prove its completeness, and make some more general points about
the role of questions in logical inferences. In Chap. 5 we turn to predicate logic, in
which a much broader variety of questions becomes expressible; we define and study
inquisitive first-order logic, and present some important open problems. In Chap.6
we present a natural deduction system for inquisitive first-order logic and show that
it is complete for an important fragment of the logic, though possibly incomplete
for the logic as a whole. In Chap.7, we relate inquisitive logic to another recently

2 A further, independent reason why questions are interesting from the perspective of logic comes
from looking at modalities. By having questions and question-embeddingmodalities, we can extend
the scope of modal logic to capture a range of interesting question-directed modal notions. We leave
a full presentation of this aspect of inquisitive logic for a future occasion, limiting ourselves to a
preview in Chap.8.
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developed field of logic, namely, dependence logic (Väänänen [5]), which extends
classical predicate logic with formulas expressing dependencies between variables.3

Finally, in Chap.8 we give a preview of the potential of combining inquisitive logic
with modal logic—a much larger topic whose full development must be left for
another occasion.
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Chapter 2
Foundations of Inquisitive Logic

In this chapter, we lay the foundations for our enterprise. In particular, we explain
how an information-based semantics, inquisitive semantics, allows us to interpret
statements and questions in a uniformway and to define a general notion of entailment
in which questions can occur as premises and conclusions. We explore in detail
the significance of this generalized notion of entailment, showing in particular that
it captures as a special case an important logical notion that we call dependency.
We explain how questions can be viewed as denoting information types and how
inquisitive entailment can thus be seen as generalizing entailment from a notion
relating pieces of informations to one relating information types. We also show how
a logic based on inquisitive semantics can be equipped in a canonical way with
an implication connective that internalizes, in a precise sense, the meta-language
entailment relations into the object language. At the end of the section we motivate
in more detail some of our setup choices and we relate our approach to previous work
on questions in logic.

Throughout this chapter, we deliberately leave some notions underspecified. In
particular, we will not specify a formal language or a precise notion of model. This
will allow us to focus on the main general ideas underlying the approach and on
those aspects of the theory that follow from these ideas. The missing details can
then be filled in in different ways, thereby instantiating the general picture to many
concrete logical systems. Thus, what we are describing in this chapter can be seen
as a general template that underlies the different inquisitive logics to be investigated
in the subsequent chapters, as well as many other inquisitive systems that we are not
going to cover.

Our presentation of inquisitive semantics in this chapter differs from the one to
be found in the more language-oriented expositions—in particular, from the one in
the inquisitive semantics textbook [1]. The difference concerns how the semantics is
motivated aswell as how the basic notions are introduced. In terms ofmotivations, the
presentation in Ciardelli et al. [1] is driven by considerations about natural language
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semantics and discourse. By contrast, in this chapter—and in the book at large—we
will argue for the inquisitive approach purely on the basis of motivations stemming
from formal logic. Relatedly, the presentation in Ciardelli et al. [1] proceeds by
introducing inquisitive contents in terms of their discourse effects (namely, providing
information and raising issues). As a derivative notion, we get a semantic relation
called of support between information states and sentences. By contrast, here we
will take the support relation as primitive and we will understand this notion in a
way which is independent of discourse effects, and arguably more fundamental.1

2.1 Dependency

Let us start outwith a simple examplewhichwill help us illustrate the ideas introduced
as we go through this chapter. Consider a regular die with six faces. Let us say that
the outcomes 1 and 2 are in the low range, 3 and 4 in the middle range, and 5 and 6
in the high range. Now consider the following questions about the outcome of a die
roll.

parity Whether the outcome is even or odd

range What the range of the outcome is (low, middle, or high)

outcome What the outcome is

These three questions are logically related in an interesting way: as soon as the first
two questions are settled, the third is bound to be settled as well; that is, as soon as
we settle the outcome’s parity (even or odd) and its range (low, middle, or high),
we thereby settle exactly what the outcome is. We say that in the given situation,
the questions parity and range determine the question outcome, and we refer to this
relation as a dependency.2 Dependency is a notion of great importance. Let us briefly
examine why.

Take the setting of experimental science. Consider the range of experiments that
we can perform in a certain context. We can think of each experiment as a procedure
that yields the answer to a certain question. Let us call a question experimental if it
can be directly settled by performing an experiment. Then to ask whether a question

1 We will not make any assumptions about the role that this relation plays in communication. Our
perspective is compatible with different views about the semantics/pragmatics interface, including
ones that depart from inquisitive semantics “orthodoxy”.
2 In previous literature on questions in logic, the same notion has been considered under the name
containment (see Hamblin [2] and Belnap and Steel [3]). We use dependency, in part for the sake
of consistency with other areas, such as dependence logic and database theory. This notion of
dependency is connected to, but not the same as, other important notions of dependency, including
causal dependency, explanatory dependency, and ontological dependency (grounding). We will not
be concerned with these other notions here, but it is an interesting task for future work to explore
whether they can also be viewed as involving questions and how exactly they relate to the notion
of dependency which we focus on.
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is determined by the set of experimental questions is to ask whether it is possible,
in principle, to answer that question by our empirical means. And of course, an
analogous issue arises not just with experiments, but whenever there is a distinction
between a range of “viable” questions, those that can actually be asked, and the
“target” questions that one is interested in.3 One can also start at the other hand:
suppose we are interested in resolving a certain target question. Then it is interesting
to ask if a certain set of viable questions logically determines the target question:
for that tells us whether the set provides an inquiry strategy which is guaranteed to
achieve our goal.

Turning to theoretical science, a crucial aspect of a scientific theory is its predictive
power. We can characterize this as the power to yield answers to certain questions
on the basis of answers to other questions. Thus, the predictive power of a theory
lies precisely in the dependencies that hold on the basis of it. For example, classical
mechanics can be characterized as predictive of a body’s position at a time t given
(i) the body’s position and velocity at a different time t0, (ii) the body’s mass and
(iii) the force field in which the body moves. What this amounts to is that against the
background of classical mechanics, any way of settling the questions (i)–(iii) yields
a corresponding answer to the question of where the body is located at time t .

In fact, much of the enterprise of natural sciences such as physics and chemistry
consists in finding out what dependencies hold in nature: on the basis of what factors
can we predict the trajectory of a planet, the temperature of a gas, or the speed of a
certain chemical reaction? For instance, one of the earliest achievements of modern
science was the discovery that, absent air resistance, the time that a body dropped
near the Earth surface employs to reach the ground is completely determined by the
height from which it is dropped. This is an instance of dependency in our sense: one
question, from what height the body is dropped, determines another question, how
long it takes to hit the ground.

A further illustration comes from database theory. A relational database (say,
the database of a company) consists of entries (say, one for each employee) where
each entry gives a value to a number of attributes (social security number, surname,
department, salary, etc). We can think of the attributes as questions, with each entry
providing an answer to each question. Certain dependencies are expected to hold
between different attributes: for instance, the social security number of an employee
should uniquely determine their surname, but not the otherway around.Keeping track
of these dependencies plays a crucial role in strategies designed to efficiently organize
the data, which is why dependencies have received much attention in database theory
(for a survey, see Fagin and Vardi [4]).

In this chapter, we will show that the relation of dependency is nothing but a facet
of the central logical notion of entailment, once this notion is generalized so that it

3 A perfect example is provided by games such as Guess Who and Mastermind, where the goal of
a player is to find out the answer to a target question by asking only questions of a certain kind. In
Guess Who, the target question is “who is the person on the opponent’s card?” and the admissible
questions are yes/no questions. In Mastermind, the target question is “what is the secret code?”, and
the admissible questions have the form “how many pegs in this particular code appear in the same
position in the secret code, and how many appear in a different position in the secret code?”.
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applies not only to statements, but also to questions. The study of dependency thus
pertains to logic in the strictest sense, and many standard notions and techniques
of logic can be fruitfully applied to study dependencies in the context of a logic
equipped with questions.

We begin in the next section by explaining our strategy for bringing questions
within the scope of logic.

2.2 From Truth Conditions to Support Conditions

The standard approach to logic is centered around the notion of truth. To give a seman-
tics for a logical language is to give a recursive specification of truth conditions—to
lay out, for each sentence of the language, what a state of affairs must be like in
order for the sentence to count as true. Formally, semantics thus takes the form of a
relation

w |= α

where α is a sentence and w is a semantic object that models a state of affairs. Let
us refer to such an object as a possible world.

The exact nature of the objects that play the role of possible worlds in this schema
varies. Often, a possibleworldmay be identified simplywith amodel for the language
at stake; for instance, if α is a sentence of predicate logic, then w may be a standard
relational structure. However, in this book we will build on intensional semantics,
an approach which is designed to represent a whole variety of states of affairs in
a single model. In this approach, a model M comes with an associated set WM of
possible worlds, primitive entities which stand for different states of affairs.

The central notion of logic, entailment, is then understood in terms of necessary
preservation of truth: an entailment is valid if the conclusion is true whenever the
premises are all true. Focusing of the case of a single premise:

α |=truth β ⇐⇒ for all models M and worlds w ∈ WM , w |= α implies w |= β.

This perspective naturally leads to the view that the notion of entailment—arguably
the central concern of the field of logic—is only meaningful for statements. After
all, if entailment is defined as necessary preservation of truth, it is only applicable
to sentences which are truth-apt, i.e., capable of being true or false. And, arguably,
being truth-apt is a property that distinguishes statements from other sentence types,
like questions and commands.4

4 As a matter of fact, we will argue below that our semantics does suggest a natural way to extend
the notion of truth to questions—something that has been proposed before by Belnap [5] and Belnap
and Steel [3]. This, however, does not undermine our argument in this section: the truth conditions
of a question, understood in the technical sense below, heavily underdetermine its semantics, and
as such they tell us little about the logical relations between the question and other sentences.
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However, this truth-based construal of entailment is not the only possibility. An
alternative conception arises fromamore information-orientedperspective on seman-
tics. Rather than taking semantics to specify in what circumstances a sentence is true,
wemay take it to specify what information it takes to settle, or establish, the sentence.
On this view, semantics takes the form of a relation

s |= ϕ

where ϕ is a sentence and s is a semantic object that models a body of information.
We will refer to s as an information state and we will read the expression s |= ϕ as
“s supports ϕ”.5

As in the case of possible worlds, different options are available as to the formal
modeling of information states that play a role in this semantics. Intuitively, an infor-
mation state encodes certain information about what things are like, and thereby it
determines a distinction between two kinds of states of affairs: those that fit the avail-
able information—and which are, thus, live possibilities according to the state—and
those that do not fit the available information—and which are ruled out by the state.
Thus, at a minimum, we want an information state s to determine a corresponding
set of live possibilities, live(s) ⊆ WM . For our purposes in this book, this is in fact all
we need to know about an information state. Therefore, we may simply identify an
information state with a set of possible worlds—the corresponding set of live possi-
bilities. Conversely, given a set s of possible worlds, we can think of it as encoding
a body of information: the information that the state of affairs corresponds to one of
those in s. Thus, throughout this book, information states are simply modeled as sets
of possible worlds.6

Definition 2.2.1 (Information states) An information state in a model M is a subset
s ⊆ WM .

Notice that no state of affairs fits an inconsistent body of information. Therefore, the
set of live possibilities corresponding to inconsistent information is the empty set.
Conversely, if a body of information is consistent, there is some state of affairs that fits
that information; therefore, the corresponding set of live possibilities is non-empty.

Definition 2.2.2 (Inconsistent state) The inconsistent information state is the empty
set of worlds, ∅. An information state is consistent if it is non-empty.

5 Information-oriented semantics have been considered often in the logic literature, especially as
a starting point for various non-classical logics (e.g., [6–10]), but sometimes also as alternative
foundations for classical logics (e.g., [11–15]). As far as the treatment of statements is concerned,
our system will be somewhat similar to the ones in the latter tradition, though with one difference,
discussed in detail in Sect. 2.8. To my knowledge, no previous attempt has been made to use such
a semantic foundation to extend the scope of logic to questions.
6 This way of modeling information states goes back at least to Hintikka [16] and is standardly
adopted in logic, formal semantics, and philosophy of language. An alternative approach, instanti-
ated by the references in the previous footnote, treats information states as primitive entities specified
by a model. The different merits of these approaches, and the reasons why we build on the first
here, are discussed in detail in Sect. 2.8.
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Fig. 2.1 Three information states in the die roll scenario, ordered from the weakest (s¬six) to the
strongest (sone)

Information states can be ordered naturally according to how much information they
contain. If t contains at least as much information as s, then every world which is
ruled out by s is also ruled out by t ; therefore, the set of live possibilities for t is a
subset of the set of live possibilities for s, and so t ⊆ s. Conversely, if t ⊆ s, then t
rules out every world that s rules out and possibly more; given that the only aspect
of information that we are taking into account is its potential to circumscribe a set
of possibilities, we should count t as being at least as strong as s. Thus, we view t
as containing at least as much information as s just in case t ⊆ s; we then say that t
is an enhancement of s, or that t implies s.

Definition 2.2.3 (Enhancement ordering) Given two information states s and t , we
say that t is an enhancement of s in case t ⊆ s.

Let us illustrate this with an example. We can model our die scenario as involving
a logical space of six possible worlds w1, . . . , w6, corresponding to the six possible
outcomes of the die roll. Now here are three things wemight know about the outcome
of the roll:

(1) a. The outcome is not six.
b. The outcome is odd.
c. The outcome is 1.

If taken as complete descriptions of the available information, these correspond to
three information states s¬six, sodd, sone. The corresponding sets of live possibilities
are shown in Fig. 2.1. Note that these states are ordered from the weakest, s¬six, to
the strongest, sone. The latter is a state of complete information: it determines exactly
what the actual state of affairs is, and it is maximally strong among the consistent
states.

Importantly, a connection should obtain between the truth conditions of a state-
ment α and its support conditions: this is because, on the intended understanding
of the support relation, to establish that α is just to establish that the world is one
where α is true. This means that s should count as supporting α just in case all live
possibilities for s are worlds where α is true. To formulate this precisely, it is useful
to introduce the following technical notion.
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Definition 2.2.4 (Truth set) The truth-set of a statement α in a model M , denoted
|α|M , is the set of worlds in M where α is true:

|α|M := {w ∈ WM | w |= α}.

Then the intended connection between truth conditions and support conditions can
be spelled out as follows.

Constraint 2.2.5 (Truth-Support Bridge) Let α be a statement and M a model. For
any information state s ⊆ WM we should have:

s |= α ⇐⇒ ∀w ∈ s : w |= α.

Or, equivalently:
s |= α ⇐⇒ s ⊆ |α|M .

As an illustration, consider the following statement in the die roll scenario:

(2) The outcome is not two.

This statement should count as supported by the information states sone and sodd,
since it is true at every live possibility in these states. But it should not be supported
by s¬six, since it is not true at w2, which is a live possibility in s¬six.

The Truth-Support Bridge above implies that the truth conditions of a statement
determine its support conditions. Moreover, if we spell out this connection in the
special case that s is a singleton state {w}, we find that the converse is also true,
namely, that support conditions determine truth conditions:

w |= α ⇐⇒ {w} ⊆ |α|M ⇐⇒ {w} |= α.

Intuitively, this says that α is true at a world w just in case the information that w

is the actual world implies that α. Thus, for statements, truth conditions and support
conditions are inter-definable.

Let us now turn to entailment. Our informational perspective comes with a natural
construal of entailment as preservation of support: an entailment is valid if the con-
clusion is supported by any information state that supports the premises. Focusing
for simplicity on the case of a single premise:

α |=info β ⇐⇒ for all models M and info states s ⊆ WM , s |= α implies s |= β.

It follows from the Truth-Support Bridge that the two construals of entailment deter-
mine the same relation among statements:

α |=truth β ⇐⇒ α |=info β.



14 2 Foundations of Inquisitive Logic

To see this, suppose α |=truth β. Consider an information state s supporting α: by the
Truth-Support Bridge, this means that α is true everywhere in s. Since α |=truth β, β
must be true everywhere in s, too. Thus, using again the Bridge, β must be supported
in s. This shows that α |=info β. Conversely, suppose α |=info β. Consider a world w

where α is true. By the Truth-Support Bridge, {w} is a state which supports α. Since
α |=info β, {w}must also support β. Thus, using again the Bridge, β is true atw. This
shows that α |=truth β.

Thismeans that, given our understanding of the support relation, construing entail-
ment as preservation of support does not lead to a non-classical logic; instead, it pro-
vides an alternative semantic foundation for classical logic. Given the equivalence
between the truth-conditional construal of entailment and the informational one, it
is not surprising that the former, which is arguably simpler, has been taken as the
standard one. However, the informational approach has a crucial advantage for our
purposes: it extends naturally beyond statements to cover also questions. Indeed,
while it is not clear what it means for a question to be true or false in a given state
of affairs, there is a clear sense in which a question can be said to be settled, or not
settled, by a given body of information. To illustrate this point, consider again the
three questions from our die roll example, repeated below.

parity Whether the outcome is even or odd

range What the range of the outcome is (low, middle or high)

outcome What the outcome is

Consider the model from Fig. 2.1. What information states from this model count
as settling each of these questions? The answer is straightforward. To settle the
first, we need either enough information to conclude that the outcome is even (s ⊆
{w2, w4, w6}), or enough information to conclude that the outcome is odd (s ⊆
{w1, w3, w5}). To settle the second, we need either the information that the outcome
is in the low range (s ⊆ {w1, w2}), or that it is in the middle range (s ⊆ {w3, w4}),
or that it is in the high range (s ⊆ {w5, w6}). To settle the third we need information
that determines exactly which world obtains (s ⊆ {wi } for some i). Thus, the support
conditions of these questions in our model are:

(3) a. s |= parity ⇐⇒ s ⊆ {w1, w3, w5} or s ⊆ {w2, w4, w6};
b. s |= range ⇐⇒ s ⊆ {w1, w2} or s ⊆ {w3, w4} or s ⊆ {w5, w6};
c. s |= outcome ⇐⇒ s ⊆ {wi } for some i ≤ 6.

These support conditions are visualized in Fig. 2.2, which depicts the maximal sup-
porting states for the three questions. In each case, the supporting states are the sets
in the picture, as well as their subsets.

This illustrates how support conditions are obviously meaningful for questions.
Moreover, there are good reasons to regard support conditions as a natural candidate
for the role of semantic contents of questions. Here is one: a key role for questions
in communication is that they allow speakers to formulate requests for information.
The semantic content of a question should play a crucial role in determining the sat-
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Fig. 2.2 The maximal supporting states for our three example questions

isfaction conditions for such a request—i.e., in specifying what information is being
requested by asking it. If the content of the question lies in its support conditions,
which specify what informationmust be available for the question to count as settled,
then it is clear how this role is played: the request is satisfied just in case a supporting
state is established.

2.3 A General Notion of Entailment

We saw that two different perspectives are possible on the relation of entailment:
the standard one based on truth, and an informational one based on support. We saw
that these two perspectives are extensionally equivalent for statements. However
we saw that the support relation can be used to interpret not only statements, but
also questions. As a consequence, if entailment is characterized in terms of support,
then it extends in a natural way to questions. We can thus consider a more general
entailment relation, � |=info ψ, holding between a set � of sentences, which may
include questions as well as statements, and a sentence ψ, which may be either a
statement or a question:

� |=info ψ ⇐⇒ for all models M and states s ⊆ WM , s |= � implies s |= ψ

where s |= � abbreviates ‘s |= ϕ for all ϕ ∈ �’. Since this notion of entailment will
be the one we will work with in the rest of the book, we will henceforth drop the
subscript infowhenever there is no risk of ambiguity. As usual, in terms of entailment
we can also define notions of logical equivalence and logical validity:

– ϕ and ψ are logically equivalent, denoted ϕ ≡ ψ, if ϕ |= ψ and ψ |= ϕ;
– ϕ is logically valid, denoted |= ϕ, if ϕ is entailed by the empty set.

Spelling out the definitions, we find that ϕ and ψ are logically equivalent if they are
supported by the same information states in every model, and thatϕ is logically valid
if it is supported by every state in every model.
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2.3.1 Significance of Entailments Involving Questions

What is the significance of this more general entailment relation? Focusing for now
on the case of a single premise, we have four possible entailment patterns. Let us
examine and illustrate briefly each of them.

– Statement-to-statement. If α and β are statements, then α |= β expresses the fact
that settling that α implies settling that β. As we have already discussed, given the
Truth-Support Bridge, this coincides with the familiar, truth-conditional notion of
entailment: α |= β holds in case β is true whenever α is.

– Statement-to-question. If α is a statement and μ is a question, then α |= μ means
that settling that α implies settling the question μ. Thus, we may regard α |= μ as
expressing the fact that α logically resolves μ.
Example: the statement ‘Galileo discovered Ganymede in 1610’ entails the ques-
tion ‘In what year did Galileo discover Ganymede?’, as well as the question ‘Did
Galileo discover anything in 1610?’.

– Question-to-statement. If μ is a question and α is a statement, then μ |= α means
that settling the question μ, no matter how, implies settling that α. We thus regard
μ |= α as expressing the fact that μ logically presupposes α.
Example: the question ‘In what year did Galileo discover Ganymede?’ entails the
statement ‘Galileo discovered Ganymede’.

– Question-to-question. If μ and ν are both questions, then μ |= ν expresses the fact
that settling μ implies settling ν. This is just the relation of dependency that we
discussed in the previous section, but now in its purely logical version, since all
models—not just the intended one—are taken into account. Thus,μ |= ν expresses
the fact that μ logically determines ν.
Example: the question ‘In what year did Galileo discover Ganymede?’ entails the
question ‘In what century did Galileo discover Ganymede?’.

Thus, support semantics gives rise to an interesting general notion of entailment,
which covers questions as well as statements and which unifies four interesting
logical notions: (i) a statement being a logical consequence of another; (ii) a statement
logically resolving a question; (iii) a question logically presupposing a statement;
and, finally, (iv) a question logically determining another.

2.3.2 Entailment in Context

In ordinary situations, it is rarely the purely logical notion of consequence that we
are concerned with. Rather, we typically take many facts about the world for granted
and then assess whether on that basis, something follows from something else. We
say, for instance, that the fact that Galileo discovered some celestial bodies follows
from the fact that he discovered some of Jupiter’s moons; in doing so, we take for
granted the fact that Jupiter’s moons are celestial bodies; worlds in which Jupiter’s
moons are not celestial bodies are simply disregarded.
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The same holds for questions: whenwe are concernedwith dependency, it is rarely
purely logical dependency that is at stake. Rather, we are usually concerned with the
relations that one question bears to another, given certain background facts. In our
initial example, the background facts include what the possible outcomes of the roll
are, what outcomes count as low, middle, and high, etc. It is against this contextual
background that the dependency holds.

In order to capture these relations, besides the purely logical notion of entailment
that we discussed, we will also introduce notions of entailment relative to a given
model M , and relative to a given context. We will model a context simply as an
information state s. In assessing entailment relative to s, we take the information
embodied by s for granted. This means that, to decide whether an entailment holds
or not, only worlds in s, and states consisting of such worlds, are taken into account.

Definition 2.3.1 (Contextual entailment) Let M be a model and let s ⊆ WM be an
information state. We let:

� |=s ψ ⇐⇒ for all t ⊆ s, t |= � implies t |= ψ.

We write ϕ ≡s ψ in case ϕ |=s ψ and ψ |=s ϕ, i.e., in case ϕ and ψ are supported by
the same states t ⊆ s. We write |=M and≡M instead of |=WM and≡WM for entailment
and equivalence relative to the universe WM of the model.

Contextual entailment captures relations of consequence, resolution, presupposition,
and dependency which hold against the background of a specific context.

For an illustration, consider again our die roll example. Let M be the model
formalizing the scenario. We have:

parity, range |=M outcome.

We can see this visually from Fig. 2.2: if a state settles parity then it is included in one
of the rows of the model; if a state settles range, it is included in one of the columns;
thus, if a state settles both parity and range, it must be included in a singleton, which
means that it settles outcome.

The fact that this contextual entailment holds amounts precisely to our initial
observation that a certain dependency holds in the described context: the outcome’s
parity and its range jointly determine what the outcome is. Thus, once we extend the
notion of entailment to cover questions, dependencies turn out to be entailments—
more precisely, question entailments in context.

2.3.3 Conditional Dependencies

In our die scenario, the question range does not by itself determine the question
outcome. However, given the information that the outcome is a prime number, range
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Fig. 2.3 Illustration of a conditional dependency: given that the outcome is prime, the range of the
outcome determines the outcome

does determine outcome: if the outcome is in the low range it is two, if it is in the
middle range it is three, and if it is in the high range it is five. If prime denotes the
statement that the outcome is prime, then we can say that in the given context, range
determines outcome conditionally on prime (see Fig. 2.3).

Generalizing, we can give the following definition.

Definition 2.3.2 (Conditional dependency) In a state s, a question μ determines
a question ν conditionally on a statement α if μ determines ν relative to the the
α-worlds in s. In symbols:

μ |=α
s ν ⇐⇒ ∀t ⊆ s ∩ |α|M : t |= μ implies t |= ν.

It turns out that conditional dependencies can also be captured as instances of entail-
ment: it suffices to regard the condition α as an additional premise alongside the
determining question. That is, we have:

μ |=α
s ν ⇐⇒ α,μ |=s ν.

We can show this as follows, using the Truth-Support Bridge, which applies since α
is a statement:

μ |=α
s ν ⇐⇒ ∀t ⊆ s ∩ |α|M : t |= μ implies t |= ν

⇐⇒ ∀t ⊆ s : t ⊆ |α|M and t |= μ implies t |= ν

⇐⇒ ∀t ⊆ s : t |= α and t |= μ implies t |= ν

⇐⇒ α,μ |=s ν.

Thus, for instance, our example of conditional dependency above amounts to the
entailment:

prime, range |=M outcome.

The story extends straightforwardly to dependencies involving multiple determining
questions and multiple conditions. The upshot is that a contextual entailment

�,� |=s ν
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where � is a set of statements, � a set of questions, and ν a question, captures
a conditional dependency: relative to s, the questions in � jointly determine the
question ν given the statements in �.

A completely analogous story can be told when we replace contextual entailment
by logical entailment: a relation

�,� |= ν

captures a purely logical conditional dependency: in any state of any model, the
questions in � jointly determine the question ν given the statements in �.

2.4 Questions as Information Types

In this section we show that both statements and questions may be regarded as
describing information types: statements describe singleton types, which may be
identified with specific pieces of information, while questions describe proper, non-
singleton information types. This shows how the support approach may be viewed as
generalizing the classical notion of entailment from pieces of information to arbitrary
information types.

2.4.1 Inquisitive Propositions

In truth-conditional semantics, the content of a sentence α in a model M is encoded
by its truth-set, that is, by the set of all worlds in M where α is true:

|α|M = {w ∈ WM | w |= α}.

Similarly, in support-conditional semantics, the content of a sentenceϕ in a model M
is encoded by its support-set, that is, the set of all states in M where ϕ is supported:

[ϕ]M = {s ⊆ WM | s |= ϕ}.

The support-set of a formula is a set of information states of a special form. Indeed,
suppose an information state s settles a sentence ϕ: then, any information state t that
enhances s will also settle ϕ. That is, the relation of support is persistent.7

7 At this point, this may be seen as a stipulation about the support relation, connected to the intended
interpretation of this relation. Later on in the book, when we will consider specific formal systems,
persistency will be proved as a fact about these systems. Note that in the case of statements,
persistency follows from the Truth-Support Bridge.

It is worth pointing out that not all information-based semantics are persistent. E.g., the data
semantics of Veltman [10] contains sentences of the form ‘may p’ that are accepted by a body of
information s, not if some information is available in s, but rather if p is compatible with s, i.e., if
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Persistency: if t ⊆ s, s |= ϕ implies t |= ϕ.

This implies that the support-set of a sentence [ϕ] is always downward closed, that
is, if it contains a state s, it also contains all stronger states t ⊆ s.

Downward closure: if t ⊆ s, s ∈ [ϕ]M implies t ∈ [ϕ]M .

Another way to state this condition uses a downward closure operation (·)↓. In words,
the downward closure of a set S of info states, denoted S↓, is the set of those states
which imply some element of S.

Definition 2.4.1 (Downward closure) If S ⊆ ℘(WM), the downward closure of S
is the set:

S↓ = {s ⊆ WM | s ⊆ t for some t ∈ S}.

It is easy to see that S↓ is always a downward closed set of states, and moreover,
it is the smallest downward closed set of states which contains S. The fact that the
support-set [ϕ]M of a formula is downward closed may then be expressed succinctly
as follows.

Downward closure, restated: [ϕ]M = ([ϕ]M)↓.

Downward closure is not the only general feature of the support-set of a sentence.
Consider the empty information state, ∅. This represents an inconsistent body of
information, which is not compatible with any possible world. It follows from the
Truth-Support Bridge that ∅ supports any statement. This may be seen as a natural
semantic version of the ex-falso quodlibet principle of classical logic. Similarly, it
is natural to assume that ∅ also trivially supports any question, so that for all ϕ we
have the following.8

Semantic ex-falso: ∅ ∈ [ϕ]M .

We will refer to a set of states which contains ∅ and satisfies downward closure as
an inquisitive proposition. Now, for a downward closed set of states P , we have
∅ ∈ P ⇐⇒ P �= ∅. Thus, we can define inquisitive propositions as follows.

Definition 2.4.2 (Inquisitive propositions) An inquisitive proposition in a model M
is a non-empty and downward closed set P ⊆ ℘(WM) of information states.

s fails to establish ¬p. Clearly, it is possible for p to be compatible with s but not with a stronger
information state t , in which case ‘may p’ is accepted by s but not by the stronger state t . Many
recent semantics for epistemic modals are in the same spirit (see, among others, [17–19]). It is not
clear whether the notion of acceptance involved in such accounts should be unified with the notion
of support we are considering here. A conservative extension of inquisitive propositional logic
with non-persistent operators has been studied by Punčochář [20], who also provided a complete
axiomatization of the resulting logic.
8 As for downward closure, at this point this is an assumption about howwe want support to behave.
Once we turn to concrete formal systems, this assumption will be proved as a fact.
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We refer to the support-set [ϕ]M of a sentence ϕ in a model M as the inquisitive
proposition expressed by ϕ in M .

A special role is played by the maximal elements in an inquisitive proposition P .
We will refer to these elements as the alternatives in P .

Definition 2.4.3 (Alternatives) Alt(P) = {s ∈ P | there is no t ⊃ s such that t ∈ P}.
If ϕ is a sentence, we also refer to the alternatives in [ϕ]M as the alternatives for
ϕ in the model M . Thus, the alternatives for ϕ are the minimally informed states
that support ϕ, i.e., those that contain just enough information to settle ϕ. We write
AltM(ϕ) instead of Alt([ϕ]M).

2.4.2 Pieces and Types of Information

Consider the proposition expressed by a statement α. The Truth-Support Bridge
requires the following connection:

s ∈ [α]M ⇐⇒ s ⊆ |α|M .

This implies that [α]M has a uniquemaximal supporting state—aunique alternative—
namely |α|M :

– AltM(α) = {|α|M}.
This unique alternative for α is naturally regarded as a piece of information: the
information thatα is true. To settle thatα is just to establish this piece of information.
By means of downward closure, we can express this as follows:

– [α]M = {|α|M}↓.
Thus, a statement α may be regarded as naming a specific piece of information; the
statement is settled in an information state s if this specific piece of information is
available in s, i.e., if s ⊆ |α|M .

Things are different for questions. For an illustration, consider the question range
of whether the outcome of the die roll is in the low, middle, or high range. This
question has three alternatives in the intended model:

– alow = {w1, w2};
– amid = {w3, w4};
– ahigh = {w5, w6}.
These alternatives correspond to three different pieces of information about the range
of the outcome. We can think of them as three pieces of information which instan-
tiate an information type, and we can think of the question range as naming this
information type. To settle the question is to establish some information or other of
this type. We can express this using the downward closure operation as follows:
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Fig. 2.4 Singleton versus non-singleton information types

– [range]M = {alow, amid, ahigh}↓.
The difference between the case of a statement and that of a question is illustrated
in Fig. 2.4.

Similarly, the question parity—whether the outcome is even or odd—corresponds
to an information type comprising the following pieces of information:

– aeven = {w2, w4, w6};
– aodd = {w1, w3, w5}.
These encode, respectively, the information that the outcome is even, and the infor-
mation that it is odd.

Finally, the question outcome, what the outcome is, corresponds to a type of
information comprising the pieces of informationaone = {w1}, . . . , asix = {w6}, each
providing complete information about what the outcome is.

To make these observations more general, we introduce the following notion.

Definition 2.4.4 (Normality) We say that an inquisitive proposition P is normal in
case P = Alt(P)↓. We say that a sentence ϕ is normal in a model M in case [ϕ]M

is normal.

Note that the inclusionAlt(P)↓ ⊆ P holds for any inquisitive proposition P: indeed,
if s ⊆ a for some a ∈ Alt(P), then since a ∈ P also s ∈ P by downward closure.
Thus, the normality condition amounts to the inclusion P ⊆ Alt(P)↓, i.e., to the
requirement that any element of P be included in a maximal one.

A statement α is always normal, since as we have seen, the Truth-Support Bridge
implies that any state supporting α is included in the truth-set |α|M , which is the
unique alternative for α. The questions in our example are also normal, as are many
other natural classes of questions. However, there is no reason to suppose that ques-
tions will in general be normal. We will encounter some examples of non-normal
questions in Chap.5. If a question μ is normal, then we can naturally think of it as
describing, in a model M , a type of information whose instances are the alternatives
a ∈ AltM(μ). To settle the question is to establish the information corresponding to
one of these alternatives.
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2.4.3 Generators and Alternatives

We have seen that, for many examples of sentences ϕ, we have [ϕ]M = AltM(ϕ)↓,
and in this case, we can think of ϕ as describing a type of information AltM(ϕ).
However, there are many other sets of information states T such that [ϕ]M = T ↓.
For instance, since [ϕ]M is downward closed we have [ϕ]M = ([ϕ]M)↓. So, what is
so special about alternatives?

In this section we give an answer to this question having to do with the way in
which an inquisitive proposition may be regarded as being generated from a given
set of information states.

Definition 2.4.5 (Generators for an inquisitive proposition) A set T of info states
is a generator for an inquisitive proposition P if P = T ↓.

If T is a generator for [ϕ]M , this means that a state s supports ϕ iff s implies some
piece of information a ∈ T . Therefore, we can regard ϕ as standing for the type of
information T .

Any inquisitive proposition P admits a trivial generator, namely, P itself. How-
ever, the examples discussed in the previous subsection show that many inquisi-
tive propositions admit much smaller generators. For instance, in the case of the
statement low that the outcome is low, the proposition [low]M admits a single-
ton generator, namely, AltM(low) = {alow}. In the case of the question range, the
proposition [range]M admits a generator consisting of only three elements, namely,
AltM(range) = {alow, amid, ahigh}.

The generators AltM(low) and AltM(range) are very different from the triv-
ial generators [low]M and [range]M . First, it is easy to check that any element of
AltM(low) and AltM(range) is essential to the representation of the corresponding
proposition: if we were to remove it, the resulting set would no longer be a generator
for the proposition. We say that these generators are minimal. Moreover, the ele-
ments of these generators are pairwise logically independent, in the sense that one
element of the generator never implies another. We will say that these generators are
independent.

Definition 2.4.6 (Minimal and independent generators) Let T be a generator for an
inquisitive proposition P . We say that T is:

– minimal if no proper subset T ′ ⊂ T is a generator for P;
– independent if there are no t, t ′ ∈ T such that t ⊂ t ′.

The following proposition says that minimal and independent generators coincide.

Proposition 2.4.7 (Minimality and independence are equivalent) Let T be a gener-
ator for a proposition P. T is minimal iff it is independent.

Proof Suppose T is independent and consider a proper subset T ′ ⊂ T . Let s ∈
T − T ′. Since s ∈ T and T is a generator for P , we have s ∈ T ↓ = P . However,
since T ′ ⊆ T , s cannot be a subset of any element of T ′: otherwise, it would be a
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subset of some element of T other than itself, contrary to the independence of T .
This means that s /∈ T ′↓. Since s ∈ P , this shows that T ′↓ �= P , i.e., that T ′ is not a
generator for P . Since T ′ ⊂ T was arbitrary, this shows that T is minimal.

For the converse, suppose T is not independent. Then, there are two states s, t ∈ T
such that s ⊂ t . Now consider T ′ := T − {s}. It is easy to verify that T ′ is still a
generator for P , which shows that T is not minimal. �

We will refer to a minimal generator for a proposition as a basis.9

Definition 2.4.8 (Basis for an inquisitive proposition) A basis for an inquisitive
proposition P is a minimal generator for P .

The next proposition shows that there is something special about the alternatives for
an inquisitive proposition: whenever a proposition P admits a basis, the unique basis
for P is Alt(P).

Proposition 2.4.9

– An inquisitive proposition P has a basis iff P is normal;
– If P has a basis, then the unique basis for P is Alt(P).

Proof First suppose P is normal, i.e., P = Alt(P)↓. This means that Alt(P) is a
generator for P . Moreover, notice that by definition, Alt(P) is independent. By the
previous proposition, it follows that Alt(P) is a basis for P .

Moreover, suppose T is another basis for P . Consider any s ∈ Alt(P): since
s ∈ P = T ↓, s must be a subset of some element t ∈ T . But now, since t is in T , t
must also be in T ↓ = P . Since s ∈ Alt(P) is by definition a maximal element in P;
so, we must have s = t , which implies s ∈ T . Since this holds for any s ∈ Alt(P),
we haveAlt(P) ⊆ T . By theminimality of T , this implies T = Alt(P). This shows
that, if P admits a basis, the unique basis is Alt(P).

Conversely, suppose P is not normal, i.e., P �= Alt(P)↓. Since Alt(P)↓ ⊆ P
by the downward closure of P , we must have P � Alt(P)↓. This means that there
must be a state s ∈ P which is not included in any maximal state t ∈ P .

Now consider any generator T for P . Since T is a generator and s ∈ P , we must
have s ⊆ t for some t ∈ T . Now, we know that t cannot be a maximal element of
P . So, let u ∈ P be such that t ⊂ u. Since u ∈ P and T is a generator, u must be a
subset of some t ′ ∈ T . But then we have t ⊂ u ⊆ t ′, that is, t is a proper subset of
t ′, and both t and t ′ are in T . This shows that T is not independent, which by the
previous proposition implies that T is not a basis. Since T was arbitrary, this shows
that there is no basis for P . �

9 For readers acquainted with linear algebra, there is an analogy here with the notion of a basis
for a vector space X : this can be characterized as a set T of vectors that (i) generates X , in the
sense that span(T ) = X and (ii) is minimal, in the sense that no proper subset T ′ ⊂ T generates
X . Moreover, as in our case, instead of (ii) we can equivalently require that T be independent in a
suitable sense.
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This result shows that, if P is normal, we can regard it as being generated in a
canonical way by the set of its alternatives, while if P is non-normal, there is no
minimal choice of a generator for P .10

2.4.4 Entailment as a Relation Among Information Types

Consider again our initial example of a dependency. If we think of the questions
in the examples as names for information types, we may phrase this relation as
follows: information of type parity, combined with information of type range yields
information of type outcome.

In this section, we discuss how bringing questions into play may be viewed as
taking us from a logic of pieces of information to a logic of information types. To
see this, take a specific model M and fix for any sentence ϕ a generator T (ϕ) of
[ϕ]M , so that we can regard ϕ as describing the type of information T (ϕ). If our
sentences are normal, we saw that the canonical and most parsimonious choice is
T (ϕ) = AltM(ϕ), but we will not need this assumption.

The following proposition shows that indeed, entailment holds if any piece of
information of type ϕ implies some piece of information of type ψ.

Proposition 2.4.10 ϕ |=M ψ ⇐⇒ for every a ∈ T (ϕ) there is some a′ ∈ T (ψ)

such that a ⊆ a′.

Proof Suppose ϕ |=M ψ. This amounts to the inclusion [ϕ]M ⊆ [ψ]M . Take an arbi-
trary a ∈ T (ϕ). Using the fact that T (ϕ) and T (ψ) are generators for [ϕ]M and [ψ]M

we have:
a ∈ T (ϕ)↓ = [ϕ]M ⊆ [ψ]M = T (ψ)↓.

So we have a ∈ T (ψ)↓, which means that a ⊆ a′ for some a′ ∈ T (ψ).
Conversely, suppose for all a ∈ T (ϕ) there is some a′ ∈ T (ψ) such that a ⊆ a′.

This means that if a state s is a subset of some state in T (ϕ), it is also a subset of some
state in T (ψ). So we have T (ϕ)↓ ⊆ T (ψ)↓. Since T (ϕ) and T (ψ) are generators, it
follows that [ϕ]M ⊆ [ψ]M , which means that ϕ |=M ψ. �

In case at least one of the formulas involved is a statement α, things can be simplified
by taking T (α) = {|α|M}. First, suppose the formulas α and β at stake are both
statements. In this case, the entailment boils down to a relation between pieces of
information: the information that α is true implies the information that β is true.

10 Some previous work in inquisitive semantics (see in particular Sect. 6.2 of Ciardelli [21] and
Ciardelli [22]), may be regarded from the present perspective as being concerned with the task of
equipping a formula ϕ not only with an inquisitive proposition [ϕ]M , but also with a designated
generator TM (ϕ) for this proposition. This, however, will not be needed for our purposes in this
book. Here, the focus will be on the semantic relation of support and on the notion of entailment
that arises from it.
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(c) Which even number?

Fig. 2.5 In this model, the question whether the outcome is even or odd is entailed by the statement
that the outcome is even, which in turn is entailed by the question which even number is the outcome

Proposition 2.4.11 (Statement-to-statement entailment)
α |=M β ⇐⇒ |α|M ⊆ |β|M

Next, suppose α is a statement and μ a question. The entailment α |= μ holds in case
the information that α is true yields some piece of information of type μ.

Proposition 2.4.12 (Statement-to-question entailment)
α |=M μ ⇐⇒ |α|M ⊆ a for some a ∈ T (μ)

For an example, consider again the question parity, whether the outcome is even or
odd. Then we can take T (parity) = {aeven, aodd}. So a statement α entails parity just
in case |α|M ⊆ aeven or |α|M ⊆ aodd, i.e., just in case α implies that the outcome is
even or it implies that the outcome is odd. This fits the idea that a statement entails
a question if it resolves it.

Conversely, if μ is a question and α a statement, the entailment μ |= α holds in
case any information of type μ yields the information that α is true.

Proposition 2.4.13 (Question-to-statement entailment)
μ |=M α ⇐⇒ a ⊆ |α|M for all a ∈ T (μ)

For an example, let μ be the following question:

(4) Which even number is the outcome of the roll?

Let T (μ) = {atwo, afour, asix}, where atwo = {w2}, afour = {w4}, and asix = {w6}. A
statement α is entailed by μ just in case we have atwo ⊆ |α|M , afour ⊆ |α|M , and
asix ⊆ |α|M . This holds just in case {w2, w4, w6} ⊆ |α|M . Thus, a statement α is
entailed by μ if and only if α is entailed by the statement that the outcome is even.
This fits the idea that a question entails a statement if it presupposes it. Figure 2.5
gives a graphical illustration.

Next, let us look at entailments with multiple premises. The following proposi-
tion states that an entailment holds if the following is the case: whenever we are
given a piece of information for each premise type, the resulting combined body of
information implies some piece of information of the conclusion type.

Proposition 2.4.14 ϕ1, . . . ,ϕn |=M ψ ⇐⇒ for every a1 ∈ T (ϕ1) , . . . , an ∈ T (ϕn) :
a1 ∩ · · · ∩ an ⊆ a′ for some a′ ∈ T (ψ)
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We omit the proof, which is a variation of the one given above for the case of a
single premise. As an illustration, consider our initial example of a dependency. The
questions parity, range, and outcome are canonically associated with the following
information types:

– T (parity) = {aeven, aodd};
– T (range) = {alow, amid, ahigh};
– T (outcome) = {aone, . . . , asix}.
The above proposition tells us that the entailment holds if for any way of pairing a
piece of information a of type parity with a piece of information a′ of type range,
the joint information a ∩ a′ implies some piece of information a′′ of type outcome.
And this is indeed the case, as the following relations show.

aeven ∩ alow ⊆ atwo

aeven ∩ amid ⊆ afour

aeven ∩ ahigh ⊆ asix

aodd ∩ alow ⊆ aone

aodd ∩ amid ⊆ athree

aodd ∩ ahigh ⊆ afive

This illustrates how dependencies amount to relations between information types: in
this case, the entailment parity, range |=M outcome captures the fact that in the given
context, information of type parity and information of type range are guaranteed to
jointly yield information of type outcome.

2.5 Inquisitive Implication

2.5.1 Internalizing Entailment

In a support-based semantics, the contexts to which entailment can be relativized are
the same as the objects at which formulas are evaluated, namely, information states.
This makes it possible to define an implication connective → which internalizes the
meta-language relation of entailment. The idea is to make ϕ → ψ supported by an
information state s if relative to s, ϕ entails ψ:

s |= ϕ → ψ ⇐⇒ ϕ |=s ψ. (2.1)

Simply bymaking explicit what the conditionϕ |=s ψ amounts to, we get the support
clause governing this operation:

s |= ϕ → ψ ⇐⇒ for all t ⊆ s, t |= ϕ implies t |= ψ.

That is, an implication is supported in s in case enhancing s so as to support the
antecedent is bound to lead to an information state that supports the consequent.
Interestingly, this is, mutatis mutandis, precisely the interpretation of implication
that we also find in most information-based semantics, such as Beth and Kripke
semantics for intuitionistic logic, Veltman’s data semantics, and Humberstone’s pos-
sibility semantics (cf. references in Footnote 5).
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Let us first consider the result of applying this implication operation to a pair
of statements α and β. Using the Truth-Support Bridge, and denoting by ⊃ the
truth-functional material conditional, we get:

s |= α → β ⇐⇒ ∀t ⊆ s, t |= α implies t |= β

⇐⇒ ∀t ⊆ s, t ⊆ |α|M implies t ⊆ |β|M

⇐⇒ s ∩ |α|M ⊆ |β|M

⇐⇒ s ⊆ |α ⊃ β|M .

Thus, the semantics of α → β that our clause delivers is the same that we would
have obtained by lifting the material conditional of classical logic in accordance with
the Truth-Support Bridge: α → β is supported at a state if the material conditional
is true at each world in the state.

However, our implication connective is applicable not only to statements, but also
to questions. For instance, suppose μ and ν are questions. According to the clause
above, we have:

s |= μ → ν ⇐⇒ μ |=s ν.

The right-hand side amounts to the fact thatμ determines ν relative to s. Soμ → ν is a
formula that expresses within the object language that μ determines ν; it is supported
precisely by those information states in which this dependency holds. Similarly, if
α is a statement and μ a question, then α → μ expresses the fact that α resolves μ,
and μ → α the fact that μ presupposes α.

Entailment relations involving multiple premises can also be expressed in the
object language by means of →, as shown by the following proposition.

Proposition 2.5.1 For any number n we have:

s |= ϕ1 → (· · · → (ϕn → ψ)) ⇐⇒ ϕ1, . . . ,ϕn |=s ψ.

Proof For simplicity, we give the proof for the case of n = 2, but the argument
generalizes straightforwardly.

s |= ϕ1 → (ϕ2 → ψ)

⇐⇒ ∀t ⊆ s : t |= ϕ1 implies ∀t ′ ⊆ t : (t ′ |= ϕ2 implies t ′ |= ψ)

⇐⇒ ∀t ⊆ s : t |= ϕ1 and t |= ϕ2 implies t |= ψ

⇐⇒ ϕ1,ϕ2 |=s ψ

The crucial step in this derivation is the second biconditional. For the left-to-right
direction, notice that we can take t ′ = t . For the converse, note that by the persistency
of support, if t |= ϕ1 and t ′ ⊆ t then also t ′ |= ϕ1. �

This has interesting repercussions for the expression of conditional dependencies.
As we discussed above in Sect. 2.3.3, the fact that in a state s a question μ determines
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a question ν conditionally on a statement α is captured by the contextual entailment
α,μ |=s ν. By what we have just seen, this entailment can be expressed in the object
language by the formula

α → (μ → ν).

So this formula expresses that the dependency μ → ν holds conditionally on α.
This is interesting, as it shows that conditional dependencies can indeed be seen as
arising from conditionalizing dependencies in a precise sense. They can be expressed
as conditionals having the condition as antecedent, and a dependence formula as
consequent.

To summarize: we saw above that the classical meta-language entailment relation
can be generalized to questions, allowing us to capture the relations of (conditional)
dependency, resolution, and presupposition. Now we have seen that, in a parallel
way, the classical implication connective can be generalized to questions, providing
us with the linguistic resources to express such relations in the object language.

2.5.2 Generalizing the Ramsey Test

Perhaps themost influential insight in theorizing about conditionals is theRamsey test
idea, so called after a footnote in Ramsey [23]. According to this idea, interpreting
a conditional on the basis of a certain body of information involves supposing the
antecedent and then assessing whether (or to what extent) the resulting hypothetical
state supports the conclusion.

In this section we are going to see that the semantics of our inquisitive conditional
vindicates the Ramsey test idea and generalizes it to questions.

Let us start by asking how we can model the process of supposing a statement α
in an information state s.11 The natural answer in our setting is that to suppose α in
s is to suppose that the world is one where α is true, i.e., to enter a hypothetical state
which extends s by incorporating the information |α|M . In other words, supposing
α takes us from s to the hypothetical state s ∩ |α|M .

The following proposition shows that when the antecedent is a statement, our
semantics yields a version of the Ramsey test idea: a conditional is supported by an
information state just in case the consequent is supported by the hypothetical state
obtained by supposing the antecedent.

Proposition 2.5.2 (Ramsey test, deterministic case) Suppose α is a statement, and
ψ a sentence which may be either a statement or a question. Then for any model M
and state s:

s |= α → ψ ⇐⇒ s ∩ |α|M |= ψ.

11 We are focusing here on the process of supposingα as an epistemic assumption, which is relevant
for the interpretation of indicative conditionals such as ‘ifAlice left, shewent to London’.A different
supposition process is involved in interpreting subjunctive conditionals such as ‘if Alice had left,
she would have gone to London’.
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Proof We have:

s |= α → ψ ⇐⇒ ∀t ⊆ s : t |= α implies t |= ψ

⇐⇒ ∀t ⊆ s : t ⊆ |α|M implies t |= ψ

⇐⇒ ∀t ⊆ s ∩ |α|M : t |= ψ

⇐⇒ s ∩ |α|M |= ψ

where the second biconditional uses the Truth-Support Bridge for α and the last
biconditional uses the persistency of support. �

What about the case in which the antecedent is a question μ? In that case, the
antecedent does not identify a single piece of information and, therefore, it does
not determine a single supposition. Instead, the antecedent determines an informa-
tion type T (μ), which is instantiated by multiple pieces of information a ∈ T (μ).
Each of these pieces of information can be supposed in s, leading to a corresponding
hypothetical state s ∩ a. Thus, an interrogative antecedent does not determine a sin-
gle hypothetical state, but multiple hypothetical states. It is then natural to generalize
the Ramsey test idea in the following way: interpreting a conditional on the basis of
a certain body of information involves supposing information of the antecedent type
and then assessing whether each of the resulting hypothetical states supports the con-
clusion. We can think of an interrogative antecedent as inducing a non-deterministic
supposition, and we can think of the conditional as claiming that this supposition
is bound to lead to a state that supports the consequent. The following proposition
shows that the semantics of our conditional is in line with this generalization of the
Ramsey test idea.

Proposition 2.5.3 (Ramsey test, general case)Let ϕ,ψ be either statements or ques-
tions. Let M be a model, T (ϕ) a generator for [ϕ]M , and s an information state in
M. Then:

s |= ϕ → ψ ⇐⇒ s ∩ a |= ψ for every a ∈ T (ϕ).

Proof Suppose s |= ϕ → ψ. Take any a ∈ T (ϕ). Since a |= ϕ, by persistency s ∩ a
is a subset of s supporting ϕ. Since s |= ϕ → ψ, s ∩ a must support ψ.

Conversely, suppose s ∩ a |= ϕ for every a ∈ T (ϕ). Take any t ⊆ s which sup-
ports ϕ. Since T (ϕ) is a generator for [ϕ]M , this means that we must have t ⊆ a
for some a ∈ T (ϕ). Therefore, t ⊆ s ∩ a. By our assumption, s ∩ a |= ψ, and so by
persistency, t |= ψ. This shows that s |= ϕ → ψ. �

To illustrate this generalizationof theRamsey test to questions, it is helpful to consider
a concrete example.

Example 2.5.4 (Implication among questions) Consider again the questions range
and outcome from our die roll scenario. Recall from Sect. 2.4.2 that the question
range can be associated with the generator
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Fig. 2.6 The eight alternatives for the implication range → outcome. Each alternative represents
a maximal state in which range determines outcome, and corresponds to a way for the dependency
to obtain

T (range) = {alow, amid, ahigh}

where alow = {w1, w2}, amid = {w3, w4}, and ahigh = {w5, w6}. According to the pre-
vious proposition, a state s supports the conditional

range → outcome

just in case the following three conditions hold:

– s ∩ alow |= outcome;
– s ∩ amid |= outcome;
– s ∩ ahigh |= outcome.

So, our question antecedent is associated not with a single supposition, but with
three suppositions. Graphically, each of these suppositions amounts to restricting the
state s to a specific column. In order to support outcome, the resulting hypothetical
states are required to contain at most one world. So, the states that support the
implication range → outcome are those that contain at most one world from each
column. The maximal such states—the alternatives—are those that select exactly
one world from each column. Since there are 3 columns and 2 worlds for each, there
are 23 = 8 alternatives for the implication range → outcome. These are visualized
in Fig. 2.6. Note that each of these alternatives corresponds to one particular way for
the question range to determine the question outcome, i.e., to one particular way for
the dependency to obtain.

2.6 Truth and Question Presupposition

In Sect. 2.2, we saw that for statements, truth conditions and support conditions
are inter-definable via the Truth-Support Bridge. In particular, if we are given the
support conditions of a statement α, we can recover its truth conditions by means



32 2 Foundations of Inquisitive Logic

1

2

3 5

(a) [Which even number?]M

1

2

3

4

5

6

(b) |Which even number?|M

4 6

Fig. 2.7 The proposition expressed by a question, and the corresponding truth-set

of the following connection: α is true at a world if and only if it is supported at the
corresponding singleton state. In symbols:

w |= α ⇐⇒ {w} |= α.

In a semantics where support is the primitive semantic notion, we can take this
relation to provide a definition of truth in terms of support. Since support is defined
not only for statements, but also for questions, the resulting notion of truth is then
defined for questions as well.

But intuitively, what does it mean for a question μ to be true at a world w? The
definition says that μ is true at w in case μ is settled by the information state {w}.
Now, {w} is a state of complete information: thus, if the question is not settled in this
state, this cannot be because not enough information is available: it must be because
the question does not admit any truthful resolution at w. We can read w |= μ as
capturing the fact that question μ is soluble at w.

This interpretation is backed by the following proposition, which follows imme-
diately from the persistency of support.

Proposition 2.6.1 For any sentence ϕ and any world w: w |= ϕ ⇐⇒ (w ∈ s
for some s |= ϕ). Equivalently, for any sentence ϕ and model M we have: |ϕ|M =⋃[ϕ]M .

For a question μ, this proposition states that μ is true at w if there is some body of
information s that settles μ (s |= μ) without ruling out w (w ∈ s).

As illustration, consider again the question in (4), repeated below:

(5) Which even number is the outcome of the roll?

This question is supported by the singletons {w2}, {w4}, {w6}, but not by the singletons
{w1}, {w3}, {w5}. So, the question is true atw2, w4, w6, but not atw1, w3, w5. In other
words, this question is true just in case the outcome is even—it has the same truth
conditions as the statement:

(6) The outcome of the roll is even.
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Figure 2.7 illustrates the relation between the proposition expressed by (5), [(5)]M ,
and the set of worlds where (5) is true, |(5)|M .

Interestingly, this way of extending the notion of truth to questions was proposed
before by Belnap [5] (see also [3]), though in the context of a slightly different
approach to questions (cf. Sect. 2.9). Belnap put it as follows:

I should like in conclusion to propose the following linguistic reform: that we all start calling
a question “true” just when some direct answer thereto is true. [5]

We will also follow Belnap [5] in taking the truth conditions of a question to capture
its presupposition. Belnap puts forward the following thesis (the exact phrasing is
not Belnap’s, but it is one he could have subscribed to, given the “linguistic reform”
he proposed in the above passage).

Belnap’s Thesis
Every question presupposes precisely that its truth conditions obtain.

The qualification preciselymeans that a question presupposes that its truth conditions
obtain, and nothing more. Thus, what a question presupposes is captured entirely by
its truth conditions.

Like Belnap, we will say that a statement α expresses the presupposition of a
question μ in case α and μ have the same truth conditions. Thus, for instance, the
statement (6) expresses the presupposition of the question (5). In the logical systems
that we will develop, it will often be convenient to associate with each question μ
in the system a specific statement πμ which expresses the question’s presupposition;
for brevity, we will also refer to πμ as the presupposition of μ.12

In the discussion above, we said that, ifμ is a question andα is a statement, we can
view the entailment μ |= α as capturing the fact that μ presupposes α. The following
proposition says that μ presupposes α just in case α follows from the presupposition
πμ of μ. The proof is left as an exercise (Exercise 2.10.5).

Proposition 2.6.2 Let μ be a question, πμ a statement that expresses the presuppo-
sition of μ, and α an arbitrary statement. Then

μ |= α ⇐⇒ πμ |= α.

The same holds when logical entailment is replaced by contextual entailment.

To conclude this section, let us address a possible source of confusion. We started
by claiming that, in order to bring questions within the scope of logic, we should
move away from truth-conditional semantics, since questions cannot be interpreted in
terms of truth conditions. But now we are saying that questions have truth conditions
after all. Doesn’t this, then, undermine our argument?

It does not: although we can define a technical notion of truth that applies to ques-
tions, that does not mean that the semantics of questions can be captured in terms of

12 This syntactic notion of presupposition will be in line with the one used in other logical frame-
works concerned with questions, such as Hintikka’s interrogative model of inquiry [24, 25] and
Wiśniewski’s inferential erotetic logic [26–28].
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truth conditions. On the contrary, the truth conditions of a question heavily underde-
termine its semantics. To see this, consider again the three questions parity, range,
and outcome from our die roll example. It is easy to check that these questions have
the same truth conditions in our model: they are all true at every world. But obvi-
ously they are not equivalent in the model, and the logical relations among them are
non-trivial. Thus, we cannot rely on our generalized truth conditions to extend logic
to questions in a meaningful way. It is only at the level of support that this extension
is possible.

This discussion highlights a fundamental semantic difference between statements
and questions. The support conditions of a statement are fully determined by its
truth conditions: support at a state just amounts to truth at each world. By contrast,
the support conditions of a question are underdetermined by its truth conditions,
which only capture the presupposition of the question. We express this by saying
that statements, unlike questions, are truth-conditional.

Definition 2.6.3 (Truth-conditionality) We call a sentence ϕ truth-conditional if for
all models M and states s ⊆ WM :

s |= ϕ ⇐⇒ w |= ϕ for all w ∈ s.

In the formal systems of the next chapters, we will take truth-conditionality to be the
fundamental semantic difference between statements and questions. Our languages
will not incorporate a syntactic distinction between statements and questions (though
suchadistinctioniscompatiblewiththeprojectofinquisitivelogic;seeforinstance[29,
30]). Rather, we will regard truth-conditional formulas as statements, and non truth-
conditional formulasasquestions.13 The followingpropositionprovidesanalternative
characterization: statementsmay be seen as describing specific pieces of information,
whereas questions need to be regarded as describing proper information types.

Proposition 2.6.4 ϕ is truth-conditional ⇐⇒ [ϕ]M admits a singleton generator
in any model M.

Proof If ϕ is truth-conditional, it is easy to see that [ϕ]M admits the singleton
generator {|ϕ|M} in any model. Conversely, suppose [ϕ]M always admits a singleton
generator and consider a model M . Let {aϕ} be a singleton generator for [ϕ]M , which
means that [ϕ]M = {aϕ}↓. We have:

w ∈ |ϕ|M ⇐⇒ {w} ∈ [ϕ]M = {aϕ}↓ ⇐⇒ {w} ⊆ aϕ ⇐⇒ w ∈ aϕ.

This shows that |ϕ|M = aϕ, that is, the unique element of the generator must be
precisely the truth-set of ϕ. Finally, using this fact we have:

13 A minor issue is that this criterion does not classify formulas corresponding to tautological ques-
tions (e.g., whether John is John) as questions. Such formulas are trivially supported by any state,
and so, they are trivially truth-conditional. This can be regarded as a consequence of the fact that in
intensional semantics, all tautologies are equivalent, and so we cannot expect a semantic difference
between tautological questions and tautological statements.
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s |= ϕ ⇐⇒ s ∈ [ϕ]M = {aϕ}↓ = {|ϕ|M}↓ ⇐⇒ s ⊆ |ϕ|M .

That is, ϕ is supported at a state in M in case it is true everywhere in the state. Since
this is true for any M , ϕ is truth-conditional. �

2.7 Summing Up

We have seen that classical logic can be given an alternative, informational semantics
in terms of support conditions, which determines when a sentence is settled by a body
of information, rather than when it is true at a world. This semantics can be extended
to interpret questions in a natural way. Using this semantics, we can generalize
the classical notion of entailment to questions. Several interesting logical notions,
including the relation of dependency discussed in Sect. 2.1, turn out to be facets of
this general entailment relation.

We have discussed how, based on our semantics, sentences may be regarded as
denoting information types: statements denote singleton types, which can be identi-
fied with specific pieces of information; questions denote non-singleton types, which
are instantiated by several different pieces of information. An entailment holds if
information of the type described by the premises is guaranteed to yield information
of the type described by the conclusion.

We saw that a logic formulated within this framework can be equipped with a
conditional operator which captures the meta-language entailment relation within
the object language—providing us, in particular, with the linguistic resources to
express dependencies and conditional dependencies. The semantics of this operator
amounts to a generalization of the Ramsey test idea: a conditional is supported
by an information state if supposing information of the antecedent type leads to a
hypothetical state that supports the consequent.

Finally, we saw that a support-based semantics suggests a natural way to extend
the notion of truth to questions and that, under such an extension, the truth conditions
of a question may be viewed as capturing its presupposition.

One important part of the conceptual picture is still missing. This has to do with
the role of questions in inference. We postpone discussion of this important topic
until Chap.3, since the main points are best illustrated once we have a concrete
proof system on the table. However, we may already anticipate the main idea: using
questions in proofs allows us to reason with arbitrary information of a given type.
For instance, by assuming the question range, one is supposing to have the infor-
mation whether the outcome is low, middle, or high. One can then reason about
what other information one has on that basis, and thereby formally prove that certain
dependencies hold.

This completes our presentation of the foundations of inquisitive logic. The rest
of this chapter contains two discussion sections: the first (Sect. 2.8) concerns some
modeling choiceswemade in this section, the second (Sect. 2.9) the relations between
the present framework and previous approaches to questions in logic. The contents
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of these sections are not presupposed in the following chapters, so the reader may
choose to skip ahead to the exercises (Sect. 2.10) or to the next chapter.

2.8 Setup Choices

In this section we discuss in more detail some of the basic setup choices we made in
this chapter, which will be reflected in the systems to be developed in the rest of the
book. We focus on issues concerning the modeling of information states.

2.8.1 Modeling Information States: Explicit Versus Implicit

We have seen that, by moving from a semantics based on possible worlds to a
semantics based on information states,we can interpret both statements and questions
in a uniform way, and thereby we obtain an interesting generalization of the classical
notion of entailment.

This approach is compatible with different ways to model information states. We
haveopted here for an explicit modeling of information states,which assigns a content
to information states and then orders information states in terms of their content. In
our case, the relevant content of an information state is its power to represent things
as being in a certain way—thus circumscribing a set of worlds as live possibilities.14

This allowed us to identify an information state with the corresponding set of live
possibilities and, thus, tomodel information states in the context of standard possible-
world models of the kind commonly used in intensional logic.

Many information-based semantics proceed differently: they take information
states and the relation of enhancement between them as primitive objects in the
model, possibly making additional assumptions about the resulting ordered set. We
may call this an implicit modeling of information states, since there is no explicit
modeling of the content of an information state: in this approach, the model does
not explicitly specify what the information available in an information state is. One
gets some implicit description of the relevant information via the semantics, but
even this does not entirely reflect the content of the state, since not all aspects of the
available information need to be expressible in the relevant language. For instance,
consider Kripke semantics for intuitionistic logic: a model may consist of an infinite
chain s0, s1, s2, . . . , of information states, where each state sn+1 is stronger than sn

and where each state satisfies the same sentences. The model represents s1 as being
stronger than s0, but it does not tell what information we have at s1 but not at s0.

14 One could in principle consider other aspects of information as well: one could, for instance, also
represent quantitative information about the likelihoods of different states of affairs by equipping
an information state with a probability function on the set of live possibilities.
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In principle, the project of inquisitive logic is compatible with both ways of
introducing information states into the picture, and in fact, it has been carried out
within both kinds of approaches (for studies of inquisitive logics based on the implicit
approach, see Punčochár [31–34] and Holliday [35]). Both approaches are valuable,
for different reasons. For our goals in this book, an explicit modeling of information
states has several advantages.

First, it allows us to better motivate and assess the semantics. A crucial feature
of the explicit approach is that one can see what the content of an information state
is independently of the semantics. This allows us to see whether the semantics itself
makes reasonable predictions—that is, if it declares a sentence to be supported by
those states in which it is intuitively settled in view of the content of the state,
which we can grasp independently of the semantics. We made use of this feature
above, when we discussed what information states in our die roll scenario should
count as supporting our questions. In doing this, we relied on intuitions such as:
the question is settled if and only if the information state implies that the state of
affairs is such-and-such. An inquisitive semantics can be motivated, and assessed,
on the basis of such support intuitions, just like a truth-conditional semantics can
be motivated and assessed on the basis of intuitions about truth. By contrast, in the
implicit perspective, we have no direct way to motivate and assess the semantics,
since we have no independent access to the information that a state is supposed to
encode. We can only assess the semantics indirectly, via the logic that it yields.

Second, the explicit perspective comes with a natural way to model concrete
scenarios of partial information, such as our die example above: just build a model
with one world for each way things may be; at least in simple examples, we have a
good grasp of what these are. By contrast, the abstract perspective underdetermines
which model we are supposed to use to represent a concrete scenario, even one of
the simplest kind.

Thirdly, in the implicit approach, the logic one gets depends in part on one’s
assumptions about the structure of the space of information states. If one already has
a logic in mind and simply wants to provide a semantics for it, one just has to find
the right set of assumptions. But if one wants to motivate a logic on the basis of the
semantics, then one has to justify one’s choice of a particular set of assumptions; that
means not just motivating the assumptions onemakes, but also arguing that no further
assumptions should be made. This is hard, however, and rarely even attempted. By
contrast, in the explicit approach, the structure of the space of information states does
not have to be stipulated, but is determined by the contents of the relevant states.

Finally, the explicit approach is more conservative. It is not part of our aim in
this book to question the suitability of truth-conditional semantics for statements. At
the same time, we argued for a departure from truth-conditional semantics in order
to extend logic to questions. Our approach allows us to have our cake and eat it
too: we can base our semantics on standard possible-world models for intensional
semantics; we interpret sentences in terms of support relative to sets of possible
worlds; and then for statements we can retrieve truth conditions relative to worlds
in the way described in Sect. 2.6. One may have independent reason for abandoning
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truth-conditional semantics for statements; but the taskof extending logic to questions
does not necessitate this move.

Let me illustrate this point with an example. In Chap.8 we will discuss modal
sentences like �?p, which on one interpretation can be read as “the agent knows
whether p”. Here, the argument of the modality is a question, ?p, but the entire sen-
tence is a statement. The intended truth conditions of this statement can be specified
in the setting of a standard Kripke model for epistemic logic as follows:

w |= �?p ⇐⇒ ∀v, v′ ∈ R[w] : (v |= p ⇐⇒ v′ |= p).

In inquisitivemodal logic, we can deliver these truth conditions compositionally. The
semantics is given in the setting of a standard Kripke model, but now in terms of sup-
port conditions. From these we can then derive truth conditions relative to possible
worlds. For our statement, these are exactly the ones given above. Interpreting ques-
tions need not prevent us from assigning standard truth conditions to statements; on
the contrary, it allows us to explain how statements involving question constituents
get their truth conditions compositionally.

All this is not to say that the explicit approach is preferable in all respects. The
implicit approach has its own benefits. An important one is that it allows us to
consider things at a higher level of abstraction, from the perspective of a very general
framework that can be further constrained in variousways. In thisway,we can see just
what assumptions about the space of information states are responsible for certain
features of the resulting logic. Moreover, we can study the variety of different logics
that can result from different assumptions—as well as what these logics all have
in common. This interesting project has been pursued in some detail in a series of
papers by Vit Punčochář [31–34].

2.8.2 “Accessible” Information States? Distinguishing
Semantics and Epistemology

Abody of information describes theworld as being a certainway, and thus determines
a set of worlds s ⊆ W . Conversely, given a set of worlds s ⊆ W , we can think of it
as a body of information: namely, the information that the world is one of those in s.

But—one may object—should this always qualify as an information state? What
if it is not actually possible, due to constraints on cognition or on inquiry, to be in a
state which determines s as its set of live possibilities?

A first thing to say is that this objection presupposes a different conception of
the notion of information state than the one which is relevant for our enterprise.
It presupposes that “information state” means something like “possible belief state
of the agent” or “possible outcome of inquiry”, and therefore must be constrained
by considerations about the limits of cognition or inquiry. Our view of information
states ismore abstract: an information state is just something that partially determines
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Fig. 2.8 The “accessible” information states in the two scenarios discussed in this section

how things are; it makes sense to ask whether such an object settles a question, or a
statement, quite regardless of whether it is, or could be, the belief state of an agent
in an inquiry scenario.

Moreover, from the point of view of our enterprise, restricting the semantics to
information states that are ‘accessible’ in some epistemic sense would be a bad idea:
it wouldmix semantics and epistemology in an unintended way. Since the suggestion
to modify the semantics in this way regularly comes up, it is worth illustrating the
consequences of this sort of restriction in some detail.

Suppose that, in the die scenario, things are set up in such a way that the outcome
will be revealed to us at once. Given this setup, it is not possible for us to gain
partial information about the outcome: the only ‘accessible’ information states in this
scenario are the initial state, where every outcome is possible, and the six complete
states in which the outcome is revealed. These are shown in the picture on the left in
Fig. 2.8.

Let parity denote the question whether the outcome is even or odd, and let range
denote the question whether the range is low, middle, or high. If we only accessible
information states are taken into account, relative to the model M which represents
our state prior to the roll we get the prediction that

parity |=M range,

since any accessible state that supports parity is a complete state, and therefore also
supports range. What this relation captures is a pragmatic fact about the inquiry
situation: learning the parity of the outcome implies learning the range.

However, by focusing on learning, this approach misses a more basic fact: the
parity of the outcome does not determine its range: for instance, the outcome being
even does not determine whether it is low, middle, or high. This fact has nothing to
do with any agent, or with learning. It has to do with what the live possibilities are
and with how the two questions are related relative to this set of possibilities. It is a
purely semantic matter.

On the standard view of logic, it is this sort of basic semantic relation that entail-
ment is supposed to track, and this is so in our view as well.

Now consider a second variation of our die scenario. We insert a coin into a
machine that rolls a die, which is hidden from us. Then the following happens:
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– if the outcome is 1, we lose and a red light appears;
– if the outcome is 6, we win and a green light appears;
– in all other cases, we get the coin back and a yellow light appears, but the outcome
is not revealed.

Thus, the accessible information states are the set {w1, . . . , w6} (the initial state) and
the states {w1} (red light), {w6} (green light), and {w2, w3, w4, w5} (yellow light).
These are represented by the picture on the right in Fig. 2.8.

Here, restricting the semantics to accessible information states leads to unintended
results even for statements. To see this, let even stand for the statement that the
outcome is even, and let high be the statement that the outcome is high. If we consider
only accessible states we get:

even |=M high.

However, it is obvious that from the fact that the outcome is even it does not follow
that the outcome is high, since the outcome may well be two or four. Of course,
learning that the outcome is even implies learning that it is high, but that is a dif-
ferent matter, and not the sort of matter that we normally take logic to be about.
This shows that restricting the semantics to accessible information states would take
us to a revisionary view of logic, even in the case of statements. Pursuing such a
revisionary project is legitimate (in a sense, intuitionistic logic arises precisely from
such a project) but our aim here is different: not to revise standard logic, but to
generalize it.

Here is another way to put the point: in order to determine if an entailment holds
on the basis of an information state, one looks at subsets of the state. In so doing,
one is not asking what would happen if an agent were to learn something. One
is, rather, testing certain features of the available information by exploring what it
implies under certain suppositions—looking, for instance, at whether combining the
given information with information of one type (say, parity) yields information of
another type (range). In sum, whether an entailment holds or not relative to a body
of information is an intrinsic property of the information state itself, which turns on
what the given information implies when augmented with certain suppositions. So,
whether the entailment holds should depend only on the content of the state—the set
of live possibilities—and on nothing else.

To distinguish semantic entailments from their pragmatic cousins is especially
important since these relations have different logical features. For an example, take
again parity, i.e., the question whether the outcome is even or odd. Consider a state-
ment α: in any given context s, the entailment α |=s parity captures the fact that rel-
ative to the set of possibilities s, the information that α settles the question whether
the outcome is even or odd; that happens just in case the information that α implies
that the outcome is even, or the information that α implies that the outcome is odd.
So, if α is a statement, we must have:

α |=s parity ⇐⇒ α |=s even or α |=s odd.
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As we will see, this is an instance of a general principle, called Split, which regulates
the interaction of statements with questions. This principle is a tenet of inquisitive
logics: it reflects the important idea that statements denote specific pieces of infor-
mation (as we discussed in Sect. 2.4). This implies that to check what follows from
α in s is to check what follows by strengthening s in a specific way, namely, by
supposing that α is true.

Things look different under the pragmatic notion. Consider again the situation in
which the only thing one can learn is the exact outcome of the roll. Then, for instance,
learning that the outcome is low implies learning whether it is even or odd. However,
learning that the outcome is low does not imply learning that it is even (since we
may learn that the outcome is 1), and it does not imply learning that it is odd (since
we may learn that it is 2). Therefore, if we took entailment to be about learning, the
split property would fail:

low |=s parity �=⇒ low |=s even or low |=s odd.

This is because onemay come to learn the statement low in different ways, which lead
to different ways of resolving the question parity. This difference has repercussions
for the behavior of the implication connective, and thereby leads to a different logic.

Later on, we will see that the fact that implication quantifies over sub-states leads
to hard questions—many of which are currently open—about the meta-theoretic
properties of inquisitive predicate logic. It is sometimes suggested that a simpler logic
may be obtained by revising the semantics so that implication only quantifies over
a restricted family of subsets specified by the model. This is analogous to the move
that is made by weakening second-order logic by replacing the standard semantics
by Henkin semantics. Given the discussion in this section, however, we can see that
the simpler logic obtained from this move would not track the intended entailment
relation, but rather some kind of pragmatic counterpart of it that has different and
weaker logical features.

2.9 Relation with Previous Work

In this section, we situate the present proposal within the landscape of previous
approaches to questions in logic.

2.9.1 Erotetic Logic Tradition

Although questions have received much less attention than statements in logic, there
is nevertheless a rather large literature on them. Most work in this tradition goes
under the header erotetic logic. Some key references: Prior and Prior [36], Hamblin
[2], Kubiński [37, 38], Harrah [39, 40], Åqvist [41], Belnap and Steel [3], Tichy [42],



42 2 Foundations of Inquisitive Logic

Wiśniewski [26, 43, 44]. This is not the place for a detailed survey of this literature
(for a valuable survey, see Harrah [45]). Our aim in this section is merely to explain
how our approach relates to previous work in this tradition. A comparison with some
more closely related theories is given in the next sections.

We can identify two fundamental differences between inquisitive logic and previ-
ous theories in erotetic logic.One difference concerns thewayquestions are analyzed,
the other the aims of the theory.

Different approaches to the interpretation of questions. The most common
approach to the interpretation of questions in the erotetic logic tradition is the answer-
set approach. The idea, which goes back to Hamblin [2], is that a question is inter-
preted by specifying what statements count as answers to it. In inquisitive logic,
as we saw, questions are instead interpreted by specifying their support conditions.
There is an obvious relation between the two approaches: the support conditions of
a question capture the conditions in which the question counts as settled—or, we
may as well say, answered. Clearly, specifying what counts as an answer is tightly
related to specifying in what circumstances the question counts as answered (though
here one encounters some subtle issues concerning whether information resolving
a question is always linguistically expressible, which we do not assume). However,
there are also differences. Perhaps most importantly, the set-of-answers approach
treats statements and questions differently. Statements are interpreted directly, via
standard truth-conditional semantics, while questions are interpreted only deriva-
tively, by interpreting their answers. Our approach, by contrast, treats statements
and questions on a par: both are interpreted in terms of the same semantic notion—
support relative to an information state. This feature is crucial to get a uniform logic
in which statements and questions can participate in the same logical relations and be
combined by the same logical operations. Moreover, our approach is similar to the
truth-conditional one in that both interpret sentences in terms of a certain satisfac-
tion relation (truth/support) relative to certain evaluation points (worlds/information
states), and then define entailment as preservation of this satisfaction relation. As
becomes clear by looking at the formal systems, this makes inquisitive logic much
more similar to standard logic as compared to logics based on the answer-set
approach.15

Different aims. Perhaps most importantly, our enterprise here is somewhat different
from that of previous theories in erotetic logic. Approaches in the erotetic logic
tradition share the idea that dealing with questions in logic means turning attention
away from those concerns that take center stage in standard logic, namely, the study
of entailment, logical operators (connectives, quantifiers, modalities), and proofs.

In the introduction to what is perhaps the most well-developed erotetic logic in
the literature, Belnap and Steel [3] state their aims as follows:

15 For further discussion of the differences between inquisitive semantics and the answer-set
approach, see Ciardelli [46] and Chapter 6 of Ciardelli et al. [1].
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On the object-language level we want to create a carefully designed apparatus permitting
the asking and answering of questions. On the meta-language level we want to elaborate a
set of concepts useful for categorizing, evaluating, and relating questions and answers.

This description fits not just Belnap and Steel’s own work, but most of the early work
in the erotetic logic tradition. Some more recent approaches have focused instead
on the role of questions in processes of inquiry, either modeling inquiry itself as a
sequence of questioning moves and inference moves, as in the interrogative model
of inquiry of Hintikka [25], or characterizing how questions can be arrived at in an
inquiry scenario, as in the inferential erotetic logic of Wiśniewski [26–28, 43, 44].16

Our aim here, by contrast, is to extend logic to questions while staying close to
the standard concerns of logic: entailment, logical operators, and proofs.

Start from entailment. The logical relations involving questions that we consid-
ered in this section have been considered before in the erotetic logic tradition. The
notion of dependency that we discussed above has been considered under the name
containment ever since Hamblin [2]. The two ‘mixed’ notions—a statement resolv-
ing a question and a question presupposing a statement—are also standard (they
are found, e.g., in Belnap and Steel’s [3], where the terminology ‘being a complete
answer to’ is used for the first notion). The novelty of our approach, however, is that
it allows us to recognize these notions as being different instances of a single general
notion—a notion that can be viewed as a generalization of entailment to questions.
This realization allows for a much more thorough deployment of the tools of logic:
we already discussed in Sect. 2.5 how, by internalizing entailment, we get the tools
to express the relevant relations in the object language by means of a well-behaved
implication connective; moreover, the fact that the relevant relations are entailments
means that they can be formally proved once we develop a proof system for our
logics.

Second, consider logical operators. Standard logic only becomes interesting once
we consider complex statements, built up by means of connectives, quantifiers, or
modalities. By contrast, in much of the erotetic logic literature, no logical operators
can be applied to questions. There are some exceptions: for instance, Belnap andSteel
[3] allow the formation of conjunctive questions and conditional questions. But these
are treated on an ad-hoc basis: the relevant logical operations are not unified with
standard conjunction and implication, and the formal properties of these operations
are not investigated at all. Our approach will be very different: we will define our
operators so that they can be applied uniformly to statements and questions. Thus,
e.g., conditional statements and conditional questionswill be treated byusing the very
same implication connective—the one described above. The study of the properties
of these generalized operators is also a central topic in our approach.

Finally, consider proofs. Belnap and Steel are very clear:

16 For discussion of the relations between inferential erotetic logic and inquisitive semantics, see
Wiśniewski and Leszczyńska-Jasion [47] and Ciardelli et al. [30].
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Absolutely the wrong thing is to think [the logic of questions] is a logic in the sense of a
deductive system, since one would then be driven to the pointless task of inventing an infer-
ential scheme in which questions, or interrogatives, could serve as premises and conclusions.

(Belnap and Steel [3], p. 1)

We disagree: since entailments involving questions are meaningful and interesting,
it is natural to ask if they can be established by means of proof systems in which
we can manipulate statements and questions. In fact, we will see that questions are
very interesting tools for logical inference: they allow us to reason with arbitrary
information of a given type. Thus, studying the role of questions in logical proofs
turns out to be far from pointless.

2.9.2 The Logic of Interrogation

To my knowledge, the first approach that allows for a generalization of the classical
notion of entailment to questions is the Logic of Interrogation (LoI) of Groenendijk
[48], based on the partition theory of questions of Groenendijk and Stokhof [49]. The
original presentation of the semantics is a dynamic one, in which the meaning of a
sentence is identifiedwith its context-changepotential.However, as pointedout by ten
Cate and Shan [50], the dynamic coating is not essential. In essence, the system may
be described as follows: both statements and questions are interpreted with respect
to pairs 〈w,w′〉 of possible worlds: a statement is satisfied by such a pair if it is true
at both worlds, while a question is satisfied if the complete answer to the question is
the same inw andw′. In this approach, the content of a sentence ϕ is captured by the
set of pairs 〈w,w′〉 satisfying ϕ; for any ϕ, this set is an equivalence relation over
a subset of WM , which we will denote as ∼ϕ. Such an equivalence relation may be
equivalently regarded as a partition �

ϕ
M of a subset of the logical space, where the

blocks of the partitions are the equivalence classes [w]∼ϕ modulo∼ϕ of those worlds
in the domain of∼ϕ. For a statement α, the partition�α

M always consists of a unique
block, namely, the truth-set |α|M of the statement. For a question μ, �

μ
M typically

consists of several blocks, which are regarded as the possible complete answers to
the question.

Since statements and questions are interpreted by means of a uniform semantics,
LoI allows for the definition of a notion of entailment in which both statements and
questions can take part:

ϕ |=LoI ψ ⇐⇒ for all M and all w,w′ ∈ WM : 〈w,w′〉 |= ϕ implies 〈w,w′〉 |= ψ.

In terms of partitions, this notion of entailment may be cast as follows:

ϕ |=LoI ψ ⇐⇒ for all M, for all a ∈ �
ϕ
M there is an a′ ∈ �

ψ
M such that a ⊆ a′.
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This is clearly reminiscent of Proposition 2.4.10: here, too, we can think of a sentence
as denoting a (possibly singleton) information type; ϕ entails ψ if any information
of type ϕ always yields some corresponding information of type ψ.

Groenendijk [48] applies this approach to a logical languagewhich is an extension
of first-order predicate logicwith questions. This gives rise to an interesting combined
logic of statements and questions, which was investigated and axiomatized by ten
Cate and Shan [50]. As we will see in Chap.4, this can be identified with a fragment
of inquisitive predicate logic.

What is the relation between the LoI framework and the present approach? Con-
sider a question μ. Given the LoI perspective, it is natural to assume that μ is settled
in an information state s in case s entails some complete answer to μ. This yields the
following support conditions:

s |= μ ⇐⇒ s ⊆ a for some a ∈ �
μ
M .

Thus, the set of supporting states is precisely the downward closure of �
μ
M :

[μ]M = (�
μ
M)↓.

The same relation holds for a statement α: α is settled in an information state s in
case s ⊆ |α|M ; given that �α

M = {|α|M}, we have that [α]M = (�α
M)↓. Thus, for all

sentences ϕ that can be interpreted in LoI, we have:

[ϕ]M = (�
ϕ
M)↓.

That is, the set of blocks of the partition induced by ϕ is always a generator for
the inquisitive proposition expressed by ϕ. This allows us to move from the LoI-
representation of a sentence to its support-based representation.

Conversely, the LoI-representation of a sentence ϕ can be retrieved from its
support-based representation by taking the maximal supporting states for ϕ, i.e.,
the alternatives for the proposition [ϕ]M :

�
ϕ
M = Alt([ϕ]M).

In sum, for sentences that can be interpreted in LoI, we can go back and forth between
the two semantics. Moreover, given that �ϕ

M is a generator for [ϕ]M , it follows from
Proposition 2.4.10 that the notion of entailment that the two frameworks characterize
is the same.

ϕ |= ψ ⇐⇒ ϕ |=LoI ψ.

Thus, the logic of interrogation and our own approach essentially agree with respect
to those sentences that can be interpreted in LoI. However, the support approach that
we discussed in this section is strictly more general than the LoI approach based
on pairs of worlds. In order for a question to be analyzable in LoI, it must be a
unique-answer question, in the sense of the following definition.
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11 12 13

21 22 23

31 32 33

Fig. 2.9 Overlapping alternatives for a mention-some question

Definition 2.9.1 (Unique-answer questions) A question μ is a unique-answer ques-
tion if any w ∈ WM is contained in at most one alternative for μ.

The class of unique-answer questions includes many natural kinds of questions,
such as the questions parity, range, and outcome from our initial example. But there
are also important classes of questions that are not unique-answer and that can be
analyzed in inquisitive semantics but not in partition semantics.

For an example, imagine a game in which a player has picked a secret two-digits
code, where each digit is 1, 2, or 3. So, there are 3 × 3 = 9 possible codes (11, 12,
13, etc.), corresponding to 9 possible worlds. Now consider:

(7) What is one digit that occurs in the code?

This question is completely resolved just in case one of the following pieces of
information is available:

(8) a. The digit 1 occurs in the code.
b. The digit 2 occurs in the code.
c. The digit 3 occurs in the code.

Thus, we have three alternatives for the question, depicted in Fig. 2.9. As the image
shows, these alternatives overlap: this corresponds to the fact that the three pieces
of information above are not mutually exclusive—on the contrary, they are pair-
wise compatible. So, (7) is not a unique-answer question and cannot be analyzed in
partition semantics.

Questions like (7), which ask for an instance of a given property, are known as
mention-some question. Mention-some questions are not exotic—on the contrary,
they occur frequently both in ordinary situations and in specialized scientific dis-
course. The following are examples.

(9) a. Who could serve on this committee?
b. What is a present that Alice would really like?
c. What is a mammalian species that lays eggs?
d. What is an example of an arithmetic theorem not provable in PA?
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Mention-some questions are not the only class of questions that can be analyzed in
inquisitive semantics but not in partition semantics. Other examples are approximate
value questions like (10-a) (cf. Yablo [51]), which ask for a value with a certain
margin of error, and conditional questions like (10-b), which ask for the answer
to a question under a supposition. We will see in the next chapter how conditional
questions can be analyzed naturally as conditionals in inquisitive semantics.

(10) a. How many stars are there, give or take ten?
b. If Axton had an accomplice, who is it?

Summing up, the extra generality of inquisitive semantics allows us to represent, and
reason with, a broader class of questions than is treatable in LoI.

However, there is also a second reason why this generality is important. We saw
above that inquisitive semantics can be equipped with an implication operator →
that allows us to express the meta-language entailment relation within the object
language. This operator plays a key role in inquisitive logics. But, as we will see in
the next chapter, the inquisitive proposition expressed by implications is typically one
that does not correspond to a partition of the logical space—it involves overlapping
alternatives.

In partition semantics, it is provably impossible to define such a connective. For
instance, consider the questions parity (whether the outcome is even or odd), and
outcome (what the outcome is) in our die roll example. One can prove, for instance,
that in the model M of our running example there is no way to assign a partition to
an implication (parity → outcome) in such a way that for any other unique-answer
question λ we have the desired connection:

λ, parity |=M outcome ⇐⇒ λ |=M parity → outcome.

In other words, due to its semantic assumptions, LoI does not allow us to access some
important expressive means that will play an important role in the development of
our inquisitive logics.

2.9.3 Inquisitive Pair Semantics

Starting with the work of Velissaratou [52] on conditional questions, the pursuit of
greater generality led to the development of successors of LoI in which formulas
are still evaluated relative to pairs of worlds, but the set of pairs satisfying a given
formula is not necessarily an equivalence relation. In this setting, the natural way
to read the relation 〈w,w′〉 |= μ, where μ is a question, is no longer “the complete
answer to μ is the same in w as in w′”, but rather “some complete answer to μ is
true at bothw andw′”. This approach, laid out in Groenendijk [53] andMascarenhas
[54], was originally dubbed inquisitive semantics; it is now referred to as inquisitive
pair semantics to distinguish it from the present support-based approach.
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While Groenendijk [29] showed that this sort of semantics can indeed deal ade-
quately with conditional questions, Ciardelli [21, 55], and later Ciardelli et al. [30]
argued that no pair semantics can provide a satisfactory general framework for ques-
tion semantics. To get an idea of the problem, consider again ourmention-some ques-
tion (7), and consider the set of possible worlds s = {w12, w13, w23} in the model of
Fig. 2.9 (i.e., the upper-right corner in the figure). In s, our mention-some question is
not settled: the information available in s implies neither that 1 occurs in the code, nor
that 2 occurs, not that 3 occurs. However, this cannot be detected by looking at pairs
of worlds, since each pair of worlds in s does settle the question. So if our semantics
only looks at pairs of worlds, it fails to see that (7) is not settled in s and, thus, it fails
to distinguish (7) from a different question which is settled at s. Examples of this
kind motivated a shift from pairs to sets of worlds as points of evaluation, leading to
the modern support-based version of inquisitive semantics.

2.9.4 Nelken and Shan’s Modal Approach

A different uniform approach to statements and questions was proposed by Nelken
and Shan [56]. In this approach, questions are translated as modal sentences, and
they are interpreted by means of truth conditions: a question is true at a world w in
case it is settled by an information state R[w] associated with the world (i.e., the set
of successors given by an accessibility relation R). Thus, for instance, Nelken and
Shan render the question whether p by the modal formula ?p := �p ∨ �¬p.

In one respect, this approach is similar to the approach proposed here, since the
meaning of a question is essentially taken to be encoded by the conditions under
which the question is settled. And indeed, if we consider entailments which involve
only questions, the approach of Nelken and Shan would make the same predictions
as ours. However, in their approach an important asymmetry between statements and
questions is maintained: for questions, what matters is whether they are settled by a
relevant information state, while for statements, what matters is whether they are true
at the world of evaluation. This asymmetry creates problems the moment we start
considering cases of entailment involving both statements and questions. It is easy to
see that, if such entailments are to bemeaningful at all, entailment cannot just amount
to preservation of truth. Nelken and Shan propose to fix this by re-defining entailment
as modal consequence: ϕ |= ψ if, whenever ϕ is true at every possible world in a
model, so is ψ. However, this move has the unintended consequence of changing the
consequence relation for modal statements. For instance, if our declarative language
indeed contains a Kripke modality, say a knowledge modality K , then if our notion
of entailment is redefined as modal consequence, we make undesirable predictions,
such as p |= K p. Thus, this approach does not really allow us to extend classical
logics with questions in a conservative way.17

17 Besides this, there are other difficulties, too. First, it is hard to make sense of the proposed truth-
conditions for questions. For instance, take the question “What is the capital of Spain?”. Is this
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The asymmetry from which the problem originates can be eliminated by letting
statements, too, be interpreted in terms of when they are settled by the state R[w],
rather in terms of when they are true at w: that is, we may render a basic statement
not as a propositional formula α, but as a modal formula �α. If we made this move,
we would arrive at a framework with a sensible logic, but with some unnecessary
complexity: while sentences are interpreted with respect to a world w equipped with
an information state R[w], it is only the state R[w]whichmatters for the interpretation
of both statements and questions. We could thus get rid of the worlds altogether and
interpret formulas directly relative to states. This would also allow us to work with
simpler models and with a simpler syntax, leading to an approach similar to the one
taken here.

2.10 Exercises

Exercise 2.10.1 (Support conditions) Imagine a game inwhich a player has picked a
secret two-digits code, where each digit is 1, 2, or 3. So, there are 3 × 3 = 9 possible
codes, corresponding to 9 possible worlds, as follows:

11 12 13

21 22 23

31 32 33

1. For each of the following statements and questions, determine and draw a picture
of the maximal information states in which it is supported.

(11) a. The code is 12
b. The first digit is 1.
c. The code contains a 1.
d. If the first digit is 1, the second is 2.
e. Is the code 12?
f. Is the first digit 1?
g. Is the first digit 1, or is it 2?
h. Does the code contain a 1?
i. What is the code?

questions actually true? According to Nelken and Shan that depends on an accessibility relation,
but it is not clear what the relevant relation is. It should not be the epistemic accessibility relation
of a particular agent, say Alice, since that would predict that the question means the same as the
statement “Alice knows what the capital of Spain is”, which is surely wrong—the question is not
about Alice at all.
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j. What is the first digit?
k. What is one digit that does not occur in the code?
l. If the first digit is a 1, what is the second digit?

2. Find questions in English having the following sets as alternatives:

(12) a. {11, 22, 33}, {12, 13, 21, 23, 31, 32};
b. {12, 13, 23}, {11, 22, 33}, {21, 31, 32};
c. {11}, {12, 21}, {31, 22, 13}, {23, 32}, {33}.

Note that one trivial option is to formulate the relevant question as: “is the code
among those in {. . . }, or among those in {. . . }, etc.”; try to avoid such trivial
solutions and to come up with more natural formulations.

3. How many non-equivalent yes/no questions can we in principle ask about the
code in this model? (Include the trivial yes/no question in the count.)

Exercise 2.10.2 (Inquisitive entailment in context) Consider the model and some of
the sentences of the previous exercise, labeled by letters as above. We can draw a
table showing at row x and column y whether or not sentence x entails sentence y
in the model. For instance:

a b c f h i j
a � � �
b × � �
c × × �
f
h
i
j

Determine which of the remaining entailments hold and fill the table.

Exercise 2.10.3 (Polar questions) Ifα is a statement, let ?α denote the polar question
whether α, which is settled iff the available information determines whether α is true
or false:

s |= ?α ⇐⇒ s ⊆ |α|M or s ∩ |α|M = ∅.

Let M be an arbitrary model. Let us say that a sentence ϕ is a tautology in M if ϕ is
supported by every information state in M . Prove the following claims:

1. ?α is a tautology in M ⇐⇒ α or ¬α is a tautology in M .
2. ?α ≡M ?β ⇐⇒ α ≡M β or α ≡M ¬β.
3. If ?α |=M ?β then either ?α ≡M ?β or ?β is a tautology in M .

Notice in particular that item 3 implies that no proper entailment can hold among
non-trivial polar questions.
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Exercise 2.10.4 (Inquisitive implication) Consider again the model corresponding
to our die roll scenario, and consider the following statements and questions.

even The outcome is even.
low The outcome is low.
parity Is the outcome even, or odd?
range Is the outcome low, middle, or high?

Determine and draw the alternatives for the following implications.

1. even → low
2. even → range
3. even → parity
4. range → even
5. parity → range
6. range → parity

Hint. Use the Ramsey test clause give by Propositions 2.5.2 and 2.5.3. Draw each
alternative in a separate picture of the logical space, as in Fig. 2.6.

Exercise 2.10.5 (Entailments towards statements) Let α be a statement and � a set
of sentences which may be either statements or questions. Using the Truth-Support
Bridge, show that we have:

� |= α ⇐⇒ for all models M and worlds w ∈ WM : w |= � implies w |= ψ,

where w |= � means ‘w |= ϕ for all ϕ ∈ �’. Using this, prove Proposition 2.6.2.

References

1. Ciardelli, I., Groenendijk, J., & Roelofsen, F. (2018). Inquisitive semantics. Oxford: Oxford
University Press.

2. Hamblin, C. L. (1958). Questions. Australasian Journal of Philosophy, 36, 159–168.
3. Belnap, N., & Steel, T. (1976). The logic of questions and answers. NewHaven: YaleUniversity

Press.
4. Fagin, R., & Vardi, M. Y. (1986). The theory of data dependencies—A survey. In Proceedings

of symposia in applied mathematics (pp. 19–71). IBM Thomas J. Watson Research Division,
1986.

5. Belnap,N. (1966).Questions, answers, and presuppositions.The Journal of Philosophy, 63(20),
609–611.

6. Beth, E. W. (1956). Semantic construction of intuitionistic logic. Koninklijke Nederlandse
Akademie van Wetenschappen, Mededelingen, Nieuwe Reeks, 11(19), 357–388.

7. Kripke, S. (1965). Semantical analysis of intuitionistic logic I. In J. N. Crossley & M. A.
Dummett (Eds.), Formal systems and recursive functions (pp. 92–130). Amsterdam: North-
Holland.

8. Routley, R., & Meyer, R. K. (1973). The semantics of entailment. In Studies in logic and the
foundations of mathematics (Vol. 68, pp. 199–243). Amsterdam: Elsevier.



52 2 Foundations of Inquisitive Logic

9. Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 347–372.
10. Veltman, F. (1981). Data semantics. In J. Groenendijk, T. Janssen, &M. Stokhof (Eds.), Formal

methods in the study of language. Mathematical Centre.
11. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30(3), 265–300.
12. Humberstone, L. (1981). From worlds to possibilities. Journal of Philosophical Logic, 10(3),

313–339.
13. van Benthem, J. (1986). Partiality and nonmonotonicity in classical logic. Logique et Analyse,

29(114), 225–247.
14. Holliday,W. (2014). Partiality and adjointness inmodal logic. In R. Goré, B. Kooi, &A.Kurucz

(Eds.), Advances in modal logic (AiML) (pp. 313–332). London: College Publications.
15. Holliday, W. (2018). Possibility frames and forcing for modal logic. Manuscript. https://

escholarship.org/uc/item/0tm6b30q.
16. Hintikka, J. (1962). Knowledge and belief: An introduction to the logic of the two notions.

Ithaca: Cornell University Press.
17. Yalcin, S. (2007). Epistemic modals. Mind, 116(464), 983–1026.
18. Willer, M. (2013). Dynamics of epistemic modality. Philosophical Review, 122(1), 45–92.
19. Hawke, P.,&Steinert-Threlkeld, S. (2020). Semantic expressivism for epistemicmodals. Forth-

coming in Linguistics and philosophy.
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Chapter 3
Questions in Propositional Logic

In the previous chapter we introduced the fundamental ideas of inquisitive logic.
These ideas are general, and can be used to build many specific logical systems
in which we can formalize both statements and questions. One way to build such
systems is to start with a system of classical logic and extend it to an inquisitive
system in two steps. In the first step, we re-implement the classical system by giving
it a support semantics. In executing this step, wemake sure our semantics satisfies the
Truth-Support Bridge: as we discussed in Sect. 2.2, this guarantees that the original
logic of statements is preserved. In the second step, we extend the language with
question-forming operators, which can be interpreted naturally in the context of a
support semantics. The result is an inquisitive system which is conservative over the
original logic. The strategy is illustrated in Fig. 3.1.

In this section, we execute this strategy in the simplest setting, that of propo-
sitional logic. Thus, this chapter is devoted to the enterprise of enriching classical
propositional logic with questions. There are several ways to do that, depending on
what operators we take as primitive. We will present a system which is particularly
natural, expressively rich, and well-understood. This system is called InqB, where
the letter B stands for basic; this is to distinguish it from other systems of inquisitive
propositional logic with different sets of primitives (see [1, 2] as well as Exercise
3.11.9). Due to its prominent role, InqB is often just referred to as inquisitive propo-
sitional logic, though strictly speaking it is just one inquisitive propositional logic.1

In this chapter we will introduce this system, illustrate it with examples, and study
its formal properties in some detail.

1 A historical note: the system InqB was first considered by Groenendijk [3], and shortly after inde-
pendently by Ciardelli [4], who argued that this system should replace the previous implementation
of inquisitive semantics based on pairs of worlds (cf. Sect. 2.9.3). The main sources for the results
on InqB presented in this section are [5–7].

© The Author(s) 2022
I. Ciardelli, Inquisitive Logic, Trends in Logic 60,
https://doi.org/10.1007/978-3-031-09706-5_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09706-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-09706-5_3


56 3 Questions in Propositional Logic

Statements
only

Statements
+questions

Truth-based
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Truth-based
classical system

Support-based
classical system

Inquisitive
system

Fig. 3.1 From a classical system to an inquisitive system in two steps

3.1 Support for Classical Propositional Logic

Let P be a given set of propositional atoms. From the perspective of a propositional
language, a state of affairs is characterized completely by a specification of the truth-
values of the atoms inP . Thus, a model M for propositional logic will consist simply
of a set of possible worlds W and a valuation function V which determines the truth
value of each atom at each world.2

Definition 3.1.1 (Propositional information models) A propositional information
model for P is a pair M = 〈W, V 〉, where:
– W is a set, whose elements we refer to as possible worlds;
– V : W × P → {0, 1} is map that assigns to each worldw and atom p a truth value
V (w, p).

An information state in a model M = 〈W, V 〉 is a set s ⊆ W of possible worlds. We
refer to the the empty set of worlds, ∅, as the inconstistent state, and to non-empty
sets as consistent states (cf. the discussion in Sect. 2.2).

Let us start by providing a support semantics for classical propositional logic.
The set LP

c of classical propositional formulas is given by the following definition,
where p ∈ P:

2 Some previous literature on inquisitive propositional logic (for instance, Ciardelli and Roelofsen
[6]) assumes a slightly different setup. It works with a fixed model ω, having the valuation functions
v : P → {0, 1} as possible worlds. Since this model contains a copy of each possible state of affairs,
the difference is immaterial to the logic, as the reader is invited to show in Exercise 3.11.7. The
present setup makes things slightly more complicated, but it has the advantage of allowing for a
smoother transition to predicate logic and modal logic.
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α ::= p | ⊥ | (α ∧ α) | (α → α).

That is, classical propositional formulas are built up from atoms and the falsum con-
stant by means of conjunction and implication. As usual, we omit brackets whenever
this causes no confusion. We take negation, disjunction, the bi-conditional, and the
constant 
 to be defined operators.

Definition 3.1.2 (Defined connectives)

– ¬ϕ := ϕ → ⊥
– 
 := ¬⊥

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)

Thus, the language LP
c is just a standard propositional language with a particular

choice of primitives. However, we interpret this language not, as usual, via a recursive
definition of truth at a world, but instead via a recursive definition of support at an
information state.

Definition 3.1.3 (Support for classical formulas) Let M be a propositional infor-
mation model. The relation of support between states s in M and formulas ϕ ∈ LP

c
is defined as follows:

– M, s |= p ⇐⇒ V (w, p) = 1 for all w ∈ s;
– M, s |= ⊥ ⇐⇒ s = ∅;
– M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ;
– M, s |= ϕ → ψ ⇐⇒ for all t ⊆ s, M, t |= ϕ implies M, t |= ψ.

We leave M implicit when this is harmless, writing s |= ϕ instead of M, s |= ϕ.

Keeping in mind that we read support as capturing the fact that a formula is settled
in an information state, we can read the clauses as follows. An atom p is settled in
s in case the information available in s implies that p is true. The falsum constant
⊥ is settled only by the state of inconsistent information, ∅. A conjunction is settled
in s in case both conjuncts are settled. Finally, implication internalizes contextual
entailment in the way discussed in Sect. 2.5: ϕ → ψ is settled in s iff relative to s,
ϕ entails ψ (that is, if any way of strengthening s so as to settle ϕ results in a state
that also settles ψ).

The following basic facts about the semantics can be established simultaneously
by a straightforward induction on ϕ.

Proposition 3.1.4 For every model M and formula ϕ ∈ LP
c we have:

– Persistency: if s |= ϕ and t ⊆ s then t |= ϕ;
– Empty state property: ∅ |= ϕ.

Intuitively, persistency says that if a sentence is supported by a state s, then it is
also supported by any state that contains at least as much information as s. That
is, support is a matter of there being enough information in the state. The empty
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state property says that the inconsistent state trivially supports any formula. As we
discussed in Sect. 2.4, this can be seen as a semantic counterpart of the ex falso
quodlibet principle.

In order to spell out the clauses for the defined connectives ¬ and ∨, it will be
useful to introduce a derived semantic relation. We will say that s rules out ϕ if s
cannot be strengthened consistently to support ϕ.

Definition 3.1.5 (Ruling out) A state s rules out a formulaϕ, denoted s |= ϕ, if there
is no consistent t ⊆ s such that t |= ϕ.

Using this notion, the derived semantic clauses for the defined operators can be
expressed as follows.

Proposition 3.1.6 (Support conditions for defined operators)

– s |= ¬ϕ ⇐⇒ s |= ϕ;
– s |= ϕ ∨ ψ ⇐⇒ there is no consistent t ⊆ s such that t |= ϕ and t |= ψ;
– s |= ϕ ↔ ψ ⇐⇒ ∀t ⊆ s : (t |= ϕ ⇐⇒ t |= ψ);
– s |= 
 always.
Let us recall some important notions that were defined in the previous chapter. The
support-set of a formula ϕ in a model M , [ϕ]M , is the set of states that support ϕ.
The set of alternatives for ϕ, AltM(ϕ), is the set of maximal states that support ϕ.
Also, recall that, in a support-based semantics, truth at a world is defined as support
at the corresponding singleton state:

M, w |= ϕ
de f⇐⇒ M, {w} |= ϕ.

The truth-set of ϕ in a model M , |ϕ|M , is the set of worlds in M where ϕ is true.
The following proposition shows that the notion of truth that we obtain from our

support semantics coincides with the notion of truth in classical propositional logic.

Proposition 3.1.7 (Truth-conditions for classical formulas) For any model M =
〈W, V 〉 and any world w ∈ W we have:

– w |= p ⇐⇒ V (w, p) = 1;
– w �|= ⊥;
– w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ;
– w |= ϕ → ψ ⇐⇒ w �|= ϕ or w |= ψ;
– w |= ¬ϕ ⇐⇒ w �|= ϕ;
– w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ.

Proof It suffices to inspect the support conditions given by Definition 3.1.3 in the
case of singleton states. The most interesting case is the one for implication. We
have:

w |= ϕ → ψ ⇐⇒ {w} |= ϕ → ψ ⇐⇒ ∀t ⊆ {w} : t |= ϕ implies t |= ψ.
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There are only two sets t ⊆ {w} to consider: t = ∅ and t = {w}. For the case t = ∅
the condition is trivially satisfied, since ∅ supports every formula by Proposition
3.1.4. Thus, the above universal requirement boils down to a requirement on the
state {w}, namely, that either {w} �|= ϕ or {w} |= ψ. By the definition of truth, this
amounts to w �|= ϕ or w |= ψ. �

Thus, the standard truth conditions for classical formulas can be retrieved from our
support semantics.Moreover, the support conditions of a classical formula are related
to its truth conditions in accordance with the Truth-Support Bridge. That is, for all
classical formulas, to be supported at a state s is just to be true at each world w ∈ s.

Proposition 3.1.8 (Classical formulas are truth-conditional) For any model M, any
state s, and any formula ϕ ∈ LP

c :

s |= ϕ ⇐⇒ w |= ϕ for all w ∈ s

⇐⇒ s ⊆ |ϕ|M .

Proof By induction on ϕ. The basic cases for atoms and ⊥ are immediate, as is the
inductive step for conjunction. What remains is the inductive step for implication.
So consider a formula ϕ → ψ. We have

s |= ϕ → ψ ⇐⇒ ∀t ⊆ s : t |= ϕ implies t |= ψ

⇐⇒ ∀t ⊆ s : t ⊆ |ϕ|M implies t |= ψ

⇐⇒ ∀t ⊆ s ∩ |ϕ|M : t |= ψ

⇐⇒ s ∩ |ϕ|M |= ψ

⇐⇒ s ∩ |ϕ|M ⊆ |ψ|M
⇐⇒ s ⊆ (W − |ϕ|M) ∪ |ψ|M
⇐⇒ s ⊆ |ϕ → ψ|M

where the second and the fifth biconditional use the induction hypotheses, the fourth
biconditional uses the persistency of support, and the last biconditional uses the truth
conditions for ϕ → ψ as given by the previous proposition. �

As an immediate corollary of this result, we have that in every model M , a classical
formula ϕ has a unique alternative, which coincides with its truth-set |ϕ|M . Figure
3.2 illustrates this fact by showing the alternatives for some classical formulas in a
simple model.

Propositions 3.1.7 and 3.1.8 show that the support-semantics given above and
the standard truth-conditional semantics for classical propositional logic are inter-
definable. Moreover, we saw in Sect. 2.2 that once we have the Truth-Support Bridge
given by Proposition 3.1.8, we can show that the two semantics yield the same entail-
ment relation. So, what we have given so far is an alternative semantic foundation
for classical propositional logic based on support. We have thus executed the first
step of the strategy laid out in the introduction to this chapter.
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(a) p
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pq pq

(b) ¬p

pq pq

pq pq

(c) p ∧ q

pq pq

pq pq

(d) p ∨ q

pq pq

pq pq

(e) p → q

Fig. 3.2 The alternatives for some classical formulas in a four-world model. Here, pq represents
a world where p and q are both true, pq a world where p is true and q is false, etc. Proposition
3.1.8 implies that a classical formula ϕ always has a unique alternative, which coincides with its
truth-set |ϕ|M

3.2 Adding Questions to Propositional Logic

Having re-implemented classical propositional logic in terms of support, we are now
ready for the second step of our strategy: enriching the language of propositional
logic with formulas that stand for questions. There are different ways to do this. The
way we pursue here is to add to our logical repertoire a new connective,

�

, called
inquisitive disjunction.3 Thus, the full language of our system InqB is generated from
propositional atoms and ⊥ by means of the connectives ∧,→, and

�

.

Definition 3.2.1 (Language LP) The language LP of propositional inquisitive logic
is defined as follows:

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ → ϕ) | (ϕ �

ϕ).

Intuitively, we regard

�

as a question-forming disjunction. That is, while the classical
disjunction p ∨ q intuitively stands for the disjunctive statement that p or q is the case
(interpreted inclusively), the inquisitive disjunction p

�

q stands for the disjunctive
questionwhether p orq is the case (interpreted inclusively).4 Similarly,while p ∨ ¬p
stands for the tautological statement that either p or ¬p is the case, the inquisitive
disjunction p

� ¬p stands for the polar question whether p or ¬p is the case, i.e.,
whether p is true or false. We introduce a defined operator, ?, that allows us to turn
a statement into a polar question.

Definition 3.2.2 (Question mark operator) ?ϕ := ϕ

� ¬ϕ

3 A natural alternative is considered in Exercise 3.11.9. As the reader is asked to prove, that alter-
native leads to a system less expressive than InqB.
4 It seems plausible that an alternative question like whether p or q in English is in fact exclusive,
in the sense that it presupposes that exactly one of p and q is true, and it is settled by establishing
which one (see, e.g., Biezma and Rawlins [8], Aloni et al. [9]). This kind of reading is expressible
in our formal language by means of the formula (p ∧ ¬q)

�

(q ∧ ¬p). Nothing in this book hinges
on this empirical issue. What matters for our purposes is that both inclusive and exclusive readings
can be regimented in our formal language.
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Given the intended interpretation of an inquisitive disjunction p

�

q , the support
conditions for inquisitive disjunction will be stricter than those of classical disjunc-
tion: in order to settle whether p or q is the case, one needs to establish either that p
is the case, or that q is the case. This leads naturally to the following support clause.

Definition 3.2.3 (Support for InqB) The relation of support for InqB is obtained by
supplementing Definition 3.1.3 with the following inductive clause:

– s |= ϕ

�

ψ ⇐⇒ s |= ϕ or s |= ψ.

The derived support clause for the question mark operator is:

– s |= ?ϕ ⇐⇒ s |= ϕ or s |= ϕ.
That is, s supports ?ϕ if it either supports or rules outϕ. Let us illustrate the semantics
of our new operators by spelling out the support conditions for the formulas p

�

q
and ?p that we discussed above.

Example 3.2.4 Consider the formula p

�

q. Since p and q are classical formulas,
using Proposition 3.1.8 we have:

s |= p

�

q ⇐⇒ s |= p or s |= q ⇐⇒ s ⊆ |p|M or s ⊆ |q|M .

That is, as anticipated, a state s settles p

�

q if it implies that p is true or it implies that
q is true. In the toy model we used for our pictures, p

�

q thus has two alternatives,
namely, |p|M and |q|M , as shown in Fig. 3.3a. From thiswe can already see a semantic
difference between p

�

q and classical formulas: aswe saw above, classical formulas
always have a single alternative.

It is instructive to note that the support conditions of p

�

q differ from those
of its classical counterpart p ∨ q in the relative scope of universal quantifier and
disjunction:

– s |= p

�

q ⇐⇒ (∀w ∈ s : w |= p) or (∀w ∈ s : w |= q);
– s |= p ∨ q ⇐⇒ ∀w ∈ s : (w |= p or w |= q).

Example 3.2.5 Consider the formula ?p. Again, since p and ¬p are classical, we
have:

pq pq

pq pq

(a) p q

pq pq

pq pq

(b) ?p

Fig. 3.3 The alternatives for two simple formulas formed by means of

�
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s |= ?p ⇐⇒ s |= p or s |= ¬p

⇐⇒ s ⊆ |p|M or s ⊆ |¬p|M
⇐⇒ (∀w ∈ s : V (w, p) = 1) or (∀w ∈ s : V (w, p) = 0)

⇐⇒ ∀w,w′ ∈ s : V (w, p) = V (w′, p).

Thus, a state s settles ?p if it implies that p is true, or it implies that p is false. In other
words, s settles ?p just in case it determines whether p is true or false. These are
just the support conditions we expect given our reading of ?p as the polar question
whether p. In the toy model M of our figures, the formula ?p has two alternatives,
namely, the states |p|M and |¬p|M , as shown in Fig. 3.3b.

Example 3.2.6 To conclude this section, let us illustrate how the die roll example
from the previous chapter can be formalized in InqB. Imagine that our propositional
language has six atomic sentences, standing for the statements “the outcome is n”
for 1 ≤ n ≤ 6:

P = {one, two, three, four, five, six}.

We can then define classical formulas formalizing statements such as “the outcome
is low” or “the outcome is even”, as follows:

– low := one ∨ two;
– mid := three ∨ four;
– high := five ∨ six;

– even := two ∨ four ∨ six;
– odd := one ∨ three ∨ five.

So far, everything is familiar from standard propositional logic. But now, using
inquisitive disjunction, we can also write formulas formalizing the questions what
the outcome is, whether the outcome is even or odd, and whether the outcome is low,
middle, or high5:

– outcome := one

�

two

�

three

�

four

�

five

�

six;
– parity := even

�

odd;
– range := low

�

mid

�

high.

Now consider a model M for our language whose universe contains six worlds,
W = {w1, . . . , w6} with the obvious valuation (one is true only at w1, etc.). In this
model, the support conditions for the formulas we defined are indeed the ones we
gave in the previous chapter, namely:

– s |= parity ⇐⇒ s ⊆ {w1, w3, w5} or s ⊆ {w2, w4, w6};
– s |= range ⇐⇒ s ⊆ {w1, w2} or s ⊆ {w3, w4} or s ⊆ {w5, w6};
– s |= outcome ⇐⇒ s ⊆ {wi } for some i ≤ 6.

As a consequence, the alternatives for these formulas are exactly the ones depicted
in Fig. 2.2 in Sect. 2.2.

5 Note that, since

�

is associative, the bracketing of the disjuncts in a disjunction involving more
than two disjuncts is irrelevant. This means that we can legitimately write such a disjunction as
ϕ1

�

. . .

�

ϕn .
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3.3 Basic Properties of InqB

In this section we discuss some basic semantic properties of the system InqB. First
of all, it is easy to verify that persistency and the empty state property, given by
Proposition 3.1.4 for classical formulas, still hold for our extended language.

Proposition 3.3.1 For any model M and any formula ϕ ∈ LP we have:

– Persistency: if s |= ϕ and t ⊆ s, then t |= ϕ.
– Empty state property: ∅ |= ϕ.

This ensures that the support-set [ϕ]M of a formula in a model is always an inquis-
itive proposition, i.e., a non-empty and downward closed set of information states
(cf. Definition 2.4.2).

Another basic feature of the semantics is that it is local: support at a state depends
exclusively on the worlds in the state, and not on the other worlds present in the
model. Let us make this claim precise.

Definition 3.3.2 (Restriction of a model to a state) The restriction of an information
model M = 〈W, V 〉 to a state s ⊆ W is the model M|s = 〈s, V|s〉, where V|s is the
restriction of the map V to the state s.

Proposition 3.3.3 (Locality) For any information model M, any state s in M and
any formula ϕ ∈ L:

M, s |= ϕ ⇐⇒ M|s, s |= ϕ.

The proof is straightforward, by induction on ϕ. Locality is not a property to be
taken for granted: it fails, for instance, in inquisitive modal logic (cf. Chap. 8), since
the interpretation of a modal formula may well depend on worlds located outside
the evaluation state (just like, in standard modal logic, the interpretation of a modal
formula depends on worlds different from the evaluation world).

Next, consider the notion of truth for our extended language. All the truth-
conditional clauses given in Proposition 3.1.7 still hold for the full language LP.
Moreover, the truth conditions for an inquisitive disjunction coincide with those of
the corresponding classical disjunction.

Proposition 3.3.4 (Truth conditions for

�

) w |= ϕ

�

ψ ⇐⇒ w |= ϕ or w |= ψ.

Finally, a systematic relation holds between the proposition [ϕ]M expressed by a
formula and its truth-set |ϕ|M : the latter always amounts to the union of all the
elements in the former. The proof is left as an exercise (see Exercise 3.11.2).

Proposition 3.3.5 (Proposition and truth-set) For any model M and any ϕ ∈ LP:
|ϕ|M = ⋃[ϕ]M.
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3.4 Truth-Conditional Formulas

Recall Definition 2.6.3: we call a formula ϕ truth-conditional in case for any model
M and state s we have:

M, s |= ϕ ⇐⇒ ∀w ∈ s : M, w |= ϕ.

Proposition 3.1.8 tells us that all classical formulas—i.e., all formulas not containing�

—are truth-conditional. By contrast, formulas involving

�
are typically not truth-

conditional. To see this, note that if ϕ is truth-conditional then in any model M , ϕ
has a unique alternative, namely, |ϕ|M . This immediately implies that the formulas
p

�

q and ?p are not truth-conditional, given that in the model of Fig. 3.3 they both
have two distinct alternatives.

This result is expected, given that we think of these formulas as questions. As
we discussed in detail in Sect. 2.6, we expect statements, but not questions, to be
truth-conditional. In fact, we will use truth-conditionality as a criterion to classify
formulas of our formal language as being statements or questions.6

Definition 3.4.1 (Statements and questions) We call ϕ ∈ LP a statement if it is
truth-conditional, and a question otherwise.

Henceforth, we adopt the following notational convention: we use α,β, γ as meta-
variables ranging over statements, λ,μ, ν as meta-variables for questions, and
ϕ,ψ,χ as meta-variables for formulas which may belong to either category.

Let us consider again Proposition 3.1.8, which tells us that every classical formula
is truth-conditional. This is as it should be, since we read formulas of classical
propositional logic in the usual way, as formalizing statements. We are now going to
see that, conversely, any truth-conditional formula in InqB is equivalent to a classical
formula. Thus, adding inquisitive disjunction to our language enables our logic to
express questions, but not to express new statements.7 First, we associate to any
ϕ ∈ LP a classical formula ϕcl that has the same truth conditions as ϕ.

Definition 3.4.2 (Classical variant of a formula) The classical variant of a formula
ϕ ∈ LP, denoted ϕcl , is obtained from ϕ by replacing all occurrences of inquisitive
disjunction by classical disjunction.

6 Note that some work on inquisitive logic [for instance, 6, 10] uses the term question in a different
way: a sentenceϕ is called a question if in anymodelM , |ϕ|M = W . That terminology is based on an
interpretation of inquisitive propositions in terms of discourse effects: questions are characterized
by the property of being non-informative. Here, we do not link support conditions to discourse
effects.
7 This is not always the case: as we will discuss in Chap. 8, in inquisitive modal logic questions
may be embedded under specific inquisitive modalities, resulting in new truth-conditional formulas
expressing, for instance, that an agent wonders about a certain question. In such a system, the
presence of questions also enables the language to express statements that have no counterpart in
the classical fragment of the language. In other words, questions contribute to the range of modal
statements that the system can express.
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pq pq

pq pq

(c) ?p
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(d) (?p)cl

Fig. 3.4 The relation between a formula ϕ and its classical variant ϕcl . The picture for ϕcl also
illustrates the meaning of the double negation ¬¬ϕ

To give some examples, we have (p

�

q)cl = p ∨ q and (?p)cl = p ∨ ¬p. The fol-
lowing fact follows immediately from Propositions 3.1.7 and 3.3.4.

Proposition 3.4.3 For any formula ϕ and any model M, |ϕcl |M = |ϕ|M.
Thus, ϕcl is always a truth-conditional formula sharing the same truth-conditions as
ϕ. The relation between ϕ and ϕcl is illustrated visually in Fig. 3.4.

If ϕ itself is truth-conditional, then ϕ and ϕcl are both truth-conditional formulas
with the same truth conditions. Since for truth-conditional formulas truth determines
support, ϕ and ϕcl are logically equivalent. Conversely, if ϕ and ϕcl are equivalent,
then since ϕcl is truth-conditional, so is ϕ.8

Proposition 3.4.4 For all ϕ ∈ LP, ϕ is truth-conditional ⇐⇒ ϕ ≡ ϕcl .

This shows in particular that every truth-conditional formula in LP is equivalent to a
classical formula, which shows that the classical language LP

c is, up to equivalence,
exactly the truth-conditional fragment of InqB.

Corollary 3.4.5 For any ϕ ∈ LP, ϕ is truth-conditional ⇐⇒ ϕ ≡ α for some
α ∈ LP

c .

If μ is a question, then μ is not truth-conditional, and therefore it is not equivalent to
its classical variant μcl . In this case, the formula μcl is a statement that has the same
truth-conditions as the question μ: as we discussed in Sect. 2.6, we can think of μcl

as expressing the presupposition of μ.

Definition 3.4.6 (Presupposition of a question) If μ is a question, its presupposition
is the statement πμ := μcl .

Thus, e.g., the presupposition of the question p

�

q is the statement p ∨ q, while
the presupposition of a polar question ?α is the tautology (α ∨ ¬α) ≡ 
.

The classical connectives ∧ and → preserve truth-conditionality. In fact, in the
case of implication, the truth-conditionality of the consequent is sufficient to ensure
the truth-conditionality of the implication, regardless of whether the antecedent is
truth-conditional.

8 Recall from Sect. 2.3 that ϕ and ψ are logically equivalent, denoted ϕ ≡ ψ, if for every model M
and information state s: M, s |= ϕ ⇐⇒ M, s |= ψ.
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Proposition 3.4.7 (∧ and → preserve truth-conditionality)

– If α and β are truth-conditional, so is α ∧ β.
– If α is truth-conditional, so is ϕ → α for any ϕ.

Proof We prove the second claim, since the first is straightforward. Suppose α is
truth-conditional. We want to show that ϕ → α is truth-conditional. It suffices to
show that whenever ϕ → α is not supported at a state s, it is false at a world in the
state. So, take an arbitrary state s and suppose s �|= ϕ → α. Then there is some t ⊆ s
such that t |= ϕ but t �|= α. Since α is truth-conditional, the fact that t �|= α implies
that there is aworldw ∈ t such thatw �|= α. By persistency, since {w} ⊆ t and t |= ϕ,
we have {w} |= ϕ, that is, w |= ϕ. Since truth conditions work in the standard way
we have w �|= ϕ → α. Since w ∈ t ⊆ s, this shows that there is a world in s where
ϕ → α is false. �

The previous proposition also implies that every negation ¬ϕ is truth-conditional,
since ¬ϕ := ϕ → ⊥ and ⊥ is truth-conditional.

Proposition 3.4.8 For any ϕ ∈ LP, ¬ϕ is truth-conditional.

Since classical disjunction is defined by letting ϕ ∨ ψ abbreviate ¬(¬ϕ ∧ ¬ψ),
this implies in particular that classical disjunctions are always truth-conditional.
Also, a double negation¬¬ϕ is always truth-conditional. Moreover, since truth con-
ditions work in the usual way, ¬¬ϕ has the same truth conditions as ϕ. Thus, ¬¬ϕ
is equivalent to ϕcl : this is because both formulas are truth-conditional, and their
truth conditions coincide with those of ϕ.

Proposition 3.4.9 For any ϕ ∈ LP, ¬¬ϕ ≡ ϕcl .

This means that Fig. 3.4b also depicts the semantics of ¬¬(p

�

q), and Fig. 3.4b
also depicts the semantics of ¬¬(?p).

An important consequence of these considerations is that a formula is equivalent
to its double negation if and only if it is truth-conditional.

Proposition 3.4.10 For any ϕ ∈ LP, ϕ ≡ ¬¬ϕ ⇐⇒ ϕ is truth-conditional.

Proof If ϕ is truth-conditional then putting together the previous proposition with
Proposition 3.4.4 we have ϕ ≡ ϕcl ≡ ¬¬ϕ. Conversely, if ϕ ≡ ¬¬ϕ then since
¬¬ϕ is truth-conditional, so is ϕ. �

In other words, the double negation law is the hallmark of truth-conditionality: it
holds for statements, but not for questions. Notice also that the entailmentϕ |= ¬¬ϕ
holds for every formula (Exercise 3.11.4), so the above bi-conditional can be written
equivalently as: ¬¬ϕ |= ϕ ⇐⇒ ϕ is truth-conditional.
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Fig. 3.5 Illustration of the behavior of conjunction and implication in InqB

3.5 Applying Connectives to Questions

We saw that, when applied to classical formulas, our connectives ∧ and → behave
just as they do in standard propositional logic. However, in InqB we have placed no
syntactic restrictions to the applicability of these connectives.We can thus apply them
freely to questions formed by means of

�
. This is meaningful, since the semantics

of these connectives was given in terms of recursive support clauses. In this section,
we will illustrate the results of applying these connectives to questions with some
examples.

First, consider conjunction. Proposition 3.4.7 implies that, if α and β are state-
ments, then α ∧ β is itself a statement; and Proposition 3.1.7 ensures that this state-
ment has the expected truth conditions: it is true just in case both conjuncts are true.
This is illustrated by Fig. 3.5a. However, conjunction can now also be applied to
questions. As an example, consider the formula ?p ∧ ?q: as illustrated by Fig. 3.5b,
this is a question that is settled in a state s just when both questions ?p and ?q are
settled, that is, just when the state s determines the truth value of both p and q. More
generally, we can use ∧ to form conjunctive questions which are settled just in case
both conjuncts are settled. Thus, one and the same conjunction operation can be used
to formalize conjunctive statements, such as (1-a), and conjunctive questions, such
as (1-b) and (1-c).9

(1) a. Sue rented a car and she booked a hotel.
b. Did Sue rent a car, and did she book a hotel?
c. What car did Sue rent, and which hotel did she book?

The situation is similar for implication. Proposition 3.4.7 implies that if α and
β are statements then α → β is a statement; and Proposition 3.1.7 implies that this
statement has the usual material truth conditions. This is illustrated by Fig. 3.5c.
However, as for conjunction, now we can also consider the effect of applying this
connective to questions.

Consider first the case of a conditional α → μ whose antecedent is a statement
and whose consequent is a question. Proposition 2.5.2 tells us that the clause for

9 Of course, (1-c) is not expressible in inquisitive propositional logic, since formalizingwh-questions
requires the resources of predicate logic; but the point we make here is general: given any two
questions we can formalize in a system, we can use ∧ to formalize the corresponding conjunctive
question.
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implication in this case boils down to the Ramsey test clause:

s |= α → μ ⇐⇒ s ∩ |α|M |= μ.

That is, α → μ is settled if the question μ is settled in restriction to the α-worlds in
s. Thus, α → μ is a conditional question that asks us to resolve the consequent under
the assumption of the antecedent. This seems to be the correct analysis of (at least
one class of) conditional questions. Thus, one and the same implication connective
can be used to formalize conditional statements like (1-a) and conditional questions
like (1-b) and (1-c).10

(2) a. If Alice wins a free trip, she’ll go to Athens.
b. If Alice wins a free trip, will she go to Athens?
c. If Alice wins a free trip, where will she go?

For a concrete illustration, consider the formula p → ?q . The alternatives for this
question in our toy model are shown in Fig. 3.5d: they correspond to the statements
p → q and p → ¬q, and to the twominimal ways to provide information that settles
whether q in restriction to the p-worlds.

Next, consider a conditional μ → α whose antecedent is a question μ and whose
consequent a statement α. It follows from Proposition 3.4.7 that in this case the
conditional μ → α is truth-conditional, and so we have:

s |= μ → α ⇐⇒ ∀w ∈ s : w |= μ → α

⇐⇒ ∀w ∈ s : w �|= μ or w |= α.

Thus, in this case only the truth conditions of the question μ matter. Since μ and its
presupposition πμ have the same truth-conditions, μ can be replaced by πμ when the
consequent is a statement.

Proposition 3.5.1 If μ is a question and α a statement, μ → α ≡ πμ → α.

Thus, for instance, for any statement α we have (p

�

q) → α ≡ (p ∨ q) → α and
(?p → α) ≡ (
 → α) ≡ α. Notice that as a special case we can take α = ⊥ and
obtain the following corollary.

Corollary 3.5.2 If μ is a question, ¬μ ≡ ¬πμ.

That is, applying negation to a question yields the negation of the presupposition of
the question. Thus, e.g., ¬(p

�

q) ≡ ¬(p ∨ q), while ¬(?p) ≡ ¬
 ≡ ⊥.
Finally, consider a conditional μ → ν whose antecedent and consequent are both

questions. As we saw in Sect. 2.5, such a conditional is supported in a state s just in

10 The point extends to counterfactual conditionals: in the inquisitive setting, it is possible to gener-
alize an account of counterfactuals (for instance the ones of Lewis [11] and Stalnaker [12]) in such
a way as to get a uniform analysis of statements like “If Alice had won a free trip, she would have
gone to Athens” and questions like “If Alice had won a free trip, where would she have gone?”.
See Ciardelli [13] and Chap. 7 of Ciardelli et al. [14] for detailed discussion.
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case μ determines ν relative to s. As an example, take the formula ?p → ?q: this
formula is supported in a state s in case within s, the truth value of q is functionally
determined by the truth value of p. Indeed, it is easy to see that the support conditions
for this formula may be restated as follows:

s |= ?p → ?q ⇐⇒ ∃ f : {0, 1} → {0, 1} s.t. ∀w ∈ s : V (w, q) = f (V (w, p)).

The alternatives for this implication are the largest states in which such a dependency
obtains. There are four ways in which the truth value of q might be functionally
determined by the truth-value of p, given by the four functions f : {0, 1} → {0, 1}
which might witness the above existential. In the model of Fig. 3.5e, each of these
functions corresponds to one alternative. We will come back to the significance of
such conditionals in the next section.11

3.6 Resolutions and Their Applications

3.6.1 Resolutions and Normal Form

An important feature of the system InqB is that we can compute, recursively on the
structure of a formula ϕ, a set of classical formulas which can be taken to name the
different pieces of information of typeϕ.We refer to these formulas as the resolutions
of ϕ.

Definition 3.6.1 (Resolutions) The set R(ϕ) of resolutions of a formula ϕ ∈ LP is
defined as follows:

– R(p) = {p};
– R(⊥) = {⊥};
– R(ϕ ∧ ψ) = {α ∧ β | α ∈ R(ϕ) and β ∈ R(ψ)};
– R(ϕ

�

ψ) = R(ϕ) ∪ R(ψ);
– R(ϕ → ψ) = {γ f | f : R(ϕ) → R(ψ)}, where γ f = ∧

α∈R(ϕ)(α → f (α)).

The following facts can be immediately verified by induction.

Proposition 3.6.2 For every ϕ, R(ϕ) is a finite set of classical formulas.

11 Notice that, having multiple alternatives in at least one model, the formula ?p → ?q is a question
in our terminology. We can think of it as a question asking to resolve ?q conditionally on an answer
to ?p.

Although the formula ?p → ?q is supported in a state s iff whether p determines whether q
relative to s, this formula should not be taken to formalize a dependence statement in English like
“Whether p determines whether q”. Such a statement should instead be formalized as a modal
statement �(?p → ?q) which is true or false at a world w depending on whether the dependency
holds relative to the set R[w] of successors given by an accessibility relation. See Ciardelli [15] for
the technical details and the arguments in favor of such an account.
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Proposition 3.6.3 For every classical formula α, R(α) = {α}.
Let us illustrate the recursive clauses by looking at some examples. For graphical
convenience, in these examples we write p for ¬p and q for ¬q.

Example 3.6.4 (Inquisitive disjunction) To illustrate the clause for
�

, we compute
the resolutions of ?p. By the previous proposition we haveR(p) = {p} andR(p) =
{p}. Using this we find:

R(?p) = R(p

�

p) = R(p) ∪ R(p) = {p} ∪ {p} = {p, p}.

Thus, for ?p we have two resolutions, corresponding to the two ways of settling the
question.

Example 3.6.5 (Conjunction) To illustrate the clause for ∧, we compute the reso-
lutions of ?p ∧ ?q . Using the result of the previous example, we have:

R(?p ∧ ?q) = {α ∧ β | α ∈ {p, p},β ∈ {q, q}}
= {p ∧ q, p ∧ q, p ∧ q, p ∧ q}.

Thus, for ?p ∧ ?q wehave four resolutions, corresponding to the fourways of settling
the conjunctive question.

Example 3.6.6 (Implication) To illustrate the clause for→, we compute the resolu-
tions for ?p → ?q . The clause says that we have one resolution γ f for each function
f : R(?p) → R(?q). There are four such functions:

f1 =
{
p �→ q
p �→ q

f2 =
{
p �→ q
p �→ q

f3 =
{
p �→ q
p �→ q

f4 =
{
p �→ q
p �→ q

For each function f , the corresponding formula γ f is a conjunction that says that each
resolution of the antecedent implies the corresponding resolution of the consequent,
as given by the function f . In our case, these formulas are:

γ f1 = (p → q) ∧ (p → q), γ f2 = (p → q) ∧ (p → q),

γ f3 = (p → q) ∧ (p → q), γ f4 = (p → q) ∧ (p → q).

These four formulas are the resolutions for our implication:R(?p → ?q) = {γ f1 , γ f2 ,

γ f3 , γ f4}. Thus, ?p → ?q has four resolutions, corresponding to the four ways for
the dependency expressed by ?p → ?q to obtain.

It is interesting to remark that there is a close similarity between the inductive defi-
nition of resolutions that we gave, and the inductive definition of proofs given in the
Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic. In this
interpretation, a proof of a conjunction is a pair of two proofs, one for each conjunct;
a proof of a disjunction is a proof of either disjunct; and a proof of an implication is



3.6 Resolutions and Their Applications 71

a method to turn any proof of the antecedent into a proof of the consequent. Simi-
larly, a resolution of a conjunction is a conjunction of two resolutions, one for each
conjunct; a resolution of an inquisitive disjunction is a resolution of either disjunct;
and a resolution of an implication corresponds to a function from resolutions of the
antecedent to resolutions of the consequent. One difference between the two notions
is that, unlike proofs in the BHK interpretation, resolutions are in turn formulas, that
is, objects within the same language in which the original formula lives. Another
difference is the atomic case: an atom has itself as unique resolution, whereas in the
BHK interpretation it may well be associated with multiple proofs.

The crucial property of resolutions is stated by the following Proposition: to
support a formula is to support some resolution of it. Thus, the semantics of any
formula in InqB can be captured by a corresponding set of classical formulas.

Theorem 3.6.7 For any formula ϕ ∈ LP, any model M and state s:

s |= ϕ ⇐⇒ s |= α for some α ∈ R(ϕ).

Proof By induction on ϕ. The base cases for atoms and ⊥ are trivial. The inductive
steps for ∧ and

�

are straightforward, so we only discuss the inductive step for
implication: assuming the claim holds for ϕ and ψ, we show that it holds for ϕ → ψ.

For the left-to-right direction, suppose s |= ϕ → ψ. Consider an arbitrary α ∈
R(ϕ). Take the state s ∩ |α|M . Since α is a classical formula and thus truth-
conditional, we have s ∩ |α|M |= α. By the induction hypothesis on ϕ, this implies
that s ∩ |α|M |= ϕ. Since s ∩ |α|M ⊆ s and s |= ϕ → ψ, it follows that s ∩ |α|M |=
ψ. By the induction hypothesis on ψ, we get s ∩ |α|M |= β for some resolution β ∈
R(ψ). By Proposition 2.5.2, this ensures that s |= α → β. Since α was an arbitrary
resolution of ϕ, this argument shows that for every α ∈ R(ϕ) there is a β ∈ R(ψ)

such that s |= α → β. This means that there is a function f : R(ϕ) → R(ψ) such
that s |= ∧

α∈R(ϕ)(α → f (α)). By definition, this conjunction is one of the resolu-
tions ofR(ϕ → ψ).

For the right-to-left direction, suppose that s supports some resolution of ϕ → ψ.
This means that there is a function f : R(ϕ) → R(ψ) such that s |= γ f . We want
to show that s |= ϕ → ψ. So, take any t ⊆ s and suppose t |= ϕ. By induction
hypothesis, t |= α for some α ∈ R(ϕ). By definition, γ f has a conjunct of the form
α → f (α). Since s |= γ f ,wehave s |= α → f (α). Since t ⊆ s and t |= α, it follows
that t |= f (α). Since f (α) ∈ R(ψ), by the induction hypothesis onψwehave t |= ψ.
This shows that s |= ϕ → ψ. �
The previous theoremhasmany interesting repercussions. First, it yields an important
normal form result for InqB: every formula is equivalent to an inquisitive disjunction
of classical formulas.

Proposition 3.6.8 (Inquisitive normal form)
For every ϕ ∈ LP we have ϕ ≡ α1

�

. . .

�

αn where R(ϕ) = {α1, . . . ,αn}.12

12 Note that, since

�

is commutative and associative, the order and bracketing of the disjuncts in
the expression α1

�

. . .

�

αn does not matter.
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Proof This follows immediately from the previous theorem and the fact that the
disjunction α1

�

. . .

�

αn is supported just in case some αi is supported. �
This normal form result shows that every formula can be rewritten in such a way
that the inquisitive component is made syntactically explicit at the surface layer,
and beyond this layer everything works just as in classical propositional logic (since
resolutions are classical formulas). It is important to stress that this property is specific
to InqB, and not a feature of inquisitive logics in general. For instance, no analogous
normal form exists in inquisitive predicate logic.

It is useful to remark explicitly the following corollary, since we will appeal to it
later: a formula is entailed by each of its resolutions.

Proposition 3.6.9 If α ∈ R(ϕ), then α |= ϕ.

A further consequence of the above theorem is that for any formula ϕ, the truth-
sets of the resolutions provide a generator for the proposition expressed by ϕ. This
means that the resolutions α1, . . . ,αn of ϕ can be taken to name the different pieces
of information of type ϕ.

Proposition 3.6.10 (Resolutions form a generator) For every formula ϕ and model
M, [ϕ]M = {|α|M | α ∈ R(ϕ)}↓.
Proof Spelling out the definitions, what we need to show is that for any state s of
any model M we have s |= ϕ ⇐⇒ (s ⊆ |α|M for some α ∈ R(ϕ)). This follows
immediately from Theorem 3.6.7 when we consider that a resolution α is a classical
formula, and so we have s |= α ⇐⇒ s ⊆ |α|M . �
This proposition, in turn, allows us to see that in InqB, all formulas are normal in the
sense of Definition 2.4.4.

Proposition 3.6.11 (Normality) For any formula ϕ ∈ LP and model M: [ϕ]M =
AltM(ϕ)↓.

Proof The right-to-left inclusion follows frompersistency. For the converse,we need
to show that any s ∈ [ϕ]M is included in an alternative. Let R(ϕ) = {α1, . . . ,αn}.
Suppose s ∈ [ϕ]M . By the previous proposition, s ⊆ |αi1 |M for some αi1 ∈ R(ϕ).
Now let us ask: is |αi1 |M an alternative? If so, we are done. If not, then |αi1 |M is
not maximal among the states supporting ϕ, so |αi1 |M ⊂ t for some state t ∈ [ϕ]M .
Using again the previous proposition, we have t ⊆ |αi2 |M for some αi2 ∈ R(ϕ). If
|αi2 |M is an alternative, we are done. Otherwise, iterating the reasoning we find
that |αi2 |M ⊂ |αi3 |M for some αi3 ∈ R(ϕ). Since the set of resolutions is finite, this
process cannot produce an infinite sequence of ever larger sets |αi1 |M ⊂ |αi2 |M ⊂
. . . . At some point, some element |αik |M must be an alternative. Since s ⊆ |αik |M ,
we have that s ∈ AltM(ϕ)↓. �
This proposition implies that the semantics of ϕ in a model M is fully captured by
the set of alternatives AltM(ϕ). This makes it possible, e.g., to characterize truth-
conditionality in terms of alternatives: a formula ϕ is truth-conditional if it has a
unique alternative in any model, which must then coincide with the truth-set |ϕ|M .
The proof is left as an exercise (Exercise 3.11.6).
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Proposition 3.6.12 For all ϕ ∈ LP, ϕ is truth-conditional

⇐⇒ for any model M, AltM(ϕ) is a singleton

⇐⇒ for any model M, AltM(ϕ) = {|ϕ|M}.

3.6.2 Local Tabularity

Theorem 3.6.7 also provides a way to prove an important fact: InqB is locally tabular.
This means that, if the set of atoms P is finite, there are only finitely many non-
equivalent formulas. In other words, the range of things that can be expressed in InqB
with a finite repertoire of atoms is finite. In this respect, InqB is similar to classical
propositional logic, which is also locally tabular, and different from intuitionistic
propositional logic, where we can find infinitely many formulas containing only the
atom p which are pair-wise non-equivalent (see, e.g., Chagrov and Zakharyaschev
[16]).

Theorem 3.6.13 (InqB is locally tabular) LetLP≡ := {[ϕ]≡ | ϕ ∈ LP}be thequotient
of our language LP under the relation ≡ of logical equivalence. If the set of atoms
P is finite, then LP≡ is finite.

Proof Suppose P is finite. In InqB, equivalence among classical formulas is just
equivalence in classical propositional logic. Since classical propositional logic is
locally tabular, the set (LP

c )≡ of equivalence classes of classical formulas is finite.
Theorem 3.6.7 tells us that the equivalence class of a formula ϕ in InqB is fully

determined by the set of equivalence classes of its resolutions via the map

{[α1]≡, . . . , [αn]≡} �→ [α1

�

. . .

�

αn]≡
which is well-defined since the result does not depend on the choice of representa-
tives. Since there are only finitely many equivalence classes of classical formulas,
there are also finitely many sets of such equivalence classes, and therefore only
finitely many equivalence classes in LP≡.13 �
If P consists of a single atom, then there are only five equivalence classes, as illus-
trated by Fig. 3.6 (see Exercise 3.11.7). Four of these correspond to the statements

,⊥, p,¬p, and one to the polar question ?p. However, if P contains two atoms

13 The map considered above is not injective: many sets � ⊆ (LP
c )≡ induce the same equivalence

class. For instance {[p]≡, [p ∧ q]≡} and {[p]≡} induce the same class, since p

�

(p ∧ q) ≡ p.
A 1-1 correspondence exists between LP≡ and the set of non-empty antichains of the set (LP

c )≡
ordered by entailment. The number of antichains in a Boolean algebra with m generators is called
the Dedekind number D(m) (the sequence of such numbers is Sloane’s A000372). The number of
InqB-equivalence classes for n atoms is therefore D(2n) − 1. The exact value of this expression is
known only for n ≤ 3. See Corollary 3.3.5 in Ciardelli [5] for the details.
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[ ]≡

[?p]≡

[p]≡ [¬p]≡

[⊥]≡

Fig. 3.6 The equivalence classes of formulas containing only one atomic sentence p, ordered by
entailment

the number of equivalence classes is already 167; of these, only 16 are equivalence
classes of statements. With three atoms the number of equivalence classes is over
5 · 1022, of which only 256 correspond to statements (see Ciardelli [5], Corollary
3.3.5).

3.6.3 Implication and Dependence Functions

We saw above that the truth-sets of the resolutions of ϕ yield a generator in every
model. This allows us to give an alternative characterization of the semantics of
implication based on the generalized Ramsey test discussed in Sect. 2.5.2: a state
s supports ϕ → ψ iff supposing any resolution α of ϕ yields a hypothetical state
s ∩ |α|M that supports ψ.

Proposition 3.6.14 (General Ramsey test in InqB) For every formula ϕ, model M
and state s:

s |= ϕ → ψ ⇐⇒ s ∩ |α|M |= ψ for every α ∈ R(ϕ).

Proof Follows immediately from Propositions 2.5.3 and 3.6.10. �

A further application of resolutions is that they allow us to make the connection
between implication and dependency even more explicit. To spell this out, we will
introduce the notion of a dependence function.

Definition 3.6.15 (Dependence function) A function f : R(ϕ) → R(ψ) is a depen-
dence function from ϕ to ψ in a state s of a model M , notation f : ϕ �s ψ, in case
for any α ∈ R(ϕ), α |=s f (α). We saw that f is a logical dependence function from
ϕ to ψ, notation f : ϕ � ψ, if it is a dependence function in any state of any model.
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Thus, f is a dependence function from ϕ to ψ in s if f can be used, given the
information in s, to obtain from any given resolution of ϕ a corresponding resolution
of ψ that follows from it. A logical dependence function from ϕ to ψ is a map that
is guaranteed to be a dependence function in any state.

Example 3.6.16 Consider three propositional atoms p, q, r , and a model M having
one possible world for each combination of truth values for these atoms. Let us
write pqr for a world in which p is true, q is false, and r true, and similarly for the
other worlds. Now consider the following function f : R(?p) → R(q

�

r) and the
following two states s1 and s2:

f =
{

p �→ q
¬p �→ r

s1 =
{
pqr pqr
pqr pqr

}

s2 =
{
pqr pqr
pqr pqr

}

In s1, f is a resolution function, since p |=s1 q and ¬p |=s1 r . In s2, f is not a
resolution function, since p �|=s2 q. In symbols, we have f : ?p �s1 q

�

r and f :
?p ��s2 q

�

r .

Recall that the resolutions of an implication ϕ → ψ are statements of the form

γ f =
∧

α∈R(ϕ)

(α → f (α))

for a function f : R(ϕ) → R(ψ). The next proposition states that what the statement
γ f expresses is precisely that f is a dependence function.

Proposition 3.6.17 Let f : R(ϕ) → R(ψ). For any model M and state s,
s |= γ f ⇐⇒ f : ϕ �s ψ.

Proof The claim follows immediately from the definitions and from the equivalence
α |=s f (α) ⇐⇒ s |= α → f (α). �

Now, Proposition 3.6.8 tells us that ϕ → ψ is supported in a state s in case some
formula γ f ∈ R(ϕ → ψ) is supported. But by the previous proposition, this holds
if and only if there exists a dependence function f : ϕ �s ψ. We have thus obtained
the following result about the support conditions for an implication.

Proposition 3.6.18 (Support for implication, restated)
M, s |= ϕ → ψ ⇐⇒ there exists a dependence function f : ϕ �s ψ.

This shows that a state supports an implication ϕ → ψ iff it admits a dependence
function, i.e., if on the basis of the information in s there is some way of turning any
resolution of ϕ into a resolution of ψ.
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3.6.4 Resolutions for Sets of Formulas

To conclude this section, let us remark that the notion of resolutions, and the results
that we have shown about it, can be extended straightforwardly from single formulas
to sets of formulas. The idea is that a resolution of a set � of formulas is a set � of
classical formulas obtained by replacing each formula in � by a resolution of it.

Definition 3.6.19 (Resolutions for sets) If � is a set of formulas, a resolution func-
tion for � is a map f : � → LP

c such that for each ϕ ∈ � we have f (ϕ) ∈ R(ϕ).
We say that a set � of formulas is a resolution of� if it is the image of� under some
resolution function:

R(�) = { f [�] | f is a resolution function for �}.

Thus for instance, the set � = {p, ?q, ?r} has the following four resolutions:

– {p, q, r},
– {p, q,¬r},

– {p,¬q, r},
– {p,¬q,¬r}.

It is clear from the definition that a resolution of a set of formulas is always a set of
classical formulas. Moreover, consider a set� of classical formulas: since any α ∈ �

has itself as unique resolution, there is only one resolution function for �, namely,
the identity function. As a consequence, � is the only resolution of itself.

Proposition 3.6.20 If � ⊆ LP
c , then R(�) = {�}.

Just as a state supports a formula iff it supports some resolution of it, so a state
supports a set of formulas iff it supports some resolution of it.14 Thus, the resolutions
of a set capture the ways in which all the formulas in the set may be jointly settled.

Proposition 3.6.21 For any set of formulas � and any state s:

s |= � ⇐⇒ s |= � for some � ∈ R(�).

Proof Suppose s |= �. For any ϕ ∈ �, s |= ϕ, so by Theorem 3.6.7 we have some
resolution α ∈ R(ϕ) such that s |= α. Now let f be a function which picks for each
ϕ ∈ � a corresponding resolution f (ϕ) ∈ R(ϕ) such that s |= f (ϕ): by definition,
f [�] ∈ R(�) and s |= f [�].15 The converse direction is immediate, again using
Theorem 3.6.7 and the definition of resolutions for sets. �
Similarly, the notion of a dependence function can be extended straightforwardly to
the case in which we have a set of determining formulas, as follows.

14 Recall from the previous chapter that we say that a state supports a set � of formulas in case it
supports all formulas in the set: s |= � ⇐⇒ s |= ϕ for all ϕ ∈ �.
15 Note that the existence of f does not depend on the axiom of choice, since we may fix an
enumeration of the formulas in LP

c and define f (ϕ) to be the first resolution of ϕ supported by s in
this enumeration.
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Definition 3.6.22 A function f : R(�) → R(ψ) is a dependence function from �

to ψ in a state s, notation f : � �s ψ, in case for all � ∈ R(�) we have � |=s

f (�); we say that f is a logical dependence function, notation f : � � ψ, if it is a
dependence function in any state of any model.

3.7 Entailment in InqB

Let us now look at the relation of entailment in InqB, which instantiates the general
ideas discussed in the previous chapter.

Definition 3.7.1 (Entailment in InqB) Let � ∪ {ψ} ⊆ LP. We say that � logically
entails ψ if in any propositional information model, any state that supports all for-
mulas in � also supports ψ:

� |= ψ ⇐⇒ for all models M and states s : M, s |= � implies M, s |= ψ.

As usual, in this definition M, s |= � is short for ‘M, s |= ϕ for all ϕ ∈ �’.
We say that � contextually entails ψ in an information state s from a model M if

the entailment holds in restriction to worlds in s:

� |=s ψ ⇐⇒ for all states t ⊆ s : M, t |= � implies M, t |= ψ.

If � = {ϕ1, . . . ,ϕn} we write ϕ1, . . . ,ϕn |= ψ instead of � |= ψ, and if � = ∅ we
simply write |= ψ. Similar conventions apply to contextual entailment.

We start by illustrating these relations with some examples, and then turn to their
formal properties.

3.7.1 Illustration

In the previous chapter, we discussed in detail how once the relation of entailment is
extended to questions, it becomes possible to capture several interesting relations as
cases of entailment.We can nowmake this concrete in the case of propositional logic.
To illustrate the point, consider again the propositional formulas and the model M
introduced inExample 3.2.6. In our die roll scenario, the information that the outcome
is low tells us what the range of the outcome is, but it does not tell us whether the
outcome is even or odd. Moreover, in our context the outcome of the roll is jointly
determined by its parity and its range, while it is not determined by the parity alone.
This is captured formally by the following contextual (non-)entailments:
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– low |=M range;
– low �|=M parity;

– parity, range |=M outcome;
– parity �|=M outcome.

We can also capture the same facts in terms of logical, rather than contextual, entail-
ment, providedweadddeclarative premises that specify that the outcomes are exhaus-
tive and exclusive. This can be done by the following formulas:

– exh := (one ∨ · · · ∨ six);
– exc := ¬(one ∧ two) ∧ ¬(one ∧ three) ∧ · · · ∧ ¬(five ∧ six).

Let � := {exh, exc}. On the basis of these assumptions, the statement low logically
resolves the question range, but not the question parity; the questions parity and range
logically determine the question outcome, while parity by itself does not determine
outcome. This is captured by the following logical facts:

– �, low |= range;
– �, low �|= parity;

– �, parity, range |= outcome;
– �, parity �|= outcome.

These examples illustrate how entailment in InqB captures interesting logical facts
involving statements and questions in a propositional setting.

Let us now examine the formal properties of this relation, starting with the special
cases in which the premises or the conclusion are truth-conditional.

3.7.2 Entailments with Truth-Conditional Conclusions

When the conclusion of an entailment relation is truth-conditional, entailment boils
down to preservation of truth.

Proposition 3.7.2 (Entailment with a truth-conditional conclusion) Let � ∪ {α} ⊆
LP, where α is truth-conditional. Then:

� |= α ⇐⇒ for any model M and world w,w |= � implies w |= α.

Proof The left-to-right direction is immediate, since truth is a special case of support.
For the converse, suppose for any model M and any world w in M , w |= � implies
w |= α. We want to show that � |= α. So, consider a model M and an arbitrary state
s |= � in M . By persistency, this implies that for all w ∈ s we have w |= �. By our
assumption, it follows that for allw ∈ s we havew |= α. Sinceα is truth-conditional,
this implies that s |= α. Hence, � |= α. �

In particular, since classical formulas are truth-conditional with the standard truth
conditions, this implies that entailment restricted to the classical fragment coincides
with entailment in classical propositional logic.

Proposition 3.7.3 (Conservativity over classical logic) Let � ∪ {α} ⊆ LP
c . Then

� |= α ⇐⇒ � entails α in classical propositional logic.
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Thus, InqB is a conservative extension of classical propositional logic.16 Another
immediate consequence of Proposition 3.7.2 is that, when the conclusion is truth-
conditional, any premise may be replaced by its classical variant, which has the same
truth-conditions.

Proposition 3.7.4 Let � ∪ {α} ⊆ LP where α is truth-conditional, and let �cl =
{ϕcl | ϕ ∈ �}. We have:

� |= α ⇐⇒ �cl |= α.

In particular, this tells us that a statement is entailed by a question if and only if it is
entailed by the question’s presupposition: μ |= α ⇐⇒ πμ |= α. Thus, the presup-
position of a question can be characterized as being, up to equivalence, the strongest
statement which is entailed by the question. Thus, for instance, the question p

�

q
entails its presupposition p ∨ q, all of its consequences, and no other statements,
while the only statements entailed by the polar question ?p are tautologies (since the
presupposition of ?p is the tautology p ∨ ¬p).

3.7.3 Entailments with Truth-Conditional Premises

Let us now consider the case in which the premises of our entailment relation are
truth-conditional. In this case, too, the conditions for the entailment to hold can
be simplified. To see this, notice first that the property of truth-conditionality is
inherited from single formulas to sets of such formulas. Let us write w |= � as an
abbreviation for ‘w |= α for all α ∈ �’, and let |�|M = {w ∈ W | w |= �}. Then we
have the following proposition (the straightforward proof is omitted).

Proposition 3.7.5 Let � be a set of truth-conditional formulas. Then for any model
M and information state s:

s |= � ⇐⇒ ∀w ∈ s : w |= �

⇐⇒ s ⊆ |�|M .

When the set of premises of an entailment � |= ϕ is a set of truth-conditional for-
mulas, to check whether the entailment holds we do not have to check all states in
which � is supported: it suffices to check whether ϕ is supported in the state |�|M ,
which embodies the information carried by �.

Proposition 3.7.6 (Entailment with truth-conditional premises) Let � ∪ {ϕ} ⊆ LP,
where all formulas in � are truth-conditional. We have:

16 This will be our perspective on InqB throughout this book. A different take is also possible: if we
regard

�

as the “official” disjunction of the system, rather than as a new connective, InqB can also
be regarded as a non-standard intermediate logic. This is the perspective taken in some previous
literature on inquisitive logic (see, in particular, Ciardelli [5], Ciardelli and Roelofsen [6]).
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� |= ϕ ⇐⇒ for any model M, |�|M |= ϕ.

Proof Suppose � |= ϕ. Given any model M , by the previous proposition we have
|�|M |= �, and therefore |�|M |= ϕ. Conversely, suppose the right-hand side holds.
Take any model M and state s with s |= �. By the previous proposition s ⊆ |�|M ;
since |�|M |= ϕ, by persistency also s |= ϕ. Hence, � |= ϕ. �
As a consequence of this proposition, we have the following important property: a
set of statements entails an inquisitive disjunction just in case it entails a specific
disjunct of it.

Proposition 3.7.7 (Logical Split Property for
�

) Let � ∪ {ϕ,ψ} ⊆ LP, where � is
a set of truth-conditional formulas. We have:

� |= ϕ

�

ψ ⇐⇒ � |= ϕ or � |= ψ.

Proof The interesting direction is the left-to-right one (the converse is obvious,
since ϕ |= ϕ

�

ψ and ψ |= ϕ
�

ψ). We reason by contraposition. Suppose � �|= ϕ
and � �|= ψ. By the previous proposition, this means that there are two models M =
〈W, V 〉 and M ′ = 〈W ′, V ′〉 such that |�|M �|= ϕ and |�|M ′ �|= ψ. We may suppose
for simplicity that W and W ′ are disjoint (otherwise, we can make them disjoint).
Now define a new information model M ′′ = 〈W ′′, V ′′〉, where W ′′ = W ∪ W ′ and
V ′′ coincides with V on W and with V ′ on W ′. By the locality of the semantics
(Proposition 3.3.3), for states s ⊆ W we have M ′′, s |= ϕ ⇐⇒ M, s |= ϕ, and for
states s ′ ⊆ W ′ we have M ′′, s ′ |= ϕ ⇐⇒ M ′, s ′ |= ϕ. Applying this to singleton
states, we find that |�|M ′′ = |�|M ∪ |�|M ′ . Since M, |�|M �|= ϕ and |�|M ⊆ W , by
locality we have M ′′, |�|M �|= ϕ, and then by persistency, since |�|M ⊆ |�|M ′′ , we
obtain M ′′, |�|M ′′ �|= ϕ. Reasoning analogously we can conclude M ′′, |�|M ′′ �|= ψ.
It follows that |�|M ′′ �|= ϕ

�

ψ. By the previous proposition, this shows that � �|=
ϕ

�

ψ. �
In particular, if we take � = ∅ we obtain the Disjunction Property for

�

, analogous
to a well-known feature of disjunction in intuitionistic logic.

Corollary 3.7.8 (Disjunction Property for

�

)
For any ϕ,ψ ∈ LP, |= ϕ

�

ψ ⇐⇒ |= ϕ or |= ψ.

Notice that an analogous property does not hold for the classical disjunction ∨: we
have |= p ∨ ¬p, but �|= p and �|= ¬p (recall that on classical formulas, InqB coincides
with classical propositional logic).

Putting together Inquisitive Normal Form and the Logical Split Property for

�

, we
get the following proposition, which ensures that a set of statements entail a formula
just in case they entail a particular resolution of it.

Proposition 3.7.9 (Logical Resolution Property) Let � be a set of truth-conditional
formulas and let ϕ be an arbitrary formula:

� |= ϕ ⇐⇒ � |= α for some α ∈ R(ϕ).
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This tells us, for instance, that a statement logically resolves the question ?p just in
case it logically entails one among p and ¬p.

Considering again the special case in which � = ∅, we find that a formula is
logically valid iff some resolution is logically valid.

Corollary 3.7.10 For any ϕ ∈ LP, |= ϕ ⇐⇒ |= α for some α ∈ R(ϕ).

This immediately implies the following important fact.

Corollary 3.7.11 (InqB is decidable) There is an algorithm to decide whether a
given formula ϕ ∈ LP is valid in InqB.

Indeed, here is one way to decide whether ϕ ∈ LP is valid (for a different decision
procedure, see Exercise 3.11.7):

1. compute all the resolutions of ϕ;
2. for each resolution, check whether it is valid: by Proposition 3.7.3, this means

checking if α is valid is classical logic, which is a decidable matter (e.g., we can
use the standard truth-table method);

3. answer ‘yes’ if at least one resolution is valid, ‘no’ otherwise: this is possible
since the number of resolutions is always finite.

All the properties that we have seen in this section for logical entailment have coun-
terparts for contextual entailment. We call the contextual versions of these properties
local, since they hold locally in an information state. First, we show that, when the
premises are statements, to check a contextual entailment relative to s is to check
support at a specific state: the state s ∩ |�|M that results from strengthening s with
the assumption that all formulas in � are true.

Proposition 3.7.12 (Specificity) Let � ∪ {ϕ} ⊆ LP, where � is a set of truth-
conditional formulas. For any model M and state s:

� |=s ϕ ⇐⇒ s ∩ |�|M |= ϕ.

Proof We have:

� |=s ϕ ⇐⇒ ∀t ⊆ s : t |= � implies t |= ϕ

⇐⇒ ∀t ⊆ s : t ⊆ |�|M implies t |= ϕ

⇐⇒ ∀t ⊆ s ∩ |�|M : t |= ϕ

⇐⇒ s ∩ |�|M |= ϕ,

where the second biconditional uses Proposition 3.7.5 and the last biconditional uses
persistency. �

From this we immediately get the local version of the Split Property for

�

.
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Proposition 3.7.13 (Local Split Property for

�

) Let � ∪ {ϕ,ψ} ⊆ LP, where � is
a set of truth-conditional formulas. For any model M and state s:

� |=s ϕ

�

ψ ⇐⇒ � |=s ϕ or � |=s ψ.

Proof Using the previous proposition, we have:

� |=s ϕ

�

ψ ⇐⇒ s ∩ |�|M |= ϕ

�

ψ

⇐⇒ s ∩ |�|M |= ϕ or s ∩ |�| |= ψ

⇐⇒ � |=s ϕ or � |=s ψ. �

Since contextual entailments are internalized by implications, the Local Split Prop-
erty also amounts to an equivalence in the object language.

Corollary 3.7.14 (

�

-Split equivalence) Suppose α ∈ LP is truth-conditional. For
any ϕ,ψ ∈ LP we have

α → (ϕ

�
ψ) ≡ (α → ϕ)

�

(α → ψ).

Proof Using the previous proposition, we have:

s |= α → ϕ

�

ψ ⇐⇒ α |=s ϕ

�

ψ

⇐⇒ α |=s ϕ or α |=s ψ

⇐⇒ s |= α → ϕ or s |= α → ψ

⇐⇒ s |= (α → ϕ)

�

(α → ψ). �

Since the

�

-Split equivalence plays an important role in inquisitive logic, it is worth
pausing for a moment to comment on why it holds. As we saw, this equivalence
reflects the Local Split Property, which in turn is a direct consequence of Specificity
(Proposition 3.7.12). Specificity says that to check what follows from a statement
α in s is to check what follows from strengthening s in a specific way, namely,
by supposing that α is true (and similarly for a set of statements). This reflects
the fundamental idea that statements, unlike questions, denote specific pieces of
information, and that, as a consequence, to suppose a statement α is to make a
specific supposition—to extend the available information in a specific way. The split
equivalence reflects this all-important idea.

To conclude, notice that, in combination with the normal form result, the previous
propositions have the following immediate consequences.

Proposition 3.7.15 (Local Resolution Property) If � is a set of truth-conditional
formulas, for any ϕ ∈ LP and state s we have:

� |=s ϕ ⇐⇒ � |=s α for some α ∈ R(ϕ).
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Corollary 3.7.16 (Resolution-split equivalence) Let α,ϕ ∈ LP, where α is truth-
conditional and R(ϕ) = {β1, . . . ,βm}. We have:

α → ϕ ≡ (α → β1)

�

. . .

�

(α → βm).

3.7.4 The General Case

Let us now consider the general case, where both premises and conclusions are
allowed to be questions. In this case, too, an interesting characterization of entailment
in terms of resolutions can be given: a set of formulas � entails a formula ψ iff every
resolution of � entails some corresponding resolution of ψ.

Theorem 3.7.17 (Resolution Theorem) For any set � of formulas and formula ψ:

� |= ψ ⇐⇒ for every � ∈ R(�) there is some α ∈ R(ψ) such that � |= α.

Proof For the left-to-right direction, suppose � |= ψ and take any � ∈ R(�). By
Proposition 3.6.9,� entails each formula in�, and so� |= ψ. Then, by theResolution
Property (Proposition 3.7.9) we have � |= α for some α ∈ R(ψ).

For the converse, suppose any resolution of � entails some resolution of ψ. Con-
sider any model M and state s which supports �. By Proposition 3.6.21, s |= �

implies s |= � for some � ∈ R(�). By assumption, for some α ∈ R(ψ) we have
� |= α, and thus s |= α. By Theorem 3.6.7 we can then conclude that s |= ψ. This
shows that � |= ψ. �

Notice that, since resolutions are classical formulas, the entailments occurring on
the right-hand side of the biconditional are entailments in classical logic. Thus, the
Resolution Theorem can be seen as showing how InqB-entailment is grounded in
classical entailment in an interesting way.

Making use of the notion of a dependence function (Definition 3.6.22), the Res-
olution Theorem can also be stated as follows: an entailment � |= ψ holds iff there
exists a logical dependence function from � to ψ, i.e., a function which yields for
each resolution of � a corresponding entailed resolution of ψ.

Corollary 3.7.18 For any � ∪ {ψ} ⊆ LP we have � |= ψ ⇐⇒ ∃ f : � � ψ.

In the previous chapter, we saw that an entailment involving questions captures a
logical dependency.Wemay regard a dependence functionwitnessing this entailment
as capturing exactly how the dependency is realized. In the next chapter, we are going
to see that we can always regard a proof of an entailment � |= ψ in inquisitive logic
as encoding a logical dependence function f : � � ψ.

Both theResolutionTheoremand its formulation in termsof dependence functions
have analogues for contextual entailment. Theproofs are similar to those of the logical
case.
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Theorem 3.7.19 (LocalResolutionTheorem)For any� ∪ {ψ} ⊆ LP, for anymodel
M and state s:

� |=s ψ ⇐⇒ for every � ∈ R(�) there is some α ∈ R(ψ) such that � |=s α.

Corollary 3.7.20 For any � ∪ {ψ} ⊆ LP we have � |=s ψ ⇐⇒ ∃ f : � �s ψ.

To illustrate the Resolution Theorem, consider again the example of entailment dis-
cussed in Sect. 3.7.1:

�, parity, range |= outcome,

where � is a set of statements that lay out the connections between the atomic
sentences (see Sect. 3.7.1) and the questions parity, range, and outcome are defined
as in Example 3.2.6. The resolutions of our questions are:

– R(parity) = {even, odd};
– R(range) = {low,mid, high};
– R(outcome) = {one, . . . , six}.
TheResolutionTheorem tells us that our entailment holds just in case every resolution
of the premises entails a corresponding resolution of the conclusion. And this is
indeed the case, as one can readily verify:

– �, even, low |= two;
– �, even, mid |= four;
– �, even, high |= six;

– �, odd, low |= one;
– �, odd, mid |= three;
– �, odd, high |= five.

3.8 Substitution and the Role of Atoms

One feature that distinguishes InqB from classical propositional logic andmany other
well-known logics is that it is not closed under substitution. In this section we discuss
this feature and explain why it is conceptually motivated in our setting. This will lead
us naturally to a discussion of the treatment of atoms in InqB—an important design
choice that we made in setting up the system.

A substitution function is a function (·)∗ : P → LP that assigns to each atom a
formula. Such a function extends straightforwardly to amap defined on the entire lan-
guage by letting ⊥∗ = ⊥ and (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ for ◦ ∈ {∧,→,

� }. It then further
extends to sets of formulas by letting �∗ = {ϕ∗ | ϕ ∈ �}.

We can then ask if InqB is closed under uniform substitution, in the sense that for
any formulas � ∪ {ψ} ⊆ LP and substitution functions (·)∗ we have:

� |= ψ =⇒ �∗ |= ψ∗.

The answer is negative.
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Proposition 3.8.1 InqB is not closed under uniform substitution.

Proof We just need to give a counterexample. Recall fromProposition 3.4.10 that the
entailment ¬¬ϕ |= ϕ is valid if and only if ϕ is truth-conditional. In InqB, an atom
p is truth-conditional, but the corresponding polar question ?p is not. Therefore, we
have:

– ¬¬p |= p;
– ¬¬?p �|= ?p.

Since the second entailment is obtained from the first via the substitution p∗ = ?p,
this is a counterexample to closure under uniform substitution. �

Closure under uniform substitution is often considered a desideratum for a logic.
Why? The reasoning goes like this: propositional atoms are placeholders for arbi-
trary sentences, whose interpretation is not constrained in any particular way. Thus,
whatever holds for atoms should hold for sentences in general.

However, the premise of this reasoning is false for InqB. In InqB, atoms do not
stand for arbitrary sentences: they only stand for arbitrary statements. Atoms are,
by design, not allowed to be questions: instead, questions in InqB have to built up
syntactically out of statements by means of inquisitive disjunction. Thus, all we can
reasonably expect that whatever validities hold for atoms should hold for arbitrary
statements. And this is indeed the case: validity is preserved by substitution functions
that map atoms to statements.17

Definition 3.8.2 (Legitimate substitutions) We call (·)∗ a legitimate substitution if
it maps each atom p to a statement p∗.

Proposition 3.8.3 (Closure under legitimate substitutions) If � |= ψ and (·)∗ is a
legitimate substitution, then �∗ |= ψ∗.

Proof By contraposition, suppose �∗ �|= ψ∗. Then there is a model M = 〈W, V 〉
and a state s such that M, s |= �∗ but M, s �|= ψ∗. We can consider a new model
M∗ = 〈W, V ∗〉 defined by letting V ∗(w, p) = 1 ⇐⇒ M, w |= p∗. We claim that
for every formula χ:

M∗, s |= χ ⇐⇒ M, s |= χ∗.

To show this, we proceed by induction on χ. For χ = p atomic, we use the fact that
p∗ is truth-conditional:

17 It is worth noting that inquisitive logic is not the only example of a logic which is not closed
under uniform substitution. Other examples are Carnap’s modal logic [17], data logic [18], public
announcement logic [19], and dependence logic [20]. In each of these cases, the failure of uniform
substitution is linked to the fact that atoms are assumed to stand for a specific kind of sentence: in
Carnap’s modal logic, atoms stand for sentences which are contingent and mutually independent;
in data logic and dynamic epistemic logic, they stand for sentences which are, in a relevant sense,
non-epistemic; in dependence logic, they stand for formulas that are flat (roughly, truth-conditional
in our sense).
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M∗, s |= p ⇐⇒ ∀w ∈ s : V ∗(w, p) = 1

⇐⇒ ∀w ∈ s : M, w |= p∗

⇐⇒ M, s |= p∗.

The rest of the inductive argument is trivial. Having established the above connection
between the two models, we can use it to conclude that M∗, s |= � but M∗, s �|= ψ,
which implies that � �|= ψ. �

It is instructive to consider why the argument does not go through if p∗ is a question:
in that case, the semantics of p∗ in a model M cannot be simulated by the semantics
of p in another model M∗, since in our semantics, atoms are truth-conditional in
every model.

We discussed how the failure of substitution in InqB reflects a specific design choice:
atomic sentences stand for statements, while questions only come in as complex
formulas built from statements by means of

�

. But we could have easily made a
different choice. We could have let atomic sentences denote arbitrary inquisitive
propositions. This can be achieved easily: just let a model be a pair 〈W, V 〉 where
V assigns to each atom p an inquisitive proposition V (p) over W , that is, a non-
empty and downward closed set of states s ⊆ W . Then change the atomic clause to:
M, s |= p ⇐⇒ s ∈ V (p). It is easy to see that the resulting logic would then be
closed under uniform substitution.

So, taking atomic formulas to be statements is a deliberate design choice. This
choice has has three advantages for our present purposes.

First, this way of treating atoms allows us to regard our system InqB as a conserva-
tive extension of classical propositional logic with a new connective, thus retaining
classical logic as a syntactic fragment. This would not be possible if questions were
already present at the atomic level, since then even the equivalence p ≡ ¬¬p would
fail (any model in which p is interpreted as a question would be a counterexample).

Second, our setup allows us to associate each question with a recursively defined
set of statements—its resolutions—which capture the different ways in which the
question may be resolved. The possibility of linking questions and statements in this
way plays an important role in some of our most interesting results. In order for
this to be possible, it is crucial that every question be syntactically built up from
statements.

Finally, it is not hard to see that, if we allowed atoms to be questions, the resulting
logicwould coincidewith the logic of infinite problems of Skvortsov [21], a variant of
Medvedev’s logic of finite problems [22, 23]. This logic is not finitely axiomatizable
(see Shehtman and Skvortsov [24]), and it is a long-standing open problemwhether it
is decidable. Our logic InqB is more well-behaved: it is decidable (Corollary 3.7.11)
and, as we will see in the next chapter, it admits a simple axiomatization, thus
providing a natural environment to study inferences involving both statements and
questions.
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3.9 Expressive Completeness

In this section we show that the logical repertoire of InqB is expressively complete
in a natural sense: it allows us to express all meanings that we might in principle
expect to be able to express in a propositional system of inquisitive logic.

Semantically, a formula ϕ of InqB defines a property of information states. For
instance, ?p defines a property that an information state s has in case the truth value
of p is constant in s. Let us make this precise.

Definition 3.9.1 (State properties)

– A state property is a class C of pairs 〈M, s〉whereM is a propositional information
model and s is an information state in M .

– The state property defined by ϕ ∈ LP is [ϕ] = {〈M, s〉 | M, s |= ϕ}.
– A state property C is definable in InqB if C = [ϕ] for some ϕ ∈ LP.

Now let us ask: what state properties could we in principle expect to define in a
system of propositional inquisitive logic?

First of all, since we expect inquisitive systems to satisfy persistency and the
empty state property, we expect to be able to define only state properties that are
inquisitive, in the sense of the following definition.

Definition 3.9.2 (Inquisitive state properties) We say that a state property C is
inquisitive if it satisfies:

– Downward closure: 〈M, s〉 ∈ C and t ⊆ s implies 〈M, t〉 ∈ C;
– Empty state property: 〈M,∅〉 ∈ C for all models M .

Moreover, since a propositional formula in a finitary language will contain only a
finite setQ of atoms, we expect that the resulting state property will depend only on
the information that a state contains about those atoms.

In order to make this idea precise, we assign to each world w an object [w]Q,
called the Q-profile of w, which reflects the way things are at w with respect to the
atoms inQ. Formally, [w]Q is just the set of atoms fromQ which are true at w. The
information that an information state s contains about Q is then reflected by the set
of Q-profiles which are possible according to the state.

Definition 3.9.3 (Q-profiles) LetQ ⊆ P be a set of atomic sentences, M = 〈W, V 〉
a model.

– If w ∈ W , the Q-profile of w is [w]QM = {q ∈ Q | V (w, q) = 1}.
– If s ⊆ W , the Q-profile of s is [s]QM = {[w]QM | w ∈ s}.
Given a state property C, to say that C depends only on the information about Q
is to say that C does not distinguish between information states that have the same
Q-profile. This is captured by the following definition.
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Definition 3.9.4 (Finitely determined properties) Let Q ⊆ P be a set of atoms. A
state property C is Q-determined if for any given pairs 〈M, s〉 and 〈M ′, s ′〉:

[s]QM = [s ′]QM ′ implies (〈M, s〉 ∈ C ⇐⇒ 〈M ′, s ′〉 ∈ C).

We say that C is finitely determined if it is Q-determined for some finite Q ⊆ P .

The following theorem says that InqB allows us to define all and only the finitely
determined inquisitive state properties.

Theorem 3.9.5 (Expressive completeness of InqB) The following are equivalent for
any state property C:
– C is a finitely determined inquisitive state property;
– C is definable in InqB.

Proof If C is definable in InqB, then C = [ϕ] for some formula ϕ ∈ LP. Due to
persistency and the empty state property (Proposition 3.3.1), C is an inquisitive
property. Moreover, it is easy to check that C is Q-determined where Q is the finite
set of atoms occurring in ϕ.

Conversely, suppose that C is a finitely determined inquisitive state property. Let
Q be a finite set of atoms such that C isQ-determined. We first define for each world
w in a model M a formula χw

M which encodes the Q-profile of w:

χw
M :=

∧
{q | q ∈ [w]QM} ∧

∧
{¬q | q ∈ (Q − [w]QM)}.

Note that the relevant conjunctions are finite because Q is finite. It is immediate to
check that for any M, w and M ′, w′ we have:

M ′, w′ |= χw
M ⇐⇒ [w′]QM ′ = [w]QM . (3.1)

Similarly, we associate to each state s in a model M a formula χs
M which encodes

the Q-profile of s:
χs
M :=

∨
{χw

M | w ∈ s}.

Regardless of whether s is finite, the disjunction is finite since, due to the finiteness
of Q, there are only finitely many distinct formulas of the form χw

M . In case s = ∅
we let χs

M = ⊥. The crucial property of χs
M is the following:

M ′, s ′ |= χs
M ⇐⇒ [s ′]QM ′ ⊆ [s]QM . (3.2)

Let us show (3.2). If M ′, s ′ |= χs
M , then for any w′ ∈ s ′ we have M ′, w′ |= χs

M by
persistency. Since truth conditions work as usual, this means that M ′, w′ |= χw

M
for some w ∈ s. By (3.1) this means that [w′]QM ′ = [w]QM for some w ∈ s, and so
[w′]QM ′ ∈ [s]QM . Since this is the case for each w′ ∈ s ′, we have [s ′]QM ′ ⊆ [s]QM .
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Conversely, suppose [s ′]QM ′ ⊆ [s]QM . This means that for any w′ ∈ s ′ there is some
w ∈ s such that [w′]QM ′ = [w]QM . By (3.1) this means that M ′, w′ |= χw

M and therefore
also M ′, w′ |= χs

M . So, χ
s
M is true at every world in s ′. Since χs

M is truth-conditional
(as it is a classical formula), it follows that M ′, s ′ |= χs

M . This completes the proof
of (3.2).

Finally, we can write our candidate definition of the class C:

χC := \\/{χs
M | 〈M, s〉 ∈ C}.

Again, this disjunction is finite since there exist only finitely many formulas of
the form χs

M . Note that the set of disjuncts is non-empty, since C is an inquisitive
property and thus contains 〈M,∅〉 for each M , which means that χC always contains
χ∅
M = ⊥ as a disjunct.
It remains to be shown that that χC defines C, i.e., that we have:

M, s |= χC ⇐⇒ 〈M, s〉 ∈ C. (3.3)

For the right-to-left direction, suppose 〈M, s〉 ∈ C. Then by definition, χs
M is a dis-

junct in χC . Since M, s |= χs
M by (3.2), we have M, s |= χC .

For the converse, suppose M, s |= χC . Then by the clause for

�

we have M, s |=
χs ′
M ′ for some 〈M ′, s ′〉 ∈ C. By (3.2), this implies [s]QM ⊆ [s ′]QM ′ . This means that

there is s ′′ ⊆ s ′ such that [s]QM = [s ′′]QM ′ . Since C is downward closed, we have
〈M ′, s ′′〉 ∈ C. Finally, since C is Q-determined and [s]QM = [s ′′]QM ′ , 〈M ′, s ′′〉 ∈ C
implies 〈M, s〉 ∈ C. �

In fact, wewill see in the next section that one can dispensewith some of the operators
in InqB and obtain a system which is still expressively complete. On the other hand,
expressive completeness is by no means a trivial property of an inquisitive logic.
To illustrate this point, consider another way we could have added questions to
classical propositional logic: instead of introducing questions by means of

�

, we
could introduce them by taking the operator ? as a primitive. The resulting system of
inquisitive logic is a natural extension of classical propositional logic with questions;
but, as the reader is invited to show in Exercise 3.11.9, it is not expressively complete
in the relevant sense.

3.10 Relations Between the Connectives

In this section we examine the relation between the connectives of InqB in terms of
expressive power anddefinability. In logics that are closedunder uniformsubstitution,
the two issues are connected: a connective is definable if and only if it can be dropped
without a loss of expressive power. In InqB, as we will see, the two issues are distinct.
We start by introducing the relevant notions.
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3.10.1 Preliminaries

Let L be an arbitrary propositional logic with language L = L[C] generated by a
set C of connectives, giving rise to a relation of logical equivalence ≡L ⊆ L × L.
We assume ≡L to be an equivalence relation and a congruence with respect to the
connectives: that is, we suppose that for every n-ary connective ◦ ∈ C , if ϕi ≡L ψi

for i ≤ n then ◦(ϕ1, . . . ,ϕn) ≡L ◦(ψ1, . . . ,ψn).

Definition 3.10.1 (Context) A propositional context ϕ(p1, . . . , pn) consists of a
formula ϕ ∈ L together with a sequence of designated atomic formulas p1, . . . , pn .
Note that ϕ(p1, . . . , pn) is allowed to contain other atoms besides p1, . . . , pn . If
ϕ(p1, . . . , pn) is a context and χ1, . . . ,χn ∈ L, we write ϕ(χ1, . . . ,χn) for the
result of replacing p1, . . . , pn by χ1, . . . ,χn throughout ϕ.

Definition 3.10.2 (Definability) We say that an n-ary connective ◦ ∈ C is defined
by a context ξ(p1, . . . , pn) in case for all χ1, . . . ,χn ∈ L[C]:

◦(χ1, . . . ,χn) ≡L ξ(χ1, . . . ,χn).

We say that ◦ is definable from a set C ′ ⊆ C of connectives in case there is a context
ξ(p1, . . . , pn), with ξ ∈ L[C ′] which defines ◦. If we just say that ◦ is definable then
we mean that it is definable from C − {◦}.
In terms of definability we define the notion of an independent set of connectives.

Definition 3.10.3 (Independence) We say that a setC of connectives is independent
if no connective ◦ ∈ C is definable.

We also introduce the notion of eliminability of a connective, which means that the
connective can be omitted without a loss in expressive power.

Definition 3.10.4 (Eliminability) Let C ′ ⊆ C be a set of connectives. We say that
the set of connectivesC ′ is eliminable if for each formulaϕ ∈ L[C] there is a formula
ϕ∗ ∈ L[C − C ′] such that ϕ ≡L ϕ∗. We say that a connective ◦ is eliminable if {◦}
is eliminable.

Notice that definability implies eliminability.

Proposition 3.10.5 If a connective ◦ is definable, then it is eliminable.

Proof Suppose ◦ is defined by ξ(p1, . . . , pn) ∈ L[C − {◦}]. We show by induction
that everyϕ ∈ L[C] is equivalent to someϕ∗ ∈ L[C − {◦}]. The only non-trivial case
is the one for ϕ = ◦(ψ1, . . . ,ψn). By induction hypothesis there are ψ∗

1 , . . . ,ψ
∗
n ∈

L[C − {◦}] s.t. ψi ≡L ψ∗
i for i ≤ n. Then ϕ ≡L ◦(ψ∗

1 , . . . ,ψ
∗
n). Since ◦ is defined

by ξ we have ◦(ψ∗
1 , . . . ,ψ

∗
n) ≡L ξ(ψ∗

1 , . . . ,ψ
∗
n). Since ξ,ψ∗

1 , . . . ,ψ
∗
n ∈ L[C − {◦}],

we have that ξ(ψ∗
1 , . . . ,ψ

∗
n) ∈ L[C − {◦}]. So ϕ is L-equivalent to some formula in

L[C − {◦}], which completes the inductive step. �
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Another important notion in this area is the notion of completeness of a set C ′ of
connectives, which holds when every formula in the language is L-equivalent to one
built up using only connectives from C ′.

Definition 3.10.6 (Completeness) We say that a set of connectives C ′ ⊆ C is com-
plete for L if for all ϕ ∈ L[C] there exists some ϕ∗ ∈ L[C ′] s.t. ϕ ≡L ϕ∗. We say
that a set C ′ is a minimal complete set of connectives for L if C ′ is complete for L ,
and no proper subset C ′′ ⊂ C ′ is complete for L .

The notions of definability and eliminability often go hand in hand. This is because
the logics L one typically considers are closed under uniform substitution: if an
equivalence holds, then it still holds when the atoms are replaced by arbitrary for-
mulas.

Proposition 3.10.7 If L is closed under uniform substitution and ◦ is eliminable,
then ◦ is definable.

Proof Let p1, . . . , pn be n distinct atomic formulas. Suppose L is closed under uni-
form substitution and ◦ is eliminable. Then the formula ◦(p1, . . . , pn) is L-equivalent
to some ξ ∈ L[C − {◦}]. Consider the context ξ(p1, . . . , pn): by closure under uni-
form substitution, for all χ1, . . . ,χn ∈ L we have ◦(χ1, . . . ,χn) ≡L ξ(χ1, . . . ,χn).
This means that ◦ is defined by ξ(p1, . . . , pn). �

As we discussed in Sect. 3.8, InqB is not closed under uniform substitution. As
a consequence, in InqB we find an interesting gap between the eliminability of a
connective and its definability. In this section we examine this gap carefully.

3.10.2 Eliminability

In InqB, our repertoire of connectives is C = {⊥,→,∧,

� } (we regard ⊥ as a 0-
ary connective). Let us first consider which connectives are eliminable, i.e., can be
dropped without a loss in expressive power. The following three propositions have
easy proofs, which are left as an exercise (see Exercise 3.11.11).

Proposition 3.10.8 ⊥ is not eliminable in InqB.

Proposition 3.10.9

�

is not eliminable in InqB.

Proposition 3.10.10 → is not eliminable in InqB.

So, each of ⊥,→, and

�

contributes to the expressive power of the language. By
contrast, ∧ does not.

Proposition 3.10.11 ∧ is eliminable in InqB.

Proof We need to show that for all ϕ ∈ LP there is an equivalent ∧-free formula
ϕ∗. First take a classical formula α ∈ LP

c . We define an equivalent formula α∗ which
contains only ⊥ and → as follows:
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– p∗ = p;
– ⊥∗ = ⊥;

– (β → γ)∗ = β∗ → γ∗;
– (β ∧ γ)∗ = ¬(β∗ → ¬γ∗).

Since classical formulas obey classical logic, for all classical α we have α ≡ α∗.
Next, consider an arbitraryϕ ∈ LP. By the inquisitive normal form there are classical
formulas α1, . . . ,αn such that ϕ ≡ α1

�

. . .

�

αn . We can then take ϕ∗ = α∗
1

�

. . .

�

α∗
n . Clearly, ϕ

∗ is ∧-free and equivalent to ϕ. �

Corollary 3.10.12 {⊥,→,

� } is the only minimal complete set for InqB.
It is also interesting to consider a slight variant of InqB, denoted InqB¬, whose set
of connectives is {¬,∧,→,

� }. That is, we drop the falsum constant from the lan-
guage and adopt negation as a primitive, interpreted in accordance with the clause:
s |= ¬ϕ ⇐⇒ there is no consistent t ⊆ s with t |= ϕ. The system InqB¬ is a nota-
tional variant of InqB, since negation is definable in InqB by letting ¬ϕ := ϕ → ⊥,
while ⊥ is definable in InqB¬ by letting ⊥ := p ∧ ¬p for an arbitrary atom p. In
particular, InqB and InqB¬ are equally expressive. Let us now ask about eliminability
in InqB¬. Again, the following two propositions have easy proofs, which are left as
an exercise.

Proposition 3.10.13 ¬ is not eliminable in InqB¬.

Proposition 3.10.14

�

is not eliminable in InqB¬.

Thus, ¬ and
�

are crucial to the expressive power of InqB¬. By contrast, → and ∧
are not: they can be jointly eliminated.

Proposition 3.10.15 The set {→,∧} is eliminable in InqB¬.

Proof We need to show that every ϕ ∈ LP is equivalent to some formula ϕ∗ which
contains only¬ and

�

. First take a classical formulaα ∈ LP
c .We define an equivalent

formula α∗ as follows, where p0 is an arbitrary fixed atom:

– p∗ = p,
– ⊥∗ = ¬(p0

� ¬p0),
– (β → γ)∗ = ¬¬(¬β∗ �

γ∗),
– (β ∧ γ)∗ = ¬(¬β∗ � ¬γ∗).

We leave it to the reader to check inductively that for all classical α, α ≡ α∗. As
before, if ϕ ∈ LP, we can then take classical formulas α1, . . . ,αn such that ϕ ≡
α1

�

. . .

�

αn and let ϕ∗ = α∗
1

�

. . .

�

α∗
n . The resulting formula is equivalent to ϕ

and contains only ¬ and

�

. �

Corollary 3.10.16 {¬,

� } is the only minimal complete set for InqB¬.

This tells us that one can get a systemwhich is equi-expressive with InqB, and expres-
sively complete in the sense of the previous section, by using only the connectives
¬ and

�

.
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3.10.3 Definability

Let us now we turn to the issue of definability. We start considering the question for
InqB. We will prove the following result.

Theorem 3.10.17 {⊥,∧,→,

� } is an independent set of connectives.

That is, none of the connectives is definable from the others. This is obvious for the
connectives ⊥,→, and

�

: we saw in the previous section that these connectives
are not eliminable in InqB, which a fortiori implies that they are not definable (cf.
Proposition 3.10.5).What remains to be proved is that conjunction, while eliminable,
is nevertheless not definable from the other connectives.

Proposition 3.10.18 ∧ is not definable from {⊥,→,

� }.
Proof We want to show that ∧ is not defined by any context ϕ(p1, p2), where
ϕ ∈ L[⊥,→,

� ] (note: ϕ can contain atoms other than p1, p2). Take a candidate
context ϕ(p1, p2) and fix two atoms p, q that do not occur in ϕ. We claim that

?p ∧ ?q �≡ ϕ(?p, ?q)

which implies that ϕ(p1, p2) does not in fact define ∧.
To see that ?p ∧ ?q �≡ ϕ(?p, ?q), we give a model where these formulas have

different support conditions. It suffices to take the model M that we used above
for our examples (cf., e.g., Fig. 3.5), based on four worlds {wpq , wpq , wpq , wpq}
corresponding to the four assignments of truth values to the letters p and q. We
suppose moreover that every atom r �= p, q is false at each world in this model.

In this model, ?p ∧ ?q is supported only by the singleton states and the empty
state (cf. Fig. 3.5b on Sect. 3.4). By contrast, we will show that ϕ(?p, ?q) is either
supported only by the empty state, or it is supported by some state of cardinality 2. In
either case, the support conditions of ϕ(?p, ?q) are different from those of ?p ∧ ?q ,
which shows that these formulas are not equivalent.

Our claim about the semantics of ϕ(?p, ?q) in this model follows from the fol-
lowing more general claim.

Claim. For every ∧-free context ξ(p1, p2) which does not contain the atoms p, q,
either of the following holds18:

1. ξ(?p, ?q) ≡M ⊥;
2. ξ(?p, ?q) is supported by all singletons in M , and by at least one information

state in M of cardinality 2.

We show this by induction on the context ξ. To ease notation, given a context
ξ(p1, p2), let us write ξ� for ξ(?p, ?q).

18 Recall that ϕ ≡M ψ denotes equivalence relative to the model M , which holds in case ϕ and ψ
are supported by the same information states in M .
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– ξ = p1. Then ξ� = ?p is supported by all singleton states in M , and also by the
state {wpq , wpq}, which has cardinality 2. So case 2 holds.

– ξ = p2. Analogous.
– ξ = ⊥. Then ξ� = ⊥, so case 1 holds.
– ξ = r for r �= p1, p2, p, q. Then ξ� = r . Since r is false in all worlds in s we have
r ≡M ⊥, so case 1 holds.

– ξ = η → θ. We distinguish three possibilities:

* η� ≡M ⊥ ≡M θ�. Then ξ� ≡M ⊥ → ⊥ ≡ 
, therefore case 2 holds.
* η� �≡M ⊥ ≡M θ�. Then ξ� = η� → θ� ≡M η� → ⊥ = ¬η�. We will show that

¬η� ≡M ⊥. By the induction hypothesis on η, since η� �≡M ⊥, we have that η�

is supported by every singleton state in M ; therefore no singleton state supports
¬η�. By persistency, this implies that ¬η� is not supported by any non-empty
state, i.e., ¬η� ≡M ⊥. So case 1 holds.

* θ� �≡M ⊥. Then by induction hypothesis θ� is supported by all singletons and
by some state of cardinality 2. Since any state that supports θ� also supports
ξ� = η� → θ�, case 2 holds.

– ξ = η

�

θ. If η� ≡M θ� ≡M ⊥ then ξ� ≡M ⊥ and case 1 applies. Otherwise, at
least one of η� and θ� is not M-equivalent to⊥. Without loss of generality, suppose
η� �≡M ⊥. Then by induction hypothesis η� is supported by all singletons and
by some state of cardinality 2. Since any state that supports η� also supports
ξ∗ = η� �

θ�, case 2 applies. �

This also completes the proof of Theorem 3.10.17.
Let us now consider the question of definability for InqB¬, whose set of connec-

tives is {¬,∧,→,

� }. Again, we will show that the connectives are independent.

Theorem 3.10.19 {¬,∧,→,

� } is an independent set of connectives.

It is obvious that¬ and

�

are not definable in terms of the other connectives, since we
saw in the previous section that these connectives are not eliminable. What remains
to be shown is that ∧ and →, while eliminable, are nevertheless not definable in
terms of the remaining connectives.

Proposition 3.10.20 ∧ is not definable from {¬,→,

� }.
Proof The proof is a simple adaptation of the one given for Proposition 3.10.18. The
details are left to the reader. �

Proposition 3.10.21 → is not definable from {¬,∧,

� }.
Proof The proof is similar to that of Proposition 3.10.18. We want to show that →
is not defined by any context ϕ(p1, p2), where ϕ ∈ L[¬,∧,

� ]. Take a candidate
ϕ(p1, p2) and fix two atoms p, q that do not occur in ϕ. We claim that:

?p → ?q �≡ ϕ(?p, ?q),

which implies that ϕ(p1, p2) does not define →.
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Again, we show the non-equivalence by showing that the formulas ?p → ?q and
ϕ(?p, ?q) come apart in the four-wordmodelM described in the proof of Proposition
3.10.18. The key is to prove the following claim.

Claim.For every→-free context ξ(p1, p2) not containing the atoms p, q, the formula
ξ(?p, ?q) is equivalent in the model M to a formula in the following set:

S = {?p, ?q, ⊥, 
, ?p ∧ ?q, ?p
�

?q}.

In particular, then, ϕ(?p, ?q) is equivalent in M to a formula in S. Since ?p → ?q
is not equivalent in M to any formula in S, it follows that ?p → ?q �≡ ϕ(?p, ?q).

We show the claim by induction on ξ. As above, to ease notation we write ξ� for
ξ(?p, ?q).

– ξ = p1. Then ξ� = ?p and the claim holds.
– ξ = p2. Then ξ� = ?q and the claim holds.
– ξ = r for r �= p1, p2, p, q. Then ξ� = r . Since r is false in all worlds in s we have
r ≡M ⊥, so the claim holds.

– ξ = ¬η. By induction hypothesis, η� is M-equivalent to some formula in S. If
η� ≡M ⊥ then ξ� = ¬η� ≡M 
. In all the other cases, ξ� = ¬η� ≡M ⊥.

– ξ = η ∧ θ. Then ξ� = η� ∧ θ�, and by induction hypothesis, each of η� and θ� is
M-equivalent to some formula in S. So, it suffices to check that the conjunction
of two elements of S is equivalent to some element of S. This is straightforward:
the 36 cases are summarized by the following table.

∧ 
 ⊥ ?p ?q ?p ∧ ?q ?p

�

?q

 
 ⊥ ?p ?q ?p ∧ ?q ?p

�

?q
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
?p ?p ⊥ ?p ?p ∧ ?q ?p ∧ ?q ?p
?q ?q ⊥ ?p ∧ ?q ?q ?p ∧ ?q ?q

?p ∧ ?q ?p ∧ ?q ⊥ ?p ∧ ?q ?p ∧ ?q ?p ∧ ?q ?p ∧ ?q
?p

�

?q ?p

�

?q ⊥ ?p ?q ?p ∧ ?q ?p

�

?q

– ξ = η

�

θ. This case is analogous to the previous one. We need to check that the
inquisitive disjunction of two elements of S is equivalent to some element of S.
The following table summarizes the 36 possibilities.

� 
 ⊥ ?p ?q ?p ∧ ?q ?p

�

?q

 
 
 
 
 
 

⊥ 
 ⊥ ?p ?q ?p ∧ ?q ?p

�

?q
?p 
 ?p ?p ?p

�

?q ?p ?p

�

?q
?q 
 ?q ?p

�

?q ?q ?q ?p

�

?q
?p ∧ ?q 
 ?p ∧ ?q ?p ?q ?p ∧ ?q ?p

�

?q�

?q 
 ?p

�

?q ?p

�

?q ?p

�

?q ?p

�

?q ?p

�

?q
�
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3.10.4 Eliminability Without Definability

Definability and eliminability are about different things. Eliminability turns on the
range of meanings that can be expressed by means of a connective: a connective ◦ is
eliminable if anything that can be expressed by using ◦ can also be expressed without
using ◦. Definability, by contrast, turns on the semantic operation expressed by the
connective: ◦ is definable if the operation f◦ associated with ◦ can be simulated by
a composition of the operations associated with the other connectives. Eliminability
is about the outputs that can be produced, while definability is about the operations
whereby these outputs are produced.

We saw that in substitution-closed logics, such as classical and intuitionistic logic,
the two notions coincide. By contrast, in the setting of a non-substitution logic like
InqB, the two notions come apart in an interesting way.

For instance, consider again conjunction. We saw that conjunction is eliminable
but not definable in InqB and InqB¬. This means that, while every formulaϕ ∧ ψ may
be rewritten equivalently as a ∧−free formula, there is no schematic rewriting that
we can use regardless of what ϕ and ψ are (as in classical logic, where for all ϕ,ψ
we have ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)); instead, the rewriting is necessarily dependent on
the specific formulas ϕ and ψ.

From a semantic perspective, this tells us something about the semantic operation
associated with conjunction, which is simply intersection (using the notation intro-
duced in Sect. 3.9, we have [ϕ ∧ ψ] = [ϕ] ∩ [ψ]). The fact that conjunction is not
definable from the remaining connectives means that there is no way to define the
operation of intersection by composing the operations expressed by the connectives,
¬,→, and

�

. On the other hand, the fact that ∧ is eliminable means that any partic-
ular result obtained by means of intersection may also be obtained without the use
of intersection.

Note that one consequence of the discrepancy between eliminability and defin-
ability is that even an expressively complete system such as InqB may be enriched
with new connectives expressing operations which are independent of the ones we
considered. While adding such connectives does not increase the expressive power
of the language, it does lead to a richer logic, which is not a mere notational variant
of InqB. Thus, e.g., in Ciardelli [25], InqB is extended with a tensor disjunction ⊗,
imported from dependence logic (Väänänen [20]) which is shown in Ciardelli and
Barbero [26] not to be definable in InqB. And yet other natural connectives may in
principle be added, such as the linear implication � considered by Abramsky and
Väänänen [27]. �
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3.11 Exercises

Exercise 3.11.1 (Semantics of InqB) Consider our model with four worlds
wpq , wpq , wpq , wpq instantiating the four assignments of truth values to the atoms
p and q.

pq pq

pq pq

Determine the support conditions of the following InqB formulas in this model and
draw their alternatives.

1. p ∧ ?q
2. ?p

�

?q
3. ?¬p
4. ?(p ∨ q) ∧ ?(p ∧ q)

5. ¬q → ?p
6. p ∨ q → ?p ∧ ?q
7. ?p → ?¬p
8. (?p → ?q) → ?q

Exercise 3.11.2 (Basic features of InqB) Prove Proposition 3.3.5. That is, show that
for all ϕ ∈ LP, |ϕ|M = ⋃[ϕ]M .
Exercise 3.11.3 (Truth-conditionality) Call a formula ϕ regular if for any model M
and any family S of states in M :

if M, s |= ϕ for all s ∈ S, then M,
⋃

S |= ϕ.

Show that for every ϕ ∈ LP: ϕ is regular ⇐⇒ ϕ is truth-conditional.

Exercise 3.11.4 (Truth-conditionality) Show that the entailment ϕ |= ¬¬ϕ is valid
for any formula ϕ ∈ LP.

Exercise 3.11.5 (Resolutions) Compute the sets of resolutions of the following for-
mulas.

1. p ∧ (q

�

r)
2. ?(p ∨ q) ∧ ?(p ∧ q)

3. p → ?q
4. (p

�

q) → (r

�

s)

Exercise 3.11.6 (Truth-conditionality and alternatives) Prove Proposition 3.6.12.
That is, show that in InqB, the following are equivalent:

– ϕ is truth-conditional;
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– for every model M , AltM(ϕ) = {|ϕ|M};
– for every model M , AltM(ϕ) is a singleton.

Exercise 3.11.7 (Standard model and local tabularity)

1. The standard model for a setP of atoms is the model ωP = 〈Wω, Vω〉, whereWω

is the set of all propositional valuations w : P → {0, 1}, and where Vω(w, p) =
w(p). Show that for every model M and state s, there is a state sω ⊆ Wω such
that for every formula ϕ ∈ LP: M, s |= ϕ ⇐⇒ ωP , sω |= ϕ.

2. Show that for every formula ϕ ∈ LP, ϕ is valid in InqBQ iff ωP ,Wω |= ϕ.
Use this to conclude that InqBQ is decidable (this gives an alternative proof of
Corollary 3.7.11).

3. Show that for every formulas ϕ,ψ we have: ϕ ≡ ψ ⇐⇒ [ϕ]ωP = [ψ]ωP .
4. Recall that a logic L is called locally tabular if, given any finite set P of atoms,

the number of formulas containing these atoms is finite up to logical equivalence.
Use the previous item to show that InqB is locally tabular.

5. Use the previous results to show that over a single atom p there are only five
formulas up to equivalence. Hint: how many worlds does the model ω{p} have?
How many distinct support sets are there in such a model?

Exercise 3.11.8 (Coherence) For n ≥ 1, we say that a formula is n-coherent
(cf. Kontinen [28]) if for every model M and state s we have:

s |= ϕ ⇐⇒ (t |= ϕ for all t ⊆ s with #t ≤ n)

where #t denotes the cardinality of t . In words, ϕ is n-coherent if in order to check if
ϕ is supported at a state, we just have to check if it is supported at substates of size at
most n. Note that the notion of n-coherence is a generalization of truth-conditionality:
to be truth-conditional is just to be 1-coherent.

For any formula ϕ of InqB, the coherence degree of ϕ, denoted d(ϕ), is the least
natural number n such that ϕ is n-coherent, if such a number exists (in fact, we are
going to show that for InqB-formulas it always exists).

1. Show that if ϕ is n-coherent then it is m-coherent for all m ≥ n. Conclude that,
if d(ϕ) is defined, then ϕ is n-coherent iff n ≥ d(ϕ).

2. Show inductively that d(ϕ) is in fact defined for all ϕ ∈ LP and the following
inequalities hold:

– d(ϕ) = 1 if ϕ is an atom or ⊥;
– d(ϕ ∧ ψ) ≤ max(d(ϕ), d(ψ));
– d(ϕ → ψ) ≤ d(ψ);
– d(ϕ

�

ψ) ≤ d(ϕ) + d(ψ).

3. Assuming P is infinite, show that for every n ≥ 1 there is a formula ϕ ∈ LP such
that d(ϕ) = n.
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Exercise 3.11.9 (The inquisitive propositional logic InqC) Consider a system InqC
where questions are added to classical propositional logic by having ? rather than

�

as a primitive connective, with the semantics:

s |= ?ϕ ⇐⇒ s |= ϕ or s |= ϕ

So, the logical repertoire of InqC contains the connectives ⊥,∧,→, ?.

1. Show that every formula of InqC is equivalent to a formula of InqB.
2. Show that every formula of InqC is 2-coherent (cf. the previous exercise). Using

this, show that InqC is strictly less expressive than InqB. For a state property C,
say it is n-coherent if for every model M and state s:

〈M, s〉 ∈ C ⇐⇒ (〈M, t〉 ∈ C for all t ⊆ s with 1 ≤ #t ≤ n).

3. Show that any n-coherent state property is an inquisitive property in the sense of
Definition 3.9.2.

4. Show that InqC is expressively complete for finitely determined 2-coherent prop-
erties. That is, show that the following are equivalent for any C:
– C is finitely determined and 2-coherent;
– C = [ϕ] for some ϕ ∈ InqC.

Note that, from the point of view of InqB, classical logic can be seen as a fragment
which, among the finitely determined inquisitive properties, expresses all and only
those which are 1-coherent. InqC can be seen as a fragment which expresses all
and only the properties which are 2-coherent. This leads naturally to the following
question.
Open problem: can we define, for every natural number n ≥ 1, a syntactic fragment
LP
n of LP (syntactic in the sense of defined by syntactic constrains) which expresses

all and only the finitely determined n-coherent properties?

Exercise 3.11.10 (Partitional formulas) We call a formula ϕ of InqB partitional if
in every model M , the elements of AltM(ϕ) are a partition of the logical space.

1. Show that ϕ is partitional iff for every model M there is an equivalence relation
∼ϕ on W such that for every state s ⊆ W :

s |= ϕ ⇐⇒ ∀w,w′ ∈ s : w ∼ϕ w′.

2. Show that for every ϕ ∈ LP : ϕ is partitional ⇐⇒ ϕ ≡ ?α1 ∧ · · · ∧ ?αn for
some set {α1, . . . ,αn} of classical formulas.

Exercise 3.11.11 (Eliminability) Prove the uneliminability claims in Sect. 3.10.2.
That is, prove Propositions 3.10.8, 3.10.9, 3.10.10, 3.10.13, and 3.10.14.

Exercise 3.11.12 (Eliminability and undefinability) Consider the system InqB⊗
which extends LP with the connective ⊗, interpreted by the semantic clause:
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s |= ϕ ⊗ ψ ⇐⇒ ∃s ′, s ′′ such that s = s ′ ∪ s ′′, s ′ |= ϕ, and s ′′ |= ψ.

This connective is called tensor disjunction, or split-junction, and it is standard in
dependence logic [see 20, 29].

1. Show that persistency and the empty state property still hold for InqB⊗.
2. Show that, in InqB⊗, tensor disjunction is eliminable: that is, every formula ϕ of

InqB⊗ is equivalent to a formula ϕ∗ of InqB.
3. Show that ⊗ is not definable from the InqB connectives {⊥,∧,→,

� }.
Hint. Use a strategy similar to the one we used for Proposition 3.10.18. Given
a candidate context ϕ(p1, p2) and atoms p, q not occurring in ϕ, show that
(?p ∧ ?q) ⊗ (?p ∧ ?q) �≡ ϕ(?p ∧ ?q, ?p ∧ ?q).
To prove this, show that in the model we used in the proof of Prop. 3.10.18,
ϕ(?p ∧ ?q, ?p ∧ ?q) is guaranteed to be equivalent either to ?p ∧ ?q , or to ⊥, or
to 
, while (?p ∧ ?q) ⊗ (?p ∧ ?q) is not equivalent to any of these.
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Chapter 4
Inferences with Propositional Questions

In the previous chapter we have seen how classical propositional logic can be
extended with questions, leading to the inquisitive propositional logic InqB. In this
section we will describe a natural deduction system for InqB and show this system
to be sound and complete. We will also use this system to make some more general
points about the role of questions in inference and about the intuitive significance of
supposing or concluding a question. Lastly, we will show that proofs in our system
have an interesting kind of constructive content: a proof can generally be seen as
encoding a method for turning resolutions of the assumptions into a corresponding
resolution of the conclusion.

4.1 A Natural Deduction System for InqB

A natural deduction system for InqB is presented in Fig. 4.1. In these rules, the
variables ϕ,ψ, and χ range over all formulas, while α is restricted to classical
formulas. We refer to the introduction rule for a connective ◦ as (◦i), and to the
elimination rule as (◦e). As usual, those rules that discharge assumptions allow us
to discharge an arbitrary number of occurrences of the assumption in the relevant
sub-proof. We write P : � � ψ to mean that P is a proof whose set of undischarged
assumptions is included in � and whose conclusion is ψ , and we write � � ψ to
mean that a proof P : � � ψ exists. Two formulas ϕ and ψ are provably equivalent,
notation ϕ �� ψ , in case ϕ � ψ and ψ � ϕ. Let us comment briefly on the rules of
this system.

Conjunction. Conjunction is handled by the usual introduction and elimination rules:
from a conjunction we can infer either conjunct, and from both conjuncts we can
infer the conjunction. The soundness of these rules corresponds to the following
standard fact.
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Conjunction Implication

ϕ ψ

ϕ ∧ ψ

ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

[ϕ]
...
ψ

ϕ → ψ

ϕ ϕ → ψ

ψ

Inquisitive disjunction Falsum

ϕ

ϕ ψ

ψ

ϕ ψ

ϕ ψ

[ϕ]
...
χ

[ψ]
...
χ

χ
⊥
ϕ

-split ¬¬ elimination

α → ψ χ

(α → ψ) (α → χ)
¬¬α

α

Fig. 4.1 A sound and complete natural-deduction system for InqB. In these rules, the variables
ϕ,ψ, and χ range over arbitrary formulas, while the variable α is restricted to range over classical
formulas

Proposition 4.1.1 � |= ϕ ∧ ψ ⇐⇒ � |= ϕ and � |= ψ .

Notice that these rules are not restricted to classical formulas: conjunctive questions
such as ?p ∧ ?q can be handled in inferences just like standard conjunctions.

Implication. Implication is also handled by the standard inference rules: from an
implication together with its antecedent we can infer the consequent; conversely,
if from the assumption of ϕ we can infer ψ , we can discharge the assumption and
conclude ϕ → ψ . The soundness of these rules corresponds to the following fact,
which captures the tight relation existing between implication and entailment.

Proposition 4.1.2 � |= ϕ → ψ ⇐⇒ �,ϕ |= ψ .

Again, these rules are not restricted to classical formulas: implications involving
questions can also be handled bymeans of the standard implication rules. This means
that, e.g., in order to prove a dependence formula, say ?p → ?q , we can proceed by
assuming the determinant ?p and showing that from it we can derive the determined
question, ?q. Conversely, if we have ?p → ?q as well as the determinant, ?p, we
can on that basis infer the determined question, ?q.

Falsum. As usual, ⊥ has no introduction rule, and can be eliminated to infer any
formula. This corresponds to the fact that we have ⊥ |= ϕ for all formulas ϕ, which
in turn is a consequence of the fact that the inconsistent state ∅ always supports every
formula.
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Negation Classical disjunction

[ϕ]
...
⊥
¬ϕ

ϕ ¬ϕ

⊥
ϕ

ϕ ∨ ψ

ψ

ϕ ∨ ψ

ϕ ∨ ψ

[ϕ]
...
α

[ψ]
...
α

α

Fig. 4.2 Derived rules for ∨ and ¬, where α is restricted to classical formulas

Negation. As ¬ϕ is defined as ϕ → ⊥, the usual intuitionistic rules for negation,
given in Fig. 4.2, follow as particular cases of the rules for implication.

Inquisitive disjunction. Inquisitive disjunction is handled by the standard natural
deduction rules for disjunction: we can infer a disjunction from either disjunct and,
conversely, whatever can be inferred from either disjunct can be inferred from the
disjunction. The soundness of these rules corresponds to the following fact.

Proposition 4.1.3 �,ϕ

�
ψ |= χ ⇐⇒ �,ϕ |= χ and �,ψ |= χ .

Classical disjunction. Figure 4.2 shows the derived rules for∨. While both rules are
standard, the elimination rule is restricted to conclusions that are classical formulas.
Without this restriction, the rule would not be sound. E.g., we have p |= ?p and
¬p |= ?p, but p ∨ ¬p �|= ?p: indeed, the question ?p is logically resolved by both
statements p and ¬p, but not by the disjunction p ∨ ¬p.

Double negation elimination. We saw in the previous chapter (Proposition 3.4.10)
that the double negation law is characteristic of statements. Thus, this rule reflects
the fact that classical formulas are statements in InqB.

In fact, to obtain a complete proof system it is not strctly necessary to allow double
negation elimination for all classical formulas: it would be sufficient to allow double
negation for atoms, so as to let the system know that we are taking atomic sentences
to be statements (cf. the discussion in Sect. 3.8). It would then be possible to infer
α from ¬¬α for any classical α on the basis of the rules for ⊥, ∧, and →. While
this is indeed the choice made in some work on inquisitive logic (e.g., Ciardelli
and Roelofsen [1]), allowing double negation as a primitive rule for all classical
formulas is quite natural, given our perspective of viewing InqB as a conservative
extension of classical propositional logic; in this way, our system is an extension of
a standard natural deduction system for classical logic (as given, e.g., in Gamut [2]).
This ensures that any standard natural deduction proof in classical logic is also a
proof in our system.

Split. The

�

-split rule allows us to distribute a classical antecedent over an
inquisitive-disjunctive consequent. This rule is backed by the

�

-split equivalence

α → ϕ

�

ψ ≡ (α → ϕ)

�

(α → ψ)
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given by Proposition 3.7.14. Aswe discussed in detail on Sect. 3.7.3, this equivalence
is a logical rendering of the fact that statements are specific, i.e., they correspond
to specific pieces of information (Proposition 3.7.12). As we discussed in Sect. 2.6,
this property can be seen as marking the crucial difference between statements and
questions. Thus the

�

-split rule has a clear conceptual significance which may
perhaps not be obvious at first.

It is interesting to remark that the double negation rule and the
�

-split rule capture
different properties of statements in InqB: the former captures the fact that the logic
of statements in InqB is classical, while the latter captures the idea that statements
correspond to specific pieces of information. The latter idea seems constitutive of the
inquisitive perspective, while the classicality of the underlying logic is not. Indeed, it
is possible to build inquisitive logics based on non-classical logics of statements (see
especially Punčochář [3–5], Ciardelli et al. [6]). In such logics, the double negation
law may fail, but the

�

-split equivalence remains valid.1,2

Having discussed the significance of the inference rules, let us now illustrate how
these rules can be used to build proofs of inquisitive entailments.

Example 4.1.4 As a first example, consider the following InqB-entailment:

p ↔ ¬q |= ?p → ?q.

This is valid: under the assumption that p and q have opposite truth values, it follows
thatwhetherq is the case is determinedbywhether p is the case.Here is a simple proof
of this entailment in our natural deduction system (recall that ?p := p

� ¬p and
?q := q

� ¬q):

1 The exception is Holliday [7], which gives an inquisitive extension of intuitionistic logic which
does not validate the

�

-split principle. This violation is unexpected from the standpoint of the
conceptual picture developed in Chap.1. For it means that there is an information state s such that
p |=s ?q, yet p �|=s q and p �|=s ¬q. Thismeans that on the one hand, on the basis of the information
in s, p resolves the question ?q, while on the other hand, on the basis of the same information,
p fails to yield either answer to this question (cf. also the discussion on Sect. 2.8.2). Even in the
context of this approach, however, it is easy to render the split principle valid by imposing extra
conditions on the semantics.
2 Instead of the

�

split rule, some axiomatizations of InqB use the Kreisel-Putnam axiom (see
Ciardelli and Roelofsen [1]):

(¬ϕ → ψ

�

χ) → (¬ϕ → ψ)

�

(¬ϕ → χ)

In our setting, this plays the same role as

�

-split because, on the basis of the other rules in the system,
every classical formula is provably equivalent to a negation, and every negation is equivalent to a
classical formula. However, the

�

-split rule has the advantage of generalizing to inquisitive logics
based on non-classical logics of statements. If the logic of statement is, say, intuitionistic logic,
then double negation will fail even for classical formulas; thus, it will no longer be the case that
every statement is equivalent to a negation. In this setting, the Kreisel-Putnam axiom will fail to
capture in full generality the assumption that statements are specific; it will capture only a special
case of this assumption, for those statements that are equivalent to a negation. Thus, when building
inquisitive logics in a non-classical setting, it is crucial to use

�

-split, and not the Kreisel-Putnam
axiom (cf. Punčochář [3–5], Ciardelli et al. [6]).
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[?p]2

[p]1 p ↔ ¬q
¬q
?q

(

�

i)

[¬p]1 p ↔ ¬q
q
?q

(

�

i)

?q
(

�

e, 1)

?p → ?q
(→ i, 2)

In this proof, the steps which are not labeled involve only inferences with classical
formulas. Since these coincide with inferences in classical propositional logic, we
omit the standard details.

Example 4.1.5 As a second example, consider again the conditional dependence
discussed in Sect. 2.3.3: in the die roll scenario, the range of the outcome determines
what the outcome is, given that the outcome is prime. This fact can be captured as
a logical entailment in InqB. Recall from the previous chapter (cf. Example 3.2.6
on Sect. 3.2 for the details) that we can formalize the scenario in a propositional
language equipped with a set of atoms P = {one, . . . , six}. We can then define the
following statements as classical disjunctions of our atoms:

– low := one ∨ two;
– mid := three ∨ four;

– high := five ∨ six;
– prime := two ∨ three ∨ five.

By using inquisitive disjunction we can also define the following questions:

– range := low

�
mid

�

high
– outcome := one

�

two

�

three

�

four

�

five

�

six.

The assumptions that the outcomes are jointly exhaustive and mutually exclusive
possibilities are captured by the following formulas:

– exh := (one ∨ · · · ∨ six);
– exc := ¬(one ∧ two) ∧ ¬(one ∧ three) ∧ · · · ∧ ¬(five ∧ six).

Let� = {exh, exc}. Then the following entailment, which amounts to the conditional
dependence of outcome on range given prime, is valid:

�, prime, range |= outcome.

Below is a proof of this entailment, where again we omit steps that involve only
inferences in classical propositional logic.

range

� [low]1 prime
two

outcome
(

�

i)

� [mid]1 prime
three

outcome
(

�

i)

� [high]1 prime
five

outcome
(

�

i)

outcome
(

�

e, 1)
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4.2 Constructive Content of Proofs in InqB

Looking again at the two examples of proofs in the previous section, we can see that
they are, in a certain sense, constructive. For instance, the second proof we saw does
not just witness the fact that, under the given declarative assumptions, information of
type range can be used to obtain information of type outcome: it actually describes
how to use information of type range to obtain information of type outcome. In other
words, the proof encodes a logical dependence function f (cf. Definition 3.6.15) that
can be used to turn any given information of type range to corresponding information
of type outcome. This is not just a feature of this particular proof, but a general fact:
any inquisitive proof encodes a logical dependence function. To see how this works,
let us write ϕ for a sequence ϕ1, . . . , ϕn of formulas, and α ∈ R(ϕ) to mean that α

is a sequence α1, . . . , αn such that αi ∈ R(ϕi ). We have the following result [8].

Theorem 4.2.1 (Existence of a resolution algorithm) If P : ϕ � ψ , we can define
inductively on P a procedure FP which maps each α ∈ R(ϕ) to a proof FP(α) :
α � β having as conclusion a resolution β ∈ R(ψ).

Proof Let us describe how to construct the procedure FP inductively on P . We
distinguish a number of cases depending on the last rule applied in P .

– ψ is an undischarged assumptionϕi . In this case, any resolutionα ∈ R(ϕ) contains
a resolution αi of ϕi by definition. So, we can just let FP map α to the trivial proof
Q : α � αi which consists only of the assumption αi .

– ψ = χ ∧ ξ was obtained by (∧i) from χ and ξ . Then the immediate subproofs
of P are a proof P ′ : ϕ � χ and a proof P ′′ : ϕ � ξ , for which the induction
hypothesis gives two procedures FP ′ , FP ′′ . Now take any resolution α of ϕ. We
have FP ′(α) : α � β and FP ′(α) : α � γ , where β ∈ R(χ) and γ ∈ R(ξ). By
extending these proofs with an application of (∧i), we get a proof Q : α � β ∧ γ .
Since (β ∧ γ ) ∈ R(χ ∧ ξ), we can let FP(α) := Q.

– ψ = χ → ξ was obtained by (→i). Then the immediate subproof of P is a proof
P ′ : ϕ, χ � ξ , for which the induction hypothesis gives a procedure FP ′ . Now take
any resolution α of ϕ. Suppose β1, . . . , βm are the resolutions of χ . For 1 ≤ i ≤ m,
the sequence α, βi is a resolution of ϕ, χ , and so we have FP ′(α, βi ) : α, βi � γi
for some resolution γi of ξ . Extending this proof with an application of (→i), we
have a proof Qi : α � βi → γi . Since this is the case for 1 ≤ i ≤ n, by several
applications of the rule (∧i)we obtain a proof Q : α � (β1 → γ1) ∧ · · · ∧ (βm →
γm). By construction, (β1 → γ1) ∧ · · · ∧ (βm → γm) is a resolution of χ → ξ ,
and so we can let FP(α) := Q.

– ψ = χ

�

ξ was obtained by (

�

i) from one of the disjuncts. Without loss of
generality, let us assume it is χ . Thus, the immediate subproof of P is a proof
P ′ : ϕ � χ , for which the induction hypothesis gives a procedure FP ′ . Now take
any resolution α of ϕ. The induction hypothesis gives us a proof FP ′(α) : α � β

for some β ∈ R(χ). Since β is also a resolution of χ

�

ξ , we can simply let
FP(α) := FP ′(α).
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– ψ was obtained by (∧e) from ψ ∧ χ . Then the immediate subproof of P is a
proof P ′ : ϕ � ψ ∧ χ , and the induction hypothesis gives a procedure FP ′ . For any
resolution α of ϕ, we have FP ′(α) : α � β, where β ∈ R(ψ ∧ χ). By definition of
resolutions for a conjunction, β is of the form γ ∧ γ ′ where γ ∈ R(ψ) and γ ′ ∈
R(χ). Extending FP ′(α) with an application of (∧e) we have a proof Q : α � γ .
Since γ ∈ R(ψ), we can just let FP(α) := Q.

– ψ was obtained by (→e) from χ and χ → ψ . Then the immediate subproofs of
P are a proof P ′ : ϕ � χ , and a proof P ′′ : ϕ � χ → ψ , for which the induction
hypothesis gives procedures FP ′ and FP ′′ . Now consider a resolution α of ϕ.
We have FP ′(α) : α � β where β ∈ R(χ), and a proof FP ′′(α) : α � γ , where
γ ∈ R(χ → ψ). Now, if R(χ) = {β1, . . . , βm}, then β = βi for some i , and by
definition of the resolutions of an implication, γ = (β1 → γ1) ∧ · · · ∧ (βn → γm)

where {γ1, . . . , γn} ⊆ R(ψ). Now, extending FP ′′(α) with an application of (∧e)
we obtain a proof Q′′ : α � βi → γi . Finally, combining this proof with FP ′(α)

and applying (→e), we obtain a proof Q : α � γi . Since the conclusion of this
proof is a resolution of ψ , we can let FP(α) := Q.

– ψ was obtained by (

�

e) fromχ

�
ξ . Then the immediate subproofs of P are:

a proof P ′ : ϕ � χ

�

ξ ; a proof P ′′ : ϕ, χ � ψ ; and a proof P ′′′ : ϕ, ξ � ψ , for
which the induction hypothesis gives procedures FP ′ , FP ′′ , and FP ′′′ . Now take
a resolution α of ϕ. We have FP ′(α) : α � β for some β ∈ R(χ

�

ξ) = R(χ) ∪
R(ξ). Without loss of generality, assume that β ∈ R(χ). Then the sequence α, β

is a resolution of ϕ, χ . Thus, we have FP ′′(α, β) : α, β � γ for some γ ∈ R(ψ).
Now, by substituting any undischarged assumption of β in the proof FP ′′(α, β) by
an occurrence of the proof FP ′(α), we obtain a proof Q : α � γ having a resolution
of ψ as its conclusion, and we can let FP(α) := Q.

– ψ was obtained by (⊥e). This means that the immediate subproof of P is a proof
P ′ : ϕ � ⊥, for which the induction hypothesis gives a method FP ′ . Now take any
resolution α of ϕ. Since R(⊥) = {⊥}, we have FP ′(α) : α � ⊥. Now take any
β ∈ R(ψ) (notice that, by definition, the set of resolutions of a formula is always
non-empty): by extending the proof FP ′(α)with an application of (⊥e), we obtain
a proof Q : α � β. Since β ∈ R(ψ), we can let FP(α) := P .

– ψ = (α → χ)

�

(α → ξ)was obtained by an application of the

�

-split rule
from α → χ

�

ξ , where α ∈ LP
c . Then, the immediate subproof of P is a proof

P ′ : ϕ � α → χ

�

ξ , for which the induction hypothesis gives a method FP ′ .
Using the fact thatR(α) = {α} (since α is a classical formula) it is easy to verify
that R(α → χ

�

ξ) = R((α → χ)

�

(α → ξ)). Therefore, we can simply let
FP := FP ′ .

– α ∈ LP
c was obtained by double negation elimination from ¬¬α. In this case,

the immediate subproof of P is a proof P ′ : ϕ � ¬¬α, for which the induc-
tion hypothesis gives a method FP ′ . Since ¬¬α is a classical formula, we have
R(¬¬α) = {¬¬α}. Thus, for any resolution β of ϕ we have FP ′(β) : β � ¬¬α.
Extending this proof with an application of double negation elimination we obtain
a proof Q : β � α. Since α is a classical formula and thus R(α) = {α}, we can
then let FP(β) := Q. �
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This result shows that a proof P in our system may be seen as a template FP for
producing classical proofs, where questions serve as placeholders for generic infor-
mation of the corresponding type. As soon as the assumptions of the proof are
instantiated to particular resolutions, this template can be instantiated to a classical
proof which infers some specific resolution of the conclusion. The idea is rendered
by the following scheme:

We refer to the proof FP(α) as the resolution of the proof P on the input α. Now,
let us denote by fP the function that maps a resolution α ∈ R(ϕ) to the conclu-
sion of the proof FP(α). By definition, we have f : R(ϕ) → R(ψ). Moreover,
for any α ∈ R(ϕ), we have FP(α) : α � fP(α), and thus, by the soundness of our
proof system, we have α |= fP(α). This shows that the function fP determined by
the proof P is a logical dependence function from ϕ to ψ , in the sense of Defini-
tionexrefdef:depfunctionsets.

Corollary 4.2.2 (Inquisitive proofs encode dependence functions) If P : � � ψ ,
then inductively on P we can define a logical dependence function .

This connection is reminiscent of the proofs-as-programs correspondence known
for intuitionistic logic. As discovered by Curry [9] and Howard [10], in intuitionistic
logic formulasmay be regarded as types of a certain type theory, extending the simply
typed lambda calculus. A proof P : ϕ � ψ in intuitionistic logic may be identified
with a term tP of this type theory which describes a function that maps objects of type
ϕ to objects of type ψ . The situation is similar for InqB, except that now, formulas
play double duty. On the one hand, formulas may be still be regarded as types. On the
other hand, the elements of a type ϕ may in turn be identified with certain formulas,
namely, the resolutions of ϕ. As in intuitionistic logic, a proof P : ϕ � ψ determines
a function fP from objects of type ϕ to objects of type ψ ; but since these objects
may now be identified with classical formulas, the function fP is now defined within
the language of classical propositional logic, i.e., we have fP : LP

c → LP
c .
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4.3 Completeness

By showing that each inference rule of our proof system is sound, the discussion in
Sect. 4.1 implies the soundness of our proof system as a whole.

Proposition 4.3.1 (Soundness) If � � ψ , then � |= ψ .

In this section, we will be concerned with establishing the converse implication, i.e.,
with proving the following theorem.

Theorem 4.3.2 (Completeness) If � |= ψ , then � � ψ .

There aremultiple strategies to obtain this result. One proof (seeCiardelli andRoelof-
sen [11], Ciardelli [12]) follows the format of completeness proofs for intuitionistic
and intermediate logics. Another strategy (see Ciardelli [13]) relies crucially on the
normal form result and the fact that our proof system includes a complete system
for classical propositional logic. In this section we present yet another proof. The
advantages of this proof are that it is completely self-contained and that it can be
extended straightforwardly to the setting of inquisitive modal logic (see Ciardelli
[14, 15]).

The strategy of the proof can be summarized as follows. First, we will define a
canonicalmodel having complete theories of classical formulas as its possibleworlds.
Second, we will prove an analogue of the truth-lemma, the support lemma, which
connects support in the canonical model with provability in our system. Finally, we
will show that when a formula ψ cannot be derived from a set �, we can define a
corresponding information state in the canonical model that supports � but not ψ .

4.3.1 Preliminary Results

Let us start out by establishing a few important facts about our proof system. First,
notice that, if we leave out the rules of ¬¬-elimination and

�

-split, what we have
is a complete system for intuitionistic propositional logic, with

�

in the role of
intuitionistic disjunction. Thus, we have the following fact.

Lemma 4.3.3 (Intuitionistic entailments are provable) If� entailsψ in intuitionistic
propositional logic when

�

is identified with intuitionistic disjunction, then � � ψ .

Second, our proof system allows us to prove the equivalence between a formula and
its normal form.

Lemma 4.3.4 (Provability of normal form) For any ϕ,ϕ �� \\/R(ϕ).

Proof The proof is by induction on ϕ. The basic cases for atoms and ⊥ are trivial,
and so is the inductive case for

�

. So, only the inductive cases for conjunction and
implication remain to be proved. Consider two formulas ϕ and ψ , with R(ϕ) =
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{α1, . . . , αn} and R(ψ) = {β1, . . . , βm}. Let us make the induction hypothesis that
ϕ �� α1

�

. . .

�

αn and ψ �� β1

�

. . .

�

βm , and let us consider the conjunction
ϕ ∧ ψ and the implication ϕ → ψ .

– Conjunction. From the induction hypothesis and the rules for ∧ we get

ϕ ∧ ψ �� (α1

�

. . .

�

αn) ∧ (β1

�

. . .

�
βm).

Since the distributivity of conjunction over disjunction is provable in intuitionistic
logic, by Lemma 4.3.3 we have

(α1

�

. . .

�

αn) ∧ (β1

�

. . .

�

βm) �� \\/{αi ∧ β j | i ≤ n, j ≤ m}.

And we are done, since by definition R(ϕ ∧ ψ) = {αi ∧ β j | i ≤ n, j ≤ m}.
– Implication. From the induction hypothesis and the rules for → we get

ϕ → ψ �� (α1
�

. . .

�

αn) → (β1

�

. . .

�

βm).

By intuitionistic reasoning, we obtain the following:

(α1

�

. . .
�

αn) → (β1

�

. . .

�

βm) ��
∧

i≤n

(αi → (β1

�

. . .

�

βm))

Now, since any resolution is a classical formula, it is easy to show using the

�

-split
rule that

αi → (β1

�

. . .

�

βm) �� (αi → β1)

�

. . .

�

(αi → βm).

Since this is the case for for 1 ≤ i ≤ n, the rules for ∧ yield

∧

i≤n

(αi → β1

�

. . .

�

βm) ��
∧

i≤n

((αi → β1)

�

. . .

�

(αi → βm)).

Finally, using again the provable distributivity of ∧ over

�

, we get

∧

i≤n

\\/ j≤m (αi → β j ) �� \\/ f :R(ϕ)→R(ψ)

∧

i≤n

(αi → f (αi )).

By definition of resolutions for an implication, the formula on the right is precisely
\\/R(ϕ → ψ). This completes the inductive proof. �

As a corollary, a formula may always be derived from each of its resolutions.

Corollary 4.3.5 For every ϕ ∈ LP, if α ∈ R(ϕ) then α � ϕ.

Proof Let R(ϕ) = {α1, . . . , αn}. By means of the rule (

�

i), from αi we can infer
α1

�

. . .

�

αn , and thus, by the previous lemma, we can infer ϕ. �
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Another consequence of Lemma 4.3.4 is that, ifψ in combinationwith other assump-
tions fails to yield a conclusion, this failure can always be traced to a specific reso-
lution of ψ .

Lemma 4.3.6 If �,ψ � χ , then �,α � χ for some α ∈ R(ψ).

Proof Weshow the contrapositive: if�,α � χ for allα ∈ R(ψ), then�,ψ � χ . Let
R(ψ) = {α1, . . . , αn}. The rule (

�

e)ensures that if we have�,αi � χ for 1 ≤ i ≤ n
we also have�,α1

�

. . .

�

αn � χ . Since the previous lemma givesψ � α1

�

. . .

�

αn , we also get �,ψ � χ . �

The next lemma extends this result from a single assumption to the whole set.

Lemma 4.3.7 (Traceable deduction failure) If � � ψ , there is some resolution � ∈
R(�) such that � � ψ .

Proof Let usfix an enumerationof�, say (ϕn)n∈N.3 Weare going to define a sequence
(αn)n∈N of classical formulas in LP such that, for all n ∈ N:

– αn ∈ R(ϕn);
– {αi | i ≤ n} ∪ {ϕi | i > n} � ψ .

Let us apply inductively the previous lemma. Assume we have defined αi for i <

n and let us proceed to define αn . The induction hypothesis tells us that {αi | i <

n} ∪ {ϕi | i ≥ n} � ψ , that is, {αi | i < n} ∪ {ϕi | i > n}, ϕn � ψ . Now the previous
lemma tells us that we can “specify” the formula ϕn to a resolution, i.e., we can
find a formula αn ∈ R(ϕn) and {αi | i < n} ∪ {ϕi | i > n}, αn � ψ . This means that
{αi | i ≤ n}∪{ϕi | i > n} � ψ , completing the inductive proof.

Now let � := {αn | n ∈ N}. By construction, � ∈ R(�). Moreover, we claim that
� � ψ . To see this, suppose towards a contradiction� � ψ : then for some n it should
be the case that α1, . . . , αn � ψ ; but this is impossible, since by construction we have
{α1, . . . , αn} ∪ {ϕi | i > n} � ψ . Thus, � � ψ . �

Using the existenceof theResolutionAlgorithm (Theorem4.2.1) on theonehand, and
the Traceable Failure Lemma on the other, we obtain an analogue of the Resolution
Theorem (Theorem 3.7.17) for provability: a set of assumptions � derives a formula
ψ iff any resolution of � derives some resolution of ψ .

Lemma 4.3.8 (Resolution Lemma) � � ψ ⇐⇒ for all � ∈ R(�) there is α ∈
R(ψ) such that � � α.

Proof The left-to-right direction of the lemma follows immediately from Theorem
4.2.1. Indeed, suppose there is a P : � � ψ and let� ∈ R(�): the theorem describes
how to use P and � to construct a proof of � � α for some α ∈ R(ψ).

3 We assume for simplicity that P , and as a consequence also �, is countable, even though this is
not strictly needed for the proof, which could be equally run by induction on ordinals.
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For the converse, suppose � � ψ : the previous lemma tells us that there is a
resolution � ∈ R(�) such that � � ψ . Since from any resolution α ∈ R(ψ) we can
derive ψ (Corollary 4.3.5), we must also have � � α for every α ∈ R(ψ). Thus, it
is not the case that any resolution of � derives some resolution of ψ . �

The next lemma shows that the Split Property is shared by provability, at least for
the case in which the assumptions are classical formulas.

Lemma 4.3.9 (Provable Split) If � is a set of classical formulas and � � ϕ

�

ψ ,
then � � ϕ or � � ψ .

Proof Suppose� � ϕ

�

ψ . Since� is a set of classical formulas, Proposition 3.6.20
ensures thatR(�) = �. So, byLemma4.3.8wehave� � β for someβ ∈ R(ϕ

�

ψ).
Since R(ϕ

�

ψ) = R(ϕ) ∪ R(ψ) we have either β ∈ R(ϕ) or β ∈ R(ψ). In the
former case, by Corollary 4.3.5 we have β � ϕ, and thus also � � ϕ. In the latter
case, we have β � ψ and thus � � ψ . �

4.3.2 Canonical Model

Let us now turn to the definition of our canonical model for InqB. As usual in classical
and modal logic, we will construct our possible worlds out of complete theories.
However, in our setting it is convenient to work with complete theories taken not
from the full language, but from its classical fragment, LP

c .

Definition 4.3.10 (Theories of classical formulas) A theory of classical formulas is
a set� ⊆ LP

c which is closed under deduction of classical formulas, that is, if α ∈ LP
c

and � � α then α ∈ �.

Definition 4.3.11 (Complete theories of classical formulas) A complete theory of
classical formulas is a theory of classical formulas � s.t.:

– ⊥ /∈ �;
– for any α ∈ LP

c , either α ∈ � or ¬α ∈ �.

The following lemma is essentially just Lindenbaum’s lemma for classical proposi-
tional logic, which can be proved by means of the usual completion procedure.

Lemma 4.3.12 If � ⊆ LP
c and � � ⊥ then � ⊆ � for some complete theory of

classical formulas �.

If S is a set of theories of classical formulas, we will denote by
⋂

S the intersection
of all the theories � ∈ S, with the convention that the intersection of the empty set
of theories is the set of all classical formulas:

⋂ ∅ = LP
c . A simple fact that will be

useful in our proof is that
⋂

S is itself a theory of classical formulas.
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Lemma 4.3.13 If S is a set of theories of classical formulas,
⋂

S is a theory of
classical formulas.

Proof It is obvious that
⋂

S is a set of classical formulas. Moreover, suppose
⋂

S �
α and α is a classical formula. Take any� ∈ S: since

⋂
S ⊆ �, we also have� � α,

and since � is a theory of classical formulas, we have α ∈ �. Since this is the case
for all � ∈ S, we have α ∈ ⋂

S. �

Our canonical model will have complete theories of classical formulas as worlds,
and the canonical valuation will equate truth at a world with membership in it.

Definition 4.3.14 (Canonical model) The canonical model for InqB is the model
Mc = 〈Wc, V c〉 defined as follows:

– Wc is the set of complete theories of classical formulas;
– V c : Wc × P → {0, 1} is defined by V c(�, p) = 1 ⇐⇒ p ∈ �.

4.3.3 Completeness

Usually, the next step in the completeness proof is to prove the truth lemma, a result
connecting truth at a possible world in the canonical model with provability from
that world. However, in inquisitive semantics the fundamental semantic notion is not
truth at a possible world, but support at an information state. Thus, what we need is
a support lemma that characterizes the notion of support at a state in Mc in terms of
provability. What should this characterization be?

We may think of the information available in a state S as being captured by
those statements that are true at all the worlds in S. Syntactically, truth at a world
will correspond to membership in it. Thus, the information available in a state S is
captured syntactically by the theory of classical formulas

⋂
S, which consists of

those statements that belong to all the worlds in S.
For a formula ϕ, to be supported at S is to be settled by the information available

in S. Syntactically, this would correspond to ϕ being derivable from
⋂

S. Thus,
we expect the following connection: S |= ϕ ⇐⇒ ⋂

S � ϕ. The following lemma
states that this connection indeed holds.

Lemma 4.3.15 (Support Lemma) For any state S ⊆ Wc and any ϕ ∈ LP:

S |= ϕ ⇐⇒
⋂

S � ϕ.

Proof The proof is by induction on ϕ, simultaneously for all S ⊆ Wc.

– Atoms. By the support clause for atoms, we have S |= p ⇐⇒ V c(�, p) = 1 for
all � ∈ S. By definition of the canonical valuation, this is the case if and only if
p ∈ � for all � ∈ S, i.e., if and only if p ∈ ⋂

S. Finally, by Lemma 4.3.13 we
have p ∈ ⋂

S ⇐⇒ ⋂
S � p.
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– Falsum. Suppose S |= ⊥. This means that S = ∅. Recalling that we have defined⋂ ∅ to be the set LP
c of all classical formulas, we have

⋂
S � ⊥. Conversely,

suppose S �|= ⊥, that is, S �= ∅. Then, take a � ∈ S:
⋂

S ⊆ �, and since � � ⊥
by definition, also

⋂
S � ⊥.

– Conjunction. The inference rules for conjunction imply that a conjunction is prov-
able from a set of assumptions iff both of its conjuncts are. Using this fact and
the induction hypothesis, we obtain: S |= ϕ ∧ ψ ⇐⇒ S |= ϕ and S |= ψ ⇐⇒⋂

S � ϕ and
⋂

S � ψ ⇐⇒ ⋂
S � ϕ ∧ ψ .

– Implication. Suppose
⋂

S � (ϕ → ψ). Consider any state T ⊆ S with T |= ϕ.
By induction hypothesis, this means that

⋂
T � ϕ. Since T ⊆ S, we have

⋂
S ⊆⋂

T , and since we are assuming
⋂

S � (ϕ → ψ), also
⋂

T � (ϕ → ψ). Now,
since from

⋂
T we can derive both ϕ and ϕ → ψ , by an application of (→e) we

can also derive ψ . Hence, by induction hypothesis we have T |= ψ . Since T was
an arbitrary substate of S, we have shown that S |= (ϕ → ψ).
For the converse, suppose

⋂
S � (ϕ → ψ). By the rule (→ i), this implies that⋂

S, ϕ � ψ . Lemma 4.3.6 then ensures that there is an α ∈ R(ϕ) such that⋂
S, α � ψ .

Now let Tα = {� ∈ S | α ∈ �}. First, we have α ∈ ⋂
Tα , whence

⋂
Tα � ϕ by

Corollary 4.3.5. By induction hypothesis we then have Tα |= ϕ. Now, if we can
show that

⋂
Tα � ψ weare done. For then, the induction hypothesis gives Tα �|= ψ :

this would mean that Tα is a substate of S that supports ϕ but not ψ , showing that
S �|= (ϕ → ψ).
So, we are left to show that

⋂
Tα � ψ . Towards a contradiction, suppose

⋂
Tα �

ψ . Since
⋂

Tα is a set of classical formulas, it is a resolution of itself. Thus,
Lemma 4.3.8 tells us that

⋂
Tα � β for some resolution β ∈ R(ψ), which by

Lemma 4.3.13 amounts to β ∈ ⋂
Tα . So, for any � ∈ Tα we have β ∈ �, and

thus also (α → β) ∈ �, since � is closed under deduction of classical formulas
and β � (α → β) by (→i). Now consider any � ∈ S − Tα: this means that α /∈ �

and so ¬α ∈ � since � is complete; but then we have (α → β) ∈ �, because � is
closed under deduction of classical formulas and¬α � (α → β) by the rules (¬e),
(⊥e), and (→i). We have thus shown that (α → β) ∈ � for any � ∈ S, whether
� ∈ Tα or � ∈ S − Tα . We can then conclude (α → β) ∈ ⋂

S, whence by (→e)
we have

⋂
S, α � β. Since β ∈ R(ψ), by Corollary 4.3.5 we have

⋂
S, α � ψ .

But this is a contradiction since by assumption α is such that
⋂

S, α � ψ .
– Inquisitive disjunction. Suppose S |= ϕ

�

ψ . By the support clause for

�

, this
means that either S |= ϕ or S |= ψ . The induction hypothesis gives

⋂
S � ϕ in

the former case, and
⋂

S � ψ in the latter. In either case, the rule (

�

i) ensures
that

⋂
S � ϕ

�

ψ .
Conversely, suppose

⋂
S � ϕ

�

ψ . Since
⋂

S is a set of classical formulas, by
Lemma 4.3.9 we have either

⋂
S � ϕ or

⋂
S � ψ . The induction hypothesis gives

S |= ϕ in the former case, and S |= ψ in the latter. In either case, we can conclude
S |= ϕ

�

ψ . �

Notice that, if we take our state S to be a singleton {�}, then⋂
S = �, and we obtain

the usual Truth Lemma as a special case of the Support Lemma.
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Corollary 4.3.16 (Truth Lemma) For any world � ∈ Wc and formula ϕ:

� |= ϕ ⇐⇒ � � ϕ.

However, it is really the Support Lemma, and not just the Truth Lemma, that we
need in order to establish completeness. This is because many invalid entailments
can only be falsified at non-singleton states. For instance, consider the polar question
?p: although this formula is not logically valid, it is true at any possible world in any
model—i.e., supported at any singleton state. Thus, in order to detect the invalidity
of ?p in the canonical model, we really have to find a non-singleton state S in Mc at
which ?p is not supported.

In general, given a set of formulas� and a formulaψ such that� � ψ , the question
is how to produce a state S ⊆ Wc which refutes the entailment � |= ψ . In proofs
for classical logic, one starts with the observation that if � � ψ , then � ∪ {¬ψ}
is a consistent set of formulas. But in our logic, this is not true: for instance, the
soundness of the logic ensures that � ?p, but it is easy to see that ¬?p � ⊥. So, the
reasoning at this point needs to be slightly more subtle. The next proof fills in the
missing details.

Proof of Theorem 4.3.2. Suppose � � ψ . By the Resolution Lemma, there is a
resolution � of � which does not derive any resolution of ψ . Now let R(ψ) =
{α1, . . . , αn} and consider an arbitrary αi . Since � � αi , we must have � ∪ {¬αi } �

⊥. For suppose that � ∪ {¬αi } � ⊥: then by (¬i) we would also have � � ¬¬αi

and thus, since αi is a classical formula, by ¬¬-elimination we would have � � αi ,
contrary to assumption. Hence, � ∪ {¬αi } is consistent, and thus by Lemma 4.3.12
it can be extended to a complete theory �i ∈ Wc.

Now let S = {�1, . . . , �n}: we claim that S |= � but S �|= ψ . To see that S |= �,
note that by construction we have � ⊆ ⋂

S, which implies S |= � by the Support
Lemma. But since � ∈ R(�), Proposition 3.6.21 implies S |= �.

To see that S �|= ψ , suppose towards a contradiction that S |= ψ : then by Theorem
3.6.7 we must have S |= αi for some i . By the Support Lemma, that would mean that⋂

S � αi . Since
⋂

S ⊆ �i and �i is closed under deduction of classical formulas, it
follows that αi ∈ �i . But this is impossible, since �i is consistent and contains ¬αi

by construction. Hence, we have S |= � but S �|= ψ , which allows us to conclude
� �|= ψ . �

4.4 On the Role of Questions in Proofs

What does it mean, intuitively, to suppose or conclude a question in a proof? To
answer, it might be helpful to start from a concrete example. Take again the proof
from Example 4.1.5, showing that conditionally on the outcome being prime, the
range of the outcome determines what the outcome is.
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range

� [low]1 prime
two

outcome
(

�

i)

� [mid]1 prime
three

outcome
(

�

i)

� [high]1 prime
five

outcome
(

�

i)

outcome
(

�
e, 1)

What is the argument encoded by this proof? It may be glossed as follows. Suppose
we are given the information about what the range of the outcome is (note: this is
where a question is supposed). Then either we have the information that the outcome
is low, or we have the information that it is in the middle range, or we have the
information that it is high. In the first case, from the assumption that the outcome is
prime we can conclude that it is two; therefore, in this case we have the information
about what the outcome is (note: this is where a question is concluded). Similarly,
in the second case we can conclude that the outcome is three, and in the third case
we can conclude that the outcome is five; so in each of these cases we also we
have the information about what the outcome is. Thus, in any case, under the given
assumptions we are guaranteed to have the information about what the outcome is.

Notice the conceptually natural role that questions play in this argument. When
we suppose the question rangewe are supposing to be given the information whether
the outcome is low, middle, or high. We are not, however, supposing anything spe-
cific about the range—we are not supposing, say, that the range is low; we are just
supposing to have an arbitrary specification of the range of the outcome. Similarly,
when we conclude the question outcome, what we are concluding is that, under the
given assumptions, we are guaranteed to have the information as to what the outcome
is—though the specific information we have is bound to depend on the information
we are given about the range.

It might be insightful to draw a connection with the arbitrary individual constants
used in natural deduction systems for standard first-order logic.4 For instance, in
order to inferψ from ∃xϕ(x), one can make a new assumption ϕ(c), where c is fresh
in the proof and not occurring in ψ , and then try to derive ψ from this assumption.
Here, the idea is that c stands for an arbitrary object in the extension of ϕ(x)—an
arbitrary object “of type ϕ”. If ψ can be inferred from ϕ(c), then it must follow no
matter which specific object of type ϕ the constant c denotes, and thus it must follow
from the mere existence of such an object.

Questions allow us to do something similar, except that instead of an arbitrary
individual of a given type, a question may be viewed as denoting an arbitrary piece
of information of a given type. For instance, the question range may be viewed as
denoting an arbitrary specification of the range of the outcome.

At the outset of their influential book “The logic of questions”, Belnap and Steel
warned their readers:

Absolutely the wrong thing is to think [the logic of questions] is a logic in the sense of a
deductive system, since one would then be driven to the pointless task of inventing an infer-
ential scheme in which questions, or interrogatives, could serve as premises and conclusions.
([16], p. 1)

4 Thanks to Justin Bledin for suggesting this analogy.
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In this chapter, I hope to have shown that Belnap and Steel were too pessimistic:
far from being pointless, questions have a very interesting role to play in logical
inference. They can meaningfully serve as premises and conclusions in a proof. In
fact, they turn out to be powerful proof-theoretic tools: as we saw, they allow us to
reason with arbitrary information of a given type. By making inferences with such
arbitrary information, we can provide formal proofs of the validity of certain logical
dependencies.

4.5 Exercises

Exercise 4.5.1 Give natural deduction proofs of the following entailments.

1. ?p ∧ ?q |= ?(p ∧ q)

2. p → (?q → ?r), ¬q |= (p → r)
�

(p → ¬r)
Exercise 4.5.2 Miss Marple is investigating a murder. She has concluded that the
murderer must be either Alice or Bob. However, Alice has a bullet-proof alibi for the
morning, while Bob has one for the rest of the day. So, wemay assume the following:

– Either Alice or Bob did it. a ∨ b (notice the disjunction is classical)
– If it was Alice, it was not in the morning. a → ¬m
– If it was Bob, it was in the morning. b → m

Given these assumptions, the question who did it is determined by the question
whether themurderwas committed in themorning. This is captured by the entailment:

a ∨ b, a → ¬m, b → m |= ?m → a

�

b.

Give a natural deduction proof of this entailment.

Hint. Recall that a ∨ b abbreviates ¬(¬a ∧ ¬b), so in combination with ¬a ∧ ¬b it
can be used to derive ⊥.

Exercise 4.5.3 Miss Marple is again busy investigating a murder. Her investigation
has revealed that during the entire morning, the butler was the only person in the
house besides the victim. Therefore, she concluded that:

– If the murder took place in the morning, then if it took place in the house, the
culprit is the butler.

Also, it is attested that the butler remained inside the house the whole morning.
Therefore, Miss Marple concluded that:

– If the culprit is the butler, then if the murder took place outside the house, it did
not take place in the morning.

On the basis of these two conclusions, the first question below determines the second:
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– Did the murder take place inside the house?
– If the murder took place in the morning, was it the butler?

Formalize this logical dependency as an entailment in InqB and prove its validity by
means of a natural deduction proof.

Exercise 4.5.4 Show that the derived rules for classical disjunction given in Fig. 4.2
are admissible on the basis of the primitive rules of our system. That is, show that
for any given formulas ϕ,ψ ∈ LP, the following facts hold:

1. ϕ � ϕ ∨ ψ and ψ � ϕ ∨ ψ ;
2. if � is an arbitrary set of formulas and α a classical formula, then if we have

�,ϕ � α and �,ψ � α, we also have �,ϕ ∨ ψ � α.

Do not rely on the completeness theorem.
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Chapter 5
Questions in Predicate Logic

In this chapter, we move on from propositional logic to the richer setting of predicate
logic. We describe how classical first-order logic can be enriched with questions,
leading to a system InqBQ of inquisitive first-order logic (the Q in the acronym
stands for quantification). With respect to the inquisitive propositional logic of the
previous chapters, this extension is interesting not only because first-order logic, as
a logic of statements, is a much more expressive system than propositional logic,
but also because, through quantification, many important classes of questions can be
formalized, in addition to the propositional ‘whether…or’ questions thatwewere able
to formalize in inquisitive propositional logic. For instance, it will become possible
to analyze questions that ask for one or more instances of a property, such as (1-a)
and (1-b); questions that ask for the unique individual satisfying of a property, such
as (1-c); and questions that ask for the extension of a property, such as (1-d).

(1) a. What is one color that Alice likes?
b. What are two colors that Alice likes?
c. What is the color that Alice likes?
d. What are the colors that Alice likes?

Thus, inquisitive first-order logic provides a rich environment to regiment many
classes of questions and study their logic—although there are also some prominent
question types, notably how many questions like (2), which, while semantically
analyzable, are not expressiblewith the resources of InqBQ (seeGrilletti andCiardelli
[1]).

(2) How many colors does Alice like?

As in the case of propositional logic, wewill build our inquisitive system in two steps.
In thefirst step,wewill showhowclassical first-order logic canbegiven a semantics in
terms of support at an information state. In the second step,wewill exploit the support
semantics to introduce questions into first-order logic, equipping the language with
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new question-forming operators. In addition to inquisitive disjunction

�

, which will
work as in InqB, we will now also have an inquisitive existential quantifier ∃∃, which
asks for a witness of a certain property.

With the move to predicate logic, some of the subtleties of intensional semantics
also come into play, such as the different ways in which terms may refer to objects
(rigidly or variably), the interpretation of identity, and the distinction between the
entities to which information is attached and the objects that actually exist in the
world. As we will see, the modeling choices one makes about these issues have
repercussions for the logic of questions.

While many of the central features of inquisitive propositional logic carry over to
the first-order case, there are also some crucial differences. Most importantly, it is no
longer the case that a question can be recursively associated with a set of statements
that capture the differentways to resolve the question.Mathematically, the full system
InqBQ turns out to be a rich and complex system. Indeed, in spite of systematic
investigation over the past few years, the main meta-theoretical questions about
this logic are currently still open: it is not known whether a complete axiomatization
exists, norwhether the logic is entailment-compact (in the sense thatwhatever follows
from a set of premises follows from some finite subset), satisfies analogues of the
Löwenheim-Skolem theorems, or has a recursively enumerable set of validities.

At the same time, in recent years there have been important developments in the
study of InqBQ, especially due to work by Grilletti (see [1–3]). One exciting recent
result that we will cover in detail is the existence of a broad fragment of InqBQ,
the classical antecedent fragment, which on the one hand contains all the most
important classes of questions expressible in InqBQ, and on the other hand turns out
to be very well-behaved and to admit an elegant completeness result. This fragment
can then be regarded in its own right as a rich logic of questions—much richer than
its predecessors, such as the Logic of Interrogation of Groenendijk [4]—that shares
many of the the key features of standard first-order logic. In addition to this, at the
end of the chapter we will also survey some other interesting recent results, as well
as some open problems.

5.1 Support for Classical First-Order Logic

Let us start out by describing how classical first-order predicate logic may be given
a support semantics. For ease of exposition, we focus first on a language without
identity, and then turn to the treatment of identity in Sect. 5.4.

Language. As usual, our language is based on a signature S, consisting of a setRS
of relation symbols (also called predicates) and a setFS of function symbols, where
each of these symbols has a certain arity n ≥ 0. Relation symbols of arity 0 are
called propositional atoms, while function symbols of arity 0 are called individual
constants. Moreover, we assume that among the function symbols we have a spec-
ified set F R

S of rigid function symbols, whose interpretation is required to be fixed
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across different possible worlds. We will refer to the remaining function symbols,
whose interpretation may vary across different possible worlds, as non-rigid func-
tion symbols. We will use sans serif fonts to mark rigidity: thus, a meta-variable f
will range over rigid function symbols, while f will range over all function symbols,
rigid or non-rigid.

As usual, we also have a countably infinite stock of first-order variables, Var =
{x0, x1, x2, . . . }. The set Ter(S) of terms in the language is given as usual by the
inductive definition

t ::= x | f (t, . . . , t)

where x ∈ Var, f ∈ FS , and the number of arguments of f in the inductive clause
matches the arity of f . The set of rigid terms is defined analogously by

t ::= x | f(t, . . . , t)

where f ∈ F R
S is a rigid function symbol.

The set of classical first-order formulas in the signature S is also defined as usual,
where we take⊥,∧, and→ as our primitive propositional connectives, and ∀ as our
primitive quantifier.

Definition 5.1.1 (Classical formulas) The setLQ
c (S)of classical first-order formulas

is defined recursively as follows:

ϕ ::= R(t1, . . . , tn) | ⊥ | ϕ ∧ ϕ | ϕ → ϕ | ∀xϕ

where R is an n-ary relation symbol in S, t1, . . . , tn ∈ Ter(S), and x ∈ Var.

When there is no need to emphasize the signature S, we will drop reference to it and
simply refer to the set of classical first-order formulas as LQ

c . We take the remaining
operators of classical first-order logic to be defined as follows:

– ¬ϕ := ϕ → ⊥;
– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ);

– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ);
– ∃xϕ := ¬∀x¬ϕ.

It will be useful to introduce some abbreviations: we will write t for a sequence
〈t1, . . . , tn〉 of terms and x for a sequence 〈x1, . . . , xn〉 of variables. Moreover, if Q
is a quantifier and x = 〈x1, . . . , xn〉 a sequence of variables, we will write Qxϕ for
Qx1 . . . Qxnϕ.

Free and bound occurrences of a variable x in a formula are defined as usual.
Given a formula ϕ, we write FV (ϕ) for the set of variables which are free in ϕ.
Moreover, if x ∈ Var and t ∈ Ter(S), we write ϕ[t/x] for the formula that results
from replacing each free occurrence of x in ϕ by t . As usual, we say that a term t is
free for a variable x in a formula ϕ in case no free occurrence of x in ϕ lies within
the scope of a quantifier which binds a variable y occurring in t .

We allow ourselves to drop parentheses whenever convenient, including in the
case of atomic sentences (writing, e.g., Rxy instead of R(x, y)). We follow standard
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conventions about the priority of operators: quantifiers and negation have the highest
priority, followed by conjunctions and disjunctions (including inquisitive disjunc-
tions in the full language), while implication has the lowest priority. Thus, e.g., the
formula ϕ → ¬∀xψ ∧ χ should be parsed as ϕ → ((¬∀xψ) ∧ χ).

Models. Let us now turn to the structures that are to serve asmodels for our language.
As in the previous chapters, our models will comprise a universe of possible worlds,
each representing a certain state of affairs. Moreover, they will comprise a domain
D of individuals that our quantifiers range over. These are the individuals that the
information represented by the model is about. The state of affairs corresponding
to a given world is then characterized by fixing the denotation of the predicate and
function symbols.

Note that taking the domain of quantification to be world-independent means that
ourmodelswill not be able to represent uncertainty about the domain of quantification
itself (except insofar as it stems from uncertainty about identities: see Sect. 5.4). This
can be seen as a simplifying assumption that one might want to lift in future work,
at the cost of introducing some extra complexity.1

Definition 5.1.2 (Relational information models) A relational information model is
a triple M = 〈W, D, I 〉, where:
– W is a set, the elements of which we call possible worlds;
– D is a non-empty set, the elements of which we call individuals2;
– I is a map assigning to each w ∈ W a function Iw defined on S such that:

* Iw(R) ⊆ Dn for an n-ary predicate R; we write Rw for Iw(R).
* Iw( f ) : Dn → D for an n-ary function symbol f ; we write fw for Iw( f ).
Rigidity constraint: if f is rigid, then for any w,w′ ∈ W , fw = fw′ .

Note thatwith eachworldw of such an informationmodelwe can associate a standard
relational structure of our signature.

Definition 5.1.3 (Relational structure associated with a world) Let M = 〈W, D, I 〉
be a relational information model and w ∈ W . The relational structure associated
with W is Mw := 〈D, Iw〉.
Thus, a relational information model can be seen alternatively as a collection {Mw |
w ∈ W } of relational structures sharing the same underlying domain.

For an illustration, consider a signature containing a unary predicate P and two
rigid constants, a and b. Consider a simplemodelM containing two individuals a and
b, denoted rigidly by a and b respectively, and four possible worlds, corresponding
to the four possible extensions for the predicate P . This model is depicted in Fig. 5.1.

1 Without modifying the logic, one could capture uncertainty about the domain of quantification by
introducing an existence predicate, whose extension can vary from world to world, and restricting
quantifiers explicitly to existing individuals.Wewill not explore this in detail, but the idea is familiar
from modal predicate logic (see, e.g., Fitting and Mendelsohn [5]).
2 Later on, when we introduce our treatment of identity, we will want to draw a distinction between
the elements of D, which we will call epistemic individuals, and the ontic individuals that actually
exist in the state of affairs corresponding to a world.
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ab a

b ∅

Fig. 5.1 A relational information model with two individuals a, b, denoted rigidly by constants
a and b, and four possible worlds, corresponding to the four extensions for P . The label ab in the
pictures stands for a world w in which Pw = {a, b}, the label a stands for a world w in which
Pw = {a}, and so on

Support semantics for classical first-order logic. Let us now see how the standard
language of first-order logic can be given a support semantics, which interprets
formulas relative to information states s ⊆ W drawn from a relational information
model.

As is customary, the semantics is given relative to an assignment function g, which
fixes the interpretation of variables. Assignments are defined as usual as functions
g : Var → D. If d ∈ D, we write g[x �→ d] for the assignment which maps x to d,
and otherwise coincides with g.

We can assign to each term in the language a world-dependent referent in a natural
way.

Definition 5.1.4 (Referent of a term) The referent of a term t in a world w under an
assignment g is the individual [t]wg ∈ D defined inductively as follows:

– [x]wg = g(x);
– [ f (t1, . . . , tn)]wg = fw([t1]wg , . . . , [tn]wg ).

Note that if t is a closed term (i.e., if t does not contain variables) the referent
is independent of g and can be denoted as [t]w, while if t is rigid, the referent is
independent of w and can be denoted as [t]g . If t is both closed and rigid we can drop
both parameters and write simply [t].

We are now ready to define the relation of support between states and formulas,
which specifies what information it takes to settle a first-order formula.

Definition 5.1.5 (Support for classical first-order formulas) If M is a relational
information model, s an information state in M , and g an assignment, we let:

– M, s |=g R(t1, . . . , tn) ⇐⇒ for all w ∈ s, 〈[t1]wg , . . . , [tn]wg 〉 ∈ Rw

– M, s |=g ⊥ ⇐⇒ s = ∅
– M, s |=g ϕ ∧ ψ ⇐⇒ M, s |=g ϕ and M, s |=g ψ
– M, s |=g ϕ → ψ ⇐⇒ for all t ⊆ s, M, t |=g ϕ implies M, t |=g ψ
– M, s |=g ∀xϕ ⇐⇒ for all d ∈ D, M, s |=g[x �→d] ϕ.

As usual, atomic formulas Rt are treated as statements: a state settles that Rt if the
information available in s implies that the tuple of individuals denoted by t belongs
to the extension of R. The clauses for the propositional connectives are familiar from
the previous chapters. A universal ∀xϕ(x) is settled in s in case ϕ(x) is settled for
every value of the variable x .
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Whenno confusion arises,wewill drop reference to themodelM , and simplywrite
s |=g ϕ. As usual, we refer to the set of information states supporting ϕ in M (now
relative to an assignment g) as the support-set of ϕ, notation [ϕ]gM . The alternatives
for ϕ in M relative to g are the ⊆-maximal elements of [ϕ]gM , and the set of these
alternatives is denoted AltgM(ϕ). It is easy to check that if FV (ϕ) ⊆ {x1, . . . , xn},
only the value of g on x1, . . . , xn matters for whether s |=g ϕ; in this case, we
may thus write s |=[x1 �→d1,...,xn �→dn ] ϕ to mean that s |=g ϕ where g is an arbitrary
assignment mapping xi to di . In particular, if ϕ is a sentence we may drop reference
to the assignment altogether.

Truth at a world w is defined, as usual, as support at the state {w}:

w |=g ϕ
de f⇐⇒ {w} |=g ϕ.

The truth-set of ϕ in M relative to g is the set of worlds where ϕ is true:

|ϕ|gM := {w ∈ W |w |=g ϕ}.

It is straightforward to check that truth at a world w, as given by our semantics,
coincides exactly with truth in the structure Mw as given by the standard Tarskian
semantics for first-order predicate logic.

Proposition 5.1.6 (Truth conditions for classical formulas) For any information
model M, any world w in M, and any assignment g:

– w |=g R(t1, . . . , tn) ⇐⇒ 〈[t1]wg , . . . , [tn]wg 〉 ∈ Rw

– w �|=g ⊥
– w |=g ϕ ∧ ψ ⇐⇒ w |=g ϕ and w |=g ψ
– w |=g ϕ → ψ ⇐⇒ w �|=g ϕ or w |=g ψ
– w |=g ∀xϕ ⇐⇒ for all d ∈ D, w |=g[x �→d] ϕ.

Thus, our semantics allows us to retrieve standard truth-conditional semantics as a
special case. In order to check that our semantics gives a support-based implementa-
tion of classical propositional logic, we just have to check that truth and support are
related in accordance with the Truth-Support Bridge (Constraint 2.2.5): a formula is
supported by a state iff it is true at each world in the state. This is the content of the
following proposition.

Proposition 5.1.7 (Classical formulas are truth conditional) For any ϕ ∈ LQ
c , state

s in an information model M, and assignment g:

s |=g ϕ ⇐⇒ w |=g ϕ for all w ∈ s.

Proof By induction onϕ. The novel casewith respect to the proof in the propositional
case (Proposition 3.1.8) is the one for ∀. We have
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ab a

b ∅

(a) Pa

ab a

b ∅

(b) Pb

ab a

b ∅

(c) ∀xPx

ab a

b ∅

(d) ∃xPx

Fig. 5.2 The alternatives for some InqBQ statements in the relational information model of Fig. 5.1

s |=g ∀xϕ ⇐⇒ for all d ∈ D : s |=g ϕ

⇐⇒ for all d ∈ D, for all w ∈ s : w |=g[x �→d] ϕ

⇐⇒ for all w ∈ s, for all d ∈ D : w |=g[x �→d] ϕ

⇐⇒ for all w ∈ s : w |=g ∀xϕ

where the second step uses the induction hypothesis. �

Given that truth and support are related in the appropriate way, it follows from the
discussion in Sect. 2.2 that our support semantics is a semantics for classical first-
order logic. This is illustrated by Fig. 5.2, which shows the alternatives for some first-
order sentences in the model of Fig. 5.1. It follows from Proposition 5.1.7 that each
statement has a single alternative, consisting of those worlds where it is classically
true.

Having thus re-implemented classical predicate logic based on support, we are
now ready for the second step of our strategy: bring questions into play by enriching
our language with question-forming logical operators.

5.2 Adding Questions to First-Order Logic

In the propositional case, questions are introduced into the system by means of a
new connective, the inquisitive disjunction

�

. In the first-order case, it is natural to
also consider a quantifier counterpart of

�

, denoted ∃∃, which we will call inquisitive
existential quantifier. The full language of our system is obtained by enriching the
language of classical first-order logic with these two operators.

Definition 5.2.1 The set LQ(S) of first-order formulas of InqBQ is defined recur-
sively as follows:

ϕ ::= R(t1, . . . , tn) | ⊥ | ϕ ∧ ϕ | ϕ → ϕ | ∀xϕ | ϕ

�

ϕ | ∃∃xϕ

where R is an n-ary redicate in S, t1, . . . , tn ∈ Ter(S), and x ∈ Var.



130 5 Questions in Predicate Logic

As in propositional logic, we also use a derived operator ‘?’, defined by ?ϕ :=
ϕ

� ¬ϕ. The semantics of

�

is familiar by now: a state s supports an inquisitive
disjunction ϕ

�

ψ in case it supports one of the disjuncts. The semantics of ∃∃ is the
quantifier analogue of this clause: a state s supports an inquisitive existential ∃∃xϕ(x)
in case it supports ϕ(x) for some specific value of x .

Definition 5.2.2 (Support for InqBQ) The relation of support for InqBQ is obtained
by augmenting Definition 5.1.5 with the following two clauses:

– M, s |=g ϕ

�

ψ ⇐⇒ M, s |=g ϕ or M, s |=g ψ;
– M, s |=g ∃∃xϕ ⇐⇒ for some d ∈ D, M, s |=g[x �→d] ϕ.

By combining the inquisitive operators

�

and ∃∃ with the support-based versions of
the classical operators, in InqBQ we can express a wide range of questions. Let us
illustrate this with some examples.

First, just like in the propositional setting, we can use the question mark operator
? to turn a statement into the corresponding polar question.

Example 5.2.3 (Polar questions) Consider the formula ?∀x Px , which abbreviates
∀x Px � ¬∀x Px . Using the fact that ∀x Px and ¬∀x Px are classical formulas, we
have:

s |=g ?∀x Px ⇐⇒ s |=g ∀x Px or s |=g ¬∀x Px
⇐⇒ (∀w ∈ s : w |=g ∀x Px) or (∀w ∈ s : w |=g ¬∀x Px)
⇐⇒ (∀w ∈ s : Pw = D) or (∀w ∈ s : Pw �= D).

In words, ?∀x Px is settled in a state in case the available information determines
whether or not all individuals have property P . Thus, ?∀x Px can be seen as a formal-
ization of the polar question whether everyone has property P. The two alternatives
for this question in our example model of Fig. 5.1 are shown in Fig. 5.3a.

In addition to

�

, in InqBQ we can form questions by means of ∃∃. The following
example illustrates how this operator allows us to formalize an important class of
questions, namely, mention-some questions (cf. the discussion in Sect. 2.9.2).

Example 5.2.4 (Mention-some questions) Consider the sentence ∃∃x Px . We have:

s |=g ∃∃x Px ⇐⇒ there is a d ∈ D such that s |=g[x �→d] Px
⇐⇒ there is a d ∈ D such that for all w ∈ s, d ∈ Pw.

In words, ∃∃x Px is settled if for some individual d, the available information implies
that d has property P . Thus, the formula ∃∃x Px can be seen as a formalization of the
question what is an instance of P. In the literature, questions that ask for instances
of properties are called mention-some questions.

In our model M , which contains just two individuals, the formula ∃∃x Px has
two distinct alternatives, depicted in Fig. 5.3b. These alternatives correspond to the
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ab a

b ∅

(a) ?∀xPx

ab a

b ∅

(b) ∃∃xPx

ab a

b ∅

(c) ∀x?Px

ab a

b ∅

(d) ∃∃!xPx

Fig. 5.3 The alternatives for some InqBQ questions in the relational information model of Fig. 5.1

classical formulas Pa and Pb, which provide just enough information to establish
an instance of property P .

It is interesting to pause to point out that the difference between the semantics of
the classical existential ∃x Px and its inquisitive counterpart ∃∃x Px is one of relative
scope of two quantifiers:

s |=g ∃x Px ⇐⇒ for all w ∈ s, some d ∈ D is such that d ∈ Iw(P);
s |=g ∃∃x Px ⇐⇒ some d ∈ D is such that for all w ∈ s, d ∈ Iw(P).

In words, ∃x Px is supported if the available information implies that some individ-
ual has property P , while ∃∃x Px is supported if for some individual, the available
information implies that it has property P .

The idea illustrated by this example generalizes: if R is a binary relation symbol,
then the sentence ∃∃x∃∃yR(x, y) is supported in s just in case s establishes of a specific
pair 〈d, d ′〉 that it belongs to the extension of R. Thus, ∃∃x∃∃yR(x, y) formalizes a
question asking for an instance of a pair which stands in the relation R.

In the previous examples, we considered questions that can be formed directly by
using the inquisitive operators. But notice that further questions can be expressed by
embedding such basic questions under the classical operators ∧,→, and ∀, whose
semantics is now generalized in such away that they can operate on questions aswell.
In Chap.2, we have already discussed in detail the effect of embedding questions
under conjunction and implication. These operations apply in much the same way
to the richer repertoire of questions available in the current setting. By means of
conjunction we can, e.g., form conjunctive questions like ∃∃x P(x) ∧ ∃∃xQ(x) which
asks at once for an instance of property P and an instance of property Q. By means
of implication we can form conditional questions like ∃x P(x) → ∃∃x P(x), which
asks for an instance of property P under the assumption that there is one; we may
also form questions such as ∃∃x P(x) → ∃∃xQ(x), which may be seen as asking for
a method for turning an instance of property P into an instance of property Q.

The novelty introduced by InqBQ is that it also becomes possible to universally
quantify over questions. The following example shows that by doing so we can
formalize another important class of questions: mention-all questions.
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Example 5.2.5 (Mention-all questions) Consider the sentence ∀x?P(x): this sen-
tence is supported in a state s in case s settles the polar question ?P(x) for all values
of x , that is, in case s establishes of every individual d ∈ Dwhether or not d has prop-
erty P . This means that, in order to settle ∀x?P(x), a state s must settle precisely
what the extension of P is. More formally, using the fact that P(x) is a classical
formula we have:

s |=g ∀x?P(x)⇐⇒ for all d ∈ D : s |=g[x �→d]?P(x)

⇐⇒ for all d ∈ D : s |=g[x �→d] P(x) or s |=g[x �→d] ¬P(x)

⇐⇒ for all d ∈ D : (for all w ∈ s : d ∈ Pw) or

(for all w ∈ s : d /∈ Pw)

⇐⇒ for all d ∈ D, for all w,w′ ∈ s : (d ∈ Pw ⇐⇒ d ∈ Pw′)

⇐⇒ for all w,w′ ∈ s, for all d ∈ D : (d ∈ Pw ⇐⇒ d ∈ Pw′)

⇐⇒ for all w,w′ ∈ s : Pw = Pw′ .

Thus, ∀x?P(x) can be seen as formalizing the question which individuals have
property P , or equivalently, what is the extension of P . Questions that ask for the
extension of a property or relation are known as mention-all questions.

In our toy model, this sentence has four alternatives, depicted in Fig. 5.3c: each
alternative corresponds to one possibility for the extension of P .

The example generalizes: for instance, if R is a binary relation symbol, the sen-
tence ∀x∀y?R(x, y) is supported by a state s iff s determines the extension of the
relation R—i.e., iff the extension is the same at eachworld in s. Thus, e.g., in a domain
consisting only of humans, ∀x∀y?R(x, y) formalizes the mention-all reading of the
question who is R-related to whom.

In Sect. 5.7.3 we will see that the questions that can be obtained by universally
quantifying over polar questions are precisely those which ask for the extension of a
relation defined by a standard formula of classical first-order logic. As we will see,
these coincide exactly with the questions expressible in the Logic of Interrogation
of Groenendijk [4].

Summing up, then, in InqBQwe can regiment a range of interesting question types. In
particular, we can formalize polar questions like (3-a), mention-some wh-questions
like (3-b), and mention-all wh-questions like (3-c), in addition to conjunctive and
conditional questions derived from such questions.

(3) a. Did everyone pass the test? ?∀x Px
b. Who is an individual who passed the test? ∃∃x Px
c. Which individuals passed the test? ∀x?Px

This discussion does not by any means provide an exhaustive survey of the kinds
of questions expressible in InqBQ. On the contrary, many more question types can



5.3 Basic Features of InqBQ 133

be expressed,3 and even more will become expressible once we introduce identity.
But hopefully these examples already illustrate the richness of InqBQ as a logical
framework for regimenting questions, and show how naturally many important ques-
tion types can be expressed by using only a small set of semantically simple logical
operators.4

5.3 Basic Features of InqBQ

Let us now take a look at some basic features of the system InqBQ which we have
defined. We will see that, while many features of the propositional system InqB carry
over, there are also some interesting differences.

5.3.1 Support and Alternatives

Let us start by examining the features of the support relation. As we expect, support
is persistent, and the empty state trivially supports every formula.

Proposition 5.3.1 For any model M, states s, t , assignment g and formula ϕ ∈ LQ,
we have:

– Persistence property: s |=g ϕ and t ⊆ s implies t |=g ϕ;
– Empty state property: ∅ |=g ϕ.

As a consequence of persistence, we also get that the truth-set of a formula always
coincides with the union of its support set.

Proposition 5.3.2 For any model M, assignment g, and ϕ ∈ LQ: |ϕ|gM = ⋃[ϕ]gM .
Moreover, as in the propositional case, our semantics is local. That is, support at a
state depends exclusively on the features of the worlds in the state.

3 Just one example: the question ∀x∃∃yRxy is settled if we can provide, for each individual d, an
instance of an individual d ′ to which d is R-related. For instance, suppose a teacher wants to give
each student, as a present, a keychain in a color the student likes. Then the teacher needs to know for
every student x what is a color that x likes. She might express her request for information by means
of the question ∀x(student(x) → ∃∃y(color(y) ∧ likes(x, y)). It is a merit of our formal language
that it allows us to express such non-trivial questions in a simple and unambiguous way.
4 Contrast this with the erotetic logic of Belnap and Steel [6]—arguably themost ambitious proposal
for a general logical language in which to regiment questions. Their language can indeed formalize
many question types, but at the cost of introducing a very complex syntactic apparatus of question
constructors, one for each question type. This is required because these constructors, unlike the
InqBQ operators, are not part of a recursively defined semantics—they only occur as main operators
in a sentence. By contrast, in InqBQ we have only two, very basic, question-forming operators, but
these operators can be freely embedded within each other and within other logical operators, which
leads to a system with considerable expressive power.
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Proposition 5.3.3 (Locality)Given a relational information model M = 〈W, D, I 〉
and a state s in M, let M|s be the restriction of M to s, i.e., themodel M|s = 〈s, D, I|s〉,
where I|s is the restriction of I to worlds in s. For any assignment g and formula ϕ
we have:

M, s |=g ϕ ⇐⇒ M|s, s |=g ϕ.

One feature of the propositional system InqB that does not carry over to the first-order
setting is normality, i.e., the identity [ϕ]M = AltM(ϕ)↓.

Proposition 5.3.4 (Failure of normality) There is a model M, a state s, and a sen-
tence ϕ ∈ LQ such that s |= ϕ but s is not included in any alternative for ϕ in M.

Proof Consider a signature consisting only of a predicate symbol P , and a model
M given as follows:

W = {wn | n ∈ N}, D = N, Pwn = {i ∈ N | i ≥ n}.

For any number k ∈ N, let us define an information state sk = {w0, . . . , wk}. Now
consider the formula ϕ := ∃∃x Px . We have:

s |= ∃∃x Px ⇐⇒ for some k ∈ N : s |=x �→k Px

⇐⇒ for some k ∈ N, for all wn ∈ s : wn |=x �→k Px

⇐⇒ for some k ∈ N, for all wn ∈ s : k ∈ Pwn

⇐⇒ for some k ∈ N, for all wn ∈ s : k ≥ n

⇐⇒ for some k ∈ N : s ⊆ sk .

Thus, we have a sequence s0 ⊂ s1 ⊂ s2 ⊂ . . . of information states, each properly
included in the next, such that:

– every state sk in the sequence supports ϕ;
– every state s supporting ϕ is included in some element sk of the sequence.

From this it follows that in our model, there is no maximal supporting state for
ϕ. For suppose s supports ϕ. Then s ⊆ sk for some k, and since sk ⊂ sk+1, s is
strictly included in the information state sk+1, which also supports ϕ. Hence s is not
a maximal supporting state.

Thus, there are no alternatives for ϕ in M . Since there are supporting states for ϕ
in M (for instance, each state sk) this is a violation of normality. �

This shows that, unlike in the propositional setting, in the first-order setting the
proposition expressed by a sentence in a model is not, in general, fully captured by
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its set of alternatives.5 There are, however, significant syntactic fragments of InqBQ
for which normality still holds, as we will see in Sect. 5.7.1.

5.3.2 Truth-Conditional Formulas

Recall that we call a formula ϕ truth-conditional if in any state s of any model, ϕ is
supported at s just in case it is true at everyworld in s. Also recall thatwe refer to truth-
conditional formulas as statements, and to formulas that are not truth-conditional as
questions.

We saw above that classical formulas ϕ ∈ LQ
c are always truth-conditional. Con-

versely, as in the propositional case, we can show that any truth-conditional formula
in InqBQ is equivalent to a classical formula. In order to show this, we first associate
to each formula ϕ a classical formula ϕcl having the same truth conditions as ϕ.

Definition 5.3.5 (Classical variant of a first-order formula) Ifϕ ∈ LQ, the classical
variant of ϕ is the formula ϕcl ∈ LQ

c obtained by replacing each occurrence of

�

by ∨, and each occurrence of ∃∃ by ∃.
Proposition 5.3.6 For any ϕ ∈ LQ, model M, world w and assignment g:

w |=g ϕ ⇐⇒ w |=g ϕcl .

If ϕ itself is truth-conditional, this implies that ϕ and ϕcl are equivalent. Thus,
any truth-conditional formula is equivalent to a classical formula. Conversely, if
a formula ϕ is equivalent to a classical formula, then since classical formulas are
truth-conditional, ϕ must be truth-conditional as well.

Proposition 5.3.7 The following are equivalent for any ϕ ∈ LQ:

– ϕ is truth-conditional;
– ϕ ≡ ϕcl ;
– ϕ ≡ α for some α ∈ LQ

c .

This shows that, while our question-forming operators

�

and ∃∃ obviously add to
the expressive power of the language, enabling us to express questions, they do not
allow us to express any new statements.6

5 Note that it follows from Proposition 2.4.9 that, in this case, there is no minimal generator for
the proposition expressed by ϕ. However, there is still a natural way to recursively assign to each
first-order formula ϕ a (proper) generator TM (ϕ) for the proposition [ϕ]M that it expresses in a
model, i.e., a set of states such that TM (ϕ)↓ = [ϕ]M (cf. Sect. 6 in Ciardelli [7]). This line of work
is closely related with the definition of exact verification in the intuitionistic truth-maker semantics
of Fine [8].
6 This is not to be taken for granted, as we will see when sketching inquisitive modal logic in
Chap.8. In that setting, by embedding questions under modalities we can express statements which
have no counterpart in the classical fragment of the language. In other words, in inquisitive modal
logic questions contribute to the expressivity of the language with respect to statements.
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In Chap.2, we saw that, like classical formulas, negations are always truth-
conditional. Since negation works in exactly the same way in the first-order setting,
this is still true in InqBQ.

Proposition 5.3.8 For any ϕ ∈ LQ, ¬ϕ is truth-conditional.

In particular, for any formula ϕ, ¬¬ϕ is truth-conditional. Moreover, since truth
conditions work in the standard way,¬¬ϕ has the same truth-conditions as ϕ. Thus,
¬¬ϕ must be equivalent with the classical variant ϕcl .

Proposition 5.3.9 For any ϕ ∈ LQ, ¬¬ϕ ≡ ϕcl .

This shows that negations, just like classical formulas, are representative of all truth-
conditional formulas in InqBQ.

Proposition 5.3.10 The following are equivalent for any ϕ ∈ LQ:

– ϕ is truth-conditional;
– ϕ ≡ ¬¬ϕ;
– ϕ ≡ ¬ψ for some ψ ∈ LQ.

Now consider questions, which by definition are not truth-conditional. If μ is a
question, the classical variant μcl is not equivalent to μ: rather, μcl is a statement
which expresses the presupposition of μ (cf. Sect. 2.6). As in Chap.3, we will refer
to μcl as the presupposition of μ. Let us illustrate this notion by means of two
examples.

First, consider the formula ∃∃x Px , which as we saw captures the question what
is an instance of a P . Its presupposition is the formula ∃x Px . This is a statement
that captures precisely the conditions under which the question admits a resolution:
it is in principle possible to provide an instance of a P if and only if there are objects
satisfying P .

Next, consider the formula ∀x?Px , which captures the questionwhat is the exten-
sion of P Spelling out the question mark operator, the formula is ∀x(Px � ¬Px),
and thus its presupposition is the formula ∀x(Px ∨ ¬Px), which is a tautology. This
corresponds to the fact that the question ∀x?Px can be settled under any circum-
stances.

5.3.3 Resolutions?

A key property of the propositional logic InqB is that we can associate any formula
ϕ with a set R(ϕ) of classical formulas such that to settle ϕ is to establish that α
is true for some α ∈ R(ϕ). Is something similar possible the first-order case? That
is, can we define for each formula ϕ ∈ LQ a setR(ϕ) of classical formulas with the
property that for any M and g, the connection
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s |=g ϕ ⇐⇒ s |=g α for some α ∈ R(ϕ)

holds? The answer is negative. One reason is that we are not assured a priori to
have the means to rigidly designate every individual in the given model. Thus, even
if a state s settles of some individual d that it has property P—thus supporting
the question ∃∃x Px—we may not be able to trace this to the support of a classical
formula, because we may lack a name for the individual d.

Wemay try to obviate this problem by extending the languagewith rigid names for
all entities in the domain of the given model, and then by giving a set of resolutions
RM(ϕ) relativized to M , which has the above property for states s in M . But even
this does not give us for all formulas ϕ a set RM(ϕ) with the required properties.
To see this, consider a mention-all question ∀x?Px , which as we saw asks for the
extension of property P . Even if we have names for all individuals in the domain,
we do not in general have the syntactic means to describe all possible extensions for
P: if the domain D is countably infinite and all possibilities for the extension of P
are instantiated in the model, there will be uncountably many such extensions, but
only countably many formulas in our language if our initial signature is countable.
Now suppose we have no formula in our language stating that the extension of P is a
certain set X ⊆ D: if s is a non-empty information state containing all and only the
worlds in which the extension of P is X , then the question ∀x?Px will be supported
at s, but this will not be traceable to the support of any classical formula in our
language.

5.4 Adding Identity

Definitions. Let us now see how identity can be introduced into the picture. Syntac-
tically, this is straightforward: given a signature S, we consider languages LQ=

c (S)

and LQ=(S) which are defined just like LQ
c (S) and LQ(S), but with the addition of

atomic formulas of the form (t = t ′), where t, t ′ ∈ Ter(S).
Semantically, to interpret identity we equip a relational information model with a

function∼which assigns to eachworldw ∈ W the extension of the identity relation at
w, denoted∼w. This is required to be an equivalence relation on D and a congruence
with respect to the interpretation of function and relation symbols. That is, we require
that for each world w in the model:

– for any n-ary function symbol f , if d1 ∼w d ′1, . . . , dn ∼w d ′n , then

fw(d1, . . . , dn) ∼w fw(d ′1, . . . , d
′
n);

– for any n-ary relation symbol R, if d1 ∼w d ′1, . . . , dn ∼w d ′n , then

〈d1, . . . , dn〉 ∈ Rw ⇐⇒ 〈d ′1, . . . , d ′n〉 ∈ Rw.
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w v

h w p

eveningw = {h}
morningw = {p}

h ∼v p

eveningv = {h, p}
morningv = {h, p}

Fig. 5.4 The information state representing the uncertainty of the ancient astronomer prior to
learning whether Hesperus is Phosphorus

The semantics of identity atoms is then parallel to that of other atomic sentences:

– M, s |=g (t = t ′) ⇐⇒ for all w ∈ s, [t]wg ∼w [t ′]wg .

All the facts that we have stated so far about InqBQ carry over immediately to the
language extended with identity.

Conceptual motivation. Our formal treatment of identity is built around the idea
that there can be uncertainty about the extension identity. At first, this might seem
strange. Surely we know a priori what the extension of identity is: every individual
is identical to itself, and not identical to any other individual.

Things, however, become more subtle in a setting where the objects to which
information is attributed in an information state are not necessarily in a one-to-one
correspondence with the objects that actually exist in the world. Let us call the former
epistemic individuals, and the latter ontic individuals.

The importance of distinguishing the two is well illustrated by Frege’s puzzle.
Consider an ancient astronomer who has just discovered the identity of Hesperus
and Phosphorus. Before the discovery, this astronomer had some information about
Hesperus (say, that it is visible in the evening), and some information about Phos-
phorus (say, that it is visible in the morning), yet he did not know whether Hesperus
and Phosphorus were in fact two distinct objects, or one and the same object. Thus,
our astronomer was in an information state s such that:

s |= evening(h), s |= morning(p), s �|= ?(h = p).

Note that the astronomer’s uncertainty is not about linguistic facts; in fact, we need
not even suppose that the astronomer has named the relevant objects. Instead, it
is about astronomical facts: he is uncertain about what astronomical objects there
actually are—whether there are two of them or just one.

We can conceptualize the astronomer’s information state s as involving two epis-
temic individuals h and p, each of which is known to have certain properties, and
as leaving open the issue of whether these individuals are in fact the same. Thus, s
contains worlds w such that h ∼w p (that is, worlds where h and p are in fact the
same object) as well as worlds v such that h �v p (that is, worlds where h and p are
in fact distinct). An example of such an information state is shown in Fig. 5.4.
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Epistemic versus ontic individuals. Our perspective in this section involves thinking
of the domain D of an information model as a set of epistemic individuals: objects
to which information is attached and which may be found out to be identical, or to
be distinct, as more information about the world is acquired. The actual individuals
existing at a possible world w are not the objects in D themselves, but instead the
equivalence classes {[d]∼w

| d ∈ D}. Thus, even though we think of the domain D as
fixed and common to all worlds, it is still possible to model situations in which one
is uncertain about how many objects there are, as a result of uncertainty about the
identity relation. Notice also that, if two individuals are in fact the same at a world,
then they must of course have the same properties at that world, and applying a
function to them should give identical results: this is what motivates the requirement
that the relation∼w be a congruence with respect to predicates and function symbols.

This discussion implies that, in the context of a model M = 〈W, D, I,∼〉 for the
language including identity, the relational structure associated to a world is not given
simply by the structure Mw = 〈D, I 〉, but rather by the quotient of this structure
modulo the congruence ∼w. Let us make this precise.

Definition 5.4.1 Let M = 〈W, D, I,∼〉 be a model for the languageLQ=. The rela-
tional structure associated with a world w is M∼

w = 〈D∼
w, I∼w 〉, where:

– D∼
w = {[d]∼w

| d ∈ D} is the set of equivalence classes modulo ∼w;
– I∼w ( f )([d1]∼w

, . . . , [dn]∼w
) = [Iw( f )(d1, . . . , dn)]∼w

;
– 〈[d1]∼w

, . . . , [dn]∼w
〉 ∈ I∼w (R) ⇐⇒ 〈d1, . . . , dn〉 ∈ Iw(R).

Since∼w is a congruence, this model is well-defined, in the sense that the definitions
do not depend on the choice of representatives within an equivalence class. The fact
that our semantics generalizes the standard Tarskian semantics can then be stated as
follows in the setting of the language LQ=.

Proposition 5.4.2 For anyworldw in a relational informationmodel M, any assign-
ment g into M, and any classical formula α ∈ LQ=

c :

M, w |=g α ⇐⇒ M∼
w |=gw

α in standard Tarskian semantics,

where gw is the assignment given by gw(x) = [g(x)]∼w
.

Proof Straightforward by induction on ϕ, using the definition of the structure M∼
w

for the atomic case and Proposition 5.1.6 for complex formulas. �

The following observation about identity will turn out useful in the following: once
it is settled that t = t ′, replacement of t by t ′ in a formula preserves support.

Proposition 5.4.3 (Substitution of known identicals) Let ϕ ∈ LQ= and let t, t ′ be
two terms free for x in ϕ. For any M, s and g:

s |=g (t = t ′) =⇒ ( s |=g ϕ[t/x] ⇐⇒ s |=g ϕ[t ′/x] ).
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Proof Straightforward by induction on ϕ, using the fact that ∼w is required to be a
congruence. �

id-Models. While we allowed for the possibility of uncertainty about the identity
relation, it is often the case that one wants to model scenarios where identity is not
at stake—situations in which one knows what individuals there are and is merely
uncertain about their properties. Such scenarios are captured by models in which the
relation∼w at each world simply coincides with the identity idD = {〈d, d〉 | d ∈ D}.
If our information model M is of this sort, we will say that M is an id-model.

Definition 5.4.4 (id-models) An information model M=〈W, V, I,∼〉 is an id-
model if for all w∈W , ∼w= idD .

In the setting of id-models, the semantics of identity atoms can be simplified:

– M, s |=g t = t ′ ⇐⇒ ∀w ∈ s : [t]wg = [t ′]wg .
As we shall see in Sect. 5.5.5, restricting to id-models has repercussions on the logic.

Questions involving identity. By means of identity, some interesting classes of
questions become expressible, in addition to those discussed in Sect. 5.2. Let us look
at some examples.

Example 5.4.5 (Identification questions) Consider the sentence ∃∃x(x = t), where
t is a term not containing x . We have:

s |=g ∃∃x(x = t) ⇐⇒ there is a d ∈ D such that s |=g[x �→d] (x = t)

⇐⇒ there is a d ∈ D such that for all w ∈ s, [t]wg ∼w d.

Thus, our sentence is supported in a state s in case s establishes of some speicific
d that it is identical to the referent of the term t . In an id-model, this clause can be
simplified as follows:

s |=g ∃∃x(x = t) ⇐⇒ there is a d ∈ D such that for all w ∈ s, [t]wg = d

⇐⇒ for all w,w′ ∈ s, [t]wg = [t]w′
g .

Thus, ∃∃x(x = t) is a question which asks to identify the referent of t . For instance,
a question such as “who is Bob’s sister?” can be rendered formally by the formula
∃∃x(x = s(b)).

It will be convenient to introduce a notation for such identification questions. If t
is a term, we let

λt := ∃∃x(x = t)

where x is a variable not occurring in t .7

7 Strictly speaking, this underdetermines the formula λt , but this does not matter, since of course
formulas which differ only by a renaming of bound variables are equivalent.
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Notice that if t is a rigid term, then in any model, the referent of t is bound to be
the same at every world. So, in this case the support conditions for ∃∃x(x = t) are
always satisfied. Thus, for rigid terms, identification questions are trivial. Note that
this does not mean that identity questions ?(t = t′) involving such terms are trivial,
as illustrated by our discussion of Frege’s puzzle above.

Example 5.4.6 (Unique-instance questions) For another interesting example of the
sort of questions expressible by means of identity, let us introduce the follow-
ing abbreviation, analogous to the one commonly used for the classical existential
quantifier:

∃∃!xϕ(x) := ∃∃x∀y(ϕ(y) ↔ y = x).

Now consider the formula ∃∃!x P(x), where P is a predicate symbol. We have:

s |=g ∃∃!x P(x) ⇐⇒ there is a d ∈ D such that for all w ∈ s :
d ∈ Pw and for all d ′ ∈ Pw, d ′ ∼w d

⇐⇒ there is a d ∈ D s.t. for all w ∈ s : I∼w (P) = {[d]∼w
}.

In the setting of id-models, this can be simplified as follows:

s |=g ∃∃!x P(x) ⇐⇒ there is a d ∈ D such that for all w ∈ s : Pw = {d}
⇐⇒ the extension of P is the same singleton at each w ∈ s.

Thus, the sentence ∃∃!x P(x) is supported in a state s in case s establishes of some
individual d ∈ D that d is the individual who has property P .8 Thus, ∃∃x !P(x) for-
malizes the question ‘who is the P?’, which presupposes that exactly one individual
has property P and asks for the identity of this individual. Note that, as we expect,
the presupposition of this question is ∃!x Px (short for ∃x∀y(Px ↔ x = y)), the
statement that exactly one individual satisfies P .

If we regard the model of Fig. 5.3 as an id-model, where the two individuals a
and b are distinct at every world, then the formula ∃∃!x P(x) has two alternatives, as
depicted in Fig. 5.3d. These alternatives coincide with the truth-sets of the classical
formulas ∀x(P(x) ↔ x = a) and ∀x(P(x) ↔ x = b), each of which provides just
enough information to establish of some individual that it is the unique P .9

8 More precisely, in models with variable identity, ∃∃!x P(x) is supported in s if s establishes of
some individual d that it is the only ontic individual having property P . That is, s establishes that
if any other d ′ ∈ D has property P , then d ′ and d are actually the same individual. This is sensible,
as it is possible to have the information that Hesperus is the only planet visible in a certain position
in the evening, and thus to have settled the unique-answer question what the relevant planet is
(∃∃!x(evening(x))), while not having settled whether Phosphorus is a planet visible in the evening
(as one could be uncertain whether Hesperus is Phosphorus).
9 With such questions we also touch upon a limitation of the system InqBQ—though not of the
inquisitive approach as such: as discussed in detail by Aloni [9], one and the same wh-questions
can express different contents depending on the intended method of identification of the relevant
individuals. Given two cards lying face down on a table, the question “What is the winning card”
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Example 5.4.7 (Mention-n questions) By means of the identity predicate, one can
also form questions that ask for more than one instance of objects satisfying a given
predicate. For instance, consider the formula

∃∃x∃∃y(Px ∧ Py ∧ ¬(x = y)).

It is easy to check that this formula is supported at a state s in case there are two
individuals d, d ′ such that s implies that both d and d ′ have property P (d, d ′ ∈ Pw

for all w ∈ s) and that d and d ′ are distinct (d �w d ′ for all w ∈ s). Thus the above
sentence is supported by a state s just in case the information in s provides us with
at least two instances of property P , and it can be seen as a formalization of the
mention-two question ‘What are two individuals that have property P?’. Of course,
the idea can be extended straightforwardly to mention-n questions for n > 2.

Example 5.4.8 (Cardinality questions) As a last example of the sort of questions
that we can form by using identity, consider the following sentence:

?∃!x Px := ?∃x∀y(Py ↔ y = x).

This is a polar question that asks whether the statement ∃!x Px is true. The statement
is true at a world w just in case there is exactly one (ontic) individual that has
property P (i.e., if the actual extension of P at world w, given by the set Pw/∼w,
has cardinality 1). Thus, the above question asks whether exactly one object is P .
Similarly, for any natural number n it is easy to write polar questions asking whether
at most/at least/exactly n objects are P . On the other hand, as we will discuss in
Sect. 5.8, it is not possible to write a formula that expresses the related question
“How many things are P?/How many P are there?”, which is settled in a state
s just in case the information in s determines exactly how many individuals have
property P .

5.5 Entailment

Let us now turn to the entailment relation in InqBQ, which is defined in the obvious
way: � logically entails ψ (notation: � |= ψ) if for any information model M ,
information state s and assignment g, if M, s |=g � then M, s |=g ψ.

Logical equivalence and validity are defined in terms of entailment as usual. Two
formulasϕ andψ are logically equivalent, denotedϕ ≡ ψ, if they entail each other—
which amounts to ϕ and ψ having the same support conditions. A formula ϕ is valid

means different things depending on whether the intended answer is ‘the one on the left/right’ or
‘the ace of spades/hearts’. Our logic is unequipped to deal with this source of context-dependency,
but it can be combined smoothly with Aloni’s [9] theory of conceptual covers, as shown in Sect. 3
of van Gessel [10].
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in InqBQ, denoted |= ϕ, if it is entailed by the empty set—which amounts to ϕ being
supported by any information state in any model under any assignment.

Contextual entailment is also defined as usual, modulo a relativization to assign-
ments: � entails ψ in the context of an information state s and relative to an assign-
ment g (notation:� |=s,g ψ) in case for every information state t ⊆ s, if t |=g � then
t |=g ψ. As usual, implication is tightly connected to contextual entailment: ϕ → ψ
is supported in a state s just in case ϕ entails ψ in the context of s:

s |=g ϕ → ψ ⇐⇒ ϕ |=s,g ψ.

5.5.1 Illustration

In order to appreciate the sort of logical facts that can be captured as entailments in
the logic InqBQ, we will first look at some examples. Then in the next section we
will examine more closely the formal properties of the entailment relation.

Example 5.5.1 Consider two unary predicates, P and Q. Given the information that
P is the complement of Q, the extension of P determines the extension of Q. This
fact is an instance of logical dependency that can be captured as a case of entailment
in InqBQ. The assumption that P is the complement of Q can be formalized as usual
by the formula ∀x(Px ↔ ¬Qx). The mention-all questions what is the extension of
P and what is the extension of Q are formalized, as discussed in Sect. 5.2, by the
formulas ∀x?Px and ∀x?Qx . Thus, the logical dependency that we observed above
amounts to the validity of the following entailment:

∀x(Px ↔ ¬Qx),∀x?Px |= ∀x?Qx .

We can see that this entailment is valid by reasoning as follows. Take a state s which
supports the premises. In order to support the second premise, the extension of P must
be the same at every world in s. In order to support the first premise, the extension
of Q must be the complement of the extension of P at every world in s. It follows
that the extension of Q is the same at every world in s, which means that s supports
the conclusion.

Example 5.5.2 Consider a unary predicate P . Given the information which individ-
uals have property P we can in particular determine whether or not all individuals
have property P . This is fact is captured by the entailment:

∀x?Px |= ?∀x Px .

We can see that this is valid as follows. Suppose a state s supports ∀x?Px . Then the
extension of P is the same at every world in s. If this extension of P is the entire
domain D at every world, then s supports ∀x Px . Otherwise, the extension of P is
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different from D at every world, and then s supports ¬∀x Px . Either way, s supports
?∀x Px .

Notice that the entailment is valid because the domain of quantification is fixed:
if uncertainty about the domain of quantification were allowed, then even given a
specification of the extension of P , one could still be uncertain about whether or not
the relevant extension is the entire domain.

Example 5.5.3 Consider a unary predicate P . Under the assumption that the exten-
sion of P is non-empty, from the information about what the extension of P is we
can obtain an instance of an object that has property P . Here, the assumption that P
is non-empty is captured as usual by ∃x Px . The question of what is the extension of
P is expressed by ∀x?Px , and the question of what is an instance of P is expressed
by ∃∃x Px . The above observation then amounts to the entailment:

∃x Px,∀x?Px |= ∃∃x Px .

We can see that this entailment is valid by reasoning as follows. Take a state s that
supports the premises (we may assume s �= ∅, since the empty set supports every
formula). Then the extension of P must be the same set X of individuals at every
world in s (second premise) and this set must be non-empty (first premise). If we
then take an object d ∈ X , d is in the extension of P at every world in s, and so the
conclusion is supported.

Example 5.5.4 Consider a rigid binary function symbol f and three non-rigid indi-
vidual constants a, b, c. The rigidity of f means that we are assuming the denotation
of f to be known. Then if we are given the information that a = f(b, c) as well as
information identifying b and c, it follows that we can identify a. Recall that we
abbreviate the identification question ∃∃x(x = a) as λa, and similarly for b and c.
Then the above fact is captured by the following entailment:

a = f(b, c), λb, λc |= λa.

While the entailment is valid in general, its validity is particularly easy to verify in
the setting of an id-model. In this setting, suppose s is a state that supports λb and λc.
Then the referent of b and c must be the same individuals db and dc in every world
in s. Since f is rigid, it denotes the same function F at all worlds in s. Therefore,
the term f(b, c) must also denote the same individual d ′ = F(db, dc) at every world
w. If s also supports a = f(b, c), the denotation of a at each world must be d ′, and
thus in particular it must be the same at every world in s. This guarantees that the
conclusion λa is supported.

In the case of a model with variable identity, the argument is essentially the same,
but the relevant identities have to be computed locally at each world w ∈ s, using
the relation ∼w. The details are left to the reader.

In case we are dealing with a non-rigid function symbol f , the above entailment
is no longer valid: even if we are given the values of b and c and the information that
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a = f (b, c), if we do not know what function f denotes we will not in general be
able to identify the value of a. However, we can retrieve the entailment if we add the
explicit assumption that for every x and y we can identify the value of f (x, y), which
is captured by the formula ∀x∀x∃∃z(z = f (x, y)). This results in the following valid
entailment:

∀x∀y∃∃z(z = f (x, y)), a = f (b, c), λb, λc |= λa.

5.5.2 Entailments with Truth-Conditional Conclusions

Many of the features of inquisitive entailment that we discussed in the setting of
propositional logic carry over straightforwardly to the first-order case. To start with,
entailment towards truth-conditional formulas is truth-conditional.

Proposition 5.5.5 (Entailment to a truth-conditional conclusion) Let � ∪ {α} ⊆
LQ=, where α is truth-conditional. We have:

� |= α ⇐⇒ for any model M, world w, assignment g : w |=g � implies w |=g ψ.

The proof is the same as in the propositional case (cf. Proposition 3.7.2). In par-
ticular, since classical formulas are truth-conditional, and since their conditions are
the standard ones (Proposition5.1.6), entailment among classical formulas coincides
with entailment in classical first-order logic. Thus, InqBQ is a conservative extension
of classical first-order logic.

Proposition 5.5.6 (Conservativity over classical first-order logic) If � ∪ {α} ⊆
LQ=
c , then � |= α ⇐⇒ � entails α in classical first-order logic.

As in the propositional case, Proposition 5.5.5 implies that, when the conclusion
is truth-conditional, any assumption ϕ may just as well be replaced by its classical
variant ϕcl .

Proposition 5.5.7 If α is truth-conditional, for any � we have

� |= α ⇐⇒ �cl |= α.

It follows, in particular, that every formula entails its classical variant.

Corollary 5.5.8 For every ϕ ∈ LQ=, ϕ |= ϕcl .

Moreover, Proposition 5.5.7 implies that a question μ entails all and only the state-
ments that follow from its presupposition. Thus, for instance, the question ∃∃x Px
entails its presupposition ∃x Px , any statements that follow from it, and no other
statements. For another example, consider the mention-all question ∀x?Px : we saw
that the presupposition of this question is a tautology; it follows that tautologies are
the only statements entailed by ∀x?Px .
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5.5.3 Entailments with Truth-Conditional Premises

Let us now turn to entailments from truth-conditional premises. The characterization
given for propositional logic carries over: a set� of truth-conditional formulas entails
a formula ϕ in case, in any model M and with respect to any assignment g, ϕ is
settled in the specific state |�|gM = {w ∈ WM | w |=g �} which corresponds to the
information that the formulas in � are true.

Proposition 5.5.9 (Entailment from truth-conditional assumptions) Let � ∪ {ϕ} ⊆
LQ, where all formulas in � are truth-conditional. We have:

� |= ϕ ⇐⇒ for all models M and assignments g, |�|gM |=g ϕ.

In particular, as we saw in Chap.1, to say that a statement α entails a question μ is
to say that in any model, the information that α is true suffices to settle the question.
For instance, suppose t is a rigid term: the statement P t entails the question ∃∃x Px ,
since in any model, the information that P t is true suffices to identify an individual
which has property P (namely, that individual which is referent of t in the model),
and thus suffices to settle the question ∃∃x Px .

The property that we called specificity (cf. Proposition 3.7.12) also carries over:
if � is a set of truth-conditional formlas, then � entails ϕ in the context s just in case
extending s with the information that all formulas in � are true leads to a state that
supports ϕ. The proof is the same as in the propositional case.

Proposition 5.5.10 (Specificity) Let � ∪ {ϕ} ⊆ LQ=, where � is a set of truth-
conditional formulas. For any model M, state s, and assignment g:

� |=s,g ϕ ⇐⇒ s ∩ |�|gM |=g ψ.

Using this fact, it is immediate to check that the local split property still holds for

�

,
and an analogous property holds for ∃∃ as well.

Proposition 5.5.11 (Local split properties) Let � be a set of truth-conditional for-
mulas, and let ϕ,ψ be arbitrary formulas. Then for any model M, information state
s and assignment g we have:

– � |=s,g ϕ

�

ψ ⇐⇒ α |=s,g ϕ or α |=s,g ψ;
– � |=s,g ∃∃xϕ ⇐⇒ for some d ∈ D : � |=s,g[x �→d] ϕ, provided x /∈ FV (�).

Proof The proof of the first item is identical to the one given in the propositional
case. For the second item, we have

� |=s,g ∃∃xϕ ⇐⇒ s ∩ |�|gM |=g ∃∃xϕ
⇐⇒ for some d ∈ D : s ∩ |�|gM |=g[x �→d] ϕ

⇐⇒ for some d ∈ D : s ∩ |�|g[x �→d]
M |=g[x �→d] ϕ

⇐⇒ for some d ∈ D : � |=s,g[x �→d] ϕ
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where the first and last step use Specificity, while the third step uses the fact that
|�|gM = |�|g[x �→d]

M because x does not occur free in �. �

As in the propositional case, these properties amount to the validity of certain logical
equivalences, which allow us to distribute a truth-conditional antecedent over an
inquisitive consequent.

Proposition 5.5.12 (Split equivalences) Let α be a truth-conditional formula, and
let ϕ,ψ be arbitrary formulas. We have:

–

�

split: (α → ϕ

�

ψ) ≡ (α → ϕ)

�

(α → ψ);
– ∃∃ split: if x /∈ FV(α), (α → ∃∃xϕ) ≡ ∃∃x(α → ϕ).

Proof Again, we spell out only the case for ∃∃, since the one for

�

is the same
as in propositional logic. Take any model M , state s, and assignment g. Using the
previous proposition as well as the connection between implication and contextual
entailment, we have:

s |= α → ∃∃xϕ ⇐⇒ α |=s,g ∃∃xϕ
⇐⇒ for some d ∈ D : α |=s,g[x �→d] ϕ

⇐⇒ for some d ∈ D : s |=g[x �→d] α → ϕ

⇐⇒ s |=g ∃∃x(α → ϕ). �

We also have logical counterparts of the split properties. For the case of disjunction,
the relevant property is the same as in propositional logic. The proof strategy is
also the same: we take two countermodels and combine them into a single one by a
disjoint union construction. However, in the current setting the relevant construction
must be a bit more subtle, due to the requirement to get a single common domain for
the two models being combined.

Theorem 5.5.13 (Logical split property for

�

(Grilletti [2]))
Let � ∪ {ϕ,ψ} ⊆ LQ=, where � is a set of truth-conditional formulas. Then:

� |= ϕ

�

ψ ⇐⇒ � |= ϕ or � |= ψ.

Proof Given two relational information models, MA = 〈W A, DA, I A,∼A〉 and
MB = 〈WB, DB, I B,∼B〉, we define a new model MB ⊕ MB = 〈W, D, I,∼〉,
where:

– W is the disjoint union of W A and WB : W = W A �WB .
– D is the Cartesian product of DA and DB : D = DA × DB .
– For every relation symbol R and world w:

* if w ∈ W A, Iw(R)(〈a1, b1〉, . . . , 〈an, bn〉) ⇐⇒ I Aw (R)(a1, . . . , an);
* if w ∈ WB , Iw(R)(〈a1, b1〉, . . . , 〈an, bn〉) ⇐⇒ I Bw (R)(b1, . . . , bn).
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– Similarly, for any world w:

* if w ∈ W A, 〈a1, b1〉 ∼w 〈a2, b2〉 ⇐⇒ a1 ∼A
w a2;

* if w ∈ WB , 〈a1, b1〉 ∼w 〈a2, b2〉 ⇐⇒ b1 ∼B
w b2.

– For a non-rigid function symbol f :

Iw( f )(〈a1, b1〉, . . . , 〈an, bn〉) =
{ 〈I Aw ( f )(a1, . . . , an), b0〉 if w ∈ W A

〈a0, I Bw ( f )(b1, . . . , bn)〉 if w ∈ WB

where a0 is an arbitrary element of DA and b0 an arbitrary element of DB .
– For a rigid function symbol f:

Iw(f)(〈a1, b1〉, . . . , 〈an, bn〉) = 〈F A(a1, . . . , an), F
B(b1, . . . , bn)〉

where F A = I Aw′(f) for an arbitrary world w′ ∈ W A, and FB = I Bw′′(f) for an arbi-
trary world w′′ ∈ WB (since f is rigid, the choice of w′ and w′′ does not matter).
Note that the interpretation of f given in this way is indeed rigid, i.e., it yields the
same individual for any world w in the model.

It is straightforward to check that ∼w is indeed a congruence at every world, which
guarantees that MA ⊕ MB is a relational information model.

The crucial feature of the sum model MA ⊕ MB is that it behaves like the model
MA on states s ⊆ W A, and like the model MB on states s ⊆ WB . To make this pre-
cise, let π1 : DA × DB → DA and π2 : DA × DB → DB be the natural projection
functions. Then for any assignment g into MA ⊕ MB , any information state s in this
model, and any formula χ we have:

– if s ⊆ W A then: MA ⊕ MB, s |=g χ ⇐⇒ MA, s |=π1◦g χ;
– if s ⊆ WB then: MA ⊕ MB, s |=g χ ⇐⇒ MB, s |=π2◦g χ.

The inductive verification of the claim is left as an exercise.
With thismodel-theoretic construction at hand, we are ready to prove our theorem.

By contraposition, suppose � �|= ϕ and � �|= ψ. Then we can find models MA =
〈W A, DA, I A,∼A〉 and MB = 〈WB, DB, I B,∼B〉, and corresponding information
states s A, sB and assignments gA and gB such that:

– MA, s A |=gA �, MA, s A �|=gA ϕ;
– MB, sB |=gB �, MB, sB �|=gB ψ.

Now consider the model MA ⊕ MB and the information state s = s A � sB obtained
as the disjoint union of s A and sB . Also, define a valuation function g by setting
g(x) = 〈gA(x), gB(x)〉 and notice that gA = π1 ◦ g and gB = π2 ◦ g. By the above
property of the sum model, we have:

– MA ⊕ MB, s A |=g �, MA ⊕ MB, s A �|=g ϕ;
– MA ⊕ MB, sB |=g �, MA ⊕ MB, sB �|=g ψ.
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By persistency, since s A and sB are substates of s A � sB we have MA ⊕ MB, s A �
sB �|=g ϕ and MA ⊕ MB, s A � sB �|=g ψ, and therefore also:

MA ⊕ MB, s A � sB �|=g ϕ

�

ψ.

At the same time, consider an arbitrary formula α ∈ � and a world w ∈ s A �
sB . Suppose w ∈ s A: since MA ⊕ MB, s A |=g α, by persistency we have MA ⊕
MB, w |=g α. The same conclusion can be reached in case w ∈ sB , using the fact
that MA ⊕ MB, sB |=g α. Thus, for all w ∈ s A � sB we have MA ⊕ MB, w |=g α.
Since α is truth-conditional, it follows that MA ⊕ MB, s A � sB |=g α. And since
this is the case for all α ∈ �, we have: MA ⊕ MB, s A � sB |=g �.

Thus, we can conclude that � �|= ϕ

�

ψ. �

We can also prove a logical split property for the inquisitive existential quantifier:
whenever a set � of truth-conditional formulas entails an inquisitive existential for-
mula ∃∃xϕ(x), this is traceable to the fact that it entails ϕ(t) for some rigid term
t. However, the proof of this fact is complex, involving non-trivial model-theoretic
constructions. The interested reader is referred to Grilletti [2] for the details.

Theorem 5.5.14 (Logical split property for ∃∃ (Grilletti [2]))
Let � ∪ {ϕ} ⊆ LQ=, where all formulas in � are truth-conditional. Then:

� |= ∃∃xϕ ⇐⇒ � |= ϕ[t/x] for some rigid term t free for x in ϕ.

Note that by taking � = ∅ in the above theorems we obtain for the inquisitive oper-
ators the disjunction and existence property familiar from intuitionistic logic and
arithmetic.

Corollary 5.5.15 (Disjunction and existence property) For all ϕ,ψ ∈ LQ=:

– if ϕ

�

ψ is valid then ϕ is valid or ψ is valid;
– if ∃∃xϕ is valid then ϕ[t/x] is valid for some rigid term t.

Note also that if a certain signature � does not contain any rigid function symbols,
the only rigid terms in the language are variables. Thus, in this case if � |= ∃∃xϕ we
can conclude � |= ϕ[y/x] for some variable y free for x in ϕ. If additionally � is a
set of sentences, we have � |= ϕ[y/x] only in case � |= ∀xϕ. So, we also have the
following corollary.

Corollary 5.5.16 Let � ∪ {ψ} ⊆ LQ=(�), where� contains no rigid function sym-
bols and � is a set of truth-conditional sentences. Then:

� |= ∃∃xϕ ⇐⇒ � |= ∀xϕ.
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(a) P (c) = ∃∃xP (x)
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(b) ∀x?P (x) = ?P (c)

Fig. 5.5 Twocountermodels showing the invalidity of the schemataϕ(t) |= ∃∃xϕ(x) and∀xϕ(x) |=
ϕ(t) when t is non-rigid. In both models, the domain is D = {a, b}, c is a non-rigid constant and
P a unary predicate

5.5.4 The Role of Rigidity

The logical properties of a term depend crucially on whether or not the term is
rigid. Rigid terms yield witnesses for the inquisitive existential quantifier, and allow
instantiation from the universal quantifier.

Proposition 5.5.17 For any ϕ(x) ∈ LQ= and any rigid term t which is free for x in
ϕ we have:

– ϕ(t) |= ∃∃xϕ(x);
– ∀xϕ(x) |= ϕ(t).

Proof Consider an arbitrary information state s and assignment g. Since t is rigid,
there is an object dt ∈ D such that in all worlds w ∈ s, [t]gw = dt. This means that in
every world w ∈ s, [t]gw = [x]g[x �→dt]

w . Using this fact, it is straightforward to check
by induction that for any formula ϕ(x) we have:

s |=g ϕ(t) ⇐⇒ s |=g[x �→dt] ϕ(x).

Now suppose s |=g ϕ(t). Then s |=g[x �→dt] ϕ(x), and so s |=g ∃∃xϕ(x). This proves
the first entailment.

Next, suppose s |=g ∀xϕ(x). Then in particular we have s |=g[x �→dt] ϕ(x), and
thus also s |=g ϕ(t). This shows the second entailment. �

To see that the above proposition does not hold in general if t is non-rigid, consider
a unary predicate symbol P and a non-rigid constant c. We have

P(c) �|= ∃∃x P(x).

Acounterexample to the entailment is given by themodel in Fig. 5.5a: the state {w, v}
in the model supports P(c) but not ∃∃x P(x). Intuitively, the entailment fails because
establishing that c has property P is not sufficient to identify an object with property
P , if we do not know what object c refers to. For instance, suppose c stands for
‘the thief’ and P for the property ‘having stolen the jewels’. Having the information
that the thief stole the jewels (P(c)) does not allow us to settle who stole the jewels
(∃∃x P(x)) unlesswe knowwho the thief is (i.e., unless our state supports ∃∃x(x = c)).
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Similarly, if c is non-rigid we also have:

∀x?P(x) �|= ?P(c).

A counterexample is given by the model of Fig. 5.5b: the information state {w, v} in
the model supports ∀x?P(x) but not ?P(c). Again, this failure is intuitively moti-
vated: knowing the extension of P is not enough to know whether the object denoted
by c is in this extension, unless we know what this object is. For instance, suppose
again that c stands for ‘the thief’ and P for ‘being in this room’. We may know that
only Alice is in this room, and so know exactly what the extension of P is. However,
we may not know whether the thief is in this room, since we may not know whether
Alice is the thief.

On the other hand, since we saw that InqBQ is a conservative extension of classical
first-order logic, it follows that all terms, rigid or not, bear the standard relation to
the classical quantifiers, in the context of classical formulas. Conceptually, this is
because the semantics of classical formulas can be assessed in a point-wise way,
world by world, and at the level of a single world, there is no difference between
rigid and non-rigid terms.

Proposition 5.5.18 For any classical formula α(x) ∈ LQ=
c and any term t which is

free for x in ϕ, whether rigid or not, we have:

– α(t) |= ∃xα(x); (notice the classical quantifier!)
– ∀xα(x) |= α(t).

In fact, for the case of ∃ the restriction to classical formulas is inessential, as the
following proposition shows.

Proposition 5.5.19 For any formula ϕ(x) ∈ LQ= and any term t free for x in ϕ we
have ϕ(t) |= ∃xϕ(x).

Proof Recall that ∃xϕ(x) is an abbreviation for ¬∀x¬ϕ(x). By Proposition 5.3.8,
negations are always truth-conditional, and by Proposition 5.3.7, truth-conditional
formulas are logically equivalent to their classical variant. Thus,∃xϕ(x) ≡ (∃xϕ(x))cl

= ∃xϕcl(x). By Corollary 5.5.8, ϕ(t) |= ϕcl(t). Since ϕcl is a classical formula, by
the previous proposition we have ϕcl(t) |= ∃xϕ(x). Putting everything together, we
have ϕ(t) |= ϕcl(t) |= ∃xϕcl(x) ≡ ∃xϕ(x). �

5.5.5 id-Entailment

If we are only interested in cases where the extension of identity is not at stake, we
will want to work with a stronger notion of entailment, one that only takes id-models
into account. We will refer to this stronger notion as id-entailment.

Definition 5.5.20 (id-entailment) � |=id ψ ⇐⇒ for all id-models M , all states s
in M , and all assignments g, M, s |=g � implies M, s |=g ψ.
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We refer to the corresponding notions of equivalence and validity as id-equivalence
(denoted ≡id) and id-validity.

In an id-model, matters concerning identities of individuals are assumed to be
settled a priori. This is captured by the fact that the question ∀x∀y?(x = y), which
asks to specify the extension of the identity relation, is an id-validity.

Proposition 5.5.21 ∀x∀y?(x = y) is id-valid.

Proof Spelling out the support conditions of the question, we have:

s |= ∀x∀y?(x = y) ⇐⇒ for all w,w′ ∈ s : ∼w=∼w′ .

This condition is always satisfied in an id-model, since in such a model∼w coincides
with the identity relation at every w ∈ W . �

Since universals can always be validly instantiated to a rigid term (Proposition
5.5.17), this also gives the following corollary.

Corollary 5.5.22 For any rigid terms t, t ’, ?(t = t ′) is id-valid.

This corollary can be generalized into the following proposition, which says that the
truth value of a statement concerning only identities between rigid terms is settled a
priori in an id-model.

Proposition 5.5.23 Let α be a classical formula built up from identity atoms of the
form (t = t ′) where t,t ′ are rigid. Then ?α is id-valid.

Proof Consider any id-model M . If t,t’ are rigid then all worlds in M assign the same
truth-value to the atom (t = t′) relative to every assignment. Since truth conditions
for classical formulas can be computed recursively in the standard way, all worlds in
M assign the same truth value to any classical formula α built up from such atoms.
This means that every state s in M supports the polar question ?α (recall that ?α is
supported precisely if all worlds in the state agree on the truth value of α). �

A consequence of this proposition is that, in the setting of an id-model, characterizing
a predicate in terms of identities with rigid terms counts as settling its extension.

Proposition 5.5.24 Let α and β be classical formulas, where α is as in the previous
proposition, and let x be a sequence of variables. Then:

∀x(α ↔ β) |=id ∀x?β.

Proof It is easy to verify that the following entailment is generally valid, and thus
also id-valid:

∀x(α ↔ β),∀x?α |= ∀x?β.

By the previous proposition, the formula ?α is id-valid, and thus so is its universal
closure ∀x?α. Obviously, adding id-valid premises does not make a difference to the
validity of an id-entailment, so our claim follows. �



5.5 Entailment 153

As notable special cases we have the following, where t1, . . . , tn are rigid:

– ∀x(P(x) ↔ (x = t1 ∨ · · · ∨ x = tn)) |=id ∀x?P(x);
– ∀x(P(x) ↔ (x �= t1 ∧ · · · ∧ x �= tn)) |=id ∀x?P(x).

To get a sense of the differences between general entailment and id-entailment, it is
helpful to consider a couple of further examples.

Example 5.5.25 Take any natural number n ≥ 1. Consider the standard first-order
sentence that says that there are exactly n individuals in the domain:

χn := ∃x1 . . . ∃xn
⎛

⎝
∧

i< j

(xi �= x j ) ∧ ∀y(y = x1 ∨ · · · ∨ y = xn)

⎞

⎠ .

In an id-model, this is either true at every world (if the cardinality of D is n) or false
at every world (if the cardinality of D is not n). In the former case, χn is supported at
any state in the model; in the latter case, ¬χn is supported at any state in the model.
Either way, the polar question ?χn is supported at any state in the model. This shows
that this question is id-valid: |=id ?χn .

By contrast, the polar question ?χn is not generally valid in InqBQ. To see this,
consider a model M with set of possible worlds W = {w1, w2, w3, . . . }, domain
D = N, and such that x ∼wn y holds iff x and y are equivalent modulo n. In this
model, the sentence χn is true at world wn but false at world wm for m �= n. Thus,
the polar question ?χn is not supported by the state W .

Example 5.5.26 Let a1, a2, b1, b2 be rigid constants, and let � be the set of the
following classical sentences:

– ∀x(Px → (x=a1 ∨ x=a2)),
– Pa1 → Qb1,
– Pa2 → Qb2.

Given �, it might at first seem that from a witness for P we can derive a witness for
Q, and so, that we should have �, ∃∃x Px |= ∃∃xQx . However, this is not the case.
For suppose we are given the information that d is a witness of P: we know from �

that either d = [a1], in which case [b1] is a witness for Q, or d = [a2], in which case
[b2] is a witness for Q. But if we cannot tell which of these two cases applies, we are
in effect unable to produce a witness for Q. And indeed, it is not hard to show that:

�, ∃∃x Px �|= ∃∃xQx .

On the other hand, in the context of an id-model, the relevant dependency holds, since
it is guaranteed that given the information that d has property P , we will be able to
tell whether d = [a1] or d = [a2], and thus to produce a corresponding witness for
Q. And indeed, it is easy to check that:

�, ∃∃x Px |=id ∃∃xQx .
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Failure of the logical split properties. It is interesting to note that the disjunction
property for

�

and the existence property for ∃∃, given by Corollary 5.5.15 in the
context of general entailment, both fail for id-entailment.

For the disjunction property, note that the formula ?(x = y) is id-valid and
amounts to the disjunction (x = y)

� ¬(x = y), but obviously neither x = y nor
¬(x = y) are id-valid. Alternatively, consider again the cardinality sentence χn from
Example 5.5.25, which says that there are exactly n distinct individuals: we saw
above that ?χn is id-valid, but again neither χn nor ¬χn is id-valid.

We can also use the same idea to build a counterexample to the existence property
for ∃∃. For instance, consider the formula

∃∃x(((x = y) ∧ χ2) ∨ ((x = z) ∧ ¬χ2)).

To see that this is valid on id-models, take an arbitrary id-model M , an information
state s, and an assignment g. There are two possibilities: either the cardinality of
the domain D is 2, or it is different from 2. In the first case, since M is an id-
model we have s |=g χ2. Then by choosing d = g(y) we have that s |=g[x �→d] (x =
y) ∧ χ2, from which it follows that s |=g ∃∃x(((x = y) ∧ χ2) ∨ ((x = z) ∧ ¬χ2)).
If the cardinality of D is different from 2, then again since M is an id-model we
have s |=g ¬χ2. Then by choosing d = g(z)we have s |=g[x �→d] (x = z) ∧ ¬χ2, and
again it follows that s |=g ∃∃x(((x = y) ∧ χ2) ∨ ((x = z) ∧ ¬χ2)). In either case,
our formula is supported, which shows that this formula is id-valid.

However, we claim that there is no rigid term t such that the instantiation

((t = y) ∧ χ2) ∨ ((t = z) ∧ ¬χ2)

is id-valid. Indeed, let t be any rigid term. If t �= y, z, it is obvious that the resulting
formula is not going to be valid, since then we can easily give an id-model and
assignment which satisfy ¬(t = y) ∧ ¬(t = z), which ensures that our disjunction
is not supported. So, we only have to consider the cases t = y and t = z. For t = y
we get the formula

((y = y) ∧ χ2) ∨ ((y = z) ∧ ¬χ2).

This is not a validity: to refute it, take a model M where D contains more than two
elements, and an assignment g such that g(y) �= g(z). Then at any world w in M ,
χ2 is false and (y = z) is false, so the above disjunction is false, which implies that
this disjunction is not valid.

Similarly, for t = zweget ((z = y) ∧ χ2) ∨ ((z = z) ∧ ¬χ2),which is not a valid-
ity either: to refute it, just take a model where D contains exactly two elements and
an assignment g such that g(y) �= g(z).

Thus, the above inquisitive existential is id-valid while no instantiation of it with
a rigid term is id-valid—in contrast with the existence property that characterizes our
general notion of validity.
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General entailment and id-entailment. What is the exact relation between general
and id-entailment? To answer this question, let us first introduce the auxiliary notion
of a model with decidable identity. This is a model where there is no uncertainty
about the extension of the identity relation.

Definition 5.5.27 (Decidable identity) A model M = 〈W, D, I,∼〉 has decidable
identity if ∀w,w′ ∈ W : ∼w = ∼w′ .

Note that the formula ∀x∀y?(x = y) characterizes a model as having decidable
identity, in the following sense.

Remark 5.5.28 M has decidable identity ⇐⇒ M,W |= ∀x∀y?(x = y).

Clearly, id-models have decidable identity. On the other hand, a model M with
decidable identity is not necessarily an id-model, since∼w might be the same relation
at every world while being different from the identity relation on D. However, in
this case, one can always simplify M turn it into an id-model by taking its quotient
modulo ∼w.

Definition 5.5.29 (Turning a model with decidable identity into an id-model) Let
M = 〈W, D, I,∼〉 have decidable identity. Let us write ∼ for ∼w where w is an
arbitrary world, and let us write [d] for the equivalence class of d modulo ∼. The
id-contract of M is the id-model M id = 〈W, D/∼, I∼,≈〉, where:
– D/∼ = {[d] |, d ∈ D};
– I∼w ( f )([d1], . . . , [dn]) = [Iw( f )(d1, . . . , dn)];
– 〈[d1], . . . , [dn]〉 ∈ I∼w (R) ⇐⇒ 〈d1, . . . , dn〉 ∈ Iw(R);
– ≈w is the identity relation on D/∼ for any w ∈ W .

The fact that ∼ is a congruence at each world guarantees that this is a good defini-
tion, i.e., that the definition of I∼w ( f ) and I∼w (R) does not depend on the choice of
representatives for each equivalence class.

The following proposition ensures that this transformation does not affect the
satisfaction of formulas. The straightforward proof is omitted.

Proposition 5.5.30 Let M have decidable identity and let s be a state in M and
g a valuation into M. Let gid : Var → W/∼ be the valuation x �→ [g(x)]. For any
formula ϕ ∈ LQ=:

M, s |=g ϕ ⇐⇒ M id, s |=gid ϕ.

We can now prove that the relation between general entailment and id-entailment
is simple: id-entailment can be simulated within general entailment by adding the
decidability of identity as an extra premise.

Proposition 5.5.31 (Simulating id-entailment) For any � ∪ {ψ} ⊆ LQ=,

� |=id ψ ⇐⇒ �, ∀x∀y?(x= y) |= ψ.
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Proof The right-to-left direction of the theorem follows immediately from the fact
that ∀x∀y?(x= y) is id-valid. For the converse, we reason by contraposition. Suppose
�,∀x∀y?(x= y) �|= ψ. Then, theremust be amodelM = 〈W, D, I,∼〉, a state s, and
an assignment g such that M, s |=g � and M, s |=g ∀x∀y?(x= y), but M, s �|=g ψ.
Now consider the restriction of M to s, M|s . By Locality (Proposition 5.3.3) we have
M, s |=g χ ⇐⇒ M|s, s |=g χ for any formula χ. Since the universe of M|s is s and
we have M|s, s |=g ∀x∀y?(x= y), by Remark 5.5.28 the model M|s has decidable
identity. Thus, as we just saw, by a quotient construction it can be turned into an
id-model (M|s)id based on the same universe that satisfies the same formulas at every
state. In particular, we have (M|s)id, s |=gid � but (M|s)id, s �|=gid ψ, which shows that
� �|=id ψ. �

Conversely, it is also possible to simulate general entailment within id-entailment.
The trick is to treat non-rigid identity as a new predicate, adding axioms ensuring
that it is interpreted as a congruence.

Formally, given a signature � we can consider a signature �� which extends �

with a fresh binary predicate � (we write t � t ′ instead of �(t, t ′)). Now for any
formula ϕ ∈ LQ=(�), consider the formula ϕ� ∈ LQ(��) obtained by replacing
each identity atom t = t ′ in ϕ by a corresponding atom t � t ′.

Now to an arbitrary model M for the signature � we can associate an id-model
M� for the extended signature �� where identity is interpreted rigidly as {〈d, d〉 |
d ∈ D}, but where the role of non-rigid identity is taken over by�, i.e., for all worlds
w we have Iw(�) = ∼w where∼w is the interpretation of identity at w in the model
M . It is obvious from the construction that for any information state s in M and any
assignment g we have:

M, s |=g ϕ ⇐⇒ M�, s |=g ϕ�.

It is easy to check that the map (·)� gives a 1-1 correspondence between the class
of models for � and the class of id-models for �� where � is interpreted as a
congruence at each world.

The fact that � is interpreted as a congruence at each world can be captured
by a set of formulas Cong� in the language LQ(��), containing the axioms of an
equivalence relation, namely,

– ∀x(x � x),
– ∀x∀y(x � y → y � x),
– ∀x∀y∀z(x � y ∧ y � z → x � z),

in addition to the following formulas for all predicates R and function symbol f in
the signature �:

– ∀x1 . . . xn∀y1 . . . yn(
∧

1≤i≤n(xi � yi ) → (R(x1, . . . , xn) ↔ R(y1, . . . , yn)),
– ∀x1 . . . xn∀y1 . . . yn(

∧
1≤i≤n(xi � yi ) → ( f (x1, . . . , xn) � f (y1, . . . , yn)).

We can now state exactly how general entailment can be simulated within id-
entailment. The proof follows straightforwardly from the preceding discussion.
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Proposition 5.5.32 (Simulating general entailment) For any � ∪ {ψ} ⊆ LQ=,

� |= ψ ⇐⇒ �� ∪ Cong� |=id ψ�.

5.5.6 Open Problems

Some of the key questions about the meta-theoretical properties of InqBQ are cur-
rently open, in spite ofmuch recent progress. In this sectionwe briefly survey some of
these questions. As we will see later on, these questions have recently been answered
in restriction to several interesting fragments of the logic.

A first major question concerns the compactness of entailment in InqBQ.

Open Problem 5.5.33 (Entailment compactness) Let � ∪ {ψ} ⊆ LQ=. Is it always
the case that if � |= ψ there is a finite subset �0 ⊆ � such that �0 |= ψ?

It should be noted that compactness is oftentimes formulated not in terms of entail-
ment, but in terms of satisfiability. While the two formulations are equivalent in the
context of classical predicate logic, they come apart in the inquisitive setting. In the
inquisitive setting, it is natural to call a set � of formulas satisfiable if there are a
modelM , a non-empty information state s, and an assignment g such thatM, s |=g �.
It is then easy to show that InqBQ is compact in the sense of satisfiability, as made
precise by the following proposition.

Proposition 5.5.34 (Satisfiability compactness) Let � ⊆ LQ=. If every finite subset
of � is satisfiable then � is satisfiable.

Proof First note that by persistency, if M, s |=g � then for all worlds w ∈ s we
have M, {w} |=g �, that is, M, w |=g �. This means that a set � is satisfiable just
in case it is true at some world relative to some assignment. In particular, for a set �
of classical formulas, satisfiability is just satisfiability in the sense of classical logic.
By Proposition 5.3.6 we know that an arbitrary set of formulas � has the same truth
conditions as the set �cl obtained by replacing each formula ϕ ∈ � by its classical
variant ϕcl . So, we have that � is satisfiable iff �cl is satisfiable in classical first-
order logic. Using this fact and the compactness of classical first-order logic, for an
arbitrary set � ⊆ LQ= we have:

� is satisfiable ⇐⇒ �cl is satisfiable

⇐⇒ for all finite � ⊆ �cl : � is satisfiable

⇐⇒ for all finite � ⊆ � : �cl is satisfiable

⇐⇒ for all finite � ⊆ � : � is satisfiable. �

A second major open problem concerns whether the set of InqBQ-validities is recur-
sively enumerable, which is a prerequisite for the existence of a complete proof
system (under the desideratum that proofs be finite and verifiable).
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Open Problem 5.5.35 (Recursive enumerability) Let � be a countable signature.
Is the set of InqBQ-validities from the language LQ=(�) recursively enumerable?

One way to address the previous question is to ask if there is a translation from InqBQ
to classical first-order logic, in the sense made precise below.

Open Problem 5.5.36 (Existence of a translation to first-order logic) Given a sig-
nature �, is there a computable map (·)∗ : LQ=(�) → LQ=

c (�′) from the language
of InqBQ to the language of classical first-order logic based on some signature �′
such that for all � ∪ {ψ} ⊆ LQ=(�) we have

� |= ψ ⇐⇒ �∗ |= ψ∗

where �∗ = {ϕ∗ | ϕ ∈ �}? (Notice that the entailment on the right-hand side of the
biconditional is an entailment in classical first-order logic, since all formulas involved
are classical.)

If an entailment-preserving translation to classical first-order logic exists, then since
the validities of classical first-order logic are recursively enumerable, so are InqBQ
validities.

We then have a number of interesting questions inspired by the Löwenheim-
Skolem theorem, about the cardinalities of models and countermodels of a given
InqBQ formula. I will just mention a simple example of such questions.

Open Problem 5.5.37 (Logic of countable models) Can any formulaϕwhich is not
valid in InqBQ be refuted in a countable model, i.e., in a model M = 〈W, D, I,∼〉
with #W ≤ ℵ0 and #D ≤ ℵ0?

The difficulties that one faces in answering these questions have a clear source: they
stem from the fact that in inquisitive logic, the implication connective→ introduces
a quantification over subsets of the evaluation state. This means that, if we regard an
information model as a two-sorted relational structure with domains W and D, the
semantic condition on a model defined by a formula ϕ involving implication is not,
at least prima facie, a first-order condition. (Whether every ϕ in fact corresponds
to a first-order condition is an open question at this stage.) Due to the presence
of implication, the features of InqBQ depend in part of the structure of powerset
algebras. Mathematical questions concerning powersets are notoriously difficult—
when they admit of definite answers at all. This is well-known from the case of set
theory: it is not possible to decide, based on the standard ZFC foundation, what is the
cardinality of the powerset of a countably infinite set. But there are also examples of
this phenomenon closer to home, in logic. Medvedev’s logic [11, 12] arises from a
natural formalization of Kolmogorov interpretation of formulas as problems. Model-
theoretically, Medvedev’s logic can be characterized as the logic of models based on
finite powerset structures deprived of the empty set (see Chagrov and Zakharyaschev
[13]). As in inquisitive logic, in Medvedev’s logic implication is understood as a
quantifier over subsets of the evaluation state. In fact, there are tight connections
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betweenMedvedev’s logic and inquisitive logic (seeMiglioli et al. [14], Ciardelli [7],
Ciardelli andRoelofsen [15]). In spite of a significant amount of research over the last
fifty years, which yielded partial results (see in particular Maksimova et al. [16]), it is
still an open question whether Medvedev’s logic admits a recursive axiomatization,
and (equivalently) whether its set of validities is recursively enumerable.

5.6 Coherence

In this section, based onCiardelli andGrilletti [17], we look at an interesting semantic
property that InqBQ-formulas may or may not have: finite coherence. The idea is
simple: a formula ϕ is finitely coherent if there is a natural number n such that, in
order to decide whether ϕ is supported at a state, it is sufficient to look at substates
of size at most n. We first define a more general notion of κ-coherence where κ is an
arbitrary cardinal.10

Definition 5.6.1 (κ-coherence) For κ a cardinal, we say that a formula ϕ ∈ LQ= is
κ-coherent if for any model M , state s, and assignment g we have

s |=g ϕ ⇐⇒ (t |=g ϕ for all t ⊆ s with #t ≤ κ)

where #t is the cardinality of t . We call ϕ coherent if it is κ-coherent for some
cardinal κ, and finitely coherent if it is n-coherent for some natural number n.

In the above definition, the left-to-right direction always holds by persistency, so
κ-coherence amounts to the requirement that the converse hold as well. Note that
truth-conditionality is a special case of n-coherence for n = 1. Furthermore, note that
if ϕ is κ-coherent then it is also λ-coherent for all λ ≥ κ. This justifies the following
definition.

Definition 5.6.2 (Coherence degree) The coherence degree of a coherent formula
ϕ, denoted dϕ, is the least κ such that ϕ is κ-coherent (if no such κ exists, ϕ has no
coherence degree).

In many cases, a bound for the coherence degree of a compound can be obtained
from the coherence degrees of its components, as the following proposition shows.

Proposition 5.6.3 Suppose ϕ is κ-coherent and ψ is κ′-coherent. Then:

– ϕ ∧ ψ is λ-coherent for λ = max(κ,κ′) (thus, dϕ∧ψ ≤ max(dϕ, dψ));
– ϕ

�

ψ is λ-coherent for λ = κ + κ′ (thus, dϕ

�

ψ ≤ dϕ + dψ);

10 The notion of coherence was first considered in the context of dependence logic by Kontinen
[18], who used it to study the complexity of the model checking problem. Exercise 3.11.8 in Chap.3
asked readers to consider coherence properties in the setting of inquisitive propositional logic InqB.
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– χ → ϕ is κ-coherent for any formula χ (thus, dχ→ϕ ≤ dϕ);
– ∀xϕ is κ-coherent (thus, d∀xχ ≤ dχ).

Proof We prove the claim for

�

and leave the other cases as exercises to the reader
(Exercise 5.9.6). We need to show that ϕ

�

ψ is λ-coherent for λ = κ + κ′. Take
an arbitrary model M , information state s, and assignment g. We need to show that
if for every subset t ⊆ s of size at most λ we have t |=g ϕ

�
ψ, then s |=g ϕ

�

ψ.
Contrapositively, suppose s �|=g ϕ

�

ψ. Then s �|=g ϕ and s �|=g ψ. Since ϕ is κ-
coherent and ψ is κ′-coherent, there are substates t, t ′ ⊆ s with #t ≤ κ, #t ′ ≤ κ′
such that t �|=g ϕ and t ′ �|=g ψ. Now consider the state t ∪ t ′: this is a subset of s of
cardinality at most κ + κ′ = λ, and by persistency we have t ∪ t ′ �|=g ϕ

�

ψ.
Note that by definition of coherence degree,ϕ is dϕ-coherent andψ is dψ-coherent.

So by what we have just proved, ϕ

�

ψ is dϕ + dψ-coherent. Since dϕ

�

ψ is defined
as the least cardinal for which ϕ

�

ψ is coherent, dϕ

�

ψ ≤ dϕ + dψ . �

Using this result, we can show that many formulas of InqBQ are finitely coherent: in
particular, all ∃∃-free formulas are (this can be strengthened slightly, as we will see
in Sect. 5.7.1.)

Proposition 5.6.4 Every ∃∃-free formula of InqBQ is finitely coherent.

Proof By induction on the structure of the formula. Atomic formulas and ⊥ are
truth-conditional and so 1-coherent. The previous proposition implies immediately
that all operators except for ∃∃ preserve finite coherence. �

Formulas involving ∃∃, on the other hand, are not in general finitely coherent. In fact,
even the simplest examples of such formulas are not κ-coherent for any κ, finite or
infinite, as the following proposition shows.

Proposition 5.6.5 The formula ∃∃x Px is not κ-coherent for any κ. That is, for every
cardinal κ, there exists a model M and a state s such that s �|= ∃∃x Px and for all
t ⊆ s with #t ≤ κ we have t |= ∃∃x Px.
Proof Consider an arbitrary cardinal κ, and indicate with κ+ the cardinal successor
of κ. Consider the model M = 〈W, D, I 〉 given by:

– W = {wi | i < κ+};
– D = {d j | j < κ+};
– d j ∈ Pwi ⇐⇒ i �= j .

We have M,W �|= ∃∃x Px : indeed, for every element d j ∈ D we have have M,W �|=
P(d j ), since d j /∈ Pw j . However, given any proper subset t ⊂ W we have M, t |=
∃∃x Px : to see this, let w j be a world such that w j /∈ t ; then for any wi ∈ t we have
i �= j and so d j ∈ wi , which implies M, t |= P(d j ).

Since the cardinality of W is κ+ > κ, any subset t ⊆ W with #t ≤ κ will be
a proper subset of W and thus will support ∃∃x Px . Thus, we have found a state
where ∃∃x Px is not supported, while being supported at all subsets of cardinality
up to κ. �
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The previous result shows that there are formulas that lack a coherence degree. On
the other hand, with some work one may produce, for every n ∈ N, a formula of
InqBQ whose coherence degree is exactly n (see Ciardelli and Grilletti [17]). We
conjecture that these are the two only possibilities for formulas in InqBQ.

Conjecture 5.6.6 (Dichotomy) The coherence degree of a formula ϕ is either finite
or undefined.

Finitely coherent formulas have a number of important properties. To start with, they
enjoy the following finite universe property.11

Proposition 5.6.7 Let n ∈ N. If � �|= ψ and ψ is n-coherent, the entailment can be
falsified in a model M based on a finite universe W with #W ≤ n.

Proof Suppose� �|= ψ. Then there areM , s and g such thatM, s |=g � butM, s �|=g

ψ. If ψ is n-coherent, there exists a state t ⊆ s of size at most n such that M, t �|=g ψ.
By persistency, M, s |=g � implies M, t |=g �. Then M|t , the restriction of M to t ,
is a model whose universe is t , and thus contains at most n worlds. By locality we
have M|t , t |=g � but M|t , t �|=g ψ. �

Second, whereas formulas of InqBQ are not in general normal, finitely coherent
formulas always are. Thus, it is no coincidence that the same formula ∃∃x Px that
we used in the proof of Proposition 5.3.4 as a counterexample to normality is also a
counterexample to finite coherence.

Proposition 5.6.8 (Finite coherence implies normality) Ifϕ is finitely coherent, then
it is normal; that is, for every model M, state s and assignment g, if M, s |=g ϕ then
s ⊆ a for some alternative a ∈ AltgM(ϕ).

Proof Take an arbitrary model M , information state s, and assignment g such that
M, s |=g ϕ. Consider the set S of states containing s and supporting ϕ,

S = {t ⊆ W | s ⊆ t and M, t |=g ϕ}.

We want to show that S contains a maximal element.
For this, we first claim that for every non-empty chain C ⊆ S we have

⋃
C ∈ S.

Towards a contradiction, suppose this is not the case. Thenwehave a non-empty chain
C ⊆ S such that

⋃
C /∈ S. Since

⋃
C does include s, we must have M,

⋃
C �|=g ϕ.

Since ϕ is finitely coherent, there must be a subset t ⊆ ⋃
C of cardinality at most

dϕ such that M, t �|=g ϕ. Since t ⊆ ⋃
C , every w ∈ t is included in some element

of the chain, and since t is finite, there must be an element s ′ ∈ C of the chain
such that t ⊆ s ′. By persistency, since M, t �|=g ϕwe also have M, s ′ �|=g ϕ. But this
contradicts the hypothesis that C ⊆ S.

11 Obviously, without further assumptions on the signature we cannot hope for a finite model
property with respect to the domain D, since the set of 1-coherent formulas already includes all
formulas of classical first-order logic, and we know that some of these formulas can only be falsified
over infinite domains D.
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We have shown that every non-empty chain from S has an upper bound in S. By
Zorn’s lemma, S contains a maximal element a. This means that a is a maximal
extension of s such that M, a |=g ϕ, i.e., s ⊆ a and a ∈ AltgM(ϕ). �

Furthermore, InqBQ entailments with finitely coherent conclusions are compact, in
the sense specified by the following proposition.

Theorem 5.6.9 (Compactness for finitely coherent conclusions) If � |=InqBQ ψ and
ψ is finitely coherent, there exists a finite subset �0 ⊆ � such that �0 |=InqBQ ψ.

In order to prove this result, we develop a family of maps from the language of
InqBQ over the given signature � to the language of classical first-order logic over a
modified signature�∗. Thesemaps allowus to emulate the semantics of InqBQwithin
standard first-order logic, provided a finite upper bound to the size of information
states is fixed in advance. This can then be used in combination with Proposition
5.6.7, which guarantees that given an entailment with a finitely coherent conclusion,
such a finite bound on the size of the states can indeed be fixed without affecting the
validity of the entailment. The remainder of this section spells out the details of the
strategy.

As a first step, we associate to a signature � a corresponding signature �∗ over
two sorts, w for worlds and e for individuals. �∗ is given as follows:

– For every n-ary predicate symbol R ∈ �, �∗ contains a predicate symbol R∗ of
arity n + 1 where the first argument is of sort w and the remaining arguments of
sort e.

– For every non-rigid n-ary function symbol f ∈ �, �∗ contains a function symbol
f ∗ of arity n + 1 where the first argument is of sort w and the remaining arguments
as well as the output are of sort e.

– For every rigid n-ary function symbol f ∈ �, �∗ contains a function symbol f∗ of
arity n where the arguments and the output are of sort e.

Denote by LFOL
w,e (�∗) the language of two-sorted first-order logic over �∗. We use

w,w0,w1, . . . for variables of typew in the latter language, and x, y, . . . for variables
of type e, which we assume to be the same as the variables of LQ=(�).

Next, we associate to a relational information model M = 〈W, D, I 〉 for the sig-
nature � a two-sorted relational structure M∗ = 〈W, D, I ∗〉 for �∗, where:

– For a predicate symbol R: I ∗(R∗)(w, d1, . . . , dn) ⇐⇒ Iw(R)(d1, . . . , dn);
– For a non-rigid function symbol f : I ∗( f ∗)(w, d1, . . . , dn) = Iw( f )(d1, . . . , dn);
– For a rigid function symbol f: I ∗(f∗)(d1, . . . , dn) = Iw(f)(d1, . . . , dn) for an arbi-
trary w ∈ W .

It is easy to verify that themapM �→ M∗ is a bijection between relational information
models for � and two-sorted relational structures for �∗.

The next step is to translate terms. Given a term t ofLQ=(�) and a world variable
w, we define a corresponding term tw of type e of the language LQ=(�) inductively
as follows:
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– if t is a variable x then tw = x ;
– if t = f (t1, . . . , tn) where f is non-rigid then tw = f ∗(w, t1w, . . . , tnw);
– if t = f(t1, . . . , tn) where f is rigid then tw = f∗(t1w, . . . , tnw).

It is straightforward to check that for any relational informationmodelM , assignment
g, and term t of LQ=(�) we have

[t]Mw,g = [tw]M∗
g[w�→w]

where g[w �→ w] is an arbitrary assignment that coincides with g on the variables
of type e and maps the variable w to w.

Finally, let s = {w1, . . . ,wn} be a finite nonempty set of world variables. We
define for each formula ϕ ∈ LQ=(�) a translation trs(ϕ) ∈ LFOL

w,e (�) as follows:

trs(R(t1, . . . , t k)) = R∗(w1, t1w1
, . . . , t kw1

) ∧ · · · ∧ R∗(wn, t1wn
, . . . , t kwn

)

trs(⊥) = ⊥
trs(ϕ ∧ ψ) = trs(ϕ) ∧ trs(ψ)

trs(ϕ

�

ψ) = trs(ϕ) ∨ trs(ψ)

trs(ϕ → ψ) = ∧{trs′(ϕ) → trs′(ψ) | ∅ �= s′ ⊆ s}
trs(∀xϕ) = ∀x trs(ϕ)

trs(∃∃xϕ) = ∃x trs(ϕ).

We spell out one example by way of illustration. We have

trs(∀x(Px �

Qx))

= ∀x(trs(Px) ∨ trs(Qx))

= ∀x((P∗(w1, x) ∧ · · · ∧ P∗(wn, x)) ∨ (Q∗(w1, x) ∧ · · · ∧ Q∗(wn, x))).

The key property of the map trs is given by the following proposition. We omit the
proof, which is a matter of straightforward case-by-case verification.

Proposition 5.6.10 Let M be a relational information model, g an assignment, and
s = {w1, . . . , wn} a finite nonempty state. Let s = {w1, . . . ,wn} be a set of n world
variables and let g[s �→ s] be any two-sorted assignment that coincides with g on
variables of type e and which maps the world variable wi to wi for i = 1, . . . , n.
For any formula ϕ ∈ LQ=(�) we have:

M, s |=g ϕ ⇐⇒ M∗ |=g[s�→s] trs(ϕ).

The following proposition shows that, although the maps trs are not in general trans-
lations from InqBQ to standard first-order logic, they preserve the validity of entail-
ments whose conclusion is n-coherent for n = #s.

Proposition 5.6.11 Let � ∪ {ψ} ⊆ LQ=(�) where ψ is n-coherent for n ∈ N. We
have:
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� |=InqBQ ψ ⇐⇒ trs(�) |=FOL trs(ψ),

where |=FOL denotes entailment in first-order logic, s = {w1, . . . ,wn} is an arbitrary
set of n world variables, and trs(�) = {trs(ϕ) | ϕ ∈ �}.
Proof Suppose � �|=InqBQ ψ and suppose ψ is n-coherent. By Proposition 5.6.7, we
can find a model M , an assignment g, and a state s of cardinality at most n such that
M, s |=g � butM, s �|=g ψ. In fact, wemay assume that the cardinality of s is exactly
n (if needed, we may always duplicate some worlds in s). By Proposition 5.6.10
we have M∗ |=g[s�→s] trs(�) but M∗ �|=g[s�→s] trs(ψ), which shows that trs(�) �|=FOL

trs(ψ).
For the converse direction, suppose trs(�) �|=FOL trs(ψ). This means that there is a

two-sorted relational structure M ′ and an assignment g′ such that M ′ |=g′ trs(�) but
M ′ �|=g′ trs(ψ). Now let M be the relational information model such that M∗ = M ′
(which exists since the map M �→ M∗ is a bijection between relational information
models for � and two-sorted structures for �∗). Let g be the assignment defined
by g(x) = g′(x) for every individual variable x , and let s = {w1, . . . , wn} where
wi = g′(wi ). By the previous proposition, for any χ ∈ LQ=(�) we have

M, s |=g χ ⇐⇒ M∗ |=g[s�→s] trs(χ) ⇐⇒ M ′ |=g′ trs(χ),

where the last biconditional holds because g′ and g[s �→ s] coincide on all variables
which occur free in trs(χ). This then implies that M, s |=g � but M, s �|=g ψ, which
shows that � �|=InqBQ ψ. �

Finally, with this result in place we are able to show the compactness of InqBQ
towards finitely coherent conclusions.

Proof of Theorem 5.6.9. Suppose � |=InqBQ ψ and ψ is finitely coherent. By Propo-
sition 5.6.11, choosing s = {w1, . . . ,wdψ

} we have trs(�) |=FOL trs(ψ). By the com-
pactness of classical first-order logic, there is a finite subset �0 ⊆ � such that
trs(�0) |=FOL trs(ψ). Again by Proposition 5.6.11, it follows that �0 |=InqBQ ψ. �

5.7 Fragments

In this sectionwediscuss three interesting syntactic fragments of InqBQ: the restricted
existential fragment LRex [17], the classical antecedent fragment LClant [19], and the
mention-all fragmentLMA. The first two are interesting as they are the largest syntac-
tic fragments ofL for which the questions posed in Sect. 5.5.6 have been answered in
the positive: entailment in these fragments is compact, validities are recursively enu-
merable, and every non-entailment can be refuted in a countable model. Moreover, in
each case a complete proof system has been established. The mention-all fragment,
on the other hand, is interesting in that it has exactly the same expressive power as the
logic of interrogation of Groenendijk [4] (cf. Sect. 2.9.2)—a predecessor of InqBQ
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LMALClant LRex

LQ=

Fig. 5.6 Relations between the three fragments discussed in this section: the mention-all fragment
LMA is included both in the classical antecedent fragment LClant and in the restricted existential
fragment LRex, while the latter two fragments are incomparable in terms of inclusion

which also extends first-order logic with questions and which was axiomatized by
ten Cate and Shan [20]. The inclusions between the three fragments discussed in this
section are shown in Fig. 5.6.

5.7.1 The Restricted Existential (Rex) Fragment

The first fragment of InqBQ that we consider is the restricted existential (in short,
rex) fragment of InqBQ, obtained by restricting the occurrence of ∃∃ to antecedents
of an implication.

Definition 5.7.1 (Rex fragment of InqBQ [17]) The set LRex(�) of rex formulas is
given by the following syntax:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ψ → ϕ | ϕ

�

ϕ | ∀xϕ

where p is an atomic sentence from the signature� andψ an arbitrary sentence from
LQ=, possibly containing occurrences of ∃∃.
The rex fragment is a broad fragment of InqBQ: it contains all classical formulas and
it is closed under conjunction, implication, inquisitive disjunction, and the univer-
sal quantifier. The key feature of the rex fragment is that every formula is finitely
coherent, and an upper bound for its coherence degree is computable from its syntax.

Proposition 5.7.2 (Finite coherence property) For every formula ϕ ∈ LRex there is
a natural number nϕ, computable from the syntax of ϕ, such that ϕ is nϕ-coherent.

Proof We define nϕ as follows for ϕ ∈ LRex:
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– np = 1 if p is atomic;
– n⊥ = 1;
– nϕ∧ψ = max(nϕ, nψ);

– nϕ

�

ψ = nϕ + nψ;
– nχ→ϕ = nϕ;
– n∀xϕ = nϕ.

To see that ϕ is nϕ-coherent it suffices to note that atoms and ⊥ are 1-coherent (i.e.,
truth-conditional) and to apply inductively Proposition 5.6.3. �

Note that the number nχ is not necessarily equal to the coherence degree dχ: for
instance, if χ = (Px

�

Px) we have nχ = nPx + nPx = 2, but since Px

�

Px ≡
Px we have dχ = dPx = 1. However, since the coherence degree dχ is defined as
the least number n for which χ is n-coherent, we have nχ ≥ dχ.

An interesting open problem is whether the rex fragment is expressively complete
with respect to finitely coherent properties expressible in InqBQ, in the following
sense.

Open Problem 5.7.3 (Completeness for finitely coherent properties)
Is every finitely coherent ϕ ∈ LQ= logically equivalent to some ϕ∗ ∈ LRex?

Since rex formulas are finitely coherent, all the results from the previous section
apply to them. In particular, rex formulas are always normal, and entailments with
rex conclusions are compact, that is, if � |= ψ and ψ is a rex formula then �0 |= ψ
for some finite �0 ⊆ �. Moreover, using the results in the previous section we can
show that the set of rex validities is recursively enumerable.

Theorem 5.7.4 (Rex validities are recursively enumerable)
The set Valrex = {χ ∈ LRex | χ is valid in InqBQ} is recursively enumerable.
Proof Weneed to show that there is amethod to semi-decidewhether a given formula
χ belongs to the set Valrex. This amounts to semi-deciding whether the conjunction
(χ ∈ LRex and |=InqBQ χ) holds. For this, we proceed as follows. First, we check
whether χ is a rex formula. This is a decidable matter: we just need to check if
all occurrences of an inquisitive existential quantifier are within the antecedent of
a conditional. If χ is not a rex formula, we do not return any output. Otherwise,
we need to semi-decide whether χ is valid in InqBQ. For this, we first compute
the number nχ and then compute the finitary first-order translation trs(χ) for s a
set of nχ world variables. Since χ is nχ-coherent, by Proposition 5.6.11 we have
|=InqBQ χ ⇐⇒ |=FOL trs(χ). Thus, our task reduces to semi-deciding whether trs(χ)

is valid in classical first-order logic. This is possible, since validity in first-order logic
is semi-decidable. �

The theorem implies that the set of InqBQ-entailments with finitely many premises
and a rex conclusion is also recursively enumerable. This is because we have:

ϕ1, . . . ,ϕn |= χ ⇐⇒ |= ϕ1 ∧ · · · ∧ ϕn → χ.

Thus, semi-deciding whether ϕ1, . . . ,ϕn |=InqBQ χ reduces to semi-deciding the
validity of the formula ϕ1 ∧ · · · ∧ ϕn → χ, which is a rex formula if χ is.
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The fact that entailments with rex conclusions are compact and recursively enu-
merable suggests that it may be possible to give a proof system for InqBQ which
is complete with respect to such entailments, i.e., such that if � |= ψ and ψ is a
rex formula then ψ is provable from � in this system. This is indeed the case: one
such proof system is obtained by extending the system for InqBQ presented in the
next chapter with a coherence rulewhich allows one to freely use certain cardinality
formulas in order to infer a finitely coherent formula; the interested reader is referred
to Ciardelli and Grilletti [17] for the details.

5.7.2 The Classical Antecedent (Clant) Fragment

The second fragment of InqBQ that we consider is the classical antecedent (in short,
clant) fragment, obtained by allowing only classical formulas as antecedents of
implications.

Definition 5.7.5 (Classical antecedent fragment of InqBQ [19]) The set LClant(�)

of clant formulas in a signature � is given by:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | α → ϕ | ϕ

�

ϕ | ∀xϕ | ∃∃xϕ,

where p ranges over atomic formulas in the signature� andα over classical formulas.

The clant fragment is a broad fragment of InqBQ: it includes all classical formu-
las, polar questions of the form ?α for α classical, and more generally disjunc-
tive questions of the form α1

�

. . .

�

αn where the αi are all classical; mention-
some questions of the form ∃∃x1 . . . ∃∃xnα with α classical, including as special cases
single-instance questions like ∃∃!x P(x), and identification questions like ∃∃x(x = t);
mention-all questions of the form ∀x1 . . . ∀xn?α with α classical; and all questions
that can be formed by conjoining questions of the above kinds, or conditionalizing
such questions to a classical antecedent. In fact, all examples of questions discussed
in this chapter, as well as all examples of InqBQ-entailments, involved only clant
formulas.

Whatisnot includedinthefragmentareimplicationsoftheformμ → μ′whereboth
μ andμ′ contain inquisitive operators, for instance the formulas∀x?Px → ∀x?Qx or
∃∃x Px → ∃∃xQx , as well as compounds including such implications.12 As we dis-
cussed in Sect. 2.5, implications of this sort capture the fact that in the evaluation state,
a certain dependency holds. Thus, what we cannot generally capture in the clant frag-
ment is what follows from premises stating that certain dependencies hold.

12 Formulas of the form μ → α where μ contains inquisitive operators but α is classical are not
included in the fragment either. However, these cases are not especially interesting, since such for-
mulas are equivalent to classical formulasμcl → α (and provably so, in the system introduced in the
next chapter).
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The clant fragment neither contains nor is contained in the rex fragment discussed
in the previous section. For instance, ∃∃x Px is a clant formula but not a rex formula,
while ∀x?Px → ∀x?Qx is a rex formula but not a clant formula.

Semantically, the key feature of the classical antecedent fragment is that the
second-order quantification associatedwith implication is neutralized.This is because
if α is truth-conditional (and thus in particular if α is classical) the clause for impli-
cation can be simplified as follows (cf. Propositions 5.5.10 and 2.5.2):

M, s |=g α → ϕ ⇐⇒ M, s ∩ |α|gM |=g ϕ.

Thus, to check if an implication α → ϕ holds in a state s it is not necessary to check
all subsets of s; it suffices to check one subset of s, namely, s ∩ |α|gM .

One consequence of this fact is that in a clant formula, implication can always be
pushed down to the level of classical formulas. Let us make this precise.

Definition 5.7.6 The set of restricted implication (for short, rimp) formulas, is the
set of formulas where implication occurs only within classical sub-formulas. More
formally, the set of rimp formulas is given by the following grammar:

ξ ::= α | ξ ∧ ξ | ξ

�

ξ | ∀xξ | ∃∃xξ,

where α ranges over classical formulas.

Note that every rimp formula is a clant formula. The converse is not the case: for
instance, ∃x Px → ∀x?Px is a clant formula but not a rimp formula. However, every
clant formula can be turned into an equivalent rimp formula.

Proposition 5.7.7 Every clant formula is equivalent to a rimp formula.

Proof The key to the result lies in the following claim: if ξ is a rimp formula and α
is classical, α → ξ is equivalent to a rimp formula. This is proved by induction on ξ,
making crucial use of the split equivalences given by Proposition 5.5.12. We leave
this inductive proof as an exercise (Exercise 5.9.7).

Using this claim, we prove our proposition by induction on ϕ ∈ LClant. The inter-
esting case is the one for ϕ = (α → ψ), where α is a classical formula. By induction
hypothesis, ψ ≡ ψ∗ for some rimp formula ψ∗, so ϕ ≡ (α → ψ∗), and by the above
claim, the latter formula is equivalent to a rimp formula. �

Using this fact, it is possible to define an entailment-preserving translation (·)∗ from
the clant fragment of InqBQ to classical first-order logic with two sorts for worlds
and individuals.

Proposition 5.7.8 Let � be a signature and let LFOL
w,e (�∗) be the corresponding

two-sorted language as defined in Sect.5.6. There is a computable translation tr :
LClant(�) → LFOL

w,e (�∗) such that for all � ∪ {ψ} ⊆ LClant(�):
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� |= ψ ⇐⇒ tr(�) |=FOL tr(ψ),

where |=FOL is entailment in classical first-order logic.

Proof Sketch. We only give the proof strategy, leaving the details as an exercise to the
reader (see Exercise 5.9.8). We refer to Sect. 5.6 for the definition of the two-sorted
language LFOL

w,e (�∗) and of the bijection M �→ M∗ between relational information
models for � and relational structures for �∗.

– Step 1. Define for each classical formula α ∈ LQ
c (�) a two-sorted formula α�(w)

containing a single free variable w of sort w, in such a way that for every relational
information model M , world w, and assignment g we have

M, w |=g α ⇐⇒ M∗ |=g[w �→w] α�,

where g is any assignment for the two-sorted language which coincides with g on
variables of sort e.
Example: (∀x Px)� = ∀x P∗(w, x).

– Step 2. Define for each restricted implication formula ϕ a formula tr(ϕ) ∈
LFOL
w,e (�∗), without free variables of sort w, such that

M,W |=g ϕ ⇐⇒ M∗ |=g ϕ.

Example: tr(∃∃x Px) = ∃x∀wP∗(w, x).
– Step 3. Extend tr to all clant formulas using Proposition 5.7.7.
– Step 4. Using the fact that M �→ M∗ is a bijection between relational informa-
tion models for � and two-sorted structures for �∗, show that for all � ∪ {ψ} ⊆
LClant(�) we have � |= ψ ⇐⇒ tr(�) |=FOL tr(ψ). �

As consequences of the translation and the properties of classical first-order logic,
we obtain the following theorems.

Theorem 5.7.9 (Compactness for the clant fragment) Suppose � ∪ {ψ} ⊆ LClant. If
� |= ψ then there is a finite �0 ⊆ � such that �0 |= ψ.

Proof Suppose � ∪ {ψ} ⊆ LClant and � |=InqBQ ψ. By the previous proposition we
have tr(�) |=FOL tr(ψ). By the compactness of classical first-order logic, there is a
finite subset�0 ⊆ � such that tr(�0) |=FOL tr(ψ). Again by the previous proposition,
�0 |=InqBQ ψ. �

Theorem 5.7.10 (Recursive enumerability of clant entailments)
The set {〈ϕ1, . . . ,ϕn,ψ〉 | n ≥ 0, ϕ1, . . . ,ϕn,ψ ∈ LClant, ϕ1, . . . ,ϕn |= ψ}
is recursively enumerable.
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Proof We need to show that, given a sequence 〈ϕ1, . . . ,ϕn,ψ〉 of clant formulas,
we can semi-decide whether ϕ1, . . . ,ϕn |= ψ holds. By Proposition 5.7.8, this boils
down to semi-deciding whether tr(ϕ1), . . . , tr(ϕn) |=FOL tr(ψ) holds, i.e., whether
tr(ϕ1) ∧ · · · ∧ tr(ϕn) → tr(ψ) is a valid formula in first-order logic. Since validity in
first-order logic is semi-decidable, the conclusion follows. �

Note that, while this last theorem implies that the set of clant validities is r.e., it
is a strictly stronger claim. This is because an entailment ϕ1, . . . ,ϕn |= ψ among
clant formulas does not always correspond to the validity of a single clant formula:
although we have ϕ1, . . . ,ϕn |= ψ iff the formula ϕ1 ∧ · · · ∧ ϕn → ψ is valid, the
latter is not in general a clant formula, even when ϕ1, . . . ,ϕn,ψ are.

These positive results suggest that it may be possible to find a complete deduction
system for the clant fragment of InqBQ. This is indeed the case: following Grilletti
[19], in Sect. 6.3 we will describe a natural deduction system for the clant fragment
and prove its completeness.

5.7.3 The Mention-All Fragment

The mention-all fragment of InqBQ is given by the following definition.

Definition 5.7.11 (Mention-all fragment) The set LMA of mention-all formulas is
defined as the union LQ=

c ∪ LMA?, where LQ=
c is the set of classical formulas and

LMA? = {∀x1 . . . ∀xn?α | n ≥ 0,α ∈ LQ=
c }. In words, the formulas inLMA are either

classical or of the form ∀x?α, whereα is classical and x is a possibly empty sequence
of variables.

The mention-all fragment is a rather small fragment of InqBQ; it is included both in
the rex fragment (since mention-all formulas are ∃∃-free) and in the clant fragment
(since implications are only allowed within classical formulas).

One basic feature of the fragment is that every formula in it is 2-coherent.

Proposition 5.7.12 Every ϕ ∈ LMA is 2-coherent.

Proof If ϕ is classical, then it is 1-coherent and thus also 2-coherent. If ϕ = ∀x?α
where α is classical, by Proposition 5.6.3 and the truth-conditionality of classical
formulas we have d∀x?α ≤ d?α ≤ dα + d¬α = 1+ 1 = 2. �

The fact that formulas in this fragment are 2-coherent implies that their semantics is
completely encoded at the level of states of size at most 2. This opens the way to the
possibility of giving an equivalent semantics for the fragment that evaluates formulas
with respect to pairs 〈w,w′〉 of worlds, rather than with respect to states. We will
come back to this point when relating the fragment to the Logic of Interrogation.
Before turning to that, let us introduce some useful notation.
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Definition 5.7.13 Let M be a model and g an assignment. If α is a classical formula
and x = 〈x1, . . . , xn〉 is a tuple of variables, let αx

g be the intensional relation deter-
mined by α with respect to x , i.e., the function which maps any world w ∈ W to the
set of tuples d ∈ Dn that satisfy α in w relative to g.

αx
g(w) = {d ∈ Dn |w |=g[x �→d] α}.

We extend this to the case in which the tuple x is empty by letting α∅
g(w) be the truth

value of α at w relative to g:

α∅
g(w) =

{
1 if w |=g α
0 if w �|=g α.

Clearly, if α contains no variables besides those in x then the assignment g plays no
role, so we can drop reference to it.

The following proposition states that, given a classical formula α and a tuple x
of variables, the question ∀x?α asks for the extension of the relation αx

g . That is, the
question is settled in a state s if any two worlds w,w′ ∈ s agree on the extension
of αx

g .

Proposition 5.7.14 (Semantics of mention-all questions) Let α ∈ LQ=
c . For any

information model M, state s and assignment g:

s |=g ∀x?α ⇐⇒ for all w,w′ ∈ s : αx
g(w) = αx

g(w
′).

Proof We have the following sequence of equivalences:

s |=g ∀x?α⇐⇒ for all d ∈ Dn : s |=g[x �→d] α or s |=g[x �→d] ¬α

⇐⇒ for all d ∈ Dn : (for all w ∈ s, d ∈ αx
g(w)) or

(for all w ∈ s, d /∈ αx
g(w))

⇐⇒ for all d ∈ Dn, for all w,w′ ∈ s : d ∈ αx
g(w) ⇐⇒ d ∈ αx

g(w
′)

⇐⇒ for all w,w′ ∈ s, for all d ∈ Dn : d ∈ αx
g(w) ⇐⇒ d ∈ αx

g(w
′)

⇐⇒ for all w,w′ ∈ s : αx
g(w) = αx

g(w
′).

It is easy to check that this holds also for the special case in which x is empty and
the formula under consideration is a polar question ?α. �

This result allows us to show that questions of the form ∀x?α can be seen as inducing
partitions of the logical space. Let us make this precise.

Definition 5.7.15 (Partition formulas) We say that ϕ ∈ LQ= is a partition formula
if given any information model M and assignment g there is a partition �ϕ of W
such that for every state s ⊆ W :
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s |=g ϕ ⇐⇒ s ⊆ a for some a ∈ �ϕ.

Equivalently, ϕ is a partition formula if for any model M and assignment g there is
an equivalence relation ≈ϕ on W such that for every state s ⊆ W :

s |=g ϕ ⇐⇒ ∀w,w′ ∈ s : w ≈ϕ w′.

Proposition 5.7.16 If α is a classical formula, ∀x?α is a partition formula. Indeed,
given any model M and assignment g, the set AltgM(∀x?α) forms a partition of the
logical space W, and for any information state s ⊆ W we have

s |=g ∀x?α ⇐⇒ s ⊆ a for some a ∈ AltgM(∀x?α).

The proof of this proposition is left as an exercise to the reader (Exercise 5.9.9).

A natural question is whetherLMA? is expressively complete with respect to partition
formulas. We will leave this as an open problem.

Open Problem 5.7.17 Is every partition formula in InqBQ equivalent to one of the
form ∀x?α with α classical?

As we discussed in Sect. 2.9.2, equivalence relations on the logical space—and the
partitions they induce—are precisely the objects taken to capture question meanings
in the theory of questions ofGroenendijk and Stokhof [21]. A logical systembased on
this theory, called theLogic of Interrogation (LoI) has been developed byGroenendijk
[4], and axiomatized by ten Cate and Shan [20]. This system is the most important
predecessor of InqBQ. We will now introduce LoI more precisely and show that it is
essentially equivalent to the mention-all fragment of InqBQ.

The languageLLoI of the Logic of Interrogation consists of two kinds of formulas:
declaratives, which are simply classical formulasα ∈ LQ=

c , and interrogatives, which
are of the form Qxα, where Q is a special question-forming quantifier, x is a possibly
empty sequence of variables, and α is a classical formula.13 Intuitively Qxα stands
for the mention-all question asking which tuples x satisfy α. As a special case, when
x is empty, Qα stands for the polar question asking whether α is true or false.

The semantics of LoI is given relative to models that are essentially the same as
our relational information models. The original setup for LoI is slightly less general
in two ways: first, only rigid constant symbols are allowed in the language; second,
the semantics is restricted to id-models. Since it is straightforward to see how both
restrictions can be lifted, I present LoI without these restrictions, so as to bring out
the connections to InqBQ in greater generality.

In its original formulation [4], LoI is presented as a dynamic semantics (in the
tradition ofGroenendijk et al. [22], Jäger [23],Hulstijn [24], amongothers).However,
as pointed out by ten Cate and Shan, the dynamic coating is inessential: one can give

13 The original LoI notation for a formula Qxα is ?xα. I use the alternative notation Qxα to avoid
confusion with the way the symbol ‘?’ is used in inquisitive logic.
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a simple static semantics for LoI in which formulas are interpreted with respect to
ordered pairs of worlds. A classical formula α is satisfied at a pair 〈w,w′〉 in case
w and w′ agree that α is true, while a question Qxα is satisfied in case the worlds
w and w′ agree on the extension of the relation defined by α with respect to x—i.e.,
agree on the answer to the question Qxα.

Definition 5.7.18 If M is a relational information model and w,w′ are worlds in M
(not necessarily distinct) the semantics of LoI is given by:

– 〈w,w′〉 |=LoI
g α ⇐⇒ w |=g α and w′ |=g α;

– 〈w,w′〉 |=LoI
g Qxα ⇐⇒ αx

g(w) = αx
g(w

′).

Entailment in LoI can be defined in the expected way in terms of this semantics.

Definition 5.7.19 (Entailment in the Logic of Interrogation) Let � ∪ {ψ} ⊆ LLoI.
� |=LoI ψ in case for all models M , all pairs 〈w,w′〉 of worlds, and all assignments
g, if 〈w,w′〉 |=g ϕ for all ϕ ∈ � then 〈w,w′〉 |=g ψ.

LoI and the mention-all fragment of InqBQ are equivalent in a natural sense. This can
be made precise by defining the following translations between LLoI and LMA.

Definition 5.7.20 (Translations) We define two translations (·)� : LMA → LLoI and
(·)	 : LLoI → LMA, as follows:

– α� = α
– (∀x?α)� = Qxα

– α	 = α
– (Qxα)	 = ∀x?α

Clearly, the two translations are inverse to each other, i.e., we haveϕ�	 = ϕ andϕ	� =
ϕ. The semantic connections between a sentence and its translation are captured by
the following proposition. The proof is immediate by inspecting the translations and
by Proposition 5.7.14.

Proposition 5.7.21 Let M be an id-model, g an assignment. Then:

– for any ϕ ∈ LLoI and worlds w,w′: 〈w,w′〉 |=LoI
g ϕ ⇐⇒ {w,w′} |=g ϕ	;

– for any ϕ ∈ LMA and worlds w,w′: {w,w′} |=g ϕ ⇐⇒ 〈w,w′〉 |=LoI
g ϕ�;

– for any ϕ ∈ LMA and state s: s |=g ϕ ⇐⇒ ∀w,w′ ∈ s : 〈w,w′〉 |=LoI
g ϕ�.

This connection ensures that both translations are entailment-preserving.

Proposition 5.7.22 (Translations are entailment-preserving)

– For all � ∪ {ψ} ⊆ LMA, � |= ψ ⇐⇒ �� |=LoI ψ�.
– For all � ∪ {ψ} ⊆ LLoI, � |=LoI ψ ⇐⇒ �	 |= ψ	.
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Proof Consider the first item. If � �|= ψ, then we can find a relational information
model M , an assignment g, and an information state s such that s |=g � and s �|=g

ψ. Since formulas in LMA are 2-coherent, we can find worlds w,w′ ∈ s such that
such that {w,w′} �|=g ψ. Since {w,w′} ⊆ s, by persistency we have {w,w′} |=g �.
By the previous proposition, in the semantics of LoI we have 〈w,w′〉 |=LoI

g �� and
〈w,w′〉 �|=LoI

g ψ�, which shows that �� �|=LoI ψ�. Reasoning similarly we can show
that if �� �|=LoI ψ� then � �|= ψ.

The second item follows from the first and the fact that the translations are inverse
to each other, as we have �	 |= ψ	 ⇐⇒ �	� |=LoI ψ	� ⇐⇒ � |=LoI ψ. �
Thus, the Logic of Interrogation can be identified with a fragment of our inquisitive
first-order logic InqBQ. One insight that emerges from this connection is that the
primitive question quantifier Q of LoI, whose logical features seem quite complex
and unfamiliar (cf. the axiomatization in ten Cate and Shan [20]), can in fact be
analyzed in terms of a combination of operators which are logically simple and
familiar. Indeed, in InqBQ the formula Qxα corresponds to the compound

∀x(α � ¬α)

where ¬ is standard negation on statements,

�

is a constructive disjunction, and ∀ is
a generalization to questions of the standard universal quantifier.14

Another repercussion of the translation is that it is possible to transform ten Cate
andShan’s [20] completeness result for LoI into a completeness result for themention-
all fragment of InqBQ in which proofs use only formulas from the fragment. The
interested reader is referred to Sect. 4.8 of Ciardelli [26].15

Finally, it is worth noting that InqBQ, and even its well-behaved classical
antecedent fragment, is much more expressive than LoI. As we saw, in the clant
fragment of InqBQ we can express, among others, mention-some questions such as
∃∃x P(x), unique-instance questions such as ∃∃!x P(x), disjunctive questions such as
P(a)

�

P(b), and conditional questions such as ∃x P(x) → ∀x?P(x). None of these
questions has a counterpart in LoI.

5.8 ‘How Many’ Questions and Generalized Quantifiers

An important class of questions that we have not discussed so far is given by ‘how
many’ questions, asking about the number of objects satisfying a certain property.

14 One way to make precise the claim that these operations are “familiar” is to take an algebraic
perspective: in the space of inquisitive propositions, which is a Heyting algebra,

�

corresponds to
a simple join operation, ¬ to the pseudo-complement operation, and ∀ to an operation that yields
the meet of a family of propositions. See Roelofsen [25] for the details.
15 Since ten Cate and Shan [20] workwith id-models, a direct adaptation of their result yields a proof
system for id-entailment; however, it seems very likely that the result can be adapted to general
entailment as well.
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The semantics of such questions can be analyzed in a natural way in our setting. To
better see the idea, let us focus on a special case. Suppose P is a unary predicate.
Consider first the case of an id-model. In this case, the objects that have property P
at a world w are those in the extension Pw. The number of objects that have property
P at w is thus captured by the cardinality #Pw of this set. An information state s
settles how many objects have property P if s implies for some cardinal κ that there
are κ objects with property P , i.e., if there is κ such that #Pw = κ for allw ∈ s. This,
in turn, happens if and only if the cardinality of the extension Pw is the same in all
w ∈ s.

In the context of id-models, we can thus say that a sentence ϕhm expresses the
question how many objects have property P if it has the following semantics:

s |= ϕhm ⇐⇒ there is a cardinal κ such that ∀w ∈ s : #Pw = κ

⇐⇒ ∀w,w′ ∈ s : #Pw = #Pw′ .

In the more general setting of a model M that has variable identity, things are slightly
more subtle. In this case, the set of actual individuals having property P at a world
w is not given directly by Pw, but by the quotient modulo the local identity ∼w (cf.
the discussion in Sect. 5.4). Thus, the number of individuals having property P at w
is given by the cardinal:

numw(P) := #(Pw/∼w).

In the general setting, we can thus say that a sentence ϕhm expresses the question
how many objects have property P if it has the following semantics:

s |= ϕhm ⇐⇒ there is a cardinal κ such that ∀w ∈ s : numw(P) = κ

⇐⇒ ∀w,w′ ∈ s : numw(P) = numw′(P).

It is then natural to ask: is there in fact a sentence of InqBQ with the required seman-
tics? If not, we could make our demands more modest and ask: is there a sentence
of InqBQ that has the required semantics at least in restriction to models where D is
finite? Or, even more modestly, in restriction to id-models where D is finite?

In order to studyquestions like this one, concerning the expressive power of InqBQ,
[1] have recently developed an inquisitive counterpart of the classical Ehrenfeucht-
Fraïssé game for first-order logic. The game is shown to characterize the expressive
power of the logic, in the following sense: if two information states are distinguished
by a formula ϕ of InqBQ, then in the game there is a strategy to bring out the
difference between the states within a finite number of moves determined by the
number of quantifier nestings and implication nestings in ϕ; conversely, if there is
a strategy to bring out the difference between two information states within a finite
number of moves in the game, then there is a formula ϕ of InqBQ that distinguishes
those states.

As in the classical case, the game is a powerful tool to show that certain properties
are not expressible in InqBQ. In particular, it can be used to give a negative answer to
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the question we posed above, even in its less demanding version. We refer to Grilletti
and Ciardelli [1] for the proof.

Theorem 5.8.1 (Inexpressibility of ‘how many’ questions in InqBQ) There is no
sentence ϕhm ∈ LQ= such that for all models M and states s:

s |= ϕhm ⇐⇒ ∀w,w′ ∈ s : numw(P) = numw′(P).

What is more, there is no sentence that satisfies this condition even in restriction to
id-models where D is finite.

This result shows that InqBQ does not have the resources to express how many
questions. Given the importance of this class of questions, this result points to an
interesting project for future research: add a howmany inquisitive quantifier to InqBQ
and study the resulting logic.

Open Problem 5.8.2 (Extending InqBQ with a ‘how many’ quantifier) Consider a
logic InqBQH whose language is like that of InqBQ but with the additional clause
that if α is a classical formula and x a sequence of variables then Hxα is a formula.
Intuitively,H is the inquisitive quantifier ‘howmany’, andHxα stands for the question
how many values of the sequence x satisfy α. The number of such values at a world
w is given by:

numx
w,g(α) := #(αx

g(w)/ ∼w)

where αx
g(w) is the extension of α as given by Definition 5.7.13. We can then let the

new formulas be interpreted by the following clause:

s |=g Hxα ⇐⇒ ∀w,w′ ∈ s : numx
w,g(α) = numx

w′,g(α).

What are the properties of the resulting logic InqBQH?

This open problem is an instance of a more general enterprise that awaits to be
pursued: investigate generalized quantifiers in the setting of inquisitive predicate
logic. As Grilletti and Ciardelli [1] discuss, the inquisitive setting gives rise to a
new and more general notion of a quantifier, which encompasses not only standard
quantifiers like ‘some x’, ‘at least three x’ or ‘infinitely many x’, but also properly
inquisitive quantifiers like ‘which x’, ‘whether finitely or infinitely many x’, or
‘how many x’. Grilletti and Ciardelli [1] make a first step in the study of such
quantifiers, giving a precise characterization of those unary cardinality quantifiers
that are expressible in InqBQ. The undefinability of how many questions, given by
Theorem 5.8.1, is a corollary of this characterization. An interesting aspect of the
characterization is that, at least with respect to matters of cardinality, InqBQ turns
out to pattern with classical first-order logic, and not with second-order logic, in that
each formula is only able to draw distinctions up to a fixed finite cardinal n.
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5.9 Exercises

Exercise 5.9.1 (Formalizing questions in InqBQ)Consider a signature� containing
a binary predicate D and a rigid constant a. Suppose the domain of quantification
consists of guests at a party, D(x, y) stands for “x danced with y” and a denotes
Alice. Give a formalization in InqBQ of the following natural language questions:

(4) a. Who is someone who danced with Alice?
b. Which guests danced with Alice?
c. Was there any guest who did not dance with anybody?
d. What are two guests who danced with each other?
e. Which guests danced with everybody?
f. Who danced with whom?
g. Which guests danced with at least two people?
h. Did Alice dance with exactly one person?

Exercise 5.9.2 (Formalizing questions in InqBQ) Consider a variation of Exercise
2.10.1: somone picked a secret code consisting of two natural numbers. Consider
a signature � consisting of a rigid constant symbol n for each number n ∈ N, a
rigid binary function symbol +, and a binary relation symbol C , where Cxy is read
intuitively as “the code is 〈x, y〉”. Suppose we formalize the scenario as a relational
id-model M for this signature, where:

– W = {wi j | i, j ∈ N} (so, worlds can be arranged as in the picture below);
– D = N (the set of natural numbers);
– Iw(n) = n for all w ∈ W ;
– Iw(+) is the sum operation, for all w ∈ W ;
– Iwi j (C) = {〈i, j〉} (that is, wi j is a world where the code is 〈i, j〉).

Write formulas of LQ= that, in the context of this model, express the following

statements and questions.

(5) a. The code is 〈1, 2〉.
b. The first number is 1.
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c. The code contains the number 1.
d. Is the code 〈1, 2〉?
e. Is the first number 1?
f. Does the code contain the number 1 (in either position)?
g. What is the code?
h. What is the first number?
i. What is one number that occurs in the code?
j. If the first number is 1, what is the second number?
k. What is the sum of the two numbers?
l. What is the (absolute) difference of the two numbers?
m. Are the two numbers the same?
n. Is the first number smaller, equal to, or larger than the second?

Exercise 5.9.3 (Formalizing questions in InqBQ) Given a unary predicate P and a
number n ∈ N, show how to write a formula ϕn that expresses the question whether
the number of objects satisfying P is less than n, exactly n, or more than n. Thus,
ϕn should be a formula with the following semantics (for the definition of numw(P),
see p. 175):

s |= ϕn ⇐⇒ ∀w ∈ s : numw(P) < n, or

∀w ∈ a : numw(P) = n, or

∀w ∈ s : numw(P) > n.

Exercise 5.9.4 (Entailment in InqBQ) Let P, Q be unary predicates. Are the fol-
lowing entailments valid? Give a proof or a countermodel.

1. ∀x?Px ∧ ∀x?Qx |= ∀x?(Px ∧ Qx)
2. ∀x?(Px ∧ Qx) |= ∀x?Px ∧ ∀x?Qx
3. ∃∃x(Px �

Qx) |= ∃∃x Px � ∃∃xQx
4. ∃∃x Px � ∃∃xQx |= ∃∃x(Px �

Qx)
5. ∀x(?Px → ?Qx) |= ∀x?Px → ∀x?Qx
6. ∀x?Px → ∀x?Qx |= ∀x(?Px → ?Qx)

Exercise 5.9.5 (Entailment in InqBQ) Show that a necessary condition for an entail-
ment to be valid in InqBQ is that the classical counterpart of the entailment be valid
in classical first-order logic. That is, show that for any � ∪ {ψ} ⊆ LQ= we have:

� |= ψ =⇒ �cl |= ψcl

where ϕcl is the classical variant of a formula, as given by Definition 5.3.5, and if
�cl = {ϕcl | ϕ ∈ �}. Give an example in which the converse implication fails.

Exercise 5.9.6 (Coherence) Complete the proof of Proposition 5.6.3 by showing
the following claims:

– if ϕ is κ-coherent and ψ is κ′ coherent then ϕ ∧ ψ is max(κ,κ′)-coherent;
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– if ϕ is κ-coherent then so is χ → ϕ for any formula χ;
– if ϕ is κ-coherent then so is ∀xϕ.
Exercise 5.9.7 (Turning clant formulas into rimp formulas) Complete the proof of
Proposition 5.7.7 showing the following claim: if ξ is a rimp formula (cf. Definition
5.7.6) and α is a classical formula, α → ξ is equivalent to a rimp formula.
Hint: use the split equivalences given by Proposition 5.5.12.

Exercise 5.9.8 (First-order translation of clant formulas) Execute the strategy out-
lined in the proof sketch for Theorem 5.7.8 to show that there is a translation from
the clant fragment of InqBQ to classical two-sorted first-order logic.

Exercise 5.9.9 (Mention-all questions) Prove Proposition 5.7.16.

Hint: givenϕ = (∀x?α), take≈ϕ to be defined byw ≈ϕ w′ ⇐⇒ αx
g(w) = αx

g(w
′).

Clearly, ≈ϕ is an equivalence relation on the set of worlds. Show that AltgM(ϕ) is
precisely the set of equivalence classes of worlds under ≈ϕ and that a state supports
ϕ just in case it is included in one of these equivalence classes.
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Chapter 6
Inferences with First-Order Questions

In the previous chapter, we saw how classical first-order logic can be enriched with
questions, resulting in the system InqBQ of inquisitive first-order logic. We now turn
to the task of designing a proof system for InqBQ. As discussed in the previous
chapter, it is not currently known whether InqBQ in fact admits a complete proof
system, since it is not known whether InqBQ is compact and whether its validities
are recursively enumerable.However, in Sect. 6.1wewill describe a natural deduction
systemwhich is sound for InqBQ andwhich, as demonstrated in Sect. 6.2, is powerful
enough to prove many InqBQ-entailments, including all the examples discussed in
the previous chapter. In fact, for all we know this systemmight be complete, although
this seems unlikely.1 Moreover, we are going to show in Sect. 6.3 that this system is
indeed complete for the classical antecedent fragment of InqBQ, which is in itself a
rich extension of first-order logic with questions.

6.1 Natural Deduction System for InqBQ

Anatural deduction system for InqBQ is described in Fig. 6.1. The notational conven-
tions are the usual ones: we write � � ψ to mean that there is a proof in this system
whose conclusion is ψ and whose set of undischarged assumptions is included in �;
we write ϕ1, . . . ,ϕn � ψ instead of {ϕ1, . . . ,ϕn} � ψ, and write ϕ �� ψ to mean
that both ϕ � ψ and ψ � ϕ hold. Before illustrating the system with some examples,
let us comment briefly on the various inference rules.

Connectives and quantifiers. As in the propositional system for InqB, each of the
connectives ∧,→,⊥ and

�

is handled by its standard introduction and elimination

1 See the conclusion section of Ciardelli and Grilletti [1] for an example of a valid InqBQ-entailment
that is conjectured not to be provable in the system.
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Conjunction Implication

ϕ ψ

ϕ ∧ ψ

ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

[ϕ]
...
ψ

ϕ → ψ

ϕ ϕ → ψ

ψ

Univ Falsum

ϕ[y/x]
∀xϕ

∀xϕ

ϕ[t/x]
∀xα

α[t/x]
⊥
ϕ

Identity Classical ¬¬ elimination

t = t

ϕ[t/x] t = t

ϕ[t /x]
¬¬α

α

Inquisitive disjunction Inquisitive existential

ϕ

ϕ ψ

ψ

ϕ ψ

ϕ ψ

[ϕ]
...
χ

[ψ]
...
χ

χ

ϕ[t/x]
∃∃xϕ

∃∃xϕ

[ϕ[y/x]]
...
ψ

ψ

-split ∃∃-split

α → ϕ ψ

(α → ϕ) (α → ψ)
α → ∃∃xϕ

∃∃x(α → ϕ)
x FV(α)

Constant domains (CD) Classicality of negations (KF)

∀x(ϕ ψ)
(∀xϕ) ψ

x FV(ψ) ∀x¬¬ϕ

¬¬∀xϕ

Fig. 6.1 A sound, but possibly incomplete, natural deduction system for InqBQ. As usual, we
denote the introduction and elimination rules for an operator ◦ as (◦i) and (◦e). In these rules, the
variable α ranges over classical formulas, while ϕ and ψ range over arbitrary formulas of InqBQ;
t denotes a rigid term, while t, t ′ denote arbitrary terms, which may but need not be rigid. In either
case, these terms must be free for x in the relevant formula. In the rule (∀i), y must not occur free in
any undischarged assumption. In (∃e), ymust not occur free inψ or in any undischarged assumption
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Classical disjunction Classical existential

ϕ

ϕ ∨ ψ

ψ

ϕ ∨ ψ

ϕ ∨ ψ

[ϕ]
...
α

[ψ]
...
α

α

ϕ[t/x]
∃xϕ

∃xϕ

[ϕ[y/x]]
...
α

α

Fig. 6.2 Admissible rules for ∨ and ∃. Here, α ranges over classical formulas, and ϕ,ψ over
arbitrary formulas; t is an arbitrary term (possibly non-rigid) free for x in ϕ. The variable y should
not occur free in α or any undischarged assumption above the rule

rules. The rules for the quantifiers are also standard—with one caveat: as we dis-
cussed in Sect. 5.5.4, in general it is only sound to instantiate ∀ to, and to introduce ∃∃
from, a term which is rigid. As we saw in that section, it is also sound to instantiate
a universal to a non-rigid term, but only when the relevant formula is classical. This
is given as a second elimination rule for ∀.

The rules for ¬ are obtained as special cases of the rules for implication. As
for classical disjunction and classical existential, the rules shown in Fig. 6.2 are
implicitly available in the system: whatever can be derived using these rules can
in fact be derived from the rules in Fig. 6.1. Note that a classical existential can be
introduced from an arbitrary term (not only from a rigid term, as in the case of ∃∃);
however, as in the case of classical disjunction, it can be eliminated only towards a
classical conclusion. Without the restriction to classical conclusions, the elimination
rule would not be sound; it would allow us, for instance, to infer the inquisitive
existential ∃∃x Px from the classical existential ∃x Px .
Identity predicate. Standard introduction and elimination rules also take care of
the identity predicate. The introduction rule is given by the fact that t = t is valid
for any t . The elimination rule is backed by Proposition5.4.3, which ensures the
substitutability of terms whose identity is established in the state. Other features of
identity, such as symmetry and transitivity, are provable.

Connection with intuitionistic logic. What we have described so far—at least in
restriction to formulas containing only rigid terms—is simply a natural deduction
system for intuitionistic first-order logic,with

�

and ∃∃ in the role of intuitionistic dis-
junction and existential quantifier respectively. The soundness of these rules implies
that anything that is intuitionistically valid is also valid in InqBQ. This observation
is worth stating as a proposition.

Proposition 6.1.1 (InqBQ includes intuitionistic logic) Let � ∪ {ψ} ⊆ LQ= consist
of formulas containing only rigid terms. If � entails ψ in intuitionistic logic when�

and ∃∃ are identified with intuitionistic disjunction and inquisitive existential
respectively, then � |= ψ.

On top of this intuitionistic skeleton, InqBQ validates some further principles.
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Classical double negation elimination.We saw that the classical fragment of InqBQ
coincides with classical first-order logic. To capture this, we endow our system with
a rule of double negation elimination restricted to classical formulas. In this way, our
proof system includes a complete natural deduction system for classical first-order
logic in restriction to classical formulas.

Split rules. In the propositional case, our system contains the
�

-split rule, which
allows us to distribute a classical antecedent over an inquisitive-disjunctive con-
sequent. In the first-order case, we have this rule as well as the analogous rule
for the inquisitive existential quantifier. The soundness of these rules is given by
Proposition 5.5.12.These rules reflect the specificity of statements (Proposition5.5.10),
that is, the crucial fact that statements denote specific pieces of information, and that
to suppose a statement is to extend the available information in one particular way.

Constant domains. As is known fromwork on intuitionistic logic (see [2, 3]), assum-
ing a constant domain of quantification has repercussions on the logic, rendering valid
the schema

∀x(ϕ �
ψ) |= (∀xϕ)

�

ψ

where x /∈ FV(ψ). By taking this principle on board as an inference rule, we make
our proof system track the assumption that the domain of quantification is fixed and
does not vary from world to world.

Classicality of negations. Recall that Proposition5.3.8 ensures that a negation ¬ϕ
is always truth-conditional, and thus equivalent to a classical formula. The KF rule,
which allows us to infer¬¬∀xϕ from ∀x¬¬ϕ, is precisely what we need in order for
our proof system to vindicate this fact. To see this, first recall that Proposition5.3.9
tells us that the double negation ¬¬ϕ of a formula is always equivalent with the
classical variant, ϕcl . Using KF, we can prove this equivalence for every ϕ2.

Proposition 6.1.2 For any ϕ ∈ LQ, ¬¬ϕ �� ϕcl .

Proof We can show this by induction on the complexity of ϕ. We focus on the
most interesting case, namely, the inductive step for ∀. The other cases are left as an
exercise (Exercise6.4.5). So, consider a formula ∀xϕ. Assume the claim holds for
all formulas of lower complexity, which include all substitution instances of ϕ of the
form ϕ[y/x]. We want to show that ¬¬∀xϕ �� (∀xϕ)cl .

The two proofs are given below. In these proofs, y is a fresh variable. Observe
that by definition of classical variant, (∀xϕ)cl coincides with ∀xϕcl and (ϕ[y/x])cl
coincideswithϕcl [y/x]. The label (IH)marks sub-proofswhich exist by the induction
hypothesis.

2 For those readers who are familiar with intuitionistic logic, the following proposition is related
to Glivenko’s theorem, which states that ¬¬ϕ is intuitionistically valid iff ϕ is classically valid.
Glivenko’s theorem holds in the setting of propositional logic, but not in the setting of predicate
logic, essentially due to the fact that in intuitionistic logic, ∀x¬¬ϕ �|= ¬¬∀xϕ. The validity of
the entailment ∀x¬¬ϕ |= ¬¬∀xϕ, captured by the KF rule, is exactly what it takes in order for a
super-intuitionistic first-order logic to validate Glivenko’s theorem (cf. Proposition 2.12.1 in [4]).
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∀xϕcl

ϕcl[y/x] (∀e)
¬¬ϕ[y/x] (IH)

∀x¬¬ϕ
(∀i)

¬¬∀xϕ (KF)

¬¬∀xϕ

[¬ϕ[y/x]]2
[∀xϕ]1
ϕ[y/x] (∀e)

⊥ (→e)

¬∀xϕ (→ i, 1)

⊥ (→e)

¬¬ϕ[y/x] (→ i, 2)

ϕcl[y/x] (IH)

∀xϕcl
(∀i)

Note the crucial role of the KF rule in the first proof. �

Using this fact, we can then prove that all negations in InqBQ are classical.

Corollary 6.1.3 For all ϕ ∈ LQ=, ¬ϕ �� ¬ϕcl .

Proof We leave it to the reader to check that using the rules for implication we have
¬ϕ �� ¬¬¬ϕ for any ϕ ∈ LQ=. Putting this together with the previous proposition
we have ¬ϕ �� ¬¬¬ϕ �� (¬ϕ)cl = ¬ϕcl . �

We can also show that from a formula ϕ ∈ LQ= we can always infer its classical
variant, ϕcl .

Corollary 6.1.4 For all ϕ ∈ LQ=, ϕ � ϕcl .

Proof It is easy to see that for anyϕwehaveϕ � ¬¬ϕ, andwe know that¬¬ϕ � ϕcl

by Proposition 6.1.2. �

This result can be used to give an easy proof of the fact that our system is complete
for entailments whose conclusion is a classical formula.3

Theorem 6.1.5 (Completeness for classical conclusions) Let � ⊆ LQ=, α ∈ LQ=
c .

If � |= α, then � � α.

Proof Suppose � |= α. As classical formulas are truth-conditional, it follows from
Proposition5.5.7 that�cl |= α. Since entailment among classical formulas coincides
with entailment in classical first-order logic, and since our proof system includes a
complete proof system for classical first-order logic, it follows that �cl � α. This
means that there must be ϕ1, . . . ,ϕn ∈ � such that ϕcl

1 , . . . ,ϕcl
n � α. The previous

corollary ensures thatϕi � ϕcl
i for each i ≤ n. Hence,ϕ1, . . . ,ϕn � α, which implies

� � α. �

Before proceeding to show a more interesting completeness result, let us illustrate
the deduction system with some examples.

3 This result is an analogue in our setting of a result byKontinen andVäänänen [5], who axiomatized
the classical consequences of first-order dependence logic.
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6.2 Illustration

In order to illustrate our proof system, we show how we can use it to prove the
examples of logical dependencies that we discussed in Sect. 5.5.1.

Example 6.2.1 Start with the entailment we discussed in Example5.5.1:

∀x(P(x) ↔ ¬Q(x)), ∀x?P(x) |= ∀x?Q(x).

Here is a proof of this entailment. Recall that ?Px and ?Qy abbreviate, respectively,
the inquisitive disjunctions Px

� ¬Px and Qy
� ¬Qy.

∀x?Px
?Py

(∀e)
[Py]2

∀x(Px ↔ ¬Qx)
Py ↔ ¬Qy

(∀e)
Py → ¬Qy

(∧e)

¬Qy
(→e)

?Qy
(

�
i)

[¬Py]2
[¬Qy]1

∀x(Px ↔ ¬Qx)
Py ↔ ¬Qy

(∀e)
¬Qy → Py

(∧e)

Py
(→e)

⊥ (→e)

¬¬Qy
(→ i, 1)

Qy
(¬¬)

?Qy
(

�

i)

?Qy
(

�

e, 2)

∀x?Qx
(∀i)

Note how intuitive and familiar the reasoning is. Even though we manipulate ques-
tions, we do so by relatively standard and recognizable logical principles, such as
the usual rules for disjunction and the universal quantifier.

Example 6.2.2 Next, consider the entailment of Example5.5.2:

∀x?Px |= ?∀x Px

As we discussed above, this entailment depends crucially on the assumption that
the domain of quantification is fixed. It is thus not too surprising that a proof of it
makes crucial use of the constant domain rule CD. The last step, marked by (Def), is
not a real inference step, but merely a rewriting of the conclusion according to our
notational conventions.
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∀x?Px
?Py

(∀e) [Py]2
Py

� ¬∀x Px (

�

i)

[¬Py]2
[∀x Px]1

Py
(∀e)

⊥ (→i)

¬∀x Px (→ i, 1)

Py

� ¬∀x Px (

�

i)

Py

� ¬∀x Px (
�

e, 2)

∀x(Px � ¬∀x Px) (∀i)
∀x Px � ¬∀x Px (CD)

?∀x Px (Def)

Example 6.2.3 For a more complex example, involving both mention-all and
mention-some questions, recall the entailment we discussed in Example5.5.3:

∃x P(x), ∀x?P(x) |= ∃∃x P(x).

This captures the fact that given the assumption that the extension of P is non-empty,
from the information about what the extension of P is we can extract a witness for
P . The proof of this fact makes again use of the constant domain rule, CD. Using
this rule, we can show that if we are given a specification of the extension of P , from
this information we can get either a witness for P , or the information that no object
satisfies P . Here is the proof:

∀x?P(x)
?P(y)

(∀e)
[P(y)]1
∃∃x P(x)

(∃∃i)
∃∃x P(x)

� ¬P(y)
(

�

i)
[¬P(y)]1

∃∃x P(x)

� ¬P(y)
(

�

i)

∃∃x P(x)

� ¬P(y)
(

�

e, 1)

∀x(∃∃x P(x)

� ¬P(x))
(∀i)

∃∃x P(x)

� ∀x¬P(x)
(CD)

Call this proof P1.We can then use the conclusion ofP1 in an (inquisitive) disjunctive
syllogism: since our assumption ∃x P(x) allows us to rule out ∀x¬P(x), we can infer
the other disjunct, ∃∃x P(x). Here is the proof in detail (again, the step marked by
(Def) is merely a re-writing of the assumption, spelling out the classical existential
according to its definition).

∀x?P(x)
∃∃x P(x)

� ∀x¬P(x)
(P1) [∃∃x P(x)]1

[∀x¬P(x)]1
∃x P(x)

¬∀¬P(x)
(Def)

⊥ (→e)

∃∃x P(x)
(⊥e)

∃∃x P(x)
(

�

e, 1)

Example 6.2.4 Finally, consider the entailment of Example5.5.4, namely

f(b, c) = a, λb, λc |= λa.
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where f is a rigid function symbol and a, b, c non-rigid constant symbols. Spelling
out the definition of the identification questions, this entailment amounts to:

f(b, c) = a, ∃∃x(x = b), ∃∃x(x = c) |= ∃∃x(x = a).

Here is a proof of this entailment. The premises ∃∃x(x = b) and ∃∃x(x = c) allow us
to replace the constants b and c in the premise f(b, c) by variables, obtaining the term
f(y, z); since this term is rigid, the inquisitive existential can be introduced from it.

∃∃x(x = c)
∃∃x(x = b)

[z = c]2
[y = b]1 f(b, c) = a

f(y, c) = a
f(y, z) = a

(= e)

∃∃x(x = a)
(∃∃i)

∃∃x(x = a)
(∃∃e, 1)

∃∃x(x = a)
(∃∃e, 2)

Notice once more how intuitive and familiar the proof looks. In this case, reason-
ing with identification questions involves using familiar rules for identity and the
existential quantifier, with the only subtlety of paying attention to rigidity.

6.3 Completeness for the Classical Antecedent Fragment

In this section we show, following Grilletti [6], that the system described in the pre-
vious section is complete for the classical antecedent fragment of InqBQ introduced
in Sect. 5.7.2. In fact, we will prove something slightly stronger: if � ∪ {ψ} is a set
of clant formulas and � |= ψ, then there is a proof of this entailment which involves
only clant formulas and whichmoreover does not make use of the KF rule. This com-
pleteness result is especially significant as the clant fragment is very rich, including
all examples of first-order questions discussed in the previous chapter (though not
implications of such questions).

6.3.1 Proof System for the Classical Antecedent Fragment

A sub-system of our natural deduction system for InqBQ is given in Fig. 6.3. This
system differs from the general system in that it manipulates only clant formulas and
in that the KF rule is not present. Throughout this section, we will use the notation �
for derivability in this weaker system. A priori, even in restriction to clant formulas,
this could be a weaker derivability relation than the one given by the full system in
Fig. 6.1; however, it will follow from the completeness result that, for clant formulas,
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Conjunction Implication

ϕ ψ

ϕ ∧ ψ

ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

[α]
...
ψ

α → ψ

α α → ψ

ψ

Univ Falsum

ϕ[y/x]
∀xϕ

∀xϕ

ϕ[t/x]
∀xα

α[t/x]
⊥
ϕ

Identity Classical ¬¬ elimination

t = t

ϕ[t/x] t = t

ϕ[t /x]
¬¬α

α

Inquisitive disjunction Inquisitive existential

ϕ

ϕ ψ

ψ

ϕ ψ

ϕ ψ

[ϕ]
...
χ

[ψ]
...
χ

χ

ϕ[t/x]
∃∃xϕ

∃∃xϕ

[ϕ[y/x]]
...
ψ

ψ

-split ∃∃-split

α → ϕ ψ

(α → ϕ) (α → ψ)
α → ∃∃xϕ

∃∃x(α → ϕ)
x FV(α)

Constant domains (CD)

∀x(ϕ ψ)
(∀xϕ) ψ

x FV(ψ)

Fig. 6.3 A sound and complete natural deduction system for the classical antecedent fragment
of InqBQ. In the rules, t denotes a rigid term, while t, t ′ denote arbitrary terms, which may or may
not be rigid. In both cases, the termsmust be free for x in the relevant formula. The variableα ranges
over classical formulas, while ϕ and ψ range over clant formulas. The restrictions on variables are
the same as in Fig. 6.1. The differences with respect to the general proof system of Fig. 6.1 are the
restriction of all rules to clant formulas and the omission of the KF rule
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the two relations in fact coincide with each other and with the semantic entailment
relation.

The remainder of this section is devoted to the proof of the following theorem,
due to Grilletti [6].

Theorem 6.3.1 (Completeness for the clant fragment) Suppose � ∪ {ψ} ⊆ LClant.
Then � |= ψ ⇐⇒ � � ψ.

As usual, the interesting direction is completeness, since soundness follows from the
soundness of each inference rule.

6.3.2 Clant-Saturated Theories

Throughout this section, fix a signature �. For simplicity, we suppose � to be
countable, though this is not strictly required. Let A = {a0, a1, . . . } be a a countably
infinite set of rigid constants not included in�. Throughout this section we denote by
L and LA the set of clant sentences (thus excluding open formulas) in the signatures
� and � ∪ {A}. We denote by Lc and LA

c the restrictions of these sets to classical
sentences, not containing

�
or ∃∃.

A crucial notion for our completeness proof is the notion of a clant-saturated
theory. A clant-saturated theory is a set of clant sentences that has the right features
to be the set of sentences supported by a non-empty information state, in a model
where the constants in A name the individuals in the domain.

Definition 6.3.2 (Clant saturated theories)A set of clant sentences� ⊆ LA is called
a clant-saturated theory over A if it has the following properties:

– Consistency: ⊥ /∈ �;
– Deductive closure: for all ϕ ∈ LA, if � � ϕ then ϕ ∈ �;
– Inquisitive disjunction property: if ϕ

�

ψ ∈ � then ϕ ∈ � or ψ ∈ �;
– Inquisitive existence property: if ∃∃xϕ ∈ � then ϕ[a/x] ∈ � for some a ∈ A;
– Normality: if ∀xϕ /∈ � then ϕ[a/x] /∈ � for some a ∈ A.

An important fact about clant-saturated theories is that extending a clant-saturated
theory consistently with a classical sentence leads to a new clant-saturated theory.

Lemma 6.3.3 Let � be a clant-saturated theory over A and α a classical sentence
such that � �� ¬α. Then the deductive closure

� + α := {ϕ ∈ LA | � ∪ {α} � ϕ}

is itself a clant-saturated theory.

Proof Obviously, � + α is deductively closed. Let us consider the other require-
ments in turn.
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– Consistency. Suppose towards a contradiction that ⊥ ∈ (� + α). This means that
� ∪ {α} � ⊥, and so by the rules for implication� � ¬α, contrary to assumption.

– Inquisitive disjunction property. Suppose ϕ

�

ψ ∈ (� + α). This means that � ∪
{α} � ϕ

�

ψ, so by the rules for implication� � α → ϕ

�

ψ. By the
�

-split rule,
� � (α → ϕ)

�

(α → ψ). By the deductive closure and the disjunction property
of �, it follows that (α → ϕ) ∈ � or (α → ψ) ∈ �. In the former case we have
ϕ ∈ (� + α), in the latter case ψ ∈ (� + α).

– Inquisitive existence property. Similar to the previous item, using the ∃∃-split rule
and the inquisitive existence property.

– Normality condition. Suppose ∀xϕ /∈ (� + α). This means that � ∪ {α} �� ∀xϕ,
and thus by the rules for implication � �� α → ∀xϕ. Now, since α is a sentence,
α → ∀xϕ is provably equivalent in our system to ∀x(α → ϕ), and so also � ��
∀x(α → ϕ). By the normality condition on �, for some a ∈ A we have � ��
(α → ϕ)[a/x]. Since α is a sentence, (α → ϕ)[a/x] amounts to α → ϕ[a/x].
So we have � �� α → ϕ[a/x] which by the rules for implication gives � ∪ {α} ��
ϕ[a/x], that is, ϕ[a/x] /∈ (� + α). �

It is interesting to point out that this is the only place in the completeness proof
where the two split rules play a role. We saw that the validity of these rules captures
the fact that, semantically, there is always a single minimal way of strengthening a
state s to support a classical formula α. Now we saw that these rules enforce the
same property on the syntactic side: there is always a single minimal way to extend
a clant-saturated theory to one that contains α.

Using the previous lemma, we can establish a very significant fact: a clant-
saturated theory is completely determined by its classical part, i.e., by the set of
classical formulas it contains.

Definition 6.3.4 Let � be a clant-saturated theory. The classical part of �, �cl , is
the set of classical formulas in �.

Lemma 6.3.5 If �,�′ are clant-saturated theories over A with �cl = �′
cl , then

� = �′.
Proof We prove the following claim by induction onϕ: for any clant sentenceϕ, and
for any two clant-saturated theories �,�′, if �cl = �′

cl then ϕ ∈ � ⇐⇒ ϕ ∈ �′.
– Atoms. If ϕ is an atom or ⊥ then ϕ is a classical formula. So if two clant-saturated
theories have the same classical fragment, obviously they agree on ϕ.

– Conjunction. Suppose ϕ is a conjunction ψ ∧ χ and take any clant-saturated theo-
ries�,�′ with the same classical fragment. By deductive closure of these theories
and the induction hypothesis we have:

(ψ ∧ χ) ∈ � ⇐⇒ ψ ∈ � and χ ∈ �

⇐⇒ ψ ∈ �′ and χ ∈ �′

⇐⇒ ψ ∧ χ ∈ �′.
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– Inquisitive disjunction: this case is similar to the previous one, using the fact that
for a clant-saturated theory � we have ψ

�

χ ∈ � ⇐⇒ ψ ∈ � or χ ∈ �, by
deductive closure and the inquisitive disjunction property.

– Implication. Suppose ϕ is an implication α → ψ (note that since ϕ is a clant
sentence, the antecedentmust be classical). Take any clant-saturated theories�,�′
with the same classical fragment. Note that by deductive closure and the rules for
implication we have:

(α → ψ) ∈ � ⇐⇒ � � α → ψ

⇐⇒ � ∪ {α} � ψ

⇐⇒ ψ ∈ (� + α).

and similarly for�′. By the previous lemma,� + α and�′ + α are clant-saturated
theories. Moreover, these theories have the same classical fragment. To see this,
take any classical sentence β. Using the rules for implication and the fact that �

and �′ have the same classical fragment, we have:

β ∈ (� + α) ⇐⇒ � � α → β

⇐⇒ (α → β) ∈ �

⇐⇒ (α → β) ∈ �′

⇐⇒ �′ � α → β

⇐⇒ β ∈ (�′ + α).

Since � + α and �′ + α are clant-saturated theories with the same classical
fragment, we can then use the induction hypothesis on ψ to conclude that
ψ ∈ (� + α) ⇐⇒ ψ ∈ (�′ + α), which by what we have seen above implies
(α → ψ) ∈ � ⇐⇒ (α → ψ) ∈ �′.

– Universal quantifier. Suppose ϕ has the form ∀xψ. Take any clant-saturated
theories �,�′ with �cl = �′

cl . By deductive closure and normality we have
∀xψ ∈ � ⇐⇒ (ψ[a/x] ∈ � for all a ∈ A), and similarly for �′. Then using
the inductive hypothesis we have:

∀xψ ∈ � ⇐⇒ ψ[a/x] ∈ � for all a ∈ A

⇐⇒ ψ[a/x] ∈ �′ for all a ∈ A

⇐⇒ ∀xψ ∈ �′.

– Inquisitive existential quantifer: this case is similar to the previous one, using
deductive closure and the inquisitive existence property. �

It is an interesting open question whether an analogous result holds for the full
language of InqBQ.
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Open Problem 6.3.6 Consider a notion of saturated theory for the full language,
defined as in Definition 6.3.2 but without the restriction to clant sentences. Are there
two saturated theories �,�′ such that �cl = �′

cl but � �= �′?

6.3.3 Canonical Model Construction

Weare nowgoing to show that any clant-saturated theory� is the set of clant formulas
supported by an information state in some model. To make this claim more precise,
let us define the clant-theory of an information state.

Definition 6.3.7 (Clant theory of a state) Let M be a relational information model
and s a state in M . The clant theory of s is the set of clant sentences supported by s:

Thclant(M, s) = {ϕ ∈ LA | M, s |= ϕ}.

Our next goal in this section is to show that for any clant-saturated theory � there
is a model M and a state s such that � = Thclant(M, s).

To this end, we will now show how to construct a canonical model based on the
clant-saturated theory �. As in the propositional case, the worlds in this model will
be complete theories of classical formulas. However, in our setting we need complete
theories � with the extra property that every existential sentence in � is witnessed by
a constant a ∈ �. The idea will be familiar to the reader from the completeness proof
for classical first-order logic. We call such theories classical saturated theories.

Definition 6.3.8 (Classical saturated theories) A classical saturated theory over A
is a set � ⊆ LA

c of classical sentences in the signature � ∪ {A} satisfying:
– Consistency: ⊥ /∈ �;
– Deductive closure: for all α ∈ LA

c , if � � α then α ∈ �;
– Classical disjunction property: if α ∨ β ∈ � then α ∈ � or β ∈ �;
– Classical existence property: if ∃xα ∈ � then α[a/x] ∈ � for some a ∈ A.

Lemma 6.3.9 (Classical saturated theories are complete) If� is a classical saturated
theory, then for any classical sentence α ∈ LA

c , exactly one of α and ¬α belongs
to �.

Proof Take α ∈ LA
c . It is easy to check that the law of excluded middle α ∨ ¬α

is provable in our system, and so by deductive closure it is in �. By the classical
disjunction property, one amongα and¬αmust be in�. Moreover,α and¬α cannot
both be in�, sinceα,¬α � ⊥ and then⊥would have to be in� as well by deductive
closure, violating consistency. �

We now need a standard saturation lemma showing that every consistent set of
classical formulas with an extra property can be extended to a classical saturated
theory.
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Lemma 6.3.10 (Classical saturation lemma) Let � ⊆ LA
c be a set of classical sen-

tences satisfying:

– Consistency: � �� ⊥;
– Normality: for all α ∈ LA

c , if � �� ∀xα then � �� α[a/x] for some a ∈ A.

Then � can be extended to a classical saturated theory �.

Proof Starting with �0 := �, we will define a sequence �0 ⊆ �1 ⊆ �2 ⊆ . . . of
sets, each of which satisfies consistency and normality. To define this sequence, fix
an enumeration {α0,α1,α2, . . . } of the set LA

c of classical sentences. In order to
define �n+1 inductively, we consider sentence αn and distinguish three cases:

– Case 1: �n � ¬αn . In this case �n+1 := �n . Consistency and normality are obvi-
ously preserved.

– Case 2: �n �� ¬αn and αn is not of the form ∃xγ. Then we let �n+1 := �n ∪ {αn}.
Note that �n+1 is consistent, otherwise by the rules for negation we would have
�n � ¬αn . Moreover, �n+1 satisfies normality. For suppose �n+1 �� ∀xβ. By the
rules for implication, it follows that �n �� αn → ∀xβ. Since αn is a sentence,
αn → ∀xβ is provably equivalent to ∀x(αn → β), so we have �n �� ∀x(αn →
β). By the induction hypothesis, �n �� (αn → β)[a/x] for some a ∈ A. Since
αn is a sentence, and thus does not contain free occurrences of x , this amounts
to �n �� αn → β[a/x]. And again by the rules for implication, it follows that
�n+1 �� β[a/x].

– Case 3: �n �� ¬αn and αn is of the form ∃xγ. Since in our system ¬∃xγ is
inter-derivable with ∀x¬γ, it follows that �n �� ∀x¬γ, and so by normality,
�n �� ¬γ[ai/x] for some i . We can then let �n+1 := �n ∪ {αn, γ[ai/x]} where
i is the least number such that �n .
Note that �n+1 is consistent, because if we had �n ∪ {αn, γ[ai/x]} � ⊥, then
since γ[ai/x] � αn we would have �n ∪ {γ[ai/x]} � ⊥, and then by the rules for
negation also �n � ¬γ[ai/x], contrary to assumption.
Moreover, with a reasoning analogous to the one given for Case 2 we can argue
that �n+1 satisfies normality.

We can then let � := ⋃
n∈N �n . We just need to check that � is a classical saturated

theory.
Clearly, as a limit of a sequence of consistent sets, � is consistent. To see that �

is deductively closed, suppose � � αn . Since � is consistent, this implies � �� ¬αn .
Since �n ⊆ �, this implies �n �� ¬αn . But then by construction αn ∈ �n+1 and thus
also αn ∈ �.

To see that � has the classical disjunction property, we reason by contraposition:
suppose that αn,αm /∈ �. By construction, this is only possible if �n � ¬αn and
�m � ¬αm ,which implies� � ¬αn and� � ¬αm . Since in our proof systemwehave
¬αn,¬αm � ¬(αn ∨ αm), by deductive closure we have ¬(αn ∨ αm) ∈ �, which
implies αn ∨ αm /∈ �.

Finally, to see that � has the existence property, suppose ∃xγ ∈ � and suppose
∃xγ = αn . Then by consistency � �� ¬αn and thus also �n �� ¬αn . Therefore by
construction we have γ[a/x] ∈ �n+1 ⊆ � for some a ∈ A. �
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We are now ready to define a canonical model for the clant-saturated theory �.

Definition 6.3.11 (Canonical model) Let � be a clant saturated theory. We define
the canonical model Mc

� for � as follows:

– The set of worlds Wc
� is the set of classical saturated theories � over A such that

�cl ⊆ �.
– The domain is A.
– Given a relation symbol R and a world � ∈ Wc

�, 〈ai1 , . . . , ain 〉 ∈ R� ⇐⇒
R(ai1 , . . . , ain ) ∈ �.

– The identity relation at world � is given by ai ∼� a j ⇐⇒ (ai = a j ) ∈ �.
– For a non-rigid function symbol f and a world �, we let f�(ai1 , . . . , ain ) =

a j where j is the least number such that � contains the identity formula
f (ai1 , . . . , ain ) = a j .
Notice that this j exists: the formula ∃x( f (ai1 , . . . , ain ) = x) is provable in our
proof system (Exercise 6.4.2), and since it is a classical formula, by deductive
closure it belongs to �. Then by the classical existence property � must contain
f (ai1 , . . . , ain ) = a j for some a j ∈ A.
As a special case, for a non-rigid constant symbol c we let c� = a j where j is the
least number such that (c = a j ) ∈ �.

– For a rigid function symbol f and a world �, we let f�(ai1 , . . . , ain ) = a j where j
is the least number such that � (rather than �, as in the previous case) contains
the identity formula f(ai1 , . . . , ain ) = a j .
Again, such a j exists: for f rigid, the formula ∃∃x(f(ai1 , . . . , ain ) = x) is prov-
able in our proof system (Exercise6.4.2; note that this time the existential is an
inquisitive one), and since it is a clant formula, by deductive closure it belongs
to �, which is clant saturated. Then by the inquisitive existence property � must
contain f(ai1 , . . . , ain ) = a j for some a j ∈ A.
Note that the interpretation of f does not depend on the specific world �, but only
on �, and thus the interpretation of f is indeed rigid.
As a special case, for a rigid constant symbol c we let c� = a j where j is the least
number such that (c = a j ) ∈ �.

Lemma 6.3.12 For any closed term t of the signature � ∪ {A} and point � ∈ Wc
�,

if [t]� = a then the formula (t = a) is in �.

Proof By induction on t .

– If t is atomic, then since t is a closed term itmust be a constant c. Then by definition
we have [c]� = a j for some constant a j such that (c = a j ) ∈ � (this holds also
for the case in which c is rigid, since in that case (c = a j ) ∈ �cl ⊆ �).

– Suppose t is a complex term t = f (t1, . . . , tn) and suppose the claim holds for
t1, . . . , tn . Suppose [ti ]� = aki for each i . By induction hypothesis, � contains the
formula ti = aki By definition we have [ f (t1, . . . , tn)]� = f�([t1]�, . . . , [tn]�) =
f�(ak1 , . . . , ak1) = a j for a constant a j such that the formula f (ak1 , . . . , ak1) = a j

is in �. By using the rule (=e), i.e., the replacement of identicals, we have:
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(t1 = ak1), . . . , (tn = akn ), f (ak1 , . . . , ak1) = a j � f (t1, . . . , tt ) = a j .

Since � contains the premises and is closed under deduction of classical for-
mulas, � contains the conclusion, which is exactly the formula t = a j where
a j = [t]� . �

We are now in a position to show the truth lemma: for every classical formula, truth
at a world � in the canonical model coincides with membership to �.

Lemma 6.3.13 (Truth lemma) For any point � ∈ Wc
� and any classical sentence

α ∈ LA
c we have:

Mc
�, � |= α ⇐⇒ α ∈ �.

Proof By induction on α.

– α is an atomic formula R(t1, . . . , tn). Suppose [ti ]� = aki . By the previous lemma,
� contains the formula ti = aki . We have

Mc
�, � |= R(t1, . . . , tn) ⇐⇒ 〈ak1 , . . . , akn 〉 ∈ R�

⇐⇒ R(ak1 , . . . , akn ) ∈ �

⇐⇒ R(t1, . . . , tn) ∈ �

where the second biconditional uses the definition of R� , and the last uses the rule
(=e) of replacement of identicals and the closure of � under classical deduction.

– α is an atomic formula (t = t ′). Analogous to the previous case.
– α = ⊥. The claim is obvious, since ⊥ is not true at �, and not contained in � by
the consistency requirement.

– α = (β ∧ γ). We have:

Mc
�, � |= β ∧ γ ⇐⇒ Mc

�, � |= β and Mc
� |= γ

⇐⇒ β ∈ � and γ ∈ �

⇐⇒ β ∧ γ ∈ �,

where the second step uses the induction hypothesis and the last step the closure
of � under classical deduction.

– α = (β → γ). We have:

Mc
�, � |= β → γ ⇐⇒ Mc

�, � �|= β or Mc
� |= γ

⇐⇒ β /∈ � or γ ∈ �

⇐⇒ ¬β ∈ � or γ ∈ �

⇐⇒ (¬β ∨ γ) ∈ �

⇐⇒ (β → γ) ∈ �.
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Here, the second step uses the induction hypothesis. The third step uses
Lemma 6.3.9. The fourth step uses the closure of � under classical deduction
as well as the disjunction property of �. And the last step uses again the closure of
� under classical deduction, since in our system the formulas ¬β ∨ γ and β → γ
are inter-derivable.

– α = ∀xβ. We have:

Mc
�, � |= ∀xβ ⇐⇒ Mc

�, � |=x �→ai β for all ai ∈ A

⇐⇒ Mc
�, � |= β[ai/x] for all ai ∈ A

⇐⇒ β[ai/x] ∈ � for all ai ∈ A

⇐⇒ ∀xβ ∈ �.

Here, the second step uses the fact that Mc
�, � |=x �→ai (x = ai ), which justifies the

substitution of ai for x in β and the dropping of referent to the assignment, since
the result is a sentence. The third step uses the induction hypothesis. For the left-
to-right direction of the last step, suppose towards a contradiction that ∀xβ /∈ �.
Then by Lemma 6.3.9, ¬∀xβ ∈ �. Since in our system ¬∀xβ is inter-derivable
with ∃x¬β, by closure under classical deduction we have ∃x¬β ∈ �. By the
classical existence property of �, it follows that for some ai ∈ A, ¬β[ai/x] ∈ �,
and therefore byLemma 6.3.9 β[ai/x] /∈ �. Hence, it is not the case thatβ[ai/x] ∈
� for all ai ∈ A. The converse direction follows simply by closure under classical
deduction, since ∀xβ � β[ai/x]. �

The next step in the proof is to show that the set of classical formulas supported
by the entire universe Wc

� of the canonical model Mc
� is precisely the classical

part of �.

Lemma 6.3.14 For any classical sentence α ∈ LA
c we have

Mc
�,Wc

� |= α ⇐⇒ α ∈ �cl .

Proof Supposeα ∈ �cl . Thenα ∈ � for every� ∈ Wc
�. By the previous lemma, this

impliesMc
�, � |= α for every� ∈ Wc

�. Sinceα is classical and thus truth-conditional,
this implies Mc

�,Wc
� |= α.

For the converse, suppose α /∈ �cl . We claim that �cl ∪ {¬α} �� ⊥. For suppose
towards a contradiction that �cl ∪ {¬α} � ⊥. Then by the rules for implication we
would have �cl � ¬¬α, and by classical double negation elimination also �cl � α,
whence α ∈ �cl by the deductive closure of �, which contradicts our assumption.

Moreover,�cl ∪ {¬α} satisfies the normality condition. To see this, suppose�cl ∪
{¬α} �� ∀xβ. This means that �cl �� ¬α → ∀xβ, and since ¬α is a sentence also
�cl �� ∀x(¬α → β). This implies ∀x(¬α → β) /∈ �cl , and so ∀x(¬α → β) /∈ �

(since ∀x(¬α → β) is a classical formula). By the normality of �, it follows that
� �� ¬α → β[a/x] for some a ∈ A, which implies � ∪ {¬α} �� β[a/x]. A fortiori
also �cl ∪ {¬α} �� β[a/x].
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So, we have shown that �cl ∪ {¬α} satisfies consistency and normality, By
Lemma 6.3.10, this set can be extended to a classical saturated theory �. Since
¬α ∈ � we have α /∈ �, and thus by the previous lemma Mc

�, � �|= α. Finally, since
� ∈ Wc

� this implies Mc
�,Wc

� �|= α. �
The last step is to establish that the clant theory of the state Wc

� is precisely �. For
this, we first note that the clant theory of this state is a clant-saturated theory.

Lemma 6.3.15 Foranynon-empty state s, Thclant(Mc
�, s) is a clant-saturated theory.

Proof We have consistency since s �= ∅. Deductive closure follows since the rules of
our proof system are sound and thus anything provable is also a semantic entailment.
The remaining properties hold simply by the semantics and the fact that the domain
of the model is A. As an illustration, consider normality. If ∀xϕ /∈ Thclant(Mc

�, s)
this means that Mc

�, s �|= ∀xϕ. Thus, for some a ∈ A we have Mc
�, s �|=[x �→a] ϕ. By

definition of the canonical model we have Mc
�, s |=[x �→a] (x = a), and therefore by

Proposition5.4.3 Mc
�, s �|= ϕ[a/x], where we can drop reference to the assignment

because ϕ[a/x] is a sentence. This means that ϕ[a/x] /∈ Thclant(Mc
�, s). �

We can now prove the desired result.

Lemma 6.3.16 For any clant-saturated theory �, Thclant(Mc
�,Wc

�) = �.

Proof By the previous lemma, Thclant(Mc
�,Wc

�) is a clant saturated theory. By
Lemma 6.3.14, Thclant(Mc

�,Wc
�) and � have the same classical part. Therefore by

Lemma 6.3.5, these theories coincide. �

6.3.4 Completeness

In the previous section, we have seen how given a clant-saturated theory � we can
find an information state that, among the clant sentences, satisfies all and only the
sentences in �. In order to show completeness, what remains to be shown is the
following saturation lemma.

Lemma 6.3.17 Let � ∪ {ψ} ⊆ L be a set of clant sentences such that � �� ψ. Then
there exists clant-saturated theory � ⊆ LA over A such that � ⊆ � but ψ /∈ �.

In order to show this lemma, it is useful to introduce some new notation. If �,�

are sets of clant formulas with � �= ∅, we write

� � �

to mean that there are formulas λ1, . . . ,λm ∈ � such that � � λ1

�

. . .

�

λn .4

4 Note that the same relation can also be formulated more symmetrically as follows: � � � if there
are δ1, . . . , δn ∈ � and λ1, . . . ,λm ∈ � such that δ1 ∧ · · · ∧ δn � λ1

�

. . .

�

λn .
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We have the following fact, which amounts to the admissibility of a cut rule for
this relation. The proof involves only the rules for inquisitive disjunction, and is left
as an exercise (Exercise 6.4.6).

Lemma 6.3.18 (Cut admissibility) If � ∪ {χ} � � and � � � ∪ {χ} then � � �.

We are now ready to prove our saturation lemma.

Proof of Lemma 6.3.17. The proof adapts a construction by Dov Gabbay (see
[3], Sect. 3.3, Theorem 2). Take � ∪ {ψ} ⊆ L with � �� ψ. Fix an enumeration
ϕ0,ϕ1,ϕ2, . . . of all clant sentences in the extended language LA. We will define
inductively two sequences�0 ⊆ �1 ⊆ . . . and�0 ⊆ �1 ⊆ . . . making sure that for
every n the following conditions are satisfied:

1. �n �� �n;
2. �n ∪ �n contains only finitely many constants a ∈ A.

We start out by setting�0 = � and�0 = {ψ}. The first condition amounts to� �� ψ,
which is true by assumption. The second condition is true since � ∪ {ψ} is a set in
the signature �, and so contains no constants from A.

Now inductively, in order to define the n + 1-th elements of the sequence, we
consider the sentence ϕn . Now we distinguish two cases.

– Case 1: �n ∪ {ϕn} �� �n . In this case, we distinguish two sub-cases.

* Sub-case 1:ϕn is not of the form ∃∃xψ. In this casewe let�n+1 = �n ∪ {ϕn} and
�n+1 = �n . Obviously conditions 1 and 2 are satisfied for the pair�n+1,�n+1.

* Sub-case 2:ϕn is of the form∃∃xψ. In this case, take thefirst fresh constantai ∈ A
not occurring in�n ∪ {ϕn} ∪ �n , which exists because by induction hypothesis
�n ∪ �n contains only finitely many constants from A. We let �n+1 = �n ∪
{ϕn,ψ[ai/x]} and �n+1 = �n .
Obviously condition 2 is satisfied. To see that condition 1 is satisfied as well,
suppose towards a contradiction that �n+1 � �n+1, i.e., �n ∪ {ϕn,ψ[ai/x]} �
�n . This means that there are λ1, . . . ,λm ∈ �n such that there is a proof P :
�n ∪ {ϕn,ψ[ai/x]} � λ1

�

. . .

�

λm . Now let y be a variable not occurring in
the proof P . If we replace every occurrence of ai in the proof by y, we get a new
proof P ′. This replacement has no effect on any assumption besides ψ[ai/x],
nor on the conclusion, since we chose ai to be such that it does not occur in these
formulas. So we have P ′ : �n ∪ {ϕn,ψ[y/x]} � λ1

�

. . .

�

λm . Now since y
does not occur free in any assumption besides ψ[y/x] nor in the conclusion,
and given that we have the premise ∃∃xψ available (which is ϕn), we can use
the rule (∃∃e) to discharge the assumption ψ[y/x] and obtain P ′′ : �n ∪ {ϕn} �
λ1

�

. . .

�

λm . But this means that �n ∪ {ϕn} � �n , contrary to assumption.

– Case 2:�n ∪ {ϕn} � �n . In this case, wemust have�n �� �n ∪ {ϕn}, otherwise by
the previous lemmawewould have�n � �n , contrary to the induction hypothesis.
Once again, we distinguish two sub-cases.
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* Sub-case 1:ϕn is not of the form∀xψ. In this casewe let�n+1 = �n and�n+1 =
�n ∪ {ϕn}. Obviously conditions 1 and 2 are satisfied for the pair �n+1,�n+1.

* Sub-case 2:ϕn is of the form∀xψ. In this case, take the first fresh constant ai ∈ A
not occurring in �n ∪ �n ∪ {ϕn}, which exists since by induction hypothesis
�n ∪ �n contains only finitely many constants from A. We let �n+1 = �n and
�n+1 = �n ∪ {ϕn,ψ[ai/x]}.
Obviously condition 2 is satisfied by the resulting pair. To see that condition
1 is satisfied as well, suppose towards a contradiction that �n+1 � �n+1, that
is, �n � �n ∪ {∀xψ,ψ[ai/x]}. Then there must be sentences λ1, . . . ,λm ∈ �n

such that there is a proof P : �n � λ1

�

. . .

�
λm

� ∀xψ �

ψ[ai/x]. Let y be a
variable not occurring in this proof. Replacing ai by y throughout P weget a new
proof P ′. Note that the substitution does not affect the premises of the proof, nor
anyof the formulasλi or∀xψ, sinceai was chosen in such away as not to occur in
these sentences. So we have P ′ : �n � λ1

�

. . .

�

λm

� ∀xψ �

ψ[y/x]. Since
the variable y does not occur in the assumptions of the proof, we can use the rule
(∀i) and get P ′′ : �n � ∀x(λ1

�
. . .

�

λm

� ∀xψ �

ψ). Since x does not occur
free in any disjunct except ψ (as the other disjuncts are sentences), by the (CD)
rule we get a proof P ′′′ : �n � λ1

�

. . .

�

λm

� ∀xψ � ∀xψ. (Note that this is
the only point in the completeness proof where the rule (CD) is used.) Recalling
that ∀xψ is simply ϕn , this means that we have �n � �n ∪ {ϕn}, contrary to
assumption.

Finally, let� = ⋃
n∈N �n and� = ⋃

n∈N �n . Notice that we have� �� �, otherwise
we should also have�n � �n for some n, which is not the case by construction. This
implies, in particular, that � and � are disjoint.

Moreover, � and � partition the set of all clant sentences. For given a clant
sentence ϕn , by construction this is going to be included either in �n+1 (and thus in
�) or in �n+1 (and thus in �).

We are going to show that � is the clant-saturated theory that we need. First, we
have � ⊆ � (since � = �0) and ψ /∈ � (since ψ is in �0, and so also in �, which
is disjoint from �). It remains to be seen that � is clant-saturated.

– Consistency. We have ⊥ /∈ �, for if we had ⊥ ∈ �, then since � is non-empty,
by the ex-falso rule we would have � � �.

– Deductive closure. If� � ϕ for a clant sentenceϕ, thenϕmust be in�. Otherwise,
ϕ would have to be in �, and then we would have � � �.

– Inquisitive disjunction property. Suppose ϕ

�

ψ ∈ �. Then at least one of ϕ and
ψ must be in �. For otherwise, both ϕ and ψ would be in �, and then since
� � ϕ

�

ψ with ϕ,ψ ∈ � we would have � � �.
– Inquisitive existence property. Suppose ∃∃xψ ∈ �. Then � ∪ {∃∃xψ} �� �. Now
suppose ∃∃xψ is enumerated as ϕn . A fortiori, since �n ⊆ � and �n ⊆ �, we
have�n ∪ {ϕn} �� �n . In this case, by construction ψ[a/x] ∈ �n+1 ⊆ � for some
constant a ∈ A.

– Normality. Suppose ∀xψ /∈ �, and suppose ∀xψ is enumerated as ϕn . Then ϕn /∈
�n+1, and by construction this is only the case if we had �n ∪ {ϕn} � �n , i.e., if
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Φ ψ

Δ ψ

Γ0 Γ1 Γ2 . . .

Clant saturation

Classical saturation

W c
Δ

Fig. 6.4 Schema showing the proof of completeness for the clant fragment. In the first step, we
extend the given set � to a clant saturated theory �; in the second step, we consider all classical
saturations of �, and take these as universe for our canonical model Mc

�

Case 2 applied to ϕn . In this case, by construction we have ψ[a/x] ∈ �n+1 ⊆ �

for some constant a ∈ A. And since � is disjoint from �, ψ[a/x] /∈ �. �
With this saturation lemma in place,we arefinally in a position to prove completeness.
We first do so for the case of sentences.

Theorem 6.3.19 Let� ∪ {ψ} ⊆ Lbea set of clant sentences. If� |= ψ, then� � ψ.

Proof By contraposition, suppose � �� ψ. Then by the previous lemma we can find
a clant saturated theory � in the extended language LA with � ⊆ � and ψ /∈ �. By
Lemma 6.3.16 there is a model M and an information state s in M such that � is
exactly the set of clant sentences supported at s. In particular, s supports all formulas
in � but not ψ, which shows that � �|= ψ. �

Finally, we can extend this result easily to open clant formulas.

Proof of Theorem 6.3.1. Suppose � ∪ {ψ} is a set of clant formulas in a signature �

such that � �� ψ. Let �∗ be a larger signature obtained by adding a rigid constant cx
for each variable x occurring free in � ∪ {ψ}. Let �∗ ∪ {ψ∗} be the set of sentences
obtained from � ∪ {ψ} by replacing each free occurrence of x by cx . We have that
�∗ �� ψ∗. For if we had �∗ � ψ∗, then it would be easy to turn a proof of this into
a proof of � � ψ. Thus by the previous Theorem, we have a model M and a state
s such that M, s |= �∗ but M, s �|= ψ∗. Then, defining an assignment g such that
g(x) = [cx ] for all variables x we have M, s |=g � and M, s �|=g ψ, which shows
that � �|= ψ. �
A graphical illustration of the strategy of our completeness proof is given in Fig. 6.4.
Note that the completeness theorem gives us an alternative route to two key meta-
theoretic properties of the clant fragment, which we had obtained in Sect. 5.7.2 via
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a translation to classical first-order logic. First, entailment among clant formulas
is compact (Theorem5.7.9): if � ∪ {ψ} ⊆ LClant and � |= ψ, the entailment is wit-
nessed by a proof, in which only a finite set �0 of assumptions from � can appear;
thus, �0 |= ψ for some finite �0 ⊆ �. Second, since there is a procedure to system-
atically generate all possibly proofs, it is possible to recursively enumerate the valid
finitary entailments among clant formulas (Theorem5.7.10).

As a further corollary, we also get a completeness theorem for the relation of id-
entailment among clant formulas, obtained by restricting to id-models. Indeed, recall
that by Proposition5.5.31 we have � |=id ψ ⇐⇒ �,∀x∀y?(x = y) |= ψ. Notice
that the formula ∀x∀y?(x = y) is a clant formula. Therefore, by our completeness
theorem we have � |=id ψ iff in our proof system for clant, ψ can be derived from
� with the additional premise ∀x∀y?(x = y). Thus, if we extend our proof system
by taking ∀x∀y?(x = y) as an axiom, we get a system which is sound and complete
for id-entailment.

Corollary 6.3.20 (Completeness for id-entailment) Let � ∪ {ψ} ⊆ LClant. We have
� |=id ψ ⇐⇒ ψ is derivable from� in the proof system of Fig.6.3 augmented with
the axiom ∀x∀y?(x = y).

We can also use our results above to show that every non-entailment among clant
formulas can be refuted in a countable model, i.e., to establish the following theorem.

Theorem 6.3.21 (Existence of countable countermodels) Suppose � ∪ {ψ} ⊆
LClant(�) for � a countable signature. If � �|= ψ then there is a model M =
〈W, D, I,∼〉with #W ≤ ℵ0 and #D ≤ ℵ0, and an assignment g, such that M,W |=g

� and M,W �|=g ψ.

Note that the theoremdoes not followdirectly fromour canonicalmodel construction,
since the canonical models we constructed above are based on a countable domain D
but have an uncountable universeW . To establish our result, we first prove a lemma:
in a model with infinite domain D, every formula that can be refuted at all can in
fact be refuted on state of size at most #D.

Lemma 6.3.22 Suppose M = 〈W, D, I,∼〉 is a relational information model with
D infinite, s a state in M, and g an assignment. For all formulasϕ ∈ LQ=, if M, s �|=g

ϕ, there is a state t ⊆ s with #t ≤ #D such that M, t �|=g ϕ.

Proof By induction on ϕ. If ϕ is an atomic sentence or ⊥, by truth-conditionality
M, s �|=g ϕ implies M, t �|=g ϕ for some singleton state t , so the claim holds. We
only spell out the most interesting case of the inductive step, namely, the one for
ϕ = ∃∃xψ (for the case of

�

the idea is the same as in the proof of Proposition5.6.3;
for the remaining cases, see Exercise5.9.6).

So, let κ = #D and suppose M, s �|=g ∃∃xψ. This means that for every d ∈ D
we have M, s �|=g[x �→d] ψ. By the induction hypothesis, we thus have a substate
td ⊆ s with #td ≤ #D such that M, td �|=g[x �→d] ψ. Now let t = ⋃

d∈D td . Since t is
the union of κ sets each of which has cardinality at most κ, we have #t ≤ κ · κ,
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which is equal to κ since κ is infinite. For any given d, we have td ⊆ t and so by per-
sistency M, t �|=g[x �→d] ψ. Therefore, M, t �|=g ∃∃xψ, which completes the inductive
step for ∃∃. �

With this lemma at hand, we are now able to prove Theorem 6.3.21.

Proof of Theorem 6.3.21. Suppose � ∪ {ψ} ⊆ LClant(�) where � is countable, and
suppose � �|= ψ. It follows from our canonical model construction above that there
is a modelM = 〈W, D, I,∼〉with a countable domain D, and an assignment g, such
that M,W |=g � but M,W �|=g ψ. By Lemma 6.3.22, there is a countable substate
t ⊆ W with M, t �|=g ψ. Moreover, by persistency we have M, t |=g �. Now the
restriction of M to t , M|t , is a model with countable universe t and countable domain
D, and by locality we have M|t , t |=g � and M|t , t �|=g ψ. �

6.4 Exercises

Exercise 6.4.1 (Natural deduction for InqBQ) Consider again the (non)entailments
in Exercise5.9.4. For those entailments that are valid in InqBQ, give natural deduction
proofs.

Exercise 6.4.2 (Identity) Using the rules given in Fig. 6.1, prove the following facts:

– Symmetry: if t, t ′ are any terms, (t = t ′) � (t ′ = t).
– Transitivity: if t, t ′, t ′′ are any terms, (t = t ′), (t ′ = t ′′) � (t = t ′′).
– Existence of referent: if t is a term not containing x , � ∃x(t = x).
– Identifiability of referent: if t is a rigid term not containing x , � ∃∃x(t = x).

Exercise 6.4.3 (Rigidity) We saw in Sect. 5.5.4 that, if t is not rigid, then the entail-
ments ϕ(t) |= ∃∃xϕ(x) and ∀xϕ(x) |= ϕ(t) are not generally valid. However these
entailments become generally valid if we add the premise λt stating that we can
identify the referent of t (recall that λt := ∃∃x(x = t) for some x not occurring in t).
That is, we have:

– ϕ(t),λt |= ∃∃xϕ(x);
– ∀xϕ(x),λt |= ϕ(t).

Show that these entailments are indeed valid by giving natural deduction proofs.

Exercise 6.4.4 (Classical existential) Show that the rules for classical existential
given in Fig. 6.2 are implicitly available in the proof system of Fig. 6.1. That is, show
that if � denotes derivability in our system of Fig. 6.1, we have:

– if ψ ∈ LQ= and t is a term free for x in ψ, ψ[t/x] � ∃xψ;
– if � ∪ {ψ} ⊆ LQ=,α ∈ LQ=

c , and y is a variable free for x in ψ which does not
occur free in � ∪ {α}, then if �,ψ[y/x] � α, also �, ∃xψ � α.
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Exercise 6.4.5 (Provable classicality of negations) Complete the inductive proof of
Proposition6.1.2.

Exercise 6.4.6 (Admissibility of cut) Recall that, given two sets �,� of InqBQ
formulas, we write � � � if for some n ≥ 0 there are ψ1, . . . ,ψn ∈ � such that
� � ψ1

�

. . .

�

ψn (such that � � ⊥, in case n = 0). Prove that for any sets �,�

and any formula χ:

� ∪ {χ} � � and � � {χ} ∪ � implies � � �.
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Chapter 7
Relations with Dependence Logic

We saw how by bringing questions into play in logic we can capture dependency
relations as cases of (contextual or logical) entailment, and we can analyze such
relations using standard tools of logic. The notion of dependency is central to another
line of work in logic which has received much attention in recent years, with the rise
of dependence logic (Väänänen [1]) and other related logics based on so-called team
semantics (Hodges [2, 3]).

In this chapter, we discuss some of the similarities and differences between inquis-
itive logic and dependence logic, in particular with regard to the treatment of depen-
dencies in these two frameworks. We will focus here on the standard system of
dependence logic; for the connections between dependence logic and inquisitive
logic in the propositional and modal setting, which are also significant, the reader is
referred to Ciardelli [4, 5] and to Yang and Väänänen [6].

Dependence logic is similar to inquisitive semantics in many respects. First, like
inquisitive logic, it aims to achieve a conservative extension of classical logic with
a new kind of formulas; in the case of inquisitive logic, the new formulas are com-
plex formulas expressing questions; in the case of dependence logic, they are atomic
formulas expressing dependencies. Moreover, in both cases, the extension is made
possible by revising the standard semantics of classical logic, replacing standard
points of evaluations by sets of such points: in the case of inquisitive logic, the
relevant points are possible worlds, modeling states of affairs; in the case of depen-
dence logic, they are assignment functions fixing the values of variables. Thus, the
semantics of dependence logic is given relative to sets of assignments, called teams.
As in the case of inquisitive logic, this can (although it need not) be seen as a
semantics where formulas are evaluated with respect to states of partial information
(cf. Galliani [7, 8]), where this information concerns the values of variables rather
than the state of affairs. Moreover, like inquisitive logic, dependence logic (though
not its variants, such as independence logic [9] and inclusion logic [7]) satisfies persis-
tency with respect to the information ordering. This means that the logical operators
that can be naturally defined in these logics are essentially the same; and indeed,
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many of the operators we considered in inquisitive logic have also been explored
independently in the dependence logic literature (see in particular Abramsky and
Väänänen [10]); at the same time, sometimes the different motivations and history of
the two traditions are reflected in different choices of logical repertoire. Nevertheless,
the tight formal similarity between the two approaches allows for a fruitful transfer of
results and insights between them. In fact, many logical systems can be legitimately
regarded either as systems of dependence logic or as systems of inquisitive logic (this
applies, e.g., to the system InqBT that we will discuss in Sect. 7.4); the difference
between the two traditions is mostly one of aims and conceptual perspective, which
is sometimes, but not always, reflected in different technical setup choices.

One significant difference between dependence logic and inquisitive logic is the
conceptualization of the dependency relation. In dependence logic, dependency is
viewed as a relation holding between variables, whereas in inquisitive logic, it is
viewed as a relation between questions. In this chapter wewill explore the connection
in detail and we will argue that, while both perspectives are meaningful and natural,
the question-based perspective has some important assets to it: it is more general,
allowing us to capture a broader spectrum of dependence facts, and it allows us to
connect dependency directly to the central notions of logic, including entailment,
proofs, and the implication operator.

The chapter is structured as follows. We start in Sect. 7.1 by introducing the
variable-based perspective on dependency, which long predates the rise of depen-
dence logic andhas receivedmuch attention in database theory. In Sect. 7.2wepresent
the standard version of dependence logic, which combines this conception of depen-
dency with the idea of giving a team semantics for predicate logic. In Sect. 7.3 we
show how the key ideas of inquisitive logic apply naturally in the team semantic
setting, yielding a question-based perspective on dependency, and we discuss some
attractions of this perspective. In Sect. 7.4 we illustrate this general point by showing
that the inquisitive first-order logic of the previous chapter can be naturally adapted
to the team semantic setting; we discuss the sort of questions and dependencies that
can be captured in this system, and wemention some important open problems about
the resulting logic. In Sect. 7.5 we show how to interpret inquisitive first-order logic
in a more general semantic setup, from which both the standard semantics of the
previous chapter and the team-based semantics discussed in the present chapter can
be obtained as special cases. Finally, in Sect. 7.6 we conclude with a summary and
some further considerations.

7.1 V-Dependency in a Team

The starting point to understand the analysis of dependence in dependence logic is
the notion of a team. A team is a set of assignment functions.1

1 In dependence logic, a team is a set of partial assignments, i.e., partial functions from Var to
the domain of the given model. While this is convenient in practice, here we will stick with total
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T1 x y z

g1 2 1 1
g2 2 1 1
g3 4 2 1
g4 4 3 2
g5 6 4 2
g6 6 4 2

Fig. 7.1 An example of a team, where only the values of assignments on the variables x, y, z are
displayed

Definition 7.1.1 (Teams) A team over a domain D is a set of assignments
g : Var → D.

We can visualize a team as a table, where the columns correspond to the variables,
the rows to the assignments in the team, and the cell corresponding to assignment
g and variable x contains the value g(x). For instance, Fig. 7.1 represents a team
of six assignments over the domain of natural numbers; only the values of these
assignments on the variables x, y, z are displayed.

In the context of such a table, it makes sense to ask whether the value of a variable
is or is not determined by the values of other variables. For instance, in the team
of Fig. 7.1, the value of z is determined by the value of y: if we are told the value
of y on a given row in the table, we can infer from it the corresponding value of z.
Conversely, the value of y is not determined by the value of z: if we are given the
information that the value of z is 1, for instance, we are unable to reconstruct from
that the value of y. However, the value of y is jointly determined by the values of x
and z: if we are given both the value of x and the value of z on a given row, we can
infer the corresponding value of y.

Generalizing, we can view dependency as a relation that may or may not hold
between variables in the context of a team. We will refer to this relation here as
v-dependency, to contrast it with the q-dependency relation to be discussed below,
which is a relation between questions.

Definition 7.1.2 (v-dependency) Let T be a team. A set X of variables determines
a variable y in the context of T , denoted DT (X; y), if for every g, g′ ∈ T , if g(x) =
g′(x) for all x ∈ X , then g(y) = g′(y). We write DT (x1, . . . , xn; y) as a short-hand
for DT ({x1, . . . , xn}; y). We refer to DT as the relation of v-dependency.

Focusing for simplicity on the case of a finite set of premises, we can phrase the
relation DT (x1, . . . , xn; y) equivalently in terms of the existence of a functional

assignments, simply to avoid having to make stipulations about cases in which the value of a term
is undefined. This difference is not essential to the points discussed below.
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dependency f that yields the value of y from the values of x1, . . . , xn:

DT (x1, . . . , xn; y) ⇐⇒ ∃ f : Dn → D such that ∀g ∈ T :
g(y) = f (g(x1), . . . , g(xn)).

Thus, for instance, in the team X1 of Fig. 7.1:

– DT (y; z) holds;
– DT (z; y) does not hold;
– DT (x, z; y) holds.
The relation of v-dependency was well-studied long before the rise of dependence
logic, especially in the context of database theory [see 11, for an overview]. Themost
celebrated result about this relation is that the following three principles, known as
Armstrong’s axioms, completely characterize the logic of v-dependency in a natural
sense [12].2

1. DT (X; x) for any x ∈ X ;
2. DT (X; y) implies DT (X ′; y) for all X ′ ⊇ X ;
3. DT (Y ; z) and DT (X; y) for all y ∈ Y implies DT (X; z).
These axioms are formally analogous to Tarski’s axioms for a consequence relation,
with the difference that a consequence relation is defined on formulas rather than
variables. We will come back to this point in Sect. 7.3.4.

7.2 Dependence Logic

7.2.1 Historical Notes

The line of work leading to dependence logic originates with Henkin’s observation
that certain patterns of quantification over individuals are not expressible in first-
order logic. For instance, it is impossible to write a first-order formula expressing
that for every x and x ′, there exist a y determined only by x and a y′ determined
only by x ′, such that a certain formula φ(x, x ′, y, y′) holds. To provide the tools to
express such patterns, Henkin [13] introduced so-called branching quantifiers, and
Hintikka and Sandu [14] later developed this work in the framework of Independence
Friendly (IF) logic, which allows for quantified variables to be explicitly marked
as independent of other variables. IF logic was claimed by Hintikka not to allow
for a compositional semantics based on a recursive definition of truth/satisfaction.
However, Hodges [2, 3] showed that such a semantics could in fact be given in the

2 In fact, the second property below is implied by the first and the third. Armstrong’s axioms are
often formulated in terms of a relation DT (X; Y ) between two sets of variables. However, this
relation is distributive in the second component (X determines Y just in case X determines y for
each y ∈ Y ) and so is reducible to the relation we consider here, which has a single variable in the
second component.
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framework of team semantics, where formulas are evaluated relative to a relational
structure and a team—a set of variable assignments (Hodges used the term trump
instead of team, but the latter term has since become standard).

Building on the ideas of team semantics, Väänänen [1] proposed a new approach
to the issue. He noticed that the team semantics context allows us to interpret a new
kind of atomic formula =(x1, . . . , xn; y) expressing the fact that the value of y is
determined by the values of x1, . . . , xn . In this way, dependency and quantification
may be disentangled. In the Dependence Logic system that he proposed, the syntax
of quantification is standard, and the expression of dependencies between quanti-
fied variables is delegated to the new dependence atoms. Thus, e.g., the pattern of
quantification mentioned above may be expressed as follows:

∀x∀x ′∃y∃y′( =(x; y) ∧ =(x ′; y′) ∧ φ(x, x ′, y, y′)).

Due to the similarity between individual variables in predicate logic and proposi-
tional variables in propositional logic, dependence atoms have later been considered
also in the setting of propositional and modal logic (see, a.o., Väänänen [6], Yang
[15], Yang and Väänänen [16]). In this setting, a dependence atom has the form
=(p1, . . . , pn; q), and it is interpreted, relative to a set s of possible worlds, as
expressing that the truth-value that a world w ∈ s assigns to q is determined by the
truth-values it assigns to p1, . . . , pn .

At the same time, it was soon noticed that the basic idea of dependence logic could
be used to extend classical predicate logic with other kinds of atoms expressing
interesting relations between variables that only become “visible” at the level of
teams, such as independence (Grädel and Väänänen [9]) and inclusion (Galliani
[7]). In this way, the study of dependence logic evolved into a more general study
of team-based logics which extend predicate logic with formulas expressing global
properties of teams.

We cannot do justice here to the large amount of recent literature on these top-
ics; for an overview, a good starting point is the Stanford Encyclopedia entry on
Dependence Logic [17].

7.2.2 The Standard System D

In this section, we introduce the standard version of dependence logic, a logical
system D introduced by Väänänen [1] which conservatively extends classical first-
order logic with formulas expressing dependencies between variables.

The language LD of first-order dependence logic is obtained by introducing,
besides the usual atomic formulas of predicate logic, new atomic formulas called
dependence atoms, having the form =(x1, . . . , xn, y), where x1, . . . , xn, y ∈ Var.
LD does not have a primitive negation operator, but instead includes negative ver-
sions of the standard atoms of predicate logic, denoted ¬R(t1, . . . , tn) and t �= t ′.
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Complex formulas can be formed by means of conjunction ∧, a “tensor disjunction”
⊗, and two quantifiers ∀d and ∃d .3 Thus, the language LD is given by the follow-
ing definition, where t = t1, . . . , tn is a tuple of terms matching the arity of R, and
x = x1, . . . , xn is a tuple of variables:

φ := Rt | ¬Rt | t = t ′ | t �= t ′ | =(x; y) | φ ∧ φ | φ ⊗ φ | ∀d xφ | ∃d xφ.

Intuitively, formulas without dependence atoms correspond to formulas of classical
first-order logic in negation normal form (i.e., where negation only occurs in front of
atomic sentences). A dependence atom of the form =(x1, . . . , xn; y) stands for the
claim that the values of the variables x1, . . . , xn determine the value of the variable y.

Semantically, the language is interpreted relative to a standard relational structure
M = 〈D, I 〉 and a set T of assignments g : Var → D, i.e., a team over D. In order
to state the semantics of D, we first need to introduce some operations on teams.

Definition 7.2.1 (Operations on teams) Let T be a team over a domain D and let
x ∈ Var, d ∈ D, and f : T → ℘+(D), where ℘+(D) = (℘ (D) − {∅}). We define:

– T [x �→ d] = {g[x �→ d] | g ∈ T };
– T [x �→ f ] = {g[x �→ d] | g ∈ T and d ∈ f (g)};
– T [x �→ D] = {g[x �→ d] | g ∈ T, d ∈ D}.
In words, T [x �→ d] is the team that results from setting the value of x to d uniformly
throughout the team; T [x �→ f ] is the team obtained by replacing each g ∈ T by an
x-variant g[x �→ d] for each of the values d ∈ f (g); finally T [x �→ D] is the team
obtained by taking, for each g ∈ T , all of its x-variants g[x → d] for d ∈ D.

The semantics of D can then be stated as follows, where the denotation [t]Mg of a
term is defined as usual.

Definition 7.2.2 (Semantics of D)

– M |=T R(t1, . . . , tn) ⇐⇒ for all g ∈ T, 〈[t1]Mg , . . . , [tn]Mg 〉 ∈ I (R)

– M |=T ¬R(t1, . . . , tn) ⇐⇒ for all g ∈ T, 〈[t1]Mg , . . . , [tn]Mg 〉 /∈ I (R)

– M |=T (t = t ′) ⇐⇒ for all g ∈ T, [t]Mg = [t ′]Mg
– M |=T (t �= t ′) ⇐⇒ for all g ∈ T, [t]Mg �= [t ′]Mg
– M |=T =(x1, . . . , xn; y) ⇐⇒ DT (x1, . . . , xn; y)
– M |=T φ ∧ ψ ⇐⇒ M |=T φ and M |=T ψ
– M |=T φ ⊗ ψ ⇐⇒ T = T ′ ∪ T ′′ for some T ′, T ′′ s.t. M |=T ′ φ and M |=T ′′ ψ
– M |=T ∀d xφ ⇐⇒ M |=T [x �→D] φ
– M |=T ∃d xφ ⇐⇒ M |=T [x �→ f ] φ for some f : T → ℘+(D)

3 My notation here diverges from the official one. In the dependence logic literature, tensor disjunc-
tion is also called split-junction or simply disjunction, and often denoted∨. We will use the notation
⊗, which, besides avoiding conflict with our defined disjunction, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), brings
out the fact that, from an algebraic point of view, ⊗ is a quantale multiplication, as first noted by
Abramsky and Väänänen [10]. The two quantifiers are simply denoted ∀ and ∃ in the dependence
logic literature. We add a superscript d to distinguish them from other quantifiers that we consider
below.
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In words, a literal (positive or negative atom) is satisfied with respect to a team T in
case it is true under each assignment g ∈ T . A dependence atom =(x1, . . . , xn; y) is
satisfied with respect to T if the variables x1, . . . , xn determine y relative to T , in the
sense of Definition7.1.2. A conjunction is satisfied iff both conjuncts are satisfied.
A tensor disjunction is satisfied if the team T can be split into two (not necessarily
disjoint) sub-teams with each sub-team supporting one of the disjuncts. The clauses
for the quantifiers are perhaps best understood by introducing the notion of x-variant
of a team. Intuitively, an x-variant of a team T is a team T ′ that differs from T only
in the column corresponding to x .

Definition 7.2.3 (x-variants)Twoassignmentsg, g′ are x-variants, notation g ∼x g′,
if they coincide on every variable except possibly x (i.e., if g �Var−{x} = g′ �Var−{x}).
Given a team T and a set X of variables, the restriction of T to X is obtained by
restricting each element of the team:

T � X := {g � X | g ∈ T }.

We then say that two teams T, T ′ are x-variants if their restrictions to variables
different from x is the same:

T ∼x T ′ ⇐⇒ T �Var−{x} = T ′ �Var−{x}.

Equivalently, T ∼x T ′ if every g ∈ T is an x-variant of some g′ ∈ T ′ and every
g′ ∈ T ′ is an x-variant of some g ∈ T .

The clauses for quantifiers can then be shown to be equivalent (in the context of the
present system) to the following ones:

– M |=T ∀d xφ ⇐⇒ for every T ′ ∼x T, M |=T ′ φ;
– M |=T ∃d xφ ⇐⇒ for some T ′ ∼x T, M |=T ′ φ.

Thus, a team T satisfies ∀d xφ (respectively, ∃d xφ) if every (respectively, some) way
of re-assigning the interpretation of the variable x leads to a team that satisfies φ.4

The satisfaction relation has the same features which are familiar from the support
relation, although the relevant information ordering now concerns a team T , rather
than a set s of possible worlds: satisfaction is preserved as information grows (per-
sistency property) and in the limit case of inconsistent information, every formula is
trivially satisfied (empty team property).

Proposition 7.2.4 For any relational structure M and formula φ ∈ LD:

– Persistency property: M |=T φ and Y ⊆ T implies M |=Y φ.
– Empty team property: M |=∅ φ.

4 The equivalence between the two clauses holds in general for the existential quantifier. For the
case of the universal quantifier, it holds only in the context of a logic like D which, as we’ll see
shortly, satisfies a persistency property. In the context of a non-persistent logic, the two clauses give
rise to different interpretations of the universal quantifier. While the clause given in Definition7.2.2
is usually taken as the “official” one in the literature, the clause given in terms of x-variants is
arguably more natural from a conceptual point of view.
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In analogy to what we did in inquisitive semantics, we can recover a notion of
truth relative to single assignment g by defining it in terms of satisfaction by the
corresponding singleton team5:

M |=g φ
de f⇐⇒ M |={g} φ.

If we spell out the semantic clauses with respect to singletons, we find the following
truth conditions.

Remark 7.2.5 (Truth conditions for D)

– M |=g R(t1, . . . , tn) ⇐⇒ 〈[t1]Mg , . . . , [tn]Mg 〉 ∈ I (R)

– M |=g (t = t ′) ⇐⇒ [t]Mg = [t ′]Mg
– M |=g ¬R(t1, . . . , tn) ⇐⇒ 〈[t1]Mg , . . . , [tn]Mg 〉 /∈ I (R)

– M |=g (t �= t ′) ⇐⇒ [t]Mg �= [t ′]Mg
– M |=g =(x1, . . . , xn; y) always
– M |=g φ ∧ ψ ⇐⇒ M |=g φ and M |=g ψ
– M |=g φ ⊗ ψ ⇐⇒ M |=g φ or M |=g ψ
– M |=g ∀d xφ ⇐⇒ M |={g[x �→d] | d∈D} φ
– M |=g ∃d xφ ⇐⇒ M |=g[x �→d] φ for some d ∈ D

Here, it is important to notice that the truth conditions for a universal formula ∀dφ rel-
ative to g depend on the satisfaction conditions of φ at a non-singleton team obtained
by taking all x-variants of g. This means that, unlike in the other systems we encoun-
tered so far (but similarly to systems of inquisitive modal logic, see e.g. Ciardelli
and Roelofsen [18]), truth does not admit a direct recursive characterization; rather,
computing the truth conditions of some formula φ in general requires computing the
satisfaction conditions of some sub-formula ψ with respect to non-singleton teams.

A formula is said to be flat if satisfaction at a team T reduces to truth under each
assignment g ∈ T . Clearly, the notion of flatness is the counterpart of the notion of
truth-conditionality that we encountered in inquisitive logic.

Definition 7.2.6 (Flatness) We call a formula φ ∈ LD flat if for any model M and
team T :

M |=T φ ⇐⇒ M |=g φ for all g ∈ T .

It is easy to check by induction that all formulas of D without dependence atoms
are flat. This means that their semantics is fully captured by their truth conditions
relative to single assignments.

Moreover, these truth conditions are simply the ones familiar from the Tarskian
semantics of first-order logic, when ⊗ is identified with disjunction and ∀d and ∃d
with the quantifiers of first-order logic. This can be proved by induction. The key
case is that of a universal formula ∀d xφ (the remaining cases are obvious from
Remark7.2.5). Since we are assuming ∀d xφ does not contain dependence atoms,
neither does φ, and so φ is flat. Using Remark7.2.5 and the flatness of φ we have:

5 In dependence logic there seems to be no special name for this notion; I still find it very useful to
have one, and I will use truth for the sake of consistency with the previous chapters.
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M |=g ∀d xφ ⇐⇒ M |={g[x �→d]|d∈D} φ

⇐⇒ ∀g′ ∈ {g[x �→ d] | d ∈ D} : M |=g′ φ

⇐⇒ ∀d ∈ D : M |=g[x �→d] φ.

This shows that the semantics of formulas not containing dependence atoms is a
global counterpart of standard Tarskian semantics (identifying disjunction with ⊗
and the first-order quantifierswith ∃d and∀d ).Moreover, these formulas are represen-
tative of all formulas of first-order predicate logic, as every formula φ of first-order
logic can be identified with its negation normal form φ∗, obtained recursively by
pushing negations in front of atoms. This means, by a reasoning analogous to the
one we used for inquisitive semantics (cf. Sect. 2.2), that in restriction to the “clas-
sical fragment” of the language, consisting of formulas without dependence atoms,
the above semantics can be seen as a non-standard semantics for classical first-order
logic.

Thus, dependence logic and inquisitive first-order logic both extend classical first-
order logic by using a similar strategy. We saw that inquisitive first-order logic is a
conservative extension of classical first-order logic with questions, obtained by first
giving a state-based semantics for classical first-order logic and then exploiting this
semantics to interpret new question-forming operators. Similarly, dependence logic
can be seen as a conservative extension of classical first-order logic, obtained by
first giving a team-based semantics for classical first-order logic and then exploiting
this semantics to interpret a new kind of atoms capturing dependencies. Moreover,
in both cases the new semantics is obtained in a similar way, by moving from single
“points of evaluation” to sets of such points, ensuring that for classical formulas the
semantics is distributive, in the sense that satisfaction at a set of points boils down
to satisfaction at each element of the set.

One difference is that, whereas in the case of standard inquisitive logic the gen-
eralization targets the model of interpretation (thus moving from a single relational
structure to a set of possible worlds, each associated with such a structure), in the
case of dependence logic it targets the assignment function (thus moving from a
single assignment to a set of assignments). This is not an irreconcilable difference,
however: as we will see in the next sections, it is possible to implement the key ideas
of inquisitive logic in the setting of team semantics, and it is also possible to give
a semantic framework that is a common generalization of both information state
semantics and team semantics.

Before turning to that, let us look at some of the key features of D. As we expect,
the support-conditions for a formula φ relative to a team T are only sensitive to the
values that the assignments in T assign to the variables that occur free in φ.

Proposition 7.2.7 Let φ ∈ LD. If T and T ′ are teams such that T �FV(φ) = T ′ �FV(φ),
then M |=T φ ⇐⇒ M |=T ′ φ.

In particular, consider the case in which φ is a sentence, i.e., FV(φ) = ∅. Then for
every non-empty team T we have T �FV(φ) = {∅} (since ∅ is the only function from
the empty set of variables to D). Thus, for any non-empty teams T, T ′ we have
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T �FV(φ) = T ′ �FV(φ), and therefore M |=T φ ⇐⇒ M |=T ′ φ. Thus, if φ ∈ LD is a
sentence, we can simply write M |= φ as a shorthand for M |=T φ, where T is an
arbitrary non-empty team.

In this way, sentences of dependence logic, just as sentences in classical first-order
or second-order logic, define classes of relational structures. This naturally raises the
question of how the expressive power of these different systems compares.

This questionwas answered byVäänänen [1], who showed that, as far as sentences
are concerned, D has the same expressive power as �1

1 , the existential fragment of
second-order logic, consisting of second-order formulas of the form

∃T1 . . . ∃Tnφ

where T1, . . . , Tn are second-order variables, and φ contains no second-order quan-
tifiers. To state Väänänen’s result, let us introduce the following terminology: if φ
is a sentence in LD and ψ a sentence in �1

1 (over the same signature), we will say
that φ and ψ are equivalent, and write φ ≡ ψ, in case for any model M we have
M |= φ ⇐⇒ M |= ψ. Then, we have the following theorem.

Theorem 7.2.8 (Väänänen [1]) There exist computable maps (·)eso : LD → �1
1 and

(·)d : �1
1 → LD such that:

– for any sentence φ ∈ LD, φ ≡ φeso;
– for any sentence φ ∈ �1

1 , φ ≡ φd .

This theorem implies that first-order dependence logic is not recursively axiomatiz-
able. If it were, then the set of its valid sentences would be recursively enumerable.
But by the previous theorem, this would imply that the set of valid �1

1 sentences is
recursively enumerable, which is not the case. In fact, Väänänen [1] shows that the
set of (Gödel numbers of) theorems of D is not only not recursively enumerable, but
not even arithmetical, i.e., the property of being a code of a valid D-sentence is not
expressible in the language of Peano arithmetic.

For a simple example of a dependence logic sentence that is not equivalent to any
sentence in classical first-order logic, consider the following:

∃d x∀d y∃d z(=(z, y) ∧ z �= x).

Spelling out the semantic clauses, one can verify that this sentence is satisfied in a
model M = 〈D, I 〉 iff there exists a function f : D → D which is injective but not
surjective. Such a function exists iff D is infinite. Thus, the above formula is satisfied
by exactly those models whose domain is infinite—thus expressing a property which
is not expressible in standard first-order logic.
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This example also shows that D is not entailment compact: if ξn is a first-order
formula that says that there are at least n individuals in D, then the above sentence
is entailed by the set {ξn | n ∈ N} (since if all ξn are true, D must be infinite), but not
by any finite subset of this set (since the truth of finitely many ξn is compatible with
the finiteness of D).6

7.3 Q-Dependency

In the previous sections we discussed the relation of v-dependency in a team and we
saw howfirst-order logic can be extendedwith formulas that express v-dependencies.
We will now see that adopting the ideas of inquisitive logic in the team semantics
setting yields another perspective on the notion of dependency. Under this perspec-
tive, dependency is viewed, not as a relation between variables, but as a relation
between questions (in the way familiar from the previous chapters). We will refer
to this notion of dependency as q-dependency. In this section, we will consider the
relation between the two perspectives on dependency, and we will discuss a number
of attractions of the question-based perspective.

7.3.1 Inquisitive Logic in Team Semantics

The basic ideas of inquisitive logic, as laid out in Chap. 2, apply straightforwardly to
the setting of team semantics. For instance, it is natural to consider a statement α as
supported in the context of a team T if it is true under all assignments in T . Thus,
we expect the following analogue of the Truth-Support Bridge to hold for a team T
and a statement α:

M |=T α ⇐⇒ (M |=g α for all g ∈ T ).

6 However, as shown by Väänänen [1], D is satisfiability compact: if every finite subset of a set �

of D formulas is satisfiable, the entire set is satisfiable. The two understandings of compactness are
equivalent in classical logic, but they come apart for logics like D and InqBQ, since an entailment
claim � |= ψ does not reduce to the claim that a certain set � ∪ {ψ�} is unsatisfiable for some
formula ψ�; this is because, due to persistency, in these systems we cannot find a formula ψ�

which is supported/satisfied just when ψ is not. See the related discussion of the two notions of
compactness in Sect. 5.5.6.
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For an illustration, consider the team:

T2 x y

1 2 1
2 2 1
3 4 2
4 4 4
5 0 5
6 0 5

This team supports the statement α1 below, but not α2 or α3.

(1) α1: x is even.
α2: y is even.
α3: x is larger than y.

However, α2 is supported by the sub-team {g3, g4} and all subsets of this team, while
α3 is supported by {g1, g2, g3} and its subsets.

We may refer to the maximal sub-teams of a team T supporting a sentence φ as
the alternatives for φ in T , denoted AltT (φ). Then the alternatives for our three
statements in our team T2 are the blocks depicted in Fig. 7.2.
It is equally natural to interpret questions involving variables in the context of a team.
As an example, let us first consider two particular sorts of questions.

Example 7.3.1 (Identification questions, λx) With any variable x we can associate
an identification question λx , standing for the question what the value of x is. A
team T settles λx if it settles what the value of x is, i.e., if every assignment g ∈ T
assigns to x the same value:

M |=T λx ⇐⇒ ∀g, g′ ∈ T : g(x) = g′(x).

Example 7.3.2 (Polar questions, ?α) With any statement α we can associate a cor-
responding polar question ?α, standing for the question whether α is true or false. A

x y

2 1
2 1
4 2
4 4
0 5
0 5

(a) x is even

x y

2 1
2 1
4 2
4 4
0 5
0 5

(b) y is even

x y

2 1
2 1
4 2
4 4
0 5
0 5

(c) x > y

Fig. 7.2 The alternatives for three statements within the team T2



7.3 Q-Dependency 217

x y

2 1
2 1
4 2
4 4
0 5
0 5

(a) λx

x y

2 1
2 1
4 2
4 4
0 5
0 5

(b) λy

x y

2 1
2 1
4 2
4 4
0 5
0 5

(c) ?(x > y)

Fig. 7.3 The alternatives for three questions within the team T2

team T settles the question ?α if it determines what the value of α is, i.e., if every
assignment g ∈ T assigns to α the same truth value:

M |=T ?α ⇐⇒ ∀g, g′ ∈ T : (M |=g α ⇐⇒ M |=g′ α).

Figure7.3 illustrates these examples by showing the alternatives for two identification
questions and a polar question in the context of the team T2.

All notions, facts, and considerations that we discussed in Chap.2 carry over
straightforwardly to the team semantics setting. We will only restate explicitly those
facts and notions that play a special role in our discussion below.

7.3.2 Q-Dependency

The inquisitive approach we just described yields a natural analysis of dependency
as a relation holding between questions in the context of a team. Within a team T , a
questionμ is fully determined by a set� of questions ifμ is settled in any sub-team of
T which settles all questions in �. This gives us the central notion of q-dependency.

Definition 7.3.3 (Q-dependency) A set � of questions determines a question μ in
the context of a team T , denoted� |=T μ, if for every T ′ ⊆ T ,M |=T ′ λ for allλ ∈ �

implies M |=T ′ μ. We write λ1, . . . ,λn |=T μ as a shorthand for {λ1, . . . ,λn} |=T μ.

It is easy to see that v-dependency is a special case of q-dependency involving
identification questions. This is made precise by the following fact, which the reader
is invited to check.

Proposition 7.3.4 (v-dependencies are q-dependencies)Let X ∪ {y} be a set of vari-
ables and T a team. Let λX stand for the set of identification questions {λx | x ∈ X}.
We have:

DT (X; y) ⇐⇒ λX |=T λy.

Thus, v-dependencies correspond to a special class of q-dependencies—those which
involve only identification questions. However, the notion of q-dependency is much
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more general: besides v-dependencies, there are many other patterns that can be
recognized and captured naturally as cases of q-dependency, as we discuss in the
next section.

7.3.3 Generality

Consider the following team, in which the values of x and y always differ by one:

T3 x y
g1 1 0
g2 1 2
g3 2 1
g4 2 3
g5 3 2
g6 3 4
g7 4 3
g8 4 5

In this team, no non-trivial v-dependencies hold: the value of x neither determines
nor is determined by the value of y. Yet, in this table we can still recognize many
interesting patterns that one would naturally regard as dependencies. For instance,
here are some facts:

– the value of x determines the parity of y (i.e., whether y is even or odd);
– the parity of x determines the parity of y;
– the value of x and whether x < y determines the value of y.

These facts can be captured straightforwardly as q-dependencies involving not only
identification questions, but also polar questions, as follows:

– λx |=T3 ?Even(y);
– ?Even(x) |=T3 ?Even(y);
– λx, ?(x < y) |=T3 λy.

One can also give other examples where the sort of questions involved are of different
kinds, for instancemention-some ormention-allwh-questions. For instance, consider
the following team:

T4 x y z
g1 1 2 2
g2 1 4 6
g3 2 3 3
g4 2 9 6
g5 3 6 5
g6 3 12 10
g7 3 18 15
g8 3 24 15

Although the value of x determines neither the value of y nor the value of z, in this
table we have the following dependence patterns:
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– the value of x determines the set PF(y) of prime factors of y (if x = 1 then
PF(y) = {2}; if x = 2 then PF(y) = {3}; if x = 3 then PF(y) = {2, 3});

– the value of x yields some prime factor of z (if x = 1 then 2 ∈ PF(z); if x = 2
then 3 ∈ PF(z); if x = 3 then 5 ∈ PF(z)).

These facts can be captured naturally as cases of q-dependency involving the follow-
ing wh-questions:

– The question μ∀(y) := ‘what are the prime factors ofy′, supported by a team just
in case the team determines the exact set of prime factors of y:

M |=T μ∀(y) ⇐⇒ ∀g, g′ ∈ T : PF(g(y)) = PF(g′(y)).

– The question μ∃(z) := ‘what is one prime factor ofz′, supported by a team T just
in case T implies of some number n that it is a prime factor of z:

M |=T μ∃(z) ⇐⇒ ∃n ∈ N∀g ∈ T : n ∈ PF(g(z)).

The two dependence patterns noticed above amount to the q-dependencies:

– λx |=T4 μ∀(y);
– λx |=T4 μ∃(z).
Wewill see in the next section how the relevant questions can be expressed in a formal
language by adapting the tools of standard inquisitive predicate logic. For now, the
important point is that the notion of q-dependency allows us to view v-dependencies
as a special case of a much broader spectrum of logical facts that share common
features and that are naturally analyzed in a uniform way. This includes all claims
of the form ‘such-and-such information about x yields such-and-such information
about y’, where the relevant information need not be the complete information giving
the exact value of the variable, but could instead be partial information concerning,
e.g., parity, set of prime factors, etc.7

In fact, coming back to the idea of information types discussed in detail in Chap. 2,
I would like to suggest that we have a dependency whenever information of certain
types is guaranteed to yield information of another type. Call these the input types
and the output type of the dependency.

As we discussed in Chap.2, questions can be seen as names for information types.
Thus, e.g., λx stands for information of type ‘value of x’, while ?Even(x) stands for
information of type ‘parity of x’, and μ∀(x) defined above for information of type
‘prime factors of x’. Now to represent an arbitrary dependency as an instance of
q-dependency, we just need to find questions μ1, . . . ,μn that correspond to the input
types of the dependency and a question ν that stands for the output type. Then the

7 Notice also that the relevant information need not concern different variables: we can also capture
dependencies of the form ‘such-and-such information about x yields such-and-such other infor-
mation about x’; nor does each bit of information need to be about a single variable: we can have
dependencies of the form ‘such-and-such information about the relation between x and y yields
such-and-such information about z’.
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dependency amounts precisely to the fact that μ1, . . . ,μn |=T ν. In this sense, to the
extent that we accept the above idea of what a dependency is, the question approach
is bound to be a fully general one.8

7.3.4 Taking Dependencies to the Core of Logic

Perhaps the greatest merit of the question-based perspective on dependency is that
it brings out the deep connections existing between dependency and logical notions
like entailment, conjunction, implication, and proof. In this section, we briefly review
these manifold connections, with a focus on how they play out in the team semantics
setting.

Q-dependency and Tarskian consequence. First, q-dependency in a team is a
Tarskian consequence relation. This means that it is a relation between formulas
which satisfies the following three properties:

– Reflexivity: � |=T λ for all λ ∈ �;
– Weakening: � |=T μ implies �′ |=T μ for �′ ⊇ �;
– Transitivity: � |=T μ and �′ |=T λ for all λ ∈ � implies �′ |=T μ.

Thus, q-dependency in a given team is a consequence relation among questions. Since
v-dependency can be seen as a special case of q-dependency via the equivalence

DT (X; y) ⇐⇒ λX |=T λy,

this means in particular that Armstrong’s axioms discussed in Sect. 7.1 can be seen
as a special case of the axioms for consequence.

Q-dependency and logical operators. The fact that the relation of q-dependency
connects formulas, rather than variables, has important repercussions as well. For-
mulas, unlike variables, can be combined bymeans of logical operations, which gives
us important tools to manipulate dependency claims. For an illustration, reproducing
standard inquisitive semantics in the team setting we can introduce two connectives
∧ and → which work as follows:

– M |=T φ ∧ ψ ⇐⇒ M |=T φ and M |=T ψ;
– M |=T φ → ψ ⇐⇒ ∀T ′ ⊆ T : M |=T ′ φ implies M |=T ′ ψ.

These connectives interact with the q-dependency relation in the way conjunction
and implication standardly interact with a consequence relation. We have:

– �,μ1,μ2 |=T ν ⇐⇒ �,μ1 ∧ μ2 |=T ν;
– �,μ |=T ν ⇐⇒ � |=T μ → ν.

8 The claim is not that some given language will give us enough resources to capture all dependency
relations. Rather, it is that dependencies can in principle be analyzed as involving questions; which
dependencies can be analyzed in some particular formal language then depends on which questions
are expressible in that language.
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Thus, we can always trade multiple determining questions for a single conjunctive
one, and we can always drop one of the determining questions and correspondingly
weaken our conclusion to a conditional question. This is just an illustration of the
fact that q-dependency is a consequence relation that is naturally related to a set of
well-behaved logical operations on questions.

Interestingly, moreover, the relevant operations are generalizations to questions
of the standard operations of classical logic: when applied to statements α and β, the
connectives∧ and→we just defined yield formulasα ∧ β andα → β which behave
as conjunction and material conditional in classical logic. Thus, by working with
questions we can handle the premises and the conclusion of a dependence relation
by means of logical operators that obey familiar properties and which, moreover,
generalize the familiar operators of classical logic. This is a significant finding.

Notice also that, as we discussed in Sect. 2.5, implication yields a fully general
way to express q-dependencies in the object language. Indeed, one can check that
we have:

λ1, . . . ,λn |=T μ ⇐⇒ M |=T λ1 ∧ · · · ∧ λn → μ

⇐⇒ M |=T λ1 → (· · · → (λn → μ)).

So, the fact thatλ1, . . . ,λn determineμ is expressed in the object language by the for-
mula λ1 ∧ · · · ∧ λn → μ, or equivalently by λ1 → (· · · → (λn → μ)). This brings
out a deep connection existing between q-dependency and the implication connective
of inquisitive logic.

Conditional q-dependencies for free. Consider the following team:

T5 x y
g1 1 0
g2 1 2
g3 2 3
g4 2 3
g5 3 2
g6 3 4
g7 4 5
g8 4 5

In this team, the value of x does not generally determine the value of y, but it does so
in restriction to those assignments in which the value of x is even. This is an example
of a conditional dependency.

In the question-based perspective on dependency, conditional dependencies are
captured straightforwardly by allowing statements, in addition to questions, as
premises of a q-dependence relation. Since statements and questions can both be
interpreted in terms of the same notion of support, the definition of the relation
|=T does not need to be generalized to accommodate statements, but can be applied
directly. Following a reasoning analogous to the one in Sect. 2.3.3, we can then verify
that the following holds.



222 7 Relations with Dependence Logic

Proposition 7.3.5 Let � be a set of statements and � ∪ {μ} a set of questions. Let
T be a team and let |�|M = {g | M |=g γ for all γ ∈ �}. We have:

�,� |=T μ ⇐⇒ � |=T∩|�|M μ.

This means that the relation �,� |=T μ captures a conditional q-dependency: the
questions in � determine the question μ, not (necessarily) relative to the entire team
T , but relative to those assignments in T that satisfy �. We can read the relation
�,� |=T μ as ‘� determines μ given �’.

Notice also that the approach vindicates the connection between conditional
dependencies and conditionals. Let us focus for simplicity on the case in which
a question μ determines a question ν given a statement α, i.e., the case in which
α,μ |=T ν. This can be expressed in the object language by the formula:

α → (μ → ν).

Recall that μ → ν expresses the fact that μ determines ν in the evaluation state.
Thus, a conditional dependency is expressed by a conditional having the condition
α as antecedent and the dependence formula μ → ν as consequent.

Summing up, there is no need to further generalize the q-dependency relation |=T

in order to capture conditional dependencies: it suffices to allow statements to be
plugged in as determinants alongside questions. In addition, conditional dependen-
cies can be expressed smoothly in the language as conditionals having the relevant
conditions as antecedents.

Q-dependency and logical entailment. As usual, the inquisitive approach comes
with a general notion of entailment, defined in terms of preservation of support,
where the premises and the conclusion can be statements or questions. In the team
semantics setting, this is given by the following definition.

Definition 7.3.6 (Entailment)
� |= ψ ⇐⇒ for every model M and team T : M |=T � implies M |=T ψ.

This general notion of entailment is a conservative extension of the standard entail-
ment relation for statements. That is, if � ∪ {α} is a set of statements, for which
support amounts to global truth, we have:

� |= α ⇐⇒ for every model M and assignment g : M |=g � implies M |=g α.

At the same time, in the case in which we have question assumptions and a question
conclusion, this general notion of entailment captures logical q-dependencies, i.e.,
q-dependencies which hold in virtue of the logical form of the sentences involved,
regardless of the interpretation of non-logical symbols. That is, suppose � is a set of
statements and � ∪ {μ} a set of questions. We have:

�,� |= μ ⇐⇒ �,� |=T μ for any team T in any model M.
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Thus, �,� |= μ captures the fact that � logically determines μ given �.
For a simple example, in the team version of inquisitive first-order logic given in

the next section, the following are simple examples of logical q-dependencies (where
P, Q are unary predicates and f a unary function symbol):

?Px, Px ↔ ¬Qy |= ?Qy,

λx, y = f (x) |= λy.

Summing up, we saw that q-dependency comes in two versions: a contextual version,
relativized to a team, and a logical version, obtained by quantifying over all teams.
Logical q-dependencies are those q-dependencies that hold purely on the basis of
the logical form of the sentences involved. The main insight of the question-based
perspective is that logical q-dependency is nothing but a facet of the central notion
of logic, the notion of entailment, once this notion is generalized to apply not just to
statements, but also to questions.

Q-dependency and logical proofs. One important repercussion of the fact that logi-
cal q-dependencies are logical entailments is that such dependencies can be formally
proved if we have a proof system for (a fragment of) our logic. This brings out
the connections between dependency and another central concern of logic, namely,
proofs.

For an example, consider the logical q-dependency ?Px, Px ↔ ¬Qy |= ?Qy
discussed above.Wecanprove the validity of this dependency in exactly the sameway
as we can prove the entailment ?p, p ↔ ¬q |= ?q in InqB, using standard inference
rules for disjunction and implication (recall that in inquisitive logic, polar questions
?α are realized as inquisitive disjunctions α

� ¬α). Omitting proof steps which
involve only statements, we have the following proof.

?Px

[Px]1 Px ↔ ¬Qy
¬Qy
?Qy

(

�

i)

[¬Px]1 Px ↔ ¬Qy
Qy
?Qy

(

�

i)

?Qy
(

�

e, 1)

The fact we saw above, that q-dependencies are expressed by implications in the
object language, also has repercussions in proofs, since it means that we can make
inferences with dependence formulas just as we normally do with implications. In
order to show that a dependency μ → ν holds under certain assumptions, we can
simply suppose the question μ and try on that basis to derive the question ν. This
corresponds to the standard implication introduction rule.9 Moreover, if we have a

9 Recalling from Sect. 4.4 that questions in proofs can be seen as placeholders for arbitrary informa-
tion of the corresponding type, this is intuitive: in order to prove that a dependency holds, we suppose
to be given information of the input type, and try to infer on that basis that we have information of
the output type.
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dependency μ → ν and we also have the determining question μ, we can conclude
the determined question ν. This is just the standard implication elimination rule.10

Summing up, then, by manipulating questions in inferences we can prove that
certain dependencies are logically valid—i.e., hold merely on the basis of the logical
form of the sentences involved. Note that in order for this to be possible, it matters
that questions—unlike variables—have syntactic structure to them. Since questions
are built up by means of certain logical operators, we can make inferences with them
by using the inference rules for these operators, as illustrated by the above example
of a proof.

7.3.5 Wrapping Up

We saw that the core ideas of inquisitive semantics, as developed in Chap. 2, apply
straightforwardly in the setting of team semantics. This allows us to interpret state-
ments and questions involving variables uniformly in the context of a team. This
perspective yields a natural notion of dependency as a relation between questions,
which encompasses v-dependency as a special case, but which is muchmore general,
capturing not only dependencies of the form ‘the value of x1, . . . , xn yields the value
of y’, but also, for instance, all dependencies of the form ‘such-and-such information
about x1, . . . , xn yields such-and-such information about y’. Moreover, since on this
view dependency is a relation between questions, and since questions are sentences,
we can uncover a number of significant connections between dependency and gen-
eralized versions of the classical logical operators, consequence relation, and proof
system.

The general view discussed in this section can be implemented in many particular
formal systems, differing from each other in their set of primitive logical operators.
In the next section, we will make the discussion more concrete by considering one
particular implementation of these ideas, which stems from interpreting the language
of inquisitive first-order logic in the setting of team semantics.

7.4 The System InqBT

In this section, we will see how the language LQ= of inquisitive first-order logic can
be given a natural interpretation in the setting of team semantics, where formulas are
interpreted relative to a single model and a set of assignments. We will refer to this
system as InqBT, where the letter T marks the fact that formulas are interpreted with
respect to teams. In the dependence logic literature, this system has been considered
by Yang [16] under the name of WID (for weak intuitionistic dependence logic), and

10 Again, given our conception on the role of questions in proofs, this is intuitive: if we have a
dependency as well as information of the input type, we also have information of the output type.
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most of the results mentioned here can already be found in her work. However, we
will interpret the system in the light of the conceptual picture of inquisitive semantics,
as laid out in Chap.2 and in the previous section.

7.4.1 Syntax and Semantics

The language of InqBT is just the language LQ= studied in the previous chapter,
given by the following syntax:

φ ::= p | ⊥ | φ ∧ φ | φ → φ | φ

�
φ | ∀xφ | ∃∃xφ,

where p is an atom in the given signature (of the form R(t1, . . . , tn) or (t = t ′)).
We regard the inquisitive connectives

�
and ∃∃ as question-forming operators in

the way familiar from the previous chapter. Formulas without these operators are
called classical and identified with formulas of classical first-order logic. The set of
classical formulas is denoted LQ=

c . The operators ¬,∨, ∃, and ? are defined as in the
previous chapter.

The semantics of InqBT is given in the setting of teams semantics: formulas are
evaluatedwith respect to a relational structureM = 〈D, I 〉 and a team T . The clauses
are identical to those for InqBQ, except that now it is the team that plays the role of
the information state.

Definition 7.4.1 (Semantics of InqBT)

– M |=T R(t1, . . . , tn) ⇐⇒ for all g ∈ T, 〈[t1]Mg , . . . , [tn]Mg 〉 ∈ I (R)

– M |=T (t = t ′) ⇐⇒ for all g ∈ T, [t]Mg = [t ′]Mg
– M |=T ⊥ ⇐⇒ T = ∅
– M |=T φ ∧ ψ ⇐⇒ M |=T φ and M |=T ψ
– M |=T φ → ψ ⇐⇒ for all T ′ ⊆ T : M |=T ′ φ implies M |=T ′ ψ
– M |=T φ

�

ψ ⇐⇒ M |=T φ or M |=T ψ
– M |=T ∀xφ ⇐⇒ M |=T [x �→d] φ for every d ∈ D
– M |=T ∃∃xφ ⇐⇒ M |=T [x �→d] φ for some d ∈ D

The clauses for atoms are the same as in D: an atomic sentence is settled with respect
to a team T if it is true under any assignment g ∈ T . Notice that unlike in D, we
do not need negative atoms in the language, since the same result can be produced
compositionally by negating atoms by means of the negation operator, defined as
¬φ := φ → ⊥. The clauses for the connectives are the familiar inquisitive clauses,
except that now, the relevant information ordering concerns the team T . The clauses
for the quantifiers are also very similar to those we used in InqBQ, except that instead
of setting the value of x to d in just one assignment, we have to do this for all
assignments g ∈ T . Setting the value of x to d throughout T amounts to stipulating
that x denotes d; this allows us to look at what is settled in T about the object d,
rather than about the variable x .
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7.4.2 Basic Properties

Support in InqBT has the usual features.

Proposition 7.4.2 For any relational structure M and φ ∈ LQ= we have:

– Persistence property: M |=T φ and T ′ ⊆ T implies M |=T ′ φ.
– Empty team property: M |=∅ φ.

We define the notion of truth by setting M |=g φ ⇐⇒ M |={g} φ. We can then
check that all the standard operators have the familiar truth-conditions, while the
inquisitive operators

�

and ∃∃ have the same truth-conditions as the corresponding
classical operators ∨ and ∃.
Proposition 7.4.3 (Truth-conditions for InqBT)

– M |=g R(t1, . . . , tn) ⇐⇒ 〈[t1]Mg , . . . , [tn]Mg 〉 ∈ I (R)

– M |=g (t = t ′) ⇐⇒ [t]Mg = [t ′]Mg
– M �|=g ⊥
– M |=g φ ∧ ψ ⇐⇒ M |=g φ and M |=g ψ
– M |=g φ → ψ ⇐⇒ M �|=g φ or M |=g ψ
– M |=g φ

�

ψ ⇐⇒ M |=g φ or M |=g ψ
– M |=g ∀xφ ⇐⇒ M |=g[x �→d] φ for all d ∈ D
– M |=g ∃∃xφ ⇐⇒ M |=g[x �→d] φ for some d ∈ D

Notice that now, unlike in D, the truth-conditions for a formula φ ∈ LQ depend only
on the truth-conditions for the sub-formulas of φ: computing the truth-conditions
for φ never requires moving to non-singleton teams. Also, recall from the previous
chapter thatφcl is the classical formula obtained fromφ by replacing each occurrence
of

�
and ∃∃with∨ and ∃, respectively. Then, it follows from the previous proposition

that φ and φcl always have the same truth-conditions.

Corollary 7.4.4 For any model M, assignment g, and φ ∈ LQ, M |=g φ ⇐⇒
M |=g φcl .

Thus, any formula in InqBT has the same truth conditions as some classical formula.
This is strikingly different from the situation in D, where some formulas have truth
conditions which are not shared by any standard first-order formula; an example is
the sentence ∃d x∀d y∃d z(=(z, y) ∧ z �= x) which is true only if the domain of the
model is infinite.

We say that φ is truth-conditional (or flat, in the dependence logic lingo) if φ
is supported by a team T whenever it is true relative to each g ∈ T . As in InqBQ,
classical formulas are always truth-conditional. This fits the idea that we regard such
formulas as statements and that for statements, support is connected to truth via the
Truth-Support Bridge.
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Proposition 7.4.5 Every α ∈ LQ=
c is truth-conditional in InqBT.

Since classical formulas are truth-conditional and their truth conditions are the stan-
dard ones, with respect to such formulas what we have given is simply a team
semantics for classical first-order logic.

As in the system D, the support conditions for a formula φ depend only on the
values that the assignments in the team T give for those variables which actually
occur free in φ.

Proposition 7.4.6 Let φ ∈ LQ=. If T �FV(φ) = T ′ �FV(φ), then

M |=T φ ⇐⇒ M |=T ′ φ.

In particular, a sentence, which has no free variables, is not sensitive to the team of
evaluation at all, as long as this team is non-empty. If φ is a sentence, we can thus
write M |= φ as a shorthand for M |=T φ, where T is any non-empty team. As a
corollary of this fact, we get that all sentences are trivially truth-conditional. Thus, in
InqBT, unike in InqBQ, no sentence is a question, even if it contains occurrences of�

and ∃∃. Notice that, since a sentence φ and its classical variant φcl have the same
truth-conditions (Corollary7.4.4), and since both are truth-conditional, we always
have φ ≡ φcl .

Proposition 7.4.7 If φ is a sentence, φ ≡ φcl in InqBT.

Thus, any sentence of InqBT is equivalent to a classical first-order sentence. Again,
this is very different from what we find in D, where some sentences are equivalent
to properly second-order sentences of standard predicate logic.

On the other hand, in InqBT things become interesting as soon as we consider
formulas with free variables. As we show in the next section, by using the inquisitive
operators

�

and ∃∃ we can capture many classes of questions concerning the values
of variables.

7.4.3 Questions in InqBT

In this section we show how the different sorts of questions concerning variables that
came up in our discussion in Sect. 7.3.3 can be captured by formulas in InqBT. For
our illustration we will make use of Fig. 7.4, which depicts four teams over a domain
of natural numbers. In our examples, the questions we will consider have x as their
only free variable. Proposition7.4.6 ensures that the value of the assignments in T
on the variable x is all that matters to decide on the support of these questions, which
is why our tables in the figure consist of only one column, the one corresponding to
the variable x .

Example 7.4.8 (Polar questions) Given a classical formula α, consider the
formula ?α := α

� ¬α. Using Proposition7.4.5, we have:
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x

16
16
16
16

(a)

x

7
13
17
25

(b)

x

12
18
24
36

(c)

x

5
10
15
35

(d)

Fig. 7.4 Four teams Ta, Tb, Tc, Td , each consisting of four assignments into the domainN of natural
numbers. For simplicity, we only display the value that each assignment in the team gives for the
variable x

M |=T ?α ⇐⇒ M |=T α or M |=T ¬α

⇐⇒ [ M |=g α for all g ∈ T ] or [ M |=g ¬α for all g ∈ T ]
⇐⇒ ∀g, g′ ∈ T : [ M |=g α ⇐⇒ M |=g′ α ].

Thus, ?α captures the polar question whether α, which is settled relative to a team
T if all the assignments in the team agree on whether α is true or false.

For instance, suppose our domain is the set N of natural numbers, and Even is a
predicate symbol interpreted as the set of even numbers. Then, ?Even(x) expresses
the question whether the value of x is even or odd, which is supported by a team just
in case the parity of x is constant in the team.

Thus, for instance, the question ?Even(x) is settled in the teams Ta and Tc of
Fig. 7.4, where it is settled that x is even, and also in Tb, where it is settled that x is
odd, but not in Td where it is unsettled whether x is even or odd (Fig. 7.5).

Example 7.4.9 (Identification questions) Let t be a term, and let y be any variable
which does not occur in t . Consider the formula ∃∃y(t = y). We have:

M |=T ∃∃y(t = y) ⇐⇒ there is a d ∈ D s.t. M |=T [y �→d] (t = y)

⇐⇒ there is a d ∈ D s.t. for all g ∈ T, [t]Mg[y �→d] = [y]Mg[y �→d]
⇐⇒ there is a d ∈ D s.t. for all g ∈ T, [t]Mg = d

⇐⇒ for all g, g′ ∈ T : [t]Mg = [t]Mg′ .

Question Ta Tb Tc Td

?Even(x)
λx

λmod3(x)
∃∃yPf(y, x)
∀y?Pf(y, x)

Fig. 7.5 The support conditions for the questions in our examples with respect to the four assign-
ments of Fig. 7.4



7.4 The System InqBT 229

Thus, ∃∃y(t = y) is settled in T in case all g ∈ T assign the same value to t . If, as in
the previous chapter, we define the abbreviation

λt := ∃∃y(t = y) [y /∈ FV (t)]

we thus have that λt captures precisely the identification question “what is the value
of t”.

This covers, in particular, identification questions of the form λx about the value
of variables, which we considered in Sect. 7.3.3, which are settled in a team T if all
the assignments g ∈ T agree on the value of x . Among the teams depicted in Fig. 7.4,
λx is settled only in Ta .

Identification questions about complex terms are also interesting. For instance,
suppose our domain is N, and suppose modk is a unary function symbol such that
modk(x) denotes the remainder of the division of x by k. Then the question

λmodk(x)

is settled in a team T in case all the assignments g ∈ T agree on the value ofmodk(x),
that is, in case the equivalence class of x modulo k is settled in T . Thus, λmodk(x)
captures the question “what is the value of x , modulo k?”. Note that in the particular
case of k = 2 this is equivalent to the polar question ?Even(x) discussed in the
previous example.

Among the teams in Fig. 7.4, the questionλmod3(x) is settled in teams Ta , where it
is settled that mod3(x) = 1, and also in team Tc, where it is settled that mod3(x) = 0.
The question is not settled in team Tb and Td , since the value of x modulo 3 is not
constant in these teams.

Finally, it is worth pointing out that identification questions can be expressed in a
different way as well. Consider the formula ∀y?(t = y), where y does not occur in t .
We have:

M |=T ∀y?(t = y) ⇐⇒ for all d ∈ D : M |=T [y �→d]?(t = y)

⇐⇒ for all d ∈ D, for all g, g′ ∈ T :
M |=g[y �→d] (t = y) ⇐⇒ M |=g′[y �→d] (t = y)

⇐⇒ for all g, g′ ∈ T, for all d ∈ D :
([t]Mg = d) ⇐⇒ ([t]Mg′ = d)

⇐⇒ for all g, g′ ∈ T : [t]Mg = [t]Mg′ .

This is precisely the semantics of the identification question λt defined above. Thus,
the identification question about a term t can be expressed equivalently in InqBT as
∃∃y(t = y) or as ∀x?(t = x). This double route to identification questions is useful,
since the two ways to express such questions use a different set of operators, which
gives us two alternative perspectives on such questions.
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Example 7.4.10 (Mention-some questions) Consider the formula∃∃yR(x, y), where
R is a relation symbol. We have:

M |=T ∃∃yR(x, y) ⇐⇒ there is a d ∈ D s.t. M |=T [y �→d] R(x, y)

⇐⇒ there is a d ∈ D s.t. for all g ∈ T : M |=g[y �→d] R(x, y)

⇐⇒ there is a d ∈ D s.t. for all g ∈ T : 〈g(x), d〉 ∈ I (R).

Thus, ∃∃yR(x, y) is settled in the team T if there is an object d such that all assign-
ments in T agree that the value of x is R-related to d.

To make this more concrete, suppose again that our domain is the setN of natural
numbers, and suppose our language contains a binary relation symbol Pf such that
Pf(y, x) holds iff y is a prime factor of x . Then the question ∃∃yPf(y, x) is settled
relative to a team T in case there is a number n ∈ N which is a prime factor of x
throughout the team. So, this formula captures precisely the mention-some question
“what is some prime factor of x?” discussed in Sect. 7.3.3.

Among the teams of Fig. 7.4, the question ∃∃yPf(y, x) is supported in Ta , where
it is settled that 2 is a prime factor of x , as well as in Td , where it is settled that 5 is a
prime factor, and in Tc, where it is settled of both 2 and 3 that they are prime factors
of x . The question is not supported in Tb, since there is no number which is settled
in Tb to be a prime factor of x .

Example 7.4.11 (Mention-all questions) Consider the formula ∀y?R(x, y), where
R is a relation symbol. Using the support conditions for polar questions that we have
seen above, we have:

M |=T ∀y?R(x, y) ⇐⇒ for all d ∈ D : M |=T [y �→d]?R(x, y)

⇐⇒ for all d ∈ D, for all g, g′ ∈ T :
M |=g[y �→d] R(x, y) ⇐⇒ M |=g′[y �→d] R(x, y)

⇐⇒ for all g, g′ ∈ T, for all d ∈ D :
〈g(x), d〉 ∈ I (R) ⇐⇒ 〈g′(x), d〉 ∈ I (R)

⇐⇒ for all g, g′ ∈ T :
{d | 〈g(x), d〉 ∈ R} = {d | 〈g′(x), d〉 ∈ R}.

Thus, ∃∃yR(x, y) is settled in the team T in case all assignments in T agree on the
set of objects d such that x is R-related to d.

To make this more concrete, consider the formula ∀y?Pf(y, x). This is settled
relative to a team T in case all assignments in T agree on the set of prime factors of
x . Thus, this formula captures the question “what are the prime factors of x?” which
we discussed in Sect. 7.3.3.

Among the teams of Fig. 7.4, the formula ∀y?Pf(y, x) is supported in Ta , where
it is settled that the only prime factor of x is 2, and in Tc, where it is settled that the
prime factors of x are 2 and 3. It is not settled in the remaining teams Tb and Td ,
since the assignments in these teams to not agree with each other on the set of prime
factors of x .
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The examples we saw are just a small sample of the class of questions expressible
in InqBT. Yet, these examples hopefully suffice to illustrate that the sort of picture
discussed abstractly in the previous section can be made concrete in the setting of
a simple formal language in which questions about the values of variables can be
formalized.

7.4.4 Dependencies in InqBT

Let us now illustrate how q-dependencies can be analyzed and expressed naturally
in InqBT, in accordance with the general idea described in Sect. 7.3.2. Recall that, if
T is a team based on the model M , we obtain a notion of entailment relative to T by
letting:

� |=T ψ ⇐⇒ ∀T ′ ⊆ T : (M |=T ′ � implies M |=T ′ ψ).

As we saw above, if � ∪ {μ} is a set of questions, then � |=T μ captures a q-
dependency relation: in the context of T , the questions in � determine the ques-
tion μ. If moreover � is a set of statements, then �,� |= μ captures a conditional
q-dependency: � determines μ relative to those assignments that make � true.

Recall moreover that, as usual in inquisitive logic, contextual entailments are
expressed in the object language by implications:

M |=T φ → ψ ⇐⇒ φ |=T ψ.

We can now see that the q-dependencies discussed in Sect. 7.3.3 can indeed all
be captured as relations between questions expressible in the system InqBT, and
can be expressed in the object language by corresponding implications. By way of
illustration, here are some examples, where we use the abbreviations introduced in
the previous section for questions in InqBT.

– The value of x1, . . . , xn determines the value of y.

* Meta-language: λx1, . . . ,λxn |=T λy.
(Note: this corresponds to the v-dependency DT (x1, . . . , xn; y).)

* Object language: λx1 ∧ · · · ∧ λxn → λy.
(Note: this is equivalent to the dependence atom =(x1, . . . , xn; y).)

– The value of x determines the parity of y.

* Meta-language: λx |=T ?Even(y).
* Object language: λx → ?Even(y).

– The parity of x determines the parity of y.

* Meta-language: ?Even(x) |=T ?Even(y).
* Object language: ?Even(x) → ?Even(y).
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x y

0 2
0 4
1 3
1 5
2 5
2 7
(a)

x y

0 2
1 3
2 2
3 3
4 2
5 3
(b)

x y

3 2
3 4
4 3
4 5
5 4
5 6
(c)

x y

1 2
1 4
2 6
2 12
3 3
3 9
(d)

x y

1 6
1 12
1 14
2 6
2 12
2 15
(e)

Fig. 7.6 Five teams, each consisting of six assignments into the domain N. Only the value of the
assignments on the variables x and y is displayed

– The value of x and whether x < y determines the value of y.

* Meta-language: λx, ?(x < y) |=T λy.
* Object language: λx ∧ ?(x < y) → λy.

– The value of x determines the prime factors of y.

* Meta-language: λx |=T ∀z?Pf(z, y).
* Object language: λx → ∀z?Pf(z, y).

– The value of x determines some prime factor of y.

* Meta-language: λx |=T ∃∃zPf(z, y).
* Object language: λx → ∃∃zPf(z, y).

Figure7.6 depicts several different teams, and Fig. 7.7 illustrates the above depen-
dencies by showing in which of these teams each dependency holds.

As these examples illustrate, in InqBT we can capture and express a broad range
of dependence facts, of which standard functional dependencies are just a particular
case. Notice that among the relations that can be captured as q-dependencies, some
are weaker than standard functional dependencies; this holds, for instance, when
complete information about x yields only some partial information about y (say, the

Dependency Ta Tb Tc Td Te

λx → λy
λx → ?Ey
?Ex → λy
?Ex → ?Ey

λx∧ ?(x<y) → λy
λx → ∀z?Pf(z, y)
λx → ∃∃zPf(z, y)

Fig. 7.7 A table that shows in which of the teams of Fig. 7.6 each of the dependencies we consider
holds
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parity of y, its equivalence class modulo k, its set of prime factors, a single prime
factor, etc.). Some other dependencies are stronger than the standard ones. This is
the case, e.g., when partial information about x suffices to get complete information
about y (when, e.g., we can determine the value of y just based on the parity of x).
Many other dependencies are neither weaker nor stronger than the standard ones,
but simply incomparable. This holds, e.g., when some kind of partial information
about x determines some other kind of partial information about y (say, the parity of
x determines the set of prime factors of y).

7.4.5 Higher-Order Dependencies

Another interesting class of dependencies that can be captured naturally from the
inquisitive perspective are what we might call higher-order dependencies. To illus-
trate the idea, consider four variables x, y, z, t and a team T over the set R of real
numbers which contains all assignments of the following form, for a, b ∈ R:

x y z t
a b 2a −b

In the context of this team, giving a functional dependency f of y on x implies
giving a functional dependency h f of t on z. For suppose we are given the infor-
mation that y is functionally determined from x via f , i.e., the information that
g(y) = f (g(x)). Then it follows that g(t) = −g(y) = − f (g(x)) = − f (g(z)/2),
and so g(t) = h f (g(z)) for the function h f (r) = − f (r/2).

Thismeans that in any sub-team T ′ ⊆ T in which there is a functional dependency
of y on x , there is also a functional dependency of t on z. Now, given what we have
seen above, in T ′ there is a functional dependency of y on x just in caseM |=T ′ λx →
λy, and there is a functional dependency of t on z just in case M |=T ′ λz → λt . So,
the observation amounts to the fact that:

∀T ′ ⊆ T : M |=T ′ λx → λy implies M |=T ′ λz → λt.

This is nothing but the definition of the q-dependency relation:

λx → λy |=T λz → λt.

Thus, the higher-order dependency that we pointed out in the context of the above
team can be analyzed straightforwardly in InqBT as a case of standard q-dependency
where the premise and the conclusion are both dependence formulas. (Notice that a
dependence formula like λx → λy can be seen as a question asking for a functional
dependence of y on x ; the question is supported in a team just in case such a functional
dependence is established.)
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As usual, our higher-order dependence can then be expressed by an implication
of the relevant formulas:

(λx → λy) → (λz → λt).

This illustrates a further advantage of question-based approach over the variable-
based one: the former, unlike the latter, can be naturally iterated. We first con-
sider dependencies between certain questions, which amount to contextual entail-
ments. These can be expressed in the object language by corresponding implications.
These implications can themselves be seen as questions, which can in turn bear q-
dependency relations to each other relative to a team. And these higher-order depen-
dencies can be captured simply by adding another implication among the relevant
formulas. And of course, this can be iterated further.

7.4.6 Properties of InqBT and Relations to Other Systems

As the previous sections illustrate, InqBT is a natural choice for a system that captures
a broad range of dependencies in the team semantics setting. As we saw, this system
can be viewed naturally as an inquisitive logic, which extends classical first-order
logic with formulas expressing questions about the values of variables. The basic
operators of the system are essentially the same as those of the inquisitive first-
order logic InqBQ, which, as we saw in the previous chapter, have familiar logical
properties. In spite of these attractions, InqBT has received relatively little attention in
the literature, and its properties are not well-understood. In this section, we mention
some facts and someopenproblems about this logic and its connections to the systems
InqBQ and D.

Fundamental open questions. The basic meta-theoretical questions which are open
for InqBQ are also open for InqBT. In particular, it is not known whether InqBT is
compact in the sense of entailment, i.e., if for every valid entailment� |= ψ there is a
finite set �0 ⊆ � such that �0 |= ψ.11 Neither is it known whether the set of InqBT-
validities is recursively enumerable, orwhether the logic admits a sound and complete
axiomatization. Finally, it is not known if there exists an entailment-preserving trans-
lation from InqBT to classical first-order logic over a suitable signature, nor whether
any invalid entailment can be refuted relative to a countable structure and a count-
able team. More investigation is needed to settle these important (and interrelated)
questions.

On the other hand, most of the positive results that we saw in the previous chapter
about fragments of InqBQ, if not all, have counterparts for InqBT. In the case of the

11 It is easy to see, with a reasoning analogous to the one given for Proposition5.5.34, that InqBT is
compact in the sense of satisfiability: if every finite subset of a set � of formulas is satisfiable, then
� is satisfiable (where � is satisfiable in InqBT if there is a relational structure M and a non-empty
team T such that M |=T �).
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classical antecedent fragment (cf. Sect. 5.7.2), it can be expected that an entailment-
preserving translation to classical first-order logic can be given by a strategy anal-
ogous to the one discussed in Sect. 5.7.2; the existence of such a translation then
implies that in restriction to the fragment, entailment is compact, and the set of
validities (as well as the set of valid entailments with finitely many premises) is
recursively enumerable. It seems also likely that the completeness proof for the frag-
ment given in Sect. 5.7.2 can be adapted to InqBT, given a suitably adapted version
of the proof system. In the case of the finitely coherent fragment (cf. Sect. 5.7.1), it
is easy to show by induction that the counterpart of Proposition5.7.2 also holds in
InqBT: every formula in the fragment is n-coherent for some finite n (where coher-
ence is now understood in terms of the team, as in Kontinen [19]). This fact allows
us to use a strategy analogous to the one described in Meißner and Otto [20] to
define an entailment-preserving translation from the finitely coherent fragment to
classical first-order logic. Again, the existence of such a translation implies that, in
restriction to the fragment, entailment is compact and the set of InqBT-validities is
recursively enumerable. Notice that the finitely coherent fragment includes formulas
corresponding to the dependence atoms of D: let us abbreviate by κt the formula
∀x?(t = x), where x is a variable not occurring in t ; we have seen in Example7.4.9
that κt is equivalent to λt , and expresses the identification question about t ; then
the formula κx1 ∧ · · · ∧ κxn → κy has the same semantics as the dependence atom
=(x1, . . . , xn; y), and it belongs to the finitely coherent fragment since it does not
contain the operator ∃∃.
Relations to the inquisitive first-order logic InqBQ. The system InqBT can be seen
as a counterpart of InqBQ in a setting in which the relevant information state is given
by a set of assignments instead of a set of possible worlds. Since the semantics
is structurally the same, most of the facts about InqBQ which we established in
the previous chapter carry over straightforwardly to InqBT. We will not restate the
relevant facts here. Instead, we will point out some respects in which the two logics
differ as a result of their different setups.

First, in InqBQ a significant role was played by rigid terms, whose interpretation
is fixed across different possible worlds in a state. The counterpart of rigid terms in
InqBT is given by closed terms—terms not involving any variables—whose interpre-
tation is fixed across different assignments in a team. Thesewill be the terms towhich
a universal can be validly instantiated, and from which an inquisitive existential can
be introduced.

Proposition 7.4.12 If t is a closed term then for any formula φ ∈ LQ=, the entail-
ments φ[t/x] |= ∃∃xφ and ∀xφ |= φ[t/x] are valid in InqBT.

Proof We show only the first entailment, since the proof of the second is similar.
Suppose M |=T φ[t/x] for some relational structure M and team T . Now let d ∈ D
be the object such that d = [t]M : crucially, this object is assignment-independent,
since t is closed. It is straightforward to show by induction that for every formula
ψ we have M |=T ψ[t/x] ⇐⇒ M |=T [x �→d] ψ. Since M |=T φ[t/x], it follows that
M |=T [x �→d] φ, which by the semantics implies M |=T ∃∃xφ. �
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Inquisitive existential

ϕ[c/x]
∀xϕ

∀xϕ

ϕ[t/x]
∀xα

α[t/x]
ϕ[t/x]
∃∃xϕ

∃∃xϕ

[ϕ[c/x]]
...
ψ

ψ

Fig. 7.8 Inference rules for quantifiers in InqBT. In these rules, α ranges over classical formulas,
while φ,ψ range over arbitrary formulas; t is a closed term, while t is an arbitrary term; in the
introduction rule for the universal quantifier, c is a constant symbol which does not occur in any
undischarged assumption; in the elimination rule for the inquisitive existential quantifier, c is a
constant symbol which does not occur free in ψ or in any undischarged assumption

Note that if t is not closed, the relevant entailments are not in general valid. For
instance, let φ be the formula (x = y). Then φ[y/x] is the formula (y = y), which
is a validity. However, ∃∃xφ is the formula ∃∃x(x = y), which is not a validity, but
the identification question that we denoted by λy, which is supported by a team if
all assignments agree on the value of y. Thus in this case we have φ[y/x] �|= ∃∃xφ.

Similarly, if we take φ to be the formula ?P(x), then the formula ∀xφ is a validity
by Proposition7.4.7, but φ[y/x] is the formula ?P(y), which is not a validity (cf.
Example7.4.8). This shows that ∀xφ �|= φ[y/x].

For analogous reasons, the role of free variables as placeholders for arbitrary
individuals is taken over in InqBT by fresh constant symbols.

Proposition 7.4.13 If c is a constant not occurring in the set � ∪ {φ,ψ}:
– � |= ∀xφ ⇐⇒ � |= φ[c/x];
– �, ∃∃xφ |= ψ ⇐⇒ �,φ[c/x] |= ψ.

This proposition also hold in InqBQ, provided the constant c is rigid. However, in
InqBQ analogous facts hold if instead of a fresh constant c we use a fresh variable
y. This is not the case in InqBT: for instance, as we already mentioned, in InqBT
∀x?P(x) is valid even though ?P(y) is not. What underlies this mismatch between
free and bound variables is that, in InqBT, bound variables are always interpreted
rigidly in the team by the semantic clause for the quantifiers, while free variables
may receive different values at different assignments in the team.

This discussion suggests the following strategy tomake inferenceswith quantifiers
in InqBT: we first extend the relevant signature with a countably infinite stock of
constant symbols (to make sure that we can never run out of fresh variables in a
proof) and then we adopt the inference rules for quantifiers given in Fig. 7.8.

Another significant difference between InqBT and InqBQ stems from Proposi-
tion7.4.7: in InqBT, every sentence φ is equivalent to its classical variant φcl . Thus,
at the level of sentences inquisitive operators collapse onto the corresponding clas-
sical operators. This reflects the fact that in InqBT, we do not model uncertainty
about the state of affairs (since the relational structure is fixed), but only uncertainty
about the values of variables, which is only relevant for the interpretation of open
sentences.
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As a consequence of this collapse of inquisitive operators in the case of sentences,
InqBT does not share some of the meta-theoretic properties of InqBQ. In particular,
we do not have the disjunction property for

�

. To see this, let c be a constant symbol:
the formula ?P(c), which abbreviatesP(c)

� ¬P(c), is equivalent to P(c) ∨ ¬P(c)
in InqBT by Proposition7.4.7, and thus logically valid; but obviously, neither P(c)
nor ¬P(c) is logically valid. Similarly, we do not have the existence property for ∃∃.
To see this, consider the formula

∃∃x((P(c) ∧ x = c) ∨ (¬P(c) ∧ x = c′))

where c, c′ are two distinct constant symbols. With a reasoning analogous to the one
we gave on page 154 we can show that this formula is logically valid in InqBT, but
none of the formulas

(P(c) ∧ t = c) ∨ (¬P(c) ∧ t = c′)

obtained by instantiating the existential to a term t is logically valid.
In spite of these difference existing between InqBQ and InqBT, it seems natural

to conjecture that one can give entailment-preserving translations between the two
systems. If so, many of the open questions about the properties of InqBT reduce to
the corresponding questions about InqBQ, and vice versa. Thus, research on these
two systems is tightly connected. We leave it as an open problem to establish (or
disprove) this conjecture.

Open Problem 7.4.14 (Existence of a translation of InqBT into InqBQ) Given a
signature �, is there a signature �′, a decidable set � ⊆ LQ=(�′) and a com-
putable map (·)∗ : LQ=(�) → LQ=(�′) s.t. for all sets � ∪ {ψ} ⊆ LQ=(�) we have
� |=InqBT ψ ⇐⇒ �∗,� |=InqBQ ψ∗?

Open Problem 7.4.15 (Existence of a translation of InqBQ into InqBT) Given a
signature �, is there a signature �′, a decidable set � ⊆ LQ=(�′) and a com-
putable map (·)∗ : LQ=(�) → LQ=(�′) s.t. for all sets � ∪ {ψ} ⊆ LQ=(�) we have
� |=InqBQ ψ ⇐⇒ �∗,� |=InqBT ψ∗?

Relations to standard dependence logic D. The systems InqBT and D are defined
in the same semantic setting: in both cases, formulas are interpreted relative to a
relational structure M and a team T . We can thus ask straightforwardly how the
expressive power of these two systems relates. One thing that we can immediately
say is the following.

Proposition 7.4.16 There are formulas inDwhich are not equivalent to any formula
in InqBT.
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Proof Take the dependence logic sentence ∃d x∀d y∃d z(=(z, y) ∧ z �= x) discussed
in Sect. 7.1, which is satisfied relative to a structure M and a non-empty team just
in case the domain of M is infinite. Let us denote this sentence by φinf. We claim
that this formula is not equivalent to any formula in InqBT. Towards a contradiction,
suppose ψ is an InqBT-formula equivalent to φinf. Then in particular, ψ and φinf must
be equivalent in terms of truth conditions (i.e., when interpreted relative to single
assignments). But we know fromCorollary7.4.4 thatψ has the same truth conditions
as its classical variant ψcl , which are just the truth conditions of ψcl in classical first-
order logic. It follows that φinf has the same truth conditions as a classical first-order
formula, which is not the case. �

What about the converse? That is, in terms of expressive power, can InqBT be seen
as a fragment of D, or are the two systems simply incomparable? This is, to the best
of my knowledge, an interesting open question.

Open Problem 7.4.17 Is every formula in InqBT equivalent to some formula in D?

In particular, one could ask whether the examples of InqBT-dependence formulas
discussed in Sects. 7.4.4 and 7.4.5 are expressible in D.

7.5 A General Framework for First-Order Questions
and Dependencies

Aswe saw, there is a discrepancy between the semantic framework of standard inquis-
itive first-order logic, based on sets of possible worlds and a single assignment, and
the framework used in work on dependence logic, based on a single relational struc-
ture and a set of assignments.We saw that the language of inquisitive first-order logic
can be interpreted in both settings, leading to different systems InqBQ and InqBT. In
these systems we can capture different classes of questions and dependencies. For
instance, in InqBQ we can express the question “what is the extension of P?”, and
capture the fact that the extension of P determines the extension of Q. In InqBT,
by contrast, we can express the question “what is the value of x?” and capture the
fact that the value of x determines the value of y. In this section, we show that it is
possible to introduce a more general semantic framework, which allows us to capture
questions about the state of affairs as well as questions about the values of variables,
and questions involving both of these things. As we will see, the systems InqBQ and
InqBT can be seen as special cases of a system InqBQ+ formulated in this general
setting, each obtained by restricting to a certain kind of evaluation points.

In order to obtain our general framework, we evaluate formulas with respect to
objects that capture partial information about both the state of affairs and the value
of variables, as well as their correlations. This can be achieved by taking our points



7.5 A General Framework for First-Order Questions and Dependencies 239

of evaluation to be sets of world-assignment pairs. We will refer to such objects as
information states with referents, abbreviated as r-states.12,13

Definition 7.5.1 (Indices and r-states) Let M = 〈W, D, I 〉 be a first-order informa-
tion id-model.14

– An index is a pair i = 〈wi , gi 〉, where wi ∈ W and gi : Var → D.
– An information state with referents, or r-state for short, is a set s of indices.

In the system InqBQ+, sentences are interpreted relative to r-states. Notice that an
r-state determines both an ordinary information state and a team.

Definition 7.5.2 Let s be an information state with referents. Then:

– the state associated with s is π1[s] = {w | 〈w, g〉 ∈ s for some g };
– the team associated with s is π2[s] = { g | 〈w, g〉 ∈ s for some w}.
However, an r-state is not uniquely determined by the state π1[s] and the team
π2[s]. This is because, in general, s also encodes information about the correla-
tion between the state of affairs and the value of variables, information that is
not reflected by the projections π1[s] and π2[s]. For instance, the r-states s1 =
{〈w, g〉, 〈w′, g′〉, 〈w, g′〉, 〈w′, g〉} and s2 = {〈w, g〉, 〈w′, g′〉} have the same projec-
tions, but the latter also encodes a certain correlation between the state of affairs and
the assignment function, which the former does not encode.

The language of our system InqBQ+ is the same first-order language LQ= that
we have for the systems InqBQ and InqBT. The value of a term t at an index i is
simply [t]i := [t]wi

gi
. Moreover, given an r-state s and an individual d ∈ D, we write

s[x �→ d] for the r-state obtained by modifying the valuation at each index in s from
g to g[x �→ d]:

s[x �→ d] = {〈w, g[x �→ d]〉 | 〈w, g〉 ∈ s}.

The relation of support between r-states s in a model M and formulas φ ∈ LQ is
defined as follows.

12 A similar semantic setup has been proposed by Väänänen [21] with a rather different motivation
in mind. Väänanen’s goal is to develop a logic capable of expressing interesting properties of a
set-theoretic multiverse, i.e., a structure containing a multitude of distinct models of set theory. In
his system, formulas are evaluated with respect to a multiset of first-order models and to a function
mapping each of these models to an assignment into the corresponding domain. While seemingly
more complex, this setup is essentially equivalent to our setup based on sets of model-assignment
pairs, provided that we allow different worlds to have different domains. For simplicity, in this
section we stick to the case of a constant domain.
13 Information states with referents are a fundamental notion in dynamic semantics
[see, e.g., 22–25], where they are simply called information states. In this line of work, the standard
way to think about such an object s is as follows: s encodes not only information about features of
the world, but also about the possible values of certain discourse referents, which stand for indi-
viduals that the discourse is about, but whose identity is not necessarily known. For instance, if we
hear that “a girl was running”, and if we use variable x to store the new discourse referent that this
sentence introduces, the resulting state s will only contain pairs 〈w, g〉 such that the individual g(x)
is a girl who was running in world w.
14 For simplicity, we spell out the proposal for the case of id-models. It is straightforward to gen-
eralize this system to allow for the more flexible treatment of identity described in the previous
chapter.
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Definition 7.5.3 [Support in InqBQ+]

– M, s |= R(t1, . . . , tn) ⇐⇒ 〈[t1]i , . . . , [tn]i 〉 ∈ Iwi (R) for all i ∈ s
– M, s |= (t = t ′) ⇐⇒ [t]i = [t ′]i for all i ∈ s
– M, s |= ⊥ ⇐⇒ s = ∅
– M, s |= φ ∧ ψ ⇐⇒ M, s |= φ and M, s |= ψ
– M, s |= φ → ψ ⇐⇒ for all t ⊆ s, M, t |= φ implies M, t |= ψ
– M, s |= φ

�

ψ ⇐⇒ M, s |= φ or M, s |= ψ
– M, s |= ∀xφ ⇐⇒ M, s[x �→ d] |= φ for every d ∈ D
– M, s |= ∃∃xφ ⇐⇒ M, s[x �→ d] |= φ for some d ∈ D

This system is similar to InqBQ in many respects. First of all, the semantics is per-
sistent, and every formula is supported by the empty r-state. We can define truth
with respect to an index i as support with respect to {i}, and we can call a formula
truth-conditional if support for it always amounts to truth at each world. Then, we
still have that all classical formulas are truth-conditional and that, moreover, the
truth-conditions for a classical formula at an index i = 〈w, g〉 are the ones given by
classical first-order logic with respect to the assignment g and the relational structure
Mw = 〈D, Iw〉 associated with w.

Proposition 7.5.4 For every α ∈ LQ
c and every model M:

– Truth-conditionality: for every r-state s in M,

M, s |= α ⇐⇒ M, i |= α for all i ∈ s.

– Standard truth conditions: for every index i = 〈w, g〉 in M,

M, i |= α ⇐⇒ Mw |=g α in standard Tarskian semantics.

This shows that, as far as classical formulas are concerned, InqBQ+ is yet another
informational semantics for classical first-order logic: in restriction to classical for-
mulas, the entailment relation that arises from InqBQ+ is just the one of classical
first-order logic.

Moreover, it is worth remarking that the systems InqBQ and InqBT can both be
seen as special cases of InqBQ+, obtained by restricting the semantics of InqBQ+ to
particular kinds of r-states. The system InqBQ is obtained by restricting the semantics
to r-states in which all indices i have the same assignment component gi .

Proposition 7.5.5 Suppose π2[s] = {g}. Then M, s |= φ ⇐⇒ M,π1[s] |=g φ in
InqBQ.

Similarly, the system InqBT is obtained by restricting the semantics to r-states in
which all indices i have the same world component wi .

Proposition 7.5.6 Suppose π1[s] = {w}. Then M, s |= φ ⇐⇒ Mw |=π2[s] φ in
InqBT.
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As we expect, the interpretation of sentences is insensitive to the assignment com-
ponent of an r-state, which means that, as far as sentences are concerned, InqBQ+
coincides with InqBQ, in the following sense.

Proposition 7.5.7 Ifφ is a sentence and s is an r-state, M, s |= φ ⇐⇒ M,π1[s] |=
φ in InqBQ.

Notice all the questions that we discussed in the previous chapter were sentences:
we were only interested in variables insofar as these would ultimately get bound.
The previous proposition implies that all those questions receive exactly the same
interpretation in InqBQ+ as they did in InqBQ. This includes, e.g., polar questions of
the form ?∃x P(x), mention-some questions of the form ∃∃x P(x), and mention-all
questions of the form ∀x?P(x).

In addition to these questions, however, InqBQ+ can also interpret questionswhich
concern the value of free variables. This includes, in particular, identification ques-
tions of the form λx for a variable x (recall that we defined λx to be ∃∃y(y = x) for
some variable y distinct from x), which receive the same interpretation as in InqBT:

M, s |= λx ⇐⇒ for all g, g′ ∈ π2[s] : g(x) = g′(x).

Thus, in InqBQ+ we can capture questions that concern only the state of affairs, such
as ∀x?P(x), and questions that concern only the value of free variables, such as λx .
In addition, we can also capture questions that concern both aspects at once. For an
example, consider a polar question ?P(x). We have:

M, s |= ?P(x) ⇐⇒ [ gi (x) ∈ Pwi for all i ∈ s] or [ gi (x) /∈ Pwi for all i ∈ s].

Thus, whether ?Px is supported depends on what s settles about the value of x and
about the extension of P . An r-state s might determine exactly the value of x , but fail
to support ?Px because it does not determine whether the extension of P includes
the relevant object; conversely, s might determine exactly the extention of P , yet fail
to support ?Px because it does not determine the value of x . On the other hand, an
r-state s may support ?Px without determining of any particular object whether it
has property P .

Within the system InqBQ+, we obtain a uniform analysis of the different sorts of
dependencies that we encountered in the previous chapter and in the present one. As
in the previous chapter, we can capture, e.g., the fact that the extensions of P1, . . . , Pn
determine the extension of Q. This is expressed by the formula:

∀x?P1(x) ∧ · · · ∧ ∀x?Pn(x) → ∀x?Q(x).

As in the previous section, we can capture the fact that the value of x1, . . . , xn
determines the value of y. This is expressed by the formula:

λx1 ∧ · · · ∧ λxn → λy.
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Moreover, we can express mixed dependencies. For instance, the following formula,
which is logically valid in InqBQ+, expresses the fact that the value of x and the
extension of P jointly determine whether x has property P:

∀y?P(y) ∧ λx → ?P(x).

We will not delve further here into the study of the system InqBQ+. Our aim in
this section was merely to illustrate how one can give a semantic framework which
simultaneously represents partial information about the state of affairs, the values
of variables, and their correlations, and to show how within such a framework one
can define a generalized version of inquisitive first-order logic that encompasses, as
special cases, both the standard inquisitive first-order logic InqBQ that we studied
in detail in the previous chapter, and its team semantics counterpart InqBT that we
discussed in the previous section.

7.6 Summary and Final Considerations

In this chapter, we looked at some of the tight relations existing between inquisitive
logic and dependence logic, with a special focus on the analysis of the notion of
dependency. We started out by introducing the standard notion of functional depen-
dency in a team, understood as a relation between variables, and we saw how this
relation plays a role in the semantics of the standard system of dependence logic.
We then discussed how the basic ideas and notions of inquisitive logic, as laid out in
Chap.2, can be applied naturally in the context of team semantics. Doing so yields
a new perspective on the notion of dependency, which can be viewed as a rela-
tion between questions, rather than as a relation between variables. We emphasized
several virtues of this perspective: it is much more general than the one based on
variables, since even in a context where very few variables are at stake, there is a
broad spectrum of questions about these variables that can be considered, and thus
a broad spectrum of dependencies that can be analyzed in terms of such questions.
Standard functional dependency is thus found to be a special case of a broad class
of relations which share a common logical core and can be handled by the same
logical tools. Moreover, the question-based perspective reveals that dependency can
be seen as a facet of the central logical notion of entailment, once this is extended to
questions. Dependencies are thus directly connected to the central concerns of logic.

We illustrated these general points by means of a specific logical system, InqBT,
which is an adaptation to the team semantics setting of the first-order inquisitive logic
of the previous chapter. In exploring this system, our main aim was to illustrate the
inquisitive approach in the team semantics setting, of which the system InqBT is only
an instance. When deciding on a logic to analyze and reason about dependencies,
the particular choice of logical repertoire will depend on one’s ultimate purposes. If
one’s purpose is to capture dependencies between bound variables, of the kind that
play a role in Henkin quantifiers, then InqBT is not sufficient, since this system is
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equivalent to standard first-order logic with respect to sentences. For this purpose,
one may want, e.g., to enrich InqBT with the quantifiers of dependence logic. On
the other hand, InqBT is a very natural logic to capture dependencies involving free
variables, and thus to reason about features of a given team.Aswe saw,more research
is needed to understand the exact meta-theoretic properties of InqBT—to determine,
e.g., whether this system is recursively axiomatizable. If this system turns out to be
relatively complex, for some purposes onemaywell want to restrict to awell-behaved
fragment, such as the finitely coherent fragment (cf. Sect. 5.7.1).15 However, all these
different choices concerning the logical repertoire of the system are compatible with
the general conception and system architecture that stems from the key ideas of
inquisitive logic discussed in Chap. 2.

7.7 Exercises

Exercise 7.7.1 (Formalizing dependencies) Consider a team over the domain R of
real numbers which contains all assignments g such that g(y) equals the square of
g(x). The following table depicts some rows of this team.

x y
.
.
.

.

.

.

−2 4
−1 1
− 1

2
1
4

0 0
1
2

1
4

1 1
2 4
.
.
.

.

.

.

Consider a language equipped with a relation symbol <, two constant symbols 1, 0
interpreted in the natural way, and with a function symbol | · | interpreted as mapping
a number a to its absolute value.

The following (conditional) dependencies hold in the context of this team.

(2) a. The value of x determines the value of y.
b. Given that x is positive, the value of y determines the value of x .
c. The value of y together with the information whether x is positive deter-

mines the value of x .
d. The value of y determines the absolute value of x .

15 Note that, as we discussed on page 235, the finitely coherent fragment includes in particular
formulas corresponding to dependence atoms, and is closed under implication, which means that
all dependencies involving questions in the fragment can be expressed within the fragment.
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e. Whether y is greater than 1 is determined by whether the absolute value
of x is greater than 1.

Write down formulas of InqBT that express these dependencies.

Exercise 7.7.2 (Inquisitive logic in team semantics) Consider a team over the
domain N of natural numbers which contains all assignments g such that g(z) =
g(x)g(y). The following table gives the idea.

x y z
a b ab

Consider a language equipped with predicate symbols Even, <, and Pf, interpreted
respectively as “is even”, “is less than”, “is a prime factor of”, as well as constant
symbols 0, 1 and a binary function symbol + interpreted in the naturalway.Determine
whether the following implications are supported in the team.

1. λx ∧ λy → λz
2. λx ∧ λz → λy
3. (x > 0) ∧ λx ∧ λz → λy
4. ?Even(x) ∧ ?Even(y) → ?Even(z)
5. (x > 0) ∧ ?Even(x) ∧ ?Even(z) → ?Even(y)
6. λx ∧ λ(y + z) → λz
7. ∃∃tPf(t, x) → ∃∃tPf(t, z)
8. ∃∃tPf(t, z) → ∃∃t (Pf(t, x) �

Pf(t, y))
9. ∃∃tPf(t, z) → ∃∃t (Pf(t, x) ∨ Pf(t, y))

10. (x > 1) ∧ ∀t?Pf(t, x) → ∀t?Pf(t, z)
11. (x > 1) ∧ (y > 1) ∧ ∀t?Pf(t, x) ∧ ∀t?Pf(t, y) → ∀t?Pf(t, z)
12. (x > 1) ∧ (z > 1) ∧ ∀t?Pf(t, x) ∧ ∀t?Pf(t, z) → ∀t?Pf(t, y)
13. (x > 0) ∧ ∀t?Pf(t, x) → ?Even(x)
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Chapter 8
Inquisitive Modal Logic: A Preview

Throughout this book, we have emphasized different ways in which questions are
relevant in logic. We saw that questions can be seen as names for types of infor-
mation, and that by generalizing logic to questions we can capture logical relations
holding between information types. We also saw that in the inquisitive setting, a
more general account of certain logical operators emerges, which boils down to the
classical one in the special case of statements, but which also covers the role of these
operators in questions. Furthermore, we saw that questions may be used in inferences
as placeholders for arbitrary information of a certain type, and that by reasoning with
questions we can build formal proofs of the existence of certain logical dependen-
cies (and of certain logical relations of answerhood and presupposition). However,
there is another important role for questions in logic that we have not yet touched
upon. This role becomes apparent when we equip inquisitive logic with modal oper-
ators that capture question-directed modal notions. This takes us into the realm of
inquisitive modal logic.

Since inquisitive modal logic is the topic of a freshly started research project,
significant developments in this area can be expected in the next few years. For this
reason, we leave a comprehensive exposition of the topic for a future occasion. In
this final chapter, we will however give a preview of this sub-field of inquisitive
logic. First, in Sect. 8.1 we will explain why the prospect of adding modalities to
inquisitive logic is especially promising. In Sects. 8.2 and 8.3 we will sketch how
different kinds of modalities have so far been added to inquisitive logic, illustrating
the significance of these modalities in the setting of one particular interpretation,
and discussing one important aspect that distinguishes inquisitive modal logic from
the inquisitive propositional and predicate logics discussed in this book. Finally, in
Sect. 8.4 we mention some directions for future work.
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8.1 Issue-Directed Modal Notions

Modal logic is an incredibly versatile sub-field of logic, which is used to formally
analyze a range of notions of great interdisciplinary importance. In its various inter-
pretations, it is used to capture notions such as knowledge and belief, permission
and obligation, different varieties of necessity and possibility, provability in a theory,
truth in the past or in the future, strategic ability, and much more. What do these
notions have in common? They can all be analyzed as properties of propositions: it
is propositions that can be necessary or possible, known or believed, true in the past
or in the future, etcetera. Not surprisingly, in the sort of English sentences which are
formalized in standard modal logic, the argument of a modal operator is typically
given by a ‘that’ clause, whose content is a (standard) proposition. This is illustrated
by the following examples:

(1) a. It is possible that Smith will win the election.
b. Brown thinks that Smith will win the election.
c. Brown has a strategy to ensure that Smith wins the election.

Now consider the following sentences:

(2) a. Who wins the election is determined by how many votes each candidate
gets.

b. Brown wonders who will win the election.
c. Brown doesn’t care who wins the election.
d. Brown controls who wins the election.

These sentences express instances of important modal notions. Sentence (2-a) is
an example of a supervenience claim: given the electoral system, there can be no
difference in winner without an underlying difference in the number of votes. Super-
venience is a modal notion that plays a key role in all areas of analytic philosophy,
at least as important as that of possibility and necessity. Sentences (2-b) and (2-c)
ascribe a certain ‘inquisitive attitude’ to Brown: they characterize her as being in a
state that bears a certain relation to a question content, just like the belief ascription
in (1-b) characterizes her as standing in a certain relation to a proposition. Inquis-
itive attitudes have recently come under attention in philosophy of mind; various
authors (Friedman [1], Carruthers [2]) have emphasized that such attitudes are just
as important to the analysis of inquiry and agency as the much more widely studied
propositional attitudes. Finally, sentence (2-c) is a control claim, stating that a cer-
tain aspect of the world—in this case the outcome of the election—is under Brown’s
control. To be able to express and reason about what aspects of a situation each
agent controls is important for the analysis of action and strategic reasoning in a
multi-agent setting.

What these three examples have in common is that they ascribe a modal property,
not to a proposition, but to a question, namely, the embedded interrogative ‘who
wins the election’. Or rather, more precisely, they ascribe a modal property to the
content expressed of this question. Let us refer to the content expressed by a question
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as an issue. We can then say that the notions illustrated by the examples in (2) are
issue-directed: it is issues that are the relata of a supervenience claim, the objects
of wondering and caring, and the sort of things that an agent may or may not have
control over.

In standard modal logic, the language does not contain formulas that stand for
questions. This is no accident, since standard modal logic builds on truth-conditional
semantics, which as we discussed is not suitable to interpret questions. As a con-
sequence, issue-directed modal notions have so far remained outside of the scope
of modal logic. This is a significant limitation: we saw three examples of important
issue-directed modal notions, and they are not isolated cases: on the contrary, once
we look for them, interesting issue-directed notions can be identified in all areas of
application of modal logic.

This limitation can be overcome by building a new framework for modal logic
based on inquisitive logic. As we saw, in inquisitive logic we have not only formulas
that stand for statements, but also formulas that stand for questions. The semantics
allows us to model the content of a question as a set of information states—those in
which the question is supported. In this setting, we can naturally equip our language
with modal operators O that can apply to a question μ to yield a statement Oμ, the
truth conditions of which are defined in terms of the content of μ. In this way, a
broad range of new, interesting modal notions can be formally analyzed and brought
within the purview of modal logic. As a result, the domain of application of modal
logic can be extended substantially.

In the next two sections, we will make the idea more concrete by looking at two
particular kinds of modal operators that can be added to an inquisitive logic and
which have received attention in the inquisitive logic literature (see [3–11]).

8.2 Generalizing Kripke Modalities to Questions

Modalities in Kripke semantics. In standard Kripke semantics, modalities are ana-
lyzed as quantifiers over a set of accessible worlds. Formally, this works by extend-
ing the language with a new unary operator � (a dual is defined by letting ♦ϕ
abbreviate ¬�¬ϕ). Models for the language are obtained by equipping a set W of
possible worlds with an accessibility relation R : W × W . The semantics, which is
given in terms of truth conditions relative to a world, interprets � by means of the
following clause, where R[w] = {v ∈ W | wRv}:

M, w |= �ϕ ⇐⇒ ∀v ∈ R[w] : M, v |= ϕ

Conceptually, the relation R can be givenmany different interpretations. For instance,
R[w] could be viewed as the set ofworlds that are possible according towhat a certain
agent knows or believes at w; it could be the set of worlds that conform to a certain
normative code, or the set of worlds which are compatible with certain background
facts about the world (e.g., the laws of physics), or the set of worlds which are
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possible future instants relative to w, etcetera. Each of these interpretations gives
rise to a corresponding reading for modal formulas. For instance, �p could be read
as “the agent knows/believes p”, “it is obligatory that p”, “necessarily p”, “it will
always be the case that p”, and so on.

Kripke modalities in inquisitive logic. Let us see how this treatment of modali-
ties can be extended to the inquisitive setting. Syntactically, we may just extend the
language of inquisitive (propositional or predicate) logic with a new unary opera-
tor �. Models are defined simply by extending an information model M with an
accessibility relation R on the set of possible worlds. Note that the resulting models
coincide with standard Kripke models (in the predicate logic case, Kripke models
with a constant domain).

The semantics is obtained by extending the definition of supportwith the following
clause1:

– M, s |= �ϕ ⇐⇒ ∀w ∈ s : M, R[w] |= ϕ.

By specializing this clause to singleton states, we get the following truth conditions
for �ϕ:

– M, w |= �ϕ ⇐⇒ M, R[w] |= ϕ.

It is clear from these clauses that for any ϕ—regardless of whether ϕ is a statement
or a question—�ϕ is truth-conditional: it supported at a state s iff it is true at each
worldw ∈ s. As a consequence , the semantics of�ϕ is fully determined at the level
of truth conditions. In words, these truth conditions say that �ϕ is true at a world w

iff ϕ is supported by the set R[w] of successors of w.
In case the argument of our modality is a statement α, our semantics boils down

to Kripke semantics. Indeed, if α is truth-conditional, we have:

M, w |= �α ⇐⇒ M, R[w] |= α

⇐⇒ ∀v ∈ R[w] : M, v |= α.

If we restrict the language to classical formulas not containing inquisitive operators
(

�

or, in the predicate logic case, ∃∃), we thus obtain a language that can be fully
identified with the language of standard modal logic. All formulas in this fragment
are truth-conditional, and the truth conditions for them are the same as in standard
modal logic. Thismeans that our inquisitivemodal logics (in the plural, since different
logics arise from different classes of frames, as usual) are conservative extensions of
the corresponding classical systems.

Illustration in the epistemic setting.To appreciate how inquisitive semantics allows
us to extend the operator � to questions, it is helpful to have in mind the epistemic
interpretation of � as formalizing the verb ‘know’. In this interpretation, the infor-
mation state R[w] models the epistemic state of the agent at world w—the set of
worlds compatible with what the agent knows at w.

1 In the case of predicate logic, the clause needs to be relativized to an assignment g.
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Consider the knowledge ascriptions in (3). In inquisitive modal logic, they can be
formalized straightforwardly by applying the knowledge modality to the translations
of the complements ‘that Alice passed the test’ (Pa), ‘whether Alice passed the test’
(?Pa) and ‘who passed the test’ (∀x?Px).
(3) a. The agent knows that Alice passed the test. �Pa

b. The agent knows whether Alice passed the test. �?Pa
c. The agent knows who passed the test. �∀x?Px

Let us see what our semantics predicts for these formulas. First, we saw that all of
them are truth-conditional, which is in line with the fact that the sentences in (3) are
statements. We also saw that for the ‘standard’ knowledge ascription �Pa, the truth
conditions are the same as given by standard epistemic logic:

M, w |= �Pa ⇐⇒ ∀v ∈ R[w] : M, v |= Pa.

In words, �Pa is true in case Pa is true in all worlds compatible with the agent’s
knowledge.

Now let us consider the formula �?Pa, where the argument is the polar question
?Pa. Using the support conditions for polar questions, which are familiar by now,
we have:

M, w |= �?Pa ⇐⇒ M, R[w] |= ?Pa

⇐⇒ ∀v, v′ ∈ R[w] : (M, v |= Pa ⇐⇒ M, v′ |= Pa).

Thus, �?Pa is true just in case the truth value of Pa is settled in the agent’s epis-
temic state—i.e., if the agent has no uncertainty concerning this truth value. This is
intuitively the correct prediction for a knowing-whether ascription such as (3-b). We
also have:

M, w |= �?Pa ⇐⇒ M, R[w] |= ?Pa

⇐⇒ M, R[w] |= Pa or M, R[w] |= ¬Pa

⇐⇒ M, w |= �Pa or M, w |= �¬Pa

⇐⇒ M, w |= �Pa ∨ �¬Pa.

Thus, �?Pa has the same truth conditions as �Pa ∨ �¬Pa, and since the two
formulas are both truth-conditional, they are equivalent: �?Pa ≡ �Pa ∨ �¬Pa.
This is an intuitive result: knowing whether Alice passed the test amounts to knowing
either that Alice passed the test, or that she did not pass the test.

Finally, consider the formula �∀x?Px , where the argument is the mention-all
question ∀x?Px asking for the extension of P . Using the support conditions for
mention-all questions (cf. Example 5.2.5 on Sect. 5.2), we have:
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M, w |= �∀x?Px ⇐⇒ M, R[w] |= ∀x?Px
⇐⇒ ∀v, v′ ∈ R[w] : Pv = Pv′ .

Thus,�∀x?Px is true at a worldw in case the extension of P is settled in the agent’s
epistemic state—i.e., if the agent has no uncertainty about this extension. This is the
intuitively correct prediction for (3-c): to know who passed the test is to know the
extension of the predicate ‘having passed the test’.

As these examples illustrate, our generalized semantics for � allows us to give
a neat uniform account of knowledge ascriptions involving statements (‘knowing
that’) and questions (‘knowing whether, who, what, …’). Note that in this case, the
point is not that knowledge ascriptions such as (3-b) and (3-c) cannot be captured
in standard modal logic: they can. We already saw that �?Pa is equivalent to the
standard modal formula �Pa ∨ �¬Pa, and for (3-b), we have:

�∀x?Px ≡ ∀x(�Px ∨ �¬Px).

The point is, rather, that in inquisitive modal logic the semantics of knowledge attri-
butions can be derived compositionally in a principled way from a general semantics
for ‘know’ and the semantics of the embedded complements. The fact that, say,
knowing whether p amounts to knowing p or knowing ¬p does not have to be stip-
ulated, but is derived in the logic, which is a welcome result. Moreover, such an
account sheds light on how verbs like ‘know’ (but also ‘remember’, ‘tell’, and many
others) work in natural language (for the linguistic relevance of such an account, see
Ciardelli and Roelofsen [12], Theiler et al. [13, 14]).

Non-epistemic interpretations.We illustrated the semantics for � in the epistemic
setting, but there are many other natural interpretations. Just to give a hint, let us
consider the pair of formulas �p and �?p. In a legal setting, if �p says that the law
mandates that p, then �?p says that the law mandates whether p. In the setting of
provability logic, if �p says that the theory proves p, then �?p says that the theory
decides p. In the setting of temporal logic, if �p says that p will henceforth always
be the case, then �?p says that p is henceforth immutable. And yet other natural
interpretations can easily be given.

Notes on the logic. The logic of the generalized modality � turns out to be very
simple. The distributivity axiom of standard modal logic is generally valid, including
when ϕ and ψ are questions:

�(ϕ → ψ) → (�ϕ → �ψ).
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The necessitation principle also holds: if ϕ is a validity, then so is �ϕ. From this,
additional facts follow, such as themonotonicity of� and the commutation of�with
∧. In the predicate logic case, the constant domain setup ensures that the Barcan and
coverse Barcan formulas also hold, i.e., � commutes with the universal quantifier2:

∀x�ϕ ≡ �∀xϕ.

A distinctive feature of � in the inquisitive setting is the validity of the following
pseuso-commutation principles, which say that an inquisitive operator under � is
equivalent to the corresponding classical operator above �.

�(ϕ

�

ψ) ≡ �ϕ ∨ �ψ, �∃∃xϕ ≡ ∃x�ϕ.

These principles allow us to push a � modality through an inquisitive operator. In
the propositional case, this can used to show that any formula of the form �ϕ is
equivalent to a formula of standard modal logic see Sect. 6 of [15]. This is not the
case in the first-order setting, however: there are modal formulas of the form �ϕ,
where ϕ is a question, which, while being statements, are not equivalent to any
formula of standard first-order modal logic.3 Thus, by extending � to questions we
obtain a logic which is more expressive than standard modal logic, even in restriction
to statements.

In the propositional setting, Ciardelli [15, Sect. 6] has described a strategy for
turning complete axiomatizations for standard (normal) modal logics into complete
axiomatizations of the corresponding inquisitive modal logics. This strategy applies
to all the most familiar modal logics, yielding completeness results for their inquis-
itive extensions.

8.3 Properly Inquisitive Modalities

Basic setup. In the literature on inquisitive modal logic, a different modal operator
has also been studied. This modality is standardly denoted �, and as in the case of
�, it can be added to the language of inquisitive propositional or predicate logic. As
we will see, this is an example of a modality that allows us to capture issue-directed
modal notions that cannot be captured in standard modal logic.

In order to interpret this modality, we equip an information model with a relation
R : W × ℘(W ) between worlds and information states. Such a relation allows us

2 Of course, this is not a necessary component of inquisitive modal logic as such, but a consequence
of our choice to work with models based on a fixed domain.
3 While this result is not mentioned explicitly, it follows easily from recent results contained in [16].
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to associate to each world w a set of information statesR[w] = {s ⊆ W | wRs}.4,5

Let us call the resulting model an inquisitive modal model.
The semantics is obtained by extending the definition of supportwith the following

clause for �:

– M, s |= �ϕ ⇐⇒ ∀w ∈ s,∀t ∈ R[w] : M, t |= ϕ.

This clause makes the formula�ϕ truth-conditional. We can thus study its semantics
by looking at its truth conditions, which are as follows:

– M, w |= �ϕ ⇐⇒ ∀t ∈ R[w] : M, t |= ϕ.

Thus, �ϕ is a statement which is true at a world w just in case ϕ is supported at all
R-successors ofw. Note that the relationR also induces a Kripke-style accessibility
relation R ⊆ W × W , given by:

R[w] :=
⋃

R[w].

This means that in the context of an inquisitive modal model we can also interpret a
modality �, which uses the induced relation R in the way discussed in the previous
section.

When applied to a truth-conditional formula, the twomodalities� and� coincide
with each other and with the universal modality of standard modal logic. That is,
when α is truth-conditional we have:

M, w |= �α ⇐⇒ M, w |= �α

⇐⇒ ∀v ∈ R[w] : M, v |= α.

Thus, the classical fragment of our modal logic is just standard modal logic, with
� collapsing onto �. However, things become interesting as soon as we consider
formulas obtained by applying� to a question. To appreciate the results, it is helpful
to have a concrete interpretation of inquisitive modal models in mind.

Illustration in the inquisitive-epistemic setting. In the inquisitive epistemic logic
proposed by Ciardelli and Roelofsen [3], an inquisitive modal model is given the
following intuitive interpretation: given a world w, we have wRs just in case all the
issues the agent is interested in are settled in the state s—that is, if s is an information
state where the agent’s curiosity is satisfied. The set of states R[w] thus captures
the inquisitive state of the agent at world w, encoding the issues that the agent

4 Equivalently, in the literature a map � : W → ℘℘(W ) is used. Formally, this is the sort of map
used to interpret modalities in neighborhood semantics for standard modal logic. So, a model for
our logic is essentially a standard neighborhood model for modal logic. As we will see, however,
in the inquisitive setting this map is used to give a Kripke-style semantics for the modality �, and
not a neighborhood semantics.
5 Most previous work also assumes thatR is downward closed, in the sense that if wRs and t ⊆ s
then wRt . However, as pointed out by Meißner and Otto [9], this assumption is not strictly needed,
in that we obtain the same logic without the downward closure requirement.
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pq pq

pq pq
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pq pq

pq pq

(b) R2[w]

pq pq

pq pq

(c) R3[w]

pq pq

pq pq

(d) [?p]M

Fig. 8.1 Three inquisitive states for an agent. The maximal elements of the inquisitive state are
depicted in solid lines, the corresponding epistemic states in dashed lines. The last figure shows the
alternatives for the question ?p

is interested in. The information state R[w] = ⋃R[w] is viewed as reflecting the
agent’s knowledge at w.

To make this more concrete, consider the three situations depicted in Fig. 8.1,
where as usual, wpq stands for a world where p and q are both true, wpq for a world
where p is true and q false, etcetera. In Fig. 8.1a–c, the maximal elements of the
agent’s inquisitive stateR[w] are drawn in solid lines; the corresponding information
state R[w] = ⋃R[w] is drawn by the dashed line. Here, w stands for an arbitrary
world in the model (note that the different sub-figures depict different models, since
the accessibility relationR is different).

– In Fig. 8.1a, the epistemic state of the agent is R1[w] = {wpq , wpq}. This means
that the agent knows that p and does not know whether q. The agent’s inquisitive
state isR1[w] = {{wpq , wpq}}↓. Thismeans that the issues of the agent are already
settled by the agent’s knowledge state (and, therefore, also by any stronger body
of information). Thus, Fig. 8.1a represents a situation where the agent knows that
p and has no further open issues.

– In Fig. 8.1b, the epistemic state of the agent is the entire set of worlds R2[w] =
{wpq , wpq , wpq , wpq}. This means that the agent has no information. The agent’s
inquisitive state isR2[w] = {{wpq , wpq}, {wpq , wpq}}↓. Thismeans that the issues
of the agent can be settled either by reaching a state at least as strong as
{wpq , wpq}—i.e., by establishing that p—or by reaching a state at least as strong
as {wpq , wpq}—i.e., by establishing that ¬p. In other words, the agent’s issues
are settled just in case the question ?p is resolved. Thus, Fig. 8.1b represents a
situation where the agent has no knowledge and is interested (only) in the issue of
whether p.

– In Fig. 8.1c, the situation is parallel to the one in the previous case, but with the
roles of p and q swapped: the agent has no knowledge and is interested (only) in
the issue of whether q.

With this particular intuitive interpretation of inquisitive modal models in mind, let
us now examine the different significance of the modal claims �μ and �μ when μ
is a question. The truth conditions for �μ are:
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– M, w |= �μ ⇐⇒ M, R[w] |= μ

Thus, �μ is true if what the agent knows suffices to resolve the question μ. As we
saw in the previous section, this corresponds to the intuitive truth conditions of the
statement ‘the agent knows μ’. Now let us consider �μ. We have:

– M, w |= �μ ⇐⇒ ∀t ∈ R[w] : M, t |= μ

Thus, �μ is true just in case any information that settles the agent’s issues also
settles μ—in other words, if settling μ is necessary in order to satisfy the agent’s
curiosity. This could be the case in a trivial way if the agent’s current information
settles μ, i.e., if �μ is true. But the truth-conditions of �μ are more lenient: it could
be the case that μ is not settled by the agent’s current information, but it is settled by
all “target” information states where the agent’s issues are settled. This situation is
described by the formula ¬�μ ∧ �μ, which [3] propose to adopt as a formalization
of the statement ‘the agent wonders about μ’. Let us illustrate this with the pictures
in Fig. 8.1.

– In Fig. 8.1a, the agent’s epistemic state (dashed) supports the question ?p. Thus, we
have w |= �?p (and then, by persistency, also w |= �?p). Thus, this is classified
as a situation where the agent knows whether p.

– In Fig. 8.1b, the agent’s state epistemic state (dashed) does not support ?p. How-
ever, each element of the agent’s inquisitive state (the two solid blocks and their
subsets) supports ?p. Thus, in this state we have w |= ¬�?p ∧ �?p. So, this is
classified as a situation where the agent wonders whether p.

– In Fig. 8.1c, the agent’s epistemic state again does not support ?p. In this case,
however, some elements of the agent’s inquisitive state, for instance {wpq , wpq},
do not support ?p either. In this situation, we have w |= ¬�?p ∧ ¬�?p. So this
is classified as a situation where the agent neither knows whether p, nor wonders
about it.

This illustrates how in inquisitive modal logic we can express not only facts about
the knowledge agents have, but also facts about the issues they entertain. As we are
now going to see, in order to express these facts, questions are crucial.

Modal statements about questions. Throughout the book, when setting up a sys-
tem of inquisitive logic, we started out with a classical logic of statements and we
added questions to it. While the addition of questions resulted in a more expressive
language, this gain in expressive power did not concern statements: as witnessed by
Corollary 3.4.5 and Proposition 5.3.7, any truth-conditional formula in inquisitive
propositional or predicate logic is equivalent to a classical formula that does not
contain any question operator—and thus equivalent to a formula of classical propo-
sitional or predicate logic.

In inquisitive modal logic, the situation is different. Consider again the formula
�?p. Like any modal formula, this is a statement, i.e., truth-conditional. However,
one can prove (cf. Prop. 7.1.18 in Ciardelli [15]) that �?p is not equivalent to
any

�

-free formula. Thus, in inquisitive modal logic, the presence of questions has
repercussions also on the range of statements that the language can express: by
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Statements Questions

,∃∃

,

Fig. 8.2 In inquisitive modal logic, statements and questions are intertwined in an essential way

embedding questions under modal operators, we can express modal statements that
are not expressible without referring to questions.

This is a significant difference: it means that in inquisitive modal logic—unlike
in the systems considered in the previous chapters—questions are not merely added
on top of a pre-existing logic of statements. Rather, statements and questions are
crucially intertwined in the way illustrated in Fig. 8.2: questions are built up from
statements by means of

�
and ∃∃; at the same time, by embedding questions under

� and � we can form new statements.
This brings out a further role for questions in logic, in addition to the ones discussed

in detail in this book: questions give us names for issues; by definingmodal operators
that can apply to questions we can then capturemodal facts about issues—the kind of
issue-directedmodal notionsmentioned in Sect. 8.1.We have illustrated this potential
in this section by describing the proposed analysis ofwondering in inquisitive modal
logic, but similar ideas can in principle be deployed for many other issue-directed
notions. This territory, however, is almost entirely uncharted, and remains to be
explored in future research.

Notes on the logic. Like the modality �, the inquisitive modality � also has very
familiar features. In this case as well, the distributivity axiom

�(ϕ → ψ) → (�ϕ → �ψ)

is valid for any formulas ϕ and ψ, and so is the necessitation principle: if ϕ is valid
then so is �ϕ. As usual, this implies that � is monotonic and commutes with ∧.
In the predicate logic case, � also commutes with ∀ due to the constant domain
setup of the semantics. The main difference with � is that � does not validate the
pseudo-distributivity over inquisitive operators:

�(p

�

q) �≡ �p ∨ �q, � ∃∃x Px �≡ ∃x�Px .

As shown by Ciardelli [15, Chap. 7], distributivity and necessitation are in fact all we
need to completely axiomatize the logic of � in the propositional case, which shows
that� is an extremely natural generalization of the standard universal modality. This



258 8 Inquisitive Modal Logic: A Preview

completeness result is also extended to a range of modal logics obtained by imposing
some salient conditions on the relation R.

8.4 Looking Ahead

The foregoing discussion has, hopefully, given the reader an idea of why combining
questions with modalities is especially interesting, and of how extendingmodal logic
into the inquisitive territory has the potential to bring new interesting modal notions
within the purview of logical analysis. Although inquisitive modal logic has received
some attention in recent years (see the list of references in Appendix A), much more
work is needed to bring out this potential.

First, the role of questions in modal logic has to be demonstrated by showing that
a range of interesting modal notions can be analyzed in this setting. In addition to the
analysis of issue-directed attitudes such as wondering illustrated above, the range
of natural applications include the analysis of supervenience and strategic control.
In the case of supervenience, the idea is, at a first pass, that property P supervenes
on property Q in case, in the relevant domain of possibilities, the extension of Q is
determined by the extension of P , which can be formalized in inquisitivemodal logic
by �(∀x?Px → ∀x?Qx) (Ciardelli [17]). Things are somewhat more complicated,
however: for reasons that we cannot discuss in detail here, a proper analysis of differ-
ent kinds of supervenience in fact requires the tools of the logic InqBQ+ developed
in Sect. 7.5, where information states are modeled as sets of world-assignment pairs.
In the case of strategic control, the idea is that, within an appropriate interpretation of
inquisitivemodal models, a formula such as¬�?p ∧ �?p says that the truth value of
p is not settled before the agent’s action, but becomes settled as soon as the agent has
acted; this captures the fact that whether p comes about is determined by the agent’s
choice at a certain point in time. The possibility of this interpretation of inquisitive
modalities is mentioned by Ciardelli [15, Sect. 7.5], but its integration in the context
of logics of actions like stit logic (Belnap et al. [18]), coalition logic (Pauly [19])
and alternating-time temporal logic (Alur et al. [20]) remains to be developed and
investigated.

Moreover,modal logic has an extremely richmathematical theory.Oncewe extend
modal logic to questions, such a theory needs to be reconstructed in the generalized
setting. Ciardelli and Otto [8], Meißner and Otto [9] have recently made a first step
towards a model theory of inquisitive modal logic, characterizing the expressive
power of the logic in terms of a suitable notion of bisimulation, defining translations
to first-order predicate logic, and proving analogues of the classical van Benthem
theorem, which characterizes modal logic as the bisimulation invariant fragment of
first-order predicate logic. Much more remains to be done, however. One topic that
remains entirely to be studied in the inquisitive setting is frame definability, where
it is natural to look for analogues of Sahlqvist theory and the Goldblatt-Thomason
theorem. Other areas to be explored are the proof theory of inquisitive modal logic
(where, for instance, tableaux systems might be fruitfully developed), the range of
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modal operators definable in the inquisitive setting, and the properties of first-order
inquisitive modal logic, which has so far not been systematically investigated.
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Appendix
Bibliography on Inquisitive Logic

This book is intended only as an introduction to inquisitive logic. There are many
ideas, results, and applications of inquisitive logic that we were not able to cover in
the book. This appendix gives an overview of the publications on inquisitive logic,
categorized by topic. It is intended to help the reader orient in the literature on the
subject, which has flourished over the past few years.

Work on Inquisitive Propositional Logic

– Early work on a predecessor of InqB:
Groenendijk [1], Mascarenhas [2]

– Sources for the system InqB:
Groenendijk [3], Ciardelli [4], Ciardelli and Roelofsen [5]

– Axiomatization and other basic results on InqB:
Ciardelli [4], Ciardelli and Roelofsen [5]

– Definability and eliminability of connectives in InqB:
Ciardelli [4], Ciardelli and Barbero [6]

– A modal companion to InqB:
Punčochář [7]

– Extension of InqB with non-persistent operators:
Punčochář [8]

– Extension with Stalnaker-Lewis-style conditional operators, application to the
logic of unconditionals: Ciardelli [9], Bledin [10]

– Natural deduction system for InqB and constructive content of inquisitive proofs:
Ciardelli [11]

– A display calculus for InqB:
Frittella et al. [12]

– A labelled sequent calculus for InqB:
Chen and Ma [13]

– Structural completeness of InqB:
Iemhoff and Yang [14]
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– Complexity of model checking for InqB:
Grilletti and Zeuner [15]

– Systems of propositional inquisitive logic different from InqB:
Groenendijk [16], Ciardelli et al. [17], Groenendijk and Roelofsen [18]

– An alternative conceptual interpretation of the system InqB:
Wiśniewski [19]

– Inquisitive logics based on a (super)intuitionistic logic of statements:
Punčochář [20, 21], Ciardelli et al. [22], Holliday [23], Sano [24]

– An inquisitive logic based on a version of relevance logic:
Punčochář [25]

– A general approach to building inquisitive versions of substructural logics:
Punčochář [26]

– Studies on inquisitive logic from an algebraic perspective:
Bezhanishvili et al. [27], Quadrellaro [28], Punčochář [29], Grilletti and Quadrel-
laro [30], Bezhanishvili et al. [31]

Work on Inquisitive Predicate Logic

– Original sources for InqBQ:
Ciardelli [4], Roelofsen [32], Ciardelli et al. [33]

– A recent dissertation containing many advances on InqBQ:
Grilletti [34]

– Model-theoretic investigations:
Grilletti [35], Grilletti and Ciardelli [36], Ciardelli and Grilletti [37]

– Axiomatizations of fragments/variants:
Sano [38], Ciardelli (Sect. 4 of [39]), Grilletti [40], Ciardelli and Grilletti [37]

Work on Inquisitive Modal Logic

– General framework:
Ciardelli (Sects. 6–7 of [39])

– Model-theoretic study and connections to classical first-order logic:
Ciardelli and Otto [41, 42], Meißner and Otto [43]

– Inquisitive epistemic logic:
Ciardelli and Roelofsen [44], Ciardelli [45], Punčochář and Sedlár [46]

– Inquisitive dynamic epistemic logic:
Ciardelli and Roelofsen [44], Ciardelli [47], van Gessel [48], Mellema [49]

– Inquisitive strict conditionals and the analysis of modal determinacy and superve-
nience: Ciardelli [50], Humberstone [51]

– Inquisitive modal logics of programs (inquisitive versions of PDL):
Mellema [49], Punčochář and Sedlár [52]

– Inquisitivemodal logicswith applications to free choice effects in natural language:
Aher [53], Aloni and Ciardelli [54], Aher and Groenendijk [55], Willer [56, 57],
Nygren [58], Booth [59]



Appendix: Bibliography on Inquisitive Logic 263

Two-Dimensional Extension of Inquisitive Logic

– A two-dimensional framework to capture the role of indexicals in questions and
generalize the logic of apriority and necessity: van Gessel [60, 61].

Connections with Other Logical Frameworks

– Connections to intermediate logics:
Ciardelli [4], Ciardelli and Roelofsen [5]1

– Connections to dependence logic:
Ciardelli [63], Yang and Väänänen [64]

– Connections to inferential erotetic logic:
Wiśniewski and Leszczyńska-Jasion [65]

– Connections to proof-theoretic semantics:
Stafford [66]

– Connections to non-standard epistemic logics:
Ciardelli (Sect. 6 of [39], Wang et al. [75])

– Connections with possibility semantics for modal logic:
Ciardelli (Sect. 6 of [39])

Applications of Inquisitive Logic

– Applications in linguistics:
this part of the literature is too vast to be listed here; the reader is referred to
Appendix B in Ciardelli et al. [33] and to the list of references maintained on the
inquisitive semantics webpage (https://projects.illc.uva.nl/inquisitivesemantics).

– Applications in formal epistemology:
Uegaki [67], Hamami [68], Cohen [69], Dever and Schiller [70]

– Applications in psychology:
Koralus andMascarenhas [71], Mascarenhas [72], Mascarenhas and Koralus [73],
Mascarenhas and Picat [74].
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7. Punčochář, V. (2012). Some modifications of carnap’s modal logic. Studia Logica, 100(3),
517–543.
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195, 199, 201, 202, 214, 225, 234,
236, 237

Skvortsov’s logic of infinite problems, 86
Specificity, 81, 82, 106, 147, 184
Split

local split properties, 146
logical split properties, 154
split equivalences, 82, 105, 106, 168, 179
split rules, 184, 191

State, see information state
Statement, 1–3, 7, 10–16, 18–23, 25, 26, 28,

31–45, 48, 49, 51, 55, 60, 62, 64–69,
73–75, 78–82, 84–86, 105–107, 115,
123, 124, 127, 129, 130, 135, 136,
141, 142, 145, 146, 152, 174, 177,
184, 215, 216, 221–224, 226, 231,
247, 249–254, 256, 257

State property
definable in InqB, 87
defined by a formula, 158
finitely determined, 88
inquisitive, 99

Substitution
closure under uniform substitution, 85,
91

legitimate substitution, 85
substitution function, 84, 85
substitution of known identicals, 139

Support
for classical first-order formulas, 125,
127, 238

for classical propositional formulas, 56,
57

for the inquisitive first-order logic
InqBQ, 4, 123, 174, 181, 206, 213, 223,
224, 238, 242

for the inquisitive first-order logic InqBT,
206, 227

for the inquisitive propositional logic
InqB, 55, 124, 261

Support Lemma, 111, 115–117
support-set, 19–21, 58, 63, 128

T
Tarskian consequence relation, 220
Tarskian semantics, 128, 139, 212, 213
Team

semantics, 205, 206, 209, 213, 215, 217,
220, 222, 224, 227, 234, 242, 244

x-variant of a team, 211
Tensor disjunction, 96, 100, 210, 211
Term

closed, 127, 195, 235, 236
free for a variable in a formula, 125
referent, 127, 141
rigid, 125, 141, 146, 149, 150, 152, 154,
182, 183, 189, 203, 235

Theory
clant-saturated, 190–193, 195, 198, 200
classical saturated, 193–195, 198
complete theory of classical formulas,
114

Traceable deduction failure, 113
Truth, 63, 64

and question presupposition, 31
truth-conditional formula, 34, 64, 65, 79,
80, 82, 135, 136, 145–147, 149, 151,
254, 256

truth-conditionality of a sentence, 170
truth conditions for classical first-order
formulas, 238

truth conditions for classical proposi-
tional formulas, 57

truth conditions for InqBT, 226
truth conditions for |∨, 63
Truth Lemma, 115–117, 196
truth-set, 13, 19, 22, 32, 34, 44, 58–60,
63, 72, 74, 128, 133, 141

truth-support bridge, 13, 14, 16, 18–22,
28, 30, 31, 51, 55, 59, 128, 215, 226

W
Wondering, 249, 257, 258
World, see possible world
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